Science.gov

Sample records for gabaergic interneuron survival

  1. Genetics and Function of Neocortical GABAergic Interneurons in Neurodevelopmental Disorders

    PubMed Central

    Rossignol, E.

    2011-01-01

    A dysfunction of cortical and limbic GABAergic circuits has been postulated to contribute to multiple neurodevelopmental disorders in humans, including schizophrenia, autism, and epilepsy. In the current paper, I summarize the characteristics that underlie the great diversity of cortical GABAergic interneurons and explore how the multiple roles of these cells in developing and mature circuits might contribute to the aforementioned disorders. Furthermore, I review the tightly controlled genetic cascades that determine the fate of cortical interneurons and summarize how the dysfunction of genes important for the generation, specification, maturation, and function of cortical interneurons might contribute to these disorders. PMID:21876820

  2. GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits.

    PubMed

    Tremblay, Robin; Lee, Soohyun; Rudy, Bernardo

    2016-07-20

    Cortical networks are composed of glutamatergic excitatory projection neurons and local GABAergic inhibitory interneurons that gate signal flow and sculpt network dynamics. Although they represent a minority of the total neocortical neuronal population, GABAergic interneurons are highly heterogeneous, forming functional classes based on their morphological, electrophysiological, and molecular features, as well as connectivity and in vivo patterns of activity. Here we review our current understanding of neocortical interneuron diversity and the properties that distinguish cell types. We then discuss how the involvement of multiple cell types, each with a specific set of cellular properties, plays a crucial role in diversifying and increasing the computational power of a relatively small number of simple circuit motifs forming cortical networks. We illustrate how recent advances in the field have shed light onto the mechanisms by which GABAergic inhibition contributes to network operations. PMID:27477017

  3. Neuregulin 1 promotes excitatory synapse development specifically in GABAergic interneurons

    PubMed Central

    Ting, Annie K.; Chen, Yongjun; Wen, Lei; Yin, Dong-Min; Shen, Chengyong; Tao, Yanmei; Liu, Xihui; Xiong, Wen-Cheng; Mei, Lin

    2011-01-01

    Neuregulin 1 (NRG1) and its receptor ErbB4 are both susceptibility genes of schizophrenia. However, little is known about the underlying mechanisms of their malfunction. Although ErbB4 is enriched in GABAergic interneurons, the role of NRG1 in excitatory synapse formation in these neurons remains poorly understood. We showed that NRG1 increased both the number and size of PSD-95 puncta and the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) in GABAergic interneurons, indicating that NRG1 stimulates the formation of new synapses and strengthens existing synapses. In contrast, NRG1 treatment had no effect on either the number or size of excitatory synapses in glutamatergic neurons, suggesting its synaptogenic effect is specific to GABAergic interneurons. Ecto-ErbB4 treatment diminished both the number and size of excitatory synapses, suggesting that endogenous NRG1 may be critical for basal synapse formation. NRG1 could stimulate the stability of PSD-95 in the manner that requires tyrosine kinase activity of ErbB4. Finally, deletion of ErbB4 in parvalbumin-positive interneurons led to reduced frequency and amplitude of mEPSCs, providing in vivo evidence that ErbB4 is important in excitatory synaptogenesis in interneurons. Taken together, our findings suggested a novel synaptogenic role of NRG1 in excitatory synapse development, possibly via stabilizing PSD-95, and this effect is specific to GABAergic interneurons. In light of the association of the genes of both NRG1 and ErbB4 with schizophrenia and dysfunction of GABAergic system in this disorder, these results provide insight into its potential pathological mechanism. PMID:21209185

  4. The early fetal development of human neocortical GABAergic interneurons.

    PubMed

    Al-Jaberi, Nahidh; Lindsay, Susan; Sarma, Subrot; Bayatti, Nadhim; Clowry, Gavin J

    2015-03-01

    GABAergic interneurons are crucial to controlling the excitability and responsiveness of cortical circuitry. Their developmental origin may differ between rodents and human. We have demonstrated the expression of 12 GABAergic interneuron-associated genes in samples from human neocortex by quantitative rtPCR from 8 to 12 postconceptional weeks (PCW) and shown a significant anterior to posterior expression gradient, confirmed by in situ hybridization or immunohistochemistry for GAD1 and 2, DLX1, 2, and 5, ASCL1, OLIG2, and CALB2. Following cortical plate (CP) formation from 8 to 9 PCW, a proportion of cells were strongly stained for all these markers in the CP and presubplate. ASCL1 and DLX2 maintained high expression in the proliferative zones and showed extensive immunofluorescent double-labeling with the cell division marker Ki-67. CALB2-positive cells increased steadily in the SVZ/VZ from 10 PCW but were not double-labeled with Ki-67. Expression of GABAergic genes was generally higher in the dorsal pallium than in the ganglionic eminences, with lower expression in the intervening ventral pallium. It is widely accepted that the cortical proliferative zones may generate CALB2-positive interneurons from mid-gestation; we now show that the anterior neocortical proliferative layers especially may be a rich source of interneurons in the early neocortex. PMID:24047602

  5. Bayesian network classifiers for categorizing cortical GABAergic interneurons.

    PubMed

    Mihaljević, Bojan; Benavides-Piccione, Ruth; Bielza, Concha; DeFelipe, Javier; Larrañaga, Pedro

    2015-04-01

    An accepted classification of GABAergic interneurons of the cerebral cortex is a major goal in neuroscience. A recently proposed taxonomy based on patterns of axonal arborization promises to be a pragmatic method for achieving this goal. It involves characterizing interneurons according to five axonal arborization features, called F1-F5, and classifying them into a set of predefined types, most of which are established in the literature. Unfortunately, there is little consensus among expert neuroscientists regarding the morphological definitions of some of the proposed types. While supervised classifiers were able to categorize the interneurons in accordance with experts' assignments, their accuracy was limited because they were trained with disputed labels. Thus, here we automatically classify interneuron subsets with different label reliability thresholds (i.e., such that every cell's label is backed by at least a certain (threshold) number of experts). We quantify the cells with parameters of axonal and dendritic morphologies and, in order to predict the type, also with axonal features F1-F4 provided by the experts. Using Bayesian network classifiers, we accurately characterize and classify the interneurons and identify useful predictor variables. In particular, we discriminate among reliable examples of common basket, horse-tail, large basket, and Martinotti cells with up to 89.52% accuracy, and single out the number of branches at 180 μm from the soma, the convex hull 2D area, and the axonal features F1-F4 as especially useful predictors for distinguishing among these types. These results open up new possibilities for an objective and pragmatic classification of interneurons. PMID:25420745

  6. An interneuron progenitor maintains neurogenic potential in vivo and differentiates into GABAergic interneurons after transplantation in the postnatal rat brain.

    PubMed

    Wang, Qi; Hong, Peiwei; Gao, Hui; Chen, Yuntian; Yang, Qi; Jiang, Mei; Li, Hedong

    2016-01-01

    Dysfunction of cortical GABAergic interneurons are involved in numerous neurological disorders including epilepsy, schizophrenia and autism; and replenishment of these cells by transplantation strategy has proven to be a feasible and effective method to help revert the symptoms in several animal models. To develop methodology of generating transplantable GABAergic interneurons for therapy, we previously reported the isolation of a v-myc-induced GABAergic interneuron progenitor clone GE6 from embryonic ganglionic eminence (GE). These cells can proliferate and form functional inhibitory synapses in culture. Here, we tested their differentiation behavior in vivo by transplanting them into the postnatal rat forebrain. We found that GE6 cells migrate extensively in the neonatal forebrain and differentiate into both neurons and glia, but preferentially into neurons when compared with a sister progenitor clone CTX8. The neurogenic potential of GE6 cells is also maintained after transplantation into a non-permissive environment such as adult cortex or when treated with inflammatory cytokine in culture. The GE6-derived neurons were able to mature in vivo as GABAergic interneurons expressing GABAergic, not glutamatergic, presynaptic puncta. Finally, we propose that v-myc-induced human interneuron progenitor clones could be an alternative cell source of transplantable GABAergic interneurons for treating related neurological diseases in future clinic. PMID:26750620

  7. Four GABAergic interneurons impose feeding restraint in Drosophila

    PubMed Central

    Pool, Allan-Hermann; Kvello, Pal; Mann, Kevin; Cheung, Samantha K.; Gordon, Michael D.; Wang, Liming; Scott, Kristin

    2014-01-01

    Summary Feeding is dynamically regulated by the palatability of the food source and the physiological needs of the animal. How consumption is controlled by external sensory cues and internal metabolic state remains under intense investigation. Here, we identify four GABAergic interneurons in the Drosophila brain that establish a central feeding threshold which is required to inhibit consumption. Inactivation of these cells results in indiscriminate and excessive intake of all compounds, independent of taste quality or nutritional state. Conversely, acute activation of these neurons suppresses consumption of water and nutrients. The output from these neurons is required to gate activity in motor neurons that control meal initiation and consumption. Thus, our study reveals a new layer of inhibitory control in feeding circuits that is required to suppress a latent state of unrestricted and non-selective consumption. PMID:24991960

  8. Dendritic and Axonal Wiring Optimization of Cortical GABAergic Interneurons.

    PubMed

    Anton-Sanchez, Laura; Bielza, Concha; Benavides-Piccione, Ruth; DeFelipe, Javier; Larrañaga, Pedro

    2016-10-01

    The way in which a neuronal tree expands plays an important role in its functional and computational characteristics. We aimed to study the existence of an optimal neuronal design for different types of cortical GABAergic neurons. To do this, we hypothesized that both the axonal and dendritic trees of individual neurons optimize brain connectivity in terms of wiring length. We took the branching points of real three-dimensional neuronal reconstructions of the axonal and dendritic trees of different types of cortical interneurons and searched for the minimal wiring arborization structure that respects the branching points. We compared the minimal wiring arborization with real axonal and dendritic trees. We tested this optimization problem using a new approach based on graph theory and evolutionary computation techniques. We concluded that neuronal wiring is near-optimal in most of the tested neurons, although the wiring length of dendritic trees is generally nearer to the optimum. Therefore, wiring economy is related to the way in which neuronal arborizations grow irrespective of the marked differences in the morphology of the examined interneurons. PMID:27345531

  9. Pathological alterations in GABAergic interneurons and reduced tonic inhibition in the basolateral amygdala during epileptogenesis.

    PubMed

    Fritsch, B; Qashu, F; Figueiredo, T H; Aroniadou-Anderjaska, V; Rogawski, M A; Braga, M F M

    2009-09-29

    An acute brain insult such as traumatic head/brain injury, stroke, or an episode of status epilepticus can trigger epileptogenesis, which, after a latent, seizure-free period, leads to epilepsy. The discovery of effective pharmacological interventions that can prevent the development of epilepsy requires knowledge of the alterations that occur during epileptogenesis in brain regions that play a central role in the induction and expression of epilepsy. In the present study, we investigated pathological alterations in GABAergic interneurons in the rat basolateral amygdala (BLA), and the functional impact of these alterations on inhibitory synaptic transmission, on days 7 to 10 after status epilepticus induced by kainic acid. Using design-based stereology combined with glutamic acid decarboxylase (GAD) 67 immunohistochemistry, we found a more extensive loss of GABAergic interneurons compared to the loss of principal cells. Fluoro-Jade C staining showed that neuronal degeneration was still ongoing. These alterations were accompanied by an increase in the levels of GAD and the alpha1 subunit of the GABA(A) receptor, and a reduction in the GluK1 (previously known as GluR5) subunit, as determined by Western blots. Whole-cell recordings from BLA pyramidal neurons showed a significant reduction in the frequency and amplitude of action potential-dependent spontaneous inhibitory postsynaptic currents (IPSCs), a reduced frequency but not amplitude of miniature IPSCs, and impairment in the modulation of IPSCs via GluK1-containing kainate receptors (GluK1Rs). Thus, in the BLA, GABAergic interneurons are more vulnerable to seizure-induced damage than principal cells. Surviving interneurons increase their expression of GAD and the alpha1 GABA(A) receptor subunit, but this does not compensate for the interneuronal loss; the result is a dramatic reduction of tonic inhibition in the BLA circuitry. As activation of GluK1Rs by ambient levels of glutamate facilitates GABA release, the

  10. A Transient Translaminar GABAergic Interneuron Circuit Connects Thalamocortical Recipient Layers in Neonatal Somatosensory Cortex.

    PubMed

    Marques-Smith, Andre; Lyngholm, Daniel; Kaufmann, Anna-Kristin; Stacey, Jacqueline A; Hoerder-Suabedissen, Anna; Becker, Esther B E; Wilson, Michael C; Molnár, Zoltán; Butt, Simon J B

    2016-02-01

    GABAergic activity is thought to influence developing neocortical sensory circuits. Yet the late postnatal maturation of local layer (L)4 circuits suggests alternate sources of GABAergic control in nascent thalamocortical networks. We show that a population of L5b, somatostatin (SST)-positive interneuron receives early thalamic synaptic input and, using laser-scanning photostimulation, identify an early transient circuit between these cells and L4 spiny stellates (SSNs) that disappears by the end of the L4 critical period. Sensory perturbation disrupts the transition to a local GABAergic circuit, suggesting a link between translaminar and local control of SSNs. Conditional silencing of SST+ interneurons or conversely biasing the circuit toward local inhibition by overexpression of neuregulin-1 type 1 results in an absence of early L5b GABAergic input in mutants and delayed thalamic innervation of SSNs. These data identify a role for L5b SST+ interneurons in the control of SSNs in the early postnatal neocortex. PMID:26844833

  11. The endogenous peptide antisecretory factor promotes tonic GABAergic signaling in CA1 stratum radiatum interneurons

    PubMed Central

    Strandberg, Joakim; Lindquist, Catarina; Lange, Stefan; Asztely, Fredrik; Hanse, Eric

    2014-01-01

    Tonic GABAergic inhibition regulates neuronal excitability and has been implicated to be involved in both neurological and psychiatric diseases. We have previously shown that the endogenous peptide antisecretory factor (AF) decreases phasic GABAergic inhibition onto pyramidal CA1 neurons. In the present study, using whole-cell patch-clamp recordings, we investigated the mechanisms behind this disinhibition of CA1 pyramidal neurons by AF. We found that application of AF to acute rat hippocampal slices resulted in a reduction of the frequency, but not of the amplitude, of spontaneous inhibitory postsynaptic currents (sIPSCs) in CA1 pyramidal neurons. Miniature inhibitory postsynaptic currents (mIPSCs), recorded in the presence of tetrodotoxin (TTX), were however not affected by AF, neither in CA1 pyramidal cells, nor in stratum radiatum interneurons. Instead, AF caused an increase of the tonic GABAA current in stratum radiatum interneurons, leaving the tonic GABAergic transmission in CA1 pyramidal cells unaffected. These results show that the endogenous peptide AF enhances tonic, but not phasic, GABAergic signaling in CA1 stratum radiatum interneurons, without affecting tonic GABAergic signaling in CA1 pyramidal neurons. We suggest that this increased tonic GABAergic signaling in GABAergic interneurons could be a mechanism for the AF-mediated disinhibition of pyramidal neurons. PMID:24478633

  12. Hippocampal GABAergic interneurons coexpressing alpha7-nicotinic receptors and connexin-36 are able to improve neuronal viability under oxygen-glucose deprivation.

    PubMed

    Voytenko, L P; Lushnikova, I V; Savotchenko, A V; Isaeva, E V; Skok, M V; Lykhmus, O Yu; Patseva, M A; Skibo, G G

    2015-08-01

    The hippocampal interneurons are very diverse by chemical profiles and rather inconsistent by sensitivity to CI. Some hippocampal GABAergic interneurons survive certain time after ischemia while ischemia-sensitive interneurons and pyramidal neurons are damaged. GABAergic signaling, nicotinic receptors expressing α7-subunit (α7nAChRs(+)) and connexin-36 (Cx36(+), electrotonic gapjunctions protein) contradictory modulate post-ischemic environment. We hypothesized that hippocampal ischemia-resistant GABAergic interneurons coexpressing glutamate decarboxylase-67 isoform (GAD67(+)), α7nAChRs(+), Cx36(+) are able to enhance neuronal viability. To check this hypothesis the histochemical and electrophysiological investigations have been performed using rat hippocampal organotypic culture in the condition of 30-min oxygen-glucose deprivation (OGD). Post-OGD reoxygenation (4h) revealed in CA1 pyramidal layer numerous damaged cells, decreased population spike amplitude and increased pair-pulse depression. In these conditions GAD67(+) interneurons displayed the OGD-resistance and significant increase of GABA synthesis/metabolism (GAD67-immunofluorescence, mitochondrial activity). The α7nAChRs(+) and Cx36(+) co-localizations were revealed in resistant GAD67(+) interneurons. Under OGD: GABAA-receptors (GABAARs) blockade increased cell damage and exacerbated the pair-pulse depression in CA1 pyramidal layer; α7nAChRs and Cx36-channels separate blockades sufficiently decreased cell damage while interneuronal GAD67-immunofluorescence and mitochondrial activity were similar to the control. Thus, hippocampal GABAergic interneurons co-expressing α7nAChRs and Cx36 remained resistant certain time after OGD and were able to modulate CA1 neuron survival through GABAARs, α7nAChRs and Cx36-channels activity. The enhancements of the neuronal viability together with GABA synthesis/metabolism normalization suggest cooperative neuroprotective mechanism that could be used for increase in

  13. GABA Regulates the Multidirectional Tangential Migration of GABAergic Interneurons in Living Neonatal Mice

    PubMed Central

    Inada, Hiroyuki; Watanabe, Miho; Uchida, Taku; Ishibashi, Hitoshi; Wake, Hiroaki; Nemoto, Tomomi; Yanagawa, Yuchio; Fukuda, Atsuo; Nabekura, Junichi

    2011-01-01

    Cortical GABAergic interneurons originate from ganglionic eminences and tangentially migrate into the cortical plate at early developmental stages. To elucidate the characteristics of this migration of GABAergic interneurons in living animals, we established an experimental design specialized for in vivo time-lapse imaging of the neocortex of neonate mice with two-photon laser-scanning microscopy. In vesicular GABA/glycine transporter (VGAT)-Venus transgenic mice from birth (P0) through P3, we observed multidirectional tangential migration of genetically-defined GABAergic interneurons in the neocortical marginal zone. The properties of this migration, such as the motility rate (distance/hr), the direction moved, and the proportion of migrating neurons to stationary neurons, did not change through P0 to P3, although the density of GABAergic neurons at the marginal zone decreased with age. Thus, the characteristics of the tangential motility of individual GABAergic neurons remained constant in development. Pharmacological block of GABAA receptors and of the Na+-K+-Cl− cotransporters, and chelating intracellular Ca2+, all significantly reduced the motility rate in vivo. The motility rate and GABA content within the cortex of neonatal VGAT-Venus transgenic mice were significantly greater than those of GAD67-GFP knock-in mice, suggesting that extracellular GABA concentration could facilitate the multidirectional tangential migration. Indeed, diazepam applied to GAD67-GFP mice increased the motility rate substantially. In an in vitro neocortical slice preparation, we confirmed that GABA induced a NKCC sensitive depolarization of GABAergic interneurons in VGAT-Venus mice at P0-P3. Thus, activation of GABAAR by ambient GABA depolarizes GABAergic interneurons, leading to an acceleration of their multidirectional motility in vivo. PMID:22180776

  14. Concerted GABAergic actions of Aplysia feeding interneurons in motor program specification.

    PubMed

    Jing, Jian; Vilim, Ferdinand S; Wu, Jin-Sheng; Park, Ji-Ho; Weiss, Klaudiusz R

    2003-06-15

    GABAergic inhibitory interneurons regulate the activity of diverse types of neural networks, but the specific roles of these interneurons in motor control are poorly understood. In the Aplysia feeding motor network, three interneurons, cerebral-buccal interneuron-3 (CBI-3) and buccal interneurons B40 and B34, are GABA-immunoreactive and evoke fast IPSPs in their postsynaptic followers. Using a combination of pharmacological experiments with GABA antagonists, agonists, and uptake inhibitors, we found that these fast IPSPs are likely mediated by GABA. Functionally, these fast IPSPs specify two parameters for ingestive motor programs elicited by the command-like interneuron CBI-2: (1) the appropriate phasing of activity of the radula closer motor neuron B8 relative to protraction-retraction, and (2) protraction duration. First, in ingestive programs, B8 activity is phased such that it fires minimally during protraction. CBI-3 and B40 exert fast inhibition to minimize B8 activity during protraction, by either acting directly on B8 (B40) or indirectly on B8 (CBI-3). Second, these ingestive programs are characterized by long protraction duration, which is promoted by B40 and B34 because hyperpolarization of either cell shortens protraction. Such effects of B40 and B34 are attributable, at least partly, to their inhibitory effects on the retraction-phase interneuron B64 whose activation terminates protraction. Consistent with a GABAergic contribution to both B8 phasing and protraction duration, blockade of GABAergic inhibition by picrotoxin increases B8 activity during protraction and shortens protraction, without disrupting the integrity of motor programs. Thus, the concerted actions of GABAergic inhibition from three Aplysia feeding interneurons contribute to the specification of multiple features that define the motor program as an ingestive one. PMID:12832553

  15. Exogenous Sonic hedgehog modulates the pool of GABAergic interneurons during cerebellar development.

    PubMed

    De Luca, A; Parmigiani, E; Tosatto, G; Martire, S; Hoshino, M; Buffo, A; Leto, K; Rossi, F

    2015-04-01

    All cerebellar GABAergic interneurons were derived from a common pool of precursor cells residing in the embryonic ventricular zone (VZ) and migrating in the prospective white matter (PWM) after birth, where both intrinsic and extrinsic factors contribute to regulate their amplification. Among the environmental factors, we focused on Sonic hedgehog (Shh), a morphogen well known to regulate neural progenitor cell proliferation. We asked if and how exogenous Shh treatment affects the lineage of cerebellar GABAergic interneurons. To address these issues, exogenous Shh was administered to embryonic and postnatal organotypic slices. We found that Shh is able to expand the pool of interneuron progenitors residing in the embryonic epithelium and in the postnatal PWM. In particular, Shh signalling pathway was highly mitogenic at early developmental stages of interneuron production, whereas its effect decreased after the first postnatal week. Gene expression analysis of sorted cells and in situ hybridization further showed that immature interneurons express both the Shh receptor patched and the Shh target gene Gli1. Thus, within the interneuron lineage, Shh might exert regulatory functions also in postmitotic cells. On the whole, our data enlighten the role of Shh during cerebellar maturation and further broaden our knowledge on the amplification mechanisms of the interneuron progenitor pool. PMID:25245619

  16. VTA glutamatergic inputs to nucleus accumbens drive aversion by acting on GABAergic interneurons.

    PubMed

    Qi, Jia; Zhang, Shiliang; Wang, Hui-Ling; Barker, David J; Miranda-Barrientos, Jorge; Morales, Marisela

    2016-05-01

    The ventral tegmental area (VTA) is best known for its dopamine neurons, some of which project to nucleus accumbens (nAcc). However, the VTA also has glutamatergic neurons that project to nAcc. The function of the mesoaccumbens glutamatergic pathway remains unknown. Here we report that nAcc photoactivation of mesoaccumbens glutamatergic fibers promotes aversion. Although we found that these mesoaccumbens glutamatergic fibers lack GABA, the aversion evoked by their photoactivation depended on glutamate- and GABA-receptor signaling, and not on dopamine-receptor signaling. We found that mesoaccumbens glutamatergic fibers established multiple asymmetric synapses on single parvalbumin GABAergic interneurons and that nAcc photoactivation of these fibers drove AMPA-mediated cellular firing of parvalbumin GABAergic interneurons. These parvalbumin GABAergic interneurons in turn inhibited nAcc medium spiny output neurons, thereby controlling inhibitory neurotransmission in nAcc. To our knowledge, the mesoaccumbens glutamatergic pathway is the first glutamatergic input to nAcc shown to mediate aversion instead of reward, and the first pathway shown to establish excitatory synapses on nAcc parvalbumin GABAergic interneurons. PMID:27019014

  17. Prefrontal cognitive deficits in mice with altered cerebral cortical GABAergic interneurons.

    PubMed

    Bissonette, Gregory B; Bae, Mihyun H; Suresh, Tejas; Jaffe, David E; Powell, Elizabeth M

    2014-02-01

    Alterations of inhibitory GABAergic neurons are implicated in multiple psychiatric and neurological disorders, including schizophrenia, autism and epilepsy. In particular, interneuron deficits in prefrontal areas, along with presumed decreased inhibition, have been reported in several human patients. The majority of forebrain GABAergic interneurons arise from a single subcortical source before migrating to their final regional destination. Factors that govern the interneuron populations have been identified, demonstrating that a single gene mutation may globally affect forebrain structures or a single area. In particular, mice lacking the urokinase plasminogen activator receptor (Plaur) gene have decreased GABAergic interneurons in frontal and parietal, but not caudal, cortical regions. Plaur assists in the activation of hepatocyte growth factor/scatter factor (HGF/SF), and several of the interneuron deficits are correlated with decreased levels of HGF/SF. In some cortical regions, the interneuron deficit can be remediated by endogenous overexpression of HGF/SF. In this study, we demonstrate decreased parvalbumin-expressing interneurons in the medial frontal cortex, but not in the hippocampus or basal lateral amygdala in the Plaur null mouse. The Plaur null mouse demonstrates impaired medial frontal cortical function in extinction of cued fear conditioning and the inability to form attentional sets. Endogenous HGF/SF overexpression increased the number of PV-expressing cells in medial frontal cortical areas to levels greater than found in wildtype mice, but did not remediate the behavioral deficits. These data suggest that proper medial frontal cortical function is dependent upon optimum levels of inhibition and that a deficit or excess of interneuron numbers impairs normal cognition. PMID:24211452

  18. Prefrontal cognitive deficits in mice with altered cerebral cortical GABAergic interneurons

    PubMed Central

    Bissonette, Gregory B.; Bae, Mihyun H.; Suresh, Tejas; Jaffe, David E.; Powell, Elizabeth M.

    2013-01-01

    Alterations of inhibitory GABAergic neurons are implicated in multiple psychiatric and neurological disorders, including schizophrenia, autism and epilepsy. In particular, interneuron deficits in prefrontal areas, along with presumed decreased inhibition, have been reported in several human patients. The majority of forebrain GABAergic interneurons arise from a single subcortical source before migrating to their final regional destination. Factors that govern the interneuron populations have been identified, demonstrating that a single gene mutation may globally affect forebrain structures or a single area. In particular, mice lacking the urokinase plasminogen activator receptor (Plaur) gene have decreased GABAergic interneurons in frontal and parietal, but not caudal, cortical regions. Plaur assists in the activation of hepatocyte growth factor/scatter factor (HGF/SF), and several of the interneuron deficits are correlated with decreased levels of HGF/SF. In some cortical regions, the interneuron deficit can be remediated by endogenous overexpression of HGF/SF. In this study, we demonstrate decreased parvalbumin-expressing interneurons in the medial frontal cortex, but not in the hippocampus or basal lateral amygdala in the Plaur null mouse. The Plaur null mouse demonstrates impaired medial frontal cortical function in extinction of cued fear conditioning and the inability to form attentional sets. Endogenous HGF/SF overexpression increased the number of PV-expressing cells in medial frontal cortical areas to levels greater than found in wildtype mice, but did not remediate the behavioral deficits. These data suggest that proper medial frontal cortical function is dependent upon optimum levels of inhibition and that a deficit or excess of interneuron numbers impairs normal cognition. PMID:24211452

  19. New insights into the classification and nomenclature of cortical GABAergic interneurons

    PubMed Central

    DeFelipe, Javier; López-Cruz, Pedro L.; Benavides-Piccione, Ruth; Bielza, Concha; Larrañaga, Pedro; Anderson, Stewart; Burkhalter, Andreas; Cauli, Bruno; Fairén, Alfonso; Feldmeyer, Dirk; Fishell, Gord; Fitzpatrick, David; Freund, Tamás F.; González-Burgos, Guillermo; Hestrin, Shaul; Hill, Sean; Hof, Patrick R.; Huang, Josh; Jones, Edward G.; Kawaguchi, Yasuo; Kisvárday, Zoltán; Kubota, Yoshiyuki; Lewis, David A.; Marín, Oscar; Markram, Henry; McBain, Chris J.; Meyer, Hanno S.; Monyer, Hannah; Nelson, Sacha B.; Rockland, Kathleen; Rossier, Jean; Rubenstein, John L. R.; Rudy, Bernardo; Scanziani, Massimo; Shepherd, Gordon M.; Sherwood, Chet C.; Staiger, Jochen F.; Tamás, Gábor; Thomson, Alex; Wang, Yun; Yuste, Rafael; Ascoli, Giorgio A.

    2013-01-01

    A systematic classification and accepted nomenclature of neuron types is much needed but is currently lacking. This article describes a possible taxonomical solution for classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based interactive system that allows experts to classify neurons with pre-determined criteria. Using Bayesian analysis and clustering algorithms on the resulting data, we investigated the suitability of several anatomical terms and neuron names for cortical GABAergic interneurons. Moreover, we show that supervised classification models could automatically categorize interneurons in agreement with experts’ assignments. These results demonstrate a practical and objective approach to the naming, characterization and classification of neurons based on community consensus. PMID:23385869

  20. GABAergic interneurons form transient layer-specific circuits in early postnatal neocortex

    PubMed Central

    Anastasiades, Paul G.; Marques-Smith, Andre; Lyngholm, Daniel; Lickiss, Tom; Raffiq, Sayda; Kätzel, Dennis; Miesenböck, Gero; Butt, Simon J. B.

    2016-01-01

    GABAergic interneurons play key roles in cortical circuits, yet little is known about their early connectivity. Here we use glutamate uncaging and a novel optogenetic strategy to track changes in the afferent and efferent synaptic connections of developing neocortical interneuron subtypes. We find that Nkx2-1-derived interneurons possess functional synaptic connections before emerging pyramidal cell networks. Subsequent interneuron circuit maturation is both subtype and layer dependent. Glutamatergic input onto fast spiking (FS), but not somatostatin-positive, non-FS interneurons increases over development. Interneurons of both subtype located in layers (L) 4 and 5b engage in transient circuits that disappear after the somatosensory critical period. These include a pathway mediated by L5b somatostatin-positive interneurons that specifically targets L4 during the first postnatal week. The innervation patterns of immature cortical interneuron circuits are thus neither static nor progressively strengthened but follow a layer-specific choreography of transient connections that differ from those of the adult brain. PMID:26843463

  1. Postnatal development of GABAergic interneurons in the neocortical subplate of mice.

    PubMed

    Qu, G-J; Ma, J; Yu, Y-C; Fu, Y

    2016-05-13

    The subplate (SP) plays important roles in developmental and functional events in the neocortex, such as thalamocortical and corticofugal projection, cortical oscillation generation and corticocortical connectivity. Although accumulated evidence indicates that SP interneurons are crucial for SP function, the molecular composition of SP interneurons as well as their developmental profile and distribution remain largely unclear. In this study, we systematically investigated dynamic development of SP thickness and chemical marker expression in SP interneurons in distinct cortical regions during the first postnatal month. We found that, although the relative area of the SP in the cerebral cortex significantly declined with postnatal development, the absolute thickness did not change markedly. We also found that somatostatin (SOM), the ionotropic serotonin receptor 3A (5HT3AR), and parvalbumin (PV) reliably identify three distinct non-overlapping subpopulations of SP interneurons. The SOM group, which represents ∼30% of total SP interneurons, expresses neuronal nitric oxide synthase (nNOS) and calbindin (CB) and colocalizes entirely with neuropeptide Y (NPY). The 5HT3AR group, which accounts for ∼60% of the total interneuronal population, expresses calretinin (CR) and GABA-A receptor subunit delta (GABAARδ). The PV group accounts for ∼10% of total SP interneurons and coexpressed GABAARδ. Moreover, distinct interneuron subtypes show characteristic temporal and spatial distribution in the SP. nNOS(+) interneurons in the SP increase from the anterior motor cortex to posterior visual cortex, while CR(+) and CB(+) interneurons the opposite. Interestedly, the majority of GABAARδ(+) neurons in SP are non-GABAergic neurons in contrast to other cortical layers. These findings clarify and extend our understanding of SP interneurons in the developing cerebral cortex and will underpin further study of SP function. PMID:26892297

  2. A Comparative Perspective on Minicolumns and Inhibitory GABAergic Interneurons in the Neocortex

    PubMed Central

    Raghanti, Mary Ann; Spocter, Muhammad A.; Butti, Camilla; Hof, Patrick R.; Sherwood, Chet C.

    2009-01-01

    Neocortical columns are functional and morphological units whose architecture may have been under selective evolutionary pressure in different mammalian lineages in response to encephalization and specializations of cognitive abilities. Inhibitory interneurons make a substantial contribution to the morphology and distribution of minicolumns within the cortex. In this context, we review differences in minicolumns and GABAergic interneurons among species and discuss possible implications for signaling among and within minicolumns. Furthermore, we discuss how abnormalities of both minicolumn disposition and inhibitory interneurons might be associated with neuropathological processes, such as Alzheimer's disease, autism, and schizophrenia. Specifically, we explore the possibility that phylogenetic variability in calcium-binding protein-expressing interneuron subtypes is directly related to differences in minicolumn morphology among species and might contribute to neuropathological susceptibility in humans. PMID:20161991

  3. A Transient Translaminar GABAergic Interneuron Circuit Connects Thalamocortical Recipient Layers in Neonatal Somatosensory Cortex

    PubMed Central

    Marques-Smith, Andre; Lyngholm, Daniel; Kaufmann, Anna-Kristin; Stacey, Jacqueline A.; Hoerder-Suabedissen, Anna; Becker, Esther B.E.; Wilson, Michael C.; Molnár, Zoltán; Butt, Simon J.B.

    2016-01-01

    Summary GABAergic activity is thought to influence developing neocortical sensory circuits. Yet the late postnatal maturation of local layer (L)4 circuits suggests alternate sources of GABAergic control in nascent thalamocortical networks. We show that a population of L5b, somatostatin (SST)-positive interneuron receives early thalamic synaptic input and, using laser-scanning photostimulation, identify an early transient circuit between these cells and L4 spiny stellates (SSNs) that disappears by the end of the L4 critical period. Sensory perturbation disrupts the transition to a local GABAergic circuit, suggesting a link between translaminar and local control of SSNs. Conditional silencing of SST+ interneurons or conversely biasing the circuit toward local inhibition by overexpression of neuregulin-1 type 1 results in an absence of early L5b GABAergic input in mutants and delayed thalamic innervation of SSNs. These data identify a role for L5b SST+ interneurons in the control of SSNs in the early postnatal neocortex. PMID:26844833

  4. A Subpopulation of Olfactory Bulb GABAergic Interneurons Is Derived from Emx1- and Dlx5/6-Expressing Progenitors

    PubMed Central

    Kohwi, Minoree; Petryniak, Magdalena A.; Long, Jason E.; Ekker, Marc; Obata, Kunihiko; Yanagawa, Yuchio; Rubenstein, John L. R.; Alvarez-Buylla, Arturo

    2016-01-01

    The subventricular zone (SVZ) of the postnatal brain continuously generates olfactory bulb (OB) interneurons. We show that calretinin+, calbindin+, and dopaminergic (TH+) periglomerular OB interneurons correspond to distinct subtypes of GABAergic cells; all were produced in the postnatal mouse brain, but they matured and were eliminated at different rates. The embryonic lateral ganglionic eminence (LGE) is thought to be the site of origin of postnatal SVZ neural progenitors. Consistently, grafts of the embryonic LGE into the adult brain SVZ generated many OB interneurons, including TH+ and calbindin+ periglomerular interneurons. However, calretinin+ cells were not produced from these LGE grafts. Surprisingly, pallial and septal embryonic progenitors transplanted into the adult brain SVZ also resulted in the generation of OB interneurons, including calretinin+ cells. A subset of Dlx2+ OB interneurons was derived from cells expressing Emx1, a transcription factor largely restricted to the pallium during development. Emx1 lineage-derived cells contributed a substantial portion of GABAergic cells in the OB, including calretinin+ interneurons. This is in contrast to cortex, in which Emx1 lineage-derived cells do not differentiate into GABAergic neurons. Our results suggest that some OB interneurons are derived from progenitors outside the LGE and that precursors expressing what has classically been considered a pallial transcription factor generate GABAergic interneurons. PMID:17596436

  5. Serotonin excites hippocampal CA1 GABAergic interneurons at the stratum radiatum-stratum lacunosum moleculare border.

    PubMed

    Wyskiel, Daniel R; Andrade, Rodrigo

    2016-09-01

    The hippocampus receives robust serotonergic innervation that is thought to control the excitability of both pyramidal cells and GABAergic interneurons. Previous work has addressed serotonergic regulation of pyramidal cells but considerable gaps remain in our understanding of how serotonin regulates different interneuron subclasses. 5-HT2A receptors (5-HT2A Rs) appear to localize predominantly, if not solely, on interneurons in the hippocampus and have been implicated in the regulation of hippocampal function including mnemonic and novelty recognition processes. Interneurons are functionally diverse. Therefore in the current work, we have used a BAC transgenic mouse line expressing EGFP under the control of the 5-HT2A R promoter to identify the interneuron subtype(s) regulated by serotonin via 5-HT2A Rs. We find that EGFP expression in this mouse identifies a group of interneurons that resides predominantly along the border of the stratum radiatum (SR) and stratum lacunosum moleculare (SLM) of the CA1 region. We then show that these cells are depolarized and excited by serotonin acting through 5-HT2A Rs and appear to belong predominantly to the perforant pathway-associated and Schaffer collateral/commissural pathway-associated subtypes. These results indicate that serotonin interneurons expressing 5-HT2A Rs are localized primarily along the SR-SLM border of the CA1 region and represent a newly identified target for serotonin regulation in the hippocampus. © 2016 Wiley Periodicals, Inc. PMID:27328460

  6. Parvalbumin and neuropeptide Y expressing hippocampal GABA-ergic inhibitory interneuron numbers decline in a model of Gulf War illness

    PubMed Central

    Megahed, Tarick; Hattiangady, Bharathi; Shuai, Bing; Shetty, Ashok K.

    2015-01-01

    Cognitive dysfunction is amongst the most conspicuous symptoms in Gulf War illness (GWI). Combined exposure to the nerve gas antidote pyridostigmine bromide (PB), pesticides and stress during the Persian Gulf War-1 (PGW-1) are presumed to be among the major causes of GWI. Indeed, our recent studies in rat models have shown that exposure to GWI-related (GWIR) chemicals and mild stress for 4 weeks engenders cognitive impairments accompanied with several detrimental changes in the hippocampus. In this study, we tested whether reduced numbers of hippocampal gamma-amino butyric acid (GABA)-ergic interneurons are among the pathological changes induced by GWIR-chemicals and stress. Animals were exposed to low doses of GWIR-chemicals and mild stress for 4 weeks. Three months after this exposure, subpopulations of GABA-ergic interneurons expressing the calcium binding protein parvalbumin (PV), the neuropeptide Y (NPY) and somatostatin (SS) in the hippocampus were stereologically quantified. Animals exposed to GWIR-chemicals and stress for 4 weeks displayed reduced numbers of PV-expressing GABA-ergic interneurons in the dentate gyrus and NPY-expressing interneurons in the CA1 and CA3 subfields. However, no changes in SS+ interneuron population were observed in the hippocampus. Furthermore, GABA-ergic interneuron deficiency in these animals was associated with greatly diminished hippocampus neurogenesis. Because PV+ and NPY+ interneurons play roles in maintaining normal cognitive function and neurogenesis, and controlling the activity of excitatory neurons in the hippocampus, reduced numbers of these interneurons may be one of the major causes of cognitive dysfunction and reduced neurogenesis observed in GWI. Hence, strategies that improve inhibitory neurotransmission in the hippocampus may prove beneficial for reversing cognitive dysfunction in GWI. PMID:25620912

  7. Roles of Rac1 and Rac3 GTPases during the development of cortical and hippocampal GABAergic interneurons

    PubMed Central

    de Curtis, Ivan

    2014-01-01

    Rac GTPases are regulators of the cytoskeleton that play an important role in several aspects of neuronal and brain development. Two distinct Rac GTPases are expressed in the developing nervous system, the widely expressed Rac1 and the neural-specific Rac3 proteins. Recent experimental evidence supports a central role of these two Rac proteins in the development of inhibitory GABAergic interneurons, important modulatory elements of the brain circuitry. The combined inactivation of the genes for the two Rac proteins has profound effects on distinct aspects of interneuron development, and has highlighted a synergistic contribution of the two proteins to the postmitotic maturation of specific populations of cortical and hippocampal interneurons. Rac function is modulated by different types of regulators, and can influence the activity of specific effectors. Some of these proteins have been associated to the development and maturation of interneurons. Cortical interneuron dysfunction is implicated in several neurological and psychiatric diseases characterized by cognitive impairment. Therefore the description of the cellular processes regulated by the Rac GTPases, and the identification of the molecular networks underlying these processes during interneuron development is relevant to the understanding of the role of GABAergic interneurons in cognitive functions. PMID:25309333

  8. GABAergic Interneurons are Required for Generation of Slow CA1 Oscillation in Rat Hippocampus.

    PubMed

    Xu, Yuan; Wang, Lidan; Liu, Yu-Zhang; Yang, Yan; Xue, Xiaolin; Wang, Zhiru

    2016-08-01

    Neuronal oscillations are fundamental to hippocampal function. It has been shown that GABAergic interneurons make an important contribution to hippocampal oscillations, but the underlying mechanism is not well understood. Here, using whole-cell recording in the complete hippocampal formation isolated from rats at postnatal days 14-18, we showed that GABAA receptor-mediated activity enhanced the generation of slow CA1 oscillations. In vitro, slow oscillations (0.5-1.5 Hz) were generated in CA1 neurons, and they consisted primarily of excitatory rather than inhibitory membrane-potential changes. These oscillations were greatly reduced by blocking GABAA receptor-mediated activity with bicuculline and were enhanced by increasing such activity with midazolam, suggesting that interneurons are required for oscillation generation. Consistently, CA1 fast-spiking interneurons were found to generate action potentials usually preceding those in CA1 pyramidal cells. These findings indicate a GABAA receptor-based mechanism for the generation of the slow CA1 oscillation in the hippocampus. PMID:27439706

  9. Tau pathology induces loss of GABAergic interneurons leading to altered synaptic plasticity and behavioral impairments

    PubMed Central

    2013-01-01

    Background Tau is a microtubule stabilizing protein and is mainly expressed in neurons. Tau aggregation into oligomers and tangles is considered an important pathological event in tauopathies, such as frontotemporal dementia (FTD) and Alzheimer’s disease (AD). Tauopathies are also associated with deficits in synaptic plasticity such as long-term potentiation (LTP), but the specific role of tau in the manifestation of these deficiencies is not well-understood. We examined long lasting forms of synaptic plasticity in JNPL3 (BL6) mice expressing mutant tau that is identified in some inherited FTDs. Results We found that aged (>12 months) JNPL3 (BL6) mice exhibit enhanced hippocampal late-phase (L-LTP), while young JNPL3 (BL6) mice (age 6 months) displayed normal L-LTP. This enhanced L-LTP in aged JNPL3 (BL6) mice was rescued with the GABAAR agonist, zolpidem, suggesting a loss of GABAergic function. Indeed, we found that mutant mice displayed a reduction in hippocampal GABAergic interneurons. Finally, we also found that expression of mutant tau led to severe sensorimotor-gating and hippocampus-dependent memory deficits in the aged JNPL3 (BL6) mice. Conclusions We show for the first time that hippocampal GABAergic function is impaired by pathological tau protein, leading to altered synaptic plasticity and severe memory deficits. Increased understanding of the molecular mechanisms underlying the synaptic failure in AD and FTD is critical to identifying targets for therapies to restore cognitive deficiencies associated with tauopathies. PMID:24252661

  10. Molecular and Electrophysiological Characterization of GABAergic Interneurons Expressing the Transcription Factor COUP-TFII in the Adult Human Temporal Cortex

    PubMed Central

    Varga, Csaba; Tamas, Gabor; Barzo, Pal; Olah, Szabolcs; Somogyi, Peter

    2015-01-01

    Transcription factors contribute to the differentiation of cortical neurons, orchestrate specific interneuronal circuits, and define synaptic relationships. We have investigated neurons expressing chicken ovalbumin upstream promoter transcription factor II (COUP-TFII), which plays a role in the migration of GABAergic neurons. Whole-cell, patch-clamp recording in vitro combined with colocalization of molecular cell markers in the adult cortex differentiates distinct interneurons. The majority of strongly COUP-TFII-expressing neurons were in layers I–III. Most calretinin (CR) and/or cholecystokinin- (CCK) and/or reelin-positive interneurons were also COUP-TFII-positive. CR-, CCK-, or reelin-positive neurons formed 80%, 20%, or 17% of COUP-TFII-positive interneurons, respectively. About half of COUP-TFII-/CCK-positive interneurons were CR-positive, a quarter of them reelin-positive, but none expressed both. Interneurons positive for COUP-TFII fired irregular, accommodating and adapting trains of action potentials (APs) and innervated mostly small dendritic shafts and rarely spines or somata. Paired recording showed that a calretinin-/COUP-TFII-positive interneuron elicited inhibitory postsynaptic potentials (IPSPs) in a reciprocally connected pyramidal cell. Calbindin, somatostatin, or parvalbumin-immunoreactive interneurons and most pyramidal cells express no immunohistochemically detectable COUP-TFII. In layers V and VI, some pyramidal cells expressed a low level of COUP-TFII in the nucleus. In conclusion, COUP-TFII is expressed in a diverse subset of GABAergic interneurons predominantly innervating small dendritic shafts originating from both interneurons and pyramidal cells. PMID:25787832

  11. Trajectory of the main GABAergic interneuron populations from early development to old age in the rat primary auditory cortex

    PubMed Central

    Ouellet, Lydia; de Villers-Sidani, Etienne

    2014-01-01

    In both humans and rodents, decline in cognitive function is a hallmark of the aging process; the basis for this decrease has yet to be fully characterized. However, using aged rodent models, deficits in auditory processing have been associated with significant decreases in inhibitory signaling attributed to a loss of GABAergic interneurons. Not only are these interneurons crucial for pattern detection and other large-scale population dynamics, but they have also been linked to mechanisms mediating plasticity and learning, making them a prime candidate for study and modeling of modifications to cortical communication pathways in neurodegenerative diseases. Using the rat primary auditory cortex (A1) as a model, we probed the known markers of GABAergic interneurons with immunohistological methods, using antibodies against gamma aminobutyric acid (GABA), parvalbumin (PV), somatostatin (SOM), calretinin (CR), vasoactive intestinal peptide (VIP), choline acetyltransferase (ChAT), neuropeptide Y (NPY), and cholecystokinin (CCK) to document the changes observed in interneuron populations across the rat's lifespan. This analysis provided strong evidence that several but not all GABAergic neurons were affected by the aging process, showing most dramatic changes in expression of parvalbumin (PV) and somatostatin (SOM) expression. With this evidence, we show how understanding these trajectories of cell counts may be factored into a simple model to quantify changes in inhibitory signaling across the course of life, which may be applied as a framework for creating more advanced simulations of interneuronal implication in normal cerebral processing, normal aging, or pathological processes. PMID:24917792

  12. Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons

    PubMed Central

    Young, Allison; Petros, Timothy; Karayannis, Theofanis; McKenzie Chang, Melissa; Lavado, Alfonso; Iwano, Tomohiko; Nakajima, Miho; Taniguchi, Hiroki; Huang, Z. Josh; Heintz, Nathaniel; Oliver, Guillermo; Matsuzaki, Fumio; Machold, Robert P.

