Sample records for g matrix

  1. Understanding the Evolution and Stability of the G-Matrix

    PubMed Central

    Arnold, Stevan J.; Bürger, Reinhard; Hohenlohe, Paul A.; Ajie, Beverley C.; Jones, Adam G.

    2011-01-01

    The G-matrix summarizes the inheritance of multiple, phenotypic traits. The stability and evolution of this matrix are important issues because they affect our ability to predict how the phenotypic traits evolve by selection and drift. Despite the centrality of these issues, comparative, experimental, and analytical approaches to understanding the stability and evolution of the G-matrix have met with limited success. Nevertheless, empirical studies often find that certain structural features of the matrix are remarkably constant, suggesting that persistent selection regimes or other factors promote stability. On the theoretical side, no one has been able to derive equations that would relate stability of the G-matrix to selection regimes, population size, migration, or to the details of genetic architecture. Recent simulation studies of evolving G-matrices offer solutions to some of these problems, as well as a deeper, synthetic understanding of both the G-matrix and adaptive radiations. PMID:18973631

  2. The G matrix under fluctuating correlational mutation and selection.

    PubMed

    Revell, Liam J

    2007-08-01

    Theoretical quantitative genetics provides a framework for reconstructing past selection and predicting future patterns of phenotypic differentiation. However, the usefulness of the equations of quantitative genetics for evolutionary inference relies on the evolutionary stability of the additive genetic variance-covariance matrix (G matrix). A fruitful new approach for exploring the evolutionary dynamics of G involves the use of individual-based computer simulations. Previous studies have focused on the evolution of the eigenstructure of G. An alternative approach employed in this paper uses the multivariate response-to-selection equation to evaluate the stability of G. In this approach, I measure similarity by the correlation between response-to-selection vectors due to random selection gradients. I analyze the dynamics of G under several conditions of correlational mutation and selection. As found in a previous study, the eigenstructure of G is stabilized by correlational mutation and selection. However, over broad conditions, instability of G did not result in a decreased consistency of the response to selection. I also analyze the stability of G when the correlation coefficients of correlational mutation and selection and the effective population size change through time. To my knowledge, no prior study has used computer simulations to investigate the stability of G when correlational mutation and selection fluctuate. Under these conditions, the eigenstructure of G is unstable under some simulation conditions. Different results are obtained if G matrix stability is assessed by eigenanalysis or by the response to random selection gradients. In this case, the response to selection is most consistent when certain aspects of the eigenstructure of G are least stable and vice versa.

  3. PslG, a self-produced glycosyl hydrolase, triggers biofilm disassembly by disrupting exopolysaccharide matrix.

    PubMed

    Yu, Shan; Su, Tiantian; Wu, Huijun; Liu, Shiheng; Wang, Di; Zhao, Tianhu; Jin, Zengjun; Du, Wenbin; Zhu, Mei-Jun; Chua, Song Lin; Yang, Liang; Zhu, Deyu; Gu, Lichuan; Ma, Luyan Z

    2015-12-01

    Biofilms are surface-associated communities of microorganism embedded in extracellular matrix. Exopolysaccharide is a critical component in the extracellular matrix that maintains biofilm architecture and protects resident biofilm bacteria from antimicrobials and host immune attack. However, self-produced factors that target the matrix exopolysaccharides, are still poorly understood. Here, we show that PslG, a protein involved in the synthesis of a key biofilm matrix exopolysaccharide Psl in Pseudomonas aeruginosa, prevents biofilm formation and disassembles existing biofilms within minutes at nanomolar concentrations when supplied exogenously. The crystal structure of PslG indicates the typical features of an endoglycosidase. PslG mainly disrupts the Psl matrix to disperse bacteria from biofilms. PslG treatment markedly enhances biofilm sensitivity to antibiotics and macrophage cells, resulting in improved biofilm clearance in a mouse implant infection model. Furthermore, PslG shows biofilm inhibition and disassembly activity against a wide range of Pseudomonas species, indicating its great potential in combating biofilm-related complications.

  4. Brueckner G -matrix approach for neutron-proton pairing correlations in the deformed BCS approach

    NASA Astrophysics Data System (ADS)

    Ha, Eunja; Cheoun, Myung-Ki; Šimkovic, F.

    2015-10-01

    Ground states of even-even Ge isotopes with mass number A =64 -76 have been studied in the deformed Bardeen-Cooper-Schrieffer (BCS) theory by taking neutron-proton (n p ) pairing correlations as well as neutron-neutron (n n ) and proton-proton (p p ) pairing correlations. The n p pairing has two different modes J =0 ,T =1 (isotriplet) and J =1 ,T =0 (isosinglet). In this work, the Brueckner G matrix, based on the CD-Bonn potential, has been exploited to reduce the ambiguity regarding nucleon-nucleon interactions inside nuclei compared to the results by a simple schematic phenomenological force. We found that the G matrix plays important roles to obtain reasonable descriptions of even-even nuclei compared to the schematic force. The n p pairing strength has been shown to have a clear correlation with quadrupole deformation parameter β2 for the isotopes, and affects the smearing of the Fermi surfaces of not only N =Z nuclei but also N ≠Z nuclei. In particular, the coexistence of the like particle (n n and p p ) and the n p pairing modes was found to become more salient by the G -matrix approach than by the schematic force approach.

  5. Environmental effects on the structure of the G-matrix.

    PubMed

    Wood, Corlett W; Brodie, Edmund D

    2015-11-01

    Genetic correlations between traits determine the multivariate response to selection in the short term, and thereby play a causal role in evolutionary change. Although individual studies have documented environmentally induced changes in genetic correlations, the nature and extent of environmental effects on multivariate genetic architecture across species and environments remain largely uncharacterized. We reviewed the literature for estimates of the genetic variance-covariance (G) matrix in multiple environments, and compared differences in G between environments to the divergence in G between conspecific populations (measured in a common garden). We found that the predicted evolutionary trajectory differed as strongly between environments as it did between populations. Between-environment differences in the underlying structure of G (total genetic variance and the relative magnitude and orientation of genetic correlations) were equal to or greater than between-population differences. Neither environmental novelty, nor the difference in mean phenotype predicted these differences in G. Our results suggest that environmental effects on multivariate genetic architecture may be comparable to the divergence that accumulates over dozens or hundreds of generations between populations. We outline avenues of future research to address the limitations of existing data and characterize the extent to which lability in genetic correlations shapes evolution in changing environments. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  6. Electrical Spin Driving by g -Matrix Modulation in Spin-Orbit Qubits

    NASA Astrophysics Data System (ADS)

    Crippa, Alessandro; Maurand, Romain; Bourdet, Léo; Kotekar-Patil, Dharmraj; Amisse, Anthony; Jehl, Xavier; Sanquer, Marc; Laviéville, Romain; Bohuslavskyi, Heorhii; Hutin, Louis; Barraud, Sylvain; Vinet, Maud; Niquet, Yann-Michel; De Franceschi, Silvano

    2018-03-01

    In a semiconductor spin qubit with sizable spin-orbit coupling, coherent spin rotations can be driven by a resonant gate-voltage modulation. Recently, we have exploited this opportunity in the experimental demonstration of a hole spin qubit in a silicon device. Here we investigate the underlying physical mechanisms by measuring the full angular dependence of the Rabi frequency, as well as the gate-voltage dependence and anisotropy of the hole g factor. We show that a g -matrix formalism can simultaneously capture and discriminate the contributions of two mechanisms so far independently discussed in the literature: one associated with the modulation of the g factor, and measurable by Zeeman energy spectroscopy, the other not. Our approach has a general validity and can be applied to the analysis of other types of spin-orbit qubits.

  7. What affects the predictability of evolutionary constraints using a G-matrix? The relative effects of modular pleiotropy and mutational correlation.

    PubMed

    Chebib, Jobran; Guillaume, Frédéric

    2017-10-01

    Phenotypic traits do not always respond to selection independently from each other and often show correlated responses to selection. The structure of a genotype-phenotype map (GP map) determines trait covariation, which involves variation in the degree and strength of the pleiotropic effects of the underlying genes. It is still unclear, and debated, how much of that structure can be deduced from variational properties of quantitative traits that are inferred from their genetic (co) variance matrix (G-matrix). Here we aim to clarify how the extent of pleiotropy and the correlation among the pleiotropic effects of mutations differentially affect the structure of a G-matrix and our ability to detect genetic constraints from its eigen decomposition. We show that the eigenvectors of a G-matrix can be predictive of evolutionary constraints when they map to underlying pleiotropic modules with correlated mutational effects. Without mutational correlation, evolutionary constraints caused by the fitness costs associated with increased pleiotropy are harder to infer from evolutionary metrics based on a G-matrix's geometric properties because uncorrelated pleiotropic effects do not affect traits' genetic correlations. Correlational selection induces much weaker modular partitioning of traits' genetic correlations in absence then in presence of underlying modular pleiotropy. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  8. Electron paramagnetic resonance g-tensors from state interaction spin-orbit coupling density matrix renormalization group

    NASA Astrophysics Data System (ADS)

    Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic

    2018-05-01

    We present a state interaction spin-orbit coupling method to calculate electron paramagnetic resonance g-tensors from density matrix renormalization group wavefunctions. We apply the technique to compute g-tensors for the TiF3 and CuCl42 - complexes, a [2Fe-2S] model of the active center of ferredoxins, and a Mn4CaO5 model of the S2 state of the oxygen evolving complex. These calculations raise the prospects of determining g-tensors in multireference calculations with a large number of open shells.

  9. Spin orbit coupling for molecular ab initio density matrix renormalization group calculations: Application to g-tensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roemelt, Michael, E-mail: michael.roemelt@theochem.rub.de

    Spin Orbit Coupling (SOC) is introduced to molecular ab initio density matrix renormalization group (DMRG) calculations. In the presented scheme, one first approximates the electronic ground state and a number of excited states of the Born-Oppenheimer (BO) Hamiltonian with the aid of the DMRG algorithm. Owing to the spin-adaptation of the algorithm, the total spin S is a good quantum number for these states. After the non-relativistic DMRG calculation is finished, all magnetic sublevels of the calculated states are constructed explicitly, and the SOC operator is expanded in the resulting basis. To this end, spin orbit coupled energies and wavefunctionsmore » are obtained as eigenvalues and eigenfunctions of the full Hamiltonian matrix which is composed of the SOC operator matrix and the BO Hamiltonian matrix. This treatment corresponds to a quasi-degenerate perturbation theory approach and can be regarded as the molecular equivalent to atomic Russell-Saunders coupling. For the evaluation of SOC matrix elements, the full Breit-Pauli SOC Hamiltonian is approximated by the widely used spin-orbit mean field operator. This operator allows for an efficient use of the second quantized triplet replacement operators that are readily generated during the non-relativistic DMRG algorithm, together with the Wigner-Eckart theorem. With a set of spin-orbit coupled wavefunctions at hand, the molecular g-tensors are calculated following the scheme proposed by Gerloch and McMeeking. It interprets the effective molecular g-values as the slope of the energy difference between the lowest Kramers pair with respect to the strength of the applied magnetic field. Test calculations on a chemically relevant Mo complex demonstrate the capabilities of the presented method.« less

  10. Matrix interference from Fc-Fc interactions in immunoassays for detecting human IgG4 therapeutics.

    PubMed

    Partridge, Michael A; Karayusuf, Elif Kabuloglu; Dhulipala, Gangadhar; Dreyer, Robert; Daly, Thomas; Sumner, Giane; Pyles, Erica; Torri, Albert

    2015-01-01

    An assay measuring an IgG4 biotherapeutic in human serum used a drug-specific monoclonal antibody (mAb) capture reagent and an antihuman IgG4 mAb as detection reagent. However, serum IgG4 binding to the capture mAb via Fc-interactions was detected by the anti-IgG4 mAb, causing high background. Two approaches were developed to minimize background; incorporating a mild acid sample preparation step or using the Fab of the capture antibody. Either strategy improved signal:noise dramatically, increasing assay sensitivity >20-fold. Biophysical analyses of antibody domains indicated that noncovalent Fc oligomers could inhibit the background. Matrix interference from human IgG4 binding to the capture mAb was reduced with a Fab fragment of the drug-specific capture antibody or by incorporating a mild acid sample treatment into the assay.

  11. Multivariate Qst–Fst Comparisons: A Neutrality Test for the Evolution of the G Matrix in Structured Populations

    PubMed Central

    Martin, Guillaume; Chapuis, Elodie; Goudet, Jérôme

    2008-01-01

    Neutrality tests in quantitative genetics provide a statistical framework for the detection of selection on polygenic traits in wild populations. However, the existing method based on comparisons of divergence at neutral markers and quantitative traits (Qst–Fst) suffers from several limitations that hinder a clear interpretation of the results with typical empirical designs. In this article, we propose a multivariate extension of this neutrality test based on empirical estimates of the among-populations (D) and within-populations (G) covariance matrices by MANOVA. A simple pattern is expected under neutrality: D = 2Fst/(1 − Fst)G, so that neutrality implies both proportionality of the two matrices and a specific value of the proportionality coefficient. This pattern is tested using Flury's framework for matrix comparison [common principal-component (CPC) analysis], a well-known tool in G matrix evolution studies. We show the importance of using a Bartlett adjustment of the test for the small sample sizes typically found in empirical studies. We propose a dual test: (i) that the proportionality coefficient is not different from its neutral expectation [2Fst/(1 − Fst)] and (ii) that the MANOVA estimates of mean square matrices between and among populations are proportional. These two tests combined provide a more stringent test for neutrality than the classic Qst–Fst comparison and avoid several statistical problems. Extensive simulations of realistic empirical designs suggest that these tests correctly detect the expected pattern under neutrality and have enough power to efficiently detect mild to strong selection (homogeneous, heterogeneous, or mixed) when it is occurring on a set of traits. This method also provides a rigorous and quantitative framework for disentangling the effects of different selection regimes and of drift on the evolution of the G matrix. We discuss practical requirements for the proper application of our test in empirical studies and

  12. Analytical representation of dynamical quantities in G W from a matrix resolvent

    NASA Astrophysics Data System (ADS)

    Gesenhues, J.; Nabok, D.; Rohlfing, M.; Draxl, C.

    2017-12-01

    The power of the G W formalism is, to a large extent, based on the explicit treatment of dynamical correlations in the self-energy. This dynamics is taken into account by calculating the energy dependence of the screened Coulomb interaction W , followed by a convolution with the Green's function G . In order to obtain the energy dependence of W the prevalent methods are plasmon-pole models and numerical integration techniques. In this paper, we discuss an alternative approach, in which the energy-dependent screening is calculated by determining the resolvent, which is set up from a matrix representation of the dielectric function. On the one hand, this refrains from a numerical energy convolution and allows one to actually write down the energy dependence of W explicitly (like in the plasmon-pole models). On the other hand, the method is at least as accurate as the numerical approaches due to its multipole nature. We discuss the theoretical setup in some detail, give insight into the computational aspects, and present results for Si, C, GaAs, and LiF. Finally, we argue that the analytic representability is not only useful for educational purposes but may also be of avail for the development of theory that goes beyond G W .

  13. Association of matrix metalloproteinase-7 (-181A/G) promoter polymorphism in chronic pancreatitis.

    PubMed

    Manjari, K Sri; Jyothy, A; Kumar, P Shravan; Prabhakar, B; Nallari, Pratibha; Venkateshwari, A

    2014-11-01

    Chronic pancreatitis is progressive and irreversible destruction of the pancreas. Matrix metalloproteinase-7 (MMP-7) is a secreted matrilysin, which contributes to angiogenesis and breakdown of basement membranes of pancreatic tissues. The present study was aimed to investigate the association of MMP-7 -181A/G (rs11568818) gene promoter polymorphism in patients with chronic pancreatitis. A total of 100 chronic pancreatitis patients and 150 unrelated healthy individuals were included in this case control study. The genotyping of the MMP-7 gene (- 181 A/G) (rs11568818) was carried out based on PCR-RFLP. The serum levels of MMP-7 were determined by ELISA. Association between genotypes and chronic pancreatitis was examined by odds ratio (OR) with 95% confidence interval (CI). The frequencies of the genotypes in promoter of MMP-7 were AA 49 per cent, AG 25 per cent and GG 26 per cent in chronic pancreatitis patients and AA 53 per cent, AG 38 per cent and GG 9 per cent in control subjects. Frequency of MMP-7 -181GG genotype and - 181G allele was significantly associated with chronic pancreatitis compared to healthy subjects [OR = 1.58 (95% CI: 1.06 -2.36), p =0.019]. There was no significant difference in the serum MMP-7 levels in the patients compared to control subjects. The present study revealed a significant association of MMP-7 -181A/G (rs11568818) GG genotype with chronic pancreatitis patients, indicating its possible association with the disease.

  14. G W calculations using the spectral decomposition of the dielectric matrix: Verification, validation, and comparison of methods

    DOE PAGES

    Pham, T. Anh; Nguyen, Huy -Viet; Rocca, Dario; ...

    2013-04-26

    Inmore » a recent paper we presented an approach to evaluate quasiparticle energies based on the spectral decomposition of the static dielectric matrix. This method does not require the calculation of unoccupied electronic states or the direct diagonalization of large dielectric matrices, and it avoids the use of plasmon-pole models. The numerical accuracy of the approach is controlled by a single parameter, i.e., the number of eigenvectors used in the spectral decomposition of the dielectric matrix. Here we present a comprehensive validation of the method, encompassing calculations of ionization potentials and electron affinities of various molecules and of band gaps for several crystalline and disordered semiconductors. Lastly, we demonstrate the efficiency of our approach by carrying out G W calculations for systems with several hundred valence electrons.« less

  15. Adhesion to the extracellular matrix is positively regulated by retinoic acid in HepG2 cells.

    PubMed

    Massimi, Mara; Devirgiliis, Laura Conti

    2007-02-01

    In this work, we aimed to investigate the possible modulation of cell-matrix interactions by retinoic acid (RA), in view of the well-known role of the extracellular matrix (ECM) and integrins in hepatocyte differentiation and proliferation. For this purpose, we analysed the adhesion ability of HepG2 cells on different substrates in the presence and absence of RA evaluating both the expression and cellular localisation of major proteins involved in focal contacts, using Western blot and confocal microscopy. A positive and substrate-dependent effect of RA on cell-matrix adhesion was observed after long-term culture. The increased adhesiveness in the treated cells was accompanied by an enhanced expression of beta1 and alpha3 integrin subunits, together with a redistribution of beta1 receptors clustered at the basal surface. In contrast, the levels of focal adhesion kinase (FAK), paxillin and alpha-actinin were unchanged, as was the phosphorylation state of FAK. Nonetheless, a stronger association between beta1 integrin and intracytoplasmatic proteins of focal contacts was observed in coimmunoprecipitation experiments after RA treatment, suggesting improved connection with the actin cytoskeleton. These results are consistent with previously described antiproliferative and differentiative effects of RA on transformed hepatocytes, and confirm the hypothesis of a direct influence of RA on specific adhesion molecules.

  16. Novel hydrophobic interaction chromatography matrix for specific isolation and simple elution of immunoglobulins (A, G, and M) from porcine serum.

    PubMed

    Ramos-Clamont, Gabriela; del Carmen Candia-Plata, Maria; Zamudio, Roberto Guzman; Vazquez-Moreno, Luz

    2006-07-28

    A new, highly acetylated agarose matrix (HA-Sepharose) was synthesized and used as a hydrophobic interaction chromatography (HIC) medium to specifically isolate immunoglobulins (Igs) from porcine serum. Recovery of Igs was in a single step and under mild conditions. HA-Sepharose adsorption was studied in terms of salt, gel acetylation time, flow rate, and protein concentration on the loading buffer. At 0.5 M Na2SO4, control with unmodified Sepharose retained a small fraction (0.70 mg/mL of matrix) of serum albumin. On the contrary HA-Sepharose retained primary Igs (IgA, IgG, and 53% of IgM) as revealed by sodium dodecyl sulphate 10% polyacrylamide gel electrophoresis (SDS-PAGE), quantitative radial immunodiffusion and immunodetection. At a flow rate of 1 mL/min, the HA-Sepharose column capacity (3.9 mg/mL of matrix) was similar to the reported capacity for the commercial thiophilic T-gel. However, HA-Sepharose showed higher recovery of IgA and IgM than the T-gel in the same salt conditions, clearly an advantage in terms of immunoglobulin recovery strategies. Acetylation changed the matrix adsorption from albumin to immunoglobulins; thus, the highly acetylated gel rendered recoveries of Igs from unprocessed porcine serum practically free of albumin.

  17. Phase diagram of matrix compressed sensing

    NASA Astrophysics Data System (ADS)

    Schülke, Christophe; Schniter, Philip; Zdeborová, Lenka

    2016-12-01

    In the problem of matrix compressed sensing, we aim to recover a low-rank matrix from a few noisy linear measurements. In this contribution, we analyze the asymptotic performance of a Bayes-optimal inference procedure for a model where the matrix to be recovered is a product of random matrices. The results that we obtain using the replica method describe the state evolution of the Parametric Bilinear Generalized Approximate Message Passing (P-BiG-AMP) algorithm, recently introduced in J. T. Parker and P. Schniter [IEEE J. Select. Top. Signal Process. 10, 795 (2016), 10.1109/JSTSP.2016.2539123]. We show the existence of two different types of phase transition and their implications for the solvability of the problem, and we compare the results of our theoretical analysis to the numerical performance reached by P-BiG-AMP. Remarkably, the asymptotic replica equations for matrix compressed sensing are the same as those for a related but formally different problem of matrix factorization.

  18. An ESS maximum principle for matrix games.

    PubMed

    Vincent, T L; Cressman, R

    2000-11-01

    Previous work has demonstrated that for games defined by differential or difference equations with a continuum of strategies, there exists a G-function, related to individual fitness, that must take on a maximum with respect to a virtual variable v whenever v is one of the vectors in the coalition of vectors which make up the evolutionarily stable strategy (ESS). This result, called the ESS maximum principle, is quite useful in determining candidates for an ESS. This principle is reformulated here, so that it may be conveniently applied to matrix games. In particular, we define a matrix game to be one in which fitness is expressed in terms of strategy frequencies and a matrix of expected payoffs. It is shown that the G-function in the matrix game setting must again take on a maximum value at all the strategies which make up the ESS coalition vector. The reformulated maximum principle is applicable to both bilinear and nonlinear matrix games. One advantage in employing this principle to solve the traditional bilinear matrix game is that the same G-function is used to find both pure and mixed strategy solutions by simply specifying an appropriate strategy space. Furthermore we show how the theory may be used to solve matrix games which are not in the usual bilinear form. We examine in detail two nonlinear matrix games: the game between relatives and the sex ratio game. In both of these games an ESS solution is determined. These examples not only illustrate the usefulness of this approach to finding solutions to an expanded class of matrix games, but aids in understanding the nature of the ESS as well.

  19. Development of Certified Matrix-Based Reference Material as a Calibrator for Genetically Modified Rice G6H1 Analysis.

    PubMed

    Yang, Yu; Li, Liang; Yang, Hui; Li, Xiaying; Zhang, Xiujie; Xu, Junfeng; Zhang, Dabing; Jin, Wujun; Yang, Litao

    2018-04-11

    The accurate monitoring and quantification of genetically modified organisms (GMOs) are key points for the implementation of labeling regulations, and a certified reference material (CRM) acts as the scaleplate for quantifying the GM contents of foods/feeds and evaluating a GMO analytical method or equipment. Herein we developed a series of CRMs for transgenic rice event G6H1, which possesses insect-resistant and herbicide-tolerant traits. Three G6H1 CRMs were produced by mixing seed powders obtained from homozygous G6H1 and its recipient cultivar Xiushui 110 at mass ratios of 49.825%, 9.967%, and 4.986%. The between-bottle homogeneity and within-bottle homogeneity were thoroughly evaluated with consistent results. The potential DNA degradation in transportation and shelf life were evaluated with an expiration period of at least 12 months. The property values of three CRMs (G6H1 a , G6H1 b , G6H1 c ) were given as (49.825 ± 0.448) g/kg, (9.967 ± 1.757) g/kg, and (4.986 ± 1.274 g/kg based on mass fraction ratio, respectively. Furthermore, the three CRMs were characterized with values of (5.01 ± 0.08)%, (1.06 ± 0.22)%, and (0.53 ± 0.11)% based on the copy number ratio using the droplet digital PCR method. All results confirmed that the produced G6H1 matrix-based CRMs are of high quality with precise characterization values and can be used as calibrators in GM rice G6H1 inspection and monitoring and in evaluating new analytical methods or devices targeting the G6H1 event.

  20. Influence of Carbopol 71G-NF on the release of dextromethorphan hydrobromide from extended-release matrix tablets.

    PubMed

    Fayed, Mohamed H; Mahrous, Gamal M; Ibrahim, Mohamed A; Sakr, Adel

    2013-01-01

    The objective of this study was to evaluate the potential of Carbopol(®) 71G-NF on the release of dextromethorphan hydrobromide (DM) from matrix tablets in comparison with hydroxypropyl methylcellulose (HPMC(®) K15M) and Eudragit(®) L100-55 polymers. Controlled release DM matrix tablets were prepared using Carbopol 71G-NF, HPMC K15M, and Eudragit L100-55 at different drug to polymer ratios by direct compression technique. The mechanical properties of the tablets as tested by crushing strength and friability tests were improved as the concentration of Carbopol, HPMC, and Eudragit increased. However, Carbopol-based tablets showed a significantly (P<0.05) higher crushing strength and a lower friability than HPMC and Eudragit tablets. No significant differences in weight uniformity and thickness values were observed between the different formulations. It was also found that Carbopol significantly (P<0.05) delayed the release of DM in comparison with HPMC K15M and Eudragit L100-55. A combination of HPMC K15M and Eudragit L100-55 in a 1:1 ratio at 20 and 30% significantly (P<0.05) delayed the release of DM than Eudragit L100-55 alone. Moreover, blends of Carbopol and HPMC at a 1:1 ratio at the 10, 20, and 30% total polymer concentration were investigated. The blend of Carbopol and HPMC at 10% level significantly (P<0.05) slowed the release of DM than Carbopol or HPMC alone, whereas blends at 20 and 30% level significantly (P<0.05) delayed the release of DM compared with HPMC or Carbopol alone. The results with these polymer blends showed that it was possible to reduce the total amount of polymers when used as a combination in formulation.

  1. G. Einstein matrix and nano-biophotonic treatment

    NASA Astrophysics Data System (ADS)

    Przybyl-Einstein, George; Moratin, Holdy; Garcia, Eduardo

    2005-04-01

    The publication is presenting the Einstein Matrix Treatment Method and initial results for blood borne diseases on example of hepatitis, HIV and arthritis. The initial research was conducted at Einstein Clinical Laboratories S.A. on limited funds. The treatment and method is strongly recommended for specific viruses bacteria in blood borne diseases but also for treatment of none specific viruses and bacteria in emergency treatments as SARS or ANTHRAX to safe life of the human. In the past years the Individual's Safety is in jeopardy by natural viral infections as well as by engineering cultured viruses and bacteria. Viruses mutate and become more resistant to current known medical treatment, in many cases partially efficient. This event required new testing method to investigate the possibility of treatments and to create new vaccine for non-specific viral and bacteria or viruses infections that causes death to thousands adults and children. The authors present in this paper the possibility of treatment of the non-specific viral, bacterial infections of the blood in human body. This treatment has safe procedure and no known side effect up to this time for patients that were treated at Einstein Clinical Laboratories SA.

  2. Effects of altered gravity on the expression of Calcium -binding and matrix proteins in the inner ear of developing fish following ∆g-expositions.

    NASA Astrophysics Data System (ADS)

    Hilbig, Reinhard; Hendrik Anken, Ralf; Weigele, Jochen

    The results of the Foton-M3 mission (OmegaHab) give evidence that the otoliths of the fish form OmegaHab were larger as compared to the ground control. Additionally the shape (raphe) and morphology especially the mode of crystallization of the otoliths were affected during growth in weightlessness. The reason for these changes is assumed to originate from changes in the composition of the otolith matrix and Ca-binding proteins (OMP). The OMPs play an important role in controlling the crystallization process and additionally the morphology of crystals, determining the crystallpolymorph and the strength of the crystals. The matrix of otoliths is a complex functional structure containing several calcium-binding proteins, structural proteins and protease inhibitors. Furthermore it is composed of otolith matrix protein-1, Otolin, Otoconin, SPARC and Neuroserpin, which is a specific expression in the otolth matrix for chichlid fish. During embryonic development of the fish inner ear, these proteins show a spacial and temporal expression pattern. The formation of the inner ear -including otoliths and sensory cells -starting from the otocyst-anlage -can be subdivided in several major developmental stages e.g. the forming of the otic cavity (stage 7/8), the tetha cell or seeding stage (stage 8, 9), the development of the semicircular channels (stage 12), the transition to further daily growth (post stage15) and the development of the third otolith, asteriscus (stage 23). These developmental phases contain different constitutions or involvements of matrix proteins. We investigated the matrixprotein composition of the chichlid fish Oreochromis mossambicus and found that the otolith matrix differentiate between other fishes. In this case some matrix proteins seem to be uniform in fishes, other known matrix proteins are lacking and we have also references to new candidates for matrix proteins chichlids. In this case we investigated the expression of the matrix proteins otolith

  3. Preliminary characterisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by laser ablation-inductively coupled plasma-mass spectrometry using 193 nm, 213 nm and 266 nm wavelengths

    USGS Publications Warehouse

    Guillong, M.; Hametner, K.; Reusser, E.; Wilson, S.A.; Gunther, D.

    2005-01-01

    New glass reference materials GSA-1G, GSC-1G, GSD-1G and GSE-1G have been characterised using a prototype solid state laser ablation system capable of producing wavelengths of 193 nm, 213 nm and 266 nm. This system allowed comparison of the effects of different laser wavelengths under nearly identical ablation and ICP operating conditions. The wavelengths 213 nm and 266 nm were also used at higher energy densities to evaluate the influence of energy density on quantitative analysis. In addition, the glass reference materials were analysed using commercially available 266 nm Nd:YAG and 193 nm ArF excimer lasers. Laser ablation analysis was carried out using both single spot and scanning mode ablation. Using laser ablation ICP-MS, concentrations of fifty-eight elements were determined with external calibration to the NIST SRM 610 glass reference material. Instead of applying the more common internal standardisation procedure, the total concentration of all element oxide concentrations was normalised to 100%. Major element concentrations were compared with those determined by electron microprobe. In addition to NIST SRM 610 for external calibration, USGS BCR-2G was used as a more closely matrix-matched reference material in order to compare the effect of matrix-matched and non matrix-matched calibration on quantitative analysis. The results show that the various laser wavelengths and energy densities applied produced similar results, with the exception of scanning mode ablation at 266 nm without matrix-matched calibration where deviations up to 60% from the average were found. However, results acquired using a scanning mode with a matrix-matched calibration agreed with results obtained by spot analysis. The increased abundance of large particles produced when using a scanning ablation mode with NIST SRM 610, is responsible for elemental fractionation effects caused by incomplete vaporisation of large particles in the ICP.

  4. Factors associated with continuance commitment to FAA matrix teams.

    DOT National Transportation Integrated Search

    1993-11-01

    Several organizations within the FAA employ matrix teams to achieve cross-functional coordination. Matrix team members typically represent different organizational functions required for project accomplishment (e.g., research and development, enginee...

  5. Matrix Training of Preliteracy Skills with Preschoolers with Autism

    ERIC Educational Resources Information Center

    Axe, Judah B.; Sainato, Diane M.

    2010-01-01

    Matrix training is a generative approach to instruction in which words are arranged in a matrix so that some multiword phrases are taught and others emerge without direct teaching. We taught 4 preschoolers with autism to follow instructions to perform action-picture combinations (e.g., circle the pepper, underline the deer). Each matrix contained…

  6. Microgravity processing of particulate reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Morel, Donald E.; Stefanescu, Doru M.; Curreri, Peter A.

    1989-01-01

    The elimination of such gravity-related effects as buoyancy-driven sedimentation can yield more homogeneous microstructures in composite materials whose individual constituents have widely differing densities. A comparison of composite samples consisting of particulate ceramics in a nickel aluminide matrix solidified under gravity levels ranging from 0.01 to 1.8 G indicates that the G force normal to the growth direction plays a fundamental role in determining the distribution of the reinforcement in the matrix. Composites with extremely uniform microstructures can be produced by these methods.

  7. Simulation of sparse matrix array designs

    NASA Astrophysics Data System (ADS)

    Boehm, Rainer; Heckel, Thomas

    2018-04-01

    Matrix phased array probes are becoming more prominently used in industrial applications. The main drawbacks, using probes incorporating a very large number of transducer elements, are needed for an appropriate cabling and an ultrasonic device offering many parallel channels. Matrix arrays designed for extended functionality feature at least 64 or more elements. Typical arrangements are square matrices, e.g., 8 by 8 or 11 by 11 or rectangular matrixes, e.g., 8 by 16 or 10 by 12 to fit a 128-channel phased array system. In some phased array systems, the number of simultaneous active elements is limited to a certain number, e.g., 32 or 64. Those setups do not allow running the probe with all elements active, which may cause a significant change in the directivity pattern of the resulting sound beam. When only a subset of elements can be used during a single acquisition, different strategies may be applied to collect enough data for rebuilding the missing information from the echo signal. Omission of certain elements may be one approach, overlay of subsequent shots with different active areas may be another one. This paper presents the influence of a decreased number of active elements on the sound field and their distribution on the array. Solutions using subsets with different element activity patterns on matrix arrays and their advantages and disadvantages concerning the sound field are evaluated using semi-analytical simulation tools. Sound field criteria are discussed, which are significant for non-destructive testing results and for the system setup.

  8. Modeling cometary photopolarimetric characteristics with Sh-matrix method

    NASA Astrophysics Data System (ADS)

    Kolokolova, L.; Petrov, D.

    2017-12-01

    Cometary dust is dominated by particles of complex shape and structure, which are often considered as fractal aggregates. Rigorous modeling of light scattering by such particles, even using parallelized codes and NASA supercomputer resources, is very computer time and memory consuming. We are presenting a new approach to modeling cometary dust that is based on the Sh-matrix technique (e.g., Petrov et al., JQSRT, 112, 2012). This method is based on the T-matrix technique (e.g., Mishchenko et al., JQSRT, 55, 1996) and was developed after it had been found that the shape-dependent factors could be separated from the size- and refractive-index-dependent factors and presented as a shape matrix, or Sh-matrix. Size and refractive index dependences are incorporated through analytical operations on the Sh-matrix to produce the elements of T-matrix. Sh-matrix method keeps all advantages of the T-matrix method, including analytical averaging over particle orientation. Moreover, the surface integrals describing the Sh-matrix elements themselves can be solvable analytically for particles of any shape. This makes Sh-matrix approach an effective technique to simulate light scattering by particles of complex shape and surface structure. In this paper, we present cometary dust as an ensemble of Gaussian random particles. The shape of these particles is described by a log-normal distribution of their radius length and direction (Muinonen, EMP, 72, 1996). Changing one of the parameters of this distribution, the correlation angle, from 0 to 90 deg., we can model a variety of particles from spheres to particles of a random complex shape. We survey the angular and spectral dependencies of intensity and polarization resulted from light scattering by such particles, studying how they depend on the particle shape, size, and composition (including porous particles to simulate aggregates) to find the best fit to the cometary observations.

  9. Stable Boron Nitride Interphases for Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    1999-01-01

    Ceramic matrix composites (CMC's) require strong fibers for good toughness and weak interphases so that cracks which are formed in the matrix debond and deflect around the fibers. If the fibers are strongly bonded to the matrix, CMC's behave like monolithic ceramics (e.g., a ceramic coffee cup), and when subjected to mechanical loads that induce cracking, such CMC's fail catastrophically. Since CMC's are being developed for high temperature corrosive environments such as the combustor liner for advanced High Speed Civil Transport aircraft, the interphases need to be able to withstand the environment when the matrix cracks.

  10. Corrosion of Graphite Aluminum Metal Matrix Composites

    DTIC Science & Technology

    1991-02-01

    cathodic protection of G/AI MMCs resulted in overprotection 13. Overprotection resulted from a local increase in pH near cathodic sites during...34Cathodic Overprotection of SiC/6061-T6 and G/6061- T6 Aluminum Alloy Metal Matrix Composites," Scripta Metallurgica, 22 (1988) 413-418. 14. R

  11. [Characteristics, advantages, and limits of matrix tests].

    PubMed

    Brand, T; Wagener, K C

    2017-03-01

    Deterioration of communication abilities due to hearing problems is particularly relevant in listening situations with noise. Therefore, speech intelligibility tests in noise are required for audiological diagnostics and evaluation of hearing rehabilitation. This study analyzed the characteristics of matrix tests assessing the 50 % speech recognition threshold in noise. What are their advantages and limitations? Matrix tests are based on a matrix of 50 words (10 five-word sentences with same grammatical structure). In the standard setting, 20 sentences are presented using an adaptive procedure estimating the individual 50 % speech recognition threshold in noise. At present, matrix tests in 17 different languages are available. A high international comparability of matrix tests exists. The German language matrix test (OLSA, male speaker) has a reference 50 % speech recognition threshold of -7.1 (± 1.1) dB SNR. Before using a matrix test for the first time, the test person has to become familiar with the basic speech material using two training lists. Hereafter, matrix tests produce constant results even if repeated many times. Matrix tests are suitable for users of hearing aids and cochlear implants, particularly for assessment of benefit during the fitting process. Matrix tests can be performed in closed form and consequently with non-native listeners, even if the experimenter does not speak the test person's native language. Short versions of matrix tests are available for listeners with a shorter memory span, e.g., children.

  12. Sparse Matrix Software Catalog, Sparse Matrix Symposium 1982, Fairfield Glade, Tennessee, October 24-27, 1982,

    DTIC Science & Technology

    1982-10-27

    are buried within * a much larger, special purpose package. We regret such omissions, but to have reached the practi- tioners in each of the diverse...sparse matrix (form PAQ ) 4. Method of solution: Distribution count sort 5. Programming language: FORTRAN g Precision: Single and double precision 7

  13. Release from or through a wax matrix system. I. Basic release properties of the wax matrix system.

    PubMed

    Yonezawa, Y; Ishida, S; Sunada, H

    2001-11-01

    Release properties from a wax matrix tablet was examined. To obtain basic release properties, the wax matrix tablet was prepared from a physical mixture of drug and wax powder (hydrogenated caster oil) at a fixed mixing ratio. Properties of release from the single flat-faced surface or curved side surface of the wax matrix tablet were examined. The applicability of the square-root time law and of Higuchi equations was confirmed. The release rate constant obtained as g/min(1/2) changed with the release direction. However, the release rate constant obtained as g/cm2 x min(1/2) was almost the same. Hence it was suggested that the release property was almost the same and the wax matrix structure was uniform independent of release surface or direction at a fixed mixing ratio. However, these equations could not explain the entire release process. The applicability of a semilogarithmic equation was not as good compared with the square-root time law or Higuchi equation. However, it was revealed that the semilogarithmic equation was available to simulate the entire release process, even though the fit was somewhat poor. Hence it was suggested that the semilogarithmic equation was sufficient to describe the release process. The release rate constant was varied with release direction. However, these release rate constants were expressed by a function of the effective surface area and initial amount, independent of the release direction.

  14. MALDI Matrix Research for Biopolymers

    PubMed Central

    Fukuyama, Yuko

    2015-01-01

    Matrices are necessary materials for ionizing analytes in matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). The choice of a matrix appropriate for each analyte controls the analyses. Thus, in some cases, development or improvement of matrices can become a tool for solving problems. This paper reviews MALDI matrix research that the author has conducted in the recent decade. It describes glycopeptide, carbohydrate, or phosphopeptide analyses using 2,5-dihydroxybenzoic acid (2,5-DHB), 1,1,3,3-tetramethylguanidinium (TMG) salts of p-coumaric acid (CA) (G3CA), 3-aminoquinoline (3-AQ)/α-cyano-4-hydroxycinnamic acid (CHCA) (3-AQ/CHCA) or 3-AQ/CA and gengeral peptide, peptide containing disulfide bonds or hydrophobic peptide analyses using butylamine salt of CHCA (CHCAB), 1,5-diaminonaphthalene (1,5-DAN), octyl 2,5-dihydroxybenzoate (alkylated dihydroxybenzoate, ADHB), or 1-(2,4,6-trihydroxyphenyl)octan-1-one (alkylated trihydroxyacetophenone, ATHAP). PMID:26819908

  15. Combined effect of matrix cracking and stress-free edge on delamination

    NASA Technical Reports Server (NTRS)

    Salpekar, S. A.; Obrien, T. K.

    1990-01-01

    The effect of the stress-free edge on the growth of local delaminations initiating from a matrix crack in (0 sub 2/90 sub 4) sub s and (+ or - 45.90 sub 4) sub s glass epoxy laminates is investigated using 3-D finite element analysis. The presence of high interlaminar normal stresses at the intersection (corner) of the matrix crack with the stress-free edge, suggests that a mode I delamination may initiate at the corners. The strain energy release rates (G) were calculated by modeling a uniform through-width delamination and two inclined delaminations at 10.6 deg and 45 deg to the matrix crack. All components of G have high values near the free edges. The mode I component of G is high at small delamination length and becomes zero for a delamination length of one-ply thickness. The total G values near the free edge agreed well with previously derived closed form solution. The quasi-3D solutions agreed well with the 3-D interior solutions.

  16. Combined effect of matrix cracking and stress-free edge on delamination

    NASA Technical Reports Server (NTRS)

    Salpekar, Satish A.; O'Brien, T. K.

    1991-01-01

    The effect of the stress-free edge on the growth of local delaminations initiating from a matrix crack in (O sub 2/90 sub 4) sub s and (+/- 45.90 sub 4) sub s glass epoxy laminates is investigated using 3D finite element analysis. The presence of high interlaminar normal stresses at the intersection (corner) of the matrix crack with the stress-free edge, suggests that a mode I delamination may initiate at the corners. The strain energy release rates (G) were calculated by modeling a uniform through-width delamination and two inclined delaminations at 10.6 deg and 45 deg to the matrix crack. All components of G have high values near the free edges. The mode I component of G is high at small delamination length and becomes zero for a delamination length of one-ply thickness. The total G values near the free edge agreed well with previously derived closed form solution. The quasi-3D solutions agreed well with the 3D interior solutions.

  17. Matrix metalloproteinase-1 and matrix metalloproteinase-12 gene polymorphisms and the risk of ischemic stroke in a Tunisian population.

    PubMed

    Chehaibi, Khouloud; Hrira, Mohamed Yahia; Nouira, Samir; Maatouk, Faouzi; Ben Hamda, Khaldoun; Slimane, Mohamed Naceur

    2014-07-15

    Matrix metalloproteinases (MMPs) play an important role in early atherosclerosis, extracellular matrix remodeling, plaque rupture and myocardial infarction. MMP gene polymorphisms contribute to the risk of developing cardiovascular diseases. In this study, we investigated, for the first time, the association between MMP-1-16071G/2G, MMP-12 -82A/G and MMP-12 1082A/G genotypes and haplotypes and the risk of ischemic stroke (IS) among patients with type 2 diabetes mellitus (T2DM). To examine whether these genetic polymorphisms are associated with susceptibility to IS, 196 patients with IS and 192 controls were examined by PCR-based RFLP. When the analyses were adjusted for multiple risk factors, no interaction between T2DM and MMP-1-1607 1G/2G polymorphism on the risk of ischemic stroke was found (p=0.074). However, MMP-12 polymorphisms genotypes were associated with the higher risk of IS in diabetic patients compared with total patients. The -82G-1082G haplotype of MMP-12 polymorphisms was associated with higher risk of ischemic stroke in diabetic patients [AOR=2.33; 95% CI (1.25-3.62), P=0.032]. These findings showed that there was an important joint effect of the MMP-12 polymorphisms and T2DM on the risk of IS and therefore it can be considered as a potential marker of cerebrovascular disorders in diabetic patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Advances in biomimetic regeneration of elastic matrix structures

    PubMed Central

    Sivaraman, Balakrishnan; Bashur, Chris A.

    2012-01-01

    Elastin is a vital component of the extracellular matrix, providing soft connective tissues with the property of elastic recoil following deformation and regulating the cellular response via biomechanical transduction to maintain tissue homeostasis. The limited ability of most adult cells to synthesize elastin precursors and assemble them into mature crosslinked structures has hindered the development of functional tissue-engineered constructs that exhibit the structure and biomechanics of normal native elastic tissues in the body. In diseased tissues, the chronic overexpression of proteolytic enzymes can cause significant matrix degradation, to further limit the accumulation and quality (e.g., fiber formation) of newly deposited elastic matrix. This review provides an overview of the role and importance of elastin and elastic matrix in soft tissues, the challenges to elastic matrix generation in vitro and to regenerative elastic matrix repair in vivo, current biomolecular strategies to enhance elastin deposition and matrix assembly, and the need to concurrently inhibit proteolytic matrix disruption for improving the quantity and quality of elastogenesis. The review further presents biomaterial-based options using scaffolds and nanocarriers for spatio-temporal control over the presentation and release of these biomolecules, to enable biomimetic assembly of clinically relevant native elastic matrix-like superstructures. Finally, this review provides an overview of recent advances and prospects for the application of these strategies to regenerating tissue-type specific elastic matrix structures and superstructures. PMID:23355960

  19. Conformations of n-butyl imidazole: matrix isolation infrared and DFT studies.

    PubMed

    Ramanathan, N; Sundararajan, K; Sankaran, K

    2015-03-15

    Conformations of n-butyl imidazole (B-IMID) were studied using matrix isolation infrared spectroscopy by trapping in argon, xenon and nitrogen matrixes using an effusive nozzle source. The experimental studies were supported by DFT computations performed at the B3LYP/6-311++G(d,p) level. Computations identified nine unique minima for B-IMID, corresponding to conformers with tg(±)tt, tg(±)g(∓)t, tg(±)g(±)t, tg(±)tg(±), tg(±)tg(∓), tg(±)g(∓)g(∓), tg(±)g(±)g(±), tg(±)g(∓)g(±) and tg(±)g(±)g(∓) structures, given in order of increasing energy. Computations of the transition state structures connecting the higher energy conformers to the global minimum, tg(±)tt structure were carried out. The barriers for the conformer inter-conversion were found to be ∼2 kcal/mol. Natural Bond Orbital (NBO) analysis was performed to understand the reasons for conformational preferences in B-IMID. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Heterotrimeric G proteins directly regulate MMP14/membrane type-1 matrix metalloprotease: a novel mechanism for GPCR-EGFR transactivation.

    PubMed

    Overland, Aaron C; Insel, Paul A

    2015-04-17

    Agonist stimulation of G protein-coupled receptors (GPCRs) can transactivate epidermal growth factor receptors (EGFRs), but the precise mechanisms for this transactivation have not been defined. Key to this process is the protease-mediated "shedding" of membrane-tethered ligands, which then activate EGFRs. The specific proteases and the events involved in GPCR-EGFR transactivation are not fully understood. We have tested the hypothesis that transactivation can occur by a membrane-delimited process: direct increase in the activity of membrane type-1 matrix metalloprotease (MMP14, MT1-MMP) by heterotrimeric G proteins, and in turn, the generation of heparin-binding epidermal growth factor (HB-EGF) and activation of EGFR. Using membranes prepared from adult rat cardiac myocytes and fibroblasts, we found that MMP14 activity is increased by angiotensin II, phenylephrine, GTP, and guanosine 5'-O-[γ-thio]triphosphate (GTPγS). MMP14 activation by GTPγS occurs in a concentration- and time-dependent manner, does not occur in response to GMP or adenosine 5'-[γ-thio]triphosphate (ATPγS), and is not blunted by inhibitors of Src, PKC, phospholipase C (PLC), PI3K, or soluble MMPs. This activation is specific to MMP14 as it is inhibited by a specific MMP14 peptide inhibitor and siRNA knockdown. MMP14 activation by GTPγS is pertussis toxin-sensitive. A role for heterotrimeric G protein βγ subunits was shown by using the Gβγ inhibitor gallein and the direct activation of recombinant MMP14 by purified βγ subunits. GTPγS-stimulated activation of MMP14 also results in membrane release of HB-EGF and the activation of EGFR. These results define a previously unrecognized, membrane-delimited mechanism for EGFR transactivation via direct G protein activation of MMP14 and identify MMP14 as a heterotrimeric G protein-regulated effector. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Hypergravity Stimulates Osteoblast Proliferation Via Matrix-Integrin-Signaling Pathways

    NASA Technical Reports Server (NTRS)

    Vercoutere, W.; Parra, M.; Roden, C.; DaCosta, M.; Wing, A.; Damsky, C.; Holton, E.; Searby, N.; Globus, R.; Almeida, E.

    2003-01-01

    Extensive characterizations of the physiologic consequences of microgravity and gravity indicate that lack of weight-bearing may cause tissue atrophy through cellular and subcellular level mechanisms. We hypothesize that gravity is needed for the efficient transduction of cell growth and survival signals from the extra-cellular matrix (ECM) in mechanosensitive tissues. Recent work from our laboratory and from others shows that an increase of gravity increases bone cell growth and survival. We found that 50-g hypergravity stimulation increased osteoblast proliferation for cells grown on Collagen Type I and Fibronectin, but not on Laminin or uncoated plastic. This may be a tissue-specific response, because 50-g hypergravity stimulation caused no increase in proliferation for primary rat fibroblasts. These results combined with RT-PCR for all possible integrins indicate that beta1 integrin subunit may be involved. The osteoblast proliferation response on Collagen Type I was greater at 25-g than at 10-g or 50-g; 24-h duration of hypergravity was necessary to see an increase in proliferation. Survival was enhanced during hypergravity stimulation by the presence of matrix. Flow cytometry analysis indicated that cell cycle may be altered; BrdU incorporation in proliferating cells showed an increase in the number of actively dividing cells from about 60% at 1-g to over 90% at 25-g. To further investigate the molecular components involved, we applied fluorescence labeling of cytoskeletal and signaling molecules to cells after 2 to 30 minutes of hypergravity stimulation. While structural components did not appear to be altered, phosphorylation increased, indicating that signaling pathways may be activated. These data indicate that gravity mechanostimulation of osteoblast proliferation involves specific matrix-integrin signaling pathways which are sensitive to duration and g-level.

  2. Newborn screening by matrix-assisted laser desorption/ionization mass spectrometry based on parylene-matrix chip.

    PubMed

    Kim, Jo-Il; Noh, Joo-Yoon; Kim, Mira; Park, Jong-Min; Song, Hyun-Woo; Kang, Min-Jung; Pyun, Jae-Chul

    2017-08-01

    Newborn screening for diagnosis of phenylketonuria, homocystinuria, and maple syrup urine disease have been conducted by analyzing the concentration of target amino acids using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS) based on parylene-matrix chip. Parylene-matrix chip was applied to MALDI-ToF MS analysis reducing the matrix peaks significantly at low mass-to-charge ratio range (m/z < 500). Reproducibility of inter-spot and intra-spot analyses of amino acids was less than 10%. Methanol extraction was adopted for simple and rapid sample preparation of serum before mass spectrometric analysis showing 13.3 to 45% of extraction efficiency. Calibration curves for diagnosis of neonatal metabolic disorders were obtained by analyzing methanol-extracted serum spiked with target amino acids using MALDI-ToF MS. They showed good linearity (R 2  > 0.98) and the LODs were ranging from 9.0 to 22.9 μg/mL. Effect of proteins in serum was estimated by comparing MALDI-ToF mass spectra of amino acids-spiked serum before and after the methanol extraction. Interference of other amino acids on analysis of target analyte was determined to be insignificant. From these results, MALDI-ToF MS based on parylene-matrix chip could be applicable to medical diagnosis of neonatal metabolic disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Matrix completion by deep matrix factorization.

    PubMed

    Fan, Jicong; Cheng, Jieyu

    2018-02-01

    Conventional methods of matrix completion are linear methods that are not effective in handling data of nonlinear structures. Recently a few researchers attempted to incorporate nonlinear techniques into matrix completion but there still exists considerable limitations. In this paper, a novel method called deep matrix factorization (DMF) is proposed for nonlinear matrix completion. Different from conventional matrix completion methods that are based on linear latent variable models, DMF is on the basis of a nonlinear latent variable model. DMF is formulated as a deep-structure neural network, in which the inputs are the low-dimensional unknown latent variables and the outputs are the partially observed variables. In DMF, the inputs and the parameters of the multilayer neural network are simultaneously optimized to minimize the reconstruction errors for the observed entries. Then the missing entries can be readily recovered by propagating the latent variables to the output layer. DMF is compared with state-of-the-art methods of linear and nonlinear matrix completion in the tasks of toy matrix completion, image inpainting and collaborative filtering. The experimental results verify that DMF is able to provide higher matrix completion accuracy than existing methods do and DMF is applicable to large matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Primitive ultrafine matrix in ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Rambaldi, E. R.; Fredriksson, B. J.; Fredriksson, K.

    1981-01-01

    Ultrafine matrix material has been concentrated by sieving and filtering disaggregated samples of six ordinary chondrites of different classes. This component(s), 'Holy Smoke' (HS), is enriched in both volatile, e.g. Na, K, Zn, Sb, and Pb, as well as refractory elements, e.g. W and REE; however, the element ratios vary greatly among the different chondrites. SEM studies show that HS contains fragile crystals, differing in composition, and apparently in gross disequilibrium not only among themselves but also with the major mineral phases and consequently thermodynamic equilibration did not occur. Thus HS must have originated from impacting bodies and/or was inherent in the 'primitive' regolith. Subsequent impact brecciation and reheating appears to have altered, to varying degrees, the original composition of this ultrafine matrix material. Recent 'cosmic dust' studies may indicate that HS still exists in the solar system. Survival of such delicate material must be considered in all theories for the origin of chondrites.

  5. On-matrix derivatization for dynamic headspace sampling of nonvolatile surface residues.

    PubMed

    Harvey, Scott D; Wahl, Jon H

    2012-09-21

    The goal of this study is to extend sampling by the field and laboratory emission cell (FLEC) dynamic headspace technique to applications that target nonvolatile residues. On-matrix derivatization of residues to render analytes stable and more volatile is explored to achieve this goal. Results show that on-matrix derivatizations of nerve agent hydrolysis products (monoalkyl methylphosphonic acids and methylphosphonic acid [MPA]) with diazomethane were successful on glass and painted wallboard (at the 10-μg level). It also was successful on the more difficult concrete (at the 500-μg level) and carpet (at the 20-μg level), substrates that cannot be successfully sampled using swipe techniques. Analysis of additional chemical warfare (CW)-associated residues can be approached by on-matrix derivatization with trifluoroacetic anhydride (TFAA). For example, amines (used as stabilizers or present as decomposition products of the nerve agent VX) or thiodiglycol (hydrolysis product of sulfur mustard) could be sampled as their TFAA derivatives from glass, painted wallboard, and concrete (at the 40-μg level), as well as carpet (at the 80-μg level) surfaces. Although the amine and thiodiglycol are semi-volatile and could be sampled directly, derivatization improves the recovery and chromatographic behavior of these analytes. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Structure of collagen-glycosaminoglycan matrix and the influence to its integrity and stability.

    PubMed

    Bi, Yuying; Patra, Prabir; Faezipour, Miad

    2014-01-01

    Glycosaminoglycan (GAG) is a chain-like disaccharide that is linked to polypeptide core to connect two collagen fibrils/fibers and provide the intermolecular force in Collagen-GAG matrix (C-G matrix). Thus, the distribution of GAG in C-G matrix contributes to the integrity and mechanical properties of the matrix and related tissue. This paper analyzes the transverse isotropic distribution of GAG in C-G matrix. The angle of GAGs related to collagen fibrils is used as parameters to qualify the GAGs isotropic characteristic in both 3D and 2D rendering. Statistical results included that over one third of GAGs were perpendicular directed to collagen fibril with symmetrical distribution for both 3D matrix and 2D plane cross through collagen fibrils. The three factors tested in this paper: collagen radius, collagen distribution, and GAGs density, were not statistically significant for the strength of Collagen-GAG matrix in 3D rendering. However in 2D rendering, a significant factor found was the radius of collagen in matrix for the GAGs directed to orthogonal plane of Collagen-GAG matrix. Between two cross-section selected from Collagen-GAG matrix model, the plane cross through collagen fibrils was symmetrically distributed but the total percentage of perpendicular directed GAG was deducted by decreasing collagen radius. There were some symmetry features of GAGs angle distribution in selected 2D plane that passed through space between collagen fibrils, but most models showed multiple peaks in GAGs angle distribution. With less GAGs directed to perpendicular of collagen fibril, strength in collagen cross-section weakened. Collagen distribution was also a factor that influences GAGs angle distribution in 2D rendering. True hexagonal collagen packaging is reported in this paper to have less strength at collagen cross-section compared to quasi-hexagonal collagen arrangement. In this work focus is on GAGs matrix within the collagen and its relevance to anisotropy.

  7. Salient Object Detection via Structured Matrix Decomposition.

    PubMed

    Peng, Houwen; Li, Bing; Ling, Haibin; Hu, Weiming; Xiong, Weihua; Maybank, Stephen J

    2016-05-04

    Low-rank recovery models have shown potential for salient object detection, where a matrix is decomposed into a low-rank matrix representing image background and a sparse matrix identifying salient objects. Two deficiencies, however, still exist. First, previous work typically assumes the elements in the sparse matrix are mutually independent, ignoring the spatial and pattern relations of image regions. Second, when the low-rank and sparse matrices are relatively coherent, e.g., when there are similarities between the salient objects and background or when the background is complicated, it is difficult for previous models to disentangle them. To address these problems, we propose a novel structured matrix decomposition model with two structural regularizations: (1) a tree-structured sparsity-inducing regularization that captures the image structure and enforces patches from the same object to have similar saliency values, and (2) a Laplacian regularization that enlarges the gaps between salient objects and the background in feature space. Furthermore, high-level priors are integrated to guide the matrix decomposition and boost the detection. We evaluate our model for salient object detection on five challenging datasets including single object, multiple objects and complex scene images, and show competitive results as compared with 24 state-of-the-art methods in terms of seven performance metrics.

  8. Effect of matrix elasticity on the continuous foaming of food models.

    PubMed

    Narchi, I; Vial, Ch; Djelveh, G

    2008-12-01

    The aim is to understand the effect of matrix elasticity on continuous foaming using food models based on glucose syrup. This was modified by adding polyacrylamide (PAA) with 2% whey protein isolate (WPI) or Tween 80 as foaming agents. Foaming was conducted in a stirred column. Rotation speed N and gas-to-liquid flow ratio (G/L) were varied. Overrun, average bubble size d (32), texture and stability were measured using densimetry, image analysis, and rheometry, respectively. Experimental results showed that 0.01% PAA did not modify the viscosity of 2% WPI models, but conferred low elastic behavior. PAA (0.05%) doubled matrix viscosity and drastically increased elasticity. The increase of elasticity became slower for further PAA addition. Foaming experiments demonstrated that theoretical overrun could not be achieved for inelastic WPI models in two cases: for high viscosity and low N, as dispersion effectiveness was reduced; for high G/L and N because of enhanced coalescence. Matrix elasticity was shown to increase overrun at constant viscosity for high G/L by enhancing interface stabilization. However, in elastic models, gas dispersion was more difficult and d (32) was higher than in inelastic fluids of similar viscosity. Finally, when the limiting step was dispersion, foaming was shown to be negatively affected by matrix elasticity.

  9. Matrix and reservoir-type multipurpose vaginal rings for controlled release of dapivirine and levonorgestrel.

    PubMed

    Boyd, Peter; Fetherston, Susan M; McCoy, Clare F; Major, Ian; Murphy, Diarmaid J; Kumar, Sandeep; Holt, Jonathon; Brimer, Andrew; Blanda, Wendy; Devlin, Brid; Malcolm, R Karl

    2016-09-10

    A matrix-type silicone elastomer vaginal ring providing 28-day continuous release of dapivirine (DPV) - a lead candidate human immunodeficiency virus type 1 (HIV-1) microbicide compound - has recently demonstrated moderate levels of protection in two Phase III clinical studies. Here, next-generation matrix and reservoir-type silicone elastomer vaginal rings are reported for the first time offering simultaneous and continuous in vitro release of DPV and the contraceptive progestin levonorgestrel (LNG) over a period of between 60 and 180days. For matrix-type vaginal rings comprising initial drug loadings of 100, 150 or 200mg DPV and 0, 16 or 32mg LNG, Day 1 daily DPV release values were between 4132 and 6113μg while Day 60 values ranged from 284 to 454μg. Daily LNG release ranged from 129 to 684μg on Day 1 and 2-91μg on Day 60. Core-type rings comprising one or two drug-loaded cores provided extended duration of in vitro release out to 180days, and maintained daily drug release rates within much narrower windows (either 75-131μg/day or 37-66μg/day for DPV, and either 96-150μg/day or 37-57μg/day for LNG, depending on core ring configuration and ignoring initial lag release effect for LNG) compared with matrix-type rings. The data support the continued development of these devices as multi-purpose prevention technologies (MPTs) for HIV prevention and long-acting contraception. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Matrix isolation of fullerene-derived CO 2 at ambient temperature

    NASA Astrophysics Data System (ADS)

    Taylor, Roger; Pénicaud, Alain; Tower, Nicole J.

    1998-10-01

    Heating fullerene oxides, e.g. C 120O, C 70O, C 60O and C 60O 2, in a KBr matrix at 225°C under 0.2 mbar vacuum, produces a sharp IR band at 2330 cm -1 due to matrix-isolated CO 2. The band is also obtained by heating a KBr matrix of the insoluble deposits that fullerenes form on standing in air. The matrices are extremely stable and are unchanged even by prolonged heating at 225°C under vacuum. Heating a KBr matrix of the deposit from C 84 produces also a sharp stable band at 2035 cm -1 consistent with matrix-isolated C 3. Similar treatment of C 70F 38O produces matrices containing both CO 2 and CO, the latter being of lower stability.

  11. A general parallel sparse-blocked matrix multiply for linear scaling SCF theory

    NASA Astrophysics Data System (ADS)

    Challacombe, Matt

    2000-06-01

    A general approach to the parallel sparse-blocked matrix-matrix multiply is developed in the context of linear scaling self-consistent-field (SCF) theory. The data-parallel message passing method uses non-blocking communication to overlap computation and communication. The space filling curve heuristic is used to achieve data locality for sparse matrix elements that decay with “separation”. Load balance is achieved by solving the bin packing problem for blocks with variable size.With this new method as the kernel, parallel performance of the simplified density matrix minimization (SDMM) for solution of the SCF equations is investigated for RHF/6-31G ∗∗ water clusters and RHF/3-21G estane globules. Sustained rates above 5.7 GFLOPS for the SDMM have been achieved for (H 2 O) 200 with 95 Origin 2000 processors. Scalability is found to be limited by load imbalance, which increases with decreasing granularity, due primarily to the inhomogeneous distribution of variable block sizes.

  12. Random Matrix Theory and Econophysics

    NASA Astrophysics Data System (ADS)

    Rosenow, Bernd

    2000-03-01

    Random Matrix Theory (RMT) [1] is used in many branches of physics as a ``zero information hypothesis''. It describes generic behavior of different classes of systems, while deviations from its universal predictions allow to identify system specific properties. We use methods of RMT to analyze the cross-correlation matrix C of stock price changes [2] of the largest 1000 US companies. In addition to its scientific interest, the study of correlations between the returns of different stocks is also of practical relevance in quantifying the risk of a given stock portfolio. We find [3,4] that the statistics of most of the eigenvalues of the spectrum of C agree with the predictions of RMT, while there are deviations for some of the largest eigenvalues. We interpret these deviations as a system specific property, e.g. containing genuine information about correlations in the stock market. We demonstrate that C shares universal properties with the Gaussian orthogonal ensemble of random matrices. Furthermore, we analyze the eigenvectors of C through their inverse participation ratio and find eigenvectors with large ratios at both edges of the eigenvalue spectrum - a situation reminiscent of localization theory results. This work was done in collaboration with V. Plerou, P. Gopikrishnan, T. Guhr, L.A.N. Amaral, and H.E Stanley and is related to recent work of Laloux et al.. 1. T. Guhr, A. Müller Groeling, and H.A. Weidenmüller, ``Random Matrix Theories in Quantum Physics: Common Concepts'', Phys. Rep. 299, 190 (1998). 2. See, e.g. R.N. Mantegna and H.E. Stanley, Econophysics: Correlations and Complexity in Finance (Cambridge University Press, Cambridge, England, 1999). 3. V. Plerou, P. Gopikrishnan, B. Rosenow, L.A.N. Amaral, and H.E. Stanley, ``Universal and Nonuniversal Properties of Cross Correlations in Financial Time Series'', Phys. Rev. Lett. 83, 1471 (1999). 4. V. Plerou, P. Gopikrishnan, T. Guhr, B. Rosenow, L.A.N. Amaral, and H.E. Stanley, ``Random Matrix Theory

  13. Agar/gelatin bilayer gel matrix fabricated by simple thermo-responsive sol-gel transition method.

    PubMed

    Wang, Yifeng; Dong, Meng; Guo, Mengmeng; Wang, Xia; Zhou, Jing; Lei, Jian; Guo, Chuanhang; Qin, Chaoran

    2017-08-01

    We present a simple and environmentally-friendly method to generate an agar/gelatin bilayer gel matrix for further biomedical applications. In this method, the thermally responsive sol-gel transitions of agar and gelatin combined with the different transition temperatures are exquisitely employed to fabricate the agar/gelatin bilayer gel matrix and achieve separate loading for various materials (e.g., drugs, fluorescent materials, and nanoparticles). Importantly, the resulting bilayer gel matrix provides two different biopolymer environments (a polysaccharide environment vs a protein environment) with a well-defined border, which allows the loaded materials in different layers to retain their original properties (e.g., magnetism and fluorescence) and reduce mutual interference. In addition, the loaded materials in the bilayer gel matrix exhibit an interesting release behavior under the control of thermal stimuli. Consequently, the resulting agar/gelatin bilayer gel matrix is a promising candidate for biomedical applications in drug delivery, controlled release, fluorescence labeling, and bio-imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Comparison of hemostatic matrix and standard hemostasis in patients undergoing primary TKA.

    PubMed

    Comadoll, James L; Comadoll, Shea; Hutchcraft, Audrey; Krishnan, Sangeeta; Farrell, Kelly; Kreuwel, Huub T C; Bechter, Mark

    2012-06-01

    Bleeding after total knee arthroplasty increases the risk of pain, delayed rehabilitation, blood transfusion, and transfusion-associated complications. The authors compared pre- and postoperative decreases in hemoglobin as a surrogate for blood loss in consecutive patients treated at a single institution by the same surgeon (J.L.C.) using conventional hemostatic methods (electrocautery, suturing, or manual compression) or a gelatin and thrombin-based hemostatic matrix during total knee arthroplasty. Data were collected retrospectively by chart review. The population comprised 165 controls and 184 patients treated with hemostatic matrix. Median age was 66 years (range, 28-89 years); 66% were women. The arithmetic mean ± SD for the maximal postoperative decrease in hemoglobin was 3.18 ± 0.94 g/dL for controls and 2.19 ± 0.83 g/dL for the hemostatic matrix group. Least squares means estimates of the group difference (controls-hemostatic matrix) in the maximal decrease in hemoglobin was 0.96 g/dL (95% confidence interval, 0.77-1.14 mg/dL; P<.0001). Statistically significant covariate effects were observed for preoperative hemoglobin level (P<.0001) and body mass index (P=.0029). Transfusions were infrequent in both groups. The frequency of acceptable range of motion was high (control, 88%; hemostatic matrix, 84%). In both groups, overall mean tourniquet time was approximately 1 hour, and the most common length of stay was 3 to 5 days. No serious complications related to the hemostatic agent were observed. These data demonstrate that the use of a flowable hemostatic matrix results in less reduction in hemoglobin than the use of conventional hemostatic methods in patient undergoing total knee arthroplasty. Copyright 2012, SLACK Incorporated.

  15. Matrix-Gla Protein rs4236 [A/G] gene polymorphism and serum and GCF levels of MGP in patients with subgingival dental calculus.

    PubMed

    Doğan, Gülnihal Emrem; Demir, Turgut; Aksoy, Hülya; Sağlam, Ebru; Laloğlu, Esra; Yildirim, Abdulkadir

    2016-10-01

    Matrix-Gla Protein (MGP) is one of the major Gla-containing protein associated with calcification process. It also has a high affinity for Ca 2+ and hydroxyapatite. In this study we aimed to evaluate the MGP rs4236 [A/G] gene polymorphism in association with subgingival dental calculus. Also a possible relationship between MGP gene polymorphism and serum and GCF levels of MGP were examined. MGP rs4236 [A/G] gene polymorphism was investigated in 110 patients with or without subgingival dental calculus, using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) techniques. Additionally, serum and GCF levels of MGP of the patients were compared according to subgingival dental calculus. Comparison of patients with and without subgingival dental calculus showed no statistically significant difference in MGP rs4236 [A/G] gene polymorphism (p=0.368). MGP concentrations in GCF of patients with subgingival dental calculus were statistically higher than those without subgingival dental calculus (p=0.032). However, a significant association was not observed between the genotypes of AA, AG and GG of the MGP rs4236 gene and the serum and GCF concentrations of MGP in subjects. In this study, it was found that MGP rs4236 [A/G] gene polymorphism was not to be associated with subgingival dental calculus. Also, that GCF MGP levels were detected higher in patients with subgingival dental calculus than those without subgingival dental calculus independently of polymorphism, may be the effect of adaptive mechanism to inhibit calculus formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Google matrix of the world network of economic activities

    NASA Astrophysics Data System (ADS)

    Kandiah, Vivek; Escaith, Hubert; Shepelyansky, Dima L.

    2015-07-01

    Using the new data from the OECD-WTO world network of economic activities we construct the Google matrix G of this directed network and perform its detailed analysis. The network contains 58 countries and 37 activity sectors for years 1995 and 2008. The construction of G, based on Markov chain transitions, treats all countries on equal democratic grounds while the contribution of activity sectors is proportional to their exchange monetary volume. The Google matrix analysis allows to obtain reliable ranking of countries and activity sectors and to determine the sensitivity of CheiRank-PageRank commercial balance of countries in respect to price variations and labor cost in various countries. We demonstrate that the developed approach takes into account multiplicity of network links with economy interactions between countries and activity sectors thus being more efficient compared to the usual export-import analysis. The spectrum and eigenstates of G are also analyzed being related to specific activity communities of countries.

  17. Constant Applied Force Stimulates Osteoblast Proliferation Via Matrix-Integrin-Signaling Pathways

    NASA Technical Reports Server (NTRS)

    Vercoutere, W.; Parra, M.; Roden, C.; DaCosta, M.; Wing, A.; Damsky, C.; Holton, E.; Searby, N.; Globus, R.; Almeida, E. A. C.

    2003-01-01

    Reduced weight-bearing caused by immobilization, bed-rest or microgravity leads to atrophy in mechanosensitive tissue such as muscle and bone. We hypothesize that bone tissue requires earth s gravity (1-g) for the maintenance of extracellular matrix, integrin, and kinase-mediated cell growth and survival pathways. We investigate the role of matrix-integrin signaling in bone cells using cell culture centrifugation to provide different levels of hypergravity mechanostimulation. The 10-50-g range we use also mimics physiological intermedullary pressure (1.2 - 5 kPa). 24 hours at 50-g increased primary rat osteoblast proliferation on collagen Type I and fibronectin, but not laminin or uncoated plastic. BrdU incorporation in primary osteoblasts over 24 h showed hypergravity increased the number of cells actively synthesizing DNA from about 60% at 1-g to over 90% at 25-g. Primary rat fibroblasts grown at 50-g (24 h) showed no proliferation increase, suggesting this is a tissue-specific phenomenon. These results suggest that the betal and alpha4 integrins may be involved. To further test this, we used osteocytic-like MLO-Y4 cells that showed increased proliferation at 1-g with stable expression of a betal integrin cytoplasmic tail and transmembrane domain construct. At 50-g, MLO-Y4/betal cells showed greater MAPK activation than MLO-Y4 vector controls, suggesting that betal integrin is involved in transducing mitogenic signals in response to hypergravity. Preliminary results also show that interfering with the alpha4 integrin in primary osteoblasts grown on fibronectin blocked the proliferation response. These results indicate that cells from mechanosensitive bone tissue can respond to gravity-generated forces, and this response involves specific matrix and integrin-dependent signaling pathways.

