Sample records for gadolinium chelates contrast

  1. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging.

    PubMed

    Alric, Christophe; Taleb, Jacqueline; Le Duc, Géraldine; Mandon, Céline; Billotey, Claire; Le Meur-Herland, Alice; Brochard, Thierry; Vocanson, Francis; Janier, Marc; Perriat, Pascal; Roux, Stéphane; Tillement, Olivier

    2008-05-07

    Functionalized gold nanoparticles were applied as contrast agents for both in vivo X-ray and magnetic resonance imaging. These particles were obtained by encapsulating gold cores within a multilayered organic shell which is composed of gadolinium chelates bound to each other through disulfide bonds. The contrast enhancement in MRI stems from the presence of gadolinium ions which are entrapped in the organic shell, whereas the gold core provides a strong X-ray absorption. This study revealed that these particles suited for dual modality imaging freely circulate in the blood vessels without undesirable accumulation in the lungs, spleen, and liver.

  2. Anti-EpCAM scFv gadolinium chelate: a novel targeted MRI contrast agent for imaging of colorectal cancer.

    PubMed

    Khantasup, Kannika; Saiviroonporn, Pairash; Jarussophon, Suwatchai; Chantima, Warangkana; Dharakul, Tararaj

    2018-05-08

    The development of targeted contrast agents for magnetic resonance imaging (MRI) facilitates enhanced cancer imaging and more accurate diagnosis. In the present study, a novel contrast agent was developed by conjugating anti-EpCAM humanized scFv with gadolinium chelate to achieve target specificity. The material design strategy involved site-specific conjugation of the chelating agent to scFv. The scFv monomer was linked to maleimide-DTPA via unpaired cysteine at the scFv C-terminus, followed by chelation with gadolinium (Gd). Successful scFv-DTPA conjugation was achieved at 1:10 molar ratio of scFv to maleimide-DTPA at pH 6.5. The developed anti-EpCAM-Gd-DTPA MRI contrast agent was evaluated for cell targeting ability, in vitro serum stability, cell cytotoxicity, relaxivity, and MR contrast enhancement. A high level of targeting efficacy of anti-EpCAM-Gd-DTPA to an EpCAM-overexpressing HT29 colorectal cell was demonstrated by confocal microscopy. Good stability of the contrast agent was obtained and no cytotoxicity was observed in HT29 cells after 48 h incubation with 25-100 µM of Gd. Favorable imaging was obtained using anti-EpCAM-Gd-DTPA, including 1.8-fold enhanced relaxivity compared with Gd-DTPA, and MR contrast enhancement observed after binding to HT29. The potential benefit of this contrast agent for in vivo MR imaging of colorectal cancer, as well as other EpCAM positive cancers, is suggested and warrants further investigation.

  3. Strategies for the preparation of bifunctional gadolinium(III) chelators

    PubMed Central

    Frullano, Luca; Caravan, Peter

    2012-01-01

    The development of gadolinium chelators that can be easily and readily linked to various substrates is of primary importance for the development high relaxation efficiency and/or targeted magnetic resonance imaging (MRI) contrast agents. Over the last 25 years a large number of bifunctional chelators have been prepared. For the most part, these compounds are based on ligands that are already used in clinically approved contrast agents. More recently, new bifunctional chelators have been reported based on complexes that show a more potent relaxation effect, faster complexation kinetics and in some cases simpler synthetic procedures. This review provides an overview of the synthetic strategies used for the preparation of bifunctional chelators for MRI applications. PMID:22375102

  4. Low-Molecular-Weight Iron Chelates May Be an Alternative to Gadolinium-based Contrast Agents for T1-weighted Contrast-enhanced MR Imaging.

    PubMed

    Boehm-Sturm, Philipp; Haeckel, Akvile; Hauptmann, Ralf; Mueller, Susanne; Kuhl, Christiane K; Schellenberger, Eyk A

    2018-02-01

    Purpose To synthesize two low-molecular-weight iron chelates and compare their T1 contrast effects with those of a commercial gadolinium-based contrast agent for their applicability in dynamic contrast material-enhanced (DCE) magnetic resonance (MR) imaging. Materials and Methods The animal experiments were approved by the local ethics committee. Two previously described iron (Fe) chelates of pentetic acid (Fe-DTPA) and of trans-cyclohexane diamine tetraacetic acid (Fe-tCDTA) were synthesized with stability constants several orders of magnitude higher than those of gadolinium-based contrast agents. The T1 contrast effects of the two chelates were compared with those of gadopentetate dimeglumine in blood serum phantoms at 1.5 T, 3 T, and 7 T. For in vivo studies, a human breast cancer cell line (MDA-231) was implanted in five mice per group. The dynamic contrast effects of the chelates were compared by performing DCE MR imaging with intravenous application of Fe-DTPA or Fe-tCDTA on day 1 and DCE MR imaging in the same tumors with gadopentetate dimeglumine on day 2. Quantitative DCE maps were generated with software and were compared by means of a one-tailed Pearson correlation test. Results Relaxivities in serum (0.94 T at room temperature) of Fe-tCDTA (r1 = 2.2 mmol -1 · sec -1 , r2 = 2.5 mmol -1 · sec -1 ) and Fe-DTPA (r1 = 0.9 mmol -1 · sec -1 , r2 = 0.9 mmol -1 · sec -1 ) were approximately twofold and fivefold lower, respectively, compared with those of gadopentetate dimeglumine (r1 = 4.1 mmol -1 · sec -1 , r2 = 4.8 mmol -1 · sec -1 ). Used at moderately higher concentrations, however, iron chelates generated similar contrast effects at T1-weighted MR imaging in vitro in serum, in vivo in blood, and for DCE MR imaging of breast cancer xenografts. The volume transfer constant values for Fe-DTPA and Fe-tCDTA in the same tumors correlated well with those observed for gadopentetate dimeglumine (Fe-tCDTA Pearson R, 0.99; P = .0003; Fe-DTPA Pearson R, 0.97; P

  5. Evaluating the potential of chelation therapy to prevent and treat gadolinium deposition from MRI contrast agents

    DOE PAGES

    Rees, Julian A.; Deblonde, Gauthier J. -P.; An, Dahlia D.; ...

    2018-03-13

    Several MRI contrast agent clinical formulations are now known to leave deposits of the heavy metal gadolinium in the brain, bones, and other organs of patients. This persistent biological accumulation of gadolinium has been recently recognized as a deleterious outcome in patients administered Gd-based contrast agents (GBCAs) for MRI, prompting the European Medicines Agency to recommend discontinuing the use of over half of the GBCAs currently approved for clinical applications. Here, to address this problem, we find that the orally-available metal decorporation agent 3,4,3-LI(1,2-HOPO) demonstrates superior efficacy at chelating and removing Gd from the body compared to diethylenetriaminepentaacetic acid, amore » ligand commonly used in the United States in the GBCA Gadopentetate (Magnevist). Using the radiotracer 153Gd to obtain precise biodistribution data, the results herein, supported by speciation simulations, suggest that the prophylactic or post-hoc therapeutic use of 3,4,3-LI(1,2-HOPO) may provide a means to mitigate Gd retention in patients requiring contrast-enhanced MRI.« less

  6. Evaluating the potential of chelation therapy to prevent and treat gadolinium deposition from MRI contrast agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rees, Julian A.; Deblonde, Gauthier J. -P.; An, Dahlia D.

    Several MRI contrast agent clinical formulations are now known to leave deposits of the heavy metal gadolinium in the brain, bones, and other organs of patients. This persistent biological accumulation of gadolinium has been recently recognized as a deleterious outcome in patients administered Gd-based contrast agents (GBCAs) for MRI, prompting the European Medicines Agency to recommend discontinuing the use of over half of the GBCAs currently approved for clinical applications. Here, to address this problem, we find that the orally-available metal decorporation agent 3,4,3-LI(1,2-HOPO) demonstrates superior efficacy at chelating and removing Gd from the body compared to diethylenetriaminepentaacetic acid, amore » ligand commonly used in the United States in the GBCA Gadopentetate (Magnevist). Using the radiotracer 153Gd to obtain precise biodistribution data, the results herein, supported by speciation simulations, suggest that the prophylactic or post-hoc therapeutic use of 3,4,3-LI(1,2-HOPO) may provide a means to mitigate Gd retention in patients requiring contrast-enhanced MRI.« less

  7. Gadolinium Endohedral Metallofullerene-Based MRI Contrast Agents

    NASA Astrophysics Data System (ADS)

    Bolskar, Robert D.

    With the ability to encapsulate and carry the highly paramagnetic Gd3+ ion, gadolinium endohedral metallofullerenes or "gadofullerenes" are being explored as alternatives to the chelate complexes that are currently used for contrast-enhanced magnetic resonance imaging (MRI). Reviewed here are the various water-soluble derivatives of the gadofullerenes Gd@C82, Gd@C60, and Gd3N@C80 that have been investigated as MRI contrast agents. The water proton r1 relaxivities of gadofullerenes can be more than an order of magnitude higher than those of clinically used chelate agents. Gadofullerene relaxivity mechanisms have been studied, and multiple factors are found to contribute to their high relaxivities. In vitro and in vivoT1-weighted MRI tests of gadofullerene derivatives have shown their utility as bright image-enhancing agents. The gadofullerene MRI contrast agents are a promising new and unique style of gadolinium carrier for advanced imaging applications, including cellular and molecular imaging.

  8. Type of MRI contrast, tissue gadolinium, and fibrosis.

    PubMed

    Do, Catherine; Barnes, Jeffrey L; Tan, Chunyan; Wagner, Brent

    2014-10-01

    It has been presupposed that the thermodynamic stability constant (K(therm)) of gadolinium-based MRI chelates relate to the risk of precipitating nephrogenic systemic fibrosis. The present study compared low-K(therm) gadodiamide with high-K(therm) gadoteridol in cultured fibroblasts and rats with uninephrectomies. Gadolinium content was assessed using scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy in paraffin-embedded tissues. In vitro, fibroblasts demonstrated dose-dependent fibronectin generation, transforming growth factor-β production, and expression of activated myofibroblast stress fiber protein α-smooth muscle actin. There were negligible differences with respect to toxicity or proliferation between the two contrast agents. In the rodent model, gadodiamide treatment led to greater skin fibrosis and dermal cellularity than gadoteridol. In the kidney, both contrast agents led to proximal tubule vacuolization and increased fibronectin accumulation. Despite large detectable gadolinium signals in the spleen, skin, muscle, and liver from the gadodiamide-treated group, contrast-induced fibrosis appeared to be limited to the skin and kidney. These findings support the hypothesis that low-K(therm) chelates have a greater propensity to elicit nephrogenic systemic fibrosis and demonstrate that certain tissues are resistant to these effects.

  9. Progressing Toward a Cohesive Pediatric 18F-FDG PET/MR Protocol: Is Administration of Gadolinium Chelates Necessary?

    PubMed

    Klenk, Christopher; Gawande, Rakhee; Tran, Vy Thao; Leung, Jennifer Trinh; Chi, Kevin; Owen, Daniel; Luna-Fineman, Sandra; Sakamoto, Kathleen M; McMillan, Alex; Quon, Andy; Daldrup-Link, Heike E

    2016-01-01

    With the increasing availability of integrated PET/MR scanners, the utility and need for MR contrast agents for combined scans is questioned. The purpose of our study was to evaluate whether administration of gadolinium chelates is necessary for evaluation of pediatric tumors on (18)F-FDG PET/MR images. First, in 119 pediatric patients with primary and secondary tumors, we used 14 diagnostic criteria to compare the accuracy of several MR sequences: unenhanced T2-weighted fast spin-echo imaging; unenhanced diffusion-weighted imaging; and-before and after gadolinium chelate contrast enhancement-T1-weighted 3-dimensional spoiled gradient echo LAVA (liver acquisition with volume acquisition) imaging. Next, in a subset of 36 patients who had undergone (18)F-FDG PET within 3 wk of MRI, we fused the PET images with the unenhanced T2-weighted MR images (unenhanced (18)F-FDG PET/MRI) and the enhanced T1-weighted MR images (enhanced (18)F-FDG PET/MRI). Using the McNemar test, we compared the accuracy of the two types of fused images using the 14 diagnostic criteria. We also evaluated the concordance between (18)F-FDG avidity and gadolinium chelate enhancement. The standard of reference was histopathologic results, surgical notes, and follow-up imaging. There was no significant difference in diagnostic accuracy between the unenhanced and enhanced MR images. Accordingly, there was no significant difference in diagnostic accuracy between the unenhanced and enhanced (18)F-FDG PET/MR images. (18)F-FDG avidity and gadolinium chelate enhancement were concordant in 30 of the 36 patients and 106 of their 123 tumors. Gadolinium chelate administration is not necessary for accurate diagnostic characterization of most solid pediatric malignancies on (18)F-FDG PET/MR images, with the possible exception of focal liver lesions. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  10. Reaction of gadolinium chelates with ozone and hydroxyl radicals.

    PubMed

    Cyris, Maike; Knolle, Wolfgang; Richard, Jessica; Dopp, Elke; von Sonntag, Clemens; Schmidt, Torsten C

    2013-09-03

    Gadolinium chelates are used in increasing amounts as contrast agents in magnetic resonance imaging, and their fate in wastewater treatment has recently become the focus of research. Oxidative processes, in particular the application of ozone, are currently discussed or even implemented for advanced wastewater treatment. However, reactions of the gadolinium chelates with ozone are not yet characterized. In this study, therefore, rate constants with ozone were determined for the three commonly used chelates Gd-DTPA, Gd-DTPA-BMA, and Gd-BT-DO3A, which were found to be 4.8 ± 0.88, 46 ± 2.5, and 24 ± 1.5 M(-1) s(-1), respectively. These low rate constants indicate that a direct reaction with ozone in wastewater is negligible. However, application of ozone in wastewater leads to substantial yields of (•)OH. Different methods have been applied and compared for determination of k((•)OH+Gd chelate). From rate constants determined by pulse radiolysis experiments (k((•)OH+Gd-DTPA) = 2.6 ± 0.2 × 10(9) M(-1) s(-1), k((•)OH+Gd-DTPA-BMA) = 1.9 ± 0.7 × 10(9) M(-1) s(-1), k((•)OH+Gd-BT-DO3A) = 4.3 ± 0.2 × 10(9) M(-1) s(-1)), it is concluded that a reaction in wastewater via (•)OH radicals is feasible. Toxicity has been tested for educt and product mixtures of both reactions. Cytotoxicity (MTT test) and genotoxicity (micronuclei assay) were not detectable.

  11. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms.

    PubMed

    Rogosnitzky, Moshe; Branch, Stacy

    2016-06-01

    Gadolinium chelates are widely used as contrast media for magnetic resonance imaging. The approved gadolinium-based contrast agents (GBCAs) have historically been considered safe and well tolerated when used at recommended dosing levels. However, for nearly a decade, an association between GBCA administration and the development of nephrogenic systemic fibrosis (NSF) has been recognized in patients with severe renal impairment. This has led to modifications in clinical practices aimed at reducing the potential and incidence of NSF development. Newer reports have emerged regarding the accumulation of gadolinium in various tissues of patients who do not have renal impairment, including bone, brain, and kidneys. Despite the observations of gadolinium accumulation in tissues regardless of renal function, very limited clinical data regarding the potential for and mechanisms of toxicity is available. This significant gap in knowledge warrants retrospective cohort study efforts, as well as prospective studies that involve gadolinium ion (Gd(3+)) testing in patients exposed to GBCA. This review examines the potential biochemical and molecular basis of gadolinium toxicity, possible clinical significance of gadolinium tissue retention and accumulation, and methods that can limit gadolinium body burden.

  12. Simple method for quantification of gadolinium magnetic resonance imaging contrast agents using ESR spectroscopy.

    PubMed

    Takeshita, Keizo; Kinoshita, Shota; Okazaki, Shoko

    2012-01-01

    To develop an estimation method of gadolinium magnetic resonance imaging (MRI) contrast agents, the effect of concentration of Gd compounds on the ESR spectrum of nitroxyl radical was examined. A solution of either 4-oxo-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPONE) or 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL) was mixed with a solution of Gd compound and the ESR spectrum was recorded. Increased concentration of gadolinium-diethylenetriamine pentaacetic acid chelate (Gd-DTPA), an MRI contrast agent, increased the peak-to-peak line widths of ESR spectra of the nitroxyl radicals, in accordance with a decrease of their signal heights. A linear relationship was observed between concentration of Gd-DTPA and line width of ESR signal, up to approximately 50 mmol/L Gd-DTPA, with a high correlation coefficient. Response of TEMPONE was 1.4-times higher than that of TEMPOL as evaluated from the slopes of the lines. The response was slightly different among Gd compounds; the slopes of calibration curves for acua[N,N-bis[2-[(carboxymethyl)[(methylcarbamoyl)methyl]amino]ethyl]glycinato(3-)]gadolinium hydrate (Gd-DTPA-BMA) (6.22 μT·L/mmol) and gadolinium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid chelate (Gd-DOTA) (6.62 μT·L/mmol) were steeper than the slope for Gd-DTPA (5.45 μT·L/mmol), whereas the slope for gadolinium chloride (4.94 μT·L/mmol) was less steep than that for Gd-DTPA. This method is simple to apply. The results indicate that this method is useful for rough estimation of the concentration of Gd contrast agents if calibration is carried out with each standard compound. It was also found that the plot of the reciprocal square root of signal height against concentrations of contrast agents could be useful for the estimation if a constant volume of sample solution is taken and measured at the same position in the ESR cavity every time.

  13. Gadolinium-Based Contrast Agents for MR Cancer Imaging

    PubMed Central

    Zhou, Zhuxian; Lu, Zheng-Rong

    2013-01-01

    Magnetic resonance imaging (MRI) is a clinical imaging modality effective for anatomical and functional imaging of diseased soft tissues, including solid tumors. MRI contrast agents have been routinely used for detecting tumor at an early stage. Gadolinium based contrast agents are the most commonly used contrast agents in clinical MRI. There have been significant efforts to design and develop novel Gd(III) contrast agents with high relaxivity, low toxicity and specific tumor binding. The relaxivity of the Gd(III) contrast agents can be increased by proper chemical modification. The toxicity of Gd(III) contrast agents can be reduced by increasing the agents’ thermodynamic and kinetic stability, as well as optimizing their pharmacokinetic properties. The increasing knowledge in the field of cancer genomics and biology provides an opportunity for designing tumor-specific contrast agents. Various new Gd(III) chelates have been designed and evaluated in animal models for more effective cancer MRI. This review outlines the design and development, physicochemical properties, and in vivo properties of several classes of Gd(III)-based MR contrast agents for tumor imaging. PMID:23047730

  14. Hybrid Calcium Phosphate-Polymeric Micelles Incorporating Gadolinium Chelates for Imaging-Guided Gadolinium Neutron Capture Tumor Therapy.

    PubMed

    Mi, Peng; Dewi, Novriana; Yanagie, Hironobu; Kokuryo, Daisuke; Suzuki, Minoru; Sakurai, Yoshinori; Li, Yanmin; Aoki, Ichio; Ono, Koji; Takahashi, Hiroyuki; Cabral, Horacio; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2015-06-23

    Gadolinium (Gd) chelates-loaded nanocarriers have high potential for achieving magnetic resonance imaging (MRI)-guided Gd neutron capture therapy (GdNCT) of tumors. Herein, we developed calcium phosphate micelles hybridized with PEG-polyanion block copolymers, and incorporated with the clinical MRI contrast agent Gd-diethylenetriaminepentaacetic acid (Gd-DTPA/CaP). The Gd-DTPA/CaP were nontoxic to cancer cells at the concentration of 100 μM based on Gd-DTPA, while over 50% of the cancer cells were killed by thermal neutron irradiation at this concentration. Moreover, the Gd-DTPA/CaP showed a dramatically increased accumulation of Gd-DTPA in tumors, leading to the selective contrast enhancement of tumor tissues for precise tumor location by MRI. The enhanced tumor-to-blood distribution ratio of Gd-DTPA/CaP resulted in the effective suppression of tumor growth without loss of body weight, indicating the potential of Gd-DTPA/CaP for safe cancer treatment.

  15. Relaxivity enhancement of aquated Tris(β-diketonate)gadolinium(III) chelates by confinement within ultrashort single-walled carbon nanotubes.

    PubMed

    Law, Justin J; Guven, Adem; Wilson, Lon J

    2014-01-01

    Ultrashort single-walled carbon nanotubes loaded with gadolinium ions (gadonanotubes) have been previously shown to exhibit extremely high T1 -weighted relaxivities (>100 mm(-1) s(-1) ). To further examine the effect of nanoconfinement on the relaxivity of gadolinium-based contrast agents for magnetic resonance imaging, a series of ultrashort single-walled carbon nanotube (US-tube) materials internally loaded with gadolinium chelates have been prepared and studied. US-tubes were loaded with Gd(acac)3  · 2H2 O, Gd(hfac)3  · 2H2 O, and Gd(thd)3 (acac = acetylacetone, hfac = hexafluoroacetylacetone, thd = tetramethylheptanedione). The longitudinal relaxivities of the prepared materials determined at 25°C in a 1.5 T field were 103 mm(-1) s(-1) for Gd(acac)3  · 2H2 O@US-tubes, 105 mm(-1) s(-1) for Gd(hfac)3  · 2H2 O@US-tubes and 26 mm(-1) s(-1) for Gd(thd)3 @US-tubes. Compared with the relaxivities obtained for the unloaded chelates (<10 mm(-1) s(-1) ) as well as accounting for the T1 reduction observed for the empty US-tubes, the boost in relaxivity for chelate-loaded US-tubes is attributed to confinement within the nanotube and depends on the number of coordinated water molecules. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Synthesis and evaluation of nanoglobular macrocyclic Mn(II) chelate conjugates as non-gadolinium(III) MRI contrast agents.

    PubMed

    Tan, Mingqian; Ye, Zhen; Jeong, Eun-Kee; Wu, Xueming; Parker, Dennis L; Lu, Zheng-Rong

    2011-05-18

    Because of the recent observation of the toxic side effects of Gd(III) based MRI contrast agents in patients with impaired renal function, there is strong interest on developing alternative contrast agents for MRI. In this study, macrocyclic Mn(II) chelates were conjugated to nanoglobular carriers, lysine dendrimers with a silsesquioxane core, to synthesize non-Gd(III) based MRI contrast agents. A generation 3 nanoglobular conjugate of Mn(II)-1,4,7-triaazacyclononane-1,4,7-triacetate-GA amide (G3-NOTA-Mn) was also synthesized and evaluated. The per ion T(1) and T(2) relaxivities of G2, G3, G4 nanoglobular Mn(II)-DOTA monoamide conjugates decreased with increasing generation of the carriers. The T(1) relaxivities of G2, G3, and G4 nanoglobular Mn(II)-DOTA conjugates were 3.3, 2.8, and 2.4 mM(-1) s(-1) per Mn(II) chelate at 3 T, respectively. The T(1) relaxivity of G3-NOTA-Mn was 3.80 mM(-1) s(-1) per Mn(II) chelate at 3 T. The nanoglobular macrocyclic Mn(II) chelate conjugates showed good in vivo stability and were readily excreted via renal filtration. The conjugates resulted in much less nonspecific liver enhancement than MnCl(2) and were effective for contrast-enhanced tumor imaging in nude mice bearing MDA-MB-231 breast tumor xenografts at a dose of 0.03 mmol Mn/kg. The nanoglobular macrocyclic Mn(II) chelate conjugates are promising nongadolinium based MRI contrast agents.

  17. Chelating DTPA amphiphiles: ion-tunable self-assembly structures and gadolinium complexes.

    PubMed

    Moghaddam, Minoo J; de Campo, Liliana; Kirby, Nigel; Drummond, Calum J

    2012-10-05

    A series of chelating amphiphiles and their gadolinium (Gd(III)) metal complexes have been synthesized and studied with respect to their neat and lyotropic liquid crystalline phase behavior. These amphiphiles have the ability to form ion-tunable self-assembly nanostructures and their associated Gd(III) complexes have potential as magnetic resonance imaging (MRI) contrast enhancement agents. The amphiphiles are composed of diethylenetriaminepentaacetic acid (DTPA) chelates conjugated to one or two oleyl chain(s) (DTPA-MO and DTPA-BO), or isoprenoid-type chain(s) of phytanyl (DTPA-MP and DTPA-BP). The thermal phase behavior of the neat amphiphiles was examined by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and cross polarizing optical microscopy (POM). Self-assembly of neat amphiphiles and their associated Gd complexes, as well as their lyotropic phase behavior in water and sodium acetate solutions of different ionic strengths, were examined by POM and small and wide angle X-ray scattering (SWAXS). All neat amphiphiles exhibited lamellar structures. The non-complexed amphiphiles showed a variety of lyotropic phases depending on the number and nature of the hydrophobic chain in addition to the ionic state of the hydration. Upon hydration with increased Na-acetate concentration and the subtle changes in the effective headgroup size, the interfacial curvature of the amphiphile increased, altering the lyotropic liquid crystalline structures towards higher order mesophases such as the gyroid (Ia3d) bicontinuous cubic phase. The chelation of Gd with the DTPA amphiphiles resulted in lamellar crystalline structures for all the neat amphiphiles. Upon hydration with water, the Gd-complexed mono-conjugates formed micellar or vesicular self-assemblies, whilst the bis-conjugates transformed only partially into lyotropic liquid crystalline mesophases.

  18. NMR structural studies of the supramolecular adducts between a liver cytosolic bile acid binding protein and gadolinium(III)-chelates bearing bile acids residues: molecular determinants of the binding of a hepatospecific magnetic resonance imaging contrast agent.

    PubMed

    Assfalg, Michael; Gianolio, Eliana; Zanzoni, Serena; Tomaselli, Simona; Russo, Vito Lo; Cabella, Claudia; Ragona, Laura; Aime, Silvio; Molinari, Henriette

    2007-11-01

    The binding affinities of a selected series of Gd(III) chelates bearing bile acid residues, potential hepatospecific MRI contrast agents, to a liver cytosolic bile acid transporter, have been determined through relaxivity measurements. The Ln(III) complexes of compound 1 were selected for further NMR structural analysis aimed at assessing the molecular determinants of binding. A number of NMR experiments have been carried out on the bile acid-like adduct, using both diamagnetic Y(III) and paramagnetic Gd(III) complexes, bound to a liver bile acid binding protein. The identified protein "hot spots" defined a single binding site located at the protein portal region. The presented findings will serve in a medicinal chemistry approach for the design of hepatocytes-selective gadolinium chelates for liver malignancies detection.

  19. Biodegradable gadolinium-chelated cationic poly(urethane amide) copolymers for gene transfection and magnetic resonance imaging.

    PubMed

    Gao, Xiaolong; Wang, Gangmin; Shi, Ting; Shao, Zhihong; Zhao, Peng; Shi, Donglu; Ren, Jie; Lin, Chao; Wang, Peijun

    2016-08-01

    Theranostic nano-polyplexes containing gene and imaging agents hold a great promise for tumor diagnosis and therapy. In this work, we develop a group of new gadolinium (Gd)-chelated cationic poly(urethane amide)s for gene delivery and T1-weighted magnetic resonance (MR) imaging. Cationic poly(urethane amide)s (denoted as CPUAs) having multiple disulfide bonds, urethane and amide linkages were synthesized by stepwise polycondensation reaction between 1,4-bis(3-aminopropyl)piperazine and a mixture of di(4-nitrophenyl)-2, 2'-dithiodiethanocarbonate (DTDE-PNC) and diethylenetriaminepentaacetic acid (DTPA) dianhydride at varied molar ratios. Then, Gd-chelated CPUAs (denoted as GdCPUAs) were produced by chelating Gd(III) ions with DTPA residues of CPUAs. These GdCPUAs could condense gene into nanosized and positively-charged polyplexes in a physiological condition and, however, liberated gene in an intracellular reductive environment. In vitro transfection experiments revealed that the GdCPUA at a DTDE-PNC/DTPA residue molar ratio of 85/15 induced the highest transfection efficiency in different cancer cells. This efficiency was higher than that yielded with 25kDa branched polyethylenimine as a positive control. GdCPUAs and their polyplexes exhibited low cytotoxicity when an optimal transfection activity was detected. Moreover, GdCPUAs may serve as contrast agents for T1-weighted magnetic resonance imaging. The results of this work indicate that biodegradable Gd-chelated cationic poly(urethane amide) copolymers have high potential for tumor theranostics. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A Manganese Alternative to Gadolinium for MRI Contrast

    PubMed Central

    Gale, Eric M.; Atanasova, Iliyana P.; Blasi, Francesco; Ay, Ilknur; Caravan, Peter

    2016-01-01

    Contrast-enhanced computed tomography (CT) and magnetic resonance imaging (MRI) are routinely used to diagnose soft tissue and vascular abnormalities. However safety concerns limit the use of iodinated and gadolinium- (Gd) based CT and MRI contrast media in renally compromised patients. With an estimated 14% of the US population suffering from chronic kidney disease (CKD), contrast media compatible with renal impairment is sorely needed. We present the new manganese(II) complex [Mn(PyC3A)(H2O)]- as a Gd alternative. [Mn(PyC3A)(H2O)]- is amongst the most stable Mn(II) complexes at pH 7.4 (log KML = 11.40). In the presence of 25 mol equiv. Zn at pH 6.0, 37 °C, [Mn(PyC3A)(H2O)]- is 20-fold more resistant to dissociation than [Gd(DTPA)(H2O)]2-. Relaxivity of [Mn(PyC3A)(H2O)]- in blood plasma is comparable to commercial Gd contrast agents. Biodistribution analysis confirms that [Mn(PyC3A)(H2O)]- clears via a mixed renal/ hepatobiliary pathway with >99% elimination by 24h. [Mn(PyC3A)(H2O)]- was modified to form a bifunctional chelator and 4 chelates were conjugated to a fibrin-specific peptide to give Mn-FBP. Mn-FBP binds the soluble fibrin fragment DD(E) with Kd = 110 nM. Per Mn relaxivity of Mn-FBP is 4-fold greater than [Mn(PyC3A)(H2O)]- and increases 60% in the presence of fibrin, consistent with binding. Mn-FBP provided equivalent thrombus enhancement to the state of the art Gd analog, EP-2104R, in a rat model of arterial thrombosis. Mn metabolite analysis reveals no evidence of dechelation and the probe was >99% eliminated after 24 hr. [Mn(PyC3A)(H2O)]- is a lead development candidate for an imaging probe that is compatible with renally compromised patients. PMID:26588204

  1. High Relaxivity Gadolinium Hydroxypyridonate-Viral Capsid Conjugates: Nano-sized MRI Contrast Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meux, Susan C.; Datta, Ankona; Hooker, Jacob M.

    2007-08-29

    High relaxivity macromolecular contrast agents based on the conjugation of gadolinium chelates to the interior and exterior surfaces of MS2 viral capsids are assessed. The proton nuclear magnetic relaxation dispersion (NMRD) profiles of the conjugates show up to a five-fold increase in relaxivity, leading to a peak relaxivity (per Gd{sup 3+} ion) of 41.6 mM{sup -1}s{sup -1} at 30 MHz for the internally modified capsids. Modification of the exterior was achieved through conjugation to flexible lysines, while internal modification was accomplished by conjugation to relatively rigid tyrosines. Higher relaxivities were obtained for the internally modified capsids, showing that (1) theremore » is facile diffusion of water to the interior of capsids and (2) the rigidity of the linker attaching the complex to the macromolecule is important for obtaining high relaxivity enhancements. The viral capsid conjugated gadolinium hydroxypyridonate complexes appear to possess two inner-sphere water molecules (q = 2) and the NMRD fittings highlight the differences in the local motion for the internal ({tau}{sub RI} = 440 ps) and external ({tau}{sub RI} = 310 ps) conjugates. These results indicate that there are significant advantages of using the internal surface of the capsids for contrast agent attachment, leaving the exterior surface available for the installation of tissue targeting groups.« less

  2. Gadolinium-conjugated PLA-PEG nanoparticles as liver targeted molecular MRI contrast agent.

    PubMed

    Chen, Zhijin; Yu, Dexin; Liu, Chunxi; Yang, Xiaoyan; Zhang, Na; Ma, Chunhong; Song, Jibin; Lu, Zaijun

    2011-09-01

    A nanoparticle magnetic resonance imaging (MRI) contrast agent targeted to liver was developed by conjugation of gadolinium (Gd) chelate groups onto the biocompatible poly(l-lactide)-block-poly (ethylene glycol) (PLA-PEG) nanoparticles. PLA-PEG conjugated with diethylenetriaminopentaacetic acid (DTPA) was used to formulate PLA-PEG-DTPA nanoparticles by solvent diffusion method, and then Gd was loaded onto the nanoparticles by chelated with the unfolding DTPA on the surface of the PLA-PEG-DTPA nanoparticles. The mean size of the nanoparticles was 265.9 ± 6.7 nm. The relaxivity of the Gd-labeled nanoparticles was measured, and the distribution in vivo was evaluated in rats. Compared with conventional contrast agent (Magnevist), the Gd-labeled PLA-PEG nanoparticles showed significant enhancement both on liver targeting ability and imaging signal intensity. The T(1) and T(2) relaxivities per [Gd] of the Gd-labeled nanoparticles was 18.865 mM(-1) s(-1) and 24.863 mM(-1) s(-1) at 3 T, respectively. In addition, the signal intensity in vivo was stronger comparing with the Gd-DTPA and the T(1) weight time was lasting for 4.5 h. The liver targeting efficiency of the Gd-labeled PLA-PEG nanoparticles in rats was 14.57 comparing with Magnevist injection. Therefore, the Gd-labeled nanoparticles showed the potential as targeting molecular MRI contrast agent for further clinical utilization.

  3. Are gadolinium-based contrast media nephrotoxic? A renal biopsy study.

    PubMed

    Akgun, Hulya; Gonlusen, Gulfiliz; Cartwright, Joiner; Suki, Wadi N; Truong, Luan D

    2006-09-01

    Gadolinium-based contrast media were originally introduced as alternatives to iodinated media for magnetic resonance imaging. Although originally thought to be nonnephrotoxic, gadolinium-based contrast media have recently been reported to be associated with acute renal failure; the mechanism and the underlying renal injury are not completely understood. We report what is, to our knowledge, the first renal biopsy in this context. A 56-year-old patient underwent 2 consecutive vascular imaging procedures in conjunction with gadolinium-based contrast medium administration. A few days later, the patient developed acute renal failure. A renal biopsy showed acute tubular cell injury including patchy tubular cell necrosis, tubular cell degeneration, and marked proliferation of tubular cells, together with mild interstitial edema and interstitial inflammation, but without significant glomerular or vascular changes. During supportive therapy, renal function was partially regained. This case emphasizes the potential nephrotoxicity of gadolinium-based contrast media and suggests that the nephrotoxicity is related to potentially reversible acute tubular cell injury.

  4. Gadolinium-based magnetic resonance imaging contrast agents in interventional radiology.

    PubMed

    Atar, Eli

    2004-07-01

    Gadolinium-based agents are widely used in magnetic resonance imaging as contrast agents. These agents are radio-opaque enough for diagnostic imaging of the vascular tree by using digitally subtracted images as well as for imaging of the biliary system and the urinary tract. The recommended doses for gadolinium do not impair renal function or cause adverse reactions in patients with iodine sensitivity; thus patients with such conditions can safely undergo diagnostic angiography, either by MRI angiography or by catheterization using gadolinium as contrast agent, for diagnostic and therapeutic purposes.

  5. Gadolinium Distribution in Cerebrospinal Fluid after Administration of a Gadolinium-based MR Contrast Agent in Humans.

    PubMed

    Berger, Florian; Kubik-Huch, Rahel A; Niemann, Tilo; Schmid, Hans Ruedi; Poetzsch, Michael; Froehlich, Johannes M; Beer, Jürg H; Thali, Michael J; Kraemer, Thomas

    2018-05-08

    Purpose To evaluate whether gadolinium penetrates human cerebrospinal fluid (CSF) after MR imaging (MRI) with a gadolinium-based contrast agent (GBCA). Materials and Methods For this retrospective study, the authors analyzed 60 CSF samples from 57 patients (median age, 50 years; range, 3-92 years) who underwent one contrast material-enhanced MRI examination with gadoterate meglumine within 60 days of CSF extraction between January and December 2016. CSF samples from patients who underwent MRI without contrast material administration (n = 22) or those who underwent contrast-enhanced MRI at least 1 year before extraction (n = 2) were analyzed and used as control samples. CSF measurements were performed with inductively coupled plasma mass spectrometry by monitoring the gadolinium 158 isotope. Statistical analyses were performed by using a preliminary Kruskal-Wallis test. Results Higher CSF gadolinium concentrations were detected within the first 8 hours after GBCA administration (mean concentration, 1152 ng/mL ± 734.6). Concentrations were lower between 8 and 48 hours (872 ng/mL ± 586). After 48 hours, gadolinium was almost completely cleared from CSF (121 ng/mL ± 296.3). All but two samples from the 24 control patients (median age, 60.5 years; range, 19-79 years) were negative for the presence of gadolinium. Those samples were from patients who had undergone GBCA-enhanced MRI examination more than a year before CSF extraction (0.1 and 0.2 ng/mL after 1 and 3 years, respectively). The concentrations in patients with chronic renal insufficiency (n = 3), cerebral toxoplasmosis (n = 1), and liver cirrhosis (n = 1) were higher than the mean concentrations. Conclusion Gadoterate meglumine can be detected in human CSF after intravenous administration. © RSNA, 2018.