    2015-01-01

    Neurogliaform (RELN+) and bipolar (VIP+) GABAergic interneurons of the mammalian cerebral cortex provide critical inhibition locally within the superficial layers. While these subtypes are known to originate from the embryonic caudal ganglionic eminence (CGE), the specific genetic programs that direct their positioning, maturation, and integration into the cortical network have not been elucidated. Here, we report that in mice expression of the transcription factor Prox1 is selectively maintained in postmitotic CGE-derived cortical interneuron precursors and that loss of Prox1 impairs the integration of these cells into superficial layers. Moreover, Prox1 differentially regulates the postnatal maturation of each specific subtype originating from the CGE (RELN, Calb2/VIP, and VIP). Interestingly, Prox1 promotes the maturation of CGE-derived interneuron subtypes through intrinsic differentiation programs that operate in tandem with extrinsically driven neuronal activity-dependent pathways. Thus Prox1 represents the first identified transcription factor specifically required for the embryonic and postnatal acquisition of CGE-derived cortical interneuron properties. SIGNIFICANCE STATEMENT Despite the recognition that 30% of GABAergic cortical interneurons originate from the caudal ganglionic eminence (CGE), to date, a specific transcriptional program that selectively regulates the development of these populations has not yet been identified. Moreover, while CGE-derived interneurons display unique patterns of tangential and radial migration and preferentially populate the superficial layers of the cortex, identification of a molecular program that controls these events is lacking. Here, we demonstrate that the homeodomain transcription factor Prox1 is expressed in postmitotic CGE-derived cortical interneuron precursors and is maintained into adulthood. We found that Prox1 function is differentially required during both embryonic and postnatal stages of development to

  13. Transplantation of GABAergic Interneurons into the Neonatal Primary Visual Cortex Reduces Absence Seizures in Stargazer Mice.

    PubMed

    Hammad, Mohamed; Schmidt, Stephen L; Zhang, Xuying; Bray, Ryan; Frohlich, Flavio; Ghashghaei, H Troy

    2015-09-01

    Epilepsies are debilitating neurological disorders characterized by repeated episodes of pathological seizure activity. Absence epilepsy (AE) is a poorly understood type of seizure with an estimated 30% of affected patients failing to respond to antiepileptic drugs. Thus, novel therapies are needed for the treatment of AE. A promising cell-based therapeutic strategy is centered on transplantation of embryonic neural stem cells from the medial ganglionic eminence (MGE), which give rise to gamma-aminobutyric acidergic (GABAergic) interneurons during embyronic development. Here, we used the Stargazer (Stg) mouse model of AE to map affected loci using c-Fos immunohistochemistry, which revealed intense seizure-induce activity in visual and somatosensory cortices. We report that transplantation of MGE cells into the primary visual cortex (V1) of Stg mice significantly reduces AE episodes and lowers mortality. Electrophysiological analysis in acute cortical slices of visual cortex demonstrated that Stg V1 neurons exhibit more pronounced increases in activity in response to a potassium-mediated excitability challenge than wildtypes (WT). The defective network activity in V1 was significantly altered following WT MGE transplantation, associating it with behavioral rescue of seizures in Stgs. Taken together, these findings present MGE grafting in the V1 as a possible clinical approach in the treatment of AE. PMID:24812085

  14. Long-Term Seizure Suppression and Optogenetic Analyses of Synaptic Connectivity in Epileptic Mice with Hippocampal Grafts of GABAergic Interneurons

    PubMed Central

    Henderson, Katharine W.; Gupta, Jyoti; Tagliatela, Stephanie; Litvina, Elizabeth; Zheng, XiaoTing; Van Zandt, Meghan A.; Woods, Nicholas; Grund, Ethan; Lin, Diana; Royston, Sara; Yanagawa, Yuchio; Aaron, Gloster B.

    2014-01-01

    Studies in rodent epilepsy models suggest that GABAergic interneuron progenitor grafts can reduce hyperexcitability and seizures in temporal lobe epilepsy (TLE). Although integration of the transplanted cells has been proposed as the underlying mechanism for these disease-modifying effects, prior studies have not explicitly examined cell types and synaptic mechanisms for long-term seizure suppression. To address this gap, we transplanted medial ganglionic eminence (MGE) cells from embryonic day 13.5 VGAT-Venus or VGAT-ChR2-EYFP transgenic embryos into the dentate gyrus (DG) of adult mice 2 weeks after induction of TLE with pilocarpine. Beginning 3–4 weeks after status epilepticus, we conducted continuous video-electroencephalographic recording until 90–100 d. TLE mice with bilateral MGE cell grafts in the DG had significantly fewer and milder electrographic seizures, compared with TLE controls. Immunohistochemical studies showed that the transplants contained multiple neuropeptide or calcium-binding protein-expressing interneuron types and these cells established dense terminal arborizations onto the somas, apical dendrites, and axon initial segments of dentate granule cells (GCs). A majority of the synaptic terminals formed by the transplanted cells were apposed to large postsynaptic clusters of gephyrin, indicative of mature inhibitory synaptic complexes. Functionality of these new inhibitory synapses was demonstrated by optogenetically activating VGAT-ChR2-EYFP-expressing transplanted neurons, which generated robust hyperpolarizations in GCs. These findings suggest that fetal GABAergic interneuron grafts may suppress pharmacoresistant seizures by enhancing synaptic inhibition in DG neural circuits. PMID:25274826

  15. Immunocytochemical heterogeneity of somatostatin-expressing GABAergic interneurons in layers II and III of the mouse cingulate cortex: A combined immunofluorescence/design-based stereologic study.

    PubMed

    Riedemann, Therese; Schmitz, Christoph; Sutor, Bernd

    2016-08-01

    Many neurological diseases including major depression and schizophrenia manifest as dysfunction of the GABAergic system within the cingulate cortex. However, relatively little is known about the properties of GABAergic interneurons in the cingulate cortex. Therefore, we investigated the neurochemical properties of GABAergic interneurons in the cingulate cortex of FVB-Tg(GadGFP)45704Swn/J mice expressing green fluorescent protein (GFP) in a subset of GABAergic interneurons (GFP-expressing inhibitory interneurons [GINs]) by means of immunocytochemical and design-based stereologic techniques. We found that GINs represent around 12% of all GABAergic interneurons in the cingulate cortex. In contrast to other neocortical areas, GINs were only found in cortical layers II and III. More than 98% of GINs coexpressed the neuropeptide somatostatin (SOM), but only 50% of all SOM + neurons were GINs. By analyzing the expression of calretinin (CR), calbindin (CB), parvalbumin, and various neuropeptides, we identified several distinct GIN subgroups. In particular, we observed coexpression of SOM with CR and CB. In addition, we found neuropeptide Y expression almost exclusively in those GINs that coexpressed SOM and CR. Thus, with respect to the expression of calcium-binding proteins and neuropeptides, GINs are surprisingly heterogeneous in the mouse cingulate cortex, and the minority of GINs express only one marker protein or peptide. Furthermore, our observation of overlap between the SOM + and CR + interneuron population was in contrast to earlier findings of non-overlapping SOM + and CR + interneuron populations in the human cortex. This might indicate that findings in mouse models of neuropsychiatric diseases may not be directly transferred to human patients. J. Comp. Neurol. 524:2281-2299, 2016. © 2015 Wiley Periodicals, Inc. PMID:26669716

  16. Environmental enrichment as a therapeutic avenue for anxiety in aged Wistar rats: Effect on cat odor exposition and GABAergic interneurons.

    PubMed

    Sampedro-Piquero, P; Castilla-Ortega, E; Zancada-Menendez, C; Santín, L J; Begega, A

    2016-08-25

    The use of more ethological animal models to study the neurobiology of anxiety has increased in recent years. We assessed the effect of an environmental enrichment (EE) protocol (24h/day over a period of two months) on anxiety-related behaviors when aged Wistar rats (21months old) were confronted with cat odor stimuli. Owing to the relationship between GABAergic interneurons and the anxiety-related neuronal network, we examined changes in the expression of Parvalbumin (PV) and 67kDa form of glutamic acid decarboxylase (GAD-67) immunoreactive cells in different brain regions involved in stress response. Behavioral results revealed that enriched rats traveled further and made more grooming behaviors during the habituation session. In the cat odor session, they traveled longer distances and they showed more active interaction with the odor stimuli and less time in freezing behavior. Zone analysis revealed that the enriched group spent more time in the intermediate zone according to the proximity of the predator odor. Regarding the neurobiological data, the EE increased the expression of PV-positive cells in some medial prefrontal regions (cingulate (Cg) and prelimbic (PL) cortices), whereas the GAD-67 expression in the basolateral amygdala was reduced in the enriched group. Our results suggest that EE is able to reduce anxiety-like behaviors in aged animals even when ethologically relevant stimuli are used. Moreover, GABAergic interneurons could be involved in mediating this resilient behavior. PMID:27235742

  17. Multi-dimensional classification of GABAergic interneurons with Bayesian network-modeled label uncertainty.

    PubMed

    Mihaljević, Bojan; Bielza, Concha; Benavides-Piccione, Ruth; DeFelipe, Javier; Larrañaga, Pedro

    2014-01-01

    Interneuron classification is an important and long-debated topic in neuroscience. A recent study provided a data set of digitally reconstructed interneurons classified by 42 leading neuroscientists according to a pragmatic classification scheme composed of five categorical variables, namely, of the interneuron type and four features of axonal morphology. From this data set we now learned a model which can classify interneurons, on the basis of their axonal morphometric parameters, into these five descriptive variables simultaneously. Because of differences in opinion among the neuroscientists, especially regarding neuronal type, for many interneurons we lacked a unique, agreed-upon classification, which we could use to guide model learning. Instead, we guided model learning with a probability distribution over the neuronal type and the axonal features, obtained, for each interneuron, from the neuroscientists' classification choices. We conveniently encoded such probability distributions with Bayesian networks, calling them label Bayesian networks (LBNs), and developed a method to predict them. This method predicts an LBN by forming a probabilistic consensus among the LBNs of the interneurons most similar to the one being classified. We used 18 axonal morphometric parameters as predictor variables, 13 of which we introduce in this paper as quantitative counterparts to the categorical axonal features. We were able to accurately predict interneuronal LBNs. Furthermore, when extracting crisp (i.e., non-probabilistic) predictions from the predicted LBNs, our method outperformed related work on interneuron classification. Our results indicate that our method is adequate for multi-dimensional classification of interneurons with probabilistic labels. Moreover, the introduced morphometric parameters are good predictors of interneuron type and the four features of axonal morphology and thus may serve as objective counterparts to the subjective, categorical axonal features

  18. Multi-dimensional classification of GABAergic interneurons with Bayesian network-modeled label uncertainty

    PubMed Central

    Mihaljević, Bojan; Bielza, Concha; Benavides-Piccione, Ruth; DeFelipe, Javier; Larrañaga, Pedro

    2014-01-01

    Interneuron classification is an important and long-debated topic in neuroscience. A recent study provided a data set of digitally reconstructed interneurons classified by 42 leading neuroscientists according to a pragmatic classification scheme composed of five categorical variables, namely, of the interneuron type and four features of axonal morphology. From this data set we now learned a model which can classify interneurons, on the basis of their axonal morphometric parameters, into these five descriptive variables simultaneously. Because of differences in opinion among the neuroscientists, especially regarding neuronal type, for many interneurons we lacked a unique, agreed-upon classification, which we could use to guide model learning. Instead, we guided model learning with a probability distribution over the neuronal type and the axonal features, obtained, for each interneuron, from the neuroscientists' classification choices. We conveniently encoded such probability distributions with Bayesian networks, calling them label Bayesian networks (LBNs), and developed a method to predict them. This method predicts an LBN by forming a probabilistic consensus among the LBNs of the interneurons most similar to the one being classified. We used 18 axonal morphometric parameters as predictor variables, 13 of which we introduce in this paper as quantitative counterparts to the categorical axonal features. We were able to accurately predict interneuronal LBNs. Furthermore, when extracting crisp (i.e., non-probabilistic) predictions from the predicted LBNs, our method outperformed related work on interneuron classification. Our results indicate that our method is adequate for multi-dimensional classification of interneurons with probabilistic labels. Moreover, the introduced morphometric parameters are good predictors of interneuron type and the four features of axonal morphology and thus may serve as objective counterparts to the subjective, categorical axonal features

  19. Physiological impact of CB1 receptor expression by hippocampal GABAergic interneurons.

    PubMed

    Albayram, Önder; Passlick, Stefan; Bilkei-Gorzo, Andras; Zimmer, Andreas; Steinhäuser, Christian

    2016-04-01

    A subset of hippocampal GABAergic neurons, which are cholecystokinin-positive, highly express cannabinoid type 1 (CB1) receptors. Activation of these receptors inhibits GABA release and thereby limits inhibitory control. While genetic deletion of CB1 receptors from GABAergic neurons led to behavioural alterations and neuroinflammatory reactions, it remained unclear whether these changes in the knockout animals were a direct consequence of the enhanced transmitter release or reflected developmental deficits. The hippocampus is vital for the generation of spatial, declarative and working memory. Here, we addressed the question how CB1 receptors in GABAergic neurons influence hippocampal function. Patch clamp and field potential recordings in mice devoid of CB1 receptors in GABAergic neurons revealed an enhanced frequency and faster kinetics of spontaneous inhibitory postsynaptic currents in CA1 pyramidal neurons while tonic inhibition, paired-pulse facilitation and long-term potentiation in the hippocampus were not affected. Evaluation of cognitive functions demonstrated impaired acquisition of spatial memory and deficits in novel object recognition and partner recognition in the knockout mice, while working memory and spatial memory remained intact. The density of GABAergic neurons was also similar in knockout mice and their littermates, which argues against global deficits in hippocampal development. Together, these results suggest that CB1 receptors in GABAergic neurons influence specific aspects of neuronal excitability and hippocampal learning. PMID:26739712

  20. Structural and functional characterization of dendritic arbors and GABAergic synaptic inputs on interneurons and principal cells in the rat basolateral amygdala

    PubMed Central

    Klenowski, Paul M.; Fogarty, Matthew J.; Belmer, Arnauld; Noakes, Peter G.; Bellingham, Mark C.

    2015-01-01

    The basolateral amygdala (BLA) is a complex brain region associated with processing emotional states, such as fear, anxiety, and stress. Some aspects of these emotional states are driven by the network activity of synaptic connections, derived from both local circuitry and projections to the BLA from other regions. Although the synaptic physiology and general morphological characteristics are known for many individual cell types within the BLA, the combination of morphological, electrophysiological, and distribution of neurochemical GABAergic synapses in a three-dimensional neuronal arbor has not been reported for single neurons from this region. The aim of this study was to assess differences in morphological characteristics of BLA principal cells and interneurons, quantify the distribution of GABAergic neurochemical synapses within the entire neuronal arbor of each cell type, and determine whether GABAergic synaptic density correlates with electrophysiological recordings of inhibitory postsynaptic currents. We show that BLA principal neurons form complex dendritic arborizations, with proximal dendrites having fewer spines but higher densities of neurochemical GABAergic synapses compared with distal dendrites. Furthermore, we found that BLA interneurons exhibited reduced dendritic arbor lengths and spine densities but had significantly higher densities of putative GABAergic synapses compared with principal cells, which was correlated with an increased frequency of spontaneous inhibitory postsynaptic currents. The quantification of GABAergic connectivity, in combination with morphological and electrophysiological measurements of the BLA cell types, is the first step toward a greater understanding of how fear and stress lead to changes in morphology, local connectivity, and/or synaptic reorganization of the BLA. PMID:26041829

  1. Low threshold primary afferent drive onto GABAergic interneurons in the superficial dorsal horn of the mouse

    PubMed Central

    Daniele, Claire A.; MacDermott, Amy B.

    2010-01-01

    Inhibition in the spinal cord dorsal horn is crucial for maintaining separation of touch and pain modalities. Disruption of this inhibition results in allodynia, allowing low threshold drive onto pain and temperature sensitive projection neurons. This low threshold excitatory pathway is normally under strong inhibition. We hypothesized that superficial dorsal horn inhibitory neurons, which would be ideally located to suppress low threshold drive onto projection neurons in a feedforward manner, are driven by low threshold input. In addition, because disinhibition-induced allodynia shares some features with the immature dorsal horn such as elevated sensitivity to low threshold input, we also questioned whether low threshold drive onto inhibitory neurons changes during postnatal maturation. To investigate these questions, slices were made at different ages from transgenic mice with EGFP expression in GABAergic neurons and whole cell recordings were made from these fluorescent neurons. Evoked synaptic activity was measured in response to electrical stimulation of the dorsal root. We demonstrate that Aβ fibers activate a significant proportion of superficial dorsal horn GABAergic neurons. This occurs with similar excitatory synaptic drive throughout postnatal maturation, but with a greater prevalence at younger ages. These GABAergic neurons are well situated to contribute to suppressing low threshold activation of output projection neurons. In addition, the majority of these GABAergic neurons also had convergent input from high threshold fibers, suggesting that this novel subclass of GABAergic neurons is important for gating innocuous as well as noxious information. PMID:19158295

  2. Altered expression of KCC2 in GABAergic interneuron contributes prenatal stress-induced epileptic spasms in infant rat.

    PubMed

    Baek, Hyunjung; Yi, Min-Hee; Pandit, Sudip; Park, Jin Bong; Kwon, Hyeok Hee; Zhang, Enji; Kim, Sena; Shin, Nara; Kim, Eunjee; Lee, Young Ho; Kim, Yonghyun; Kim, Dong Woon; Kang, Joon Won

    2016-07-01

    Long-term stress during pregnancy causes neurologic deficits to offspring with altered gamma-aminobutyric acid (GABA) system in the brain. However, it is not clear how prenatal stress affects the maturing GABAergic interneurons and the resulting abnormalities in infantile seizures. Here, we showed that prenatal stress alters the maturation of GABA inhibitory system using a seizure model induced by prenatal stress. Prenatal stress with betamethasone or acute immobilization stress (AIS) on gestational day 15 increased the seizure susceptibility to N-methyl-d-aspartate-triggered spasms on postnatal day 15. The expression of GABA was lower in the prenatally stressed group, which compromise the decrease of glutamate decarboxylase 67-immunopositive cells. Prenatal stress markedly decreased the expression of K(+)/Cl(-) co-transporter (KCC2) in the cortex. GABA induced membrane depolarization demonstrated prenatal stress models had significant higher membrane depolarization compared to control. GABA increased KCC2 expression in cultured cortex-containing slices. Taken together, our results showed that prenatal stress with betamethasone or AIS altered the maturation of GABAergic progenitors and resulted in the lack of GABA input, which in turn, decreased KCC2 expression and lowered seizure threshold. We conclude that delayed GABA excitatory/inhibitory shift would render the cortical neuronal circuit more susceptible to excitatory input in prenatal stress induced seizure. PMID:27180051

  3. A Reorganized GABAergic Circuit in a Model of Epilepsy: Evidence from Optogenetic Labeling and Stimulation of Somatostatin Interneurons

    PubMed Central

    Peng, Zechun; Zhang, Nianhui; Wei, Weizheng; Huang, Christine S.; Cetina, Yliana; Otis, Thomas S.

    2013-01-01

    Axonal sprouting of excitatory neurons is frequently observed in temporal lobe epilepsy, but the extent to which inhibitory interneurons undergo similar axonal reorganization remains unclear. The goal of this study was to determine whether somatostatin (SOM)-expressing neurons in stratum (s.) oriens of the hippocampus exhibit axonal sprouting beyond their normal territory and innervate granule cells of the dentate gyrus in a pilocarpine model of epilepsy. To obtain selective labeling of SOM-expressing neurons in s. oriens, a Cre recombinase-dependent construct for channelrhodopsin2 fused to enhanced yellow fluorescent protein (ChR2-eYFP) was virally delivered to this region in SOM-Cre mice. In control mice, labeled axons were restricted primarily to s. lacunosum-moleculare. However, in pilocarpine-treated animals, a rich plexus of ChR2-eYFP-labeled fibers and boutons extended into the dentate molecular layer. Electron microscopy with immunogold labeling demonstrated labeled axon terminals that formed symmetric synapses on dendritic profiles in this region, consistent with innervation of granule cells. Patterned illumination of ChR2-labeled fibers in s. lacunosum-moleculare of CA1 and the dentate molecular layer elicited GABAergic inhibitory responses in dentate granule cells in pilocarpine-treated mice but not in controls. Similar optical stimulation in the dentate hilus evoked no significant responses in granule cells of either group of mice. These findings indicate that under pathological conditions, SOM/GABAergic neurons can undergo substantial axonal reorganization beyond their normal territory and establish aberrant synaptic connections. Such reorganized circuitry could contribute to functional deficits in inhibition in epilepsy, despite the presence of numerous GABAergic terminals in the region. PMID:24005292

  4. Preserving GABAergic interneurons in acute brain slices of mice using the N-methyl-D-glucamine-based artificial cerebrospinal fluid method.

    PubMed

    Pan, Geng; Li, Yue; Geng, Hong-Yan; Yang, Jian-Ming; Li, Ke-Xin; Li, Xiao-Ming

    2015-04-01

    Defects in the function and development of GABAergic interneurons have been linked to psychiatric disorders, so preservation of these interneurons in brain slices is important for successful electrophysiological recording in various ex vivo methods. However, it is difficult to maintain the activity and morphology of neurons in slices from mice of >30 days old. Here we evaluated the N-methyl-D-glucamine (NMDG)-based artificial cerebrospinal fluid (aCSF) method for the preservation of interneurons in slices from mice of up to ∼6 months old and discussed the steps that may affect their quality during slicing. We found that the NMDG-aCSF method rescued more cells than sucrose-aCSF and successfully preserved different types of interneurons including parvalbumin- and somatostatin-positive interneurons. In addition, both the chemical and electrical synaptic signaling of interneurons were maintained. These results demonstrate that the NMDG-aCSF method is suitable for the preservation of interneurons, especially in studies of gap junctions. PMID:25648546

  5. Chronic stress reduces the number of GABAergic interneurons in the adult rat hippocampus, dorsal-ventral and region-specific differences.

    PubMed

    Czéh, Boldizsár; Varga, Zsófia K Kalangyáné; Henningsen, Kim; Kovács, Gábor L; Miseta, Attila; Wiborg, Ove

    2015-03-01

    Major depressive disorder is a common and complex mental disorder with unknown etiology. GABAergic dysfunction is likely to contribute to the pathophysiology since disrupted GABAergic systems are well documented in depressed patients. Here we studied structural changes in the hippocampal GABAergic network using the chronic mild stress (CMS) model, as one of the best validated animal models for depression. Rats were subjected to 9 weeks of daily stress and behaviorally characterized using the sucrose consumption test into anhedonic and resilient animals based on their response to stress. Different subtypes of GABAergic interneurons were visualized by immunohistochemistry using antibodies for parvalbumin (PV), calretinin (CR), calbindin (CB), cholecystokinin (CCK), somatostatin (SOM), and neuropeptide Y (NPY). We used an unbiased quantification method to systematically count labeled cells in different subareas of the dorsal and ventral hippocampus. Chronic stress reduced the number of specific interneurons in distinct hippocampal subregions significantly. PV+ and CR+ neurons were reduced in all dorsal subareas, whereas in the ventral part only the CA1 was affected. Stress had the most pronounced effect on the NPY+ and SOM+ cells and reduced their number in almost all dorsal and ventral subareas. Stress had no effect on the CCK+ and CB+ interneurons. In most cases the effect of stress was irrespective to the behavioral phenotype. However, in a few specific areas the number of SOM+, NPY+, and CR+ neurons were significantly reduced in anhedonic animals compared to the resilient group. Overall, these data clearly demonstrate that chronic stress affects the structural integrity of specific GABAergic neuronal subpopulations and this should also affect the functioning of these hippocampal GABAergic networks. PMID:25331166

  6. Nicotinic acetylcholine receptor-mediated GABAergic inputs to cholinergic interneurons in the striosomes and the matrix compartments of the mouse striatum.

    PubMed

    Inoue, Ritsuko; Suzuki, Takeo; Nishimura, Kinya; Miura, Masami

    2016-06-01

    The striatum consists of two neurochemically distinct compartments: the striosomes (or patches) and the extrastriosomal matrix. Although striatal neurons are strongly innervated by intrinsic cholinergic interneurons, acetylcholinesterase is expressed more abundantly in the matrix than in the striosomes. At present, little is known about the different cholinergic functions of the striatal compartments. In this study, we examined gamma-aminobutyric acidergic (GABAergic) inputs to cholinergic interneurons in both compartments. We found that nicotinic receptor-mediated GABAergic responses were evoked more frequently in the matrix than in the striosomes. Furthermore, a single action potential of cholinergic neurons induced nicotinic receptor-mediated GABAergic inputs to the cholinergic neurons themselves, suggesting mutual connections that shape the temporal firing pattern of cholinergic neurons. The nicotinic receptor-mediated GABAergic responses were attenuated by continuous application of acetylcholine or the acetylcholinesterase inhibitor eserine and were enhanced by desformylflustrabromine, a positive allosteric modulator of the α4β2 subunit containing a nicotinic receptor. These results suggest that the nicotinic impact on the GABAergic responses are not uniform despite the massive and continuous cholinergic innervation. It has been reported that differential activation of neurons in the striosomes and the matrix produce a repetitive behavior called stereotypy. Drugs acting on α4β2 nicotinic receptors might provide potential tools for moderating the imbalanced activities between the compartments. PMID:26808315

  7. Reorganization of GABAergic circuits maintains GABAA receptor-mediated transmission onto CA1 interneurons in alpha1-subunit-null mice.

    PubMed

    Schneider Gasser, Edith M; Duveau, Venceslas; Prenosil, George A; Fritschy, Jean-Marc

    2007-06-01

    The majority of hippocampal interneurons strongly express GABA(A) receptors containing the alpha1 subunit, suggesting that inhibitory control of interneurons is important for proper function of hippocampal circuits. Here, we investigated with immunohistochemical and electrophysiological techniques how these GABA(A) receptors are replaced in mice carrying a targeted deletion of the alpha1-subunit gene (alpha1(0/0) mice). Using markers of five major populations of CA1 interneurons (parvalbumin, calretinin, calbindin, neuropeptide Y and somatostatin), we show that these interneurons remain unaffected in alpha1(0/0) mice. In triple immunofluorescence staining experiments combining these markers with the GABA(A) receptor alpha1, alpha2 or alpha3 subunit and gephyrin, we demonstrate a strong increase in alpha3- and alpha2-GABA(A) receptors clustered at postsynaptic sites along with gephyrin in most CA1 interneurons in alpha1(0/0) mice. The changes were cell type-specific and resulted in an increased number of GABAergic synapses on interneurons. These adjustments were mirrored functionally by retention of spontaneous IPSCs with prolonged decay kinetics, as shown by whole-cell patch-clamp recordings of CA1 interneurons. However, a significant decrease in frequency and amplitude of miniature IPSCs was evident, suggesting reduced affinity of postsynaptic receptors and/or impaired vesicular GABA release. Finally, to assess whether these compensatory changes are sufficient to protect against a pathological challenge, we tested the susceptibility of alpha1(0/0) mice against kainic acid-induced excitotoxicity. No genotype difference was observed in the effects of kainic acid, indicating that the absence of a major GABA(A) receptor subtype is functionally compensated for in hippocampal interneurons by a reorganization of inhibitory circuits. PMID:17552997

  8. Repeated Blockade of NMDA Receptors During Adolescence Impairs Reversal Learning and Disrupts GABAergic Interneurons in Rat Medial Prefrontal Cortex

    PubMed Central

    Li, Ji-Tao; Su, Yun-Ai; Wang, Hong-Li; Zhao, Ying-Ying; Liao, Xue-Mei; Wang, Xiao-Dong; Si, Tian-Mei

    2016-01-01

    Adolescence is of particular significance to schizophrenia, since psychosis onset typically occurs in this critical period. Based on the N-methyl-D-aspartate (NMDA) receptor hypofunction hypothesis of schizophrenia, in this study, we investigated whether and how repeated NMDA receptor blockade during adolescence would affect GABAergic interneurons in rat medial prefrontal cortex (mPFC) and mPFC-mediated cognitive functions. Specifically, adolescent rats were subjected to intraperitoneal administration of MK-801 (0.1, 0.2, 0.4 mg/kg), a non-competitive NMDA receptor antagonist, for 14 days and then tested for reference memory and reversal learning in the water maze. The density of parvabumin (PV)-, calbindin (CB)- and calretinin (CR)-positive neurons in mPFC was analyzed at either 24 h or 7 days after drug cessation. We found that MK-801 treatment delayed reversal learning in the water maze without affecting initial acquisition. Strikingly, MK-801 treatment also significantly reduced the density of PV+ and CB+ neurons, and this effect persisted for 7 days after drug cessation at the dose of 0.2 mg/kg. We further demonstrated that the reduction in PV+ and CB+ neuron densities was ascribed to a downregulation of the expression levels of PV and CB, but not to neuronal death. These results parallel the behavioral and neuropathological changes of schizophrenia and provide evidence that adolescent NMDA receptors antagonism offers a useful tool for unraveling the etiology of the disease. PMID:26973457

  9. Repeated Blockade of NMDA Receptors During Adolescence Impairs Reversal Learning and Disrupts GABAergic Interneurons in Rat Medial Prefrontal Cortex.

    PubMed

    Li, Ji-Tao; Su, Yun-Ai; Wang, Hong-Li; Zhao, Ying-Ying; Liao, Xue-Mei; Wang, Xiao-Dong; Si, Tian-Mei

    2016-01-01

    Adolescence is of particular significance to schizophrenia, since psychosis onset typically occurs in this critical period. Based on the N-methyl-D-aspartate (NMDA) receptor hypofunction hypothesis of schizophrenia, in this study, we investigated whether and how repeated NMDA receptor blockade during adolescence would affect GABAergic interneurons in rat medial prefrontal cortex (mPFC) and mPFC-mediated cognitive functions. Specifically, adolescent rats were subjected to intraperitoneal administration of MK-801 (0.1, 0.2, 0.4 mg/kg), a non-competitive NMDA receptor antagonist, for 14 days and then tested for reference memory and reversal learning in the water maze. The density of parvabumin (PV)-, calbindin (CB)- and calretinin (CR)-positive neurons in mPFC was analyzed at either 24 h or 7 days after drug cessation. We found that MK-801 treatment delayed reversal learning in the water maze without affecting initial acquisition. Strikingly, MK-801 treatment also significantly reduced the density of PV(+) and CB(+) neurons, and this effect persisted for 7 days after drug cessation at the dose of 0.2 mg/kg. We further demonstrated that the reduction in PV(+) and CB(+) neuron densities was ascribed to a downregulation of the expression levels of PV and CB, but not to neuronal death. These results parallel the behavioral and neuropathological changes of schizophrenia and provide evidence that adolescent NMDA receptors antagonism offers a useful tool for unraveling the etiology of the disease. PMID:26973457

  10. Rapid and slow chemical synaptic interactions of cholinergic projection neurons and GABAergic local interneurons in the insect antennal lobe.

    PubMed

    Warren, Ben; Kloppenburg, Peter

    2014-09-24

    The antennal lobe (AL) of insects constitutes the first synaptic relay and processing center of olfactory information, received from olfactory sensory neurons located on the antennae. Complex synaptic connectivity between olfactory neurons of the AL ultimately determines the spatial and temporal tuning profile of (output) projection neurons to odors. Here we used paired whole-cell patch-clamp recordings in the cockroach Periplaneta americana to characterize synaptic interactions between cholinergic uniglomerular projection neurons (uPNs) and GABAergic local interneurons (LNs), both of which are key components of the insect olfactory system. We found rapid, strong excitatory synaptic connections between uPNs and LNs. This rapid excitatory transmission was blocked by the nicotinic acetylcholine receptor blocker mecamylamine. IPSPs, elicited by synaptic input from a presynaptic LN, were recorded in both uPNs and LNs. IPSPs were composed of both slow, sustained components and fast, transient components which were coincident with presynaptic action potentials. The fast IPSPs were blocked by the GABAA receptor chloride channel blocker picrotoxin, whereas the slow sustained IPSPs were blocked by the GABAB receptor blocker CGP-54626. This is the first study to directly show the predicted dual fast- and slow-inhibitory action of LNs, which was predicted to be key in shaping complex odor responses in the AL of insects. We also provide the first direct characterization of rapid postsynaptic potentials coincident with presynaptic spikes between olfactory processing neurons in the AL. PMID:25253851

  11. Impact of single-site axonal GABAergic synaptic events on cerebellar interneuron activity

    PubMed Central

    Zorrilla de San Martin, Javier; Jalil, Abdelali

    2015-01-01

    Axonal ionotropic receptors are present in a variety of neuronal types, and their function has largely been associated with the modulation of axonal activity and synaptic release. It is usually assumed that activation of axonal GABAARs comes from spillover, but in cerebellar molecular layer interneurons (MLIs) the GABA source is different: in these cells, GABA release activates presynaptic GABAA autoreceptors (autoRs) together with postsynaptic targets, producing an autoR-mediated synaptic event. The frequency of presynaptic, autoR-mediated miniature currents is twice that of their somatodendritic counterparts, suggesting that autoR-mediated responses have an important effect on interneuron activity. Here, we used local Ca2+ photolysis in MLI axons of juvenile rats to evoke GABA release from individual varicosities to study the activation of axonal autoRs in single release sites. Our data show that single-site autoR conductances are similar to postsynaptic dendritic conductances. In conditions of high [Cl−]i, autoR-mediated conductances range from 1 to 5 nS; this corresponds to ∼30–150 GABAA channels per presynaptic varicosity, a value close to the number of channels in postsynaptic densities. Voltage responses produced by the activation of autoRs in single varicosities are amplified by a Nav-dependent mechanism and propagate along the axon with a length constant of 91 µm. Immunolabeling determination of synapse location shows that on average, one third of the synapses produce autoR-mediated signals that are large enough to reach the axon initial segment. Finally, we show that single-site activation of presynaptic GABAA autoRs leads to an increase in MLI excitability and thus conveys a strong feedback signal that contributes to spiking activity. PMID:26621773

  12. Antiallodynic effect of tianeptine via modulation of the 5-HT7 receptor of GABAergic interneurons in the spinal cord of neuropathic rats.

    PubMed

    Lin, Hai; Heo, Bong Ha; Kim, Woong Mo; Kim, Yong Chul; Yoon, Myung Ha

    2015-06-26

    Although tianeptine, an atypical antidepressant has been reported to have antinociceptive effects, the mode of action is different from that of tricyclic antidepressants despite structural similarities. We examined the antiallodynic effect of intrathecal tianeptine in neuropathic pain rats and determined the involvement of 5-hydroxytryptamine type 7 (5-HT7) receptor of the GABAergic interneurons in the spinal cord. Neuropathic pain was induced by spinal nerve ligation (SNL). After observation of the effect from intrathecal tianeptine, a 5-HT7 receptor antagonist (SB-269970) was administered intrathecally 10 min before delivery of tianeptine, to determine the contribution of spinal 5-HT7 receptor on the activity of tianeptine. GAD expression and GABA concentrations were assessed. Intrathecal tianeptine dose-dependently attenuated mechanical allodynia in SNL rats. Pre-treatment with intrathecal SB-269970 reversed the antiallodynic effect of tianeptine. Both GAD65 expression and the GABA concentration in the spinal cord were decreased in neuropathic rats but were increased by tianeptine. Additionally, 5-HT7 receptor and GAD65 were co-localized in the spinal cord. Intrathecal tianeptine reduces neuropathic pain. 5-HT7 receptor of the GABAergic interneurons together with GAD65 plays a role in the activity of tianeptine at the spinal cord level. PMID:25982324

  13. Fewer GABAergic interneurons, heightened anxiety and decreased high-frequency electroencephalogram components in Bronx waltzer mice, a model of hereditary deafness.

    PubMed

    Matsuda, Yoshiki; Inoue, Yuki; Izumi, Hitomi; Kaga, Makiko; Inagaki, Masumi; Goto, Yu-ichi

    2011-02-10

    The homozygous Bronx waltzer mutation (bv/bv) results in the degeneration of most but not all of the primary auditory receptors, the inner hair cells and their afferent neurons, and leads to perceptive deafness. However, the influence of the mutation on the central nervous system (CNS) remains largely unclear. In this study, we have conducted behavioral, morphological and electrophysiological investigations to clarify the CNS dysfunction in bv/bv mice. These mutant mice exhibited heightened levels of anxiety with normal levels of motor activity. Immunohistochemical analysis revealed a significant reduction in parvalbumin-containing GABAergic interneurons in the anterior cingulate, somatosensory and auditory cortices of bv/bv mice. The current results suggest that interneuron development may be disrupted in the bv/bv cerebrum. Moreover, the high-frequency electroencephalogram components of the cortical activity, including the frequency range containing high gamma, were markedly decreased in bv/bv mice compared with controls, probably indicating a disturbance in cortical inhibitory function. Together, these results suggest that the cortical development of interneurons and their electrophysiological profiles are altered in bv/bv mice. We propose that these novel phenotypes identified in bv/bv mice provide new perspectives on the basic neuronal mechanisms of developmental disorders. PMID:21146505

  14. Parvalbumin interneurons mediate neuronal circuitry-neurogenesis coupling in the adult hippocampus

    PubMed Central

    Song, Juan; Sun, Jiaqi; Moss, Jonathan; Wen, Zhexing; Sun, Gerald J.; Hsu, Derek; Zhong, Chun; Davoudi, Heydar; Christian, Kimberly M.; Toni, Nicolas; Ming, Guo-li; Song, Hongjun

    2014-01-01

    Using immunohistology, electron microscopy, electrophysiology and optogenetics, we show that proliferating adult hippocampal neural precursors receive immature GABAergic synaptic inputs from parvalbumin-expressing interneurons. Recently shown to suppress quiescent neural stem cell activation, parvalbumin interneuron activation promotes newborn neuronal progeny survival and development. Our study suggests a niche mechanism involving parvalbumin interneurons that couples local circuit activity to diametric regulation of two critical initial phases of adult hippocampal neurogenesis. PMID:24212671

  15. Early-life lead exposure recapitulates the selective loss of parvalbumin-positive GABAergic interneurons and subcortical dopamine system hyperactivity present in schizophrenia

    PubMed Central

    Stansfield, K H; Ruby, K N; Soares, B D; McGlothan, J L; Liu, X; Guilarte, T R

    2015-01-01

    Environmental factors have been associated with psychiatric disorders and recent epidemiological studies suggest an association between prenatal lead (Pb2+) exposure and schizophrenia (SZ). Pb2+ is a potent antagonist of the N-methyl-D-aspartate receptor (NMDAR) and converging evidence indicates that NMDAR hypofunction has a key role in the pathophysiology of SZ. The glutamatergic hypothesis of SZ posits that NMDAR hypofunction results in the loss of parvalbumin (PV)-positive GABAergic interneurons (PVGI) in the brain. Loss of PVGI inhibitory control to pyramidal cells alters the excitatory drive to midbrain dopamine neurons increasing subcortical dopaminergic activity. We hypothesized that if Pb2+ exposure in early life is an environmental risk factor for SZ, it should recapitulate the loss of PVGI and reproduce subcortical dopaminergic hyperactivity. We report that on postnatal day 50 (PN50), adolescence rats chronically exposed to Pb2+ from gestation through adolescence exhibit loss of PVGI in SZ-relevant brain regions. PV and glutamic acid decarboxylase 67 kDa (GAD67) protein were significantly decreased in Pb2+ exposed rats with no apparent change in calretinin or calbindin protein levels suggesting a selective effect on the PV phenotype of GABAergic interneurons. We also show that Pb2+ animals exhibit a heightened locomotor response to cocaine and express significantly higher levels of dopamine metabolites and D2-dopamine receptors relative to controls indicative of subcortical dopaminergic hyperactivity. Our results show that developmental Pb2+ exposure reproduces specific neuropathology and functional dopamine system changes present in SZ. We propose that exposure to environmental toxins that produce NMDAR hypofunction during critical periods of brain development may contribute significantly to the etiology of mental disorders. PMID:25756805

  16. Early-life lead exposure recapitulates the selective loss of parvalbumin-positive GABAergic interneurons and subcortical dopamine system hyperactivity present in schizophrenia.

    PubMed

    Stansfield, K H; Ruby, K N; Soares, B D; McGlothan, J L; Liu, X; Guilarte, T R

    2015-01-01

    Environmental factors have been associated with psychiatric disorders and recent epidemiological studies suggest an association between prenatal lead (Pb(2+)) exposure and schizophrenia (SZ). Pb(2+) is a potent antagonist of the N-methyl-D-aspartate receptor (NMDAR) and converging evidence indicates that NMDAR hypofunction has a key role in the pathophysiology of SZ. The glutamatergic hypothesis of SZ posits that NMDAR hypofunction results in the loss of parvalbumin (PV)-positive GABAergic interneurons (PVGI) in the brain. Loss of PVGI inhibitory control to pyramidal cells alters the excitatory drive to midbrain dopamine neurons increasing subcortical dopaminergic activity. We hypothesized that if Pb(2+) exposure in early life is an environmental risk factor for SZ, it should recapitulate the loss of PVGI and reproduce subcortical dopaminergic hyperactivity. We report that on postnatal day 50 (PN50), adolescence rats chronically exposed to Pb(2+) from gestation through adolescence exhibit loss of PVGI in SZ-relevant brain regions. PV and glutamic acid decarboxylase 67 kDa (GAD67) protein were significantly decreased in Pb(2+) exposed rats with no apparent change in calretinin or calbindin protein levels suggesting a selective effect on the PV phenotype of GABAergic interneurons. We also show that Pb(2+) animals exhibit a heightened locomotor response to cocaine and express significantly higher levels of dopamine metabolites and D2-dopamine receptors relative to controls indicative of subcortical dopaminergic hyperactivity. Our results show that developmental Pb(2+) exposure reproduces specific neuropathology and functional dopamine system changes present in SZ. We propose that exposure to environmental toxins that produce NMDAR hypofunction during critical periods of brain development may contribute significantly to the etiology of mental disorders. PMID:25756805

  17. Enhanced GABAergic Inputs Contribute to Functional Alterations of Cholinergic Interneurons in the R6/2 Mouse Model of Huntington’s Disease1,2,3

    PubMed Central

    Holley, Sandra M.; Joshi, Prasad R.; Parievsky, Anna; Galvan, Laurie; Chen, Jane Y.; Fisher, Yvette E.; Huynh, My N.; Cepeda, Carlos

    2015-01-01

    Abstract In Huntington’s disease (HD), a hereditary neurodegenerative disorder, striatal medium-sized spiny neurons undergo degenerative changes. In contrast, large cholinergic interneurons (LCIs) are relatively spared. However, their ability to release acetylcholine (ACh) is impaired. The present experiments examined morphological and electrophysiological properties of LCIs in the R6/2 mouse model of HD. R6/2 mice show a severe, rapidly progressing phenotype. Immunocytochemical analysis of choline acetyltransferase-positive striatal neurons showed that, although the total number of cells was not changed, somatic areas were significantly smaller in symptomatic R6/2 mice compared to wild-type (WT) littermates, For electrophysiology, brain slices were obtained from presymptomatic (3-4 weeks) and symptomatic (>8 weeks) R6/2 mice and their WT littermates. Striatal LCIs were identified by somatic size and spontaneous action potential firing in the cell-attached mode. Passive and active membrane properties of LCIs were similar in presymptomatic R6/2 and WT mice. In contrast, LCIs from symptomatic R6/2 animals displayed smaller membrane capacitance and higher input resistance, consistent with reduced somatic size. In addition, more LCIs from symptomatic mice displayed irregular firing patterns and bursts of action potentials. They also displayed a higher frequency of spontaneous GABAergic IPSCs and larger amplitude of electrically evoked IPSCs. Selective optogenetic stimulation of somatostatin- but not parvalbumin-containing interneurons also evoked larger amplitude IPSCs in LCIs from R6/2 mice. In contrast, glutamatergic spontaneous or evoked postsynaptic currents were not affected. Morphological and electrophysiological alterations, in conjunction with the presence of mutant huntingtin in LCIs, could explain impaired ACh release in HD mouse models. PMID:26203463

  18. Epigenetic modifications of GABAergic interneurons are associated with the schizophrenia-like phenotype induced by prenatal stress in mice.

    PubMed

    Matrisciano, Francesco; Tueting, Patricia; Dalal, Ishani; Kadriu, Bashkim; Grayson, Dennis R; Davis, John M; Nicoletti, Ferdinando; Guidotti, Alessandro

    2013-05-01

    Human studies suggest that a variety of prenatal stressors are related to high risk for cognitive and behavioral abnormalities associated with psychiatric illness (Markham and Koenig, 2011). Recently, a downregulation in the expression of GABAergic genes (i.e., glutamic acid decarboxylase 67 and reelin) associated with DNA methyltransferase (DNMT) overexpression in GABAergic neurons has been regarded as a characteristic phenotypic component of the neuropathology of psychotic disorders (Guidotti et al., 2011). Here, we characterized mice exposed to prenatal restraint stress (PRS) in order to study neurochemical and behavioral abnormalities related to development of schizophrenia in the adult. Offspring born from non-stressed mothers (control mice) showed high levels of DNMT1 and 3a mRNA expression in the frontal cortex at birth, but these levels progressively decreased at post-natal days (PND) 7, 14, and 60. Offspring born from stressed mothers (PRS mice) showed increased levels of DNMTs compared to controls at all time-points studied including at birth and at PND 60. Using GAD67-GFP transgenic mice, we established that, in both control and PRS mice, high levels of DNMT1 and 3a were preferentially expressed in GABAergic neurons of frontal cortex and hippocampus. Importantly, the overexpression of DNMT in GABAergic neurons was associated with a decrease in reelin and GAD67 expression in PRS mice in early and adult life. PRS mice also showed an increased binding of DNMT1 and MeCP2, and an increase in 5-methylcytosine and 5-hydroxymethylcytosine in specific CpG-rich regions of the reelin and GAD67 promoters. Thus, the epigenetic changes in PRS mice are similar to changes observed in the post-mortem brains of psychiatric patients. Behaviorally, adult PRS mice showed hyperactivity and deficits in social interaction, prepulse inhibition, and fear conditioning that were corrected by administration of valproic acid (a histone deacetylase inhibitor) or clozapine (an

  19. Loss of dopamine D2 receptors increases parvalbumin-positive interneurons in the anterior cingulate cortex.

    PubMed

    Graham, Devon L; Durai, Heather H; Garden, Jamie D; Cohen, Evan L; Echevarria, Franklin D; Stanwood, Gregg D

    2015-02-18

    Disruption to dopamine homeostasis during brain development has been implicated in a variety of neuropsychiatric disorders, including depression and schizophrenia. Inappropriate expression or activity of GABAergic interneurons are common features of many of these disorders. We discovered a persistent upregulation of GAD67+ and parvalbumin+ neurons within the anterior cingulate cortex of dopamine D2 receptor knockout mice, while other GABAergic interneuron markers were unaffected. Interneuron distribution and number were not altered in the striatum or in the dopamine-poor somatosensory cortex. The changes were already present by postnatal day 14, indicating a developmental etiology. D2eGFP BAC transgenic mice demonstrated the presence of D2 receptor expression within a subset of parvalbumin-expressing cortical interneurons, suggesting the possibility of a direct cellular mechanism through which D2 receptor stimulation regulates interneuron differentiation or survival. D2 receptor knockout mice also exhibited decreased depressive-like behavior compared with wild-type controls in the tail suspension test. These data indicate that dopamine signaling modulates interneuron number and emotional behavior and that developmental D2 receptor loss or blockade could reveal a potential mechanism for the prodromal basis of neuropsychiatric disorders. PMID:25393953

  20. Loss of Dopamine D2 Receptors Increases Parvalbumin-Positive Interneurons in the Anterior Cingulate Cortex

    PubMed Central

    2015-01-01

    Disruption to dopamine homeostasis during brain development has been implicated in a variety of neuropsychiatric disorders, including depression and schizophrenia. Inappropriate expression or activity of GABAergic interneurons are common features of many of these disorders. We discovered a persistent upregulation of GAD67+ and parvalbumin+ neurons within the anterior cingulate cortex of dopamine D2 receptor knockout mice, while other GABAergic interneuron markers were unaffected. Interneuron distribution and number were not altered in the striatum or in the dopamine-poor somatosensory cortex. The changes were already present by postnatal day 14, indicating a developmental etiology. D2eGFP BAC transgenic mice demonstrated the presence of D2 receptor expression within a subset of parvalbumin-expressing cortical interneurons, suggesting the possibility of a direct cellular mechanism through which D2 receptor stimulation regulates interneuron differentiation or survival. D2 receptor knockout mice also exhibited decreased depressive-like behavior compared with wild-type controls in the tail suspension test. These data indicate that dopamine signaling modulates interneuron number and emotional behavior and that developmental D2 receptor loss or blockade could reveal a potential mechanism for the prodromal basis of neuropsychiatric disorders. PMID:25393953

  1. Impaired Action Potential Initiation in GABAergic Interneurons Causes Hyperexcitable Networks in an Epileptic Mouse Model Carrying a Human NaV1.1 Mutation

    PubMed Central

    Hedrich, Ulrike B.S.; Liautard, Camille; Kirschenbaum, Daniel; Pofahl, Martin; Lavigne, Jennifer; Liu, Yuanyuan; Theiss, Stephan; Slotta, Johannes; Escayg, Andrew; Dihné, Marcel; Beck, Heinz

    2014-01-01

    Mutations in SCN1A and other ion channel genes can cause different epileptic phenotypes, but the precise mechanisms underlying the development of hyperexcitable networks are largely unknown. Here, we present a multisystem analysis of an SCN1A mouse model carrying the NaV1.1-R1648H mutation, which causes febrile seizures and epilepsy in humans. We found a ubiquitous hypoexcitability of interneurons in thalamus, cortex, and hippocampus, without detectable changes in excitatory neurons. Interestingly, somatic Na+ channels in interneurons and persistent Na+ currents were not significantly changed. Instead, the key mechanism of interneuron dysfunction was a deficit of action potential initiation at the axon initial segment that was identified by analyzing action potential firing. This deficit increased with the duration of firing periods, suggesting that increased slow inactivation, as recorded for recombinant mutated channels, could play an important role. The deficit in interneuron firing caused reduced action potential-driven inhibition of excitatory neurons as revealed by less frequent spontaneous but not miniature IPSCs. Multiple approaches indicated increased spontaneous thalamocortical and hippocampal network activity in mutant mice, as follows: (1) more synchronous and higher-frequency firing was recorded in primary neuronal cultures plated on multielectrode arrays; (2) thalamocortical slices examined by field potential recordings revealed spontaneous activities and pathological high-frequency oscillations; and (3) multineuron Ca2+ imaging in hippocampal slices showed increased spontaneous neuronal activity. Thus, an interneuron-specific generalized defect in action potential initiation causes multisystem disinhibition and network hyperexcitability, which can well explain the occurrence of seizures in the studied mouse model and in patients carrying this mutation. PMID:25378155

  2. Tin chloride enhances parvalbumin-positive interneuron survival by modulating heme metabolism in a model of cerebral ischemia.