  18. Tribological properties and lubrication mechanism of in situ graphene-nickel matrix composite impregnated with lubricating oil

    NASA Astrophysics Data System (ADS)

    Lei, Yu; Du, Jinfang; Pang, Xianjuan; Wang, Haizhong; Yang, Hua; Jiang, Jinlong

    2018-05-01

    A solid-liquid synergetic lubricating system has been designed to develop a novel self-lubricating nickel matrix composite. The graphene-nickel (G-Ni) matrix composite with porous structure was fabricated by in situ growing graphene in bulk nickel using a powder metallurgy method. The porous structures of the composite were used to store polyalphaolefin (PAO) oil for self-lubricating. It is found that the G-Ni matrix composite under oil lubrication condition exhibited superior tribological properties as compared to pure nickel and the composite under dry sliding condition. The prestored oil was released from pores to the sliding surface forming a lubricating oil film during friction process. This lubricating oil film can protect the worn surface from severe oxidation, and help the formation and transfer of a carbon-based solid tribofilm derived from graphene and lubricating oil. This solid (graphene)-liquid (oil) synergistic lubricating mechanism is responsible for the reduction of friction coefficient and improvement of wear resistance of the in situ fabricated G-Ni matrix composite.

  19. Interface Characteristics and the Mechanical Properties of Metal Matrix Composites.

    DTIC Science & Technology

    1987-09-28

    of Composites ’" 18 Appendix B Interfaces in Aluminum Metal Matrix Composites g 28 Appendix C Interface Failure in Planar Aluminum-Graphite Composites...Appendix G Residual Stresses in Composite Materials: An Overview of Measurements Used 92 Appendix H Raman Microprobe Measurements of Residual Stresses at...In addition .. to this direct electrostatic attraction, the space charge establishes an electric field of 2 S.. % ° °° % " ° " g

  20. Investigation of colloidal graphite as a matrix for matrix-assisted laser desorption/ionisation mass spectrometry of low molecular weight analytes.

    PubMed

    Warren, Alexander D; Conway, Ulric; Arthur, Christopher J; Gates, Paul J

    2016-07-01

    The analysis of low molecular weight compounds by matrix-assisted laser desorption/ionisation mass spectrometry is problematic due to the interference and suppression of analyte ionisation by the matrices typically employed - which are themselves low molecular weight compounds. The application of colloidal graphite is demonstrated here as an easy to use matrix that can promote the ionisation of a wide range of analytes including low molecular weight organic compounds, complex natural products and inorganic complexes. Analyte ionisation with colloidal graphite is compared with traditional organic matrices along with various other sources of graphite (e.g. graphite rods and charcoal pencils). Factors such as ease of application, spectra reproducibility, spot longevity, spot-to-spot reproducibility and spot homogeneity (through single spot imaging) are explored. For some analytes, considerable matrix suppression effects are observed resulting in spectra completely devoid of matrix ions. We also report the observation of radical molecular ions [M(-●) ] in the negative ion mode, particularly with some aromatic analytes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms

    NASA Astrophysics Data System (ADS)

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  2. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms.

    PubMed

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R

    2016-07-07

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  3. ReplacementMatrix: a web server for maximum-likelihood estimation of amino acid replacement rate matrices.

    PubMed

    Dang, Cuong Cao; Lefort, Vincent; Le, Vinh Sy; Le, Quang Si; Gascuel, Olivier

    2011-10-01

    Amino acid replacement rate matrices are an essential basis of protein studies (e.g. in phylogenetics and alignment). A number of general purpose matrices have been proposed (e.g. JTT, WAG, LG) since the seminal work of Margaret Dayhoff and co-workers. However, it has been shown that matrices specific to certain protein groups (e.g. mitochondrial) or life domains (e.g. viruses) differ significantly from general average matrices, and thus perform better when applied to the data to which they are dedicated. This Web server implements the maximum-likelihood estimation procedure that was used to estimate LG, and provides a number of tools and facilities. Users upload a set of multiple protein alignments from their domain of interest and receive the resulting matrix by email, along with statistics and comparisons with other matrices. A non-parametric bootstrap is performed optionally to assess the variability of replacement rate estimates. Maximum-likelihood trees, inferred using the estimated rate matrix, are also computed optionally for each input alignment. Finely tuned procedures and up-to-date ML software (PhyML 3.0, XRATE) are combined to perform all these heavy calculations on our clusters. http://www.atgc-montpellier.fr/ReplacementMatrix/ olivier.gascuel@lirmm.fr Supplementary data are available at http://www.atgc-montpellier.fr/ReplacementMatrix/

  4. Osteoblast fibronectin mRNA, protein synthesis, and matrix are unchanged after exposure to microgravity

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Gilbertson, V.

    1999-01-01

    The well-defined osteoblast line, MC3T3-E1 was used to examine fibronectin (FN) mRNA levels, protein synthesis, and extracellular FN matrix accumulation after growth activation in spaceflight. These osteoblasts produce FN extracellular matrix (ECM) known to regulate adhesion, differentiation, and function in adherent cells. Changes in bone ECM and osteoblast cell shape occur in spaceflight. To determine whether altered FN matrix is a factor in causing these changes in spaceflight, quiescent osteoblasts were launched into microgravity and were then sera activated with and without a 1-gravity field. Synthesis of FN mRNA, protein, and matrix were measured after activation in microgravity. FN mRNA synthesis is significantly reduced in microgravity (0-G) when compared to ground (GR) osteoblasts flown in a centrifuge simulating earth's gravity (1-G) field 2.5 h after activation. However, 27.5 h after activation there were no significant differences in mRNA synthesis. A small but significant reduction of FN protein was found in the 0-G samples 2.5 h after activation. Total FN protein 27.5 h after activation showed no significant difference between any of the gravity conditions, however, there was a fourfold increase in absolute amount of protein synthesized during the incubation. Using immunofluorescence, we found no significant differences in the amount or in the orientation of the FN matrix after 27.5 h in microgravity. These results demonstrate that FN is made by sera-activated osteoblasts even during exposure to microgravity. These data also suggest that after a total period of 43 h of spaceflight FN transcription, translation, or altered matrix assembly is not responsible for the altered cell shape or altered matrix formation of osteoblasts.

  5. Explaining and Controlling for the Psychometric Properties of Computer-Generated Figural Matrix Items

    ERIC Educational Resources Information Center

    Freund, Philipp Alexander; Hofer, Stefan; Holling, Heinz

    2008-01-01

    Figural matrix items are a popular task type for assessing general intelligence (Spearman's g). Items of this kind can be constructed rationally, allowing the implementation of computerized generation algorithms. In this study, the influence of different task parameters on the degree of difficulty in matrix items was investigated. A sample of N =…

  6. Conformational isomerism of pyridoxal. Infrared matrix isolation and theoretical studies.

    PubMed

    Kwiatek, Anna; Mielke, Zofia

    2015-01-25

    A combined matrix isolation FTIR and theoretical DFT/B3LYP/6-311++G(2p,2d) study of pyridoxal was performed. The calculations resulted in five stable PLHB conformers stabilized by intramolecular O-H⋯O bonding between phenolic OH and carbonyl C=O groups and another thirteen conformers in which OH or/and aldehyde groups are rotated by 180° around CO or/and CC bonds leading, respectively, to formation of PLO, PLA and PLOA conformers. The analysis of the spectra of the as-deposited matrix indicated that two most stable PLHB1 and PLHB2 conformers with intramolecular hydrogen bond are present in the matrix. The exposure of the PL/Ar matrix to mercury lamp radiation (λ>345 nm) induced conformational change of PLHB isomers to PLOA ones. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Effect of EPDM-g-MAH on properties of HDPE/OBC blends

    NASA Astrophysics Data System (ADS)

    Li, M.; Yu, L. Y.; Li, P. F.; Bin, Y. H.; Zhang, H. J.

    2017-04-01

    In this paper, we take the HDPE as the matrix material, OBC as the toughening material, and EDPM-g-MAH as the compatibility agent, HDPE/OBC/EPDM-g-MAH blends were prepared by high speed mixing, melt extrusion, injection molding and so on. The effects of OBC and EPDM-g-MAH on mechanical properties, crystalline properties, fracture surface structure and rheological properties of HDPE were analyzed by universal tensile tester, melt mass flow rate test machine, DSC and SEM. Experimental results show that: with the addition of EPDM-g-MAH, the notched impact strength of the blends increased first and then decreased; HDPE/OBC blend containing 4% EPDM-g-MAH, OBC dispersion in the matrix is more uniform, particle size is significantly refined, melt flow has some improvement, Compared with HDPE/OBC blend materials, notched impact strength and elongation at break increased by 41.07% and 107.28% respectively, the toughness of the blend was greatly improved.

  8. Local delamination in laminates with angle ply matrix cracks. Part 2: Delamination fracture analysis and fatigue characterization

    NASA Technical Reports Server (NTRS)

    Obrien, T. Kevin

    1991-01-01

    Constant amplitude tension-tension fatigue tests were conducted on AS4/3501-6 graphite/epoxy (02/ theta sub 2/ -(theta sub 2))sub s laminates, where theta was 15, 20, 25, or 30 degrees. Fatigue tests were conducted at a frequency of 5 Hz and an R-ratio of 0.1. Dye penetrant enhanced x-radiography was used to document the onset of matrix cracking in the central -(theta) degree plies, and the subsequent onset of local delaminations in the theta/ -(theta) interface at the intersection of the matrix cracks and the free edge, as a function of the number of fatigue cycles. Two strain energy release rate solutions for local delamination from matrix cracks were derived: one for a local delamination growing from an angle ply matrix crack with a uniform delamination growing from an angle ply matrix crack with a triangular shaped delamination area that extended only partially into the laminate width from the free edge. Plots of G(max) vs. N were generated to assess the accuracy of these G solutions. The influence of residual thermal and moisture stresses on G were also quantified. However, a detailed analysis of the G components and a mixed-mode fatigue failure criterion for this material may be needed to predict the fatigue behavior of these laminates.

  9. High-temperature transverse fracture toughness of Nicalon-fiber-reinforced CAS-II glass-ceramic matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahraman, R.; Mandell, J.F.; Deibert, M.C.

    Cracking parallel to the fibers in off-axis plies is usually the initial form of damage in composite laminates. This cracking process has been associated with the (transverse) fracture toughness, defined by the critical strain energy release rate, G{sub Ic}. The measurement of G{sub Ic} provides basic information about the transverse crack resistance. In this study, the utility of the double torsion (DT) test technique to determine G{sub Ic} in a glass-ceramic matrix composite (Nicalon/CAS-II) at temperatures up to 1,000 C has been demonstrated. G{sub Ic} did decrease moderately with increasing temperature (as does the bulk matrix); however, no evidence ofmore » an interphase oxidizing effect on crack growth (parallel to the fibers) could be found. The inevitable misalignment of fibers in the material was not very efficient at bridging the crack in the DT specimens, in contrast to the significant matrix crack interactions with the fibers reported for other geometries such as double cantilever beam and flexure specimens.« less

  10. Manifold regularized matrix completion for multi-label learning with ADMM.

    PubMed

    Liu, Bin; Li, Yingming; Xu, Zenglin

    2018-05-01

    Multi-label learning is a common machine learning problem arising from numerous real-world applications in diverse fields, e.g, natural language processing, bioinformatics, information retrieval and so on. Among various multi-label learning methods, the matrix completion approach has been regarded as a promising approach to transductive multi-label learning. By constructing a joint matrix comprising the feature matrix and the label matrix, the missing labels of test samples are regarded as missing values of the joint matrix. With the low-rank assumption of the constructed joint matrix, the missing labels can be recovered by minimizing its rank. Despite its success, most matrix completion based approaches ignore the smoothness assumption of unlabeled data, i.e., neighboring instances should also share a similar set of labels. Thus they may under exploit the intrinsic structures of data. In addition, the matrix completion problem can be less efficient. To this end, we propose to efficiently solve the multi-label learning problem as an enhanced matrix completion model with manifold regularization, where the graph Laplacian is used to ensure the label smoothness over it. To speed up the convergence of our model, we develop an efficient iterative algorithm, which solves the resulted nuclear norm minimization problem with the alternating direction method of multipliers (ADMM). Experiments on both synthetic and real-world data have shown the promising results of the proposed approach. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    DOEpatents

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  12. Dry Arthroscopy With a Retraction System for Matrix-Aided Cartilage Repair of Patellar Lesions

    PubMed Central

    Sadlik, Boguslaw; Wiewiorski, Martin

    2014-01-01

    Several commercially available cartilage repair techniques use a natural or synthetic matrix to aid cartilage regeneration (e.g., autologous matrix–induced chondrogenesis or matrix-induced cartilage implantation). However, the use of matrix-aided techniques during conventional knee joint arthroscopy under continuous irrigation is challenging. Insertion and fixation of the matrix can be complicated by the presence of fluid and the confined patellofemoral joint space with limited access to the lesion. To overcome these issues, we developed a novel arthroscopic approach for matrix-aided cartilage repair of patellar lesions. This technical note describes the use of dry arthroscopy assisted by a minimally invasive retraction system. An autologous matrix–induced chondrogenesis procedure is used to illustrate this novel approach. PMID:24749035

  13. Statistical analysis of latent generalized correlation matrix estimation in transelliptical distribution.

    PubMed

    Han, Fang; Liu, Han

    2017-02-01

    Correlation matrix plays a key role in many multivariate methods (e.g., graphical model estimation and factor analysis). The current state-of-the-art in estimating large correlation matrices focuses on the use of Pearson's sample correlation matrix. Although Pearson's sample correlation matrix enjoys various good properties under Gaussian models, its not an effective estimator when facing heavy-tail distributions with possible outliers. As a robust alternative, Han and Liu (2013b) advocated the use of a transformed version of the Kendall's tau sample correlation matrix in estimating high dimensional latent generalized correlation matrix under the transelliptical distribution family (or elliptical copula). The transelliptical family assumes that after unspecified marginal monotone transformations, the data follow an elliptical distribution. In this paper, we study the theoretical properties of the Kendall's tau sample correlation matrix and its transformed version proposed in Han and Liu (2013b) for estimating the population Kendall's tau correlation matrix and the latent Pearson's correlation matrix under both spectral and restricted spectral norms. With regard to the spectral norm, we highlight the role of "effective rank" in quantifying the rate of convergence. With regard to the restricted spectral norm, we for the first time present a "sign subgaussian condition" which is sufficient to guarantee that the rank-based correlation matrix estimator attains the optimal rate of convergence. In both cases, we do not need any moment condition.

  14. Lyophilized mucoadhesive-dendrimer enclosed matrix tablet for extended oral delivery of albendazole.

    PubMed

    Mansuri, Shakir; Kesharwani, Prashant; Tekade, Rakesh Kumar; Jain, Narendra Kumar

    2016-05-01

    Dendrimers are multifunctional carriers widely employed for delivering drugs in a variety of disease conditions including HIV/AIDS and cancer. Albendazole (ABZ) is a commonly used anthelmintic drug in human as well as veterinary medicine. In this investigation, ABZ was formulated as a "muco-dendrimer" based sustained released tablet. The mucoadhesive complex was synthesized by anchoring chitosan to fifth generation PPI dendrimer (Muco-PPI) and characterized by UV, FTIR, (1)H NMR spectroscopy and electron microscopy. ABZ was entrapped inside Muco-PPI followed by lyophilization and tableting as matrix tablet. A half-life (t1/2) of 8.06±0.15, 8.17±0.47, 11.04±0.73, 11.49±0.92, 12.52±1.04 and 16.9±1.18h was noted for ABZ (free drug), conventional ABZ tablet (F1), conventional ABZ matrix tablet (F2), PPI-ABZ complex, PPI-ABZ matrix tablet (F3) and Muco-PPI-ABZ matrix tablet (F4), respectively. Thus the novel mucoadhesive-PPI based formulation of ABZ (F4) increased the t1/2 of ABZ significantly by almost twofold as compared to the administration of free drug. The in vivo drug release data showed that the Muco-PPI based formulations have a significantly higher Cmax (2.40±0.02μg/mL) compared with orally administered free ABZ (0.19±0.07μg/mL) as well as conventional tablet (0.20±0.05μg/mL). In addition, the Muco-PPI-ABZ matrix tablet displayed increased mean residence time (MRT) and is therefore a potential candidate to appreciably improve the pharmacokinetic profile of ABZ. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Axial-Current Matrix Elements in Light Nuclei from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Savage, M.; Beane, S.; Chang, E.; Davoudi, Z.; Detmold, W.; Orginos, K.; Shanahan, P.; Tiburzi, B.; Wagman, M.; Winter, F.; Nplqcd Collaboration

    I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections and $\\beta\\beta$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $g_A$ that is required in nuclear many-body calculations.

  16. Matrix management in hospitals: testing theories of matrix structure and development.

    PubMed

    Burns, L R

    1989-09-01

    A study of 315 hospitals with matrix management programs was used to test several hypotheses concerning matrix management advanced by earlier theorists. The study verifies that matrix management involves several distinctive elements that can be scaled to form increasingly complex types of lateral coordinative devices. The scalability of these elements is evident only cross-sectionally. The results show that matrix complexity is not an outcome of program age, nor does matrix complexity at the time of implementation appear to influence program survival. Matrix complexity, finally, is not determined by the organization's task diversity and uncertainty. The results suggest several modifications in prevailing theories of matrix organization.

  17. Genome-Wide Association Studies with a Genomic Relationship Matrix: A Case Study with Wheat and Arabidopsis

    PubMed Central

    Gianola, Daniel; Fariello, Maria I.; Naya, Hugo; Schön, Chris-Carolin

    2016-01-01

    Standard genome-wide association studies (GWAS) scan for relationships between each of p molecular markers and a continuously distributed target trait. Typically, a marker-based matrix of genomic similarities among individuals (G) is constructed, to account more properly for the covariance structure in the linear regression model used. We show that the generalized least-squares estimator of the regression of phenotype on one or on m markers is invariant with respect to whether or not the marker(s) tested is(are) used for building G, provided variance components are unaffected by exclusion of such marker(s) from G. The result is arrived at by using a matrix expression such that one can find many inverses of genomic relationship, or of phenotypic covariance matrices, stemming from removing markers tested as fixed, but carrying out a single inversion. When eigenvectors of the genomic relationship matrix are used as regressors with fixed regression coefficients, e.g., to account for population stratification, their removal from G does matter. Removal of eigenvectors from G can have a noticeable effect on estimates of genomic and residual variances, so caution is needed. Concepts were illustrated using genomic data on 599 wheat inbred lines, with grain yield as target trait, and on close to 200 Arabidopsis thaliana accessions. PMID:27520956

  18. BASIC Matrix Operations.

    ERIC Educational Resources Information Center

    Digital Equipment Corp., Maynard, MA.

    The curriculum materials and computer programs in this booklet introduce the idea of a matrix. They go on to discuss matrix operations of addition, subtraction, multiplication by a scalar, and matrix multiplication. The last section covers several contemporary applications of matrix multiplication, including problems of communication…

  19. Visualizing the dental biofilm matrix by means of fluorescence lectin-binding analysis.

    PubMed

    Tawakoli, Pune N; Neu, Thomas R; Busck, Mette M; Kuhlicke, Ute; Schramm, Andreas; Attin, Thomas; Wiedemeier, Daniel B; Schlafer, Sebastian

    2017-01-01

    The extracellular matrix is a poorly studied, yet important component of dental biofilms. Fluorescence lectin-binding analysis (FLBA) is a powerful tool to characterize glycoconjugates in the biofilm matrix. This study aimed to systematically investigate the ability of 75 fluorescently labeled lectins to visualize and quantify extracellular glycoconjugates in dental biofilms. Lectin binding was screened on pooled supragingival biofilm samples collected from 76 subjects using confocal microscopy. FLBA was then performed with 10 selected lectins on biofilms grown in situ for 48 h in the absence of sucrose. For five lectins that proved particularly suitable, stained biovolumes were quantified and correlated to the bacterial composition of the biofilms. Additionally, combinations of up to three differently labeled lectins were tested. Of the 10 lectins, five bound particularly well in 48-h-biofilms: Aleuria aurantia (AAL), Calystega sepiem (Calsepa), Lycopersicon esculentum (LEA), Morniga-G (MNA-G) and Helix pomatia (HPA). No significant correlation between the binding of specific lectins and bacterial composition was found. Fluorescently labeled lectins enable the visualization of glycoconjugates in the dental biofilm matrix. The characterization and quantification of glycoconjugates in dental biofilms require a combination of several lectins. For 48-h-biofilms grown in absence of sucrose, AAL, Calsepa, HPA, LEA, and MNA-G are recommendable.

  20. Efficacy of hemostatic matrix and microporous polysaccharide hemospheres.

    PubMed

    Lewis, Kevin M; Atlee, Holly; Mannone, Angela; Lin, Lawrence; Goppelt, Andreas

    2015-02-01

    Microporous Polysaccharide Hemospheres (MPH) are a new plant-derived polysaccharide powder hemostat. Previous studies investigated MPH as a replacement to nonflowable hemostatic agents of different application techniques (e.g., oxidized cellulose, collagen); therefore, the purpose of this study was to determine if MPH is a surrogate for flowable hemostatic agents of similar handling and application techniques, specifically a flowable thrombin-gelatin hemostatic matrix. Hemostatic efficacy was compared using a heparinized porcine abrasion model mimicking a capsular tear of a parenchymal organ. MPH (ARISTA, 1 g) and hemostatic matrix (Floseal, 1 mL) were applied, according to a randomized scheme, to paired hepatic abrasions (40 lesions per group). Hemostatic success, control of bleeding, and blood loss were assessed 2, 5, and 10 min after treatment. Hemostatic success and control of bleeding were analyzed using odds ratios and blood loss using mean differences. Hemostatic matrix provided superior hemostatic success relative to MPH at 5 (odds ratio: 0.035, 95% confidence interval: 0.004-0.278) and 10 min (0.032, 0.007-0.150), provided superior control of bleeding at 5 (0.006, <0.001-0.037) and 10 min (0.009, 0.001-0.051), and had significantly less blood loss at 5 (mean difference: 0.3118 mL/min, 95% confidence interval: 0.0939-0.5296) and 10 min (0.5025, 0.2489-0.7561). These findings corroborate other MPH investigations regarding its low-level efficacy and suggest that MPH is not an appropriate surrogate for hemostatic matrix despite similar application techniques. The lack of a procoagulant within MPH may likely be the reason for its lower efficacy and need for multiple applications. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Characterization and reproducibility of HepG2 hanging drop spheroids toxicology in vitro.

    PubMed

    Hurrell, Tracey; Ellero, Andrea Antonio; Masso, Zelie Flavienne; Cromarty, Allan Duncan

    2018-02-21

    Hepatotoxicity remains a major challenge in drug development despite preclinical toxicity screening using hepatocytes of human origin. To overcome some limitations of reproducing the hepatic phenotype, more structurally and functionally authentic cultures in vitro can be introduced by growing cells in 3D spheroid cultures. Characterisation and reproducibility of HepG2 spheroid cultures using a high-throughput hanging drop technique was performed and features contributing to potential phenotypic variation highlighted. Cultured HepG2 cells were seeded into Perfecta 3D® 96-well hanging drop plates and assessed over time for morphology, viability, cell cycle distribution, protein content and protein-mass profiles. Divergent aspects which were assessed included cell stocks, seeding density, volume of culture medium and use of extracellular matrix additives. Hanging drops are advantageous due to no complex culture matrix being present, enabling background free extractions for downstream experimentation. Varying characteristics were observed across cell stocks and batches, seeding density, culture medium volume and extracellular matrix when using immortalized HepG2 cells. These factors contribute to wide-ranging cellular responses and highlights concerns with respect to generating a reproducible phenotype in HepG2 hanging drop spheroids. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Axial-Current Matrix Elements in Light Nuclei from Lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, Martin; Shanahan, Phiala E.; Tiburzi, Brian C.

    2016-12-01

    I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections andmore » $$\\beta\\beta$$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $$g_A$$ that is required in nuclear many-body calculations.« less

  3. Ceramic matrix and resin matrix composites: A comparison

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  4. Ceramic matrix and resin matrix composites - A comparison

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  5. Analysing generator matrices G of similar state but varying minimum determinants

    NASA Astrophysics Data System (ADS)

    Harun, H.; Razali, M. F.; Rahman, N. A. Abdul

    2016-10-01

    Since Tarokh discovered Space-Time Trellis Code (STTC) in 1998, a considerable effort has been done to improve the performance of the original STTC. One way of achieving enhancement is by focusing on the generator matrix G, which represents the encoder structure for STTC. Until now, researchers have only concentrated on STTCs of different states in analyzing the performance of generator matrix G. No effort has been made on different generator matrices G of similar state. The reason being, it is difficult to produce a wide variety of generator matrices G with diverse minimum determinants. In this paper a number of generator matrices G with minimum determinant of four (4), eight (8) and sixteen (16) of the same state (i.e., 4-PSK) have been successfully produced. The performance of different generator matrices G in term of their bit error rate and signal-to-noise ratio for a Rayleigh fading environment are compared and evaluated. It is found from the MATLAB simulation that at low SNR (<8), the BER of generator matrices G with smaller minimum determinant is comparatively lower than those of higher minimum determinant. However, at high SNR (>14) there is no significant difference between the BER of these generator matrices G.

  6. Study of drug release and tablet characteristics of silicone adhesive matrix tablets.

    PubMed

    Tolia, Gaurav; Li, S Kevin

    2012-11-01

    Matrix tablets of a model drug acetaminophen (APAP) were prepared using a highly compressible low glass transition temperature (T(g)) polymer silicone pressure sensitive adhesive (PSA) at various binary mixtures of silicone PSA/APAP ratios. Matrix tablets of a rigid high T(g) matrix forming polymer ethyl cellulose (EC) were the reference for comparison. Drug release study was carried out using USP Apparatus 1 (basket), and the relationship between the release kinetic parameters of APAP and polymer/APAP ratio was determined to estimate the excipient percolation threshold. The critical points attributed to both silicone PSA and EC tablet percolation thresholds were found to be between 2.5% and 5% w/w. For silicone PSA tablets, satisfactory mechanical properties were obtained above the polymer percolation threshold; no cracking or chipping of the tablet was observed above this threshold. Rigid EC APAP tablets showed low tensile strength and high friability. These results suggest that silicone PSA could eliminate issues related to drug compressibility in the formulation of directly compressed oral controlled release tablets of poorly compressible drug powder such as APAP. No routinely used excipients such as binders, granulating agents, glidants, or lubricants were required for making an acceptable tablet matrix of APAP using silicone PSA. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. BSR: B-spline atomic R-matrix codes

    NASA Astrophysics Data System (ADS)

    Zatsarinny, Oleg

    2006-02-01

    BSR is a general program to calculate atomic continuum processes using the B-spline R-matrix method, including electron-atom and electron-ion scattering, and radiative processes such as bound-bound transitions, photoionization and polarizabilities. The calculations can be performed in LS-coupling or in an intermediate-coupling scheme by including terms of the Breit-Pauli Hamiltonian. New version program summaryTitle of program: BSR Catalogue identifier: ADWY Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWY Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computers on which the program has been tested: Microway Beowulf cluster; Compaq Beowulf cluster; DEC Alpha workstation; DELL PC Operating systems under which the new version has been tested: UNIX, Windows XP Programming language used: FORTRAN 95 Memory required to execute with typical data: Typically 256-512 Mwords. Since all the principal dimensions are allocatable, the available memory defines the maximum complexity of the problem No. of bits in a word: 8 No. of processors used: 1 Has the code been vectorized or parallelized?: no No. of lines in distributed program, including test data, etc.: 69 943 No. of bytes in distributed program, including test data, etc.: 746 450 Peripherals used: scratch disk store; permanent disk store Distribution format: tar.gz Nature of physical problem: This program uses the R-matrix method to calculate electron-atom and electron-ion collision processes, with options to calculate radiative data, photoionization, etc. The calculations can be performed in LS-coupling or in an intermediate-coupling scheme, with options to include Breit-Pauli terms in the Hamiltonian. Method of solution: The R-matrix method is used [P.G. Burke, K.A. Berrington, Atomic and Molecular Processes: An R-Matrix Approach, IOP Publishing, Bristol, 1993; P.G. Burke, W.D. Robb, Adv. At. Mol. Phys. 11 (1975) 143; K.A. Berrington, W.B. Eissner, P.H. Norrington, Comput

  8. Statistical analysis of latent generalized correlation matrix estimation in transelliptical distribution

    PubMed Central

    Han, Fang; Liu, Han

    2016-01-01

    Correlation matrix plays a key role in many multivariate methods (e.g., graphical model estimation and factor analysis). The current state-of-the-art in estimating large correlation matrices focuses on the use of Pearson’s sample correlation matrix. Although Pearson’s sample correlation matrix enjoys various good properties under Gaussian models, its not an effective estimator when facing heavy-tail distributions with possible outliers. As a robust alternative, Han and Liu (2013b) advocated the use of a transformed version of the Kendall’s tau sample correlation matrix in estimating high dimensional latent generalized correlation matrix under the transelliptical distribution family (or elliptical copula). The transelliptical family assumes that after unspecified marginal monotone transformations, the data follow an elliptical distribution. In this paper, we study the theoretical properties of the Kendall’s tau sample correlation matrix and its transformed version proposed in Han and Liu (2013b) for estimating the population Kendall’s tau correlation matrix and the latent Pearson’s correlation matrix under both spectral and restricted spectral norms. With regard to the spectral norm, we highlight the role of “effective rank” in quantifying the rate of convergence. With regard to the restricted spectral norm, we for the first time present a “sign subgaussian condition” which is sufficient to guarantee that the rank-based correlation matrix estimator attains the optimal rate of convergence. In both cases, we do not need any moment condition. PMID:28337068

  9. Hybrid matrix fiber composites

    DOEpatents

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2003-07-15

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  10. Biofilm Matrix Proteins.

    PubMed

    Fong, Jiunn N C; Yildiz, Fitnat H

    2015-04-01

    Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins, and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enzymatic degradation of polysaccharides, proteins, and nucleic acids. In this article, we will review functions of matrix proteins in a selected set of microorganisms, studies of the matrix proteomes of Vibrio cholerae and Pseudomonas aeruginosa, and roles of outer membrane vesicles and of nucleoid-binding proteins in biofilm formation.

  11. Matrix diffusion coefficients in volcanic rocks at the Nevada test site: influence of matrix porosity, matrix permeability, and fracture coating minerals.

    PubMed

    Reimus, Paul W; Callahan, Timothy J; Ware, S Doug; Haga, Marc J; Counce, Dale A

    2007-08-15

    Diffusion cell experiments were conducted to measure nonsorbing solute matrix diffusion coefficients in forty-seven different volcanic rock matrix samples from eight different locations (with multiple depth intervals represented at several locations) at the Nevada Test Site. The solutes used in the experiments included bromide, iodide, pentafluorobenzoate (PFBA), and tritiated water ((3)HHO). The porosity and saturated permeability of most of the diffusion cell samples were measured to evaluate the correlation of these two variables with tracer matrix diffusion coefficients divided by the free-water diffusion coefficient (D(m)/D*). To investigate the influence of fracture coating minerals on matrix diffusion, ten of the diffusion cells represented paired samples from the same depth interval in which one sample contained a fracture surface with mineral coatings and the other sample consisted of only pure matrix. The log of (D(m)/D*) was found to be positively correlated with both the matrix porosity and the log of matrix permeability. A multiple linear regression analysis indicated that both parameters contributed significantly to the regression at the 95% confidence level. However, the log of the matrix diffusion coefficient was more highly-correlated with the log of matrix permeability than with matrix porosity, which suggests that matrix diffusion coefficients, like matrix permeabilities, have a greater dependence on the interconnectedness of matrix porosity than on the matrix porosity itself. The regression equation for the volcanic rocks was found to provide satisfactory predictions of log(D(m)/D*) for other types of rocks with similar ranges of matrix porosity and permeability as the volcanic rocks, but it did a poorer job predicting log(D(m)/D*) for rocks with lower porosities and/or permeabilities. The presence of mineral coatings on fracture walls did not appear to have a significant effect on matrix diffusion in the ten paired diffusion cell experiments.

  12. Matrix diffusion coefficients in volcanic rocks at the Nevada test site: Influence of matrix porosity, matrix permeability, and fracture coating minerals

    NASA Astrophysics Data System (ADS)

    Reimus, Paul W.; Callahan, Timothy J.; Ware, S. Doug; Haga, Marc J.; Counce, Dale A.

    2007-08-01

    Diffusion cell experiments were conducted to measure nonsorbing solute matrix diffusion coefficients in forty-seven different volcanic rock matrix samples from eight different locations (with multiple depth intervals represented at several locations) at the Nevada Test Site. The solutes used in the experiments included bromide, iodide, pentafluorobenzoate (PFBA), and tritiated water ( 3HHO). The porosity and saturated permeability of most of the diffusion cell samples were measured to evaluate the correlation of these two variables with tracer matrix diffusion coefficients divided by the free-water diffusion coefficient ( Dm/ D*). To investigate the influence of fracture coating minerals on matrix diffusion, ten of the diffusion cells represented paired samples from the same depth interval in which one sample contained a fracture surface with mineral coatings and the other sample consisted of only pure matrix. The log of ( Dm/ D*) was found to be positively correlated with both the matrix porosity and the log of matrix permeability. A multiple linear regression analysis indicated that both parameters contributed significantly to the regression at the 95% confidence level. However, the log of the matrix diffusion coefficient was more highly-correlated with the log of matrix permeability than with matrix porosity, which suggests that matrix diffusion coefficients, like matrix permeabilities, have a greater dependence on the interconnectedness of matrix porosity than on the matrix porosity itself. The regression equation for the volcanic rocks was found to provide satisfactory predictions of log( Dm/ D*) for other types of rocks with similar ranges of matrix porosity and permeability as the volcanic rocks, but it did a poorer job predicting log( Dm/ D*) for rocks with lower porosities and/or permeabilities. The presence of mineral coatings on fracture walls did not appear to have a significant effect on matrix diffusion in the ten paired diffusion cell experiments.

  13. Brief announcement: Hypergraph parititioning for parallel sparse matrix-matrix multiplication

    DOE PAGES

    Ballard, Grey; Druinsky, Alex; Knight, Nicholas; ...

    2015-01-01

    The performance of parallel algorithms for sparse matrix-matrix multiplication is typically determined by the amount of interprocessor communication performed, which in turn depends on the nonzero structure of the input matrices. In this paper, we characterize the communication cost of a sparse matrix-matrix multiplication algorithm in terms of the size of a cut of an associated hypergraph that encodes the computation for a given input nonzero structure. Obtaining an optimal algorithm corresponds to solving a hypergraph partitioning problem. Furthermore, our hypergraph model generalizes several existing models for sparse matrix-vector multiplication, and we can leverage hypergraph partitioners developed for that computationmore » to improve application-specific algorithms for multiplying sparse matrices.« less

  14. Nanocrystal doped matrixes

    DOEpatents

    Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan

    2010-01-12

    Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.

  15. Linear scaling computation of the Fock matrix. II. Rigorous bounds on exchange integrals and incremental Fock build

    NASA Astrophysics Data System (ADS)

    Schwegler, Eric; Challacombe, Matt; Head-Gordon, Martin

    1997-06-01

    A new linear scaling method for computation of the Cartesian Gaussian-based Hartree-Fock exchange matrix is described, which employs a method numerically equivalent to standard direct SCF, and which does not enforce locality of the density matrix. With a previously described method for computing the Coulomb matrix [J. Chem. Phys. 106, 5526 (1997)], linear scaling incremental Fock builds are demonstrated for the first time. Microhartree accuracy and linear scaling are achieved for restricted Hartree-Fock calculations on sequences of water clusters and polyglycine α-helices with the 3-21G and 6-31G basis sets. Eightfold speedups are found relative to our previous method. For systems with a small ionization potential, such as graphitic sheets, the method naturally reverts to the expected quadratic behavior. Also, benchmark 3-21G calculations attaining microhartree accuracy are reported for the P53 tetramerization monomer involving 698 atoms and 3836 basis functions.

  16. Food Matrix Effects on Bioaccessibility of β-Carotene Can be Measured in an in Vitro Gastrointestinal Model

    PubMed Central

    2015-01-01

    Since the food matrix determines β-carotene availability for intestinal absorption, food matrix effects on the bioaccessibility of β-carotene from two diets were investigated in vitro and compared with in vivo data. The “mixed diet” consisted of β-carotene-rich vegetables, and the “oil diet” contained β-carotene-low vegetables with supplemental β-carotene. The application of extrinsically labeled β-carotene was also investigated. The bioaccessibility of β-carotene was 28 μg/100 μg β-carotene from the mixed diet and 53 μg/100 μg β-carotene from the oil diet. This ratio of 1.9:1 was consistent with in vivo data, where the apparent absorption was 1.9-fold higher in the oil diet than in the mixed diet. The labeled β-carotene was not equally distributed over time. In conclusion, the food matrix effects on bioaccessibility of β-carotene could be measured using an in vitro model and were consistent with in vivo data. The application of extrinsically labeled β-carotene was not confirmed. PMID:24397305

  17. Genome-Wide Association Studies with a Genomic Relationship Matrix: A Case Study with Wheat and Arabidopsis.

    PubMed

    Gianola, Daniel; Fariello, Maria I; Naya, Hugo; Schön, Chris-Carolin

    2016-10-13

    Standard genome-wide association studies (GWAS) scan for relationships between each of p molecular markers and a continuously distributed target trait. Typically, a marker-based matrix of genomic similarities among individuals ( G: ) is constructed, to account more properly for the covariance structure in the linear regression model used. We show that the generalized least-squares estimator of the regression of phenotype on one or on m markers is invariant with respect to whether or not the marker(s) tested is(are) used for building G,: provided variance components are unaffected by exclusion of such marker(s) from G: The result is arrived at by using a matrix expression such that one can find many inverses of genomic relationship, or of phenotypic covariance matrices, stemming from removing markers tested as fixed, but carrying out a single inversion. When eigenvectors of the genomic relationship matrix are used as regressors with fixed regression coefficients, e.g., to account for population stratification, their removal from G: does matter. Removal of eigenvectors from G: can have a noticeable effect on estimates of genomic and residual variances, so caution is needed. Concepts were illustrated using genomic data on 599 wheat inbred lines, with grain yield as target trait, and on close to 200 Arabidopsis thaliana accessions. Copyright © 2016 Gianola et al.

  18. The negative impact of α-ketoglutarate dehydrogenase complex deficiency on matrix substrate-level phosphorylation

    PubMed Central

    Kiss, Gergely; Konrad, Csaba; Doczi, Judit; Starkov, Anatoly A.; Kawamata, Hibiki; Manfredi, Giovanni; Zhang, Steven F.; Gibson, Gary E.; Beal, M. Flint; Adam-Vizi, Vera; Chinopoulos, Christos

    2013-01-01

    A decline in α-ketoglutarate dehydrogenase complex (KGDHC) activity has been associated with neurodegeneration. Provision of succinyl-CoA by KGDHC is essential for generation of matrix ATP (or GTP) by substrate-level phosphorylation catalyzed by succinyl-CoA ligase. Here, we demonstrate ATP consumption in respiration-impaired isolated and in situ neuronal somal mitochondria from transgenic mice with a deficiency of either dihydrolipoyl succinyltransferase (DLST) or dihydrolipoyl dehydrogenase (DLD) that exhibit a 20–48% decrease in KGDHC activity. Import of ATP into the mitochondrial matrix of transgenic mice was attributed to a shift in the reversal potential of the adenine nucleotide translocase toward more negative values due to diminished matrix substrate-level phosphorylation, which causes the translocase to reverse prematurely. Immunoreactivity of all three subunits of succinyl-CoA ligase and maximal enzymatic activity were unaffected in transgenic mice as compared to wild-type littermates. Therefore, decreased matrix substrate-level phosphorylation was due to diminished provision of succinyl-CoA. These results were corroborated further by the finding that mitochondria from wild-type mice respiring on substrates supporting substrate-level phosphorylation exhibited ∼30% higher ADP-ATP exchange rates compared to those obtained from DLST+/− or DLD+/− littermates. We propose that KGDHC-associated pathologies are a consequence of the inability of respiration-impaired mitochondria to rely on “in-house” mitochondrial ATP reserves.—Kiss, G., Konrad, C., Doczi, J., Starkov, A. A., Kawamata, H., Manfredi, G., Zhang, S. F., Gibson, G. E., Beal, M. F., Adam-Vizi, V., Chinopoulos, C. The negative impact of α-ketoglutarate dehydrogenase complex deficiency on matrix substrate-level phosphorylation. PMID:23475850

  19. Conserved G-matrices of morphological and life-history traits among continental and island blue tit populations.

    PubMed

    Delahaie, B; Charmantier, A; Chantepie, S; Garant, D; Porlier, M; Teplitsky, C

    2017-08-01

    The genetic variance-covariance matrix (G-matrix) summarizes the genetic architecture of multiple traits. It has a central role in the understanding of phenotypic divergence and the quantification of the evolutionary potential of populations. Laboratory experiments have shown that G-matrices can vary rapidly under divergent selective pressures. However, because of the demanding nature of G-matrix estimation and comparison in wild populations, the extent of its spatial variability remains largely unknown. In this study, we investigate spatial variation in G-matrices for morphological and life-history traits using long-term data sets from one continental and three island populations of blue tit (Cyanistes caeruleus) that have experienced contrasting population history and selective environment. We found no evidence for differences in G-matrices among populations. Interestingly, the phenotypic variance-covariance matrices (P) were divergent across populations, suggesting that using P as a substitute for G may be inadequate. These analyses also provide the first evidence in wild populations for additive genetic variation in the incubation period (that is, the period between last egg laid and hatching) in all four populations. Altogether, our results suggest that G-matrices may be stable across populations inhabiting contrasted environments, therefore challenging the results of previous simulation studies and laboratory experiments.

  20. Properties of five toughened matrix composite materials

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Dow, Marvin B.

    1992-01-01

    The use of toughened matrix composite materials offers an attractive solution to the problem of poor damage tolerance associated with advanced composite materials. In this study, the unidirectional laminate strengths and moduli, notched (open-hole) and unnotched tension and compression properties of quasi-isotropic laminates, and compression-after-impact strengths of five carbon fiber/toughened matrix composites, IM7/E7T1-2, IM7/X1845, G40-800X/5255-3, IM7/5255-3, and IM7/5260 have been evaluated. The compression-after-impact (CAI) strengths were determined primarily by impacting quasi-isotropic laminates with the NASA Langley air gun. A few CAI tests were also made with a drop-weight impactor. For a given impact energy, compression after impact strengths were determined to be dependent on impactor velocity. Properties and strengths for the five materials tested are compared with NASA data on other toughened matrix materials (IM7/8551-7, IM6/1808I, IM7/F655, and T800/F3900). This investigation found that all five materials were stronger and more impact damage tolerant than more brittle carbon/epoxy composite materials currently used in aircraft structures.

  1. Cell cycle of matrix cells in the mouse embryo during histogenesis of telencephalon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoshino, K.; Matsuzawa, T.; Murakami, U.

    1973-01-01

    Pregnant female mice were injected intraperitoneally with 5 mu Ci/g body weight of /sup 3/H-thymidine (spec. act. 12 mu Ci/mM) at 1:30 p.m. on day 10, 13, or 17 of gestation and were put to death at 1 or 2 hr intervals per group. Embryos were removed quickly from mothers and fixed in Bouin's solution. The prepared slides were observed microscopically. The duration of the cell cycle of the matrix cells of the telencephalon was determined by direct graphic measurement, plotting the percentage of labeled mitosis against the time after / sup 3/H-thymidine injection according to the method of Quastlermore » and Sherman. The total cell cycle times in day 10, 13, and 17 groups were 7.0, 15.5, and 26.0 hr, respectively. It was characteristic in the alteration of cell cycle of matrix cells in the telencephalon during mouse embryonic life that not only G/sub 1/ but also S phase lengthened linearly with embryonic age, and both G/sub 2/ and M phases remained constant. According to these facts, the matrix cells seemed to change cytogenetically with increase of age so as to produce different neurons that would progressively make up different layers in the neocortex. (JA)« less

  2. Specification of matrix cleanup goals in fractured porous media.

    PubMed

    Rodríguez, David J; Kueper, Bernard H

    2013-01-01

    Semianalytical transient solutions have been developed to evaluate what level of fractured porous media (e.g., bedrock or clay) matrix cleanup must be achieved in order to achieve compliance of fracture pore water concentrations within a specified time at specified locations of interest. The developed mathematical solutions account for forward and backward diffusion in a fractured porous medium where the initial condition comprises a spatially uniform, nonzero matrix concentration throughout the domain. Illustrative simulations incorporating the properties of mudstone fractured bedrock demonstrate that the time required to reach a desired fracture pore water concentration is a function of the distance between the point of compliance and the upgradient face of the domain where clean groundwater is inflowing. Shorter distances correspond to reduced times required to reach compliance, implying that shorter treatment zones will respond more favorably to remediation than longer treatment zones in which back-diffusion dominates the fracture pore water response. For a specified matrix cleanup goal, compliance of fracture pore water concentrations will be reached sooner for decreased fracture spacing, increased fracture aperture, higher matrix fraction organic carbon, lower matrix porosity, shorter aqueous phase decay half-life, and a higher hydraulic gradient. The parameters dominating the response of the system can be measured using standard field and laboratory techniques. © 2012, The Author(s). Ground Water © 2012, National Ground Water Association.

  3. Polyisoprene matrix for progesterone release: in vitro and in vivo studies.

    PubMed

    Heredia, V; Bianco, I D; Tríbulo, H; Tríbulo, R; Seoane, M Ferro; Faudone, S; Cuffini, S L; Demichelis, N A; Schalliol, H; Beltramo, D M

    2009-12-01

    Latex, a polyisoprene (PI) hydrophobic elastomer, was evaluated in vitro and in vivo as a matrix for intravaginal steroid hormone delivery. Matrices containing hormone were prepared by swelling latex in chloroform that contained soluble progesterone (P4). In vitro studies demonstrate that P4 release from PI follows a zero order model during at least 100 h and depends on initial load up to 10 mg cm(-2). The release of P4 from a PI matrix was found to be two times faster than from a polydimethylsiloxane (PDMS) matrix. FT-IR and X-ray powder diffraction analysis of P4 polymorphs show that when nucleated in PDMS, the hormone crystallizes only in alpha-form while in latex, crystallizes as a mixture of alpha- and beta-form. In vivo studies show that devices with a PI matrix containing 0.5 g of P4 are effective to reach plasma levels above 1 ng ml(-1) that are needed to synchronize estrous in cattle. Altogether, the results show that PI, a vulcanized polymer with a carbon-carbon backbone, can be used as a new matrix for the intravaginal administration of progesterone with improved release profile than silicone and that the matrix can influence the crystalline state of the hormone.

  4. The compensatory G88R change is essential in restoring the normal functions of influenza A/WSN/33 virus matrix protein 1 with a disrupted nuclear localization signal.

    PubMed

    Xie, Hang; Lin, Zhengshi; Mosier, Philip D; Desai, Umesh R; Gao, Yamei

    2013-01-01

    G88R emerged as a compensatory mutation in matrix protein 1 (M1) of influenza virus A/WSN/33 when its nuclear localization signal (NLS) was disrupted by R101S and R105S substitutions. The resultant M1 triple mutant M(NLS-88R) regained replication efficiency in vitro while remaining attenuated in vivo with the potential of being a live vaccine candidate. To understand why G88R was favored by the virus as a compensatory change for the NLS loss and resultant replication deficiency, three more M1 triple mutants with an alternative G88K, G88V, or G88E change in addition to R101S and R105S substitutions in the NLS were generated. Unlike the other M1 triple mutants, M(NLS-88R) replicated more efficiently in vitro and in vivo. The G88R compensatory mutation not only restored normal functions of M1 in the presence of a disrupted NLS but also resulted in a strong association of M1 with viral ribonucleoprotein. Under a transmission electron microscope, only the M1 layer of the M(NLS-88R) virion exhibited discontinuous fingerprint-like patterns with average thicknesses close to that of wild-type A/WSN/33. Computational modeling suggested that the compensatory G88R change could reestablish the integrity of the M1 layer through new salt bridges between adjacent M1 subunits when the original interactions were interrupted by simultaneous R101S and R105S replacements in the NLS. Our results suggested that restoring the normal functions of M1 was crucial for efficient virus replication.

  5. Matrix Interdiction Problem

    NASA Astrophysics Data System (ADS)

    Kasiviswanathan, Shiva Prasad; Pan, Feng

    In the matrix interdiction problem, a real-valued matrix and an integer k is given. The objective is to remove a set of k matrix columns that minimizes in the residual matrix the sum of the row values, where the value of a row is defined to be the largest entry in that row. This combinatorial problem is closely related to bipartite network interdiction problem that can be applied to minimize the probability that an adversary can successfully smuggle weapons. After introducing the matrix interdiction problem, we study the computational complexity of this problem. We show that the matrix interdiction problem is NP-hard and that there exists a constant γ such that it is even NP-hard to approximate this problem within an n γ additive factor. We also present an algorithm for this problem that achieves an (n - k) multiplicative approximation ratio.

  6. The Inhibitory Effect of C-phycocyanin Containing Protein Extract (C-PC Extract) on Human Matrix Metalloproteinases (MMP-2 and MMP-9) in Hepatocellular Cancer Cell Line (HepG2).

    PubMed

    Kunte, Mugdha; Desai, Krutika

    2017-06-01

    Spirulina platensis :have been studied for several biological activities. In the current study C-phycocyanin containing protein extract (C-PC extract) of Spirulina platensis have been studied for its effect on human matrix metalloproteinases (MMP-1, MMP-2 and MMP-9) and tissue inhibitors of MMPs (TIMP-1 and TIMP-2). In the present study, breast cancer cell line (MDA-MB 231) and hepatocellular cancer cell line (HepG2) were examined for inhibition of MMPs at different levels of expression after C-PC extract treatment. Herein, we have demonstrated that C-PC extract significantly reduced activity of MMP-2 by 55.13% and MMP-9 by 57.9% in HepG2 cells at 15 μg concentration. Additionally, the treatment has reduced mRNA expression of MMP-2 and MMP-9 at 20 μg concentration by 1.65-folds and 1.66-folds respectively. The C-PC extract treatment have also downregulated a mRNA expression of TIMP-2 by 1.12 folds at 20 μg concentration in HepG2 cells. Together, these results indicate that C-PC, extract successfully inhibited MMP-2 and -9 at different levels of expression and TIMP-2 at a mRNA expression level; however, extract did not have any effect on MMP-1 expressed in MDA-MB231 and TIMP-1 expressed in HepG2 cells as well as the exact mechanism of inhibition of MMP-2, MMP-9 and TIMP-2 remained unclear.

  7. Simultaneous determination of multiclass emerging contaminants in aquatic plants by ultrasound-assisted matrix solid-phase dispersion and GC-MS.

    PubMed

    Aznar, Ramón; Albero, Beatriz; Sánchez-Brunete, Consuelo; Miguel, Esther; Martín-Girela, Isabel; Tadeo, José L

    2017-03-01

    A multiresidue method was developed for the simultaneous determination of 31 emerging contaminants (pharmaceutical compounds, hormones, personal care products, biocides, and flame retardants) in aquatic plants. Analytes were extracted by ultrasound-assisted matrix solid-phase dispersion (UA-MSPD) and determined by gas chromatography-mass spectrometry after sylilation, The method was validated for different aquatic plants (Typha angustifolia, Arundo donax, and Lemna minor) and a semiaquatic cultivated plant (Oryza sativa) with good recoveries at concentrations of 100 and 25 ng g -1 wet weight, ranging from 70 to 120 %, and low method detection limits (0.3 to 2.2 ng g -1 wet weight). A significant difference of the chromatographic response was observed for some compounds in neat solvent versus matrix extracts, and therefore, quantification was carried out using matrix-matched standards in order to overcome this matrix effect. Aquatic plants taken from rivers located at three Spanish regions were analyzed, and the compounds detected were parabens, bisphenol A, benzophenone-3, cyfluthrin, and cypermethrin. The levels found ranged from 6 to 25 ng g -1 wet weight except for cypermethrin that was detected at 235 ng g -1 wet weight in O. sativa samples.

  8. Effectiveness of metal matrix and ceramic matrix composites as orbital debris shield materials

    NASA Technical Reports Server (NTRS)

    Mcgill, Preston B.; Mount, Angela R.

    1992-01-01

    The effectiveness of two metal matrix composites and one ceramic matrix material in defeating hypervelocity impacts at about 3.8 km/s are evaluated to determine the potential of these composites as spacecraft shield materials. The metal matrix composites investigated consist of SiC particles (70 percent by volume) in an aluminum matrix and Al2O3 particles (50 percent by volume) in an Al matrix. The ceramic composite consists of ZrB2 platelets in a ZrC matrix. Both the metal matrix and ceramic matrix composites are found to perform as well or better than 6061-T6 aluminum, which is presently used in the Whipple type bumper shield of Space Station Freedom. Test results indicate that the composites tested may have applications as micrometeoroid/orbital debris shield materials.

  9. Transferring elements of a density matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allahverdyan, Armen E.; Hovhannisyan, Karen V.; Yerevan State University, A. Manoogian Street 1, Yerevan

    2010-01-15

    We study restrictions imposed by quantum mechanics on the process of matrix-element transfer. This problem is at the core of quantum measurements and state transfer. Given two systems A and B with initial density matrices lambda and r, respectively, we consider interactions that lead to transferring certain matrix elements of unknown lambda into those of the final state r-tilde of B. We find that this process eliminates the memory on the transferred (or certain other) matrix elements from the final state of A. If one diagonal matrix element is transferred, r(tilde sign){sub aa}=lambda{sub aa}, the memory on each nondiagonal elementmore » lambda{sub an}ot ={sub b} is completely eliminated from the final density operator of A. Consider the following three quantities, Relambda{sub an}ot ={sub b}, Imlambda{sub an}ot ={sub b}, and lambda{sub aa}-lambda{sub bb} (the real and imaginary part of a nondiagonal element and the corresponding difference between diagonal elements). Transferring one of them, e.g., Rer(tilde sign){sub an}ot ={sub b}=Relambda{sub an}ot ={sub b}, erases the memory on two others from the final state of A. Generalization of these setups to a finite-accuracy transfer brings in a trade-off between the accuracy and the amount of preserved memory. This trade-off is expressed via system-independent uncertainty relations that account for local aspects of the accuracy-disturbance trade-off in quantum measurements. Thus, the general aspect of state disturbance in quantum measurements is elimination of memory on non-diagonal elements, rather than diagonalization.« less

  10. Matrix effects for elemental fractionation within ICPMS: applications for U-Th-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Chen, W.

    2016-12-01

    Recent development in instruments provides significant technical supports for daily, quick, money saving geochemical analyses. Laser ablation ICPMS stands out due to these reasons, especially for the U-Th-Pb isotopic dating. Matrix-matched external standardization is by far the most common approach used in U-Th-Pb dating via LA-ICPMS. However, matrix-effects between standard and sample for in-situ dating have shown to be both significant and insignificant. It remains mysterious whether a well matrix-matched standard is needed for U-Th-Pb dating by LA-ICPMS. This study provides an experimental framework for the understanding of matrix effects induced elemental fractionation for U-Th-Pb associated with ICPMS. A preliminary study on the influence of varied U, Th and Pb amounts on their fractionations has been carried out. Experimental data show that different U, Th and Pb contents result in varied 238U/206Pb and 232Th/208Pb ratios. The fractionations of U/Pb and Th/Pb increase with the increasing contents (1 ppb to 100 ppb) with a strong positive anomaly at 10 ppb. Matrixes representing minerals frequently used in dating have been investigated for the influences on U/Pb and Th/Pb fractionations, which suggest a complicated effect. Little fractionations observed between mineral pairs (e.g., monazite and apatite; zircon and perovskite; rutile and perovskite; xenotime and baddeleyite), whereas large fractionations identified for other minerals (e.g., zircon and baddeleyite; monazite and sphene; rutile and baddeleyite). Single element matrix (i.e., Si, P, Ca, Zr, Ti) has been studied to identify their effects on the fractionations. U/Pb ratio increases with the increasing Si and P contents, whereas it decreases for Zr, Ca and Ti. Th/Pb ratio increases with increasing Si contents, decreases for P and Zr, and increases first then decreases for Ca and Ti. Above all, different matrix and U, Th and Pb amounts show distinct U/Pb and Th/Pb fractionations within ICPMS. The

  11. Vortex manipulation in a superconducting matrix with view on applications

    NASA Astrophysics Data System (ADS)

    Milošević, M. V.; Peeters, F. M.

    2010-05-01

    We show how a single flux quantum can be effectively manipulated in a superconducting film with a matrix of blind holes. Such a sample can serve as a basic memory element, where the position of the vortex in a k ×l matrix of pinning sites defines the desired combination of n bits of information (2n=k×l). Vortex placement is achieved by strategically applied current and the resulting position is read out via generated voltage between metallic contacts on the sample. Such a device can also act as a controllable source of a nanoengineered local magnetic field for, e.g., spintronics applications.

  12. Modification of natural matrix lac-bagasse for matrix composite films

    NASA Astrophysics Data System (ADS)

    Nurhayati, Nanik Dwi; Widjaya, Karna; Triyono

    2016-02-01

    Material technology continues to be developed in order to a material that is more efficient with composite technology is a combination of two or more materials to obtain the desired material properties. The objective of this research was to modification and characterize the natural matrix lac-bagasse as composite films. The first step, natural matrix lac was changed from solid to liquid using an ethanol as a solvent so the matrix homogenly. Natural matrix lac was modified by adding citric acid with concentration variation. Secondly, the bagasse delignification using acid hydrolysis method. The composite films natural matrix lac-bagasse were prepared with optimum modified the addition citric acid 5% (v/v) and delignification bagasse optimum at 1,5% (v/v) in hot press at 80°C 6 Kg/cm-1. Thirdly, composite films without and with modification were characterized functional group analysis using FTIR spectrophotometer and mechanical properties using Universal Testing Machine. The result of research showed natural matrix lac can be modified by reaction with citric acid. FTIR spectra showed without and with modification had functional groups wide absorption 3448 cm-1 group -OH, C=O ester strong on 1712 cm-1 and the methylene group -CH2 on absorption 1465 cm-1. The mechanical properties showed tensile strength 0,55 MPa and elongation at break of 0,95 %. So that composite films natural matrix lac can be made with reinforcement bagasse for material application.

  13. Modeling for Matrix Multicracking Evolution of Cross-ply Ceramic-Matrix Composites Using Energy Balance Approach

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2015-12-01

    The matrix multicracking evolution of cross-ply ceramic-matrix composites (CMCs) has been investigated using energy balance approach. The multicracking of cross-ply CMCs was classified into five modes, i.e., (1) mode 1: transverse multicracking; (2) mode 2: transverse multicracking and matrix multicracking with perfect fiber/matrix interface bonding; (3) mode 3: transverse multicracking and matrix multicracking with fiber/matrix interface debonding; (4) mode 4: matrix multicracking with perfect fiber/matrix interface bonding; and (5) mode 5: matrix multicracking with fiber/matrix interface debonding. The stress distributions of four cracking modes, i.e., mode 1, mode 2, mode 3 and mode 5, are analysed using shear-lag model. The matrix multicracking evolution of mode 1, mode 2, mode 3 and mode 5, has been determined using energy balance approach. The effects of ply thickness and fiber volume fraction on matrix multicracking evolution of cross-ply CMCs have been investigated.

  14. Matrix superpotentials

    NASA Astrophysics Data System (ADS)

    Nikitin, Anatoly G.; Karadzhov, Yuri

    2011-07-01

    We present a collection of matrix-valued shape invariant potentials which give rise to new exactly solvable problems of SUSY quantum mechanics. It includes all irreducible matrix superpotentials of the generic form W=kQ+\\frac{1}{k} R+P, where k is a variable parameter, Q is the unit matrix multiplied by a real-valued function of independent variable x, and P and R are the Hermitian matrices depending on x. In particular, we recover the Pron'ko-Stroganov 'matrix Coulomb potential' and all known scalar shape invariant potentials of SUSY quantum mechanics. In addition, five new shape invariant potentials are presented. Three of them admit a dual shape invariance, i.e. the related Hamiltonians can be factorized using two non-equivalent superpotentials. We find discrete spectrum and eigenvectors for the corresponding Schrödinger equations and prove that these eigenvectors are normalizable.

  15. Accuracy of whole-genome prediction using a genetic architecture-enhanced variance-covariance matrix.

    PubMed

    Zhang, Zhe; Erbe, Malena; He, Jinlong; Ober, Ulrike; Gao, Ning; Zhang, Hao; Simianer, Henner; Li, Jiaqi

    2015-02-09

    Obtaining accurate predictions of unobserved genetic or phenotypic values for complex traits in animal, plant, and human populations is possible through whole-genome prediction (WGP), a combined analysis of genotypic and phenotypic data. Because the underlying genetic architecture of the trait of interest is an important factor affecting model selection, we propose a new strategy, termed BLUP|GA (BLUP-given genetic architecture), which can use genetic architecture information within the dataset at hand rather than from public sources. This is achieved by using a trait-specific covariance matrix ( T: ), which is a weighted sum of a genetic architecture part ( S: matrix) and the realized relationship matrix ( G: ). The algorithm of BLUP|GA (BLUP-given genetic architecture) is provided and illustrated with real and simulated datasets. Predictive ability of BLUP|GA was validated with three model traits in a dairy cattle dataset and 11 traits in three public datasets with a variety of genetic architectures and compared with GBLUP and other approaches. Results show that BLUP|GA outperformed GBLUP in 20 of 21 scenarios in the dairy cattle dataset and outperformed GBLUP, BayesA, and BayesB in 12 of 13 traits in the analyzed public datasets. Further analyses showed that the difference of accuracies for BLUP|GA and GBLUP significantly correlate with the distance between the T: and G: matrices. The new strategy applied in BLUP|GA is a favorable and flexible alternative to the standard GBLUP model, allowing to account for the genetic architecture of the quantitative trait under consideration when necessary. This feature is mainly due to the increased similarity between the trait-specific relationship matrix ( T: matrix) and the genetic relationship matrix at unobserved causal loci. Applying BLUP|GA in WGP would ease the burden of model selection. Copyright © 2015 Zhang et al.

  16. Google matrix analysis of the multiproduct world trade network

    NASA Astrophysics Data System (ADS)

    Ermann, Leonardo; Shepelyansky, Dima L.

    2015-04-01

    Using the United Nations COMTRADE database [United Nations Commodity Trade Statistics Database, available at: http://comtrade.un.org/db/. Accessed November (2014)] we construct the Google matrix G of multiproduct world trade between the UN countries and analyze the properties of trade flows on this network for years 1962-2010. This construction, based on Markov chains, treats all countries on equal democratic grounds independently of their richness and at the same time it considers the contributions of trade products proportionally to their trade volume. We consider the trade with 61 products for up to 227 countries. The obtained results show that the trade contribution of products is asymmetric: some of them are export oriented while others are import oriented even if the ranking by their trade volume is symmetric in respect to export and import after averaging over all world countries. The construction of the Google matrix allows to investigate the sensitivity of trade balance in respect to price variations of products, e.g. petroleum and gas, taking into account the world connectivity of trade links. The trade balance based on PageRank and CheiRank probabilities highlights the leading role of China and other BRICS countries in the world trade in recent years. We also show that the eigenstates of G with large eigenvalues select specific trade communities.

  17. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs.

    PubMed

    Jabłońska-Trypuć, Agata; Matejczyk, Marzena; Rosochacki, Stanisław

    2016-01-01

    The main group of enzymes responsible for the collagen and other protein degradation in extracellular matrix (ECM) are matrix metalloproteinases (MMPs). Collagen is the main structural component of connective tissue and its degradation is a very important process in the development, morphogenesis, tissue remodeling, and repair. Typical structure of MMPs consists of several distinct domains. MMP family can be divided into six groups: collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and other non-classified MMPs. MMPs and their inhibitors have multiple biological functions in all stages of cancer development: from initiation to outgrowth of clinically relevant metastases and likewise in apoptosis and angiogenesis. MMPs and their inhibitors are extensively examined as potential anticancer drugs. MMP inhibitors can be divided into two main groups: synthetic and natural inhibitors. Selected synthetic inhibitors are in clinical trials on humans, e.g. synthetic peptides, non-peptidic molecules, chemically modified tetracyclines, and bisphosphonates. Natural MMP inhibitors are mainly isoflavonoids and shark cartilage.

  18. Matrix differentiation formulas

    NASA Technical Reports Server (NTRS)

    Usikov, D. A.; Tkhabisimov, D. K.

    1983-01-01

    A compact differentiation technique (without using indexes) is developed for scalar functions that depend on complex matrix arguments which are combined by operations of complex conjugation, transposition, addition, multiplication, matrix inversion and taking the direct product. The differentiation apparatus is developed in order to simplify the solution of extremum problems of scalar functions of matrix arguments.

  19. Mathematical Modeling of Cancer Invasion: The Role of Membrane-Bound Matrix Metalloproteinases

    PubMed Central

    Deakin, Niall E.; Chaplain, Mark A. J.

    2013-01-01

    One of the hallmarks of cancer growth and metastatic spread is the process of local invasion of the surrounding tissue. Cancer cells achieve protease-dependent invasion by the secretion of enzymes involved in proteolysis. These overly expressed proteolytic enzymes then proceed to degrade the host tissue allowing the cancer cells to disseminate throughout the microenvironment by active migration and interaction with components of the extracellular matrix (ECM) such as collagen. In this paper we develop a mathematical model of cancer invasion which consider the role of matrix metalloproteinases (MMPs). Specifically our model will focus on two distinct types of MMP, i.e., soluble, diffusible MMPs (e.g., MMP-2) and membrane-bound MMPs (e.g., MT1-MMP), and the roles each of these plays in cancer invasion. The implications of MMP-2 activation by MMP-14 and the tissue inhibitor of metalloproteinases-2 are considered alongside the effect the architecture of the matrix may have when applied to a model of cancer invasion. Elements of the ECM architecture investigated include pore size of the matrix, since in some highly dense collagen structures such as breast tissue, the cancer cells are unable to physically fit through a porous region, and the crosslinking of collagen fibers. In this scenario, cancer cells rely on membrane-bound MMPs to forge a path through which degradation by other MMPs and movement of cancer cells becomes possible. PMID:23565505

  20. Optimal experimental designs for fMRI when the model matrix is uncertain.

    PubMed

    Kao, Ming-Hung; Zhou, Lin

    2017-07-15

    This study concerns optimal designs for functional magnetic resonance imaging (fMRI) experiments when the model matrix of the statistical model depends on both the selected stimulus sequence (fMRI design), and the subject's uncertain feedback (e.g. answer) to each mental stimulus (e.g. question) presented to her/him. While practically important, this design issue is challenging. This mainly is because that the information matrix cannot be fully determined at the design stage, making it difficult to evaluate the quality of the selected designs. To tackle this challenging issue, we propose an easy-to-use optimality criterion for evaluating the quality of designs, and an efficient approach for obtaining designs optimizing this criterion. Compared with a previously proposed method, our approach requires a much less computing time to achieve designs with high statistical efficiencies. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. IS THE PREFRONTAL CORTEX IMPORTANT FOR FLUID INTELLIGENCE? A NEUROPSYCHOLOGICAL STUDY USING MATRIX REASONING

    PubMed Central

    Tranel, Daniel; Manzel, Kenneth; Anderson, Steven W.

    2008-01-01

    Patients with prefrontal damage and severe defects in decision making and emotional regulation often have a remarkable absence of intellectual impairment, as measured by conventional IQ tests such as the WAIS/WAIS-R. This enigma might be explained by shortcomings in the tests, which tend to emphasize measures of “crystallized” (e.g., vocabulary, fund of information) more than “fluid” (e.g., novel problem solving) intelligence. The WAIS-III added the Matrix Reasoning subtest to enhance measurement of fluid reasoning. In a set of four studies, we investigated Matrix Reasoning performances in 80 patients with damage to various sectors of the prefrontal cortex, and contrasted these with the performances of 80 demographically matched patients with damage outside the frontal lobes. The results failed to support the hypothesis that prefrontal damage would disproportionately impair fluid intelligence, and every prefrontal subgroup we studied (dorsolateral, ventromedial, dorsolateral + ventromedial) had Matrix Reasoning scores (as well as IQ scores more generally) that were indistinguishable from those of the brain-damaged comparison groups. Our findings do not support a connection between fluid intelligence and the frontal lobes, although a viable alternative interpretation is that the Matrix Reasoning subtest lacks construct validity as a measure of fluid intelligence. PMID:17853146

  2. Analysis of delamination in cross-ply laminates initiating from impact induced matrix cracking

    NASA Technical Reports Server (NTRS)

    Salpekar, S. A.

    1993-01-01

    Two-dimensional finite element analyses of (02/90(8)/02) glass/epoxy and graphite/epoxy composite laminates were performed to investigate some of the characteristics of damage development due to an impact load. A cross section through the thickness of the laminate with fixed ends, and carrying a transverse load in the center, was analyzed. Inclined matrix cracks, such as those produced by a low-velocity impact, were modeled in the 90 deg ply group. The introduction of the matrix cracks caused large interlaminar tensile and shear stresses in the vicinity of both crack tips in the 0/90 and 90/0 interfaces, indicating that matrix cracking may give rise to delamination. The ratio of Mode I to total strain energy release rate, G(I)/G(total), at the beginning of delamination, calculated at the two (top and bottom) matrix crack tips was 60 and 28 percent, respectively, in the glass/epoxy laminate. The corresponding ratio was 97 and 77 percent in the graphite/epoxy laminate. Thus, a significant Mode I component of strain energy release rate may be present at the delamination initiation due to an impact load. The value of strain energy release rate at either crack tip increased due to an increase in the delamination length at the other crack tip and may give rise to an unstable delamination growth under constant load.

  3. Thermal and mechanical behavior of metal matrix and ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Kennedy, John M. (Editor); Moeller, Helen H. (Editor); Johnson, W. S. (Editor)

    1990-01-01

    The present conference discusses local stresses in metal-matrix composites (MMCs) subjected to thermal and mechanical loads, the computational simulation of high-temperature MMCs' cyclic behavior, an analysis of a ceramic-matrix composite (CMC) flexure specimen, and a plasticity analysis of fibrous composite laminates under thermomechanical loads. Also discussed are a comparison of methods for determining the fiber-matrix interface frictional stresses of CMCs, the monotonic and cyclic behavior of an SiC/calcium aluminosilicate CMC, the mechanical and thermal properties of an SiC particle-reinforced Al alloy MMC, the temperature-dependent tensile and shear response of a graphite-reinforced 6061 Al-alloy MMC, the fiber/matrix interface bonding strength of MMCs, and fatigue crack growth in an Al2O3 short fiber-reinforced Al-2Mg matrix MMC.