  6. Use of gadolinium-based magnetic resonance imaging contrast agents and awareness of brain gadolinium deposition among pediatric providers in North America.

    PubMed

    Mithal, Leena B; Patel, Payal S; Mithal, Divakar; Palac, Hannah L; Rozenfeld, Michael N

    2017-05-01

    Numerous recent articles have reported brain gadolinium deposition when using linear but not macrocyclic gadolinium-based contrast agents (GBCAs). To determine the current landscape of gadolinium use among pediatric institutions and the knowledge base of radiologists and referring providers with regard to GBCAs and brain gadolinium deposition. We e-mailed voluntary closed surveys to 5,390 physicians in various pediatric professional societies between January 2016 and March 2016. We used chi-square and Fisher exact tests to compare response distributions among specialties. We found that 80% of surveyed pediatric hospitals use macrocyclic contrast agents. In the last year, 58% switched their agent, most commonly to gadoterate meglumine, with the most common reason being brain gadolinium deposition. Furthermore, surveys indicated that 23% of hospitals are considering switching, and, of these, 83% would switch to gadoterate meglumine; the most common reasons were brain gadolinium deposition and safety. Radiologists were more aware of brain gadolinium deposition than non-radiologist physicians (87% vs. 26%; P<0.0001). Radiologists and referring providers expressed similar levels of concern (95% and 89%). Twelve percent of radiologists and 2% of referring providers reported patients asking about brain gadolinium deposition. Radiologists were significantly more comfortable addressing patient inquiries than referring pediatric physicians (48% vs. 6%; P<0.0001). The number of MRIs requested by referring pediatric physicians correlated with their knowledge of brain gadolinium deposition, contrast agent used by their hospital, and comfort discussing brain gadolinium deposition with patients (P<0.0001). Since the discovery of brain gadolinium deposition, many pediatric hospitals have switched to or plan to switch to a more stable macrocyclic MR contrast agent, most commonly gadoterate meglumine. Despite this, there is need for substantial further education of radiologists and

  7. [Gadolinium-based contrast agents for magnetic resonance imaging].

    PubMed

    Carrasco Muñoz, S; Calles Blanco, C; Marcin, Javier; Fernández Álvarez, C; Lafuente Martínez, J

    2014-06-01

    Gadolinium-based contrast agents are increasingly being used in magnetic resonance imaging. These agents can improve the contrast in images and provide information about function and metabolism, increasing both sensitivity and specificity. We describe the gadolinium-based contrast agents that have been approved for clinical use, detailing their main characteristics based on their chemical structure, stability, and safety. In general terms, these compounds are safe. Nevertheless, adverse reactions, the possibility of nephrotoxicity from these compounds, and the possibility of developing nephrogenic systemic fibrosis will be covered in this article. Lastly, the article will discuss the current guidelines, recommendations, and contraindications for their clinical use, including the management of pregnant and breast-feeding patients. Copyright © 2014 SERAM. Published by Elsevier Espana. All rights reserved.

  8. Analytical Interference in Serum Iron Determination Reveals Iron Versus Gadolinium Transmetallation With Linear Gadolinium-Based Contrast Agents

    PubMed Central

    Fretellier, Nathalie; Poteau, Nathalie; Factor, Cécile; Mayer, Jean-François; Medina, Christelle; Port, Marc; Idée, Jean-Marc; Corot, Claire

    2014-01-01

    Objectives The purposes of this study were to evaluate the risk for analytical interference with gadolinium-based contrast agents (GBCAs) for the colorimetric measurement of serum iron (Fe3+) and to investigate the mechanisms involved. Materials and Methods Rat serum was spiked with several concentrations of all molecular categories of GBCAs, ligands, or “free” soluble gadolinium (Gd3+). Serum iron concentration was determined by 2 different colorimetric methods at pH 4.0 (with a Vitros DT60 analyzer or a Cobas Integra 400 analyzer). Secondly, the cause of interference was investigated by (a) adding free soluble Gd3+ or Mn2+ to serum in the presence of gadobenic acid or gadodiamide and (b) electrospray ionization mass spectrometry. Results Spurious decrease in serum Fe3+ concentration was observed with all linear GBCAs (only with the Vitros DT60 technique occurring at pH 4.0) but not with macrocyclic GBCAs or with free soluble Gd3+. Spurious hyposideremia was also observed with the free ligands present in the pharmaceutical solutions of the linear GBCAs gadopentetic acid and gadodiamide (ie, diethylene triamine pentaacetic acid and calcium-diethylene triamine pentaacetic acid bismethylamide, respectively), suggesting the formation of Fe-ligand chelate. Gadobenic acid-induced interference was blocked in a concentration-dependent fashion by adding a free soluble Gd3+ salt. Conversely, Mn2+, which has a lower affinity than Gd3+ and Fe3+ for the ligand of gadobenic acid (ie, benzyloxypropionic diethylenetriamine tetraacetic acid), was less effective (interference was only partially blocked), suggesting an Fe3+ versus Gd3+ transmetallation phenomenon at pH 4.0. Similar results were observed with gadodiamide. Mass spectrometry detected the formation of Fe-ligand with all linear GBCAs tested in the presence of Fe3+ and the disappearance of Fe-ligand after the addition of free soluble Gd3+. No Fe-ligand chelate was found in the case of the macrocyclic GBCA gadoteric

  9. Synthesis and evaluation of gadolinium complexes based on PAMAM as MRI contrast agents.

    PubMed

    Yan, Guo-Ping; Hu, Bin; Liu, Mai-Li; Li, Li-Yun

    2005-03-01

    Diethylenetriaminepentaacetic acid (DTPA) and pyridoxamine (PM) were incorporated into the amine groups on the surface of ammonia-core poly(amidoamine) dendrimers (PAMAM, Generation 2.0-5.0) to obtain dendritic ligands. These dendritic ligands were reacted with gadolinium chloride to yield the corresponding dendritic gadolinium (Gd) complexes. The dendritic ligands and their gadolinium complexes were characterized by(1)HNMR, IR, UV and elemental analysis. Relaxivity studies showed that the dendritic gadolinium complexes possessed higher relaxation effectiveness compared with the clinically used Gd-DTPA. After administration of the dendritic gadolinium complexes (0.09 mmol kg(-1) ) to rats, magnetic resonance imaging of the liver indicated that the dendritic gadolinium complexes containing pyridoxamine groups enhanced the contrast of the MR images of the liver, provided prolonged intravascular duration and produced highly contrasted visualization of blood vessels.

  10. Gadolinium-based Contrast Media, Cerebrospinal Fluid and the Glymphatic System: Possible Mechanisms for the Deposition of Gadolinium in the Brain.

    PubMed

    Taoka, Toshiaki; Naganawa, Shinji

    2018-04-10

    After Kanda's first report in 2014 on gadolinium (Gd) deposition in brain tissue, a considerable number of studies have investigated the explanation for the observation. Gd deposition in brain tissue after repeated administration of gadolinium-based contrast medium (GBCM) has been histologically proven, and chelate stability has been shown to affect the deposition. However, the mechanism for this deposition has not been fully elucidated. Recently, a hypothesis was introduced that involves the 'glymphatic system', which is a coined word that combines 'gl' for glia cell and 'lymphatic' system. According to this hypothesis, the perivascular space functions as a conduit for cerebrospinal fluid to flow into the brain parenchyma. The perivascular space around the arteries allows cerebrospinal fluid to enter the interstitial space of the brain tissue through water channels controlled by aquaporin 4. The cerebrospinal fluid entering the interstitial space clears waste proteins from the tissue. It then flows into the perivascular space around the vein and is discharged outside the brain. In addition to the hypothesis regarding the glymphatic system, some reports have described that after GBCM administration, some of the GBCM distributes through systemic blood circulation and remains in other compartments including the cerebrospinal fluid. It is thought that the GBCM distributed into the cerebrospinal fluid cavity via the glymphatic system may remain in brain tissue for a longer duration compared to the GBCM in systemic circulation. Glymphatic system may of course act as a clearance system for GBCM from brain tissue. Based on these findings, the mechanism for Gd deposition in the brain will be discussed in this review. The authors speculate that the glymphatic system may be the major contributory factor to the deposition and clearance of gadolinium in brain tissue.

  11. Gadolinium-based Contrast Media, Cerebrospinal Fluid and the Glymphatic System: Possible Mechanisms for the Deposition of Gadolinium in the Brain

    PubMed Central

    Taoka, Toshiaki; Naganawa, Shinji

    2018-01-01

    After Kanda’s first report in 2014 on gadolinium (Gd) deposition in brain tissue, a considerable number of studies have investigated the explanation for the observation. Gd deposition in brain tissue after repeated administration of gadolinium-based contrast medium (GBCM) has been histologically proven, and chelate stability has been shown to affect the deposition. However, the mechanism for this deposition has not been fully elucidated. Recently, a hypothesis was introduced that involves the ‘glymphatic system’, which is a coined word that combines ‘gl’ for glia cell and ‘lymphatic’ system. According to this hypothesis, the perivascular space functions as a conduit for cerebrospinal fluid to flow into the brain parenchyma. The perivascular space around the arteries allows cerebrospinal fluid to enter the interstitial space of the brain tissue through water channels controlled by aquaporin 4. The cerebrospinal fluid entering the interstitial space clears waste proteins from the tissue. It then flows into the perivascular space around the vein and is discharged outside the brain. In addition to the hypothesis regarding the glymphatic system, some reports have described that after GBCM administration, some of the GBCM distributes through systemic blood circulation and remains in other compartments including the cerebrospinal fluid. It is thought that the GBCM distributed into the cerebrospinal fluid cavity via the glymphatic system may remain in brain tissue for a longer duration compared to the GBCM in systemic circulation. Glymphatic system may of course act as a clearance system for GBCM from brain tissue. Based on these findings, the mechanism for Gd deposition in the brain will be discussed in this review. The authors speculate that the glymphatic system may be the major contributory factor to the deposition and clearance of gadolinium in brain tissue. PMID:29367513

  12. Critical Questions Regarding Gadolinium Deposition in the Brain and Body After Injections of the Gadolinium-Based Contrast Agents, Safety, and Clinical Recommendations in Consideration of the EMA's Pharmacovigilance and Risk Assessment Committee Recommendation for Suspension of the Marketing Authorizations for 4 Linear Agents.

    PubMed

    Runge, Val M

    2017-06-01

    For magnetic resonance, the established class of intravenous contrast media is the gadolinium-based contrast agents. In the 3 decades since initial approval, these have proven in general to be very safe for human administration. However, in 2006, a devastating late adverse reaction to administration of the less stable gadolinium-based contrast agents was identified, nephrogenic systemic fibrosis. The result of actions taken by the European Medicines Agency and the US Food and Drug Administration, stratifying the agents by risk and contraindicating specific agents in severe renal dysfunction, has led to no new cases being identified in North America or Europe. Subsequently, in 2014, long-term deposition in the brain of gadolinium was first shown, after administration of 2 nonionic linear chelates, gadodiamide, and gadopentetate dimeglumine. This has led to an intense focus on the question of in vivo distribution, possible dechelation, and subsequent deposition of gadolinium, together with substantial clarification of the phenomenon as well as stratification of the agents on this basis. This review focuses on 8 critical questions regarding gadolinium deposition in the brain and body, with the answers and discussion therein important for future regulatory decisions and clinical practice. It is now clear that dechelation of gadolinium occurs in vivo with the linear agents and is responsible for this phenomenon, with key experts in the field recommending, except where there is no suitable alternative, a shift in clinical practice from the linear to macrocyclic agents. In addition, on March 10, 2017, the Pharmacovigilance and Risk Assessment Committee of the European Medicines Agency recommended suspension of the marketing authorization for 4 linear gadolinium contrast agents-specifically Omniscan, Optimark, Magnevist, and MultiHance (gadodiamide, gadoversetamide, gadopentetate dimeglumine, and gadobenate dimeglumine)-for intravenous injection. Cited in the report was

  13. Do we need gadolinium-based contrast medium for brain magnetic resonance imaging in children?

    PubMed

    Dünger, Dennis; Krause, Matthias; Gräfe, Daniel; Merkenschlager, Andreas; Roth, Christian; Sorge, Ina

    2018-06-01

    Brain imaging is the most common examination in pediatric magnetic resonance imaging (MRI), often combined with the use of a gadolinium-based contrast medium. The application of gadolinium-based contrast medium poses some risk. There is limited evidence of the benefits of contrast medium in pediatric brain imaging. To assess the diagnostic gain of contrast-enhanced sequences in brain MRI when the unenhanced sequences are normal. We retrospectively assessed 6,683 brain MR examinations using contrast medium in children younger than 16 years in the pediatric radiology department of the University Hospital Leipzig to determine whether contrast-enhanced sequences delivered additional, clinically relevant information to pre-contrast sequences. All examinations were executed using a 1.5-T or a 3-T system. In 8 of 3,003 (95% confidence interval 0.12-0.52%) unenhanced normal brain examinations, a relevant additional finding was detected when contrast medium was administered. Contrast enhancement led to a change in diagnosis in only one of these cases. Children with a normal pre-contrast brain MRI rarely benefit from contrast medium application. Comparing these results to the risks and disadvantages of a routine gadolinium application, there is substantiated numerical evidence for avoiding routine administration of gadolinium in a pre-contrast normal MRI examination.

  14. Revisiting the Pharmacokinetic Profiles of Gadolinium-Based Contrast Agents: Differences in Long-Term Biodistribution and Excretion.

    PubMed

    Lancelot, Eric

    2016-11-01

    Gadolinium-based contrast agents (GBCAs) have been used for years for magnetic resonance imaging examinations. Because of their rapid blood clearance, they were considered as very safe products until some of them were shown to induce nephrogenic systemic fibrosis in patients with renal failure and hypersignals on T1-weighted unenhanced brain scans of patients with normal renal function. To date, these adverse effects have been related almost exclusively to the use of low-stability linear agents, which are more prone to release free gadolinium. The aim of the present meta-analysis was to ascertain the existence of a deep compartment for gadolinium storage in the body and to assess whether all the GBCAs present the same toxicokinetic profile. Applying a systematic literature search methodology, all clinical and preclinical studies reporting time-dependent plasma concentrations and renal excretion data of gadolinium were identified and analyzed. Since the individual data were not available, the analysis focused on the average values per groups of subjects or animals, which had received a given GBCA at a given dose. The rate constants of the distribution phase (α), rapid elimination phase (β), and residual excretion phase (γ) of gadolinium were determined in each group from the plasma concentration (Cp) time curves and the relative urinary excretion rate (rER) time curves, taking the 2-hour time point as a reference. Moreover, as bone may represent a reservoir for long-term gadolinium accumulation and slow release into the blood stream, the time curves of the relative concentration in the bone (rCB) of Gd-labeled GBCAs in mice or rats were analyzed taking day 1 concentrations as a reference. The ratio of gadolinium concentrations in the bone marrow (CBM) as compared with the bone (CB) was also calculated. The relative urinary excretion rate (rER) plots revealed a prolonged residual excretion phase of gadolinium in healthy volunteers, consistent with the existence of

  15. Gadolinium released by the linear gadolinium-based contrast-agent Gd-DTPA decreases the activity of human epithelial Na+ channels (ENaCs).

    PubMed

    Knoepp, Fenja; Bettmer, Joerg; Fronius, Martin

    2017-05-01

    Gadolinium-based-contrast-agents (GBCAs) are used for magnetic-resonance-imaging and associated with renal and cardiovascular adverse reactions caused by released Gd 3+ ions. Gd 3+ is also a modulator of mechano-gated ion channels, including the epithelial Na + channel (ENaC) that is expressed in kidney epithelium and the vasculature. ENaC is important for salt-/water homeostasis and blood pressure regulation and a likely target of released Gd 3+ from GBCAs causing the above-mentioned adverse reactions. Therefore this study examined the effect of Gd 3+ and GBCAs on ENaC's activity. Human αβγENaC was expressed in Xenopus laevis oocytes and exposed to Gd 3+ , linear (Gd-DTPA, Magnevist) or cyclic (Dotarem) GBCAs. Transmembrane ion-currents (I M ) were recorded by the two-electrode-voltage-clamp technique and Gd 3+ -release by Gd-DTPA was confirmed by inductively coupled plasma-mass spectrometry. Gd 3+ exerts biphasic effects on ENaC's activity: ≤0.3mmol/l decreased I M which was preventable by DEPC (modifies histidines). Strikingly Gd 3+ ≥0.4mmol/l increased I M and this effect was prevented by cysteine-modifying MTSEA. Linear Gd-DTPA and Magnevist mimicked the effect of ≤0.3mmol/l Gd 3+ , whereas the chelator DTPA showed no effect. Gd 3+ and Gd-DTPA increased the IC 50 for amiloride, but did not affect ENaC's self-inhibition. Interestingly, cyclic Gd-DOTA (Dotarem) increased I M to a similar extent as its chelator DOTA, suggesting that the chelator rather than released Gd 3+ is responsible for this effect. These results confirm Gd 3+ -release from linear Gd-DTPA and indicate that the released Gd 3+ amount is sufficient to interfere with ENaC's activity to provide putative explanations for GBCA-related adverse effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Graphene Oxide and Gadolinium-Chelate Functionalized Poly(lactic acid) Nanocapsules Encapsulating Perfluorooctylbromide for Ultrasound/Magnetic Resonance Bimodal Imaging Guided Photothermal Ablation of Cancer.

    PubMed

    Li, Zhenglin; Ke, Hengte; Wang, Jinrui; Miao, Zhaohua; Yue, Xiuli

    2016-03-01

    This paper successfully fabricated a novel multifunctional theranostic agent (PFOB@PLA/GO/Gd-DTPA NCs) by loading perfluorooctylbromide (PFOB) into poly(lactic acid) (PLA) nanocapsules (NCs) followed by surface functionalization with graphene oxide (GO) and gadolinium-chelate (Gd-DTPA). It was found that the resulting nanoagent could serve as a contrast agent simultaneously to enhance ultrasound (US) and magnetic resonance imaging (MRI). Benefiting from the strong absorption in the near infrared (NIR) region, the nanocapsules could efficiently kill cancer cells under NIR laser irradiation. Thus, such a single theranostic agent with the combination of realtime US imaging and high-resolution MR imaging could achieve great therapeutic effectiveness without systemic damage to the body. In addition, the cytotoxicity assay on HUVEC cells revealed a good biocompatibility of PFOB@PLA/GO/Gd-DTPA NCs, showing that the versatile nanocapsule system may hold great potential as an effective nanoplatform for contrast enhanced imaging guided photothermal therapy.

  17. Geometrically confined ultrasmall gadolinium oxide nanoparticles boost the T1 contrast ability

    NASA Astrophysics Data System (ADS)

    Ni, Kaiyuan; Zhao, Zhenghuan; Zhang, Zongjun; Zhou, Zijian; Yang, Li; Wang, Lirong; Ai, Hua; Gao, Jinhao

    2016-02-01

    High-performance magnetic resonance imaging (MRI) contrast agents and novel contrast enhancement strategies are urgently needed for sensitive and accurate diagnosis. Here we report a strategy to construct a new T1 contrast agent based on the Solomon-Bloembergen-Morgan (SBM) theory. We loaded the ultrasmall gadolinium oxide nanoparticles into worm-like interior channels of mesoporous silica nanospheres (Gd2O3@MSN nanocomposites). This unique structure endows the nanocomposites with geometrical confinement, high molecular tumbling time, and a large coordinated number of water molecules, which results in a significant enhancement of the T1 contrast with longitudinal proton relaxivity (r1) as high as 45.08 mM-1 s-1. Such a high r1 value of Gd2O3@MSN, compared to those of ultrasmall Gd2O3 nanoparticles and gadolinium-based clinical contrast agents, is mainly attributed to the strong geometrical confinement effect. This strategy provides new guidance for developing various high-performance T1 contrast agents for sensitive imaging and disease diagnosis.High-performance magnetic resonance imaging (MRI) contrast agents and novel contrast enhancement strategies are urgently needed for sensitive and accurate diagnosis. Here we report a strategy to construct a new T1 contrast agent based on the Solomon-Bloembergen-Morgan (SBM) theory. We loaded the ultrasmall gadolinium oxide nanoparticles into worm-like interior channels of mesoporous silica nanospheres (Gd2O3@MSN nanocomposites). This unique structure endows the nanocomposites with geometrical confinement, high molecular tumbling time, and a large coordinated number of water molecules, which results in a significant enhancement of the T1 contrast with longitudinal proton relaxivity (r1) as high as 45.08 mM-1 s-1. Such a high r1 value of Gd2O3@MSN, compared to those of ultrasmall Gd2O3 nanoparticles and gadolinium-based clinical contrast agents, is mainly attributed to the strong geometrical confinement effect. This strategy

  18. A polymeric fastener can easily functionalize liposome surfaces with gadolinium for enhanced magnetic resonance imaging.

    PubMed

    Smith, Cartney E; Shkumatov, Artem; Withers, Sarah G; Yang, Binxia; Glockner, James F; Misra, Sanjay; Roy, Edward J; Wong, Chun-Ho; Zimmerman, Steven C; Kong, Hyunjoon

    2013-11-26

    Common methods of loading magnetic resonance imaging (MRI) contrast agents into nanoparticles often suffer from challenges related to particle formation, complex chemical modification/purification steps, and reduced contrast efficiency. This study presents a simple, yet advanced process to address these issues by loading gadolinium, an MRI contrast agent, exclusively on a liposome surface using a polymeric fastener. The fastener, so named for its ability to physically link the two functional components together, consisted of chitosan substituted with diethylenetriaminepentaacetic acid (DTPA) to chelate gadolinium, as well as octadecyl chains to stabilize the modified chitosan on the liposome surface. The assembly strategy, mimicking the mechanisms by which viruses and proteins naturally anchor to a cell, provided greater T1 relaxivity than liposomes loaded with gadolinium in both the interior and outer leaflet. Gadolinium-coated liposomes were ultimately evaluated in vivo using murine ischemia models to highlight the diagnostic capability of the system. Taken together, this process decouples particle assembly and functionalization and, therefore, has considerable potential to enhance imaging quality while alleviating many of the difficulties associated with multifunctional particle fabrication.

  19. A Polymeric Fastener can Easily Functionalize Liposome Surfaces with Gadolinium for Enhanced Magnetic Resonance Imaging

    PubMed Central

    Smith, Cartney E.; Shkumatov, Artem; Withers, Sarah G.; Glockner, James F.; Misra, Sanjay; Roy, Edward J.; Wong, Chun-Ho; Zimmerman, Steven C.; Kong, Hyunjoon

    2013-01-01

    Common methods of loading magnetic resonance imaging (MRI) contrast agents into nanoparticles often suffer from challenges related to particle formation, complex chemical modification/purification steps, and reduced contrast efficiency. This study presents a simple, yet advanced process to address these issues by loading gadolinium, an MRI contrast agent, exclusively on a liposome surface using a polymeric fastener. The fastener, so named for its ability to physically link the two functional components together, consisted of chitosan substituted with diethylenetriaminepentaacetic acid (DTPA) to chelate gadolinium, as well as octadecyl chains to stabilize the modified chitosan on the liposome surface. The assembly strategy, mimicking the mechanisms by which viruses and proteins naturally anchor to a cell, provided greater T1 relaxivity than liposomes loaded with gadolinium in both the interior and outer leaflet. Gadolinium-coated liposomes were ultimately evaluated in vivo using murine ischemia models to highlight the diagnostic capability of the system. Taken together, this process decouples particle assembly and functionalization, and therefore has considerable potential to enhance imaging quality while alleviating many of the difficulties associated with multifunctional particle fabrication. PMID:24083377

  20. Improved paramagnetic chelate for molecular imaging with MRI

    NASA Astrophysics Data System (ADS)

    Winter, Patrick; Athey, Phillip; Kiefer, Garry; Gulyas, Gyongyi; Frank, Keith; Fuhrhop, Ralph; Robertson, David; Wickline, Samuel; Lanza, Gregory

    2005-05-01

    The relaxivity and transmetallation of two lipophilic paramagnetic chelates incorporated onto perfluorocarbon nanoparticles, i.e., gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid phosphatidylethanolamine (Gd-MeO-DOTA-PE) and gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid triglycine phosphatidylethanolamine (Gd-MeO-DOTA-triglycine-PE (Gd-MeO-DOTA-triglycine-PE)), were compared to a prototypic gadolinium-diethylene-triamine-pentaacetic acid bis-oleate (Gd-DTPA-BOA) paramagnetic formulation. Nanoparticles with MeO-DOTA-based chelates demonstrated higher relaxivity (40% higher for Gd-MeO-DOTA-PE and 55% higher for Gd-MeO-DOTA-triglycine-PE) and less transmetallation than the original Gd-DTPA-BOA-based agent.

  1. Biocompatible Polyhydroxyethylaspartamide-based Micelles with Gadolinium for MRI Contrast Agents

    PubMed Central

    2010-01-01

    Biocompatible poly-[N-(2-hydroxyethyl)-d,l-aspartamide]-methoxypoly(ethyleneglycol)-hexadecylamine (PHEA-mPEG-C16) conjugated with 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid-gadolinium (DOTA-Gd) via ethylenediamine (ED) was synthesized as a magnetic resonance imaging (MRI) contrast agent. Amphiphilic PHEA-mPEG-C16-ED-DOTA-Gd forms micelle in aqueous solution. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Micelle size and shape were examined by dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelles with PHEA-mPEG-C16-ED-DOTA-Gd showed higher relaxivities than the commercially available gadolinium contrast agent. Moreover, the signal intensity of a rabbit liver was effectively increased after intravenous injection of PHEA-mPEG-C16-ED-DOTA-Gd. PMID:21170410

  2. Biocompatible Polyhydroxyethylaspartamide-based Micelles with Gadolinium for MRI Contrast Agents

    NASA Astrophysics Data System (ADS)

    Jeong, Sang Young; Kim, Hyo Jeong; Kwak, Byung-Kook; Lee, Ha-Young; Seong, Hasoo; Shin, Byung Cheol; Yuk, Soon Hong; Hwang, Sung-Joo; Cho, Sun Hang

    2010-12-01

    Biocompatible poly-[ N-(2-hydroxyethyl)- d, l-aspartamide]-methoxypoly(ethyleneglycol)-hexadecylamine (PHEA-mPEG-C16) conjugated with 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid-gadolinium (DOTA-Gd) via ethylenediamine (ED) was synthesized as a magnetic resonance imaging (MRI) contrast agent. Amphiphilic PHEA-mPEG-C16-ED-DOTA-Gd forms micelle in aqueous solution. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Micelle size and shape were examined by dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelles with PHEA-mPEG-C16-ED-DOTA-Gd showed higher relaxivities than the commercially available gadolinium contrast agent. Moreover, the signal intensity of a rabbit liver was effectively increased after intravenous injection of PHEA-mPEG-C16-ED-DOTA-Gd.

  3. Retention of Gadolinium-Based Contrast Agents in Multiple Sclerosis: Retrospective Analysis of an 18-Year Longitudinal Study.

    PubMed

    Forslin, Y; Shams, S; Hashim, F; Aspelin, P; Bergendal, G; Martola, J; Fredrikson, S; Kristoffersen-Wiberg, M; Granberg, T

    2017-07-01

    Gadolinium-based contrast agents have been associated with lasting high T1-weighted signal intensity in the dentate nucleus and globus pallidus, with histopathologically confirmed gadolinium retention. We aimed to longitudinally investigate the relationship of multiple gadolinium-based contrast agent administrations to the Signal Intensity Index in the dentate nucleus and globus pallidus and any associations with cognitive function in multiple sclerosis. The Signal Intensity Index in the dentate nucleus and globus pallidus was retrospectively evaluated on T1-weighted MR imaging in an 18-year longitudinal cohort study of 23 patients with MS receiving multiple gadolinium-based contrast agent administrations and 23 healthy age- and sex-matched controls. Participants also underwent comprehensive neuropsychological testing. Patients with MS had a higher Signal Intensity Index in the dentate nucleus ( P < .001), but not in the globus pallidus ( P = .19), compared with non-gadolinium-based contrast agent-exposed healthy controls by an unpaired t test. Increasing numbers of gadolinium-based contrast agent administrations were associated with an increased Signal Intensity Index in the dentate nucleus (β = 0.45, P < .001) and globus pallidus (β = 0.60, P < .001). This association remained stable with corrections for the age, disease duration, and physical disability for both the dentate nucleus (β = 0.43, P = .001) and globus pallidus (β = 0.58, P < .001). An increased Signal Intensity Index in the dentate nucleus among patients with MS was associated with lower verbal fluency scores, which remained significant after correction for several aspects of disease severity (β = -0.40 P = .013). Our data corroborate previous reports of lasting gadolinium retention in brain tissues. An increased Signal Intensity Index in the dentate nucleus and globus pallidus was associated with lower verbal fluency, which does not prove causality but encourages further studies on cognition

  4. The evolution of gadolinium based contrast agents: from single-modality to multi-modality

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Liu, Ruiqing; Peng, Hui; Li, Penghui; Xu, Zushun; Whittaker, Andrew K.

    2016-05-01

    Gadolinium-based contrast agents are extensively used as magnetic resonance imaging (MRI) contrast agents due to their outstanding signal enhancement and ease of chemical modification. However, it is increasingly recognized that information obtained from single modal molecular imaging cannot satisfy the higher requirements on the efficiency and accuracy for clinical diagnosis and medical research, due to its limitation and default rooted in single molecular imaging technique itself. To compensate for the deficiencies of single function magnetic resonance imaging contrast agents, the combination of multi-modality imaging has turned to be the research hotpot in recent years. This review presents an overview on the recent developments of the functionalization of gadolinium-based contrast agents, and their application in biomedicine applications.

  5. Gadolinium Deposition in Human Brain Tissues after Contrast-enhanced MR Imaging in Adult Patients without Intracranial Abnormalities.

    PubMed

    McDonald, Robert J; McDonald, Jennifer S; Kallmes, David F; Jentoft, Mark E; Paolini, Michael A; Murray, David L; Williamson, Eric E; Eckel, Laurence J

    2017-11-01

    Purpose To determine whether gadolinium deposits in neural tissues of patients with intracranial abnormalities following intravenous gadolinium-based contrast agent (GBCA) exposure might be related to blood-brain barrier integrity by studying adult patients with normal brain pathologic characteristics. Materials and Methods After obtaining antemortem consent and institutional review board approval, the authors compared postmortem neuronal tissue samples from five patients who had undergone four to 18 gadolinium-enhanced magnetic resonance (MR) examinations between 2005 and 2014 (contrast group) with samples from 10 gadolinium-naive patients who had undergone at least one MR examination during their lifetime (control group). All patients in the contrast group had received gadodiamide. Neuronal tissues from the dentate nuclei, pons, globus pallidus, and thalamus were harvested and analyzed with inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy with energy-dispersive x-ray spectroscopy, and light microscopy to quantify, localize, and assess the effects of gadolinium deposition. Results Tissues from the four neuroanatomic regions of gadodiamide-exposed patients contained 0.1-19.4 μg of gadolinium per gram of tissue in a statistically significant dose-dependent relationship (globus pallidus: ρ = 0.90, P = .04). In contradistinction, patients in the control group had undetectable levels of gadolinium with ICP-MS. All patients had normal brain pathologic characteristics at autopsy. Three patients in the contrast group had borderline renal function (estimated glomerular filtration rate <45 mL/min/1.73 m 2 ) and hepatobiliary dysfunction at MR examination. Gadolinium deposition in the contrast group was localized to the capillary endothelium and neuronal interstitium and, in two cases, within the nucleus of the cell. Conclusion Gadolinium deposition in neural tissues after GBCA administration occurs in the absence of intracranial

  6. Porphyrin-containing polyaspartamide gadolinium complexes as potential magnetic resonance imaging contrast agents.

    PubMed

    Yan, Guo-Ping; Li, Zhen; Xu, Wei; Zhou, Cheng-Kai; Yang, Lian; Zhang, Qiao; Li, Liang; Liu, Fan; Han, Lin; Ge, Yuan-Xing; Guo, Jun-Fang

    2011-04-04

    Porphyrin-containing polyaspartamide ligands (APTSPP-PHEA-DTPA) were synthesized by the incorporation of diethylenetriaminepentaacetic acid (DTPA) and 5-(4'-aminophenyl)-10,15,20-tris(4'-sulfonatophenyl) porphyrin, trisodium salt (APTSPP) into poly-α,β-[N-(2-hydroxyethyl)-l-aspartamide] (PHEA). These ligands were further reacted with gadolinium chloride to produce macromolecule-gadolinium complexes (APTSPP-PHEA-DTPA-Gd). Experimental data of (1)H NMR, IR, UV and elemental analysis evidenced the formation of the polyaspartamide ligands and gadolinium complexes. In vitro and in vivo property tests indicated that APTSPP-PHEA-DTPA-Gd possessed noticeably higher relaxation effectiveness, less toxicity to HeLa cells, and significantly higher enhanced signal intensities (SI) of the VX2 carcinoma in rabbits with lower injection dose requirement than that of Gd-DTPA. Moreover, APTSPP-PHEA-DTPA-Gd was found to greatly enhance the contrast of MR images of the VX2 carcinoma, providing prolonged intravascular duration, and distinguished the VX2 carcinoma and normal tissues in rabbits according to MR image signal enhancements. These porphyrin-containing polyaspartamide gadolinium complexes can be used as the candidates of contrast agents for targeted MRI to tumors. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  7. Acute side effects of three commonly used gadolinium contrast agents in the paediatric population.

    PubMed

    Neeley, Chris; Moritz, Michael; Brown, Jeffrey J; Zhou, Yihua

    2016-07-01

    To determine the incidence of acute side effects of three commonly used gadolinium contrast agents in the paediatric population. A retrospective review of medical records was performed to determine the incidence of acute adverse side effects of i.v. gadolinium contrast agents [MultiHance(®) (Bracco Diagnostics Inc., Princeton, NJ), Magnevist(®) (Bayer Healthcare Pharmaceuticals, Wayne, NJ) or Gadavist(®) (Bayer HealthCare Pharmaceuticals)] in paediatric patients. 40 of the 2393 patients who received gadolinium contrast agents experienced acute side effects, representing an incidence of 1.7%. The majority of the acute side effects (in 30 patients) were nausea and vomiting. The incidence was significantly higher in non-sedated patients (2.37% vs 0.7%; p = 0.0018). Furthermore, without sedation, the incidence of both nausea and vomiting was significantly higher in children receiving MultiHance, with a 4.48% incidence of nausea when compared with Magnevist (0.33%, p < 0.0001) and Gadavist (0.28%, p < 0.0001) and a 2.36% incidence of vomiting compared with those for Magnevist (0.50%, p = 0.0054) and Gadavist (0.28%, p = 0.014), whereas no difference was observed between Magnevist and Gadavist within the power of the study. In addition, there was no apparent difference between any of the three contrast agents for the incidence of allergy or other acute side effects detected, given the sample size. The gadolinium contrast agents MultiHance, Magnevist and Gadavist have a low incidence of acute side effects in the paediatric population, a rate that is further reduced in moderately sedated patients. MultiHance demonstrated significantly increased incidence of gastrointestinal symptoms compared with Magnevist and Gadavist. The incidence of acute side effects of three commonly used gadolinium contrast agents was determined in the paediatric population, which can have clinical implications.

  8. Accumulation of MRI contrast agents in malignant fibrous histiocytoma for gadolinium neutron capture therapy.

    PubMed

    Fujimoto, T; Ichikawa, H; Akisue, T; Fujita, I; Kishimoto, K; Hara, H; Imabori, M; Kawamitsu, H; Sharma, P; Brown, S C; Moudgil, B M; Fujii, M; Yamamoto, T; Kurosaka, M; Fukumori, Y

    2009-07-01

    Neutron-capture therapy with gadolinium (Gd-NCT) has therapeutic potential, especially that gadolinium is generally used as a contrast medium in magnetic resonance imaging (MRI). The accumulation of gadolinium in a human sarcoma cell line, malignant fibrosis histiocytoma (MFH) Nara-H, was visualized by the MRI system. The commercially available MRI contrast medium Gd-DTPA (Magnevist, dimeglumine gadopentetate aqueous solution) and the biodegradable and highly gadopentetic acid (Gd-DTPA)-loaded chitosan nanoparticles (Gd-nanoCPs) were prepared as MRI contrast agents. The MFH cells were cultured and collected into three falcon tubes that were set into the 3-tesra MRI system to acquire signal intensities from each pellet by the spin echo method, and the longitudinal relaxation time (T1) was calculated. The amount of Gd in the sample was measured by inductively coupled plasma atomic emission spectrography (ICP-AES). The accumulation of gadolinium in cells treated with Gd-nanoCPs was larger than that in cells treated with Gd-DTPA. In contrast, and compared with the control, Gd-DTPA was more effective than Gd-nanoCPs in reducing T1, suggesting that the larger accumulation exerted the adverse effect of lowering the enhancement of MRI. Further studies are warranted to gain insight into the therapeutic potential of Gd-NCT.