    PubMed

    Li Volti, Giovanni; Zappalà, Agata; Leggio, Gian Marco; Mazzola, Carmen; Drago, Filippo; La Delia, Francesco; Serapide, Maria Francesca; Pellitteri, Rosalia; Giannone, Ignazio; Spatuzza, Michela; Cicirata, Valentina; Cicirata, Federico

    2011-03-29

    SnCl(2) has been reported to increase the expression of heme-oxygenase 1 (HO-1), a major antioxidant enzyme, and to decrease ischemic injury, in non-nervous tissues. This study examined the neuroprotective effect of SnCl(2) in the hippocampus of rats submitted to cerebral ischemia. SnCl(2) was administered 18 h before bilateral carotids obstruction. Changes in HO-1 expression and activity, heme content, inducible nitric oxide synthase (iNOS) expression and parvalbumin positive interneuron survival were studied. Thereafter both behavior and memory recovery were tested. The administration of SnCl(2) increased the expression of HO-1 protein and HO activity in the hippocampus and concomitantly decreased heme content at both mitochondrial and nuclear level. Furthermore, ischemized animals showed a strong increase in iNOS expression in the hippocampus, where a loss of parvalbumin positive interneurons also occurred. Pre-treatment with SnCl(2), decreased both iNOS expression in ischemized rats and increased cell survival. The beneficial effects of SnCl(2) were prevented by concomitant treatment with SnMP, a strong inhibitor of HO activity. SnCl(2) also caused an improvement in short term memory recovery. Our results showed that following SnCl(2) administration, HO-1 is strongly induced in the hippocampus and modulate iNOS expression, resulting in a strong neuroprotective effect. PMID:21276833

  3. GABAergic and glycinergic interneuron expression during spinal cord development: dynamic interplay between inhibition and excitation in the control of ventral network outputs.

    PubMed

    Sibilla, Sara; Ballerini, Laura

    2009-09-01

    A key objective of neuroscience research is to understand the processes leading to mature neural circuitries in the central nervous system (CNS) that enable the control of different behaviours. During development, network-constitutive neurons undergo dramatic rearrangements, involving their intrinsic properties, such as the blend of ion channels governing their firing activity, and their synaptic interactions. The spinal cord is no exception to this rule; in fact, in the ventral horn the maturation of motor networks into functional circuits is a complex process where several mechanisms cooperate to achieve the development of motor control. Elucidating such a process is crucial in identifying neurons more vulnerable to degenerative or traumatic diseases or in developing new strategies aimed at rebuilding damaged tissue. The focus of this review is on recent advances in understanding the spatio-temporal expression of the glycinergic/GABAergic system and on the contribution of this system to early network function and to motor pattern transformation along with spinal maturation. During antenatal development, the operation of mammalian spinal networks strongly depends on the activity of glycinergic/GABAergic neurons, whose action is often excitatory until shortly before birth when locomotor networks acquire the ability to generate alternating motor commands between flexor and extensor motor neurons. At this late stage of prenatal development, GABA-mediated excitation is replaced by synaptic inhibition mediated by glycine and/or GABA. At this stage of spinal maturation, the large majority of GABAergic neurons are located in the dorsal horn. We propose that elucidating the role of inhibitory systems in development will improve our knowledge on the processes regulating spinal cord maturation. PMID:19539686

  4. Subtype-selective electroporation of cortical interneurons

    PubMed Central

    De Marco Garcia, Natalia V.; Fishell, Gord

    2014-01-01

    The study of central nervous system (CNS) maturation relies on genetic targeting of neuronal populations. However, the task of restricting the expression of genes of interest to specific neuronal subtypes has proven remarkably challenging due to the relative scarcity of specific promoter elements. GABAergic interneurons constitute a neuronal population with extensive genetic and morphological diversity. Indeed, more than 11 different subtypes of GABAergic interneurons have been characterized in the mouse cortex1. Here we present an adapted protocol for selective targeting of GABAergic populations. We achieved subtype-selective targeting of GABAergic interneurons by using the enhancer element of the homeobox transcription factors Dlx5 and Dlx6, homologues of the Drosophila distal-less (Dll) gene2,3, to drive the expression of specific genes through in utero electroporation. PMID:25177832

  5. Genetic dissection of GABAergic neural circuits in mouse neocortex

    PubMed Central

    Taniguchi, Hiroki

    2014-01-01

    Diverse and flexible cortical functions rely on the ability of neural circuits to perform multiple types of neuronal computations. GABAergic inhibitory interneurons significantly contribute to this task by regulating the balance of activity, synaptic integration, spiking, synchrony, and oscillation in a neural ensemble. GABAergic interneurons display a high degree of cellular diversity in morphology, physiology, connectivity, and gene expression. A considerable number of subtypes of GABAergic interneurons diversify modes of cortical inhibition, enabling various types of information processing in the cortex. Thus, comprehensively understanding fate specification, circuit assembly, and physiological function of GABAergic interneurons is a key to elucidate the principles of cortical wiring and function. Recent advances in genetically encoded molecular tools have made a breakthrough to systematically study cortical circuitry at the molecular, cellular, circuit, and whole animal levels. However, the biggest obstacle to fully applying the power of these to analysis of GABAergic circuits was that there were no efficient and reliable methods to express them in subtypes of GABAergic interneurons. Here, I first summarize cortical interneuron diversity and current understanding of mechanisms, by which distinct classes of GABAergic interneurons are generated. I then review recent development in genetically encoded molecular tools for neural circuit research, and genetic targeting of GABAergic interneuron subtypes, particularly focusing on our recent effort to develop and characterize Cre/CreER knockin lines. Finally, I highlight recent success in genetic targeting of chandelier cells, the most unique and distinct GABAergic interneuron subtype, and discuss what kind of questions need to be addressed to understand development and function of cortical inhibitory circuits. PMID:24478631

  6. DEVELOPMENTAL HYPOTHYROIDISM REDUCES PARVALBUMIN EXPRESSION IN GABAERGIC NEURONS OF CORTEX AND HIPPOCAMPUS: IMMUNOHISTOCHEMICAL FINDINGS AND FUNCTIONAL CORRELATES.

    EPA Science Inventory

    GABAergic interneurons comprise the bulk of local inhibitory neuronal circuitry in cortex and hippocampus and a subpopulation of these interneurons contain the calcium binding protein, parvalbumin (PV). A previous report indicated that severe hypothyroidism reduced PV immunoreact...

  7. Survival of interneurons and parallel fiber synapses in a cerebellar cortex deprived of Purkinje cells: studies in the double mutant mouse Grid2Lc/+;Bax(-/-).

    PubMed

    Zanjani, S Hadi; Selimi, Fekrije; Vogel, Michael W; Haeberlé, Anne-Marie; Boeuf, Julien; Mariani, Jean; Bailly, Yannick J

    2006-08-01

    The Lurcher mutation in the Grid2 gene causes the cell autonomous death of virtually all cerebellar Purkinje cells and the target-related death of 90% of the granule cells and 60-75% of the olivary neurons. Inactivation of Bax, a pro-apoptotic gene of the Bcl-2 family, in heterozygous Lurcher mutants (Grid2Lc/+) rescues approximately 60% of the granule cells, but does not rescue Purkinje or olivary neurons. Given the larger size of the cerebellar molecular layer in Grid2Lc/+;Bax(-/-) double mutants compared to Grid2Lc/+ mutants, we analyzed the survival of the stellate and basket interneurons as well as the synaptic connectivity of parallel fibers originating from the surviving granule cells in the absence of their Purkinje cell targets in the Grid2Lc/+;Bax(-/-) cerebellum. Quantification showed a significantly higher density of interneurons ( approximately 60%) in the molecular layer of the Grid2Lc/+;Bax(-/-) mice compared to Grid2Lc/+, suggesting that interneurons are subject to a BAX-dependent target-related death in the Lurcher mutants. Furthermore, electron microscopy showed the normal ultrastructural aspect of a number of parallel fibers in the molecular layer of the Grid2Lc/+; Bax(-/-) double mutant mice and preserved their numerous synaptic contacts on interneurons, suggesting that interneurons could play a trophic role for axon terminals of surviving granule cells. Finally, parallel fibers varicosities in the double mutant established "pseudo-synapses" on glia as well as displayed autophagic profiles, suggesting that the connections established by the parallel fibers in the absence of their Purkinje cell targets were subject to a high turnover involving autophagy. PMID:16739195

  8. Duration of culture and sonic hedgehog signaling differentially specify PV versus SST cortical interneuron fates from embryonic stem cells

    PubMed Central

    Tyson, Jennifer A.; Goldberg, Ethan M.; Maroof, Asif M.; Xu, Qing; Petros, Timothy J.; Anderson, Stewart A.

    2015-01-01

    Medial ganglionic eminence (MGE)-derived GABAergic cortical interneurons (cINs) consist of multiple subtypes that are involved in many cortical functions. They also have a remarkable capacity to migrate, survive and integrate into cortical circuitry after transplantation into postnatal cortex. These features have engendered considerable interest in generating distinct subgroups of interneurons from pluripotent stem cells (PSCs) for the study of interneuron fate and function, and for the development of cell-based therapies. Although advances have been made, the capacity to generate highly enriched pools of subgroup fate-committed interneuron progenitors from PSCs has remained elusive. Previous studies have suggested that the two main MGE-derived interneuron subgroups – those expressing somatostatin (SST) and those expressing parvalbumin (PV) – are specified in the MGE from Nkx2.1-expressing progenitors at higher or lower levels of sonic hedgehog (Shh) signaling, respectively. To further explore the role of Shh and other factors in cIN fate determination, we generated a reporter line such that Nkx2.1-expressing progenitors express mCherry and postmitotic Lhx6-expressing MGE-derived interneurons express GFP. Manipulations of Shh exposure and time in culture influenced the subgroup fates of ESC-derived interneurons. Exposure to higher Shh levels, and collecting GFP-expressing precursors at 12 days in culture, resulted in the strongest enrichment for SST interneurons over those expressing PV, whereas the strongest enrichment for PV interneurons was produced by lower Shh and by collecting mCherry-expressing cells after 17 days in culture. These findings confirm that fate determination of cIN subgroups is crucially influenced by Shh signaling, and provide a system for the further study of interneuron fate and function. PMID:25804737

  9. Are Striatal Tyrosine Hydroxylase Interneurons Dopaminergic?

    PubMed Central

    Xenias, Harry S.; Ibáñez-Sandoval, Osvaldo; Koós, Tibor

    2015-01-01

    Striatal GABAergic interneurons that express the gene for tyrosine hydroxylase (TH) have been identified previously by several methods. Although generally assumed to be dopaminergic, possibly serving as a compensatory source of dopamine (DA) in Parkinson's disease, this assumption has never been tested directly. In TH–Cre mice whose nigrostriatal pathway had been eliminated unilaterally with 6-hydroxydopamine, we injected a Cre-dependent virus coding for channelrhodopsin-2 and enhanced yellow fluorescent protein unilaterally into the unlesioned midbrain or bilaterally into the striatum. Fast-scan cyclic voltammetry in striatal slices revealed that both optical and electrical stimulation readily elicited DA release in control striata but not from contralateral striata when nigrostriatal neurons were transduced. In contrast, neither optical nor electrical stimulation could elicit striatal DA release in either the control or lesioned striata when the virus was injected directly into the striatum transducing only striatal TH interneurons. This demonstrates that striatal TH interneurons do not release DA. Fluorescence immunocytochemistry in enhanced green fluorescent protein (EGFP)–TH mice revealed colocalization of DA, l-amino acid decarboxylase, the DA transporter, and vesicular monoamine transporter-2 with EGFP in midbrain dopaminergic neurons but not in any of the striatal EGFP–TH interneurons. Optogenetic activation of striatal EGFP–TH interneurons produced strong GABAergic inhibition in all spiny neurons tested. These results indicate that striatal TH interneurons are not dopaminergic but rather are a type of GABAergic interneuron that expresses TH but none of the other enzymes or transporters necessary to operate as dopaminergic neurons and exert widespread GABAergic inhibition onto direct and indirect spiny neurons. PMID:25904808

  10. Electrical coupling regulates layer 1 interneuron microcircuit formation in the neocortex.

    PubMed

    Yao, Xing-Hua; Wang, Min; He, Xiang-Nan; He, Fei; Zhang, Shu-Qing; Lu, Wenlian; Qiu, Zi-Long; Yu, Yong-Chun

    2016-01-01

    The coexistence of electrical and chemical synapses among interneurons is essential for interneuron function in the neocortex. However, it remains largely unclear whether electrical coupling between interneurons influences chemical synapse formation and microcircuit assembly during development. Here, we show that electrical and GABAergic chemical connections robustly develop between interneurons in neocortical layer 1 over a similar time course. Electrical coupling promotes action potential generation and synchronous firing between layer 1 interneurons. Furthermore, electrically coupled interneurons exhibit strong GABA-A receptor-mediated synchronous synaptic activity. Disruption of electrical coupling leads to a loss of bidirectional, but not unidirectional, GABAergic connections. Moreover, a reduction in electrical coupling induces an increase in excitatory synaptic inputs to layer 1 interneurons. Together, these findings strongly suggest that electrical coupling between neocortical interneurons plays a critical role in regulating chemical synapse development and precise formation of circuits. PMID:27510304

  11. Electrical coupling regulates layer 1 interneuron microcircuit formation in the neocortex

    PubMed Central

    Yao, Xing-Hua; Wang, Min; He, Xiang-Nan; He, Fei; Zhang, Shu-Qing; Lu, Wenlian; Qiu, Zi-Long; Yu, Yong-Chun

    2016-01-01

    The coexistence of electrical and chemical synapses among interneurons is essential for interneuron function in the neocortex. However, it remains largely unclear whether electrical coupling between interneurons influences chemical synapse formation and microcircuit assembly during development. Here, we show that electrical and GABAergic chemical connections robustly develop between interneurons in neocortical layer 1 over a similar time course. Electrical coupling promotes action potential generation and synchronous firing between layer 1 interneurons. Furthermore, electrically coupled interneurons exhibit strong GABA-A receptor-mediated synchronous synaptic activity. Disruption of electrical coupling leads to a loss of bidirectional, but not unidirectional, GABAergic connections. Moreover, a reduction in electrical coupling induces an increase in excitatory synaptic inputs to layer 1 interneurons. Together, these findings strongly suggest that electrical coupling between neocortical interneurons plays a critical role in regulating chemical synapse development and precise formation of circuits. PMID:27510304

  12. Firing regulation of fast-spiking interneurons by autaptic inhibition

    NASA Astrophysics Data System (ADS)

    Guo, Daqing; Chen, Mingming; Perc, Matjaž; Wu, Shengdun; Xia, Chuan; Zhang, Yangsong; Xu, Peng; Xia, Yang; Yao, Dezhong

    2016-05-01

    Fast-spiking (FS) interneurons in the brain are self-innervated by powerful inhibitory GABAergic autaptic connections. By computational modelling, we investigate how autaptic inhibition regulates the firing response of such interneurons. Our results indicate that autaptic inhibition both boosts the current threshold for action potential generation and modulates the input-output gain of FS interneurons. The autaptic transmission delay is identified as a key parameter that controls the firing patterns and determines multistability regions of FS interneurons. Furthermore, we observe that neuronal noise influences the firing regulation of FS interneurons by autaptic inhibition and extends their dynamic range for encoding inputs. Importantly, autaptic inhibition modulates noise-induced irregular firing of FS interneurons, such that coherent firing appears at an optimal autaptic inhibition level. Our results reveal the functional roles of autaptic inhibition in taming the firing dynamics of FS interneurons.

  13. Persistent Hyperactivity of Hippocampal Dentate Interneurons After a Silent Period in the Rat Pilocarpine Model of Epilepsy

    PubMed Central

    Wang, Xiaochen; Song, Xinyu; Wu, Lin; Nadler, J. Victor; Zhan, Ren-Zhi

    2016-01-01

    Profile of GABAergic interneuron activity after pilocarpine-induced status epilepticus (SE) was examined in the rat hippocampal dentate gyrus by analyzing immediate early gene expression and recording spontaneous firing at near resting membrane potential (REM). SE for exact 2 h or more than 2 h was induced in the male Sprague-Dawley rats by an intraperitoneal injection of pilocarpine. Expression of immediate early genes (IEGs) was examined at 1 h, 1 week, 2 weeks or more than 10 weeks after SE. For animals to be examined at 1 h after SE, SE lasted for exact 2 h was terminated by an intraperitoneal injection of diazepam. Spontaneous firing at near the REM was recorded in interneurons located along the border between the granule cell layer and the hilus more than 10 weeks after SE. Results showed that both c-fos and activity-regulated cytoskeleton associated protein (Arc) in hilar GABAergic interneurons were up-regulated after SE in a biphasic manner; they were increased at 1 h and more than 2 weeks, but not at 1 week after SE. Ten weeks after SE, nearly 60% of hilar GABAergic cells expressed c-fos. With the exception of calretinin (CR)-positive cells, percentages of hilar neuronal nitric oxide synthase (nNOS)-, neuropeptide Y (NPY)-, parvalbumin (PV)-, and somatostatin (SOM)-positive cells with c-fos expression are significantly higher than those of controls more than 10 weeks after SE. Without the REM to be more depolarizing and changed threshold potential level in SE-induced rats, cell-attached recording revealed that nearly 90% of hilar interneurons fired spontaneously at near the REM while only 22% of the same cell population did so in the controls. In conclusion, pilocarpine-induced SE eventually leads to a state in which surviving dentate GABAergic interneurons become hyperactive with a subtype-dependent manner; this implies that a fragile balance between excitation and inhibition exists in the dentate gyrus and in addition, the activity-dependent up

  14. A dynamic zone defines interneuron remodeling in the adult neocortex

    PubMed Central

    Lee, Wei-Chung Allen; Chen, Jerry L.; Huang, Hayden; Leslie, Jennifer H.; Amitai, Yael; So, Peter T.; Nedivi, Elly

    2008-01-01

    The contribution of structural remodeling to long-term adult brain plasticity is unclear. Here, we investigate features of GABAergic interneuron dendrite dynamics and extract clues regarding its potential role in cortical function and circuit plasticity. We show that remodeling interneurons are contained within a “dynamic zone” corresponding to a superficial strip of layers 2/3, and remodeling dendrites respect the lower border of this zone. Remodeling occurs primarily at the periphery of dendritic fields with addition and retraction of new branch tips. We further show that dendrite remodeling is not intrinsic to a specific interneuron class. These data suggest that interneuron remodeling is not a feature predetermined by genetic lineage, but rather, it is imposed by cortical laminar circuitry. Our findings are consistent with dynamic GABAergic modulation of feedforward and recurrent connections in response to top-down feedback and suggest a structural component to functional plasticity of supragranular neocortical laminae. PMID:19066223

  15. Revisiting enigmatic cortical calretinin-expressing interneurons

    PubMed Central

    Cauli, Bruno; Zhou, Xiaojuan; Tricoire, Ludovic; Toussay, Xavier; Staiger, Jochen F.

    2014-01-01

    Cortical calretinin (CR)-expressing interneurons represent a heterogeneous subpopulation of about 10–30% of GABAergic interneurons, which altogether total ca. 12–20% of all cortical neurons. In the rodent neocortex, CR cells display different somatodendritic morphologies ranging from bipolar to multipolar but the bipolar cells and their variations dominate. They are also diverse at the molecular level as they were shown to express numerous neuropeptides in different combinations including vasoactive intestinal polypeptide (VIP), cholecystokinin (CCK), neurokinin B (NKB) corticotrophin releasing factor (CRF), enkephalin (Enk) but also neuropeptide Y (NPY) and somatostatin (SOM) to a lesser extent. CR-expressing interneurons exhibit different firing behaviors such as adapting, bursting or irregular. They mainly originate from the caudal ganglionic eminence (CGE) but a subpopulation also derives from the dorsal part of the medial ganglionic eminence (MGE). Cortical GABAergic CR-expressing interneurons can be divided in two main populations: VIP-bipolar interneurons deriving from the CGE and SOM-Martinotti-like interneurons originating in the dorsal MGE. Although bipolar cells account for the majority of CR-expressing interneurons, the roles they play in cortical neuronal circuits and in the more general metabolic physiology of the brain remained elusive and enigmatic. The aim of this review is, firstly, to provide a comprehensive view of the morphological, molecular and electrophysiological features defining this cell type. We will, secondly, also summarize what is known about their place in the cortical circuit, their modulation by subcortical afferents and the functional roles they might play in neuronal processing and energy metabolism. PMID:25009470

  16. Hippocampal gamma-frequency oscillations: from interneurones to pyramidal cells, and back.

    PubMed

    Mann, Edward O; Radcliffe, Catrin A; Paulsen, Ole

    2005-01-01

    GABAergic interneurones are necessary for the emergence of hippocampal gamma-frequency network oscillations, during which they play a key role in the synchronization of pyramidal cell firing. However, it remains to be resolved how distinct interneurone subtypes contribute to gamma-frequency oscillations, in what way the spatiotemporal pattern of interneuronal input affects principal cell activity, and by which mechanisms the interneurones themselves are synchronized. Here we summarize recent evidence from cholinergically induced gamma-frequency network oscillations in vitro, showing that perisomatic-targeting GABAergic interneurones provide prominent rhythmic inhibition in pyramidal cells, and that these interneurones are synchronized by recurrent excitation. We conclude by presenting a minimal integrate-and-fire network model which demonstrates that this excitatory-inhibitory feedback loop is sufficient to explain the generation of intrahippocampal gamma-frequency oscillations. PMID:15539391

  17. Interneuron Progenitor Transplantation to Treat CNS Dysfunction

    PubMed Central

    Chohan, Muhammad O.; Moore, Holly

    2016-01-01

    Due to the inadequacy of endogenous repair mechanisms diseases of the nervous system remain a major challenge to scientists and clinicians. Stem cell based therapy is an exciting and viable strategy that has been shown to ameliorate or even reverse symptoms of CNS dysfunction in preclinical animal models. Of particular importance has been the use of GABAergic interneuron progenitors as a therapeutic strategy. Born in the neurogenic niches of the ventral telencephalon, interneuron progenitors retain their unique capacity to disperse, integrate and induce plasticity in adult host circuitries following transplantation. Here we discuss the potential of interneuron based transplantation strategies as it relates to CNS disease therapeutics. We also discuss mechanisms underlying their therapeutic efficacy and some of the challenges that face the field. PMID:27582692

  18. Laterodorsal tegmentum interneuron subtypes oppositely regulate olfactory cue-induced innate fear.

    PubMed

    Yang, Hongbin; Yang, Junhua; Xi, Wang; Hao, Sijia; Luo, Benyan; He, Xiaobin; Zhu, Liya; Lou, Huifang; Yu, Yan-qin; Xu, Fuqiang; Duan, Shumin; Wang, Hao

    2016-02-01

    Innate fear has a critical role in survival of animals. Unlike conditioned fear, the neuronal circuitry underlying innate fear is largely unknown. We found that the laterodorsal tegmentum (LDT) and lateral habenula (LHb) are specifically activated by the mouse predator odorant trimethylthiazoline (TMT). Using optogenetics to selectively stimulate GABAergic neurons in the LDT immediately produced fear-like responses (freezing, accelerated heart rate and increased serum corticosterone), whereas prolonged stimulation caused anxiety-like behaviors. Notably, although selective stimulation of parvalbumin (PV)-positive interneurons similarly induced fear-like responses, stimulation of somatostatin-positive interneurons or inhibition of PV neurons in the LDT suppressed TMT-induced fear-like responses without affecting conditioned fear. Finally, activation of LHb glutamatergic inputs to LDT interneurons was sufficient to generate fear-like responses. Thus, the LHb-LDT pathway is important for regulating olfactory cue-induced innate fear. Our results provide a potential target for therapeutic intervention for anxiety disorder. PMID:26727549

  19. Distribution of GABAergic cells in the inferior colliculus that project to the thalamus

    PubMed Central

    Mellott, Jeffrey G.; Foster, Nichole L.; Nakamoto, Kyle T.; Motts, Susan D.; Schofield, Brett R.

    2014-01-01

    A GABAergic component has been identified in the projection from the inferior colliculus (IC) to the medial geniculate body (MG) in cats and rats. We sought to determine if this GABAergic pathway exists in guinea pig, a species widely used in auditory research. The guinea pig IC contains GABAergic cells, but their relative abundance in the IC and their relative contributions to tectothalamic projections are unknown. We identified GABAergic cells with immunochemistry for glutamic acid decarboxylase (GAD) and determined that ~21% of IC neurons are GABAergic. We then combined retrograde tracing with GAD immunohistochemistry to identify the GABAergic tectothalamic projection. Large injections of Fast Blue, red fluorescent beads or FluoroGold were deposited to include all subdivisions of the MG. The results demonstrate a GABAergic pathway from each IC subdivision to the ipsilateral MG. GABAergic cells constitute ~22% of this ipsilateral pathway. In addition, each subdivision of the IC had a GABAergic projection to the contralateral MG. Measured by number of tectothalamic cells, the contralateral projection is about 10% of the size of the ipsilateral projection. GABAergic cells constitute about 20% of the contralateral projection. In summary, the results demonstrate a tectothalamic projection in guinea pigs that originates in part from GABAergic cells that project ipsilaterally or contralaterally to the MG. The results show similarities to both rats and cats, and carry implications for the role of GABAergic tectothalamic projections vis-à-vis the presence (in cats) or near absence (in rats and guinea pigs) of GABAergic interneurons in the MG. PMID:24744703

  20. Interneurons from Embryonic Development to Cell-Based Therapy

    PubMed Central

    Southwell, Derek G.; Nicholas, Cory R.; Basbaum, Allan I.; Stryker, Michael P.; Kriegstein, Arnold R.; Rubenstein, John L.; Alvarez-Buylla, Arturo

    2014-01-01

    Many neurologic and psychiatric disorders are marked by imbalances between neural excitation and inhibition. In the cerebral cortex, inhibition is mediated largely by GABAergic (γ-aminobutyric acid–secreting) interneurons, a cell type that originates in the embryonic ventral telencephalon and populates the cortex through long-distance tangential migration. Remarkably, when transplanted from embryos or in vitro culture preparations, immature interneurons disperse and integrate into host brain circuits, both in the cerebral cortex and in other regions of the central nervous system. These features make interneuron transplantation a powerful tool for the study of neurodevelopmental processes such as cell specification, cell death, and cortical plasticity. Moreover, interneuron transplantation provides a novel strategy for modifying neural circuits in rodent models of epilepsy, Parkinson’s disease, mood disorders, and chronic pain. PMID:24723614

  1. Striatal cholinergic interneurons drive GABA release from dopamine terminals

    PubMed Central

    Nelson, Alexandra B.; Hammack, Nora; Yang, Cindy F.; Shah, Nirao M.; Seal, Rebecca P.; Kreitzer, Anatol C.

    2014-01-01

    Summary Striatal cholinergic interneurons are implicated in motor control, associative plasticity, and reward-dependent learning. Synchronous activation of cholinergic interneurons triggers large inhibitory synaptic currents in dorsal striatal projection neurons, providing one potential substrate for control of striatal output, but the mechanism for these GABAergic currents is not fully understood. Using optogenetics and whole-cell recordings in brain slices, we find that a large component of these inhibitory responses derive from action-potential-independent disynaptic neurotransmission mediated by nicotinic receptors. Cholinergically-driven IPSCs were not affected by ablation of striatal fast-spiking interneurons, but were greatly reduced after acute treatment with vesicular monoamine transport inhibitors or selective destruction of dopamine terminals with 6-hydroxydopamine, indicating that GABA release originated from dopamine terminals. These results delineate a mechanism in which striatal cholinergic interneurons can co-opt dopamine terminals to drive GABA release and rapidly inhibit striatal output neurons. PMID:24613418

  2. Diversity of Cortical Interneurons in Primates: The Role of the Dorsal Proliferative Niche

    PubMed Central

    Radonjić, Nevena V.; Ayoub, Albert E.; Memi, Fani; Yu, Xiaojing; Maroof, Asif; Jakovcevski, Igor; Anderson, Stewart A.; Rakic, Pasko; Zecevic, Nada

    2015-01-01

    Summary Evolutionary elaboration of tissues starts with changes in the genome and location of the stem cells. For example, GABAergic interneurons of the mammalian neocortex are generated in the ventral telencephalon and migrate tangentially to the neocortex, in contrast to the projection neurons originating in the ventricular/subventricular zone (VZ/SVZ) of the dorsal telencephalon. In human and nonhuman primates, evidence suggests that an additional subset of neocortical GABAergic interneurons is generated in the cortical VZ and a proliferative niche, the outer SVZ. The origin, magnitude, and significance of this species-specific difference are not known. We use a battery of assays applicable to the human, monkey, and mouse organotypic cultures and supravital tissue to identify neuronal progenitors in the cortical VZ/SVZ niche that produce a subset of GABAergic interneurons. Our findings suggest that these progenitors constitute an evolutionary novelty contributing to the elaboration of higher cognitive functions in primates. PMID:25497090

  3. Diversity of cortical interneurons in primates: the role of the dorsal proliferative niche.

    PubMed

    Radonjić, Nevena V; Ayoub, Albert E; Memi, Fani; Yu, Xiaojing; Maroof, Asif; Jakovcevski, Igor; Anderson, Stewart A; Rakic, Pasko; Zecevic, Nada

    2014-12-24

    Evolutionary elaboration of tissues starts with changes in the genome and location of the stem cells. For example, GABAergic interneurons of the mammalian neocortex are generated in the ventral telencephalon and migrate tangentially to the neocortex, in contrast to the projection neurons originating in the ventricular/subventricular zone (VZ/SVZ) of the dorsal telencephalon. In human and nonhuman primates, evidence suggests that an additional subset of neocortical GABAergic interneurons is generated in the cortical VZ and a proliferative niche, the outer SVZ. The origin, magnitude, and significance of this species-specific difference are not known. We use a battery of assays applicable to the human, monkey, and mouse organotypic cultures and supravital tissue to identify neuronal progenitors in the cortical VZ/SVZ niche that produce a subset of GABAergic interneurons. Our findings suggest that these progenitors constitute an evolutionary novelty contributing to the elaboration of higher cognitive functions in primates. PMID:25497090

  4. GABAergic networks jump-start focal seizures.

    PubMed

    de Curtis, Marco; Avoli, Massimo

    2016-05-01

    Abnormally enhanced glutamatergic excitation is commonly believed to mark the onset of a focal seizure. This notion, however, is not supported by firm evidence, and it will be challenged here. A general reduction of unit firing has been indeed observed in association with low-voltage fast activity at the onset of seizures recorded during presurgical intracranial monitoring in patients with focal, drug-resistant epilepsies. Moreover, focal seizures in animal models start with increased γ-aminobutyric acid (GABA)ergic interneuronal activity that silences principal cells. In vitro studies have shown that synchronous activation of GABAA receptors occurs at seizure onset and causes sizeable elevations in extracellular potassium, thus facilitating neuronal recruitment and seizure progression. A paradoxical involvement of GABAergic networks is required for the initiation of focal seizures characterized by low-voltage fast activity, which represents the most common seizure-onset pattern in focal epilepsies. PMID:27061793

  5. Distinct behavioral consequences of short-term and prolonged GABAergic depletion in prefrontal cortex and dorsal hippocampus

    PubMed Central

    Reichel, Judith M.; Nissel, Sabine; Rogel-Salazar, Gabriela; Mederer, Anna; Käfer, Karola; Bedenk, Benedikt T.; Martens, Henrik; Anders, Rebecca; Grosche, Jens; Michalski, Dominik; Härtig, Wolfgang; Wotjak, Carsten T.

    2015-01-01

    GABAergic interneurons are essential for a functional equilibrium between excitatory and inhibitory impulses throughout the CNS. Disruption of this equilibrium can lead to various neurological or neuropsychiatric disorders such as epilepsy or schizophrenia. Schizophrenia itself is clinically defined by negative (e.g., depression) and positive (e.g., hallucinations) symptoms as well as cognitive dysfunction. GABAergic interneurons are proposed to play a central role in the etiology and progression of schizophrenia; however, the specific mechanisms and the time-line of symptom development as well as the distinct involvement of cortical and hippocampal GABAergic interneurons in the etiology of schizophrenia-related symptoms are still not conclusively resolved. Previous work demonstrated that GABAergic interneurons can be selectively depleted in adult mice by means of saporin-conjugated anti-vesicular GABA transporter antibodies (SAVAs) in vitro and in vivo. Given their involvement in schizophrenia-related disease etiology, we ablated GABAergic interneurons in the medial prefrontal cortex (mPFC) and dorsal hippocampus (dHPC) in adult male C57BL/6N mice. Subsequently we assessed alterations in anxiety, sensory processing, hyperactivity and cognition after long-term (>14 days) and short-term (<14 days) GABAergic depletion. Long-term GABAergic depletion in the mPFC resulted in a decrease in sensorimotor-gating and impairments in cognitive flexibility. Notably, the same treatment at the level of the dHPC completely abolished spatial learning capabilities. Short-term GABAergic depletion in the dHPC revealed a transient hyperactive phenotype as well as marked impairments regarding the acquisition of a spatial memory. In contrast, recall of a spatial memory was not affected by the same intervention. These findings emphasize the importance of functional local GABAergic networks for the encoding but not the recall of hippocampus-dependent spatial memories. PMID:25628548

  6. Mutual Control of Cholinergic and Low-Threshold Spike Interneurons in the Striatum

    PubMed Central

    Elghaba, Rasha; Vautrelle, Nicolas; Bracci, Enrico

    2016-01-01

    The striatum is the largest nucleus of the basal ganglia and is crucially involved in action selection and reward processing. Cortical and thalamic inputs to the striatum are processed by local networks in which several classes of interneurons play an important, but still poorly understood role. Here we investigated the interactions between cholinergic and low-threshold spike (LTS) interneurons. LTS interneurons were hyperpolarized by co-application of muscarinic and nicotinic receptor antagonists (atropine and mecamylamine, respectively). Mecamylamine alone also caused hyperpolarizations, while atropine alone caused depolarizations and increased firing. LTS interneurons were also under control of tonic GABA, as application of the GABAA receptor antagonist picrotoxin caused depolarizations and increased firing. Frequency of spontaneous GABAergic events in LTS interneurons was increased by co-application of atropine and mecamylamine or by atropine alone, but reduced by mecamylamine alone. In the presence of picrotoxin and tetrodotoxin (TTX), atropine and mecamylamine depolarized the LTS interneurons. We concluded that part of the excitatory effects of tonic acetylcholine (ACh) on LTS interneurons were due to cholinergic modulation of tonic GABA. We then studied the influence of LTS interneurons on cholinergic interneurons. Application of antagonists of somatostatin or neuropeptide Y (NPY) receptors or of an inhibitor of nitric oxide synthase (L-NAME) did not cause detectable effects in cholinergic interneurons. However, prolonged synchronized depolarizations of LTS interneurons (elicited with optogenetics tools) caused slow-onset depolarizations in cholinergic interneurons, which were often accompanied by strong action potential firing and were fully abolished by L-NAME. Thus, a mutual excitatory influence exists between LTS and cholinergic interneurons in the striatum, providing an opportunity for sustained activation of the two cell types. This activation may

  7. Extensive respiratory chain defects in inhibitory interneurones in patients with mitochondrial disease

    PubMed Central

    Lax, Nichola Z.; Grady, John; Laude, Alex; Chan, Felix; Hepplewhite, Philippa D.; Gorman, Grainne; Whittaker, Roger G.; Ng, Yi; Cunningham, Mark O.

    2015-01-01

    Aims Mitochondrial disorders are among the most frequently inherited cause of neurological disease and arise due to mutations in mitochondrial or nuclear DNA. Currently, we do not understand the specific involvement of certain brain regions or selective neuronal vulnerability in mitochondrial disease. Recent studies suggest γ‐aminobutyric acid (GABA)‐ergic interneurones are particularly susceptible to respiratory chain dysfunction. In this neuropathological study, we assess the impact of mitochondrial DNA defects on inhibitory interneurones in patients with mitochondrial disease. Methods Histochemical, immunohistochemical and immunofluorescent assays were performed on post‐mortem brain tissue from 10 patients and 10 age‐matched control individuals. We applied a quantitative immunofluorescent method to interrogate complex I and IV protein expression in mitochondria within GABAergic interneurone populations in the frontal, temporal and occipital cortices. We also evaluated the density of inhibitory interneurones in serial sections to determine if cell loss was occurring. Results We observed significant, global reductions in complex I expression within GABAergic interneurones in frontal, temporal and occipital cortices in the majority of patients. While complex IV expression is more variable, there is reduced expression in patients harbouring m.8344A>G point mutations and POLG mutations. In addition to the severe respiratory chain deficiencies observed in remaining interneurones, quantification of GABAergic cell density showed a dramatic reduction in cell density suggesting interneurone loss. Conclusions We propose that the combined loss of interneurones and severe respiratory deficiency in remaining interneurones contributes to impaired neuronal network oscillations and could underlie development of neurological deficits, such as cognitive impairment and epilepsy, in mitochondrial disease. PMID:25786813

  8. GABA interneurons mediate the rapid antidepressant-like effects of scopolamine.

    PubMed

    Wohleb, Eric S; Wu, Min; Gerhard, Danielle M; Taylor, Seth R; Picciotto, Marina R; Alreja, Meenakshi; Duman, Ronald S

    2016-07-01

    Major depressive disorder (MDD) is a recurring psychiatric illness that causes substantial health and socioeconomic burdens. Clinical reports have revealed that scopolamine, a nonselective muscarinic acetylcholine receptor antagonist, produces rapid antidepressant effects in individuals with MDD. Preclinical models suggest that these rapid antidepressant effects can be recapitulated with blockade of M1-type muscarinic acetylcholine receptors (M1-AChR); however, the cellular mechanisms underlying activity-dependent synaptic and behavioral responses to scopolamine have not been determined. Here, we demonstrate that the antidepressant-like effects of scopolamine are mediated by GABA interneurons in the medial prefrontal cortex (mPFC). Both GABAergic (GAD67+) interneurons and glutamatergic (CaMKII+) interneurons in the mPFC expressed M1-AChR. In mice, viral-mediated knockdown of M1-AChR specifically in GABAergic neurons, but not glutamatergic neurons, in the mPFC attenuated the antidepressant-like effects of scopolamine. Immunohistology and electrophysiology showed that somatostatin (SST) interneurons in the mPFC express M1-AChR at higher levels than parvalbumin interneurons. Moreover, knockdown of M1-AChR in SST interneurons in the mPFC demonstrated that M1-AChR expression in these neurons is required for the rapid antidepressant-like effects of scopolamine. These data indicate that SST interneurons in the mPFC are a promising pharmacological target for developing rapid-acting antidepressant therapies. PMID:27270172

  9. Developmental origin dictates interneuron AMPA and NMDA receptor subunit composition and plasticity

    PubMed Central

    Matta, Jose A; Pelkey, Kenneth A; Craig, Michael T; Chittajallu, Ramesh; Jeffries, Brian W; McBain, Chris J

    2014-01-01

    Disrupted excitatory synapse maturation in GABAergic interneurons may promote neuropsychiatric disorders such as schizophrenia. However, establishing developmental programs for nascent synapses in GABAergic cells is confounded by their sparsity, heterogeneity and late acquisition of subtype-defining characteristics. We investigated synaptic development in mouse interneurons targeting cells by lineage from medial ganglionic eminence (MGE) or caudal ganglionic eminence (CGE) progenitors. MGE-derived interneuron synapses were dominated by GluA2-lacking AMPA-type glutamate receptors (AMPARs), with little contribution from NMDA-type receptors (NMDARs) throughout development. In contrast, CGE-derived cell synapses had large NMDAR components and used GluA2-containing AMPARs. In neonates, both MGE- and CGE-derived interneurons expressed primarily GluN2B subunit–containing NMDARs, which most CGE-derived interneurons retained into adulthood. However, MGE-derived interneuron NMDARs underwent a GluN2B-to-GluN2A switch that could be triggered acutely with repetitive synaptic activity. Our findings establish ganglionic eminence–dependent rules for early synaptic integration programs of distinct interneuron cohorts, including parvalbumin- and cholecystokinin-expressing basket cells. PMID:23852113

  10. GABAergic control of depression-related brain states

    PubMed Central

    Luscher, Bernhard; Fuchs, Thomas

    2016-01-01

    The GABAergic deficit hypothesis of major depressive disorders posits that reduced GABA concentration in brain, impaired function of GABAergic interneurons, altered expression and function of GABAA receptors, and changes in GABAergic transmission dictated by altered chloride homeostasis can contribute to the etiology of Major Depressive Disorder (MDD). Conversely, the hypothesis posits that the efficacy of currently used antidepressants is determined by their ability to enhance GABAergic neurotransmission. We here provide an update for corresponding evidence from studies of patients and preclinical animal models of depression. In addition, we propose an explanation for the continued lack of genetic evidence that explains the considerable heritability of MDD. Lastly, we discuss how alterations in GABAergic transmission are integral to other hypotheses of MDD that emphasize (i) the role of monoaminergic deficits, (ii) stress-based etiologies, (iii) neurotrophic deficits, and (iv) the neurotoxic and neural circuit-impairing consequences of chronic excesses of glutamate. We propose that altered GABAergic transmission serves as a common denominator of MDD that can account for all these other hypotheses and that plays a causal and common role in diverse mechanistic etiologies of depressive brain states and in the mechanism of action of current antidepressant drug therapies. PMID:25637439

  11. Development of the GABAergic system from birth to adolescence.

    PubMed

    Kilb, Werner

    2012-12-01

    The neurotransmitter GABA (γ-aminobutyric acid), acting via inotropic GABA(A) and metabotropic GABA(B) receptors, plays an essential role in a variety of distinct neuronal processes, including regulation of neuronal excitability, determination of temporal aspects of spike trains, control of the size and propagation of neuronal assemblies, generation of oscillatory activity, and neuronal plasticity. Although the developmental switch between excitatory and inhibitory GABA(A) receptor-mediated responses is widely appreciated, the fact that the postnatal maturation of the GABAergic system lasts until late adolescence is not so persuasively promoted. This review summarizes recent knowledge of the maturation of various aspects of the GABAergic systems, like functional expression of GABA synthesizing/degrading enzymes and transporters, density of GABAergic synapses, GABAergic projection patterns, GABA receptor subunit composition, and properties of GABAergic interneurons, with an emphasis on the late developmental alterations. In addition, some aspects of the development of mental capabilities during adolescence and their relation the delayed maturation of the GABAergic system are presented. PMID:21952258

  12. GABAergic control of depression-related brain states.

    PubMed

    Luscher, Bernhard; Fuchs, Thomas

    2015-01-01

    The GABAergic deficit hypothesis of major depressive disorders (MDDs) posits that reduced γ-aminobutyric acid (GABA) concentration in brain, impaired function of GABAergic interneurons, altered expression and function of GABA(A) receptors, and changes in GABAergic transmission dictated by altered chloride homeostasis can contribute to the etiology of MDD. Conversely, the hypothesis posits that the efficacy of currently used antidepressants is determined by their ability to enhance GABAergic neurotransmission. We here provide an update for corresponding evidence from studies of patients and preclinical animal models of depression. In addition, we propose an explanation for the continued lack of genetic evidence that explains the considerable heritability of MDD. Lastly, we discuss how alterations in GABAergic transmission are integral to other hypotheses of MDD that emphasize (i) the role of monoaminergic deficits, (ii) stress-based etiologies, (iii) neurotrophic deficits, and (iv) the neurotoxic and neural circuit-impairing consequences of chronic excesses of glutamate. We propose that altered GABAergic transmission serves as a common denominator of MDD that can account for all these other hypotheses and that plays a causal and common role in diverse mechanistic etiologies of depressive brain states and in the mechanism of action of current antidepressant drug therapies. PMID:25637439

  13. OLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons

    PubMed Central

    Leão, Richardson N; Mikulovic, Sanja; Leão, Katarina E; Munguba, Hermany; Gezelius, Henrik; Enjin, Anders; Patra, Kalicharan; Eriksson, Anders; Loew, Leslie M.; Tort, Adriano BL; Kullander, Klas

    2012-01-01

    The vast diversity of GABAergic interneurons is believed to endow hippocampal microcircuits with the required flexibility for memory encoding and retrieval. However, dissection of the functional roles of defined interneuron types have been hampered by the lack of cell specific tools. Here we report a precise molecular marker for a population of hippocampal GABAergic interneurons known as oriens lacunosum-moleculare (OLM) cells. By combining novel transgenic mice and optogenetic tools, we demonstrate that OLM cells have a key role in gating the information flow in CA1, facilitating the transmission of intrahippocampal information (from CA3) while reducing the influence of extrahippocampal inputs (from the entorhinal cortex). We further demonstrate that OLM cells are interconnected by gap junctions, receive direct cholinergic inputs from subcortical afferents, and account for the effect of nicotine on synaptic plasticity of the Schaffer collateral pathway. Our results suggest that acetylcholine acting through OLM cells can control the mnemonic processes executed by the hippocampus. PMID:23042082

  14. Serotonin Attenuates Feedback Excitation onto O-LM Interneurons

    PubMed Central

    Böhm, Claudia; Pangalos, Maria; Schmitz, Dietmar; Winterer, Jochen

    2015-01-01

    The serotonergic system is a subcortical neuromodulatory center that controls cortical information processing in a state-dependent manner. In the hippocampus, serotonin (5-HT) is released by ascending serotonergic fibers from the midbrain raphe nuclei, thereby mediating numerous modulatory functions on various neuronal subtypes. Here, we focus on the neuromodulatory effects of 5-HT on GABAergic inhibitory oriens lacunosum-moleculare (O-LM) cells in the hippocampal area CA1 of the rat. These interneurons are thought to receive primarily local excitatory input and are, via their axonal projections to stratum lacunosum-moleculare, ideally suited to control entorhinal cortex input. We show that 5-HT reduces excitatory glutamatergic transmission onto O-LM interneurons. By means of paired recordings from synaptically connected CA1 pyramidal cells and O-LM interneurons we reveal that this synapse is modulated by 5-HT. Furthermore, we demonstrate that the reduction of glutamatergic transmission by serotonin is likely to be mediated via a decrease of calcium influx into presynaptic terminals of CA1 pyramidal cells. This modulation of excitatory synaptic transmission onto O-LM interneurons by 5-HT might be a mechanism to vary the activation of O-LM interneurons during ongoing network activity and serve as a brain state-dependent switch gating the efficiency of entorhinal cortex input to CA1 pyramidal neurons. PMID:26021702