  4. The symmetries of the system matrix and propagator matrix for anisotropic media and of the system matrix forperiodically layered media

    NASA Astrophysics Data System (ADS)

    Xu, Guo-Ming; Ni, Si-Dao

    1998-11-01

    The `auxiliary' symmetry properties of the system matrix (symmetry with respect to the trailing diagonal) for a general anisotropic dissipative medium and the special form for a monoclinic medium are revealed by rearranging the motion-stress vector. The propagator matrix of a single-layer general anisotropic dissipative medium is also shown to have auxiliary symmetry. For the multilayered case, a relatively simple matrix method is utilized to obtain the inverse of the propagator matrix. Further, Woodhouse's inverse of the propagator matrix for a transversely isotropic medium is extended in a clearer form to handle the monoclinic symmetric medium. The properties of a periodic layer system are studied through its system matrix Aly , which is computed from the propagator matrix P. The matrix Aly is then compared with Aeq , the system matrix for the long-wavelength equivalent medium of the periodic isotropic layers. Then we can find how the periodic layered medium departs from its long-wavelength equivalent medium when the wavelength decreases. In our numerical example, the results show that, when λ/D decreases to 6-8, the components of the two matrices will depart from each other. The component ratio of these two matrices increases to its maximum (more than 15 in our numerical test) when λ/D is reduced to 2.3, and then oscillates with λ/D when it is further reduced. The eigenvalues of the system matrix Aly show that the velocities of P and S waves decrease when λ/D is reduced from 6-8 and reach their minimum values when λ/D is reduced to 2.3 and then oscillate afterwards. We compute the time shifts between the peaks of the transmitted waves and the incident waves. The resulting velocity curves show a similar variation to those computed from the eigenvalues of the system matrix Aly , but on a smaller scale. This can be explained by the spectrum width of the incident waves.

  5. Chondrites: The Compaction of Fine Matrix and Matrix-like Chondrule Rims

    NASA Astrophysics Data System (ADS)

    Wasson, J. T.

    1995-09-01

    Primitive chondritic meteorites mainly consist of chondrules, sulfide+/-metal, and fine-grained matrix. The most unequilibrated chondrites preserve in their phase compositions and, to a lesser degree, their textures, many details about processes that occurred in the solar nebula. On the other hand, much of the textural evidence records processes that occurred in or on the parent body. I suggest that the low-porosity of chondrule matrix and matrix-like rims reflects compaction processes that occurred in asteroid-size bodies, and that neither matrix lumps nor compact matrix-like rims on chondrules could have achieved their observed low porosities in the solar nebula. Recent theoretical studies by Donn and Meakin (1) and Chokshi et al. (2) have concluded that grain-grain sticking in the solar nebula mainly produces fluffy structures having very high porosities (probably >>50%). If these structures grow large enough, they can provide an aerogel-like matrix that can trap chondrules as well as metal and sulfide grains, and thus form suitable precursors of chondritic meteorites. However, the strength of any such structure formed in the solar nebula must be a trivial fraction of that required to survive passage through the Earth's atmosphere in order to fall as a meteorite. The best evidence of accretionary structures appears to be that reported by Metzler et al. (3). They made SEM images of entire thin sections of CM chondrites, and showed that, in the best preserved chondrites, rims are present on all entitities--on chondrules, chondrule fragments, refractory inclusions, etc. A study by Krot and Wasson (4) shows a more complex situation in ordinary chondrites. Although matrix is common, a sizable fraction of chondrules are not surrounded by matrix-like rims. As summarized by Rubin and Krot (1995), there are reports of small textural and compositional differences between matrix lumps and mean matrix-like chondrule rims, but there is so much overlap in properties between

  6. The S-Matrix and Acoustic Signal Structure in Simple and Compound Waveguides.

    DTIC Science & Technology

    1982-12-01

    RD-A125 583 THE S-MATRIX AND ACOUSTIC SIGNAL STRUCTURE IN SIMPLE- L/1 AND COMPOUND WAVEGUIDES(U) UTAH UNIV SALT LAKE CITY DEPT OF MATHEMATICS C H...WILCOX DEC 82 TSR-45 UNCLASSIFIED N6@8i4-76-C-8276 F/G 12/1 NL IEINEIIIIIIEIhllhlllllllIflllllflflflflflEN L-- U5-12 III,2,0 III.J --IL.,5 MICROCOP ...RESLUIO TETCHRNATIONA BUREA OF 20NADS16 THE S-MATRIX AND ACOUSTIC SIGNAL STRUCTURE IN SIMPLE AND COMPOUND WAVEGUIDES C. H. Wilcox Technical Simmary Report

  7. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide

    EPA Science Inventory

    PMF is a multivariate factor analysis tool that decomposes a matrix of speciated sample data into two matrices: factor contributions (G) and factor profiles (F). These factor profiles need to be interpreted by the user to identify the source types that may be contributing to the ...

  8. Matrix isolation infrared spectra and photochemistry of hydantoin.

    PubMed

    Ildiz, Gulce Ogruc; Nunes, Cláudio M; Fausto, Rui

    2013-01-31

    Hydantoin (C(3)H(4)N(2)O(2), 2,4-imidazolidinedione) was isolated in argon matrix at 10 K and its infrared spectrum and unimolecular photochemistry were investigated. The molecular structure of the compound was studied both at the DFT(B3LYP) and MP2 levels of approximation with valence triple- and quadruple-ζ basis sets (6-311++G(d,p); cc-pVQZ). It was concluded that the minima in the potential energy surfaces of the molecule correspond to C(1) symmetry structures. However, the energy barrier separating the two-equivalent-by-symmetry minima stays below their zero-point energy, which makes the C(s) symmetry structure, which separates the two minima, the experimentally relevant one. The electronic structure of the molecule was studied in detail by performing the Natural Bond Orbital analysis of its electronic configuration within the DFT(B3LYP)/cc-pVQZ space. The infrared spectrum of the matrix isolated compound was fully assigned also with help of the theoretically predicted spectrum. Upon irradiation at λ = 230 nm, matrix-isolated hydantoin was found to photofragment into isocyanic acid, CO, and methylenimine.

  9. Multi-threaded Sparse Matrix-Matrix Multiplication for Many-Core and GPU Architectures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deveci, Mehmet; Rajamanickam, Sivasankaran; Trott, Christian Robert

    Sparse Matrix-Matrix multiplication is a key kernel that has applications in several domains such as scienti c computing and graph analysis. Several algorithms have been studied in the past for this foundational kernel. In this paper, we develop parallel algorithms for sparse matrix-matrix multiplication with a focus on performance portability across different high performance computing architectures. The performance of these algorithms depend on the data structures used in them. We compare different types of accumulators in these algorithms and demonstrate the performance difference between these data structures. Furthermore, we develop a meta-algorithm, kkSpGEMM, to choose the right algorithm and datamore » structure based on the characteristics of the problem. We show performance comparisons on three architectures and demonstrate the need for the community to develop two phase sparse matrix-matrix multiplication implementations for efficient reuse of the data structures involved.« less

  10. Accurate Quasiparticle Spectra from the T-Matrix Self-Energy and the Particle-Particle Random Phase Approximation.

    PubMed

    Zhang, Du; Su, Neil Qiang; Yang, Weitao

    2017-07-20

    The GW self-energy, especially G 0 W 0 based on the particle-hole random phase approximation (phRPA), is widely used to study quasiparticle (QP) energies. Motivated by the desirable features of the particle-particle (pp) RPA compared to the conventional phRPA, we explore the pp counterpart of GW, that is, the T-matrix self-energy, formulated with the eigenvectors and eigenvalues of the ppRPA matrix. We demonstrate the accuracy of the T-matrix method for molecular QP energies, highlighting the importance of the pp channel for calculating QP spectra.

  11. A Weighted and Directed Interareal Connectivity Matrix for Macaque Cerebral Cortex

    PubMed Central

    Markov, N. T.; Ercsey-Ravasz, M. M.; Ribeiro Gomes, A. R.; Lamy, C.; Magrou, L.; Vezoli, J.; Misery, P.; Falchier, A.; Quilodran, R.; Gariel, M. A.; Sallet, J.; Gamanut, R.; Huissoud, C.; Clavagnier, S.; Giroud, P.; Sappey-Marinier, D.; Barone, P.; Dehay, C.; Toroczkai, Z.; Knoblauch, K.; Van Essen, D. C.; Kennedy, H.

    2014-01-01

    Retrograde tracer injections in 29 of the 91 areas of the macaque cerebral cortex revealed 1,615 interareal pathways, a third of which have not previously been reported. A weight index (extrinsic fraction of labeled neurons [FLNe]) was determined for each area-to-area pathway. Newly found projections were weaker on average compared with the known projections; nevertheless, the 2 sets of pathways had extensively overlapping weight distributions. Repeat injections across individuals revealed modest FLNe variability given the range of FLNe values (standard deviation <1 log unit, range 5 log units). The connectivity profile for each area conformed to a lognormal distribution, where a majority of projections are moderate or weak in strength. In the G29 × 29 interareal subgraph, two-thirds of the connections that can exist do exist. Analysis of the smallest set of areas that collects links from all 91 nodes of the G29 × 91 subgraph (dominating set analysis) confirms the dense (66%) structure of the cortical matrix. The G29 × 29 subgraph suggests an unexpectedly high incidence of unidirectional links. The directed and weighted G29 × 91 connectivity matrix for the macaque will be valuable for comparison with connectivity analyses in other species, including humans. It will also inform future modeling studies that explore the regularities of cortical networks. PMID:23010748

  12. The localization of occluded matrix proteins in calcareous spicules of sea urchin larvae.

    PubMed

    Seto, Jong; Zhang, Yang; Hamilton, Patricia; Wilt, Fred

    2004-10-01

    The sea urchin embryo forms calcareous endoskeletal spicules composed of calcite and an occluded protein matrix. Though the latter is approximately 0.1% of of the mass, the composite has substantially altered material properties, e.g., conchoidal fracture planes and increased hardness. Experiments were conducted to examine the localization of matrix proteins occluded in the mineral by use of immunocytochemistry coupled with scanning electron microscopy (SEM). The isolated, unfixed spicules were etched under relatively gentle conditions and exposed to affinity purified antibodies made against two different matrix proteins, as well as an antibody to the entire constellation of matrix proteins. Immunogold tagged secondary antibody was used to observe antibody localization in the back scatter mode of SEM. All proteins examined were very widely distributed throughout the calcite, supporting a model of the structure in which a multiprotein assemblage is woven with fine texture around microcrystalline domains of calcite. Gentle etching revealed a laminar arrangement of calcite solubility, consistent with a stepwise deposition of matrix and mineral to increase girth of the spicule.

  13. Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa.

    PubMed

    Sakuragi, Yumiko; Kolter, Roberto

    2007-07-01

    Quorum sensing (QS) has been previously shown to play an important role in the development of Pseudomonas aeruginosa biofilms (D. G. Davies et al., Science 280:295-298, 1998). Although QS regulation of swarming and DNA release has been shown to play important roles in biofilm development, regulation of genes directly involved in biosynthesis of biofilm matrix has not been described. Here, transcription of the pel operon, essential for the production of a glucose-rich matrix exopolysaccharide, is shown to be greatly reduced in lasI and rhlI mutants. Chemical complementation of the lasI mutant with 3-oxo-dodecanoyl homoserine lactone restores pel transcription to the wild-type level and biofilm formation ability. These findings thus connect QS signaling and transcription of genes responsible for biofilm matrix biosynthesis.

  14. Hypergravity Stimulates the Extracellular Matrix/Integrin-Signaling Axis and Proliferation in Primary Osteoblasts

    NASA Technical Reports Server (NTRS)

    Parra, M.; Vercoutere, W.; Roden, C.; Banerjee, I.; Krauser, W.; Holton, E.; Searby, N.; Globus, R.; Almeida, E.

    2003-01-01

    We set out to determine the molecular mechanisms involved in the proliferative response of primary rat osteoblasts to mechanical stimulation using cell culture centrifugation as a model for hypergravity. We hypothesized that this proliferative response is mediated by specific integrin/Extracellular Matrix (ECM) interactions. To investigate this question we developed a cell culture centrifuge and an automated system that performs cell fixation during hypergravity loading. We generated expression vectors for various focal adhesion and cytoskeletal proteins fused to GFP or dsRed and visualized these structures in transfected (or infected) osteoblasts. The actin cytoskeleton was also visualized using rhodamine-phalloidin staining and Focal Adhesion Kinase (FAK) levels were assessed biochemically. We observed that a 24 hour exposure to 50-g stimulated proliferation compared to the 1-g control when cells were plated on fibronectin, collagen Type I , and collagen Type IV, but not on uncoated tissue culture plastic surfaces. This proliferative response was greatest for osteoblasts grown on fibronectin (2-fold increase over 1-g control) and collagen Type I (1.4 fold increase over 1-g control), suggesting that specific matrices and integrins are involved in the signaling pathways required for proliferation. Exposing osteoblasts grown on different matrices to 10-g or 25-g showed that effects on proliferation depended on both matrix type and loading level. We found that osteoblasts exposed to a short pulse of hypergravity during adhesion spread further and had more GFP-FAK containing focal adhesions compared to their 1-g controls. While overall levels of FAK did not change, more FAK was in the active (phosphorylated) form under hypergravity than in the 1-g controls. Cytoskeletal F-actin organization into filaments was also more prominent after brief exposures to hypergravity during the first five minutes of adhesion. These results suggest that specific integrins sense

  15. Magnetic properties of Ni nanoparticles embedded in silica matrix (KIT-6) synthesized via novel chemical route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalavi, Shankar B.; Panda, Rabi N., E-mail: rnp@goa.bits-pilani.ac.in; Raja, M. Manivel

    2015-06-24

    Thermally stable Ni nanoparticles have been embedded in mesoporous silica matrix (KIT-6) via novel chemical reduction method by using superhydride as reducing agent. X-ray diffraction (XRD) study confirms that pure and embedded Ni nanoparticles crystallize in face centered cubic (fcc) structure. Crystallite sizes of pure Ni, 4 wt% and 8 wt% Ni in silica were estimated to be 6.0 nm, 10.4 nm and 10.5 nm, respectively. Morphology and dispersion of Ni in silica matrix were studied by scanning electron microscopy (SEM). Magnetic study shows enhancement of magnetic moments of Ni nanoparticles embedded in silica matrix compared with that of pure Ni. The resultmore » has been interpreted on the basis of size reduction and magnetic exchange effects. Saturation magnetization values for pure Ni, 4 wt% and 8 wt% Ni in silica were found to be 15.77 emu/g, 5.08 emu/g and 2.00 emu/g whereas coercivity values were 33.72 Oe, 92.47 Oe and 64.70 Oe, respectively. We anticipate that the observed magnetic properties may find application as soft magnetic materials.« less

  16. Automatic switching matrix

    DOEpatents

    Schlecht, Martin F.; Kassakian, John G.; Caloggero, Anthony J.; Rhodes, Bruce; Otten, David; Rasmussen, Neil

    1982-01-01

    An automatic switching matrix that includes an apertured matrix board containing a matrix of wires that can be interconnected at each aperture. Each aperture has associated therewith a conductive pin which, when fully inserted into the associated aperture, effects electrical connection between the wires within that particular aperture. Means is provided for automatically inserting the pins in a determined pattern and for removing all the pins to permit other interconnecting patterns.

  17. Mid-infrared matrix assisted laser desorption ionization with a water/glycerol matrix

    NASA Astrophysics Data System (ADS)

    Caldwell, Kathleen L.; Murray, Kermit K.

    1998-05-01

    Matrix-assisted laser desorption ionization (MALDI) mass spectra were obtained using a water and glycerol matrix with a tunable mid-infrared optical parametric oscillator. The matrix consists of a 1:1 mixture of water and glycerol deposited on a thin layer of nitrocellulose and cooled to -30°C. When exposed to vacuum, most of the water evaporates, leaving a matrix of glycerol with residual water. The peptide bradykinin and the protein bovine insulin were used to test this new matrix. Mass spectra were obtained for bradykinin between 2.76 and 3.1 μm with the maximum analyte signal at 2.8 μm. Mass resolution in excess of 2000 for bradykinin and 500 for insulin was obtained with delayed ion extraction and a linear time of flight mass spectrometer. The addition of nitrocellulose to the matrix resulted in exceptionally durable samples: more than 10,000 laser shots which produced analyte signal could be obtained from a single sample spot.

  18. Engineering a collagen matrix that replicates the biological properties of native extracellular matrix.

    PubMed

    Nam, Kwangwoo; Sakai, Yuuki; Funamoto, Seiichi; Kimura, Tsuyoshi; Kishida, Akio

    2011-01-01

    In this study, we aimed to replicate the function of native tissues that can be used in tissue engineering and regenerative medicine. The key to such replication is the preparation of an artificial collagen matrix that possesses a structure resembling that of the extracellular matrix. We, therefore, prepared a collagen matrix by fibrillogenesis in a NaCl/Na(2)HPO(4) aqueous solution using a dialysis cassette and investigated its biological behavior in vitro and in vivo. The in vitro cell adhesion and proliferation did not show any significant differences. The degradation rate in the living body could be controlled according to the preparation condition, where the collagen matrix with high water content (F-collagen matrix, >98%) showed fast degradation and collagen matrix with lower water content (T-collagen matrix, >80%) showed no degradation for 8 weeks. The degradation did not affect the inflammatory response at all and relatively faster wound healing response was observed. Comparing this result with that of collagen gel and decellularized cornea, it can be concluded that the structural factor is very important and no cell abnormal behavior would be observed for quaternary structured collagen matrix.

  19. Carbonate fuel cell matrix

    DOEpatents

    Farooque, Mohammad; Yuh, Chao-Yi

    1996-01-01

    A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.

  20. Method of forming a ceramic matrix composite and a ceramic matrix component

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Diego, Peter; Zhang, James

    A method of forming a ceramic matrix composite component includes providing a formed ceramic member having a cavity, filling at least a portion of the cavity with a ceramic foam. The ceramic foam is deposited on a barrier layer covering at least one internal passage of the cavity. The method includes processing the formed ceramic member and ceramic foam to obtain a ceramic matrix composite component. Also provided is a method of forming a ceramic matrix composite blade and a ceramic matrix composite component.

  1. Observability Analysis of a MEMS INS/GPS Integration System with Gyroscope G-Sensitivity Errors

    PubMed Central

    Fan, Chen; Hu, Xiaoping; He, Xiaofeng; Tang, Kanghua; Luo, Bing

    2014-01-01

    Gyroscopes based on micro-electromechanical system (MEMS) technology suffer in high-dynamic applications due to obvious g-sensitivity errors. These errors can induce large biases in the gyroscope, which can directly affect the accuracy of attitude estimation in the integration of the inertial navigation system (INS) and the Global Positioning System (GPS). The observability determines the existence of solutions for compensating them. In this paper, we investigate the observability of the INS/GPS system with consideration of the g-sensitivity errors. In terms of two types of g-sensitivity coefficients matrix, we add them as estimated states to the Kalman filter and analyze the observability of three or nine elements of the coefficient matrix respectively. A global observable condition of the system is presented and validated. Experimental results indicate that all the estimated states, which include position, velocity, attitude, gyro and accelerometer bias, and g-sensitivity coefficients, could be made observable by maneuvering based on the conditions. Compared with the integration system without compensation for the g-sensitivity errors, the attitude accuracy is raised obviously. PMID:25171122

  2. Observability analysis of a MEMS INS/GPS integration system with gyroscope G-sensitivity errors.

    PubMed

    Fan, Chen; Hu, Xiaoping; He, Xiaofeng; Tang, Kanghua; Luo, Bing

    2014-08-28

    Gyroscopes based on micro-electromechanical system (MEMS) technology suffer in high-dynamic applications due to obvious g-sensitivity errors. These errors can induce large biases in the gyroscope, which can directly affect the accuracy of attitude estimation in the integration of the inertial navigation system (INS) and the Global Positioning System (GPS). The observability determines the existence of solutions for compensating them. In this paper, we investigate the observability of the INS/GPS system with consideration of the g-sensitivity errors. In terms of two types of g-sensitivity coefficients matrix, we add them as estimated states to the Kalman filter and analyze the observability of three or nine elements of the coefficient matrix respectively. A global observable condition of the system is presented and validated. Experimental results indicate that all the estimated states, which include position, velocity, attitude, gyro and accelerometer bias, and g-sensitivity coefficients, could be made observable by maneuvering based on the conditions. Compared with the integration system without compensation for the g-sensitivity errors, the attitude accuracy is raised obviously.

  3. Carbonate fuel cell matrix

    DOEpatents

    Farooque, M.; Yuh, C.Y.

    1996-12-03

    A carbonate fuel cell matrix is described comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles. 8 figs.

  4. Two modulator generalized ellipsometer for complete mueller matrix measurement

    DOEpatents

    Jellison, Jr., Gerald E.; Modine, Frank A.

    1999-01-01

    A two-modulator generalized ellipsometer (2-MGE) comprising two polarizer-photoelastic modulator (PEM) pairs, an optical light source, an optical detection system, and associated data processing and control electronics, where the PEMs are free-running. The input light passes through the first polarizer-PEM pair, reflects off the sample surface or passes through the sample, passes through the second PEM-polarizer pair, and is detected. Each PEM is free running and operates at a different resonant frequency, e.g., 50 and 60 kHz. The resulting time-dependent waveform of the light intensity is a complicated function of time, and depends upon the exact operating frequency and phase of each PEM, the sample, and the azimuthal angles of the polarizer-PEM pairs, but can be resolved into a dc component and eight periodic components. In one embodiment, the waveform is analyzed using a new spectral analysis technique that is similar to Fourier analysis to determine eight sample Mueller matrix elements (normalized to the m.sub.00 Mueller matrix element). The other seven normalized elements of the general 4.times.4 Mueller matrix can be determined by changing the azimuthal angles of the PEM-polarizer pairs with respect to the plane of incidence. Since this instrument can measure all elements of the sample Mueller matrix, it is much more powerful than standard ellipsometers.

  5. D-MATRIX: A web tool for constructing weight matrix of conserved DNA motifs

    PubMed Central

    Sen, Naresh; Mishra, Manoj; Khan, Feroz; Meena, Abha; Sharma, Ashok

    2009-01-01

    Despite considerable efforts to date, DNA motif prediction in whole genome remains a challenge for researchers. Currently the genome wide motif prediction tools required either direct pattern sequence (for single motif) or weight matrix (for multiple motifs). Although there are known motif pattern databases and tools for genome level prediction but no tool for weight matrix construction. Considering this, we developed a D-MATRIX tool which predicts the different types of weight matrix based on user defined aligned motif sequence set and motif width. For retrieval of known motif sequences user can access the commonly used databases such as TFD, RegulonDB, DBTBS, Transfac. D­MATRIX program uses a simple statistical approach for weight matrix construction, which can be converted into different file formats according to user requirement. It provides the possibility to identify the conserved motifs in the co­regulated genes or whole genome. As example, we successfully constructed the weight matrix of LexA transcription factor binding site with the help of known sos­box cis­regulatory elements in Deinococcus radiodurans genome. The algorithm is implemented in C-Sharp and wrapped in ASP.Net to maintain a user friendly web interface. D­MATRIX tool is accessible through the CIMAP domain network. Availability http://203.190.147.116/dmatrix/ PMID:19759861

  6. D-MATRIX: a web tool for constructing weight matrix of conserved DNA motifs.

    PubMed

    Sen, Naresh; Mishra, Manoj; Khan, Feroz; Meena, Abha; Sharma, Ashok

    2009-07-27

    Despite considerable efforts to date, DNA motif prediction in whole genome remains a challenge for researchers. Currently the genome wide motif prediction tools required either direct pattern sequence (for single motif) or weight matrix (for multiple motifs). Although there are known motif pattern databases and tools for genome level prediction but no tool for weight matrix construction. Considering this, we developed a D-MATRIX tool which predicts the different types of weight matrix based on user defined aligned motif sequence set and motif width. For retrieval of known motif sequences user can access the commonly used databases such as TFD, RegulonDB, DBTBS, Transfac. D-MATRIX program uses a simple statistical approach for weight matrix construction, which can be converted into different file formats according to user requirement. It provides the possibility to identify the conserved motifs in the co-regulated genes or whole genome. As example, we successfully constructed the weight matrix of LexA transcription factor binding site with the help of known sos-box cis-regulatory elements in Deinococcus radiodurans genome. The algorithm is implemented in C-Sharp and wrapped in ASP.Net to maintain a user friendly web interface. D-MATRIX tool is accessible through the CIMAP domain network. http://203.190.147.116/dmatrix/

  7. Effect of matrix material on the fracture behavior and toughness of high temperature polymer composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chenock, T.A.Jr.; Heshmet, A.

    1990-07-01

    The effect of matrix material on the strength, toughness, and fracture behavior of two high temperature polyimide/carbon fiber composites has been studied and compared. The polyimide matrix resins under investigation are PMR-II-20, PMR-15. Each system was reinforced with epoxy sized Celion G30-500 carbon fabric (8HSW, 3K tow). Un-notched and notched specimens were tested under 4-point bend loading in both translaminar and crosslaminar directions.

  8. Association of the plasminogen activator inhibitor-1 (PAI-1) Gene -675 4G/5G and -844 A/G promoter polymorphism with risk of keloid in a Chinese Han population.

    PubMed

    Wang, Yongjie; Long, Jianhong; Wang, Xiaoyan; Sun, Yang

    2014-10-28

    A keloid is pathological scar caused by aberrant response to skin injuries, characterized by excessive accumulation of histological extracellular matrix, and occurs in genetically susceptible individuals. Plasminogen activator inhibitor-1 (PAI-1) has been implicated in the pathogenesis of keloid. We investigated the association between PAI-1 polymorphisms and plasma PAI-1 level with keloid risk. A total of 242 Chinese keloid patients and 207 controls were enrolled in this study. Polymerase chain reaction-restriction technique was used to determine PAI-1 promoter polymorphism (-675 4G/5G and -844 A/G) distribution. Plasma PAI-1 levels were detected using enzyme-linked immunosorbent assay (ELISA). There was a statistically significant difference in the distribution of PAI-1 -675 4G/5G polymorphism between keloid patients and healthy controls. 4G/4G carriers were more likely to develop keloid. In contrast, the -844 A/G polymorphism distribution did not vary significantly between keloid patients and controls. The keloid patients group had a significantly higher plasma PAI-1 level than the control group. In the -675 4G/4G carrier population, the plasma PAI-1 levels were significant higher in keloid patients compared with controls. Our study provides evidence that PAI-1 promoter polymorphism -675 4G/5G and plasma PAI-1 level are associated with keloid risk. PAI-1 -675 4G/5G polymorphism may be an important hereditary factor responsible for keloid development in the Chinese Han population.

  9. G-DYN Multibody Dynamics Engine

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet; Blackmore, James C.; Broderick, Daniel

    2011-01-01

    G-DYN is a multi-body dynamic simulation software engine that automatically assembles and integrates equations of motion for arbitrarily connected multibody dynamic systems. The algorithm behind G-DYN is based on a primal-dual formulation of the dynamics that captures the position and velocity vectors (primal variables) of each body and the interaction forces (dual variables) between bodies, which are particularly useful for control and estimation analysis and synthesis. It also takes full advantage of the spare matrix structure resulting from the system dynamics to numerically integrate the equations of motion efficiently. Furthermore, the dynamic model for each body can easily be replaced without re-deriving the overall equations of motion, and the assembly of the equations of motion is done automatically. G-DYN proved an essential software tool in the simulation of spacecraft systems used for small celestial body surface sampling, specifically in simulating touch-and-go (TAG) maneuvers of a robotic sampling system from a comet and asteroid. It is used extensively in validating mission concepts for small body sample return, such as Comet Odyssey and Galahad New Frontiers proposals.

  10. The Exopolysaccharide Matrix

    PubMed Central

    Koo, H.; Falsetta, M.L.; Klein, M.I.

    2013-01-01

    Many infectious diseases in humans are caused or exacerbated by biofilms. Dental caries is a prime example of a biofilm-dependent disease, resulting from interactions of microorganisms, host factors, and diet (sugars), which modulate the dynamic formation of biofilms on tooth surfaces. All biofilms have a microbial-derived extracellular matrix as an essential constituent. The exopolysaccharides formed through interactions between sucrose- (and starch-) and Streptococcus mutans-derived exoenzymes present in the pellicle and on microbial surfaces (including non-mutans) provide binding sites for cariogenic and other organisms. The polymers formed in situ enmesh the microorganisms while forming a matrix facilitating the assembly of three-dimensional (3D) multicellular structures that encompass a series of microenvironments and are firmly attached to teeth. The metabolic activity of microbes embedded in this exopolysaccharide-rich and diffusion-limiting matrix leads to acidification of the milieu and, eventually, acid-dissolution of enamel. Here, we discuss recent advances concerning spatio-temporal development of the exopolysaccharide matrix and its essential role in the pathogenesis of dental caries. We focus on how the matrix serves as a 3D scaffold for biofilm assembly while creating spatial heterogeneities and low-pH microenvironments/niches. Further understanding on how the matrix modulates microbial activity and virulence expression could lead to new approaches to control cariogenic biofilms. PMID:24045647

  11. Evolution of the additive genetic variance–covariance matrix under continuous directional selection on a complex behavioural phenotype

    PubMed Central

    Careau, Vincent; Wolak, Matthew E.; Carter, Patrick A.; Garland, Theodore

    2015-01-01

    Given the pace at which human-induced environmental changes occur, a pressing challenge is to determine the speed with which selection can drive evolutionary change. A key determinant of adaptive response to multivariate phenotypic selection is the additive genetic variance–covariance matrix (G). Yet knowledge of G in a population experiencing new or altered selection is not sufficient to predict selection response because G itself evolves in ways that are poorly understood. We experimentally evaluated changes in G when closely related behavioural traits experience continuous directional selection. We applied the genetic covariance tensor approach to a large dataset (n = 17 328 individuals) from a replicated, 31-generation artificial selection experiment that bred mice for voluntary wheel running on days 5 and 6 of a 6-day test. Selection on this subset of G induced proportional changes across the matrix for all 6 days of running behaviour within the first four generations. The changes in G induced by selection resulted in a fourfold slower-than-predicted rate of response to selection. Thus, selection exacerbated constraints within G and limited future adaptive response, a phenomenon that could have profound consequences for populations facing rapid environmental change. PMID:26582016

  12. Evolution of the additive genetic variance-covariance matrix under continuous directional selection on a complex behavioural phenotype.

    PubMed

    Careau, Vincent; Wolak, Matthew E; Carter, Patrick A; Garland, Theodore

    2015-11-22

    Given the pace at which human-induced environmental changes occur, a pressing challenge is to determine the speed with which selection can drive evolutionary change. A key determinant of adaptive response to multivariate phenotypic selection is the additive genetic variance-covariance matrix ( G: ). Yet knowledge of G: in a population experiencing new or altered selection is not sufficient to predict selection response because G: itself evolves in ways that are poorly understood. We experimentally evaluated changes in G: when closely related behavioural traits experience continuous directional selection. We applied the genetic covariance tensor approach to a large dataset (n = 17 328 individuals) from a replicated, 31-generation artificial selection experiment that bred mice for voluntary wheel running on days 5 and 6 of a 6-day test. Selection on this subset of G: induced proportional changes across the matrix for all 6 days of running behaviour within the first four generations. The changes in G: induced by selection resulted in a fourfold slower-than-predicted rate of response to selection. Thus, selection exacerbated constraints within G: and limited future adaptive response, a phenomenon that could have profound consequences for populations facing rapid environmental change. © 2015 The Author(s).

  13. Auger analysis of a fiber/matrix interface in a ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Honecy, Frank S.; Pepper, Stephen V.

    1988-01-01

    Auger electron spectroscopy (AES) depth profiling was used to characterize the fiber/matrix interface of an SiC fiber, reaction bonded Si3N4 matrix composite. Depth profiles of the as received double coated fiber revealed concentration oscillations which disappeared after annealing the fiber in the environment used to fabricate the composite. After the composite was fractured, the Auger depth profiles showed that failure occurred in neither the Beta-SiC fiber body nor in the Si3N4 matrix but, concurrently, at the fiber coating/matrix interface and within the fiber coating itself.

  14. How bacteria hack the matrix and dodge the bullets of immunity.

    PubMed

    Paulsson, Magnus; Riesbeck, Kristian

    2018-06-30

    Haemophilus influenzae , Moraxella catarrhalis and Pseudomonas aeruginosa are common Gram-negative pathogens associated with an array of pulmonary diseases. All three species have multiple adhesins in their outer membrane, i.e. surface structures that confer the ability to bind to surrounding cells, proteins or tissues. This mini-review focuses on proteins with high affinity for the components of the extracellular matrix such as collagen, laminin, fibronectin and vitronectin. Adhesins are not structurally related and may be lipoproteins, transmembrane porins or large protruding trimeric auto-transporters. They enable bacteria to avoid being cleared together with mucus by attaching to patches of exposed extracellular matrix, or indirectly adhering to epithelial cells using matrix proteins as bridging molecules. As more adhesins are being unravelled, it is apparent that bacterial adhesion is a highly conserved mechanism, and that most adhesins target the same regions on the proteins of the extracellular matrix. The surface exposed adhesins are prime targets for new vaccines and the interactions between proteins are often possible to inhibit with interfering molecules, e.g heparin. In conclusion, this highly interesting research field of microbiology has unravelled host-pathogen interactions with high therapeutic potential. Copyright ©ERS 2018.

  15. General Matrix Inversion Technique for the Calibration of Electric Field Sensor Arrays on Aircraft Platforms

    NASA Technical Reports Server (NTRS)

    Mach, D. M.; Koshak, W. J.

    2007-01-01

    A matrix calibration procedure has been developed that uniquely relates the electric fields measured at the aircraft with the external vector electric field and net aircraft charge. The calibration method can be generalized to any reasonable combination of electric field measurements and aircraft. A calibration matrix is determined for each aircraft that represents the individual instrument responses to the external electric field. The aircraft geometry and configuration of field mills (FMs) uniquely define the matrix. The matrix can then be inverted to determine the external electric field and net aircraft charge from the FM outputs. A distinct advantage of the method is that if one or more FMs need to be eliminated or deemphasized [e.g., due to a malfunction), it is a simple matter to reinvert the matrix without the malfunctioning FMs. To demonstrate the calibration technique, data are presented from several aircraft programs (ER-2, DC-8, Altus, and Citation).

  16. A colinear backscattering Mueller matrix microscope for reflection Muller matrix imaging

    NASA Astrophysics Data System (ADS)

    Chen, Zhenhua; Yao, Yue; Zhu, Yuanhuan; Ma, Hui

    2018-02-01

    In a recent attempt, we developed a colinear backscattering Mueller matrix microscope by adding polarization state generator (PSG) and polarization state analyzer (PSA) into the illumination and detection optical paths of a commercial metallurgical microscope. It is found that specific efforts have to be made to reduce the artifacts due to the intrinsic residual polarizations of the optical system, particularly the dichroism due to the 45 degrees beam splitter. In this paper, we present a new calibration method based on numerical reconstruction of the instrument matrix to remove the artifacts introduced by beam splitter. Preliminary tests using a mirror as a standard sample show that the maximum Muller matrix element error of the colinear backscattering Muller matrix microscope can be reduced to a few percent.

  17. Coloring, bleaching, and perming: influence on EtG content in hair.

    PubMed

    Kerekes, Isabelle; Yegles, Michel

    2013-08-01

    Hair analysis of ethyl glucuronide (EtG) has become, beside fatty acid ethyl ester, a valuable marker for the detection of moderate and chronic excessive alcohol consumption. So far, only few studies exist about the influence of cosmetic treatment on EtG content in hair. The aim of this study was to evaluate the effect of coloring, bleaching, and perming on the concentration of this alcohol marker in hair. Studies were also performed to evaluate the chemical stability of EtG in the presence of hydrogen peroxide and ammonium thioglycolate. Six air samples were treated in vitro by the different commercial cosmetics following the suppliers' instructions. After washing, pulverization, incubation in ultrasonic bath, and solid phase extraction, EtG was determined by GC/MS-NICI after solid phase extraction and heptafluorobutyric anhydride derivatization. The results showed that samples (n = 10) treated with the coloring product did not show any important change in the EtG results. In the bleaching study (n = 23), a mean decrease of 73.5% was observed. After incubation of a solution of EtG with hydrogen peroxide (15%), a decrease of 45% was shown supporting the hypothesis of a chemical degradation of EtG and a leaching out effect from the hair matrix. In the perm treatment study (n = 23), a mean decrease of 95.7% of EtG was found. Incubation of a solution of EtG with ammonium thioglycolate (5%) showed a total decrease of EtG supporting the hypothesis of a chemical degradation. Coloring treatment did not importantly influence EtG content in hair. However, an important decrease of EtG in hair could be found after bleaching and permanent wave treatment. This decrease seems to be because of a chemical degradation of EtG, after bleaching, and a leaching out effect from the matrix. After perming, it seems to be more of a chemical degradation of EtG. These data have to be considered for the correct interpretation of EtG amounts in hair.

  18. Kostant polynomials and the cohomology ring for G/B

    PubMed Central

    Billey, Sara C.

    1997-01-01

    The Schubert calculus for G/B can be completely determined by a certain matrix related to the Kostant polynomials introduced in section 5 of Bernstein, Gelfand, and Gelfand [Bernstein, I., Gelfand, I. & Gelfand, S. (1973) Russ. Math. Surv. 28, 1–26]. The polynomials are defined by vanishing properties on the orbit of a regular point under the action of the Weyl group. For each element w in the Weyl group the polynomials also have nonzero values on the orbit points corresponding to elements which are larger in the Bruhat order than w. The main theorem given here is an explicit formula for these values. The matrix of orbit values can be used to determine the cup product for the cohomology ring for G/B, using only linear algebra or as described by Lascoux and Schützenberger [Lascoux, A. & Schützenberger, M.-P. (1982) C. R. Seances Acad. Sci. Ser. A 294, 447–450]. Complete proofs of all the theorems will appear in a forthcoming paper. PMID:11038536

  19. Multi-threaded Sparse Matrix Sparse Matrix Multiplication for Many-Core and GPU Architectures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deveci, Mehmet; Trott, Christian Robert; Rajamanickam, Sivasankaran

    Sparse Matrix-Matrix multiplication is a key kernel that has applications in several domains such as scientific computing and graph analysis. Several algorithms have been studied in the past for this foundational kernel. In this paper, we develop parallel algorithms for sparse matrix- matrix multiplication with a focus on performance portability across different high performance computing architectures. The performance of these algorithms depend on the data structures used in them. We compare different types of accumulators in these algorithms and demonstrate the performance difference between these data structures. Furthermore, we develop a meta-algorithm, kkSpGEMM, to choose the right algorithm and datamore » structure based on the characteristics of the problem. We show performance comparisons on three architectures and demonstrate the need for the community to develop two phase sparse matrix-matrix multiplication implementations for efficient reuse of the data structures involved.« less

  20. Proteomic analysis of knock-down HLA-G in invasion of human trophoblast cell line JEG-3

    PubMed Central

    Liu, Haiyan; Liu, Xueyuan; Jin, Hong; Yang, Fengying; Gu, Weirong; Li, Xiaotian

    2013-01-01

    Previous studies showed that aberrant HLA-G expression in trophoblast cells plays important roles in trophoblast invasion; however, the mechanisms remain to be explored. In this study, we found that suppressed HLA-G expression could dramatically decrease the mRNA and protein expression levels of matrix metalloproteinase 2 and matrix metalloproteinase 9, and in the proteome assay, there were 3 identified proteins namely, prefoldin 1, eukaryotic translation elongation factor 2 and malate dehydrogenase 2, which were verified by Western blot and known to be associated with invasion, cell cycle and cell metabolism, respectively. Collectively, our study indicated a potential involvement of HLA-G in autocrine networks that may regulate prefoldin, MMPs and trophoblast invasion at the maternal-fetal interface in human pregnancy. PMID:24228107

  1. Humic acids as both matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and adsorbent for magnetic solid phase extraction.

    PubMed

    Zhao, Qin; Xu, Jing; Yin, Jia; Feng, Yu-Qi

    2015-08-19

    In the present study, humic acids (HAs) were applied as both a matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and an adsorbent of magnetic solid phase extraction (MSPE) for the first time. As natural macromolecule compounds, HAs are inherently highly functionalized and contain laser energy absorbing-transferring aromatic structures. This special molecular structure made HAs a good candidate for use as a MALDI matrix in small molecule analysis. At the same time, due to its good adsorption ability, HAs was prepared as MSPE adsorbent via a simple co-mixing method, in which the commercially available HAs were directly mixed with Fe3O4 magnetic nanoparticles (MNPs) in a mortar and grinded evenly and completely. In this process, MNPs were physically wrapped and adhered to tiny HAs leading to the formation of magnetic HAs (MHAs). To verify the bi-function of the MHAs, Rhodamine B (RdB) was chosen as model compound. Our results show that the combination of MHAs-based MSPE and MALDI-TOF-MS can provide a rapid and sensitive method for the determination of RdB in chili oil. The whole analytical procedure could be completed within 30 min for simultaneous determination of more than 20 samples, and the limit of quantitation for RdB was found to be 0.02 μg/g. The recoveries in chili oil were in the range 73.8-81.5% with the RSDs less than 21.3% (intraday) and 20.3% (interday). The proposed strategy has potential applications for high-throughput analysis of small molecules in complex samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Matrix with Prescribed Eigenvectors

    ERIC Educational Resources Information Center

    Ahmad, Faiz

    2011-01-01

    It is a routine matter for undergraduates to find eigenvalues and eigenvectors of a given matrix. But the converse problem of finding a matrix with prescribed eigenvalues and eigenvectors is rarely discussed in elementary texts on linear algebra. This problem is related to the "spectral" decomposition of a matrix and has important technical…

  3. 3-Aminoquinoline/p-coumaric acid as a MALDI matrix for glycopeptides, carbohydrates, and phosphopeptides.

    PubMed

    Fukuyama, Yuko; Funakoshi, Natsumi; Takeyama, Kohei; Hioki, Yusaku; Nishikaze, Takashi; Kaneshiro, Kaoru; Kawabata, Shin-Ichirou; Iwamoto, Shinichi; Tanaka, Koichi

    2014-02-18

    Glycosylation and phosphorylation are important post-translational modifications in biological processes and biomarker research. The difficulty in analyzing these modifications is mainly their low abundance and dissociation of labile regions such as sialic acids or phosphate groups. One solution in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is to improve matrices for glycopeptides, carbohydrates, and phosphopeptides by increasing the sensitivity and suppressing dissociation of the labile regions. Recently, a liquid matrix 3-aminoquinoline (3-AQ)/α-cyano-4-hydroxycinnamic acid (CHCA) (3-AQ/CHCA), introduced by Kolli et al. in 1996, has been reported to increase sensitivity for carbohydrates or phosphopeptides, but it has not been systematically evaluated for glycopeptides. In addition, 3-AQ/CHCA enhances the dissociation of labile regions. In contrast, a liquid matrix 1,1,3,3-tetramethylguanidium (TMG, G) salt of p-coumaric acid (CA) (G3CA) was reported to suppress dissociation of sulfate groups or sialic acids of carbohydrates. Here we introduce a liquid matrix 3-AQ/CA for glycopeptides, carbohydrates, and phosphopeptides. All of the analytes were detected as [M + H](+) or [M - H](-) with higher or comparable sensitivity using 3-AQ/CA compared with 3-AQ/CHCA or 2,5-dihydroxybenzoic acid (2,5-DHB). The sensitivity was increased 1- to 1000-fold using 3-AQ/CA. The dissociation of labile regions such as sialic acids or phosphate groups and the fragmentation of neutral carbohydrates were suppressed more using 3-AQ/CA than using 3-AQ/CHCA or 2,5-DHB. 3-AQ/CA was thus determined to be an effective MALDI matrix for high sensitivity and the suppression of dissociation of labile regions in glycosylation and phosphorylation analyses.

  4. Autoantibody against matrix metalloproteinase-3 in patients with systemic sclerosis.

    PubMed

    Nishijima, C; Hayakawa, I; Matsushita, T; Komura, K; Hasegawa, M; Takehara, K; Sato, S

    2004-11-01

    Systemic sclerosis (SSc) is characterized by multi-organ fibrosis with an autoimmune background. Although autoantibodies are detected frequently in SSc patients, the role of autoantibody in the development of fibrosis remains unknown. Connective tissue homeostasis is a balance between the synthesis and degradation of the extracellular matrix (ECM); ECM degradation is regulated mainly by matrix metalloproteinases (MMPs). Anti-MMP-1 antibody is suggested to inhibit MMP-1 and be involved in the development of the fibrosis in SSc. However, the accumulation of various ECM components in the tissue of SSc cannot be explained by the anti-MMP-1 antibody alone. In this study, we examined the presence or levels of antibody to MMP-3, a protein which degrades various ECM components relevant to SSc fibrosis. Enzyme-linked immunosorbent assay (ELISA) using human recombinant MMP-3 revealed that IgG anti-MMP-3 autoantibody levels were elevated significantly in the sera from SSc patients, but not in patients with active systemic lupus erythematosus or dermatomyositis. IgG and IgM anti-MMP-3 antibody levels were significantly higher in diffuse cutaneous SSc, a severe form, than those in limited cutaneous SSc. Consistently, IgG anti-MMP-3 antibody levels correlated significantly with fibrosis of the skin, lung and renal blood vessels. The presence of IgG anti-MMP-3 autoantibody in sera from SSc patients was confirmed by immunoblotting analysis. Remarkably, MMP-3 activity was inhibited by IgG anti-MMP-3 antibody. These results suggest that anti-MMP-3 antibody is a serological marker that reflects the severity of SSc and also suggest that it may contribute to the development of fibrosis by inhibiting MMP-3 activity and reducing the ECM turnover.

  5. High Thermal Conductivity of Copper Matrix Composite Coatings with Highly-Aligned Graphite Nanoplatelets

    PubMed Central

    Tagliaferri, Vincenzo; Ucciardello, Nadia

    2017-01-01

    Nanocomposite coatings with highly-aligned graphite nanoplatelets in a copper matrix were successfully fabricated by electrodeposition. For the first time, the disposition and thermal conductivity of the nanofiller has been evaluated. The degree of alignment and inclination of the filling materials has been quantitatively evaluated by polarized micro-Raman spectroscopy. The room temperature values of the thermal conductivity were extracted for the graphite nanoplatelets by the dependence of the Raman G-peak frequency on the laser power excitation. Temperature dependency of the G-peak shift has been also measured. Most remarkable is the global thermal conductivity of 640 ± 20 W·m−1·K−1 (+57% of copper) obtained for the composite coating by the flash method. Our experimental results are accounted for by an effective medium approximation (EMA) model that considers the influence of filler geometry, orientation, and thermal conductivity inside a copper matrix. PMID:29068424

  6. Grassmann matrix quantum mechanics

    DOE PAGES

    Anninos, Dionysios; Denef, Frederik; Monten, Ruben

    2016-04-21

    We explore quantum mechanical theories whose fundamental degrees of freedom are rectangular matrices with Grassmann valued matrix elements. We study particular models where the low energy sector can be described in terms of a bosonic Hermitian matrix quantum mechanics. We describe the classical curved phase space that emerges in the low energy sector. The phase space lives on a compact Kähler manifold parameterized by a complex matrix, of the type discovered some time ago by Berezin. The emergence of a semiclassical bosonic matrix quantum mechanics at low energies requires that the original Grassmann matrices be in the long rectangular limit.more » In conclusion, we discuss possible holographic interpretations of such matrix models which, by construction, are endowed with a finite dimensional Hilbert space.« less

  7. Evaluating wilderness recreational opportunities: application of an impact matrix

    USGS Publications Warehouse

    Stohlgren, Thomas J.; Parsons, David J.

    1992-01-01

    An inventory of the severity and spatial distribution of wilderness campsite impacts in Sequoia and Kings Canyon National Parks identified a total of 273 distinct nodes of campsites or “management areas.” A campsite impact matrix was developed to evaluate management areas based on total impacts (correlated to the total area of campsite development) and the density, or concentration, of impacts relative to each area's potentially campable area. The matrix is used to quantify potential recreational opportunities for wilderness visitors in a spectrum from areas offering low impact-dispersed camping to those areas offering high impact-concentrated camping. Wilderness managers can use this type of information to evaluate use distribution patterns, identify areas to increase or decrease use, and to identify areas needing site-specific regulations (e.g., one-night camping limits) to preserve wilderness resources and guarantee outstanding opportunities for solitude.

  8. A new fracture mechanics model for multiple matrix cracks of SiC fiber reinforced brittle-matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okabe, T.; Takeda, N.; Komotori, J.

    1999-11-26

    A new model is proposed for multiple matrix cracking in order to take into account the role of matrix-rich regions in the cross section in initiating crack growth. The model is used to predict the matrix cracking stress and the total number of matrix cracks. The model converts the matrix-rich regions into equivalent penny shape crack sizes and predicts the matrix cracking stress with a fracture mechanics crack-bridging model. The estimated distribution of matrix cracking stresses is used as statistical input to predict the number of matrix cracks. The results show good agreement with the experimental results by replica observations.more » Therefore, it is found that the matrix cracking behavior mainly depends on the distribution of matrix-rich regions in the composite.« less

  9. Effect of Fiber Poisson Contraction on Matrix Multicracking Evolution of Fiber-Reinforced Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2015-12-01

    An analytical methodology has been developed to investigate the effect of fiber Poisson contraction on matrix multicracking evolution of fiber-reinforced ceramic-matrix composites (CMCs). The modified shear-lag model incorporated with the Coulomb friction law is adopted to solve the stress distribution in the interface slip region and intact region of the damaged composite. The critical matrix strain energy criterion which presupposes the existence of an ultimate or critical strain energy limit beyond which the matrix fails has been adopted to describe matrix multicracking of CMCs. As more energy is placed into the composite, matrix fractures and the interface debonding occurs to dissipate the extra energy. The interface debonded length under the process of matrix multicracking is obtained by treating the interface debonding as a particular crack propagation problem along the fiber/matrix interface. The effects of the interfacial frictional coefficient, fiber Poisson ratio, fiber volume fraction, interface debonded energy and cycle number on the interface debonding and matrix multicracking evolution have been analyzed. The theoretical results are compared with experimental data of unidirectional SiC/CAS, SiC/CAS-II and SiC/Borosilicate composites.

  10. Association of the Plasminogen Activator Inhibitor-1 (PAI-1) Gene -675 4G/5G and -844 A/G Promoter Polymorphism with Risk of Keloid in a Chinese Han Population

    PubMed Central

    Wang, Yongjie; Long, Jianhong; Wang, Xiaoyan; Sun, Yang

    2014-01-01

    Background A keloid is pathological scar caused by aberrant response to skin injuries, characterized by excessive accumulation of histological extracellular matrix, and occurs in genetically susceptible individuals. Plasminogen activator inhibitor-1 (PAI-1) has been implicated in the pathogenesis of keloid. We investigated the association between PAI-1 polymorphisms and plasma PAI-1 level with keloid risk. Material/Methods A total of 242 Chinese keloid patients and 207 controls were enrolled in this study. Polymerase chain reaction-restriction technique was used to determine PAI-1 promoter polymorphism (-675 4G/5G and -844 A/G) distribution. Plasma PAI-1 levels were detected using enzyme-linked immunosorbent assay (ELISA). Results There was a statistically significant difference in the distribution of PAI-1 -675 4G/5G polymorphism between keloid patients and healthy controls. 4G/4G carriers were more likely to develop keloid. In contrast, the -844 A/G polymorphism distribution did not vary significantly between keloid patients and controls. The keloid patients group had a significantly higher plasma PAI-1 level than the control group. In the -675 4G/4G carrier population, the plasma PAI-1 levels were significant higher in keloid patients compared with controls. Conclusions Our study provides evidence that PAI-1 promoter polymorphism -675 4G/5G and plasma PAI-1 level are associated with keloid risk. PAI-1 -675 4G/5G polymorphism may be an important hereditary factor responsible for keloid development in the Chinese Han population. PMID:25350781

  11. T-matrix method in plasmonics: An overview

    NASA Astrophysics Data System (ADS)

    Khlebtsov, Nikolai G.

    2013-07-01

    Optical properties of isolated and coupled plasmonic nanoparticles (NPs) are of great interest for many applications in nanophotonics, nanobiotechnology, and nanomedicine owing to rapid progress in fabrication, characterization, and surface functionalization technologies. To simulate optical responses from plasmonic nanostructures, various electromagnetic analytical and numerical methods have been adapted, tested, and used during the past two decades. Currently, the most popular numerical techniques are those that do not suffer from geometrical and composition limitations, e.g., the discrete dipole approximation (DDA), the boundary (finite) element method (BEM, FEM), the finite difference time domain method (FDTDM), and others. However, the T-matrix method still has its own niche in plasmonic science because of its great numerical efficiency, especially for systems with randomly oriented particles and clusters. In this review, I consider the application of the T-matrix method to various plasmonic problems, including dipolar, multipolar, and anisotropic properties of metal NPs; sensing applications; surface enhanced Raman scattering; optics of 1D-3D nanoparticle assemblies; plasmonic particles and clusters near and on substrates; and manipulation of plasmonic NPs with laser tweezers.

  12. Creation of an acellular vaginal matrix for potential vaginal augmentation and cloacal repair.

    PubMed

    Greco, K V; Jones, L G; Obiri-Yeboa, I; Ansari, T

    2018-05-21

    our aim was to use porcine vagina to create a vaginal matrix and test its cellular biocompatibility. vagina was harvested from pigs and de-cellularised (DC) using a combination of detergents (Triton x-100 and sodium deoxycholate) and enzymes (DNAse/RNAse). the presence of cellular material, collagen structural integrity and basement membrane proteins were assessed histologically. To address cytocompatibility, porcine adipose derived-mesenchymal stem cells (AD-MSC) were harvested from abdominal fat together with vaginal epithelial cells (VEC) and seeded onto the mucosal aspect of the vaginal scaffold. Both cells populations were seeded individually and assessed histologically at days 3 and 10. MAIN OUTCOMES/RESULTS: the combination of enzymes and detergents resulted in a totally acellular matrix with very low DNA amount (control= 97.5ng/μl ± 10.8 vs DC= 40.1 ng/μl ±0.33 p=0.02). The extra cellular matrix (ECM) showed retention of collagen fibres and elastin and a 50% retention in glycosaminoglycan content; (control= 1.18μg/mg ± 0.28 DC = 1.35μg/mg ± 0.1 p=0.03) and an intact basement membrane (positive for both laminin and collagen IV). Seeded scaffolds showed cell attachment with both AD-MSC and VEC at days 3 and 10. it is possible to generate an acellular porcine vaginal matrix capable of supporting cells to reconstruct the vagina for future pre-clinical testing, and holds promise for creating clinically relevant sized tissue for human application. Copyright © 2018. Published by Elsevier Inc.

  13. Transmission Electron Microscopy of the Matrix Minerals in the Tagish Lake Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Mikouchi, T.; Kasama, T.; Zolensky, M. E.; Tachikawa, O.

    2001-01-01

    We studied the Tagish Lake matrix minerals by TEM. The result shows similarities to CIs (and CRs) and differences from CMs, but its heterogeneity (e.g., carbonate abundance, saponite/serpentine ratio) suggests its complex history. Additional information is contained in the original extended abstract.

  14. The analytical transfer matrix method for PT-symmetric complex potential

    NASA Astrophysics Data System (ADS)

    Naceri, Leila; Hammou, Amine B.

    2017-07-01

    We have extended the analytical transfer matrix (ATM) method to solve quantum mechanical bound state problems with complex PT-symmetric potentials. Our work focuses on a class of models studied by Bender and Jones, we calculate the energy eigenvalues, discuss the critical values of g and compare the results with those obtained from other methods such as exact numerical computation and WKB approximation method.

  15. Design, installation, and performance evaluation of a custom dye matrix standard for automated capillary electrophoresis.

    PubMed

    Cloete, Kevin Wesley; Ristow, Peter Gustav; Kasu, Mohaimin; D'Amato, Maria Eugenia

    2017-03-01

    CE equipment detects and deconvolutes mixtures containing up to six fluorescently labeled DNA fragments. This deconvolution is done by the collection software that requires a spectral calibration file. The calibration file is used to adjust for the overlap that occurs between the emission spectra of fluorescence dyes. All commercial genotyping and sequencing kits require the installation of a corresponding matrix standard to generate a calibration file. Due to the differences in emission spectrum overlap between fluorescent dyes, the application of existing commercial matrix standards to the electrophoretic separation of DNA labeled with other fluorescent dyes can yield undesirable results. Currently, the number of fluorescent dyes available for oligonucleotide labeling surpasses the availability of commercial matrix standards. Therefore, in this study we developed and evaluated a customized matrix standard using ATTO 633, ATTO 565, ATTO 550, ATTO Rho6G, and 6-FAM dyes for which no commercial matrix standard is available. We highlighted the potential genotyping errors of using an incorrect matrix standard by evaluating the relative performance of our custom dye set using six matrix standards. The specific performance of two genotyping kits (UniQTyper™ Y-10 version 1.0 and PowerPlex® Y23 System) was also evaluated using their specific matrix standards. The procedure we followed for the construction of our custom dye matrix standard can be extended to other fluorescent dyes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effect of Cyclic Thermo-Mechanical Loads on Fatigue Reliability in Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Murthy, P. L. N.; Chamis, C. C.

    1996-01-01

    A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multi-factor interaction relationship developed at NASA Lewis Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability- based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)(sub s) graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  17. Matrix elements of vibration kinetic energy operator of tetrahedral molecules in non-orthogonal-dependent coordinates

    NASA Astrophysics Data System (ADS)

    Protasevich, Alexander E.; Nikitin, Andrei V.

    2018-01-01

    In this work, we propose an algorithm for calculating the matrix elements of the kinetic energy operator for tetrahedral molecules. This algorithm uses the dependent six-angle coordinates (6A) and takes into account the full symmetry of molecules. Unlike A.V. Nikitin, M. Rey, and Vl. G. Tyuterev who operate with the kinetic energy operator only in Radau orthogonal coordinates, we consider a general case. The matrix elements are shown to be a sum of products of one-dimensional integrals.

  18. Hybrid matrix amplifier

    DOEpatents

    Martens, J.S.; Hietala, V.M.; Plut, T.A.

    1995-01-03

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N[times]M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise. 6 figures.

  19. Hybrid matrix amplifier

    DOEpatents

    Martens, Jon S.; Hietala, Vincent M.; Plut, Thomas A.

    1995-01-01

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N.times.M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise.

  20. Regularized matrix regression

    PubMed Central

    Zhou, Hua; Li, Lexin

    2014-01-01

    Summary Modern technologies are producing a wealth of data with complex structures. For instance, in two-dimensional digital imaging, flow cytometry and electroencephalography, matrix-type covariates frequently arise when measurements are obtained for each combination of two underlying variables. To address scientific questions arising from those data, new regression methods that take matrices as covariates are needed, and sparsity or other forms of regularization are crucial owing to the ultrahigh dimensionality and complex structure of the matrix data. The popular lasso and related regularization methods hinge on the sparsity of the true signal in terms of the number of its non-zero coefficients. However, for the matrix data, the true signal is often of, or can be well approximated by, a low rank structure. As such, the sparsity is frequently in the form of low rank of the matrix parameters, which may seriously violate the assumption of the classical lasso. We propose a class of regularized matrix regression methods based on spectral regularization. A highly efficient and scalable estimation algorithm is developed, and a degrees-of-freedom formula is derived to facilitate model selection along the regularization path. Superior performance of the method proposed is demonstrated on both synthetic and real examples. PMID:24648830

  1. Biomimetic Mineralization of the Alginate/Gelatin/Calcium Oxalate Matrix for Immobilization of Pectinase: Influence of Matrix on the Pectinolytic Activity.

    PubMed

    Bustamante-Vargas, Cindy Elena; de Oliveira, Débora; Valduga, Eunice; Venquiaruto, Luciana Dornelles; Paroul, Natalia; Backes, Geciane Toniazzo; Dallago, Rogério Marcos

    2016-07-01

    Pectinases catalyze the degradation of pectic substances and are used in several processes, mainly in food and textile industries. In this study, a biomimetic matrix of alginate/gelatin/calcium oxalate (AGOCa) was synthesized for the in situ immobilization via encapsulation of crude pectinase from Aspergillus niger ATCC 9642, obtaining an immobilization efficiency of about 61.7 %. To determine the performance of AGOCa matrix, this was compared to control matrices of alginate/calcium oxalate (AOxal) and alginate/water (ACa). By the evaluation of pH and temperature effects on the enzyme activity, it was observed an increase on pectinolytic activity for both three tested matrices with an increase on pH and temperature. The kinetic parameters for pectinase immobilized in the three matrices were determined using citric pectin as substrate. Values of K m of 0.003, 0.0013, and 0.0022 g mL(-1) and V max of 3.85, 4.32, and 3.17 μmol min(-1) g(-1) for AGOCa, AOxal, and ACa matrices were obtained, respectively. After 33 days of storage, the pectinase immobilized in the three different matrices kept its initial activity, but that immobilized in AGOCa presented high stability to the storage with a relative activity of about 160 %. The enzyme immobilized in AGOCa, AOxal, and ACa could be used in 10, 8, and 7 cycles, respectively, keeping 40 % of its initial activity.

  2. Accounting for trait architecture in genomic predictions of US Holstein cattle using a weighted realized relationship matrix.

    PubMed

    Tiezzi, Francesco; Maltecca, Christian

    2015-04-02

    Genomic BLUP (GBLUP) can predict breeding values for non-phenotyped individuals based on the identity-by-state genomic relationship matrix (G). The G matrix can be constructed from thousands of markers spread across the genome. The strongest assumption of G and consequently of GBLUP is that all markers contribute equally to the genetic variance of a trait. This assumption is violated for traits that are controlled by a small number of quantitative trait loci (QTL) or individual QTL with large effects. In this paper, we investigate the performance of using a weighted genomic relationship matrix (wG) that takes into consideration the genetic architecture of the trait in order to improve predictive ability for a wide range of traits. Multiple methods were used to calculate weights for several economically relevant traits in US Holstein dairy cattle. Predictive performance was tested by k-means cross-validation. Relaxing the GBLUP assumption of equal marker contribution by increasing the weight that is given to a specific marker in the construction of the trait-specific G resulted in increased predictive performance. The increase was strongest for traits that are controlled by a small number of QTL (e.g. fat and protein percentage). Furthermore, bias in prediction estimates was reduced compared to that resulting from the use of regular G. Even for traits with low heritability and lower general predictive performance (e.g. calving ease traits), weighted G still yielded a gain in accuracy. Genomic relationship matrices weighted by marker realized variance yielded more accurate and less biased predictions for traits regulated by few QTL. Genome-wide association analyses were used to derive marker weights for creating weighted genomic relationship matrices. However, this can be cumbersome and prone to low stability over generations because of erosion of linkage disequilibrium between markers and QTL. Future studies may include other sources of information, such as

  3. Efficient sparse matrix-matrix multiplication for computing periodic responses by shooting method on Intel Xeon Phi

    NASA Astrophysics Data System (ADS)

    Stoykov, S.; Atanassov, E.; Margenov, S.

    2016-10-01

    Many of the scientific applications involve sparse or dense matrix operations, such as solving linear systems, matrix-matrix products, eigensolvers, etc. In what concerns structural nonlinear dynamics, the computations of periodic responses and the determination of stability of the solution are of primary interest. Shooting method iswidely used for obtaining periodic responses of nonlinear systems. The method involves simultaneously operations with sparse and dense matrices. One of the computationally expensive operations in the method is multiplication of sparse by dense matrices. In the current work, a new algorithm for sparse matrix by dense matrix products is presented. The algorithm takes into account the structure of the sparse matrix, which is obtained by space discretization of the nonlinear Mindlin's plate equation of motion by the finite element method. The algorithm is developed to use the vector engine of Intel Xeon Phi coprocessors. It is compared with the standard sparse matrix by dense matrix algorithm and the one developed by Intel MKL and it is shown that by considering the properties of the sparse matrix better algorithms can be developed.

  4. A Transfer Learning Approach for Applying Matrix Factorization to Small ITS Datasets

    ERIC Educational Resources Information Center

    Voß, Lydia; Schatten, Carlotta; Mazziotti, Claudia; Schmidt-Thieme, Lars

    2015-01-01

    Machine Learning methods for Performance Prediction in Intelligent Tutoring Systems (ITS) have proven their efficacy; specific methods, e.g. Matrix Factorization (MF), however suffer from the lack of available information about new tasks or new students. In this paper we show how this problem could be solved by applying Transfer Learning (TL),…

  5. Extraction and quantitative analysis of iodine in solid and solution matrixes.

    PubMed

    Brown, Christopher F; Geiszler, Keith N; Vickerman, Tanya S

    2005-11-01

    129I is a contaminant of interest in the vadose zone and groundwater at numerous federal and privately owned facilities. Several techniques have been utilized to extract iodine from solid matrixes; however, all of them rely on two fundamental approaches: liquid extraction or chemical/heat-facilitated volatilization. While these methods are typically chosen for their ease of implementation, they do not totally dissolve the solid. We defined a method that produces complete solid dissolution and conducted laboratory tests to assess its efficacy to extract iodine from solid matrixes. Testing consisted of potassium nitrate/potassium hydroxide fusion of the sample, followed by sample dissolution in a mixture of sulfuric acid and sodium bisulfite. The fusion extraction method resulted in complete sample dissolution of all solid matrixes tested. Quantitative analysis of 127I and 129I via inductively coupled plasma mass spectrometry showed better than +/-10% accuracy for certified reference standards, with the linear operating range extending more than 3 orders of magnitude (0.005-5 microg/L). Extraction and analysis of four replicates of standard reference material containing 5 microg/g 127I resulted in an average recovery of 98% with a relative deviation of 6%. This simple and cost-effective technique can be applied to solid samples of varying matrixes with little or no adaptation.

  6. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry identification of large colony beta-hemolytic streptococci containing Lancefield groups A, C, and G.

    PubMed

    Jensen, Christian Salgård; Dam-Nielsen, Casper; Arpi, Magnus

    2015-08-01

    The aim of this study was to investigate whether large colony beta-hemolytic streptococci containing Lancefield groups A, C, and G can be adequately identified using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-ToF). Previous studies show varying results, with an identification rate from below 50% to 100%. Large colony beta-hemolytic streptococci containing Lancefield groups A, C, and G isolated from blood cultures between January 1, 2007 and May 1, 2012 were included in the study. Isolates were identified to the species level using a combination of phenotypic characteristics and 16s rRNA sequencing. The isolates were subjected to MALDI-ToF analysis. We used a two-stage approach starting with the direct method. If no valid result was obtained we proceeded to an extraction protocol. Scores above 2 were considered valid identification at the species level. A total of 97 Streptococcus pyogenes, 133 Streptococcus dysgalactiae, and 2 Streptococcus canis isolates were tested; 94%, 66%, and 100% of S. pyogenes, S. dysgalactiae, and S. canis, respectively, were correctly identified by MALDI-ToF. In most instances when the isolates were not identified by MALDI-ToF this was because MALDI-ToF was unable to differentiate between S. pyogenes and S. dysgalactiae. By removing two S. pyogenes reference spectra from the MALDI-ToF database the proportion of correctly identified isolates increased to 96% overall. MALDI-ToF is a promising method for discriminating between S. dysgalactiae, S. canis, and S. equi, although more strains need to be tested to clarify this.

  7. Solvent-induced dimensional changes in EDTA-demineralized dentin matrix.

    PubMed

    Pashley, D H; Agee, K A; Nakajima, M; Tay, F R; Carvalho, R M; Terada, R S; Harmon, F J; Lee, W K; Rueggeberg, F A

    2001-08-01

    The purpose of this study was to test the null hypothesis that the re-expansion of dried matrix and the shrinkage of moist, demineralized dentin is not influenced by polar solvents. Dentin disks were prepared from midcoronal dentin of extracted human third molars. After complete demineralization in 0.5M of EDTA (pH 7), the specimens were placed in the well of a device that measures changes in matrix height in real time. Dry, collapsed matrices were created by blowing dry N(2) on the specimens until they shrank to a stable plateau. Polar solvents [water, methanol, ethanol, n-propanol, n-butanol, formamide, ethylene glycol, hydroxyethyl methacrylate (HEMA), or mixtures of water-HEMA] as model primers then were added and the degree of re-expansion measured. These same solvents also were applied to moist, expanded matrices and the solvent-induced shrinkages measured. Regression analysis was used to test the correlations between matrix height and Hansen's dispersive, polar, hydrogen bonding, and total solubility parameters (delta(d), delta(p), delta(h), delta(t)). The results indicate that water-free polar solvents of low hydrogen bonding (H-bond) ability (e.g., neat HEMA) do not re-expand dried matrices and that they shrink moist matrices. When HEMA was mixed with progressively higher water concentrations, the model water-HEMA primers expanded the dried matrix in proportion to their water concentrations and they produced less shrinkage of moist matrices. Solvents with higher H-bonding capacities (methanol, ethanol, ethylene glycol, formamide, and water) re-expanded the dried matrix in proportion to their solubility parameters for H-bonding (delta(h)). They also induced small transient shrinkages of moist matrices, which slowly re-expanded. The results require rejection of the null hypothesis. Copyright 2001 John Wiley & Sons, Inc. J Biomed Mater Res 56: 273-281, 2001

  8. HBM Mice Have Altered Bone Matrix Composition And Improved Material Toughness

    DOE PAGES

    Ross, Ryan D.; Mashiatulla, Maleeha; Acerbo, Alvin S.; ...

    2016-05-26

    Here, the G171V mutation in the low density lipoprotein receptor-related protein 5 (LRP5) leads to a high bone mass (HBM) phenotype. Studies using an HBM transgenic mouse model have consistently found increased bone mass and whole-bone strength, but little attention has been paid to bone matrix quality. The current study sought to determine if the cortical bone matrix composition differs in HBM and wild-type mice and to determine how much of the variance in bone material properties is explained by variance in matrix composition. Consistent with previous studies, HBM mice had greater cortical area, moment of inertia, ultimate force, bendingmore » stiffness, and energy to failure than wild-type animals. Interestingly, the increased energy to failure was primarily caused by a large increase in post-yield behavior, with no difference in pre-yield behavior. The HBM mice had increased mineral-to-matrix and collagen cross-link ratios, and decreased crystallinity and carbonate substitution, but no differences in crystal length, intra-fibular strains, and mineral spacing compared to wild-type controls. The largest difference in material properties was a 2-fold increase in the modulus of toughness in HBM mice. Step-wise regression analyses found weak correlations between matrix composition and material properties, and interestingly, the matrix compositional parameters associated with the material properties varied between the wild-type and HBM genotypes. Although the mechanisms controlling the paradoxical combination of more mineralized yet tougher bone in HBM mice remain to be fully explained, the findings suggest that LRP5 represents a target to not only build greater bone quantity, but also to improve bone quality.« less

  9. HBM Mice Have Altered Bone Matrix Composition And Improved Material Toughness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Ryan D.; Mashiatulla, Maleeha; Acerbo, Alvin S.