  9. Breakthrough reactions of iodinated and gadolinium contrast media after oral steroid premedication protocol.

    PubMed

    Jingu, Akiko; Fukuda, Junya; Taketomi-Takahashi, Ayako; Tsushima, Yoshito

    2014-10-06

    Adverse reactions to iodinated and gadolinium contrast media are an important clinical issue. Although some guidelines have proposed oral steroid premedication protocols to prevent adverse reactions, some patients may have reactions to contrast media in spite of premedication (breakthrough reaction; BTR).The purpose of this study was to assess the frequency, type and severity of BTR when following an oral steroid premedication protocol. All iodinated and gadolinium contrast-enhanced radiologic examinations between August 2011 and February 2013 for which the premedication protocol was applied in our institution were assessed for BTRs. The protocol was applied to a total of 252 examinations (153 patients, ages 15-87 years; 63 males, 90 females). Of these, 152 were for prior acute adverse reactions to contrast media, 85 were for a history of bronchial asthma, and 15 were for other reasons. There were 198 contrast enhanced CTs and 54 contrast enhanced MRIs. There were nine BTR (4.5%) for iodinated contrast media, and only one BTR (1.9%) for gadolinium contrast media: eight were mild and one was moderate. No patient who had a mild index reaction (IR) had a severe BTR. Incidence of BTRs when following the premedication protocol was low. This study by no means proves the efficacy of premedication, but provides some support for following a premedication protocol to improve safety of contrast-enhanced examinations when prior adverse reactions are mild, or when there is a history of asthma.

  10. Breakthrough reactions of iodinated and gadolinium contrast media after oral steroid premedication protocol

    PubMed Central

    2014-01-01

    Background Adverse reactions to iodinated and gadolinium contrast media are an important clinical issue. Although some guidelines have proposed oral steroid premedication protocols to prevent adverse reactions, some patients may have reactions to contrast media in spite of premedication (breakthrough reaction; BTR). The purpose of this study was to assess the frequency, type and severity of BTR when following an oral steroid premedication protocol. Methods All iodinated and gadolinium contrast-enhanced radiologic examinations between August 2011 and February 2013 for which the premedication protocol was applied in our institution were assessed for BTRs. Results The protocol was applied to a total of 252 examinations (153 patients, ages 15–87 years; 63 males, 90 females). Of these, 152 were for prior acute adverse reactions to contrast media, 85 were for a history of bronchial asthma, and 15 were for other reasons. There were 198 contrast enhanced CTs and 54 contrast enhanced MRIs. There were nine BTR (4.5%) for iodinated contrast media, and only one BTR (1.9%) for gadolinium contrast media: eight were mild and one was moderate. No patient who had a mild index reaction (IR) had a severe BTR. Conclusion Incidence of BTRs when following the premedication protocol was low. This study by no means proves the efficacy of premedication, but provides some support for following a premedication protocol to improve safety of contrast-enhanced examinations when prior adverse reactions are mild, or when there is a history of asthma. PMID:25287952

  11. Pediatric Patients Demonstrate Progressive T1-Weighted Hyperintensity in the Dentate Nucleus following Multiple Doses of Gadolinium-Based Contrast Agent.

    PubMed

    Roberts, D R; Chatterjee, A R; Yazdani, M; Marebwa, B; Brown, T; Collins, H; Bolles, G; Jenrette, J M; Nietert, P J; Zhu, X

    2016-12-01

    While there have been recent reports of brain retention of gadolinium following gadolinium-based contrast agent administration in adults, a retrospective series of pediatric patients has not previously been reported, to our knowledge. We investigated the relationship between the number of prior gadolinium-based contrast agent doses and increasing T1 signal in the dentate nucleus on unenhanced T1-weighted MR imaging. We hypothesized that despite differences in pediatric physiology and the smaller gadolinium-based contrast agent doses that pediatric patients are typically administered based on weighted-adjusted dosing, the pediatric brain would also demonstrate dose-dependent increasing T1 signal in the dentate nucleus. We included children with multiple gadolinium-based contrast agent administrations at our institution. A blinded reader placed ROIs within the dentate nucleus and adjacent cerebellar white matter. To eliminate reader bias, we also performed automated ROI delineation of the dentate nucleus, cerebellar white matter, and pons. Dentate-to-cerebellar white matter and dentate-to pons ratios were compared with the number of gadolinium-based contrast agent administrations. During 20 years at our institution, 280 patients received at least 5 gadolinium-based contrast agent doses, with 1 patient receiving 38 doses. Sixteen patients met the inclusion/exclusion criteria for ROI analysis. Blinded reader dentate-to-cerebellar white matter ratios were significantly associated with gadolinium-based contrast agent doses (r s = 0.77, P = .001). The dentate-to-pons ratio and dentate-to-cerebellar white matter ratios based on automated ROI placement were also significantly correlated with gadolinium-based contrast agent doses (t = 4.98, P < .0001 and t = 2.73, P < .02, respectively). In pediatric patients, the number of prior gadolinium-based contrast agent doses is significantly correlated with progressive T1-weighted dentate hyperintensity. Definitive confirmation of

  12. Quantitative structure-property relationship (correlation analysis) of phosphonic acid-based chelates in design of MRI contrast agent.

    PubMed

    Tiwari, Anjani K; Ojha, Himanshu; Kaul, Ankur; Dutta, Anupama; Srivastava, Pooja; Shukla, Gauri; Srivastava, Rakesh; Mishra, Anil K

    2009-07-01

    Nuclear magnetic resonance imaging is a very useful tool in modern medical diagnostics, especially when gadolinium (III)-based contrast agents are administered to the patient with the aim of increasing the image contrast between normal and diseased tissues. With the use of soft modelling techniques such as quantitative structure-activity relationship/quantitative structure-property relationship after a suitable description of their molecular structure, we have studied a series of phosphonic acid for designing new MRI contrast agent. Quantitative structure-property relationship studies with multiple linear regression analysis were applied to find correlation between different calculated molecular descriptors of the phosphonic acid-based chelating agent and their stability constants. The final quantitative structure-property relationship mathematical models were found as--quantitative structure-property relationship Model for phosphonic acid series (Model 1)--log K(ML) = {5.00243(+/-0.7102)}- MR {0.0263(+/-0.540)}n = 12 l r l = 0.942 s = 0.183 F = 99.165 quantitative structure-property relationship Model for phosphonic acid series (Model 2)--log K(ML) = {5.06280(+/-0.3418)}- MR {0.0252(+/- .198)}n = 12 l r l = 0.956 s = 0.186 F = 99.256.

  13. Bioconjugation of luminescent silicon quantum dots to gadolinium ions for bioimaging applications

    NASA Astrophysics Data System (ADS)

    Erogbogbo, Folarin; Chang, Ching-Wen; May, Jasmine L.; Liu, Liwei; Kumar, Rajiv; Law, Wing-Cheung; Ding, Hong; Yong, Ken Tye; Roy, Indrajit; Sheshadri, Mukund; Swihart, Mark T.; Prasad, Paras N.

    2012-08-01

    Luminescent imaging agents and MRI contrast agents are desirable components in the rational design of multifunctional nanoconstructs for biological imaging applications. Luminescent biocompatible silicon quantum dots (SiQDs) and gadolinium chelates can be applied for fluorescence microscopy and MRI, respectively. Here, we report the first synthesis of a nanocomplex incorporating SiQDs and gadolinium ions (Gd3+) for biological applications. The nanoconstruct is composed of a PEGylated micelle, with hydrophobic SiQDs in its core, covalently bound to DOTA-chelated Gd3+. Dynamic light scattering reveals a radius of 85 nm for these nanoconstructs, which is consistent with the electron microscopy results depicting radii ranging from 25 to 60 nm. Cellular uptake of the probes verified that they maintain their optical properties within the intracellular environment. The magnetic resonance relaxivity of the nanoconstruct was 2.4 mM-1 s-1 (in terms of Gd3+ concentration), calculated to be around 6000 mM-1 s-1 per nanoconstruct. These desirable optical and relaxivity properties of the newly developed probe open the door for use of SiQDs in future multimodal applications such as tumour imaging.Luminescent imaging agents and MRI contrast agents are desirable components in the rational design of multifunctional nanoconstructs for biological imaging applications. Luminescent biocompatible silicon quantum dots (SiQDs) and gadolinium chelates can be applied for fluorescence microscopy and MRI, respectively. Here, we report the first synthesis of a nanocomplex incorporating SiQDs and gadolinium ions (Gd3+) for biological applications. The nanoconstruct is composed of a PEGylated micelle, with hydrophobic SiQDs in its core, covalently bound to DOTA-chelated Gd3+. Dynamic light scattering reveals a radius of 85 nm for these nanoconstructs, which is consistent with the electron microscopy results depicting radii ranging from 25 to 60 nm. Cellular uptake of the probes verified that they

  14. Investigation of a potential macromolecular MRI contrast agent prepared from PPI (G = 2, polypropyleneimine, generation 2) dendrimer bifunctional chelates

    NASA Astrophysics Data System (ADS)

    Wang, Jianxin Steven

    The long-term objective is to develop magnetic resonance (MR) contrast agents that actively and passively target tumors for diagnosis and therapy. Many diagnostic imaging techniques for cancer lack specificity. A dendrimer based magnetic resonance imaging contrast agent has been developed with large proton relaxation enhancements and high molecular relaxivities. A new type of linear dendrimer based MRI contrast agent that is built from the polypropyleneimine and polyamidoamine dendrimers in which free amines have been conjugated to the chelate DTPA, which further formed the complex with Gadolinium (Gd) was studied. The specific research goals were to test the hypothesis that a linear chelate with macromolecular agents can be used in vitro and in vivo. This work successfully examined the adequacy and viability of the application for this agent in vitro and in vivo. A small animal whole body counter was designed and constructed to allow us to monitor biodistribution and kinetic mechanisms using a radioisotope labeled complex. The procedures of metal labeling, separation and purification have been established from this work. A biodistribution study has been performed using radioisotope induced organ/tissue counting and gamma camera imaging. The ratio of percentage of injected dose per gram organ/tissue for kidney and liver is 3.71 from whole body counter and 3.77 from the gamma camera. The results suggested that retention of Gd (III) is too high and a more kinetically stable chelate should be developed. The pharmacokinetic was evaluated in the whole animal model with the whole body clearance, and a kinetics model was developed. The pharmacokinetic results showed a bi-exponential decay in the animal model with two component excretion constants 1.43e(-5) and 0.0038511, which give half-lives of 3 hours and 33.6 days, respectively. Magnetic resonance imaging of this complex resulted in a 52% contrast enhancement in the rat kidney following the agents' administration in

  15. Gadolinium Use in Spine Pain Management Procedures for Patients with Contrast Allergies: Results in 527 Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safriel, Yair; Ang, Roberto; Ali, Muhammed

    2008-03-15

    Introduction. To review the safety and efficacy of gadolinium in spine pain management procedures in patients at high risk for a contrast reaction and who are not suitable candidates for the use of standard non-ionic contrast. Methods. We reviewed records over a 61-month period of all image-guided spinal pain management procedures where patients had allergies making them unsuitable candidates for standard non-ionic contrast and where gadolinium was used to confirm needle tip placement prior to injection of medication. Results. Three hundred and four outpatients underwent 527 procedures. A spinal needle was used in all but 41 procedures. Gadolinium was visualizedmore » using portable C-arm fluoroscopy in vivo allowing for confirmation of needle tip location. The gadolinium dose ranged from 0.2 to 10 ml per level. The highest dose received by one patient was 15.83 ml intradiscally during a three-level discogram. Three hundred and one patients were discharged without complication or known delayed complications. One patient had documented intrathecal injection but without sequelae and 2 patients who underwent cervical procedures experienced seizures requiring admission to the intensive care unit. Both the latter patients were discharged without any further complications. Conclusion. Based on our experience we recommend using gadolinium judiciously for needle tip confirmation. We feel more confident using gadolinium in the lumbar spine and in cervical nerve blocks. Gadolinium should probably not be used as an injectate volume expander. The indications for gadolinium use in cervical needle-guided spine procedures are less clear and use of a blunt-tipped needle should be considered.« less

  16. Tracing gadolinium-based contrast agents from surface water to drinking water by means of speciation analysis.

    PubMed

    Birka, Marvin; Wehe, Christoph A; Hachmöller, Oliver; Sperling, Michael; Karst, Uwe

    2016-04-01

    In recent decades, a significant amount of anthropogenic gadolinium has been released into the environment as a result of the broad application of contrast agents for magnetic resonance imaging (MRI). Since this anthropogenic gadolinium anomaly has also been detected in drinking water, it has become necessary to investigate the possible effect of drinking water purification on these highly polar microcontaminats. Therefore, a novel highly sensitive method for speciation analysis of gadolinium is presented. For that purpose, the hyphenation of hydrophilic interaction liquid chromatography (HILIC) and inductively coupled plasma-mass spectrometry (ICP-MS) was employed. In order to enhance the detection power, sample introduction was carried out by ultrasonic nebulization. In combination with a novel HILIC method using a diol-based stationary phase, it was possible to achieve superior limits of detection for frequently applied gadolinium-based contrast agents below 20pmol/L. With this method, the contrast agents Gd-DTPA, Gd-DOTA and Gd-BT-DO3A were determined in concentrations up to 159pmol/L in samples from several waterworks in a densely populated region of Germany alongside the river Ruhr as well as from a waterworks near a catchment lake. Thereby, the direct impact of anthropogenic gadolinium species being present in the surface water on the amount of anthropogenic gadolinium in drinking water was shown. There was no evidence for the degradation of contrast agents, the release of Gd(3+) or the presence of further Gd species. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Technical aspects of MRI signal change quantification after gadolinium-based contrast agents' administration.

    PubMed

    Ramalho, Joana; Ramalho, Miguel; AlObaidy, Mamdoh; Semelka, Richard C

    2016-12-01

    Over the last 2years several studies have been published regarding gadolinium deposition in brain structures in patients with normal renal function after repeated administrations of gadolinium-based contrast agents (GBCAs). Most of the publications are magnetic resonance imaging (MRI) based retrospective studies, where gadolinium deposition may be indirectly measured by evaluating changes in T1 signal intensity (SI) in brain tissue, particularly in the dentate nucleus (DN) and/or globus pallidi (GP). The direct correlation between T1 signal changes and gadolinium deposition was validated by human pathology studies. However, the variability of the MR equipment and parameters used across different publications, along with the inherent limitations of MRI to assess gadolinium in human tissues should be acknowledged when interpreting those studies. Nevertheless, MRI studies remain essential regarding gadolinium bio-distribution knowledge. The aim of this paper is to overview current knowledge of technical aspects of T1 signal intensity evaluation by MRI and describe confounding factors, with the intention to achieve higher accuracy and maximize reproducibility. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI.

    PubMed

    Gong, Enhao; Pauly, John M; Wintermark, Max; Zaharchuk, Greg

    2018-02-13

    There are concerns over gadolinium deposition from gadolinium-based contrast agents (GBCA) administration. To reduce gadolinium dose in contrast-enhanced brain MRI using a deep learning method. Retrospective, crossover. Sixty patients receiving clinically indicated contrast-enhanced brain MRI. 3D T 1 -weighted inversion-recovery prepped fast-spoiled-gradient-echo (IR-FSPGR) imaging was acquired at both 1.5T and 3T. In 60 brain MRI exams, the IR-FSPGR sequence was obtained under three conditions: precontrast, postcontrast images with 10% low-dose (0.01mmol/kg) and 100% full-dose (0.1 mmol/kg) of gadobenate dimeglumine. We trained a deep learning model using the first 10 cases (with mixed indications) to approximate full-dose images from the precontrast and low-dose images. Synthesized full-dose images were created using the trained model in two test sets: 20 patients with mixed indications and 30 patients with glioma. For both test sets, low-dose, true full-dose, and the synthesized full-dose postcontrast image sets were compared quantitatively using peak-signal-to-noise-ratios (PSNR) and structural-similarity-index (SSIM). For the test set comprised of 20 patients with mixed indications, two neuroradiologists scored blindly and independently for the three postcontrast image sets, evaluating image quality, motion-artifact suppression, and contrast enhancement compared with precontrast images. Results were assessed using paired t-tests and noninferiority tests. The proposed deep learning method yielded significant (n = 50, P < 0.001) improvements over the low-dose images (>5 dB PSNR gains and >11.0% SSIM). Ratings on image quality (n = 20, P = 0.003) and contrast enhancement (n = 20, P < 0.001) were significantly increased. Compared to true full-dose images, the synthesized full-dose images have a slight but not significant reduction in image quality (n = 20, P = 0.083) and contrast enhancement (n = 20, P = 0.068). Slightly

  19. Speciation and isotope dilution analysis of gadolinium-based contrast agents in wastewater.

    PubMed

    Telgmann, Lena; Wehe, Christoph A; Birka, Marvin; Künnemeyer, Jens; Nowak, Sascha; Sperling, Michael; Karst, Uwe

    2012-11-06

    The fate of Gadolinium (Gd)-based contrast agents for magnetic resonance imaging (MRI) during sewage treatment was investigated. The total concentration of Gd in influent and effluent 2 and 24 h composite samples was determined by means of isotope dilution analysis. The balancing of Gd input and output of a sewage plant over seven days indicated that approximately 10% of the Gd is removed during treatment. Batch experiments simulating the aeration tank of a sewage treatment plant confirmed the Gd complex removal during activated sludge treatment. For speciation analysis of the Gd complexes in wastewater samples, high performance liquid chromatography (HPLC) was hyphenated to inductively coupled plasma sector field mass spectrometry (ICP-SFMS). Separation of the five predominantly used contrast agents was carried out on a new hydrophilic interaction liquid chromatography stationary phase in less than 15 min. A limit of detection (LOD) of 0.13 μg/L and a limit of quantification of 0.43 μg/L could be achieved for the Gd chelates without having to apply enrichment techniques. Speciation analysis of the 24 h composite samples revealed that 80% of the Gd complexes are present as Gd-BT-DO3A in the sampled treatment plant. The day-of-week dependent variation of the complex load followed the variation of the total Gd load, indicating a similar behavior. The analysis of sewage sludge did not prove the presence of anthropogenic Gd. However, in the effluent of the chamber filter press, which was used for sludge dewatering, two of the contrast agents and three other unknown Gd species were observed. This indicates that species transformation took place during anaerobic sludge treatment.

  20. Nephrogenic systemic fibrosis (NSF): a late adverse reaction to some of the gadolinium based contrast agents

    PubMed Central

    Marckmann, Peter; Logager, Vibeke B.

    2007-01-01

    Abstract Until recently it was believed that extracellular gadolinium based contrast agents were safe for both the kidneys and all other organs within the dose range up to 0.3 mmol/kg body weight. However, in 2006, it was demonstrated that some gadolinium based contrast agents may trigger the development of nephrogenic systemic fibrosis, a generalised fibrotic disorder, in renal failure patients. Accordingly, the use of gadodiamide and gadopentate dimeglumine for renal failure patients was banned in Europe in spring 2007. The same two compounds should only be used cautiously in patients with moderate renal dysfunction. The current paper reviews the situation (July 2007) regarding gadolinium based contrast agent and the severe delayed reaction to some of these agents. The fear of nephrogenic systemic fibrosis should not lead to a denial of a well indicated enhanced magnetic resonance imaging examination. PMID:17905680

  1. A small MRI contrast agent library of gadolinium(III)-encapsulated supramolecular nanoparticles for improved relaxivity and sensitivity**

    PubMed Central

    Chen, Kuan-Ju; Wolahan, Stephanie M.; Wang, Hao; Hsu, Chao-Hsiung; Chang, Hsing-Wei; Durazo, Armando; Hwang, Lian-Pin; Garcia, Mitch A.; Jiang, Ziyue Karen; Wu, Lily

    2010-01-01

    We introduce a new category of nanoparticle-based T1 MRI contrast agents (CAs) by encapsulating paramagnetic chelated gadolinium(III), i.e., Gd3+·DOTA, through supramolecular assembly of molecular building blocks that carry complementary molecular recognition motifs, including adamantane (Ad) and β-cyclodextrin (CD). A small library of Gd3+·DOTA-encapsulated supramolecular nanoparticles (Gd3+·DOTA⊂SNPs) was produced by systematically altering the molecular building block mixing ratios. A broad spectrum of relaxation rates was correlated to the resulting Gd3+·DOTA⊂SNP library. Consequently, an optimal synthetic formulation of Gd3+·DOTA⊂SNPs with an r1 of 17.3 s−1mM−1 (ca. 4-fold higher than clinical Gd3+ chelated complexes at high field strengths) was identified. T1-weighted imaging of Gd3+·DOTA⊂SNPs exhibits an enhanced sensitivity with a contrast-to-noise ratio (C/N ratio) ca. 3.6 times greater than that observed for free Gd3+·DTPA. A Gd3+·DOTA⊂SNPs solution was injected into foot pads of mice, and MRI was employed to monitor dynamic lymphatic drainage of the Gd3+·DOTA⊂SNPs-based CA. We observe an increase in signal intensity of the brachial lymph node in T1-weighted imaging after injecting Gd3+·DOTA⊂SNPs but not after injecting Gd3+·DTPA. The MRI results are supported by ICP-MS analysis ex vivo. These results show that Gd3+·DOTA⊂SNPs not only exhibits enhanced relaxivity and high sensitivity but also can serve as a potential tool for diagnosis of cancer metastasis. PMID:21167594

  2. Chiral DOTA chelators as an improved platform for biomedical imaging and therapy applications.

    PubMed

    Dai, Lixiong; Jones, Chloe M; Chan, Wesley Ting Kwok; Pham, Tiffany A; Ling, Xiaoxi; Gale, Eric M; Rotile, Nicholas J; Tai, William Chi-Shing; Anderson, Carolyn J; Caravan, Peter; Law, Ga-Lai

    2018-02-27

    Despite established clinical utilisation, there is an increasing need for safer, more inert gadolinium-based contrast agents, and for chelators that react rapidly with radiometals. Here we report the syntheses of a series of chiral DOTA chelators and their corresponding metal complexes and reveal properties that transcend the parent DOTA compound. We incorporated symmetrical chiral substituents around the tetraaza ring, imparting enhanced rigidity to the DOTA cavity, enabling control over the range of stereoisomers of the lanthanide complexes. The Gd chiral DOTA complexes are shown to be orders of magnitude more inert to Gd release than [GdDOTA] - . These compounds also exhibit very-fast water exchange rates in an optimal range for high field imaging. Radiolabeling studies with (Cu-64/Lu-177) also demonstrate faster labelling properties. These chiral DOTA chelators are alternative general platforms for the development of stable, high relaxivity contrast agents, and for radiometal complexes used for imaging and/or therapy.

  3. Target binding improves relaxivity in aptamer-gadolinium conjugates.

    PubMed

    Bernard, Elyse D; Beking, Michael A; Rajamanickam, Karunanithi; Tsai, Eve C; Derosa, Maria C

    2012-12-01

    MRI contrast agents (CA) have been heavily used over the past several decades to enhance the diagnostic value of the obtained images. From a design perspective, two avenues to improve the efficacy of contrast agents are readily evident: optimization of magnetic properties of the CA, and optimization of the pharmacokinetics and distribution of the CA in the patient. Contrast agents consisting of DNA aptamer-gadolinium(III) conjugates provide a single system in which these factors can be addressed simultaneously. In this proof-of-concept study, the 15mer thrombin aptamer was conjugated to diethylenetriaminepentaacetic (DTPA) dianhydride to form a monoamide derivative of the linear open-chain chelate present in the commonly used contrast agent Magnevist(®). The stability of the conjugated DNA aptamer-DTPA-Gd(III) chelate in a transmetallation study using Zn(II) was found to be similar to that reported for DTPA-Gd(III). Relaxivity enhancements of 35 ± 4 and 20 ± 1 % were observed in the presence of thrombin compared to a control protein at fields of 9.4 and 1.5 T, respectively. The inclusion of spacers between the aptamer and the DTPA to eliminate possible steric effects was also investigated but not found to improve the relaxation enhancement achieved in comparison to the unaltered aptamer conjugate.

  4. Lectin conjugates as biospecific contrast agents for MRI. Coupling of Lycopersicon esculentum agglutinin to linear water-soluble DTPA-loaded oligomers.

    PubMed

    Pashkunova-Martic, Irena; Kremser, Christian; Galanski, Markus; Schluga, Petra; Arion, Vladimir; Debbage, Paul; Jaschke, Werner; Keppler, Bernhard

    2011-06-01

    Magnetic resonance imaging (MRI) requires synthesis of contrast media bearing targeting groups and numerous gadolinium chelating groups generating high relaxivity. This paper explores the results of linking the gadolinium chelates to the targeting group, a protein molecule, via various types of linkers. Polycondensates of diethylenetriaminepentaacetic acid (DTPA) with either diols or diamines were synthesised and coupled to the targeting group, a lectin (Lycopersicon esculentum agglutinin, tomato lectin) which binds with high affinity to specific oligosaccharide configurations in the endothelial glycocalyx. The polycondensates bear up to four carboxylic groups per constitutive unit. Gd-chelate bonds are created through dative interactions with the unshared pair of electrons on each oxygen and nitrogen atom on DTPA. This is mandatory for complexation of Gd(III) and avoidance of the severe toxicity of free gadolinium ions. The polymer-DTPA compounds were characterised by (1)H NMR and mass spectrometry. The final lectin-DTPA-polycondensate conjugates were purified by fast protein liquid chromatography (FPLC). The capacity for specific binding was assessed, and the MRI properties were examined in order to evaluate the use of these oligomers as components of selective perfusional contrast agents.

  5. Gadolinium chloride as a contrast agent for imaging wood composite components by magnetic resonance

    Treesearch

    Thomas L. Eberhardt; Chi-Leung So; Andrea Protti; Po-Wah So

    2009-01-01

    Although paramagnetic contrast agents have an established track record in medical uses of magnetic resonance imaging (MRI), only recently has a contrast agent been used for enhancing MRI images of solid wood specimens. Expanding on this concept, wood veneers were treated with a gadolinium-based contrast agent and used in a model system comprising three-ply plywood...

  6. The dosimetric impact of gadolinium-based contrast media in GBM brain patient plans for a MRI-Linac

    NASA Astrophysics Data System (ADS)

    Bilal Ahmad, Syed; Paudel, Moti Raj; Sarfehnia, Arman; Kim, Anthony; Pang, Geordi; Ruschin, Mark; Sahgal, Arjun; Keller, Brian M.

    2017-08-01

    Dosimetric effects of gadolinium based contrast media (Gadovist) were evaluated for the Elekta MRI linear accelerator using the research version of the Monaco treatment planning system (TPS). In order to represent a gadolinium uptake, the contrast was manually assigned to a phantom as well as to the gross tumour volume (GTV) of 6 glioblastoma multiforme (GBM) patients. A preliminary estimate of the dose enhancement, due to gadolinium, was performed using the phantom irradiated with a single beam. A more complicated assessment was performed for the GBM patients using a 7 field IMRT technique. The material table in Monaco was modified in order to identify the presence of a non-biological material. The dose distribution was modelled using GPUMCD (MC algorithm in Monaco) for an unmodified (or default) material table (DMT) as well as for a modified (or custom) material table (CMT) for both the phantom and patients. Various concentrations ranging between 8 and 157 mg ml-1 were used to represent the gadolinium uptake in the patient’s GTV. It was assumed that the gadolinium concentration remained the same for the entire course of radiation treatment. Results showed that at the tissue-Gadovist interface, inside the phantom, dose scored using the DMT was 7% lower compared to that using the CMT for 157 mg ml-1 concentration of gadolinium. Dosimetric differences in the case of the patient study were measured using the DVH parameters. D 50% was higher by 6% when the DMT was used compared to the CMT for dose modelling for a gadolinium concentration of 157 mg ml-1. This difference decreased gradually with decreasing concentration of gadolinium. It was concluded that dosimetric differences can be quantified in Monaco if the tumour-gadolinium concentration is more than 23 mg ml-1. If the gadolinium concentration is lower than 23 mg ml-1, then a correction for the presence of gadolinium may not be necessary in the TPS.

  7. The dosimetric impact of gadolinium-based contrast media in GBM brain patient plans for a MRI-Linac.

    PubMed

    Ahmad, Syed Bilal; Paudel, Moti Raj; Sarfehnia, Arman; Kim, Anthony; Pang, Geordi; Ruschin, Mark; Sahgal, Arjun; Keller, Brian M

    2017-08-01

    Dosimetric effects of gadolinium based contrast media (Gadovist) were evaluated for the Elekta MRI linear accelerator using the research version of the Monaco treatment planning system (TPS). In order to represent a gadolinium uptake, the contrast was manually assigned to a phantom as well as to the gross tumour volume (GTV) of 6 glioblastoma multiforme (GBM) patients. A preliminary estimate of the dose enhancement, due to gadolinium, was performed using the phantom irradiated with a single beam. A more complicated assessment was performed for the GBM patients using a 7 field IMRT technique. The material table in Monaco was modified in order to identify the presence of a non-biological material. The dose distribution was modelled using GPUMCD (MC algorithm in Monaco) for an unmodified (or default) material table (DMT) as well as for a modified (or custom) material table (CMT) for both the phantom and patients. Various concentrations ranging between 8 and 157 mg ml -1 were used to represent the gadolinium uptake in the patient's GTV. It was assumed that the gadolinium concentration remained the same for the entire course of radiation treatment. Results showed that at the tissue-Gadovist interface, inside the phantom, dose scored using the DMT was 7% lower compared to that using the CMT for 157 mg ml -1 concentration of gadolinium. Dosimetric differences in the case of the patient study were measured using the DVH parameters. D 50% was higher by 6% when the DMT was used compared to the CMT for dose modelling for a gadolinium concentration of 157 mg ml -1 . This difference decreased gradually with decreasing concentration of gadolinium. It was concluded that dosimetric differences can be quantified in Monaco if the tumour-gadolinium concentration is more than 23 mg ml -1 . If the gadolinium concentration is lower than 23 mg ml -1 , then a correction for the presence of gadolinium may not be necessary in the TPS.

  8. Gadolinium-enhanced cardiovascular magnetic resonance: administered dose in relationship to United States Food and Drug Administration (FDA) guidelines.

    PubMed

    Nacif, Marcelo S; Arai, Andrew E; Lima, Joao A C; Bluemke, David A

    2012-02-29

    Myocardial late gadolinium enhancement was originally validated using higher than label-recommended doses of gadolinium chelate. The objective of this study was to evaluate available evidence for various gadolinium dosing regimens used for CMR. The relationship of gadolinium dose warnings (due to nephrogenic systemic fibrosis) announced in 2008 to gadolinium dosing regimens was also examined. We conducted a meta-analysis of peer reviewed publications from January, 2004 to December, 2010. Major subject search headings (MeSh) terms from the National Library of Medicine's PubMed were: contrast media, gadolinium, heart, magnetic resonance imaging; searches were limited to human studies with abstracts published in English. Case reports, review articles, editorials, MRA related papers and all reports that did not indicate gadolinium type or weight-based dose were excluded. For all included references, full text was available to determine the total administered gadolinium dose on a per kg basis. Average and median dose values were weighted by the number of subjects in each study. 399 publications were identified in PubMed; 233 studies matched the inclusion criteria, encompassing 19,934 patients with mean age 54.2 ± 11.4 (range 9.3 to 76 years). 34 trials were related to perfusion testing and 199 to myocardial late gadolinium enhancement. In 2004, the weighted-median and weighted-mean contrast dose were 0.15 and 0.16 ± 0.06 mmol/kg, respectively. Median contrast doses for 2005-2010 were: 0.2 mmol/kg for all years, respectively. Mean contrast doses for the years 2005-2010 were: 0.19 ± 0.03, 0.18 ± 0.04, 0.18 ± 0.10, 0.18 ± 0.03, 0.18 ± 0.04 and 0.18 ± 0.04 mmol/kg, respectively (p for trend, NS). Gadopentetate dimeglumine was the most frequent gadolinium type [114 (48.9%) studies]. No change in mean gadolinium dose was present before, versus after the Food and Drug Administration (FDA) black box warning (p > 0.05). Three multi-center dose ranging trials have been

  9. Renal function, nephrogenic systemic fibrosis and other adverse reactions associated with gadolinium-based contrast media.

    PubMed

    Canga, Ana; Kislikova, Maria; Martínez-Gálvez, María; Arias, Mercedes; Fraga-Rivas, Patricia; Poyatos, Cecilio; de Francisco, Angel L M

    2014-01-01

    Nephrogenic systemic fibrosis is a fibrosing disorder that affects patients with impaired renal function and is associated with the administration of gadolinium-based contrast media used in MRI. Despite being in a group of drugs that were considered safe, report about this potentially serious adverse reaction was a turning point in the administration guidelines of these contrast media. There has been an attempt to establish safety parameters to identify patients with risk factors of renal failure. The close pharmacovigilance and strict observation of current regulations, with special attention being paid to the value of glomerular filtration, have reduced the published cases involving the use of gadolinium-based contrast media. In a meeting between radiologists and nephrologists we reviewed the most relevant aspects currently and recommendations for its prevention.

  10. Poly(acrylic acid) Bridged Gadolinium Metal-Organic Framework-Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging.

    PubMed

    Tian, Chixia; Zhu, Liping; Lin, Feng; Boyes, Stephen G

    2015-08-19

    Imaging contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) have received significant attention in the development of techniques for early stage cancer diagnosis. Gadolinium (Gd)(III), which has seven unpaired electrons and a large magnetic moment, can dramatically influence the water proton relaxation and hence exhibits excellent MRI contrast. On the other hand, gold (Au), which has a high atomic number and high X-ray attenuation coefficient, is an ideal contrast agent candidate for X-ray-based CT imaging. Gd metal-organic framework (MOF) nanoparticles with tunable size, high Gd(III) loading and multivalency can potentially overcome the limitations of clinically utilized Gd chelate contrast agents. In this work, we report for the first time the integration of GdMOF nanoparticles with gold nanoparticles (AuNPs) for the preparation of a MRI/CT bimodal imaging agent. Highly stable hybrid GdMOF/AuNPs composites have been prepared by using poly(acrylic acid) as a bridge between the GdMOF nanoparticles and AuNPs. The hybrid nanocomposites were then evaluated in MRI and CT imaging. The results revealed high longitudinal relaxivity in MRI and excellent CT imaging performance. Therefore, these GdMOF/AuNPs hybrid nanocomposites potentially provide a new platform for the development of multimodal imaging probes.

  11. Poly(acrylic acid) Bridged Gadolinium Metal-Organic Framework-Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging

    PubMed Central

    Tian, Chixia; Zhu, Liping; Lin, Feng; Boyes, Stephen G.