  15. Behavior-dependent specialization of identified hippocampal interneurons

    PubMed Central

    Lapray, Damien; Lasztoczi, Balint; Lagler, Michael; Viney, Tim James; Katona, Linda; Valenti, Ornella; Hartwich, Katja; Borhegyi, Zsolt; Somogyi, Peter; Klausberger, Thomas

    2012-01-01

    A large variety of GABAergic interneurons control information processing in hippocampal circuits governing the formation of neuronal representations. Whether distinct hippocampal interneuron types contribute differentially to information-processing during behavior is not known. We employed a novel technique for recording and labeling interneurons and pyramidal cells in drug-free, freely-moving rats. Recorded parvalbumin-expressing basket interneurons innervate somata and proximal pyramidal cell dendrites, whereas nitric-oxide-synthase- and neuropeptide-Y-expressing ivy cells provide synaptic and extrasynaptic dendritic modulation. Basket and ivy cells showed distinct spike timing dynamics, firing at different rates and times during theta and ripple oscillations. Basket but not ivy cells changed their firing rates during movement, sleep and quiet wakefulness, suggesting that basket cells coordinate cell assemblies in a behavioral state-contingent manner, whereas persistently-firing ivy cells might control network excitability and homeostasis. Different interneuron types provide GABA to specific subcellular domains at defined times and rates, thus differentially controlling network activity during behavior. PMID:22864613

  16. Feedforward and Feedback inhibition in Neostriatal GABAergic Spiny Neurons

    PubMed Central

    Tepper, James M.; Wilson, Charles J.; Koós, Tibor

    2008-01-01

    There are two distinct inhibitory GABAergic circuits in the neostriatum. The feedforward circuit consists of a relatively small population of GABAergic interneurons that receives excitatory input from the neocortex and exerts monosynaptic inhibition onto striatal spiny projection neurons. The feedback circuit comprises the numerous spiny projection neurons and their interconnections via local axon collaterals. This network has long been assumed to provide the majority of striatal GABAergic inhibition and to sharpen and shape striatal output through lateral inhibition, producing increased activity in the most strongly excited spiny cells at the expense of their less strongly excited neighbors. Recent results, mostly from recording experiments of synaptically connected pairs of neurons, have revealed that the two GABAergic circuits differ markedly in terms of the total number of synapses made by each, the strength of the postsynaptic response detected at the soma, the extent of presynaptic convergence and divergence and the net effect of the activation of each circuit on the postsynaptic activity of the spiny neuron. These data have revealed that the feedforward inhibition is powerful and widespread, with spiking in a single interneuron being capable of significantly delaying or even blocking the generation of spikes in a large number of postsynaptic spiny neurons. In contrast, the postsynaptic effects of spiking in a single presynaptic spiny neuron on postsynaptic spiny neurons are weak when measured at the soma, and unable to significantly affect spike timing or generation. Further, reciprocity of synaptic connections between spiny neurons is only rarely observed. These results suggest that the bulk of the fast inhibition that has the strongest effects on spiny neuron spike timing comes from the feedforward interneuronal system whereas the axon collateral feedback system acts principally at the dendrites to control local excitability as well as the overall level of

  17. Maternal Immune Activation Leads to Selective Functional Deficits in Offspring Parvalbumin Interneurons

    PubMed Central

    Canetta, Sarah; Bolkan, Scott; Padilla-Coreano, Nancy; Song, LouJin; Sahn, Ryan; Harrison, Neil; Gordon, Joshua A.; Brown, Alan; Kellendonk, Christoph

    2015-01-01

    Summary Abnormalities in prefrontal GABAergic transmission, particularly in fast-spiking interneurons that express parvalbumin (PV), are hypothesized to contribute to the pathophysiology of multiple psychiatric disorders including schizophrenia, bipolar disorder, anxiety disorders and depression. While primarily histological abnormalities have been observed in patients and in animal models of psychiatric disease, evidence for abnormalities in functional neurotransmission at the level of specific interneuron populations has been lacking in animal models and is difficult to establish in human patients. Using an animal model of a psychiatric disease risk factor, prenatal maternal immune activation (MIA), we found reduced functional GABAergic transmission in the medial prefrontal cortex (mPFC) of adult MIA offspring. Decreased transmission was selective for interneurons expressing PV, and was not observed in calretinin-expressing neurons. This deficit in PV function in MIA offspring was associated with increased anxiety-like behavior and impairments in attentional set shifting, but did not affect working memory. Furthermore, cell-type specific optogenetic inhibition of mPFC PV interneurons was sufficient to impair attentional set shifting and enhance anxiety levels. Finally, we found that in vivo mPFC gamma oscillations, which are supported by PV interneuron function, were linearly correlated with the degree of anxiety displayed in adult mice, and that this correlation was disrupted in MIA offspring. These results demonstrate a selective functional vulnerability of PV interneurons to maternal immune activation, leading to affective and cognitive symptoms that have high relevance for schizophrenia and other psychiatric disorders. PMID:26830140

  18. Selective Depletion of Molecularly Defined Cortical Interneurons in Human Holoprosencephaly with Severe Striatal Hypoplasia

    PubMed Central

    Fertuzinhos, Sofia; Krsnik, Željka; Kawasawa, Yuka Imamura; Rašin, Mladen-Roko; Kwan, Kenneth Y.; Chen, Jie-Guang; Judaš, Miloš; Hayashi, Masaharu; Šestan, Nenad

    2009-01-01

    Cortical excitatory glutamatergic projection neurons and inhibitory GABAergic interneurons follow substantially different developmental programs. In rodents, projection neurons originate from progenitors within the dorsal forebrain, whereas interneurons arise from progenitors in the ventral forebrain. In contrast, it has been proposed that in humans, the majority of cortical interneurons arise from progenitors within the dorsal forebrain, suggesting that their origin and migration is complex and evolutionarily divergent. However, whether molecularly defined human cortical interneuron subtypes originate from distinct progenitors, including those in the ventral forebrain, remains unknown. Furthermore, abnormalities in cortical interneurons have been linked to human disorders, yet no distinct cell population selective loss has been reported. Here we show that cortical interneurons expressing nitric oxide synthase 1, neuropeptide Y, and somatostatin, are either absent or substantially reduced in fetal and infant cases of human holoprosencephaly (HPE) with severe ventral forebrain hypoplasia. Notably, another interneuron subtype normally abundant from the early fetal period, marked by calretinin expression, and different subtypes of projection neuron were present in the cortex of control and HPE brains. These findings have important implications for the understanding of neuronal pathogenesis underlying the clinical manifestations associated with HPE and the developmental origins of human cortical interneuron diversity. PMID:19234067

  19. Postnatal development of GABAergic signalling in the rat lateral geniculate nucleus: presynaptic dendritic mechanisms

    PubMed Central

    Perreault, Marie-Claude; Qin, Yi; Heggelund, Paul; Zhu, J Julius

    2003-01-01

    Diverse forms of GABAergic inhibition are found in the mature brain. To understand how this diversity develops, we studied the changes in morphology of inhibitory interneurons and changes in interneuron-mediated synaptic transmission in the rat dorsal lateral geniculate nucleus (dLGN). We found a steady expansion of the dendritic tree of interneurons over the first three postnatal weeks. During this period, the area around a thalamocortical cell from which GABAA inhibition could be elicited also expanded. Dendritic branching and burst firing in interneurons evolved more slowly. The distal dendrites of interneurons began to branch extensively after the third week, and at the same time burst firing appeared. The appearance of burst firing and an elaborated dendritic tree were accompanied by a pronounced GABAB inhibition of thalamocortical cells. Thus, GABA inhibition of thalamocortical cells developed from one type of GABAA inhibition (spatially restricted) in the young animal into two distinct types of GABAA inhibition (short- and long-range) and GABAB inhibition in the adult animal. The close temporal relationships between the development of the diverse forms of inhibition and the postnatal changes in morphology of local GABAergic interneurons in the dLGN suggest that postnatal dendritic maturation is an important presynaptic factor for the developmental time course of the various types of feedforward inhibition in thalamus. PMID:12509484

  20. Fluoxetine impairs GABAergic signaling in hippocampal slices from neonatal rats

    PubMed Central

    Caiati, Maddalena D.; Cherubini, Enrico

    2013-01-01

    Fluoxetine (Prozac), an antidepressant known to selectively inhibit serotonin reuptake, is widely used to treat mood disorders in women suffering from depression during pregnancy and postpartum period. Several lines of evidence suggest that this drug, which crosses the human placenta and is secreted into milk during lactation, exerts its action not only by interfering with serotoninergic but also with GABAergic transmission. GABA is known to play a crucial role in the construction of neuronal circuits early in postnatal development. The immature hippocampus is characterized by an early type of network activity, the so-called Giant Depolarizing Potentials (GDPs), generated by the synergistic action of glutamate and GABA, both depolarizing and excitatory. Here we tested the hypothesis that fluoxetine may interfere with GABAergic signaling during the first postnatal week, thus producing harmful effects on brain development. At micromolar concentrations fluoxetine severely depressed GDPs frequency (IC50 22 μM) in a reversible manner and independently of its action on serotonin reuptake. This effect was dependent on a reduced GABAergic (but not glutamatergic) drive to principal cells most probably from parvalbumin-positive fast spiking neurons. Cholecystokinin-positive GABAergic interneurons were not involved since the effects of the drug persisted when cannabinoid receptors were occluded with WIN55,212-2, a CB1/CB2 receptor agonist. Fluoxetine effects on GABAergic transmission were associated with a reduced firing rate of both principal cells and interneurons further suggesting that changes in network excitability account for GDPs disruption. This may have critical consequences on the functional organization and stabilization of neuronal circuits early in postnatal development. PMID:23641199

  1. Stimulation of α1-adrenoceptors facilitates GABAergic transmission onto pyramidal neurons in the medial prefrontal cortex.

    PubMed

    Luo, F; Tang, H; Cheng, Z-Y

    2015-08-01

    Whereas activation of α1-adrenoceptors (α1-ARs) modulates glutamatergic transmission, the roles of α1-ARs in GABAergic transmission in the medial prefrontal cortex (mPFC) are elusive. Here, we examined the effects of the α1-AR agonist phenylephrine (Phe) on GABAergic transmission onto pyramidal neurons in the deep layers of the mPFC. We found that bath application of Phe dose-dependently increased the amplitude of evoked IPSCs (eIPSCs). Phe increased the frequency but not the amplitude of miniature IPSCs (mIPSCs). Ca(2+) influx through T-type voltage-gated calcium channels is required for Phe-induced increases in GABA release. Phe increases GABA release probability and the number of releasable vesicles. Phe depolarizes the fast-spiking (FS) interneurons without effects on the firing rate of action potentials (APs) of interneurons. Phe-induced depolarization is independent of extracellular Na(+), Ca(2+) and T-type calcium channels, but requires inward rectifier K(+) channels (Kirs). The present study demonstrates that Phe enhances GABAergic transmission onto mPFC pyramidal neurons through inhibiting interneurons Kirs, which further depolarizes interneurons leading to increase in Ca(2+) influx via T-type calcium channels. Our results may provide a cellular and molecular mechanism that helps explain α1-AR-induced PFC dysfunction. PMID:25943480

  2. Genetic disruption of Met signaling impairs GABAergic striatal development and cognition.

    PubMed

    Martins, G J; Shahrokh, M; Powell, E M

    2011-03-10

    The largest structure of the basal ganglia, the striatum, modulates motor activity and cognitive function and is composed of GABAergic projection neurons and interneurons. To better understand the mechanisms underlying the development of the striatal neurons and their assembly into functional circuits, we used a mouse with a targeted conditional Met mutation in post-mitotic cells of the ventral telencephalon. Characterization of the ontogeny of the striatal neuronal populations demonstrated that disruption of Met signaling specifically altered the GABAergic interneurons. Medium spiny neurons (MSNs) and cholinergic interneurons were largely unaffected. Mice lacking Met signaling have increased numbers of striatal GABAergic interneurons in the lateral sensorimotor areas with distinct behavioral deficits. Motor function and memory formation and consolidation appeared intact, but procedural learning on the cued task of the Morris water maze was delayed. MET is a susceptibility gene in Tourette syndrome and autism, which are human disorders with impaired procedural learning. This study reveals how a striatal targeted disruption in Met signaling after generation of striatal neurons produces behavioral phenotypes shared by Tourette syndrome and autism, linking the human genetics with the mechanism underlying the disorders. PMID:21195751

  3. Taurine activates GABAergic networks in the neocortex of immature mice

    PubMed Central

    Sava, Bogdan A.; Chen, Rongqing; Sun, Haiyan; Luhmann, Heiko J.; Kilb, Werner

    2014-01-01

    Although it has been suggested that taurine is the main endogenous neurotransmitter acting on glycine receptors, the implications of glycine receptor-mediated taurine actions on immature neocortical networks have not been addressed yet. To investigate the influence of taurine on the excitability of neuronal networks in the immature neocortex, we performed whole-cell patch-clamp recordings from visually identified pyramidal neurons and interneurons in coronal slices from C57Bl/6 and GAD67-green fluorescent protein (GFP) transgenic mice (postnatal days 2–4). In 46% of the pyramidal neurons bath-application of taurine at concentrations ≥ 300 μM significantly enhanced the frequency of postsynaptic currents (PSCs) by 744.3 ± 93.8% (n = 120 cells). This taurine-induced increase of PSC frequency was abolished by 0.2 μM tetrodotoxin (TTX), 1 μM strychnine or 3 μM gabazine, but was unaffected by the glutamatergic antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and (±) R(-)-3-(2-carboxypiperazine-4-yl)-propyl-1-phosphonic acid (CPP), suggesting that taurine specifically activates GABAergic network activity projecting to pyramidal neurons. Cell-attached recordings revealed that taurine enhanced the frequency of action potentials (APs) in pyramidal neurons, indicating an excitatory action of the GABAergic PSCs. In order to identify the presynaptic targets of taurine we demonstrate that bath application of taurine induced in GAD67-GFP labeled interneurons an inward current that is mainly mediated by glycine receptors and can generate APs in these cells. We conclude from these results that taurine can enhance network excitability in the immature neocortex by selectively activating GABAergic interneurons via interactions with glycine receptors. PMID:24550782

  4. The role of cannabinoid 1 receptor expressing interneurons in behavior

    PubMed Central

    Brown, Jacquelyn A.; Horváth, Szatmár; Garbett, Krassimira; Schmidt, Martin J.; Everheart, Monika; Gellért, Levente; Ebert, Philip; Mirnics, Károly

    2013-01-01

    Schizophrenia is a devastating neurodevelopmental disorder that affects approximately 1% of the population. Reduced expression of the 67-kD a protein isoform of glutamic acid decarboxylase (GAD67), is a hallmark of the disease, and is encoded by the GAD1 gene. In schizophrenia, GAD67 downregulation occurs in multiple interneuronal subpopulations, including the cannabinoid receptor type 1 positive (CNR1+) cells, but the functional consequences of these disturbances are not well understood. To investigate the role of the CNR1-positive GABA-ergic interneurons in behavioral and molecular processes, we employed a novel, miRNA-mediated transgenic mouse approach. We silenced the Gad1 transcript using a miRNA engineered to specifically target Gad1 mRNA under the control of Cnr1 bacterial artificial chromosome. Behavioral characterization of our transgenic mice showed elevated and persistent conditioned fear associated with an auditory cue and a significantly altered response to an amphetamine challenge. These deficits could not be attributed to sensory deficits or changes in baseline learning and memory. Furthermore, HPLC analyses revealed that Cnr1/Gad1 mice have enhanced serotonin levels, but not dopamine levels in response to amphetamine. Our findings demonstrate that dysfunction of a small subset of interneurons can have a profound effect on behavior and that the GABA-ergic, monoamine, and cannabinoid systems are functionally interconnected. The results also suggest that understanding the function of various interneuronal subclasses might be essential to develop knowledge-based treatment strategies for various mental disorders including schizophrenia and substance abuse. PMID:24239560

  5. Targeted ablation of cholinergic interneurons in the dorsolateral striatum produces behavioral manifestations of Tourette syndrome

    PubMed Central

    Xu, Meiyu; Kobets, Andrew; Du, Jung-Chieh; Lennington, Jessica; Li, Lina; Banasr, Mounira; Duman, Ronald S.; Vaccarino, Flora M.; DiLeone, Ralph J.; Pittenger, Christopher

    2015-01-01

    Gilles de la Tourette syndrome (TS) is characterized by tics, which are transiently worsened by stress, acute administration of dopaminergic drugs, and by subtle deficits in motor coordination and sensorimotor gating. It represents the most severe end of a spectrum of tic disorders that, in aggregate, affect ∼5% of the population. Available treatments are frequently inadequate, and the pathophysiology is poorly understood. Postmortem studies have revealed a reduction in specific striatal interneurons, including the large cholinergic interneurons, in severe disease. We tested the hypothesis that this deficit is sufficient to produce aspects of the phenomenology of TS, using a strategy for targeted, specific cell ablation in mice. We achieved ∼50% ablation of the cholinergic interneurons of the striatum, recapitulating the deficit observed in patients postmortem, without any effect on GABAergic markers or on parvalbumin-expressing fast-spiking interneurons. Interneuron ablation in the dorsolateral striatum (DLS), corresponding roughly to the human putamen, led to tic-like stereotypies after either acute stress or d-amphetamine challenge; ablation in the dorsomedial striatum, in contrast, did not. DLS interneuron ablation also led to a deficit in coordination on the rotorod, but not to any abnormalities in prepulse inhibition, a measure of sensorimotor gating. These results support the causal sufficiency of cholinergic interneuron deficits in the DLS to produce some, but not all, of the characteristic symptoms of TS. PMID:25561540

  6. Physiological Properties of Supragranular Cortical Inhibitory Interneurons Expressing Retrograde Persistent Firing

    PubMed Central

    Imbrosci, Barbara; Neitz, Angela; Mittmann, Thomas

    2015-01-01

    Neurons are polarized functional units. The somatodendritic compartment receives and integrates synaptic inputs while the axon relays relevant synaptic information in form of action potentials (APs) across long distance. Despite this well accepted notion, recent research has shown that, under certain circumstances, the axon can also generate APs independent of synaptic inputs at axonal sites distal from the soma. These ectopic APs travel both toward synaptic terminals and antidromically toward the soma. This unusual form of neuronal communication seems to preferentially occur in cortical inhibitory interneurons following a period of intense neuronal activity and might have profound implications for neuronal information processing. Here we show that trains of ectopically generated APs can be induced in a large portion of neocortical layer 2/3 GABAergic interneurons following a somatic depolarization inducing hundreds of APs. Sparsely occurring ectopic spikes were also observed in a large portion of layer 1 interneurons even in absence of prior somatic depolarization. Remarkably, we found that interneurons which produce ectopic APs display specific membrane and morphological properties significantly different from the remaining GABAergic cells and may therefore represent a functionally unique interneuronal subpopulation. PMID:25763283

  7. The parvalbumin-positive interneurons in the mouse dentate gyrus express GABAA receptor subunits α1, β2, and δ along their extrasynaptic cell membrane.

    PubMed

    Milenkovic, I; Vasiljevic, M; Maurer, D; Höger, H; Klausberger, T; Sieghart, W

    2013-12-19

    Neuronal circuitries in the hippocampus are involved in navigation and memory and are controlled by major networks of GABAergic interneurons. Parvalbumin (PV)-expressing interneurons in the dentate gyrus (DG) are identified as fast-spiking cells, playing a crucial role in network oscillation and synchrony. The inhibitory modulation of these interneurons is thought to be mediated mainly through GABAA receptors, the major inhibitory neurotransmitter receptors in the brain. Here we show that all PV-positive interneurons in the granular/subgranular layer (GL/SGL) of the mouse DG express high levels of the GABAA receptor δ subunit. PV-containing interneurons in the hilus and the molecular layer, however, express the δ subunit to a lower extent. Only 8% of the somatostatin-containing interneurons express the δ subunit, whereas calbindin- or calretinin-containing interneurons in the DG seem not to express the GABAA receptor δ subunit at all. Hence, these cells receive a GABAergic control different from that of PV-containing interneurons in the GL/SGL. Experiments investigating a possible co-expression of GABAA receptor α1, α2, α3, α4, α5, β1, β2, β3, or γ2 subunits with PV and δ subunits indicated that α1 and β2 subunits are co-expressed with δ subunits along the extrasynaptic membranes of PV-interneurons. These results suggest a robust tonic GABAergic control of PV-containing interneurons in the GL/SGL of the DG via δ subunit-containing receptors. Our data are important for better understanding of the neuronal circuitries in the DG and the role of specific cell types under pathological conditions. PMID:24055402

  8. Akting up in the GABA hypothesis of schizophrenia: Akt1 deficiency modulates GABAergic functions and hippocampus-dependent functions.

    PubMed

    Chang, Chia-Yuan; Chen, Yi-Wen; Wang, Tsu-Wei; Lai, Wen-Sung

    2016-01-01

    Accumulating evidence implies that both AKT1 and GABAA receptor (GABAAR) subunit genes are involved in schizophrenia pathogenesis. Activated Akt promotes GABAergic neuron differentiation and increases GABAAR expression on the plasma membrane. To elucidate the role of Akt1 in modulating GABAergic functions and schizophrenia-related cognitive deficits, a set of 6 in vitro and in vivo experiments was conducted. First, an Akt1/2 inhibitor was applied to evaluate its effect on GABAergic neuron-like cell formation from P19 cells. Inhibiting Akt resulted in a reduction in parvalbumin-positive neuron-like cells. In Akt1(-/-) and wild-type mice, seizures induced using pentylenetetrazol (a GABAAR antagonist) were measured, and GABAAR expression and GABAergic interneuron abundance in the brain were examined. Female Akt1(-/-) mice, but not male Akt1(-/-) mice, exhibited less pentylenetetrazol-induced convulsive activity than their corresponding wild-type controls. Reduced parvalbumin-positive interneuron abundance and GABAAR subunit expression, especially in the hippocampus, were also observed in female Akt1(-/-) mice compared to female wild-type mice. Neuromorphometric analyses revealed significantly reduced neurite complexity in hippocampal pyramidal neurons. Additionally, female Akt1(-/-) mice displayed increased hippocampal oscillation power and impaired spatial memory compared to female wild-type mice. Our findings suggest that Akt1 deficiency modulates GABAergic interneurons and GABAAR expression, contributing to hippocampus-dependent cognitive functional impairment. PMID:27615800

  9. Impaired synaptic plasticity in the prefrontal cortex of mice with developmentally decreased number of interneurons.

    PubMed

    Konstantoudaki, X; Chalkiadaki, K; Tivodar, S; Karagogeos, D; Sidiropoulou, K

    2016-05-13

    Interneurons are inhibitory neurons, which protect neural tissue from excessive excitation. They are interconnected with glutamatergic pyramidal neurons in the cerebral cortex and regulate their function. Particularly in the prefrontal cortex (PFC), interneurons have been strongly implicated in regulating pathological states which display deficits in the PFC. The aim of this study is to investigate the adaptations in the adult glutamatergic system, when defects in interneuron development do not allow adequate numbers of interneurons to reach the cerebral cortex. To this end, we used a mouse model that displays ∼50% fewer cortical interneurons due to the Rac1 protein loss from Nkx2.1/Cre expressing cells (Rac1 conditional knockout (cKO) mice), to examine how the developmental loss of interneurons may affect basal synaptic transmission, synaptic plasticity and neuronal morphology in the adult PFC. Despite the decrease in the number of interneurons, basal synaptic transmission, as examined by recording field excitatory postsynaptic potentials (fEPSPs) from layer II networks, is not altered in the PFC of Rac1 cKO mice. However, there is decreased paired-pulse ratio (PPR) and decreased long-term potentiation (LTP), in response to tetanic stimulation, in the layer II PFC synapses of Rac1 cKO mice. Furthermore, expression of N-methyl-d-aspartate (NMDA) subunits is decreased and dendritic morphology is altered, changes that could underlie the decrease in LTP in the Rac1 cKO mice. Finally, we find that treating Rac1 cKO mice with diazepam in early postnatal life can reverse changes in dendritic morphology observed in non-treated Rac1 cKO mice. Therefore, our data show that disruption in GABAergic inhibition alters glutamatergic function in the adult PFC, an effect that could be reversed by enhancement of GABAergic function during an early postnatal period. PMID:26926965

  10. The vulnerability of calretinin-containing hippocampal interneurons to temporal lobe epilepsy

    PubMed Central

    Tóth, Kinga; Maglóczky, Zsófia

    2014-01-01

    This review focuses on the vulnerability of a special interneuron type—the calretinin (CR)-containing interneurons—in temporal lobe epilepsy (TLE). CR is a calcium-binding protein expressed mainly by GABAergic interneurons in the hippocampus. Despite their morphological heterogeneity, CR-containing interneurons form a distinct subpopulation of inhibitory cells, innervating other interneurons in rodents and to some extent principal cells in the human. Their dendrites are strongly connected by zona adherentiae and presumably by gap junctions both in rats and humans. CR-containing interneurons are suggested to play a key role in the hippocampal inhibitory network, since they can effectively synchronize dendritic inhibitory interneurons. The sensitivity of CR-expressing interneurons to epilepsy was discussed in several reports, both in animal models and in humans. In the sclerotic hippocampus the density of CR-immunopositive cells is decreased significantly. In the non-sclerotic hippocampus, the CR-containing interneurons are preserved, but their dendritic tree is varicose, segmented, and zona-adherentia-type contacts can be less frequently observed among dendrites. Therefore, the dendritic inhibition of pyramidal cells may be less effective in TLE. This can be partially explained by the impairment of the CR-containing interneuron ensemble in the epileptic hippocampus, which may result in an asynchronous and thus less effective dendritic inhibition of the principal cells. This phenomenon, together with the sprouting of excitatory pathway axons and enhanced innervation of principal cells, may be involved in seizure generation. Preventing the loss of CR-positive cells and preserving the integrity of CR-positive dendrite gap junctions may have antiepileptic effects, maintaining proper inhibitory function and helping to protect principal cells in epilepsy. PMID:25324731

  11. Forebrain GABAergic neuron precursors integrate into adult spinal cord and reduce injury-induced neuropathic pain

    PubMed Central

    Bráz, JM; Sharif-Naeini, R; Vogt, D; Kriegstein, A; Alvarez-Buylla, A; Rubenstein, JL; Basbaum, AI

    2012-01-01

    Neuropathic pain is a chronic debilitating disease characterized by mechanical allodynia and spontaneous pain. Because symptoms are often unresponsive to conventional methods of pain treatment, new therapeutic approaches are essential. Here, we describe a strategy that not only ameliorates symptoms of neuropathic pain, but is also potentially disease modifying. We show that transplantation of immature telencephalic GABAergic interneurons from the mouse medial ganglionic eminence (MGE) into the adult mouse spinal cord completely reverses the mechanical hypersensitivity produced by peripheral nerve injury. Underlying this improvement is a remarkable integration of the MGE transplants into the host spinal cord circuitry, in which the transplanted cells make functional connections with both primary afferent and spinal cord neurons. By contrast, MGE transplants were not effective against inflammatory pain. Our findings suggest that MGE-derived GABAergic interneurons overcome the spinal cord hyperexcitability that is a hallmark of nerve-injury induced neuropathic pain. PMID:22632725

  12. Fast-spiking interneurons have an initial orientation bias that is lost with vision

    PubMed Central

    Kuhlman, Sandra J.; Tring, Elaine; Trachtenberg, Joshua T.

    2011-01-01

    We find that following eye opening fast-spiking parvalbumin-positive GABAergic interneurons in mice have well-defined orientation tuning preferences and that subsequent visual experience broadens this tuning. Broad inhibitory tuning is not required for the developmental sharpening of excitatory tuning, but does precede binocular matching of orientation tuning. We propose that the experience-dependent broadening of inhibition is a novel candidate for opening the critical period. PMID:21750548

  13. Dopamine modulation of GABAergic function enables network stability and input selectivity for sustaining working memory in a computational model of the prefrontal cortex.

    PubMed

    Lew, Sergio E; Tseng, Kuei Y

    2014-12-01

    Dopamine modulation of GABAergic transmission in the prefrontal cortex (PFC) is thought to be critical for sustaining cognitive processes such as working memory and decision-making. Here, we developed a neurocomputational model of the PFC that includes physiological features of the facilitatory action of dopamine on fast-spiking interneurons to assess how a GABAergic dysregulation impacts on the prefrontal network stability and working memory. We found that a particular non-linear relationship between dopamine transmission and GABA function is required to enable input selectivity in the PFC for the formation and retention of working memory. Either degradation of the dopamine signal or the GABAergic function is sufficient to elicit hyperexcitability in pyramidal neurons and working memory impairments. The simulations also revealed an inverted U-shape relationship between working memory and dopamine, a function that is maintained even at high levels of GABA degradation. In fact, the working memory deficits resulting from reduced GABAergic transmission can be rescued by increasing dopamine tone and vice versa. We also examined the role of this dopamine-GABA interaction for the termination of working memory and found that the extent of GABAergic excitation needed to reset the PFC network begins to occur when the activity of fast-spiking interneurons surpasses 40 Hz. Together, these results indicate that the capability of the PFC to sustain working memory and network stability depends on a robust interplay of compensatory mechanisms between dopamine tone and the activity of local GABAergic interneurons. PMID:24975022

  14. Colocalization of allatotropin and tachykinin-related peptides with classical transmitters in physiologically distinct subtypes of olfactory local interneurons in the cockroach (Periplaneta americana).

    PubMed

    Fusca, Debora; Schachtner, Joachim; Kloppenburg, Peter

    2015-07-01

    In the insect antennal lobe different types of local interneurons mediate complex excitatory and inhibitory interactions between the glomerular pathways to structure the spatiotemporal representation of odors. Mass spectrometric and immunohistochemical studies have shown that in local interneurons classical neurotransmitters are likely to colocalize with a variety of substances that can potentially act as cotransmitters or neuromodulators. In the antennal lobe of the cockroach Periplaneta americana, gamma-aminobutyric acid (GABA) has been identified as the potential inhibitory transmitter of spiking type I local interneurons, whereas acetylcholine is most likely the excitatory transmitter of nonspiking type IIa1 local interneurons. This study used whole-cell patch clamp recordings combined with single-cell labeling and immunohistochemistry to test if the GABAergic type I local interneurons and the cholinergic type IIa1 local interneurons express allatotropin and tachykinin-related neuropeptides (TKRPs). These are two of the most abundant types of peptides in the insect antennal lobe. GABA-like and choline acetyltransferase (ChAT)-like immunoreactivity were used as markers for GABAergic and cholinergic neurons, respectively. About 50% of the GABA-like immunoreactive (-lir) spiking type I local interneurons were allatotropin-lir, and ∼ 40% of these neurons were TKRP-lir. About 20% of nonspiking ChAT-lir type IIa1 local interneurons were TKRP-lir. Our results suggest that in subpopulations of GABAergic and cholinergic local interneurons, allatotropin and TKRPs might act as cotransmitters or neuromodulators. To unequivocally assign neurotransmitters, cotransmitters, and neuromodulators to identified classes of antennal lobe neurons is an important step to deepen our understanding of information processing in the insect olfactory system. PMID:25678036

  15. Excitatory effects of parvalbumin-expressing interneurons maintain hippocampal epileptiform activity via synchronous afterdischarges.

    PubMed

    Ellender, Tommas J; Raimondo, Joseph V; Irkle, Agnese; Lamsa, Karri P; Akerman, Colin J

    2014-11-12

    Epileptic seizures are characterized by periods of hypersynchronous, hyperexcitability within brain networks. Most seizures involve two stages: an initial tonic phase, followed by a longer clonic phase that is characterized by rhythmic bouts of synchronized network activity called afterdischarges (ADs). Here we investigate the cellular and network mechanisms underlying hippocampal ADs in an effort to understand how they maintain seizure activity. Using in vitro hippocampal slice models from rats and mice, we performed electrophysiological recordings from CA3 pyramidal neurons to monitor network activity and changes in GABAergic signaling during epileptiform activity. First, we show that the highest synchrony occurs during clonic ADs, consistent with the idea that specific circuit dynamics underlie this phase of the epileptiform activity. We then show that ADs require intact GABAergic synaptic transmission, which becomes excitatory as a result of a transient collapse in the chloride (Cl(-)) reversal potential. The depolarizing effects of GABA are strongest at the soma of pyramidal neurons, which implicates somatic-targeting interneurons in AD activity. To test this, we used optogenetic techniques to selectively control the activity of somatic-targeting parvalbumin-expressing (PV(+)) interneurons. Channelrhodopsin-2-mediated activation of PV(+) interneurons during the clonic phase generated excitatory GABAergic responses in pyramidal neurons, which were sufficient to elicit and entrain synchronous AD activity across the network. Finally, archaerhodopsin-mediated selective silencing of PV(+) interneurons reduced the occurrence of ADs during the clonic phase. Therefore, we propose that activity-dependent Cl(-) accumulation subverts the actions of PV(+) interneurons to perpetuate rather than terminate pathological network hyperexcitability during the clonic phase of seizures. PMID:25392490

  16. Interneurons and oligodendrocyte progenitors form a structured synaptic network in the developing neocortex

    PubMed Central

    Orduz, David; Maldonado, Paloma P; Balia, Maddalena; Vélez-Fort, Mateo; de Sars, Vincent; Yanagawa, Yuchio; Emiliani, Valentina; Angulo, Maria Cecilia

    2015-01-01

    NG2 cells, oligodendrocyte progenitors, receive a major synaptic input from interneurons in the developing neocortex. It is presumed that these precursors integrate cortical networks where they act as sensors of neuronal activity. We show that NG2 cells of the developing somatosensory cortex form a transient and structured synaptic network with interneurons that follows its own rules of connectivity. Fast-spiking interneurons, highly connected to NG2 cells, target proximal subcellular domains containing GABAA receptors with γ2 subunits. Conversely, non-fast-spiking interneurons, poorly connected with these progenitors, target distal sites lacking this subunit. In the network, interneuron-NG2 cell connectivity maps exhibit a local spatial arrangement reflecting innervation only by the nearest interneurons. This microcircuit architecture shows a connectivity peak at PN10, coinciding with a switch to massive oligodendrocyte differentiation. Hence, GABAergic innervation of NG2 cells is temporally and spatially regulated from the subcellular to the network level in coordination with the onset of oligodendrogenesis. DOI: http://dx.doi.org/10.7554/eLife.06953.001 PMID:25902404

  17. Highly energized inhibitory interneurons are a central element for information processing in cortical networks

    PubMed Central

    Kann, Oliver; Papageorgiou, Ismini E; Draguhn, Andreas

    2014-01-01

    Gamma oscillations (∼30 to 100 Hz) provide a fundamental mechanism of information processing during sensory perception, motor behavior, and memory formation by coordination of neuronal activity in networks of the hippocampus and neocortex. We review the cellular mechanisms of gamma oscillations about the underlying neuroenergetics, i.e., high oxygen consumption rate and exquisite sensitivity to metabolic stress during hypoxia or poisoning of mitochondrial oxidative phosphorylation. Gamma oscillations emerge from the precise synaptic interactions of excitatory pyramidal cells and inhibitory GABAergic interneurons. In particular, specialized interneurons such as parvalbumin-positive basket cells generate action potentials at high frequency (‘fast-spiking') and synchronize the activity of numerous pyramidal cells by rhythmic inhibition (‘clockwork'). As prerequisites, fast-spiking interneurons have unique electrophysiological properties and particularly high energy utilization, which is reflected in the ultrastructure by enrichment with mitochondria and cytochrome c oxidase, most likely needed for extensive membrane ion transport and γ-aminobutyric acid metabolism. This supports the hypothesis that highly energized fast-spiking interneurons are a central element for cortical information processing and may be critical for cognitive decline when energy supply becomes limited (‘interneuron energy hypothesis'). As a clinical perspective, we discuss the functional consequences of metabolic and oxidative stress in fast-spiking interneurons in aging, ischemia, Alzheimer's disease, and schizophrenia. PMID:24896567

  18. GDNF-based therapies, GDNF-producing interneurons, and trophic support of the dopaminergic nigrostriatal pathway. Implications for Parkinson’s disease

    PubMed Central

    d’Anglemont de Tassigny, Xavier; Pascual, Alberto; López-Barneo, José

    2015-01-01

    The glial cell line-derived neurotrophic factor (GDNF) is a well-established trophic agent for dopaminergic (DA) neurons in vitro and in vivo. GDNF is necessary for maintenance of neuronal morphological and neurochemical phenotype and protects DA neurons from toxic damage. Numerous studies on animal models of Parkinson’s disease (PD) have reported beneficial effects of GDNF on nigrostriatal DA neuron survival. However, translation of these observations to the clinical setting has been hampered so far by side effects associated with the chronic continuous intra-striatal infusion of recombinant GDNF. In addition, double blind and placebo-controlled clinical trials have not reported any clinically relevant effect of GDNF on PD patients. In the past few years, experiments with conditional Gdnf knockout mice have suggested that GDNF is necessary for maintenance of DA neurons in adulthood. In parallel, new methodologies for exogenous GDNF delivery have been developed. Recently, it has been shown that a small population of scattered, electrically interconnected, parvalbumin positive (PV+) GABAergic interneurons is responsible for most of the GDNF produced in the rodent striatum. In addition, cholinergic striatal interneurons appear to be also involved in the modulation of striatal GDNF. In this review, we summarize current knowledge on brain GDNF delivery, homeostasis, and its effects on nigrostriatal DA neurons. Special attention is paid to the therapeutic potential of endogenous GDNF stimulation in PD. PMID:25762899

  19. Neurogenesis and widespread forebrain migration of distinct GABAergic neurons from the postnatal subventricular zone

    PubMed Central

    Inta, Dragos; Alfonso, Julieta; von Engelhardt, Jakob; Kreuzberg, Maria M.; Meyer, Axel H.; van Hooft, Johannes A.; Monyer, Hannah

    2008-01-01

    Most forebrain GABAergic interneurons in rodents are born during embryonic development in the ganglionic eminences (GE) and migrate tangentially into the cortical plate. A subset, however, continues to be generated postnatally in the subventricular zone (SVZ). These interneurons populate the olfactory bulb (OB) reached via migration in the rostral migratory stream (RMS). Employing transgenic mice expressing EGFP in 5-HT3-positive neurons, we identified additional migratory pathways in the early postnatal brain. Time-lapse imaging experiments revealed massive migration of EGFP-positive cells from the SVZ into numerous forebrain regions, including cortex, striatum, and nucleus accumbens. The neuronal fate of the migratory EGFP-labeled cells was indicated by their doublecortin (DCX) expression. Birthdating experiments, by using 5-bromo-2′-deoxyuridine (BrdU) and retrovirus-based experiments, provided evidence that migrating neuroblasts were born in the SVZ postnatally and developed a distinct GABAergic phenotype. Our results demonstrate that the SVZ is a reservoir of GABAergic interneurons not only for the OB, but also for other cortical and subcortical areas. PMID:19095802

  20. Caudal Ganglionic Eminence Precursor Transplants Disperse and Integrate as Lineage-Specific Interneurons but Do Not Induce Cortical Plasticity.

    PubMed

    Larimer, Phillip; Spatazza, Julien; Espinosa, Juan Sebastian; Tang, Yunshuo; Kaneko, Megumi; Hasenstaub, Andrea R; Stryker, Michael P; Alvarez-Buylla, Arturo

    2016-08-01

    The maturation of inhibitory GABAergic cortical circuits regulates experience-dependent plasticity. We recently showed that the heterochronic transplantation of parvalbumin (PV) or somatostatin (SST) interneurons from the medial ganglionic eminence (MGE) reactivates ocular dominance plasticity (ODP) in the postnatal mouse visual cortex. Might other types of interneurons similarly induce cortical plasticity? Here, we establish that caudal ganglionic eminence (CGE)-derived interneurons, when transplanted into the visual cortex of neonatal mice, migrate extensively in the host brain and acquire laminar distribution, marker expression, electrophysiological properties, and visual response properties like those of host CGE interneurons. Although transplants from the anatomical CGE do induce ODP, we found that this plasticity reactivation is mediated by a small fraction of MGE-derived cells contained in the transplant. These findings demonstrate that transplanted CGE cells can successfully engraft into the postnatal mouse brain and confirm the unique role of MGE lineage neurons in the induction of ODP. PMID:27425623

  1. Heterogeneity and Bipotency of Astroglial-Like Cerebellar Progenitors along the Interneuron and Glial Lineages.

    PubMed

    Parmigiani, Elena; Leto, Ketty; Rolando, Chiara; Figueres-Oñate, María; López-Mascaraque, Laura; Buffo, Annalisa; Rossi, Ferdinando

    2015-05-13

    Cerebellar GABAergic interneurons in mouse comprise multiple subsets of morphologically and neurochemically distinct phenotypes located at strategic nodes of cerebellar local circuits. These cells are produced by common progenitors deriving from the ventricular epithelium during embryogenesis and from the prospective white matter (PWM) during postnatal development. However, it is not clear whether these progenitors are also shared by other cerebellar lineages and whether germinative sites different from the PWM originate inhibitory interneurons. Indeed, the postnatal cerebellum hosts another germinal site along the Purkinje cell layer (PCL), in which Bergmann glia are generated up to first the postnatal weeks, which was proposed to be neurogenic. Both PCL and PWM comprise precursors displaying traits of juvenile astroglia and neural stem cell markers. First, we examine the proliferative and fate potential of these niches, showing that different proliferative dynamics regulate progenitor amplification at these sites. In addition, PCL and PWM differ in the generated progeny. GABAergic interneurons are produced exclusively by PWM astroglial-like progenitors, whereas PCL precursors produce only astrocytes. Finally, through in vitro, ex vivo, and in vivo clonal analyses we provide evidence that the postnatal PWM hosts a bipotent progenitor that gives rise to both interneurons and white matter astrocytes. PMID:25972168

  2. Interneuron epigenomes during the critical period of cortical plasticity: Implications for schizophrenia.

    PubMed

    Morishita, Hirofumi; Kundakovic, Marija; Bicks, Lucy; Mitchell, Amanda; Akbarian, Schahram

    2015-10-01

    Schizophrenia, a major psychiatric disorder defined by delusions and hallucinations, among other symptoms, often with onset in early adulthood, is potentially associated with molecular and cellular alterations in parvalbumin-expressing fast spiking interneurons and other constituents of the cortical inhibitory GABAergic circuitry. The underlying mechanisms, including the role of disease-associated risk factors operating in adolescence such as drug abuse and social stressors, remain incompletely understood. Here, we summarize emerging findings from animal models, highlighting the ability of parvalbuminergic interneurons (PVI) to induce, during the juvenile period, long-term plastic changes in prefrontal and visual cortex, thereby altering perception, cognition and behavior in the adult. Of note, molecular alterations in PVI from subjects with schizophrenia, including downregulated expression of a subset of GABAergic genes, have also been found in juvenile stress models of the disorder. Some of the transcriptional alterations observed in schizophrenia postmortem brain could be linked to changes in the epigenetic architecture of GABAergic gene promoters, including dysregulated DNA methylation, histone modification patterns and disruption of promoter-enhancer interactions at site of chromosomal loop formations. Therefore, we predict that, in the not-to-distant future, PVI- and other cell-type specific epigenomic mappings in the animal model and human brain will provide novel insights into the pathophysiology of schizophrenia and related psychotic diseases, including the role of cortical GABAergic circuitry in shaping long-term plasticity and cognitive function of the cerebral cortex. PMID:25849095

  3. Opposing Dopaminergic and GABAergic Neurons Control the Duration and Persistence of Copulation in Drosophila

    PubMed Central

    Crickmore, Michael A.; Vosshall, Leslie B.

    2014-01-01

    SUMMARY Behavioral persistence is a major factor in determiningwhen and under which circumstances animals will terminate their current activity and transition into more profitable, appropriate, or urgent behavior. We show that, for the first 5 min of copulation in Drosophila, stressful stimuli do not interrupt mating, whereas 10 min later, even minor perturbations are sufficient to terminate copulation. This decline in persistence occurs as the probability of successful mating increases and is promoted by approximately eight sexually dimorphic, GABAergic interneurons of the male abdominal ganglion. When these interneurons were silenced, persistence increased and males copulated far longer than required for successful mating. When these interneurons were stimulated, persistence decreased and copulations were shortened. In contrast, dopaminergic neurons of the ventral nerve cord promote copulation persistence and extend copulation duration. Thus, copulation duration in Drosophila is a product of gradually declining persistence controlled by opposing neuronal populations using conserved neurotransmission systems. PMID:24209625

  4. Maternal immune activation leads to selective functional deficits in offspring parvalbumin interneurons.

    PubMed

    Canetta, S; Bolkan, S; Padilla-Coreano, N; Song, L J; Sahn, R; Harrison, N L; Gordon, J A; Brown, A; Kellendonk, C

    2016-07-01

    Abnormalities in prefrontal gamma aminobutyric acid (GABA)ergic transmission, particularly in fast-spiking interneurons that express parvalbumin (PV), are hypothesized to contribute to the pathophysiology of multiple psychiatric disorders, including schizophrenia, bipolar disorder, anxiety disorders and depression. While primarily histological abnormalities have been observed in patients and in animal models of psychiatric disease, evidence for abnormalities in functional neurotransmission at the level of specific interneuron populations has been lacking in animal models and is difficult to establish in human patients. Using an animal model of a psychiatric disease risk factor, prenatal maternal immune activation (MIA), we found reduced functional GABAergic transmission in the medial prefrontal cortex (mPFC) of adult MIA offspring. Decreased transmission was selective for interneurons expressing PV, resulted from a decrease in release probability and was not observed in calretinin-expressing neurons. This deficit in PV function in MIA offspring was associated with increased anxiety-like behavior and impairments in attentional set shifting, but did not affect working memory. Furthermore, cell-type specific optogenetic inhibition of mPFC PV interneurons was sufficient to impair attentional set shifting and enhance anxiety levels. Finally, we found that in vivo mPFC gamma oscillations, which are supported by PV interneuron function, were linearly correlated with the degree of anxiety displayed in adult mice, and that this correlation was disrupted in MIA offspring. These results demonstrate a selective functional vulnerability of PV interneurons to MIA, leading to affective and cognitive symptoms that have high relevance for schizophrenia and other psychiatric disorders. PMID:26830140

  5. Electrophysiological and Immunohistochemical Evidence for an Increase in GABAergic Inputs and HCN Channels in Purkinje Cells that Survive Developmental Ethanol Exposure.