    Here, the G171V mutation in the low density lipoprotein receptor-related protein 5 (LRP5) leads to a high bone mass (HBM) phenotype. Studies using an HBM transgenic mouse model have consistently found increased bone mass and whole-bone strength, but little attention has been paid to bone matrix quality. The current study sought to determine if the cortical bone matrix composition differs in HBM and wild-type mice and to determine how much of the variance in bone material properties is explained by variance in matrix composition. Consistent with previous studies, HBM mice had greater cortical area, moment of inertia, ultimate force, bendingmore » stiffness, and energy to failure than wild-type animals. Interestingly, the increased energy to failure was primarily caused by a large increase in post-yield behavior, with no difference in pre-yield behavior. The HBM mice had increased mineral-to-matrix and collagen cross-link ratios, and decreased crystallinity and carbonate substitution, but no differences in crystal length, intra-fibular strains, and mineral spacing compared to wild-type controls. The largest difference in material properties was a 2-fold increase in the modulus of toughness in HBM mice. Step-wise regression analyses found weak correlations between matrix composition and material properties, and interestingly, the matrix compositional parameters associated with the material properties varied between the wild-type and HBM genotypes. Although the mechanisms controlling the paradoxical combination of more mineralized yet tougher bone in HBM mice remain to be fully explained, the findings suggest that LRP5 represents a target to not only build greater bone quantity, but also to improve bone quality.« less

  10. Modeling the formation of cell-matrix adhesions on a single 3D matrix fiber.

    PubMed

    Escribano, J; Sánchez, M T; García-Aznar, J M

    2015-11-07

    Cell-matrix adhesions are crucial in different biological processes like tissue morphogenesis, cell motility, and extracellular matrix remodeling. These interactions that link cell cytoskeleton and matrix fibers are built through protein clutches, generally known as adhesion complexes. The adhesion formation process has been deeply studied in two-dimensional (2D) cases; however, the knowledge is limited for three-dimensional (3D) cases. In this work, we simulate different local extracellular matrix properties in order to unravel the fundamental mechanisms that regulate the formation of cell-matrix adhesions in 3D. We aim to study the mechanical interaction of these biological structures through a three dimensional discrete approach, reproducing the transmission pattern force between the cytoskeleton and a single extracellular matrix fiber. This numerical model provides a discrete analysis of the proteins involved including spatial distribution, interaction between them, and study of the different phenomena, such as protein clutches unbinding or protein unfolding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Photoisomerization and photochemistry of matrix-isolated 3-furaldehyde.

    PubMed

    Kuş, Nihal; Reva, Igor; Fausto, Rui

    2010-12-02

    3-Furaldehyde (3FA) was isolated in an argon matrix at 12 K and studied using FTIR spectroscopy and quantum chemistry. The molecule has two conformers, with trans and cis orientation of the O=C-C=C dihedral angle. At the B3LYP/6-311++G(d,p) level of theory, the trans form was computed to be ca. 4 kJ mol(-1) more stable than the cis form. The relative stability of the two conformers was explained using the natural bond orbital (NBO) method. In fair agreement with their calculated relative energies and the high barrier of rotamerization (ca. 34 kJ mol(-1) from trans to cis), the trans and cis conformers were trapped in an argon matrix from the compound room temperature gas phase in proportion ~7:1. The experimentally observed vibrational signatures of the two forms are in a good agreement with the theoretically calculated spectra. Broad-band UV-irradiation (λ > 234 nm) of the matrix-isolated compound resulted in partial trans → cis isomerization, which ended at a photostationary state with the trans/cis ratio being ca. 1.85:1. This result was interpreted based on results of time-dependent DFT calculations. Irradiation at higher energies (λ > 200 nm) led to decarbonylation of the compound, yielding furan, cyclopropene-3-carbaldehyde, and two C(3)H(4) isomers: cyclopropene and propadiene.

  12. In vitro studies on human periodontal ligament stem cell sheets enhanced by enamel matrix derivative.

    PubMed

    Wang, Zhongshan; Feng, Zhihong; Wu, Guofeng; Bai, Shizhu; Dong, Yan; Zhao, Yimin

    2016-05-01

    Numerous preclinical and clinical studies have focused on the periodontal regenerative functions of enamel matrix derivative (EMD), a heat-treated preparation derived from enamel matrix proteins (EMPs) of developing porcine teeth. In this study, periodontal ligament (PDL) stem cells (PDLSCs) were isolated, and the effects of EMD on the extracorporeal induction process and the characteristics of PDLSC sheets were investigated for their potential as a more effective stem-cell therapy. EMD-enhanced cell sheets could be induced by complete medium supplemented with 50 μg/mL vitamin C and 100 μg/mL EMD. The EMD-enhanced cell sheets appeared thicker and more compact than the normal PDLSC sheets, demonstrated more layers of cells (3-7 layers), secreted richer extracellular matrix (ECM), showed varying degrees of increases in mRNA expression of periodontal tissue-specific genes (COL I, POSTN), calcification-related genes (RUNX2, OPN, OCN) and a cementum tissue-specific gene (CAP), and possessed a better mineralization ability in terms of osteogenic differentiation in vitro. These EMD-enhanced cell sheets may represent a potential option for stem-cell therapy for PDL regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Magnesium Matrix Composite Foams-Density, Mechanical Properties, and Applications

    DTIC Science & Technology

    2012-07-24

    to syntactic foam densities in the range 1–1.5 g/cc, which directly compete with polymer matrix composites. Their inherently high modulus, ductility ...nomenclature of these alloys A, Z, and C refer to aluminum, zinc and copper, respectively. The two letters are followed by two numbers, which correspond to...respectively [27]. Usually, the increased strength of Mg alloys due to the addition of Al or Cu comes at the expense of ductility . Addition of Zn along

  14. Association of MMP-1 -1607 1G/2G (rs1799750) polymorphism with primary knee osteoarthritis in the Greek population.

    PubMed

    Lepetsos, Panagiotis; Pampanos, Andreas; Kanavakis, Emmanouil; Tzetis, Maria; Korres, Dimitrios; Papavassiliou, Athanasios G; Efstathopoulos, Nicolaos

    2014-09-01

    Osteoarthritis is the most common form of arthritis with still unknown pathogenic etiology and considerable contribution of genetic factors. One of the mechanisms of cartilage degradation in osteoarthritis is enzymatic proteolysis of the extracellular matrix by metalloproteinases. MMP-1, produced by chondrocytes and synovial cells, is a major proteinase of the MMPs family. The present study aims at evaluating the association of MMP1 gene -1607 1G/2G (rs1799750) polymorphism with primary knee osteoarthritis in the Greek population. One hundred fifty five patients with primary symptomatic knee osteoarthritis participated in the study along with 139 controls. Genotypes were determined using PCR-RLFP technique. Allelic and genotypic frequencies were compared between both study groups. There was no significant association between MMP1 -1607 1G/2G polymorphism and knee osteoarthritis, in crude analysis; however, after multiple logistic regression analysis, 1G/2G was associated with reduced odds of knee osteoarthritis by 75% in males, compared to genotypes 1G/1G + 2G/2G, adjusting for age and BMI (adjusted OR: 0.25, 95% CI: 0.069, 0.910, p = 0.035). The present study shows that MMP1 -1607 1G/2G (rs1799750) polymorphism might be a risk factor for knee osteoarthritis susceptibility in the Greek population. Further investigations are needed to confirm this association in the pathogenesis of osteoarthritis. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  15. A practical guide to density matrix embedding theory in quantum chemistry

    DOE PAGES

    Wouters, Sebastian; Jimenez-Hoyos, Carlos A.; Sun, Qiming; ...

    2016-05-09

    Density matrix embedding theory (DMET) (Knizia, G.; Chan, G. K.-L. Phys. Rev. Lett. 2012, 109, 186404) provides a theoretical framework to treat finite fragments in the presence of a surrounding molecular or bulk environment, even when there is significant correlation or entanglement between the two. In this work, we give a practically oriented and explicit description of the numerical and theoretical formulation of DMET. Here, we also describe in detail how to perform self-consistent DMET optimizations. We explore different embedding strategies with and without a self-consistency condition in hydrogen rings, beryllium rings, and a sample SN2 reaction.

  16. The organic matrix of gallstones

    PubMed Central

    Sutor, D. June; Wooley, Susan E.

    1974-01-01

    Dissolution of gallstones consisting of cholesterol, calcium carbonate, or calcium phosphate in different solvents left an amorphous organic gel-like substance (the matrix). Matrix from cholesterol stones could be colourless but was usually orange, yellow, or brown while that from calcium carbonate and calcium phosphate stones was almost invariably coloured black or dark brown. These pigments were also shown to be organic and amorphous. The amount of matrix present and its structure varied with the texture of the crystalline material. Irrespective of their composition, laminated pieces of material yielded compact laminated matrix of the same shape as the original piece and areas of loose crystalline material gave small pieces of non-cohesive matrix. Only large cholesterol crystals which usually radiate from the stone nucleus had no associated matrix. ImagesFig 1Fig 2Fig 3Fig 4Fig 5 PMID:4854981

  17. NMR imaging of fluid exchange between macropores and matrix in eogenetic karst

    USGS Publications Warehouse

    Florea, L.J.; Cunningham, K.J.; Altobelli, S.

    2009-01-01

    Sequential time-step images acquired using nuclear magnetic resonance (NMR) show the displacement of deuterated water (D2O) by fresh water within two limestone samples characterized by a porous and permeable limestone matrix of peloids and ooids. These samples were selected because they have a macropore system representative of some parts of the eogenetic karst limestone of the Biscayne Aquifer in southeastern Florida. The macroporosity, created by the trace fossil Ophiomorpha, is principally well connected and of centimeter scale. These macropores occur in broadly continuous stratiform zones that create preferential flow layers within the hydrogeologic units of the Biscayne. This arrangement of porosity is important because in coastal areas, it could produce a preferential pathway for salt water intrusion. Two experiments were conducted in which samples saturated with D2O were placed in acrylic chambers filled with fresh water and examined with NMR. Results reveal a substantial flux of fresh water into the matrix porosity with a simultaneous loss of D 2O. Specifically, we measured rates upward of 0.001 mL/h/g of sample in static conditions, and perhaps as great as 0.07 mL/h/g of sample when fresh water continuously flows past a sample at velocities less than those found within stressed areas of the Biscayne. These experiments illustrate how fresh water and D2O, with different chemical properties, migrate within one type of matrix porosity found in the Biscayne. Furthermore, these experiments are a comparative exercise in the displacement of sea water by fresh water in the matrix of a coastal, karst aquifer since D2O has a greater density than fresh water. ?? 2008 National Ground Water Association.

  18. MoO2 nanosheets embedded in amorphous carbon matrix for sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    He, Hong; Man, Yuhong; Yang, Jingang; Xie, Jiale; Xu, Maowen

    2017-10-01

    MoO2 nanosheets embedded in the amorphous carbon matrix (MoO2/C) are successfully synthesized via a facile hydrothermal method and investigated as an anode for sodium-ion batteries. Because of the efficient ion transport channels and good volume change accommodation, MoO2/C delivers a discharge/charge capacity of 367.8/367.0 mAh g-1 with high coulombic efficiency (99.4%) after 100 cycles at a current density of 50 mA g-1.

  19. Tracking Matrix Effects in the Analysis of DNA Adducts of Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Klaene, Joshua J.; Flarakos, Caroline; Glick, James; Barret, Jennifer T.; Zarbl, Helmut; Vouros, Paul

    2015-01-01

    LC-MS using electrospray ionization is currently the method of choice in bio-organic analysis covering a wide range of applications in a broad spectrum of biological media. The technique is noted for its high sensitivity but one major limitation which hinders achievement of its optimal sensitivity is the signal suppression due to matrix inferences introduced by the presence of co-extracted compounds during the sample preparation procedure. The analysis of DNA adducts of common environmental carcinogens is particularly sensitive to such matrix effects as sample preparation is a multistep process which involves “contamination” of the sample due to the addition of enzymes and other reagents for digestion of the DNA in order to isolate the analyte(s). This problem is further exacerbated by the need to reach low levels of quantitation (LOQ in the ppb level) while also working with limited (2-5 μg) quantities of sample. We report here on the systematic investigation of ion signal suppression contributed by each individual step involved in the sample preparation associated with the analysis of DNA adducts of polycyclic aromatic hydrocarbon (PAH) using as model analyte dG-BaP, the deoxyguanosine adduct of benzo[a]pyrene (BaP). The individual matrix contribution of each one of these sources to analyte signal was systematically addressed as were any interactive effects. The information was used to develop a validated analytical protocol for the target biomarker at levels typically encountered in vivo using as little as 2 μg of DNA and applied to a dose response study using a metabolically competent cell line. PMID:26607319

  20. Fundamental Studies of Low Velocity Impact Resistance of Graphite Fiber Reinforced Polymer Matrix Composites. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1985-01-01

    A study was conducted to relate the impact resistance of graphite fiber reinforced composites with matrix properties through gaining an understanding of the basic mechanics involved in the deformation and fracture process, and the effect of the polymer matrix structure on these mechanisms. It was found that the resin matrix structure influences the composite impact resistance in at least two ways. The integration of flexibilizers into the polymer chain structure tends to reduce the T sub g and the mechanical properties of the polymer. The reduction in the mechanical properties of the matrix does not enhance the composite impact resistance because it allows matrix controlled failure to initiate impact damage. It was found that when the instrumented dropweight impact tester is used as a means for assessing resin toughness, the resin toughness is enhanced by the ability of the clamped specimen to deflect enough to produce sufficient membrane action to support a significant amount of the load. The results of this study indicate that crossplied composite impact resistance is very much dependent on the matrix mechanical properties.

  1. Impact of the -675 4G/5G polymorphism of the plasminogen activator inhibitor-1 gene on childhood IgA nephropathy.

    PubMed

    Han, Su-Ryun; Kim, Cheon-Jong; Lee, Byung-Cheol

    2012-04-01

    Plasminogen activator inhibitor-1 (PAI-1) is an important regulator of the fibrinolytic pathway and extracellular matrix (ECM) turnover. The -675 4G/5G polymorphism in the PAI-1 promoter is associated with altered PAI-1 transcription, suggesting that this polymorphism may be a candidate risk factor for diseases characterized by ECM accumulation, such as immunoglobulin A nephropathy (IgAN) and mesangial proliferative glomerulonephritis (MesPGN). We genotyped childhood patients with biopsy-confirmed IgAN (n=111) and MesPGN (n=47), and healthy control subjects (n=230) for the -675 4G/5G PAI-1 polymorphism by polymerase chain reaction-restriction fragment length polymorphism methods. The distribution of the 4G/4G (27.9%), 4G/5G (45.1%) and 5G/5G (27.0%) genotypes in IgAN patients was significantly different from the healthy controls (32.2, 54.3 and 13.5%, respectively) (p=0.0092). There was no significant difference in the genotype distributions of the 4G/5G polymorphism between MesPGN patients and the healthy controls. Regarding the impact of the polymorphism on IgAN, the 4G/4G genotype was markedly increased in patients with proteinuria (≥1,000 mg/day) and/or hypertension when compared to patients without proteinuria and hypertension (OR=5.23, 95% CI 1.34-20.38, P=0.0183). These findings indicate that the PAI-1 gene polymorphism may affect the susceptibility of childhood IgAN.

  2. Atmospheric pressure matrix-assisted laser desorption ionization as a plume diagnostic tool in laser evaporation methods

    NASA Astrophysics Data System (ADS)

    Callahan, John H.; Galicia, Marsha C.; Vertes, Akos

    2002-09-01

    Laser evaporation techniques, including matrix-assisted pulsed laser evaporation (MAPLE), are attracting increasing attention due to their ability to deposit thin layers of undegraded synthetic and biopolymers. Laser evaporation methods can be implemented in reflection geometry with the laser and the substrate positioned on the same side of the target. In some applications (e.g. direct write, DW), however, transmission geometry is used, i.e. the thin target is placed between the laser and the substrate. In this case, the laser pulse perforates the target and transfers some target material to the substrate. In order to optimize evaporation processes it is important to know the composition of the target plume and the material deposited from the plume. We used a recently introduced analytical method, atmospheric pressure matrix-assisted laser desorption ionization (AP-MALDI) to characterize the ionic components of the plume both in reflection and in transmission geometry. This technique can also be used to directly probe materials deposited on surfaces (such as glass slides) by laser evaporation methods. The test compound (small peptides, e.g. Angiotensin I, ATI or Substance P) was mixed with a MALDI matrix (α-cyano-4-hydroxycinnamic acid (CHCA), sinapinic acid (SA) or 2,5-dihydroxybenzoic acid (DHB)) and applied to the stainless steel (reflection geometry) or transparent conducting (transmission geometry) target holder. In addition to the classical dried droplet method, we also used electrospray target deposition to gain better control of crystallite size, thickness and homogeneity. The target was mounted in front of the inlet orifice of an ion trap mass spectrometer (IT-MS) that sampled the ionic components of the plume generated by a nitrogen laser. We studied the effect of several parameters, such as, the orifice to target distance, illumination geometry, extracting voltage distribution and sample preparation on the generated ions. Various analyte-matrix and

  3. Coordinate regulation of estrogen-mediated fibronectin matrix assembly and epidermal growth factor receptor transactivation by the G protein-coupled receptor, GPR30.

    PubMed

    Quinn, Jeffrey A; Graeber, C Thomas; Frackelton, A Raymond; Kim, Minsoo; Schwarzbauer, Jean E; Filardo, Edward J

    2009-07-01

    Estrogen promotes changes in cytoskeletal architecture not easily attributed to the biological action of estrogen receptors, ERalpha and ERbeta. The Gs protein-coupled transmembrane receptor, GPR30, is linked to specific estrogen binding and rapid estrogen-mediated release of heparin-bound epidermal growth factor. Using marker rescue and dominant interfering mutant strategies, we show that estrogen action via GPR30 promotes fibronectin (FN) matrix assembly by human breast cancer cells. Stimulation with 17beta-estradiol or the ER antagonist, ICI 182, 780, results in the recruitment of FN-engaged integrin alpha5beta1 conformers to fibrillar adhesions and the synthesis of FN fibrils. Concurrent with this cellular response, GPR30 promotes the formation of Src-dependent, Shc-integrin alpha5beta1 complexes. Function-blocking antibodies directed against integrin alpha5beta1 or soluble Arg-Gly-Asp peptide fragments derived from FN specifically inhibited GPR30-mediated epidermal growth factor receptor transactivation. Estrogen-mediated FN matrix assembly and epidermal growth factor receptor transactivation were similarly disrupted in integrin beta1-deficient GE11 cells, whereas reintroduction of integrin beta1 into GE11 cells restored these responses. Mutant Shc (317Y/F) blocked GPR30-induced FN matrix assembly and tyrosyl phosphorylation of erbB1. Interestingly, relative to recombinant wild-type Shc, 317Y/F Shc was more readily retained in GPR30-induced integrin alpha5beta1 complexes, yet this mutant did not prevent endogenous Shc-integrin alpha5beta1 complex formation. Our results suggest that GPR30 coordinates estrogen-mediated FN matrix assembly and growth factor release in human breast cancer cells via a Shc-dependent signaling mechanism that activates integrin alpha5beta1.

  4. Method of making metal matrix composites reinforced with ceramic particulates

    DOEpatents

    Cornie, James A.; Kattamis, Theodoulos; Chambers, Brent V.; Bond, Bruce E.; Varela, Raul H.

    1989-01-01

    Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys.

  5. Method of making metal matrix composites reinforced with ceramic particulates

    DOEpatents

    Cornie, J.A.; Kattamis, T.; Chambers, B.V.; Bond, B.E.; Varela, R.H.

    1989-08-01

    Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys. 2 figs.

  6. The Contribution of Matrix Metalloproteinase-7 Promoter Genotypes in Breast Cancer in Taiwan.

    PubMed

    Chou, An-Kuo; Hsiao, Chieh-Lun; Shih, Tzu-Ching; Wang, Hwei-Chung; Tsai, Chia-Wen; Chang, Wen-Shin; Liu, Liang-Chih; Way, Tzong-DER; Chung, Jing-Gung; Bau, DA-Tian

    2017-09-01

    The matrix metalloproteinase (MMP) family of enzymes are in charge of degradation of various components of the extracellular matrix and their functional genetic polymorphisms may be associated with cancer susceptibility. The functional polymorphisms in the promoter region of MMP7 (A-181G and C-153T) have been reported to influence the binding capacity of nuclear proteins and may contribute to genetic susceptibility to cancer. In this study, we focused on investigating the contribution of the genotypes of MMP7 (A-181G and C-153T) to breast cancer in Taiwan. These two polymorphisms were genotyped in 1,232 patients with breast cancer and 1,232 controls by polymerase chain reaction-restriction fragment length polymorphism methodology. The odds ratios (ORs) after adjusting for age, family history of cancer, smoking and alcohol drinking status for those carrying AG and GG genotypes at MMP7 promoter A-181G were 1.22 (95%CI=0.91-1.63, p=0.2235) and 2.84 (95%CI=1.64-7.48, p=0.0007) respectively, compared to those carrying the wild-type AA genotype. Supporting this finding, the adjusted OR for those carrying the G allele at MMP7 promoter A-181G was 1.57 (95%CI=1.29-1.93, p=0.0008), compared to those carrying the wild-type A allele. There was no polymorphic genotype at MMP7 C-153T found among any of the investigated individuals. Our findings suggest that the MMP7 A-181G polymorphisms may play a role in determining personal cancer susceptibility and GG genotype at MMP7 A-181G may serve as a biomarker for early detection and prediction of breast cancer in Taiwanese. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  7. Directed Assembly of Quantum Dots in Diblock Copolymer Matrix

    DTIC Science & Technology

    2007-08-01

    behavior of a diblock copolymer, PS - b -poly(2-vinylpyridene) ( PS - b - P2VP ). Addition of 2.5-nm-diameter gold nanoparticles, functionalized with short...dispersion of variations in the relative surface coverage by short thiol-terminated PS ligands (3400 g/mol), also in a PS - b - P2VP matrix. As a result of...film of PS - b - P2VP . In that case, the particles were stabilized with tri-n-octylphosphine oxide (TOPO) ligands. When thin films were prepared from

  8. Matrix thermalization

    NASA Astrophysics Data System (ADS)

    Craps, Ben; Evnin, Oleg; Nguyen, Kévin

    2017-02-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  9. Matrix metalloproteases and PAR1 activation

    PubMed Central

    Austin, Karyn M.; Covic, Lidija

    2013-01-01

    Cardiovascular diseases, including atherothrombosis, are the leading cause of morbidity and mortality in the United States, Europe, and the developed world. Matrix metalloproteases (MMPs) have recently emerged as important mediators of platelet and endothelial function, and atherothrombotic disease. Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor that is classically activated through cleavage of the N-terminal exodomain by the serine protease thrombin. Most recently, 2 MMPs have been discovered to have agonist activity for PAR1. Unexpectedly, MMP-1 and MMP-13 cleave the N-terminal exodomain of PAR1 at noncanonical sites, which result in distinct tethered ligands that activate G-protein signaling pathways. PAR1 exhibits metalloprotease-specific signaling patterns, known as biased agonism, that produce distinct functional outputs by the cell. Here we contrast the mechanisms of canonical (thrombin) and noncanonical (MMP) PAR1 activation, the contribution of MMP-PAR1 signaling to diseases of the vasculature, and the therapeutic potential of inhibiting MMP-PAR1 signaling with MMP inhibitors, including atherothrombotic disease, in-stent restenosis, heart failure, and sepsis. PMID:23086754

  10. Dentin matrix degradation by host matrix metalloproteinases: inhibition and clinical perspectives toward regeneration

    PubMed Central

    Chaussain, Catherine; Boukpessi, Tchilalo; Khaddam, Mayssam; Tjaderhane, Leo; George, Anne; Menashi, Suzanne

    2013-01-01

    Bacterial enzymes have long been considered solely accountable for the degradation of the dentin matrix during the carious process. However, the emerging literature suggests that host-derived enzymes, and in particular the matrix metalloproteinases (MMPs) contained in dentin and saliva can play a major role in this process by their ability to degrade the dentin matrix from within. These findings are important since they open new therapeutic options for caries prevention and treatment. The possibility of using MMP inhibitors to interfere with dentin caries progression is discussed. Furthermore, the potential release of bioactive peptides by the enzymatic cleavage of dentin matrix proteins by MMPs during the carious process is discussed. These peptides, once identified, may constitute promising therapeutical tools for tooth and bone regeneration. PMID:24198787

  11. Two cases of matrix-producing carcinoma showing chondromyxoid matrix in cytological specimens.

    PubMed

    Tajima, Shogo; Koda, Kenji

    2015-01-01

    Matrix-producing carcinoma (MPC) is extremely rare. Limited reports have described the cytological aspects of MPC. Herein, we present 2 cases of MPC, both of which showed ring-enhancement on magnetic resonance imaging (MRI) and chondromyxoid matrix on cytological specimens. In these cases, the diagnosis of MPC was preoperatively suspected. Recognizing extracellular matrix as chondromyxoid matrix on the cytological specimen is important in making a distinction between MPC and mucinous carcinoma. They share some features on cytology and MRI (ring-enhancement) but have different prognoses and involve different approaches for obtaining histological specimens for neoadjuvant therapy. The reason for the different approaches for obtaining the histological specimens is that tumor cells usually distribute peripherally in MPC in contrast to the relatively uniform distribution of mucinous carcinoma. Therefore, it would be helpful if the diagnosis of MPC can be suspected by examination of the cytological specimen.

  12. Quantifying matrix product state

    NASA Astrophysics Data System (ADS)

    Bhatia, Amandeep Singh; Kumar, Ajay

    2018-03-01

    Motivated by the concept of quantum finite-state machines, we have investigated their relation with matrix product state of quantum spin systems. Matrix product states play a crucial role in the context of quantum information processing and are considered as a valuable asset for quantum information and communication purpose. It is an effective way to represent states of entangled systems. In this paper, we have designed quantum finite-state machines of one-dimensional matrix product state representations for quantum spin systems.

  13. Effect of spaceflight on the extracellular matrix of skeletal muscle after a crush injury

    NASA Technical Reports Server (NTRS)

    Stauber, W. T.; Fritz, V. K.; Burkovskaia, T. E.; Il'ina-Kakueva, E. I.

    1992-01-01

    The organization and composition of the extracellular matrix were studied in the crush-injured gastrocnemius muscle of rats subjected to 0 G. After 14 days of flight on Cosmos 2044, the gastrocnemius muscle was removed and evaluated by histochemical and immunohistochemical techniques from the five injured flight rodents and various earth-based treatment groups. In general, the repair process was similar in all injured muscle samples with regard to the organization of the extracellular matrix and myofibers. Small and large myofibers were present within an expanded extracellular matrix, indicative of myogenesis and muscle regeneration. In the tail-suspended animals, a more complete repair was observed with nonenlarged area of nonmuscle cells or matrix material visible. In contrast, the muscle samples from the flight animals were less well organized and contained more macrophages and blood vessels in the repair region, indicative of a delayed repair process, but did not demonstrate any chronic inflammation. Myofiber repair did vary in muscles from the different groups, being slowest in the flight animals and most complete in the tail-suspended ones.

  14. Optical matrix-matrix multiplication method demonstrated by the use of a multifocus hololens

    NASA Technical Reports Server (NTRS)

    Liu, H. K.; Liang, Y.-Z.

    1984-01-01

    A method of optical matrix-matrix multiplication is presented. The feasibility of the method is also experimentally demonstrated by the use of a dichromated-gelatin multifocus holographic lens (hololens). With the specific values of matrices chosen, the average percentage error between the theoretical and experimental data of the elements of the output matrix of the multiplication of some specific pairs of 3 x 3 matrices is 0.4 percent, which corresponds to an 8-bit accuracy.

  15. Hacking the Matrix.

    PubMed

    Czerwinski, Michael; Spence, Jason R

    2017-01-05

    Recently in Nature, Gjorevski et al. (2016) describe a fully defined synthetic hydrogel that mimics the extracellular matrix to support in vitro growth of intestinal stem cells and organoids. The hydrogel allows exquisite control over the chemical and physical in vitro niche and enables identification of regulatory properties of the matrix. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Storm water runoff concentration matrix for urban areas.

    PubMed

    Göbel, P; Dierkes, C; Coldewey, W G

    2007-04-01

    The infrastructure (roads, sidewalk, commercial and residential structures) added during the land development and urbanisation process is designed to collect precipitation and convey it out of the watershed, typically in existing surface water channels, such as streams and rivers. The quality of surface water, seepage water and ground water is influenced by pollutants that collect on impervious surfaces and that are carried by urban storm water runoff. Heavy metals, e.g. lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), polycyclic aromatic hydrocarbons (PAH), mineral oil hydrocarbons (MOH) and readily soluble salts in runoff, contribute to the degradation of water. An intensive literature search on the distribution and concentration of the surface-dependent runoff water has been compiled. Concentration variations of several pollutants derived from different surfaces have been averaged. More than 300 references providing about 1300 data for different pollutants culminate in a representative concentration matrix consisting of medians and extreme values. This matrix can be applied to long-term valuations and numerical modelling of storm water treatment facilities.

  17. Scale-Dependent Fracture-Matrix Interactions And Their Impact on Radionuclide Transport - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detwiler, Russell

    Matrix diffusion and adsorption within a rock matrix are widely regarded as important mechanisms for retarding the transport of radionuclides and other solutes in fractured rock (e.g., Neretnieks, 1980; Tang et al., 1981; Maloszewski and Zuber, 1985; Novakowski and Lapcevic, 1994; Jardine et al., 1999; Zhou and Xie, 2003; Reimus et al., 2003a,b). When remediation options are being evaluated for old sources of contamination, where a large fraction of contaminants reside within the rock matrix, slow diffusion out of the matrix greatly increases the difficulty and timeframe of remediation. Estimating the rates of solute exchange between fractures and the adjacentmore » rock matrix is a critical factor in quantifying immobilization and/or remobilization of DOE-relevant contaminants within the subsurface. In principle, the most rigorous approach to modeling solute transport with fracture-matrix interaction would be based on local-scale coupled advection-diffusion/dispersion equations for the rock matrix and in discrete fractures that comprise the fracture network (Discrete Fracture Network and Matrix approach, hereinafter referred to as DFNM approach), fully resolving aperture variability in fractures and matrix property heterogeneity. However, such approaches are computationally demanding, and thus, many predictive models rely upon simplified models. These models typically idealize fracture rock masses as a single fracture or system of parallel fractures interacting with slabs of porous matrix or as a mobile-immobile or multi-rate mass transfer system. These idealizations provide tractable approaches for interpreting tracer tests and predicting contaminant mobility, but rely upon a fitted effective matrix diffusivity or mass-transfer coefficients. However, because these fitted parameters are based upon simplified conceptual models, their effectiveness at predicting long-term transport processes remains uncertain. Evidence of scale dependence of effective matrix

  18. The cell clone ecology hypothesis and the cell fusion model of cancer progression and metastasis (II): three pathways for spontaneous cell-cell fusion and escape from the intercellular matrix.

    PubMed

    Parris, George

    2006-01-01

    The two-stage initiation-progression model of cancer is widely accepted. Initiation appears to result most often from accumulation of damage to the DNA expressed as multiple mutations in the phenotype. Unsymmetrical chromosome segregation during mitosis of normal or mutated cells produces aneuploid cells and also contributes to the evolution of neoplasia. However, it has been pointed out (Parris GE. Med Hypotheses 2005;65:993-4 and 2006;66:76-83) that DNA damage and loss of chromosomes are much more likely to lead the mutant clones of cells to extinction than to successful expansion (e.g., an example of Muller's Ratchet). It was argued that aneuploid neoplasia represent new parasite species that successfully evolve to devour their hosts by incorporating sex-like redistribution of chromosomes through spontaneous or virus-catalyzed cell-cell fusion into their life-cycle. Spontaneous cell-cell fusion is generally blocked by the intercellular matrix to which the cells are bound via surface adhesion molecules (frequently glycoproteins, e.g., CD44). In order for progression of matrix-contained neoplasia toward clinically significant cancer to occur, the parasite cells must escape from the matrix and fuse. Release from the matrix also allows the parasite cells to invade adjacent tissues and metastasize to remote locations. Both invasion and metastasis likely involve fusion of the migrating parasite cells with fusion-prone blast cells. There are at least three pathways through which parasite cells can be liberated from the confining matrix: (i) Their adhesion molecules may be modified (e.g., by hyper-glycosylation) so that they can no longer grip the matrix. (ii) Their adhesion molecules or matrix may be saturated with other ligands (e.g., polyamines). (iii) Their adhesion molecules may be cleaved from the cell surface or the matrix itself may be cleaved (e.g., by MMPs or ADAMs). It is hypothesized that mobilization of parasite cells and cell-cell fusion go hand-in-hand in

  19. Estimation of the rotamerization constants of different conformations of N-acetylalanine: a theoretical and matrix-isolation FT-IR study.

    PubMed

    Boeckx, Bram; Maes, Guido

    2012-02-01

    The conformational landscape of N-acetylalanine has been investigated by a theoretical and matrix-isolation FT-IR study. Optimizations of N-acetylalanine structures has been conducted at successive higher levels of theory HF/3-21G, DFT(B3LYP)/6-31++G** and MP2/6-31++G**. This resulted in three stable conformations. Among these, one conformation contains an intramolecular H-bond. The vibrational properties of these conformations were calculated and used to identify the conformations in a cryogenic argon matrix. The intensities of some bands assigned to a particular conformation were used to estimate the rotamerization constants K(r12) and K(r13) for the equilibria NAA1 NAA2 and NAA1 NAA3, respectively. The obtained experimental values were in agreement with the theoretical predictions. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Scalable non-negative matrix tri-factorization.

    PubMed

    Čopar, Andrej; Žitnik, Marinka; Zupan, Blaž

    2017-01-01

    Matrix factorization is a well established pattern discovery tool that has seen numerous applications in biomedical data analytics, such as gene expression co-clustering, patient stratification, and gene-disease association mining. Matrix factorization learns a latent data model that takes a data matrix and transforms it into a latent feature space enabling generalization, noise removal and feature discovery. However, factorization algorithms are numerically intensive, and hence there is a pressing challenge to scale current algorithms to work with large datasets. Our focus in this paper is matrix tri-factorization, a popular method that is not limited by the assumption of standard matrix factorization about data residing in one latent space. Matrix tri-factorization solves this by inferring a separate latent space for each dimension in a data matrix, and a latent mapping of interactions between the inferred spaces, making the approach particularly suitable for biomedical data mining. We developed a block-wise approach for latent factor learning in matrix tri-factorization. The approach partitions a data matrix into disjoint submatrices that are treated independently and fed into a parallel factorization system. An appealing property of the proposed approach is its mathematical equivalence with serial matrix tri-factorization. In a study on large biomedical datasets we show that our approach scales well on multi-processor and multi-GPU architectures. On a four-GPU system we demonstrate that our approach can be more than 100-times faster than its single-processor counterpart. A general approach for scaling non-negative matrix tri-factorization is proposed. The approach is especially useful parallel matrix factorization implemented in a multi-GPU environment. We expect the new approach will be useful in emerging procedures for latent factor analysis, notably for data integration, where many large data matrices need to be collectively factorized.

  1. Characteristics of Alcian-blue Dye Adsorption of Natural Biofilm Matrix

    NASA Astrophysics Data System (ADS)

    Kurniawan, A.; Yamamoto, T.; Sukandar; Guntur

    2018-01-01

    In this study, natural biofilm matrices formed on stones have been used for the adsorption of Alcian blue dye. Alcian blue is a member of polyvalent basic dyes that largely used from laboratory until industrial dying purposes. The adsorption of the dye onto the biofilm matrix has been carried out at different experimental conditions such as adsorption isotherm and kinetic of adsorption. The electric charge properties of biofilm matrix and its changes related to the adsorption of Alcian blue have been also investigated. Moreover, the results of Alcian blue adsorption to the biofilm were compared to those onto the acidic and neutral resin. The kinetics of adsorption result showed that the adsorption of the Alcian blue dye reached to a maximum adsorption amount within 60 minutes. The adsorption amount of Alcian blue to biofilm increased monotonously, and the maximum adsorption amount was greater compared to the resins. On the contrary, Alcian blue did not attach to the neutral resin having no electric charge. It seems that Alcian blue attached to the acidic resins due to electrostatic attractive force, and the same seems to be the case for adsorption of Alcian blue to biofilm. The adsorption of Alcian blue to the biofilm and acidic resins fitted to Langmuir type indicates that the binding of Alcian blue to the biofilm and acidic resins occurred in a monolayer like form. The maximum adsorption amount of Alcian blue on the biofilm (0.24 mmol/dry-g) was greater than those of acidic resin (0.025 mmol/dry-g). This indicates that the biofilm has many more sites for Alcian blue attachment than acidic resins. According to the result of this study, the biofilm matrix can be a good adsorbent for dye such as Alcian blue or other dyes that causing hazards in nature.

  2. Determination of trace elements in dolomite and gypsum by atomic absorption spectrometry: overcoming the matrix interference by flotation separation

    NASA Astrophysics Data System (ADS)

    Stafilov, Trajče; Zendelovska, Dragica; Pavlovska, Gorica; Čundeva, Katarina

    2002-05-01

    The interferences of Ca and Mg as matrix elements in dolomite and gypsum on Ag, Cd, Cr, Mn, Tl and Zn absorbances during their electrothermal atomic absorption spectrometric (ETAAS) determination are investigated. The results reveal that Ca and Mg do not interfere on Zn and Mn, tend to decrease absorbances of Ag, Cd and Cr, while Tl suffers the most significant influence. A flotation separation method is proposed to eliminate matrix interferences. Hydrated iron(III) oxide, Fe 2O 3· xH 2O, and iron(III) hexamethylenedithiocarbamate, Fe(HMDTC) 3, are applied as flotation collectors. The influence of hydrophobic dithiocarbamate anion, HMDTC, on flotation recoveries of each analyte is studied. The most suitable concentrations of dolomite and gypsum solutions for flotation are determined. To avoid flotation suppression due to the reaction of Ca 2+ and Mg 2+ with surfactant ions, a fit foaming agent was selected. The elements present in dolomite and gypsum as traces have been analyzed by ETAAS. Their ETAAS limits of detection following flotation are found to be 0.021 μg·g -1 for Ag, 0.019 μg·g -1 for Cd, 0.014 μg·g -1 for Cr and 0.11 μg·g -1 for Tl. The determination of Mn and Zn can be performed by flame AAS (FAAS). The limit of detection for Mn is 1.5 μg·g -1, while for Zn 0.8 μg·g -1.

  3. Interface modification during oxidation of a glass-ceramic matrix/SiC fibre composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, A.M.; Martin-Meizoso, A.; Plucknett, K.P.

    Oxidation heat treatments between 375{degrees}C and 600{degrees}C for 100 hours in air, have been performed on the calcium aluminosilicate glass-ceramic matrix/SiC fibre reinforced composite CAS/Nicalon (manufactured by Corning, USA). Using a commercial nano-indentation system to perform fibre push-down tests, the fibre-matrix interfacial debond fracture surface energy (G{sub i}) and frictional shear stress ({tau}) have been determined. Modification of interface properties, compared to the as-fabricated material, was observed at heat treatment temperatures as low as 375{degrees}C, where a significant drop in G{sub i} and an increase in {tau} were recorded. With 450{degrees}C, 525{degrees}C and 600{degrees}C heat treatments, an increase in G{submore » i} but a dramatic increase in {tau} were recorded. Under four-point flexure testing, the as fabricated and the 375{degrees}C heat treated materials displayed tough, composite behaviour with extensive fibre pull out, but at {ge}450{degrees}C, brittle failure with minimal fibre pull out, was observed. This transition from tough mechanical response to one of brittleness is due to the large increase in {tau} reducing fibre pull out to a minimum and therefore reducing the total required work of fracture. The large increases in {tau} and G{sub i} have been attributed to the oxidative removal of the lubricating, carbon interface and the compressive residual stresses across the interface.« less

  4. Interface modification during oxidation of a glass-ceramic matrix/SiC fibre composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, A.M.; Martin-Meizoso, A.; Plucknett, K.P.

    Oxidation heat treatments between 375{degrees}C and 600{degrees}C for 100 hours in air, have been performed on the calcium aluminosilicate glass-ceramic matrix/SiC fibre reinforced composite CAS/Nicalon (manufactured by Coming, USA). Using a commercial nano-indentation system to perform fibre push-down tests, the fibre-matrix interfacial debond fracture surface energy (G{sub i}) and frictional shear stress ({tau}) have been determined. Modification of interface properties, compared to the as fabricated material, was observed at heat treatment temperatures as low as 375{degrees}C, where a significant drop in G{sub i} and an increase in {tau} were recorded. With 450{degrees}C, 525{degrees}C and 600{degrees}C heat treatments, an increase inmore » G{sub i} but a dramatic increase in {tau} were recorded. Under four-point flexure testing, the as fabricated and the 375{degrees}C heat treated materials displayed tough, composite behaviour with extensive fibre pull out, but at {le}450{degrees}C, brittle failure with minimal fibre pull out, was observed. This transition from tough mechanical response to one of brittleness is due to the large increase in {tau} reducing fibre pull out to a minimum and therefore reducing the total required work of fracture. The large increases in {tau} and G{sub i} have been attributed to the oxidative removal of the lubricating, carbon interface and the compressive residual stresses across the interface.« less

  5. Impact of the -675 4G/5G polymorphism of the plasminogen activator inhibitor-1 gene on childhood IgA nephropathy

    PubMed Central

    HAN, SU-RYUN; KIM, CHEON-JONG; LEE, BYUNG-CHEOL

    2012-01-01

    Plasminogen activator inhibitor-1 (PAI-1) is an important regulator of the fibrinolytic pathway and extracellular matrix (ECM) turnover. The -675 4G/5G polymorphism in the PAI-1 promoter is associated with altered PAI-1 transcription, suggesting that this polymorphism may be a candidate risk factor for diseases characterized by ECM accumulation, such as immunoglobulin A nephropathy (IgAN) and mesangial proliferative glomerulonephritis (MesPGN). We genotyped childhood patients with biopsy-confirmed IgAN (n=111) and MesPGN (n=47), and healthy control subjects (n=230) for the -675 4G/5G PAI-1 polymorphism by polymerase chain reaction-restriction fragment length polymorphism methods. The distribution of the 4G/4G (27.9%), 4G/5G (45.1%) and 5G/5G (27.0%) genotypes in IgAN patients was significantly different from the healthy controls (32.2, 54.3 and 13.5%, respectively) (p=0.0092). There was no significant difference in the genotype distributions of the 4G/5G polymorphism between MesPGN patients and the healthy controls. Regarding the impact of the polymorphism on IgAN, the 4G/4G genotype was markedly increased in patients with proteinuria (≥1,000 mg/day) and/or hypertension when compared to patients without proteinuria and hypertension (OR=5.23, 95% CI 1.34–20.38, P=0.0183). These findings indicate that the PAI-1 gene polymorphism may affect the susceptibility of childhood IgAN. PMID:22969955

  6. Effect of Matrix Multicracking on the Hysteresis Loops of Carbon-Fiber-Reinforced Cross-Ply Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Li, L. B.

    2017-01-01

    The effect of matrix multicracking on the stress-strain hysteresis loops of cross-ply C/SiC ceramic-matrix composites (CMCs) under cyclic loading/unloading was investigated. When matrix multicracking and fiber/matrix interface debonding occur in the 0° plies, fiber slipping relative to the matrix in the debonded region of interface is the mainly reason for occurrence of the loops. The interfacial slip lengths, i.e., the debonded lengths of interface are determined, with consideration of matrix multicracking in the 90° and 0° plies, by using the fracture mechanics approach. The effects of peak stress, fiber volume content, fiber/matrix interfacial shear stress, and number of cycles on the hysteresis loops are analyzed. The stress-strain hysteresis loops of cross-ply C/SiC composites corresponding to different peak stresses and numbers of cycles are predicted.

  7. Drawing a different picture with pencil lead as matrix-assisted laser desorption/ionization matrix for fullerene derivatives.

    PubMed

    Nye, Leanne C; Hungerbühler, Hartmut; Drewello, Thomas

    2018-02-01

    Inspired by reports on the use of pencil lead as a matrix-assisted laser desorption/ionization matrix, paving the way towards matrix-free matrix-assisted laser desorption/ionization, the present investigation evaluates its usage with organic fullerene derivatives. Currently, this class of compounds is best analysed using the electron transfer matrix trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene] malononitrile (DCTB), which was employed as the standard here. The suitability of pencil lead was additionally compared to direct (i.e. no matrix) laser desorption/ionization-mass spectrometry. The use of (DCTB) was identified as the by far gentler method, producing spectra with abundant molecular ion signals and much reduced fragmentation. Analytically, pencil lead was found to be ineffective as a matrix, however, appears to be an extremely easy and inexpensive method for producing sodium and potassium adducts.

  8. Conditional random matrix ensembles and the stability of dynamical systems

    NASA Astrophysics Data System (ADS)

    Kirk, Paul; Rolando, Delphine M. Y.; MacLean, Adam L.; Stumpf, Michael P. H.

    2015-08-01

    Random matrix theory (RMT) has found applications throughout physics and applied mathematics, in subject areas as diverse as communications networks, population dynamics, neuroscience, and models of the banking system. Many of these analyses exploit elegant analytical results, particularly the circular law and its extensions. In order to apply these results, assumptions must be made about the distribution of matrix elements. Here we demonstrate that the choice of matrix distribution is crucial. In particular, adopting an unrealistic matrix distribution for the sake of analytical tractability is liable to lead to misleading conclusions. We focus on the application of RMT to the long-standing, and at times fractious, ‘diversity-stability debate’, which is concerned with establishing whether large complex systems are likely to be stable. Early work (and subsequent elaborations) brought RMT to bear on the debate by modelling the entries of a system’s Jacobian matrix as independent and identically distributed (i.i.d.) random variables. These analyses were successful in yielding general results that were not tied to any specific system, but relied upon a restrictive i.i.d. assumption. Other studies took an opposing approach, seeking to elucidate general principles of stability through the analysis of specific systems. Here we develop a statistical framework that reconciles these two contrasting approaches. We use a range of illustrative dynamical systems examples to demonstrate that: (i) stability probability cannot be summarily deduced from any single property of the system (e.g. its diversity); and (ii) our assessment of stability depends on adequately capturing the details of the systems analysed. Failing to condition on the structure of dynamical systems will skew our analysis and can, even for very small systems, result in an unnecessarily pessimistic diagnosis of their stability.

  9. Grape seed extracts inhibit dentin matrix degradation by MMP-3

    PubMed Central

    Khaddam, Mayssam; Salmon, Benjamin; Le Denmat, Dominique; Tjaderhane, Leo; Menashi, Suzanne; Chaussain, Catherine; Rochefort, Gaël Y.; Boukpessi, Tchilalo

    2014-01-01

    Since Matrix metalloproteinases (MMPs) have been suggested to contribute to dentin caries progression, the hypothesis that MMP inhibition would affect the progression of dentin caries is clinically relevant. Grape seed extracts (GSE) have been previously reported to be natural inhibitors of MMPs. Objective: To evaluate the capacity of a GSE mouthrinse to prevent the degradation of demineralized dentin matrix by MMP-3 (stromelysin-1). Materials and Methods: Standardized blocks of dentin obtained from sound permanent teeth extracted for orthodontic reasons were demineralized with Ethylenediaminetetraacetic acid (EDTA) and pretreated either with (A) GSE (0.2% w/v), (B) amine fluoride (AmF) (20% w/v), (C) a mouthrinse which contains both, (D) placebo, (E) sodium fluoride (0.15 mg.ml−1), (F) PBS, (G) Chlorhexidine digluconate (CHX), or (H) zinc chloride (ZnCl2). The dentin blocks were then incubated with activated recombinant MMP-3. The supernatants were analyzed by Western Blot for several dentin matrix proteins known to be MMP-3 substrate. In parallel, scanning electron microscopy (SEM) was performed on resin replica of the dentin blocks. Results: Western blot analysis of the supernatants revealed that MMP-3 released from the dentin matrix small proteoglycans (decorin and biglycan) and dentin sialoprotein (DSP) in the AmF, sodium fluoride, PBS and placebo pretreated groups, but not in the GSE and mouthrinse pretreated groups. SEM examination of resin replica showed that the mouthrinse and its active components not only had an anti-MMP action but also modified the dentin surface accessibility. Conclusion: This study shows that GSE either alone or combined with AmF as in the evaluated mouthrinse limits dentin matrix degradation. This association may be promising to prevent the progression of caries within dentin. However, the procedure should be adapted to clinically relevant durations. PMID:25400590

  10. Relationships Between Abrasive Wear, Hardness, and Surface Grinding Characteristics of Titanium-Based Metal Matrix Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blau, Peter Julian; Jolly, Brian C

    2009-01-01

    The objective of this work was to support the development of grinding models for titanium metal-matrix composites (MMCs) by investigating possible relationships between their indentation hardness, low-stress belt abrasion, high-stress belt abrasion, and the surface grinding characteristics. Three Ti-based particulate composites were tested and compared with the popular titanium alloy Ti-6Al-4V. The three composites were a Ti-6Al-4V-based MMC with 5% TiB{sub 2} particles, a Ti-6Al-4V MMC with 10% TiC particles, and a Ti-6Al-4V/Ti-7.5%W binary alloy matrix that contained 7.5% TiC particles. Two types of belt abrasion tests were used: (a) a modified ASTM G164 low-stress loop abrasion test, and (b)more » a higher-stress test developed to quantify the grindability of ceramics. Results were correlated with G-ratios (ratio of stock removed to abrasives consumed) obtained from an instrumented surface grinder. Brinell hardness correlated better with abrasion characteristics than microindentation or scratch hardness. Wear volumes from low-stress and high-stress abrasive belt tests were related by a second-degree polynomial. Grindability numbers correlated with hard particle content but were also matrix-dependent.« less

  11. PAI-1 mRNA expression and plasma level in rheumatoid arthritis: relationship with 4G/5G PAI-1 polymorphism.

    PubMed

    Muñoz-Valle, José Francisco; Ruiz-Quezada, Sandra Luz; Oregón-Romero, Edith; Navarro-Hernández, Rosa Elena; Castañeda-Saucedo, Eduardo; De la Cruz-Mosso, Ulises; Illades-Aguiar, Berenice; Leyva-Vázquez, Marco Antonio; Castro-Alarcón, Natividad; Parra-Rojas, Isela

    2012-12-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease affecting the synovial membrane, cartilage and bone. PAI-1 is a key regulator of the fibrinolytic system through which plasminogen is converted to plasmin. The plasmin activates the matrix metalloproteinase system, which is closely related with the joint damage and bone destruction in RA. The aim of this study was to investigate the relationship between 4G/5G PAI-1 polymorphism with mRNA expression and PAI-1 plasma protein levels in RA patients. 113 RA patients and 123 healthy subjects (HS) were included in the study. The 4G/5G PAI-1 polymorphism was determined by polymerase chain reaction-restriction fragment length polymorphism method; the PAI-1 mRNA expression was determined by real-time PCR; and the soluble PAI-1 (sPAI-1) levels were quantified using an ELISA kit. No significant differences in the genotype and allele frequencies of 4G/5G PAI-1 polymorphism were found between RA patients and HS. However, the 5G/5G genotype was the most frequent in both studied groups: RA (42%) and HS (44%). PAI-1 mRNA expression was slightly increased (0.67 fold) in RA patients with respect to HS (P = 0.0001). In addition, in RA patients, the 4G/4G genotype carriers showed increased PAI-1 mRNA expression (3.82 fold) versus 4G/5G and 5G/5G genotypes (P = 0.0001), whereas the sPAI-1 plasma levels did not show significant differences. Our results indicate that the 4G/5G PAI-1 polymorphism is not a marker of susceptibility in the Western Mexico. However, the 4G/4G genotype is associated with high PAI-1 mRNA expression but not with the sPAI-1 levels in RA patients.

  12. On the Matrix Exponential Function

    ERIC Educational Resources Information Center

    Hou, Shui-Hung; Hou, Edwin; Pang, Wan-Kai

    2006-01-01

    A novel and simple formula for computing the matrix exponential function is presented. Specifically, it can be used to derive explicit formulas for the matrix exponential of a general matrix A satisfying p(A) = 0 for a polynomial p(s). It is ready for use in a classroom and suitable for both hand as well as symbolic computation.

  13. Matrix suppression as a guideline for reliable quantification of peptides by matrix-assisted laser desorption ionization.

    PubMed

    Ahn, Sung Hee; Bae, Yong Jin; Moon, Jeong Hee; Kim, Myung Soo

    2013-09-17

    We propose to divide matrix suppression in matrix-assisted laser desorption ionization into two parts, normal and anomalous. In quantification of peptides, the normal effect can be accounted for by constructing the calibration curve in the form of peptide-to-matrix ion abundance ratio versus concentration. The anomalous effect forbids reliable quantification and is noticeable when matrix suppression is larger than 70%. With this 70% rule, matrix suppression becomes a guideline for reliable quantification, rather than a nuisance. A peptide in a complex mixture can be quantified even in the presence of large amounts of contaminants, as long as matrix suppression is below 70%. The theoretical basis for the quantification method using a peptide as an internal standard is presented together with its weaknesses. A systematic method to improve quantification of high concentration analytes has also been developed.

  14. The diversity of shell matrix proteins: genome-wide investigation of the pearl oyster, Pinctada fucata.

    PubMed

    Miyamoto, Hiroshi; Endo, Hirotoshi; Hashimoto, Naoki; Limura, Kurin; Isowa, Yukinobu; Kinoshita, Shigeharu; Kotaki, Tomohiro; Masaoka, Tetsuji; Miki, Takumi; Nakayama, Seiji; Nogawa, Chihiro; Notazawa, Atsuto; Ohmori, Fumito; Sarashina, Isao; Suzuki, Michio; Takagi, Ryousuke; Takahashi, Jun; Takeuchi, Takeshi; Yokoo, Naoki; Satoh, Nori; Toyohara, Haruhiko; Miyashita, Tomoyuki; Wada, Hiroshi; Samata, Tetsuro; Endo, Kazuyoshi; Nagasawa, Hiromichi; Asakawa, Shuichi; Watabe, Shugo

    2013-10-01

    In molluscs, shell matrix proteins are associated with biomineralization, a biologically controlled process that involves nucleation and growth of calcium carbonate crystals. Identification and characterization of shell matrix proteins are important for better understanding of the adaptive radiation of a large variety of molluscs. We searched the draft genome sequence of the pearl oyster Pinctada fucata and annotated 30 different kinds of shell matrix proteins. Of these, we could identified Perlucin, ependymin-related protein and SPARC as common genes shared by bivalves and gastropods; however, most gastropod shell matrix proteins were not found in the P. fucata genome. Glycinerich proteins were conserved in the genus Pinctada. Another important finding with regard to these annotated genes was that numerous shell matrix proteins are encoded by more than one gene; e.g., three ACCBP-like proteins, three CaLPs, five chitin synthase-like proteins, two N16 proteins (pearlins), 10 N19 proteins, two nacreins, four Pifs, nine shematrins, two prismalin-14 proteins, and 21 tyrosinases. This diversity of shell matrix proteins may be implicated in the morphological diversity of mollusc shells. The annotated genes reported here can be searched in P. fucata gene models version 1.1 and genome assembly version 1.0 ( http://marinegenomics.oist.jp/pinctada_fucata ). These genes should provide a useful resource for studies of the genetic basis of biomineralization and evaluation of the role of shell matrix proteins as an evolutionary toolkit among the molluscs.

  15. Analysis of Delamination Growth from Matrix Cracks in Laminates Subjected to Bending Loads

    NASA Technical Reports Server (NTRS)

    Murri, G. B.; Guynn, E. G.

    1986-01-01

    A major source of delamination damage in laminated composite materials is from low-velocity impact. In thin composite laminates under point loads, matrix cracks develop first in the plies, and delaminations then grow from these cracks at the ply interfaces. The purpose of this study was to quantify the combined effects of bending and transverse shear loads on delamination initiation from matrix cracks. Graphite-epoxy laminates with 90 deg. plies on the outside were used to provide a two-dimensional simulation of the damage due to low-velocity impact. Three plate bending problems were considered: a 4-point bending, 3-point bending, and an end-clamped center-loaded plate. Under bending, a matrix crack will form on the tension side of the laminate, through the outer 90 deg. plies and parallel to the fibers. Delaminations will then grow in the interface between the cracked 90 deg. ply and the next adjacent ply. Laminate plate theory was used to derive simple equations relating the total strain energy release rate, G, associated with the delamination growth from a 90 deg. ply crack to the applied bending load and laminate stiffness properties. Three different lay-ups were tested and results compared. Test results verified that the delamination always formed at the interface between the cracked 90 deg. ply and the next adjacent ply. Calculated values for total G sub c from the analysis showed good agreement for all configurations. The analysis was able to predict the delamination onset load for the cases considered. The result indicated that the opening mode component (Mode I) for delamination growth from a matrix crack may be much larger than the component due to interlaminar shear (Mode II).

  16. Fundamental Fermions (e.g. Neutrinos) as Topological Objects

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Gerald L.

    1999-05-01

    A new internal ``macroscopic'' description of fundamental fermions based on a matrix-generalization (F) of the scalar fermion-number f, predicts that only three families of quarks and leptons, and their associated neutrinos (ν_e, ν_μ and ν_τ), exist [1]. Moreover, this description places important phtopological constraints on neutrino mixtures [2]. With respect to F, the topology of the νe (ν_μ or ν_τ) is that of a cylinder (Möbius strip). Assuming that topology-changing neutrino-neutrino transitions are suppressed (e.g., one cannot continuously deform a donut into a sphere), while topology-maintaining transitions are relatively enhanced, one may have an explanation for short-distance observations of (nearly) maximal ν_μ-ν_τ mixing [3]. To test this idea, simple topological arguments were used to deduce a matrix describing long-distance neutrino mixtures, which is phidentical to that proposed by Georgi and Glashow on different grounds [4]. Experimental confirmation of this prediction would support the new description, which requires the νe and (ν_μ or ν_τ) to start ``life'' as topologically-distinct quantum objects.l [1] http://www.amazon.com/exec/obidos/ISBN=0965569500, [2] G. L. Fitzpatrick, aps1999feb12\\underbar001 at http://publish.aps.org/eprint/, [3] hep-ex/981001, [4] hep-ph/9808293, p. 5, Eq. 20.

  17. Comparison of experimental methods for estimating matrix diffusion coefficients for contaminant transport modeling

    NASA Astrophysics Data System (ADS)

    Telfeyan, Katherine; Ware, S. Doug; Reimus, Paul W.; Birdsell, Kay H.

    2018-02-01

    Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating effective matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of effective matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than effective matrix diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields effective matrix diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.

  18. Small intestinal submucosa extracellular matrix (CorMatrix®) in cardiovascular surgery: a systematic review

    PubMed Central

    Mosala Nezhad, Zahra; Poncelet, Alain; de Kerchove, Laurent; Gianello, Pierre; Fervaille, Caroline; El Khoury, Gebrine

    2016-01-01

    Extracellular matrix (ECM) derived from small intestinal submucosa (SIS) is widely used in clinical applications as a scaffold for tissue repair. Recently, CorMatrix® porcine SIS-ECM (CorMatrix Cardiovascular, Inc., Roswell, GA, USA) has gained popularity for ‘next-generation’ cardiovascular tissue engineering due to its ease of use, remodelling properties, lack of immunogenicity, absorbability and potential to promote native tissue growth. Here, we provide an overview of the biology of porcine SIS-ECM and systematically review the preclinical and clinical literature on its use in cardiovascular surgery. CorMatrix® has been used in a variety of cardiovascular surgical applications, and since it is the most widely used SIS-ECM, this material is the focus of this review. Since CorMatrix® is a relatively new product for cardiovascular surgery, some clinical and preclinical studies published lack systematic reporting of functional and pathological findings in sufficient numbers of subjects. There are also emerging reports to suggest that, contrary to expectations, an undesirable inflammatory response may occur in CorMatrix® implants in humans and longer-term outcomes at particular sites, such as the heart valves, may be suboptimal. Large-scale clinical studies are needed driven by robust protocols that aim to quantify the pathological process of tissue repair. PMID:26912574

  19. The Astrobiology Matrix and the "Drake Matrix" in Education

    NASA Technical Reports Server (NTRS)

    Mizser, A.; Kereszturi, A.

    2003-01-01

    We organized astrobiology lectures in the Eotvos Lorand University of Sciences and the Polaris Observatory in 2002. We present here the "Drake matrix" for the comparison of the astrobiological potential of different bodies [1], and astrobiology matrix for the visualization of the interdisciplinary connections between different fields of astrobiology. Conclusion: In Hungary it is difficult to integrate astrobiology in the education system but the great advantage is that it can connect different scientific fields and improve the view of students. We would like to get in contact with persons and organizations who already have experience in the education of astrobiology.

  20. Anchoring Fe3O4 nanoparticles in a reduced graphene oxide aerogel matrix via polydopamine coating

    PubMed Central

    Mrówczyński, Radosław; Michalak, Natalia; Załęski, Karol; Matczak, Michał; Kempiński, Mateusz; Pietralik, Zuzanna; Lewandowski, Mikołaj; Jurga, Stefan; Stobiecki, Feliks

    2018-01-01

    Reduced graphene oxide–magnetite hybrid aerogels attract great interest thanks to their potential applications, e.g., as magnetic actuators. However, the tendency of magnetite particles to migrate within the matrix and, ultimately, escape from the aerogel structure, remains a technological challenge. In this article we show that coating magnetite particles with polydopamine anchors them on graphene oxide defects, immobilizing the particles in the matrix and, at the same time, improving the aerogel structure. Polydopamine coating does not affect the magnetic properties of magnetite particles, making the fabricated materials promising for industrial applications. PMID:29527434

  1. Effect of flaw size and temperature on the matrix cracking behavior of a brittle ceramic matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anandakumar, U.; Webb, J.E.; Singh, R.N.

    The matrix cracking behavior of a zircon matrix - uniaxial SCS 6 fiber composite was studied as a function of initial flaw size and temperature. The composites were fabricated by a tape casting and hot pressing technique. Surface flaws of controlled size were introduced using a vicker`s indenter. The composite samples were tested in three point flexure at three different temperatures to study the non steady state and steady state matrix cracking behavior. The composite samples exhibited steady state and non steady matrix cracking behavior at all temperatures. The steady state matrix cracking stress and steady state crack size increasedmore » with increasing temperature. The results of the study correlated well with the results predicted by the matrix cracking models.« less

  2. Synergistic Effects of Temperature and Oxidation on Matrix Cracking in Fiber-Reinforced Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2017-06-01

    In this paper, the synergistic effects of temperatrue and oxidation on matrix cracking in fiber-reinforced ceramic-matrix composites (CMCs) has been investigated using energy balance approach. The shear-lag model cooperated with damage models, i.e., the interface oxidation model, interface debonding model, fiber strength degradation model and fiber failure model, has been adopted to analyze microstress field in the composite. The relationships between matrix cracking stress, interface debonding and slipping, fiber fracture, oxidation temperatures and time have been established. The effects of fiber volume fraction, interface properties, fiber strength and oxidation temperatures on the evolution of matrix cracking stress versus oxidation time have been analyzed. The matrix cracking stresses of C/SiC composite with strong and weak interface bonding after unstressed oxidation at an elevated temperature of 700 °C in air condition have been predicted for different oxidation time.

  3. Omentin-1 prevents cartilage matrix destruction by regulating matrix metalloproteinases.

    PubMed

    Li, Zhigang; Liu, Baoyi; Zhao, Dewei; Wang, BenJie; Liu, Yupeng; Zhang, Yao; Li, Borui; Tian, Fengde

    2017-08-01

    Matrix metalloproteinases (MMPs) play a crucial role in the degradation of the extracellular matrix and pathological progression of osteoarthritis (OA). Omentin-1 is a newly identified anti-inflammatory adipokine. Little information regarding the protective effects of omentin-1 in OA has been reported before. In the current study, our results indicated that omentin-1 suppressed expression of MMP-1, MMP-3, and MMP-13 induced by the proinflammatory cytokine interleukin-1β (IL-1β) at both the mRNA and protein levels in human chondrocytes. Importantly, administration of omentin-1 abolished IL-1β-induced degradation of type II collagen (Col II) and aggrecan, the two major extracellular matrix components in articular cartilage, in a dose-dependent manner. Mechanistically, omentin-1 ameliorated the expression of interferon regulatory factor 1 (IRF-1) by blocking the JAK-2/STAT3 pathway. Our results indicate that omentin-1 may have a potential chondroprotective therapeutic capacity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Faces of matrix models

    NASA Astrophysics Data System (ADS)

    Morozov, A.

    2012-08-01

    Partition functions of eigenvalue matrix models possess a number of very different descriptions: as matrix integrals, as solutions to linear and nonlinear equations, as τ-functions of integrable hierarchies and as special-geometry prepotentials, as result of the action of W-operators and of various recursions on elementary input data, as gluing of certain elementary building blocks. All this explains the central role of such matrix models in modern mathematical physics: they provide the basic "special functions" to express the answers and relations between them, and they serve as a dream model of what one should try to achieve in any other field.

  5. Selective cytotoxicity of PAMAM G5 core–PAMAM G2.5 shell tecto-dendrimers on melanoma cells

    PubMed Central

    Schilrreff, Priscila; Mundiña-Weilenmann, Cecilia; Romero, Eder Lilia; Morilla, Maria Jose

    2012-01-01

    Background The controlled introduction of covalent linkages between dendrimer building blocks leads to polymers of higher architectural order known as tecto-dendrimers. Because of the few simple steps involved in their synthesis, tecto-dendrimers could expand the portfolio of structures beyond commercial dendrimers, due to the absence of synthetic drawbacks (large number of reaction steps, excessive monomer loading, and lengthy chromatographic separations) and structural constraints of high-generation dendrimers (reduction of good monodispersity and ideal dendritic construction due to de Gennes dense-packing phenomenon). However, the biomedical uses of tecto-dendrimers remain unexplored. In this work, after synthesizing saturated shell core–shell tecto-dendrimers using amine-terminated polyamidoamine (PAMAM) generation 5 (G5) as core and carboxyl-terminated PAMAM G2.5 as shell (G5G2.5 tecto-dendrimers), we surveyed for the first time the main features of their interaction with epithelial cells. Methods Structural characterization of G5G2.5 was performed by polyacrylamide gel electrophoresis, matrix-assisted laser desorption time-of-flight mass spectrometry, and microscopic techniques; their hydrodynamic size and Z-potential was also determined. Cellular uptake by human epidermal keratinocytes, colon adenocarcinoma, and epidermal melanoma (SK-Mel-28) cells was determined by flow cytometry. Cytotoxicity was determined by mitochondrial activity, lactate dehydrogenase release, glutathione depletion, and apoptosis/necrosis measurement. Results The resultant 60%–67% saturated shell, 87,000-dalton G5G2.5 (mean molecular weight) interacted with cells in a significantly different fashion in comparison to their building blocks and to its closest counterpart, PAMAM G6.5. After being actively taken up by epithelial cells, G5G2.5 caused cytotoxicity only on SK-Mel-28 cells, including depletion of intracellular glutathione and fast necrosis that was manifested above 5 μM G5

  6. Safety and immunogenicity of heterologous prime-boost immunization with viral-vectored malaria vaccines adjuvanted with Matrix-M™.

    PubMed

    Venkatraman, Navin; Anagnostou, Nicholas; Bliss, Carly; Bowyer, Georgina; Wright, Danny; Lövgren-Bengtsson, Karin; Roberts, Rachel; Poulton, Ian; Lawrie, Alison; Ewer, Katie; V S Hill, Adrian

    2017-10-27

    The use of viral vectors in heterologous prime-boost regimens to induce potent T cell responses in addition to humoral immunity is a promising vaccination strategy in the fight against malaria. We conducted an open-label, first-in-human, controlled Phase I study evaluating the safety and immunogenicity of Matrix-M adjuvanted vaccination with a chimpanzee adenovirus serotype 63 (ChAd63) prime followed by a modified vaccinia Ankara (MVA) boost eight weeks later, both encoding the malaria ME-TRAP antigenic sequence (a multiple epitope string fused to thrombospondin-related adhesion protein). Twenty-two healthy adults were vaccinated intramuscularly with either ChAd63-MVA ME-TRAP alone (n=6) or adjuvanted with 25μg (n=8) or 50μg (n=8) Matrix-M. Vaccinations appeared to be safe and generally well tolerated, with the majority of local and systemic adverse events being mild in nature. The addition of Matrix-M to the vaccine did not increase local reactogenicity; however, systemic adverse events were reported more frequently by volunteers who received adjuvanted vaccine in comparison to the control group. T cell ELISpot responses peaked at 7-days post boost vaccination with MVA ME-TRAP in all three groups. TRAP-specific IgG responses were highest at 28-days post boost with MVA ME-TRAP in all three groups. There were no differences in cellular and humoral immunogenicity at any of the time points between the control group and the adjuvanted groups. We demonstrate that Matrix-M can be safely used in combination with ChAd63-MVA ME-TRAP heterologous prime-boost immunization without any reduction in cellular or humoral immunogenicity. Clinical Trials Registration NCT01669512. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Neuroanatomy-based matrix-guided trimming protocol for the rat brain.

    PubMed

    Defazio, Rossella; Criado, Ana; Zantedeschi, Valentina; Scanziani, Eugenio

    2015-02-01

    Brain trimming through defined neuroanatomical landmarks is recommended to obtain consistent sections in rat toxicity studies. In this article, we describe a matrix-guided trimming protocol that uses channels to reproduce coronal levels of anatomical landmarks. Both setup phase and validation study were performed on Han Wistar male rats (Crl:WI(Han)), 10-week-old, with bodyweight of 298 ± 29 (SD) g, using a matrix (ASI-Instruments(®), Houston, TX) fitted for brains of rats with 200 to 400 g bodyweight. In the setup phase, we identified eight channels, that is, 6, 8, 10, 12, 14, 16, 19, and 21, matching the recommended landmarks midway to the optic chiasm, frontal pole, optic chiasm, infundibulum, mamillary bodies, midbrain, middle cerebellum, and posterior cerebellum, respectively. In the validation study, we trimmed the immersion-fixed brains of 60 rats using the selected channels to determine how consistently the channels reproduced anatomical landmarks. Percentage of success (i.e., presence of expected targets for each level) ranged from 89 to 100%. Where 100% success was not achieved, it was noted that the shift in brain trimming was toward the caudal pole. In conclusion, we developed and validated a trimming protocol for the rat brain that allow comparable extensiveness, homology, and relevance of coronal sections as the landmark-guided trimming with the advantage of being quickly learned by technicians. © 2014 by The Author(s).

  8. Compression and compaction properties of plasticised high molecular weight hydroxypropylmethylcellulose (HPMC) as a hydrophilic matrix carrier.

    PubMed

    Hardy, I J; Cook, W G; Melia, C D

    2006-03-27

    The compression and compaction properties of plasticised high molecular weight USP2208 HPMC were investigated with the aim of improving tablet formation in HPMC matrices. Experiments were conducted on binary polymer-plasticiser mixtures containing 17 wt.% plasticiser, and on a model hydrophilic matrix formulation. A selection of common plasticisers, propylene glycol (PG) glycerol (GLY), dibutyl sebacate (DBS) and triacetin (TRI), were chosen to provide a range of plasticisation efficiencies. T(g) values of binary mixtures determined by Dynamic Mechanical Thermal Analysis (DMTA) were in rank order PG>GLY>DBS>TRI>unplasticised HPMC. Mean yield pressure, strain rate sensitivity (SRS) and plastic compaction energy were measured during the compression process, and matrix properties were monitored by tensile strength and axial expansion post-compression. Compression of HPMC:PG binary mixtures resulted in a marked reduction in mean yield pressure and a significant increase in SRS, suggesting a classical plasticisation of HPMC analogous to that produced by water. The effect of PG was also reflected in matrix properties. At compression pressures below 70 MPa, compacts had greater tensile strength than those from native polymer, and over the range 35 and 70 MPa, lower plastic compaction values showed that less energy was required to produce the compacts. Axial expansion was also reduced. Above 70 MPa tensile strength was limited to 3 MPa. These results suggest a useful improvement of HPMC compaction and matrix properties by PG plasticisation, with lowering of T(g) resulting in improved deformation and internal bonding. These effects were also detectable in the model formulation containing a minimal polymer content for an HPMC matrix. Other plasticisers were largely ineffective, matrix strength was poor and axial expansion high. The hydrophobic plasticisers (DBS, TRI) reduced yield pressure substantially, but were poor plasticisers and showed compaction mechanisms that could

  9. Phase matrix induced symmetrics for multiple scattering using the matrix operator method

    NASA Technical Reports Server (NTRS)

    Hitzfelder, S. J.; Kattawar, G. W.