    2015-01-01

    Imaging contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) have received significant attention in the development of techniques for early-stage cancer diagnosis. Gadolinium (Gd) (III), which has seven unpaired electrons and a large magnetic moment, can dramatically influence the water proton relaxation and hence exhibits excellent MRI contrast. On the other hand, gold (Au), which has a high atomic number and high x-ray attenuation coefficient, is an ideal contrast agent candidate for x-ray based CT imaging. Gd metal organic framework (MOF) nanoparticles with tunable size, high Gd (III) loading and multivalency can potentially overcome the limitations of clinically utilized Gd chelate contrast agents. In this work, we report for the first time the integration of GdMOF nanoparticles with gold nanoparticles (AuNPs) for the preparation of a MRI/CT bimodal imaging agent. Highly stable hybrid GdMOF/AuNPs composites have been prepared by using poly(acrylic acid) as a bridge between the GdMOF nanoparticles and AuNPs. The hybrid nanocomposites were then evaluated in MRI and CT imaging. The results revealed high longitudinal relaxivity in MRI and excellent CT imaging performance. Therefore, these GdMOF/AuNPs hybrid nanocomposites potentially provide a new platform for the development of multi-modal imaging probes. PMID:26147906

  12. Effects of gadolinium-based MRI contrast agents on liver tissue.

    PubMed

    Mercantepe, Tolga; Tümkaya, Levent; Çeliker, Fatma Beyazal; Topal Suzan, Zehra; Çinar, Seda; Akyildiz, Kerimali; Mercantepe, Filiz; Yilmaz, Adnan

    2018-04-01

    MRI with contrast is often used clinically. However, recent studies have reported a high accumulation of gadolinium-based contrast agents (GBCAs) in kidney, liver, and spleen tissues in several mouse models. To compare the effects on liver tissue of gadolinium-based MRI contrast agents in the light of biochemical and histopathological evaluation. Institutional Review Board (IRB)-approved controlled longitudinal study. In all, 32 male Sprague-Dawley rats were divided into a healthy control group subjected to no procedure (Group 1), a sham group (Group 2), a gadodiamide group (Group 3), and a gadoteric acid group (Group 4). Not applicable. Liver tissues removed at the end of the fifth week and evaluated pathologically (scored Knodell's histological activity index [HAI] method by two histopathologists) immunohistochemical (caspase-3 and biochemical tests (AST, ALT, TAS, TOS, and OSI method by Erel et al) were obtained. Differences between groups were analyzed using the nonparametric Kruskal-Wallis test followed by the Tamhane test, and one-way analysis of variance (ANOVA) followed by Turkey's HSD test. An increase was observed in histological activity scores in sections from rats administered gadodiamide and gadoteric acid, and in caspase-3, AST and ALT values (P < 0.05). In contrast, we determined no change in TOS (P = 0.568 and P = 0.094, respectively), TAS (P = 0.151 and P = 0.055, respectively), or OSI (P = 0.949 and P = 0.494, respectively) values. These data suggest that gadodiamide and gadoteric acid trigger hepatocellular necrosis and apoptosis by causing damage in hepatocytes, although no change occurs in total antioxidant and antioxidant capacity. 1 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  13. Removal of gadolinium by peritoneal dialysis.

    PubMed

    Murashima, M; Drott, H R; Carlow, D; Shaw, L M; Milone, M; Bachman, M; Tsai, D E; Yang, S-L; Bloom, R D

    2008-05-01

    An association between gadolinium-containing contrast and the development of nephrogenic systemic fibrosis (NSF) has been increasingly recognized. For patients receiving hemodialysis (HD) who are exposed to gadolinium, the Federal Drug Administration (FDA) recommends HD to remove this contrast agent in order to minimize the risk of NSF. This study examines if gadolinium can be removed by frequent exchanges by peritoneal dialysis (PD). Following administration of 0.1 mmol/kg of gadodiamide to a patient with end-stage renal disease, the serum clearance of this contrast agent by automated PD was examined. 10 and 15 exchanges of PD using an automated cycler were respectively performed during the first and second 24-hour periods after gadolinium exposure. Serum gadolinium levels were measured 1 hour after the gadolinium administration, then at 24 and 48 hours after PD was initiated. 90% of the gadolinium was removed from the circulation in 2 days with a regimen of 10-15 exchanges per day of PD. For patients on chronic maintenance PD who receive gadolinium, our case suggests that a temporary intensive automated PD regimen, aimed at maximizing clearance of this contrast agent immediately after exposure, could be an effective alternative when institution of HD is problematic.

  14. Active extravasation of gadolinium-based contrast agent into the subdural space following lumbar puncture.

    PubMed

    Kothari, Pranay D; Hanser, Evelyn M; Wang, Harrison; Farid, Nikdokht

    2016-01-01

    A 38year-old male presented with cauda equina syndrome following multiple lumbar puncture attempts. Lumbar spine magnetic resonance imaging (MRI) showed a subdural hematoma and an area of apparent contrast enhancement in the spinal canal on sagittal post-contrast images. Axial post-contrast images obtained seven minutes later demonstrated an increase in size and change in shape of the region of apparent contrast enhancement, indicating active extravasation of the contrast agent. This is the first reported case of active extravasation of gadolinium-based contrast agent in the spine. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Lanthanide Oleates: Chelation, Self-assembly, and Exemplification of Ordered Nanostructured Colloidal Contrast Agents for Medical Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Guozhen; Conn, Charlotte E.; Drummond, Calum J.

    2010-01-12

    Eight lanthanide(III) oleates have been prepared and characterized. The chelation and self-assembly structures of these rare-earth oleates have been studied by elemental analysis, Fourier transfer infrared spectroscopy (FTIR), and X-ray powder diffraction (XRD) analysis. Elemental analysis and FTIR results indicate that three oleate anions are complexed with one lanthanide cation and, with the exception of anhydrous cerium(III) oleate, form either a mono- or a hemihydrate. The X-ray analysis showed that the neat lanthanide soaps have a lamellar bilayer structure at room temperature. The thermal behavior has been investigated by cross-polarized optical microscopy (POM), differential scanning calorimetry (DSC), and thermogravimetric analysismore » (TGA). POM scans showed that all the lanthanide oleates form a lamellar phase in the presence of excess water. Small-angle X-ray scattering (SAXS) and XRD were used to investigate the internal structure of the bulk lanthanide oleates in excess water, and these X-ray results confirmed that the lanthanide oleates do not swell in water. Select lanthanide oleates were dispersed in water to form nonswelling lamellar submicrometer particles, confirmed by dynamic light scattering (DLS) and synchrotron SAXS measurements. NMR results indicated that colloidal dispersions of lanthanide oleates containing paramagnetic ions, such as gadolinium(III), terbium(III), and dysprosium(III), have a significant effect on the longitudinal (T{sub 1}) and transverse (T{sub 2}) relaxation times of protons in water. Time-resolved fluorescence measurements have demonstrated that colloidal dispersions of europium(III) oleate exhibit strong luminescence. The rare earth metal soaps exemplify the potential of self-assembled chelating amphiphiles as contrast agents in medical imaging modalities such as magnetic resonance imaging (MRI) and fluorescence imaging.« less

  16. Comparison of nephrotoxicity between two gadolinium-contrasts, gadodiamide and gadopentetate in patients with mildly diminished renal failure.

    PubMed

    Naito, Shokichi; Tazaki, Hiromi; Okamoto, Tomoko; Takeuchi, Kazuhiro; Kan, Shinichi; Takeuchi, Yasuo; Kamata, Kouju

    2017-01-01

    Although gadolinium (Gd)-based contrast media have been found to be nephrotoxic, their nephrotoxicity, and the dependence of nephrotoxicity on chelate types, have not been assessed in patients with normal or mildly diminished renal failure. This prospective, randomized study compared the nephrotoxicity of low doses of the nonionic Gd-based contrast medium gadodiamide (Omniscan®) and the ionic Gd-based contrast medium gadopentetate (Magnevist®) in patients with serum creatinine < 1.6 mg/dL. Patients aged 20 to 80 years, weighing 45 to 70 kg and with normal or < 1.6 mg/dL Serum-creatinine in the 3 months prior to undergoing magnetic resonance imaging (MRI) of brain, were enrolled. Patients were randomized to receive 0.1 mol/kg gadodiamide or gadopentetate. Serum-creatinine, serum cystatin-C, estimated glomerular filtration rate (eGFR) using the Modification of Diet in Renal Disease (MDRD) formula, and estimated creatinine clearance rate (eCCr) using the Cockcroft-Gault formula were measured just before and 16-80 hr after MRI. Groups were compared statistically by Mann-Whitney U-tests and Wilcoxon signed-rank tests. There were no significant differences in clinical characteristics between the gadodiamide (n = 43) and gadopentetate (n = 59) groups. Serum-creatinine, eGFR and eCCr before and 16-80 hr after MRI did not differ significantly within either group or between the two groups. Serum cystatin-C was significantly higher 16-80 hr after than before MRI only in the gadodiamide group (0.79 ± 0.21 vs. 0.74 ± 0.14 mg/L, p = 0.028). The ionic contrast medium, gadopentetate, did not affect renal function during MRI, whereas the nonionic contrast medium, gadodiamide, affected renal function transiently.

  17. Pathophysiology of gadolinium-associated systemic fibrosis

    PubMed Central

    Drel, Viktor; Gorin, Yves

    2016-01-01

    Systemic fibrosis from gadolinium-based magnetic resonance imaging contrast is a scourge for the afflicted. Although gadolinium-associated systemic fibrosis is a rare condition, the threat of litigation has vastly altered clinical practice. Most theories concerning the etiology of the fibrosis are grounded in case reports rather than experiment. This has led to the widely accepted conjecture that the relative affinity of certain contrast agents for the gadolinium ion inversely correlates with the risk of succumbing to the disease. How gadolinium-containing contrast agents trigger widespread and site-specific systemic fibrosis and how chronicity is maintained are largely unknown. This review highlights experimentally-derived information from our laboratory and others that pertain to our understanding of the pathophysiology of gadolinium-associated systemic fibrosis. PMID:27147669

  18. Gadolinium Chelate Safety in Pregnancy: Barely Detectable Gadolinium Levels in the Juvenile Nonhuman Primate after in Utero Exposure.

    PubMed

    Prola-Netto, Joao; Woods, Mark; Roberts, Victoria H J; Sullivan, Elinor L; Miller, Christina Ann; Frias, Antonio E; Oh, Karen Y

    2018-01-01

    Purpose To determine whether gadolinium remains in juvenile nonhuman primate tissue after maternal exposure to intravenous gadoteridol during pregnancy. Materials and Methods Gravid rhesus macaques and their offspring (n = 10) were maintained, as approved by the institutional animal care and utilization committee. They were prospectively studied as part of a pre-existing ongoing research protocol to evaluate the effects of maternal malnutrition on placental and fetal development. On gestational days 85 and 135, they underwent placental magnetic resonance imaging after intravenous gadoteridol administration. Amniocentesis was performed on day 135 prior to administration of the second dose of gadoteridol. After delivery, the offspring were followed for 7 months. Tissue samples from eight different organs and from blood were harvested from each juvenile macaque. Gadolinium levels were measured by using inductively coupled plasma mass spectrometry. Results Gadolinium concentration in the amniotic fluid was 0.028 × 10 -5 %ID/g (percentage injected dose per gram of tissue) 50 days after administration of one gadoteridol dose. Gadolinium was most consistently detected in the femur (mean, 2.5 × 10 -5 %ID/g; range, [0.81-4.1] × 10 -5 %ID/g) and liver (mean, 0.15 × 10 -5 %ID/g; range, [0-0.26] × 10 -5 %ID/g). Levels were undetectable in the remaining sampled tissues, with the exception of one juvenile skin sample (0.07 × 10 -5 %ID/g), one juvenile spleen sample (0.039 × 10 -5 %ID/g), and one juvenile brain (0.095 × 10 -5 %ID/g) and kidney (0.13 × 10 -5 %ID/g) sample. Conclusion The presence of gadoteridol in the amniotic fluid after maternal injection enables confirmation that it crosses the placenta. Extremely low levels of gadolinium are found in juvenile macaque tissues after in utero exposure to two doses of gadoteridol, indicating that a very small amount of gadolinium persists after delivery. © RSNA, 2017.

  19. The use of innovative gadolinium-based contrast agent for MR-diagnosis of cancer in the experiment

    NASA Astrophysics Data System (ADS)

    Chernov, V.; Medvedeva, A.; Sinilkin, I.; Zelchan, R.; Grigorev, E.; Frolova, I.; Nam, I.

    2016-02-01

    The present study of the functional suitability and specific activity of the contrast agent gadolinium-based for magnetic resonance imaging demonstrated that the investigated contrast agent intensively accumulates in organs and anatomical structures of the experimental animals. In the model of tumor lesions in animals, study have shown that investigational contrast agent accumulates in the tumor tissue and retained there in for a long enough time.

  20. Gadolinium-enhanced MR images of the growing piglet skeleton: ionic versus nonionic contrast agent.

    PubMed

    Menezes, Nina M; Olear, Elizabeth A; Li, Xiaoming; Connolly, Susan A; Zurakowski, David; Foley, Mary; Shapiro, Frederic; Jaramillo, Diego

    2006-05-01

    To determine whether there are differences in the distribution of ionic and nonionic gadolinium-based contrast agents by evaluating contrast enhancement of the physis, epiphyseal cartilage, secondary ossification center, and metaphysis in the knees of normal piglets. Following approval from the Subcommittee on Research Animal Care, knees of 12 3-week-old piglets were imaged at 3-T magnetic resonance (MR) imaging after intravenous injection of gadoteridol (nonionic contrast agent; n = 6) or gadopentetate dimeglumine (ionic contrast agent; n = 6). Early enhancement evaluation with gradient-echo MR imaging was quantified and compared (Student t test) by means of enhancement ratios. Distribution of contrast material was assessed and compared (Student t test) by means of T1 measurements obtained before and at three 15-minute intervals after contrast agent administration. The relative visibility of the physis, epiphyseal cartilage, secondary ossification center, and metaphysis was qualitatively assessed by two observers and compared (Wilcoxon signed rank test). Differences in matrix content and cellularity that might explain the imaging findings were studied at histologic evaluation. Enhancement ratios were significantly higher for gadoteridol than for gadopentetate dimeglumine in the physis, epiphyseal cartilage, and secondary ossification center (P < .05). After contrast agent administration, T1 values decreased sharply for both agents-but more so for gadoteridol. Additionally, there was less variability in T1 values across structures with this contrast agent. Gadoteridol resulted in greater visibility of the physis, while gadopentetate dimeglumine resulted in greater contrast between the physis and metaphysis (P < .05). The results suggest different roles for the two gadolinium-based contrast agents: The nonionic contrast medium is better suited for evaluating perfusion and anatomic definition in the immature skeleton, while the ionic contrast medium is better for

  1. Polydisulfide Manganese(II) Complexes as Non-Gadolinium Biodegradable Macromolecular MRI Contrast Agents

    PubMed Central

    Ye, Zhen; Jeong, Eun-Kee; Wu, Xueming; Tan, Mingqian; Yin, Shouyu; Lu, Zheng-Rong

    2011-01-01

    Purpose To develop safe and effective manganese(II) based biodegradable macromolecular MRI contrast agents. Materials and Methods In this study, we synthesized and characterized two polydisulfide manganese(II) complexes, Mn-DTPA cystamine copolymers and Mn-EDTA cystamine copolymers, as new biodegradable macromolecular MRI contrast agents. The contrast enhancement of the two manganese based contrast agents were evaluated in mice bearing MDA-MB-231 human breast carcinoma xenografts, in comparison with MnCl2. Results The T1 and T2 relaxivities were 4.74 and 10.38 mM−1s−1 per manganese at 3T for Mn-DTPA cystamine copolymers (Mn=30.50 kDa) and 6.41 and 9.72 mM−1s−1 for Mn-EDTA cystamine copolymers (Mn= 61.80 kDa). Both polydisulfide Mn(II) complexes showed significant liver, myocardium and tumor enhancement. Conclusion The manganese based polydisulfide contrast agents have a potential to be developed as alternative non-gadolinium contrast agents for MR cancer and myocardium imaging. PMID:22031457

  2. Catalytic superoxide scavenging by metal complexes of the calcium chelator EGTA and contrast agent EHPG.

    PubMed

    Fisher, Anna E O; Hague, Theresa A; Clarke, Charlotte L; Naughton, Declan P

    2004-10-08

    Metal ion chelators widely used in experimental protocols and clinical diagnosis are generally assumed to be inert. We previously reported that the ubiquitous chelator EDTA has high levels of superoxide suppressing activity. Here, we report that the common chelators calcium chelator EGTA and contrast agent EHPG have significant activities in suppressing superoxide levels depending on the nature of metal ion chelated. The most active species is Mn(II)-EGTA which exhibited an IC50 value of 0.19 microM for superoxide destruction. In addition, IC50 values for Mn(II)-EHPG and 2Cu(II)-EGTA were 0.69 and 0.60 microM, respectively. In conclusion, Mn(II) and Cu(II) complexes of the common chelators EGTA and EHPG exhibit considerable superoxide scavenging activities. Caution should be employed in their use in biological systems where superoxide has a key role and they may be useful for the development of catalytic anti-oxidants. Copyright 2004 Elsevier Inc.

  3. [Combined use of contrast media containing iodine and gadolinium for imaging and intervention : A hitherto widely ignored topic in radiological practice].

    PubMed

    Golder, W

    2012-02-01

    The synchronous use of chemically different contrast media in the same body compartment is a challenge for the radiologist, whether it is scheduled or unexpected. However, to inject contrast media containing iodine and gadolinium at the same time can be a prerequisite for the examination of several organs or organ systems. Unlike other topics of contrast-enhanced imaging procedures, the difficulties encountered with double contrast injections have been widely ignored in the literature. In the absence of reliable data from experimental and clinical studies the radiologist is dependent on case reports, information provided by the contrast media manufacturers, personal communications, mostly scanty personal experiences and a skilful time management, in order to overcome the situation. Only the combination of X-ray, computed tomography and magnetic resonance arthrography can be performed without another thought. However, the more or less synchronous vascular application of contrast media containing iodine and gadolinium requires vigilance. The more seriously ill the patient is, the more caution is advised even if the decision on the combined administration has to be reached urgently. The following overview gives a description of the properties of contrast media containing iodine and gadolinium as far as interactions following simultaneous administration are concerned. Subsequently, the clinically relevant situations and constellations are outlined and analyzed.

  4. Gadolinium-based nanoparticles to improve the hadrontherapy performances.

    PubMed

    Porcel, Erika; Tillement, Olivier; Lux, François; Mowat, Pierre; Usami, Noriko; Kobayashi, Katsumi; Furusawa, Yoshiya; Le Sech, Claude; Li, Sha; Lacombe, Sandrine

    2014-11-01

    Nanomedicine is proposed as a novel strategy to improve the performance of radiotherapy. High-Z nanoparticles are known to enhance the effects of ionizing radiation. Recently, multimodal nanoparticles such as gadolinium-based nanoagents were proposed to amplify the effects of x-rays and g-rays and to improve MRI diagnosis. For tumors sited in sensitive tissues, childhood cases and radioresistant cancers, hadrontherapy is considered superior to x-rays and g-rays. Hadrontherapy, based on fast ion radiation, has the advantage of avoiding damage to the tissues behind the tumor; however, the damage caused in front of the tumor is its major limitation. Here, we demonstrate that multimodal gadolinium-based nanoparticles amplify cell death with fast ions used as radiation. Molecular scale experiments give insights into the mechanisms underlying the amplification of radiation effects. This proof-of-concept opens up novel perspectives for multimodal nanomedicine in hadrontherapy, ultimately reducing negative radiation effects in healthy tissues in front of the tumor. Gadolinium-chelating polysiloxane nanoparticles were previously reported to amplify the anti-tumor effects of x-rays and g-rays and to serve as MRI contrast agents. Fast ion radiation-based hadrontherapy avoids damage to the tissues behind the tumor, with a major limitation of tissue damage in front of the tumor. This study demonstrates a potential role for the above nanoagents in optimizing hadrontherapy with preventive effects in healthy tissue and amplified cell death in the tumor. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Gadolinium toxicity and treatment.

    PubMed

    Ramalho, Joana; Ramalho, Miguel; Jay, Michael; Burke, Lauren M; Semelka, Richard C

    2016-12-01

    Gadolinium based contrast agents (GBCAs) play an important role in the diagnostic evaluation of many patients. The safety of these agents has been once again questioned after gadolinium deposits were observed and measured in brain and bone of patients with normal renal function. This retention of gadolinium in the human body has been termed "gadolinium storage condition". The long-term and cumulative effects of retained gadolinium in the brain and elsewhere are not as yet understood. Recently, patients who report that they suffer from chronic symptoms secondary to gadolinium exposure and retention created gadolinium-toxicity on-line support groups. Their self-reported symptoms have recently been published. Bone and joint complaints, and skin changes were two of the most common complaints. This condition has been termed "gadolinium deposition disease". In this review we will address gadolinium toxicity disorders, from acute adverse reactions to GBCAs to gadolinium deposition disease, with special emphasis on the latter, as it is the most recently described and least known. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Subcellular SIMS imaging of gadolinium isotopes in human glioblastoma cells treated with a gadolinium containing MRI agent

    NASA Astrophysics Data System (ADS)

    Smith, Duane R.; Lorey, Daniel R.; Chandra, Subhash

    2004-06-01

    Neutron capture therapy is an experimental binary radiotherapeutic modality for the treatment of brain tumors such as glioblastoma multiforme. Recently, neutron capture therapy with gadolinium-157 has gained attention, and techniques for studying the subcellular distribution of gadolinium-157 are needed. In this preliminary study, we have been able to image the subcellular distribution of gadolinium-157, as well as the other six naturally abundant isotopes of gadolinium, with SIMS ion microscopy. T98G human glioblastoma cells were treated for 24 h with 25 mg/ml of the metal ion complex diethylenetriaminepentaacetic acid Gd(III) dihydrogen salt hydrate (Gd-DTPA). Gd-DTPA is a contrast enhancing agent used for MRI of brain tumors, blood-brain barrier impairment, diseases of the central nervous system, etc. A highly heterogeneous subcellular distribution was observed for gadolinium-157. The nuclei in each cell were distinctly lower in gadolinium-157 than in the cytoplasm. Even within the cytoplasm the gadolinium-157 was heterogeneously distributed. The other six naturally abundant isotopes of gadolinium were imaged from the same cells and exhibited a subcellular distribution consistent with that observed for gadolinium-157. These observations indicate that SIMS ion microscopy may be a viable approach for subcellular studies of gadolinium containing neutron capture therapy drugs and may even play a major role in the development and validation of new gadolinium contrast enhancing agents for diagnostic MRI applications.

  7. Cell-permeable Ln(III) chelate-functionalized InP quantum dots as multimodal imaging agents.

    PubMed

    Stasiuk, Graeme J; Tamang, Sudarsan; Imbert, Daniel; Poillot, Cathy; Giardiello, Marco; Tisseyre, Céline; Barbier, Emmanuel L; Fries, Pascal Henry; de Waard, Michel; Reiss, Peter; Mazzanti, Marinella

    2011-10-25

    Quantum dots (QDs) are ideal scaffolds for the development of multimodal imaging agents, but their application in clinical diagnostics is limited by the toxicity of classical CdSe QDs. A new bimodal MRI/optical nanosized contrast agent with high gadolinium payload has been prepared through direct covalent attachment of up to 80 Gd(III) chelates on fluorescent nontoxic InP/ZnS QDs. It shows a high relaxivity of 900 mM(-1) s(-1) (13 mM(-1 )s(-1) per Gd ion) at 35 MHz (0.81 T) and 298 K, while the bright luminescence of the QDs is preserved. Eu(III) and Tb(III) chelates were also successfully grafted to the InP/ZnS QDs. The absence of energy transfer between the QD and lanthanide emitting centers results in a multicolor system. Using this convenient direct grafting strategy additional targeting ligands can be included on the QD. Here a cell-penetrating peptide has been co-grafted in a one-pot reaction to afford a cell-permeable multimodal multimeric MRI contrast agent that reports cellular localization by fluorescence and provides high relaxivity and increased tissue retention with respect to commercial contrast agents.

  8. Gadolinium-free MR in coarctation-can contrast-enhanced MR angiography be replaced?

    PubMed

    Kalmar, Peter I; Koestenberger, Martin; Marterer, Robert; Tschauner, Sebastian; Sorantin, Erich

    2016-01-01

    To determine the difference in vessel measurements, signal-to-noise ratio (SNR), and voxel size between contrast-enhanced and noncontrast magnetic resonance techniques in patients with coarctation of the aorta (CoA). In 39 patients, vessel size, SNR, and voxel size were compared in cine magnetic resonance imaging (MRI), gadolinium-free magnetic resonance angiography (Gd-free MRA), and contrast-enhanced MRA (ce-MRA). There was no significant difference in measurement and SNR, but there was a significant difference in voxel size (P<.001). Our results show that, in CoA patients, monitoring of vessel size using cine MRI and Gd-free MRA is equivalent to ce-MRA while being less invasive. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Acute Respiratory Distress Syndrome after the Use of Gadolinium Contrast Media.

    PubMed

    Park, Jihye; Byun, Il Hwan; Park, Kyung Hee; Lee, Jae-Hyun; Nam, Eun Ji; Park, Jung-Won

    2015-07-01

    Acute respiratory distress syndrome (ARDS) is a medical emergency that threatens life. To this day, ARDS is very rarely reported by iodine contrast media, and there is no reported case of ARDS induced by gadolinium contrast media. Here, we present a case with ARDS after the use of gadobutrol (Gadovist) as a magnetic resonance imaging (MRI) contrast medium. A 26 years old female without any medical history, including allergic diseases and without current use of drugs, visited the emergency room for abdominal pain. Her abdominopelvic computed tomography with iodine contrast media showed a right ovarian cyst and possible infective colitis. Eighty-three hours later, she underwent pelvis MRI after injection of 7.5 mL (0.1 mL/kg body weight) of gadobutrol (Gadovist) to evaluate the ovarian cyst. She soon presented respiratory difficulty, edema of the lips, nausea, and vomiting, and we could hear wheezing upon auscultation. She was treated with dexamethasone, epinephrine, and norepinephrine. Her chest X-ray showed bilateral central bat-wing consolidative appearance. Managed with mechanical ventilation, she was extubated 3 days later and discharged without complications.

  10. Graphene oxide-gadolinium (III) oxide nanoparticle composite: a novel MR contrast agent with high longitudinal and transverse relaxivity

    NASA Astrophysics Data System (ADS)

    Venkatesha, N.; Poojar, Pavan; Geethanath, Sairam; Srivastava, Chandan

    2014-12-01

    Production of bio-compatible contrast agent materials to enhance the sensitivity of the magnetic resonance imaging (MRI) technique is a highly active area in MRI related research. This work illustrates the potential of a new material: graphene oxide-gadolinium (III) oxide nanoparticle (GO-Gd2O3) composite in yielding both transverse (16.3 mM-1 s-1) and longitudinal relaxivity (40 mM-1 s-1) values which are significantly higher than the proton relaxivity values achieved using the gadolinium based contrast agents currently used in MRI. Such high proton relaxivity values can facilitate low dosage of GO-Gd2O3 composite for obtaining both T1 and T2 weighted high signal-to-noise ratio images in MRI.

  11. In vitro comparison of intracranial stent visibility using various concentrations of gadolinium contrast agent under 1.5 T and 3 T MR angiography.

    PubMed

    Chiang, Chen-Hua; Tseng, Ying-Chi; Chen, Ai-Chi; Huang, Yen-Lin; Chen, David Yen-Ting; Chen, Chi-Jen; Lin, Yen-Kuang; Hsu, Hui-Ling

    2017-04-01

    MR angiography (MRA) is an increasingly used evaluation method following intracranial stenting. However, the various artifacts created by the stent limit this technique. The purpose of this study was to investigate the effects of various concentrations of gadolinium contrast agent on the visibility and signal characteristics of two stents using the a contrast enhanced MRA technique. Two intracranial stents (Enterprise and Helistent) were placed in polyvinyl chloride tubes as vascular phantoms. They were filled with six different doses of gadolinium contrast agent (1.0, 2.0, 4.0, 6.0, 8.0, and 10.0 mmol/L dimeglumine gadopentetate, respectively) and imaged using 3 T and 1.5 T MR systems. Relative in-stent signal (RIS) was calculated and artificial luminal narrowing (ALN) was obtained using pixel by pixel analysis. The Enterprise stent, performed in both 1.5 T and 3 T MR systems, showed mean RIS values much less than those for the Helistent for all different doses of gadolinium solution. Increased gadolinium concentration resulted in a gradual reduction in RIS values in the Enterprise group. Also, ALN in the Enterprise group showed no or little change with various gadolinium doses. The Enterprise stent demonstrated good luminal visibility regardless of gadolinium concentration. The relative in-stent signals were more predictable in the Enterprise stent with various doses of gadolinium. Therefore, the Enterprise stent has been shown to provide better in-stent visibility compared with the Helistent using various gadolinium doses. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  12. Gadolinium based contrast agents in current practice: Risks of accumulation and toxicity in patients with normal renal function

    PubMed Central

    Ranga, Anju; Agarwal, Yatish; Garg, Kanika J

    2017-01-01

    Despite being decked as the most prized compounds in the nugget box of contrast agents for clinical radiologists, and carrying an indisputable tag of safety of the US Food and Drug Administration for close to three decades, all may not be seemingly well with the family of gadolinium compounds. If the first signs of violations of primum non nocere in relation to gadolinium-based contrast agents (GBCAs) appeared in the millennium year with the first published report of skin fibrosis in patients with compromised renal function, the causal relationship between the development of nephrogenic systemic fibrosis (NSF) and GBCAs, first proposed by two European groups in 2006, further precluded their use in renocompromised patients. The toxicity, pharmacokinetics, and pharmacodynamics of GBCAs, however, has come under hawk-eyed scrutiny with recent reports that gadolinium tends to deposit cumulatively in the brain of patients with normal hepatobiliary function and intact blood–brain barrier. While the jury on the long-term hazard significance of this critical scientific finding is still out, the use of GBCAs must be guided by due clinical diligence, avoidance of repeated doses, and preferring GBCAs with the best safety profiles. PMID:28744073

  13. A new contrast media for functional MR urography: Gd-MAG3.

    PubMed

    Algin, Oktay

    2011-07-01

    Tc-99m-MAG3 (tubular agent) provides high imaging quality and extraction efficiency; and has become one of the most widely used agent for scintigraphic examinations of urinary system pathologies and renal transplants. Recently, it was reported that functional magnetic resonance urography (FMRU) can be sufficient in detection of urinary tract obstruction, renal artery stenosis, calculation of kidney functions and evaluation of renal transplants. However the pharmacokinetics of magnetic resonance (MR) contrast-media used in FMRU and Tc-99m-MAG3 differs from each other. This may cause discordant results between the FMRU and most of the scintigraphic studies. To our knowledge, there is no contrast-media which is specific for FMRU. A kidney specific contrast material can be developed for FMRU studies as well. MAG3 is a good candidate for this chelation. In conclusion, MR imaging (MRI) will be the most useful and important technique for morphologic-functional evaluation of urinary system. FMRU examinations performed with MAG3 chelated gadolinium can be sufficient for the complete evaluation of urinary tract even in patients with impaired renal functions ("all in one MRI"). MRI has some important advantages including no risk for radiation exposure, high temporal and spatial resolution, no need for nephrotoxic contrast agent; besides being a fast and feasible technique. Gadolinium-containing contrast agents may cause a life-threatening adverse reaction known as nephrogenic systemic fibrosis in patients with severe renal impairment, but Gd-MAG3 may reduce the risk of nephrogenic systemic fibrosis due to its higher extraction capacity and other features. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Safe use of iodinated and gadolinium-based contrast media in current practice in Japan: a questionnaire survey.

    PubMed

    Tsushima, Yoshito; Ishiguchi, Tsuneo; Murakami, Takamichi; Hayashi, Hiromitsu; Hayakawa, Katsumi; Fukuda, Kunihiko; Korogi, Yukunori; Sugimoto, Hideharu; Takehara, Yasuo; Narumi, Yoshifumi; Arai, Yasuaki; Kuwatsuru, Ryohei; Yoshimitsu, Kengo; Awai, Kazuo; Kanematsu, Masayuki; Takagi, Ryo

    2016-02-01

    To help establish consensus on the safe use of contrast media in Japan. Questionnaires were sent to accredited teaching hospitals with radiology residency programs. The reply rate was 45.4% (329/724). For contrast-induced nephropathy (CIN), chronic and acute kidney diseases were considered a risk factor in 96.7 and 93.6%, respectively, and dehydration in 73.9%. As preventive actions, intravenous hydration (89.1%) and reduction of iodinated contrast media dose (86.9%) were commonly performed. For nephrogenic systemic fibrosis (NSF), chronic and acute kidney diseases were considered risk factors in 98.5 and 90.6%, respectively, but use of unstable gadolinium-based contrast media was considered a risk factor in only 55.6%. A renal function test was always (63.5% in iodinated; 65.7% in gadolinium) or almost always (23.1; 19.8%) performed, and estimated glomerular filtration rate (eGFR) was the parameter most frequently used (80.8; 82.6%). For the patients with risk factors for acute adverse reaction (AAR), steroid premedication or/and change of contrast medium were frequent preventive actions, but intravenous steroid administration immediately before contrast media use was still performed. Our questionnaire survey revealed that preventive actions against CIN were properly performed based on patients' eGFR. Preventive actions against NSF and AAR still lacked consensus.

  15. Macromolecular and Dendrimer Based Magnetic Resonance Contrast Agents

    PubMed Central

    Bumb, Ambika; Brechbiel, Martin W.; Choyke, Peter

    2010-01-01

    Magnetic resonance imaging (MRI) is a powerful imaging modality that can provide an assessment of function or molecular expression in tandem with anatomic detail. Over the last 20–25 years, a number of gadolinium based MR contrast agents have been developed to enhance signal by altering proton relaxation properties. This review explores a range of these agents from small molecule chelates, such as Gd-DTPA and Gd-DOTA, to macromolecular structures composed of albumin, polylysine, polysaccharides (dextran, inulin, starch), poly(ethylene glycol), copolymers of cystamine and cystine with GD-DTPA, and various dendritic structures based on polyamidoamine and polylysine (Gadomers). The synthesis, structure, biodistribution and targeting of dendrimer-based MR contrast agents are also discussed. PMID:20590365

  16. Effects of iodinated contrast agent, xylocaine and gadolinium concentration on the signal emitted in magnetic resonance arthrography: a samples study*

    PubMed Central

    da Silva, Yvana Lopes Pinheiro; Costa, Rita Zanlorensi Visneck; Pinho, Kátia Elisa Prus; Ferreira, Ricardo Rabello; Schuindt, Sueliton Miyamoto

    2015-01-01

    Objective To investigate the effects of dilution of paramagnetic contrast agent with iodinated contrast and xylocaine on the signal intensity during magnetic resonance arthrography, and to improve the paramagnetic contrast agent concentration utilized in this imaging modality. Materials and Methods Samples specially prepared for the study with three different concentrations of paramagnetic contrast agent diluted in saline, iodinated contrast agent and xylocaine were imaged with fast spin echo T1-weighted sequences with fat saturation. The samples were placed into flasks and graphical analysis of the signal intensity was performed as a function of the paramagnetic contrast concentration. Results As compared with samples of equal concentrations diluted only with saline, the authors have observed an average signal intensity decrease of 20.67% for iodinated contrast agent, and of 28.34% for xylocaine. However, the increased gadolinium concentration in the samples caused decrease in signal intensity with all the dilutions. Conclusion Minimizing the use of iodinated contrast media and xylocaine and/or the use of a gadolinium concentration of 2.5 mmol/L diluted in saline will improve the sensitivity of magnetic resonance arthrography. PMID:25987746

  17. T1 relaxivity of core-encapsulated gadolinium liposomal contrast agents--effect of liposome size and internal gadolinium concentration.

    PubMed

    Ghaghada, Ketan; Hawley, Catherine; Kawaji, Keigo; Annapragada, Ananth; Mukundan, Srinivasan

    2008-10-01

    Long circulating core-encapsulated gadolinium (CE-Gd) liposomal nanoparticles that have surface conjugated polyethylene glycol are a promising platform technology for use as blood pool T1-based magnetic resonance (MR) contrast agents. The objective of this study was to investigate the effect of liposome size and internal (core) Gd concentration on the T1 relaxivity of CE-Gd liposomes. Twelve different liposomal formulations were synthesized and characterized, resulting in a size (50, 100, 200, and 400 nm) and core Gd-concentration (200, 350, and 500 mM) "matrix" of test samples. Subsequently, CE-Gd liposomes were diluted in deionized water (four diluted samples) and molar T1 relaxivity (r1) measurements were performed at 2- and 7-T MR field strengths. The r1 of CE-Gd liposomes was inversely related to the liposome size. The largest change in r1 was observed between liposomes that were extruded through 50- and 100-nm filter membranes. At both field strengths, the variation in internal gadolinium concentration did not show any significant correlation (alpha < or = 0.05) with r1. The size of CE-Gd liposomal nanoparticles significantly affects the T1 relaxivity. An inverse relation was observed between liposome size and T1 relaxivity. The T1 relaxivity did not change significantly with core Gd concentration over the measured concentration range.