    PubMed

    Light, Kim E; Hayar, Abdallah M; Pierce, Dwight R

    2015-08-01

    Ethanol exposures during the early postnatal period of the rat result in significant death of Purkinje cells (PCs). The magnitude, time-course, and lobular specificity of PC death have been well characterized in several studies. Additionally, significant reduction of climbing fiber inputs to the surviving PCs has been characterized. This study investigates whether further alterations to the cerebellar cortical circuits might occur as a result of developmental ethanol exposures. We first examined the firing pattern of PCs in acute slice preparations on postnatal days 13-15. While the basic firing frequency was not significantly altered, PCs from rat pups treated with ethanol on postnatal days 4-6 showed a significantly increased number of inhibitory postsynaptic potentials (IPSCs) and a larger Ih current. We conducted immunofluorescent studies to identify the probable cause of the increased IPSCs. We found a significant 21 % increase in the number of basket cells per PC and a near doubling of the volume of co-localized basket cell axonal membrane with PC. In addition, we identified a significant (~147 %) increase in HCN1 channel volume co-localized to PC volume. Therefore, the cerebellar cortex that survives targeted postnatal ethanol exposure is dramatically altered in development subsequent to PC death. The cerebellar cortical circuit that results is one that operates under a significant degree of increased resting inhibition. The alterations in the development of cerebellar circuitry following ethanol exposure, and the significant loss of PCs, could result in modifications of the structure and function of other brain regions that receive cerebellar inputs. PMID:25667035

  6. Whole-Brain Mapping of Inputs to Projection Neurons and Cholinergic Interneurons in the Dorsal Striatum

    PubMed Central

    Guo, Qingchun; Wang, Daqing; He, Xiaobin; Feng, Qiru; Lin, Rui; Xu, Fuqiang; Fu, Ling; Luo, Minmin

    2015-01-01

    The dorsal striatum integrates inputs from multiple brain areas to coordinate voluntary movements, associative plasticity, and reinforcement learning. Its projection neurons consist of the GABAergic medium spiny neurons (MSNs) that express dopamine receptor type 1 (D1) or dopamine receptor type 2 (D2). Cholinergic interneurons account for a small portion of striatal neuron populations, but they play important roles in striatal functions by synapsing onto the MSNs and other local interneurons. By combining the modified rabies virus with specific Cre- mouse lines, a recent study mapped the monosynaptic input patterns to MSNs. Because only a small number of extrastriatal neurons were labeled in the prior study, it is important to reexamine the input patterns of MSNs with higher labeling efficiency. Additionally, the whole-brain innervation pattern of cholinergic interneurons remains unknown. Using the rabies virus-based transsynaptic tracing method in this study, we comprehensively charted the brain areas that provide direct inputs to D1-MSNs, D2-MSNs, and cholinergic interneurons in the dorsal striatum. We found that both types of projection neurons and the cholinergic interneurons receive extensive inputs from discrete brain areas in the cortex, thalamus, amygdala, and other subcortical areas, several of which were not reported in the previous study. The MSNs and cholinergic interneurons share largely common inputs from areas outside the striatum. However, innervations within the dorsal striatum represent a significantly larger proportion of total inputs for cholinergic interneurons than for the MSNs. The comprehensive maps of direct inputs to striatal MSNs and cholinergic interneurons shall assist future functional dissection of the striatal circuits. PMID:25830919

  7. Whole-brain mapping of inputs to projection neurons and cholinergic interneurons in the dorsal striatum.

    PubMed

    Guo, Qingchun; Wang, Daqing; He, Xiaobin; Feng, Qiru; Lin, Rui; Xu, Fuqiang; Fu, Ling; Luo, Minmin

    2015-01-01

    The dorsal striatum integrates inputs from multiple brain areas to coordinate voluntary movements, associative plasticity, and reinforcement learning. Its projection neurons consist of the GABAergic medium spiny neurons (MSNs) that express dopamine receptor type 1 (D1) or dopamine receptor type 2 (D2). Cholinergic interneurons account for a small portion of striatal neuron populations, but they play important roles in striatal functions by synapsing onto the MSNs and other local interneurons. By combining the modified rabies virus with specific Cre- mouse lines, a recent study mapped the monosynaptic input patterns to MSNs. Because only a small number of extrastriatal neurons were labeled in the prior study, it is important to reexamine the input patterns of MSNs with higher labeling efficiency. Additionally, the whole-brain innervation pattern of cholinergic interneurons remains unknown. Using the rabies virus-based transsynaptic tracing method in this study, we comprehensively charted the brain areas that provide direct inputs to D1-MSNs, D2-MSNs, and cholinergic interneurons in the dorsal striatum. We found that both types of projection neurons and the cholinergic interneurons receive extensive inputs from discrete brain areas in the cortex, thalamus, amygdala, and other subcortical areas, several of which were not reported in the previous study. The MSNs and cholinergic interneurons share largely common inputs from areas outside the striatum. However, innervations within the dorsal striatum represent a significantly larger proportion of total inputs for cholinergic interneurons than for the MSNs. The comprehensive maps of direct inputs to striatal MSNs and cholinergic interneurons shall assist future functional dissection of the striatal circuits. PMID:25830919

  8. Identification of a direct GABAergic pallidocortical pathway in rodents

    PubMed Central

    Chen, Michael C.; Ferrari, Loris; Sacchet, Matthew D.; Foland-Ross, Lara C.; Qiu, Mei-Hong; Gotlib, Ian H.; Fuller, Patrick M.; Arrigoni, Elda; Lu, Jun

    2014-01-01

    The basal ganglia, interacting with the cortex, play a critical role in a range of behaviors. Output from the basal ganglia to the cortex is thought to relay through the thalamus, yet an intriguing alternative is that the basal ganglia may directly project to, and communicate with, the cortex. We explored an efferent projection from the globus pallidus externa (GPe), a key hub in the basal ganglia system, to the cortex of rats and mice. Anterograde and retrograde tracing revealed projections to the frontal premotor cortex, especially the deep projecting layers, originating from GPe neurons that receive axonal inputs from the dorsal striatum. Cre-dependent anterograde tracing in GPe Vgat-ires-cre mice confirmed that the pallidocortical projection is GABAergic, and in vitro optogenetic stimulation in the cortex of these projections produced a fast inhibitory postsynaptic current in targeted cells that was abolished by bicucculine. The pallidocortical projections targeted GABAergic interneurons and, to a lesser extent, pyramidal neurons. This GABAergic pallidocortical pathway directly links the basal ganglia and cortex and may play a key role in behavior and cognition in normal and disease states. PMID:25581560

  9. All-trans-retinoid acid induces the differentiation of encapsulated mouse embryonic stem cells into GABAergic neurons.

    PubMed

    Addae, Cynthia; Yi, Xiaoping; Gernapudi, Ramkishore; Cheng, Henrique; Musto, Alberto; Martinez-Ceballos, Eduardo

    2012-06-01

    Embryonic stem (ES) cells are pluripotent cells that can differentiate into all three main germ layers: endoderm, mesoderm, and ectoderm. Although a number of methods have been developed to differentiate ES cells into neuronal phenotypes such as sensory and motor neurons, the efficient generation of GABAergic interneurons from ES cells still presents an ongoing challenge. Because the main output of inhibitory GABAergic interneurons is the gamma-aminobutyric-acid (GABA), a neurotransmitter whose controlled homeostasis is required for normal brain function, the efficient generation in culture of functional interneurons may have future implications on the treatment of neurological disorders such as epilepsy, autism, and schizophrenia. The goal of this work was to examine the generation of GABAergic neurons from mouse ES cells by comparing an embryoid body-based methodology versus a hydrogel-based encapsulation protocol that involves the use of all-trans-retinoid acid (RA). We observed that (1) there was a 2-fold increase in neuronal differentiation in encapsulated versus non-encapsulated cells and (2) there was an increase in the specificity for interneuronal differentiation in encapsulated cells, as assessed by mRNA expression and electrophysiology approaches. Furthermore, our results indicate that most of the neurons obtained from encapsulated mouse ES cells are GABA-positive (∼87%). Thus, these results suggest that combining encapsulation of ES cells and RA treatment provide a more efficient and scalable differentiation strategy for the generation in culture of functional GABAergic interneurons. This technology may have implications for future cell replacement therapies and the treatment of CNS disorders. PMID:22466603

  10. All-Trans-Retinoid Acid Induces the Differentiation of Encapsulated Mouse Embryonic Stem Cells into GABAergic Neurons

    PubMed Central

    Addae, Cynthia; Yi, Xiaoping; Gernapudi, Ramkishore; Cheng, Henrique; Musto, Alberto; Martinez-Ceballos, Eduardo

    2012-01-01

    Embryonic stem (ES) cells are pluripotent cells that can differentiate into all three main germ layers: endoderm, mesoderm, and ectoderm. Although a number of methods have been developed to differentiate ES cells into neuronal phenotypes such as sensory and motor neurons, the efficient generation of GABAergic interneurons from ES cells still presents an ongoing challenge. Because the main output of inhibitory GABAergic interneurons is the gamma-aminobutyric-acid (GABA), a neurotransmitter whose controlled homeostasis is required for normal brain function, the efficient generation in culture of functional interneurons may have future implications on the treatment of neurological disorders such as epilepsy, autism, and schizophrenia. The goal of this work was to examine the generation of GABAergic neurons from mouse ES cells by comparing an embryoid body-based methodology versus a hydrogel-based encapsulation protocol that involves the use of all-trans-retinoid acid (RA). We observed that 1) there was a 2-fold increase in neuronal differentiation in encapsulated versus non-encapsulated cells and 2) there was an increase in the specificity for interneuronal differentiation in encapsulated cells, as assessed by mRNA expression and electrophysiology approaches. Furthermore, our results indicate that most of the neurons obtained from encapsulated mouse ES cells are GABA-positive (~87%). Thus, these results suggest that combining encapsulation of ES cells and RA treatment provide a more efficient and scalable differentiation strategy for the generation in culture of functional GABAergic interneurons. This technology may have implications for future cell replacement therapies and the treatment of CNS disorders. PMID:22466603

  11. Potential of GABA-ergic cell therapy for schizophrenia, neuropathic pain, and Alzheimer׳s and Parkinson׳s diseases.

    PubMed

    Shetty, Ashok K; Bates, Adrian

    2016-05-01

    Several neurological and psychiatric disorders present hyperexcitability of neurons in specific regions of the brain or spinal cord, partly because of some loss and/or dysfunction of gamma-amino butyric acid positive (GABA-ergic) inhibitory interneurons. Strategies that enhance inhibitory neurotransmission in the affected brain regions may therefore ease several or most deficits linked to these disorders. This perception has incited a huge interest in testing the efficacy of GABA-ergic interneuron cell grafting into regions of the brain or spinal cord exhibiting hyperexcitability, dearth of GABA-ergic interneurons or impaired inhibitory neurotransmission, using preclinical models of neurological and psychiatric disorders. Interneuron progenitors from the embryonic ventral telencephalon capable of differentiating into diverse subclasses of interneurons have particularly received much consideration because of their ability for dispersion, migration and integration with the host neural circuitry after grafting. The goal of this review is to discuss the premise, scope and advancement of GABA-ergic cell therapy for easing neurological deficits in preclinical models of schizophrenia, chronic neuropathic pain, Alzheimer׳s disease and Parkinson׳s disease. As grafting studies in these prototypes have so far utilized either primary cells from the embryonic medial and lateral ganglionic eminences or neural progenitor cells expanded from these eminences as donor material, the proficiency of these cell types is highlighted. Moreover, future studies that are essential prior to considering the possible clinical application of these cells for the above neurological conditions are proposed. Particularly, the need for grafting studies utilizing medial ganglionic eminence-like progenitors generated from human pluripotent stem cells via directed differentiation approaches or somatic cells through direct reprogramming methods are emphasized. This article is part of a Special Issue

  12. Nicotinic acetylcholine receptor subtypes involved in facilitation of GABAergic inhibition in mouse superficial superior colliculus.

    PubMed

    Endo, Toshiaki; Yanagawa, Yuchio; Obata, Kunihiko; Isa, Tadashi

    2005-12-01

    The superficial superior colliculus (sSC) is a key station in the sensory processing related to visual salience. The sSC receives cholinergic projections from the parabigeminal nucleus, and previous studies have revealed the presence of several different nicotinic acetylcholine receptor (nAChR) subunits in the sSC. In this study, to clarify the role of the cholinergic inputs to the sSC, we examined current responses induced by ACh in GABAergic and non-GABAergic sSC neurons using in vitro slice preparations obtained from glutamate decarboxylase 67-green fluorescent protein (GFP) knock-in mice in which GFP is specifically expressed in GABAergic neurons. Brief air pressure application of acetylcholine (ACh) elicited nicotinic inward current responses in both GABAergic and non-GABAergic neurons. The inward current responses in the GABAergic neurons were highly sensitive to a selective antagonist for alpha3beta2- and alpha6beta2-containing receptors, alpha-conotoxin MII (alphaCtxMII). A subset of these neurons exhibited a faster alpha-bungarotoxin-sensitive inward current component, indicating the expression of alpha7-containing nAChRs. We also found that the activation of presynaptic nAChRs induced release of GABA, which elicited a burst of miniature inhibitory postsynaptic currents mediated by GABA(A) receptors in non-GABAergic neurons. This ACh-induced GABA release was mediated mainly by alphaCtxMII-sensitive nAChRs and resulted from the activation of voltage-dependent calcium channels. Morphological analysis revealed that recorded GFP-positive neurons are interneurons and GFP-negative neurons include projection neurons. These findings suggest that nAChRs are involved in the regulation of GABAergic inhibition and modulate visual processing in the sSC. PMID:16107532

  13. Revisiting the Lamotrigine-Mediated Effect on Hippocampal GABAergic Transmission

    PubMed Central

    Huang, Yu-Yin; Liu, Yu-Chao; Lee, Cheng-Ta; Lin, Yen-Chu; Wang, Mong-Lien; Yang, Yi-Ping; Chang, Kaung-Yi; Chiou, Shih-Hwa

    2016-01-01

    Lamotrigine (LTG) is generally considered as a voltage-gated sodium (Nav) channel blocker. However, recent studies suggest that LTG can also serve as a hyperpolarization-activated cyclic nucleotide-gated (HCN) channel enhancer and can increase the excitability of GABAergic interneurons (INs). Perisomatic inhibitory INs, predominantly fast-spiking basket cells (BCs), powerfully inhibit granule cells (GCs) in the hippocampal dentate gyrus. Notably, BCs express abundant Nav channels and HCN channels, both of which are able to support sustained action potential generation. Using whole-cell recording in rat hippocampal slices, we investigated the net LTG effect on BC output. We showed that bath application of LTG significantly decreased the amplitude of evoked compound inhibitory postsynaptic currents (IPSCs) in GCs. In contrast, simultaneous paired recordings from BCs to GCs showed that LTG had no effect on both the amplitude and the paired-pulse ratio of the unitary IPSCs, suggesting that LTG did not affect GABA release, though it suppressed cell excitability. In line with this, LTG decreased spontaneous IPSC (sIPSC) frequency, but not miniature IPSC frequency. When re-examining the LTG effect on GABAergic transmission in the cornus ammonis region 1 (CA1) area, we found that LTG markedly inhibits both the excitability of dendrite-targeting INs in the stratum oriens and the concurrent sIPSCs recorded on their targeting pyramidal cells (PCs) without significant hyperpolarization-activated current (Ih) enhancement. In summary, LTG has no effect on augmenting Ih in GABAergic INs and does not promote GABAergic inhibitory output. The antiepileptic effect of LTG is likely through Nav channel inhibition and the suppression of global neuronal network activity. PMID:27455251

  14. Partial Conservation between Mice and Humans in Olfactory Bulb Interneuron Transcription Factor Codes

    PubMed Central

    Fujiwara, Nana; Cave, John W.

    2016-01-01

    The mammalian main olfactory bulb (OB) has a large population of GABAergic inhibitory interneurons that contains several subtypes defined by the co-expression other neurotransmitters and calcium binding proteins. The three most commonly studied OB interneuron subtypes co-express either Calretinin, Calbindin, or Tyrosine hydroxylase (Th). Combinations of transcription factors used to specify the phenotype of progenitors are referred to as transcription factor codes, and the current understanding of transcription factor codes that specify OB inhibitory neuron phenotypes are largely based on studies in mice. The conservation of these transcription factor codes in the human OB, however, has not been investigated. The aim of this study was to establish whether transcription factor codes in OB interneurons are conserved between mice and humans. This study compared the co-expression of Foxp2, Meis2, Pax6, and Sp8 transcription factors with Calretinin, Calbindin, or Th in human and mouse OB interneurons. This analysis found strong conservation of Calretinin co-expression with Sp8 and Meis2 as well as Th co-expression with Pax6 and Meis2. This analysis also showed that selective Foxp2 co-expression with Calbindin was conserved between mice and humans, which suggests Foxp2 is a novel determinant of the OB Calbindin interneuron phenotype. Together, the findings in this study provide insight into the conservation of transcription codes for OB interneuron phenotypes between humans and mice, as well as reveal some important differences between the species. This advance in our understanding of transcription factor codes in OB interneurons provides an important complement to the codes that have been established for other regions within the mammalian central nervous system, such as the cortex and spinal cord. PMID:27489533

  15. Partial Conservation between Mice and Humans in Olfactory Bulb Interneuron Transcription Factor Codes.

    PubMed

    Fujiwara, Nana; Cave, John W

    2016-01-01

    The mammalian main olfactory bulb (OB) has a large population of GABAergic inhibitory interneurons that contains several subtypes defined by the co-expression other neurotransmitters and calcium binding proteins. The three most commonly studied OB interneuron subtypes co-express either Calretinin, Calbindin, or Tyrosine hydroxylase (Th). Combinations of transcription factors used to specify the phenotype of progenitors are referred to as transcription factor codes, and the current understanding of transcription factor codes that specify OB inhibitory neuron phenotypes are largely based on studies in mice. The conservation of these transcription factor codes in the human OB, however, has not been investigated. The aim of this study was to establish whether transcription factor codes in OB interneurons are conserved between mice and humans. This study compared the co-expression of Foxp2, Meis2, Pax6, and Sp8 transcription factors with Calretinin, Calbindin, or Th in human and mouse OB interneurons. This analysis found strong conservation of Calretinin co-expression with Sp8 and Meis2 as well as Th co-expression with Pax6 and Meis2. This analysis also showed that selective Foxp2 co-expression with Calbindin was conserved between mice and humans, which suggests Foxp2 is a novel determinant of the OB Calbindin interneuron phenotype. Together, the findings in this study provide insight into the conservation of transcription codes for OB interneuron phenotypes between humans and mice, as well as reveal some important differences between the species. This advance in our understanding of transcription factor codes in OB interneurons provides an important complement to the codes that have been established for other regions within the mammalian central nervous system, such as the cortex and spinal cord. PMID:27489533

  16. A specific role for NR2A-containing NMDA receptors in the maintenance of parvalbumin and GAD67 immunoreactivity in cultured interneurons.

    PubMed

    Kinney, Jefferson W; Davis, Christopher N; Tabarean, Iustin; Conti, Bruno; Bartfai, Tamas; Behrens, M Margarita

    2006-02-01

    Several lines of evidence suggest that a hypoglutamatergic condition may induce a phenotypic loss of cortical parvalbumin (PV)-positive GABAergic interneurons, such as that observed in brain tissue of schizophrenic subjects. However, it is not known whether the loss of PV interneurons is a consequence of the hypoglutamatergic condition or a secondary aspect of the disease. We characterized the signaling and subunit expression of NMDA receptors in cultured cortical PV interneurons and determined whether a hypoglutamatergic condition, created by direct application of sublethal concentrations of ketamine or subunit-selective NMDA receptor antagonists, can affect the expression of the GABAergic markers as observed in vivo. Real-time PCR performed on mRNA isolated from single neurons showed that PV interneurons present a fivefold higher NR2A/NR2B ratio than pyramidal neurons. Brief, nontoxic, exposure to NMDA led to an increase in ERK1/2 (extracellular signal-regulated kinase 1/2) and cAMP response element-binding protein phosphorylation in PV interneurons, and this increase was blocked by the NR2A-selective antagonist NVP-AAM077. Application of the nonselective NMDA receptor antagonist ketamine, at sublethal concentrations, induced a time and dose-dependent decrease in parvalbumin and GAD67 immunoreactivity specifically in PV interneurons. These effects were reversible and were also observed with the NR2A-selective antagonist, whereas the NR2B-selective antagonist Ro-25-6981 only partially reduced GAD67 immunoreactivity. Coexposure to the calcium channel opener BayK, or the group I metabotropic glutamate receptor agonist DHPG [(RS)-3,5-dihydroxyphenylglycine] attenuated the decrease in GAD67 and parvalbumin induced by the NMDA receptor antagonists. These results suggest that the activity of NR2A-containing NMDA receptors play a pivotal role in the maintenance of the GABAergic function of PV interneurons. PMID:16452684

  17. Novel GABAergic circuits mediating excitation/inhibition of Cajal-Retzius cells in the developing hippocampus

    PubMed Central

    Quattrocolo, Giulia; Maccaferri, Gianmaria

    2013-01-01

    Cajal-Retzius cells are a class of neurons believed to play critical roles during cortical development. However, their network computational functions remain poorly understood. Although work in the neocortex and hippocampus has shown that Cajal-Retzius cells receive predominantly, if not exclusively, spontaneous GABAA receptor-mediated input, the cellular sources originating these events remain unclear. Yet, a precise definition of the presynaptic GABAergic interneurons contacting Cajal-Retzius cells is important to understand the microcircuits and network patterns controlling their activation. Here, we have taken advantage of electrophysiological and anatomical techniques applied to mouse hippocampal slices in vitro to directly address this question. Our paired recording experiments indicate that Cajal-Retzius cells receive small-amplitude, kinetically-slow synaptic input from stratum lacunosum-moleculare interneurons, anatomically identified as neurogliaform cells. In addition, a convergence of optogenetic, electrophysiological and pharmacological experiments show that Cajal-Retzius cell receive GABAergic input from O-LM cells, and that this input has different physiological properties (i.e. larger amplitude and faster kinetics) from the one provided by neurogliaform cells. Lastly, we show that GABAergic evoked synaptic input onto Cajal-Retzius cells may either increase their excitability and trigger action potentials or inhibit spontaneous firing by depolarization block. We propose that the specific type of response depends both on the membrane potential of Cajal-Retzius cells and on the kinetics of the received GABAergic input. In conclusion, we have unraveled a novel hippocampal microcircuit with complex GABAergic synaptic signaling, which we suggest may play a role in the refinement of the hippocampal network and connections during development. PMID:23536064

  18. Inhibition of parvalbumin-expressing interneurons results in complex behavioral changes.

    PubMed

    Brown, J A; Ramikie, T S; Schmidt, M J; Báldi, R; Garbett, K; Everheart, M G; Warren, L E; Gellért, L; Horváth, S; Patel, S; Mirnics, Károly

    2015-12-01

    Reduced expression of the Gad1 gene-encoded 67-kDa protein isoform of glutamic acid decarboxylase (GAD67) is a hallmark of schizophrenia. GAD67 downregulation occurs in multiple interneuronal sub-populations, including the parvalbumin-positive (PVALB+) cells. To investigate the role of the PV-positive GABAergic interneurons in behavioral and molecular processes, we knocked down the Gad1 transcript using a microRNA engineered to target specifically Gad1 mRNA under the control of Pvalb bacterial artificial chromosome. Verification of construct expression was performed by immunohistochemistry. Follow-up electrophysiological studies revealed a significant reduction in γ-aminobutyric acid (GABA) release probability without alterations in postsynaptic membrane properties or changes in glutamatergic release probability in the prefrontal cortex pyramidal neurons. Behavioral characterization of our transgenic (Tg) mice uncovered that the Pvalb/Gad1 Tg mice have pronounced sensorimotor gating deficits, increased novelty-seeking and reduced fear extinction. Furthermore, NMDA (N-methyl-d-aspartate) receptor antagonism by ketamine had an opposing dose-dependent effect, suggesting that the differential dosage of ketamine might have divergent effects on behavioral processes. All behavioral studies were validated using a second cohort of animals. Our results suggest that reduction of GABAergic transmission from PVALB+ interneurons primarily impacts behavioral domains related to fear and novelty seeking and that these alterations might be related to the behavioral phenotype observed in schizophrenia. PMID:25623945

  19. Distinct and synergistic feedforward inhibition of pyramidal cells by basket and bistratified interneurons

    PubMed Central

    Ferrante, Michele; Ascoli, Giorgio A.

    2015-01-01

    Feedforward inhibition (FFI) enables pyramidal cells in area CA1 of the hippocampus (CA1PCs) to remain easily excitable while faithfully representing a broad range of excitatory inputs without quickly saturating. Despite the cortical ubiquity of FFI, its specific function is not completely understood. FFI in CA1PCs is mediated by two physiologically and morphologically distinct GABAergic interneurons: fast-spiking, perisomatic-targeting basket cells and regular-spiking, dendritic-targeting bistratified cells. These two FFI pathways might create layer-specific computational sub-domains within the same CA1PC, but teasing apart their specific contributions remains experimentally challenging. We implemented a biophysically realistic model of CA1PCs using 40 digitally reconstructed morphologies and constraining synaptic numbers, locations, amplitude, and kinetics with available experimental data. First, we validated the model by reproducing the known combined basket and bistratified FFI of CA1PCs at the population level. We then analyzed how the two interneuron types independently affected the CA1PC spike probability and timing as a function of inhibitory strength. Separate FFI by basket and bistratified respectively modulated CA1PC threshold and gain. Concomitant FFI by both interneuron types synergistically extended the dynamic range of CA1PCs by buffering their spiking response to excitatory stimulation. These results suggest testable hypotheses on the precise effects of GABAergic diversity on cortical computation. PMID:26594151

  20. Nicotine increases GABAergic input on rat dorsal raphe serotonergic neurons through alpha7 nicotinic acetylcholine receptor.

    PubMed

    Hernández-Vázquez, F; Chavarría, K; Garduño, J; Hernández-López, S; Mihailescu, S P

    2014-12-15

    The dorsal raphe nucleus (DRN) contains large populations of serotonergic (5-HT) neurons. This nucleus receives GABAergic inhibitory afferents from many brain areas and from DRN interneurons. Both GABAergic and 5-HT DRN neurons express functional nicotinic acetylcholine receptors (nAChRs). Previous studies have demonstrated that nicotine increases 5-HT release and 5-HT DRN neuron discharge rate by stimulating postsynaptic nAChRs and by increasing glutamate and norepinephrine release inside DRN. However, the influence of nicotine on the GABAergic input to 5-HT DRN neurons was poorly investigated. Therefore, the aim of this work was to determine the effect of nicotine on GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) of 5-HT DRN neurons and the subtype of nAChR(s) involved in this response. Experiments were performed in coronal slices obtained from young Wistar rats. GABAergic sIPSCs were recorded from post hoc-identified 5-HT DRN neurons with the whole cell voltage patch-clamp technique. Administration of nicotine (1 μM) increased sIPSC frequency in 72% of identified 5-HT DRN neurons. This effect was not reproduced by the α4β2 nAChR agonist RJR-2403 and was not influenced by TTX (1 μM). It was mimicked by the selective agonist for α7 nAChR, PNU-282987, and exacerbated by the positive allosteric modulator of the same receptor, PNU-120596. The nicotine-induced increase in sIPSC frequency was independent on voltage-gated calcium channels and dependent on Ca(2+)-induced Ca(2+) release (CICR). These results demonstrate that nicotine increases the GABAergic input to most 5-HT DRN neurons, by activating α7 nAChRs and producing CICR in DRN GABAergic terminals. PMID:25231613

  1. Identification of a Group of GABAergic Neurons in the Dorsomedial Area of the Locus Coeruleus

    PubMed Central

    Jin, Xin; Li, Shanshan; Bondy, Brian; Zhong, Weiwei; Oginsky, Max F.; Wu, Yang; Johnson, Christopher M.; Zhang, Shuang; Cui, Ningren; Jiang, Chun

    2016-01-01

    The locus coeruleus (LC)-norepinephrine (NE) system in the brainstem plays a critical role in a variety of behaviors is an important target of pharmacological intervention to several neurological disorders. Although GABA is the major inhibitory neurotransmitter of LC neurons, the modulation of LC neuronal firing activity by local GABAergic interneurons remains poorly understood with respect to their precise location, intrinsic membrane properties and synaptic modulation. Here, we took an optogenetic approach to address these questions. Channelrhodopsin (ChR2) in a tandem with the yellow fluorescent protein (YFP) was expressed in GABAergic neurons under the control of glutamic acid decarboxylase 2 (GAD2) promoter. Immediately dorsomedial to the LC nucleus, a group of GABAergic neurons was observed. They had small soma and were densely packed in a small area, which we named the dorsomedial LC or dmLC nucleus. These GABAergic neurons showed fast firing activity, strong inward rectification and spike frequency adaptation. Lateral inhibition among these GABAergic neurons was observed. Optostimulation of the dmLC area drastically inhibited LC neuronal firing frequency, expanded the spike intervals, and reset their pacemaking activity. Analysis of the light evoked inhibitory postsynaptic currents (IPSCs) indicated that they were monosynaptic. Such light evoked IPSCs were not seen in slices where this group of GABAergic neurons was absent. Thus, an isolated group of GABAergic neurons is demonstrated in the LC area, whose location, somatic morphology and intrinsic membrane properties are clearly distinguishable from adjacent LC neurons. They interact with each and may inhibit LC neurons as well as a part of local neuronal circuitry in the LC. PMID:26785258

  2. Bombesin facilitates GABAergic transmission and depresses epileptiform activity in the entorhinal cortex.

    PubMed

    Zhang, Hao-peng; Xiao, Zhaoyang; Cilz, Nicholas I; Hu, Binqi; Dong, Hailong; Lei, Saobo

    2014-01-01

    Bombesin and the bombesin-like peptides including neuromedin B (NMB) and gastrin-releasing peptide (GRP) are important neuromodulators in the brain. We studied their effects on GABAergic transmission and epileptiform activity in the entorhinal cortex (EC). Bath application of bombesin concentration-dependently increased both the frequency and amplitude of sIPSCs recorded from the principal neurons in the EC. Application of NMB and GRP exerted the same effects as bombesin. Bombesin had no effects on mIPSCs recorded in the presence of TTX but slightly depressed the evoked IPSCs. Omission of extracellular Ca(2+) or inclusion of voltage-gated Ca(2+) channel blockers, Cd(2+) and Ni(2+), blocked bombesin-induced increases in sIPSCs suggesting that bombesin increases GABA release via facilitating extracellular Ca(2+) influx. Bombesin induced membrane depolarization and slightly increased the input resistance of GABAergic interneurons recorded from layer III of the EC. The action potential firing frequency of the interneurons was also increased by bombesin. Bombesin-mediated depolarization of interneurons was unlikely to be mediated by the opening of a cationic conductance but due to the inhibition of inward rectifier K(+) channels. Bath application of bombesin, NMB and GRP depressed the frequency of the epileptiform activity elicited by deprivation of Mg(2+) from the extracellular solution suggesting that bombesin and the bombesin-like peptides have antiepileptic effects in the brain. PMID:23966303

  3. Dopaminergic and Cholinergic Modulation of Striatal Tyrosine Hydroxylase Interneurons

    PubMed Central

    Ibáñez-Sandoval, Osvaldo; Xenias, Harry S.; Tepper, James M.; Koós, Tibor

    2015-01-01

    The recent electrophysiological characterization of TH-expressing GABAergic interneurons (THINs) in the neostriatum revealed an unexpected degree of diversity of interneurons in this brain area (Ibáñez-Sandoval et al., 2010, Unal et al., 2011, 2013). Despite being relatively few in number, THINs may play a significant role in transmitting and distributing extra- and intrastriatal neuromodulatory signals in the striatal circuitry. Here we investigated the dopaminergic and cholinergic regulation of THINs in vitro. We found that the dominant effect of dopamine was a dramatic enhancement of the ability of THINs to generate long-lasting depolarizing plateau potentials (PPs). Interestingly, the same effect could also be elicited by amphetamine-induced release of endogenous dopamine suggesting that THINs may exhibit similar responses to changes in extracellular dopamine concentration in vivo. The enhancement of PPs in THINs is perhaps the most pronounced effect of dopamine on the intrinsic excitability of neostriatal neurons described to date. Further, we demonstrate that all subtypes of THINSs tested also express nicotinic cholinergic receptors. All THIS responded, albeit differentially, with depolarization, PPs and spiking to brief application of nicotinic agonists. Powerful modulation of the nonlinear integrative properties of THINs by dopamine and the direct depolarization of these neurons by acetylcholine may play important roles in mediating the effects of these neuromodulators in the neostriatum with potentially important implications for understanding the mechanisms of neuropsychiatric disorders affecting the basal ganglia. PMID:25908399

  4. Dopaminergic and cholinergic modulation of striatal tyrosine hydroxylase interneurons.

    PubMed

    Ibáñez-Sandoval, Osvaldo; Xenias, Harry S; Tepper, James M; Koós, Tibor

    2015-08-01

    The recent electrophysiological characterization of TH-expressing GABAergic interneurons (THINs) in the neostriatum revealed an unexpected degree of diversity of interneurons in this brain area (Ibáñez-Sandoval et al., 2010, Unal et al., 2011, 2015). Despite being relatively few in number, THINs may play a significant role in transmitting and distributing extra- and intrastriatal neuromodulatory signals in the striatal circuitry. Here we investigated the dopaminergic and cholinergic regulation of THINs in vitro. We found that the dominant effect of dopamine was a dramatic enhancement of the ability of THINs to generate long-lasting depolarizing plateau potentials (PPs). Interestingly, the same effect could also be elicited by amphetamine-induced release of endogenous dopamine suggesting that THINs may exhibit similar responses to changes in extracellular dopamine concentration in vivo. The enhancement of PPs in THINs is perhaps the most pronounced effect of dopamine on the intrinsic excitability of neostriatal neurons described to date. Further, we demonstrate that all subtypes of THINSs tested also express nicotinic cholinergic receptors. All THIS responded, albeit differentially, with depolarization, PPs and spiking to brief application of nicotinic agonists. Powerful modulation of the nonlinear integrative properties of THINs by dopamine and the direct depolarization of these neurons by acetylcholine may play important roles in mediating the effects of these neuromodulators in the neostriatum with potentially important implications for understanding the mechanisms of neuropsychiatric disorders affecting the basal ganglia. PMID:25908399

  5. Receptor tyrosine kinase EphA7 is required for interneuron connectivity at specific subcellular compartments of granule cells.

    PubMed

    Beuter, Simone; Ardi, Ziv; Horovitz, Omer; Wuchter, Jennifer; Keller, Stefanie; Saha, Rinki; Tripathi, Kuldeep; Anunu, Rachel; Kehat, Orli; Kriebel, Martin; Richter-Levin, Gal; Volkmer, Hansjürgen

    2016-01-01

    Neuronal transmission is regulated by the local circuitry which is composed of principal neurons targeted at different subcellular compartments by a variety of interneurons. However, mechanisms that contribute to the subcellular localisation and maintenance of GABAergic interneuron terminals are poorly understood. Stabilization of GABAergic synapses depends on clustering of the postsynaptic scaffolding protein gephyrin and its interaction with the guanine nucleotide exchange factor collybistin. Lentiviral knockdown experiments in adult rats indicated that the receptor tyrosine kinase EphA7 is required for the stabilisation of basket cell terminals on proximal dendritic and somatic compartments of granular cells of the dentate gyrus. EphA7 deficiency and concomitant destabilisation of GABAergic synapses correlated with impaired long-term potentiation and reduced hippocampal learning. Reduced GABAergic innervation may be explained by an impact of EphA7 on gephyrin clustering. Overexpression or ephrin stimulation of EphA7 induced gephyrin clustering dependent on the mechanistic target of rapamycin (mTOR) which is an interaction partner of gephyrin. Gephyrin interactions with mTOR become released after mTOR activation while enhanced interaction with the guanine nucleotide exchange factor collybistin was observed in parallel. In conclusion, EphA7 regulates gephyrin clustering and the maintenance of inhibitory synaptic connectivity via mTOR signalling. PMID:27405707

  6. Receptor tyrosine kinase EphA7 is required for interneuron connectivity at specific subcellular compartments of granule cells

    PubMed Central

    Beuter, Simone; Ardi, Ziv; Horovitz, Omer; Wuchter, Jennifer; Keller, Stefanie; Saha, Rinki; Tripathi, Kuldeep; Anunu, Rachel; Kehat, Orli; Kriebel, Martin; Richter-Levin, Gal; Volkmer, Hansjürgen

    2016-01-01

    Neuronal transmission is regulated by the local circuitry which is composed of principal neurons targeted at different subcellular compartments by a variety of interneurons. However, mechanisms that contribute to the subcellular localisation and maintenance of GABAergic interneuron terminals are poorly understood. Stabilization of GABAergic synapses depends on clustering of the postsynaptic scaffolding protein gephyrin and its interaction with the guanine nucleotide exchange factor collybistin. Lentiviral knockdown experiments in adult rats indicated that the receptor tyrosine kinase EphA7 is required for the stabilisation of basket cell terminals on proximal dendritic and somatic compartments of granular cells of the dentate gyrus. EphA7 deficiency and concomitant destabilisation of GABAergic synapses correlated with impaired long-term potentiation and reduced hippocampal learning. Reduced GABAergic innervation may be explained by an impact of EphA7 on gephyrin clustering. Overexpression or ephrin stimulation of EphA7 induced gephyrin clustering dependent on the mechanistic target of rapamycin (mTOR) which is an interaction partner of gephyrin. Gephyrin interactions with mTOR become released after mTOR activation while enhanced interaction with the guanine nucleotide exchange factor collybistin was observed in parallel. In conclusion, EphA7 regulates gephyrin clustering and the maintenance of inhibitory synaptic connectivity via mTOR signalling. PMID:27405707

  7. Analysis of primary visual cortex in dementia with Lewy bodies indicates GABAergic involvement associated with recurrent complex visual hallucinations.

    PubMed

    Khundakar, Ahmad A; Hanson, Peter S; Erskine, Daniel; Lax, Nichola Z; Roscamp, Joseph; Karyka, Evangelia; Tsefou, Eliona; Singh, Preeti; Cockell, Simon J; Gribben, Andrew; Ramsay, Lynne; Blain, Peter G; Mosimann, Urs P; Lett, Deborah J; Elstner, Matthias; Turnbull, Douglass M; Xiang, Charles C; Brownstein, Michael J; O'Brien, John T; Taylor, John-Paul; Attems, Johannes; Thomas, Alan J; McKeith, Ian G; Morris, Christopher M

    2016-01-01

    Dementia with Lewy bodies (DLB) patients frequently experience well formed recurrent complex visual hallucinations (RCVH). This is associated with reduced blood flow or hypometabolism on imaging of the primary visual cortex. To understand these associations in DLB we used pathological and biochemical analysis of the primary visual cortex to identify changes that could underpin RCVH. Alpha-synuclein or neurofibrillary tangle pathology in primary visual cortex was essentially absent. Neurone density or volume within the primary visual cortex in DLB was also unchanged using unbiased stereology. Microarray analysis, however, demonstrated changes in neuropeptide gene expression and other markers, indicating altered GABAergic neuronal function. Calcium binding protein and GAD65/67 immunohistochemistry showed preserved interneurone populations indicating possible interneurone dysfunction. This was demonstrated by loss of post synaptic GABA receptor markers including gephyrin, GABARAP, and Kif5A, indicating reduced GABAergic synaptic activity. Glutamatergic neuronal signalling was also altered with vesicular glutamate transporter protein and PSD-95 expression being reduced. Changes to the primary visual cortex in DLB indicate that reduced GABAergic transmission may contribute to RCVH in DLB and treatment using targeted GABAergic modulation or similar approaches using glutamatergic modification may be beneficial. PMID:27357212

  8. GABAergic complex basket formations in the human neocortex.

    PubMed

    Blazquez-Llorca, Lidia; García-Marín, Virginia; DeFelipe, Javier

    2010-12-15

    Certain GABAergic interneurons in the cerebral cortex, basket cells, establish multiple connections with cell bodies that typically outline the somata and proximal dendrites of pyramidal cells. During studies into the distribution of the vesicular GABA transporter (VGAT) in the human cerebral cortex, we were struck by the presence of a very dense, pericellular arrangement of multiple VGAT-immunoreactive (-ir) terminals in certain cortical areas. We called these terminals "Complex basket formations" (Cbk-formations) to distinguish them from the simpler and more typical pericellular GABAergic innervations of most cortical neurons. Here we examined the distribution of these VGAT-ir Cbk-formations in various cortical areas, including the somatosensory (area 3b), visual (areas 17 and 18), motor (area 4), associative frontal (dorsolateral areas 9, 10, 45, 46, and orbital areas 11, 12, 13, 14, 47), associative temporal (areas 20, 21, 22, and 38), and limbic cingulate areas (areas 24, 32). Furthermore, we used dual or triple staining techniques to study the chemical nature of the innervated cells. We found that VGAT-ir Cbk-formations were most frequently found in area 4 followed by areas 3b, 13, and 18. In addition, they were mostly observed in layer III, except in area 17, where they were most dense in layer IV. We also found that 70% of the innervated neurons were pyramidal cells, while the remaining 30% were multipolar cells. Most of these multipolar cells expressed the calcium-binding protein parvalbumin and the lectin Vicia villosa agglutinin. PMID:21031559

  9. Cortical GABAergic excitation contributes to epileptic activities around human glioma

    PubMed Central

    Pallud, Johan; Varlet, Pascale; Cresto, Noemie; Baulac, Michel; Duyckaerts, Charles; Kourdougli, Nazim; Chazal, Geneviève; Devaux, Bertrand; Rivera, Claudio; Miles, Richard; Capelle, Laurent; Huberfeld, Gilles

    2015-01-01

    Rationale Diffuse brain gliomas induce seizures in a majority of patients. As in most epileptic disorders, excitatory glutamatergic mechanisms are involved in the generation of epileptic activities in the neocortex surrounding gliomas. However, chloride homeostasis is known to be perturbed in glial tumor cells. Thus the contribution of GABAergic mechanisms which depend on intracellular chloride and which are defective or pro-epileptic in other structural epilepsies merits closer study. Objective We studied in neocortical slices from the peritumoral security margin resected around human brain gliomas, the occurrence, networks, cells and signaling basis of epileptic activities. Results Postoperative glioma tissue from 69% of patients spontaneously generated interictal-like discharges. These events were synchronized, with a high frequency oscillation signature, in superficial layers of neocortex around glioma areas with tumor infiltration. Interictal-like events depended on both glutamatergic transmission and on depolarizing GABAergic signaling. About 65% of pyramidal cells were depolarized by GABA released by interneurons. This effect was related to perturbations in Chloride homeostasis, due to changes in expression of chloride co-transporters: KCC2 was reduced and expression of NKCC1 increased. Ictal-like activities were initiated by convulsant stimuli exclusively in these epileptogenic areas. Conclusions Epileptic activities are sustained by excitatory effects of GABA in the peritumoral human neocortex, as in temporal lobe epilepsies. Glutamate and GABA signaling are involved in oncogenesis and chloride homeostasis is perturbed. These same factors, induce an imbalance between synaptic excitatory and inhibition underly epileptic discharges in tumor patients. PMID:25009229

  10. Irregular Firing of Isolated Cortical Interneurons in Vitro Driven by Intrinsic Stochastic Mechanisms

    PubMed Central

    Englitz, Bernhard; Stiefel, Klaus M.; Sejnowski, Terrence J.

    2009-01-01

    Pharmacologically isolated GABAergic irregular spiking and stuttering interneurons in the mouse visual cortex display highly irregular spike times, with high coefficients of variation ≈0.9–3, in response to a depolarizing, constant current input. This is in marked contrast to cortical pyramidal cells, which spike quite regularly in response to the same current injection. We applied time-series analysis methods to show that the irregular behavior of the interneurons was not a consequence of low-dimensional, deterministic processes. These methods were also applied to the Hindmarsh and Rose neuronal model to confirm that the methods are adequate for the types of data under investigation. This result has important consequences for the origin of fluctuations observed in the cortex in vivo. PMID:18045000

  11. Functional adaptation of cortical interneurons to attenuated activity is subtype-specific.

    PubMed

    Karayannis, Theofanis; De Marco García, Natalia V; Fishell, Gordon J

    2012-01-01

    Functional neuronal homeostasis has been studied in a variety of model systems and contexts. Many studies have shown that there are a number of changes that can be activated within individual cells or networks in order to compensate for perturbations or changes in levels of activity. Dissociating the cell autonomous from the network-mediated events has been complicated due to the difficulty of sparsely targeting specific populations of neurons in vivo. Here, we make use of a recent in vivo approach we developed that allows for the sparse labeling and manipulation of activity within superficial caudal ganglionic eminence (CGE)-derived GABAergic interneurons. Expression of the inward rectifying potassium channel Kir2.1 cell-autonomously reduced neuronal activity and lead to specific developmental changes in their intrinsic electrophysiological properties and the synaptic input they received. In contrast to previous studies on homeostatic scaling of pyramidal cells, we did not detect any of the typically observed compensatory mechanisms in these interneurons. Rather, we instead saw a specific alteration of the kinetics of excitatory synaptic events within the reelin-expressing subpopulation of interneurons. These results provide the first in vivo observations for the capacity of interneurons to cell-autonomously regulate their excitability. PMID:23015781

  12. GABAergic lateral interactions tune the early stages of visual processing in Drosophila.

    PubMed

    Freifeld, Limor; Clark, Damon A; Schnitzer, Mark J; Horowitz, Mark A; Clandinin, Thomas R

    2013-06-19

    Early stages of visual processing must capture complex, dynamic inputs. While peripheral neurons often implement efficient encoding by exploiting natural stimulus statistics, downstream neurons are specialized to extract behaviorally relevant features. How do these specializations arise? We use two-photon imaging in Drosophila to characterize a first-order interneuron, L2, that provides input to a pathway specialized for detecting moving dark edges. GABAergic interactions, mediated in part presynaptically, create an antagonistic and anisotropic center-surround receptive field. This receptive field is spatiotemporally coupled, applying differential temporal processing to large and small dark objects, achieving significant specialization. GABAergic circuits also mediate OFF responses and balance these with responses to ON stimuli. Remarkably, the functional properties of L2 are strikingly similar to those of bipolar cells, yet emerge through different molecular and circuit mechanisms. Thus, evolution appears to have converged on a common strategy for processing visual information at the first synapse. PMID:23791198

  13. Interplay of environmental signals and progenitor diversity on fate specification of cortical GABAergic neurons

    PubMed Central

    Romcy-Pereira, Rodrigo N.

    2015-01-01

    Cortical GABAergic interneurons constitute an extremely diverse population of cells organized in a well-defined topology of precisely interconnected cells. They play a crucial role regulating inhibitory-excitatory balance in brain circuits, gating sensory perception, and regulating spike timing to brain oscillations during distinct behaviors. Dysfunctions in the establishment of proper inhibitory circuits have been associated to several brain disorders such as autism, epilepsy, and schizophrenia. In the rodent adult cortex, inhibitory neurons are generated during the second gestational week from distinct progenitor lineages located in restricted domains of the ventral telencephalon. However, only recently, studies have revealed some of the mechanisms generating the heterogeneity of neuronal subtypes and their modes of integration in brain networks. Here we will discuss some the events involved in the production of cortical GABAergic neuron diversity with focus on the interaction between intrinsically driven genetic programs and environmental signals during development. PMID:25972784

  14. Influence of thyroid hormone and thyroid hormone receptors in the generation of cerebellar gamma-aminobutyric acid-ergic interneurons from precursor cells.

    PubMed

    Manzano, Jimena; Cuadrado, Maria; Morte, Beatriz; Bernal, Juan

    2007-12-01

    Thyroid hormones have important actions in the developing central nervous system. We describe here a novel action of thyroid hormone and its nuclear receptors on maturation of cerebellar gamma-aminobutyric acid (GABA)-ergic interneurons from their precursor cells. In rats, the density of GABAergic terminals in the cerebellum was decreased by hypothyroidism, as shown by immunohistochemistry for the GABA transporter GAT-1. This was due, at least partially, to a decreased number of GABAergic cells, because the number of Golgi II cells in the internal granular layer was decreased. GABAergic interneurons in the cerebellum differentiate from precursors expressing the Pax-2 transcription factor, generated in the subventricular zone of the embryonic fourth ventricle from where they migrate to the cerebellum. Hypothyroidism caused both decreased proliferation and delayed differentiation of precursors, with the net effect being an accumulation of immature cells during the neonatal period. The contribution of thyroid hormone receptors was studied by treating hypothyroid rats with T(3) or with the thyroid hormone receptor (TR) beta-selective agonist GC-1. Whereas treatment with T(3) reduced the number of precursors to control levels, GC-1 had only a partial effect, indicating that both TRalpha1 and TRbeta mediate the actions of T(3). Deletion of TRalpha1 in mice decreased cerebellar GAT-1 expression and Pax-2 precursor cell proliferation. It is concluded that thyroid hormone, acting through the nuclear receptors, has a major role in the proliferation and further differentiation of the Pax-2 precursors of cerebellar GABAergic cells. PMID:17761765

  15. The role of spinal GABAergic circuits in the control of phrenic nerve motor output

    PubMed Central

    Ghali, Michael G. Z.; Rogers, Robert F.

    2015-01-01

    While supraspinal mechanisms underlying respiratory pattern formation are well characterized, the contribution of spinal circuitry to the same remains poorly understood. In this study, we tested the hypothesis that intraspinal GABAergic circuits are involved in shaping phrenic motor output. To this end, we performed bilateral phrenic nerve recordings in anesthetized adult rats and observed neurogram changes in response to knocking down expression of both isoforms (65 and 67 kDa) of glutamate decarboxylase (GAD65/67) using microinjections of anti-GAD65/67 short-interference RNA (siRNA) in the phrenic nucleus. The number of GAD65/67-positive cells was drastically reduced on the side of siRNA microinjections, especially in the lateral aspects of Rexed's laminae VII and IX in the ventral horn of cervical segment C4, but not contralateral to microinjections. We hypothesize that intraspinal GABAergic control of phrenic output is primarily phasic, but also plays an important role in tonic regulation of phrenic discharge. Also, we identified respiration-modulated GABAergic interneurons (both inspiratory and expiratory) located slightly dorsal to the phrenic nucleus. Our data provide the first direct evidence for the existence of intraspinal GABAergic circuits contributing to the formation of phrenic output. The physiological role of local intraspinal inhibition, independent of descending direct bulbospinal control, is discussed. PMID:25833937

  16. [Intern(euron)al affairs : The role of specific neocortical interneuron classes in the interaction between acetylcholine and GABAergic anesthetics].