    1973-01-01

    Entirely rigorous proofs of the symmetries induced by the phase matrix into the reflection and transmission operators used in the matrix operator theory are given. Results are obtained for multiple scattering in both homogeneous and inhomogeneous atmospheres. These results will be useful to researchers using the method since large savings in computer time and storage are obtainable.

  10. Pulmonary immunity and extracellular matrix interactions.

    PubMed

    O'Dwyer, David N; Gurczynski, Stephen J; Moore, Bethany B

    2018-04-09

    The lung harbors a complex immune system composed of both innate and adaptive immune cells. Recognition of infection and injury by receptors on lung innate immune cells is crucial for generation of antigen-specific responses by adaptive immune cells. The extracellular matrix of the lung, comprising the interstitium and basement membrane, plays a key role in the regulation of these immune systems. The matrix consists of several hundred assembled proteins that interact to form a bioactive scaffold. This template, modified by enzymes, acts to facilitate cell function and differentiation and changes dynamically with age and lung disease. Herein, we explore relationships between innate and adaptive immunity and the lung extracellular matrix. We discuss the interactions between extracellular matrix proteins, including glycosaminoglycans, with prominent effects on innate immune signaling effectors such as toll-like receptors. We describe the relationship of extracellular matrix proteins with adaptive immunity and leukocyte migration to sites of injury within the lung. Further study of these interactions will lead to greater knowledge of the role of matrix biology in lung immunity. The development of novel therapies for acute and chronic lung disease is dependent on a comprehensive understanding of these complex matrix-immunity interactions. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  11. [Modern polymers in matrix tablets technology].

    PubMed

    Zimmer, Łukasz; Kasperek, Regina; Poleszak, Ewa

    2014-01-01

    Matrix tablets are the most popular method of oral drug administration, and polymeric materials have been used broadly in matrix formulations to modify and modulate drug release rate. The main goal of the system is to extend drug release profiles to maintain a constant in vivo plasma drug concentration and a consistent pharmacological effect. Polymeric matrix tablets offer a great potential as oral controlled drug delivery systems. Cellulose derivatives, like hydroxypropyl methylcellulose (HPMC) are often used as matrix formers. However, also other types of polymers can be used for this purpose including: Kollidon SR, acrylic acid polymers such as Eudragits and Carbopols. Nevertheless, polymers of natural origin like: carragens, chitosan and alginates widely used in the food and cosmetics industry are now coming to the fore of pharmaceutical research and are used in matrix tablets technology. Modern polymers allow to obtain matrix tablets by 3D printing, which enables to develop new formulation types. In this paper, the polymers used in matrix tablets technology and examples of their applications were described.

  12. Data-Driven Learning of Q-Matrix

    PubMed Central

    Liu, Jingchen; Xu, Gongjun; Ying, Zhiliang

    2013-01-01

    The recent surge of interests in cognitive assessment has led to developments of novel statistical models for diagnostic classification. Central to many such models is the well-known Q-matrix, which specifies the item–attribute relationships. This article proposes a data-driven approach to identification of the Q-matrix and estimation of related model parameters. A key ingredient is a flexible T-matrix that relates the Q-matrix to response patterns. The flexibility of the T-matrix allows the construction of a natural criterion function as well as a computationally amenable algorithm. Simulations results are presented to demonstrate usefulness and applicability of the proposed method. Extension to handling of the Q-matrix with partial information is presented. The proposed method also provides a platform on which important statistical issues, such as hypothesis testing and model selection, may be formally addressed. PMID:23926363

  13. Laser-induced emission spectroscopy of matrix-isolated carbon molecules: Experimental setup and new results on C3

    NASA Astrophysics Data System (ADS)

    Čermák, Ivo; Förderer, Markus; Čermáková, Iva; Kalhofer, Stefan; Stopka-Ebeler, Helmut; Monninger, Gerold; Krätschmer, Wolfgang

    1998-06-01

    We have studied small carbon molecules using a matrix-isolation technique. Our experimental setup is described in detail. The carbon clusters were produced by evaporating graphite and trapping the carbon-vapor molecules in solid argon, where molecular growth could be induced by controlled matrix annealing. To identify the produced molecules, absorption spectroscopy in the ultraviolet (UV)-visible and infrared (IR) spectral ranges was applied. Additional characterization of the excited and ground states of the molecules was obtained from emission and excitation spectra. The molecules were excited by a pulsed dye laser system and the emission spectra were recorded with a high-sensitivity photodiode-array spectrometer. We present our measurements on linear C3. The à 1Πu excited state of linear C3 was populated by the electronic transition à 1Πu←X˜ 1Σg+, and the corresponding excitation spectra of the C3 fluorescence (à 1Πu→X˜ 1Σg+) and phosphorescence (ã 3Πu→X˜ 1Σg+) were studied. Comparison of excitation and absorption spectra yielded information on site effects due to the matrix environment. Emission bands in the fluorescence and phosphorescence spectra up to vibrational energies of 8500 cm-1 could be observed. The radiation lifetime of the à 1Πu excited state of C3 in solid argon was found to be shorter than 10 ns. The phosphorescence transition ã 3Πu→X˜ 1Σg+ decays in about 10 ms and its rise indicates fast vibrational relaxation within the triplet system. Our data support a linear ground state geometry for C3 also in solid argon.

  14. A collagen-based scaffold delivering exogenous microrna-29B to modulate extracellular matrix remodeling.

    PubMed

    Monaghan, Michael; Browne, Shane; Schenke-Layland, Katja; Pandit, Abhay

    2014-04-01

    Directing appropriate extracellular matrix remodeling is a key aim of regenerative medicine strategies. Thus, antifibrotic interfering RNA (RNAi) therapy with exogenous microRNA (miR)-29B was proposed as a method to modulate extracellular matrix remodeling following cutaneous injury. It was hypothesized that delivery of miR-29B from a collagen scaffold will efficiently modulate the extracellular matrix remodeling response and reduce maladaptive remodeling such as aggressive deposition of collagen type I after injury. The release of RNA from the scaffold was assessed and its ability to silence collagen type I and collagen type III expression was evaluated in vitro. When primary fibroblasts were cultured with scaffolds doped with miR-29B, reduced levels of collagen type I and collagen type III mRNA expression were observed for up to 2 weeks of culture. When the scaffolds were applied to full thickness wounds in vivo, reduced wound contraction, improved collagen type III/I ratios and a significantly higher matrix metalloproteinase (MMP)-8: tissue inhibitor of metalloproteinase (TIMP)-1 ratio were detected when the scaffolds were functionalized with miR-29B. Furthermore, these effects were significantly influenced by the dose of miR-29B in the collagen scaffold (0.5 versus 5 μg). This study shows a potential of combining exogenous miRs with collagen scaffolds to improve extracellular matrix remodeling following injury.

  15. RSAT matrix-clustering: dynamic exploration and redundancy reduction of transcription factor binding motif collections

    PubMed Central

    Jaeger, Sébastien; Thieffry, Denis

    2017-01-01

    Abstract Transcription factor (TF) databases contain multitudes of binding motifs (TFBMs) from various sources, from which non-redundant collections are derived by manual curation. The advent of high-throughput methods stimulated the production of novel collections with increasing numbers of motifs. Meta-databases, built by merging these collections, contain redundant versions, because available tools are not suited to automatically identify and explore biologically relevant clusters among thousands of motifs. Motif discovery from genome-scale data sets (e.g. ChIP-seq) also produces redundant motifs, hampering the interpretation of results. We present matrix-clustering, a versatile tool that clusters similar TFBMs into multiple trees, and automatically creates non-redundant TFBM collections. A feature unique to matrix-clustering is its dynamic visualisation of aligned TFBMs, and its capability to simultaneously treat multiple collections from various sources. We demonstrate that matrix-clustering considerably simplifies the interpretation of combined results from multiple motif discovery tools, and highlights biologically relevant variations of similar motifs. We also ran a large-scale application to cluster ∼11 000 motifs from 24 entire databases, showing that matrix-clustering correctly groups motifs belonging to the same TF families, and drastically reduced motif redundancy. matrix-clustering is integrated within the RSAT suite (http://rsat.eu/), accessible through a user-friendly web interface or command-line for its integration in pipelines. PMID:28591841

  16. Fast polar decomposition of an arbitrary matrix

    NASA Technical Reports Server (NTRS)

    Higham, Nicholas J.; Schreiber, Robert S.

    1988-01-01

    The polar decomposition of an m x n matrix A of full rank, where m is greater than or equal to n, can be computed using a quadratically convergent algorithm. The algorithm is based on a Newton iteration involving a matrix inverse. With the use of a preliminary complete orthogonal decomposition the algorithm can be extended to arbitrary A. How to use the algorithm to compute the positive semi-definite square root of a Hermitian positive semi-definite matrix is described. A hybrid algorithm which adaptively switches from the matrix inversion based iteration to a matrix multiplication based iteration due to Kovarik, and to Bjorck and Bowie is formulated. The decision when to switch is made using a condition estimator. This matrix multiplication rich algorithm is shown to be more efficient on machines for which matrix multiplication can be executed 1.5 times faster than matrix inversion.

  17. Method of producing a hybrid matrix fiber composite

    DOEpatents

    Deteresa, Steven J [Livermore, CA; Lyon, Richard E [Absecon, NJ; Groves, Scott E [Brentwood, CA

    2006-03-28

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites comprised of two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  18. Optimized Projection Matrix for Compressive Sensing

    NASA Astrophysics Data System (ADS)

    Xu, Jianping; Pi, Yiming; Cao, Zongjie

    2010-12-01

    Compressive sensing (CS) is mainly concerned with low-coherence pairs, since the number of samples needed to recover the signal is proportional to the mutual coherence between projection matrix and sparsifying matrix. Until now, papers on CS always assume the projection matrix to be a random matrix. In this paper, aiming at minimizing the mutual coherence, a method is proposed to optimize the projection matrix. This method is based on equiangular tight frame (ETF) design because an ETF has minimum coherence. It is impossible to solve the problem exactly because of the complexity. Therefore, an alternating minimization type method is used to find a feasible solution. The optimally designed projection matrix can further reduce the necessary number of samples for recovery or improve the recovery accuracy. The proposed method demonstrates better performance than conventional optimization methods, which brings benefits to both basis pursuit and orthogonal matching pursuit.

  19. Contaminant transport in fractured rocks with significant matrix permeability, using natural fracture geometries

    NASA Astrophysics Data System (ADS)

    Odling, Noelle E.; Roden, Julie E.

    1997-09-01

    Some results from numerical models of flow and contaminant transport in fractured permeable rocks, where fractures are more conductive than rock matrix, are described. The 2D flow field in the fractured and permeable rock matrix is calculated using a finite difference, 'conductance mesh' method, and the contaminant transport is simulated by particle tracking methods using an advection-biased, random walk technique. The model is applied to simulated and naturally occurring fracture patterns. The simulated pattern is an en echelon array of unconnected fractures, as an example of a common, naturally occurring fracture geometry. Two natural fracture patterns are used: one of unconnected, sub-parallel fractures and one with oblique fracture sets which is well connected. Commonly occurring matrix permeability and fracture aperture values are chosen. The simulations show that the presence of fractures creates complex and heterogeneous flow fields and contaminant distribution in the permeable rock matrix. The modelling results have shown that some effects are non-intuitive and therefore difficult to foresee without the help of a model. With respect to contaminant transport rates and plume heterogeneity, it was found that fracture connectivity (crucial when the matrix is impermeable) can play a secondary role to fracture orientation and density. Connected fracture systems can produce smooth break-through curves of contaminants summed over, for example, a bore-hole length, whereas in detail the contaminant plume is spatially highly heterogeneous. Close to a constant-pressure boundary (e.g. an extraction bore-hole), flow and contaminants can be channelled by fractures. Thus observations at a bore-hole may suggest that contaminants are largely confined to the fracture system, when, in fact, significant contamination resides in the matrix.

  20. Comparison of experimental methods for estimating matrix diffusion coefficients for contaminant transport modeling

    DOE PAGES

    Telfeyan, Katherine Christina; Ware, Stuart Doug; Reimus, Paul William; ...

    2018-01-31

    Here, diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating effective matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of effective matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged frommore » 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than effective matrix diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields effective matrix diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.« less

  1. Comparison of experimental methods for estimating matrix diffusion coefficients for contaminant transport modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Telfeyan, Katherine Christina; Ware, Stuart Doug; Reimus, Paul William

    Here, diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating effective matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of effective matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged frommore » 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than effective matrix diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields effective matrix diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.« less

  2. The nuclear matrix prepared by amine modification

    PubMed Central

    Wan, Katherine M.; Nickerson, Jeffrey A.; Krockmalnic, Gabriela; Penman, Sheldon

    1999-01-01

    The nucleus is spatially ordered by attachments to a nonchromatin nuclear structure, the nuclear matrix. The nuclear matrix and chromatin are intimately connected and integrated structures, and so a major technical challenge in nuclear matrix research has been to remove chromatin while retaining a native nuclear matrix. Most methods for removing chromatin require first a nuclease digestion and then a salt extraction to remove cut chromatin. We have hypothesized that cut chromatin is held in place by charge interactions involving nucleosomal amino groups. We have tested this hypothesis by chemically modifying amino groups after nuclease digestion. By using this protocol, chromatin could be effectively removed at physiological ionic strength. We compared the ultrastructure and composition of this nuclear matrix preparation with the traditional high-salt nuclear matrix and with the third nuclear matrix preparation that we have developed from which chromatin is removed after extensive crosslinking. All three matrix preparations reveal internal nuclear matrix structures that are built on a network of branched filaments of about 10 nm diameter. That such different chromatin-removal protocols reveal similar principles of nuclear matrix construction increases our confidence that we are observing important architectural elements of the native structure in the living cell. PMID:9927671

  3. Photochemistry of formaldoxime−nitrous acid complexes in an argon matrix: identification of formaldoxime nitrite.

    PubMed

    Golec, Barbara; Bil, Andrzej; Mielke, Zofia

    2009-08-27

    We have studied the structure and photochemistry of the formaldoxime−nitrous acid system (CH2NOH−HONO) by help of FTIR matrix isolation spectroscopy and ab initio methods. The MP2/6-311++G(2d,2p) calculations show stability of six isomeric CH2NOH···HONO complexes. The FTIR spectra evidence formation of two hydrogen bonded complexes in an argon matrix whose structures are determined by comparison of the experimental spectra with the calculated ones for the six stable complexes. In the matrix there is present the most stable cyclic complex with two O−H···N bonds; a strong bond is formed between the OH group of HONO and the N atom of CH2NOH and the weaker one between the OH group of CH2NOH and the N atom of HONO. In the other complex present in the matrix the OH group of formaldoxime is attached to the OH group of HONO forming an O−H···O bond. The irradiation of the CH2NOH···HONO complexes with the filtered output of the mercury lamp (λ > 345 nm) leads to the formation of formaldoxime nitrite, CH2NONO, and its two isomeric complexes with water. The main product is the CH2NONO···H2O complex in which water is hydrogen bonded to the N atom of the C═N group. The identity of the photoproducts is confirmed by both FTIR spectroscopy and MP2 or QCISD(full) calculations with the 6-311++G(2d,2p) basis set. The intermediate in this reaction is iminoxyl radical that is formed by abstraction of hydrogen atom from formaldoxime OH group by an OH radical originating from HONO photolysis.

  4. Improvements in sparse matrix operations of NASTRAN

    NASA Technical Reports Server (NTRS)

    Harano, S.

    1980-01-01

    A "nontransmit" packing routine was added to NASTRAN to allow matrix data to be refered to directly from the input/output buffer. Use of the packing routine permits various routines for matrix handling to perform a direct reference to the input/output buffer if data addresses have once been received. The packing routine offers a buffer by buffer backspace feature for efficient backspacing in sequential access. Unlike a conventional backspacing that needs twice back record for a single read of one record (one column), this feature omits overlapping of READ operation and back record. It eliminates the necessity of writing, in decomposition of a symmetric matrix, of a portion of the matrix to its upper triangular matrix from the last to the first columns of the symmetric matrix, thus saving time for generating the upper triangular matrix. Only a lower triangular matrix must be written onto the secondary storage device, bringing 10 to 30% reduction in use of the disk space of the storage device.

  5. FPGA-based coprocessor for matrix algorithms implementation

    NASA Astrophysics Data System (ADS)

    Amira, Abbes; Bensaali, Faycal

    2003-03-01

    Matrix algorithms are important in many types of applications including image and signal processing. These areas require enormous computing power. A close examination of the algorithms used in these, and related, applications reveals that many of the fundamental actions involve matrix operations such as matrix multiplication which is of O (N3) on a sequential computer and O (N3/p) on a parallel system with p processors complexity. This paper presents an investigation into the design and implementation of different matrix algorithms such as matrix operations, matrix transforms and matrix decompositions using an FPGA based environment. Solutions for the problem of processing large matrices have been proposed. The proposed system architectures are scalable, modular and require less area and time complexity with reduced latency when compared with existing structures.

  6. Pharmaceutical analysis in solids using front face fluorescence spectroscopy and multivariate calibration with matrix correction by piecewise direct standardization

    NASA Astrophysics Data System (ADS)

    Alves, Julio Cesar L.; Poppi, Ronei J.

    2013-02-01

    This paper reports the application of piecewise direct standardization (PDS) for matrix correction in front face fluorescence spectroscopy of solids when different excipients are used in a pharmaceutical preparation based on a mixture of acetylsalicylic acid (ASA), paracetamol (acetaminophen) and caffeine. As verified in earlier studies, the use of different excipients and their ratio can cause a displacement, change in fluorescence intensity or band profile. To overcome this important drawback, a standardization strategy was adopted to convert all the excitation-emission fluorescence spectra into those used for model development. An excitation-emission matrix (EEM) for which excitation and emission wavelengths ranging from 265 to 405 nm and 300 to 480 nm, respectively, was used. Excellent results were obtained using unfolded partial least squares (U-PLS), with RMSEP values of 8.2 mg/g, 10.9 mg/g and 2.7 mg/g for ASA, paracetamol and caffeine, respectively, and with relative errors lesser than 5% for the three analytes.

  7. Shrinkage estimation of the realized relationship matrix

    USDA-ARS?s Scientific Manuscript database

    The additive relationship matrix plays an important role in mixed model prediction of breeding values. For genotype matrix X (loci in columns), the product XX' is widely used as a realized relationship matrix, but the scaling of this matrix is ambiguous. Our first objective was to derive a proper ...

  8. Curvature and gravity actions for matrix models: II. The case of general Poisson structures

    NASA Astrophysics Data System (ADS)

    Blaschke, Daniel N.; Steinacker, Harold

    2010-12-01

    We study the geometrical meaning of higher order terms in matrix models of Yang-Mills type in the semi-classical limit, generalizing recent results (Blaschke and Steinacker 2010 Class. Quantum Grav. 27 165010 (arXiv:1003.4132)) to the case of four-dimensional spacetime geometries with general Poisson structure. Such terms are expected to arise e.g. upon quantization of the IKKT-type models. We identify terms which depend only on the intrinsic geometry and curvature, including modified versions of the Einstein-Hilbert action as well as terms which depend on the extrinsic curvature. Furthermore, a mechanism is found which implies that the effective metric G on the spacetime brane {\\cal M}\\subset \\mathds{R}^D 'almost' coincides with the induced metric g. Deviations from G = g are suppressed, and characterized by the would-be U(1) gauge field.

  9. The Extracellular Matrix of Fungal Biofilms.

    PubMed

    Mitchell, Kaitlin F; Zarnowski, Robert; Andes, David R

    A key feature of biofilms is their production of an extracellular matrix. This material covers the biofilm cells, providing a protective barrier to the surrounding environment. During an infection setting, this can include such offenses as host cells and products of the immune system as well as drugs used for treatment. Studies over the past two decades have revealed the matrix from different biofilm species to be as diverse as the microbes themselves. This chapter will review the composition and roles of matrix from fungal biofilms, with primary focus on Candida species, Saccharomyces cerevisiae, Aspergillus fumigatus, and Cryptococcus neoformans. Additional coverage will be provided on the antifungal resistance proffered by the Candida albicans matrix, which has been studied in the most depth. A brief section on the matrix produced by bacterial biofilms will be provided for comparison. Current tools for studying the matrix will also be discussed, as well as suggestions for areas of future study in this field.

  10. Extracellular matrix structure.

    PubMed

    Theocharis, Achilleas D; Skandalis, Spyros S; Gialeli, Chrysostomi; Karamanos, Nikos K

    2016-02-01

    Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The g Factors of Ground State of Ruby and Their Pressure-Induced Shifts

    NASA Astrophysics Data System (ADS)

    Ma, Dongping; Zhang, Hongmei; Chen, Jurong; Liu, Yanyun

    1998-12-01

    By using the theory of pressure-induced shifts and the eigenfunctions at normal and various pressures obtained from the diagonalization of the complete d3 energy matrix adopting C3v symmetry, g factors of the ground state of ruby and their pressure-induced shifts have been calculated. The results are in very good agreement with the experimental data. For the precise calculation of properties of the ground skate, it is necessary to take into account the effects of all the excited states by the diagonalization of the complete energy matrix. The project (Grant No. 19744001) supported by National Natural Science Foundation of China

  12. Oral Fluid as an Alternative Matrix to Monitor Opiate and Cocaine Use in Substance-Abuse Treatment Patients

    PubMed Central

    Dams, Riet; Choo, Robin E.; Lambert, Willy E.; Jones, Hendree; Huestis, Marilyn A.

    2007-01-01

    Interest in oral fluid as an alternative matrix for monitoring drug use is due to its ease-of-collection and non-invasiveness; however, limited data are available on the disposition of drugs into oral fluid. The objective of this research was to provide data on the presence and concentrations of heroin, cocaine and multiple metabolites in oral fluid after illicit opioid and cocaine use. Thrice weekly oral fluid specimens (N=403) from 16 pregnant opiate-dependent women were obtained with the Salivette® oral fluid collection device. Evidence of heroin (N=62) and cocaine (N=130) use was detected in oral fluid by LC-APCI-MS/MS. 6-Acetylmorphine (6-AM), heroin and morphine were the major opiates detected, with median concentrations of 5.2, 2.3, and 7.5 μg/L, respectively. Cocaine and benzoylecgonine (BE) had median concentrations of 6.4 and 3.4 μg/L. Application of the Substance Abuse Mental Health Services Administration (SAMHSA) recommended cutoffs for morphine and codeine (40 μg/L), 6-AM (4 μg/L) and cocaine and BE (8 μg/L), yielded 28 opiate- and 50 cocaine-positive specimens. Oral fluid is a promising alternative matrix to monitor opiate and cocaine use in drug testing programs. These data guide interpretation of oral fluid test results and evaluate currently proposed SAMHSA oral fluid testing cutoffs. PMID:17008030

  13. Quantitative fluorescence measurements performed on typical matrix molecules in matrix-assisted laser desorption/ionisation

    NASA Astrophysics Data System (ADS)

    Allwood, D. A.; Dyer, P. E.

    2000-11-01

    Fundamental photophysical parameters have been determined for several molecules that are commonly used as matrices, e.g. ferulic acid, within matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Fluorescence quantum efficiencies ( φqe), singlet decay rates ( kl), vibrationless ground-singlet transition energies and average fluorescence wavelengths have been obtained from solid and solution samples by quantitative optical measurements. This new data will assist in modelling calculations of MALDI processes and in highlighting desirable characteristics of MALDI matrices. φqe may be as high as 0.59 whilst the radiative decay rate ( kf) appears to be within the (0.8-4)×10 8 s -1 range. Interestingly, α-cyano-4-hydroxycinnamic acid (α-CHC) has a very low φqe and fast non-radiative decay rate which would imply a rapid and efficient thermalisation of electronic excitation. This is in keeping with observations that α-CHC exhibits low threshold fluences for ion detection and the low fluences at which α-CHC tends to fragment.

  14. Rapid wide-field Mueller matrix polarimetry imaging based on four photoelastic modulators with no moving parts.

    PubMed

    Alali, Sanaz; Gribble, Adam; Vitkin, I Alex

    2016-03-01

    A new polarimetry method is demonstrated to image the entire Mueller matrix of a turbid sample using four photoelastic modulators (PEMs) and a charge coupled device (CCD) camera, with no moving parts. Accurate wide-field imaging is enabled with a field-programmable gate array (FPGA) optical gating technique and an evolutionary algorithm (EA) that optimizes imaging times. This technique accurately and rapidly measured the Mueller matrices of air, polarization elements, and turbid phantoms. The system should prove advantageous for Mueller matrix analysis of turbid samples (e.g., biological tissues) over large fields of view, in less than a second.

  15. TeachEnG: a Teaching Engine for Genomics.

    PubMed

    Kim, Minji; Kim, Yeonsung; Qian, Lei; Song, Jun S

    2017-10-15

    Bioinformatics is a rapidly growing field that has emerged from the synergy of computer science, statistics and biology. Given the interdisciplinary nature of bioinformatics, many students from diverse fields struggle with grasping bioinformatic concepts only from classroom lectures. Interactive tools for helping students reinforce their learning would be thus desirable. Here, we present an interactive online educational tool called TeachEnG (acronym for Teaching Engine for Genomics) for reinforcing key concepts in sequence alignment and phylogenetic tree reconstruction. Our instructional games allow students to align sequences by hand, fill out the dynamic programming matrix in the Needleman-Wunsch global sequence alignment algorithm, and reconstruct phylogenetic trees via the maximum parsimony, Unweighted Pair Group Method with Arithmetic mean (UPGMA) and Neighbor-Joining algorithms. With an easily accessible interface and instant visual feedback, TeachEnG will help promote active learning in bioinformatics. TeachEnG is freely available at http://teacheng.illinois.edu. The source code is available from https://github.com/KnowEnG/TeachEnG under the Artistic License 2.0. It is written in JavaScript and compatible with Firefox, Safari, Chrome and Microsoft Edge. songj@illinois.edu. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  16. pH and Heat Resistance of the Major Celery Allergen Api g 1.

    PubMed

    Rib-Schmidt, Carina; Riedl, Philipp; Meisinger, Veronika; Schwaben, Luisa; Schulenborg, Thomas; Reuter, Andreas; Schiller, Dirk; Seutter von Loetzen, Christian; Rösch, Paul

    2018-05-25

    The major celery allergen Api g 1 is a member of the pathogenesis-related 10 class protein family. Here we aimed to investigate the impact of heat and pH on the native protein conformation required for Immunoglobulin E (IgE) recognition. Spectroscopic methods, MS and IgE binding analyses were used to study the effects of pH and thermal treatment on Api g 1.0101. Heat processing results in a loss of the native protein fold via denaturation, oligomerisation and precipitation along with a subsequent reduction of IgE recognition. The induced effects and timescales are strongly pH depended. While Api g 1 refolds partially into an IgE-binding conformation at physiological pH, acidic pH treatment leads to the formation of structurally heat resistant, IgE-reactive oligomers. Thermal processing in the presence of a celery matrix or at pH conditions close to the isoelectric point (pI = 4.63) of Api g 1.0101 results in almost instant precipitation. Our data demonstrate that Api g 1.0101 is not intrinsically susceptible to heat treatment in vitro. However, the pH and the celery matrix strongly influence the stability of Api g 1.0101 and might be the main reasons for the observed temperature lability of this important food allergen. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Information matrix estimation procedures for cognitive diagnostic models.

    PubMed

    Liu, Yanlou; Xin, Tao; Andersson, Björn; Tian, Wei

    2018-03-06

    Two new methods to estimate the asymptotic covariance matrix for marginal maximum likelihood estimation of cognitive diagnosis models (CDMs), the inverse of the observed information matrix and the sandwich-type estimator, are introduced. Unlike several previous covariance matrix estimators, the new methods take into account both the item and structural parameters. The relationships between the observed information matrix, the empirical cross-product information matrix, the sandwich-type covariance matrix and the two approaches proposed by de la Torre (2009, J. Educ. Behav. Stat., 34, 115) are discussed. Simulation results show that, for a correctly specified CDM and Q-matrix or with a slightly misspecified probability model, the observed information matrix and the sandwich-type covariance matrix exhibit good performance with respect to providing consistent standard errors of item parameter estimates. However, with substantial model misspecification only the sandwich-type covariance matrix exhibits robust performance. © 2018 The British Psychological Society.

  18. Glueball spectra from a matrix model of pure Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Acharyya, Nirmalendu; Balachandran, A. P.; Pandey, Mahul; Sanyal, Sambuddha; Vaidya, Sachindeo

    2018-05-01

    We present variational estimates for the low-lying energies of a simple matrix model that approximates SU(3) Yang-Mills theory on a three-sphere of radius R. By fixing the ground state energy, we obtain the (integrated) renormalization group (RG) equation for the Yang-Mills coupling g as a function of R. This RG equation allows to estimate the mass of other glueball states, which we find to be in excellent agreement with lattice simulations.

  19. A sparse matrix-vector multiplication based algorithm for accurate density matrix computations on systems of millions of atoms

    NASA Astrophysics Data System (ADS)

    Ghale, Purnima; Johnson, Harley T.

    2018-06-01

    We present an efficient sparse matrix-vector (SpMV) based method to compute the density matrix P from a given Hamiltonian in electronic structure computations. Our method is a hybrid approach based on Chebyshev-Jackson approximation theory and matrix purification methods like the second order spectral projection purification (SP2). Recent methods to compute the density matrix scale as O(N) in the number of floating point operations but are accompanied by large memory and communication overhead, and they are based on iterative use of the sparse matrix-matrix multiplication kernel (SpGEMM), which is known to be computationally irregular. In addition to irregularity in the sparse Hamiltonian H, the nonzero structure of intermediate estimates of P depends on products of H and evolves over the course of computation. On the other hand, an expansion of the density matrix P in terms of Chebyshev polynomials is straightforward and SpMV based; however, the resulting density matrix may not satisfy the required constraints exactly. In this paper, we analyze the strengths and weaknesses of the Chebyshev-Jackson polynomials and the second order spectral projection purification (SP2) method, and propose to combine them so that the accurate density matrix can be computed using the SpMV computational kernel only, and without having to store the density matrix P. Our method accomplishes these objectives by using the Chebyshev polynomial estimate as the initial guess for SP2, which is followed by using sparse matrix-vector multiplications (SpMVs) to replicate the behavior of the SP2 algorithm for purification. We demonstrate the method on a tight-binding model system of an oxide material containing more than 3 million atoms. In addition, we also present the predicted behavior of our method when applied to near-metallic Hamiltonians with a wide energy spectrum.

  20. Comparative matrix isolation infrared spectroscopy study of 1,3- and 1,4-diene monoterpenes (α-phellandrene and γ-terpinene).

    PubMed

    Marzec, K M; Reva, I; Fausto, R; Proniewicz, L M

    2011-05-05

    In the present work, γ-terpinene (a 1,4-diene derivative) and α-phellandrene (1,3-diene derivative) were isolated in cryogenic argon matrices and their structures, vibrational spectra, and photochemistries were characterized with the aid of FTIR spectroscopy and quantum chemical calculations performed at the DFT/B3LYP/6-311++G(d,p) level of approximation. The molecules bear one conformationally relevant internal rotation axis, corresponding to the rotation of the isopropyl group. The calculations provide evidence of three minima on the potential energy surfaces of the studied molecules, where the isopropyl group assumes the trans, gauche+, and gauche- conformations (T, G+, G-). The signatures of all these conformers were identified in the experimental matrix infrared spectra, with the T forms dominating, in agreement with the theoretical predicted abundances in gas phase at room temperature. In situ UV (λ > 200 nm) irradiation of matrix-isolated α-phellandrene led to its isomerization into an open-ring species. The photoproduct was found to exhibit the ZE configuration of its backbone, which to be formed from the reactant molecule does not require extensive structural rearrangements of both the reagent and matrix. γ-Terpinene was photostable when subjected to irradiation under the same experimental conditions. In addition, the liquid compounds at room temperature were also investigated by FTIR-ATR and FT-Raman spectroscopies.

  1. Analysis of local delaminations caused by angle ply matrix cracks

    NASA Technical Reports Server (NTRS)

    Salpekar, Satish A.; Obrien, T. Kevin; Shivakumar, K. N.

    1993-01-01

    Two different families of graphite/epoxy laminates with similar layups but different stacking sequences, (0,theta,-theta) sub s and (-theta/theta/0) sub s were analyzed using three-dimensional finite element analysis for theta = 15 and 30 degrees. Delaminations were modeled in the -theta/theta interface, bounded by a matrix crack and the stress free edge. The total strain energy release rate, G, along the delamination front was computed using three different techniques: the virtual crack closure technique (VCCT), the equivalent domain Integral (EDI) technique, and a global energy balance technique. The opening fracture mode component of the strain energy release rate, Gl, along the delamination front was also computed for various delamination lengths using VCCT. The effect of residual thermal and moisture stresses on G was evaluated.

  2. High-frequency matrix converter with square wave input

    DOEpatents

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  3. Biochemical and Biophysical Cues in Matrix Design for Chronic and Diabetic Wound Treatment

    PubMed Central

    Xiao, Yun; Ahadian, Samad

    2017-01-01

    Progress in biomaterial science and engineering and increasing knowledge in cell biology have enabled us to develop functional biomaterials providing appropriate biochemical and biophysical cues for tissue regeneration applications. Tissue regeneration is particularly important to treat chronic wounds of people with diabetes. Understanding and controlling the cellular microenvironment of the wound tissue are important to improve the wound healing process. In this study, we review different biochemical (e.g., growth factors, peptides, DNA, and RNA) and biophysical (e.g., topographical guidance, pressure, electrical stimulation, and pulsed electromagnetic field) cues providing a functional and instructive acellular matrix to heal diabetic chronic wounds. The biochemical and biophysical signals generally regulate cell–matrix interactions and cell behavior and function inducing the tissue regeneration for chronic wounds. Some technologies and devices have already been developed and used in the clinic employing biochemical and biophysical cues for wound healing applications. These technologies can be integrated with smart biomaterials to deliver therapeutic agents to the wound tissue in a precise and controllable manner. This review provides useful guidance in understanding molecular mechanisms and signals in the healing of diabetic chronic wounds and in designing instructive biomaterials to treat them. PMID:27405960

  4. The phase transition of matrix recovery from Gaussian measurements matches the minimax MSE of matrix denoising.

    PubMed

    Donoho, David L; Gavish, Matan; Montanari, Andrea

    2013-05-21

    Let X(0) be an unknown M by N matrix. In matrix recovery, one takes n < MN linear measurements y(1),…,y(n) of X(0), where y(i) = Tr(A(T)iX(0)) and each A(i) is an M by N matrix. A popular approach for matrix recovery is nuclear norm minimization (NNM): solving the convex optimization problem min ||X||*subject to y(i) =Tr(A(T)(i)X) for all 1 ≤ i ≤ n, where || · ||* denotes the nuclear norm, namely, the sum of singular values. Empirical work reveals a phase transition curve, stated in terms of the undersampling fraction δ(n,M,N) = n/(MN), rank fraction ρ=rank(X0)/min {M,N}, and aspect ratio β=M/N. Specifically when the measurement matrices Ai have independent standard Gaussian random entries, a curve δ*(ρ) = δ*(ρ;β) exists such that, if δ > δ*(ρ), NNM typically succeeds for large M,N, whereas if δ < δ*(ρ), it typically fails. An apparently quite different problem is matrix denoising in Gaussian noise, in which an unknown M by N matrix X(0) is to be estimated based on direct noisy measurements Y =X(0) + Z, where the matrix Z has independent and identically distributed Gaussian entries. A popular matrix denoising scheme solves the unconstrained optimization problem min|| Y-X||(2)(F)/2+λ||X||*. When optimally tuned, this scheme achieves the asymptotic minimax mean-squared error M(ρ;β) = lim(M,N → ∞)inf(λ)sup(rank(X) ≤ ρ · M)MSE(X,X(λ)), where M/N → . We report extensive experiments showing that the phase transition δ*(ρ) in the first problem, matrix recovery from Gaussian measurements, coincides with the minimax risk curve M(ρ)=M(ρ;β) in the second problem, matrix denoising in Gaussian noise: δ*(ρ)=M(ρ), for any rank fraction 0 < ρ < 1 (at each common aspect ratio β). Our experiments considered matrices belonging to two constraint classes: real M by N matrices, of various ranks and aspect ratios, and real symmetric positive-semidefinite N by N matrices, of various ranks.

  5. Integrated optic vector-matrix multiplier

    DOEpatents

    Watts, Michael R [Albuquerque, NM

    2011-09-27

    A vector-matrix multiplier is disclosed which uses N different wavelengths of light that are modulated with amplitudes representing elements of an N.times.1 vector and combined to form an input wavelength-division multiplexed (WDM) light stream. The input WDM light stream is split into N streamlets from which each wavelength of the light is individually coupled out and modulated for a second time using an input signal representing elements of an M.times.N matrix, and is then coupled into an output waveguide for each streamlet to form an output WDM light stream which is detected to generate a product of the vector and matrix. The vector-matrix multiplier can be formed as an integrated optical circuit using either waveguide amplitude modulators or ring resonator amplitude modulators.

  6. High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 1; Matrix Constitutive Equations

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Stouffer, Donald C.

    1998-01-01

    Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this first paper of a two part report, background information is presented, along with the constitutive equations which will be used to model the rate dependent nonlinear deformation response of the polymer matrix. Strain rate dependent inelastic constitutive models which were originally developed to model the viscoplastic deformation of metals have been adapted to model the nonlinear viscoelastic deformation of polymers. The modified equations were correlated by analyzing the tensile/ compressive response of both 977-2 toughened epoxy matrix and PEEK thermoplastic matrix over a variety of strain rates. For the cases examined, the modified constitutive equations appear to do an adequate job of modeling the polymer deformation response. A second follow-up paper will describe the implementation of the polymer deformation model into a composite micromechanical model, to allow for the modeling of the nonlinear, rate dependent deformation response of polymer matrix composites.

  7. Constructing the matrix

    NASA Astrophysics Data System (ADS)

    Elliott, John

    2012-09-01

    As part of our 'toolkit' for analysing an extraterrestrial signal, the facility for calculating structural affinity to known phenomena must be part of our core capabilities. Without such a resource, we risk compromising our potential for detection and decipherment or at least causing significant delay in the process. To create such a repository for assessing structural affinity, all known systems (language parameters) need to be structurally analysed to 'place' their 'system' within a relational communication matrix. This will need to include all known variants of language structure, whether 'living' (in current use) or ancient; this must also include endeavours to incorporate yet undeciphered scripts and non-human communication, to provide as complete a picture as possible. In creating such a relational matrix, post-detection decipherment will be assisted by a structural 'map' that will have the potential for 'placing' an alien communication with its nearest known 'neighbour', to assist subsequent categorisation of basic parameters as a precursor to decipherment. 'Universal' attributes and behavioural characteristics of known communication structure will form a range of templates (Elliott, 2001 [1] and Elliott et al., 2002 [2]), to support and optimise our attempt at categorising and deciphering the content of an extraterrestrial signal. Detection of the hierarchical layers, which comprise intelligent, complex communication, will then form a matrix of calculations that will ultimately score affinity through a relational matrix of structural comparison. In this paper we develop the rationales and demonstrate functionality with initial test results.

  8. The wavenumber algorithm for full-matrix imaging using an ultrasonic array.

    PubMed

    Hunter, Alan J; Drinkwater, Bruce W; Wilcox, Paul D

    2008-11-01

    Ultrasonic imaging using full-matrix capture, e.g., via the total focusing method (TFM), has been shown to increase angular inspection coverage and improve sensitivity to small defects in nondestructive evaluation. In this paper, we develop a Fourier-domain approach to full-matrix imaging based on the wavenumber algorithm used in synthetic aperture radar and sonar. The extension to the wavenumber algorithm for full-matrix data is described and the performance of the new algorithm compared with the TFM, which we use as a representative benchmark for the time-domain algorithms. The wavenumber algorithm provides a mathematically rigorous solution to the inverse problem for the assumed forward wave propagation model, whereas the TFM employs heuristic delay-and-sum beamforming. Consequently, the wavenumber algorithm has an improved point-spread function and provides better imagery. However, the major advantage of the wavenumber algorithm is its superior computational performance. For large arrays and images, the wavenumber algorithm is several orders of magnitude faster than the TFM. On the other hand, the key advantage of the TFM is its flexibility. The wavenumber algorithm requires a regularly sampled linear array, while the TFM can handle arbitrary imaging geometries. The TFM and the wavenumber algorithm are compared using simulated and experimental data.

  9. Matrix Theory of Small Oscillations

    ERIC Educational Resources Information Center

    Chavda, L. K.

    1978-01-01

    A complete matrix formulation of the theory of small oscillations is presented. Simple analytic solutions involving matrix functions are found which clearly exhibit the transients, the damping factors, the Breit-Wigner form for resonances, etc. (BB)

  10. Metal-matrix composites: Status and prospects

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Applications of metal matrix composites for air frames and jet engine components are discussed. The current state of the art in primary and secondary fabrication is presented. The present and projected costs were analyzed to determine the cost effectiveness of metal matrix composites. The various types of metal matrix composites and their characteristics are described.

  11. High Temperature Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    1985-01-01

    These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) characterization; (4) environmental effects; and (5) applications.

  12. Stress-Dependent Matrix Cracking in 2D Woven SiC-Fiber Reinforced Melt-Infiltrated SiC Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2003-01-01

    The matrix cracking of a variety of SiC/SiC composites has been characterized for a wide range of constituent variation. These composites were fabricated by the 2-dimensional lay-up of 0/90 five-harness satin fabric consisting of Sylramic fiber tows that were then chemical vapor infiltrated (CVI) with BN, CVI with SiC, slurry infiltrated with SiC particles followed by molten infiltration of Si. The composites varied in number of plies, the number of tows per length, thickness, and the size of the tows. This resulted in composites with a fiber volume fraction in the loading direction that ranged from 0.12 to 0.20. Matrix cracking was monitored with modal acoustic emission in order to estimate the stress-dependent distribution of matrix cracks. It was found that the general matrix crack properties of this system could be fairly well characterized by assuming that no matrix cracks originated in the load-bearing fiber, interphase, chemical vapor infiltrated Sic tow-minicomposites, i.e., all matrix cracks originate in the 90 degree tow-minicomposites or the large unreinforced Sic-Si matrix regions. Also, it was determined that the larger tow size composites had a much narrower stress range for matrix cracking compared to the standard tow size composites.

  13. The Influence of Non-spectral Matrix Effects on the Accuracy of Isotope Ratio Measurement by MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Barling, J.; Shiel, A.; Weis, D.

    2006-12-01

    Non-spectral interferences in ICP-MS are caused by matrix elements effecting the ionisation and transmission of analyte elements. They are difficult to identify in MC-ICP-MS isotopic data because affected analyses exhibit normal mass dependent isotope fractionation. We have therefore investigated a wide range of matrix elements for both stable and radiogenic isotope systems using a Nu Plasma MC-ICP-MS. Matrix elements commonly enhance analyte sensitivity and change the instrumental mass bias experienced by analyte elements. These responses vary with element and therefore have important ramifications for the correction of data for instrumental mass bias by use of an external element (e.g. Pb and many non-traditional stable isotope systems). For Pb isotope measurements (Tl as mass bias element), Mg, Al, Ca, and Fe were investigated as matrix elements. All produced signal enhancement in Pb and Tl. Signal enhancement varied from session to session but for Ca and Al enhancement in Pb was less than for Tl while for Mg and Fe enhancement levels for Pb and Tl were similar. After correction for instrumental mass fractionation using Tl, Mg effected Pb isotope ratios were heavy (e.g. ^{208}Pb/204Pbmatrix > ^{208}Pb/204Pbtrue) for both moderate and high [Mg] while Ca effected Pb showed little change at moderate [Ca] but were light at high [Ca]. ^{208}Pb/204Pbmatrix - ^{208}Pb/204Pbtrue for all elements ranged from +0.0122 to - 0.0177. Isotopic shifts of similar magnitude are observed between Pb analyses of samples that have seen either one or two passes through chemistry (Nobre Silva et al, 2005). The double pass purified aliquots always show better reproducibility. These studies show that the presence of matrix can have a significant effect on the accuracy and reproducibility of replicate Pb isotope analyses. For non-traditional stable isotope systems (e.g. Mo(Zr), Cd(Ag)), the different responses of analyte and mass bias elements to the presence of matrix can result in del

  14. Community participation in biofilm matrix assembly and function.

    PubMed

    Mitchell, Kaitlin F; Zarnowski, Robert; Sanchez, Hiram; Edward, Jessica A; Reinicke, Emily L; Nett, Jeniel E; Mitchell, Aaron P; Andes, David R

    2015-03-31

    Biofilms of the fungus Candida albicans produce extracellular matrix that confers such properties as adherence and drug resistance. Our prior studies indicate that the matrix is complex, with major polysaccharide constituents being α-mannan, β-1,6 glucan, and β-1,3 glucan. Here we implement genetic, biochemical, and pharmacological approaches to unravel the contributions of these three constituents to matrix structure and function. Interference with synthesis or export of any one polysaccharide constituent altered matrix concentrations of each of the other polysaccharides. Each of these was also required for matrix function, as assessed by assays for sequestration of the antifungal drug fluconazole. These results indicate that matrix biogenesis entails coordinated delivery of the individual matrix polysaccharides. To understand whether coordination occurs at the cellular level or the community level, we asked whether matrix-defective mutant strains could be coaxed to produce functional matrix through biofilm coculture. We observed that mixed biofilms inoculated with mutants containing a disruption in each polysaccharide pathway had restored mature matrix structure, composition, and biofilm drug resistance. Our results argue that functional matrix biogenesis is coordinated extracellularly and thus reflects the cooperative actions of the biofilm community.

  15. Community participation in biofilm matrix assembly and function

    PubMed Central

    Mitchell, Kaitlin F.; Zarnowski, Robert; Sanchez, Hiram; Edward, Jessica A.; Reinicke, Emily L.; Nett, Jeniel E.; Mitchell, Aaron P.; Andes, David R.

    2015-01-01

    Biofilms of the fungus Candida albicans produce extracellular matrix that confers such properties as adherence and drug resistance. Our prior studies indicate that the matrix is complex, with major polysaccharide constituents being α-mannan, β-1,6 glucan, and β-1,3 glucan. Here we implement genetic, biochemical, and pharmacological approaches to unravel the contributions of these three constituents to matrix structure and function. Interference with synthesis or export of any one polysaccharide constituent altered matrix concentrations of each of the other polysaccharides. Each of these was also required for matrix function, as assessed by assays for sequestration of the antifungal drug fluconazole. These results indicate that matrix biogenesis entails coordinated delivery of the individual matrix polysaccharides. To understand whether coordination occurs at the cellular level or the community level, we asked whether matrix-defective mutant strains could be coaxed to produce functional matrix through biofilm coculture. We observed that mixed biofilms inoculated with mutants containing a disruption in each polysaccharide pathway had restored mature matrix structure, composition, and biofilm drug resistance. Our results argue that functional matrix biogenesis is coordinated extracellularly and thus reflects the cooperative actions of the biofilm community. PMID:25770218

  16. Enamel Matrix Derivative Promote Primary Human Pulp Cell Differentiation and Mineralization

    PubMed Central

    Riksen, Elisabeth Aurstad; Landin, Maria A.; Reppe, Sjur; Nakamura, Yukio; Lyngstadaas, Ståle Petter; Reseland, Janne E.

    2014-01-01

    Enamel matrix derivative (EMD) has been found to induce reactive dentin formation; however the molecular mechanisms involved are unclear. The effect of EMD (5–50 μg/mL) on primary human pulp cells were compared to untreated cells and cells incubated with 10−8 M dexamethasone (DEX) for 1, 2, 3, 7, and 14 days in culture. Expression analysis using Affymetrix microchips demonstrated that 10 μg/mL EMD regulated several hundred genes and stimulated the gene expression of proteins involved in mesenchymal proliferation and differentiation. Both EMD and DEX enhanced the expression of amelogenin (amel), and the dentinogenic markers dentin sialophosphoprotein (DSSP) and dentin matrix acidic phosphoprotein 1 (DMP1), as well as the osteogenic markers osteocalcin (OC, BGLAP) and collagen type 1 (COL1A1). Whereas, only EMD had effect on alkaline phosphatase (ALP) mRNA expression, the stimulatory effect were verified by enhanced secretion of OC and COL1A from EMD treated cells, and increased ALP activity in cell culture medium after EMD treatment. Increased levels of interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemoattractant proteins (MCP-1) in the cell culture medium were also found. Consequently, the suggested effect of EMD is to promote differentiation of pulp cells and increases the potential for pulpal mineralization to favor reactive dentine formation. PMID:24857913

  17. A new experimental design method to optimize formulations focusing on a lubricant for hydrophilic matrix tablets.

    PubMed

    Choi, Du Hyung; Shin, Sangmun; Khoa Viet Truong, Nguyen; Jeong, Seong Hoon

    2012-09-01

    A robust experimental design method was developed with the well-established response surface methodology and time series modeling to facilitate the formulation development process with magnesium stearate incorporated into hydrophilic matrix tablets. Two directional analyses and a time-oriented model were utilized to optimize the experimental responses. Evaluations of tablet gelation and drug release were conducted with two factors x₁ and x₂: one was a formulation factor (the amount of magnesium stearate) and the other was a processing factor (mixing time), respectively. Moreover, different batch sizes (100 and 500 tablet batches) were also evaluated to investigate an effect of batch size. The selected input control factors were arranged in a mixture simplex lattice design with 13 experimental runs. The obtained optimal settings of magnesium stearate for gelation were 0.46 g, 2.76 min (mixing time) for a 100 tablet batch and 1.54 g, 6.51 min for a 500 tablet batch. The optimal settings for drug release were 0.33 g, 7.99 min for a 100 tablet batch and 1.54 g, 6.51 min for a 500 tablet batch. The exact ratio and mixing time of magnesium stearate could be formulated according to the resulting hydrophilic matrix tablet properties. The newly designed experimental method provided very useful information for characterizing significant factors and hence to obtain optimum formulations allowing for a systematic and reliable experimental design method.

  18. PAMAM (generation 4) incorporated gelatin 3D matrix as an improved dermal substitute for skin tissue engineering.

    PubMed

    Maji, Somnath; Agarwal, Tarun; Maiti, Tapas Kumar

    2017-07-01

    The study explored the prospects of PAMAM (generation 4) applicability in gelatin based scaffolds for skin tissue engineering. The effect of PAMAM on physico-chemical and biological characteristics of gelatin scaffolds was evaluated. Gelatin scaffolds (with/without PAMAM) were prepared by lyophilization, chemically crosslinked by glutaraldehyde and characterized for their morphology (pore size), chemical features (bond nature), water adsorption, biodegradation and biological compatibility. The study demonstrated that addition of PAMAM did not significantly alter the pore size distribution or porosity of the scaffolds. However, water adsorption potential and collagenase mediated degradation significantly enhanced over period of the study. Both the scaffolds (with/without PAMAM) were highly biocompatible and hemocompatible. PAMAM (G4) blended scaffolds showed relatively higher cellular adhesion and proliferation of both keratinocytes and fibroblasts with an improved gene expression profile of native collagen type I of fibroblasts. Moreover, expression of angiogenesis inducing genes, HIF1α and VEGF were also higher in PAMAM blended gelatin matrix. Also, PAMAM incorporated gelatin matrix showed a slower rate of drug release which confirms its suitability for therapeutic delivery during wound healing. These results clearly suggest that blending PAMAM (G4) into the matrix could provide an additional support to scaffold assisted wound healing. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Convergence of Transition Probability Matrix in CLVMarkov Models

    NASA Astrophysics Data System (ADS)

    Permana, D.; Pasaribu, U. S.; Indratno, S. W.; Suprayogi, S.

    2018-04-01

    A transition probability matrix is an arrangement of transition probability from one states to another in a Markov chain model (MCM). One of interesting study on the MCM is its behavior for a long time in the future. The behavior is derived from one property of transition probabilty matrix for n steps. This term is called the convergence of the n-step transition matrix for n move to infinity. Mathematically, the convergence of the transition probability matrix is finding the limit of the transition matrix which is powered by n where n moves to infinity. The convergence form of the transition probability matrix is very interesting as it will bring the matrix to its stationary form. This form is useful for predicting the probability of transitions between states in the future. The method usually used to find the convergence of transition probability matrix is through the process of limiting the distribution. In this paper, the convergence of the transition probability matrix is searched using a simple concept of linear algebra that is by diagonalizing the matrix.This method has a higher level of complexity because it has to perform the process of diagonalization in its matrix. But this way has the advantage of obtaining a common form of power n of the transition probability matrix. This form is useful to see transition matrix before stationary. For example cases are taken from CLV model using MCM called Model of CLV-Markov. There are several models taken by its transition probability matrix to find its convergence form. The result is that the convergence of the matrix of transition probability through diagonalization has similarity with convergence with commonly used distribution of probability limiting method.

  20. Introducing Explorer of Taxon Concepts with a case study on spider measurement matrix building.

    PubMed

    Cui, Hong; Xu, Dongfang; Chong, Steven S; Ramirez, Martin; Rodenhausen, Thomas; Macklin, James A; Ludäscher, Bertram; Morris, Robert A; Soto, Eduardo M; Koch, Nicolás Mongiardino

    2016-11-17

    Taxonomic descriptions are traditionally composed in natural language and published in a format that cannot be directly used by computers. The Exploring Taxon Concepts (ETC) project has been developing a set of web-based software tools that convert morphological descriptions published in telegraphic style to character data that can be reused and repurposed. This paper introduces the first semi-automated pipeline, to our knowledge, that converts morphological descriptions into taxon-character matrices to support systematics and evolutionary biology research. We then demonstrate and evaluate the use of the ETC Input Creation - Text Capture - Matrix Generation pipeline to generate body part measurement matrices from a set of 188 spider morphological descriptions and report the findings. From the given set of spider taxonomic publications, two versions of input (original and normalized) were generated and used by the ETC Text Capture and ETC Matrix Generation tools. The tools produced two corresponding spider body part measurement matrices, and the matrix from the normalized input was found to be much more similar to a gold standard matrix hand-curated by the scientist co-authors. Special conventions utilized in the original descriptions (e.g., the omission of measurement units) were attributed to the lower performance of using the original input. The results show that simple normalization of the description text greatly increased the quality of the machine-generated matrix and reduced edit effort. The machine-generated matrix also helped identify issues in the gold standard matrix. ETC Text Capture and ETC Matrix Generation are low-barrier and effective tools for extracting measurement values from spider taxonomic descriptions and are more effective when the descriptions are self-contained. Special conventions that make the description text less self-contained challenge automated extraction of data from biodiversity descriptions and hinder the automated reuse of the

  1. RSAT matrix-clustering: dynamic exploration and redundancy reduction of transcription factor binding motif collections.

    PubMed

    Castro-Mondragon, Jaime Abraham; Jaeger, Sébastien; Thieffry, Denis; Thomas-Chollier, Morgane; van Helden, Jacques

    2017-07-27

    Transcription factor (TF) databases contain multitudes of binding motifs (TFBMs) from various sources, from which non-redundant collections are derived by manual curation. The advent of high-throughput methods stimulated the production of novel collections with increasing numbers of motifs. Meta-databases, built by merging these collections, contain redundant versions, because available tools are not suited to automatically identify and explore biologically relevant clusters among thousands of motifs. Motif discovery from genome-scale data sets (e.g. ChIP-seq) also produces redundant motifs, hampering the interpretation of results. We present matrix-clustering, a versatile tool that clusters similar TFBMs into multiple trees, and automatically creates non-redundant TFBM collections. A feature unique to matrix-clustering is its dynamic visualisation of aligned TFBMs, and its capability to simultaneously treat multiple collections from various sources. We demonstrate that matrix-clustering considerably simplifies the interpretation of combined results from multiple motif discovery tools, and highlights biologically relevant variations of similar motifs. We also ran a large-scale application to cluster ∼11 000 motifs from 24 entire databases, showing that matrix-clustering correctly groups motifs belonging to the same TF families, and drastically reduced motif redundancy. matrix-clustering is integrated within the RSAT suite (http://rsat.eu/), accessible through a user-friendly web interface or command-line for its integration in pipelines. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Multiscale Modeling of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Mital, Subodh K.; Pineda, Evan J.; Arnold, Steven M.

    2015-01-01

    Results of multiscale modeling simulations of the nonlinear response of SiC/SiC ceramic matrix composites are reported, wherein the microstructure of the ceramic matrix is captured. This micro scale architecture, which contains free Si material as well as the SiC ceramic, is responsible for residual stresses that play an important role in the subsequent thermo-mechanical behavior of the SiC/SiC composite. Using the novel Multiscale Generalized Method of Cells recursive micromechanics theory, the microstructure of the matrix, as well as the microstructure of the composite (fiber and matrix) can be captured.

  3. Transverse ductility of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Gunawardena, S. R.; Jansson, S.; Leckie, F. A.

    1991-01-01

    The role of the fiber matrix interface bond on the transverse ductility of continuous fiber reinforced composites has been investigated. Two specific systems have been considered: an Aluminum alloy matrix reinforced by Alumina fibers, characterized by a strong interface and a Titanium alloy reinforced by coated Silicon Carbide fibers, characterized by a weak interface. A micro-mechanical study indicates that the bond condition has a significant effect on the state of stress in the matrix which in turn dictates the available matrix ductility. The micro-mechanical predictions are in good agreement with the experimental results for the two systems.

  4. Polymer blends based on epoxy resin and polyphenylene ether as a matrix material for high-performance composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venderbosch, R.W.; Nelissen, J.G.L.; Peijs, A.A.J.M.

    1993-12-31

    The application of poly(2,6-dimethyl-1,4-phenylene ether), PPE, as a matrix material for continuous carbon fiber reinforced composites was studied. PPE is an amorphous thermoplastic exhibiting a high glass transition temperature (220 C) and outstanding mechanical properties with respect to e.g. toughness. However, due to the limited thermal stability at temperatures above T{sub g}, PPE can be regarded as an intractable polymer. Consequently, the introduction of PPE in a composite structure via a melt impregnation route is not feasible. In this investigation a solution impregnation route, using epoxy resin as a reactive solvent, was developed. During impregnation epoxy resin acts as amore » solvent which results in enhanced flow and a reduced processing temperature enabling the preparation of high quality composites, avoiding any degradation. Upon curing of the neat system, phase separation and phase inversion occurs resulting in a continuous PPE matrix filled with glassy epoxy spheres. As a result of this morphology the mechanical and thermal properties of the final material are mainly dominated by the PPE component. In composite applications, a strong influence of the polarity of the carbon fiber surface on the resulting matrix morphology was found. Upon curing, phase separation is initiated at the fiber surface resulting in an epoxy `interlayer` at the fiber surface. This phenomenon can provide a high level of interfacial adhesion. A preliminary investigation of the resulting composite materials revealed outstanding mechanical properties with respect to e.g. interlaminar toughness and strength.« less

  5. Three-dimensional biocompatible matrix for reconstructive surgery

    NASA Astrophysics Data System (ADS)

    Reshetov, I. V.; Starceva, O. I.; Istranov, A. L.; Vorona, B. N.; Lyundup, A. V.; Gulyaev, I. V.; Melnikov, D. V.; Shtansky, D. V.; Sheveyko, A. N.; Andreev, V. A.

    2016-08-01

    A study into the development of an original bioengineered structure for reconstruction of hollow organs is presented. The basis for the structure was the creation of a mesh matrix made from titanium nickelide (NiTi), which has sufficient elasticity and shape memory for the reconstruction of hollow tubular orgrans. In order to increase the cell adhesion on the surface of the matrix, the grid needed to be cleaned of impurities, for which we used an ionic cleaning method. Additional advantages also may enable the application of the bioactive component to grid surface. These features of the matrix may improve the biocompatibility properties of the composite material. In the first stage, a mesh structure was made from NiTi fibers. The properties of the resulting mesh matrix were studied. In the second stage, the degrees of adhesion and cell growth rates in the untreated matrix, the matrix after ionic cleaning and the matrix after ionic cleaning and the application of the bioactive component were compared. The results showed more significant biocompatibility of the titanium nickelide matrix after its ionic cleaning. The ionic cleaning ensures the removal of toxic contaminants, which are a consequence of the technological production process of the material and provide optimal adhesion properties for the fiber surface. The NiTi net matrix with TiCaPCON coating may be the optimal basis for making the hollow elastic organs.

  6. Novel entries in a fungal biofilm matrix encyclopedia.

    PubMed

    Zarnowski, Robert; Westler, William M; Lacmbouh, Ghislain Ade; Marita, Jane M; Bothe, Jameson R; Bernhardt, Jörg; Lounes-Hadj Sahraoui, Anissa; Fontaine, Joël; Sanchez, Hiram; Hatfield, Ronald D; Ntambi, James M; Nett, Jeniel E; Mitchell, Aaron P; Andes, David R

    2014-08-05

    Virulence of Candida is linked with its ability to form biofilms. Once established, biofilm infections are nearly impossible to eradicate. Biofilm cells live immersed in a self-produced matrix, a blend of extracellular biopolymers, many of which are uncharacterized. In this study, we provide a comprehensive analysis of the matrix manufactured by Candida albicans both in vitro and in a clinical niche animal model. We further explore the function of matrix components, including the impact on drug resistance. We uncovered components from each of the macromolecular classes (55% protein, 25% carbohydrate, 15% lipid, and 5% nucleic acid) in the C. albicans biofilm matrix. Three individual polysaccharides were identified and were suggested to interact physically. Surprisingly, a previously identified polysaccharide of functional importance, β-1,3-glucan, comprised only a small portion of the total matrix carbohydrate. Newly described, more abundant polysaccharides included α-1,2 branched α-1,6-mannans (87%) associated with unbranched β-1,6-glucans (13%) in an apparent mannan-glucan complex (MGCx). Functional matrix proteomic analysis revealed 458 distinct activities. The matrix lipids consisted of neutral glycerolipids (89.1%), polar glycerolipids (10.4%), and sphingolipids (0.5%). Examination of matrix nucleic acid identified DNA, primarily noncoding sequences. Several of the in vitro matrix components, including proteins and each of the polysaccharides, were also present in the matrix of a clinically relevant in vivo biofilm. Nuclear magnetic resonance (NMR) analysis demonstrated interaction of aggregate matrix with the antifungal fluconazole, consistent with a role in drug impedance and contribution of multiple matrix components. Importance: This report is the first to decipher the complex and unique macromolecular composition of the Candida biofilm matrix, demonstrate the clinical relevance of matrix components, and show that multiple matrix components are needed

  7. In Situ Gold Nanoparticle Gradient Formation in a 3D Meso- and Macroporous Polymer Matrix.

    PubMed

    Penders, Jelle; Rajasekharan, Anand K; Hulander, Mats; Andersson, Martin

    2017-08-01

    Herein, the development and characterization of a 3D gradient structure of gold nanoparticles is described. The gradient of gold nanoparticles is made in situ in a macroporous nonionic block copolymer hydrogel matrix, through gold ion diffusion control. The polymer provides a matrix for diffusion of gold ions, acts as a template for controlling nanoparticle growth, and facilitates the in situ reduction of gold ions to gold nanoparticles. A clear gradient in gold nanoparticles is observed across the 3D space of the polymer matrix using scanning electron microscopy, fluorescence microscopy, atomic force microscopy, and thermogravimetric analysis. The particle gradient is further functionalized with both hydrophobic and hydrophilic groups via thiol-gold linkage to demonstrate the ability to form gradients with different chemical functionalities. Using additive manufacturing, the polymer can also be printed as a porous network with possible applications for 3D cell culturing in, e.g., biomaterials research. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Fatigue damage accumulation in various metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1987-01-01

    The purpose of this paper is to review some of the latest understanding of the fatigue behavior of continuous fiber reinforced metal matrix composites. The emphasis is on the development of an understanding of different fatigue damage mechanisms and why and how they occur. The fatigue failure modes in continuous fiber reinforced metal matrix composites are controlled by the three constituents of the system: fiber, matrix, and fiber/matrix interface. The relative strains to fatigue failure of the fiber and matrix will determine the failure mode. Several examples of matrix, fiber, and self-similar damage growth dominated fatigue damage are given for several metal matrix composite systems. Composite analysis, failure modes, and damage modeling are discussed. Boron/aluminum, silicon-carbide/aluminum, FP/aluminum, and borsic/titanium metal matrix composites are discussed.

  9. Matrix precipitation: a general strategy to eliminate matrix interference for pharmaceutical toxic impurities analysis.

    PubMed

    Yang, Xiaojing; Xiong, Xuewu; Cao, Ji; Luan, Baolei; Liu, Yongjun; Liu, Guozhu; Zhang, Lei

    2015-01-30

    Matrix interference, which can lead to false positive/negative results, contamination of injector or separation column, incompatibility between sample solution and the selected analytical instrument, and response inhibition or even quenching, is commonly suffered for the analysis of trace level toxic impurities in drug substance. In this study, a simple matrix precipitation strategy is proposed to eliminate or minimize the above stated matrix interference problems. Generally, a sample of active pharmaceutical ingredients (APIs) is dissolved in an appropriate solvent to achieve the desired high concentration and then an anti-solvent is added to precipitate the matrix substance. As a result, the target analyte is extracted into the mixed solution with very less residual of APIs. This strategy has the characteristics of simple manipulation, high recovery and excellent anti-interference capability. It was found that the precipitation ratio (R, representing the ability to remove matrix substance) and the proportion of solvent (the one used to dissolve APIs) in final solution (P, affecting R and also affecting the method sensitivity) are two important factors of the precipitation process. The correlation between R and P was investigated by performing precipitation with various APIs in different solvent/anti-solvent systems. After a detailed mathematical reasoning process, P=20% was proved to be an effective and robust condition to perform the precipitation strategy. The precipitation method with P=20% can be used as a general strategy for toxic impurity analysis in APIs. Finally, several typical examples are described in this article, where the challenging matrix interference issues have been resolved successfully. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Matrix multiplication on the Intel Touchstone Delta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huss-Lederman, S.; Jacobson, E.M.; Tsao, A.

    1993-12-31

    Matrix multiplication is a key primitive in block matrix algorithms such as those found in LAPACK. We present results from our study of matrix multiplication algorithms on the Intel Touchstone Delta, a distributed memory message-passing architecture with a two-dimensional mesh topology. We obtain an implementation that uses communication primitives highly suited to the Delta and exploits the single node assembly-coded matrix multiplication. Our algorithm is completely general, able to deal with arbitrary mesh aspect ratios and matrix dimensions, and has achieved parallel efficiency of 86% with overall peak performance in excess of 8 Gflops on 256 nodes for an 8800more » {times} 8800 matrix. We describe our algorithm design and implementation, and present performance results that demonstrate scalability and robust behavior over varying mesh topologies.« less

  11. Tendon Functional Extracellular Matrix

    PubMed Central

    Screen, H.R.C.; Birk, D.E.; Kadler, K.E.; Ramirez, F; Young, M.F.

    2015-01-01

    This article is one of a series, summarising views expressed at the Orthopaedic Research Society New Frontiers in Tendon Research Conference. This particular article reviews the three workshops held under the “Functional Extracellular Matrix” stream. The workshops focused on the roles of the tendon extracellular matrix, such as performing the mechanical functions of tendon, creating the local cell environment and providing cellular cues. Tendon is a complex network of matrix and cells, and its biological functions are influenced by widely-varying extrinsic and intrinsic factors such as age, nutrition, exercise levels and biomechanics. Consequently, tendon adapts dynamically during development, ageing and injury. The workshop discussions identified research directions associated with understanding cell-matrix interactions to be of prime importance for developing novel strategies to target tendon healing or repair. PMID:25640030

  12. Ubiquitination of specific mitochondrial matrix proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, Gilad; Ziv, Tamar; Braten, Ori

    2016-06-17

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems – at least partially – in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinatedmore » proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. -- Highlights: •Mitochondrial matrix contains ubiquitinated proteins. •Ubiquitination occurs most probably in the matrix. •Dma1p is a ubiquitin ligase present in mitochondrial preparations.« less

  13. Synthetic Division and Matrix Factorization

    ERIC Educational Resources Information Center

    Barabe, Samuel; Dubeau, Franc

    2007-01-01

    Synthetic division is viewed as a change of basis for polynomials written under the Newton form. Then, the transition matrices obtained from a sequence of changes of basis are used to factorize the inverse of a bidiagonal matrix or a block bidiagonal matrix.

  14. The Failure Models of Lead Free Sn-3.0Ag-0.5Cu Solder Joint Reliability Under Low-G and High-G Drop Impact

    NASA Astrophysics Data System (ADS)

    Gu, Jian; Lei, YongPing; Lin, Jian; Fu, HanGuang; Wu, Zhongwei

    2017-02-01

    The reliability of Sn-3.0Ag-0.5Cu (SAC 305) solder joint under a broad level of drop impacts was studied. The failure performance of solder joint, failure probability and failure position were analyzed under two shock test conditions, i.e., 1000 g for 1 ms and 300 g for 2 ms. The stress distribution on the solder joint was calculated by ABAQUS. The results revealed that the dominant reason was the tension due to the difference in stiffness between the print circuit board and ball grid array, and the maximum tension of 121.1 MPa and 31.1 MPa, respectively, under both 1000 g or 300 g drop impact, was focused on the corner of the solder joint which was located in the outmost corner of the solder ball row. The failure modes were summarized into the following four modes: initiation and propagation through the (1) intermetallic compound layer, (2) Ni layer, (3) Cu pad, or (4) Sn-matrix. The outmost corner of the solder ball row had a high failure probability under both 1000 g and 300 g drop impact. The number of failures of solder ball under the 300 g drop impact was higher than that under the 1000 g drop impact. The characteristic drop values for failure were 41 and 15,199, respectively, following the statistics.

  15. Conformers, infrared spectrum and UV-induced photochemistry of matrix-isolated furfuryl alcohol.

    PubMed

    Araujo-Andrade, C; Gómez-Zavaglia, A; Reva, I D; Fausto, R

    2012-03-08

    The infrared spectra of furfuryl alcohol (2-furanmethanol, FFA) were investigated for FFA monomers isolated in low-temperature argon matrices. The structural interpretation of the obtained experimental spectra was assisted by analysis of the molecule's conformational landscape. According to the DFT(B3LYP)/6-311++G(d,p) calculations, five different minimum energy structures were found on the potential energy surface of the molecule. They can be defined by the orientation of the OCCO and CCOH dihedral angles: GG', GG, TG, TT, GT (G = +gauche, G' = -gauche, T = trans) and have a symmetry equivalent configuration: GG' = G'G, GG = G'G', TG = TG', GT = G'T. When zero-point energies are taken into account, only three (GG', GG, and TT) out of the five unique minima correspond to stable structures. The most stable conformer GG' (OCCO, 72.7°; CCOH, -59.3°), which in gas phase at room temperature accounts for ∼65% of the total population, was the only form isolated in the argon matrices at 14 K. The other two relevant forms convert into conformer GG' during matrix deposition. The low temperature glassy and crystalline states of FFA were also obtained and their infrared spectra assigned, suggesting the sole existence of the GG' conformer also in these phases. The photochemical behavior of FFA induced in situ, by tunable UV-laser, was also studied. The longest wavelength resulting in photochemical changes in the structure of the irradiated sample was found to be λ = 229 nm. Such UV irradiation of the matrix-isolated FFA led to production of formaldehyde and different isomeric C(4)H(4)O species. Cycloprop-2-ene-1-carbaldehyde and buta-2,3-dienal (two conformers) are the main initial C(4)H(4)O photoproducts formed upon short-time excitation at λ = 229 nm. But-3-ynal (two conformers) was the principal photoproduct resulting from prolonged excitation at λ= 229 nm, being consumed upon irradiation at shorter wavelengths (λ < 227.5 nm). Vinyl ketene is produced from FFA in the

  16. Multi-cut solutions in Chern-Simons matrix models

    NASA Astrophysics Data System (ADS)

    Morita, Takeshi; Sugiyama, Kento

    2018-04-01

    We elaborate the Chern-Simons (CS) matrix models at large N. The saddle point equations of these matrix models have a curious structure which cannot be seen in the ordinary one matrix models. Thanks to this structure, an infinite number of multi-cut solutions exist in the CS matrix models. Particularly we exactly derive the two-cut solutions at finite 't Hooft coupling in the pure CS matrix model. In the ABJM matrix model, we argue that some of multi-cut solutions might be interpreted as a condensation of the D2-brane instantons.