  18. Are gadolinium contrast agents suitable for gadolinium neutron capture therapy?

    PubMed

    De Stasio, Gelsomina; Rajesh, Deepika; Casalbore, Patrizia; Daniels, Matthew J; Erhardt, Robert J; Frazer, Bradley H; Wiese, Lisa M; Richter, Katherine L; Sonderegger, Brandon R; Gilbert, Benjamin; Schaub, Sebastien; Cannara, Rachel J; Crawford, John F; Gilles, Mary K; Tyliszczak, Tolek; Fowler, John F; Larocca, Luigi M; Howard, Steven P; Mercanti, Delio; Mehta, Minesh P; Pallini, Roberto

    2005-06-01

    Gadolinium neutron capture therapy (GdNCT) is a potential treatment for malignant tumors based on two steps: (1) injection of a tumor-specific (157)Gd compound; (2) tumor irradiation with thermal neutrons. The GdNC reaction can induce cell death provided that Gd is proximate to DNA. Here, we studied the nuclear uptake of Gd by glioblastoma (GBM) tumor cells after treatment with two Gd compounds commonly used for magnetic resonance imaging, to evaluate their potential as GdNCT agents. Using synchrotron X-ray spectromicroscopy, we analyzed the Gd distribution at the subcellular level in: (1) human cultured GBM cells exposed to Gd-DTPA or Gd-DOTA for 0-72 hours; (2) intracerebrally implanted C6 glioma tumors in rats injected with one or two doses of Gd-DOTA, and (3) tumor samples from GBM patients injected with Gd-DTPA. In cell cultures, Gd-DTPA and Gd-DOTA were found in 84% and 56% of the cell nuclei, respectively. In rat tumors, Gd penetrated the nuclei of 47% and 85% of the tumor cells, after single and double injection of Gd-DOTA, respectively. In contrast, in human GBM tumors 6.1% of the cell nuclei contained Gd-DTPA. Efficacy of Gd-DTPA and Gd-DOTA as GdNCT agents is predicted to be low, due to the insufficient number of tumor cell nuclei incorporating Gd. Although multiple administration schedules in vivo might induce Gd penetration into more tumor cell nuclei, a search for new Gd compounds with higher nuclear affinity is warranted before planning GdNCT in animal models or clinical trials.

  19. Clinical, biological, and skin histopathologic effects of ionic macrocyclic and nonionic linear gadolinium chelates in a rat model of nephrogenic systemic fibrosis.

    PubMed

    Fretellier, Nathalie; Idée, Jean-Marc; Guerret, Sylviane; Hollenbeck, Claire; Hartmann, Daniel; González, Walter; Robic, Caroline; Port, Marc; Corot, Claire

    2011-02-01

    the purpose of this study was to compare the clinical, pathologic, and biochemical effects of repeated administrations of ionic macrocyclic or nonionic linear gadolinium chelates (GC) in rats with impaired renal function. rats submitted to subtotal nephrectomy were allocated to single injections of 2.5 mmol/kg of gadodiamide (nonionic linear chelate), nonformulated gadodiamide (ie, without the free ligand caldiamide), gadoterate (ionic macrocyclic chelate), or saline for 5 consecutive days. Blinded semi-quantitative histopathologic and immunohistochemical examinations of the skin were performed, as well as clinical, hematological, and biochemical follow-up. Rats were killed at day 11. Long-term (up to day 32) follow-up of rats was also performed in an auxiliary study. epidermal lesions (ulcerations and scabs) were found in 4 of the 10 rats treated with nonformulated gadodiamide. Two rats survived the study period. Inflammatory signs were observed in this group. No clinical, hematological, or biochemical signs were observed in the saline and gadoterate- or gadodiamide-treated groups. Plasma fibroblast growth factor-23 levels were significantly higher in the gadodiamide group than in the gadoterate group (day 11). Decreased plasma transferrin-bound iron levels were measured in the nonformulated gadodiamide group. Histologic lesions were in the range: nonformulated gadodiamide (superficial epidermal lesions, inflammation, necrosis, and increased cellularity in papillary dermis) > gadodiamide (small superficial epidermal lesions and signs of degradation of collagen fibers in the dermis) > gadoterate (very few pathologic lesions, similar to control rats). repeated administration of the nonionic linear GC gadodiamide to renally impaired rats is associated with more severe histologic lesions and higher FGF-23 plasma levels than the macrocyclic GC gadoterate.

  20. Impact of Impaired Renal Function on Gadolinium Retention After Administration of Gadolinium-Based Contrast Agents in a Mouse Model.

    PubMed

    Kartamihardja, A Adhipatria P; Nakajima, Takahito; Kameo, Satomi; Koyama, Hiroshi; Tsushima, Yoshito

    2016-10-01

    The aim of this study was to investigate the impact of impaired renal function on gadolinium (Gd) retention in various organs after Gd-based contrast agent injection. After local animal care and review committee approval, 23 normal mice and 26 with renal failure were divided into 4 treatment groups (Gd-DTPA-BMA, 5 mmol/kg; Gd-DOTA, 5 mmol/kg; GdCl3, 0.02 mmol/kg; and saline, 250 μL). Each agent was intravenously administered on weekdays for 4 weeks. Samples were collected on days 3 (short-term) and 45 (long-term) after the last injection. Gadolinium concentrations were quantified by inductively coupled plasma-mass spectrometry. Three mice with renal failure and 2 normal mice in the GdCl3 group and 1 mouse with renal failure in the Gd-DTPA-BMA group died. In the Gd-DTPA-BMA group, impaired renal function increased short-term Gd retention in the liver, bone, spleen, skin, and kidney (P < 0.01) but did not affect long-term Gd retention. Gd-DTPA-BMA showed higher Gd retention than Gd-DOTA. Although Gd retention in the Gd-DOTA group was generally low, impaired renal function increased only long-term hepatic Gd retention. Hepatic and splenic Gd retentions were significantly higher than other organs' Gd retention in the GdCl3 group (P < 0.01). Renal function did not affect brain Gd retention, regardless of the Gd compound used. The tendency of Gd retention varied according to the agent, regardless of renal function. Although renal impairment increased short-term Gd retention after Gd-DTPA-BMA administration, long-term Gd retention for Gd-based contrast agents was almost unaffected by renal function, suggesting that the chemical structures of retained Gd may not be consistent and some Gd is slowly eliminated after initially being retained.

  1. Enhanced conjugation stability and blood circulation time of macromolecular gadolinium-DTPA contrast agent.

    PubMed

    Jenjob, Ratchapol; Kun, Na; Ghee, Jung Yeon; Shen, Zheyu; Wu, Xiaoxia; Cho, Steve K; Lee, Don Haeng; Yang, Su-Geun

    2016-04-01

    In this study, we prepared macromolecular MR T1 contrast agent: pullulan-conjugated Gd diethylene triamine pentaacetate (Gd-DTPA-Pullulan) and estimated residual free Gd(3+), chelation stability in competition with metal ions, plasma and tissue pharmacokinetics, and abdominal MR contrast on rats. Residual free Gd(3+) in Gd-DTPA-Pullulan was measured using colorimetric spectroscopy. The transmetalation of Gd(3+) incubated with Ca(2+) was performed by using a dialysis membrane (MWCO 100-500 Da) and investigated by ICP-OES. The plasma concentration profiles of Gd-DTPA-Pullulan were estimated after intravenous injection at a dose 0.1 mmol/kg of Gd. The coronal-plane abdominal images of normal rats were observed by MR imaging. The content of free Gd(3+), the toxic residual form, was less than 0.01%. Chelation stability of Gd-DTPA-Pullulan was estimated, and only 0.2% and 0.00045% of Gd(3+) were released from Gd-DTPA-Pullulan after 2h incubation with Ca(2+) and Fe(2+), respectively. Gd-DTPA-Pullulan displayed the extended plasma half-life (t1/2,α=0.43 h, t1/2,β=2.32 h), much longer than 0.11h and 0.79 h of Gd-EOB-DTPA. Abdominal MR imaging showed Gd-DTPA-Pullulan maintained initial MR contrast for 30 min. The extended plasma half-life of Gd-DTPA-Pullulan probably allows the prolonged MR acquisition time in clinic with enhanced MR contrast. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A neutral polydisulfide containing Gd(III) DOTA monoamide as a redox-sensitive biodegradable macromolecular MRI contrast agent.

    PubMed

    Ye, Zhen; Zhou, Zhuxian; Ayat, Nadia; Wu, Xueming; Jin, Erlei; Shi, Xiaoyue; Lu, Zheng-Rong

    2016-01-01

    This work aims to develop safe and effective gadolinium (III)-based biodegradable macromolecular MRI contrast agents for blood pool and cancer imaging. A neutral polydisulfide containing macrocyclic Gd-DOTA monoamide (GOLS) was synthesized and characterized. In addition to studying the in vitro degradation of GOLS, its kinetic stability was also investigated in an in vivo model. The efficacy of GOLS for contrast-enhanced MRI was examined with female BALB/c mice bearing 4T1 breast cancer xenografts. The pharmacokinetics, biodistribution, and metabolism of GOLS were also determined in mice. GOLS has an apparent molecular weight of 23.0 kDa with T1 relaxivities of 7.20 mM(-1) s(-1) per Gd at 1.5 T, and 6.62 mM(-1) s(-1) at 7.0 T. GOLS had high kinetic inertness against transmetallation with Zn(2+) ions, and its polymer backbone was readily cleaved by L-cysteine. The agent showed improved efficacy for blood pool and tumor MR imaging. The structural effect on biodistribution and in vivo chelation stability was assessed by comparing GOLS with Gd(HP-DO3A), a negatively charged polydisulfide containing Gd-DOTA monoamide GODC, and a polydisulfide containing Gd-DTPA-bisamide (GDCC). GOLS showed high in vivo chelation stability and minimal tissue deposition of gadolinium. The biodegradable macromolecular contrast agent GOLS is a promising polymeric contrast agent for clinical MR cardiovascular imaging and cancer imaging. Copyright © 2015 John Wiley & Sons, Ltd.

  3. XFM demonstrates preferential accumulation of a vanadyl-based MRI contrast agent in murine colonic tumors

    PubMed Central

    Mustafi, Devkumar; Ward, Jesse; Dougherty, Urszula; Bissonnette, Marc; Hart, John; Vogt, Stefan; Karczmar, Gregory S.

    2016-01-01

    Contrast agents that specifically enhance cancers on MRI would allow earlier detection. Vanadyl-based chelates (VCs) selectively enhance rodent cancers on MRI, suggesting selective uptake of VCs by cancers. Here we report X-ray fluorescence microscopy (XFM) of VC uptake by murine colon cancer. Colonic tumors in mice treated with azoxymethane/dextran sulfate sodium were identified by MRI. Then a gadolinium-based contrast agent and a VC were injected I.V.; mice were sacrificed and colons sectioned. VC distribution was sampled at 120 minutes after injection to evaluate the long term accumulation. Gadolinium distribution was sampled at 10 minutes after injection due to its rapid washout. XFM was performed on 72 regions of normal and cancerous colon from 5 normal mice and 4 cancer-bearing mice. XFM showed that all gadolinium was extracellular with similar concentrations in colon cancers and normal colon. In contrast, the average VC concentration was 2-fold higher in cancers vs. normal tissue (p<0.002). Cancers also contained numerous ‘hot spots’ with intracellular VC concentrations 6-fold higher than the concentration in normal colon (p<0.0001). No ‘hot spots’ were detected in normal colon. This is the first direct demonstration that VCs selectively accumulate in cancer cells, and thus may improve cancer detection. PMID:25813904

  4. Comparison of MRI properties between derivatized DTPA and DOTA gadolinium-dendrimer conjugates.

    PubMed

    Nwe, K; Bernardo, M; Regino, C A S; Williams, M; Brechbiel, M W

    2010-08-15

    In this report we directly compare the in vivo and in vitro MRI properties of gadolinium-dendrimer conjugates of derivatized acyclic diethylenetriamine-N,N',N',N'',N''-pentaacetic acid (1B4M-DTPA) and macrocyclic 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (C-DOTA). The metal-ligand chelates were pre-formed in alcohol prior to conjugation to the generation 4 PAMAM dendrimer (G4D), and the dendrimer-based agents were purified by Sephadex(R) G-25 column. The analysis and SE-HPLC data indicated chelate to dendrimer ratios of 30:1 and 28:1, respectively. Molar relaxivity measured at pH 7.4, 22 degrees C, and 3T are comparable (29.5 vs 26.9 mM(-1)s(-1)), and both conjugates are equally viable as MRI contrast agents based on the images obtained. The macrocyclic agent however exhibits a faster rate of clearance in vivo (t(1/2)=16 vs 29 min). Our conclusion is that the macrocyclic-based agent is the more suitable agent for in vivo use for these reasons combined with kinetic inertness associated with the Gd(III) DOTA complex stability properties. Published by Elsevier Ltd.

  5. Diethylenetriaminepentaacetic acid-gadolinium (DTPA-Gd)-conjugated polysuccinimide derivatives as magnetic resonance imaging contrast agents.

    PubMed

    Lee, Ha Young; Jee, Hye Won; Seo, Sung Mi; Kwak, Byung Kook; Khang, Gilson; Cho, Sun Hang

    2006-01-01

    Biocompatible polysuccinimide (PSI) derivatives conjugated with diethylenetriaminepentaacetic acid gadolinium (DTPA-Gd) were prepared as magnetic resonance imaging (MRI) contrast agents. In this study, we synthesized PSI derivatives incorporating methoxy-poly(ethylene glycol) (mPEG) as hydrophilic ligand, hexadecylamine as hydrophobic ligand, and DTPA-Gd as contrast agent. PSI was synthesized by the polycondensation polymerization of aspartic acid. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Critical micellization concentrations were determined using fluorescent probes (pyrene). Micelle size and shape were measured by electro-photometer light scattering (ELS) and atomic force microscopy (AFM). The formed micelle size ranged from 100 to 300 nm. The T1-weighted MR images of the phantom prepared with PSI-mPEG-C16-(DTPA-Gd) were obtained in a 3.0 T clinical MR imager, and the conjugates showed a great potential as MRI contrast agents.

  6. Transient arterial phase respiratory motion-related artifact in MR imaging of the liver: an analysis of four different gadolinium-based contrast agents.

    PubMed

    Shah, Mansi R; Flusberg, Milana; Paroder, Viktoriya; Rozenblit, Alla M; Chernyak, Victoria

    The purpose was to compare hepatic arterial phase (HAP) respiratory motion artifact (RMA) between gadoxetate, gadobutrol, gadopentetate, and gadobenate. Two hundred cases of each gadolinium agent were included. RMA was assigned using 5-point Likert scale (1=no motion, 5=extreme motion) on precontrast and HAP. RMA increase (increase ≥1 on HAP from precontrast) was the outcome in logistic regression. Odds of RMA increase for gadoxetate were 5.5 (P<.001), 3.6 (P=.034), and 9.5 (P<.001) times higher than gadobutrol, gadopentetate, and gadobenate, respectively. Gadolinium volume and dose were not independent predictors of RMA increase. Gadoxetate has increased odds of RMA compared with other gadolinium agents; tight contrast bolus is not a contributor. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Highly stabilized gadolinium chelates functionalized on metal nanoparticles as magnetic resonance imaging contrast agent

    NASA Astrophysics Data System (ADS)

    Siddiqui, Talha S.

    Magnetic resonance imaging (MRI) is a non-invasive method for imaging and diagnosing tissue damage, organ function and the vascular system. Magnevist(TM) a complex of diethylenetriaminepentaacetic acid (DTPA) and Gd3+ is a clinically approved contrast agent for MRI. A derivative of DTPA was formed by the addition of two cysteine groups (DTPA-L-Cys) through amide linkage. The Gd complex of this ligand bonds with the silver surfaces through the cysteine thiols. GdDTPA-L-Cys was bound to ˜10nm diameter Ag nanoparticles for use as a multifunctional MRI contrast agent. The ligand and complex were characterized by 1H and 13C NMR, ESI-MS and IR spectroscopy. The silver construct was characterized by TEM, TGA and UV-Vis absorption spectra. The per metal complex r1 relaxivity of GdDTPA-L-Cys{Ag} greater than that of Magnavist(TM) with the same molarity for both compounds. The synthesis of a DTPA derivative is described that allows it to bind to silver or gold nanoparticles through a single thiol linkage (DTPASH). The resulting Gd complex, GdDTPASH, was bound to Ag nanoparticles to create a single monolayer on the surface. The construct was further stabilized in buffered solution with the addition of a thiolated PEG chain. The highly stabilized nanoparticle construct delivers a high payload of Gd compelex and is an effective T1 brightening agent. The production of this type of construct opens the way for engineered multimodal MRI contrast agents.

  8. Nephrogenic Systemic Fibrosis Manifesting a Decade After Exposure to Gadolinium.

    PubMed

    Larson, Krista N; Gagnon, Amy L; Darling, Melissa D; Patterson, James W; Cropley, Thomas G

    2015-10-01

    Nephrogenic systemic fibrosis (NSF) is a fibrosing skin disorder that develops in patients with kidney failure and has been linked to exposure to gadolinium-containing contrast agents. The time between exposure to gadolinium and the initial presentation of NSF is typically weeks to months but has been documented to be as long as 3½ years. We report a case of NSF developing 10 years after exposure to gadolinium. A long-term hemodialysis patient was exposed to gadolinium several times between 1998 and 2004 during magnetic resonance angiography of his abdominal vessels and arteriovenous fistula. In 2014, he was seen at our clinic with new dermal papules and plaques. Biopsy of affected skin showed thickening of collagen, CD34+ spindle cells, and increased mucin in the dermis, supporting the diagnosis of NSF. The clinical history and histopathological features of this case support the diagnosis of NSF 10 years after exposure to gadolinium. Although the use of gadolinium contrast agents in patients with kidney failure has markedly decreased, patients with exposure to gadolinium years to decades previously may manifest the disease.

  9. Controlled intracellular self-assembly of gadolinium nanoparticles as smart molecular MR contrast agents.

    PubMed

    Cao, Chun-Yan; Shen, Ying-Ying; Wang, Jian-Dong; Li, Li; Liang, Gao-Lin

    2013-01-01

    Herein we developed a new "smart" Gd-based MR contrast agent (i.e., 1) which is susceptive to furin, a protease overexpressed in tumor. Under the action of furin, 1 condenses to form dimers (1-Ds) and the latter self-assemble into gadolinium nanparticles (Gd-NPs). Relaxivity of 1-D is more than 2 folds of those of 1 and magnevist at 1.5 T, and 1.4 folds of that of 1 at 3 T. Intracellular condensation of 1 in furin-overexpressed MDA-MB-468 cells was proven with direct two-photon laser microscopy (TPLM) fluorescence imaging of the cells incubated with the europium analog of 1 (i.e., 2). Intracellular Gd-NPs of 1 were uncovered and characterized for the first time. MRI of MDA-MB-468 tumors showed that 1 has enhanced MR contrast within the tumors than that of its scrambled control 1-Scr.

  10. Gadolinium-enhanced computed tomographic angiography: current status.

    PubMed

    Rosioreanu, Alex; Alberico, Ronald A; Litwin, Alan; Hon, Man; Grossman, Zachary D; Katz, Douglas S

    2005-01-01

    This article reviews the research to date, as well as our clinical experience from two institutions, on gadolinium-enhanced computed tomographic angiography (gCTA) for imaging the body. gCTA may be an appropriate examination for the small percentage of patients who would benefit from noninvasive vascular imaging, but who have contraindications to both iodinated contrast and magnetic resonance imaging. gCTA is more expensive than CTA with iodinated contrast, due to the dose of gadolinium administered, and gCTA has limitations compared with CTA with iodinated contrast, in that parenchymal organs are not optimally enhanced at doses of 0.5 mmol/kg or lower. However, in our experience, gCTA has been a very useful problem-solving examination in carefully selected patients. With the advent of 16-64 detector CT, in combination with bolus tracking, we believe that the overall dose of gadolinium needed for diagnostic CTA examinations, while relatively high, can be safely administered.

  11. Penetration and distribution of gadolinium-based contrast agents into the cerebrospinal fluid in healthy rats: a potential pathway of entry into the brain tissue.

    PubMed

    Jost, Gregor; Frenzel, Thomas; Lohrke, Jessica; Lenhard, Diana Constanze; Naganawa, Shinji; Pietsch, Hubertus

    2017-07-01

    Signal hyperintensity on unenhanced MRI in certain brain regions has been reported after multiple administrations of some, but not all, gadolinium-based contrast agents (GBCAs). One potential initial pathway of GBCA entry into the brain, infiltration from blood into the cerebrospinal fluid (CSF), was systematically evaluated in this preclinical study. GBCA infiltration and distribution in the CSF were investigated in healthy rats using repeated fluid-attenuated MRI up to 4 h after high-dose (1.8 mmol/kg) administration of six marketed and one experimental GBCA. Additionally, gadolinium measurements in CSF, blood and brain tissue samples (after 24 h) were performed using inductively coupled plasma mass spectrometry. Enhanced MRI signals in the CSF spaces with similar distribution kinetics were observed for all GBCAs. No substantial differences in the gadolinium concentrations among the marketed GBCAs were found in the CSF, blood or brain tissue. After 4.5 h, the concentration in the CSF was clearly higher than in blood but was almost completely cleared and lower than the brain tissue concentration after 24 h. In contrast to the brain signal hyperintensities, no differences in penetration and distribution into the CSF of healthy rats exist among the marketed GBCAs. • Gadolinium-based contrast agents can cross the blood-CSF barrier. • Fluid-attenuated MRI shows GBCA distribution with CSF flow. • GBCA structure and physicochemical properties do not impact CSF penetration and distribution. • GBCA clearance from CSF was almost complete within 24 h in rats. • CSF is a potential pathway of GBCA entry into the brain.

  12. Removal of gadolinium-based contrast agents: adsorption on activated carbon.

    PubMed

    Elizalde-González, María P; García-Díaz, Esmeralda; González-Perea, Mario; Mattusch, Jürgen

    2017-03-01

    Three carbon samples were employed in this work, including commercial (1690 m 2  g -1 ), activated carbon prepared from guava seeds (637 m 2  g -1 ), and activated carbon prepared from avocado kernel (1068 m 2  g -1 ), to study the adsorption of the following gadolinium-based contrast agents (GBCAs): gadoterate meglumine Dotarem®, gadopentetate dimeglumine Magnevist®, and gadoxetate disodium Primovist®. The activation conditions with H 3 PO 4 were optimized using a Taguchi methodology to obtain mesoporous materials. The best removal efficiency by square meter in a batch system in aqueous solution and model urine was achieved by avocado kernel carbon, in which mesoporosity prevails over microporosity. The kinetic adsorption curves were described by a pseudo-second-order equation, and the adsorption isotherms in the concentration range 0.5-6 mM fit the Freundlich equation. The chemical characterization of the surfaces shows that materials with a greater amount of phenolic functional groups adsorb the GBCA better. Adsorption strongly depends on the pH due to the combination of the following factors: contrast agent protonated forms and carbon surface charge. The tested carbon samples were able to adsorb 70-90% of GBCA in aqueous solution and less in model urine. This research proposes a method for the elimination of GBCA from patient urine before its discharge into wastewater.

  13. Comparison of MRI properties between derivatized DTPA and DOTA gadolinium-dendrimer conjugates

    PubMed Central

    Nwe, K.; Bernardo, M; Regino, C. A. S.; Williams, M; Brechbiel, M. W.

    2010-01-01

    In this report we directly compare the in vivo and in vitro MRI properties of gadolinium-dendrimer conjugates of derivatized acyclic diethylenetriamine-N,N’,N’,N’’, N’’-pentaacetic acid (1B4M-DTPA) and macrocyclic 1,4,7,10-tetraazacyclododecane-N,N’,N’’,N’’’-tetraacetic acid (C-DOTA). The metal-ligand chelates were pre-formed in alcohol prior to conjugation to the generation 4 PAMAM dendrimer (G4D), and the dendrimer-based agents were purified by Sephadex® G-25 column. The analysis and SE-HPLC data indicated chelate to dendrimer ratios of 30:1 and 28:1 respectively. Molar relaxivity measured at pH 7.4, 22°C, and 3T are comparable (29.5 vs. 26.9 mM−1s−1), and both conjugates are equally viable as MRI contrast agents based on the images obtained. The macrocyclic agent however exhibits a faster rate of clearance in vivo (t1/2 = 16 vs. 29 min.). Our conclusion is that the macrocyclic-based agent is the more suitable agent for in vivo use for these reasons combined with kinetic inertness associated with the Gd(III) DOTA complex stability properties. PMID:20663676

  14. Room temperature ferromagnetic gadolinium silicide nanoparticles

    DOEpatents

    Hadimani, Magundappa Ravi L.; Gupta, Shalabh; Harstad, Shane; Pecharsky, Vitalij; Jiles, David C.

    2018-03-06

    A particle usable as T1 and T2 contrast agents is provided. The particle is a gadolinium silicide (Gd5Si4) particle that is ferromagnetic at temperatures up to 290 K and is less than 2 .mu.m in diameter. An MRI contrast agent that includes a plurality of gadolinium silicide (Gd.sub.5Si.sub.4) particles that are less than 1 .mu.m in diameter is also provided. A method for creating gadolinium silicide (Gd5Si4) particles is also provided. The method includes the steps of providing a Gd5Si4 bulk alloy; grinding the Gd5Si4 bulk alloy into a powder; and milling the Gd5Si4 bulk alloy powder for a time of approximately 20 minutes or less.

  15. A smart T(1)-weighted MRI contrast agent for uranyl cations based on a DNAzyme-gadolinium conjugate.

    PubMed

    Xu, Weichen; Xing, Hang; Lu, Yi

    2013-11-07

    Rational design of smart MRI contrast agents with high specificity for metal ions remains a challenge. Here, we report a general strategy for the design of smart MRI contrast agents for detecting metal ions based on conjugation of a DNAzyme with a gadolinium complex. The 39E DNAzyme, which has high selectivity for UO2(2+), was conjugated to Gd(III)-DOTA and streptavidin. The binding of UO2(2+) to its 39E DNAzyme resulted in the dissociation of Gd(III)-DOTA from the large streptavidin, leading to a decrease of the T1 correlation time, and a change in the MRI signal.

  16. [Retention of contrast media in the history of radiology : Sequelae of the former use of thorotrast and new challenges].

    PubMed

    van Kaick, G; Delorme, S

    2016-12-01

    Detection of gadolinium deposits in patients who have repeatedly been administered intravenous gadolinium chelates have given rise to concern regarding the long-term safety of magnetic resonance imaging (MRI) contrast media. Nevertheless, negative long-term clinical effects have not yet been observed. In some publications parallels have been drawn to the sequelae of thorotrast that was formerly used for arterial angiography. In this article the history of thorotrast use is briefly described and in particular why, despite warnings, this substance was used frequently and worldwide. A brief summary of the results of the German Thorotrast Study revealed that high excess rates were only observed for primary malignant liver tumors after a 15-year or longer latency period and to a lesser degree of leukemias, as well as for severe local complications due to paravascular injections, particularly in the neck region. Based on this historical review, we will venture to take stock of the outcome from the "success story" of this contrast agent.

  17. Metabolomic Analysis of N-acetylcysteine Protection of Injury from Gadolinium-DTPA Contrast Agent in Rats with Chronic Renal Failure.

    PubMed

    Wan, Chuanling; Xue, Rong; Zhan, Youyang; Wu, Yijie; Li, Xiaojing; Pei, Fengkui

    2017-09-01

    Gadolinium-based contrast agents (GBCAs) are frequently used to enhance the diagnostic efficacy of magnetic resonance imaging. On the other hand, the association between GBCA administration in patients with advanced renal disease and nephrogenic systemic fibrosis (NSF) was also noted. NSF is a systemic disorder characterized by widespread tissue fibrosis that may lead to death. N-acetylcysteine (NAC) protects rats from injury induced by gadolinium-based contrast agents, but the underlying mechanisms remain unclear. In this study, a nuclear magnetic resonance-based metabolomic approach was used to systematically investigate the protective effects of NAC on Gd-DTPA-induced injury. Thirty-two male Sprague-Dawley rats were given adenine (200 mg·kg -1 body weight) by oral gavage once a day for 3 weeks to induce chronic renal failure (CRF). NAC (600 mg/L in drinking water for 9 days) pretreatment was initiated 2 days before Gd-DTPA injection (a single tail vein injection, 2 mmol/kg body weight). Serum and liver samples were collected on day 7 after Gd-DTPA injection. By study design, the serum and hepatic metabolic changes of rats were measured in four groups of eight each: CRF, CRF-Gd, CRF-Gd-NAC, and CRF-NAC. Gd-DTPA administration to rats with CRF resulted in disturbances of several metabolic pathways, including glucose, lipid, glutamate, choline, gut microbiota, one-carbon, and purine metabolism. NAC pretreatment reversed the abundance changes of high-density lipoprotein, low-density lipoprotein, very low-density lipoprotein, glutamate, glutamine, oxidized glutathione, choline, phosphocholine, glycerophosphocholine, trimethylamine, and trimethylamine-N-oxide induced by Gd-DTPA. It is noteworthy, however, that the ameliorating effects of NAC on the disturbance of glutamate, choline, and gut microbiota metabolism may be specific to Gd-DTPA. In all, these findings could be potentially useful to decipher the underlying mechanisms of NAC protective effects from the

  18. Identification and characterization of gadolinium(III) complexes in biological tissue extracts.

    PubMed

    Kahakachchi, Chethaka L; Moore, Dennis A

    2010-07-01

    The gadolinium species present in a rat kidney following intravenous administration of a gadolinium-based magnetic resonance contrast agent (Optimark™, Gadoversetamide injection) to a rat was examined in the present study. The major gadolinium species in the supernatant of the rat kidney tissue extracts was determined by reversed-phase liquid chromatography with online inductively coupled plasma optical emission spectrometry (HPLC-ICP-OES). The identity of the compound was established by liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) detection. The principal gadolinium(III) complex in a rat kidney tissue extract was identified as Gd-DTPA-BMEA 24 Hrs and 7 days after a single intravenous injection of Optimark™ (gadoversetamide; Gd-DTPA-BMEA) at a dose of 5 mmol Gd/kg body weight. The study demonstrated for the first time the feasibility of the use of two complementary techniques, HPLC-ICP-OES and HPLC-ESI-MS to study the in vivo behavior of gadolinium-based magnetic resonance contrast media.

  19. GADOLINIUM(Gd)-BASED and Ion Oxide Nanoparticle Contrast Agents for Pre-Clinical and Clinical Magnetic Resonance Imaging (mri) Research

    NASA Astrophysics Data System (ADS)

    Ng, Thian C.

    2012-06-01

    It is known that one strength of MRI is its excellent soft tissue discrimination. It naturally provides sufficient contrast between the structural differences of normal and pathological tissues, their spatial extent and progression. However, to further extend its applications and enhance even more contrast for clinical studies, various Gadolinium (Gd)-based contrast agents have been developed for different organs (brain strokes, cancer, cardio-MRI, etc). These Gd-based contrast agents are paramagnetic compounds that have strong T1-effect for enhancing the contrast between tissue types. Gd-contrast can also enhance magnetic resonance angiography (CE-MRA) for studying stenosis and for measuring perfusion, vascular susceptibility, interstitial space, etc. Another class of contrast agents makes use of ferrite iron oxide nanoparticles (including Superparamagnetic Ion Oxide (SPIO) and Ultrasmall Superparamagnetic Iron Oxide (USPIO)). These nanoparticles have superior magnetic susceptibility effect and produce a drop in signal, namely in T2*-weighted images, useful for the determination of lymph nodes metastases, angiogenesis and arteriosclerosis plaques.

  20. Contrast-enhanced magnetic resonance angiography: first-pass arterial enhancement as a function of gadolinium-chelate concentration, and the saline chaser volume and injection rate.

    PubMed

    Husarik, Daniela B; Bashir, Mustafa R; Weber, Paul W; Nichols, Eli B; Howle, Laurens E; Merkle, Elmar M; Nelson, Rendon C

    2012-02-01

    To evaluate the effect of the contrast medium (CM) concentration and the saline chaser volume and injection rate on first-pass aortic enhancement characteristics in contrast-enhanced magnetic resonance angiography using a physiologic flow phantom. Imaging was performed on a 3.0-T magnetic resonance system (MAGNETOM Trio, Siemens Healthcare Solutions, Inc, Erlangen, Germany) using a 2-dimensional fast low angle shot T1-weighted sequence (repetition time, 500 milliseconds; echo time, 1.23 milliseconds; flip angle, 8 degrees; 1 frame/s × 60 seconds). The following CM concentrations injected at 2 mL/s were used with 3 different contrast agents (gadolinium [Gd]-BOPTA, Gd-HP-DO3A, Gd-DTPA): 20 mL of undiluted CM (100%) and 80%, 40%, 20%, 10%, 5%, and 2.5% of the full amount, all diluted in saline to a volume of 20 mL to ensure equal bolus volume. The CM was followed by saline chasers of 20 to 60 mL injected at 2 mL/s and 6 mL/s. Aortic signal intensity (SI) was measured, and normalized SI versus time (SI/Tn) curves were generated. The maximal SI (SI(max)), bolus length, and areas under the SI/Tn curve were calculated. Decreasing the CM concentration from 100% to 40% resulted in a decrease of SI(max) to 86.1% (mean). Further decreasing the CM concentration to 2.5% decreased SI(max) to 5.1% (mean). Altering the saline chaser volume had no significant effect on SI(max). Increasing the saline chaser injection rate had little effect (mean increase, 2.2%) on SI(max) when using ≥40% of CM. There was a larger effect (mean increase, 19.6%) when ≤20% of CM were used. Bolus time length was significantly shorter (P < 0.001), and area under the SI/T(n) curve was significantly smaller (P < 0.01) for the CM protocols followed by a saline chaser injected at 6 mL/s compared with a saline chaser injected at 2 mL/s. With 40% of CM and a fast saline chaser, SImax close to that with undiluted CM can be achieved. An increased saline chaser injection rate has a more pronounced effect on

  1. Clinical application of a gadolinium-based capsule as an MRI contrast agent in slow transit constipation diagnostics.

    PubMed

    Zhi, M; Zhou, Z; Chen, H; Xiong, F; Huang, J; He, H; Zhang, M; Su, M; Gao, X; Hu, P

    2017-06-01

    As a traditional method for the assessment of colon dynamics, radio-opaque markers (ROMs) are limited in clinical use because of their ionizing radiation. We compared the accuracy and applicability of gadolinium-based capsules with ROMs in the measurement of colon dynamics in healthy controls and slow transit constipation (STC) patients. Seven patients with STC and nine healthy controls under a normal diet orally consumed ROMs and gadolinium-based capsules simultaneously. All subjects underwent X-ray and magnetic resonance imaging (MRI). Healthy control images were acquired at 12, 24, and 48 h, and STC patient images were acquired at 24, 48, and 72 h. The scores based on the position of the labeling capsules and ROMs in the colon and the colon transit times (CTTs) in the two groups were compared. The CTTs obtained via the ROMs were 34.7±17.4 and 67.3±6.5 h in the healthy controls and STC patients, respectively (P<.05). The CTTs obtained via MRI were 30.9±15.9 and 74.1±7.2 h in the healthy controls and STC patients, respectively (P<.05). The CTTs of the STC patients were significantly longer than the healthy controls. The correlation (r s ) between the scores based on the position of the labeling capsule and ROMs in the healthy group and the STC patients was .880 (P<.05) and .889 (P<.05), respectively. As a MRI contrast label, gadolinium-based capsules exhibit results comparable to ROMs in colon motility measurements. © 2017 John Wiley & Sons Ltd.

  2. Characteristics of Gadolinium Oxide Nanoparticles Using Terahertz Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dongkyu; Maeng, Inhee; Son, Joo-Hiuk

    2009-04-19

    The penetration property of the terahertz electromagnetic (THz) wave is relevant to its use. We used the THz wave spectroscopy system which easily penetrates some materials that do not contain water, e.g., plastic and ceramics. The system has been developed for several purposes, including measuring the properties of semiconductors and bio-materials, and detecting plastic bombs and ceramic knives at airports. It is also used for medical imaging systems, such as magnetic resonance imaging (MRI), at some research institutes. It can show not only the difference in amplitude, but also the difference of the phase of each point of sample. MRImore » technology usually uses contrast agents to enhance the quality of the image. Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA), made with a heavy metal ion, is commonly used as a clinical MRI contrast agent. Gadolinium oxide (Gd{sub 2}O{sub 3}) nanoparticle is a new contrast agent. It serves to equip the core of each particle with antibodies or ligands. It can freely circulate in blood vessels without amassing in the liver or lungs. This study shows the characteristics of gadolinium oxide nanoparticles to further advance terahertz medical imaging.« less

  3. Applications of optically detected MRI for enhanced contrast and penetration in metal

    NASA Astrophysics Data System (ADS)

    Ruangchaithaweesuk, Songtham; Yu, Dindi S.; Garcia, Nissa C.; Yao, Li; Xu, Shoujun

    2012-10-01

    We report quantitative measurements using optically detected magnetic resonance imaging (MRI) for enhanced pH contrast and flow inside porous metals. Using a gadolinium chelate as the pH contrast agent, we show the response is 0.6 s-1 mM-1 per pH unit at the ambient magnetic field for the pH range 6-8.5. A stopped flow scheme was used to directly measure T1 relaxation time to determine the relaxivity. Flow profiles and images were obtained for a series of porous metals with different average pore sizes. The signal amplitudes and spatial distributions were compared. A clogged region in one of the samples was revealed using optically detected MRI but not optical imaging or scanning electron microscopy. These applications will significantly broaden the impact of optically detected MRI in chemical imaging and materials research.