    PubMed

    Liebig, L; Grasshoff, C; Hentschke, H

    2016-08-01

    Acetylcholine is a neuromodulator which is released throughout the central nervous system and plays an essential role in consciousness and cognitive processes including attention and learning. Due to its 'activating' effect on the neuronal and behavioral level its interaction with anesthetics has long been of interest to anesthesiologists. It is widely held that a reduction of the release of acetylcholine by general anesthetics constitutes part of the anesthetic effect. This notion is backed by numerous human and animal studies, but is also in seeming contradiction to findings that acetylcholine activates specific classes of inhibitory neurons: if acetylcholine excites elements within the neuronal network responsible for the release of the inhibitory neurotransmitter γ-aminobutyric acid (GABA), its withdrawal should diminish, not enhance, the effect of anesthetics.Focusing on cortical circuits, we present an overview of recent advances in cellular neurophysiology, particularly the interactions between inhibitory neuron classes, which provide insights on the interaction between acetylcholine and GABA. PMID:27380048

  17. Postmitotic Nkx2-1 controls the migration of telencephalic interneurons by direct repression of guidance receptors

    PubMed Central

    Nóbrega-Pereira, Sandrina; Kessaris, Nicoletta; Du, Tonggong; Kimura, Shioko; Anderson, Stewart A.; Marín, Oscar

    2008-01-01

    Summary The homeodomain transcription factor Nkx2-1 plays key roles in the developing telencephalon, where it regulates the identity of progenitor cells in the medial ganglionic eminence (MGE) and mediates the specification of several classes of GABAergic and cholinergic neurons. Here we have investigated the postmitotic function of Nkx2-1 in the migration of interneurons originating in the MGE. Experimental manipulations and mouse genetics show that downregulation of Nkx2-1 expression in postmitotic cells is necessary for the migration of interneurons to the cortex, whereas maintenance of Nkx2-1 expression is required for interneuron migration to the striatum. Nkx2-1 exerts this role in the migration of MGE-derived interneurons by directly regulating the expression of a guidance receptor, Neuropilin-2, which enables interneurons to invade the developing striatum. Our results demonstrate a novel role for the cell-fate determinant Nkx2-1 in regulating neuronal migration by direct transcriptional regulation of guidance receptors in postmitotic cells. PMID:18786357

  18. Paradoxical proepileptic response to NMDA receptor blockade linked to cortical interneuron defect in stargazer mice.

    PubMed

    Maheshwari, Atul; Nahm, Walter K; Noebels, Jeffrey L

    2013-01-01

    Paradoxical seizure exacerbation by anti-epileptic medication is a well-known clinical phenomenon in epilepsy, but the cellular mechanisms remain unclear. One possibility is enhanced network disinhibition by unintended suppression of inhibitory interneurons. We investigated this hypothesis in the stargazer mouse model of absence epilepsy, which bears a mutation in stargazin, an AMPA receptor trafficking protein. If AMPA signaling onto inhibitory GABAergic neurons is impaired, their activation by glutamate depends critically upon NMDA receptors. Indeed, we find that stargazer seizures are exacerbated by NMDA receptor blockade with CPP (3-[(R)-2-carboxypiperazin-4-yl]-prop-2-enyl-1-phosphonic acid) and MK-801, whereas other genetic absence epilepsy models are sensitive to these antagonists. To determine how an AMPA receptor trafficking defect could lead to paradoxical network activation, we analyzed stargazin and AMPA receptor localization and found that stargazin is detected exclusively in parvalbumin-positive (PV (+)) fast-spiking interneurons in somatosensory cortex, where it is co-expressed with the AMPA receptor subunit GluA4. PV (+) cortical interneurons in stargazer show a near twofold decrease in the dendrite:soma GluA4 expression ratio compared to wild-type (WT) littermates. We explored the functional consequence of this trafficking defect on network excitability in neocortical slices. Both NMDA receptor antagonists suppressed 0 Mg (2) (+)-induced network discharges in WT but augmented bursting in stargazer cortex. Interneurons mediate this paradoxical response, since the difference between genotypes was masked by GABA receptor blockade. Our findings provide a cellular locus for AMPA receptor-dependent signaling defects in stargazer cortex and define an interneuron-dependent mechanism for paradoxical seizure exacerbation in absence epilepsy. PMID:24065886

  19. The Promise of an Interneuron-based Cell Therapy for Epilepsy

    PubMed Central

    Sebe, Joy Y.; Baraban, Scott C.

    2010-01-01

    Of the nearly 3 million Americans diagnosed with epilepsy, approximately 30% are unresponsive to current medications. Recent data has shown that early postnatal transplantation of interneuronal precursor cells increases GABAergic inhibition in the host brain and dramatically suppresses seizure activity in epileptic mice. In this review, we will highlight findings from seizure-prone mice and humans that demonstrate the link between dysfunctional GABAergic inhibition and hyperexcitability. In particular, we will focus on rodent models of temporal lobe epilepsy (TLE), the most common and difficult to treat form of the disease, and interneuronopathies, an emerging classification. A wealth of literature showing a causal link between reduced GABA-mediated inhibition and seizures has directed our efforts to recover the loss of inhibition via transplantation of interneuronal precursors. Numerous related studies have explored the anticonvulsant potential of cell grafts derived from a variety of brain regions, yet the mechanism underlying the effect of such heterogeneous cell transplants is unknown. In discussing our recent findings and placing them in context with what is known about epilepsy, and how related transplant approaches have progressed, we hope to initiate a frank discussion of the best path toward the translation of this approach to patients with intractable forms of epilepsy. PMID:21154914

  20. Disruption of mGluR5 in parvalbumin-positive interneurons induces core features of neurodevelopmental disorders

    PubMed Central

    Barnes, SA; Pinto-Duarte, A; Kappe, A; Zembrzycki, A; Metzler, A; Mukamel, EA; Lucero, J; Wang, X; Sejnowski, TJ; Markou, A; Behrens, MM

    2015-01-01

    Alterations in glutamatergic transmission onto developing GABAergic systems, in particular onto parvalbumin-positive (Pv+) fast-spiking interneurons, have been proposed as underlying causes of several neurodevelopmental disorders, including schizophrenia and autism. Excitatory glutamatergic transmission, through ionotropic and metabotropic glutamate receptors, is necessary for the correct postnatal development of the Pv+ GABAergic network. We generated mutant mice in which the metabotropic glutamate receptor 5 (mGluR5) was specifically ablated from Pv+ interneurons postnatally, and investigated the consequences of such a manipulation at the cellular, network and systems levels. Deletion of mGluR5 from Pv+ interneurons resulted in reduced numbers of Pv+ neurons and decreased inhibitory currents, as well as alterations in event-related potentials and brain oscillatory activity. These cellular and sensory changes translated into domain-specific memory deficits and increased compulsive-like behaviors, abnormal sensorimotor gating and altered responsiveness to stimulant agents. Our findings suggest a fundamental role for mGluR5 in the development of Pv+ neurons and show that alterations in this system can produce broad-spectrum alterations in brain network activity and behavior that are relevant to neurodevelopmental disorders. PMID:26260494

  1. Fgf16 Is Required for Specification of GABAergic Neurons and Oligodendrocytes in the Zebrafish Forebrain

    PubMed Central

    Miyake, Ayumi; Chitose, Tatsuya; Kamei, Eriko; Murakami, Atsuko; Nakayama, Yoshiaki; Konishi, Morichika; Itoh, Nobuyuki

    2014-01-01

    Fibroblast growth factor (Fgf) signaling plays crucial roles in various developmental processes including those in the brain. We examined the role of Fgf16 in the formation of the zebrafish brain. The knockdown of fgf16 decreased cell proliferation in the forebrain and midbrain. fgf16 was also essential for development of the ventral telencephalon and diencephalon, whereas fgf16 was not required for dorsoventral patterning in the midbrain. fgf16 was additionally required for the specification and differentiation of γ–aminobutyric acid (GABA)ergic interneurons and oligodendrocytes, but not for those of glutamatergic neurons in the forebrain. Cross talk between Fgf and Hedgehog (Hh) signaling was critical for the specification of GABAergic interneurons and oligodendrocytes. The expression of fgf16 in the forebrain was down-regulated by the inhibition of Hh and Fgf19 signaling, but not by that of Fgf3/Fgf8 signaling. The fgf16 morphant phenotype was similar to that of the fgf19 morphant and embryos blocked Hh signaling. The results of the present study indicate that Fgf16 signaling, which is regulated by the downstream pathways of Hh-Fgf19 in the forebrain, is involved in forebrain development. PMID:25357195

  2. Loss of Either Rac1 or Rac3 GTPase Differentially Affects the Behavior of Mutant Mice and the Development of Functional GABAergic Networks

    PubMed Central

    Pennucci, Roberta; Talpo, Francesca; Astro, Veronica; Montinaro, Valentina; Morè, Lorenzo; Cursi, Marco; Castoldi, Valerio; Chiaretti, Sara; Bianchi, Veronica; Marenna, Silvia; Cambiaghi, Marco; Tonoli, Diletta; Leocani, Letizia; Biella, Gerardo; D'Adamo, Patrizia; de Curtis, Ivan

    2016-01-01

    Rac GTPases regulate the development of cortical/hippocampal GABAergic interneurons by affecting the early development and migration of GABAergic precursors. We have addressed the function of Rac1 and Rac3 proteins during the late maturation of hippocampal interneurons. We observed specific phenotypic differences between conditional Rac1 and full Rac3 knockout mice. Rac1 deletion caused greater generalized hyperactivity and cognitive impairment compared with Rac3 deletion. This phenotype matched with a more evident functional impairment of the inhibitory circuits in Rac1 mutants, showing higher excitability and reduced spontaneous inhibitory currents in the CA hippocampal pyramidal neurons. Morphological analysis confirmed a differential modification of the inhibitory circuits: deletion of either Rac caused a similar reduction of parvalbumin-positive inhibitory terminals in the pyramidal layer. Intriguingly, cannabinoid receptor-1-positive terminals were strongly increased only in the CA1 of Rac1-depleted mice. This increase may underlie the stronger electrophysiological defects in this mutant. Accordingly, incubation with an antagonist for cannabinoid receptors partially rescued the reduction of spontaneous inhibitory currents in the pyramidal cells of Rac1 mutants. Our results show that Rac1 and Rac3 have independent roles in the formation of GABAergic circuits, as highlighted by the differential effects of their deletion on the late maturation of specific populations of interneurons. PMID:26582364

  3. Accumulation of GABAergic Neurons, Causing a Focal Ambient GABA Gradient, and Downregulation of KCC2 Are Induced During Microgyrus Formation in a Mouse Model of Polymicrogyria

    PubMed Central

    Wang, Tianying; Kumada, Tatsuro; Morishima, Toshitaka; Iwata, Satomi; Kaneko, Takeshi; Yanagawa, Yuchio; Yoshida, Sachiko; Fukuda, Atsuo

    2014-01-01

    Although focal cortical malformations are considered neuronal migration disorders, their formation mechanisms remain unknown. We addressed how the γ-aminobutyric acid (GABA)ergic system affects the GABAergic and glutamatergic neuronal migration underlying such malformations. A focal freeze-lesion (FFL) of the postnatal day zero (P0) glutamic acid decarboxylase–green fluorescent protein knock-in mouse neocortex produced a 3- or 4-layered microgyrus at P7. GABAergic interneurons accumulated around the necrosis including the superficial region during microgyrus formation at P4, whereas E17.5-born, Cux1-positive pyramidal neurons outlined the GABAergic neurons and were absent from the superficial layer, forming cell-dense areas in layer 2 of the P7 microgyrus. GABA imaging showed that an extracellular GABA level temporally increased in the GABAergic neuron-positive area, including the necrotic center, at P4. The expression of the Cl– transporter KCC2 was downregulated in the microgyrus-forming GABAergic and E17.5-born glutamatergic neurons at P4; these cells may need a high intracellular Cl– concentration to induce depolarizing GABA effects. Bicuculline decreased the frequency of spontaneous Ca2+ oscillations in these microgyrus-forming cells. Thus, neonatal FFL causes specific neuronal accumulation, preceded by an increase in ambient GABA during microgyrus formation. This GABA increase induces GABAA receptor-mediated Ca2+ oscillation in KCC2-downregulated microgyrus-forming cells, as seen in migrating cells during early neocortical development. PMID:23246779

  4. Characterization and Distribution of Reelin-Positive Interneuron Subtypes in the Rat Barrel Cortex

    PubMed Central

    Pohlkamp, Theresa; Dávid, Csaba; Cauli, Bruno; Gallopin, Thierry; Bouché, Elisabeth; Karagiannis, Anastassios; May, Petra; Herz, Joachim; Frotscher, Michael; Staiger, Jochen F.; Bock, Hans H.

    2014-01-01

    GABAergic inhibitory interneurons (IN) represent a heterogeneous population with different electrophysiological, morphological, and molecular properties. The correct balance between interneuronal subtypes is important for brain function and is impaired in several neurological and psychiatric disorders. Here we show the data of 123 molecularly and electrophysiologically characterized neurons of juvenile rat barrel cortex acute slices, 48 of which expressed Reelin (Reln). Reln mRNA was exclusively detected in Gad65/67-positive cells but was found in interneuronal subtypes in different proportions: all cells of the adapting-Somatostatin (SST) cluster expressed Reln, whereas 63% of the adapting-neuropeptide Y (NPY, 50% of the fast-spiking Parvalbumin (PVALB), and 27% of the adapting/bursting-Vasoactive Intestinal Peptide (VIP) cluster were Reln-positive. Silhouette analysis revealed a high impact of the parameter Reln on cluster quality. By analyzing the co-localization of RELN immunoreactivity with those of different IN-markers, we found that RELN is produced layer-independently in SST-, NPY-, and NOS1-expressing INs, whereas co-localization of RELN and VIP was mostly absent. Of note, RELN co-localized with PVALB, predominantly in INs of layers IV/V (>30%). Our findings emphasize RELN's role as an important IN-marker protein and provide a basis for the functional characterization of Reln-expressing INs and its role in the regulation of inhibitory IN networks. PMID:23803971

  5. Inhibition by Somatostatin Interneurons in Olfactory Cortex

    PubMed Central

    Large, Adam M.; Kunz, Nicholas A.; Mielo, Samantha L.; Oswald, Anne-Marie M.

    2016-01-01

    Inhibitory circuitry plays an integral role in cortical network activity. The development of transgenic mouse lines targeting unique interneuron classes has significantly advanced our understanding of the functional roles of specific inhibitory circuits in neocortical sensory processing. In contrast, considerably less is known about the circuitry and function of interneuron classes in piriform cortex, a paleocortex responsible for olfactory processing. In this study, we sought to utilize transgenic technology to investigate inhibition mediated by somatostatin (SST) interneurons onto pyramidal cells (PCs), parvalbumin (PV) interneurons, and other interneuron classes. As a first step, we characterized the anatomical distributions and intrinsic properties of SST and PV interneurons in four transgenic lines (SST-cre, GIN, PV-cre, and G42) that are commonly interbred to investigate inhibitory connectivity. Surprisingly, the distributions SST and PV cell subtypes targeted in the GIN and G42 lines were sparse in piriform cortex compared to neocortex. Moreover, two-thirds of interneurons recorded in the SST-cre line had electrophysiological properties similar to fast spiking (FS) interneurons rather than regular (RS) or low threshold spiking (LTS) phenotypes. Nonetheless, like neocortex, we find that SST-cells broadly inhibit a number of unidentified interneuron classes including putatively identified PV cells and surprisingly, other SST cells. We also confirm that SST-cells inhibit pyramidal cell dendrites and thus, influence dendritic integration of afferent and recurrent inputs to the piriform cortex. Altogether, our findings suggest that SST interneurons play an important role in regulating both excitation and the global inhibitory network during olfactory processing. PMID:27582691

  6. Inhibition by Somatostatin Interneurons in Olfactory Cortex.

    PubMed

    Large, Adam M; Kunz, Nicholas A; Mielo, Samantha L; Oswald, Anne-Marie M

    2016-01-01

    Inhibitory circuitry plays an integral role in cortical network activity. The development of transgenic mouse lines targeting unique interneuron classes has significantly advanced our understanding of the functional roles of specific inhibitory circuits in neocortical sensory processing. In contrast, considerably less is known about the circuitry and function of interneuron classes in piriform cortex, a paleocortex responsible for olfactory processing. In this study, we sought to utilize transgenic technology to investigate inhibition mediated by somatostatin (SST) interneurons onto pyramidal cells (PCs), parvalbumin (PV) interneurons, and other interneuron classes. As a first step, we characterized the anatomical distributions and intrinsic properties of SST and PV interneurons in four transgenic lines (SST-cre, GIN, PV-cre, and G42) that are commonly interbred to investigate inhibitory connectivity. Surprisingly, the distributions SST and PV cell subtypes targeted in the GIN and G42 lines were sparse in piriform cortex compared to neocortex. Moreover, two-thirds of interneurons recorded in the SST-cre line had electrophysiological properties similar to fast spiking (FS) interneurons rather than regular (RS) or low threshold spiking (LTS) phenotypes. Nonetheless, like neocortex, we find that SST-cells broadly inhibit a number of unidentified interneuron classes including putatively identified PV cells and surprisingly, other SST cells. We also confirm that SST-cells inhibit pyramidal cell dendrites and thus, influence dendritic integration of afferent and recurrent inputs to the piriform cortex. Altogether, our findings suggest that SST interneurons play an important role in regulating both excitation and the global inhibitory network during olfactory processing. PMID:27582691

  7. Prdm13 regulates subtype specification of retinal amacrine interneurons and modulates visual sensitivity.

    PubMed

    Watanabe, Satoshi; Sanuki, Rikako; Sugita, Yuko; Imai, Wataru; Yamazaki, Ryoji; Kozuka, Takashi; Ohsuga, Mizuki; Furukawa, Takahisa

    2015-05-20

    Amacrine interneurons, which are highly diversified in morphological, neurochemical, and physiological features, play crucial roles in visual information processing in the retina. However, the specification mechanisms and functions in vision for each amacrine subtype are not well understood. We found that the Prdm13 transcriptional regulator is specifically expressed in developing and mature amacrine cells in the mouse retina. Most Prdm13-positive amacrine cells are Calbindin- and Calretinin-positive GABAergic or glycinergic neurons. Absence of Prdm13 significantly reduces GABAergic and glycinergic amacrines, resulting in a specific defect of the S2/S3 border neurite bundle in the inner plexiform layer. Forced expression of Prdm13 distinctively induces GABAergic and glycinergic amacrine cells but not cholinergic amacrine cells, whereas Ptf1a, an upstream transcriptional regulator of Prdm13, induces all of these subtypes. Moreover, Prdm13-deficient mice showed abnormally elevated spatial, temporal, and contrast sensitivities in vision. Together, these results show that Prdm13 regulates development of a subset of amacrine cells, which newly defines an amacrine subtype to negatively modulate visual sensitivities. Our current study provides new insights into mechanisms of the diversification of amacrine cells and their function in vision. PMID:25995483

  8. Synaptic Organization of Perisomatic GABAergic Inputs onto the Principal Cells of the Mouse Basolateral Amygdala.

    PubMed

    Vereczki, Viktória K; Veres, Judit M; Müller, Kinga; Nagy, Gergö A; Rácz, Bence; Barsy, Boglárka; Hájos, Norbert

    2016-01-01

    Spike generation is most effectively controlled by inhibitory inputs that target the perisomatic region of neurons. Despite the critical importance of this functional domain, very little is known about the organization of the GABAergic inputs contacting the perisomatic region of principal cells (PCs) in the basolateral amygdala. Using immunocytochemistry combined with in vitro single-cell labeling we determined the number and sources of GABAergic inputs of PCs at light and electron microscopic levels in mice. We found that the soma and proximal dendrites of PCs were innervated primarily by two neurochemically distinct basket cell types expressing parvalbumin (PVBC) or cholecystokinin and CB1 cannabinoid receptors (CCK/CB1BC). The innervation of the initial segment of PC axons was found to be parceled out by PVBCs and axo-axonic cells (AAC), as the majority of GABAergic inputs onto the region nearest to the soma (between 0 and 10 μm) originated from PVBCs, while the largest portion of the axon initial segment was innervated by AACs. Detailed morphological investigations revealed that the three perisomatic region-targeting interneuron types significantly differed in dendritic and axonal arborization properties. We found that, although individual PVBCs targeted PCs via more terminals than CCK/CB1BCs, similar numbers (15-17) of the two BC types converge onto single PCs, whereas fewer (6-7) AACs innervate the axon initial segment of single PCs. Furthermore, we estimated that a PVBC and a CCK/CB1BC may target 800-900 and 700-800 PCs, respectively, while an AAC can innervate 600-650 PCs. Thus, BCs and AACs innervate ~10 and 20% of PC population, respectively, within their axonal cloud. Our results collectively suggest, that these interneuron types may be differently affiliated within the local amygdalar microcircuits in order to fulfill specific functions in network operation during various brain states. PMID:27013983

  9. Synaptic Organization of Perisomatic GABAergic Inputs onto the Principal Cells of the Mouse Basolateral Amygdala

    PubMed Central

    Vereczki, Viktória K.; Veres, Judit M.; Müller, Kinga; Nagy, Gergö A.; Rácz, Bence; Barsy, Boglárka; Hájos, Norbert

    2016-01-01

    Spike generation is most effectively controlled by inhibitory inputs that target the perisomatic region of neurons. Despite the critical importance of this functional domain, very little is known about the organization of the GABAergic inputs contacting the perisomatic region of principal cells (PCs) in the basolateral amygdala. Using immunocytochemistry combined with in vitro single-cell labeling we determined the number and sources of GABAergic inputs of PCs at light and electron microscopic levels in mice. We found that the soma and proximal dendrites of PCs were innervated primarily by two neurochemically distinct basket cell types expressing parvalbumin (PVBC) or cholecystokinin and CB1 cannabinoid receptors (CCK/CB1BC). The innervation of the initial segment of PC axons was found to be parceled out by PVBCs and axo-axonic cells (AAC), as the majority of GABAergic inputs onto the region nearest to the soma (between 0 and 10 μm) originated from PVBCs, while the largest portion of the axon initial segment was innervated by AACs. Detailed morphological investigations revealed that the three perisomatic region-targeting interneuron types significantly differed in dendritic and axonal arborization properties. We found that, although individual PVBCs targeted PCs via more terminals than CCK/CB1BCs, similar numbers (15–17) of the two BC types converge onto single PCs, whereas fewer (6–7) AACs innervate the axon initial segment of single PCs. Furthermore, we estimated that a PVBC and a CCK/CB1BC may target 800–900 and 700–800 PCs, respectively, while an AAC can innervate 600–650 PCs. Thus, BCs and AACs innervate ~10 and 20% of PC population, respectively, within their axonal cloud. Our results collectively suggest, that these interneuron types may be differently affiliated within the local amygdalar microcircuits in order to fulfill specific functions in network operation during various brain states. PMID:27013983

  10. Direct Induction and Functional Maturation of Forebrain GABAergic Neurons from Human Pluripotent Stem Cells.

    PubMed

    Sun, Alfred Xuyang; Yuan, Qiang; Tan, Shawn; Xiao, Yixin; Wang, Danlei; Khoo, Audrey Tze Ting; Sani, Levena; Tran, Hoang-Dai; Kim, Paul; Chiew, Yong Seng; Lee, Kea Joo; Yen, Yi-Chun; Ng, Huck Hui; Lim, Bing; Je, Hyunsoo Shawn

    2016-08-16

    Gamma-aminobutyric acid (GABA)-releasing interneurons play an important modulatory role in the cortex and have been implicated in multiple neurological disorders. Patient-derived interneurons could provide a foundation for studying the pathogenesis of these diseases as well as for identifying potential therapeutic targets. Here, we identified a set of genetic factors that could robustly induce human pluripotent stem cells (hPSCs) into GABAergic neurons (iGNs) with high efficiency. We demonstrated that the human iGNs express neurochemical markers and exhibit mature electrophysiological properties within 6-8 weeks. Furthermore, in vitro, iGNs could form functional synapses with other iGNs or with human-induced glutamatergic neurons (iENs). Upon transplantation into immunodeficient mice, human iGNs underwent synaptic maturation and integration into host neural circuits. Taken together, our rapid and highly efficient single-step protocol to generate iGNs may be useful to both mechanistic and translational studies of human interneurons. PMID:27498872

  11. Alcohol enhances GABAergic transmission to cerebellar granule cells via an increase in Golgi cell excitability.

    PubMed

    Carta, Mario; Mameli, Manuel; Valenzuela, C Fernando

    2004-04-14

    Alcohol intoxication alters coordination and motor skills, and this is responsible for a significant number of traffic accident-related deaths around the world. Although the precise mechanism of action of ethanol (EtOH) is presently unknown, studies suggest that it acts, in part, by interfering with normal cerebellar functioning. An important component of cerebellar circuits is the granule cell. The excitability of these abundantly expressed neurons is controlled by the Golgi cell, a subtype of GABAergic interneuron. Granule cells receive GABAergic input in the form of phasic and tonic currents that are mediated by synaptic and extrasynaptic receptors, respectively. Using the acute cerebellar slice preparation and patch-clamp electrophysiological techniques, we found that ethanol induces a parallel increase in both the frequency of spontaneous IPSCs and the magnitude of the tonic current. EtOH (50 mm) did not produce this effect when spontaneous action potentials were blocked with tetrodotoxin. Recordings in the loose-patch cell-attached configuration demonstrated that ethanol increases the frequency of spontaneous action potentials in Golgi cells. Taken together, these findings indicate that ethanol enhances GABAergic inhibition of granule cells via a presynaptic mechanism that involves an increase in action potential-dependent GABA release from Golgi cells. This effect is likely to have an impact on the flow of information through the cerebellar cortex and may contribute to the mechanism by which acute ingestion of alcoholic beverages induces motor impairment. PMID:15084654

  12. GABAergic disinhibition and impaired KCC2 cotransporter activity underlie tumor-associated epilepsy

    PubMed Central

    Campbell, Susan L.; Robel, Stefanie; Cuddapah, Vishnu A.; Robert, Stephanie; Buckingham, Susan C.; Kahle, Kristopher T.; Sontheimer, Harald

    2014-01-01

    Seizures frequently accompany gliomas and often escalate to peritumoral epilepsy. Previous work revealed the importance of tumor-derived excitatory glutamate (Glu) release mediated by the cystine-glutamate transporter (SXC) in epileptogenesis. We now show a novel contribution of GABAergic disinhibition to disease pathophysiology. In a validated mouse glioma model, we found that peritumoral parvalbumin-positive GABAergic inhibitory interneurons are significantly reduced, corresponding with deficits in spontaneous and evoked inhibitory neurotransmission. Most remaining peritumoral neurons exhibit elevated intracellular Cl− concentration ([Cl−]i) and consequently depolarizing, excitatory GABA responses. In these neurons, the plasmalemmal expression of KCC2, which establishes the low [Cl−]i required for GABAAR-mediated inhibition, is significantly decreased. Interestingly, reductions in inhibition are independent of Glu release, but the presence of both decreased inhibition and decreased SXC expression is required for epileptogenesis. We suggest GABAergic disinhibition renders peritumoral neuronal networks hyper-excitable and susceptible to seizures triggered by excitatory stimuli, and propose KCC2 as a therapeutic target. PMID:25066727

  13. Early GABAergic circuitry in the cerebral cortex.

    PubMed

    Luhmann, Heiko J; Kirischuk, Sergei; Sinning, Anne; Kilb, Werner

    2014-06-01

    In the cerebral cortex GABAergic signaling plays an important role in regulating early developmental processes, for example, neurogenesis, migration and differentiation. Transient cell populations, namely Cajal-Retzius in the marginal zone and thalamic input receiving subplate neurons, are integrated as active elements in transitory GABAergic circuits. Although immature pyramidal neurons receive GABAergic synaptic inputs already at fetal stages, they are integrated into functional GABAergic circuits only several days later. In consequence, GABAergic synaptic transmission has only a minor influence on spontaneous network activity during early corticogenesis. Concurrent with the gradual developmental shift of GABA action from excitatory to inhibitory and the maturation of cortical synaptic connections, GABA becomes more important in synchronizing neuronal network activity. PMID:24434608

  14. Molecular control of two novel migratory paths for CGE-derived interneurons in the developing mouse brain.

    PubMed

    Touzot, Audrey; Ruiz-Reig, Nuria; Vitalis, Tania; Studer, Michèle

    2016-05-15

    GABAergic interneurons are highly heterogeneous and originate in the subpallium mainly from the medial (MGE) and caudal (CGE) ganglionic eminences according to a precise temporal sequence. MGE-derived cells disperse dorsally and migrate towards all regions of the cortex, but little is known about how CGE-derived cells reach their targets during development. Here, we unravel the existence of two novel CGE caudo-rostral migratory streams, one located laterally (LMS) and the other one more medially (MMS), that, together with the well-known caudal migratory stream (CMS), contribute to populate the neocortex, hippocampus and amygdala. These paths appear in a precise temporal sequence and express a distinct combination of transcription factors, such as SP8, PROX1, COUP-TFI and COUP-TFII. By inactivating COUP-TFI in developing interneurons, the lateral and medial streams are perturbed and expression of SP8 and COUP-TFII affected. As a consequence, adult mutant neocortices have laminar-specific alterations of distinct cortical interneuron subtypes. Overall, we propose that the existence of spatially and temporally regulated migratory paths in the subpallium contributes to the laminar distribution and specification of distinct interneuron subpopulations in the adult brain. PMID:27034423

  15. The Sox gene Dichaete is expressed in local interneurons and functions in development of the Drosophila adult olfactory circuit

    PubMed Central

    Melnattur, Krishna V.; Berdnik, Daniela; Rusan, Zeid; Ferreira, Christopher J.; Nambu, John R.

    2012-01-01

    In insects, the primary sites of integration for olfactory sensory input are the glomeruli in the antennal lobes. Here, axons of olfactory receptor neurons synapse with dendrites of the projection neurons that relay olfactory input to higher brain centers, such as the mushroom bodies and lateral horn. Interactions between olfactory receptor neurons and projection neurons are modulated by excitatory and inhibitory input from a group of local interneurons. While significant insight has been gleaned into the differentiation of olfactory receptor and projection neurons, much less is known about the development and function of the local interneurons. We have found that Dichaete, a conserved Sox HMG box gene, is strongly expressed in a cluster of LAAL cells located adjacent to each antennal lobe in the adult brain. Within these clusters, Dichaete protein expression is detected in both cholinergic and GABAergic local interneurons. In contrast, Dichaete expression is not detected in mature or developing projection neurons, or developing olfactory receptor neurons. Analysis of novel viable Dichaete mutant alleles revealed misrouting of specific projection neuron dendrites and axons, and alterations in glomeruli organization. These results suggest non-cell autonomous functions of Dichaete in projection neuron differentiation as well as a potential role for Dichaete-expressing local interneurons in development of the adult olfactory circuitry. PMID:22648855

  16. The sox gene Dichaete is expressed in local interneurons and functions in development of the Drosophila adult olfactory circuit.

    PubMed

    Melnattur, Krishna V; Berdnik, Daniela; Rusan, Zeid; Ferreira, Christopher J; Nambu, John R

    2013-02-01

    In insects, the primary sites of integration for olfactory sensory input are the glomeruli in the antennal lobes. Here, axons of olfactory receptor neurons synapse with dendrites of the projection neurons that relay olfactory input to higher brain centers, such as the mushroom bodies and lateral horn. Interactions between olfactory receptor neurons and projection neurons are modulated by excitatory and inhibitory input from a group of local interneurons. While significant insight has been gleaned into the differentiation of olfactory receptor and projection neurons, much less is known about the development and function of the local interneurons. We have found that Dichaete, a conserved Sox HMG box gene, is strongly expressed in a cluster of LAAL cells located adjacent to each antennal lobe in the adult brain. Within these clusters, Dichaete protein expression is detected in both cholinergic and GABAergic local interneurons. In contrast, Dichaete expression is not detected in mature or developing projection neurons, or developing olfactory receptor neurons. Analysis of novel viable Dichaete mutant alleles revealed misrouting of specific projection neuron dendrites and axons, and alterations in glomeruli organization. These results suggest noncell autonomous functions of Dichaete in projection neuron differentiation as well as a potential role for Dichaete-expressing local interneurons in development of the adult olfactory circuitry. PMID:22648855

  17. Reduction in focal ictal activity following transplantation of MGE interneurons requires expression of the GABAA receptor α4 subunit

    PubMed Central

    Jaiswal, Manoj K.; Keros, Sotirios; Zhao, Mingrui; Inan, Melis; Schwartz, Theodore H.; Anderson, Stewart A.; Homanics, Gregg E.; Goldstein, Peter A.

    2015-01-01

    Despite numerous advances, treatment-resistant seizures remain an important problem. Loss of neuronal inhibition is present in a variety of epilepsy models and is suggested as a mechanism for increased excitability, leading to the proposal that grafting inhibitory interneurons into seizure foci might relieve refractory seizures. Indeed, transplanted medial ganglionic eminence interneuron progenitors (MGE-IPs) mature into GABAergic interneurons that increase GABA release onto cortical pyramidal neurons, and this inhibition is associated with reduced seizure activity. An obvious conclusion is that inhibitory coupling between the new interneurons and pyramidal cells underlies this effect. We hypothesized that the primary mechanism for the seizure-limiting effects following MGE-IP transplantation is the tonic conductance that results from activation of extrasynaptic GABAA receptors (GABAA-Rs) expressed on cortical pyramidal cells. Using in vitro and in vivo recording techniques, we demonstrate that GABAA-R α4 subunit deletion abolishes tonic currents (Itonic) in cortical pyramidal cells and leads to a failure of MGE-IP transplantation to attenuate cortical seizure propagation. These observations should influence how the field proceeds with respect to the further development of therapeutic neuronal transplants (and possibly pharmacological treatments). PMID:25914623

  18. A negative feedback loop controls NMDA receptor function in cortical interneurons via neuregulin 2/ErbB4 signalling

    PubMed Central

    Vullhorst, Detlef; Mitchell, Robert M.; Keating, Carolyn; Roychowdhury, Swagata; Karavanova, Irina; Tao-Cheng, Jung-Hwa; Buonanno, Andres

    2015-01-01

    The neuregulin receptor ErbB4 is an important modulator of GABAergic interneurons and neural network synchronization. However, little is known about the endogenous ligands that engage ErbB4, the neural processes that activate them or their direct downstream targets. Here we demonstrate, in cultured neurons and in acute slices, that the NMDA receptor is both effector and target of neuregulin 2 (NRG2)/ErbB4 signalling in cortical interneurons. Interneurons co-express ErbB4 and NRG2, and pro-NRG2 accumulates on cell bodies atop subsurface cisternae. NMDA receptor activation rapidly triggers shedding of the signalling-competent NRG2 extracellular domain. In turn, NRG2 promotes ErbB4 association with GluN2B-containing NMDA receptors, followed by rapid internalization of surface receptors and potent downregulation of NMDA but not AMPA receptor currents. These effects occur selectively in ErbB4-positive interneurons and not in ErbB4-negative pyramidal neurons. Our findings reveal an intimate reciprocal relationship between ErbB4 and NMDA receptors with possible implications for the modulation of cortical microcircuits associated with cognitive deficits in psychiatric disorders. PMID:26027736

  19. Nociceptive vocalization response in guinea pigs modulated by opioidergic, GABAergic and serotonergic neurotransmission in the dorsal raphe nucleus.

    PubMed

    Ferreira, Mateus Dalbem; Menescal-de-Oliveira, Leda

    2014-07-01

    The dorsal raphe nucleus (DRN) is involved in the control of several physiological functions, including nociceptive modulation. This nucleus is one of the main sources of serotonin to the CNS and neuromodulators such as opioids and GABA may be are important for its release. This study evaluated the influence of serotonergic, GABAergic and opioidergic stimulation, as well as their interactions in the DRN, on vocalization nociceptive response during a peripheral noxious stimulus application in guinea pigs. Morphine (1.1 nmol), bicuculline (0.50 nmol) and alpha-methyl-5-HT (1.6 nmol) microinjection on the DRN produces antinociception. The antinociception produced by morphine (1.1 nmol) and alpha-methyl-5-HT (1.6 nmol) into the DRN was blocked by prior microinjection of naloxone (0.7 nmol). The alpha-methyl-5-HT effect blocked by naloxone may indicate the existence of 5-HT2A receptors on enkephalinergic interneurons within the dorsal raphe. Pretreatment with muscimol (0.26 nmol) also prevented the antinociceptive effect caused by morphine (1.1 nmol) when administered alone at the same site, indicating an interaction between GABAergic and opioidergic interneurons. The antinociception produced by bicuculline (0.5 nmol) in the DRN was blocked by prior administration of 8-OH-DPAT (0.5 nmol), a 5-HT1A agonist. This may indicate that the 5-HT autoreceptor activation by 8-OH-DPAT at DRN effector neurons can oppose the bicuculline disinhibition effect applied to the same effectors. Thus, we suggest that 5-HT2 receptor activation in the DRN promotes endorphin/enkephalin release that may disinhibit efferent serotonergic neurons of this present structure by inhibiting GABAergic interneurons, resulting in antinociception. PMID:24831566

  20. Immunohistochemical localization of GABAergic key molecules in the main olfactory bulb of the Korean roe deer, Capreolus pygargus.

    PubMed

    Kim, Jeongtae; Takayama, Chitoshi; Park, Changnam; Ahn, Meejung; Moon, Changjong; Shin, Taekyun

    2015-09-01

    Gamma-amino butyric acid (GABA) negatively regulates the excitatory activity of neurons and is a predominant neurotransmitter in the nervous system. The olfactory bulb, the main center in the olfactory system, is modulated by inhibitory interneurons that use GABA as their main neurotransmitter. The present study aimed to evaluate GABAergic transmission in the main olfactory bulb (MOB) of the Korean roe deer (Capreolus pygargus) by examining the immunohistochemical localization of GABAergic key molecules, including glutamic acid decarboxylase (GAD), vesicular GABA transporter (VGAT), GABA transporters (GATs; GAT-1 and GAT-3), and potassium sodium chloride co-transporter 2 (KCC2). GAD, VGAT, and KCC2 were expressed in the glomerular layer (GL), external plexiform layer (ePL), mitral cell layer (ML), and granule cell layer (GrL). Intense GAT-1 expression was observed in the GL; GAT-1 expression was discernible in the ePL, ML, and GrL. However, intense GAT-3 expression was extensively observed in all layers of the MOB. These results suggest that substantial GABAergic synapses are present in the GL, ePL, ML, and GrL. Furthermore, the released GABA may be removed by GAT-1 and GAT-3 in the GL, and the majority of GABA, which is present in the ePL to GrL, may undergo reuptake by GAT-3. This is the first morphological and descriptive study of GABAergic transmission in the MOB of Korean roe deer. PMID:26115600

  1. hVGAT-mCherry: a novel molecular tool for analysis of GABAergic neurons derived from human pluripotent stem cells

    PubMed Central

    DeRosa, Brooke A.; Belle, Kinsley C.; Thomas, Blake J.; Cukier, Holly N.; Pericak-Vance, Margaret A.; Vance, Jeffery M.; Dykxhoorn, Derek M.

    2015-01-01

    Background GABAergic synaptic transmission is known to play a critical role in the assembly of neuronal circuits during development and is responsible for maintaining the balance between excitatory and inhibitory signaling in the brain during maturation into adulthood. Importantly, defects in GABAergic neuronal function and signaling have been linked to a number of neurological diseases, including autism spectrum disorders, schizophrenia, and epilepsy. With patient-specific induced pluripotent stem cell (iPSC)-based models of neurological disease, it is now possible to investigate the disease mechanisms that underlie deficits in GABAergic function in affected human neurons. To that end, tools that enable the labeling and purification of viable GABAergic neurons from human pluripotent stem cells would be of great value. Results To address the need for tools that facilitate the identification and isolation of viable GABAergic neurons from the in vitro differentiation of iPSC lines, a cell type-specific promoter-driven fluorescent reporter construct was developed that utilizes the human vesicular GABA transporter (hVGAT) promoter to drive the expression of mCherry specifically in VGAT-expressing neurons. The transduction of iPSC-derived forebrain neuronal cultures with the hVGAT promoter-mCherry lentiviral reporter construct specifically labeled GABAergic neurons. Immunocytochemical analysis of hVGAT-mCherry expression cells showed significant co-labelling with the GABAergic neuronal markers for endogenous VGAT, GABA, and GAD67. Expression of mCherry from the VGAT promoter showed expression in several cortical interneuron subtypes to similar levels. In addition, an effective and reproducible protocol was developed to facilitate the fluorescent activated cell sorting (FACS)-mediated purification of high yields of viable VGAT-positive cells. Conclusions These studies demonstrate the utility of the hVGAT-mCherry reporter construct as an effective tool for studying

  2. Neural circuits: Interacting interneurons regulate fear learning.

    PubMed

    Ozawa, Takaaki; Johansen, Joshua P

    2014-08-01

    A recent study has found that, during associative fear learning, different sensory stimuli activate subsets of inhibitory interneurons in distinct ways to dynamically regulate glutamatergic neural activity and behavioral memory formation. PMID:25093560

  3. The compartmental restriction of cerebellar interneurons

    PubMed Central

    Consalez, G. Giacomo; Hawkes, Richard

    2013-01-01

    The Purkinje cells (PC's) of the cerebellar cortex are subdivided into multiple different molecular phenotypes that form an elaborate array of parasagittal stripes. This array serves as a scaffold around which afferent topography is organized. The ways in which cerebellar interneurons may be restricted by this scaffolding are less well-understood. This review begins with a brief survey of cerebellar topography. Next, it reviews the development of stripes in the cerebellum with a particular emphasis on the embryological origins of cerebellar interneurons. These data serve as a foundation to discuss the hypothesis that cerebellar compartment boundaries also restrict cerebellar interneurons, both excitatory [granule cells, unipolar brush cells (UBCs)] and inhibitory (e.g., Golgi cells, basket cells). Finally, it is proposed that the same PC scaffold that restricts afferent terminal fields to stripes may also act to organize cerebellar interneurons. PMID:23346049

  4. Distribution and Intrinsic Membrane Properties of Basal Forebrain GABAergic and Parvalbumin Neurons in the Mouse

    PubMed Central

    McKenna, James T.; Yang, Chun; Franciosi, Serena; Winston, Stuart; Abarr, Kathleen K.; Rigby, Matthew S.; Yanagawa, Yuchio; McCarley, Robert W.; Brown, Ritchie E.

    2013-01-01

    The basal forebrain (BF) strongly regulates cortical activation, sleep homeostasis, and attention. Many BF neurons involved in these processes are GABAergic, including a subpopulation of projection neurons containing the calcium-binding protein, parvalbumin (PV). However, technical difficulties in identification have prevented a precise mapping of the distribution of GABAergic and GABA/PV+ neurons in the mouse or a determination of their intrinsic membrane properties. Here we used mice expressing fluorescent proteins in GABAergic (GAD67-GFP knock-in mice) or PV+ neurons (PV-Tomato mice) to study these neurons. Immunohistochemical staining for GABA in GAD67-GFP mice confirmed that GFP selectively labeled BF GABAergic neurons. GFP+ neurons and fibers were distributed throughout the BF, with the highest density in the magnocellular preoptic area (MCPO). Immunohistochemistry for PV indicated that the majority of PV+ neurons in the BF were large (>20 μm) or medium-sized (15–20 μm) GFP+ neurons. Most medium and large-sized BF GFP+ neurons, including those retrogradely labeled from the neocortex, were fast-firing and spontaneously active in vitro. They exhibited prominent hyperpolarization-activated inward currents and subthreshold “spikelets,” suggestive of electrical coupling. PV+ neurons recorded in PV-Tomato mice had similar properties but had significantly narrower action potentials and a higher maximal firing frequency. Another population of smaller GFP+ neurons had properties similar to striatal projection neurons. The fast firing and electrical coupling of BF GABA/PV+ neurons, together with their projections to cortical interneurons and the thalamic reticular nucleus, suggest a strong and synchronous control of the neocortical fast rhythms typical of wakefulness and REM sleep. PMID:23254904

  5. Immunoreactivity for the GABAA receptor alpha1 subunit, somatostatin and Connexin36 distinguishes axoaxonic, basket, and bistratified interneurons of the rat hippocampus.

    PubMed

    Baude, Agnès; Bleasdale, Catherine; Dalezios, Yannis; Somogyi, Peter; Klausberger, Thomas

    2007-09-01

    Parvalbumin (PV)-expressing interneurons synchronize cortical neurons through gamma-aminobutyric acidergic (GABAergic) synapses. Three types of PV-containing interneurons populate stratum pyramidale of the hippocampal CA1 area: basket cells targeting somata and proximal dendrites, axoaxonic cells innervating axon initial segments, and bistratified cells targeting the dendrites of pyramidal cells. We tested whether this axonal specialization is accompanied by a differential expression of molecules involved in neuronal signaling. Immunofluorescence evaluation of interneurons labeled by neurobiotin in vivo shows that axoaxonic cells express significantly less GABA(A) receptor alpha1 subunit in the plasma membrane than basket and bistratified cells. Electron microscopic immunogold labeling reveals that this subunit contributes heavily to extrasynaptic receptors providing a substrate for tonic inhibition. Results from additional immunofluorescence experiments were consistent with the finding that only bistratified cells express the neuropeptide somatostatin. From the molecular profiles, we estimate that basket, bistratified, and axoaxonic cells represent about 60%, 25%, and 15%, respectively, of PV-containing cells in CA1 stratum pyramidale. In addition, all 3 interneuron classes form connexin36-immunopositive dendrodendritic gap junctions. The differential expression of signaling molecules and the relative frequency of cells reflect the specialized temporal contribution of the 3 types of PV-positive interneurons to GABA release in the network. PMID:17122364

  6. Synaptic kainate currents reset interneuron firing phase

    PubMed Central

    Yang, Ellen J; Harris, Alexander Z; Pettit, Diana L

    2007-01-01

    Hippocampal interneuron activity has been linked to epileptogenesis, seizures and the oscillatory synaptic activity detected in behaving rats. Interneurons fire at specific times in the rhythmic cycles that comprise these oscillations; however, the mechanisms controlling these firing patterns remain unclear. We have examined the role of synaptic input in modulating the firing of spontaneously active rat hippocampal interneurons. We find that synaptic glutamate receptor currents of 20–30 pA increase instantaneous firing frequency and reset the phase of spontaneously firing CA1 stratum oriens interneurons. Kainate receptor (KAR)-mediated currents are particularly effective at producing this phase reset, while AMPA receptor currents are relatively ineffective. The efficacy of KAR-mediated currents is probably due to their 3-fold longer decay. Given the small amplitude of the currents needed for this phase reset, coincident activation of only a few KAR-containing synapses could synchronize firing in groups of interneurons. These data suggest that KARs are potent modulators of circuit behaviour and their activation alters hippocampal interneuron output. PMID:17068102

  7. Parvalbumin-positive interneurons of the prefrontal cortex support working memory and cognitive flexibility

    PubMed Central

    Murray, Andrew J.; Woloszynowska-Fraser, Marta U.; Ansel-Bollepalli, Laura; Cole, Katy L. H.; Foggetti, Angelica; Crouch, Barry; Riedel, Gernot; Wulff, Peer

    2015-01-01

    Dysfunction of parvalbumin (PV)-positive GABAergic interneurons (PVIs) within the prefrontal cortex (PFC) has been implicated in schizophrenia pathology. It is however unclear, how impaired signaling of these neurons may contribute to PFC dysfunction. To identify how PVIs contribute to PFC-dependent behaviors we inactivated PVIs in the PFC in mice using region- and cell-type-selective expression of tetanus toxin light chain (TeLC) and compared the functional consequences of this manipulation with non-cell-type-selective perturbations of the same circuitry. By sampling for behavioral alterations that map onto distinct symptom categories in schizophrenia, we show that dysfunction of PVI signaling in the PFC specifically produces deficits in the cognitive domain, but does not give rise to PFC-dependent correlates of negative or positive symptoms. Our results suggest that distinct aspects of the complex symptomatology of PFC dysfunction in schizophrenia can be attributed to specific prefrontal circuit elements. PMID:26608841

  8. Temporal lobe cortical pathology and inhibitory GABA interneuron cell loss are associated with seizures in multiple sclerosis

    PubMed Central

    Nicholas, Richard; Magliozzi, Roberta; Campbell, Graham; Mahad, Don; Reynolds, Richard

    2016-01-01

    Background: Seizures are recognised in multiple sclerosis (MS), but their true incidence and the mechanism by which they are associated with MS is unclear. Objective: The objective of this paper is to determine the lifetime frequency of seizures in the United Kingdom MS Tissue Bank (UKMSTB) population and any pathological features associated with seizures. Methods: We evaluated 255 individuals from the UKMSTB. A subset underwent analysis of cortical thickness, grey matter lesion (GML) (type and number) and cortical neuronal numbers (total and GABAergic). Results: A total of 37/255 patients had seizures (14.5% lifetime incidence); in 47% they were associated with concurrent infection. In those with seizures, death and wheelchair use occurred earlier and in 59% seizures developed after 15 years of disease. Seizures were associated with Type 1 GMLs and reduced cortical thickness in the middle temporal gyrus. Localised selective GABAergic interneuron loss in layers IV and VI was related to GMLs but was not explained by the presence of inflammation or by mitochondrial dysfunction within Type I GMLs. Conclusion: We confirm that seizure frequency rises in MS. Type I GMLs in the temporal lobe underlie a loss of inhibitory interneurons in cortical layers IV and VI and these changes could together with concurrent infection enhance susceptibility to seizures. PMID:25921040

  9. Adenosine A1 Receptor Suppresses Tonic GABAA Receptor Currents in Hippocampal Pyramidal Cells and in a Defined Subpopulation of Interneurons.