  17. Cell–material interactions on biphasic polyurethane matrix

    PubMed Central

    Dicesare, Patrick; Fox, Wade M.; Hill, Michael J.; Krishnan, G. Rajesh; Yang, Shuying; Sarkar, Debanjan

    2013-01-01

    Cell–matrix interaction is a key regulator for controlling stem cell fate in regenerative tissue engineering. These interactions are induced and controlled by the nanoscale features of extracellular matrix and are mimicked on synthetic matrices to control cell structure and functions. Recent studies have shown that nanostructured matrices can modulate stem cell behavior and exert specific role in tissue regeneration. In this study, we have demonstrated that nanostructured phase morphology of synthetic matrix can control adhesion, proliferation, organization and migration of human mesenchymal stem cells (MSCs). Nanostructured biodegradable polyurethanes (PU) with segmental composition exhibit biphasic morphology at nanoscale dimensions and can control cellular features of MSCs. Biodegradable PU with polyester soft segment and hard segment composed of aliphatic diisocyanates and dipeptide chain extender were designed to examine the effect polyurethane phase morphology. By altering the polyurethane composition, morphological architecture of PU was modulated and its effect was examined on MSC. Results show that MSCs can sense the nanoscale morphology of biphasic polyurethane matrix to exhibit distinct cellular features and, thus, signifies the relevance of matrix phase morphology. The role of nanostructured phases of a synthetic matrix in controlling cell–matrix interaction provides important insights for regulation of cell behavior on synthetic matrix and, therefore, is an important tool for engineering tissue regeneration. PMID:23255285

  18. Matrix effect in matrix-assisted laser desorption/ionization mass spectra of derivatized oligomeric polyols.

    PubMed

    Borisov, Roman S; Polovkov, Nikolai Yu; Zhilyaev, Dmitry I; Zaikin, Vladimir G

    2013-01-30

    Herein we describe a strong matrix effect observed in the matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectra of silylated glycerol alkoxylates and manifested in the loss of the silyl groups in the presence of carboxyl-containing matrices. Commercially available glycerol alkoxylates containing three end OH groups as well as three matrices - 2,5-dihydroxybenzoic acid (DHB), 3-indoleacrylic acid (IAA) and 1,8,9-anthracenetriol (dithranol) - were chosen for the investigation. N,O-Bis(trimethylsilyl)trifluoroacetamide containing 1% trimethylchlorosilane, acetic anhydride and a formylation mixture (formic acid/acetyl chloride) were used for derivatization. Initial oligomers and derivatized products were analyzed by MALDI-ToF-mass spectrometry (MS) on an Autoflex II instrument, equipped with a nitrogen laser (λ 337 nm), in positive ion reflectron mode. Only [M + Na](+) ions were observed for underivatized polymers and for completely derivatized polymers in the presence of DHB and dithranol, respectively. In the case of IAA the mass spectra revealed sets of peaks for underivatized, and for partially and completely derivatized oligomers. No similar 'matrix effect' was observed in the case of acylated glycerol alkoxylates (acyl = formyl, acetyl): only peaks for completely derivatized oligomers were obtained in all matrices: DHB, IAA and dithranol. Using 1,9-nonandiol, we showed that the 'matrix effect' was due to trans-silylation of carboxyl-containing matrices (DHB and IAA) during co-crystallization of silylated oligomers and matrices. The obtained results show that matrix molecules can participate as reactive species in MALDI-ToF-MS experiments. The matrix should be carefully chosen when a derivatization approach is applied because the analysis of spectra of the completely derivatized products is particularly desirable in the quantitative determination of functional end-groups. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Quantitative image analysis for investigating cell-matrix interactions

    NASA Astrophysics Data System (ADS)

    Burkel, Brian; Notbohm, Jacob

    2017-07-01

    The extracellular matrix provides both chemical and physical cues that control cellular processes such as migration, division, differentiation, and cancer progression. Cells can mechanically alter the matrix by applying forces that result in matrix displacements, which in turn may localize to form dense bands along which cells may migrate. To quantify the displacements, we use confocal microscopy and fluorescent labeling to acquire high-contrast images of the fibrous material. Using a technique for quantitative image analysis called digital volume correlation, we then compute the matrix displacements. Our experimental technology offers a means to quantify matrix mechanics and cell-matrix interactions. We are now using these experimental tools to modulate mechanical properties of the matrix to study cell contraction and migration.

  20. Novel Entries in a Fungal Biofilm Matrix Encyclopedia

    PubMed Central

    Zarnowski, Robert; Westler, William M.; Lacmbouh, Ghislain Ade; Marita, Jane M.; Bothe, Jameson R.; Bernhardt, Jörg; Lounes-Hadj Sahraoui, Anissa; Fontaine, Joël; Sanchez, Hiram; Hatfield, Ronald D.; Ntambi, James M.; Nett, Jeniel E.; Mitchell, Aaron P.

    2014-01-01

    ABSTRACT Virulence of Candida is linked with its ability to form biofilms. Once established, biofilm infections are nearly impossible to eradicate. Biofilm cells live immersed in a self-produced matrix, a blend of extracellular biopolymers, many of which are uncharacterized. In this study, we provide a comprehensive analysis of the matrix manufactured by Candida albicans both in vitro and in a clinical niche animal model. We further explore the function of matrix components, including the impact on drug resistance. We uncovered components from each of the macromolecular classes (55% protein, 25% carbohydrate, 15% lipid, and 5% nucleic acid) in the C. albicans biofilm matrix. Three individual polysaccharides were identified and were suggested to interact physically. Surprisingly, a previously identified polysaccharide of functional importance, β-1,3-glucan, comprised only a small portion of the total matrix carbohydrate. Newly described, more abundant polysaccharides included α-1,2 branched α-1,6-mannans (87%) associated with unbranched β-1,6-glucans (13%) in an apparent mannan-glucan complex (MGCx). Functional matrix proteomic analysis revealed 458 distinct activities. The matrix lipids consisted of neutral glycerolipids (89.1%), polar glycerolipids (10.4%), and sphingolipids (0.5%). Examination of matrix nucleic acid identified DNA, primarily noncoding sequences. Several of the in vitro matrix components, including proteins and each of the polysaccharides, were also present in the matrix of a clinically relevant in vivo biofilm. Nuclear magnetic resonance (NMR) analysis demonstrated interaction of aggregate matrix with the antifungal fluconazole, consistent with a role in drug impedance and contribution of multiple matrix components. PMID:25096878

  1. Highly Porous Silicon Embedded in a Ceramic Matrix: A Stable High-Capacity Electrode for Li-Ion Batteries.

    PubMed

    Vrankovic, Dragoljub; Graczyk-Zajac, Magdalena; Kalcher, Constanze; Rohrer, Jochen; Becker, Malin; Stabler, Christina; Trykowski, Grzegorz; Albe, Karsten; Riedel, Ralf

    2017-11-28

    We demonstrate a cost-effective synthesis route that provides Si-based anode materials with capacities between 2000 and 3000 mAh·g Si -1 (400 and 600 mAh·g composite -1 ), Coulombic efficiencies above 99.5%, and almost 100% capacity retention over more than 100 cycles. The Si-based composite is prepared from highly porous silicon (obtained by reduction of silica) by encapsulation in an organic carbon and polymer-derived silicon oxycarbide (C/SiOC) matrix. Molecular dynamics simulations show that the highly porous silicon morphology delivers free volume for the accommodation of strain leading to no macroscopic changes during initial Li-Si alloying. In addition, a carbon layer provides an electrical contact, whereas the SiOC matrix significantly diminishes the interface between the electrolyte and the electrode material and thus suppresses the formation of a solid-electrolyte interphase on Si. Electrochemical tests of the micrometer-sized, glass-fiber-derived silicon demonstrate the up-scaling potential of the presented approach.

  2. [Penile augmentation using acellular dermal matrix].

    PubMed

    Zhang, Jin-ming; Cui, Yong-yan; Pan, Shu-juan; Liang, Wei-qiang; Chen, Xiao-xuan

    2004-11-01

    Penile enhancement was performed using acellular dermal matrix. Multiple layers of acellular dermal matrix were placed underneath the penile skin to enlarge its girth. Since March 2002, penile augmentation has been performed on 12 cases using acellular dermal matrix. Postoperatively all the patients had a 1.3-3.1 cm (2.6 cm in average) increase in penile girth in a flaccid state. The penis had normal appearance and feeling without contour deformities. All patients gained sexual ability 3 months after the operation. One had a delayed wound healing due to tight dressing, which was repaired with a scrotal skin flap. Penile enlargement by implantation of multiple layers of acellular dermal matrix was a safe and effective operation. This method can be performed in an outpatient ambulatory setting. The advantages of the acellular dermal matrix over the autogenous dermal fat grafts are elimination of donor site injury and scar and significant shortening of operation time.

  3. The extracellular matrix remodeled

    PubMed Central

    Kirmse, Robert; Otto, Hannes

    2012-01-01

    Membrane Type-1 Matrix Metalloproteinase (MT1-MMP, MMP-14) is regarded as the prototype of a membrane- tethered protease. It drives fundamental biological processes ranging from embryogenesis to cancer metastasis. The proteolytic cleavage of proteins by MT1-MMP can rapidly alter the biophysical properties of a cell’s microenvironment. Cell’s must thus be able to sense and react to these alterations and transduce these effectively in biochemical signals and cell responses. Although many cells react as acutely to such physical stimuli as they do to chemical ones, the regulatory effects of these have been less extensively explored. In order to investigate a possible interdependency of proteolytic matrix cleavage by MT1-MMP and the generation and sensing of force by cells, a model system was established which exploits the properties of a matrix array of parallel collagen-I fibers. The resulting an-isotropy of the matrix with high tensile strength along the fibers and high mobility perpendicular to it allows the convenient detection of bundling and cleavage of the collagen fibers, as well as spreading and durotaxis of the cells. In summary, we have demonstrated that cell adhesion, force generation, and force sensing are vital for the regulation of MT1-MMP for efficient cleavage of collagen-I. PMID:22482015

  4. KEY COMPARISON: CCQM-K27-Subsequent: Key Comparison (subsequent) for the determination of ethanol in aqueous matrix

    NASA Astrophysics Data System (ADS)

    Schantz, Michele M.; Duewer, David L.; Parris, Reenie M.; May, Willie E.; Archer, Marcellé; Mussell, Chris; Carter, David; Konopelko, Leonid A.; Kustikov, Yury A.; Krylov, Anatoli I.; Fatina, Olga V.

    2005-01-01

    Ethanol is important both forensically ('drunk driving' or driving while under the influence, 'DWI', regulations) and commercially (alcoholic beverages). Blood- and breath-alcohol testing can be imposed on individuals operating private vehicles such as cars, boats, or snowmobiles, or operators of commercial vehicles like trucks, planes, and ships. The various levels of blood alcohol that determine whether these operators are considered legally impaired vary depending on the circumstances and locality. Accurate calibration and validation of instrumentation is critical in areas of forensic testing where quantitative analysis directly affects the outcome of criminal prosecutions, as is the case with the determination of ethanol in blood and breath. Additionally, the accurate assessment of the alcoholic content of beverages is a commercially important commodity. In 2002, the CCQM conducted a Key Comparison (CCQM-K27) for the determination of ethanol in aqueous matrix with nine participants. A report on this project has been approved by the CCQM and can be found at the BIPM website and in this Technical Supplement. CCQM-K27 comprised three samples, one at low mass fraction of ethanol in water (nominal concentration of 0.8 mg/g), one at high level (nominal concentration of 120 mg/g), and one wine matrix (nominal concentration of 81 mg/g). Overall agreement among eight participants using gas chromatography with flame ionization detection (GC-FID), titrimetry, isotope dilution gas chromatography/mass spectrometry (GC-IDMS), and gas chromatography-combustion-isotope ratio mass spectrometry (ID-GC-C-IRMS) was good. The ninth participant used a headspace GC-FID method that had not been validated in an earlier pilot study (CCQM-P35). A follow-on Key Comparison, CCQM-K27-Subsequent, was initiated in 2003 to accommodate laboratories that had not been ready to benchmark their methods in the original CCQM-K27 study or that wished to benchmark a different method. Four levels of

  5. Emerging interactions between matrix components during biofilm development.

    PubMed

    Payne, David E; Boles, Blaise R

    2016-02-01

    Bacterial cells are most often found in the form of multicellular aggregates commonly referred to as biofilms. Biofilms offer their member cells several benefits, such as resistance to killing by antimicrobials and predation. During biofilm formation there is a production of extracellular substances that, upon assembly, constitute an extracellular matrix. The ability to generate a matrix encasing the microbial cells is a common feature of biofilms, but there is diversity in matrix composition and in interaction between matrix components. The different components of bacterial biofilm extracellular matrixes, known as matrix interactions, and resulting implications are discussed in this review.

  6. Combining biofilm matrix measurements with biomass and viability assays in susceptibility assessments of antimicrobials against Staphylococcus aureus biofilms.

    PubMed

    Skogman, Malena Elise; Vuorela, Pia Maarit; Fallarero, Adyary

    2012-09-01

    Despite that three types of assays (measuring biofilm viability, biomass, or matrix) are described to assess anti-biofilm activity, they are rarely used together. As infections can easily reappear if the matrix is not affected after antibiotic treatments, our goal was to explore the simultaneous effects of antibiotics on the viability, biomass and matrix of Staphylococcus aureus biofilms (ATCC 25923). Viability and biomass were quantified using resazurin and crystal violet staining sequentially in the same plate, while matrix staining was conducted with a wheat germ agglutinin-Alexa Fluor 488 fluorescent conjugate. Establishment of the detection limits and linearity ranges allowed concluding that all three methods were able to estimate biofilm formation in a similar fashion. In a susceptibility study with 18-h biofilms, two model compounds (penicillin G and ciprofloxacin) caused a reduction on the viability and biomass accompanied by an increase or not changed levels of the matrix, respectively. This response pattern was also proven for S. aureus Newman, S. epidermidis and E. coli biofilms. A classification of antibiotics based on five categories according to their effects on viability and matrix has been proposed earlier. Our data suggests a sixth group, represented by penicillin, causing decrease in bacterial viability but showing stimulatory effects on the matrix. Further, if effects on the matrix are not taken into account, the long-term chemotherapeutic effect of antibiotics can be jeopardized in spite of the positive effects on biofilms viability and biomass. Thus, measuring all these three endpoints simultaneously provide a more complete and accurate picture.

  7. Stochastic determination of matrix determinants

    NASA Astrophysics Data System (ADS)

    Dorn, Sebastian; Enßlin, Torsten A.

    2015-07-01

    Matrix determinants play an important role in data analysis, in particular when Gaussian processes are involved. Due to currently exploding data volumes, linear operations—matrices—acting on the data are often not accessible directly but are only represented indirectly in form of a computer routine. Such a routine implements the transformation a data vector undergoes under matrix multiplication. While efficient probing routines to estimate a matrix's diagonal or trace, based solely on such computationally affordable matrix-vector multiplications, are well known and frequently used in signal inference, there is no stochastic estimate for its determinant. We introduce a probing method for the logarithm of a determinant of a linear operator. Our method rests upon a reformulation of the log-determinant by an integral representation and the transformation of the involved terms into stochastic expressions. This stochastic determinant determination enables large-size applications in Bayesian inference, in particular evidence calculations, model comparison, and posterior determination.

  8. Stochastic determination of matrix determinants.

    PubMed

    Dorn, Sebastian; Ensslin, Torsten A

    2015-07-01

    Matrix determinants play an important role in data analysis, in particular when Gaussian processes are involved. Due to currently exploding data volumes, linear operations-matrices-acting on the data are often not accessible directly but are only represented indirectly in form of a computer routine. Such a routine implements the transformation a data vector undergoes under matrix multiplication. While efficient probing routines to estimate a matrix's diagonal or trace, based solely on such computationally affordable matrix-vector multiplications, are well known and frequently used in signal inference, there is no stochastic estimate for its determinant. We introduce a probing method for the logarithm of a determinant of a linear operator. Our method rests upon a reformulation of the log-determinant by an integral representation and the transformation of the involved terms into stochastic expressions. This stochastic determinant determination enables large-size applications in Bayesian inference, in particular evidence calculations, model comparison, and posterior determination.

  9. Unusual Mesoporous Carbonaceous Matrix Loading with Sulfur as the Cathode of Lithium Sulfur Battery with Exceptionally Stable High Rate Performance.

    PubMed

    Qian, Weiwei; Gao, Qiuming; Li, Zeyu; Tian, Weiqian; Zhang, Hang; Zhang, Qiang

    2017-08-30

    Unusual three-dimensional mesoporous carbon/reduced graphene oxide (MP-C/rGO) matrix possessing graphene nanolayer pore walls built up by three to five graphene monosheets and some carbon particles with the sizes of about 5 nm located between the graphene nanolayers was prepared by facile freeze-drying and then carbonization of the poly(vinyl alcohol) and graphene oxide mixture. The mesoporous carbonaceous MP-C/rGO sample has a high specific surface area of 661.6 m 2 g -1 , large specific pore volume of 1.54 m 3 g -1 , and focused pore size distribution of 2-10 nm. About 64 wt % sulfur could be held in the pores of the MP-C/rGO matrix. As the cathode of a Li-S battery, the MP-C/rGO/S composite showed excellent electrochemical property including a high initial specific capacity of 919 mA h g -1 at 1 C with the capacity retention ratio of 63.3% and the Coulombic efficiency above 90% after 500 cycles. Meanwhile, the initial specific capacity of 602 mA h g -1 at 5 C and remaining capacity of 391 mA h g -1 after 500 cycles with an outstanding Coulombic efficiency of 97% indicate its exceptionally stable rate performance.

  10. Implementation of thermal residual stresses in the analysis of fiber bridged matrix crack growth in titanium matrix composites

    NASA Technical Reports Server (NTRS)

    Bakuckas, John G., Jr.; Johnson, W. Steven

    1994-01-01

    In this research, thermal residual stresses were incorporated in an analysis of fiber-bridged matrix cracks in unidirectional and cross-ply titanium matrix composites (TMC) containing center holes or center notches. Two TMC were investigated, namely, SCS-6/Timelal-21S laminates. Experimentally, matrix crack initiation and growth were monitored during tension-tension fatigue tests conducted at room temperature and at an elevated temperature of 200 C. Analytically, thermal residual stresses were included in a fiber bridging (FB) model. The local R-ratio and stress-intensity factor in the matrix due to thermal and mechanical loadings were calculated and used to evaluate the matrix crack growth behavior in the two materials studied. The frictional shear stress term, tau, assumed in this model was used as a curve-fitting parameter to matrix crack growth data. The scatter band in the values of tau used to fit the matrix crack growth data was significantly reduced when thermal residual stresses were included in the fiber bridging analysis. For a given material system, lay-up and temperature, a single value of tau was sufficient to analyze the crack growth data. It was revealed in this study that thermal residual stresses are an important factor overlooked in the original FB models.

  11. Formation of multicomponent matrix metal oxide films in anodic alumina matrixes by chemical deposition

    NASA Astrophysics Data System (ADS)

    Gorokh, G. G.; Zakhlebayeva, A. I.; Metla, A. I.; Zhilinskiy, V. V.; Murashkevich, A. N.; Bogomazova, N. V.

    2017-11-01

    The metal oxide films of SnxZnyOz and SnxMoyOz systems deposited onto anodic alumina matrixes by chemical and ion layering from an aqueous solutions were characterized by scanning electron microscopy, Raman spectroscopy, electron probe X-ray microanalysis and IR spectroscopy. The obtained matrix films had reproducible composition and structure and possessed certain morphological characteristics and properties.

  12. Matrix Optical Absorption in UV-MALDI MS.

    PubMed

    Robinson, Kenneth N; Steven, Rory T; Bunch, Josephine

    2018-03-01

    In ultraviolet matrix-assisted laser desorption/ionization mass spectrometry (UV-MALDI MS) matrix compound optical absorption governs the uptake of laser energy, which in turn has a strong influence on experimental results. Despite this, quantitative absorption measurements are lacking for most matrix compounds. Furthermore, despite the use of UV-MALDI MS to detect a vast range of compounds, investigations into the effects of laser energy have been primarily restricted to single classes of analytes. We report the absolute solid state absorption spectra of the matrix compounds α-cyano-4-hydroxycinnamic acid (CHCA), para-nitroaniline (PNA), 2-mercaptobenzothiazole (MBT), 2,5-dihydroxybenzoic acid (2,5-DHB), and 2,4,6-trihydroxyacetophenone (THAP). The desorption/ionization characteristics of these matrix compounds with respect to laser fluence was investigated using mixed systems of matrix with either angiotensin II, PC(34:1) lipid standard, or haloperidol, acting as representatives for typical classes of analyte encountered in UV-MALDI MS. The first absolute solid phase spectra for PNA, MBT, and THAP are reported; additionally, inconsistencies between previously published spectra for CHCA are resolved. In light of these findings, suggestions are made for experimental optimization with regards to matrix and laser wavelength selection. The relationship between matrix optical cross-section and wavelength-dependant threshold fluence, fluence of maximum ion yield, and R, a new descriptor for the change in ion intensity with fluence, are described. A matrix cross-section of 1.3 × 10 -17 cm -2 was identified as a potential minimum for desorption/ionization of analytes. Graphical Abstract ᅟ.

  13. Matrix Optical Absorption in UV-MALDI MS

    NASA Astrophysics Data System (ADS)

    Robinson, Kenneth N.; Steven, Rory T.; Bunch, Josephine

    2018-03-01

    In ultraviolet matrix-assisted laser desorption/ionization mass spectrometry (UV-MALDI MS) matrix compound optical absorption governs the uptake of laser energy, which in turn has a strong influence on experimental results. Despite this, quantitative absorption measurements are lacking for most matrix compounds. Furthermore, despite the use of UV-MALDI MS to detect a vast range of compounds, investigations into the effects of laser energy have been primarily restricted to single classes of analytes. We report the absolute solid state absorption spectra of the matrix compounds α-cyano-4-hydroxycinnamic acid (CHCA), para-nitroaniline (PNA), 2-mercaptobenzothiazole (MBT), 2,5-dihydroxybenzoic acid (2,5-DHB), and 2,4,6-trihydroxyacetophenone (THAP). The desorption/ionization characteristics of these matrix compounds with respect to laser fluence was investigated using mixed systems of matrix with either angiotensin II, PC(34:1) lipid standard, or haloperidol, acting as representatives for typical classes of analyte encountered in UV-MALDI MS. The first absolute solid phase spectra for PNA, MBT, and THAP are reported; additionally, inconsistencies between previously published spectra for CHCA are resolved. In light of these findings, suggestions are made for experimental optimization with regards to matrix and laser wavelength selection. The relationship between matrix optical cross-section and wavelength-dependant threshold fluence, fluence of maximum ion yield, and R, a new descriptor for the change in ion intensity with fluence, are described. A matrix cross-section of 1.3 × 10-17 cm-2 was identified as a potential minimum for desorption/ionization of analytes.

  14. Confocal microscopy imaging of the biofilm matrix.

    PubMed

    Schlafer, Sebastian; Meyer, Rikke L

    2017-07-01

    The extracellular matrix is an integral part of microbial biofilms and an important field of research. Confocal laser scanning microscopy is a valuable tool for the study of biofilms, and in particular of the biofilm matrix, as it allows real-time visualization of fully hydrated, living specimens. Confocal microscopes are held by many research groups, and a number of methods for qualitative and quantitative imaging of the matrix have emerged in recent years. This review provides an overview and a critical discussion of techniques used to visualize different matrix compounds, to determine the concentration of solutes and the diffusive properties of the biofilm matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Clay as a matrix former for spray drying of drug nanosuspensions.

    PubMed

    Dong, Yuancai; Ng, Wai Kiong; Hu, Jun; Shen, Shoucang; Tan, Reginald B H

    2014-04-25

    Utilization of sugars (e.g. lactose, sucrose) as matrix formers for spray drying of drug nanosuspensions is associated with two drawbacks: (1) sugars are incapable of preventing agglomeration of drug nanoparticles (NPs) in the suspension state; and (2) the spray-dried sugars are usually amorphous and hygroscopic. This work aimed to apply a clay, montmorillonite (MMT) as an alternative matrix former for spray drying of drug nanosuspensions with fenofibrate (feno) as a model compound. Drug nanosuspensions were synthesized by liquid antisolvent precipitation with different amount of MMT followed by spray drying. It is found that MMT is able to reduce the agglomeration of drug nanoparticles in the suspension state, as observed from the gradual alleviation of the clogging with the increased clay during the spray drying. The spray-dried feno NPs/MMT powders exhibited a much lower moisture sorption than spray-dried feno NPs/lactose powders as evidenced by the dynamic vapor sorption (DVS) analysis. The dissolution within 5 min for the spray-dried feno NPs/MMT powders at drug:MMT weight ratio of 1:3 was 81.4 ± 1.8% and the total dissolution within 60 min was 93.4 ± 0.9%. Our results demonstrate that MMT is a useful matrix former for preservation of the high dissolution rate of nanosized drug particles after drying. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Asymptotic states and the definition of the S-matrix in quantum gravity

    NASA Astrophysics Data System (ADS)

    Wiesendanger, C.

    2013-04-01

    Viewing gravitational energy-momentum p_G^\\mu as equal by observation, but different in essence from inertial energy-momentum p_I^\\mu naturally leads to the gauge theory of volume-preserving diffeomorphisms of an inner Minkowski space M4. The generalized asymptotic free scalar, Dirac and gauge fields in that theory are canonically quantized, the Fock spaces of stationary states are constructed and the gravitational limit—mapping the gravitational energy-momentum onto the inertial energy-momentum to account for their observed equality—is introduced. Next the S-matrix in quantum gravity is defined as the gravitational limit of the transition amplitudes of asymptotic in- to out-states in the gauge theory of volume-preserving diffeomorphisms. The so-defined S-matrix relates in- and out-states of observable particles carrying gravitational equal to inertial energy-momentum. Finally, generalized Lehmann-Symanzik-Zimmermann reduction formulae for scalar, Dirac and gauge fields are established which allow us to express S-matrix elements as the gravitational limit of truncated Fourier-transformed vacuum expectation values of time-ordered products of field operators of the interacting theory. Together with the generating functional of the latter established in Wiesendanger (2011 arXiv:1103.1012) any transition amplitude can in principle be computed consistently to any order in perturbative quantum gravity.

  17. Evidence for phosphorus bonding in phosphorus trichloride-methanol adduct: a matrix isolation infrared and ab initio computational study.

    PubMed

    Joshi, Prasad Ramesh; Ramanathan, N; Sundararajan, K; Sankaran, K

    2015-04-09

    The weak interaction between PCl3 and CH3OH was investigated using matrix isolation infrared spectroscopy and ab initio computations. In a nitrogen matrix at low temperature, the noncovalent adduct was generated and characterized using Fourier transform infrared spectroscopy. Computations were performed at B3LYP/6-311++G(d,p), B3LYP/aug-cc-pVDZ, and MP2/6-311++G(d,p) levels of theory to optimize the possible geometries of PCl3-CH3OH adducts. Computations revealed two minima on the potential energy surface, of which, the global minimum is stabilized by a noncovalent P···O interaction, known as a pnictogen bonding (phosphorus bonding or P-bonding). The local minimum corresponded to a cyclic adduct, stabilized by the conventional hydrogen bonding (Cl···H-O and Cl···H-C interactions). Experimentally, 1:1 P-bonded PCl3-CH3OH adduct in nitrogen matrix was identified, where shifts in the P-Cl modes of PCl3, O-C, and O-H modes of CH3OH submolecules were observed. The observed vibrational frequencies of the P-bonded adduct in a nitrogen matrix agreed well with the computed frequencies. Furthermore, computations also predicted that the P-bonded adduct is stronger than H-bonded adduct by ∼1.56 kcal/mol. Atoms in molecules and natural bond orbital analyses were performed to understand the nature of interactions and effect of charge transfer interaction on the stability of the adducts.

  18. Preparation and in vitro evaluation of guar gum based triple-layer matrix tablet of diclofenac sodium

    PubMed Central

    Chavda, H.V.; Patel, M.S.; Patel, C.N.

    2012-01-01

    The objective of the present study was to design an oral controlled drug delivery system for sparingly soluble diclofenac sodium (DCL) using guar gum as triple-layer matrix tablets. Matrix tablet granules containing 30% (D1), 40% (D2) or 50% (D3) of guar gum were prepared by the conventional wet granulation technique. Matrix tablets of diclofenac sodium were prepared by compressing three layers one by one. Centre layer of sandwich like structure was incorporated with matrix granules containing DCL which was covered on either side by guar gum granule layers containing either 70, 80 or 87% of guar gum as release retardant layers. The tablets were evaluated for hardness, thickness, drug content, and drug release studies. To ascertain the kinetics of drug release, the dissolution profiles were fitted to various mathematical models. The in vitro drug release from proposed system was best explained by the Hopfenberg model indicating that the release of drug from tablets displayed heterogeneous erosion. D3G3, containing 87% of guar gum in guar gum layers and 50% of guar gum in DCL matrix granule layer was found to provide the release rate for prolonged period of time. The results clearly indicate that guar gum could be a potential hydrophilic carrier in the development of oral controlled drug delivery systems. PMID:23181081

  19. Vascular Canals in Permanent Hyaline Cartilage: Development, Corrosion of Nonmineralized Cartilage Matrix, and Removal of Matrix Degradation Products.

    PubMed

    Gabner, Simone; Häusler, Gabriele; Böck, Peter

    2017-06-01

    Core areas in voluminous pieces of permanent cartilage are metabolically supplied via vascular canals (VCs). We studied cartilage corrosion and removal of matrix degradation products during the development of VCs in nose and rib cartilage of piglets. Conventional staining methods were used for glycosaminoglycans, immunohistochemistry was performed to demonstrate collagens types I and II, laminin, Ki-67, von Willebrand factor, VEGF, macrophage marker MAC387, S-100 protein, MMPs -2,-9,-13,-14, and their inhibitors TIMP1 and TIMP2. VCs derived from connective tissue buds that bulged into cartilage matrix ("perichondrial papillae", PPs). Matrix was corroded at the tips of PPs or resulting VCs. Connective tissue stromata in PPs and VCs comprised an axial afferent blood vessel, peripherally located wide capillaries, fibroblasts, newly synthesized matrix, and residues of corroded cartilage matrix (collagen type II, acidic proteoglycans). Multinucleated chondroclasts were absent, and monocytes/macrophages were not seen outside the blood vessels. Vanishing acidity characterized areas of extracellular matrix degradation ("preresorptive layers"), from where the dismantled matrix components diffused out. Leached-out material stained in an identical manner to intact cartilage matrix. It was detected in the stroma and inside capillaries and associated downstream veins. We conclude that the delicate VCs are excavated by endothelial sprouts and fibroblasts, whilst chondroclasts are specialized to remove high volumes of mineralized cartilage. VCs leading into permanent cartilage can be formed by corrosion or inclusion, but most VCs comprise segments that have developed in either of these ways. Anat Rec, 300:1067-1082, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. On the Feynman-Hellmann theorem in quantum field theory and the calculation of matrix elements

    DOE PAGES

    Bouchard, Chris; Chang, Chia Cheng; Kurth, Thorsten; ...

    2017-07-12

    In this paper, the Feynman-Hellmann theorem can be derived from the long Euclidean-time limit of correlation functions determined with functional derivatives of the partition function. Using this insight, we fully develop an improved method for computing matrix elements of external currents utilizing only two-point correlation functions. Our method applies to matrix elements of any external bilinear current, including nonzero momentum transfer, flavor-changing, and two or more current insertion matrix elements. The ability to identify and control all the systematic uncertainties in the analysis of the correlation functions stems from the unique time dependence of the ground-state matrix elements and the fact that all excited states and contact terms are Euclidean-time dependent. We demonstrate the utility of our method with a calculation of the nucleon axial charge using gradient-flowed domain-wall valence quarks on themore » $$N_f=2+1+1$$ MILC highly improved staggered quark ensemble with lattice spacing and pion mass of approximately 0.15 fm and 310 MeV respectively. We show full control over excited-state systematics with the new method and obtain a value of $$g_A = 1.213(26)$$ with a quark-mass-dependent renormalization coefficient.« less

  1. In-line micro-matrix solid-phase dispersion extraction for simultaneous separation and extraction of Sudan dyes in different spices.

    PubMed

    Rajabi, Maryam; Sabzalian, Sedigheh; Barfi, Behruz; Arghavani-Beydokhti, Somayeh; Asghari, Alireza

    2015-12-18

    A novel, simple, fast, and miniaturized method, termed in-line micro-matrix solid-phase dispersion (in-line MMSPD), coupled with high performance liquid chromatography (HPLC) was developed for the simultaneous extraction and determination of Sudan dyes (i.e. Sudan I-IV, Sudan orange G, Sudan black B, and Sudan red G) with the aid of an experimental design strategy. In this method, a matrix solid-phase dispersion (MSPD) column including a suitable mixture of polar sorbents was inserted in the mobile phase pathway, and while the interfering compounds were retained, the analytes were eluted and entered into the analytical column. In this way, the extraction, elution, and separation of the analytes were performed sequentially. Under the optimal experimental conditions (including the amount of sample, 0.0426g; amount of dispersant phase, 0.0216g of florisil, 0.0227g of silica, 0.0141g of alumina; and blending time, 112s), the limits of detection (LODs), limits of quantification, linear dynamic ranges, and recoveries were obtained to be 0.3-15.3μgkg(-1), 1-50μgkg(-1), 50-28,000μgkg(-1), and 94.5-99.1%, respectively. The results obtained showed that determination of the selected Sudan dyes in food samples using an enough sensitive and a simple analytically validated method like in-line MMSPD may offer a suitable screening method, which could be useful for food analysis and adulteration. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. High-performance sparse matrix-matrix products on Intel KNL and multicore architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagasaka, Y; Matsuoka, S; Azad, A

    Sparse matrix-matrix multiplication (SpGEMM) is a computational primitive that is widely used in areas ranging from traditional numerical applications to recent big data analysis and machine learning. Although many SpGEMM algorithms have been proposed, hardware specific optimizations for multi- and many-core processors are lacking and a detailed analysis of their performance under various use cases and matrices is not available. We firstly identify and mitigate multiple bottlenecks with memory management and thread scheduling on Intel Xeon Phi (Knights Landing or KNL). Specifically targeting multi- and many-core processors, we develop a hash-table-based algorithm and optimize a heap-based shared-memory SpGEMM algorithm. Wemore » examine their performance together with other publicly available codes. Different from the literature, our evaluation also includes use cases that are representative of real graph algorithms, such as multi-source breadth-first search or triangle counting. Our hash-table and heap-based algorithms are showing significant speedups from libraries in the majority of the cases while different algorithms dominate the other scenarios with different matrix size, sparsity, compression factor and operation type. We wrap up in-depth evaluation results and make a recipe to give the best SpGEMM algorithm for target scenario. A critical finding is that hash-table-based SpGEMM gets a significant performance boost if the nonzeros are not required to be sorted within each row of the output matrix.« less

  3. 48 CFR 1652.370 - Use of the matrix.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Use of the matrix. 1652.370... HEALTH BENEFITS ACQUISITION REGULATION CLAUSES AND FORMS CONTRACT CLAUSES FEHBP Clause Matrix 1652.370 Use of the matrix. (a) The matrix in this section lists the FAR and FEHBAR clauses to be used with...

  4. BetaIg-h3 is involved in the HAb18G/CD147-mediated metastasis process in human hepatoma cells.

    PubMed

    Tang, Juan; Zhou, Hong-wei; Jiang, Jian-li; Yang, Xiang-min; Li, Yu; Zhang, Hong-xin; Chen, Zhi-nan; Guo, Wei-ping

    2007-03-01

    HAb18G/CD147, a new hepatoma-associated antigen cloned and screened from human hepatocellular carcinoma cDNA library, is closely correlated with metastasis process in human hepatoma cells. In the present study we aimed to identify the pivotal molecules of the HAb18G/CD147 signal transduction pathway. The investigation showed that betaig-h3, a secretory extracellular matrix (ECM) protein, was upregulated in HAb18G/CD147-expressing human hepatoma T7721 cells and was downregulated by depressing HAb18G/CD147 expression. The expression of betaig-h3, upregulated in human hepatoma cells, was positively relative to the expression of HAb18G/CD147 in different human hepatoma cell lines. By overexpressing betaig-h3 in human SMMC-7721 hepatoma cells, we discovered that betaig-h3 promoted cell adhesion, invasion, and matrix metalloproteinase (MMP) secretion potential. HAb18G/CD147-induced invasion and metastasis potential of human hepatoma cells can be attenuated by antibodies specific for betaig-h3, and no significant differences on inhibitory effects were observed among T7721 cells incubated with antibodies for betaig-h3 or HAb18G/CD147 or both types together. Taken together, our study suggests that betaig-h3, regulated by the expression of HAb18G/CD147, is involved in the HAb18G/CD147 signal transduction pathway and mediates the HAb18G/CD147-induced invasion and metastasis process of human hepatoma cells.

  5. Representing k-graphs as Matrix Algebras

    NASA Astrophysics Data System (ADS)

    Rosjanuardi, R.

    2018-05-01

    For any commutative unital ring R and finitely aligned k-graph Λ with |Λ| < ∞ without cycles, we can realise Kumjian-Pask algebra KP R (Λ) as a direct sum of of matrix algebra over some vertices v with properties ν = νΛ, i.e: ⊕ νΛ=ν M |Λv|(R). When there is only a single vertex ν ∈ Λ° such that ν = νΛ, we can realise the Kumjian-Pask algebra as the matrix algebra M |ΛV|(R). Hence the matrix algebra M |vΛ|(R) can be regarded as a representation of the k-graph Λ. In this talk we will figure out the relation between finitely aligned k-graph and matrix algebra.

  6. Monitoring nonenzymatic glycation of human immunoglobulin G by methylglyoxal and glyoxal: A spectroscopic study.

    PubMed

    Pampati, Praveen K; Suravajjala, Sreekanth; Dain, Joel A

    2011-01-01

    The accumulation of dicarbonyl compounds, methylglyoxal (MG) and glyoxal (G), has been observed in diabetic conditions. They are formed from nonoxidative mechanisms in anaerobic glycolysis and lipid peroxidation, and they act as advanced glycation endproduct (AGE) precursors. The objective of this study was to monitor and characterize the AGE formation of human immunoglobulin G (hIgG) by MG and G using ultraviolet (UV) and fluorescence spectroscopy, circular dichroism (CD), and matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). hIgG was incubated over time with MG and G at different concentrations. Formation of AGE was monitored by UV and fluorescence spectroscopy. The effect of AGE formation on secondary structure of hIgG was studied by CD. Comparison of AGE profile for MG and G was performed by MALDI-MS. Both MG and G formed AGE, with MG being nearly twice as reactive as G. The combination of these techniques is a convenient method for evaluating and characterizing the AGE proteins. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Table-sized matrix model in fractional learning

    NASA Astrophysics Data System (ADS)

    Soebagyo, J.; Wahyudin; Mulyaning, E. C.

    2018-05-01

    This article provides an explanation of the fractional learning model i.e. a Table-Sized Matrix model in which fractional representation and its operations are symbolized by the matrix. The Table-Sized Matrix are employed to develop problem solving capabilities as well as the area model. The Table-Sized Matrix model referred to in this article is used to develop an understanding of the fractional concept to elementary school students which can then be generalized into procedural fluency (algorithm) in solving the fractional problem and its operation.

  8. Noniterative MAP reconstruction using sparse matrix representations.

    PubMed

    Cao, Guangzhi; Bouman, Charles A; Webb, Kevin J

    2009-09-01

    We present a method for noniterative maximum a posteriori (MAP) tomographic reconstruction which is based on the use of sparse matrix representations. Our approach is to precompute and store the inverse matrix required for MAP reconstruction. This approach has generally not been used in the past because the inverse matrix is typically large and fully populated (i.e., not sparse). In order to overcome this problem, we introduce two new ideas. The first idea is a novel theory for the lossy source coding of matrix transformations which we refer to as matrix source coding. This theory is based on a distortion metric that reflects the distortions produced in the final matrix-vector product, rather than the distortions in the coded matrix itself. The resulting algorithms are shown to require orthonormal transformations of both the measurement data and the matrix rows and columns before quantization and coding. The second idea is a method for efficiently storing and computing the required orthonormal transformations, which we call a sparse-matrix transform (SMT). The SMT is a generalization of the classical FFT in that it uses butterflies to compute an orthonormal transform; but unlike an FFT, the SMT uses the butterflies in an irregular pattern, and is numerically designed to best approximate the desired transforms. We demonstrate the potential of the noniterative MAP reconstruction with examples from optical tomography. The method requires offline computation to encode the inverse transform. However, once these offline computations are completed, the noniterative MAP algorithm is shown to reduce both storage and computation by well over two orders of magnitude, as compared to a linear iterative reconstruction methods.

  9. Very high cell density perfusion of CHO cells anchored in a non-woven matrix-based bioreactor.

    PubMed

    Zhang, Ye; Stobbe, Per; Silvander, Christian Orrego; Chotteau, Véronique

    2015-11-10

    Recombinant Chinese Hamster Ovary (CHO) cells producing IgG monoclonal antibody were cultivated in a novel perfusion culture system CellTank, integrating the bioreactor and the cell retention function. In this system, the cells were harbored in a non-woven polyester matrix perfused by the culture medium and immersed in a reservoir. Although adapted to suspension, the CHO cells stayed entrapped in the matrix. The cell-free medium was efficiently circulated from the reservoir into- and through the matrix by a centrifugal pump placed at the bottom of the bioreactor resulting in highly homogenous concentrations of the nutrients and metabolites in the whole system as confirmed by measurements from different sampling locations. A real-time biomass sensor using the dielectric properties of living cells was used to measure the cell density. The performances of the CellTank were studied in three perfusion runs. A very high cell density measured as 200 pF/cm (where 1 pF/cm is equivalent to 1 × 10(6)viable cells/mL) was achieved at a perfusion rate of 10 reactor volumes per day (RV/day) in the first run. In the second run, the effect of cell growth arrest by hypothermia at temperatures lowered gradually from 37 °C to 29 °C was studied during 13 days at cell densities above 100 pF/cm. Finally a production run was performed at high cell densities, where a temperature shift to 31 °C was applied at cell density 100 pF/cm during a production period of 14 days in minimized feeding conditions. The IgG concentrations were comparable in the matrix and in the harvest line in all the runs, indicating no retention of the product of interest. The cell specific productivity was comparable or higher than in Erlenmeyer flask batch culture. During the production run, the final harvested IgG production was 35 times higher in the CellTank compared to a repeated batch culture in the same vessel volume during the same time period. Copyright © 2015 The Authors. Published by Elsevier B.V. All

  10. Modulation of hematopoietic progenitor cell fate in vitro by varying collagen oligomer matrix stiffness in the presence or absence of osteoblasts.

    PubMed

    Chitteti, Brahmananda Reddy; Kacena, Melissa A; Voytik-Harbin, Sherry L; Srour, Edward F

    2015-10-01

    To recreate the in vivo hematopoietic cell microenvironment or niche and to study the impact of extracellular matrix (ECM) biophysical properties on hematopoietic progenitor cell (HPC) proliferation and function, mouse bone-marrow derived HPC (Lin-Sca1+cKit+/(LSK) were cultured within three-dimensional (3D) type I collagen oligomer matrices. To generate a more physiologic milieu, 3D cultures were established in both the presence and absence of calvariae-derived osteoblasts (OB). Collagen oligomers were polymerized at varying concentration to give rise to matrices of different fibril densities and therefore matrix stiffness (shear storage modulus, 50-800 Pa). Decreased proliferation and increased clonogenicity of LSK cells was associated with increase of matrix stiffness regardless of whether OB were present or absent from the 3D culture system. Also, regardless of whether OB were or were not added to the 3D co-culture system, LSK within 800 Pa collagen oligomer matrices maintained the highest percentage of Lin-Sca1+ cells as well as higher percentage of cells in quiescent state (G0/G1) compared to 50 Pa or 200Pa matrices. Collectively, these data illustrate that biophysical features of collagen oligomer matrices, specifically fibril density-induced modulation of matrix stiffness, provide important guidance cues in terms of LSK expansion and differentiation and therefore maintenance of progenitor cell function. Copyright © 2015. Published by Elsevier B.V.

  11. Permeation characteristics of hypericin across Caco-2 monolayers in the presence of single flavonoids, defined flavonoid mixtures or Hypericum extract matrix.

    PubMed

    Verjee, Sheela; Kelber, Olaf; Kolb, Christiane; Abdel-Aziz, Heba; Butterweck, Veronika

    2017-03-12

    The major aim of this study was to get a detailed understanding of the exposure and fate of hypericin in the Caco-2 cell system when combined with various flavonoids, mixtures of flavonoids or Hypericum perforatum extract matrix (STW3-VI). The permeation characteristics of hypericin in the absence or presence of quercetin, quercitrin, isoquercitrin, hyperoside and rutin were tested. Hypericin (5 μm) was mixed with single flavonoids (20 μm) or with different flavonoid combinations (each flavonoid 4 or 10 μm, total flavonoid concentration: 20 μm). Further, the uptake of hypericin (5 μm) in the presence of H. perforatum extract matrix (7.25, 29 and 58 μg/ml) was studied. Following application of hypericin to the apical side of the monolayer, only negligible amounts of the compound were found in the basolateral compartment. From all tested flavonoids, only quercitrin increased the basolateral amount of hypericin. Dual flavonoid combinations were not superior compared to the single combinations. The amount of hypericin in the basolateral compartment increased concentration-dependently in the presence of extract matrix (from 0 to 7.5%). Comparing the effects of various flavonoid mixtures vs the extract matrix, it can be concluded that, besides flavonoids, the extract seems to contain further compounds (e.g. phenolic acids or proanthocyanidins) which substantially improve the permeation characteristics of hypericin. © 2017 Royal Pharmaceutical Society.

  12. Modifying Matrix Materials to Increase Wetting and Adhesion

    NASA Technical Reports Server (NTRS)

    Zhong, Katie

    2011-01-01

    In an alternative approach to increasing the degrees of wetting and adhesion between the fiber and matrix components of organic-fiber/polymer matrix composite materials, the matrix resins are modified. Heretofore, it has been common practice to modify the fibers rather than the matrices: The fibers are modified by chemical and/or physical surface treatments prior to combining the fibers with matrix resins - an approach that entails considerable expense and usually results in degradation (typically, weakening) of fibers. The alternative approach of modifying the matrix resins does not entail degradation of fibers, and affords opportunities for improving the mechanical properties of the fiber composites. The alternative approach is more cost-effective, not only because it eliminates expensive fiber-surface treatments but also because it does not entail changes in procedures for manufacturing conventional composite-material structures. The alternative approach is best described by citing an example of its application to a composite of ultra-high-molecular- weight polyethylene (UHMWPE) fibers in an epoxy matrix. The epoxy matrix was modified to a chemically reactive, polarized epoxy nano-matrix to increase the degrees of wetting and adhesion between the fibers and the matrix. The modification was effected by incorporating a small proportion (0.3 weight percent) of reactive graphitic nanofibers produced from functionalized nanofibers into the epoxy matrix resin prior to combining the resin with the UHMWPE fibers. The resulting increase in fiber/matrix adhesion manifested itself in several test results, notably including an increase of 25 percent in the maximum fiber pullout force and an increase of 60-65 percent in fiber pullout energy. In addition, it was conjectured that the functionalized nanofibers became involved in the cross linking reaction of the epoxy resin, with resultant enhancement of the mechanical properties and lower viscosity of the matrix.

  13. Pre-form ceramic matrix composite cavity and a ceramic matrix composite component

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monaghan, Philip Harold; Delvaux, John McConnell; Taxacher, Glenn Curtis

    A pre-form CMC cavity and method of forming pre-form CMC cavity for a ceramic matrix component includes providing a mandrel, applying a base ply to the mandrel, laying-up at least one CMC ply on the base ply, removing the mandrel, and densifying the base ply and the at least one CMC ply. The remaining densified base ply and at least one CMC ply form a ceramic matrix component having a desired geometry and a cavity formed therein. Also provided is a method of forming a CMC component.

  14. Time-dependent deformation of titanium metal matrix composites

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.; Bahei-El-din, Y. A.; Mirdamadi, M.

    1995-01-01

    A three-dimensional finite element program called VISCOPAC was developed and used to conduct a micromechanics analysis of titanium metal matrix composites. The VISCOPAC program uses a modified Eisenberg-Yen thermo-viscoplastic constitutive model to predict matrix behavior under thermomechanical fatigue loading. The analysis incorporated temperature-dependent elastic properties in the fiber and temperature-dependent viscoplastic properties in the matrix. The material model was described and the necessary material constants were determined experimentally. Fiber-matrix interfacial behavior was analyzed using a discrete fiber-matrix model. The thermal residual stresses due to the fabrication cycle were predicted with a failed interface, The failed interface resulted in lower thermal residual stresses in the matrix and fiber. Stresses due to a uniform transverse load were calculated at two temperatures, room temperature and an elevated temperature of 650 C. At both temperatures, a large stress concentration was calculated when the interface had failed. The results indicate the importance of accuracy accounting for fiber-matrix interface failure and the need for a micromechanics-based analytical technique to understand and predict the behavior of titanium metal matrix composites.

  15. Performance evaluation of matrix gradient coils.

    PubMed

    Jia, Feng; Schultz, Gerrit; Testud, Frederik; Welz, Anna Masako; Weber, Hans; Littin, Sebastian; Yu, Huijun; Hennig, Jürgen; Zaitsev, Maxim

    2016-02-01

    In this paper, we present a new performance measure of a matrix coil (also known as multi-coil) from the perspective of efficient, local, non-linear encoding without explicitly considering target encoding fields. An optimization problem based on a joint optimization for the non-linear encoding fields is formulated. Based on the derived objective function, a figure of merit of a matrix coil is defined, which is a generalization of a previously known resistive figure of merit for traditional gradient coils. A cylindrical matrix coil design with a high number of elements is used to illustrate the proposed performance measure. The results are analyzed to reveal novel features of matrix coil designs, which allowed us to optimize coil parameters, such as number of coil elements. A comparison to a scaled, existing multi-coil is also provided to demonstrate the use of the proposed performance parameter. The assessment of a matrix gradient coil profits from using a single performance parameter that takes the local encoding performance of the coil into account in relation to the dissipated power.

  16. Laplace approximation for Bessel functions of matrix argument

    NASA Astrophysics Data System (ADS)

    Butler, Ronald W.; Wood, Andrew T. A.

    2003-06-01

    We derive Laplace approximations to three functions of matrix argument which arise in statistics and elsewhere: matrix Bessel A[nu]; matrix Bessel B[nu]; and the type II confluent hypergeometric function of matrix argument, [Psi]. We examine the theoretical and numerical properties of the approximations. On the theoretical side, it is shown that the Laplace approximations to A[nu], B[nu] and [Psi] given here, together with the Laplace approximations to the matrix argument functions 1F1 and 2F1 presented in Butler and Wood (Laplace approximations to hyper-geometric functions with matrix argument, Ann. Statist. (2002)), satisfy all the important confluence relations and symmetry relations enjoyed by the original functions.

  17. Specific Activation of K-RasG12D Allele in the Bladder Urothelium Results in Lung Alveolar and Vascular Defects

    PubMed Central

    Kanasaki, Megumi; Vong, Sylvia; Rovira, Carlota; Kalluri, Raghu

    2014-01-01

    K-ras is essential for embryogenesis and its mutations are involved in human developmental syndromes and cancer. To determine the consequences of K-ras activation in urothelium, we used uroplakin-II (UPK II) promoter driven Cre recombinase mice and generated mice with mutated KrasG12D allele in the urothelium (UPK II-Cre;LSL-K-rasG12D). The UPK II-Cre;LSL-K-rasG12D mice died neonatally due to lung morphogenesis defects consisting of simplification with enlargement of terminal air spaces and dysmorphic pulmonary vasculature. A significant alteration in epithelial and vascular basement membranes, together with fragmentation of laminin, points to extracellular matrix degradation as the causative mechanism of alveolar and vascular defects. Our data also suggest that altered protease activity in amniotic fluid might be associated with matrix defects in lung of UPK II-Cre;LSL-K-rasG12. These defects resemble those observed in early stage human neonatal bronchopulmonary dysplasia (BPD), although the relevance of this new mouse model for BPD study needs further investigation. PMID:24760005

  18. Multiresidue analysis of multiclass pesticides and polyaromatic hydrocarbons in fatty fish by gas chromatography tandem mass spectrometry and evaluation of matrix effect.

    PubMed

    Chatterjee, Niladri S; Utture, Sagar; Banerjee, Kaushik; Ahammed Shabeer, T P; Kamble, Narayan; Mathew, Suseela; Ashok Kumar, K

    2016-04-01

    This paper reports a selective and sensitive method for multiresidue determination of 119 chemical residues including pesticides and polyaromatic hydrocarbons (PAH) in high fatty fish matrix. The novel sample preparation method involved extraction of the target analytes from homogenized fish meat (5 g) in acetonitrile (15 mL, 1% acetic acid) after three-phase partitioning with hexane (2 mL) and the remaining aqueous layer. An aliquot (1.5 mL) of the acetonitrile layer was aspirated and subjected to two-stage dispersive solid phase extraction (dSPE) cleanup and the residues were finally estimated by gas chromatography mass spectrometry with selected reaction monitoring (GC-MS/MS). The co-eluted matrix components were identified on the basis of their accurate mass by GC with quadrupole time of flight MS. Addition of hexane during extraction and optimized dSPE cleanup significantly minimized the matrix effects. Recoveries at 10, 25 and 50 μg/kg were within 60-120% with associated precision, RSD<11%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Generating Nice Linear Systems for Matrix Gaussian Elimination

    ERIC Educational Resources Information Center

    Homewood, L. James

    2004-01-01

    In this article an augmented matrix that represents a system of linear equations is called nice if a sequence of elementary row operations that reduces the matrix to row-echelon form, through matrix Gaussian elimination, does so by restricting all entries to integers in every step. Many instructors wish to use the example of matrix Gaussian…

  20. Matrix method for acoustic levitation simulation.

    PubMed

    Andrade, Marco A B; Perez, Nicolas; Buiochi, Flavio; Adamowski, Julio C

    2011-08-01

    A matrix method is presented for simulating acoustic levitators. A typical acoustic levitator consists of an ultrasonic transducer and a reflector. The matrix method is used to determine the potential for acoustic radiation force that acts on a small sphere in the standing wave field produced by the levitator. The method is based on the Rayleigh integral and it takes into account the multiple reflections that occur between the transducer and the reflector. The potential for acoustic radiation force obtained by the matrix method is validated by comparing the matrix method results with those obtained by the finite element method when using an axisymmetric model of a single-axis acoustic levitator. After validation, the method is applied in the simulation of a noncontact manipulation system consisting of two 37.9-kHz Langevin-type transducers and a plane reflector. The manipulation system allows control of the horizontal position of a small levitated sphere from -6 mm to 6 mm, which is done by changing the phase difference between the two transducers. The horizontal position of the sphere predicted by the matrix method agrees with the horizontal positions measured experimentally with a charge-coupled device camera. The main advantage of the matrix method is that it allows simulation of non-symmetric acoustic levitators without requiring much computational effort.

  1. Structure and assembly of a paramyxovirus matrix protein

    PubMed Central

    Battisti, Anthony J.; Meng, Geng; Winkler, Dennis C.; McGinnes, Lori W.; Plevka, Pavel; Steven, Alasdair C.; Morrison, Trudy G.; Rossmann, Michael G.

    2012-01-01

    Many pleomorphic, lipid-enveloped viruses encode matrix proteins that direct their assembly and budding, but the mechanism of this process is unclear. We have combined X-ray crystallography and cryoelectron tomography to show that the matrix protein of Newcastle disease virus, a paramyxovirus and relative of measles virus, forms dimers that assemble into pseudotetrameric arrays that generate the membrane curvature necessary for virus budding. We show that the glycoproteins are anchored in the gaps between the matrix proteins and that the helical nucleocapsids are associated in register with the matrix arrays. About 90% of virions lack matrix arrays, suggesting that, in agreement with previous biological observations, the matrix protein needs to dissociate from the viral membrane during maturation, as is required for fusion and release of the nucleocapsid into the host’s cytoplasm. Structure and sequence conservation imply that other paramyxovirus matrix proteins function similarly. PMID:22891297

  2. Structure and assembly of a paramyxovirus matrix protein.

    PubMed

    Battisti, Anthony J; Meng, Geng; Winkler, Dennis C; McGinnes, Lori W; Plevka, Pavel; Steven, Alasdair C; Morrison, Trudy G; Rossmann, Michael G

    2012-08-28

    Many pleomorphic, lipid-enveloped viruses encode matrix proteins that direct their assembly and budding, but the mechanism of this process is unclear. We have combined X-ray crystallography and cryoelectron tomography to show that the matrix protein of Newcastle disease virus, a paramyxovirus and relative of measles virus, forms dimers that assemble into pseudotetrameric arrays that generate the membrane curvature necessary for virus budding. We show that the glycoproteins are anchored in the gaps between the matrix proteins and that the helical nucleocapsids are associated in register with the matrix arrays. About 90% of virions lack matrix arrays, suggesting that, in agreement with previous biological observations, the matrix protein needs to dissociate from the viral membrane during maturation, as is required for fusion and release of the nucleocapsid into the host's cytoplasm. Structure and sequence conservation imply that other paramyxovirus matrix proteins function similarly.

  3. Metal Matrix Composites Directionally Solidified

    NASA Astrophysics Data System (ADS)

    Ares, Alicia Esther; Schvezov, Carlos Enrique

    The present work is focus on studying the dendritic solidification of metal matrix composites, MMCs, (using zinc-aluminum, ZA, alloys as matrix and the addition of SiC and Al2O3 particles). The compounds were obtained by as-cast solidification, under continuous stirring and in a second stage were directionally solidified in order to obtain different dendritic growth (columnar, equiaxed and columnar-to-equiaxed transition (CET)). The results in MMCs were compared with those obtained in directional solidification of ZA alloys, primarily with regard to structural parameters. The size and evolution of microstructure, according to the size of the MMCs particles and the variation of the thermal parameters was analyzing. In general it was found that the size of the microstructure (secondary dendritic spacing) decreases with the increase of particles in the matrix. When cooling rate increases, particle size decreases, and a higher cooling rate causes finer and more homogeneous dendrites Also, the segregation which was found in the matrix of the composites was significantly less than in the case of ZA alloys.

  4. Analytical Solution for Transport with Bimolecular Reactions in Fracture-Matrix Systems with Application to In-Situ Chemical Oxidation

    NASA Astrophysics Data System (ADS)

    Rajaram, H.; Arshadi, M.

    2016-12-01

    In-situ chemical oxidation (ISCO) is an effective strategy for remediation of DNAPL contamination in fractured rock. During ISCO, an oxidant (e.g. permanganate) is typically injected through fractures and is consumed by bimolecular reactions with DNAPLs such as TCE and natural organic matter in the fracture and the adjacent rock matrix. Under these conditions, moving reaction fronts form and propagate along the fracture and into the rock matrix. The propagation of these reaction fronts is strongly influenced by the heterogeneity/discontinuity across the fracture-matrix interface (advective transport dominates in the fractures, while diffusive transport dominates in the rock matrix). We present analytical solutions for the concentrations of the oxidant, TCE and natural organic matter; and the propagation of the reaction fronts in a fracture-matrix system. Our approximate analytical solutions assume advection and reaction dominate over diffusion/dispersion in the fracture and neglect the latter. Diffusion and reaction with both TCE and immobile natural organic matter in the rock matrix are considered. The behavior of the reaction-diffusion equations in the rock matrix is posed as a Stefan problem where the diffusing oxidant reacts with both diffusing (TCE) and immobile (natural organic matter) reductants. Our analytical solutions establish that the reaction fronts propagate diffusively (i.e. as the square root of time) in both the matrix and the fracture. Our analytical solutions agree very well with numerical simulations for the case of uniform advection in the fracture. We also present extensions of our analytical solutions to non-uniform flows in the fracture by invoking a travel-time transformation. The non-uniform flow solutions are relevant to field applications of ISCO. The approximate analytical solutions are relevant to a broad class of reactive transport problems in fracture-matrix systems where moving reaction fronts occur.

  5. Matrix computations in MACSYMA

    NASA Technical Reports Server (NTRS)

    Wang, P. S.

    1977-01-01

    Facilities built into MACSYMA for manipulating matrices with numeric or symbolic entries are described. Computations will be done exactly, keeping symbols as symbols. Topics discussed include how to form a matrix and create other matrices by transforming existing matrices within MACSYMA; arithmetic and other computation with matrices; and user control of computational processes through the use of optional variables. Two algorithms designed for sparse matrices are given. The computing times of several different ways to compute the determinant of a matrix are compared.

  6. Generalized Reich-Moore R-matrix approximation

    NASA Astrophysics Data System (ADS)

    Arbanas, Goran; Sobes, Vladimir; Holcomb, Andrew; Ducru, Pablo; Pigni, Marco; Wiarda, Dorothea

    2017-09-01

    A conventional Reich-Moore approximation (RMA) of R-matrix is generalized into a manifestly unitary form by introducing a set of resonant capture channels treated explicitly in a generalized, reduced R-matrix. A dramatic reduction of channel space witnessed in conventional RMA, from Nc × Nc full R-matrix to Np × Np reduced R-matrix, where Nc = Np + Nγ, Np and Nγ denoting the number of particle and γ-ray channels, respectively, is due to Np < Nγ. A corresponding reduction of channel space in generalized RMA (GRMA) is from Nc × Nc full R-matrix to N × N, where N = Np + N, and where N is the number of capture channels defined in GRMA. We show that N = Nλ where Nλ is the number of R-matrix levels. This reduction in channel space, although not as dramatic as in the conventional RMA, could be significant for medium and heavy nuclides where N < Nγ. The resonant capture channels defined by GRMA accommodate level-level interference (via capture channels) neglected in conventional RMA. The expression for total capture cross section in GRMA is formally equal to that of the full Nc × NcR-matrix. This suggests that GRMA could yield improved nuclear data evaluations in the resolved resonance range at a cost of introducing N(N - 1)/2 resonant capture width parameters relative to conventional RMA. Manifest unitarity of GRMA justifies a method advocated by Fröhner and implemented in the SAMMY nuclear data evaluation code for enforcing unitarity of conventional RMA. Capture widths of GRMA are exactly convertible into alternative R-matrix parameters via Brune tranform. Application of idealized statistical methods to GRMA shows that variance among conventional RMA capture widths in extant RMA evaluations could be used to estimate variance among off-diagonal elements neglected by conventional RMA. Significant departure of capture widths from an idealized distribution may indicate the presence of underlying doorway states.

  7. How to Study a Matrix

    ERIC Educational Resources Information Center

    Jairam, Dharmananda; Kiewra, Kenneth A.; Kauffman, Douglas F.; Zhao, Ruomeng

    2012-01-01

    This study investigated how best to study a matrix. Fifty-three participants studied a matrix topically (1 column at a time), categorically (1 row at a time), or in a unified way (all at once). Results revealed that categorical and unified study produced higher: (a) performance on relationship and fact tests, (b) study material satisfaction, and…

  8. Matrix effects of calcium on high-precision sulfur isotope measurement by multiple-collector inductively coupled plasma mass spectrometry.

    PubMed

    Liu, Chenhui; Bian, Xiao-Peng; Yang, Tao; Lin, An-Jun; Jiang, Shao-Yong

    2016-05-01

    Multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has been successfully applied in the rapid and high-precision measurement for sulfur isotope ratios in recent years. During the measurement, the presence of matrix elements would affect the instrumental mass bias for sulfur and these matrix-induced effects have aroused a lot of researchers' interest. However, these studies have placed more weight on highlighting the necessity for their proposed correction protocols (e.g., chemical purification and matrix-matching) while less attention on the key property of the matrix element gives rise to the matrix effects. In this study, four groups of sulfate solutions, which have different concentrations of sulfur (0.05-0.60mM) but a constant sequence of atomic calcium/sulfur ratios (0.1-50), are investigated under wet (solution) and dry (desolvation) plasma conditions to make a detailed evaluation on the matrix effects from calcium on sulfur isotope measurement. Based on a series of comparative analyses, we indicated that, the matrix effects of calcium on both measured sulfur isotope ratios and detected (32)S signal intensities are dependent mainly on the absolute calcium concentration rather than its relative concentration ratio to sulfur (i.e., atomic calcium/sulfur ratio). Also, for the same group of samples, the matrix effects of calcium under dry plasma condition are much more significant than that of wet plasma. This research affords the opportunity to realize direct and relatively precise sulfur isotope measurement for evaporite gypsum, and further provides some suggestions with regard to sulfur isotope analytical protocols for sedimentary pore water. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. In vitro induction of matrix metalloproteinase-2 and matrix metalloproteinase-9 expression in keratinocytes by boron and manganese.

    PubMed

    Chebassier, Nathalie; El Houssein, Ouijja; Viegas, Isabelle; Dréno, Brigitte

    2004-08-01

    Matrix metalloproteinase (MMP)-2 and MMP-9 are involved in keratinocyte migration and granulation tissue remodeling during wound healing. Thermal water cures are sometimes proposed as complementary treatment for accelerating healing of wounds resulting from burns and/or surgery, but their mechanisms of action remain unknown. Some thermal waters are rich in trace elements such as boron and manganese. Interestingly, clinical studies have shown the beneficial effects of trace elements such as boron and manganese for human wound healing. To try to specify the role of trace elements in cutaneous healing, the present study investigated the effects of these trace elements on the production of MMP-2 and MMP-9 by normal human keratinocytes cultured in vitro. Immunohistochemistry and Western blot showed that intracellular MMP-9 expression in keratinocytes was induced when incubated for 6 h with boron at 10 micro g/ml or manganese at 0.2 micro g/ml. Moreover, gelatin zymography on keratinocyte supernatants showed an increase of gelatinase secretion after 24 h of incubation of keratinocytes with boron or manganese, regardless of concentration. Gelatinase secretion was not associated with keratinocyte proliferation induced by trace elements. Thus, our results suggest that boron and manganese could play a role in the clinical efficiency of thermal water on wound healing.

  10. Graphene-Reinforced Metal and Polymer Matrix Composites

    NASA Astrophysics Data System (ADS)

    Kasar, Ashish K.; Xiong, Guoping; Menezes, Pradeep L.

    2018-03-01

    Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.

  11. Temperature dependent nonlinear metal matrix laminae behavior

    NASA Technical Reports Server (NTRS)

    Barrett, D. J.; Buesking, K. W.

    1986-01-01

    An analytical method is described for computing the nonlinear thermal and mechanical response of laminated plates. The material model focuses upon the behavior of metal matrix materials by relating the nonlinear composite response to plasticity effects in the matrix. The foundation of the analysis is the unidirectional material model which is used to compute the instantaneous properties of the lamina based upon the properties of the fibers and matrix. The unidirectional model assumes that the fibers properties are constant with temperature and assumes that the matrix can be modelled as a temperature dependent, bilinear, kinematically hardening material. An incremental approach is used to compute average stresses in the fibers and matrix caused by arbitrary mechanical and thermal loads. The layer model is incorporated in an incremental laminated plate theory to compute the nonlinear response of laminated metal matrix composites of general orientation and stacking sequence. The report includes comparisons of the method with other analytical approaches and compares theoretical calculations with measured experimental material behavior. A section is included which describes the limitations of the material model.

  12. Genetic Relationships Between Chondrules, Rims and Matrix

    NASA Technical Reports Server (NTRS)

    Huss, G. R.; Alexander, C. M. OD.; Palme, H.; Bland, P. A.; Wasson, J. T.

    2004-01-01

    The most primitive chondrites are composed of chondrules and chondrule fragments, various types of inclusions, discrete mineral grains, metal, sulfides, and fine-grained materials that occur as interchondrule matrix and as chondrule/inclusion rims. Understanding how these components are related is essential for understanding how chondrites and their constituents formed and were processed in the solar nebula. For example, were the first generations of chondrules formed by melting of matrix or matrix precursors? Did chondrule formation result in appreciable transfer of chondrule material into the matrix? Here, we consider three types of data: 1) compositional data for bulk chondrites and matrix, 2) mineralogical and textural information, and 3) the abundances and characteristics of presolar materials that reside in the matrix and rims. We use these data to evaluate the roles of evaporation and condensation, chondrule formation, mixing of different nebular components, and secondary processing both in the nebula and on the parent bodies. Our goal is to identify the things that are reasonably well established and to point out the areas that need additional work.

  13. Graphene-Reinforced Metal and Polymer Matrix Composites

    NASA Astrophysics Data System (ADS)

    Kasar, Ashish K.; Xiong, Guoping; Menezes, Pradeep L.

    2018-06-01

    Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.

  14. Teaching Tip: When a Matrix and Its Inverse Are Stochastic

    ERIC Educational Resources Information Center

    Ding, J.; Rhee, N. H.

    2013-01-01

    A stochastic matrix is a square matrix with nonnegative entries and row sums 1. The simplest example is a permutation matrix, whose rows permute the rows of an identity matrix. A permutation matrix and its inverse are both stochastic. We prove the converse, that is, if a matrix and its inverse are both stochastic, then it is a permutation matrix.

  15. Consistent force field modeling of matrix isolated molecules. V. Minimum energy path potential to the conformer conversion of 1,2-difluoroethane: Ar 364, ab initio calculation of electric multipole moments and electric polarization contribution to the conversion barrier

    NASA Astrophysics Data System (ADS)

    Gunde, R.; Ha, T.-K.; Günthard, H. H.