  4. Investigating the stability of gadolinium based contrast agents towards UV radiation.

    PubMed

    Birka, Marvin; Roscher, Jörg; Holtkamp, Michael; Sperling, Michael; Karst, Uwe

    2016-03-15

    Since the 1980s, the broad application of gadolinium(Gd)-based contrast agents for magnetic resonance imaging (MRI) has led to significantly increased concentrations of Gd in the aqueous environment. Little is known about the stability of these highly polar xenobiotics under environmental conditions, in wastewater and in drinking water treatment. Therefore, the stability of frequently applied Gd-based MRI contrast agents towards UV radiation was investigated. The hyphenation of hydrophilic interaction liquid chromatography (HILIC) with inductively coupled plasma mass spectrometry (ICP-MS) and of HILIC with electrospray ionization mass spectrometry (ESI-MS) provided quantitative elemental information as well as structural information. The contrast agents Gd-DTPA, Gd-DOTA and Gd-BT-DO3A showed a high stability in irradiation experiments applying a wavelength range from 220 nm to 500 nm. Nevertheless, the degradation of Gd-BOPTA as well as the formation of Gd-containing transformation products was observed by means of HILIC-ICP-MS. Matrix-dependent irradiation experiments showed a degradation of Gd-BOPTA down to 3% of the initial amount in purified water after 300 min, whereas the degradation was slowed down in drinking water and surface water. Furthermore, it was observed that the sum of species continuously decreased with proceeding irradiation in all matrices. After irradiation in purified water for 300 min only 16% of the sum of species was left. This indicates a release of Gd(III) ions from the complex in course of irradiation. HILIC-ESI-MS measurements revealed that the transformation products mostly resulted from O-dealkylation and N-dealkylation reactions. In good correlation with retention times, the majority of transformation products were found to be more polar than Gd-BOPTA itself. Based on accurate masses, sum formulas were obtained and structures could be proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Synthesis route and three different core-shell impacts on magnetic characterization of gadolinium oxide-based nanoparticles as new contrast agents for molecular magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Azizian, Gholamreza; Riyahi-Alam, Nader; Haghgoo, Soheila; Moghimi, Hamid Reza; Zohdiaghdam, Reza; Rafiei, Behrooz; Gorji, Ensieh

    2012-10-01

    Despite its good resolution, magnetic resonance imaging intrinsically has low sensitivity. Recently, contrast agent nanoparticles have been used as sensitivity and contrast enhancer. The aim of this study was to investigate a new controlled synthesis method for gadolinium oxide-based nanoparticle preparation. For this purpose, diethyleneglycol coating of gadolinium oxide (Gd2O3-DEG) was performed using new supervised polyol route, and small particulate gadolinium oxide (SPGO) PEGylation was obtained with methoxy-polyethylene-glycol-silane (550 and 2,000 Da) coatings as SPGO-mPEG-silane550 and 2,000, respectively. Physicochemical characterization and magnetic properties of these three contrast agents in comparison with conventional Gd-DTPA were verified by dynamic light scattering transmission electron microscopy, Fourier transform infrared spectroscopy, inductively coupled plasma, X-ray diffraction, vibrating sample magnetometer, and the signal intensity and relaxivity measurements were performed using 1.5-T MRI scanner. As a result, the nanoparticle sizes of Gd2O3-DEG, SPGO-mPEG-silane550, and SPGO-mPEG-silane2000 could be reached to 5.9, 51.3, 194.2 nm, respectively. The image signal intensity and longitudinal ( r 1) and transverse relaxivity ( r 2) measurements in different concentrations (0.3 to approximately 2.5 mM), revealed the r 2/ r 1 ratios of 1.13, 0.89, 33.34, and 33.72 for Gd-DTPA, Gd2O3-DEG, SPGO-mPEG-silane550, and SPGO-mPEG-silane2000, respectively. The achievement of new synthesis route of Gd2O3-DEG resulted in lower r 2/ r 1 ratio for Gd2O3-DEG than Gd-DTPA and other previous synthesized methods by this and other groups. The smaller r 2/ r 1 ratios of two PEGylated-SPGO contrast agents in our study in comparison with r 2/ r 1 ratio of previous PEGylation ( r 2/ r 1 = 81.9 for mPEG-silane 6,000 MW) showed that these new three introduced contrast agents could potentially be proper contrast enhancers for cellular and molecular MR imaging.

  6. Use of a Genetically Engineered Protein for the Design of a Multivalent MRI Contrast Agent

    PubMed Central

    Karfeld, Lindsay S.; Bull, Steve R.; Davis, Nicolynn E.; Meade, Thomas J.; Barron, Annelise E.

    2008-01-01

    The majority of clinically used contrast agents (CAs) for magnetic resonance imaging have low relaxivities and thus require high concentrations for signal enhancement. Research has turned to multivalent, macromolecular CAs to increase CA efficiency. However, previously developed macromolecular CAs do not provide high relaxivities, have limited biocompatibility, and/or do not have a structure that is readily modifiable to tailor to particular applications. We report a new family of multivalent, biomacromolecular, genetically engineered protein polymer-based CAs; the protein backbone contains evenly spaced lysines that are derivatized with gadolinium (Gd(III)) chelators. The protein's length and repeating amino acid sequence are genetically specified. We reproducibly obtained conjugates with an average of 8 – 9 Gd(III) chelators per protein. These multivalent CAs reproducibly provide a high relaxivity of 7.3 mM-1s-1 per Gd(III) and 62.6 mM-1s-1 per molecule. Furthermore, they can be incorporated into biomaterial hydrogels via chemical crosslinking of remaining free lysines, and provide a dramatic contrast enhancement. Thus, these protein polymer CAs could be a useful tool for following the evolution of tissue engineering scaffolds. PMID:17927227

  7. Gadolinium-Induced Fibrosis.

    PubMed

    Todd, Derrick J; Kay, Jonathan

    2016-01-01

    Gadolinium-based contrast agents (GBCAs), once believed to be safe for patients with renal disease, have been strongly associated with nephrogenic systemic fibrosis (NSF), a severe systemic fibrosing disorder that predominantly afflicts individuals with advanced renal dysfunction. We provide a historical perspective on the appearance and disappearance of NSF, including its initial recognition as a discrete clinical entity, its association with GBCA exposure, and the data supporting a causative relationship between GBCA exposure and NSF. On the basis of this body of evidence, we propose that the name gadolinium-induced fibrosis (GIF) more accurately reflects the totality of knowledge regarding this disease. Use of high-risk GBCAs, such as formulated gadodiamide, should be avoided in patients with renal disease. Restriction of GBCA use in this population has almost completely eradicated new cases of this debilitating condition. Emerging antifibrotic therapies may be useful for patients who suffer from GIF.

  8. Exogenous contrast agents for thermoacoustic imaging: An investigation into the underlying sources of contrast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogunlade, Olumide, E-mail: o.ogunlade@ucl.ac.uk; Beard, Paul

    2015-01-15

    Purpose: Thermoacoustic imaging at microwave excitation frequencies is limited by the low differential contrast exhibited by high water content tissues. To overcome this, exogenous thermoacoustic contrast agents based on gadolinium compounds, iron oxide, and single wall carbon nanotubes have previously been suggested and investigated. However, these previous studies did not fully characterize the electric, magnetic, and thermodynamic properties of these agents thus precluding identification of the underlying sources of contrast. To address this, measurements of the complex permittivity, complex permeability, DC conductivity, and Grüneisen parameter have been made. These measurements allowed the origins of the contrast provided by each substancemore » to be identified. Methods: The electric and magnetic properties of the contrast agents were characterized at 3 GHz using two rectangular waveguide cavities. The DC conductivity was measured separately using a conductivity meter. Thermoacoustic signals were then acquired and compared to those generated in water. Finally, 3D electromagnetic simulations were used to decouple the different contributions to the absorbed power density. Results: It was found that the gadolinium compounds provided appreciable electric contrast but not originating from the gadolinium itself. The contrast was either due to dissociation of the gadolinium salt which increased ionic conductivity or its nondissociated polar fraction which increased dielectric polarization loss or a combination of both. In addition, very high concentrations were required to achieve appreciable contrast, to the extent that the Grüneisen parameter increased significantly and became a source of contrast. Iron oxide particles were found to produce low but measurable dielectric contrast due to dielectric polarization loss, but this is attributed to the coating of the particles not the iron oxide. Single wall carbon nanotubes did not provide measurable contrast of any

  9. Characteristics of Gadolinium Oxide Nanoparticles Using Terahertz Spectroscopy (abstract)

    NASA Astrophysics Data System (ADS)

    Lee, Dongkyu; Maeng, Inhee; Oh, Seung Jae; Kim, Taekhoon; Cho, Byung Kyu; Lee, Kwangyeol; Son, Joo-Hiuk

    2009-04-01

    The penetration property of the terahertz electromagnetic (THz) wave is relevant to its use. We used the THz wave spectroscopy system which easily penetrates some materials that do not contain water, e.g., plastic and ceramics. The system has been developed for several purposes, including measuring the properties of semiconductors and bio-materials, and detecting plastic bombs and ceramic knives at airports. It is also used for medical imaging systems, such as magnetic resonance imaging (MRI), at some research institutes. It can show not only the difference in amplitude, but also the difference of the phase of each point of sample. MRI technology usually uses contrast agents to enhance the quality of the image. Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA), made with a heavy metal ion, is commonly used as a clinical MRI contrast agent. Gadolinium oxide (Gd2O3) nanoparticle is a new contrast agent. It serves to equip the core of each particle with antibodies or ligands. It can freely circulate in blood vessels without amassing in the liver or lungs. This study shows the characteristics of gadolinium oxide nanoparticles to further advance terahertz medical imaging.

  10. Maximizing T2-exchange in Dy3+DOTA-(amide)X chelates: Fine-tuning the water molecule exchange rate for enhanced T2 contrast in MRI

    PubMed Central

    Soesbe, Todd C.; Ratnakar, S. James; Milne, Mark; Zhang, Shanrong; Do, Quyen N.; Kovacs, Zoltan; Sherry, A. Dean

    2014-01-01

    Purpose The water molecule exchange rates in a series of DyDOTA-(amide)X chelates were fine-tuned to maximize the effects of T2-exchange line broadening and improve T2 contrast. Methods Four DyDOTA-(amide)X chelates having a variable number of glycinate side-arms were prepared and characterized as T2-exchange agents. The non-exchanging DyTETA chelate was also used to measure the bulk water T2 reduction due solely to T2*. The total transverse relaxivity (r2tot) at 22, 37, and 52 °C for each chelate was measured in vitro at 9.4 T (400 MHz) by fitting plots of total T2−1 versus concentration. The water molecule exchange rates for each complex were measured by fitting 17O line-width versus temperature data taken at 9.4 T (54.3 MHz). Results The measured transverse relaxivities due to water molecule exchange (r2ex) and bound water lifetimes (τM) were in excellent agreement with Swift-Connick theory, with DyDOTA-(gly)3 giving the largest r2ex = 11.8 s−1 mM−1 at 37 °C. Conclusion By fine-tuning the water molecule exchange rate at 37 °C, the transverse relaxivity has been increased by 2 to 30 times compared to previously studied Dy3+-based chelates. Polymerization or dendrimerization of the optimal chelate could yield a highly sensitive, molecule-sized T2 contrast agent for improved molecular imaging applications. PMID:24390729

  11. Gd-DTPA L-cystine bisamide copolymers as novel biodegradable macromolecular contrast agents for MR blood pool imaging.

    PubMed

    Kaneshiro, Todd L; Ke, Tianyi; Jeong, Eun-Kee; Parker, Dennis L; Lu, Zheng-Rong

    2006-06-01

    The purpose of this study was to synthesize biodegradable Gd-DTPA L-cystine bisamide copolymers (GCAC) as safe and effective, macromolecular contrast agents for magnetic resonance imaging (MRI) and to evaluate their biodegradability and efficacy in MR blood pool imaging in an animal model. Three new biodegradable GCAC with different substituents at the cystine bisamide [R = H (GCAC), CH2CH2CH3 (Gd-DTPA L-cystine bispropyl amide copolymers, GCPC), and CH(CH3)2 (Gd-DTPA cystine bisisopropyl copolymers, GCIC)] were prepared by the condensation copolymerization of diethylenetriamine pentaacetic acid (DTPA) dianhydride with cystine bisamide or bisalkyl amides, followed by complexation with gadolinium triacetate. The degradability of the agents was studied in vitro by incubation in 15 microM cysteine and in vivo with Sprague-Dawley rats. The kinetics of in vivo contrast enhancement was investigated in Sprague-Dawley rats on a Siemens Trio 3 T scanner. The apparent molecular weight of the polydisulfide Gd(III) chelates ranged from 22 to 25 kDa. The longitudinal (T1) relaxivities of GCAC, GCPC, and GCIC were 4.37, 5.28, and 5.56 mM(-1) s(-1) at 3 T, respectively. The polymeric ligands and polymeric Gd(III) chelates readily degraded into smaller molecules in incubation with 15 microM cysteine via disulfide-thiol exchange reactions. The in vitro degradation rates of both the polymeric ligands and macromolecular Gd(III) chelates decreased as the steric effect around the disulfide bonds increased. The agents readily degraded in vivo, and the catabolic degradation products were detected in rat urine samples collected after intravenous injection. The agents showed strong contrast enhancement in the blood pool, major organs, and tissues at a dose of 0.1 mmol Gd/kg. The difference of their in vitro degradability did not significantly alter the kinetics of in vivo contrast enhancement of the agents. These novel GCAC are promising contrast agents for cardiovascular and tumor MRI

  12. A gadolinium(III) complex of a carboxylic-phosphorus acid derivative of diethylenetriamine covalently bound to inulin, a potential macromolecular MRI contrast agent.

    PubMed

    Lebdusková, Petra; Kotek, Jan; Hermann, Petr; Vander Elst, Luce; Muller, Robert N; Lukes, Ivan; Peters, Joop A

    2004-01-01

    A novel conjugate of a polysaccharide and a Gd(III) chelate with potential as contrast agent for magnetic resonance imaging (MRI) was synthesized. The structure of the chelate was derived from H5DTPA by replacing the central pendant arm by a phosphinic acid functional group, which was covalently bound to the polysaccharide inulin. On the average, each monosaccharide unit of the inulin was attached to approximately one (0.9) chelate moiety. The average molecular weight is 23110 and the average number of Gd3+ ions per molecule is 24. The ligand binds the Gd3+ ion in an octadentate fashion via three nitrogen atoms, four carboxylate oxygen atoms, and one P-O oxygen atom, and its first coordination sphere is completed by a water molecule. This compound shows promising properties for application as a contrast agent for MRI thanks to a favorable residence lifetime of this water molecule (170 ns at 298 K), a relatively long rotational correlation time (866 ps at 298 K), and the presence of two water molecules in the second coordination sphere of the Gd3+ ion. Furthermore, its stability toward transmetalation with Zn(II) is as high as that of the clinically used [Gd(DTPA)(H2O)]2-.

  13. Survey of gadolinium-based contrast agent utilization among the members of the Society for Pediatric Radiology: a Quality and Safety Committee report.

    PubMed

    Blumfield, Einat; Moore, Michael M; Drake, Mary K; Goodman, Thomas R; Lewis, Kristopher N; Meyer, Laura T; Ngo, Thang D; Sammet, Christina; Stanescu, Arta Luana; Swenson, David W; Slovis, Thomas L; Iyer, Ramesh S

    2017-05-01

    Gadolinium-based contrast agents (GBCAs) have been used for magnetic resonance (MR) imaging over the last three decades. Recent reports demonstrated gadolinium retention in patients' brains following intravenous administration. Since gadolinium is a highly toxic heavy metal, there is a potential for adverse effects from prolonged retention or deposition, particularly in children. For this reason, the Society (SPR) for Pediatric Radiology Quality and Safety committee conducted a survey to evaluate the current status of GBCAs usage among pediatric radiologists. To assess the usage of GBCAs among SPR members. An online 15-question survey was distributed to SPR members. Survey questions pertained to the type of GBCAs used, protocoling workflow, requirement of renal function or pregnancy tests, and various clinical indications for contrast-enhanced MRI examinations. A total of 163 survey responses were compiled (11.1% of survey invitations), the majority of these from academic institutions in the United States. Ninety-four percent reported that MR studies are always or usually protocoled by pediatric radiologists. The most common GBCA utilized by survey respondents were Eovist (60.7%), Ablavar (45.4%), Gadovist (38.7%), Magnevist (34.4%) and Dotarem (32.5%). For several clinical indications, survey responses regarding GBCA administration were concordant with American College of Radiology (ACR) Appropriateness Criteria, including seizures, headache and osteomyelitis. For other indications, including growth hormone deficiency and suspected vascular ring, survey responses revealed potential overutilization of GBCAs when compared to ACR recommendations. Survey results demonstrate that GBCAs are administered judiciously in children, yet there is an opportunity to improve their utilization with the goal of reducing potential future adverse effects.

  14. Distribution and chemical forms of gadolinium in the brain: a review.

    PubMed

    Kanda, Tomonori; Nakai, Yudai; Hagiwara, Akifumi; Oba, Hiroshi; Toyoda, Keiko; Furui, Shigeru

    2017-11-01

    In the 3 years since residual gadolinium-based contrast agent (GBCA) in the brain was first reported, much has been learned about its accumulation, including the pathway of GBCA entry into the brain, the brain distribution of GBCA and its excretion. Here we review recent progress in understanding the routes of gadolinium deposition in brain structures.

  15. MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain.

    PubMed

    Eide, Per Kristian; Ringstad, Geir

    2015-11-01

    Recently, the "glymphatic system" of the brain has been discovered in rodents, which is a paravascular, transparenchymal route for clearance of excess brain metabolites and distribution of compounds in the cerebrospinal fluid. It has already been demonstrated that intrathecally administered gadolinium (Gd) contrast medium distributes along this route in rats, but so far not in humans. A 27-year-old woman underwent magnetic resonance imaging (MRI) with intrathecal administration of gadobutrol, which distributed throughout her entire brain after 1 and 4.5 h. MRI with intrathecal Gd may become a tool to study glymphatic function in the human brain.

  16. MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain

    PubMed Central

    Ringstad, Geir

    2015-01-01

    Recently, the “glymphatic system” of the brain has been discovered in rodents, which is a paravascular, transparenchymal route for clearance of excess brain metabolites and distribution of compounds in the cerebrospinal fluid. It has already been demonstrated that intrathecally administered gadolinium (Gd) contrast medium distributes along this route in rats, but so far not in humans. A 27-year-old woman underwent magnetic resonance imaging (MRI) with intrathecal administration of gadobutrol, which distributed throughout her entire brain after 1 and 4.5 h. MRI with intrathecal Gd may become a tool to study glymphatic function in the human brain. PMID:26634147

  17. Heterogeneous intratumoral distribution of gadolinium nanoparticles within U87 human glioblastoma xenografts unveiled by micro-PIXE imaging.

    PubMed

    Carmona, Asuncion; Roudeau, Stéphane; L'Homel, Baptiste; Pouzoulet, Frédéric; Bonnet-Boissinot, Sarah; Prezado, Yolanda; Ortega, Richard

    2017-04-15

    Metallic nanoparticles have great potential in cancer radiotherapy as theranostic drugs since, they serve simultaneously as contrast agents for medical imaging and as radio-therapy sensitizers. As with other anticancer drugs, intratumoral diffusion is one of the main limiting factors for therapeutic efficiency. To date, a few reports have investigated the intratumoral distribution of metallic nanoparticles. The aim of this study was to determine the quantitative distribution of gadolinium (Gd) nanoparticles after direct intratumoral injection within U87 human glioblastoma tumors grafted in mice, using micro-PIXE (Particle Induced X-ray Emission) imaging. AGuIX (Activation and Guiding of Irradiation by X-ray) 3 nm particles composed of a polysiloxane network surrounded by gadolinium chelates were used. PIXE results indicate that the direct injection of Gd nanoparticles in tumors results in their heterogeneous diffusion, probably related to variations in tumor density. All tumor regions contain Gd, but with markedly different concentrations, with a more than 250-fold difference. Also Gd can diffuse to the healthy adjacent tissue. This study highlights the usefulness of mapping the distribution of metallic nanoparticles at the intratumoral level, and proposes PIXE as an imaging modality to probe the quantitative distribution of metallic nanoparticles in tumors from experimental animal models with micrometer resolution. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. T(2) relaxation time of hyaline cartilage in presence of different gadolinium-based contrast agents.

    PubMed

    Wiener, Edzard; Settles, Marcus; Diederichs, Gerd

    2010-01-01

    The transverse relaxation time, T(2), of native cartilage is used to quantify cartilage degradation. T(2) is frequently measured after contrast administration, assuming that the impact of gadolinium-based contrast agents on cartilage T(2) is negligible. To verify this assumption the depth-dependent variation of T(2) in the presence of gadopentetate dimeglumine, gadobenate dimeglumine and gadoteridol was investigated. Furthermore, the r(2)/r(1) relaxivity ratios were quantified in different cartilage layers to demonstrate differences between T(2) and T(1) relaxation effects. Transverse high-spatial-resolution T(1)- and T(2)-maps were simultaneously acquired on a 1.5 T MR scanner before and after contrast administration in nine bovine patellae using a turbo-mixed sequence. The r(2)/r(1) ratios were calculated for each contrast agent in cartilage. Profiles of T(1), T(2) and r(2)/r(1) across cartilage thickness were generated in the absence and presence of contrast agent. The mean values in different cartilage layers were compared for global variance using the Kruskal-Wallis test and pairwise using the Mann-Whitney U-test. T(2) of unenhanced cartilage was 98 +/- 5 ms at 1 mm and 65 +/- 4 ms at 3 mm depth. Eleven hours after contrast administration significant differences (p < 0.001) were measurable for all three contrast agents. T(2) values were 58 +/- 2 and 62 +/- 3 ms for gadopentetate dimeglumine, 46 +/- 2 and 57 +/- 2 ms for gadobenate dimeglumine, and 38 +/- 2 and 42 +/- 2 ms for gadoteridol at 1 and 3 mm depths, respectively. The r(2)/r(1) relaxivity ratios across cartilage thickness were close to 1.0 (range 0.9-1.3). At 1.5 T, T(2) decreased significantly in the presence of contrast agents, more pronounced in superficial than in deep cartilage. The change in T(2) relaxation rate was similar to the change in T(1). Cartilage T(2) measurements after contrast administration will lead to systematic errors in the quantification of cartilage degradation. 2010 John

  19. Nephrogenic systemic fibrosis and class labeling of gadolinium-based contrast agents by the Food and Drug Administration.

    PubMed

    Yang, Lucie; Krefting, Ira; Gorovets, Alex; Marzella, Louis; Kaiser, James; Boucher, Robert; Rieves, Dwaine

    2012-10-01

    In 2007, the Food and Drug Administration requested that manufacturers of all approved gadolinium-based contrast agents (GBCAs), drugs widely used in magnetic resonance imaging, use nearly identical text in their product labeling to describe the risk of nephrogenic systemic fibrosis (NSF). Accumulating information about NSF risks led to revision of the labeling text for all of these drugs in 2010. The present report summarizes the basis and purpose of this class-labeling approach and describes some of the related challenges, given the evolutionary nature of the NSF risk evidence. The class-labeling approach for presentation of product risk is designed to decrease the occurrence of NSF and to enhance the safe use of GBCAs in radiologic practice. © RSNA, 2012.

  20. A highly stable gadolinium complex with a fast, associative mechanism of water exchange.

    PubMed

    Thompson, Marlon K; Botta, Mauro; Nicolle, Gaëlle; Helm, Lothar; Aime, Silvio; Merbach, André E; Raymond, Kenneth N

    2003-11-26

    The stability and water exchange dynamics of gadolinium (GdIII) complexes are critical characteristics that determine their effectiveness as contrast agents for magnetic resonance imaging (MRI). A new heteropodal GdIII chelate, [Gd-TREN-bis(6-Me-HOPO)-(TAM-TRI)(H2O)2] (Gd-2), is presented which is based on a hydroxypyridinate (HOPO)-terephthalamide (TAM) ligand design. Thermodynamic equilibrium constants for the acid-base properties and the GdIII complexation strength of TREN-bis(6-Me-HOPO)-(TAM-TRI) (2) were measured by potentiometric and spectrophotometric titration techniques, respectively. The pGd of 2 is 20.6 (pH 7.4, 25 degrees C, I = 0.1 M), indicating that Gd-2 is of more than sufficient thermodynamic stability for in vivo MRI applications. The water exchange rate of Gd-2 (kex = 5.3(+/-0.6) x 107 s-1) was determined by variable temperature 17O NMR and is in the fast exchange regime - ideal for MRI. Variable pressure 17O NMR was used to determine the volume of activation (DeltaV) of Gd-2. DeltaV for Gd-2 is -5 cm3 mol-1, indicative of an interchange associative (Ia) water exchange mechanism. The results reported herein are important as they provide insight into the factors influencing high stability and fast water exchange in the HOPO series of complexes, potentially future clinical contrast agents.

  1. Immediate Adverse Reactions to Gadolinium-Based MR Contrast Media: A Retrospective Analysis on 10,608 Examinations.

    PubMed

    Granata, Vincenza; Cascella, Marco; Fusco, Roberta; dell'Aprovitola, Nicoletta; Catalano, Orlando; Filice, Salvatore; Schiavone, Vincenzo; Izzo, Francesco; Cuomo, Arturo; Petrillo, Antonella

    2016-01-01

    Background and Purpose. Contrast media (CM) for magnetic resonance imaging (MRI) may determine the development of acute adverse reactions. Objective was to retrospectively assess the frequency and severity of adverse reactions associated with gadolinium-based contrast agents (GBCAs) injection in patients who underwent MRI. Material and Methods. At our center 10608 MRI examinations with CM were performed using five different GBCAs: Gd-BOPTA (MultiHance), Gd-DTPA (Magnevist), Gd-EOBDTPA (Primovist), Gd-DOTA (Dotarem), and Gd-BTDO3A (Gadovist). Results. 32 acute adverse reactions occurred, accounting for 0.3% of all administration. Twelve reactions were associated with Gd-DOTA injection (0.11%), 9 with Gd-BOPTA injection (0.08%), 6 with Gd-BTDO3A (0.056%), 3 with Gd-EOB-DTPA (0.028%), and 2 with Gd-DTPA (0.018%). Twenty-four reactions (75.0%) were mild, four (12.5%) moderate, and four (12.5%) severe. The most severe reactions were seen associated with use of Gd-BOPTA, with 3 severe reactions in 32 total reactions. Conclusion. Acute adverse reactions are generally rare with the overall adverse reaction rate of 0.3%. The most common adverse reactions were not severe, consisting in skin rash and hives.

  2. Anthropogenic gadolinium anomalies and rare earth elements in the water of Atibaia River and Anhumas Creek, Southeast Brazil.

    PubMed

    de Campos, Francisco Ferreira; Enzweiler, Jacinta

    2016-05-01

    The concentrations of rare earth elements (REE), measured in water samples from Atibaia River and its tributary Anhumas Creek, Brazil, present excess of dissolved gadolinium. Such anthropogenic anomalies of Gd in water, already described in other parts of the world, result from the use of stable and soluble Gd chelates as contrast agents in magnetic resonance imaging. Atibaia River constitutes the main water supply of Campinas Metropolitan area, and its basin receives wastewater effluents. The REE concentrations in water samples were determined in 0.22-μm pore size filtered samples, without and after preconcentration by solid-phase extraction with bis-(2-ethyl-hexyl)-phosphate. This preconcentration method was unable to retain the anthropogenic Gd quantitatively. The probable reason is that the Gd chelates dissociate slowly in acidic media to produce the free ion that is retained by the phosphate ester. Strong correlations between Gd and constituents or parameters associated with effluents confirmed the source of most Gd in water samples as anthropogenic. The shale-normalized REE patterns of Atibaia River and Anhumas Creek water samples showed light and heavy REE enrichment trends, respectively. Also, positive Ce anomalies in many Atibaia River samples, as well as the strong correlations of the REE (except Gd) with terrigenous elements, imply that inorganic colloidal particles contributed to the REE measured values.

  3. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) of cadaveric shoulders: comparison of contrast dynamics in hyaline and fibrous cartilage after intraarticular gadolinium injection.

    PubMed

    Wiener, E; Hodler, J; Pfirrmann, C W A

    2009-01-01

    Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) is a novel method to investigate cartilaginous and fibrocartilaginous structures. To investigate the contrast dynamics in hyaline and fibrous cartilage of the glenohumeral joint after intraarticular injection of gadopentetate dimeglumine. Transverse T(1) maps were acquired on a 1.5T scanner before and after intraarticular injection of 2.0 mmol/l gadopentetate dimeglumine in five cadaveric shoulders using a dual flip angle three-dimensional gradient echo (3D-GRE) sequence. The acquisition time for the T(1) maps was 5 min 5 s for the whole shoulder. Measurements were repeated every 15 min over 2.5 hours. Regions of interest (ROIs) covering the glenoid cartilage and the labrum were drawn to assess the temporal evolution of the relaxation parameters. T(1) of unenhanced hyaline cartilage of the glenoid was 568+/-34 ms. T(1) of unenhanced fibrous cartilage of the labrum was 552+/-38 ms. Significant differences (P=0.002 and 0.03) in the relaxation parameters were already measurable after 15 min. After 2 to 2.5 hours, hyaline and fibrous cartilage still demonstrated decreasing relaxation parameters, with a larger range of the T(1)(Gd) values in fibrous cartilage. T(1) and triangle Delta R(1) values of hyaline and fibrous cartilage after 2.5 hours were 351+/-16 ms and 1.1+/-0.09 s(-1), and 332+/-31 ms and 1.2+/-0.1 s(-1), respectively. A significant decrease in T(1)(Gd) was found 15 min after intraarticular contrast injection. Contrast accumulation was faster in hyaline than in fibrous cartilage. After 2.5 hours, contrast accumulation showed a higher rate of decrease in hyaline cartilage, but neither hyaline nor fibrous cartilage had reached equilibrium.

  4. Serum Neutrophil Gelatinase-Associated Lipocalin and Urinary Kidney Injury Molecule-1 as Potential Biomarkers of Subclinical Nephrotoxicity After Gadolinium-Based and Iodinated-Based Contrast Media Exposure in Pediatric Patients with Normal Kidney Function

    PubMed Central

    Spasojević-Dimitrijeva, Brankica; Kotur-Stevuljević, Jelena; Đukić, Milan; Paripović, Dušan; Miloševski-Lomić, Gordana; Spasojević-Kalimanovska, Vesna; Pavićević, Polina; Mitrović, Jadranka; Kostić, Mirjana

    2017-01-01

    Background New renal biomarkers such as neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) show promise in early diagnosis of contrast media induced acute kidney injury (CI-AKI). The purpose of our study was to compare the subclinical nephrotoxicity (a condition without changes in standard renal biomarkers) of gadolinium-based contrast media (Gd-DTPA, gadopentetate dimeglumine) and iodinated-based contrast media (iopromide) in pediatric patients with normal kidney function. Material/Methods The first group (n=58) of patients included in the study were undergoing angiography with iopromide, and the second group (n=65) were undergoing magnetic resonance (MR) angiography/urography with Gd-DTPA administration. The concentrations of NGAL and KIM-1 were measured four times in the urine (pre-contrast, then at four hours, 24 hours, and 48 hours after contrast administration), and serum NGAL was measured at 0 (baseline), 24 hours, and 48 hours after contrast exposure. Results After 24 hours, serum NGAL increase of ≥25% was noticed in 32.6% of the patients in the iopromide group and in 25.45% of the patients in the gadolinium group, with significantly higher average percent of this increase in first group (62.23% vs. 36.44%, p=0.002). In the Gd-DTPA group, we observed a statistically significant increase in urinary KIM-1 24 hours after the procedure. Normalized urinary KIM-1, 24 hours after contrast exposure, was a better predictive factor for CI-AKI than other biomarkers (AUC 0.757, cut off 214 pg/mg, sensitivity 83.3%, specificity 54.2%, p=0.035). Conclusions In children with normal renal function, exposure to iodinated-based and gadolinium-based media might lead to subclinical nephrotoxicity, which could be detected using serum NGAL and urinary KIM-1. PMID:28874655

  5. Structural, kinetic, and thermodynamic characterization of the interconverting isomers of MS-325, a gadolinium(III)-based magnetic resonance angiography contrast agent.

    PubMed

    Tyeklar, Zoltan; Dunham, Stephen U; Midelfort, Katarina; Scott, Daniel M; Sajiki, Hirano; Ong, Karen; Lauffer, Randall B; Caravan, Peter; McMurry, Thomas J

    2007-08-06

    The amphiphilic gadolinium complex MS-325 ((trisodium-{(2-(R)-[(4,4-diphenylcyclohexyl) phosphonooxymethyl] diethylenetriaminepentaacetato) (aquo)gadolinium(III)}) is a contrast agent for magnetic resonance angiography (MRA). MS-325 comprises a GdDTPA core with an appended phosphodiester moiety linked to a diphenylcyclohexyl group to facilitate noncovalent binding to serum albumin and extension of the plasma half-life in vivo. The chiral DTPA ligand (R) was derived from L-serine, and upon complexation with gadolinium, forms two interconvertible diastereomers, denoted herein as isomers A and B. X-ray crystallography of the tris(ethylenediamine)cobalt(III) salt derivative of isomer A revealed a structure in the polar acentric space group P32. The structure consisted of three independent molecules of the gadolinium complex in the asymmetric unit along with three Delta-[Co(en)3]3+ cations, and it represents an unusual example of spontaneous Pasteur resolution of the cobalt cation. The geometry of the coordination core was best described as a distorted trigonal prism, and the final R factor was 5.6%. The configuration of the chiral central nitrogen of the DTPA core was S. The Gd-water (2.47-2.48 A), the Gd-acetate oxygens (2.34-2.42 A), and the Gd-N bond distances (central N, 2.59-2.63 A; terminal N, 2.74-2.80 A) were similar to other reported GdDTPA structures. The structurally characterized single crystal was one of two interconvertable diastereomers (isomers A and B) that equilibrated to a ratio of 1.81 to 1 at pH 7.4 and were separable at elevated pH by ion-exchange chromatography. The rate of isomerization was highly pH dependent: k1 = (1.45 +/- 0.08) x 102[H+] + (4.16 +/- 0.30) x 105[H+]2; k-1 = (2.57 +/- 0.17) x 102[H+] + (7.54 +/- 0.60) x 105[H+]2.

  6. High performance magneto-fluorescent nanoparticles assembled from terbium and gadolinium 1,3-diketones

    PubMed Central

    Zairov, Rustem; Mustafina, Asiya; Shamsutdinova, Nataliya; Nizameev, Irek; Moreira, Beatriz; Sudakova, Svetlana; Podyachev, Sergey; Fattakhova, Alfia; Safina, Gulnara; Lundstrom, Ingemar; Gubaidullin, Aidar; Vomiero, Alberto

    2017-01-01

    Polyelectrolyte-coated nanoparticles consisting of terbium and gadolinium complexes with calix[4]arene tetra-diketone ligand were first synthesized. The antenna effect of the ligand on Tb(III) green luminescence and the presence of water molecules in the coordination sphere of Gd(III) bring strong luminescent and magnetic performance to the core-shell nanoparticles. The size and the core-shell morphology of the colloids were studied using transmission electron microscopy and dynamic light scattering. The correlation between photophysical and magnetic properties of the nanoparticles and their core composition was highlighted. The core composition was optimized for the longitudinal relaxivity to be greater than that of the commercial magnetic resonance imaging (MRI) contrast agents together with high level of Tb(III)-centered luminescence. The tuning of both magnetic and luminescent output of nanoparticles is obtained via the simple variation of lanthanide chelates concentrations in the initial synthetic solution. The exposure of the pheochromocytoma 12 (PC 12) tumor cells and periphery human blood lymphocytes to nanoparticles results in negligible effect on cell viability, decreased platelet aggregation and bright coloring, indicating the nanoparticles as promising candidates for dual magneto-fluorescent bioimaging. PMID:28091590

  7. High performance magneto-fluorescent nanoparticles assembled from terbium and gadolinium 1,3-diketones

    NASA Astrophysics Data System (ADS)

    Zairov, Rustem; Mustafina, Asiya; Shamsutdinova, Nataliya; Nizameev, Irek; Moreira, Beatriz; Sudakova, Svetlana; Podyachev, Sergey; Fattakhova, Alfia; Safina, Gulnara; Lundstrom, Ingemar; Gubaidullin, Aidar; Vomiero, Alberto

    2017-01-01

    Polyelectrolyte-coated nanoparticles consisting of terbium and gadolinium complexes with calix[4]arene tetra-diketone ligand were first synthesized. The antenna effect of the ligand on Tb(III) green luminescence and the presence of water molecules in the coordination sphere of Gd(III) bring strong luminescent and magnetic performance to the core-shell nanoparticles. The size and the core-shell morphology of the colloids were studied using transmission electron microscopy and dynamic light scattering. The correlation between photophysical and magnetic properties of the nanoparticles and their core composition was highlighted. The core composition was optimized for the longitudinal relaxivity to be greater than that of the commercial magnetic resonance imaging (MRI) contrast agents together with high level of Tb(III)-centered luminescence. The tuning of both magnetic and luminescent output of nanoparticles is obtained via the simple variation of lanthanide chelates concentrations in the initial synthetic solution. The exposure of the pheochromocytoma 12 (PC 12) tumor cells and periphery human blood lymphocytes to nanoparticles results in negligible effect on cell viability, decreased platelet aggregation and bright coloring, indicating the nanoparticles as promising candidates for dual magneto-fluorescent bioimaging.