    PubMed

    Rombo, Diogo M; Dias, Raquel B; Duarte, Sofia T; Ribeiro, Joaquim A; Lamsa, Karri P; Sebastião, Ana M

    2016-03-01

    Adenosine is an endogenous neuromodulator that decreases excitability of hippocampal circuits activating membrane-bound metabotropic A1 receptor (A1R). The presynaptic inhibitory action of adenosine A1R in glutamatergic synapses is well documented, but its influence on inhibitory GABAergic transmission is poorly known. We report that GABAA receptor (GABAAR)-mediated tonic, but not phasic, transmission is suppressed by A1R in hippocampal neurons. Adenosine A1R activation strongly inhibits GABAAR agonist (muscimol)-evoked currents in Cornu Ammonis 1 (CA1) pyramidal neurons and in a specific subpopulation of interneurons expressing axonal cannabinoid receptor type 1. In addition, A1R suppresses tonic GABAAR currents measured in the presence of elevated ambient GABA as well as in naïve slices. The inhibition of GABAergic currents involves both protein kinase A (PKA) and protein kinase C (PKC) signaling pathways and decreases GABAAR δ-subunit expression. On the contrary, no A1R-mediated modulation was detected in phasic inhibitory postsynaptic currents evoked either by afferent electrical stimulation or by spontaneous quantal release. The results show that A1R modulates extrasynaptic rather than synaptic GABAAR-mediated signaling, and that this modulation selectively occurs in hippocampal pyramidal neurons and in a specific subpopulation of inhibitory interneurons. We conclude that modulation of tonic GABAAR signaling by adenosine A1R in specific neuron types may regulate neuronal gain and excitability in the hippocampus. PMID:25452570

  10. Spatiotemporal alterations of cortical network activity by selective loss of NOS-expressing interneurons.

    PubMed

    Shlosberg, Dan; Buskila, Yossi; Abu-Ghanem, Yasmin; Amitai, Yael

    2012-01-01

    Deciphering the role of GABAergic neurons in large neuronal networks such as the neocortex forms a particularly complex task as they comprise a highly diverse population. The neuronal isoform of the enzyme nitric oxide synthase (nNOS) is expressed in the neocortex by specific subsets of GABAergic neurons. These neurons can be identified in live brain slices by the nitric oxide (NO) fluorescent indicator diaminofluorescein-2 diacetate (DAF-2DA). However, this indicator was found to be highly toxic to the stained neurons. We used this feature to induce acute phototoxic damage to NO-producing neurons in cortical slices, and measured subsequent alterations in parameters of cellular and network activity. Neocortical slices were briefly incubated in DAF-2DA and then illuminated through the 4× objective. Histochemistry for NADPH-diaphorase (NADPH-d), a marker for nNOS activity, revealed elimination of staining in the illuminated areas following treatment. Whole cell recordings from several neuronal types before, during, and after illumination confirmed the selective damage to non-fast-spiking (FS) interneurons. Treated slices displayed mild disinhibition. The reversal potential of compound synaptic events on pyramidal neurons became more positive, and their decay time constant was elongated, substantiating the removal of an inhibitory conductance. The horizontal decay of local field potentials (LFPs) was significantly reduced at distances of 300-400 μm from the stimulation, but not when inhibition was non-selectively weakened with the GABA(A) blocker picrotoxin. Finally, whereas the depression of LFPs along short trains of 40 Hz stimuli was linearly reduced with distance or initial amplitude in control slices, this ordered relationship was disrupted in DAF-treated slices. These results reveal that NO-producing interneurons in the neocortex convey lateral inhibition to neighboring columns, and shape the spatiotemporal dynamics of the network's activity. PMID:22347168

  11. Polycomb Ezh2 controls the fate of GABAergic neurons in the embryonic cerebellum.

    PubMed

    Feng, Xuesong; Juan, Aster H; Wang, Hongjun A; Ko, Kyung Dae; Zare, Hossein; Sartorelli, Vittorio

    2016-06-01

    Although the genetic interactions between signaling pathways and transcription factors have been largely decoded, much remains to be learned about the epigenetic regulation of cerebellar development. Here, we report that cerebellar deletion of Ezh2, the methyltransferase subunit of the PRC2 complex, results in reduced H3K27me3 and profound transcriptional dysregulation, including that of a set of transcription factors directly involved in cerebellar neuronal cell-type specification and differentiation. Such transcriptional changes lead to increased GABAergic interneurons and decreased Purkinje cells. Transcriptional changes also inhibit the proliferation of granule precursor cells derived from the rhombic lip. The loss of both cell types ultimately results in cerebellar hypoplasia. These findings indicate Ezh2/PRC2 plays crucial roles in regulating neurogenesis from both cerebellar germinal zones. PMID:27068104

  12. Effects of Repeated Stress on Age-Dependent GABAergic Regulation of the Lateral Nucleus of the Amygdala.

    PubMed

    Zhang, Wei; Rosenkranz, J Amiel

    2016-08-01

    The adolescent age is associated with lability of mood and emotion. The onset of depression and anxiety disorders peaks during adolescence and there are differences in symptomology during adolescence. This points to differences in the adolescent neural circuitry that underlies mood and emotion, such as the amygdala. The human adolescent amygdala is more responsive to evocative stimuli, hinting to less local inhibitory regulation of the amygdala, but this has not been explored in adolescents. The amygdala, including the lateral nucleus (LAT) of the basolateral amygdala complex, is sensitive to stress. The amygdala undergoes maturational processes during adolescence, and therefore may be more vulnerable to harmful effects of stress during this time period. However, little is known about the effects of stress on the LAT during adolescence. GABAergic inhibition is a key regulator of LAT activity. Therefore, the purpose of this study was to test whether there are differences in the local GABAergic regulation of the rat adolescent LAT, and differences in its sensitivity to repeated stress. We found that LAT projection neurons are subjected to weaker GABAergic inhibition during adolescence. Repeated stress reduced in vivo endogenous and exogenous GABAergic inhibition of LAT projection neurons in adolescent rats. Furthermore, repeated stress decreased measures of presynaptic GABA function and interneuron activity in adolescent rats. In contrast, repeated stress enhanced glutamatergic drive of LAT projection neurons in adult rats. These results demonstrate age differences in GABAergic regulation of the LAT, and age differences in the mechanism for the effects of repeated stress on LAT neuron activity. These findings provide a substrate for increased mood lability in adolescents, and provide a substrate by which adolescent repeated stress can induce distinct behavioral outcomes and psychiatric symptoms. PMID:26924679

  13. Production and organization of neocortical interneurons

    PubMed Central

    Sultan, Khadeejah T.; Brown, Keith N.; Shi, Song-Hai

    2013-01-01

    Inhibitory GABA (γ-aminobutyric acid)-ergic interneurons are a vital component of the neocortex responsible for shaping its output through a variety of inhibitions. Consisting of many flavors, interneuron subtypes are predominantly defined by their morphological, physiological, and neurochemical properties that help to determine their functional role within the neocortex. During development, these cells are born in the subpallium where they then tangentially migrate over long distances before being radially positioned to their final location in the cortical laminae. As development progresses into adolescence, these cells mature and form chemical and electrical connections with both glutamatergic excitatory neurons and other interneurons ultimately establishing the cortical network. The production, migration, and organization of these cells are determined by vast array of extrinsic and intrinsic factors that work in concert in order to assemble a proper functioning cortical inhibitory network. Failure of these cells to undergo these processes results in abnormal positioning and cortical function. In humans, this can bring about several neurological disorders including schizophrenia, epilepsy, and autism spectrum disorders. In this article, we will review previous literature that has revealed the framework for interneuron neurogenesis and migratory behavior as well as discuss recent findings that aim to elucidate the spatial and functional organization of interneurons within the neocortex. PMID:24312011

  14. Postnatal down-regulation of the GABAA receptor γ2 subunit in neocortical NG2 cells accompanies synaptic-to-extrasynaptic switch in the GABAergic transmission mode.

    PubMed

    Balia, Maddalena; Vélez-Fort, Mateo; Passlick, Stefan; Schäfer, Christoph; Audinat, Etienne; Steinhäuser, Christian; Seifert, Gerald; Angulo, María Cecilia

    2015-04-01

    NG2 cells, a main pool of glial progenitors, express γ-aminobutyric acid A (GABA(A)) receptors (GABA(A)Rs), the functional and molecular properties of which are largely unknown. We recently reported that transmission between GABAergic interneurons and NG2 cells drastically changes during development of the somatosensory cortex, switching from synaptic to extrasynaptic communication. Since synaptic and extrasynaptic GABA(A)Rs of neurons differ in their subunit composition, we hypothesize that GABA(A)Rs of NG2 cells undergo molecular changes during cortical development accompanying the switch of transmission modes. Single-cell RT-PCR and the effects of zolpidem and α5IA on evoked GABAergic currents reveal the predominance of functional α1- and α5-containing GABA(A)Rs at interneuron-NG2 cell synapses in the second postnatal week, while the α5 expression declines later in development when responses are exclusively extrasynaptic. Importantly, pharmacological and molecular analyses demonstrate that γ2, a subunit contributing to the clustering of GABA(A)Rs at postsynaptic sites in neurons, is down-regulated in NG2 cells in a cell type-specific manner in concomitance with the decline of synaptic activity and the switch of transmission mode. In keeping with the synaptic nature of γ2 in neurons, the down-regulation of this subunit is an important molecular hallmark of the change of transmission modes between interneurons and NG2 cells during development. PMID:24217990

  15. Comparison of spike parameters from optically identified GABAergic and glutamatergic neurons in sparse cortical cultures

    PubMed Central

    Weir, Keiko; Blanquie, Oriane; Kilb, Werner; Luhmann, Heiko J.; Sinning, Anne

    2015-01-01

    Primary neuronal cultures share many typical features with the in vivo situation, including similarities in distinct electrical activity patterns and synaptic network interactions. Here, we use multi-electrode array (MEA) recordings from spontaneously active cultures of wildtype and glutamic acid decarboxylase 67 (GAD67)-green fluorescent protein (GFP) transgenic mice to evaluate which spike parameters differ between GABAergic interneurons and principal, putatively glutamatergic neurons. To analyze this question we combine MEA recordings with optical imaging in sparse cortical cultures to assign individual spikes to visually-identified single neurons. In our culture system, excitatory and inhibitory neurons are present at a similar ratio as described in vivo, and spike waveform characteristics and firing patterns are fully developed after 2 weeks in vitro. Spike amplitude, but not other spike waveform parameters, correlated with the distance between the recording electrode and the location of the assigned neuron’s soma. Cluster analysis of spike waveform properties revealed no particular cell population that may be assigned to putative inhibitory or excitatory neurons. Moreover, experiments in primary cultures from transgenic GAD67-GFP mice, which allow optical identification of GABAergic interneurons and thus unambiguous assignment of extracellular signals, did not reveal any significant difference in spike timing and spike waveform parameters between inhibitory and excitatory neurons. Despite of our detailed characterization of spike waveform and temporal spiking properties we could not identify an unequivocal electrical parameter to discriminate between individual excitatory and inhibitory neurons in vitro. Our data suggest that under in vitro conditions cellular classifications of single neurons on the basis of their extracellular firing properties should be treated with caution. PMID:25642167

  16. Augmented Inhibition from Cannabinoid-Sensitive Interneurons Diminishes CA1 Output after Traumatic Brain Injury

    PubMed Central

    Johnson, Brian N.; Palmer, Chris P.; Bourgeois, Elliot B.; Elkind, Jaclynn A.; Putnam, Brendan J.; Cohen, Akiva S.

    2014-01-01

    The neurological impairments associated with traumatic brain injury include learning and memory deficits and increased risk of seizures. The hippocampus is critically involved in both of these phenomena and highly susceptible to damage by traumatic brain injury. To examine network activity in the hippocampal CA1 region after lateral fluid percussion injury, we used a combination of voltage-sensitive dye, field potential, and patch clamp recording in mouse hippocampal brain slices. When the stratum radiatum (SR) was stimulated in slices from injured mice, we found decreased depolarization in SR and increased hyperpolarization in stratum oriens (SO), together with a decrease in the percentage of pyramidal neurons firing stimulus-evoked action potentials. Increased hyperpolarization in SO persisted when glutamatergic transmission was blocked. However, we found no changes in SO responses when the alveus was stimulated to directly activate SO. These results suggest that the increased SO hyperpolarization evoked by SR stimulation was mediated by interneurons that have cell bodies and/or axons in SR, and form synapses in stratum pyramidale and SO. A low concentration (100 nM) of the synthetic cannabinoid WIN55,212-2, restored CA1 output in slices from injured animals. These findings support the hypothesis that increased GABAergic signaling by cannabinoid-sensitive interneurons contributes to the reduced CA1 output following traumatic brain injury. PMID:25565968

  17. Chronic stress, hippocampus and parvalbumin-positive interneurons: what do we know so far?

    PubMed

    Zaletel, Ivan; Filipović, Dragana; Puškaš, Nela

    2016-06-01

    The hippocampus is a brain structure involved in the regulation of hypothalamic-pituitary-adrenal (HPA) axis and stress response. It plays an important role in the formation of declarative, spatial and contextual memory, as well as in the processing of emotional information. As a part of the limbic system, it is a very susceptible structure towards the effects of various stressors. The molecular mechanisms of structural and functional alternations that occur in the hippocampus under chronic stress imply an increased level of circulating glucocorticoids (GCs), which is an HPA axis response to stress. Certain data show that changes induced by chronic stress may be independent from the GCs levels, opening the possibility of existence of other poorly explored mechanisms and pathways through which stressors act. The hippocampal GABAergic parvalbumin-positive (PV+) interneurons represent an especially vulnerable population of neurons in chronic stress, which may be of key importance in the development of mood disorders. However, cellular and molecular hippocampal changes that arise as a consequence of chronic stress still represent a large and unexplored area. This review discusses the current knowledge about the PV+ interneurons of the hippocampus and the influence of chronic stress on this intriguing population of neurons. PMID:26751865

  18. Conditional Spike Transmission Mediated by Electrical Coupling Ensures Millisecond Precision-Correlated Activity among Interneurons In Vivo.

    PubMed

    van Welie, Ingrid; Roth, Arnd; Ho, Sara S N; Komai, Shoji; Häusser, Michael

    2016-05-18

    Many GABAergic interneurons are electrically coupled and in vitro can display correlated activity with millisecond precision. However, the mechanisms underlying correlated activity between interneurons in vivo are unknown. Using dual patch-clamp recordings in vivo, we reveal that in the presence of spontaneous background synaptic activity, electrically coupled cerebellar Golgi cells exhibit robust millisecond precision-correlated activity which is enhanced by sensory stimulation. This precisely correlated activity results from the cooperative action of two mechanisms. First, electrical coupling ensures slow subthreshold membrane potential correlations by equalizing membrane potential fluctuations, such that coupled neurons tend to approach action potential threshold together. Second, fast spike-triggered spikelets transmitted through gap junctions conditionally trigger postjunctional spikes, depending on both neurons being close to threshold. Electrical coupling therefore controls the temporal precision and degree of both spontaneous and sensory-evoked correlated activity between interneurons, by the cooperative effects of shared synaptic depolarization and spikelet transmission. PMID:27161527

  19. Maturation of GABAergic Inhibition Promotes Strengthening of Temporally Coherent Inputs among Convergent Pathways

    PubMed Central

    Kuhlman, Sandra J.; Lu, Jiangteng; Lazarus, Matthew S.; Huang, Z. Josh

    2010-01-01

    Spike-timing-dependent plasticity (STDP), a form of Hebbian plasticity, is inherently stabilizing. Whether and how GABAergic inhibition influences STDP is not well understood. Using a model neuron driven by converging inputs modifiable by STDP, we determined that a sufficient level of inhibition was critical to ensure that temporal coherence (correlation among presynaptic spike times) of synaptic inputs, rather than initial strength or number of inputs within a pathway, controlled postsynaptic spike timing. Inhibition exerted this effect by preferentially reducing synaptic efficacy, the ability of inputs to evoke postsynaptic action potentials, of the less coherent inputs. In visual cortical slices, inhibition potently reduced synaptic efficacy at ages during but not before the critical period of ocular dominance (OD) plasticity. Whole-cell recordings revealed that the amplitude of unitary IPSCs from parvalbumin positive (Pv+) interneurons to pyramidal neurons increased during the critical period, while the synaptic decay time-constant decreased. In addition, intrinsic properties of Pv+ interneurons matured, resulting in an increase in instantaneous firing rate. Our results suggest that maturation of inhibition in visual cortex ensures that the temporally coherent inputs (e.g. those from the open eye during monocular deprivation) control postsynaptic spike times of binocular neurons, a prerequisite for Hebbian mechanisms to induce OD plasticity. PMID:20532211

  20. DNA fragmentation is increased in non-GABAergic neurons in bipolar disorder but not in schizophrenia

    PubMed Central

    Buttner, Ned; Bhattacharyya, Sujoy; Walsh, John; Benes, Francine M.

    2007-01-01

    Apoptosis is thought to contribute to neuronal loss in bipolar disorder and schizophrenia, although empiric evidence in support of this idea has been lacking. In this study, we investigated whether or not apoptosis is associated with GABAergic interneurons in the anterior cingulate cortex in schizophrenia (n = 14) and bipolar disorder (n = 14) when compared to normal controls (n = 14). A double-labeling technique using the Klenow method of in situ end-labeling (ISEL) of single-stranded DNA breaks was combined with an in situ hybridization localization of mRNA for the 67 kiloDalton (kDa) isoform of glutamate decarboxylase (GAD67) and applied to the anterior cingulate cortex of 14 normal controls, 14 schizophrenics, and 14 patients with bipolar disorder matched for age and postmortem interval. An increase in Klenow-positive, GAD67-negative nuclei was observed in layer V/VI of patients with bipolar disorder, but not schizophrenics. Klenow-positive cells that were also positive for GAD67 mRNA did not show differences in either patient group. Conclusions: This is the first demonstration that there is more DNA fragmentation in cells showing no detectable GAD67 mRNA in patients with bipolar disorder than in schizophrenics or controls. These findings suggest that non-GABAergic cells may be selectively vulnerable to oxidative stress in patients with bipolar disorder. PMID:17442540

  1. Traumatic Brain Injury Increases Cortical Glutamate Network Activity by Compromising GABAergic Control

    PubMed Central

    Cantu, David; Walker, Kendall; Andresen, Lauren; Taylor-Weiner, Amaro; Hampton, David; Tesco, Giuseppina; Dulla, Chris G.

    2015-01-01

    Traumatic brain injury (TBI) is a major risk factor for developing pharmaco-resistant epilepsy. Although disruptions in brain circuitry are associated with TBI, the precise mechanisms by which brain injury leads to epileptiform network activity is unknown. Using controlled cortical impact (CCI) as a model of TBI, we examined how cortical excitability and glutamatergic signaling was altered following injury. We optically mapped cortical glutamate signaling using FRET-based glutamate biosensors, while simultaneously recording cortical field potentials in acute brain slices 2–4 weeks following CCI. Cortical electrical stimulation evoked polyphasic, epileptiform field potentials and disrupted the input–output relationship in deep layers of CCI-injured cortex. High-speed glutamate biosensor imaging showed that glutamate signaling was significantly increased in the injured cortex. Elevated glutamate responses correlated with epileptiform activity, were highest directly adjacent to the injury, and spread via deep cortical layers. Immunoreactivity for markers of GABAergic interneurons were significantly decreased throughout CCI cortex. Lastly, spontaneous inhibitory postsynaptic current frequency decreased and spontaneous excitatory postsynaptic current increased after CCI injury. Our results suggest that specific cortical neuronal microcircuits may initiate and facilitate the spread of epileptiform activity following TBI. Increased glutamatergic signaling due to loss of GABAergic control may provide a mechanism by which TBI can give rise to post-traumatic epilepsy. PMID:24610117

  2. GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression.

    PubMed

    Rajkowska, Grazyna; O'Dwyer, Gillian; Teleki, Zsofia; Stockmeier, Craig A; Miguel-Hidalgo, Jose Javier

    2007-02-01

    Post-mortem morphometric studies report reductions in the average density and size of cortical neurons in the dorsolateral prefrontal cortex (dlPFC) and orbitofrontal cortex (ORB) in major depressive disorder (MDD). The contribution of specific neuronal phenotypes to this general pathology in depression is still unclear. Post-mortem sections from the dlPFC and ORB regions of 14 subjects with MDD and 11 controls were immunostained to visualize calbindin-immunoreactive (CB-IR) and parvalbumin-immunoreactive (PV-IR) presumptive GABAergic neurons. A three-dimensional cell counting probe was used to assess the cell packing density and size of CB-IR neurons in layers II+IIIa and PV-IR neurons in layers III-VI. The density of CB-IR neurons was significantly reduced by 50% in depression in the dlPFC and there was a trend toward reduction in the ORB. The size of CB-IR somata was significantly decreased (18%) in depression in the dlPFC with a trend toward reduction in the ORB. In contrast, there was no difference in the density of PV-IR neurons between the depressed and control groups in the dlPFC. The size of PV-IR neuronal soma was unchanged in depressed compared to control subjects in either dlPFC or ORB. In depression, subpopulations of GABAergic neurons may be affected differently in dlPFC and ORB. A significant reduction in the density and size of GABAergic interneurons immunoreactive for calcium binding proteins was found predominantly in the dlPFC region. These cellular changes are consistent with recent neuroimaging studies revealing a reduction in the cortical levels of GABA in depression. PMID:17063153

  3. Distinct cis-Regulatory Elements from the Dlx1/Dlx2 Locus Mark Different Progenitor Cell Populations in the Ganglionic Eminences and Different Subtypes of Adult Cortical Interneurons

    PubMed Central

    Ghanem, Noël; Yu, Man; Long, Jason; Hatch, Gary; Rubenstein, John L. R.; Ekker, Marc

    2016-01-01

    Distinct subtypes of cortical GABAergic interneurons provide inhibitory signals that are indispensable for neural network function. The Dlx homeobox genes have a central role in regulating their development and function. We have characterized the activity of three cis-regulatory sequences involved in forebrain expression of vertebrate Dlx genes: upstream regulatory element 2 (URE2), I12b, and I56i. The three regulatory elements display regional and temporal differences in their activities within the lateral ganglionic eminence (LGE), medial ganglionic eminence (MGE), and caudal ganglionic eminence (CGE) and label distinct populations of tangentially migrating neurons at embryonic day 12.5 (E12.5) and E13.5. We provide evidence that the dorsomedial and ventral MGE are distinct sources of tangentially migrating neurons during midgestation. In the adult cortex, URE2 and I12b/I56i are differentially expressed in parvalbumin-, calretinin-, neuropeptide Y-, and neuronal nitric oxide synthase-positive interneurons; I12b and I56i were specifically active in somatostatin-, vasoactive intestinal peptide-, and calbindin-positive interneurons. These data suggest that interneuron subtypes use distinct combinations of Dlx1/Dlx2 enhancers from the time they are specified through adulthood. PMID:17494687

  4. Specification of spatial identities of cerebellar neuron progenitors by ptf1a and atoh1 for proper production of GABAergic and glutamatergic neurons.

    PubMed

    Yamada, Mayumi; Seto, Yusuke; Taya, Shinichiro; Owa, Tomoo; Inoue, Yukiko U; Inoue, Takayoshi; Kawaguchi, Yoshiya; Nabeshima, Yo-Ichi; Hoshino, Mikio

    2014-04-01

    In the cerebellum, the bHLH transcription factors Ptf1a and Atoh1 are expressed in distinct neuroepithelial regions, the ventricular zone (VZ) and the rhombic lip (RL), and are required for producing GABAergic and glutamatergic neurons, respectively. However, it is unclear whether Ptf1a or Atoh1 is sufficient for specifying GABAergic or glutamatergic neuronal fates. To test this, we generated two novel knock-in mouse lines, Ptf1a(Atoh1) and Atoh1(Ptf1a), that are designed to express Atoh1 and Ptf1a ectopically in the VZ and RL, respectively. In Ptf1a(Atoh1) embryos, ectopically Atoh1-expressing VZ cells produced glutamatergic neurons, including granule cells and deep cerebellar nuclei neurons. Correspondingly, in Atoh1(Ptf1a) animals, ectopically Ptf1a-expressing RL cells produced GABAergic populations, such as Purkinje cells and GABAergic interneurons. Consistent results were also obtained from in utero electroporation of Ptf1a or Atoh1 into embryonic cerebella, suggesting that Ptf1a and Atoh1 are essential and sufficient for GABAergic versus glutamatergic specification in the neuroepithelium. Furthermore, birthdating analyses with BrdU in the knock-in mice or with electroporation studies showed that ectopically produced fate-changed neuronal types were generated at temporal schedules closely simulating those of the wild-type RL and VZ, suggesting that the VZ and RL share common temporal information. Observations of knock-in brains as well as electroporated brains revealed that Ptf1a and Atoh1 mutually negatively regulate their expression, probably contributing to formation of non-overlapping neuroepithelial domains. These findings suggest that Ptf1a and Atoh1 specify spatial identities of cerebellar neuron progenitors in the neuroepithelium, leading to appropriate production of GABAergic and glutamatergic neurons, respectively. PMID:24695699

  5. ZC4H2, an XLID gene, is required for the generation of a specific subset of CNS interneurons

    PubMed Central

    May, Melanie; Hwang, Kyu-Seok; Miles, Judith; Williams, Charlie; Niranjan, Tejasvi; Kahler, Stephen G.; Chiurazzi, Pietro; Steindl, Katharina; Van Der Spek, Peter J.; Swagemakers, Sigrid; Mueller, Jennifer; Stefl, Shannon; Alexov, Emil; Ryu, Jeong-Im; Choi, Jung-Hwa; Kim, Hyun-Taek; Tarpey, Patrick; Neri, Giovanni; Holloway, Lynda; Skinner, Cindy; Stevenson, Roger E.; Dorsky, Richard I.; Wang, Tao; Schwartz, Charles E.; Kim, Cheol-Hee

    2015-01-01

    Miles–Carpenter syndrome (MCS) was described in 1991 as an XLID syndrome with fingertip arches and contractures and mapped to proximal Xq. Patients had microcephaly, short stature, mild spasticity, thoracic scoliosis, hyperextendable MCP joints, rocker-bottom feet, hyperextended elbows and knees. A mutation, p.L66H, in ZC4H2, was identified in a XLID re-sequencing project. Additional screening of linked families and next generation sequencing of XLID families identified three ZC4H2 mutations: p.R18K, p.R213W and p.V75in15aa. The families shared some relevant clinical features. In silico modeling of the mutant proteins indicated all alterations would destabilize the protein. Knockout mutations in zc4h2 were created in zebrafish and homozygous mutant larvae exhibited abnormal swimming, increased twitching, defective eye movement and pectoral fin contractures. Because several of the behavioral defects were consistent with hyperactivity, we examined the underlying neuronal defects and found that sensory neurons and motoneurons appeared normal. However, we observed a striking reduction in GABAergic interneurons. Analysis of cell-type-specific markers showed a specific loss of V2 interneurons in the brain and spinal cord, likely arising from mis-specification of neural progenitors. Injected human wt ZC4H2 rescued the mutant phenotype. Mutant zebrafish injected with human p.L66H or p.R213W mRNA failed to be rescued, while the p.R18K mRNA was able to rescue the interneuron defect. Our findings clearly support ZC4H2 as a novel XLID gene with a required function in interneuron development. Loss of function of ZC4H2 thus likely results in altered connectivity of many brain and spinal circuits. PMID:26056227

  6. ZC4H2, an XLID gene, is required for the generation of a specific subset of CNS interneurons.

    PubMed

    May, Melanie; Hwang, Kyu-Seok; Miles, Judith; Williams, Charlie; Niranjan, Tejasvi; Kahler, Stephen G; Chiurazzi, Pietro; Steindl, Katharina; Van Der Spek, Peter J; Swagemakers, Sigrid; Mueller, Jennifer; Stefl, Shannon; Alexov, Emil; Ryu, Jeong-Im; Choi, Jung-Hwa; Kim, Hyun-Taek; Tarpey, Patrick; Neri, Giovanni; Holloway, Lynda; Skinner, Cindy; Stevenson, Roger E; Dorsky, Richard I; Wang, Tao; Schwartz, Charles E; Kim, Cheol-Hee

    2015-09-01

    Miles-Carpenter syndrome (MCS) was described in 1991 as an XLID syndrome with fingertip arches and contractures and mapped to proximal Xq. Patients had microcephaly, short stature, mild spasticity, thoracic scoliosis, hyperextendable MCP joints, rocker-bottom feet, hyperextended elbows and knees. A mutation, p.L66H, in ZC4H2, was identified in a XLID re-sequencing project. Additional screening of linked families and next generation sequencing of XLID families identified three ZC4H2 mutations: p.R18K, p.R213W and p.V75in15aa. The families shared some relevant clinical features. In silico modeling of the mutant proteins indicated all alterations would destabilize the protein. Knockout mutations in zc4h2 were created in zebrafish and homozygous mutant larvae exhibited abnormal swimming, increased twitching, defective eye movement and pectoral fin contractures. Because several of the behavioral defects were consistent with hyperactivity, we examined the underlying neuronal defects and found that sensory neurons and motoneurons appeared normal. However, we observed a striking reduction in GABAergic interneurons. Analysis of cell-type-specific markers showed a specific loss of V2 interneurons in the brain and spinal cord, likely arising from mis-specification of neural progenitors. Injected human wt ZC4H2 rescued the mutant phenotype. Mutant zebrafish injected with human p.L66H or p.R213W mRNA failed to be rescued, while the p.R18K mRNA was able to rescue the interneuron defect. Our findings clearly support ZC4H2 as a novel XLID gene with a required function in interneuron development. Loss of function of ZC4H2 thus likely results in altered connectivity of many brain and spinal circuits. PMID:26056227

  7. GABAergic signalling in the immune system.

    PubMed

    Barragan, A; Weidner, J M; Jin, Z; Korpi, E R; Birnir, B

    2015-04-01

    The GABAergic system is the main inhibitory neurotransmitter system in the central nervous system (CNS) of vertebrates. Signalling of the transmitter γ-aminobutyric acid (GABA) via GABA type A receptor channels or G-protein-coupled type B receptors is implicated in multiple CNS functions. Recent findings have implicated the GABAergic system in immune cell functions, inflammatory conditions and diseases in peripheral tissues. Interestingly, the specific effects may vary between immune cell types, with stage of activation and be altered by infectious agents. GABA/GABA-A receptor-mediated immunomodulatory functions have been unveiled in immune cells, being present in T lymphocytes and regulating the migration of Toxoplasma-infected dendritic cells. The GABAergic system may also play a role in the regulation of brain resident immune cells, the microglial cells. Activation of microglia appears to regulate the function of GABAergic neurotransmission in neighbouring neurones through changes induced by secretion of brain-derived neurotrophic factor. The neurotransmitter-driven immunomodulation is a new but rapidly growing field of science. Herein, we review the present knowledge of the GABA signalling in immune cells of the periphery and the CNS and raise questions for future research. PMID:25677654

  8. Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition

    PubMed Central

    Rivero, O; Selten, M M; Sich, S; Popp, S; Bacmeister, L; Amendola, E; Negwer, M; Schubert, D; Proft, F; Kiser, D; Schmitt, A G; Gross, C; Kolk, S M; Strekalova, T; van den Hove, D; Resink, T J; Nadif Kasri, N; Lesch, K P

    2015-01-01

    Cadherin-13 (CDH13), a unique glycosylphosphatidylinositol-anchored member of the cadherin family of cell adhesion molecules, has been identified as a risk gene for attention-deficit/hyperactivity disorder (ADHD) and various comorbid neurodevelopmental and psychiatric conditions, including depression, substance abuse, autism spectrum disorder and violent behavior, while the mechanism whereby CDH13 dysfunction influences pathogenesis of neuropsychiatric disorders remains elusive. Here we explored the potential role of CDH13 in the inhibitory modulation of brain activity by investigating synaptic function of GABAergic interneurons. Cellular and subcellular distribution of CDH13 was analyzed in the murine hippocampus and a mouse model with a targeted inactivation of Cdh13 was generated to evaluate how CDH13 modulates synaptic activity of hippocampal interneurons and behavioral domains related to psychopathologic (endo)phenotypes. We show that CDH13 expression in the cornu ammonis (CA) region of the hippocampus is confined to distinct classes of interneurons. Specifically, CDH13 is expressed by numerous parvalbumin and somatostatin-expressing interneurons located in the stratum oriens, where it localizes to both the soma and the presynaptic compartment. Cdh13−/− mice show an increase in basal inhibitory, but not excitatory, synaptic transmission in CA1 pyramidal neurons. Associated with these alterations in hippocampal function, Cdh13−/− mice display deficits in learning and memory. Taken together, our results indicate that CDH13 is a negative regulator of inhibitory synapses in the hippocampus, and provide insights into how CDH13 dysfunction may contribute to the excitatory/inhibitory imbalance observed in neurodevelopmental disorders, such as ADHD and autism. PMID:26460479

  9. Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition.

    PubMed

    Rivero, O; Selten, M M; Sich, S; Popp, S; Bacmeister, L; Amendola, E; Negwer, M; Schubert, D; Proft, F; Kiser, D; Schmitt, A G; Gross, C; Kolk, S M; Strekalova, T; van den Hove, D; Resink, T J; Nadif Kasri, N; Lesch, K P

    2015-01-01

    Cadherin-13 (CDH13), a unique glycosylphosphatidylinositol-anchored member of the cadherin family of cell adhesion molecules, has been identified as a risk gene for attention-deficit/hyperactivity disorder (ADHD) and various comorbid neurodevelopmental and psychiatric conditions, including depression, substance abuse, autism spectrum disorder and violent behavior, while the mechanism whereby CDH13 dysfunction influences pathogenesis of neuropsychiatric disorders remains elusive. Here we explored the potential role of CDH13 in the inhibitory modulation of brain activity by investigating synaptic function of GABAergic interneurons. Cellular and subcellular distribution of CDH13 was analyzed in the murine hippocampus and a mouse model with a targeted inactivation of Cdh13 was generated to evaluate how CDH13 modulates synaptic activity of hippocampal interneurons and behavioral domains related to psychopathologic (endo)phenotypes. We show that CDH13 expression in the cornu ammonis (CA) region of the hippocampus is confined to distinct classes of interneurons. Specifically, CDH13 is expressed by numerous parvalbumin and somatostatin-expressing interneurons located in the stratum oriens, where it localizes to both the soma and the presynaptic compartment. Cdh13(-/-) mice show an increase in basal inhibitory, but not excitatory, synaptic transmission in CA1 pyramidal neurons. Associated with these alterations in hippocampal function, Cdh13(-/-) mice display deficits in learning and memory. Taken together, our results indicate that CDH13 is a negative regulator of inhibitory synapses in the hippocampus, and provide insights into how CDH13 dysfunction may contribute to the excitatory/inhibitory imbalance observed in neurodevelopmental disorders, such as ADHD and autism. PMID:26460479

  10. Multifunctional and specialized spinal interneurons for turtle limb movements.

    PubMed

    Berkowitz, Ari

    2010-06-01

    The turtle spinal cord can help reveal how vertebrate central nervous system (CNS) circuits select and generate an appropriate limb movement in each circumstance. Both multifunctional and specialized spinal interneurons contribute to the motor patterns for the three forms of scratching, forward swimming, and flexion reflex. Multifunctional interneurons, activated during all of these motor patterns, can have axon terminal arborizations in the ventral horn, where they likely contribute to limb motor output. Specialized interneurons can be specialized for a behavior, as opposed to a phase or motor synergy. Interneurons specialized for scratching can be hyperpolarized throughout swimming. Interneurons specialized for flexion reflex can be hyperpolarized throughout scratching and swimming. Some structure-function correlations have been revealed: flexion reflex-selective interneurons had somata exclusively in the dorsal horn, in contrast to scratch-activated interneurons. Transverse interneurons, defined by quantitative morphological criteria, had higher peak firing rates, narrower action potentials, briefer afterhyperpolarizations, and larger membrane potential oscillations than scratch-activated interneurons with different dendritic morphologies. Future investigations will focus on how multifunctional and specialized spinal interneurons interact to generate each motor output. PMID:20536926

  11. Inhibitory interneurons in visual cortical plasticity.

    PubMed

    van Versendaal, Daniëlle; Levelt, Christiaan N

    2016-10-01

    For proper maturation of the neocortex and acquisition of specific functions and skills, exposure to sensory stimuli is vital during critical periods of development when synaptic connectivity is highly malleable. To preserve reliable cortical processing, it is essential that these critical periods end after which learning becomes more conditional and active interaction with the environment becomes more important. How these age-dependent forms of plasticity are regulated has been studied extensively in the primary visual cortex. This has revealed that inhibitory innervation plays a crucial role and that a temporary decrease in inhibition is essential for plasticity to take place. Here, we discuss how different interneuron subsets regulate plasticity during different stages of cortical maturation. We propose a theory in which different interneuron subsets select the sources of neuronal input that undergo plasticity. PMID:27193323

  12. Direct excitation of parvalbumin-positive interneurons by M1 muscarinic acetylcholine receptors: roles in cellular excitability, inhibitory transmission and cognition

    PubMed Central

    Yi, Feng; Ball, Jackson; Stoll, Kurt E; Satpute, Vaishali C; Mitchell, Samantha M; Pauli, Jordan L; Holloway, Benjamin B; Johnston, April D; Nathanson, Neil M; Deisseroth, Karl; Gerber, David J; Tonegawa, Susumu; Lawrence, J Josh

    2014-01-01

    Parvalbumin-containing (PV) neurons, a major class of GABAergic interneurons, are essential circuit elements of learning networks. As levels of acetylcholine rise during active learning tasks, PV neurons become increasingly engaged in network dynamics. Conversely, impairment of either cholinergic or PV interneuron function induces learning deficits. Here, we examined PV interneurons in hippocampus (HC) and prefrontal cortex (PFC) and their modulation by muscarinic acetylcholine receptors (mAChRs). HC PV cells, visualized by crossing PV-CRE mice with Rosa26YFP mice, were anatomically identified as basket cells and PV bistratified cells in the stratum pyramidale; in stratum oriens, HC PV cells were electrophysiologically distinct from somatostatin-containing cells. With glutamatergic transmission pharmacologically blocked, mAChR activation enhanced PV cell excitability in both CA1 HC and PFC; however, CA1 HC PV cells exhibited a stronger postsynaptic depolarization than PFC PV cells. To delete M1 mAChRs genetically from PV interneurons, we created PV-M1 knockout mice by crossing PV-CRE and floxed M1 mice. The elimination of M1 mAChRs from PV cells diminished M1 mAChR immunoreactivity and muscarinic excitation of HC PV cells. Selective cholinergic activation of HC PV interneurons using Designer Receptors Exclusively Activated by Designer Drugs technology enhanced the frequency and amplitude of inhibitory synaptic currents in CA1 pyramidal cells. Finally, relative to wild-type controls, PV-M1 knockout mice exhibited impaired novel object recognition and, to a lesser extent, impaired spatial working memory, but reference memory remained intact. Therefore, the direct activation of M1 mAChRs on PV cells contributes to some forms of learning and memory. PMID:24879872

  13. Single-cell genetic expression of mutant GABAA receptors causing Human genetic epilepsy alters dendritic spine and GABAergic bouton formation in a mutation-specific manner.

    PubMed

    Lachance-Touchette, Pamela; Choudhury, Mayukh; Stoica, Ana; Di Cristo, Graziella; Cossette, Patrick

    2014-01-01

    Mutations in genes encoding for GABAA receptor subunits is a well-established cause of genetic generalized epilepsy. GABA neurotransmission is implicated in several developmental processes including neurite outgrowth and synapse formation. Alteration in excitatory/inhibitory synaptic activities plays a critical role in epilepsy, thus here we investigated whether mutations in α1 subunit of GABAA receptor may affect dendritic spine and GABAergic bouton formation. In particular, we examined the effects of three mutations of the GABRA1 gene (D219N, A322D and K353delins18X) that were found in a cohort of French Canadian families with genetic generalized epilepsy. We used a novel single-cell genetic approach, by preparing cortical organotypic cultures from GABRA1 (flox/flox) mice and simultaneously inactivating endogenous GABRA1 and transfecting mutant α1 subunits in single glutamatergic pyramidal cells and basket GABAergic interneurons by biolistic transfection. We found that GABRA1 (-/-) GABAergic cells showed reduced innervation field, which was rescued by co-expressing α1-A322D and α1-WT but not α1-D219N. We further found that the expression of the most severe GABRA1 missense mutation (α1-A322D) induced a striking increase of spine density in pyramidal cells along with an increase in the number of mushroom-like spines. In addition, α1-A322D expression in GABAergic cells slightly increased perisomatic bouton density, whereas other mutations did not alter bouton formation. All together, these results suggest that the effects of different GABAAR mutations on GABAergic bouton and dendritic spine formation are specific to the mutation and cannot be always explained by a simple loss-of-function gene model. The use of single cell genetic manipulation in organotypic cultures may provide a better understanding of the specific and distinct neural circuit alterations caused by different GABAA receptor subunit mutations and will help define the pathophysiology of genetic

  14. Single-cell genetic expression of mutant GABAA receptors causing Human genetic epilepsy alters dendritic spine and GABAergic bouton formation in a mutation-specific manner

    PubMed Central

    Lachance-Touchette, Pamela; Choudhury, Mayukh; Stoica, Ana; Di Cristo, Graziella; Cossette, Patrick

    2014-01-01

    Mutations in genes encoding for GABAA receptor subunits is a well-established cause of genetic generalized epilepsy. GABA neurotransmission is implicated in several developmental processes including neurite outgrowth and synapse formation. Alteration in excitatory/inhibitory synaptic activities plays a critical role in epilepsy, thus here we investigated whether mutations in α1 subunit of GABAA receptor may affect dendritic spine and GABAergic bouton formation. In particular, we examined the effects of three mutations of the GABRA1 gene (D219N, A322D and K353delins18X) that were found in a cohort of French Canadian families with genetic generalized epilepsy. We used a novel single-cell genetic approach, by preparing cortical organotypic cultures from GABRA1flox/flox mice and simultaneously inactivating endogenous GABRA1 and transfecting mutant α1 subunits in single glutamatergic pyramidal cells and basket GABAergic interneurons by biolistic transfection. We found that GABRA1−/− GABAergic cells showed reduced innervation field, which was rescued by co-expressing α1-A322D and α1-WT but not α1-D219N. We further found that the expression of the most severe GABRA1 missense mutation (α1-A322D) induced a striking increase of spine density in pyramidal cells along with an increase in the number of mushroom-like spines. In addition, α1-A322D expression in GABAergic cells slightly increased perisomatic bouton density, whereas other mutations did not alter bouton formation. All together, these results suggest that the effects of different GABAAR mutations on GABAergic bouton and dendritic spine formation are specific to the mutation and cannot be always explained by a simple loss-of-function gene model. The use of single cell genetic manipulation in organotypic cultures may provide a better understanding of the specific and distinct neural circuit alterations caused by different GABAA receptor subunit mutations and will help define the pathophysiology of genetic

  15. GABAergic synapses: their plasticity and role in sensory cortex

    PubMed Central

    Griffen, Trevor C.; Maffei, Arianna

    2014-01-01

    The mammalian neocortex is composed of a variety of cell types organized in a highly interconnected circuit. GABAergic neurons account for only about 20% of cortical neurons. However, they show widespread connectivity and a high degree of diversity in morphology, location, electrophysiological properties and gene expression. In addition, distinct populations of inhibitory neurons have different sensory response properties, capacities for plasticity and sensitivities to changes in sensory experience. In this review we summarize experimental evidence regarding the properties of GABAergic neurons in primary sensory cortex. We will discuss how distinct GABAergic neurons and different forms of GABAergic inhibitory plasticity may contribute to shaping sensory cortical circuit activity and function. PMID:24723851

  16. Identification of Arx targets unveils new candidates for controlling cortical interneuron migration and differentiation.

    PubMed

    Friocourt, Gaëlle; Parnavelas, John G

    2011-01-01

    Mutations in the homeobox transcription factor ARX have been found to be responsible for a wide spectrum of disorders extending from phenotypes with severe neuronal migration defects, such as lissencephaly, to mild forms of intellectual disabilities without apparent brain abnormalities, but with associated features of dystonia and epilepsy. Arx expression is mainly restricted to populations of GABA-containing neurons. Studies of the effects of ARX loss of function, either in humans or mutant mice, revealed varying defects, suggesting multiple roles of this gene in brain patterning, neuronal proliferation and migration, cell maturation and differentiation, as well as axonal outgrowth and connectivity. However, to date, little is known about how Arx functions as a transcription factor or which genes it binds and regulates. Recently, we combined chromatin immunoprecipitation and mRNA expression with microarray analysis and identified approximately 1000 gene promoters bound by Arx in transfected neuroblastoma N2a cells and mouse embryonic brain. To narrow the analysis of Arx targets to those most likely to control cortical interneuron migration and/or differentiation, we compare here our data to previously published studies searching for genes enriched or down-regulated in cortical interneurons between E13.5 and E15.5. We thus identified 14 Arx-target genes enriched (Cxcr7, Meis1, Ppap2a, Slc 12a5, Ets2, Phlda1, Egr1, Igf1, Lmo3, Sema6, Lgi1, Alk, Tgfb3, and Napb) and 5 genes specifically down-regulated (Hmgn3, Lmo1, Ebf3, Rasgef1b, and Slit2) in cortical migrating neurons. In this review, we present these genes and discuss how their possible regulation by Arx may lead to the dysfunction of GABAergic neurons, resulting in mental retardation and epilepsy. PMID:22355284

  17. A dopamine-acetylcholine cascade: simulating learned and lesion-induced behavior of striatal cholinergic interneurons.