    1990-08-01

    In this paper results of consistent force field modeling (CFF) of the potential function to conversion of the gauche (g) to the trans (t) conformer of 1,2-difluoroethane (DFE) isolated in an argon matrix will be reported. Starting point are locally stable configurations gDFE:Ar 364 (defect GH1) and tDFE:Ar 364 (TH1) obtained in previous work from CFF modeling of a cube shaped Ar 364 fragment containing one DFE molecule in its center. Using the dihedral angle of DFE as an independent parameter the minimum energy path of the conversion process gDFE:Ar 364→tDFE:Ar 364 will be determined by CFF energy minimization. Determination of the minimum energy path is found to require large numbers of energy minimization steps and to lead to a rather complicated motion of the molecule with respect to the crystal fragment. Surprisingly the molecule-matrix interactions lead to a reduction of the g-t barrier by ≈500 cal/mol and to a stabilization of the trans species by ≈500 cal/mol. This finding is a consequence of a delicate interplay of matrix-molecule and matrix-matrix interactions. Calculation of the electric polarization energy (induced dipole-first-order polarization approximation) is based on extended ab initio calculations of dipole and quadrupole moments and a bond polarizability estimate of the first-order polarizability of DFE as a function of the internal rotation angle, on Fourier expansion of multipole components and use of symmetry for reduction of the order of the linear system defining the (self-consistent) induced dipole moments of all Ar atoms. Electric polarization is found to alter the potential function of the conversion process in a profound way: the g-t barrier and the t-g energy difference are increased to ≈3000 cal/mol and to ≈1500 cal/mol respectively (≈2500 and ≈530 cal/mol respectively for free DFE). Further applications of the technique developed in this work to related problems of matrix isolated molecules, e.g., vibrational matrix

  16. Spin-adapted matrix product states and operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Sebastian, E-mail: sebastian.keller@phys.chem.ethz.ch; Reiher, Markus, E-mail: markus.reiher@phys.chem.ethz.ch

    Matrix product states (MPSs) and matrix product operators (MPOs) allow an alternative formulation of the density matrix renormalization group algorithm introduced by White. Here, we describe how non-abelian spin symmetry can be exploited in MPSs and MPOs by virtue of the Wigner–Eckart theorem at the example of the spin-adapted quantum chemical Hamiltonian operator.

  17. gRINN: a tool for calculation of residue interaction energies and protein energy network analysis of molecular dynamics simulations.

    PubMed

    Serçinoglu, Onur; Ozbek, Pemra

    2018-05-25

    Atomistic molecular dynamics (MD) simulations generate a wealth of information related to the dynamics of proteins. If properly analyzed, this information can lead to new insights regarding protein function and assist wet-lab experiments. Aiming to identify interactions between individual amino acid residues and the role played by each in the context of MD simulations, we present a stand-alone software called gRINN (get Residue Interaction eNergies and Networks). gRINN features graphical user interfaces (GUIs) and a command-line interface for generating and analyzing pairwise residue interaction energies and energy correlations from protein MD simulation trajectories. gRINN utilizes the features of NAMD or GROMACS MD simulation packages and automatizes the steps necessary to extract residue-residue interaction energies from user-supplied simulation trajectories, greatly simplifying the analysis for the end-user. A GUI, including an embedded molecular viewer, is provided for visualization of interaction energy time-series, distributions, an interaction energy matrix, interaction energy correlations and a residue correlation matrix. gRINN additionally offers construction and analysis of Protein Energy Networks, providing residue-based metrics such as degrees, betweenness-centralities, closeness centralities as well as shortest path analysis. gRINN is free and open to all users without login requirement at http://grinn.readthedocs.io.

  18. Unifying research on the fragmentation of terrestrial and aquatic habitats: patches, connectivity and the matrix in riverscapes

    USGS Publications Warehouse

    Eros, Tibor; Grant, Evan H. Campbell

    2015-01-01

    Fragmentation of habitats is a critical issue in the conservation and management of stream networks across spatial scales. Although the effects of individual barriers (e.g. dams) are well documented, we argue that a more comprehensive patch–matrix landscape model will improve our understanding of fragmentation effects and improve management in riverscapes.

  19. Technique for information retrieval using enhanced latent semantic analysis generating rank approximation matrix by factorizing the weighted morpheme-by-document matrix

    DOEpatents

    Chew, Peter A; Bader, Brett W

    2012-10-16

    A technique for information retrieval includes parsing a corpus to identify a number of wordform instances within each document of the corpus. A weighted morpheme-by-document matrix is generated based at least in part on the number of wordform instances within each document of the corpus and based at least in part on a weighting function. The weighted morpheme-by-document matrix separately enumerates instances of stems and affixes. Additionally or alternatively, a term-by-term alignment matrix may be generated based at least in part on the number of wordform instances within each document of the corpus. At least one lower rank approximation matrix is generated by factorizing the weighted morpheme-by-document matrix and/or the term-by-term alignment matrix.

  20. Enhanced osteoprogenitor elongated collagen fiber matrix formation by bioactive glass ionic silicon dependent on Sp7 (osterix) transcription.

    PubMed

    Varanasi, Venu G; Odatsu, Tetsurou; Bishop, Timothy; Chang, Joyce; Owyoung, Jeremy; Loomer, Peter M

    2016-10-01

    Bioactive glasses release ions, those enhance osteoblast collagen matrix synthesis and osteogenic marker expression during bone healing. Collagen matrix density and osteogenic marker expression depend on osteogenic transcription factors, (e.g., Osterix (OSX)). We hypothesize that enhanced expression and formation of collagen by Si(4+) depends on enhanced expression of OSX transcription. Experimental bioactive glass (6P53-b) and commercial Bioglass(TM) (45S5) were dissolved in basal medium to make glass conditioned medium (GCM). ICP-MS analysis was used to measure bioactive glass ion release rates. MC3T3-E1 cells were cultured for 20 days, and gene expression and extracellular matrix collagen formation was analyzed. In a separate study, siRNA was used to determine the effect of OSX knockdown on impacting the effect of Si(4+) on osteogenic markers and matrix collagen formation. Each bioactive glass exhibited similar ion release rates for all ions, except Mg(2+) released by 6P53-b. Gene expression results showed that GCM markedly enhanced many osteogenic markers, and 45S5 GCM showed higher levels of expression and collagen matrix fiber bundle density than 6P53-b GCM. Upon knockdown of OSX transcription, collagen type 5, alkaline phosphatase, and matrix density were not enhanced as compared to wild type cells. This study illustrates that the enhancement of elongated collagen fiber matrix formation by Si(±) depends on OSX transcription. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2604-2615, 2016. © 2016 Wiley Periodicals, Inc.

  1. Enamel organic matrix: potential structural role in enamel and relationship to residual basement membrane constituents at the dentin enamel junction

    PubMed Central

    McGuire, Jacob D.; Walker, Mary P.; Dusevich, Vladimir; Wang, Yong; Gorski, Jeff P.

    2015-01-01

    Although mature enamel is predominantly composed of mineral, a previously uncharacterized organic matrix layer remains in the post-eruptive tissue that begins at the dentin enamel junction and extends 200–300 µm towards the outer tooth surface. Identification of the composition of this layer has been hampered by its insolubility; however, we have developed a single step method to isolate the organic enamel matrix relatively intact. After dissociative dissolution of the matrix with SDS and urea, initial characterization by Western blotting and gel zymography indicates the presence of type IV and type VII basement membrane collagens and active matrix metalloproteinase-20. When combined with data from transgenic knockout mice and from human mutations, these data suggest that the enamel organic matrix (EOM) and dentin enamel junction may have a structural and functional relationship with basement membranes, e.g. skin. To clarify this relationship, we hypothesize a “foundation” model which proposes that components of the EOM form a support structure that stabilizes the crystalline enamel layer, and bonds it to the underlying dentin along the dentin enamel junction. Since we have also co-localized an active matrix metalloproteinase to this layer, our hypothesis suggests that, under pathologic conditions, MMP-mediated degradation of the EOM could destabilize the enamel–dentin interface. PMID:25158177

  2. The matrix exponential in transient structural analysis

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon

    1987-01-01

    The primary usefulness of the presented theory is in the ability to represent the effects of high frequency linear response with accuracy, without requiring very small time steps in the analysis of dynamic response. The matrix exponential contains a series approximation to the dynamic model. However, unlike the usual analysis procedure which truncates the high frequency response, the approximation in the exponential matrix solution is in the time domain. By truncating the series solution to the matrix exponential short, the solution is made inaccurate after a certain time. Yet, up to that time the solution is extremely accurate, including all high frequency effects. By taking finite time increments, the exponential matrix solution can compute the response very accurately. Use of the exponential matrix in structural dynamics is demonstrated by simulating the free vibration response of multi degree of freedom models of cantilever beams.

  3. Systems and methods for deactivating a matrix converter

    DOEpatents

    Ransom, Ray M.

    2013-04-02

    Systems and methods are provided for deactivating a matrix conversion module. An electrical system comprises an alternating current (AC) interface, a matrix conversion module coupled to the AC interface, an inductive element coupled between the AC interface and the matrix conversion module, and a control module. The control module is coupled to the matrix conversion module, and in response to a shutdown condition, the control module is configured to operate the matrix conversion module to deactivate the first conversion module when a magnitude of a current through the inductive element is less than a threshold value.

  4. METCAN-PC - METAL MATRIX COMPOSITE ANALYZER

    NASA Technical Reports Server (NTRS)

    Murthy, P. L.

    1994-01-01

    High temperature metal matrix composites offer great potential for use in advanced aerospace structural applications. The realization of this potential however, requires concurrent developments in (1) a technology base for fabricating high temperature metal matrix composite structural components, (2) experimental techniques for measuring their thermal and mechanical characteristics, and (3) computational methods to predict their behavior. METCAN (METal matrix Composite ANalyzer) is a computer program developed to predict this behavior. METCAN can be used to computationally simulate the non-linear behavior of high temperature metal matrix composites (HT-MMC), thus allowing the potential payoff for the specific application to be assessed. It provides a comprehensive analysis of composite thermal and mechanical performance. METCAN treats material nonlinearity at the constituent (fiber, matrix, and interphase) level, where the behavior of each constituent is modeled accounting for time-temperature-stress dependence. The composite properties are synthesized from the constituent instantaneous properties by making use of composite micromechanics and macromechanics. Factors which affect the behavior of the composite properties include the fabrication process variables, the fiber and matrix properties, the bonding between the fiber and matrix and/or the properties of the interphase between the fiber and matrix. The METCAN simulation is performed as point-wise analysis and produces composite properties which are readily incorporated into a finite element code to perform a global structural analysis. After the global structural analysis is performed, METCAN decomposes the composite properties back into the localized response at the various levels of the simulation. At this point the constituent properties are updated and the next iteration in the analysis is initiated. This cyclic procedure is referred to as the integrated approach to metal matrix composite analysis. METCAN

  5. Quantification of various growth factors in different demineralized bone matrix preparations.

    PubMed

    Wildemann, B; Kadow-Romacker, A; Haas, N P; Schmidmaier, G

    2007-05-01

    Besides autografts, allografts, and synthetic materials, demineralized bone matrix (DBM) is used for bone defect filling and treatment of non-unions. Different DBM formulations are introduced in clinic since years. However, little is known about the presents and quantities of growth factors in DBM. Aim of the present study was the quantification of eight growth factors important for bone healing in three different "off the shelf" DBM formulations, which are already in human use: DBX putty, Grafton DBM putty, and AlloMatrix putty. All three DBM formulations are produced from human donor tissue but they differ in the substitutes added. From each of the three products 10 different lots were analyzed. Protein was extracted from the samples with Guanidine HCL/EDTA method and human ELISA kits were used for growth factor quantification. Differences between the three different products were seen in total protein contend and the absolute growth factor values but also a large variability between the different lots was found. The order of the growth factors, however, is almost comparable between the materials. In the three investigated materials FGF basic and BMP-4 were not detectable in any analyzed sample. BMP-2 revealed the highest concentration extractable from the samples with approximately 3.6 microg/g tissue without a significant difference between the three DBM formulations. In DBX putty significantly more TGF-beta1 and FGFa were measurable compared to the two other DBMs. IGF-I revealed the significantly highest value in the AlloMatrix and PDGF in Grafton. No differences were accessed for VEGF. Due to the differences in the growth factor concentration between the individual samples, independently from the product formulation, further analyzes are required to optimize the clinical outcome of the used demineralized bone matrix. Copyright 2006 Wiley Periodicals, Inc.

  6. IOL calculation using paraxial matrix optics.

    PubMed

    Haigis, Wolfgang

    2009-07-01

    Matrix methods have a long tradition in paraxial physiological optics. They are especially suited to describe and handle optical systems in a simple and intuitive manner. While these methods are more and more applied to calculate the refractive power(s) of toric intraocular lenses (IOL), they are hardly used in routine IOL power calculations for cataract and refractive surgery, where analytical formulae are commonly utilized. Since these algorithms are also based on paraxial optics, matrix optics can offer rewarding approaches to standard IOL calculation tasks, as will be shown here. Some basic concepts of matrix optics are introduced and the system matrix for the eye is defined, and its application in typical IOL calculation problems is illustrated. Explicit expressions are derived to determine: predicted refraction for a given IOL power; necessary IOL power for a given target refraction; refractive power for a phakic IOL (PIOL); predicted refraction for a thick lens system. Numerical examples with typical clinical values are given for each of these expressions. It is shown that matrix optics can be applied in a straightforward and intuitive way to most problems of modern routine IOL calculation, in thick or thin lens approximation, for aphakic or phakic eyes.

  7. Development and application of a density dependent matrix ...

    EPA Pesticide Factsheets

    Ranging along the Atlantic coast from US Florida to the Maritime Provinces of Canada, the Atlantic killifish (Fundulus heteroclitus) is an important and well-studied model organism for understanding the effects of pollutants and other stressors in estuarine and marine ecosystems. Matrix population models are useful tools for ecological risk assessment because they integrate effects across the life cycle, provide a linkage between endpoints observed in the individual and ecological risk to the population as a whole, and project outcomes for many generations in the future. We developed a density dependent matrix population model for Atlantic killifish by modifying a model developed for fathead minnow (Pimephales promelas) that has proved to be extremely useful, e.g. to incorporate data from laboratory studies and project effects of endocrine disrupting chemicals. We developed a size-structured model (as opposed to one that is based upon developmental stages or age class structure) so that we could readily incorporate output from a Dynamic Energy Budget (DEB) model, currently under development. Due to a lack of sufficient data to accurately define killifish responses to density dependence, we tested a number of scenarios realistic for other fish species in order to demonstrate the outcome of including this ecologically important factor. We applied the model using published data for killifish exposed to dioxin-like compounds, and compared our results to those using

  8. Matrix isolation apparatus with extended sample collection capability

    DOEpatents

    Reedy, Gerald T.

    1987-01-01

    A gas-sample collection device provides for the matrix isolation of increased amounts of a sample material for spectrographic analysis from a gas chromatographic separation. The device includes an evacuated sample collection chamber containing a disc-like specular carousel having a generally circular lateral surface upon which the sample is deposited in an inert gas matrix for infrared (IR) spectral analysis. The evacuated sample chamber is mounted in a fixed manner and is coupled to and supports a rotating cryostatic coupler which, in turn, supports the specular carousel within the collection chamber. A rotational drive system connected to the cryostatic coupler provides for its rotational displacement as well as that of the sample collecting carousel. In addition, rotation of the cryostatic coupler effects vertical displacement of the carousel to permit the collection of an extended sample band in a helical configuration on the entire lateral surface of the carousel. The various components of the carousel's angular/linear displacement drive system are located exterior to the cryostatic coupler for easy access and improved operation. The cryostatic coupler includes a 360.degree. rotary union assembly for permitting the delivery of a high pressure working fluid to the cryostatic coupler in a continuous flow manner for maintaining the specular carousel at a low temperature, e.g., 10.degree.-20.degree. K., for improved uninterrupted gas sample collection and analysis.

  9. The Baker-Akhiezer Function and Factorization of the Chebotarev-Khrapkov Matrix

    NASA Astrophysics Data System (ADS)

    Antipov, Yuri A.

    2014-10-01

    A new technique is proposed for the solution of the Riemann-Hilbert problem with the Chebotarev-Khrapkov matrix coefficient {G(t) = α1(t)I + α2(t)Q(t)} , {α1(t), α2(t) in H(L)} , I = diag{1, 1}, Q(t) is a {2×2} zero-trace polynomial matrix. This problem has numerous applications in elasticity and diffraction theory. The main feature of the method is the removal of essential singularities of the solution to the associated homogeneous scalar Riemann-Hilbert problem on the hyperelliptic surface of an algebraic function by means of the Baker-Akhiezer function. The consequent application of this function for the derivation of the general solution to the vector Riemann-Hilbert problem requires the finding of the {ρ} zeros of the Baker-Akhiezer function ({ρ} is the genus of the surface). These zeros are recovered through the solution to the associated Jacobi problem of inversion of abelian integrals or, equivalently, the determination of the zeros of the associated degree-{ρ} polynomial and solution of a certain linear algebraic system of {ρ} equations.

  10. Matrix Management in DoD: An Annotated Bibliography

    DTIC Science & Technology

    1984-04-01

    ADDRESS 10 PROGRAM ELEMENT. PROJECT, TASK AREA & WORK UNIT NUMBERS ACSC/EDCC, MAXWELL AFB AL 36112 1 1. CONTROLLING OFFICE NAME AND ADDRESS 12 ...completes their message that matrix orga- nization is the likely format of the multiprogram Program Office. 12 The text’s discussion of matrix is...manager, and functional specialist are of vital importance to the effective operation of the matrix .... Matrix management will not achieve its

  11. Stabilization of pH in solid-matrix hydroponic systems

    NASA Technical Reports Server (NTRS)

    Frick, J.; Mitchell, C. A.

    1993-01-01

    2-[N-morpholino]ethanesulfonic acid (MES) buffer or Amberlite DP-1 (cation-exchange resin beads) were used to stabilize substrate pH of passive-wicking, solid-matrix hydroponic systems in which small canopies of Brassica napus L. (CrGC 5-2, genome : ACaacc) were grown to maturity. Two concentrations of MES (5 or 10 mM) were included in Hoagland 1 nutrient solution. Alternatively, resin beads were incorporated into the 2 vermiculite : 1 perlite (v/v) growth medium at 6% or 12% of total substrate volume. Both strategies stabilized pH without toxic side effects on plants. Average seed yield rates for all four pH stabilization treatments (13.3 to 16.9 g m-2 day-1) were about double that of the control (8.2 g m-2 day-1), for which there was no attempt to buffer substrate pH. Both the highest canopy seed yield rate (16.9 g m-2 day-1) and the highest shoot harvest index (19.5%) occurred with the 6% resin bead treatment, even though the 10 mM MES and 12% bead treatments maintained pH within the narrowest limits. The pH stabilization methods tested did not significantly affect seed oil and protein contents.

  12. Pseudomonas biofilm matrix composition and niche biology

    PubMed Central

    Mann, Ethan E.; Wozniak, Daniel J.

    2014-01-01

    Biofilms are a predominant form of growth for bacteria in the environment and in the clinic. Critical for biofilm development are adherence, proliferation, and dispersion phases. Each of these stages includes reinforcement by, or modulation of, the extracellular matrix. Pseudomonas aeruginosa has been a model organism for the study of biofilm formation. Additionally, other Pseudomonas species utilize biofilm formation during plant colonization and environmental persistence. Pseudomonads produce several biofilm matrix molecules, including polysaccharides, nucleic acids, and proteins. Accessory matrix components shown to aid biofilm formation and adaptability under varying conditions are also produced by pseudomonads. Adaptation facilitated by biofilm formation allows for selection of genetic variants with unique and distinguishable colony morphology. Examples include rugose small-colony variants and wrinkly spreaders (WS), which over produce Psl/Pel or cellulose, respectively, and mucoid bacteria that over produce alginate. The well-documented emergence of these variants suggests that pseudomonads take advantage of matrix-building subpopulations conferring specific benefits for the entire population. This review will focus on various polysaccharides as well as additional Pseudomonas biofilm matrix components. Discussions will center on structure–function relationships, regulation, and the role of individual matrix molecules in niche biology. PMID:22212072

  13. Improved EPMA Trace Element Accuracy Using a Matrix Iterated Quantitative Blank Correction

    NASA Astrophysics Data System (ADS)

    Donovan, J. J.; Wark, D. A.; Jercinovic, M. J.

    2007-12-01

    At trace element levels below several hundred PPM, accuracy is more often the limiting factor for EPMA quantification rather than precision. Modern EPMA instruments equipped with low noise detectors, counting electronics and large area analyzing crystals can now routinely achieve sensitivities for most elements in the 10 to 100 PPM levels (or even lower). But due to various sample and instrumental artifacts in the x-ray continuum, absolute accuracy is often the limiting factor for ultra trace element quantification. These artifacts have various mechanisms, but are usually attributed to sample artifacts (e.g., sample matrix absorption edges)1, detector artifacts (e.g., Ar or Xe absorption edges) 2 and analyzing crystal artifacts (extended peak tails preventing accurate determination of the true background and ¡§negative peaks¡¨ or ¡§holes¡¨ in the x-ray continuum). The latter being first described3 by Self, et al. and recently documented for the Ti kÑ in quartz geo-thermometer. 4 Ti (ka) Ti (ka) Ti (ka) Ti (ka) Ti (ka) Si () O () Total Average: -.00146 -.00031 -.00180 .00013 .00240 46.7430 53.2563 99.9983 Std Dev: .00069 .00075 .00036 .00190 .00117 .00000 .00168 .00419 The general magnitude of these artifacts can be seen in the above analyses of Ti ka in a synthetic quartz standard. The values for each spectrometer/crystal vary systematically from ¡V18 PPM to + 24 PPM. The exact mechanism for these continuum ¡§holes¡¨ is not known but may be related to secondary lattice diffraction occurring at certain Bragg angles depending on crystal mounting orientation for non-isometric analyzing crystals5. These x-ray continuum artifacts can produce systematic errors at levels up to 100 PPM or more depending on the particular analytical situation. In order to correct for these inaccuracies, a ¡§blank¡¨ correction has been developed that applies a quantitative correction to the measured x-ray intensities during the matrix iteration, by calculating the intensity

  14. Molybdenum disilicide alloy matrix composite

    DOEpatents

    Petrovic, John J.; Honnell, Richard E.; Gibbs, W. Scott

    1990-01-01

    Compositions of matter consisting of matrix matrials having silicon carbide dispersed throughout them and methods of making the compositions. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms.

  15. Molybdenum disilicide alloy matrix composite

    DOEpatents

    Petrovic, John J.; Honnell, Richard E.; Gibbs, W. Scott

    1991-01-01

    Compositions of matter consisting of matrix materials having silicon carbide dispersed throughout them and methods of making the compositions. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms.

  16. Comparison of Experimental Methods for Estimating Matrix Diffusion Coefficients for Contaminant Transport Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Telfeyan, Katherine Christina; Ware, Stuart Douglas; Reimus, Paul William

    Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%,more » and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.« less

  17. Position Index for the Matrix Light Source

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroshi; Kobayashi, Yoshinori; Onda, Shou; Irikura, Takashi

    It is expected that in the future white LEDs will be widely used in practical applications including replacing conventional lighting in offices and homes. The white LED light source of matrix arrangement is also considered in it. On the other hand, although now the unified glare rating (UGR) is widely used for evaluation of the discomfort glare of the interior lighting, UGR is a thing for a uniform light source, and its application to the matrix light sources that have non-uniform luminance has not been considered. The aim of this study is to clarify the position index which is one of element of UGR for the matrix light source. In this case, to apply the position index for a matrix light source to UGR, the concept of the revised position index is invented. As the preliminary experiment, method for measuring the position index was conducted, and as the experiment, position index for the matrix light source was conducted and compared with the uniform light source. The results of the experiments show that the position index is decided by the relative angle between line of sight and light source. It is also found that the matrix light source have larger position index than uniform light source. Furthermore, it is shown that the discomfort glare caused by a matrix light source can be evaluated by applying the revised position index to the UGR.

  18. Functional single nucleotide polymorphisms of matrix metalloproteinase 7 and 12 genes in idiopathic recurrent spontaneous abortion.

    PubMed

    Barišić, Anita; Pereza, Nina; Hodžić, Alenka; Kapović, Miljenko; Peterlin, Borut; Ostojić, Saša

    2017-03-01

    The aim of this study was to investigate the potential association of matrix metalloproteinase 7 (MMP7) -181 A/G and MMP12 -82 A/G functional single nucleotide polymorphisms (SNP) with idiopathic recurrent spontaneous abortion (IRSA) in Slovenian reproductive couples. A case-control study was conducted on 149 couples with 3 or more consecutive idiopathic spontaneous pregnancy loses and 149 women and men with at least 2 live births and no history of pregnancy complications. Genotyping of MMP7 -181 A/G and MMP12 -82 A/G SNPs was performed using polymerase chain reaction and restriction fragment length polymorphism methods. There were no statistically significant differences in the distribution of MMP7 -181 A/G and MMP12 -82 A/G genotype, allele, or haplotype frequencies between IRSA patients and controls, as well as patients' primary and secondary IRSA. We also found no association of MMP7 -181 A/G and MMP12 -82 A/G genotypes, alleles, and haplotypes with IRSA. We found no evidence to support the association between IRSA and MMP7 -181 A/G and MMP12 -82 A/G SNPs in Slovenian reproductive couples.

  19. Hypercube matrix computation task

    NASA Technical Reports Server (NTRS)

    Calalo, Ruel H.; Imbriale, William A.; Jacobi, Nathan; Liewer, Paulett C.; Lockhart, Thomas G.; Lyzenga, Gregory A.; Lyons, James R.; Manshadi, Farzin; Patterson, Jean E.

    1988-01-01

    A major objective of the Hypercube Matrix Computation effort at the Jet Propulsion Laboratory (JPL) is to investigate the applicability of a parallel computing architecture to the solution of large-scale electromagnetic scattering problems. Three scattering analysis codes are being implemented and assessed on a JPL/California Institute of Technology (Caltech) Mark 3 Hypercube. The codes, which utilize different underlying algorithms, give a means of evaluating the general applicability of this parallel architecture. The three analysis codes being implemented are a frequency domain method of moments code, a time domain finite difference code, and a frequency domain finite elements code. These analysis capabilities are being integrated into an electromagnetics interactive analysis workstation which can serve as a design tool for the construction of antennas and other radiating or scattering structures. The first two years of work on the Hypercube Matrix Computation effort is summarized. It includes both new developments and results as well as work previously reported in the Hypercube Matrix Computation Task: Final Report for 1986 to 1987 (JPL Publication 87-18).

  20. Conversion of a Rhotrix to a "Coupled Matrix"

    ERIC Educational Resources Information Center

    Sani, B.

    2008-01-01

    In this note, a method of converting a rhotrix to a special form of matrix termed a "coupled matrix" is proposed. The special matrix can be used to solve various problems involving n x n and (n - 1) x (n - 1) matrices simultaneously.

  1. Composite-Metal-Matrix Arc-Spray Process

    NASA Technical Reports Server (NTRS)

    Westfall, Leonard J.

    1987-01-01

    Arc-spray "monotape" process automated, low in cost, and produces at high rate. Ideal for development of new metal-matrix composites. "Monotape" reproducible and of high quality. Process carried out in controlled gas environment with programmable matrix-deposition rates, resulting in significant cost saving

  2. The Effect of Matrix Composition on the Deformation and Failure Mechanisms in Metal Matrix Syntactic Foams during Compression.

    PubMed

    Kádár, Csilla; Máthis, Kristián; Knapek, Michal; Chmelík, František

    2017-02-17

    The influence of the matrix material on the deformation and failure mechanisms in metal matrix syntactic foams was investigated in this study. Samples with commercially pure Al (Al) and Al-12 wt % Si (AlSi12) eutectic aluminum matrix, reinforced by hollow ceramic spheres, were compressed at room temperature. Concurrently, the acoustic emission response and the strain field development on the surface were monitored in-situ. The results indicate that the plastic deformation of the cell walls is the governing mechanism in the early stage of straining for both types of foams. At large stresses, deformation bands form both in the Al and AlSi12 foam. In Al foam, cell walls collapse in a large volume. In contrast, the AlSi12 foam is more brittle; therefore, the fracture of precipitates and the crushing of the matrix take place within a distinctive deformation band, along with an occurrence of a significant stress drop. The onset stress of ceramic sphere failure was shown to be not influenced by the matrix material. The in-situ methods provided complementary data which further support these results.

  3. Matrix algorithms for solving (in)homogeneous bound state equations

    PubMed Central

    Blank, M.; Krassnigg, A.

    2011-01-01

    In the functional approach to quantum chromodynamics, the properties of hadronic bound states are accessible via covariant integral equations, e.g. the Bethe–Salpeter equation for mesons. In particular, one has to deal with linear, homogeneous integral equations which, in sophisticated model setups, use numerical representations of the solutions of other integral equations as part of their input. Analogously, inhomogeneous equations can be constructed to obtain off-shell information in addition to bound-state masses and other properties obtained from the covariant analogue to a wave function of the bound state. These can be solved very efficiently using well-known matrix algorithms for eigenvalues (in the homogeneous case) and the solution of linear systems (in the inhomogeneous case). We demonstrate this by solving the homogeneous and inhomogeneous Bethe–Salpeter equations and find, e.g. that for the calculation of the mass spectrum it is as efficient or even advantageous to use the inhomogeneous equation as compared to the homogeneous. This is valuable insight, in particular for the study of baryons in a three-quark setup and more involved systems. PMID:21760640

  4. Improving the extraction of Ara h 6 (a peanut allergen) from a chocolate-based matrix for immunosensing detection: Influence of time, temperature and additives.

    PubMed

    Alves, Rita C; Pimentel, Filipa B; Nouws, Henri P A; Silva, Túlio H B; Oliveira, M Beatriz P P; Delerue-Matos, Cristina

    2017-03-01

    The extraction of Ara h 6 (a peanut allergen) from a complex chocolate-based food matrix was optimized by testing different temperatures, extraction times, and the influence of additives (NaCl and skimmed milk powder) in a total of 36 different conditions. Analyses were carried out using an electrochemical immunosensor. Three conditions were selected since they allowed the extraction of the highest levels of Ara h 6. These extractions were performed using 2g of sample and 20ml of Tris-HNO 3 (pH=8) containing: a) 0.1M NaCl and 2g of skimmed milk powder at 21°C for 60min; b) 1M NaCl and 1g of skimmed milk powder at 21°C for 60min; and c) 2g of skimmed milk powder at 60°C for 60min. Recoveries were similar or higher than 94.7%. This work highlights the importance to adjust extraction procedures regarding the target analyte and food matrix components. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Convex Banding of the Covariance Matrix.

    PubMed

    Bien, Jacob; Bunea, Florentina; Xiao, Luo

    2016-01-01

    We introduce a new sparse estimator of the covariance matrix for high-dimensional models in which the variables have a known ordering. Our estimator, which is the solution to a convex optimization problem, is equivalently expressed as an estimator which tapers the sample covariance matrix by a Toeplitz, sparsely-banded, data-adaptive matrix. As a result of this adaptivity, the convex banding estimator enjoys theoretical optimality properties not attained by previous banding or tapered estimators. In particular, our convex banding estimator is minimax rate adaptive in Frobenius and operator norms, up to log factors, over commonly-studied classes of covariance matrices, and over more general classes. Furthermore, it correctly recovers the bandwidth when the true covariance is exactly banded. Our convex formulation admits a simple and efficient algorithm. Empirical studies demonstrate its practical effectiveness and illustrate that our exactly-banded estimator works well even when the true covariance matrix is only close to a banded matrix, confirming our theoretical results. Our method compares favorably with all existing methods, in terms of accuracy and speed. We illustrate the practical merits of the convex banding estimator by showing that it can be used to improve the performance of discriminant analysis for classifying sound recordings.

  6. Convex Banding of the Covariance Matrix

    PubMed Central

    Bien, Jacob; Bunea, Florentina; Xiao, Luo

    2016-01-01

    We introduce a new sparse estimator of the covariance matrix for high-dimensional models in which the variables have a known ordering. Our estimator, which is the solution to a convex optimization problem, is equivalently expressed as an estimator which tapers the sample covariance matrix by a Toeplitz, sparsely-banded, data-adaptive matrix. As a result of this adaptivity, the convex banding estimator enjoys theoretical optimality properties not attained by previous banding or tapered estimators. In particular, our convex banding estimator is minimax rate adaptive in Frobenius and operator norms, up to log factors, over commonly-studied classes of covariance matrices, and over more general classes. Furthermore, it correctly recovers the bandwidth when the true covariance is exactly banded. Our convex formulation admits a simple and efficient algorithm. Empirical studies demonstrate its practical effectiveness and illustrate that our exactly-banded estimator works well even when the true covariance matrix is only close to a banded matrix, confirming our theoretical results. Our method compares favorably with all existing methods, in terms of accuracy and speed. We illustrate the practical merits of the convex banding estimator by showing that it can be used to improve the performance of discriminant analysis for classifying sound recordings. PMID:28042189

  7. Micromechanics effects in creep of metal-matrix composites

    NASA Astrophysics Data System (ADS)

    Davis, L. C.; Allison, J. E.

    1995-12-01

    The creep of metal-matrix composites is analyzed by finite element techniques. An axisymmetric unit-cell model with spherical reinforcing particles is used. Parameters appropriate to TiC particles in a precipitation-hardened (2219) Al matrix are chosen. The effects of matrix plasticity and residual stresses on the creep of the composite are calculated. We confirm (1) that the steady-state rate is independent of the particle elastic moduli and the matrix elastic and plastic properties, (2) that the ratio of composite to matrix steady-state rates depends only on the volume fraction and geometry of the reinforcing phase, and (3) that this ratio can be determined from a calculation of the stress-strain relation for the geometrically identical composite (same phase volume and geometry) with rigid particles in the appropriate power-law hardening matrix. The values of steady-state creep are compared to experimental ones (Krajewski et al.). Continuum mechanics predictions give a larger reduction of the composite creep relative to the unreinforced material than measured, suggesting that the effective creep rate of the matrix is larger than in unreinforced precipitation-hardened Al due to changes in microstructure, dislocation density, or creep mechanism. Changes in matrix creep properties are also suggested by the comparison of calculated and measured creep strain rates in the primary creep regime, where significantly different time dependencies are found. It is found that creep calculations performed for a timeindependent matrix creep law can be transformed to obtain the creep for a time-dependent creep law.

  8. Solution of matrix equations using sparse techniques

    NASA Technical Reports Server (NTRS)

    Baddourah, Majdi

    1994-01-01

    The solution of large systems of matrix equations is key to the solution of a large number of scientific and engineering problems. This talk describes the sparse matrix solver developed at Langley which can routinely solve in excess of 263,000 equations in 40 seconds on one Cray C-90 processor. It appears that for large scale structural analysis applications, sparse matrix methods have a significant performance advantage over other methods.

  9. Whitby Mudstone, flow from matrix to fractures

    NASA Astrophysics Data System (ADS)

    Houben, Maartje; Hardebol, Nico; Barnhoorn, Auke; Boersma, Quinten; Peach, Colin; Bertotti, Giovanni; Drury, Martyn

    2016-04-01

    Fluid flow from matrix to well in shales would be faster if we account for the duality of the permeable medium considering a high permeable fracture network together with a tight matrix. To investigate how long and how far a gas molecule would have to travel through the matrix until it reaches an open connected fracture we investigated the permeability of the Whitby Mudstone (UK) matrix in combination with mapping the fracture network present in the current outcrops of the Whitby Mudstone at the Yorkshire coast. Matrix permeability was measured perpendicular to the bedding using a pressure step decay method on core samples and permeability values are in the microdarcy range. The natural fracture network present in the pavement shows a connected network with dominant NS and EW strikes, where the NS fractures are the main fracture set with an orthogonal fracture set EW. Fracture spacing relations in the pavements show that the average distance to the nearest fracture varies between 7 cm (EW) and 14 cm (NS), where 90% of the matrix is 30 cm away from the nearest fracture. By making some assumptions like; fracture network at depth is similar to what is exposed in the current pavements and open to flow, fracture network is at hydrostatic pressure at 3 km depth, overpressure between matrix and fractures is 10% and a matrix permeability perpendicular to the bedding of 0.1 microdarcy, we have calculated the time it takes for a gas molecule to travel to the nearest fracture. These input values give travel times up to 8 days for a distance of 14 cm. If the permeability is changed to 1 nanodarcy or 10 microdarcy travel times change to 2.2 years or 2 hours respectively.

  10. Identification of novel lysosomal matrix proteins by proteome analysis.

    PubMed

    Kollmann, Katrin; Mutenda, Kudzai E; Balleininger, Martina; Eckermann, Ellen; von Figura, Kurt; Schmidt, Bernhard; Lübke, Torben

    2005-10-01

    The lysosomal matrix is estimated to contain about 50 different proteins. Most of the matrix proteins are acid hydrolases that depend on mannose 6-phosphate receptors (MPR) for targeting to lysosomes. Here, we describe a comprehensive proteome analysis of MPR-binding proteins from mouse. Mouse embryonic fibroblasts defective in both MPR (MPR 46-/- and MPR 300-/-) are known to secrete the lysosomal matrix proteins. Secretions of these cells were affinity purified using an affinity matrix derivatized with MPR46 and MPR300. In the protein fraction bound to the affinity matrix and eluted with mannose 6-phosphate, 34 known lysosomal matrix proteins, 4 candidate proteins of the lysosomal matrix and 4 non-lysosomal contaminants were identified by mass spectrometry after separation by two-dimensional gel electrophoresis or by multidimensional protein identification technology. For 3 of the candidate proteins, mammalian ependymin-related protein-2 (MERP-2), retinoid-inducible serine carboxypeptidase (RISC) and the hypothetical 66.3-kDa protein we could verify that C-terminally tagged forms bound in an M6P-dependent manner to an MPR-affinity matrix and were internalized via MPR-mediated endocytosis. Hence these 3 proteins are likely to represent hitherto unrecognized lysosomal matrix proteins.

  11. Pendulum impact resistance of tungsten fiber/metal matrix composites.

    NASA Technical Reports Server (NTRS)

    Winsa, E. A.; Petrasek, D. W.

    1972-01-01

    The impact properties of copper, copper-10 nickel, and a superalloy matrix reinforced with tungsten fibers were studied. In most cases the following increased composite impact strength: increased fiber or matrix toughness, decreased fiber-matrix reaction, increased test temperature, hot working and heat treatment. Notch sensitivity was reduced by increasing fiber or matrix toughness. The effect of fiber content depended on the relative toughness of the fibers and matrix. Above 530 K a 60 volume per cent superalloy matrix composite had a greater impact strength than a turbine blade superalloy, whereas below 530 K a hot worked 56 volume per cent composite had a greater impact strength than the superalloy.

  12. Molybdenum disilicide alloy matrix composite

    DOEpatents

    Petrovic, J.J.; Honnell, R.E.; Gibbs, W.S.

    1991-12-03

    Compositions of matter consisting of matrix materials having silicon carbide dispersed throughout them and methods of making the compositions are disclosed. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms. 3 figures.

  13. Selection and use of crystallization inhibitors for matrix-type transdermal drug-delivery systems containing sex steroids.

    PubMed

    Lipp, R

    1998-12-01

    The purpose of this study was to stabilize transdermal drug-delivery systems (TDDS) highly loaded with sex steroids against recrystallization of drugs during storage. To facilitate the selection of potential crystallization inhibitors a drug-excipient interaction test was also established. Analysis of the thermal behaviour of 1:1 steroid-excipient mixtures by differential scanning calorimetry (DSC) revealed that oestradiol and gestodene interact strongly with silicone dioxide and povidones, e.g. povidone K12. The addition of povidone K12 to polyacrylate-based matrix TDDS containing either 3% oestradiol or 2% gestodene resulted in stable systems which did not recrystallize during storage at 25 degrees C for more than 5 years. Significant recrystallization was, on the other hand, observed in non-stabilized reference patches even after 1 to 2 months storage. The DSC screening model proved very effective for selection of inhibitors of the crystallization of sex steroids in matrix TDDS. The crystallization inhibitor approach is a highly versatile stabilization tool for matrix patches containing high concentrations of sex steroids.

  14. Automated acoustic matrix deposition for MALDI sample preparation.

    PubMed

    Aerni, Hans-Rudolf; Cornett, Dale S; Caprioli, Richard M

    2006-02-01

    Novel high-throughput sample preparation strategies for MALDI imaging mass spectrometry (IMS) and profiling are presented. An acoustic reagent multispotter was developed to provide improved reproducibility for depositing matrix onto a sample surface, for example, such as a tissue section. The unique design of the acoustic droplet ejector and its optimization for depositing matrix solution are discussed. Since it does not contain a capillary or nozzle for fluid ejection, issues with clogging of these orifices are avoided. Automated matrix deposition provides better control of conditions affecting protein extraction and matrix crystallization with the ability to deposit matrix accurately onto small surface features. For tissue sections, matrix spots of 180-200 microm in diameter were obtained and a procedure is described for generating coordinate files readable by a mass spectrometer to permit automated profile acquisition. Mass spectral quality and reproducibility was found to be better than that obtained with manual pipet spotting. The instrument can also deposit matrix spots in a dense array pattern so that, after analysis in a mass spectrometer, two-dimensional ion images may be constructed. Example ion images from a mouse brain are presented.

  15. Matrix heat exchanger including a liquid, thermal couplant

    DOEpatents

    Fewell, Thomas E.; Ward, Charles T.

    1976-01-01

    A tube-to-tube heat exchanger is disclosed with a thermally conductive matrix between and around the tubes to define annuli between the tubes and matrix. The annuli are filled to a level with a molten metal or alloy to provide a conductive heat transfer path from one tube through the matrix to the second tube. A matrix heat exchanger of this type is particularly useful for heat transfer between fluids which would react should one leak into the second.

  16. Discrete Element Framework for Modelling Extracellular Matrix, Deformable Cells and Subcellular Components.

    PubMed

    Gardiner, Bruce S; Wong, Kelvin K L; Joldes, Grand R; Rich, Addison J; Tan, Chin Wee; Burgess, Antony W; Smith, David W

    2015-10-01

    This paper presents a framework for modelling biological tissues based on discrete particles. Cell components (e.g. cell membranes, cell cytoskeleton, cell nucleus) and extracellular matrix (e.g. collagen) are represented using collections of particles. Simple particle to particle interaction laws are used to simulate and control complex physical interaction types (e.g. cell-cell adhesion via cadherins, integrin basement membrane attachment, cytoskeletal mechanical properties). Particles may be given the capacity to change their properties and behaviours in response to changes in the cellular microenvironment (e.g., in response to cell-cell signalling or mechanical loadings). Each particle is in effect an 'agent', meaning that the agent can sense local environmental information and respond according to pre-determined or stochastic events. The behaviour of the proposed framework is exemplified through several biological problems of ongoing interest. These examples illustrate how the modelling framework allows enormous flexibility for representing the mechanical behaviour of different tissues, and we argue this is a more intuitive approach than perhaps offered by traditional continuum methods. Because of this flexibility, we believe the discrete modelling framework provides an avenue for biologists and bioengineers to explore the behaviour of tissue systems in a computational laboratory.

  17. Benchmark matrix and guide: Part II.

    PubMed

    1991-01-01

    In the last issue of the Journal of Quality Assurance (September/October 1991, Volume 13, Number 5, pp. 14-19), the benchmark matrix developed by Headquarters Air Force Logistics Command was published. Five horizontal levels on the matrix delineate progress in TQM: business as usual, initiation, implementation, expansion, and integration. The six vertical categories that are critical to the success of TQM are leadership, structure, training, recognition, process improvement, and customer focus. In this issue, "Benchmark Matrix and Guide: Part II" will show specifically how to apply the categories of leadership, structure, and training to the benchmark matrix progress levels. At the intersection of each category and level, specific behavior objectives are listed with supporting behaviors and guidelines. Some categories will have objectives that are relatively easy to accomplish, allowing quick progress from one level to the next. Other categories will take considerable time and effort to complete. In the next issue, Part III of this series will focus on recognition, process improvement, and customer focus.

  18. Super Yang Mills, matrix models and geometric transitions

    NASA Astrophysics Data System (ADS)

    Ferrari, Frank

    2005-03-01

    I explain two applications of the relationship between four-dimensional N=1 supersymmetric gauge theories, zero-dimensional gauged matrix models, and geometric transitions in string theory. The first is related to the spectrum of BPS domain walls or BPS branes. It is shown that one can smoothly interpolate between a D-brane state, whose weak coupling tension scales as N˜1/g, and a closed string solitonic state, whose weak coupling tension scales as N˜1/gs2. This is part of a larger theory of N=1 quantum parameter spaces. The second is a new purely geometric approach to sum exactly over planar diagrams in zero dimension. It is an example of open/closed string duality. To cite this article: F. Ferrari, C. R. Physique 6 (2005).

  19. Estimation of polyclonal IgG4 hybrids in normal human serum.

    PubMed

    Young, Elizabeth; Lock, Emma; Ward, Douglas G; Cook, Alexander; Harding, Stephen; Wallis, Gregg L F

    2014-07-01

    The in vivo or in vitro formation of IgG4 hybrid molecules, wherein the immunoglobulins have exchanged half molecules, has previously been reported under experimental conditions. Here we estimate the incidence of polyclonal IgG4 hybrids in normal human serum and comment on the existence of IgG4 molecules with different immunoglobulin light chains. Polyclonal IgG4 was purified from pooled or individual donor human sera and sequentially fractionated using light-chain affinity and size exclusion chromatography. Fractions were analysed by SDS-PAGE, immunoblotting, ELISA, immunodiffusion and matrix-assisted laser-desorption mass spectrometry. Polyclonal IgG4 purified from normal serum contained IgG4κ, IgG4λ and IgG4κ/λ molecules. Size exclusion chromatography showed that IgG4 was principally present in monomeric form (150 000 MW). SDS-PAGE, immunoblotting and ELISA showed the purity of the three IgG4 samples. Immunodiffusion, light-chain sandwich ELISA and mass spectrometry demonstrated that both κ and λ light chains were present on only the IgG4κ/λ molecules. The amounts of IgG4κ/λ hybrid molecules ranged from 21 to 33% from the five sera analysed. Based on the molecular weight these molecules were formed of two IgG4 heavy chains plus one κ and one λ light chain. Polyclonal IgG (IgG4-depleted) was similarly fractionated according to light-chain specificity. No evidence of hybrid IgG κ/λ antibodies was observed. These results indicate that hybrid IgG4κ/λ antibodies compose a substantial portion of IgG4 from normal human serum. © 2014 John Wiley & Sons Ltd.

  20. Detecting Damage in Ceramic Matrix Composites Using Electrical Resistance

    NASA Technical Reports Server (NTRS)

    Smith, Craig E.; Gyekenyesi, Andrew

    2011-01-01

    The majority of damage in SiC/SiC ceramic matrix composites subjected to monotonic tensile loads is in the form of distributed matrix cracks. These cracks initiate near stress concentrations, such as 90 deg fiber tows or large matrix pores and continue to accumulate with additional stress until matrix crack saturation is achieved. Such damage is difficult to detect with conventional nondestructive evaluation techniques (immersion ultrasonics, x-ray, etc.). Monitoring a specimen.s electrical resistance change provides an indirect approach for monitoring matrix crack density. Sylramic-iBN fiber- reinforced SiC composites with a melt infiltrated (MI) matrix were tensile tested at room temperature. Results showed an increase in resistance of more than 500% prior to fracture, which can be detected either in situ or post-damage. A relationship between resistance change and matrix crack density was also determined.

  1. Detecting Cracks in Ceramic Matrix Composites by Electrical Resistance

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Gyekenyesi, Andrew

    2011-01-01

    The majority of damage in SiC/SiC ceramic matrix composites subjected to monotonic tensile loads is in the form of distributed matrix cracks. These cracks initiate near stress concentrations, such as 90o fiber tows or large matrix pores and continue to accumulate with additional stress until matrix crack saturation is achieved. Such damage is difficult to detect with conventional nondestructive evaluation techniques (immersion ultrasonics, x-ray, etc.). Monitoring a specimen.s electrical resistance change provides an indirect approach for monitoring matrix crack density. Sylramic-iBN fiber- reinforced SiC composites with a melt infiltrated (MI) matrix were tensile tested at room temperature. Results showed an increase in resistance of more than 500% prior to fracture, which can be detected either in situ or post-damage. A relationship between resistance change and matrix crack density was also determined.

  2. Viscoplastic Matrix Materials for Embedded 3D Printing.

    PubMed

    Grosskopf, Abigail K; Truby, Ryan L; Kim, Hyoungsoo; Perazzo, Antonio; Lewis, Jennifer A; Stone, Howard A

    2018-03-16

    Embedded three-dimensional (EMB3D) printing is an emerging technique that enables free-form fabrication of complex architectures. In this approach, a nozzle is translated omnidirectionally within a soft matrix that surrounds and supports the patterned material. To optimize print fidelity, we have investigated the effects of matrix viscoplasticity on the EMB3D printing process. Specifically, we determine how matrix composition, print path and speed, and nozzle diameter affect the yielded region within the matrix. By characterizing the velocity and strain fields and analyzing the dimensions of the yielded regions, we determine that scaling relationships based on the Oldroyd number, Od, exist between these dimensions and the rheological properties of the matrix materials and printing parameters. Finally, we use EMB3D printing to create complex architectures within an elastomeric silicone matrix. Our methods and findings will both facilitate future characterization of viscoplastic matrices and motivate the development of new materials for EMB3D printing.

  3. Evidence for Enhanced Matrix Diffusion in Geological Environment

    NASA Astrophysics Data System (ADS)

    Sato, Kiminori; Fujimoto, Koichiro; Nakata, Masataka; Shikazono, Naotatsu

    2013-01-01

    Molecular diffusion in rock matrix, called as matrix diffusion, has been appreciated as a static process for elemental migration in geological environment that has been acknowledged in the context of geological disposal of radioactive waste. However, incomprehensible enhancement of matrix diffusion has been reported at a number of field test sites. Here, the matrix diffusion of saline water at Horonobe, Hokkaido, Japan is highlighted directly probing angstrom-scale pores on a field scale up to 1 km by positron--positronium annihilation spectroscopy. The first application of positron--positronium annihilation spectroscopy to field-scale geophysical research reveals the slight variation of angstrom-scale pores influenced by saline water diffusion with complete accuracy. We found widely interconnected 3 Å pores, which offer the pathway of saline water diffusion with the highly enhanced effective matrix diffusion coefficient of 4× 10-6 cm2 s-1. The present findings provide unambiguous evidence that the angstrom-scale pores enhance effective matrix diffusion on a field scale in geological environment.

  4. Polymerized laminin-332 matrix supports rapid and tight adhesion of keratinocytes, suppressing cell migration.

    PubMed

    Kariya, Yoshinobu; Sato, Hiroki; Katou, Naoko; Kariya, Yukiko; Miyazaki, Kaoru

    2012-01-01

    Laminin-332 (α3ß3γ2) (Lm332) supports the stable anchoring of basal keratinocytes to the epidermal basement membrane, while it functions as a motility factor for wound healing and cancer invasion. To understand these contrasting activities of Lm332, we investigated Lm332 matrices deposited by normal human keratinocytes and other Lm332-expressing cell lines. All types of the cells efficiently deposited Lm332 on the culture plates in specific patterns. On the contrary, laminins containing laminin ß1 and/or γ1 chains, such as Lm511 and Lm311, were not deposited on the culture plates even if secreted into culture medium. The Lm332 deposition was not inhibited by function-blocking antibodies to the α3 and α6 integrins but was inhibited by sodium selenate, suggesting that sulfated glycosaminoglycans on cell surface, e.g. heparan sulfate proteoglycans, might be involved in the process. HEK293 cells overexpressing exogenous Lm332 (Lm332-HEK) almost exclusively deposited Lm332 on the plates. The deposited Lm332 matrix showed a mesh-like network structure as analyzed by electron microscopy, suggesting that Lm332 was highly polymerized. When biological activity was analyzed, the Lm332 matrix rather suppressed the migration of keratinocytes as compared with purified Lm332, which highly promoted the cell migration. The Lm332 matrix supported adhesion of keratinocytes much more strongly and stably than purified Lm332. Integrin α3ß1 bound to the Lm332 matrix at a three times higher level than purified Lm332. Normal keratinocytes prominently showed integrin α6ß4-containing, hemidesmosome-like structures on the Lm332 matrix but not on the purified one. These results indicate that the polymerized Lm332 matrix supports stable cell adhesion by interacting with both integrin α6ß4 and α3ß1, whereas unassembled soluble Lm332 supports cell migration.

  5. RhoG regulates anoikis through a phosphatidylinositol 3-kinase-dependent mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaki, Nao; Negishi, Manabu; Katoh, Hironori

    2007-08-01

    In normal epithelial cells, cell-matrix interaction is required for cell survival and proliferation, whereas disruption of this interaction causes epithelial cells to undergo apoptosis called anoikis. Here we show that the small GTPase RhoG plays an important role in the regulation of anoikis. HeLa cells are capable of anchorage-independent cell growth and acquire resistance to anoikis. We found that RNA interference-mediated knockdown of RhoG promoted anoikis in HeLa cells. Previous studies have shown that RhoG activates Rac1 and induces several cellular functions including promotion of cell migration through its effector ELMO and the ELMO-binding protein Dock180 that function as amore » Rac-specific guanine nucleotide exchange factor. However, RhoG-induced suppression of anoikis was independent of the ELMO- and Dock180-mediated activation of Rac1. On the other hand, the regulation of anoikis by RhoG required phosphatidylinositol 3-kinase (PI3K) activity, and constitutively active RhoG bound to the PI3K regulatory subunit p85{alpha} and induced the PI3K-dependent phosphorylation of Akt. Taken together, these results suggest that RhoG protects cells from apoptosis caused by the loss of anchorage through a PI3K-dependent mechanism, independent of its activation of Rac1.« less

  6. Exploiting Multiple Levels of Parallelism in Sparse Matrix-Matrix Multiplication

    DOE PAGES

    Azad, Ariful; Ballard, Grey; Buluc, Aydin; ...

    2016-11-08

    Sparse matrix-matrix multiplication (or SpGEMM) is a key primitive for many high-performance graph algorithms as well as for some linear solvers, such as algebraic multigrid. The scaling of existing parallel implementations of SpGEMM is heavily bound by communication. Even though 3D (or 2.5D) algorithms have been proposed and theoretically analyzed in the flat MPI model on Erdös-Rényi matrices, those algorithms had not been implemented in practice and their complexities had not been analyzed for the general case. In this work, we present the first implementation of the 3D SpGEMM formulation that exploits multiple (intranode and internode) levels of parallelism, achievingmore » significant speedups over the state-of-the-art publicly available codes at all levels of concurrencies. We extensively evaluate our implementation and identify bottlenecks that should be subject to further research.« less

  7. Assembly and development of the Pseudomonas aeruginosa biofilm matrix.

    PubMed

    Ma, Luyan; Conover, Matthew; Lu, Haiping; Parsek, Matthew R; Bayles, Kenneth; Wozniak, Daniel J

    2009-03-01

    Virtually all cells living in multicellular structures such as tissues and organs are encased in an extracellular matrix. One of the most important features of a biofilm is the extracellular polymeric substance that functions as a matrix, holding bacterial cells together. Yet very little is known about how the matrix forms or how matrix components encase bacteria during biofilm development. Pseudomonas aeruginosa forms environmentally and clinically relevant biofilms and is a paradigm organism for the study of biofilms. The extracellular polymeric substance of P. aeruginosa biofilms is an ill-defined mix of polysaccharides, nucleic acids, and proteins. Here, we directly visualize the product of the polysaccharide synthesis locus (Psl exopolysaccharide) at different stages of biofilm development. During attachment, Psl is anchored on the cell surface in a helical pattern. This promotes cell-cell interactions and assembly of a matrix, which holds bacteria in the biofilm and on the surface. Chemical dissociation of Psl from the bacterial surface disrupted the Psl matrix as well as the biofilm structure. During biofilm maturation, Psl accumulates on the periphery of 3-D-structured microcolonies, resulting in a Psl matrix-free cavity in the microcolony center. At the dispersion stage, swimming cells appear in this matrix cavity. Dead cells and extracellular DNA (eDNA) are also concentrated in the Psl matrix-free area. Deletion of genes that control cell death and autolysis affects the formation of the matrix cavity and microcolony dispersion. These data provide a mechanism for how P. aeruginosa builds a matrix and subsequently a cavity to free a portion of cells for seeding dispersal. Direct visualization reveals that Psl is a key scaffolding matrix component and opens up avenues for therapeutics of biofilm-related complications.

  8. Assembly and Development of the Pseudomonas aeruginosa Biofilm Matrix

    PubMed Central

    Ma, Luyan; Conover, Matthew; Lu, Haiping; Parsek, Matthew R.; Bayles, Kenneth; Wozniak, Daniel J.

    2009-01-01

    Virtually all cells living in multicellular structures such as tissues and organs are encased in an extracellular matrix. One of the most important features of a biofilm is the extracellular polymeric substance that functions as a matrix, holding bacterial cells together. Yet very little is known about how the matrix forms or how matrix components encase bacteria during biofilm development. Pseudomonas aeruginosa forms environmentally and clinically relevant biofilms and is a paradigm organism for the study of biofilms. The extracellular polymeric substance of P. aeruginosa biofilms is an ill-defined mix of polysaccharides, nucleic acids, and proteins. Here, we directly visualize the product of the polysaccharide synthesis locus (Psl exopolysaccharide) at different stages of biofilm development. During attachment, Psl is anchored on the cell surface in a helical pattern. This promotes cell–cell interactions and assembly of a matrix, which holds bacteria in the biofilm and on the surface. Chemical dissociation of Psl from the bacterial surface disrupted the Psl matrix as well as the biofilm structure. During biofilm maturation, Psl accumulates on the periphery of 3-D-structured microcolonies, resulting in a Psl matrix-free cavity in the microcolony center. At the dispersion stage, swimming cells appear in this matrix cavity. Dead cells and extracellular DNA (eDNA) are also concentrated in the Psl matrix-free area. Deletion of genes that control cell death and autolysis affects the formation of the matrix cavity and microcolony dispersion. These data provide a mechanism for how P. aeruginosa builds a matrix and subsequently a cavity to free a portion of cells for seeding dispersal. Direct visualization reveals that Psl is a key scaffolding matrix component and opens up avenues for therapeutics of biofilm-related complications. PMID:19325879

  9. An investigation of the decontamination of Siqveland matrix bands.

    PubMed

    Whitworth, C L; Davies, K; Palmer, N O A; Martin, M V

    2007-02-24

    This study investigated blood contamination of artificially and clinically contaminated Siqveland matrix bands and retainers. A modified version of the recognised Kastle-Meyer test for blood was used to compare the efficacy of enzymatic agents, a washer-disinfector and an instrument washer for pre-sterilisation cleaning of Siqveland matrix bands and retainers. Assembled Siqveland matrix bands were contaminated either artificially with horse blood or clinically during dental treatment. Contaminated assembled matrix bands and retainers were subjected to immersion in an enzymatic agent, automated processing in a washer-disinfector or instrument washer, or a combination of pre-soaking and automatic cleaning. Residual blood contamination from each band and retainer was measured and compared to the volume of blood recovered from an unprocessed control group of contaminated assembled matrix bands or retainers. Residual blood was recovered from every clinically contaminated assembled Siqveland matrix band and retainer. The volume of blood recovered from assembled Siqveland matrix bands ranged from 0.13-7.1 microl and from retainers, following removal of the matrix band, from 0.001-1.523 microl. The most effective method of pre-sterilisation cleaning for artificially contaminated assembled matrix bands was processing in the washer-disinfector. Conversely, the most effective method for cleaning clinically contaminated assembled matrix bands and retainers was pre-soaking in an enzymatic agent followed by a heavy-duty cycle in an instrument washer. It is not possible to clean assembled Siqveland matrix bands using any method currently available to dental practitioners. Matrix bands should be discarded after use on one patient. Once the band is removed, all detectable blood can be removed from the retainer by pre-soaking in an enzymatic detergent followed by processing in an instrument washer.

  10. The wilderness threats matrix: A framework for assessing impacts

    Treesearch

    David N. Cole

    1994-01-01

    A comprehensive framework for assessing threats to wilderness is described. The framework is represented as a matrix of potential threats and attributes of wilderness character. Cells in the matrix represent the impacts of threats on each attribute. Potential applications of the matrix are described. An application of the matrix to the wildernesses in the Forest...

  11. Core filaments of the nuclear matrix

    PubMed Central

    1990-01-01

    The nuclear matrix is concealed by a much larger mass of chromatin, which can be removed selectively by digesting nuclei with DNase I followed by elution of chromatin with 0.25 M ammonium sulfate. This mild procedure removes chromatin almost completely and preserves nuclear matrix morphology. The complete nuclear matrix consists of a nuclear lamina with an interior matrix composed of thick, polymorphic fibers and large masses that resemble remnant nucleoli. Further extraction of the nuclear matrices of HeLa or MCF-7 cells with 2 M sodium chloride uncovered a network of core filaments. A few dark masses remained enmeshed in the filament network and may be remnants of the nuclear matrix thick fibers and nucleoli. The highly branched core filaments had diameters of 9 and 13 nm measured relative to the intermediate filaments. They may serve as the core structure around which the matrix is constructed. The core filaments retained 70% of nuclear RNA. This RNA consisted both of ribosomal RNA precursors and of very high molecular weight hnRNA with a modal size of 20 kb. Treatment with RNase A removed the core filaments. When 2 M sodium chloride was used directly to remove chromatin after DNase I digestion without a preceding 0.25 M ammonium sulfate extraction, the core filaments were not revealed. Instead, the nuclear interior was filled with amorphous masses that may cover the filaments. This reflected a requirement for a stepwise increase in ionic strength because gradual addition of sodium chloride to a final concentration of 2 M without an 0.25 M ammonium sulfate extraction uncovered core filaments. PMID:2307700

  12. Matrix of educational and training materials in remote sensing

    NASA Technical Reports Server (NTRS)

    Lindenlaub, J. C.; Lube, B. M.

    1976-01-01

    Remote sensing educational and training materials developed by LARS have been organized in a matrix format. Each row in the matrix represents a subject area in remote sensing and the columns represent different types of instructional materials. This format has proved to be useful for displaying in a concise manner the subject matter content, prerequisite requirements and technical depth of each instructional module in the matrix. A general description of the matrix is followed by three examples designed to illustrate how the matrix can be used to synthesize training programs tailored to meet the needs of individual students. A detailed description of each of the modules in the matrix is contained in a catalog section.

  13. Refractive index inversion based on Mueller matrix method

    NASA Astrophysics Data System (ADS)

    Fan, Huaxi; Wu, Wenyuan; Huang, Yanhua; Li, Zhaozhao

    2016-03-01

    Based on Stokes vector and Jones vector, the correlation between Mueller matrix elements and refractive index was studied with the result simplified, and through Mueller matrix way, the expression of refractive index inversion was deduced. The Mueller matrix elements, under different incident angle, are simulated through the expression of specular reflection so as to analyze the influence of the angle of incidence and refractive index on it, which is verified through the measure of the Mueller matrix elements of polished metal surface. Research shows that, under the condition of specular reflection, the result of Mueller matrix inversion is consistent with the experiment and can be used as an index of refraction of inversion method, and it provides a new way for target detection and recognition technology.

  14. Modulation and control of matrix converter for aerospace application

    NASA Astrophysics Data System (ADS)

    Kobravi, Keyhan

    In the context of modern aircraft systems, a major challenge is power conversion to supply the aircraft's electrical instruments. These instruments are energized through a fixed-frequency internal power grid. In an aircraft, the available sources of energy are a set of variable-speed generators which provide variable-frequency ac voltages. Therefore, to energize the internal power grid of an aircraft, the variable-frequency ac voltages should be converted to a fixed-frequency ac voltage. As a result, an ac to ac power conversion is required within an aircraft's power system. This thesis develops a Matrix Converter to energize the aircraft's internal power grid. The Matrix Converter provides a direct ac to ac power conversion. A major challenge of designing Matrix Converters for aerospace applications is to minimize the volume and weight of the converter. These parameters are minimized by increasing the switching frequency of the converter. To design a Matrix Converter operating at a high switching frequency, this thesis (i) develops a scheme to integrate fast semiconductor switches within the current available Matrix Converter topologies, i.e., MOSFET-based Matrix Converter, and (ii) develops a new modulation strategy for the Matrix Converter. This Matrix Converter and the new modulation strategy enables the operation of the converter at a switching-frequency of 40kHz. To provide a reliable source of energy, this thesis also develops a new methodology for robust control of Matrix Converter. To verify the performance of the proposed MOSFET-based Matrix Converter, modulation strategy, and control design methodology, various simulation and experimental results are presented. The experimental results are obtained under operating condition present in an aircraft. The experimental results verify the proposed Matrix Converter provides a reliable power conversion in an aircraft under extreme operating conditions. The results prove the superiority of the proposed Matrix

  15. Serum IgG titres, but not avidity, correlates with neutralizing antibody response after H5N1 vaccination.

    PubMed

    Pedersen, Gabriel Kristian; Höschler, Katja; Øie Solbak, Sara Marie; Bredholt, Geir; Pathirana, Rishi Delan; Afsar, Aram; Breakwell, Lucy; Nøstbakken, Jane Kristin; Raae, Arnt Johan; Brokstad, Karl Albert; Sjursen, Haakon; Zambon, Maria; Cox, Rebecca Jane

    2014-07-31

    Influenza H5N1 virus constitutes a pandemic threat and development of effective H5N1 vaccines is a global priority. Anti-influenza antibodies directed towards the haemagglutinin (HA) define a correlate of protection. Both antibody concentration and avidity may be important for virus neutralization and resolving influenza disease. We conducted a phase I clinical trial of a virosomal H5N1 vaccine adjuvanted with the immunostimulating complex Matrix M™. Sixty adults were intramuscularly immunized with two vaccine doses (21 days apart) of 30 μg HA alone or 1.5, 7.5 or 30 μg HA adjuvanted with Matrix M™. Serum H5 HA1-specific antibodies and virus neutralization were determined at days 0, 21, 42, 180 and 360 and long-term memory B cells at day 360 post-vaccination. The binding of the HA specific antibodies was measured by avidity NaSCN-elution ELISA and surface plasmon resonance (SPR). The H5 HA1-specific IgG response peaked after the second dose (day 42), was dominated by IgG1 and IgG3 and was highest in the adjuvanted vaccine groups. IgG titres correlated significantly with virus neutralization at all time points (Spearman r≥0.66, p<0.0001). By elution ELISA, serum antibody avidity was highest at days 180 and 360 post vaccination and did not correlate with virus neutralization. Long-lasting H5 HA1-specific memory B cells produced high IgG antibody avidity similar to serum IgG. Maturation of serum antibody avidity continued up to day 360 after influenza H5N1 vaccination. Virus neutralization correlated with serum H5 HA1-specific IgG antibody concentrations and not antibody avidity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Matrix effect and optimization of LC-MSn determination of trachylobane-360 in mice blood.

    PubMed

    Pita, João Carlos Lima Rodrigues; Gomes, Isis Fernandes; Dos Santos, Socrates Golzio; Tavares, Josean Fechine; da Silva, Marcelo Sobral; Diniz, Margareth de Fátima Formiga Melo; Sobral, Marianna Vieira

    2014-11-01

    Xylopia langsdorffiana A. St.-Hil. & Tul. (Annonaceae) is popularly known as "pimenteira-da-terra". Various constituents have been isolated from this species, including diterpenes, such as 8(17), 12E, 14-labdatrien-18-oic acid, ent-atisan-7α, 16α-diol (xylodiol), ent-7α-hydroxytrachyloban-18-oic acid (trachylobane-318) and ent-7α-acetoxytrachyloban-18-oic acid, a crystalline solid with a molecular weight of 360 and molecular formula of C22H32O4 (trachylobane-360). When administered intraperitoneally to mice, trachylobane-360 (T-360) significantly inhibits growth of the solid tumor sarcoma 180 transplanted in mice, without causing alterations in biochemical, hematological and histopathological parameters that are frequently associated with the clinical use of antineoplastic. Furthermore, this diterpene blocks voltage-dependent calcium channels (Cav), showing spasmolytic activity. The present study shows that variables such as extraction solvent (methanol, acetonitrile and chloroform), centrifugation force (1000, 7000 and 14,000×g), and centrifugation time (5, 15 and 25min), are important in the liquid-liquid extraction of T-360 from male Swiss mice blood in HPLC-MSn studies. The study confirms matrix influence on recovery and detection of T-360. The recovery for T-360 was 37.02% using chloroform as better extractor solvent, while centrifuged at 14,000×g for 15min demonstrated the importance of the parameters chosen for the extraction/recovery process of analyte. The effect of mice blood matrix for T-360 was -51.23%. This method was optimized by repeating the extraction procedure and acidification of samples. These conditions were essential in increasing recovery (49.47%) by decreasing the matrix effect (-37.60%). The efficiency of the process, after optimization with two extractions and acidification, increased by 14.19% when compared to the initial method, from 18.05% to 32.24%. According to Marchi et al. (2010), the matrix effect does not necessarily need to

  17. Staggered chiral random matrix theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborn, James C.

    2011-02-01

    We present a random matrix theory for the staggered lattice QCD Dirac operator. The staggered random matrix theory is equivalent to the zero-momentum limit of the staggered chiral Lagrangian and includes all taste breaking terms at their leading order. This is an extension of previous work which only included some of the taste breaking terms. We will also present some results for the taste breaking contributions to the partition function and the Dirac eigenvalues.

  18. NLTE steady-state response matrix method.

    NASA Astrophysics Data System (ADS)

    Faussurier, G.; More, R. M.

    2000-05-01

    A connection between atomic kinetics and non-equilibrium thermodynamics has been recently established by using a collisional-radiative model modified to include line absorption. The calculated net emission can be expressed as a non-local thermodynamic equilibrium (NLTE) symmetric response matrix. In the paper, this connection is extended to both cases of the average-atom model and the Busquet's model (RAdiative-Dependent IOnization Model, RADIOM). The main properties of the response matrix still remain valid. The RADIOM source function found in the literature leads to a diagonal response matrix, stressing the absence of any frequency redistribution among the frequency groups at this order of calculation.

  19. Breaking Megrelishvili protocol using matrix diagonalization

    NASA Astrophysics Data System (ADS)

    Arzaki, Muhammad; Triantoro Murdiansyah, Danang; Adi Prabowo, Satrio

    2018-03-01

    In this article we conduct a theoretical security analysis of Megrelishvili protocol—a linear algebra-based key agreement between two participants. We study the computational complexity of Megrelishvili vector-matrix problem (MVMP) as a mathematical problem that strongly relates to the security of Megrelishvili protocol. In particular, we investigate the asymptotic upper bounds for the running time and memory requirement of the MVMP that involves diagonalizable public matrix. Specifically, we devise a diagonalization method for solving the MVMP that is asymptotically faster than all of the previously existing algorithms. We also found an important counterintuitive result: the utilization of primitive matrix in Megrelishvili protocol makes the protocol more vulnerable to attacks.

  20. Near-optimal matrix recovery from random linear measurements.

    PubMed

    Romanov, Elad; Gavish, Matan

    2018-06-25

    In matrix recovery from random linear measurements, one is interested in recovering an unknown M-by-N matrix [Formula: see text] from [Formula: see text] measurements [Formula: see text], where each [Formula: see text] is an M-by-N measurement matrix with i.i.d. random entries, [Formula: see text] We present a matrix recovery algorithm, based on approximate message passing, which iteratively applies an optimal singular-value shrinker-a nonconvex nonlinearity tailored specifically for matrix estimation. Our algorithm typically converges exponentially fast, offering a significant speedup over previously suggested matrix recovery algorithms, such as iterative solvers for nuclear norm minimization (NNM). It is well known that there is a recovery tradeoff between the information content of the object [Formula: see text] to be recovered (specifically, its matrix rank r) and the number of linear measurements n from which recovery is to be attempted. The precise tradeoff between r and n, beyond which recovery by a given algorithm becomes possible, traces the so-called phase transition curve of that algorithm in the [Formula: see text] plane. The phase transition curve of our algorithm is noticeably better than that of NNM. Interestingly, it is close to the information-theoretic lower bound for the minimal number of measurements needed for matrix recovery, making it not only state of the art in terms of convergence rate, but also near optimal in terms of the matrices it successfully recovers. Copyright © 2018 the Author(s). Published by PNAS.