  8. Analysis of Blood Gadolinium in an Isotope Geochemist Following Contrast MRI

    NASA Astrophysics Data System (ADS)

    Wasylenki, L. E.

    2011-12-01

    Normal brain tissue does not have blood flowing throughout it; instead oxygen diffuses across a blood-brain barrier in order to oxygenate brain cells. Brain tumors, however, do grow blood supplies, so an abnormal distribution of blood in the brain is a key indicator of abnormal cell growth. But how is the distribution of blood in inside the brain observed? The lanthanide ion gadolinium(III) has unpaired 5f-shell electrons and is thus paramagnetic. As such, the presence of Gd causes the nuclei of nearby atoms to relax more quickly when excited to high-energy spin states by pulses of radio-frequency energy than they would without Gd nearby. The signal in magnetic resonance imaging correlates with this nuclear spin relaxation time, so gadolinium's presence in certain body tissues makes those tissues appear as bright areas on MRI images. Gadolinium is therefore commonly injected intravenously just prior to MRI imaging, so that the distribution of blood in and around the brain can be mapped. Gadolinium as a free ion is toxic, so it is injected in a relatively inert form, often as gadoversetamide, in which Gd is tightly bound in nine-fold coordination with N, C, and O. This compound is removed from the blood by the kidneys at a rate that is fast compared to the rate of breakdown of this compound in the blood, thus preventing release of toxic Gd in the bloodstream. But how quickly can the kidneys of an isotope geochemist remove Gd from blood? In this experiment, a single isotope geochemist's wristwatch was synchronized with that of the MRI technician and then left in a dressing room with all other magnetically susceptible objects until after the MRI. The time of intravenous injection of gadoversetamide into the isotopist was recorded by the technician and later transmitted verbally to the isotopist. Following the MRI session, blood samples were collected by self-fingerprick, in a Class 100 trace metal clean lab, from 47 to 281 minutes after intravenous injection. For each

  9. Gadolinium-based magnetic resonance contrast agents at 7 Tesla: in vitro T1 relaxivities in human blood plasma.

    PubMed

    Noebauer-Huhmann, Iris M; Szomolanyi, Pavol; Juras, Vladimír; Kraff, Oliver; Ladd, Mark E; Trattnig, Siegfried

    2010-09-01

    PURPOSE/INTRODUCTION: The aim of this study was to determine the T1 relaxivities (r1) of 8 gadolinium (Gd)-based MR contrast agents in human blood plasma at 7 Tesla, compared with 3 Tesla. Eight commercially available Gd-based MR contrast agents were diluted in human blood plasma to concentrations of 0, 0.25, 0.5, 1, and 2 mmol/L. In vitro measurements were performed at 37 degrees C, on a 7 Tesla and on a 3 Tesla whole-body magnetic resonance imaging scanner. For the determination of T1 relaxation times, Inversion Recovery Sequences with inversion times from 0 to 3500 ms were used. The relaxivities were calculated. The r1 relaxivities of all agents, diluted in human blood plasma at body temperature, were lower at 7 Tesla than at 3 Tesla. The values at 3 Tesla were comparable to those published earlier. Notably, in some agents, a minor negative correlation of r1 with a concentration of up to 2 mmol/L could be observed. This was most pronounced in the agents with the highest protein-binding capacity. At 7 Tesla, the in vitro r1 relaxivities of Gd-based contrast agents in human blood plasma are lower than those at 3 Tesla. This work may serve as a basis for the application of Gd-based MR contrast agents at 7 Tesla. Further studies are required to optimize the contrast agent dose in vivo.

  10. Dual-contrast agent photon-counting computed tomography of the heart: initial experience.

    PubMed

    Symons, Rolf; Cork, Tyler E; Lakshmanan, Manu N; Evers, Robert; Davies-Venn, Cynthia; Rice, Kelly A; Thomas, Marvin L; Liu, Chia-Ying; Kappler, Steffen; Ulzheimer, Stefan; Sandfort, Veit; Bluemke, David A; Pourmorteza, Amir

    2017-08-01

    To determine the feasibility of dual-contrast agent imaging of the heart using photon-counting detector (PCD) computed tomography (CT) to simultaneously assess both first-pass and late enhancement of the myocardium. An occlusion-reperfusion canine model of myocardial infarction was used. Gadolinium-based contrast was injected 10 min prior to PCD CT. Iodinated contrast was infused immediately prior to PCD CT, thus capturing late gadolinium enhancement as well as first-pass iodine enhancement. Gadolinium and iodine maps were calculated using a linear material decomposition technique and compared to single-energy (conventional) images. PCD images were compared to in vivo and ex vivo magnetic resonance imaging (MRI) and histology. For infarct versus remote myocardium, contrast-to-noise ratio (CNR) was maximal on late enhancement gadolinium maps (CNR 9.0 ± 0.8, 6.6 ± 0.7, and 0.4 ± 0.4, p < 0.001 for gadolinium maps, single-energy images, and iodine maps, respectively). For infarct versus blood pool, CNR was maximum for iodine maps (CNR 11.8 ± 1.3, 3.8 ± 1.0, and 1.3 ± 0.4, p < 0.001 for iodine maps, gadolinium maps, and single-energy images, respectively). Combined first-pass iodine and late gadolinium maps allowed quantitative separation of blood pool, scar, and remote myocardium. MRI and histology analysis confirmed accurate PCD CT delineation of scar. Simultaneous multi-contrast agent cardiac imaging is feasible with photon-counting detector CT. These initial proof-of-concept results may provide incentives to develop new k-edge contrast agents, to investigate possible interactions between multiple simultaneously administered contrast agents, and to ultimately bring them to clinical practice.

  11. Safe Use of Contrast Media: What the Radiologist Needs to Know.

    PubMed

    Beckett, Katrina R; Moriarity, Andrew K; Langer, Jessica M

    2015-10-01

    Iodinated and gadolinium-based contrast media are used on a daily basis in most radiology practices. These agents often are essential to providing accurate diagnoses, and are nearly always safe and effective when administered correctly. However, reactions to contrast media do occur and can be life threatening. Therefore, it is critical for faculty and staff to know how reactions to contrast agents manifest and how to treat them promptly. The decline in renal function seen occasionally after intravenous administration of iodinated contrast agents is poorly understood and likely multifactorial, and its association with the contrast medium may be overemphasized. However, it is important that radiologists be aware of current understanding and strategies to decrease the incidence of renal dysfunction. Nephrogenic systemic fibrosis, a skin disease, is an adverse reaction related to use of some gadolinium-based contrast agents in patients with chronic renal failure. The types of gadolinium most often associated with this condition and the indications for withholding gadolinium are important and are discussed in this article. The use of enteric contrast agents and contrast agents during pregnancy and nursing are reviewed briefly. Current knowledge for safe use of contrast media and key concepts that all radiologists should know are summarized in this review. © RSNA, 2015.

  12. Gadolinium diethylenetriaminopentaacetic acid-loaded chitosan microspheres for gadolinium neutron-capture therapy.

    PubMed

    Saha, Tapan Kumar; Ichikawa, Hideki; Fukumori, Yoshinobu

    2006-12-11

    In order to provide a suitable device that would contain water-soluble drugs, highly water-soluble gadolinium diethylenetriaminopentaacetic acid-loaded chitosan microspheres (CMS-Gd-DTPA) were prepared by the emulsion method using glutaraldehyde as a cross-linker and Span 80 as a surfactant for gadolinium neutron-capture therapy of cancer. The gadolinium content and the mass median diameter of CMS-Gd-DTPA were estimated. The size and morphology of the CMS-Gd-DTPA were strongly influenced by the initial applied weight ratio of Gd-DTPA:chitosan. FTIR spectra showed that the electrostatic interaction between chitosan and Gd-DTPA accelerated the formation of gadolinium-enriched chitosan microspheres. Sufficient amounts of glutaraldehyde and Span 80 were necessary for producing discrete CMS-Gd-DTPA. The CMS-Gd-DTPA having a mass median diameter 11.7microm and 11.6% of gadolinium could be used in Gd-NCT following intratumoral injection.

  13. Equilibrium-phase MR angiography: Comparison of unspecific extracellular and protein-binding gadolinium-based contrast media with respect to image quality.

    PubMed

    Erb-Eigner, Katharina; Taupitz, Matthias; Asbach, Patrick

    2016-01-01

    The purpose of this study was to compare contrast and image quality of whole-body equilibrium-phase high-spatial-resolution MR angiography using a non-protein-binding unspecific extracellular gadolinium-based contrast medium with that of two contrast media with different protein-binding properties. 45 patients were examined using either 15 mL of gadobutrol (non-protein-binding, n = 15), 32 mL of gadobenate dimeglumine (weakly protein binding, n = 15) or 11 mL gadofosveset trisodium (protein binding, n = 15) followed by equilibrium-phase high-spatial-resolution MR-angiography of four consecutive anatomic regions. The time elapsed between the contrast injection and the beginning of the equilibrium-phase image acquisition in the respective region was measured and was up to 21 min. Signal intensity was measured in two vessels per region and in muscle tissue. Relative contrast (RC) values were calculated. Vessel contrast, artifacts and image quality were rated by two radiologists in consensus on a five-point scale. Compared with gadobutrol, gadofosveset trisodium revealed significantly higher RC values only when acquired later than 15 min after bolus injection. Otherwise, no significant differences between the three contrast media were found regarding vascular contrast and image quality. Equilibrium-phase high-spatial-resolution MR-angiography using a weakly protein-binding or even non-protein-binding contrast medium is equivalent to using a stronger protein-binding contrast medium when image acquisition is within the first 15 min after contrast injection, and allows depiction of the vasculature with high contrast and image quality. The protein-binding contrast medium was superior for imaging only later than 15 min after contrast medium injection. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Brain tumor enhancement in magnetic resonance imaging at 3 tesla: intraindividual comparison of two high relaxivity macromolecular contrast media with a standard extracellular gd-chelate in a rat brain tumor model.

    PubMed

    Fries, Peter; Runge, Val M; Bücker, Arno; Schürholz, Hellmut; Reith, Wolfgang; Robert, Philippe; Jackson, Carney; Lanz, Titus; Schneider, Günther

    2009-04-01

    .05) for all examination time points. P846 provided comparable but persistent LE as compared with Gd-DOTA (P < 0.05) and demonstrated significantly greater LE and CNR when compared with P792 (P < 0.05). No statistically significant differences between CNR values for Gd-DOTA and P846 were noted for all examination time points (P < 0.05), with P846 administered at one-fourth the dose as compared with Gd-DOTA. The intravascular contrast medium P792 showed significantly less LE and CNR in comparison to Gd-DOTA and P846, suggesting that it does not show marked extravasation from tumor neocapillaries and does not significantly cross the disrupted blood brain-barrier in this rat glioma model. In distinction, P846 provides comparable enhancement properties at a field strength of 3 Tesla to the extracellular contrast agent Gd-DOTA, using the adjusted dose, suggesting that it crosses the disrupted blood-brain-barrier and tumor capillaries, most likely based on the decreased molecular weight as compared with P792. At the same time, the high relaxivity of this compound allows for decreasing the injected gadolinium dose by a factor of 4 whereas providing comparable enhancement properties when compared with a standard extracellular Gd-chelate (Gd-DOTA) at a dose of 0.1 mmol/kg body weight.

  15. Obligatory reduction of ferric chelates in iron uptake by soybeans.

    PubMed

    Chaney, R L; Brown, J C; Tiffin, L O

    1972-08-01

    The contrasting Fe(2+) and Fe(3+) chelating properties of the synthetic chelators ethylenediaminedi (o-hydroxyphenylacetate) (EDDHA) and 4,7-di(4-phenylsulfonate)-1, 10-phenanthroline (bathophenanthrolinedisulfonate) (BPDS) were used to determine the valence form of Fe absorbed by soybean roots supplied with Fe(3+)-chelates. EDDHA binds Fe(3+) strongly, but Fe(2+) weakly; BPDS binds Fe(2+) strongly but Fe(3+) weakly. Addition of an excess of BPDS to nutrient solutions containing Fe(3+)-chelates inhibited soybean Fe uptake-translocation by 99+%; [Fe(II) (BPDS)(3)](4-) accumulated in the nutrient solution. The addition of EDDHA caused little or no inhibition. These results were observed with topped and intact soybeans. Thus, separation and absorption of Fe from Fe(3+)-chelates appear to require reduction of Fe(3+)-chelate to Fe(2+)-chelate at the root, with Fe(2+) being the principal form of Fe absorbed by soybean.

  16. Growth Control in Colon Epithelial Cells: Gadolinium Enhances Calcium-Mediated Growth Regulation

    PubMed Central

    Attili, Durga; Jenkins, Brian; Aslam, Muhammad Nadeem; Dame, Michael K.

    2013-01-01

    Gadolinium, a member of the lanthanoid family of transition metals, interacts with calcium-binding sites on proteins and other biological molecules. The overall goal of the present investigation was to determine if gadolinium could enhance calcium-induced epithelial cell growth inhibition in the colon. Gadolinium at concentrations as low as 1–5 µM combined with calcium inhibits proliferation of human colonic epithelial cells more effectively than calcium alone. Gadolinium had no detectable effect on calcium-induced differentiation in the same cells based on change in cell morphology, induction of E-cadherin synthesis, and translocation of E-cadherin from the cytosol to the cell surface. When the colon epithelial cells were treated with gadolinium and then exposed to increased calcium concentrations, movement of extracellular calcium into the cell was suppressed. In contrast, gadolinium treatment had no effect on ionomycin-induced release of stored intracellular calcium into the cytoplasm. Whether these in vitro observations can be translated into an approach for reducing abnormal proliferation in the colonic mucosa (including polyp formation) is not known. These results do, however, provide an explanation for our recent findings that a multi-mineral supplement containing all of the naturally occurring lanthanoid metals including gadolinium are more effective than calcium alone in preventing colon polyp formation in mice on a high-fat diet. PMID:23008064

  17. Growth control in colon epithelial cells: gadolinium enhances calcium-mediated growth regulation.

    PubMed

    Attili, Durga; Jenkins, Brian; Aslam, Muhammad Nadeem; Dame, Michael K; Varani, James

    2012-12-01

    Gadolinium, a member of the lanthanoid family of transition metals, interacts with calcium-binding sites on proteins and other biological molecules. The overall goal of the present investigation was to determine if gadolinium could enhance calcium-induced epithelial cell growth inhibition in the colon. Gadolinium at concentrations as low as 1-5 μM combined with calcium inhibits proliferation of human colonic epithelial cells more effectively than calcium alone. Gadolinium had no detectable effect on calcium-induced differentiation in the same cells based on change in cell morphology, induction of E-cadherin synthesis, and translocation of E-cadherin from the cytosol to the cell surface. When the colon epithelial cells were treated with gadolinium and then exposed to increased calcium concentrations, movement of extracellular calcium into the cell was suppressed. In contrast, gadolinium treatment had no effect on ionomycin-induced release of stored intracellular calcium into the cytoplasm. Whether these in vitro observations can be translated into an approach for reducing abnormal proliferation in the colonic mucosa (including polyp formation) is not known. These results do, however, provide an explanation for our recent findings that a multi-mineral supplement containing all of the naturally occurring lanthanoid metals including gadolinium are more effective than calcium alone in preventing colon polyp formation in mice on a high-fat diet.

  18. Gadolinium-based nanoparticles for highly efficient T1-weighted magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Lim, Eun-Kyung; Kang, Byunghoon; Choi, Yuna; Jang, Eunji; Han, Seungmin; Lee, Kwangyeol; Suh, Jin-Suck; Haam, Seungjoo; Huh, Yong-Min

    2014-06-01

    We developed Pyrene-Gadolinium (Py-Gd) nanoparticles as pH-sensitive magnetic resonance imaging (MRI) contrast agents capable of showing a high-Mr signal in cancer-specific environments, such as acidic conditions. Py-Gd nanoparticles were prepared by coating Py-Gd, which is a complex of gadolinium with pyrenyl molecules, with pyrenyl polyethyleneglycol PEG using a nano-emulsion method. These particles show better longitudinal relaxation time (T1) MR signals in acidic conditions than they do in neutral conditions. Furthermore, the particles exhibit biocompatibility and MR contrast effects in both in vitro and in vivo studies. From these results, we confirm that Py-Gd nanoparticles have the potential to be applied for accurate cancer diagnosis and therapy.

  19. Preparation and Evaluation of Multiple Nanoemulsions Containing Gadolinium (III) Chelate as a Potential Magnetic Resonance Imaging (MRI) Contrast Agent.

    PubMed

    Sigward, Estelle; Corvis, Yohann; Doan, Bich-Thuy; Kindsiko, Kadri; Seguin, Johanne; Scherman, Daniel; Brossard, Denis; Mignet, Nathalie; Espeau, Philippe; Crauste-Manciet, Sylvie

    2015-09-01

    The objective was to develop, characterize and assess the potentiality of W1/O/W2 self-emulsifying multiple nanoemulsions to enhance signal/noise ratio for Magnetic Resonance Imaging (MRI). For this purpose, a new formulation, was designed for encapsulation efficiency and stability. Various methods were used to characterize encapsulation efficiency ,in particular calorimetric methods (Differential Scanning Calorimetry (DSC), thermogravimetry analysis) and ultrafiltration. MRI in vitro relaxivities were assessed on loaded DTPA-Gd multiple nanoemulsions. Characterization of the formulation, in particular of encapsulation efficiency was a challenge due to interactions found with ultrafiltration method. Thanks to the specifically developed DSC protocol, we were able to confirm the formation of multiple nanoemulsions, differentiate loaded from unloaded nanoemulsions and measure the encapsulation efficiency which was found to be quite high with a 68% of drug loaded. Relaxivity studies showed that the self-emulsifying W/O/W nanoemulsions were positive contrast agents, exhibiting higher relaxivities than those of the DTPA-Gd solution taken as a reference. New self-emulsifying multiple nanoemulsions that were able to load satisfactory amounts of contrasting agent were successfully developed as potential MRI contrasting agents. A specific DSC protocol was needed to be developed to characterize these complex systems as it would be useful to develop these self-formation formulations.

  20. Gadolinium-Conjugated Gold Nanoshells for Multimodal Diagnostic Imaging and Photothermal Cancer Therapy

    PubMed Central

    Coughlin, Andrew J.; Ananta, Jeyarama S.; Deng, Nanfu; Larina, Irina V.; Decuzzi, Paolo

    2014-01-01

    Multimodal imaging offers the potential to improve diagnosis and enhance the specificity of photothermal cancer therapy. Toward this goal, we have engineered gadolinium-conjugated gold nanoshells and demonstrated that they enhance contrast for magnetic resonance imaging, X-Ray, optical coherence tomography, reflectance confocal microscopy, and two-photon luminescence. Additionally, these particles effectively convert near-infrared light to heat, which can be used to ablate cancer cells. Ultimately, these studies demonstrate the potential of gadolinium-nanoshells for image-guided photothermal ablation. PMID:24115690

  1. Applying Amide Proton Transfer MR Imaging to Hybrid Brain PET/MR: Concordance with Gadolinium Enhancement and Added Value to [18F]FDG PET.

    PubMed

    Sun, Hongzan; Xin, Jun; Zhou, Jinyuan; Lu, Zaiming; Guo, Qiyong

    2018-06-01

    The purpose of this study is to evaluate the diagnostic concordance and metric correlations of amide proton transfer (APT) imaging with gadolinium-enhanced magnetic resonance imaging (MRI) and 2-deoxy-2-[ 18 F-]fluoro-D-glucose ([ 18 F]FDG) positron emission tomography (PET), using hybrid brain PET/MRI. Twenty-one subjects underwent brain gadolinium-enhanced [ 18 F]FDG PET/MRI prospectively. Imaging accuracy was compared between unenhanced MRI, MRI with enhancement, APT-weighted (APTW) images, and PET based on six diagnostic criteria. Among tumors, the McNemar test was further used for concordance assessment between gadolinium-enhanced imaging, APT imaging, and [ 18 F]FDG PET. As well, the relation of metrics between APT imaging and PET was analyzed by the Pearson correlation analysis. APT imaging and gadolinium-enhanced MRI showed superior and similar diagnostic accuracy. APTW signal intensity and gadolinium enhancement were concordant in 19 tumors (100 %), while high [ 18 F]FDG avidity was shown in only 12 (63.2 %). For the metrics from APT imaging and PET, there was significant correlation for 13 hypermetabolic tumors (P < 0.05) and no correlation for the remaining six [ 18 F]FDG-avid tumors. APT imaging can be used to increase diagnostic accuracy with no need to administer gadolinium chelates. APT imaging may provide an added value to [ 18 F]FDG PET in the evaluation of tumor metabolic activity during brain PET/MR studies.

  2. Gadolinium heteropoly complex K 17[Gd(P 2W 17O 61) 2] as a potential MRI contrast agent

    NASA Astrophysics Data System (ADS)

    Sun, Guoying; Feng, Jianghua; Wu, Huifeng; Pei, Fengkui; Fang, Ke; Lei, Hao

    2004-10-01

    Gadolinium heteropoly complex K17[Gd(P2W17O61)2] has been evaluated by in vitro and in vivo experiments as a potential contrast agent for magnetic resonance imaging (MRI). The thermal analysis and conductivity study indicate that this complex has good thermal stability and wide pH stability range. The T1 relaxivity is 7.59 mM-1 s-1 in aqueous solution and 7.97 mM-1 s-1 in 0.725 mmol l-1 bovine serum albumin (BSA) solution at 25 °C and 9.39 T, respectively. MR imaging of three male Sprague-Dawley rats showed remarkable enhancement in rat liver after intravenous injection, which persisted longer than with Gd-DTPA. The signal intensity increased by 57.1±16.9% during the whole imaging period at 0.082 mmol kg-1dose. Our preliminary in vitro and in vivo studies indicate that K17[Gd(P2W17O61)2] is a potential liver-specific MRI contrast agent.

  3. Indirect MR lymphangiography of the head and neck using conventional gadolinium contrast: A pilot study in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loo, Billy W.; Draney, Mary T.; Sivanandan, Ranjiv

    2006-10-01

    Purpose: To evaluate indirect magnetic resonance lymphangiography (MR-LAG) using interstitial injection of conventional gadolinium contrast (gadoteridol and gadopentetate dimeglumine) for delineating the primary lymphatic drainage of head-and-neck sites. Methods and Materials: We performed head-and-neck MR-LAG in 5 healthy volunteers, with injection of dermal and mucosal sites. We evaluated the safety of the procedure, the patterns of enhancement categorized by injection site and nodal level, the time course of enhancement, the optimal concentration and volume of contrast, and the optimal imaging sequence. Results: The worst side effects of interstitial contrast injection were brief, mild pain and swelling at the injected sitesmore » that were self-limited. MR-LAG resulted in consistent visualization of the primary lymphatic drainage pattern specific to each injected site, which was reproducible on repeated examinations. The best enhancement was obtained with injection of small volumes (0.3-0.5 mL) of either agent diluted, imaging within 5-15 min of injection, and a three-dimensional fast spoiled gradient echo sequence with magnetization transfer. Conclusions: We found head-and-neck MR-LAG to be a safe, convenient imaging method that provides functional information about the lymphatic drainage of injected sites. Applied to head-and-neck cancer, it has the potential to identify sites at highest risk of occult metastatic spread for radiotherapy or surgical planning, and possibly to visualize micrometastases.« less

  4. The Effect of Pressure and Temperature on Separation of Free Gadolinium(III) From Gd-DTPA Complex by Nanofiltration-Complexation Method

    NASA Astrophysics Data System (ADS)

    Rahayu, Iman; Anggraeni, Anni; Ukun, MSS; Bahti, Husein H.

    2017-05-01

    Nowdays, the utilization of rare earth elements has been carried out widely in industry and medicine, one of them is gadolinium in Gd-DTPA complex is used as a contrast agent in a magnetic resonance imaging (MRI) diagnostic to increase the visual contrast between normal tissue and diseased. Although the stability of a given complex may be high enough, the complexation step couldnot have been completed, so there is possible to gadolinium(III) in the complex compound. Therefore, the function of that compounds should be dangerous because of the toxicity of gadolinium(III) in human body. So, it is necessarry to separate free gadolinium(III) from Gd-DTPA complex by nanofiltration-complexation. The method of this study is complexing of Gd2O3 with DTPA ligand by reflux and separation of Gd-DTPA complex from gadolinium(III) with a nanofiltration membrane on the variation of pressures(2, 3, 4, 5, 6 bars) and temperature (25, 30, 35, 40 °C) and determined the flux and rejection. The results of this study are the higher of pressures and temperatures, permeation flux are increasing and ion rejections are decreasing and gave the free gadolinium(III) rejection until 86.26%.

  5. Chelating agents.

    PubMed

    Bergan, T; Klaveness, J; Aasen, A J

    2001-01-01

    The antibacterial activity of metal ions, metal chelates, and molecules with chelating ability for polyvalent cations have been evaluated. The chelator N, N'-ethylenebis[2-(2-hydroxyphenyl)-glycine] (EHPG) exerted moderate-to-good activity against isolates of pathogenic bacteria and fungi. Other chelating agents such as ethylenediamine-tetraacetic acid (EDTA) and diethylene-triamine-pentaacetic acid (DTPA) revealed weak-to-moderate activity. Metal chelation of ligands reduced the activity of EDTA and DTPA. Copyright 2001 S. Karger AG, Basel

  6. Hydroxypyridonate and hydroxypyrimidinone chelating agents

    DOEpatents

    Raymond, Kenneth N.; Doble, Daniel M.; Sunderland, Christopher J.; Thompson, Marlon

    2005-01-25

    The present invention provides hydroxypyridinone and hydroxypyrimidone chelating agents. Also provides are Gd(III) complexes of these agents, which are useful as contrast enhancing agents for magnetic resonance imaging. The invention also provides methods of preparing the compounds of the invention, as well as methods of using the compounds in magnetic resonance imaging applications.

  7. Studies of MRI relaxivities of gadolinium-labeled dendrons

    NASA Astrophysics Data System (ADS)

    Pan, Hongmu; Daniel, Marie-Christine

    2011-05-01

    In cancer detection, imaging techniques have a great importance in early diagnosis. The more sensitive the imaging technique and the earlier the tumor can be detected. Contrast agents have the capability to increase the sensitivity in imaging techniques such as magnetic resonance imaging (MRI). Until now, gadolinium-based contrast agents are mainly used for MRI, and show good enhancement. But improvement is needed for detection of smaller tumors at the earliest stage possible. The dendrons complexed with Gd(DOTA) were synthesized and evaluated as a new MRI contrast agent. The longitudinal and transverse relaxation effects were tested and compared with commercial drug Magnevist, Gd(DTPA).

  8. Gadolinium-Loaded Solid Lipid Nanoparticles as a Tumor-Absorbable Contrast Agent for Early Diagnosis of Colorectal Tumors Using Magnetic Resonance Colonography.

    PubMed

    Sun, Jihong; Zhang, Shizheng; Jiang, Shaojie; Bai, Weixian; Liu, Fei; Yuan, Hong; Ji, Jiansong; Luo, Jingfeng; Han, Guocan; Chen, Lumin; Jin, Yin; Hu, Peng; Yu, Lei; Yang, Xiaoming

    2016-09-01

    Magnetic resonance (MR) contrast agents focusing on special functions are required to improve cancer diagnosis, particularly in the early stages. Here, we designed multifunctional solid lipid nanoparticles (SLNs) with simultaneous loading of gadolinium (Gd) diethylenetriaminepentaacetic acid (Gd-DTPA) and octadecylamine fluorescein isothiocyanate (FITC) to obtain Gd-FITC-SLNs as a tumor-absorbable nanoparticle contrast agent for the histological confirmation of MR imaging (MRI) findings. Colorectal tumors were evaluated in vitro and in vivo via direct uptake of this contrast agent, which displayed reasonable T1 relaxivity and no significant cytotoxicity at the experimental concentrations in human colon carcinoma cells (HT29) and mouse colon carcinoma cells (CT26). In vitro cell uptake experiments demonstrated that contrast agent absorption by the two types of cancer cells was concentration-dependent in the safe concentration range. During in vivo MRI, transrectal infusion of Gd-FITC-SLNs showed more significant enhancement at the tumor site compared with the infusion of Gd-DTPA in female C57/BL mice with azoxymethane/dextran sulfate sodium-induced colorectal highgrade intraepithelial neoplasia. Subsequent confocal fluorescence microscopy demonstrated Gd-FITC-SLNs as highly concentrated green fluorescent spots distributed from the tumor capsule into the tumor. This study establishes the "proof-of-principle" of a new MRI technique wherein colorectal tumors are enhanced via direct absorption or uptake of the nanoparticle contrast agent.

  9. Synthesis of internally functionalized silica nanoparticles for theranostic applications

    NASA Astrophysics Data System (ADS)

    Walton, Nathan Isaac

    This thesis addresses the synthesis and characterization of novel inorganic silica nanoparticle hybrids. It focuses in large part on their potential applications in the medical field. Silica acts as a useful carrier for a variety of compounds and this thesis silica will demonstrate its use as a carrier for boron or gadolinium. Boron-10 and gadolinium-157 have been suggested for the radiological treatment of tumor cells through the process called neutron capture therapy (NCT). Gadolinium is also commonly used as a Magnetic Resonance Imaging (MRI) contrast agent. Particles that carry it have potential theranostic applications of both imaging and treating tumors. Chapter 1 presents a background on synthetic strategies and usages of silica nanoparticles, and NCT theory. Chapter 2 describes a procedure to create mesoporous metal chelating silica nanoparticles, mDTTA. This is achieved via a co-condensation of tetraethoxysilane (TEOS) and 3-trimethoxysilyl-propyl diethylenetriamine (SiDETA) followed by a post-synthesis modification step with bromoacetic acid (BrAA). These particles have a large surface area and well-defined pores of ~2 nm. The mDTTA nanoparticles were used to chelate the copper(II), cobalt(II) and gadolinium(III). The chelating of gadolinium is the most interesting since it can be used as a MRI contrast agent and a neutron capture therapeutic. The synthetic procedure developed also allows for the attachment of a fluorophore that gives the gadolinium chelating mDTTA nanoparticles a dual imaging modality. Chapter 3 presents the synthetic method used to produce two classes of large surface area organically modified silica (ORMOSIL) nanoparticles. Condensating the organosilane vinyltrimethoxysilane in a micellar solution results in nanoparticles that are either surface rough (raspberry-like) or mesoporous nanoparticles, which prior to this thesis has not been demonstrated in ORMOSIL chemistry. Furthermore, the vinyl functionalities are modified, using

  10. Biocompatible blood pool MRI contrast agents based on hyaluronan

    PubMed Central

    Zhu, Wenlian; Artemov, Dmitri

    2010-01-01

    Biocompatible gadolinium blood pool contrast agents based on a biopolymer, hyaluronan, were investigated for magnetic resonance angiography application. Hyaluronan, a non-sulfated linear glucosaminoglycan composed of 2000–25,000 repeating disaccharide subunits of D-glucuronic acid and N-acetylglucosamine with molecular weight up to 20 MDa, is a major component of the extracellular matrix. Two gadolinium contrast agents based on 16 and 74 kDa hyaluronan were synthesized, both with R1 relaxivity around 5 mM−1 s−1 per gadolinium at 9.4 T at 25°C. These two hyaluronan based agents show significant enhancement of the vasculature for an extended period of time. Initial excretion was primarily through the renal system. Later uptake was observed in the stomach and lower gastrointestinal tract. Macromolecular hyaluronan-based gadolinium agents have a high clinical translation potential as hyaluronan is already approved by FDA for a variety of medical applications. PMID:21504061

  11. Tissue gadolinium deposition in renally impaired rats exposed to different gadolinium-based MRI contrast agents: evaluation with inductively coupled plasma mass spectrometry (ICP-MS).

    PubMed

    Sato, Tomohiro; Ito, Katsuyoshi; Tamada, Tsutomu; Kanki, Akihiko; Watanabe, Shigeru; Nishimura, Hirotake; Tanimoto, Daigo; Higashi, Hiroki; Yamamoto, Akira

    2013-10-01

    To quantify tissue gadolinium (Gd) deposition in renally impaired rats exposed to Gd-EOB-DTPA and other Gd-based MRI contrast agents by means of inductively coupled plasma mass spectrometry (ICP-MS), and to compare the differences in distribution among major organs as possible triggers for nephrogenic systemic fibrosis (NSF). A total of 15 renally impaired rats were injected with Gd-EOB-DTPA, Gd-DTPA-BMA and Gd-HP-DO3A. Gd contents of skin, liver, kidney, lung, heart, spleen, diaphragm and femoral muscle were measured by inductively coupled plasma mass spectrometry (ICP-MS). Histological assessment was also conducted. Tissue Gd deposition in all organs was significantly higher (P=0.005~0.009) in the Gd-DTPA-BMA group than in the Gd-HP-DO3A and Gd-EOB-DTPA groups. In the Gd-DTPA-BMA group, Gd was predominantly deposited in kidney (1306±605.7μg/g), followed by skin, liver, lung, spleen, femoral muscle, diaphragm and heart. Comparing Gd-HP-DO3A and Gd-EOB-DTPA groups, Gd depositions in the kidney, liver and lung were significantly lower (P=0.009~0.011) in the Gd-EOB-DTPA group than in the Gd-HP-DO3A group although no significant differences were seen for any other organs. Gd-EOB-DTPA is a stable and safe Gd-based contrast agent (GBCA) showing lower Gd deposition in major organs in renally impaired rats, compared with other GBCAs. This fact suggests that the risk of NSF onset would be low in the use of Gd-EOB-DTPA. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. A study on the imaging characteristics of Gold nanoparticles as a contrast agent in X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Mesbahi, Asghar; Famouri, Fatemeh; Ahar, Mohammad Johari; Ghaffari, Maryam Olade; Ghavami, Seyed Mostafa

    2017-03-01

    Aim: In the current study, some imaging characteristics of AuNPs were quantitatively analyzed and compared with two conventional contrast media (CM) including Iodine and Gadolinium by using of a cylindrical phantom. Methods: AuNPs were synthesized with the mean diameter of 16 nm and were equalized to the concentration of 0.5, 1, 2 and 4 mg/mL in the same volumes. A cylindrical phantom resembling the head and neck was fabricated and drilled to contain small tubes filled with Iodine, Gadolinium, and AuNPs as contrast media. The phantom was scanned in different exposure techniques and CT numbers of three studied contrast media inside test tubes were measured in terms of Hounsfield Unit (HU). The imaging parameters of the noise and contrast to noise ratios (CNR) were calculated for all studied CMs. Results: AuNPs showed 128% and 166% higher CT number in comparison with Iodine and Gadolinium respectively. Also, Iodine had a greater CT number than Gadolinium for the same exposure techniques and concentration. The maximum CT number for AuNPs and studied contrast materials was obtained at the highest mAs and the lowest tube potential. The maximum CT number were 1033±11 (HU) for AuNP, 565±10 (HU) for Iodine, 458±11 for Gadolinium. Moreover, the maximum CNRs of 433±117, 203±53, 145±37 were found for AuNPs, Iodine and Gadolinium respectively. Conclusion: The contrast agent based on AuNPs showed higher imaging quality in terms of contrast and noise relative to other iodine and gadolinium based contrast media in X-ray computed tomography. Application of the AuNPs as a contrast medium in x-ray CT is recommended.