    PubMed

    Tan, Can Ozan; Bullock, Daniel

    2008-10-01

    The giant cholinergic interneurons of the striatum are tonically active neurons (TANs) that respond with pauses to appetitive and aversive cues and to novel events. Whereas tonic activity emerges from intrinsic properties of these neurons, glutamatergic inputs from intralaminar thalamic nuclei and dopaminergic inputs from midbrain are required for genesis of pause responses. No prior computational models encompass both intrinsic and synaptically gated dynamics. We present a mathematical model that robustly accounts for behavior-related electrophysiological properties of TANs in terms of their intrinsic physiological properties and known afferents. In the model, balanced intrinsic hyperpolarizing and depolarizing currents engender tonic firing and glutamatergic inputs from thalamus (and cortex) both directly excite and indirectly inhibit TANs. If this inhibition, probably mediated by GABAergic nitric oxide synthase interneurons, exceeds a threshold, a persistent K+ conductance current amplifies its effect to generate a prolonged pause. Dopamine (DA) signals modulate both the intrinsic mechanisms and the external inputs of TANs. Simulations revealed that many learning-dependent behaviors of TANs, including acquired pauses to task-relevant cues, are explicable without recourse to learning-dependent changes in synapses onto TANs, due to a tight coupling between DA bursts and TAN pauses. These interactions imply that reward-predicting cues often cause striatal projection neurons to receive a cascade of signals: an adaptively scaled DA burst, a brief acetylcholine (ACh) burst, and an ACh pause. A sensitivity analysis revealed a unique TAN response surface, which shows that DA inputs robustly cooperate with thalamic inputs to control cue-dependent pauses of ACh release, which strongly affects performance- and learning-related dynamics in the striatum. PMID:18715897

  18. Ivy and neurogliaform interneurons are a major target of μ-opioid receptor modulation.

    PubMed

    Krook-Magnuson, Esther; Luu, Lillian; Lee, Sang-Hun; Varga, Csaba; Soltesz, Ivan

    2011-10-19

    μ-Opioid receptors (μORs) are selectively expressed on interneurons in area CA1 of the hippocampus. Fast-spiking, parvalbumin-expressing, basket cells express μORs, but circumstantial evidence suggests that another major, unidentified, GABAergic cell class must also be modulated by μORs. Here we report that the abundant, dendritically targeting, neurogliaform family of cells (Ivy and neurogliaform cells) is a previously unrecognized target of direct modulation by μORs. Ivy and neurogliaform cells are not only numerous but also have unique properties, including promiscuous gap junctions formed with various interneuronal subtypes, volume transmission, and the ability to produce a postsynaptic GABA(B) response after a single presynaptic spike. Using a mouse line expressing green fluorescent protein under the neuropeptide Y promoter, we find that, across all layers of CA1, activation of μORs hyperpolarizes Ivy and neurogliaform cells. Furthermore, paired recordings between synaptically coupled Ivy and pyramidal cells show that Ivy cell terminals are dramatically inhibited by μOR activation. Effects in Ivy and neurogliaform cells are seen at similar concentrations of agonist as those producing inhibition in fast-spiking parvalbumin basket cells. We also report that Ivy cells display the recently described phenomenon of persistent firing, a state of continued firing in the absence of continued input, and that induction of persistent firing is inhibited by μOR activation. Together, these findings identify a major, previously unrecognized, target of μOR modulation. Given the prominence of this cell type in and beyond CA1, as well as its unique role in microcircuitry, opioid modulation of neurogliaform cells has wide implications. PMID:22016519

  19. 5-HT7 receptor modulates GABAergic transmission in the rat dorsal raphe nucleus and controls cortical release of serotonin

    PubMed Central

    Kusek, Magdalena; Sowa, Joanna; Kamińska, Katarzyna; Gołembiowska, Krystyna; Tokarski, Krzysztof; Hess, Grzegorz

    2015-01-01

    The 5-HT7 receptor is one of the several serotonin (5-HT) receptor subtypes that are expressed in the dorsal raphe nucleus (DRN). Some earlier findings suggested that 5-HT7 receptors in the DRN were localized on GABAergic interneurons modulating the activity of 5-HT projection neurons. The aim of the present study was to find out how the 5-HT7 receptor modulates the GABAergic synaptic input to putative 5-HT DRN neurons, and whether blockade of the 5-HT7 receptor would affect the release of 5-HT in the target structure. Male Wistar rats with microdialysis probes implanted in the prefrontal cortex (PFC) received injections of the 5-HT7 receptor antagonist (2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine hydrochloride (SB 269970), which induced an increase in the levels of 5-HT and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA) in the PFC. In another set of experiments whole-cell recordings from presumed projection neurons were carried out using DRN slices. SB 269970 application resulted in depolarization and in an increase in the firing frequency of the cells. In order to activate 5-HT7 receptors, 5-carboxamidotryptamine (5-CT) was applied in the presence of N-[2-[4-(2-methoxyphenyl)-1piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide (WAY100635). Hyperpolarization of cells and a decrease in the firing frequency were observed after activation of the 5-HT7 receptor. Blockade of 5-HT7 receptors caused a decrease in the mean frequency of spontaneous inhibitory postsynaptic currents (sIPSCs), while its activation induced an increase. The mechanism of these effects appears to involve tonically-active 5-HT7 receptors modulating firing and/or GABA release from inhibitory interneurons which regulate the activity of DRN serotonergic projection neurons. PMID:26347612

  20. Losing the sugar coating: potential impact of perineuronal net abnormalities on interneurons in schizophrenia.

    PubMed

    Berretta, Sabina; Pantazopoulos, Harry; Markota, Matej; Brown, Christopher; Batzianouli, Eleni T

    2015-09-01

    Perineuronal nets (PNNs) were shown to be markedly altered in subjects with schizophrenia. In particular, decreases of PNNs have been detected in the amygdala, entorhinal cortex and prefrontal cortex. The formation of these specialized extracellular matrix (ECM) aggregates during postnatal development, their functions, and association with distinct populations of GABAergic interneurons, bear great relevance to the pathophysiology of schizophrenia. PNNs gradually mature in an experience-dependent manner during late stages of postnatal development, overlapping with the prodromal period/age of onset of schizophrenia. Throughout adulthood, PNNs regulate neuronal properties, including synaptic remodeling, cell membrane compartmentalization and subsequent regulation of glutamate receptors and calcium channels, and susceptibility to oxidative stress. With the present paper, we discuss evidence for PNN abnormalities in schizophrenia, the potential functional impact of such abnormalities on inhibitory circuits and, in turn, cognitive and emotion processing. We integrate these considerations with results from recent genetic studies showing genetic susceptibility for schizophrenia associated with genes encoding for PNN components, matrix-regulating molecules and immune system factors. Notably, the composition of PNNs is regulated dynamically in response to factors such as fear, reward, stress, and immune response. This regulation occurs through families of matrix metalloproteinases that cleave ECM components, altering their functions and affecting plasticity. Several metalloproteinases have been proposed as vulnerability factors for schizophrenia. We speculate that the physiological process of PNN remodeling may be disrupted in schizophrenia as a result of interactions between matrix remodeling processes and immune system dysregulation. In turn, these mechanisms may contribute to the dysfunction of GABAergic neurons. PMID:25601362

  1. THE DISTINCT TEMPORAL ORIGINS OF OLFACTORY BULB INTERNEURON SUBTYPES

    PubMed Central

    Batista-Brito, Renata; Close, Jennie; Machold, Robert; Ekker, Mark; Fishell, Gord

    2008-01-01

    Olfactory bulb (OB) interneurons are a heterogeneous population produced beginning in embryogenesis and continuing through adulthood. Understanding how this diversity arises will provide insight into how olfactory bulb microcircuitry is established as well as adult neurogenesis. Specific spatial domains have been shown to contribute specific interneuron subtypes. However, the temporal profile by which OB interneuron subtypes are produced is unknown. Using inducible genetic fate mapping of Dlx1/2 precursors, we analyzed the production of seven OB interneuron subtypes and find that the generation of each subpopulation has a unique temporal signature. Within the glomerular layer, while the production of TH-positive interneurons is maximal during early embryogenesis, it decreases thereafter. By contrast, the generation of CB interneurons is maximal during late embryogenesis and declines postnatally, while CR cell production is low during embryogenesis and increases postnatally. PV interneurons within the external plexiform layer are produced only perinatally, while the generation of 5T4-positive granule cells in the mitral cell layer does not change significantly over time. CR-positive granule cells are not produced at early embryonic timepoints, but constitute a large percentage of the granule cells born after birth. Blanes cells by contrast are produced in greatest number during embryogenesis. Taken together we provide the first comprehensive analysis of the temporal generation of olfactory bulb interneuron subtypes and demonstrate that the timing by which these populations are produced is tightly orchestrated. PMID:18400896

  2. Estrogen administration modulates hippocampal GABAergic subpopulations in the hippocampus of trimethyltin-treated rats

    PubMed Central

    Corvino, Valentina; Di Maria, Valentina; Marchese, Elisa; Lattanzi, Wanda; Biamonte, Filippo; Michetti, Fabrizio; Geloso, Maria Concetta

    2015-01-01

    Given the well-documented involvement of estrogens in the modulation of hippocampal functions in both physiological and pathological conditions, the present study investigates the effects of 17-beta estradiol (E2) administration in the rat model of hippocampal neurodegeneration induced by trimethyltin (TMT) administration (8 mg/kg), characterized by loss of pyramidal neurons in CA1, CA3/hilus hippocampal subfields, associated with astroglial and microglial activation, seizures and cognitive impairment. After TMT/saline treatment, ovariectomized animals received two doses of E2 (0.2 mg/kg intra-peritoneal) or vehicle, and were sacrificed 48 h or 7 days after TMT-treatment. Our results indicate that in TMT-treated animals E2 administration induces the early (48 h) upregulation of genes involved in neuroprotection and synaptogenesis, namely Bcl2, trkB, cadherin 2 and cyclin-dependent-kinase-5. Increased expression levels of glutamic acid decarboxylase (gad) 67, neuropeptide Y (Npy), parvalbumin, Pgc-1α and Sirtuin 1 genes, the latter involved in parvalbumin (PV) synthesis, were also evident. Unbiased stereology performed on rats sacrificed 7 days after TMT treatment showed that although E2 does not significantly influence the extent of TMT-induced neuronal death, significantly enhances the TMT-induced modulation of GABAergic interneuron population size in selected hippocampal subfields. In particular, E2 administration causes, in TMT-treated rats, a significant increase in the number of GAD67-expressing interneurons in CA1 stratum oriens, CA3 pyramidal layer, hilus and dentate gyrus, accompanied by a parallel increase in NPY-expressing cells, essentially in the same regions, and of PV-positive cells in CA1 pyramidal layer. The present results add information concerning the role of in vivo E2 administration on mechanisms involved in cellular plasticity in the adult brain. PMID:26594149

  3. Bidirectional modulation of GABAergic transmission by cholecystokinin in hippocampal dentate gyrus granule cells of juvenile rats

    PubMed Central

    Deng, Pan-Yue; Lei, Saobo

    2006-01-01

    Cholecystokinin (CCK) interacts with two types of G protein-coupled receptors in the brain: CCK-A and CCK-B receptors. Both CCK and CCK-B receptors are widely distributed in the hippocampal formation, but the functions of CCK there have been poorly understood. In the present study, we initially examined the effects of CCK on GABAA receptor-mediated synaptic transmission in the hippocampal formation and then explored the underlying cellular mechanisms by focusing on the dentate gyrus region, where the highest levels of CCK-binding sites have been detected. Our results indicate that activation of CCK-B receptors initially and transiently increased spontaneous IPSC (sIPSC) frequency, followed by a persistent reduction. The effects of CCK were more evident in juvenile rats, suggesting that they are developmentally regulated. Cholecystokinin failed to modulate the miniature IPSCs recorded in the presence of TTX and the amplitude of the evoked IPSCs, but produced a transient increase followed by a reduction in action potential firing frequency recorded from GABAergic interneurons, suggesting that CCK acts by modulating the excitability of the interneurons to regulate GABA release. Cholecystokinin reduced the amplitude of the after-hyperpolarization of the action potentials, and application of paxilline or charybdotoxin considerably reduced CCK-mediated modulation of sIPSC frequency, suggesting that the effects of CCK are related to the inhibition of Ca2+-activated K+ currents (IK(Ca)). The effects of CCK were independent of the functions of phospholipase C, intracellular Ca2+ release, protein kinase C or phospholipase A2, suggesting a direct coupling between the G proteins of CCK-B receptors and IK(Ca). Our results provide a novel mechanism underlying CCK-mediated modulation of GABA release. PMID:16455686

  4. Cortical Interneuron Subtypes Vary in Their Axonal Action Potential Properties

    PubMed Central

    Casale, Amanda E.; Foust, Amanda J.; Bal, Thierry

    2015-01-01

    The role of interneurons in cortical microcircuits is strongly influenced by their passive and active electrical properties. Although different types of interneurons exhibit unique electrophysiological properties recorded at the soma, it is not yet clear whether these differences are also manifested in other neuronal compartments. To address this question, we have used voltage-sensitive dye to image the propagation of action potentials into the fine collaterals of axons and dendrites in two of the largest cortical interneuron subtypes in the mouse: fast-spiking interneurons, which are typically basket or chandelier neurons; and somatostatin containing interneurons, which are typically regular spiking Martinotti cells. We found that fast-spiking and somatostatin-expressing interneurons differed in their electrophysiological characteristics along their entire dendrosomatoaxonal extent. The action potentials generated in the somata and axons, including axon collaterals, of somatostatin-expressing interneurons are significantly broader than those generated in the same compartments of fast-spiking inhibitory interneurons. In addition, action potentials back-propagated into the dendrites of somatostatin-expressing interneurons much more readily than fast-spiking interneurons. Pharmacological investigations suggested that axonal action potential repolarization in both cell types depends critically upon Kv1 channels, whereas the axonal and somatic action potentials of somatostatin-expressing interneurons also depend on BK Ca2+-activated K+ channels. These results indicate that the two broad classes of interneurons studied here have expressly different subcellular physiological properties, allowing them to perform unique computational roles in cortical circuit operations. SIGNIFICANCE STATEMENT Neurons in the cerebral cortex are of two major types: excitatory and inhibitory. The proper balance of excitation and inhibition in the brain is critical for its operation. Neurons

  5. Tonic inhibition in spinal ventral horn interneurons mediated by α5 subunit-containing GABA(A) receptors.

    PubMed

    Castro, Alberto; Aguilar, Justo; González-Ramírez, Ricardo; Loeza-Alcocer, Emanuel; Canto-Bustos, Martha; Felix, Ricardo; Delgado-Lezama, Rodolfo

    2011-08-19

    GABA(A) receptors mediate synaptic and tonic inhibition in many neurons of the central nervous system. These receptors can be constructed from a range of different subunits deriving from seven identified families. Among these subunits, α(5) has been shown to mediate GABAergic tonic inhibitory currents in neurons from supraspinal nuclei. Likewise, immunohistochemical and in situ hybridization studies have shown the presence of the α(5) subunit in spinal cord neurons, though almost nothing is known about its function. In the present report, using slices of the adult turtle spinal cord as a model system we have recorded a tonic inhibitory current in ventral horn interneurons (VHIs) and determined the functional contribution of the α(5) subunit-containing GABA(A) receptors to this current. Patch clamp studies show that the GABAergic tonic inhibitory current in VHIs is not affected by the application of antagonists of the α(4/6) subunit-containing GABA(A) receptors, but is sensitive to L-655708, an antagonist of the GABA(A) receptors containing α(5) subunits. Last, by using RT-PCR and immunohistochemistry we confirmed the expression of the α(5) subunit in the turtle spinal cord. Together, these results suggest that GABA(A) receptors containing the α(5) subunit mediate the tonic inhibitory currents observed in VHIs. PMID:21798246

  6. Wide Dispersion and Diversity of Clonally Related Inhibitory Interneurons

    PubMed Central

    Harwell, Corey C.; Fuentealba, Luis C.; Gonzalez-Cerrillo, Adrian; Parker, Phillip R.L.; Gertz, Caitlyn C.; Mazzola, Emanuele; Turrero Garcia, Miguel; Alvarez-Buylla, Arturo; Cepko, Constance L.; Kriegstein, Arnold

    2015-01-01

    The mammalian neocortex is composed of two major neuronal cell types with distinct origins: excitatory pyramidal neurons and inhibitory interneurons, generated in dorsal and ventral progenitor zones of the embryonic telencephalon respectively. Thus, inhibitory neurons migrate relatively long distances to reach their destination in the developing forebrain. The role of lineage in the organization and circuitry of interneurons is still not well understood. Utilizing a combination of genetics, retroviral fate mapping and lineage-specific retroviral barcode labeling, we find that clonally related interneurons can be widely dispersed while unrelated interneurons can be closely clustered. These data suggest that migratory mechanisms related to the clustering of interneurons occur largely independent of their clonal origin. PMID:26299474

  7. Wide Dispersion and Diversity of Clonally Related Inhibitory Interneurons.

    PubMed

    Harwell, Corey C; Fuentealba, Luis C; Gonzalez-Cerrillo, Adrian; Parker, Phillip R L; Gertz, Caitlyn C; Mazzola, Emanuele; Garcia, Miguel Turrero; Alvarez-Buylla, Arturo; Cepko, Constance L; Kriegstein, Arnold R

    2015-09-01

    The mammalian neocortex is composed of two major neuronal cell types with distinct origins: excitatory pyramidal neurons and inhibitory interneurons, generated in dorsal and ventral progenitor zones of the embryonic telencephalon, respectively. Thus, inhibitory neurons migrate relatively long distances to reach their destination in the developing forebrain. The role of lineage in the organization and circuitry of interneurons is still not well understood. Utilizing a combination of genetics, retroviral fate mapping, and lineage-specific retroviral barcode labeling, we find that clonally related interneurons can be widely dispersed while unrelated interneurons can be closely clustered. These data suggest that migratory mechanisms related to the clustering of interneurons occur largely independent of their clonal origin. PMID:26299474

  8. Persistent barrage firing in cortical interneurons can be induced in vivo and may be important for the suppression of epileptiform activity.

    PubMed

    Suzuki, Norimitsu; Tang, Clara S-M; Bekkers, John M

    2014-01-01

    Neural circuits are typically maintained in a state of dynamic equilibrium by balanced synaptic excitation and inhibition. However, brain regions that are particularly susceptible to epilepsy may have evolved additional specialized mechanisms for inhibiting over-excitation. Here we identify one such possible mechanism in the cerebral cortex and hippocampus of mice. Recently it was reported that some types of GABAergic interneurons can slowly integrate excitatory inputs until eventually they fire persistently in the absence of the original stimulus. This property, called persistent firing or retroaxonal barrage firing (BF), is of unknown physiological importance. We show that two common types of interneurons in cortical regions, neurogliaform (NG) cells and fast-spiking (FS) cells, are unique in exhibiting BF in acute slices (~85 and ~23% success rate for induction, respectively). BF can also be induced in vivo, although the success rate for induction is lower (~60% in NG cells). In slices, BF could reliably be triggered by trains of excitatory synaptic input, as well as by exposure to proconvulsant bath solutions (elevated extracellular K(+), blockade of GABAA receptors). Using pair recordings in slices, we confirmed that barrage-firing NG cells can produce synaptic inhibition of nearby pyramidal neurons, and that this inhibition outlasts the original excitation. The ubiquity of NG and FS cells, together with their ability to fire persistently following excessive excitation, suggests that these interneurons may function as cortical sentinels, imposing an activity-dependent brake on undesirable neuronal hyperexcitability. PMID:24659955

  9. Persistent barrage firing in cortical interneurons can be induced in vivo and may be important for the suppression of epileptiform activity

    PubMed Central

    Suzuki, Norimitsu; Tang, Clara S.-M.; Bekkers, John M.

    2014-01-01

    Neural circuits are typically maintained in a state of dynamic equilibrium by balanced synaptic excitation and inhibition. However, brain regions that are particularly susceptible to epilepsy may have evolved additional specialized mechanisms for inhibiting over-excitation. Here we identify one such possible mechanism in the cerebral cortex and hippocampus of mice. Recently it was reported that some types of GABAergic interneurons can slowly integrate excitatory inputs until eventually they fire persistently in the absence of the original stimulus. This property, called persistent firing or retroaxonal barrage firing (BF), is of unknown physiological importance. We show that two common types of interneurons in cortical regions, neurogliaform (NG) cells and fast-spiking (FS) cells, are unique in exhibiting BF in acute slices (~85 and ~23% success rate for induction, respectively). BF can also be induced in vivo, although the success rate for induction is lower (~60% in NG cells). In slices, BF could reliably be triggered by trains of excitatory synaptic input, as well as by exposure to proconvulsant bath solutions (elevated extracellular K+, blockade of GABAA receptors). Using pair recordings in slices, we confirmed that barrage-firing NG cells can produce synaptic inhibition of nearby pyramidal neurons, and that this inhibition outlasts the original excitation. The ubiquity of NG and FS cells, together with their ability to fire persistently following excessive excitation, suggests that these interneurons may function as cortical sentinels, imposing an activity-dependent brake on undesirable neuronal hyperexcitability. PMID:24659955

  10. Complementary control of sensory adaptation by two types of cortical interneurons

    PubMed Central

    Natan, Ryan G; Briguglio, John J; Mwilambwe-Tshilobo, Laetitia; Jones, Sara I; Aizenberg, Mark; Goldberg, Ethan M; Geffen, Maria Neimark

    2015-01-01

    Reliably detecting unexpected sounds is important for environmental awareness and survival. By selectively reducing responses to frequently, but not rarely, occurring sounds, auditory cortical neurons are thought to enhance the brain's ability to detect unexpected events through stimulus-specific adaptation (SSA). The majority of neurons in the primary auditory cortex exhibit SSA, yet little is known about the underlying cortical circuits. We found that two types of cortical interneurons differentially amplify SSA in putative excitatory neurons. Parvalbumin-positive interneurons (PVs) amplify SSA by providing non-specific inhibition: optogenetic suppression of PVs led to an equal increase in responses to frequent and rare tones. In contrast, somatostatin-positive interneurons (SOMs) selectively reduce excitatory responses to frequent tones: suppression of SOMs led to an increase in responses to frequent, but not to rare tones. A mutually coupled excitatory-inhibitory network model accounts for distinct mechanisms by which cortical inhibitory neurons enhance the brain's sensitivity to unexpected sounds. DOI: http://dx.doi.org/10.7554/eLife.09868.001 PMID:26460542

  11. Decreased number of interneurons and increased seizures in neuropilin 2 deficient mice: Implications for autism and epilepsy

    PubMed Central

    Gant, John C.; Thibault, Oliver; Blalock, Eric M.; Yang, Jun; Bachstetter, Adam; Kotick, James; Schauwecker, Paula E.; Hauser, Kurt F.; Smith, George M.; Mervis, Ron; Li, YanFang; Barnes, Gregory N.

    2010-01-01

    Summary Purpose Clinically, perturbations in the semaphorin signaling system have been associated with autism and epilepsy. The semaphorins have been implicated in guidance, migration, differentiation, and synaptic plasticity of neurons. The semaphorin 3F (Sema3F) ligand and its receptor, neuropilin 2 (NPN2) are highly expressed within limbic areas. NPN2 signaling may intimately direct the apposition of presynaptic and postsynaptic locations, facilitating the development and maturity of hippocampal synaptic function. To further understand the role of NPN2 signaling in central nevous system (CNS) plasticity, structural and functional alterations were assessed in NPN2 deficient mice. Methods In NPN2 deficient mice, we measured seizure susceptibility after kainic acid or pentylenetetrazol, neuronal excitability and synaptic throughput in slice preparations, principal and interneuron cell counts with immunocytochemical protocols, synaptosomal protein levels with immunoblots, and dendritic morphology with Golgi-staining. Results NPN2 deficient mice had shorter seizure latencies, increased vulnerability to seizure-related death, were more likely to develop spontaneous recurrent seizure activity after chemical challenge, and had an increased slope on input/output curves. Principal cell counts were unchanged, but GABA, parvalbumin, and neuropeptide Y interneuron cell counts were significantly reduced. Synaptosomal NPN2 protein levels and total number of GABAergic synapses were decreased in a gene dose-dependent fashion. CA1 pyramidal cells showed reduced dendritic length and complexity, as well as an increased number of dendritic spines. Discussion These data suggest the novel hypothesis that the Sema 3F signaling system's role in appropriate placement of subsets of hippocampal interneurons has critical downstream consequences for hippocampal function, resulting in a more seizure susceptible phenotype. PMID:18657176

  12. Enhanced GABAergic network and receptor function in pediatric cortical dysplasia Type IIB compared with Tuberous Sclerosis Complex.

    PubMed

    Cepeda, Carlos; André, Véronique M; Hauptman, Jason S; Yamazaki, Irene; Huynh, My N; Chang, Julia W; Chen, Jane Y; Fisher, Robin S; Vinters, Harry V; Levine, Michael S; Mathern, Gary W

    2012-01-01

    Tuberous Sclerosis Complex (TSC) and cortical dysplasia Type IIB (CDIIB) share histopathologic features that suggest similar epileptogenic mechanisms. This study compared the morphological and electrophysiological properties of cortical cells in tissue from pediatric TSC (n=20) and CDIIB (n=20) patients using whole-cell patch clamp recordings and biocytin staining. Cell types were normal-appearing and dysmorphic-cytomegalic pyramidal neurons, interneurons, and giant/balloon cells, including intermediate neuronal-glial cells. In the cortical mantle, giant/balloon cells occurred more frequently in TSC than in CDIIB cases, whereas cytomegalic pyramidal neurons were found more frequently in CDIIB. Cell morphology and membrane properties were similar in TSC and CDIIB cases. Except for giant/balloon and intermediate cells, all neuronal cell types fired action potentials and displayed spontaneous postsynaptic currents. However, the frequency of spontaneous glutamatergic postsynaptic currents in normal pyramidal neurons and interneurons was significantly lower in CDIIB compared with TSC cases and the GABAergic activity was higher in all neuronal cell types in CDIIB. Further, acutely dissociated pyramidal neurons displayed higher sensitivity to exogenous application of GABA in CDIIB compared with TSC cases. These results indicate that, in spite of similar histopathologic features and basic cell membrane properties, TSC and CDIIB display differences in the topography of abnormal cells, excitatory and inhibitory synaptic network properties, and GABA(A) receptor sensitivity. These differences support the notion that the mechanisms of epileptogenesis could differ in patients with TSC and CDIIB. Consequently, pharmacologic therapies should take these findings into consideration. PMID:21889982

  13. Parvalbumin-Expressing GABAergic Neurons in Mouse Barrel Cortex Contribute to Gating a Goal-Directed Sensorimotor Transformation

    PubMed Central

    Sachidhanandam, Shankar; Sermet, B. Semihcan; Petersen, Carl C.H.

    2016-01-01

    Summary Sensory processing in neocortex is primarily driven by glutamatergic excitation, which is counterbalanced by GABAergic inhibition, mediated by a diversity of largely local inhibitory interneurons. Here, we trained mice to lick a reward spout in response to whisker deflection, and we recorded from genetically defined GABAergic inhibitory neurons in layer 2/3 of the primary somatosensory barrel cortex. Parvalbumin-expressing (PV), vasoactive intestinal peptide-expressing (VIP), and somatostatin-expressing (SST) neurons displayed distinct action potential firing dynamics during task performance. Whereas SST neurons fired at low rates, both PV and VIP neurons fired at high rates both spontaneously and in response to whisker stimulation. After an initial outcome-invariant early sensory response, PV neurons had lower firing rates in hit trials compared to miss trials. Optogenetic inhibition of PV neurons during this time period enhanced behavioral performance. Hence, PV neuron activity might contribute causally to gating the sensorimotor transformation of a whisker sensory stimulus into licking motor output. PMID:27149853

  14. The Stochastic Search Dynamics of Interneuron Migration

    PubMed Central

    Britto, Joanne M.; Johnston, Leigh A.; Tan, Seong-Seng

    2009-01-01

    Abstract Migration is a dynamic process in which a cell searches the environment and translates acquired information into somal advancement. In particular, interneuron migration during development is accomplished by two distinct processes: the extension of neurites tipped with growth cones; and nucleus translocation, termed nucleokinesis. The primary purpose of our study is to investigate neurite branching and nucleokinesis using high-resolution time-lapse confocal microscopy and computational modeling. We demonstrate that nucleokinesis is accurately modeled by a spring-dashpot system and that neurite branching is independent of the nucleokinesis event, and displays the dynamics of a stochastic birth-death process. This is in contrast to traditional biological descriptions, which suggest a closer relationship between the two migratory mechanisms. Our models are validated on independent data sets acquired using two different imaging protocols, and are shown to be robust to alterations in guidance cues and cellular migratory mechanisms, through treatment with brain-derived neurotrophic factor, neurotrophin-4, and blebbistatin. We postulate that the stochastic branch dynamics exhibited by interneurons undergoing guidance-directed migration permit efficient exploration of the environment. PMID:19651028

  15. The GABAergic Deficit Hypothesis of Major Depressive Disorder

    PubMed Central

    Luscher, Bernhard; Shen, Qiuying; Sahir, Nadia

    2012-01-01

    Increasing evidence points to an association between major depressive disorders (MDDs) and diverse types of GABAergic deficits. Here we summarize clinical and preclinical evidence supporting a central and causal role of GABAergic deficits in the etiology of depressive disorders. Studies of depressed patients indicate that MDDs are accompanied by reduced brain concentration of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) as well as alterations in the subunit composition of the principal receptors (GABAA receptors) mediating GABAergic inhibition. In addition, there is abundant evidence that GABA plays a prominent role in the brain control of stress, the most important vulnerability factor in mood disorders. Furthermore, preclinical evidence suggests that currently used antidepressant drugs designed to alter monoaminergic transmission as well as non-pharmacologic therapies may ultimately act to counteract GABAergic deficits. In particular, GABAergic transmission plays an important role in the control of hippocampal neurogenesis and neural maturation, which are now established as cellular substrates of most if not all antidepressant therapies. Lastly, comparatively modest deficits in GABAergic transmission in GABAA-receptor-deficient mice are sufficient to cause behavioral, cognitive, neuroanatomical, and neuroendocrine phenotypes as well as antidepressant drug response characteristics expected of an animal model of MDD. The GABAergic hypothesis of MDD suggests that alterations in GABAergic transmission represent fundamentally important aspects of the etiological sequelae of major depressive disorders that are reversed by monoaminergic antidepressant drug action. PMID:21079608

  16. Metaplastic Regulation of CA1 Schaffer Collateral Pathway Plasticity by Hebbian MGluR1a-Mediated Plasticity at Excitatory Synapses onto Somatostatin-Expressing Interneurons(1,2,3).

    PubMed

    Vasuta, Cristina; Artinian, Julien; Laplante, Isabel; Hébert-Seropian, Sarah; Elayoubi, Karim; Lacaille, Jean-Claude

    2015-01-01

    Cortical GABAergic interneurons represent a highly diverse neuronal type that regulates neural network activity. In particular, interneurons in the hippocampal CA1 oriens/alveus (O/A-INs) area provide feedback dendritic inhibition to local pyramidal cells and express somatostatin (SOM). Under relevant afferent stimulation patterns, they undergo long-term potentiation (LTP) of their excitatory synaptic inputs through multiple induction and expression mechanisms. However, the cell-type specificity of these different forms of LTP and their specific contribution to the dynamic regulation of the CA1 network remain unclear. Here we recorded from SOM-expressing interneurons (SOM-INs) in the O/A region from SOM-Cre-Ai3 transgenic mice in whole-cell patch-clamp. Results indicate that, like in anatomically identified O/A-INs, theta-burst stimulation (TBS) induced a Hebbian form of LTP dependent on metabotropic glutamate receptor type 1a (mGluR1a) in SOM-INs, but not in parvalbumin-expressing interneurons, another mainly nonoverlapping interneuron subtype in CA1. In addition, we demonstrated using field recordings from transgenic mice expressing archaerhodopsin 3 selectively in SOM-INs, that a prior conditioning TBS in O/A, to induce mGluR1a-dependent LTP in SOM-INs, upregulated LTP in the Schaffer collateral pathway of pyramidal cells. This effect was prevented by light-induced hyperpolarization of SOM-INs during TBS, or by application of the mGluR1a antagonist LY367385, indicating a necessity for mGluR1a and SOM-INs activation. These results uncover that SOM-INs perform an activity-dependent metaplastic control on hippocampal CA1 microcircuits in a cell-specific fashion. Our findings provide new insights on the contribution of interneuron synaptic plasticity in the regulation of the hippocampal network activity and mnemonic processes. PMID:26464997

  17. Only a Minority of the Inhibitory Inputs to Cerebellar Golgi Cells Originates from Local GABAergic Cells123

    PubMed Central

    2016-01-01

    Abstract Cerebellar Golgi cells (GoCs) efficiently control the spiking activity of granule cells through GABAA receptor-mediated tonic and phasic inhibition. Recent experiments provided compelling evidence for the extensive interconnection of GoCs through electrical synapses, but their chemical inhibitory synaptic inputs are debated. Here, we investigated the GABAergic synaptic inputs of GoCs using in vitro electrophysiology and quantitative light microscopy (LM) and electron microscopy (EM). We characterized GABAA receptor-mediated IPSCs in GoCs and Lugaro cells (LuCs), and found that IPSCs in GoCs have lower frequencies, smaller amplitudes, and much slower decay kinetics. Pharmacological and LM immunolocalization experiments revealed that GoCs express α3, whereas LuCs express α1 subunit-containing GABAA receptors. The selective expression and clustered distribution of the α3 subunit in GoCs allowed the quantitative analysis of GABAergic synapses on their dendrites in the molecular layer (ML). EM and LM experiments in rats, and wild-type and GlyT2-GFP transgenic mice revealed that only one third of axon terminals establishing GABAergic synapses on GoC dendrites contain GlyT2, ruling out LuCs, globular cells, and any noncortical glycinergic inputs as major inhibitory sources. We also show that axon terminals of stellate/basket cells very rarely innervate GlyT2-GFP-expressing GoCs, indicating that only a minority of the inhibitory inputs to GoCs in the ML originates from local interneurons, and the majority of their inhibitory inputs exclusively releases GABA. PMID:27257627

  18. Globus Pallidus Externus Neurons Expressing parvalbumin Interconnect the Subthalamic Nucleus and Striatal Interneurons

    PubMed Central

    Saunders, Arpiar; Huang, Kee Wui; Sabatini, Bernardo Luis

    2016-01-01

    The globus pallidus externus (GP) is a nucleus of the basal ganglia (BG), containing GABAergic projection neurons that arborize widely throughout the BG, thalamus and cortex. Ongoing work seeks to map axonal projection patterns from GP cell types, as defined by their electrophysiological and molecular properties. Here we use transgenic mice and recombinant viruses to characterize parvalbumin expressing (PV+) GP neurons within the BG circuit. We confirm that PV+ neurons 1) make up ~40% of the GP neurons 2) exhibit fast-firing spontaneous activity and 3) provide the major axonal arborization to the STN and substantia nigra reticulata/compacta (SNr/c). PV+ neurons also innervate the striatum. Retrograde labeling identifies ~17% of pallidostriatal neurons as PV+, at least a subset of which also innervate the STN and SNr. Optogenetic experiments in acute brain slices demonstrate that the PV+ pallidostriatal axons make potent inhibitory synapses on low threshold spiking (LTS) and fast-spiking interneurons (FS) in the striatum, but rarely on spiny projection neurons (SPNs). Thus PV+ GP neurons are synaptically positioned to directly coordinate activity between BG input nuclei, the striatum and STN, and thalamic-output from the SNr. PMID:26905595

  19. Dynamics of action potential firing in electrically connected striatal fast-spiking interneurons

    PubMed Central

    Russo, Giovanni; Nieus, Thierry R.; Maggi, Silvia; Taverna, Stefano

    2013-01-01

    Fast-spiking interneurons (FSIs) play a central role in organizing the output of striatal neural circuits, yet functional interactions between these cells are still largely unknown. Here we investigated the interplay of action potential (AP) firing between electrically connected pairs of identified FSIs in mouse striatal slices. In addition to a loose coordination of firing activity mediated by membrane potential coupling, gap junctions (GJ) induced a frequency-dependent inhibition of spike discharge in coupled cells. At relatively low firing rates (2–20 Hz), some APs were tightly synchronized whereas others were inhibited. However, burst firing at intermediate frequencies (25–60 Hz) mostly induced spike inhibition, while at frequencies >50–60 Hz FSI pairs tended to synchronize. Spike silencing occurred even in the absence of GABAergic synapses or persisted after a complete block of GABAA receptors. Pharmacological suppression of presynaptic spike afterhyperpolarization (AHP) caused postsynaptic spikelets to become more prone to trigger spikes at near-threshold potentials, leading to a mostly synchronous firing activity. The complex pattern of functional coordination mediated by GJ endows FSIs with peculiar dynamic properties that may be critical in controlling striatal-dependent behavior. PMID:24294191

  20. Differential Recruitment of Dentate Gyrus Interneuron Types by Commissural Versus Perforant Pathways.

    PubMed

    Hsu, Tsan-Ting; Lee, Cheng-Ta; Tai, Ming-Hong; Lien, Cheng-Chang

    2016-06-01

    Gamma-aminobutyric acidergic (GABAergic) interneurons (INs) in the dentate gyrus (DG) provide inhibitory control to granule cell (GC) activity and thus gate incoming signals to the hippocampus. However, how various IN subtypes inhibit GCs in response to different excitatory input pathways remains mostly unknown. By using electrophysiology and optogenetics, we investigated neurotransmission of the hilar commissural pathway (COM) and the medial perforant path (MPP) to the DG in acutely prepared mouse slices. We found that the short-term dynamics of excitatory COM-GC and MPP-GC synapses was similar, but that the dynamics of COM- and MPP-mediated inhibition measured in GCs was remarkably different, during theta-frequency stimulation. This resulted in the increased inhibition-excitation (I/E) ratios in single GCs for COM stimulation, but decreased I/E ratios for MPP stimulation. Further analysis of pathway-specific responses in identified INs revealed that basket cell-like INs, total molecular layer- and molecular layer-like cells, received greater excitation and were more reliably recruited by the COM than by the MPP inputs. In contrast, hilar perforant path-associated and hilar commissural-associational pathway-related-like cells were minimally activated by both inputs. These results demonstrate that distinct IN subtypes are preferentially recruited by different inputs to the DG, and reveal their relative contributions in COM-mediated feedforward inhibition. PMID:26045570

  1. The organization of two novel cortical interneuronal circuits

    PubMed Central

    Jiang, Xiaolong; Wang, Guangfu; Lee, Alice J.; Stornetta, Ruth L.; Zhu, J. Julius

    2013-01-01

    Deciphering interneuronal circuitry is central to understanding brain functions yet remains as a challenging task in neurobiology. Using simultaneous quadruple-octuple in vitro and dual in vivo whole-cell recordings, we found two previously unknown interneuronal circuits that link cortical layer 1–3 (L1-3) interneurons and L5 pyramidal neurons in the rat neocortex. L1 single-bouquet cells (SBCs) preferentially form unidirectional inhibitory connections on L2/3 interneurons that inhibit the entire dendritic-somato-axonal axis of ~1% of L5 pyramidal neurons located within the same column. In contrast, L1 elongated neurogliaform cells (ENGCs) frequently form mutual inhibitory and electric connections with L2/3 interneurons, and these L1-3 interneurons inhibit the distal apical dendrite of >60% of L5 pyramidal neurons across multiple columns. Functionally, SBC→L2/3 interneuron→L5 pyramidal neuronal circuits disinhibit and ENGC↔L2/3 interneuron→L5 pyramidal neuronal circuits inhibit the initiation of dendritic complex spikes in L5 pyramidal neurons. As dendritic complex spikes can serve coincidence detection, these cortical interneuronal circuits may be essential for salience selection. PMID:23313910

  2. Somatostatin-immunoreactive interneurons contribute to lateral inhibitory circuits in the dentate gyrus of control and epileptic rats.

    PubMed

    Boyett, J M; Buckmaster, P S

    2001-01-01

    Lateral inhibition, a feature of neuronal circuitry that enhances signaling specificity, has been demonstrated in the rat dentate gyrus. However, neither the underlying neuronal circuits, nor the ways in which these circuits are altered in temporal lobe epilepsy, are completely understood. This study examines the potential contribution of one class of inhibitory interneurons to lateral inhibitory circuits in the dentate gyrus of both control and epileptic rats. The retrograde tracer wheat germ ag-glutinin-apo-horse radish peroxidase-gold (WGA-apo-HRP-gold) was injected into the septal dentate gyrus. Neurons double-labeled for glutamic acid decarboxylase (GAD) and the retrograde tracer are concentrated in the hilus and may contribute to lateral inhibition. Neurons double-labeled for somatostatin and the retrograde tracer account for at least 28% of GAD-positive neurons with axon projections appropriate for generating lateral inhibition in control rats. Despite an overall loss of somatostatin-expressing cells in epileptic animals, the number of somatostatin-positive interneurons with axon projections appropriate for generating lateral inhibition is similar to that seen in controls. These findings suggest that somatostatinergic interneurons participate in lateral inhibitory circuits in the dentate gyrus of both control and epileptic rats, and that surviving somatostatinergic interneurons might sprout new axon collaterals in epileptic animals. PMID:11530846

  3. Apical versus Basal Neurogenesis Directs Cortical Interneuron Subclass Fate.

    PubMed

    Petros, Timothy J; Bultje, Ronald S; Ross, M Elizabeth; Fishell, Gord; Anderson, Stewart A

    2015-11-10

    Fate determination in the mammalian telencephalon, with its diversity of neuronal subtypes and relevance to neuropsychiatric disease, remains a critical area of study in neuroscience. Most studies investigating this topic focus on the diversity of neural progenitors within spatial and temporal domains along the lateral ventricles. Often overlooked is whether the location of neurogenesis within a fate-restricted domain is associated with, or instructive for, distinct neuronal fates. Here, we use in vivo fate mapping and the manipulation of neurogenic location to demonstrate that apical versus basal neurogenesis influences the fate determination of major subgroups of cortical interneurons derived from the subcortical telencephalon. Somatostatin-expressing interneurons arise mainly from apical divisions along the ventricular surface, whereas parvalbumin-expressing interneurons originate predominantly from basal divisions in the subventricular zone. As manipulations that shift neurogenic location alter interneuron subclass fate, these results add an additional dimension to the spatial-temporal determinants of neuronal fate determination. PMID:26526999

  4. Tasks for inhibitory interneurons in intact brain circuits

    PubMed Central

    Roux, Lisa; Buzsáki, György

    2014-01-01

    Synaptic inhibition, brought about by a rich variety of interneuron types that target different domains of principal cells and other interneurons, counters excitation, modulates the gain, timing, tuning, bursting properties of principal cell firing, and exerts selective filtering of synaptic excitation. At the network level, it allows for coordinating transient interactions among the principal cells to form cooperative assemblies for efficient transmission of information and routing of excitatory activity across networks, typically in the form of brain oscillations. Targeted expression of neuronal activity modulators, such as optogenetics, allow physiological identification and perturbation of specific interneuron subtypes. Combined with large-scale recordings or imaging techniques, these approaches facilitate our understanding of the multiple roles of inhibitory interneurons in shaping circuit functions. PMID:25239808

  5. Hyperactive somatostatin interneurons contribute to excitotoxicity in neurodegenerative disorders.

    PubMed

    Zhang, Wen; Zhang, Lifeng; Liang, Bo; Schroeder, David; Zhang, Zhong-Wei; Cox, Gregory A; Li, Yun; Lin, Da-Ting

    2016-04-01

    Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are overlapping neurodegenerative disorders whose pathogenesis remains largely unknown. Using TDP-43(A315T) mice, an ALS and FTD model with marked cortical pathology, we found that hyperactive somatostatin interneurons disinhibited layer 5 pyramidal neurons (L5-PNs) and contributed to their excitotoxicity. Focal ablation of somatostatin interneurons efficiently restored normal excitability of L5-PNs and alleviated neurodegeneration, suggesting a new therapeutic target for ALS and FTD. PMID:26900927

  6. GABAergic signaling in the rat pineal gland.

    PubMed

    Yu, Haijie; Benitez, Sergio G; Jung, Seung-Ryoung; Farias Altamirano, Luz E; Kruse, Martin; Seo, Jong Bae; Koh, Duk-Su; Muñoz, Estela M; Hille, Bertil

    2016-08-01

    Pinealocytes secrete melatonin at night in response to norepinephrine released from sympathetic nerve terminals in the pineal gland. The gland also contains many other neurotransmitters whose cellular disposition, activity, and relevance to pineal function are not understood. Here, we clarify sources and demonstrate cellular actions of the neurotransmitter γ-aminobutyric acid (GABA) using Western blotting and immunohistochemistry of the gland and electrical recording from pinealocytes. GABAergic cells and nerve fibers, defined as containing GABA and the synthetic GAD67, were identified. The cells represent a subset of interstitial cells while the nerve fibers were distinct from the sympathetic innervation. The GABAA receptor subunit α1 was visualized in close proximity of both GABAergic and sympathetic nerve fibers as well as fine extensions among pinealocytes and blood vessels. The GABAB 1 receptor subunit was localized in the interstitial compartment but not in pinealocytes. Electrophysiology of isolated pinealocytes revealed that GABA and muscimol elicit strong inward chloride currents sensitive to bicuculline and picrotoxin, clear evidence for functional GABAA receptors on the surface membrane. Applications of elevated potassium solution or the neurotransmitter acetylcholine depolarized the pinealocyte membrane potential enough to open voltage-gated Ca(2+) channels leading to intracellular calcium elevations. GABA repolarized the membrane and shut off such calcium rises. In 48-72-h cultured intact glands, GABA application neither triggered melatonin secretion by itself nor affected norepinephrine-induced secretion. Thus, strong elements of GABA signaling are present in pineal glands that make large electrical responses in pinealocytes, but physiological roles need to be found. PMID:27019076

  7. Early Somatostatin Interneuron Connectivity Mediates the Maturation of Deep Layer Cortical Circuits.

    PubMed

    Tuncdemir, Sebnem N; Wamsley, Brie; Stam, Floor J; Osakada, Fumitaka; Goulding, Martyn; Callaway, Edward M; Rudy, Bernardo; Fishell, Gord

    2016-02-01

    The precise connectivity of somatostatin and parvalbumin cortical interneurons is generated during development. An understanding of how these interneuron classes incorporate into cortical circuitry is incomplete but essential to elucidate the roles they play during maturation. Here, we report that somatostatin interneurons in infragranular layers receive dense but transient innervation from thalamocortical afferents during the first postnatal week. During this period, parvalbumin interneurons and pyramidal neurons within the same layers receive weaker thalamocortical inputs, yet are strongly innervated by somatostatin interneurons. Further, upon disruption of the early (but not late) somatostatin interneuron network, the synaptic maturation of thalamocortical inputs onto parvalbumin interneurons is perturbed. These results suggest that infragranular somatostatin interneurons exhibit a transient early synaptic connectivity that is essential for the establishment of thalamic feedforward inhibition mediated by parvalbumin interneurons. PMID:26844832

  8. GABAergic dysfunction in pediatric neuro-developmental disorders

    PubMed Central

    Smith-Hicks, Constance L.

    2013-01-01

    The GABAergic system is central to the development and functional maturation of the nervous system. Emerging evidence support the role of GABAergic dysfunction in neuro-developmental disorders. This review presents the molecules and mechanisms that underlie GABA system dysfunction in several neuro-developmental disorders presenting in childhood. The impact on synaptic plasticity, neuronal circuit function and behavior, followed by targeted treatment strategies are discussed. PMID:24391546

  9. GABAergic circuit dysfunction in the Drosophila Fragile X syndrome model

    PubMed Central

    Gatto, Cheryl L.; Pereira, Daniel; Broadie, Kendal

    2014-01-01

    Fragile X syndrome (FXS), caused by loss of FMR1 gene function, is the most common heritable cause of intellectual disability and autism spectrum disorders. The FMR1 protein (FMRP) translational regulator mediates activity-dependent control of synapses. In addition to the metabotropic glutamate receptor (mGluR) hyperexcitation FXS theory, the GABA theory postulates that hypoinhibition is causative for disease state symptoms. Here, we use the Drosophila FXS model to assay central brain GABAergic circuitry, especially within the Mushroom Body (MB) learning center. All 3 GABAA receptor (GABAAR) subunits are reportedly downregulated in dfmr1 null brains. We demonstrate parallel downregulation of glutamic acid decarboxylase (GAD), the rate-limiting GABA synthesis enzyme, although GABAergic cell numbers appear unaffected. Mosaic analysis with a repressible cell marker (MARCM) single-cell clonal studies show that dfmr1 null GABAergic neurons innervating the MB calyx display altered architectural development, with early underdevelopment followed by later overelaboration. In addition, a new class of extra-calyx terminating GABAergic neurons is shown to include MB intrinsic α/β Kenyon Cells (KCs), revealing a novel level of MB inhibitory regulation. Functionally, dfmr1 null GABAergic neurons exhibit elevated calcium signaling and altered kinetics in response to acute depolarization. To test the role of these GABAergic changes, we attempted to pharmacologically restore GABAergic signaling and assay effects on the compromised MB-dependent olfactory learning in dfmr1 mutants, but found no improvement. Our results show that GABAergic circuit structure and function are impaired in the FXS disease state, but that correction of hypoinhibition alone is not sufficient to rescue a behavioral learning impairment. PMID:24423648

  10. Classification of neocortical interneurons using affinity propagation

    PubMed Central

    Santana, Roberto; McGarry, Laura M.; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2013-01-01

    In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits. PMID:24348339