  1. The New Multi-HAzard and MulTi-RIsK Assessment MethodS for Europe (MATRIX) Project - An overview of its major findings

    NASA Astrophysics Data System (ADS)

    Fleming, Kevin; Zschau, Jochen; Gasparini, Paolo

    2014-05-01

    Recent major natural disasters, such as the 2011 Tōhoku earthquake, tsunami and subsequent Fukushima nuclear accident, have raised awareness of the frequent and potentially far-reaching interconnections between natural hazards. Such interactions occur at the hazard level, where an initial hazard may trigger other events (e.g., an earthquake triggering a tsunami) or several events may occur concurrently (or nearly so), e.g., severe weather around the same time as an earthquake. Interactions also occur at the vulnerability level, where the initial event may make the affected community more susceptible to the negative consequences of another event (e.g., an earthquake weakens buildings, which are then damaged further by windstorms). There is also a temporal element involved, where changes in exposure may alter the total risk to a given area. In short, there is the likelihood that the total risk estimated when considering multiple hazard and risks and their interactions is greater than the sum of their individual parts. It is with these issues in mind that the European Commission, under their FP7 program, supported the New Multi-HAzard and MulTi-RIsK Assessment MethodS for Europe or MATRIX project (10.2010 to 12.2013). MATRIX set out to tackle multiple natural hazards (i.e., those of concern to Europe, namely earthquakes, landslides, volcanos, tsunamis, wild fires, storms and fluvial and coastal flooding) and risks within a common theoretical framework. The MATRIX work plan proceeded from an assessment of single-type risk methodologies (including how uncertainties should be treated), cascade effects within a multi-hazard environment, time-dependent vulnerability, decision making and support for multi-hazard mitigation and adaption, and an assessment of how the multi-hazard and risk viewpoint may be integrated into current decision making and risk mitigation programs, considering the existing single-hazard and risk focus. Three test sites were considered during the

  2. The Effect of Matrix Composition on the Deformation and Failure Mechanisms in Metal Matrix Syntactic Foams during Compression

    PubMed Central

    Kádár, Csilla; Máthis, Kristián; Knapek, Michal; Chmelík, František

    2017-01-01

    The influence of the matrix material on the deformation and failure mechanisms in metal matrix syntactic foams was investigated in this study. Samples with commercially pure Al (Al) and Al-12 wt % Si (AlSi12) eutectic aluminum matrix, reinforced by hollow ceramic spheres, were compressed at room temperature. Concurrently, the acoustic emission response and the strain field development on the surface were monitored in-situ. The results indicate that the plastic deformation of the cell walls is the governing mechanism in the early stage of straining for both types of foams. At large stresses, deformation bands form both in the Al and AlSi12 foam. In Al foam, cell walls collapse in a large volume. In contrast, the AlSi12 foam is more brittle; therefore, the fracture of precipitates and the crushing of the matrix take place within a distinctive deformation band, along with an occurrence of a significant stress drop. The onset stress of ceramic sphere failure was shown to be not influenced by the matrix material. The in-situ methods provided complementary data which further support these results. PMID:28772556

  3. Approximate method of variational Bayesian matrix factorization/completion with sparse prior

    NASA Astrophysics Data System (ADS)

    Kawasumi, Ryota; Takeda, Koujin

    2018-05-01

    We derive the analytical expression of a matrix factorization/completion solution by the variational Bayes method, under the assumption that the observed matrix is originally the product of low-rank, dense and sparse matrices with additive noise. We assume the prior of a sparse matrix is a Laplace distribution by taking matrix sparsity into consideration. Then we use several approximations for the derivation of a matrix factorization/completion solution. By our solution, we also numerically evaluate the performance of a sparse matrix reconstruction in matrix factorization, and completion of a missing matrix element in matrix completion.

  4. Data-resolution matrix and model-resolution matrix for Rayleigh-wave inversion using a damped least-squares method

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Xu, Y.

    2008-01-01

    Inversion of multimode surface-wave data is of increasing interest in the near-surface geophysics community. For a given near-surface geophysical problem, it is essential to understand how well the data, calculated according to a layered-earth model, might match the observed data. A data-resolution matrix is a function of the data kernel (determined by a geophysical model and a priori information applied to the problem), not the data. A data-resolution matrix of high-frequency (>2 Hz) Rayleigh-wave phase velocities, therefore, offers a quantitative tool for designing field surveys and predicting the match between calculated and observed data. We employed a data-resolution matrix to select data that would be well predicted and we find that there are advantages of incorporating higher modes in inversion. The resulting discussion using the data-resolution matrix provides insight into the process of inverting Rayleigh-wave phase velocities with higher-mode data to estimate S-wave velocity structure. Discussion also suggested that each near-surface geophysical target can only be resolved using Rayleigh-wave phase velocities within specific frequency ranges, and higher-mode data are normally more accurately predicted than fundamental-mode data because of restrictions on the data kernel for the inversion system. We used synthetic and real-world examples to demonstrate that selected data with the data-resolution matrix can provide better inversion results and to explain with the data-resolution matrix why incorporating higher-mode data in inversion can provide better results. We also calculated model-resolution matrices in these examples to show the potential of increasing model resolution with selected surface-wave data. ?? Birkhaueser 2008.

  5. Visualisation Enhancement of HoloCatT Matrix

    NASA Astrophysics Data System (ADS)

    Rosli, Nor Azlin; Mohamed, Azlinah; Khan, Rahmattullah

    Graphology and personality psychology are two different analyses approach perform by two different groups of people, but addresses the personality of the person that were analyzed. It is of interest to visualize a system that would aid personality identification given information visualization of these two domains. Therefore, a research in identifying the relationship between those two domains has been carried out by producing the HoloCatT Matrix, a combination of graphology features and a selected personality traits approach. The objectives of this research are to identify new features of the existing HoloCatT Matrix and validate the new version of matrix with two (2) related group of experts. A set of questionnaire has been distributed to a group of Personologist to identify the relationship and an interview has been done with a Graphologist in validating the matrix. Based on the analysis, 87.5% of the relation confirmed by both group of experts and subsequently the third (3rd) version of HoloCatT Matrix is obtained.

  6. Scaling a Conditional Proximity Matrix to Symmetry.

    ERIC Educational Resources Information Center

    Levin, Joseph; Brown, Morton

    1979-01-01

    Two least squares procedures for symmetrization of a conditional proximity matrix are derived. The solutions provide multiplicative constants for scaling the rows or columns of the matrix to maximize symmetry. (Author/JKS)

  7. The Extracellular Matrix of the Lateral Pharyngeal Wall in Obstructive Sleep Apnea

    PubMed Central

    Dantas, Danielle Andrade da Silva; Mauad, Thais; Silva, Luiz F. F.; Lorenzi-Filho, Geraldo; Formigoni, Gilberto G. S.; Cahali, Michel B.

    2012-01-01

    Study Objectives: To compare the components of the extracellular matrix in the lateral pharyngeal muscular wall in patients with and without obstructive sleep apnea (OSA). This may help to explain the origin of the increased collapsibility of the pharynx in patients with OSA. Design: Specimens from the superior pharyngeal constrictor muscle, obtained during pharyngeal surgeries, were evaluated using histochemical and immunohistochemical analyses to determine the fractional area of collagen types I and III, elastic fibers, versican, fibronectin, and matrix metalloproteinases 1 and 2 in the endomysium. Setting: Academic tertiary center. Patiens: A total of 51 nonobese adult patients, divided into 38 patients with OSA and 13 nonsnoring control subjects without OSA. Interventions: Postintervention study performed on tissues from patients after elective surgery. Measurements and Results: Pharyngeal muscles of patients with OSA had significantly more collagen type I than pharyngeal muscles in control subjects. Collagen type I was correlated positively and independently with age. The other tested components of the extracellular matrix did not differ significantly between groups. In a logistic regression, an additive effect of both the increase of collagen type I and the increase in age with the presence of OSA was observed (odds ratio (OR), 2.06; 95% confidence interval (CI), 1.17-3.63), when compared with the effect of increased age alone (OR, 1.11; 95% CI, 1.03-1.20). Conclusion: Collagen type I in the superior pharyngeal constrictor muscle was more prevalent in patients with OSA and also increased with age. It was hypothesized that this increase could delay contractile-relaxant responses in the superior pharyngeal constrictor muscle at the expiratory-inspiratory phase transition, thus increasing pharyngeal collapsibility. Citation: Dantas DAS; Mauad T; Silva LFF; Lorenzi-Filho G; Formigoni GGS; Cahali MB. The extracellular matrix of the lateral pharyngeal wall in

  8. Data-Driven Learning of Q-Matrix

    ERIC Educational Resources Information Center

    Liu, Jingchen; Xu, Gongjun; Ying, Zhiliang

    2012-01-01

    The recent surge of interests in cognitive assessment has led to developments of novel statistical models for diagnostic classification. Central to many such models is the well-known "Q"-matrix, which specifies the item-attribute relationships. This article proposes a data-driven approach to identification of the "Q"-matrix and estimation of…

  9. GenoMatrix: A Software Package for Pedigree-Based and Genomic Prediction Analyses on Complex Traits.

    PubMed

    Nazarian, Alireza; Gezan, Salvador Alejandro

    2016-07-01

    Genomic and pedigree-based best linear unbiased prediction methodologies (G-BLUP and P-BLUP) have proven themselves efficient for partitioning the phenotypic variance of complex traits into its components, estimating the individuals' genetic merits, and predicting unobserved (or yet-to-be observed) phenotypes in many species and fields of study. The GenoMatrix software, presented here, is a user-friendly package to facilitate the process of using genome-wide marker data and parentage information for G-BLUP and P-BLUP analyses on complex traits. It provides users with a collection of applications which help them on a set of tasks from performing quality control on data to constructing and manipulating the genomic and pedigree-based relationship matrices and obtaining their inverses. Such matrices will be then used in downstream analyses by other statistical packages. The package also enables users to obtain predicted values for unobserved individuals based on the genetic values of observed related individuals. GenoMatrix is available to the research community as a Windows 64bit executable and can be downloaded free of charge at: http://compbio.ufl.edu/software/genomatrix/. © The American Genetic Association. 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Characteristics of global organic matrix in normal and pimpled chicken eggshells.

    PubMed

    Liu, Z; Song, L; Zhang, F; He, W; Linhardt, R J

    2017-10-01

    The organic matrix from normal and pimpled calcified chicken eggshells were dissociated into acid-insoluble, water-insoluble, and facultative-soluble (both acid- and water-soluble) components, to understand the influence of shell matrix on eggshell qualities. A linear correlation was shown among these 3 matrix components in normal eggshells but was not observed in pimpled eggshells. In pimpled eggshells, the percentage contents of all 4 groups of matrix (the total matrix, acid-insoluble matrix, water-insoluble matrix, and facultative-soluble matrix) were significantly higher than that in normal eggshells. The amounts of both total matrix and acid-insoluble matrix in individual pimpled calcified shells were high, even though their weight was much lower than a normal eggshell. In both normal and pimpled eggshells, the calcified eggshell weight and shell thickness significantly and positively correlated with the amounts of all 4 groups of matrix in an individual calcified shell. In normal eggshells, the calcified shell thickness and shell breaking strength showed no significant correlations with the percentage contents of all 4 groups of matrix. In normal eggshells, only the shell membrane weight significantly correlated with the constituent ratios of both acid-insoluble matrix and facultative-soluble matrix in the whole matrix. In pimpled eggshells, 3 variables (calcified shell weight, shell thickness, and breaking strength) were significantly correlated with the constituent proportions of both acid-insoluble matrix and facultative-matrix. This study suggests that mechanical properties of normal eggshells may not linearly depend on the organic matrix content in the calcified eggshells and that pimpled eggshells might result by the disequilibrium enrichment of some proteins with negative effects. © 2017 Poultry Science Association Inc.

  11. Matrix Formalism of Synchrobetatron Coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xiaobiao; /SLAC

    In this paper we present a complete linear synchrobetatron coupling formalism by studying the transfer matrix which describes linear horizontal and longitudinal motions. With the technique established in the linear horizontal-vertical coupling study [D. Sagan and D. Rubin, Phys. Rev. ST Accel. Beams 2, 074001 (1999)], we found a transformation to block diagonalize the transfer matrix and decouple the betatron motion and the synchrotron motion. By separating the usual dispersion term from the horizontal coordinate first, we were able to obtain analytic expressions of the transformation under reasonable approximations. We also obtained the perturbations to the betatron tune and themore » Courant-Snyder functions. The closed orbit changes due to finite energy gains at rf cavities and radiation energy losses were also studied by the 5 x 5 extended transfer matrix with the fifth column describing kicks in the 4-dimension phase space.« less

  12. Eigenvalue computations with the QUAD4 consistent-mass matrix

    NASA Technical Reports Server (NTRS)

    Butler, Thomas A.

    1990-01-01

    The NASTRAN user has the option of using either a lumped-mass matrix or a consistent- (coupled-) mass matrix with the QUAD4 shell finite element. At the Sixteenth NASTRAN Users' Colloquium (1988), Melvyn Marcus and associates of the David Taylor Research Center summarized a study comparing the results of the QUAD4 element with results of other NASTRAN shell elements for a cylindrical-shell modal analysis. Results of this study, in which both the lumped-and consistent-mass matrix formulations were used, implied that the consistent-mass matrix yielded poor results. In an effort to further evaluate the consistent-mass matrix, a study was performed using both a cylindrical-shell geometry and a flat-plate geometry. Modal parameters were extracted for several modes for both geometries leading to some significant conclusions. First, there do not appear to be any fundamental errors associated with the consistent-mass matrix. However, its accuracy is quite different for the two different geometries studied. The consistent-mass matrix yields better results for the flat-plate geometry and the lumped-mass matrix seems to be the better choice for cylindrical-shell geometries.

  13. The GATA transcription factor gene gtaG is required for terminal differentiation in Dictyostelium.

    PubMed

    Katoh-Kurasawa, Mariko; Santhanam, Balaji; Shaulsky, Gad

    2016-03-09

    The GATA transcription factor GtaG is conserved in Dictyostelids and essential for terminal differentiation in Dictyostelium discoideum, but its function is not well understood. Here we show that gtaG is expressed in prestalk cells at the anterior region of fingers and in the extending stalk during culmination. The gtaG - phenotype is cell-autonomous in prestalk cells and non-cell-autonomous in prespore cells. Transcriptome analyses reveal that GtaG regulates prestalk gene expression during cell differentiation before culmination and is required for progression into culmination. GtaG-dependent genes include genetic suppressors of the Dd-STATa-defective phenotype as well as Dd-STATa target-genes, including extra cellular matrix genes. We show that GtaG may be involved in the production of two culmination-signaling molecules, cyclic di-GMP and the spore differentiation factor SDF-1 and that addition of c-di-GMP rescues the gtaG - culmination and spore formation deficiencies. We propose that GtaG is a regulator of terminal differentiation that functions in concert with Dd-STATa and controls culmination through regulating c-di-GMP and SDF-1 production in prestalk cells. © 2016. Published by The Company of Biologists Ltd.

  14. Study on the Algorithm of Judgment Matrix in Analytic Hierarchy Process

    NASA Astrophysics Data System (ADS)

    Lu, Zhiyong; Qin, Futong; Jin, Yican

    2017-10-01

    A new algorithm is proposed for the non-consistent judgment matrix in AHP. A primary judgment matrix is generated firstly through pre-ordering the targeted factor set, and a compared matrix is built through the top integral function. Then a relative error matrix is created by comparing the compared matrix with the primary judgment matrix which is regulated under the control of the relative error matrix and the dissimilar degree of the matrix step by step. Lastly, the targeted judgment matrix is generated to satisfy the requirement of consistence and the least dissimilar degree. The feasibility and validity of the proposed method are verified by simulation results.

  15. Micromechanical Modeling of Woven Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Pindera, Marek-Jerzy

    1997-01-01

    This report presents the results of an extensive micromechanical modeling effort for woven metal matrix composites. The model is employed to predict the mechanical response of 8-harness (8H) satin weave carbon/copper (C/Cu) composites. Experimental mechanical results for this novel high thermal conductivity material were recently reported by Bednarcyk et al. along with preliminary model results. The micromechanics model developed herein is based on an embedded approach. A micromechanics model for the local (micro-scale) behavior of the woven composite, the original method of cells (Aboudi), is embedded in a global (macro-scale) micromechanics model (the three-dimensional generalized method of cells (GMC-3D) (Aboudi). This approach allows representation of true repeating unit cells for woven metal matrix composites via GMC-3D, and representation of local effects, such as matrix plasticity, yarn porosity, and imperfect fiber-matrix bonding. In addition, the equations of GMC-3D were reformulated to significantly reduce the number of unknown quantities that characterize the deformation fields at the microlevel in order to make possible the analysis of actual microstructures of woven composites. The resulting micromechanical model (WCGMC) provides an intermediate level of geometric representation, versatility, and computational efficiency with respect to previous analytical and numerical models for woven composites, but surpasses all previous modeling work by allowing the mechanical response of a woven metal matrix composite, with an elastoplastic matrix, to be examined for the first time. WCGMC is employed to examine the effects of composite microstructure, porosity, residual stresses, and imperfect fiber-matrix bonding on the predicted mechanical response of 8H satin C/Cu. The previously reported experimental results are summarized, and the model predictions are compared to monotonic and cyclic tensile and shear test data. By considering appropriate levels of porosity

  16. Rank-Optimized Logistic Matrix Regression toward Improved Matrix Data Classification.

    PubMed

    Zhang, Jianguang; Jiang, Jianmin

    2018-02-01

    While existing logistic regression suffers from overfitting and often fails in considering structural information, we propose a novel matrix-based logistic regression to overcome the weakness. In the proposed method, 2D matrices are directly used to learn two groups of parameter vectors along each dimension without vectorization, which allows the proposed method to fully exploit the underlying structural information embedded inside the 2D matrices. Further, we add a joint [Formula: see text]-norm on two parameter matrices, which are organized by aligning each group of parameter vectors in columns. This added co-regularization term has two roles-enhancing the effect of regularization and optimizing the rank during the learning process. With our proposed fast iterative solution, we carried out extensive experiments. The results show that in comparison to both the traditional tensor-based methods and the vector-based regression methods, our proposed solution achieves better performance for matrix data classifications.

  17. Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar (registered trademark)-Fiber-Reinforced Polymer-Matrix Composites

    DTIC Science & Technology

    2013-03-01

    of coarser-scale materials and structures containing Kevlar fibers (e.g., yarns, fabrics, plies, lamina, and laminates ). Journal of Materials...Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar -Fiber-Reinforced Polymer-Matrix Composites M. Grujicic, B. Pandurangan, J.S...extensive set of molecular-level computational analyses regarding the role of various microstructural/morphological defects on the Kevlar fiber

  18. Fluorescence Lectin Bar-Coding of Glycoconjugates in the Extracellular Matrix of Biofilm and Bioaggregate Forming Microorganisms.

    PubMed

    Neu, Thomas R; Kuhlicke, Ute

    2017-02-10

    Microbial biofilm systems are defined as interface-associated microorganisms embedded into a self-produced matrix. The extracellular matrix represents a continuous challenge in terms of characterization and analysis. The tools applied in more detailed studies comprise extraction/chemical analysis, molecular characterization, and visualisation using various techniques. Imaging by laser microscopy became a standard tool for biofilm analysis, and, in combination with fluorescently labelled lectins, the glycoconjugates of the matrix can be assessed. By employing this approach a wide range of pure culture biofilms from different habitats were examined using the commercially available lectins. From the results, a binary barcode pattern of lectin binding can be generated. Furthermore, the results can be fine-tuned and transferred into a heat map according to signal intensity. The lectin barcode approach is suggested as a useful tool for investigating the biofilm matrix characteristics and dynamics at various levels, e.g. bacterial cell surfaces, adhesive footprints, individual microcolonies, and the gross biofilm or bio-aggregate. Hence fluorescence lectin bar-coding (FLBC) serves as a basis for a subsequent tailor-made fluorescence lectin-binding analysis (FLBA) of a particular biofilm. So far, the lectin approach represents the only tool for in situ characterization of the glycoconjugate makeup in biofilm systems.  Furthermore, lectin staining lends itself to other fluorescence techniques in order to correlate it with cellular biofilm constituents in general and glycoconjugate producers in particular.

  19. Application of the matrix exponential kernel

    NASA Technical Reports Server (NTRS)

    Rohach, A. F.

    1972-01-01

    A point matrix kernel for radiation transport, developed by the transmission matrix method, has been used to develop buildup factors and energy spectra through slab layers of different materials for a point isotropic source. Combinations of lead-water slabs were chosen for examples because of the extreme differences in shielding properties of these two materials.

  20. Network planning study of the metro-optical-network-oriented 3G application

    NASA Astrophysics Data System (ADS)

    Gong, Qian; Xu, Rong; Lin, Jin Tong

    2005-02-01

    To compare with the 2G mobile communication, 3G technologies can supply the perfect service scope and performance. 3G is the trend of the mobile communication. So now to build the transmission network, it is needed to consider how the transmission network to support the 3G applications. For the 3G network architecture, it include the 2 part: Utran access network and core network. So the metro optical network should consider how to build the network to adapt the 3G applications. Include the metro core and access layer. In the metro core, we should consider the network should evolved towards the Mesh architecture with ASON function to realize the fast protection and restoration, quick end-to-end service provision, and high capacity cross-connect matrix etc. In the access layer, the network should have the ability to access the 3G services such as ATM interface with IMA function. In addition, the traffic grooming should be provided to improve the bandwidth utility. In this paper, first we present the MCC network situation, the network planning model will be introduced. Then we present the topology architecture, node capacity and traffic forecast. At last, based on our analysis, we will give a total solution to MCC to build their metro optical network toward to the mesh network with the consideration of 3G services.

  1. Corrosion control of cement-matrix and aluminum-matrix composites

    NASA Astrophysics Data System (ADS)

    Hou, Jiangyuan

    Corrosion control of composite materials, particularly aluminum-matrix and cement-matrix composites, was addressed by surface treatment, composite formulation and cathodic protection. Surface treatment methods studied include anodization in the case of aluminum-matrix composites and oxidation treatment (using water) in the case of steel rebar for reinforcing concrete. The effects of reinforcement species (aluminum nitride (AIN) versus silicon carbide (SiC) particles) in the aluminum-matrix composites and of admixtures (carbon fibers, silica fume, latex and methylcellulose) in concrete on the corrosion resistance of composites were addressed. Moreover, the effect of admixtures in concrete and of admixtures in mortar overlay (as anode on concrete) on the efficiency of cathodic protection of steel reinforced concrete was studied. For SiC particle filled aluminum, anodization was performed successfully in an acid electrolyte, as for most aluminum alloys. However, for AlN particle filled aluminum, anodization needs to be performed in an alkaline (0.7 N NaOH) electrolyte instead. The concentration of NaOH in the electrolyte was critical. It was found that both silica fume and latex improved the corrosion resistance of rebar in concrete in both Ca(OH)sb2 and NaCl solutions, mainly because these admixtures decreased the water absorptivity. Silica fume was more effective than latex. Methylcellulose improved the corrosion resistance of rebar in concrete a little in Ca(OH)sb2 solution. Carbon fibers decreased the corrosion resistance of rebar in concrete, but this effect could be made up for by either silica fume or latex, such that silica fume was more effective than latex. Surface treatment in the form of water immersion for two days was found to improve the corrosion resistance of rebar in concrete. This treatment resulted in a thin uniform layer of black iron oxide (containing Fesp{2+}) on the entire rebar surface except on the cross-sectional surface. Prior to the

  2. Structured decomposition design of partial Mueller matrix polarimeters.

    PubMed

    Alenin, Andrey S; Scott Tyo, J

    2015-07-01

    Partial Mueller matrix polarimeters (pMMPs) are active sensing instruments that probe a scattering process with a set of polarization states and analyze the scattered light with a second set of polarization states. Unlike conventional Mueller matrix polarimeters, pMMPs do not attempt to reconstruct the entire Mueller matrix. With proper choice of generator and analyzer states, a subset of the Mueller matrix space can be reconstructed with fewer measurements than that of the full Mueller matrix polarimeter. In this paper we consider the structure of the Mueller matrix and our ability to probe it using a reduced number of measurements. We develop analysis tools that allow us to relate the particular choice of generator and analyzer polarization states to the portion of Mueller matrix space that the instrument measures, as well as develop an optimization method that is based on balancing the signal-to-noise ratio of the resulting instrument with the ability of that instrument to accurately measure a particular set of desired polarization components with as few measurements as possible. In the process, we identify 10 classes of pMMP systems, for which the space coverage is immediately known. We demonstrate the theory with a numerical example that designs partial polarimeters for the task of monitoring the damage state of a material as presented earlier by Hoover and Tyo [Appl. Opt.46, 8364 (2007)10.1364/AO.46.008364APOPAI1559-128X]. We show that we can reduce the polarimeter to making eight measurements while still covering the Mueller matrix subspace spanned by the objects.

  3. Probabilistic micromechanics for metal matrix composites

    NASA Astrophysics Data System (ADS)

    Engelstad, S. P.; Reddy, J. N.; Hopkins, Dale A.

    A probabilistic micromechanics-based nonlinear analysis procedure is developed to predict and quantify the variability in the properties of high temperature metal matrix composites. Monte Carlo simulation is used to model the probabilistic distributions of the constituent level properties including fiber, matrix, and interphase properties, volume and void ratios, strengths, fiber misalignment, and nonlinear empirical parameters. The procedure predicts the resultant ply properties and quantifies their statistical scatter. Graphite copper and Silicon Carbide Titanlum Aluminide (SCS-6 TI15) unidirectional plies are considered to demonstrate the predictive capabilities. The procedure is believed to have a high potential for use in material characterization and selection to precede and assist in experimental studies of new high temperature metal matrix composites.

  4. Plasminogen activator inhibitor type 1 serum levels and 4G/5G gene polymorphism in morbidly obese Hispanic patients with non-alcoholic fatty liver disease.

    PubMed

    Espino, Alberto; Villagrán, Andrea; Vollrath, Valeska; Hanckes, Paulina; Salas, Roberto; Farah, Andrea; Solís, Nancy; Pizarro, Margarita; Escalona, Alex; Boza, Camilo; Pérez, Gustavo; Carrasco, Gonzalo; Padilla, Oslando; Miquel, Juan Francisco; Nervi, Flavio; Chavez-Tapia, Norberto C; Arab, Juan Pablo; Alvarez-Lobos, Manuel; Arrese, Marco; Riquelme, Arnoldo

    2011-01-01

    The plasminogen activator inhibitor type-1 (PAI-1) has been implicated in the regulation of fibrinolysis and extracellular matrix components. The single base pair guanine insertion/deletion polymorphism (4G/5G) within the promoter region of the PAI-1 gene influences PAI-1 synthesis and may modulate hepatic fibrogenesis. To evaluate the influence of PAI-1 serum levels and 4G/5G polymorphism on the risk of liver fibrosis associated to non-alcoholic fatty liver disease (NAFLD) in morbidly obese patients. Case-control study of 50 obese patients undergoing bariatric surgery and 71 non-obese subjects matched by age and sex. Anthropometric and biochemical measurements were performed, including PAI-1 serum levels. Genomic DNA was obtained to assess the presence of 4G/5G polymorphism. BMI, insulinemia, triglycerides, HOMA-IR, hypertension and diabetes were significantly higher in obese patients compared to control subjects. PAI-1 serum levels observed in obese patients were significantly lower (10.63 ± 4.82) compared to controls (14.26 ± 11.4; p < 0.05). No differences were observed in the PAI-1 4G/5G promoter genotypes frequencies (p = 0.12). No differences were observed in PAI-1 plasma levels among obese patients with liver fibrosis (10.64 ± 4.35) compared to patients without liver fibrosis (10.61 ± 5.2; p = 0.985). PAI-1 4G/5G promoter genotypes frequencies were similar in patients with or without liver fibrosis associated to NASH (p = 0.6). Morbidly obese patients had significantly lower PAI-1 serum levels with similar PAI-1 4G/5G genotypes frequencies compared to non-obese subjects. The frequency of 4G/5G genotypes in Chilean Hispanic healthy subjects was similar to that described in other populations. No association was found between PAI-1 serum levels or 4G/5G genotype with liver fibrosis in obese patients.

  5. Precision matrix expansion - efficient use of numerical simulations in estimating errors on cosmological parameters

    NASA Astrophysics Data System (ADS)

    Friedrich, Oliver; Eifler, Tim

    2018-01-01

    Computing the inverse covariance matrix (or precision matrix) of large data vectors is crucial in weak lensing (and multiprobe) analyses of the large-scale structure of the Universe. Analytically computed covariances are noise-free and hence straightforward to invert; however, the model approximations might be insufficient for the statistical precision of future cosmological data. Estimating covariances from numerical simulations improves on these approximations, but the sample covariance estimator is inherently noisy, which introduces uncertainties in the error bars on cosmological parameters and also additional scatter in their best-fitting values. For future surveys, reducing both effects to an acceptable level requires an unfeasibly large number of simulations. In this paper we describe a way to expand the precision matrix around a covariance model and show how to estimate the leading order terms of this expansion from simulations. This is especially powerful if the covariance matrix is the sum of two contributions, C = A+B, where A is well understood analytically and can be turned off in simulations (e.g. shape noise for cosmic shear) to yield a direct estimate of B. We test our method in mock experiments resembling tomographic weak lensing data vectors from the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST). For DES we find that 400 N-body simulations are sufficient to achieve negligible statistical uncertainties on parameter constraints. For LSST this is achieved with 2400 simulations. The standard covariance estimator would require >105 simulations to reach a similar precision. We extend our analysis to a DES multiprobe case finding a similar performance.

  6. Studies of fiber-matrix adhesion on compression strength

    NASA Technical Reports Server (NTRS)

    Bascom, Willard D.; Nairn, John A.; Boll, D. J.

    1991-01-01

    A study was initiated on the effect of the matrix polymer and the fiber matrix bond strength of carbon fiber polymer matrix composites. The work includes tests with micro-composites, single ply composites, laminates, and multi-axial loaded cylinders. The results obtained thus far indicate that weak fiber-matrix adhesion dramatically reduces 0 degree compression strength. Evidence is also presented that the flaws in the carbon fiber that govern compression strength differ from those that determine fiber tensile strength. Examination of post-failure damage in the single ply tests indicates kink banding at the crack tip.

  7. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins.

    PubMed

    Halper, Jaroslava; Kjaer, Michael

    2014-01-01

    Collagens are the most abundant components of the extracellular matrix and many types of soft tissues. Elastin is another major component of certain soft tissues, such as arterial walls and ligaments. Many other molecules, though lower in quantity, function as essential components of the extracellular matrix in soft tissues. Some of these are reviewed in this chapter. Besides their basic structure, biochemistry and physiology, their roles in disorders of soft tissues are discussed only briefly as most chapters in this volume deal with relevant individual compounds. Fibronectin with its muldomain structure plays a role of "master organizer" in matrix assembly as it forms a bridge between cell surface receptors, e.g., integrins, and compounds such collagen, proteoglycans and other focal adhesion molecules. It also plays an essential role in the assembly of fibrillin-1 into a structured network. Laminins contribute to the structure of the extracellular matrix (ECM) and modulate cellular functions such as adhesion, differentiation, migration, stability of phenotype, and resistance towards apoptosis. Though the primary role of fibrinogen is in clot formation, after conversion to fibrin by thrombin, it also binds to a variety of compounds, particularly to various growth factors, and as such fibrinogen is a player in cardiovascular and extracellular matrix physiology. Elastin, an insoluble polymer of the monomeric soluble precursor tropoelastin, is the main component of elastic fibers in matrix tissue where it provides elastic recoil and resilience to a variety of connective tissues, e.g., aorta and ligaments. Elastic fibers regulate activity of TGFβs through their association with fibrillin microfibrils. Elastin also plays a role in cell adhesion, cell migration, and has the ability to participate in cell signaling. Mutations in the elastin gene lead to cutis laxa. Fibrillins represent the predominant core of the microfibrils in elastic as well as non

  8. Integration of multiple cell-matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration.

    PubMed

    Sapir, Yulia; Kryukov, Olga; Cohen, Smadar

    2011-03-01

    Cardiac tissue engineering aims to repair damaged myocardial tissues by applying heart patches created in vitro. Herein, we explored the possible role of a combination of two matrix-attached peptides, the adhesion peptide G(4)RGDY and heparin-binding peptide G(4)SPPRRARVTY (HBP) in cardiac tissue regeneration. Neonatal rat cardiac cells were seeded into unmodified, single peptide or double peptide-attached alginate scaffolds, all having the same physical features of porosity, hydrogel forming and matrix stiffness. The cardiac tissue developed in the HBP/RGD-attached scaffolds revealed the best features of a functional muscle tissue, as judged by all studied parameters, i.e., immunostaining of cardiac cell markers, histology, western blot of protein expressions and metabolic activity. By day 7, well-developed myocardial fibers were observed in these cell constructs. At 14 days the HBP/RGD-attached constructs presented an isotropic myofiber arrangement, while no such arrangement was seen in the other constructs. The expression levels of α-actinin, N-cadherin and Connexin-43, showing preservation and an increase in Connexin-43 expression (Cx-43) with time, further supported the formation a contractile muscle tissue in the HBP/RGD-attached scaffolds. Collectively, the attachment of combinatorial peptides representing different signaling in ECM-cell interactions proved to play a key role, contributing to the formation of a functional cardiac muscle tissue, in vitro. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. An Innovative Carbonate Fuel Cell Matrix, Abstract #188

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilmi, Abdelkader; Surendranath, Arun; Yuh, Chao-Yi

    2015-05-28

    The electrolyte matrix in direct carbonate fuel cell (DFC) is a microporous ceramic structure sandwiched between the electrodes to isolate the fuel from the oxidant, store electrolyte and facilitate ionic transport. FCE has advanced DFC electrolyte matrix over the years and demonstrated that the matrix meets the requirements for greater than 5 year life based on accelerated tests and field stack operations. However, development of advanced designs and materials that can further increase the performance and extend cell life will enable accelerated MCFC deployment. This paper will report the progress on the development of an unique and innovative matrix designmore » that offers numerous benefits to the carbonate fuel cell performance and durability. In addition, this paper will also review parameters that affect matrix material stability and approaches to extend cell life.« less

  10. Polymorphism of matrix metalloproteinase genes (MMP1 and MMP3) in patients with varicose veins.

    PubMed

    Kurzawski, M; Modrzejewski, A; Pawlik, A; Droździk, M

    2009-07-01

    Several risk factors for varicose veins have been identified: female gender, combined with obesity and pregnancy, occupations requiring standing for long periods, sedentary lifestyle, history of deep-vein thrombosis and family history. However, no specific gene variants related to a wide prevalence of varicosities in general population have been identified. Extracellular matrix composition, predominantly maintained by matrix metalloproteinases (MMPs), may affect the vein-wall structure, which may lead to dilation of vessels and cause varicosities. MMP-1 (tissue collagenase I) and MMP-3 (stromelysin I) expression was found to be raised in varicose veins compared with normal vessels. Therefore, a study was conducted to evaluate a potential association between MMP1 and MMP3 promoter polymorphisms and a risk of varicose veins. Genotyping for the presence of the polymorphisms -1607dupG (rs1799750) in MMP1 and -1171dupA (rs3025058) in the MMP3 promoter region was performed using PCR and restriction-fragment length polymorphism assays in a group of 109 patients diagnosed with varicose veins and 112 healthy controls. The frequencies of the MMP1 and MMP3 alleles (minor allele frequency 0.440 in patients vs. 0.451 in the controls for MMP1-1607*G and 0.514 vs. 0.469 for MMP3-1171*dupA, respectively) and of genotypes did not differ significantly between patients and controls. The MMP1-1607dupG and MMP3-1171dupA promoter polymorphisms are not valuable markers of susceptibility for varicose veins.

  11. B2 and G2 Toda systems on compact surfaces: A variational approach

    NASA Astrophysics Data System (ADS)

    Battaglia, Luca

    2017-01-01

    We consider the B2 and G2 Toda systems on a compact surface (Σ, g), namely, systems of two Liouville-type PDEs coupled with a matrix of coefficients A = ( a i j ) = 2 - 1 - 2 2 ) or (2 - 1 - 3 2) . We attack the problem using variational techniques, following the previous work [Battaglia, L. et al., Adv. Math. 285, 937-979 (2015)] concerning the A2 Toda system, namely, the case A = 2 - 1 - 1 2 ) . We get the existence and multiplicity of solutions as long as χ(Σ) ≤ 0 and a generic choice of the parameters. We also extend some of the results to the case of general systems.

  12. Fast iterative image reconstruction using sparse matrix factorization with GPU acceleration

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Qi, Jinyi

    2011-03-01

    Statistically based iterative approaches for image reconstruction have gained much attention in medical imaging. An accurate system matrix that defines the mapping from the image space to the data space is the key to high-resolution image reconstruction. However, an accurate system matrix is often associated with high computational cost and huge storage requirement. Here we present a method to address this problem by using sparse matrix factorization and parallel computing on a graphic processing unit (GPU).We factor the accurate system matrix into three sparse matrices: a sinogram blurring matrix, a geometric projection matrix, and an image blurring matrix. The sinogram blurring matrix models the detector response. The geometric projection matrix is based on a simple line integral model. The image blurring matrix is to compensate for the line-of-response (LOR) degradation due to the simplified geometric projection matrix. The geometric projection matrix is precomputed, while the sinogram and image blurring matrices are estimated by minimizing the difference between the factored system matrix and the original system matrix. The resulting factored system matrix has much less number of nonzero elements than the original system matrix and thus substantially reduces the storage and computation cost. The smaller size also allows an efficient implement of the forward and back projectors on GPUs, which have limited amount of memory. Our simulation studies show that the proposed method can dramatically reduce the computation cost of high-resolution iterative image reconstruction. The proposed technique is applicable to image reconstruction for different imaging modalities, including x-ray CT, PET, and SPECT.

  13. Carbon Dots and 9AA as a Binary Matrix for the Detection of Small Molecules by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chen, Yongli; Gao, Dan; Bai, Hangrui; Liu, Hongxia; Lin, Shuo; Jiang, Yuyang

    2016-07-01

    Application of matrix-assisted laser-desorption/ionization mass spectrometry (MALDI MS) to analyze small molecules have some limitations, due to the inhomogeneous analyte/matrix co-crystallization and interference of matrix-related peaks in low m/z region. In this work, carbon dots (CDs) were for the first time applied as a binary matrix with 9-Aminoacridine (9AA) in MALDI MS for small molecules analysis. By 9AA/CDs assisted desorption/ionization (D/I) process, a wide range of small molecules, including nucleosides, amino acids, oligosaccharides, peptides, and anticancer drugs with a higher sensitivity were demonstrated in the positive ion mode. A detection limit down to 5 fmol was achieved for cytidine. 9AA/CDs matrix also exhibited excellent reproducibility compared with 9AA matrix. Moreover, by exploring the ionization mechanism of the matrix, the influence factors might be attributed to the four parts: (1) the strong UV absorption of 9AA/CDs due to their π-conjugated network; (2) the carboxyl groups modified on the CDs surface act as protonation sites for proton transfer in positive ion mode; (3) the thin layer crystal of 9AA/CDs could reach a high surface temperature more easily and lower transfer energy for LDI MS; (4) CDs could serve as a matrix additive to suppress 9AA ionization. Furthermore, this matrix was allowed for the analysis of glucose as well as nucleosides in human urine, and the level of cytidine was quantified with a linear range of 0.05-5 mM (R2 > 0.99). Therefore, the 9AA/CDs matrix was proven to be an effective MALDI matrix for the analysis of small molecules with improved sensitivity and reproducibility. This work provides an alternative solution for small molecules detection that can be further used in complex samples analysis.

  14. Fibre-matrix bond strength studies of glass, ceramic, and metal matrix composites

    NASA Technical Reports Server (NTRS)

    Grande, D. H.; Mandell, J. F.; Hong, K. C. C.

    1988-01-01

    An indentation test technique for compressively loading the ends of individual fibers to produce debonding has been applied to metal, glass, and glass-ceramic matrix composites; bond strength values at debond initiation are calculated using a finite-element model. Results are correlated with composite longitudinal and interlaminar shear behavior for carbon and Nicalon fiber-reinforced glasses and glass-ceramics including the effects of matrix modifications, processing conditions, and high-temperature oxidation embrittlement. The data indicate that significant bonding to improve off-axis and shear properties can be tolerated before the longitudinal behavior becomes brittle. Residual stress and other mechanical bonding effects are important, but improved analyses and multiaxial interfacial failure criteria are needed to adequately interpret bond strength data in terms of composite performance.

  15. Program For Analysis Of Metal-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Mital, S. K.

    1994-01-01

    METCAN (METal matrix Composite ANalyzer) is computer program used to simulate computationally nonlinear behavior of high-temperature metal-matrix composite structural components in specific applications, providing comprehensive analyses of thermal and mechanical performances. Written in FORTRAN 77.

  16. On the mobility of iron particles embedded in elastomeric silicone matrix

    NASA Astrophysics Data System (ADS)

    Rabindranath, R.; Böse, H.

    2013-02-01

    In this contribution the rheological and magnetorheological properties of different polydimethylsiloxane (PDMS) based magnetorheological elastomers (MRE) are presented and discussed. In order to investigate the mobility of the iron particles with respect to the rheological characteristics, the iron particles were silanized with vinyltrimethoxysilane to enable a reaction between the modified particle and the cross-linking agent of the silicone elastomer. In addition, the vinyl-functionalized particles were further modified by the coupling of the superficial vinyl groups with a long-chain hydride terminated PDMS, which enables a reaction pathway with the vinyl terminated PDMS. On the other hand, the iron particles were treated with surfactants such as fatty acids, calcium and aluminum soaps, respectively, prior to vulcanization in order to increase the mobility of the iron particles in the elastomeric matrix. It was found, that both, the modification with the long-chain hydride terminated PDMS as well as the treatment with surfactants lead to an increase of the storage modulus G', the loss modulus G" and the loss factor tan δ in the magnetic field. It is concluded that both modifications, the coupling with long-chain hydride terminated PDMS as well as the treatment with surfactants, provide a greater mobility of the iron particles and hence a greater friction represented by the increase of the loss factor tan δ. Consequently it is assumed that untreated iron particles are less mobile in the rubber matrix due to covalent bonding with the silicone components, most likely due to the reaction of the hydroxyl groups on the metal surface with the silane groups of the cross-linking agent.

  17. Inelastic deformation of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Lissenden, C. J.; Herakovich, C. T.; Pindera, M-J.

    1993-01-01

    A theoretical model capable of predicting the thermomechanical response of continuously reinforced metal matrix composite laminates subjected to multiaxial loading was developed. A micromechanical model is used in conjunction with nonlinear lamination theory to determine inelastic laminae response. Matrix viscoplasticity, residual stresses, and damage to the fiber/matrix interfacial zone are explicitly included in the model. The representative cell of the micromechanical model is considered to be in a state of generalized plane strain, enabling a quasi two-dimensional analysis to be performed. Constant strain finite elements are formulated with elastic-viscoplastic constitutive equations. Interfacial debonding is incorporated into the model through interface elements based on the interfacial debonding theory originally presented by Needleman, and modified by Tvergaard. Nonlinear interfacial constitutive equations relate interfacial tractions to displacement discontinuities at the interface. Theoretical predictions are compared with the results of an experimental program conducted on silicon carbide/titanium (SiC/Ti) unidirectional, (O4), and angle-ply, (+34)(sub s), tubular specimens. Multiaxial loading included increments of axial tension, compression, torque, and internal pressure. Loadings were chosen in an effort to distinguish inelastic deformation due to damage from matrix plasticity and separate time-dependent effects from time-independent effects. Results show that fiber/matrix debonding is nonuniform throughout the composite and is a major factor in the effective response. Also, significant creep behavior occurs at relatively low applied stress levels at room temperature.

  18. A review of the matrix-exponential formalism in radiative transfer

    NASA Astrophysics Data System (ADS)

    Efremenko, Dmitry S.; Molina García, Víctor; Gimeno García, Sebastián; Doicu, Adrian

    2017-07-01

    This paper outlines the matrix exponential description of radiative transfer. The eigendecomposition method which serves as a basis for computing the matrix exponential and for representing the solution in a discrete ordinate setting is considered. The mathematical equivalence of the discrete ordinate method, the matrix operator method, and the matrix Riccati equations method is proved rigorously by means of the matrix exponential formalism. For optically thin layers, approximate solution methods relying on the Padé and Taylor series approximations to the matrix exponential, as well as on the matrix Riccati equations, are presented. For optically thick layers, the asymptotic theory with higher-order corrections is derived, and parameterizations of the asymptotic functions and constants for a water-cloud model with a Gamma size distribution are obtained.

  19. Forecasting extinction risk with nonstationary matrix models.

    PubMed

    Gotelli, Nicholas J; Ellison, Aaron M

    2006-02-01

    Matrix population growth models are standard tools for forecasting population change and for managing rare species, but they are less useful for predicting extinction risk in the face of changing environmental conditions. Deterministic models provide point estimates of lambda, the finite rate of increase, as well as measures of matrix sensitivity and elasticity. Stationary matrix models can be used to estimate extinction risk in a variable environment, but they assume that the matrix elements are randomly sampled from a stationary (i.e., non-changing) distribution. Here we outline a method for using nonstationary matrix models to construct realistic forecasts of population fluctuation in changing environments. Our method requires three pieces of data: (1) field estimates of transition matrix elements, (2) experimental data on the demographic responses of populations to altered environmental conditions, and (3) forecasting data on environmental drivers. These three pieces of data are combined to generate a series of sequential transition matrices that emulate a pattern of long-term change in environmental drivers. Realistic estimates of population persistence and extinction risk can be derived from stochastic permutations of such a model. We illustrate the steps of this analysis with data from two populations of Sarracenia purpurea growing in northern New England. Sarracenia purpurea is a perennial carnivorous plant that is potentially at risk of local extinction because of increased nitrogen deposition. Long-term monitoring records or models of environmental change can be used to generate time series of driver variables under different scenarios of changing environments. Both manipulative and natural experiments can be used to construct a linking function that describes how matrix parameters change as a function of the environmental driver. This synthetic modeling approach provides quantitative estimates of extinction probability that have an explicit mechanistic

  20. Fast matrix multiplication and its algebraic neighbourhood

    NASA Astrophysics Data System (ADS)

    Pan, V. Ya.

    2017-11-01

    Matrix multiplication is among the most fundamental operations of modern computations. By 1969 it was still commonly believed that the classical algorithm was optimal, although the experts already knew that this was not so. Worldwide interest in matrix multiplication instantly exploded in 1969, when Strassen decreased the exponent 3 of cubic time to 2.807. Then everyone expected to see matrix multiplication performed in quadratic or nearly quadratic time very soon. Further progress, however, turned out to be capricious. It was at stalemate for almost a decade, then a combination of surprising techniques (completely independent of Strassen's original ones and much more advanced) enabled a new decrease of the exponent in 1978-1981 and then again in 1986, to 2.376. By 2017 the exponent has still not passed through the barrier of 2.373, but most disturbing was the curse of recursion — even the decrease of exponents below 2.7733 required numerous recursive steps, and each of them squared the problem size. As a result, all algorithms supporting such exponents supersede the classical algorithm only for inputs of immense sizes, far beyond any potential interest for the user. We survey the long study of fast matrix multiplication, focusing on neglected algorithms for feasible matrix multiplication. We comment on their design, the techniques involved, implementation issues, the impact of their study on the modern theory and practice of Algebraic Computations, and perspectives for fast matrix multiplication. Bibliography: 163 titles.

  1. Infrared Matrix-Isolation Study of New Noble-Gas Compounds

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng; Räsänen, Markku; Khriachtchev, Leonid

    2016-06-01

    We identify new noble-gas compounds in solid matrices using IR spectroscopy. The compounds under study belong to two types: HNgY and YNgY' where Ng is a noble-gas atom and Y and Y' are electronegative fragments. The experimental assignments are supported by ab initio calculations at the MP2(full) and CCSD(T) levels of theory with the def2-TZVPPD basis set. We have prepared and characterized two new HNgY compounds (noble-gas hydrides): HKrCCCl in a Kr matrix and HXeCCCl in a Xe matrix.I The synthesis of these compounds includes two steps: UV photolysis of HCCCl in a noble-gas matrix to form the H + CCCl fragments and annealing of the matrix to mobilize H atoms and to promote the H + Ng + CCCl = HNgCCCl reaction. An interesting observation in the experiments on HXeCCCl in a Xe matrix is the temperature-induced transformation of the three H-Xe stretching bands. This observation is explained by temperature-induced changes of local matrix morphology around the embedded HXeCCCl molecule. In these experiments, we have also obtained the IR spectrum of the CCCl radical, which is produced by photodecomposition of HCCCl. We have identified three new YNgY' compounds (fluorinated noble-gas cyanides): FKrCN in a Kr matrix and FXeCN and FXeNC in a Xe matrix.II These molecule are formed by photolysis of FCN in a noble-gas matrix due to locality of this process. The amount of these molecules increases upon thermal mobilization of the F atoms in the photolyzed matrix featuring the F + Ng + CN reaction.

  2. Part I. Corrosion studies of continuous alumina fiber reinforced aluminum-matrix composites. Part II. Galvanic corrosion between continuous alumina fiber reinforced aluminum-matrix composites and 4340 steel

    NASA Astrophysics Data System (ADS)

    Zhu, Jun

    Part I. The corrosion performance of continuous alumina fiber reinforced aluminum-matrix composites (CF-AMCs) was investigated in both the laboratory and field environments by comparing them with their respective monolithic matrix alloys, i.e., pure Al, A1-2wt%Cu T6, and Al 6061 T6. The corrosion initiation sites were identified by monitoring the changes in the surface morphology. Corrosion current densities and pH profiles at localized corrosion sites were measured using the scanning-vibrating electrode technique and the scanning ion-selective electrode technique, respectively. The corrosion damage of the materials immersed in various electrolytes, as well as those exposed in a humidity chamber and outdoor environments, was evaluated. Potentiodynamic polarization behavior was also studied. The corrosion initiation for the composites in 3.15 wt% NaCl occurred primarily around the Fe-rich intermetallic particles, which preferentially existed around the fiber/matrix interface on the composites. The corrosion initiation sites were also caused by physical damage (e.g., localized deformation) to the composite surface. At localized corrosion sites, the buildup of acidity was enhanced by the formation of micro-crevices resulting from fibers left in relief as the matrix corroded. The composites that were tested in exposure experiments exhibited higher corrosion rates than their monolithic alloys. The composites and their monolithic alloys were subjected to pitting corrosion when anodically polarized in the 3.15 wt% NaCl, while they passivated when anodically polarized in 0.5 M Na2SO4. The experimental results indicated that the composites exhibited inferior corrosion resistance compared to their monolithic matrix alloys. Part II. Galvanic corrosion studies were conducted on CF-AMCs coupled to 4340 steel since CF-AMCs have low density and excellent mechanical properties and are being considered as potential jacketing materials for reinforcing steel gun barrels. Coupled and

  3. Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling.

    PubMed

    Li, Y Y; McTiernan, C F; Feldman, A M

    2000-05-01

    Myocardial fibrosis due to maladaptive extracellular matrix remodeling contributes to dysfunction of the failing heart. Further elucidation of the mechanism by which myocardial fibrosis and dilatation can be prevented or even reversed remains of great interest as a potential means to limit myocardial remodeling and dysfunction. Matrix metalloproteinases (MMPs) are the driving force behind extracellular matrix degradation during remodeling and are increased in the failing human heart. MMPs are regulated by a variety of growth factors, cytokines, and matrix fragments such as matrikines. In the present report, we discuss the regulation of MMPs, the role of MMPs in the development of cardiac fibrosis, and the modulation of MMP activity using gene transfer and knockout technologies. We also present recent findings from our laboratory on the regulation of the extracellular MMP inducer (EMMPRIN), MMPs, and transforming growth factor-beta(1) in the failing human heart before and after left ventricular assist device support, as well as the possibility of preventing ventricular fibrosis using different anti-MMP strategies. Several studies suggest that such modulation of MMP activity can alter ventricular remodeling, myocardial dysfunction, and the progression of heart failure. It is therefore suggested that the interplay of MMPs and their regulators is important in the development of the heart failure phenotype, and myocardial fibrosis in heart failure may be modified by modulating MMP activity.

  4. Nucleophosmin/B23 is a proliferate shuttle protein associated with nuclear matrix.

    PubMed

    Yun, Jing-Ping; Chew, Eng Ching; Liew, Choong-Tsek; Chan, John Y H; Jin, Mei-Lin; Ding, Ming-Xiao; Fai, Yam Hin; Li, H K Richard; Liang, Xiao-Man; Wu, Qiu-Liang

    2003-12-15

    It has become obvious that a better understanding and potential elucidation of the nucleolar phosphoprotein B23 involving in functional interrelationship between nuclear organization and gene expression. In present study, protein B23 expression were investigated in the regenerative hepatocytes at different periods (at days 0, 1, 2, 3, 4, 7) during liver regeneration after partial hepatectomy on the rats with immunohistochemistry and Western blot analysis. Another experiment was done with immunolabeling methods and two-dimensional (2-D) gel electrophoresis for identification of B23 in the regenerating hepatocytes and HepG2 cells (hepatoblastoma cell line) after sequential extraction with detergents, nuclease, and salt. The results showed that its expression in the hepatocytes had a locative move and quantitative change during the process of liver regeneration post-operation. Its immunochemical localization in the hepatocytes during the process showed that it moved from nucleoli of the hepatocytes in the stationary stage to nucleoplasm, cytoplasm, mitotic spindles, and mitotic chromosomes of the hepatocytes in the regenerating livers. It was quantitatively increased progressively to peak level at day 3 post-operation and declined gradually to normal level at day 7. It was detected in nuclear matrix protein (NMP) composition extracted from the regenerating hepatocytes and HepG2 cells and identified with isoelectric point (pI) value of 5.1 and molecular weight of 40 kDa. These results indicated that B23 was a proliferate shuttle protein involving in cell cycle and cell proliferation associated with nuclear matrix. Copyright 2003 Wiley-Liss, Inc.

  5. Estimating the Inertia Matrix of a Spacecraft

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet; Keim, Jason; Shields, Joel

    2007-01-01

    A paper presents a method of utilizing some flight data, aboard a spacecraft that includes reaction wheels for attitude control, to estimate the inertia matrix of the spacecraft. The required data are digitized samples of (1) the spacecraft attitude in an inertial reference frame as measured, for example, by use of a star tracker and (2) speeds of rotation of the reaction wheels, the moments of inertia of which are deemed to be known. Starting from the classical equations for conservation of angular momentum of a rigid body, the inertia-matrix-estimation problem is formulated as a constrained least-squares minimization problem with explicit bounds on the inertia matrix incorporated as linear matrix inequalities. The explicit bounds reflect physical bounds on the inertia matrix and reduce the volume of data that must be processed to obtain a solution. The resulting minimization problem is a semidefinite optimization problem that can be solved efficiently, with guaranteed convergence to the global optimum, by use of readily available algorithms. In a test case involving a model attitude platform rotating on an air bearing, it is shown that, relative to a prior method, the present method produces better estimates from few data.

  6. 48 CFR 52.301 - Solicitation provisions and contract clauses (Matrix).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Solicitation provisions and contract clauses (Matrix). 52.301 Section 52.301 Federal Acquisition Regulations System FEDERAL... and Clause Matrix 52.301 Solicitation provisions and contract clauses (Matrix). Note: The FAR matrix...

  7. Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells☆

    PubMed Central

    Nalluri, Sandeep M.; Krishnan, G. Rajesh; Cheah, Calvin; Arzumand, Ayesha; Yuan, Yuan; Richardson, Caley A.; Yang, Shuying; Sarkar, Debanjan

    2016-01-01

    Segmental polyurethanes exhibit biphasic morphology and can control cell fate by providing distinct matrix guided signals to increase the chondrogenic potential of mesenchymal stem cells (MSCs). Polyethylene glycol (PEG) based hydrophilic polyurethanes can deliver differential signals to MSCs through their matrix phases where hard segments are cell-interactive domains and PEG based soft segments are minimally interactive with cells. These coordinated communications can modulate cell–matrix interactions to control cell shape and size for chondrogenesis. Biphasic character and hydrophilicity of polyurethanes with gel like architecture provide a synthetic matrix conducive for chondrogenesis of MSCs, as evidenced by deposition of cartilage-associated extracellular matrix. Compared to monophasic hydrogels, presence of cell interactive domains in hydrophilic polyurethanes gels can balance cell–cell and cell–matrix interactions. These results demonstrate the correlation between lineage commitment and the changes in cell shape, cell–matrix interaction, and cell–cell adhesion during chondrogenic differentiation which is regulated by polyurethane phase morphology, and thus, represent hydrophilic polyurethanes as promising synthetic matrices for cartilage regeneration. PMID:26046282

  8. Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells.

    PubMed

    Nalluri, Sandeep M; Krishnan, G Rajesh; Cheah, Calvin; Arzumand, Ayesha; Yuan, Yuan; Richardson, Caley A; Yang, Shuying; Sarkar, Debanjan

    2015-09-01

    Segmental polyurethanes exhibit biphasic morphology and can control cell fate by providing distinct matrix guided signals to increase the chondrogenic potential of mesenchymal stem cells (MSCs). Polyethylene glycol (PEG) based hydrophilic polyurethanes can deliver differential signals to MSCs through their matrix phases where hard segments are cell-interactive domains and PEG based soft segments are minimally interactive with cells. These coordinated communications can modulate cell-matrix interactions to control cell shape and size for chondrogenesis. Biphasic character and hydrophilicity of polyurethanes with gel like architecture provide a synthetic matrix conducive for chondrogenesis of MSCs, as evidenced by deposition of cartilage-associated extracellular matrix. Compared to monophasic hydrogels, presence of cell interactive domains in hydrophilic polyurethanes gels can balance cell-cell and cell-matrix interactions. These results demonstrate the correlation between lineage commitment and the changes in cell shape, cell-matrix interaction, and cell-cell adhesion during chondrogenic differentiation which is regulated by polyurethane phase morphology, and thus, represent hydrophilic polyurethanes as promising synthetic matrices for cartilage regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Structure of right-handed neutrino mass matrix

    NASA Astrophysics Data System (ADS)

    Koide, Yoshio

    2017-11-01

    Recently, Nishiura and the author proposed a unified quark-lepton mass matrix model under a family symmetry U (3 )×U (3 )' . The model can give excellent parameter fitting to the observed quark and neutrino data. The model has a reasonable basis as far as the quark sector, but, in the neutrino sector, the form of the right-handed neutrino mass matrix MR does not have a theoretical basis; that is, it was nothing but a phenomenological assumption. In this paper, it is pointed out that the form of MR is originated in the structure of Majorana mass matrix (4 ×4 matrix) for the left-handed fields ((νL)i,(νRc)i,(NL)α,(NRc)α) where νi (i =1 , 2, 3) and Nα (α =1 , 2, 3) are U(3)-family and U(3 ) ' -family triplets, respectively.

  10. Matrix metalloproteinase processing of signaling molecules to regulate inflammation.

    PubMed

    Butler, Georgina S; Overall, Christopher M

    2013-10-01

    Inflammation is a complex and highly regulated process that facilitates the clearance of pathogens and mediates tissue repair. Failure to resolve inflammation can lead to chronic inflammatory diseases such as periodontitis. Matrix metalloproteinases are generally thought to be detrimental in disease because degradation of extracellular matrix contributes to pathology. However, proteomic techniques (degradomics) are revealing that matrix metalloproteinases process a diverse array of substrates and therefore have a broad range of functions. Many matrix metalloproteinase substrates modulate inflammation and hence, by processing these proteins, matrix metalloproteinases can orchestrate the inflammatory response. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Burn-Resistant, Strong Metal-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M.; Tayal, Moti J.

    2003-01-01

    Ceramic particulate fillers increase the specific strengths and burn resistances of metals: This is the conclusion drawn by researchers at Johnson Space Center's White Sands Test Facility. The researchers had theorized that the inclusion of ceramic particles in metal tools and other metal objects used in oxygen-rich atmospheres (e.g., in hyperbaric chambers and spacecraft) could reduce the risk of fire and the consequent injury or death of personnel. In such atmospheres, metal objects act as ignition sources, creating fire hazards. However, not all metals are equally hazardous: some are more burn-resistant than others are. It was the researchers purpose to identify a burn-resistant, high-specific-strength ceramic-particle/metal-matrix composite that could be used in oxygen-rich atmospheres. The researchers studied several metals. Nickel and cobalt alloys exhibit high burn resistances and are dense. The researchers next turned to ceramics, which they knew do not act as ignition sources. Unlike metals, ceramics are naturally burn-resistant. Unfortunately, they also exhibit low fracture toughnesses.

  12. Comparison Of Models Of Metal-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.; Johnson, W. S.; Naik, R. A.

    1994-01-01

    Report presents comparative review of four mathematical models of micromechanical behaviors of fiber/metal-matrix composite materials. Models differ in various details, all based on properties of fiber and matrix constituent materials, all involve square arrays of fibers continuous and parallel and all assume complete bonding between constituents. Computer programs implementing models used to predict properties and stress-vs.-strain behaviors of unidirectional- and cross-ply laminated composites made of boron fibers in aluminum matrices and silicon carbide fibers in titanium matrices. Stresses in fiber and matrix constituent materials also predicted.

  13. Dexamethasone attenuates oxidation of extracellular matrix proteins by human monocytes.

    PubMed

    Ahmed, Shahid; Adamidis, Ananea; Jan, Louis C; Gibbons, Nora; Mattana, Joseph

    2003-10-01

    In response to infection or in immune complex-mediated diseases, inflammatory cells may oxidatively damage extracellular matrix (ECM) proteins. In this study we evaluated whether human monocytes could oxidize ECM and whether this could be modulated by exposure to LPS, IgG complexes, and dexamethasone (DEX). Wells in tissue culture plates were coated with the ECM preparation Matrigel. Porous inserts with or without the human monocyte cell line THP-1 were placed into ECM-containing wells and cells were exposed to control conditions or to LPS (10 ng/ml), IgG complexes (200 and 500 microg/ml), or DEX (10(-7) and 10(-6) M). ECM was then subjected to Western blot analysis using an antibody to oxidized protein. In addition, Western blot analysis was carried out on DEX-treated cells to evaluate expression of the NADPH oxidase components p67-phox and gp91-phox. THP-1 cells enhanced ECM oxidation and this effect was augmented by LPS and by IgG aggregates. Preincubation of cells with DEX attenuated ECM oxidation and was also associated with decreased expression of p67-phox and gp91-phox. These findings suggest that human monocytes can oxidize ECM proteins and that this may be modulated by IgG complexes and LPS. Dexamethasone appears to attenuate ECM oxidation and a better understanding of this mechanism might allow for interventions to minimize oxidative damage to ECM proteins by monocytes in infectious and inflammatory states.

  14. Anabolic action of parathyroid hormone (PTH) does not compromise bone matrix mineral composition or maturation.

    PubMed

    Vrahnas, Christina; Pearson, Thomas A; Brunt, Athena R; Forwood, Mark R; Bambery, Keith R; Tobin, Mark J; Martin, T John; Sims, Natalie A

    2016-12-01

    Intermittent administration of parathyroid hormone (PTH) is used to stimulate bone formation in patients with osteoporosis. A reduction in the degree of matrix mineralisation has been reported during treatment, which may reflect either production of undermineralised matrix or a greater proportion of new matrix within the bone samples assessed. To explore these alternatives, high resolution synchrotron-based Fourier Transform Infrared Microspectroscopy (sFTIRM) coupled with calcein labelling was used in a region of non-remodelling cortical bone to determine bone composition during anabolic PTH treatment compared with region-matched samples from controls. 8week old male C57BL/6 mice were treated with vehicle or 50μg/kg PTH, 5 times/week for 4weeks (n=7-9/group). Histomorphometry confirmed greater trabecular and periosteal bone formation and 3-point bending tests confirmed greater femoral strength in PTH-treated mice. Dual calcein labels were used to match bone regions by time-since-mineralisation (bone age) and composition was measured by sFTIRM in six 15μm 2 regions at increasing depth perpendicular to the most immature bone on the medial periosteal edge; this allowed in situ measurement of progressive changes in bone matrix during its maturation. The sFTIRM method was validated in vehicle-treated bones where the expected progressive increases in mineral:matrix ratio and collagen crosslink type ratio were detected with increasing bone maturity. We also observed a gradual increase in carbonate content that strongly correlated with an increase in longitudinal stretch of the collagen triple helix (amide I:amide II ratio). PTH treatment did not alter the progressive changes in any of these parameters from the periosteal edge through to the more mature bone. These data provide new information about how the bone matrix matures in situ and confirm that bone deposited during PTH treatment undergoes normal collagen maturation and normal mineral accrual. Copyright © 2016

  15. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for detection and identification of albumin phosphylation by organophosphorus pesticides and G- and V-type nerve agents.

    PubMed

    John, Harald; Breyer, Felicitas; Thumfart, Jörg Oliver; Höchstetter, Hans; Thiermann, Horst

    2010-11-01

    Toxic organophosphorus compounds (OPC), e.g., pesticides and nerve agents (NA), are known to phosphylate distinct endogenous proteins in vivo and in vitro. OPC adducts of butyrylcholinesterase and albumin are considered to be valuable biomarkers for retrospective verification of OPC exposure. Therefore, we have detected and identified novel adducts of human serum albumin (HSA) by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Pure albumin and plasma were incubated with numerous pesticides and NA of the V- and G-type in different molar ratios. Samples were prepared either by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by in-gel enzymatic cleavage using endoproteinase Glu-C (Glu-C) or by combining highly albumin-selective affinity extraction with ultrafiltration followed by reduction, carbamidomethylation, and enzymatic cleavage (Glu-C) prior to MALDI-TOF MS analysis. Characteristic mass shifts for phosphylation revealed tyrosine adducts at Y(411) (Y(401)KFQNALLVRY(411)TKKVPQVSTPTLVE(425)), Y(148) and Y(150) (I(142)ARRHPY(148)FY(150)APE(153), single and double labeled), and Y(161) (L(154)LFFAKRY(161)KAAFTE(167)) produced by original NA (tabun, sarin, soman, cyclosarin, VX, Chinese VX, and Russian VX) as well as by chlorpyrifos-oxon, diisopropyl fluorophosphate (DFP), paraoxon-ethyl (POE), and profenofos. MALDI-MS/MS of the single-labeled I(142)-E(153) peptide demonstrated that Y(150) was phosphylated with preference to Y(148). Aged albumin adducts were not detected. The procedure described was reproducible and feasible for detection of adducts at the most reactive Y(411)-residue (S/N ≥ 3) when at least 1% of total albumin was labeled. This was achieved by incubating plasma with molar HSA/OPC ratios ranging from approximately 1:0.03 (all G-type NA, DFP, and POE) to 1:3 (V-type NA, profenofos). Relative signal intensity of the Y(411) adduct correlated well with the spotted relative

  16. Massively parallel sparse matrix function calculations with NTPoly

    NASA Astrophysics Data System (ADS)

    Dawson, William; Nakajima, Takahito

    2018-04-01

    We present NTPoly, a massively parallel library for computing the functions of sparse, symmetric matrices. The theory of matrix functions is a well developed framework with a wide range of applications including differential equations, graph theory, and electronic structure calculations. One particularly important application area is diagonalization free methods in quantum chemistry. When the input and output of the matrix function are sparse, methods based on polynomial expansions can be used to compute matrix functions in linear time. We present a library based on these methods that can compute a variety of matrix functions. Distributed memory parallelization is based on a communication avoiding sparse matrix multiplication algorithm. OpenMP task parallellization is utilized to implement hybrid parallelization. We describe NTPoly's interface and show how it can be integrated with programs written in many different programming languages. We demonstrate the merits of NTPoly by performing large scale calculations on the K computer.

  17. Risk Management using Dependency Stucture Matrix

    NASA Astrophysics Data System (ADS)

    Petković, Ivan

    2011-09-01

    An efficient method based on dependency structure matrix (DSM) analysis is given for ranking risks in a complex system or process whose entities are mutually dependent. This rank is determined according to the element's values of the unique positive eigenvector which corresponds to the matrix spectral radius modeling the considered engineering system. For demonstration, the risk problem of NASA's robotic spacecraft is analyzed.

  18. Variational optimization algorithms for uniform matrix product states

    NASA Astrophysics Data System (ADS)

    Zauner-Stauber, V.; Vanderstraeten, L.; Fishman, M. T.; Verstraete, F.; Haegeman, J.

    2018-01-01

    We combine the density matrix renormalization group (DMRG) with matrix product state tangent space concepts to construct a variational algorithm for finding ground states of one-dimensional quantum lattices in the thermodynamic limit. A careful comparison of this variational uniform matrix product state algorithm (VUMPS) with infinite density matrix renormalization group (IDMRG) and with infinite time evolving block decimation (ITEBD) reveals substantial gains in convergence speed and precision. We also demonstrate that VUMPS works very efficiently for Hamiltonians with long-range interactions and also for the simulation of two-dimensional models on infinite cylinders. The new algorithm can be conveniently implemented as an extension of an already existing DMRG implementation.

  19. MALDI mass spectrometry imaging of bioactive lipids in mouse brain with a Synapt G2-S mass spectrometer operated at elevated pressure: improving the analytical sensitivity and the lateral resolution to ten micrometers.

    PubMed

    Kettling, Hans; Vens-Cappell, Simeon; Soltwisch, Jens; Pirkl, Alexander; Haier, Jörg; Müthing, Johannes; Dreisewerd, Klaus

    2014-08-05

    Mass spectrometers from the Synapt-G1/G2 family (Waters) are widely employed for matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). A lateral resolution of about 50 μm is typically achieved with these instruments, that is, however, below the often desired cellular resolution. Here, we show the first MALDI-MSI examples demonstrating a lateral resolution of about ten micrometers obtained with a Synapt G2-S HDMS mass spectrometer without oversampling. This improvement became possible by laser beam shaping using a 4:1 beam expander and a circular aperture for spatial mode filtering and by replacement of the default focusing lens. We used dithranol as an effective matrix for imaging of acidic lipids such as sulfatides, gangliosides, and phosphatidylinositols in the negative ion mode. At the same time, the matrix enables MS imaging of more basic lipids in the positive ion mode. Uniform matrix coatings with crystals having average dimensions between 0.5 and 3 μm were obtained upon spraying a chloroform/methanol matrix solution. Increasing the cooling gas pressure in the MALDI ion source after adding an additional gas line was furthermore found to increase the ion abundances of labile lipids such as gangliosides. The combined characteristics are demonstrated with the MALDI-MSI analysis of fine structures in coronal mouse brain slices.

  20. Snapshot retinal imaging Mueller matrix polarimeter

    NASA Astrophysics Data System (ADS)

    Wang, Yifan; Kudenov, Michael; Kashani, Amir; Schwiegerling, Jim; Escuti, Michael

    2015-09-01

    Early diagnosis of glaucoma, which is a leading cause for visual impairment, is critical for successful treatment. It has been shown that Imaging polarimetry has advantages in early detection of structural changes in the retina. Here, we theoretically and experimentally present a snapshot Mueller Matrix Polarimeter fundus camera, which has the potential to record the polarization-altering characteristics of retina with a single snapshot. It is made by incorporating polarization gratings into a fundus camera design. Complete Mueller Matrix data sets can be obtained by analyzing the polarization fringes projected onto the image plane. In this paper, we describe the experimental implementation of the snapshot retinal imaging Mueller matrix polarimeter (SRIMMP), highlight issues related to calibration, and provide preliminary images acquired from the camera.