  13. Imaging transplanted stem cells in real time using an MRI dual-contrast method

    PubMed Central

    Ngen, Ethel J.; Wang, Lee; Kato, Yoshinori; Krishnamachary, Balaji; Zhu, Wenlian; Gandhi, Nishant; Smith, Barbara; Armour, Michael; Wong, John; Gabrielson, Kathleen; Artemov, Dmitri

    2015-01-01

    Stem cell therapies are currently being investigated for the repair of brain injuries. Although exogenous stem cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) prior to transplantation provides a means to noninvasively monitor stem cell transplantation by magnetic resonance imaging (MRI), monitoring cell death is still a challenge. Here, we investigate the feasibility of using an MRI dual-contrast technique to detect cell delivery, cell migration and cell death after stem cell transplantation. Human mesenchymal stem cells were dual labelled with SPIONs and gadolinium-based chelates (GdDTPA). The viability, proliferation rate, and differentiation potential of the labelled cells were then evaluated. The feasibility of this MRI technique to distinguish between live and dead cells was next evaluated using MRI phantoms, and in vivo using both immune-competent and immune-deficient mice, following the induction of brain injury in the mice. All results were validated with bioluminescence imaging. In live cells, a negative (T2/T2*) MRI contrast predominates, and is used to track cell delivery and cell migration. Upon cell death, a diffused positive (T1) MRI contrast is generated in the vicinity of the dead cells, and serves as an imaging marker for cell death. Ultimately, this technique could be used to manage stem cell therapies. PMID:26330231

  14. Imaging transplanted stem cells in real time using an MRI dual-contrast method.

    PubMed

    Ngen, Ethel J; Wang, Lee; Kato, Yoshinori; Krishnamachary, Balaji; Zhu, Wenlian; Gandhi, Nishant; Smith, Barbara; Armour, Michael; Wong, John; Gabrielson, Kathleen; Artemov, Dmitri

    2015-09-02

    Stem cell therapies are currently being investigated for the repair of brain injuries. Although exogenous stem cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) prior to transplantation provides a means to noninvasively monitor stem cell transplantation by magnetic resonance imaging (MRI), monitoring cell death is still a challenge. Here, we investigate the feasibility of using an MRI dual-contrast technique to detect cell delivery, cell migration and cell death after stem cell transplantation. Human mesenchymal stem cells were dual labelled with SPIONs and gadolinium-based chelates (GdDTPA). The viability, proliferation rate, and differentiation potential of the labelled cells were then evaluated. The feasibility of this MRI technique to distinguish between live and dead cells was next evaluated using MRI phantoms, and in vivo using both immune-competent and immune-deficient mice, following the induction of brain injury in the mice. All results were validated with bioluminescence imaging. In live cells, a negative (T2/T2*) MRI contrast predominates, and is used to track cell delivery and cell migration. Upon cell death, a diffused positive (T1) MRI contrast is generated in the vicinity of the dead cells, and serves as an imaging marker for cell death. Ultimately, this technique could be used to manage stem cell therapies.

  15. Optimisation of dynamic nuclear polarisation of [1-13C] pyruvate by addition of gadolinium-based contrast agents

    NASA Astrophysics Data System (ADS)

    Friesen-Waldner, Lanette; Chen, Albert; Mander, Will; Scholl, Timothy J.; McKenzie, Charles A.

    2012-10-01

    Dynamic nuclear polarisation (DNP) of carbon-13 (13C) enriched endogenous compounds provides a novel means for magnetic resonance imaging and spectroscopy of biological processes. Adding small amounts of gadolinium-based contrast agents (GBCAs) to the 13C-enriched substrate matrix increases the amount of hyperpolarisation that can be achieved, but also may decrease the longitudinal relaxation time (T1) of the 13C nucleus in solution. This study examined the effects of five different GBCA at concentrations of 0.5, 1, 2, and 3 mM on [1-13C]-enriched pyruvic acid. It was found that contrast agents with an open chain structure (Gadobenate dimeglumine, Gadopentetate dimeglumine, Gadodiamide) caused the largest enhancement (up to 82%) in solid state polarisation relative to solutions without GBCA. In the liquid state, T1 of pyruvate decreased by as much as 62% and polarisation was much lower (70%) relative to solutions without GBCA added. Conversely, for GBCA with macrocyclic structures (Gadoterate meglumine, Gadoteridol), the solid state polarisation enhancement was only slightly less than the open chain GBCA, but enhanced polarisation was retained much better in the liquid state with minimal decrease in T1 (25% at the highest GBCA concentrations). Near maximum polarisation in the solid state was obtained at a GBCA concentration of 2 mM, with a higher concentration of 3 mM producing minimal improvement. These results indicate that the macrocyclic contrast agents provide the best combination of high solid state and liquid state polarisations with minimal loss of T1 in experiments with hyperpolarised 13C-enriched pyruvate. This suggests that macrocyclic contrast agents should be the GBCA of choice for maximising signal in experiments with hyperpolarised 13C-enriched pyruvate, particularly for in vivo measurements where shortened substrate T1 is especially problematic.

  16. Proton Relaxivity and Magnetic Hyperthermia Evaluation of Gadolinium Doped Nickel Ferrite Nanoparticles as Potential Theranostic Agents.

    PubMed

    Yadavalli, Tejabhiram; Raja, Paradeep; Ramaswamy, Shivaraman; Chandrasekharan, Gopalakrishnan; Chennakesavulu, Ramasamy

    2017-02-01

    This paper outlines the preparation of gadolinium doped nickel ferrite nanoparticles as potential magnetic carriers and longitudinal magnetic resonance imaging contrast agents using hydrothermal method with gadolinium concentration varying from 10% to 40%. A concise effect on the crystal structure was observed at 10% and 20% gadolinium doping, while gadolinium oxide was observed to leach at concentrations exceeding 20%. Further, gadolinium doped nickel ferrites were analyzed for their morphological, magnetic, proton relaxation and magnetic hyperthermia heating properties to understand their potential role as magnetic carrier agents. Low temperature and room temperature magnetic studies conducted on the samples showed comparatively high magnetic saturation with low remanent magnetization. Further, relaxometry studies revealed a high relaxation rate of 6.63 s−1 at a concentration of 0.1 mg/mL. Magnetic hyperthermia studies of the samples at a concentration of 1 mg/mL, assessed that the samples attained a temperature of 68 °C in 240 seconds.

  17. Ultrasound guidance to perform intra-articular injection of gadolinium-based contrast material for magnetic resonance arthrography as an alternative to fluoroscopy: the time is now.

    PubMed

    Messina, Carmelo; Banfi, Giuseppe; Aliprandi, Alberto; Mauri, Giovanni; Secchi, Francesco; Sardanelli, Francesco; Sconfienza, Luca Maria

    2016-05-01

    Magnetic resonance (MR) imaging has been definitively established as the reference standard in the evaluation of joints in the body. Similarly, magnetic resonance arthrography has emerged as a technique that has been proven to increase significantly the diagnostic performance if compared with conventional MR imaging, especially when dealing with fibrocartilage and articular cartilage abnormalities. Diluted gadolinium can be injected in the joint space using different approaches: under palpation using anatomic landmarks or using an imaging guidance, such as fluoroscopy, computed tomography, or ultrasound. Fluoroscopy has been traditionally used, but the involvement of ionizing radiation should represent a remarkable limitation of this modality. Conversely, ultrasound has emerged as a feasible, cheap, quick, and radiation-free modality that can be used to inject joints, with comparable accuracy of fluoroscopy. In the present paper, we discuss the advantages and disadvantages of using fluoroscopy or ultrasound in injecting gadolinium-based contrast agents in joints to perform magnetic resonance arthrography, also in view of the new EuroSAFE Imaging initiative promoted by the European Society of Radiology and the recent updates to the European Atomic Energy Community 2013/59 directive on the medical use of ionizing radiation. • Intra-articular contrast agent injection can be performed using different imaging modalities • Fluoroscopy is widely used, but uses ionizing radiation • Ultrasound is an accurate, quick, and radiation-free modality for joint injection • X-rays should be avoided when other radiation-free modalities can be used.

  18. The High Radiosensitizing Efficiency of a Trace of Gadolinium-Based Nanoparticles in Tumors

    NASA Astrophysics Data System (ADS)

    Dufort, Sandrine; Le Duc, Géraldine; Salomé, Murielle; Bentivegna, Valerie; Sancey, Lucie; Bräuer-Krisch, Elke; Requardt, Herwig; Lux, François; Coll, Jean-Luc; Perriat, Pascal; Roux, Stéphane; Tillement, Olivier

    2016-07-01

    We recently developed the synthesis of ultrasmall gadolinium-based nanoparticles (GBN), (hydrodynamic diameter <5 nm) characterized by a safe behavior after intravenous injection (renal clearance, preferential accumulation in tumors). Owing to the presence of gadolinium ions, GBN can be used as contrast agents for magnetic resonance imaging (MRI) and as radiosensitizers. The attempt to determine the most opportune delay between the intravenous injection of GBN and the irradiation showed that a very low content of radiosensitizing nanoparticles in the tumor area is sufficient (0.1 μg/g of particles, i.e. 15 ppb of gadolinium) for an important increase of the therapeutic effect of irradiation. Such a promising and unexpected result is assigned to a suited distribution of GBN within the tumor, as revealed by the X-ray fluorescence (XRF) maps.

  19. A pyrophosphate-responsive gadolinium(III) MRI contrast agent.

    PubMed

    Surman, Andrew J; Bonnet, Célia S; Lowe, Mark P; Kenny, Gavin D; Bell, Jimmy D; Tóth, Eva; Vilar, Ramon

    2011-01-03

    This study shows that the relaxivity and optical properties of functionalised lanthanide-DTPA-bis-amide complexes (lanthanide=Gd(3+) and Eu(3+) , DTPA=diethylene triamine pentaacetic acid) can be successfully modulated by addition of specific anions, without direct Ln(3+) /anion coordination. Zinc(II)-dipicolylamine moieties, which are known to bind strongly to phosphates, were introduced in the amide "arms" of these ligands, and the interaction of the resulting Gd-Zn(2) complexes with a range of anions was screened by using indicator displacement assays (IDAs). Considerable selectivity for polyphosphorylated species (such as pyrophosphate and adenosine-5'-triphosphate (ATP)) over a range of other anions (including monophosphorylated anions) was apparent. In addition, we show that pyrophosphate modulates the relaxivity of the gadolinium(III) complex, this modulation being sufficiently large to be observed in imaging experiments. To establish the binding mode of the pyrophosphate and gain insight into the origin of the relaxometric modulation, a series of studies including UV/Vis and emission spectroscopy, luminescence lifetime measurements in H(2) O and D(2) O, (17) O and (31) P NMR spectroscopy and nuclear magnetic resonance dispersion (NMRD) studies were carried out. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Retrospective analysis of patients for development of nephrogenic systemic fibrosis following conventional angiography using gadolinium-based contrast agents.

    PubMed

    Hoppe, Hanno; Spagnuolo, Sara; Froehlich, Johannes M; Nievergelt, Helga; Dinkel, Hans-Peter; Gretener, Silvia; Thoeny, Harriet C

    2010-03-01

    The purpose was to retrospectively review the data of 27 patients with renal insufficiency who underwent conventional angiography with gadolinium-based contrast agents (GDBCA) as alternative contrast agents and assess the occurrence of nephrogenic systemic fibrosis (NSF) together with associated potential risk factors. This HIPAA-compliant study had institutional review board approval, and informed consent was waived. Statistical analysis was performed for all available laboratory and clinical data, including dermatology reports. Type and amount of the GDBCA used were recorded for angiography and additional MRI studies, if applicable. Serum creatinine levels (SCr) pre- and post-angiography were recorded, and estimated glomerular filtration rates (eGFR) were calculated. Ten female and 17 male patients who underwent angiography with GDBCA were included. The mean amount of GDBCA administered was 44 +/- 15.5 ml (range 15-60 ml) or 0.24 + 0.12 mmol/kg (range 0.1-0.53 mmol/kg). At the time of angiography all patients had renal insufficiency (eGFR <60 ml/min/1.73 m(2)). Mean eGFR pre-angiography was 26 ml/min/1.73 m(2) and 33 ml/min/1.73 m(2) post-angiography. The mean follow-up period covers 28 months, range 1-84 months. Additional MRI studies with GDBCA administration were performed in 15 patients. One patient with typical skin lesions had developed biopsy-confirmed NSF. Conventional arterial angiography with GDBCA may play a role in the development of NSF in patients with renal insufficiency. Alternative contrast agents, such as CO(2) angiography or rather the use of low doses of iodinated contrast agents, should be considered in these patients.

  1. Use of gadolinium chloride as a contrast agent for imaging spruce knots by magnetic resonance

    Treesearch

    Thomas L. Eberhardt; Chi-Leung So; Amy H. Herlihy; Po-Wah So

    2006-01-01

    Treatments of knot-containing spruce wood blocks with a paramagnetic salt, gadolinium (III) chloride, in combination with solvent pretreatments, were evaluated as strategies to enhance the visualization of wood features by magnetic resonance imaging (MRI). Initial experiments with clear wood and excised knot samples showed differences in moisture uptake after...

  2. Structural, optical and magnetic properties of gadolinium sesquioxide nanobars synthesized via thermal decomposition of gadolinium oxalate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manigandan, R.; Giribabu, K.; Suresh, R.

    2013-10-15

    Graphical abstract: - Highlights: • The cubic Gd{sub 2}O{sub 3} nanobars are synthesized by decomposition of C{sub 6}H{sub 20}Gd{sub 2}O{sub 22}. • The nanoparticles are rectangular bar shape with high porous surface. • The combination of magnetic and optical properties within a single particle. • The Gd{sub 2}O{sub 3} nanobars have tailorable nanostructure, wide bandgap and are paramagnetic. - Abstract: Gadolinium oxide nanobars were obtained by thermal decomposition of gadolinium oxalate, which was synthesized by the chemical precipitation method along with glycerol. The functional group analysis and formation of gadolinium oxide from gadolinium oxalate were characterized by the Fourier transformmore » infrared spectroscopy and thermo gravimetric analyzer. The crystal structure, average crystallite size, and lattice parameter were analyzed by X-ray diffraction technique. Moreover, Raman shifts, elemental composition and morphology of the gadolinium oxide was widely investigated by the laser Raman microscope, X-ray photoelectron spectroscopy, FE-SEM-EDAX and HR-TEM, respectively. Furthermore, the optical properties like band gap, absorbance measurement of the gadolinium oxide were extensively examined. In addition, the paramagnetic property of gadolinium oxide nanobars was explored by the vibrating sample magnetometer.« less

  3. Phosphinic acid functionalized polyazacycloalkane chelators for radiodiagnostics and radiotherapeutics: unique characteristics and applications.

    PubMed

    Notni, Johannes; Šimeček, Jakub; Wester, Hans-Jürgen

    2014-06-01

    Given the wide application of positron emission tomography (PET), positron-emitting metal radionuclides have received much attention recently. Of these, gallium-68 has become particularly popular, as it is the only PET nuclide commercially available from radionuclide generators, therefore allowing local production of PET radiotracers independent of an on-site cyclotron. Hence, interest in optimized bifunctional chelators for the elaboration of (68) Ga-labeled bioconjugates has been rekindled as well, resulting in the development of improved triazacyclononane-triphosphinate (TRAP) ligand structures. The most remarkable features of these ligands are unparalleled selectivity for Ga(III) , rapid Ga(III) complexation kinetics, extraordinarily high thermodynamic stability, and kinetic inertness of the respective Ga(III) chelates. As a result, TRAP chelators exhibit very favorable (68) Ga-labeling properties. Based on the scaffolds NOPO (1,4,7-triazacyclononane-1,4-bis[methylene(hydroxymethyl)phosphinic acid]-7-[methylene(2-carboxyethyl)phosphinic acid]) and TRAP-Pr, tailored for convenient preparation of (68) Ga-labeled monomeric and multimeric bioconjugates, a variety of novel (68) Ga radiopharmaceuticals have been synthesized. These include bisphosphonates, somatostatin receptor ligands, prostate-specific membrane antigen (PSMA)-targeting peptides, and cyclic RGD pentapeptides, for in vivo PET imaging of bone, neuroendocrine tumors, prostate cancer, and integrin expression, respectively. Furthermore, TRAP-based (68) Ga-labeled gadolinium(III) complexes have been proposed as bimodal probes for PET/MRI, and a cyclen-based analogue of TRAP-Pr has been suggested for the elaboration of targeted radiotherapeutics comprising radiolanthanide ions. Thus, polyazacycloalkane-based polyphosphinic acid chelators are a powerful toolbox for pharmaceutical research, particularly for the development of (68) Ga radiopharmaceuticals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Gadolinium Brain Deposition after Macrocyclic Gadolinium Administration: A Pediatric Case-Control Study.

    PubMed

    Tibussek, Daniel; Rademacher, Christin; Caspers, Julian; Turowski, Bernd; Schaper, Jörg; Antoch, Gerald; Klee, Dirk

    2017-10-01

    Purpose To determine whether signal intensity (SI) in T1 sequences as a potential indicator of gadolinium deposition increases after repeated administration of the macrocyclic gadolinium-based contrast agents (GBCAs) gadoteridol and gadoterate meglumine in a pediatric cohort. Materials and Methods This retrospective case-control study of children with brain tumors who underwent nine or more contrast material-enhanced brain magnetic resonance (MR) imaging studies from 2008 to 2015 was approved by the local ethics board. Informed consent was obtained for MR imaging. Twenty-four case patients aged 5-18 years and appropriate control patients with nonpathologic MR neuroimaging findings (and no GBCA administration), matched for age and sex, were inculded. SI was measured on unenhanced T1-weighted MR images for the following five regions of interest (ROIs): the dentate nucleus (DN), pons, substantia nigra (SN), pulvinar thalami, and globus pallidus (GP). Paired t tests were used to compare SI and SI ratios (DN to pons, GP to thalamus) between case patients and control patients. Pearson correlations between relative signal changes and the number of GBCA administrations and total GBCA dose were calculated. Results The mean number of GBCA administrations was 14.2. No significant differences in mean SI for any ROI and no group differences were found when DN-to-pons and GP-to-pulvinar ratios were compared (DN-to-pons ratio in case patients: mean, 1.0083 ± 0.0373 [standard deviation]; DN-to-pons ratio in control patients: mean, 1.0183 ± 0.01917; P = .37; GP-to-pulvinar ratio in case patients: mean, 1.1335 ± 0.04528; and GP-to-pulvinar ratio in control patients: mean, 1.1141 ± 0.07058; P = .29). No correlation was found between the number of GBCA administrations or the total amount of GBCA administered and signal change for any ROI. (Number of GBCA applications: DN: r = -0.254, P = .31; pons: r = -0.097, P = .65; SN: r = -0.194, P = .38; GP: r = -0.175, P = .41; pulvinar: r

  5. A New Approach in the Preparation of Dendrimer-Based Bifunctional Diethylenetriaminepentaacetic Acid MR Contrast Agent Derivatives

    PubMed Central

    Nwe, Kido; Xu, Heng; Regino, Celeste Aida S.; Bernardo, Marcelino; Ileva, Lilia; Riffle, Lisa; Wong, Karen J.; Brechbiel, Martin W.

    2009-01-01

    In this paper we report a new method to prepare and characterize a contrast agent based on a fourth-generation (G4) polyamidoamine (PAMAM) dendrimer conjugated to the gadolinium complex of the bifunctional diethylenetriamine pentaacetic acid derivative (1B4M-DTPA). The method involves pre-forming the metal-ligand chelate in alcohol prior to conjugation to the dendrimer. The dendrimer-based agent was purified by a Sephadex® G-25 column and characterized by elemental analysis. The analysis and SEHPLC data gave a chelate to dendrimer ratio of 30:1 suggesting conjugation at approximately every other amine terminal on the dendrimer. Molar relaxivity of the agent measured at pH 7.4 displayed a higher value than that of the analogous G4 dendrimer based agent prepared by the post-metal incorporation method (r1 = 26.9 vs. 13.9 mM-1s-1 at 3T and 22°C). This is hypothesized to be due to the higher hydrophobicity of this conjugate, and the lack of available charged carboxylate groups from non-complexed free ligands that might coordinate to the metal and thus also reduce water exchange sites. Additionally, the distribution populations of compounds that result from the post-metal incorporation route are eliminated from the current product simplifying characterization as quality control issues pertaining to the production of such agents for clinical use as MR contrast agents. In vivo imaging in mice showed a reasonably fast clearance (t1/2 = 24 min) suggesting a viable agent for use in clinical application. PMID:19555072

  6. A new approach in the preparation of dendrimer-based bifunctional diethylenetriaminepentaacetic acid MR contrast agent derivatives.

    PubMed

    Nwe, Kido; Xu, Heng; Regino, Celeste Aida S; Bernardo, Marcelino; Ileva, Lilia; Riffle, Lisa; Wong, Karen J; Brechbiel, Martin W

    2009-07-01

    In this paper, we report a new method to prepare and characterize a contrast agent based on a fourth-generation (G4) polyamidoamine (PAMAM) dendrimer conjugated to the gadolinium complex of the bifunctional diethylenetriamine pentaacetic acid derivative (1B4M-DTPA). The method involves preforming the metal-ligand chelate in alcohol prior to conjugation to the dendrimer. The dendrimer-based agent was purified by a Sephadex G-25 column and characterized by elemental analysis. The analysis and SE-HPLC data gave a chelate to dendrimer ratio of 30:1 suggesting conjugation at approximately every other amine terminal on the dendrimer. Molar relaxivity of the agent measured at pH 7.4 displayed a higher value than that of the analogous G4 dendrimer based agent prepared by the postmetal incorporation method (r(1) = 26.9 vs 13.9 mM(-1) s(-1) at 3 T and 22 degrees C). This is hypothesized to be due to the higher hydrophobicity of this conjugate and the lack of available charged carboxylate groups from noncomplexed free ligands that might coordinate to the metal and thus also reduce water exchange sites. Additionally, the distribution populations of compounds that result from the postmetal incorporation route are eliminated from the current product simplifying characterization as quality control issues pertaining to the production of such agents for clinical use as MR contrast agents. In vivo imaging in mice showed a reasonably fast clearance (t(1/2) = 24 min) suggesting a viable agent for use in clinical application.

  7. Regional convection-enhanced delivery of gadolinium-labeled albumin in the rat hippocampus in vivo.

    PubMed

    Astary, Garrett W; Kantorovich, Svetlana; Carney, Paul R; Mareci, Thomas H; Sarntinoranont, Malisa

    2010-03-15

    Convection-enhanced delivery (CED) has emerged as a promising method of targeted drug delivery for treating central nervous system (CNS) disorders, but the influence of brain structure on infusate distribution is unclear. We have utilized this approach to study extracellular transport and distribution of a contrast agent in the hippocampus, a complex structure susceptible to CNS disorders. The magnetic resonance (MR) contrast agent diethylene triamene penta-acetic acid chelated gadolinium-labeled albumin (Gd-albumin), tagged with Evans blue dye, was directly infused (V(i)=5 microl) into the dorsal and ventral hippocampus of seven male Sprague-Dawley rats. The final distribution profile of the contrast agent, a product of CED and limited diffusion, was observed in vivo using high-resolution T1-weighted MR imaging at 11.1T. Dense cell layers, such as the granule cell layer of the dentate gyrus and the pyramidal cell layer of CA1, appeared to be barriers to transport of the tracer. Three-dimensional distribution shape and volume (V(d)) differences, between the dorsal and ventral hippocampus infusions, were determined from the MR images using a semi-automatic segmentation routine (dorsal V(d)=23.4+/-1.8 microl, ventral V(d)=36.4+/-5.1 microl). Finer structural detail of the hippocampus was obtained using a combination of histological analysis and fluorescence imaging. This study demonstrates that CED has the potential to target all regions of the hippocampus and that tracer distribution is influenced by infusion site, underlying structure and circuitry, and extent of backflow. Therefore, CED, combined with high-resolution MR imaging, may be a useful strategy for delivering therapeutics for the treatment of CNS disorders affecting the hippocampus. Published by Elsevier B.V.

  8. The feasibility of in vivo quantification of bone-gadolinium in humans by prompt gamma neutron activation analysis (PGNAA) following gadolinium-based contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Mostafaei, F.; McNeill, F. E.; Chettle, D. R.; Noseworthy, M. D.; Prestwich, W. V.

    2015-11-01

    The feasibility of using a 238Pu/Be-based in vivo prompt γ-ray neutron activation analysis (IVNAA) system, previously successfully used for measurements of muscle, for the detection of gadolinium (Gd) in bone was presented. Gd is extensively used in contrast agents in MR imaging. We present phantom measurement data for the measurement of Gd in the tibia. Gd has seven naturally occurring isotopes, of which two have extremely large neutron capture cross sections; 155Gd (14.8% natural abundance (NA), σ= 60,900 barns) and 157Gd (15.65% NA, σ= 254,000 barns). Our previous work focused on muscle but this only informs about the short term kinetics of Gd. We studied the possibility of measuring bone, as it may be a long term storage site for Gd. A human simulating bone phantom set was developed. The phantoms were doped with seven concentrations of Gd of concentrations 0.0, 25, 50, 75, 100, 120 and 150 ppm. Additional elements important for neutron activation analysis, Na, Cl and Ca, were also included to create an overall elemental composition consistent with Reference Man. The overall conclusion is that the potential application of this Pu-Be-based prompt in vivo NAA for the monitoring of the storage and retention of Gd in bone is not feasible.

  9. Metal-oxo containing polymer nanobeads as potential contrast agents for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Pablico, Michele Huelar

    Magnetic resonance imaging (MRI) has greatly revolutionized the way diseases are detected and treated, as it is a non-invasive imaging modality solely based on the interaction of radiowaves and hydrogen nuclei in the presence of an external magnetic field. It is widely used today for the diagnosis of diseases as it offers an efficient method of mapping structure and function of soft tissues in the body. Most MRI examinations utilize paramagnetic materials known as contrast agents, which enhance the MR signal by decreasing the longitudinal (T1) and transverse (T2) relaxation times of the surrounding water protons in biological systems. This results into increased signal intensity differences thereby allowing better interpretation and analysis of pathological tissues. Contrast agents function by lowering the T1 or lowering the T2, resulting into bright and dark contrasts, respectively. The most common MRI contrast agents that are in clinical use today are gadolinium chelates and superparamagnetic iron oxide nanoparticles, both of which have their own advantages in terms of contrast enhancement properties. In the past few years, however, there has been interest in utilizing metal-containing clusters for MRI contrast enhancement as these materials bridge the gap between the constrained structure and magnetic properties of the gadolinium chelates with the superparamagnetic behavior of the iron oxide nanoparticles. Recently, metallic clusters containing Mn and Fe metal centers have received increased attention mainly because of their potential for high spin states and benign nature. In the quest to further develop novel imaging agents, this research has focused on investigating the use of metal-oxo clusters as potential contrast agents for MRI. The primary goal of this project is to identify clusters that meet the following criteria: high paramagnetic susceptibility, water-soluble, stable, cheap, contain environmentally benign metals, and easily derivatized. This work is

  10. Light deflection in gadolinium molybdate ferroelastic crystals

    NASA Astrophysics Data System (ADS)

    Staniorowski, Piotr; Bornarel, Jean

    2000-02-01

    The deflection of a He-Ne light beam by polydomain gadolinium molybdate (GMO) crystals has been studied with respect to incidence angle icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i on the sample at room temperature. The A and B deflected beams do not cross each other during the icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i variation, in contrast to results and calculations previously published. The model using the Fresnel equation confirms this result. The model presented is more accurate for numerical calculation than that using the Huygens construction.

  11. Iron Chelation

    MedlinePlus

    ... fortified cereals and eggs. What is Iron Chelation Therapy? Drugs called iron chelators remove extra iron from ... form that must be dissolved in juice or water and taken (by mouth) once a day. Most ...

  12. Gadolinium-loaded polymeric nanoparticles modified with Anti-VEGF as multifunctional MRI contrast agents for the diagnosis of liver cancer.

    PubMed

    Liu, Yongjun; Chen, Zhijin; Liu, Chunxi; Yu, Dexin; Lu, Zaijun; Zhang, Na

    2011-08-01

    Molecular imaging is essential to increase the sensitivity and selectivity of cancer diagnosis especially in the early stage of tumor. Here, we designed a novel multifunctional polymeric nanoparticle contrast agent (Anti-VEGF PLA-PEG-PLL-Gd NP) simultaneously modified with Gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) and anti-vascular endothelial growth factor (VEGF) antibody to deliver Gd-DTPA to the tumor area and achieve the early diagnosis of hepatocellular carcinoma (HCC). The Anti-VEGF PLA-PEG-PLL-Gd NPs exhibited high T(1) relaxivity and no obvious cytotoxicity under the experimental concentrations in human hepatocellular carcinoma (HepG2) cells. The results of in vitro cell uptake experiments demonstrated that the uptake process of NPs was both concentration and time depended. Compared with non-targeted NPs, the Anti-VEGF antibody modified NPs showed much higher cell uptake in the HepG2 cells. During in vivo studies, the targeted NPs showed significantly signal intensity enhancement at the tumor site (mouse hepatocarcinoma tumor, H22) compared with non-targeted NPs and Gd-DTPA injection in tumor-bearing mice and the imaging time was significantly prolonged from less than an hour (Gd-DTPA injection group) to 12 h. These results demonstrated that this novel MRI contrast agent Anti-VEGF PLA-PEG-PLL-Gd NPs showed great potential in the early diagnosis of liver tumors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Improved Peritoneal Cavity and Abdominal Organ Imaging Using a Biphasic Contrast Agent Protocol and Spectral Photon Counting Computed Tomography K-Edge Imaging.

    PubMed

    Si-Mohamed, Salim; Thivolet, Arnaud; Bonnot, Pierre-Emmanuel; Bar-Ness, Daniel; Képénékian, Vahan; Cormode, David P; Douek, Philippe; Rousset, Pascal

    2018-05-23

    To validate in vitro the capability of a high-spatial-resolution prototype spectral photon-counting computed tomography (SPCCT) scanner to differentiate between 2 contrast agents and to assess in vivo the image quality and the feasibility to image the peritoneal cavity in rats using the 2 contrast agents simultaneously within the vascular and peritoneal compartments. The authors performed SPCCT imaging (100 mAs, 120 kVp) with energy bin thresholds set to 30, 51, 64, 72, and 85 keV in vitro on a custom-made polyoxymethylene cylindrical phantom consisting of tubes with dilutions of both contrast agents and in vivo on 2 groups of adult rats using 2 injection protocols. Approval from the institutional animal ethics committee was obtained. One group received macrocylic gadolinium chelate intraperitoneal (IP) and iodine intravenous (IV) injections (protocol A, n = 3), whereas the second group received iodine IP and gadolinium IV (protocol B, n = 3). Helical scans were performed 35 minutes after IP injection and 20 seconds after IV injection. The SPCCT and contrast material images, that is, iodine and gadolinium maps, were reconstructed with a field of view of 160 mm, an isotropic voxel size of 250 μm, and a matrix size of 640 × 640 pixels using a soft reconstruction kernel. The SPCCT images were reconstructed with 2 different spatial resolutions to compare the image quality (sharpness, diagnostic quality, and organ visualization) of SPCCT (250 μm) with single-energy computed tomography (CT) (600 μm). Two radiologists evaluated the peritoneal opacification index in 13 regions (score = 0-3 per region) on each type of image. Concentrations of contrast agents were measured in the organs of interest. In vitro, the concentration measurements correlated well with the expected concentrations. The linear regressions both had R values of 0.99, slopes of 0.84 and 0.87, and offsets at -0.52 and -0.38 mg/mL for iodine and gadolinium, respectively. In vivo, the SPCCT images were

  14. Superparamagnetic And Paramagnetic MRI Contrast Agents: Application Of Rapid Magnetic Resonance Imaging To Assess Renal Function

    NASA Astrophysics Data System (ADS)

    Carvlin, Mark J.; Renshaw, Perry F.; Arger, Peter; Kundel, Harold L.; Dougherty, Larry; Axel, Leon; Kassab, Eleanor; Moore, Bethanne

    1988-06-01

    The paramagnetic chelate complex, gadolinium-diethylene-triamine-pentaacetic acid, Gd-DTPA, and superparamagnetic particles, such as those composed of dextran coated magnetite, function as magnetic resonance contrast agents by changing the relaxation rates, 1/T1 and 1/T2. The effects that these agents have upon MR signal intensity are determined by: the inherent biophysical properties of the tissue being imaged, the concentration of the contrast agent and the data acquisition scheme (pulse sequence parameters) employed. Following the time course of MR signal change in the first minutes after the injection of contrast agent(s) allows a dynamic assessment of organ functions in a manner analogous to certain nuclear medicine studies. In order to study renal function, sequential MR fast scan images, gradient echo (TR=35/TE=7 msec, flip angle=25 degrees), were acquired, one every 12 seconds, after intravenous injection of Gd-DTPA and/or dextran-magnetite. Gd-DTPA, which is freely filtered at the glomerulus and is neither secreted nor reabsorbed, provides information concerning renal perfusion, glomerular filtration and tubular concentrating ability. Dextran-magnetite (200 A diameter), which is primarily contained within the intravascular space shortly after injection, provides information on blood flow to and distribution within the kidney. The MR signal change observed after administration of contrast agents varied dramatically depending upon the agents injected and the imaging parameters used. Hence a broad range of physiolgic processes may be described using these techniques, i.e. contrast agent enhanced functional MR examinations.

  15. Contrast Extravasation versus Hemorrhage after Thrombectomy in Patients with Acute Stroke.

    PubMed

    Yedavalli, Vivek; Sammet, Steffen

    2017-11-01

    Intra-arterial recanalization postprocedural imaging in stroke patients can result in diagnostic complications due to hyperdensities on noncontrast computed tomography (CT), which may represent either contrast extravasation or intracranial hemorrhage. If these lesions are hemorrhage, then they are risk factors becoming symptomatic, which, if not distinguished, can alter clinical management. We investigate the effects of iodinated contrast on postprocedural magnetic resonance imaging (MRI) and prevalence of equivocal imaging interpretations of postprocedural extravasated contrast versus hemorrhage while identifying protocol pitfalls. We identified 10 patients diagnosed with ischemic stroke who underwent intra-arterial recanalization in a 5-year period. These patients demonstrated a hyperdensity on a postprocedural CT within 24 hours, underwent an MRI within 48 hours, and an additional confirmatory noncontrast CT at least 72 hours postprocedure. Postprocedural MRI in all 10 stroke patients demonstrated T 1 - and T 2 -relaxation time changes due to residual iodine contrast agents. This lead to false positive postprocedural hemorrhage MRI interpretations in 2/10 patients, 3/10 false negative interpretations of contrast extravasation, and 5/10 equivocal interpretations suggesting extravasation or hemorrhage. Of these five cases, two were performed with gadolinium. MRI done within 48 hours postprocedure can lead to false positive hemorrhage or false negative contrast extravasation interpretations in stroke patients possibly due to effects from the administered angiographic contrast. Additionally, MRI should be done both after 72 hours for confirmation and without gadolinium contrast as the effects of the gadolinium contrast and residual angiographic contrast could lead to misdiagnosis. Copyright © 2017 by the American Society of Neuroimaging.

  16. Evaluation of Novel 64Cu-Labeled Theranostic Gadolinium-Based Nanoprobes in HepG2 Tumor-Bearing Nude Mice

    NASA Astrophysics Data System (ADS)

    Hu, Pengcheng; Cheng, Dengfeng; Huang, Tao; Banizs, Anna B.; Xiao, Jie; Liu, Guobing; Chen, Quan; Wang, Yuenan; He, Jiang; Shi, Hongcheng

    2017-09-01

    Radiation therapy of liver cancer is limited by low tolerance of the liver to radiation. Radiosensitizers can effectively reduce the required radiation dose. AGuIX nanoparticles are small, multifunctional gadolinium-based nanoparticles that can carry radioisotopes or fluorescent markers for single-photon emission computed tomography (SPECT), positron emission tomography (PET), fluorescence imaging, and even multimodality imaging. In addition, due to the high atomic number of gadolinium, it can also serve as a tumor radiation sensitizer. It is critical to define the biodistribution and pharmacokinetics of these gadolinium-based nanoparticles to quantitate the magnitude and duration of their retention within the tumor microenvironment during radiotherapy. Therefore, in this study, we successfully labeled AGuIX with 64Cu through the convenient built-in chelator. The biodistribution studies indicated that the radiotracer 64Cu-AGuIX accumulates to high levels in the HepG2 xenograft of nude mice, suggesting that it would be a potential theranostic nanoprobe for image-guided radiotherapy in HCC. We also used a transmission electron microscope to confirm AGuIX uptake in the HepG2 cells. In radiation therapy studies, a decrease in 18F-FDG uptake was observed in the xenografts of the nude mice irradiated with AGuIX, which was injected 1 h before. These results provide proof-of-concept that AGuIX can be used as a theranostic radiosensitizer for PET imaging to guide radiotherapy for liver cancer.

  17. Evaluation of Novel 64Cu-Labeled Theranostic Gadolinium-Based Nanoprobes in HepG2 Tumor-Bearing Nude Mice.

    PubMed

    Hu, Pengcheng; Cheng, Dengfeng; Huang, Tao; Banizs, Anna B; Xiao, Jie; Liu, Guobing; Chen, Quan; Wang, Yuenan; He, Jiang; Shi, Hongcheng

    2017-09-06

    Radiation therapy of liver cancer is limited by low tolerance of the liver to radiation. Radiosensitizers can effectively reduce the required radiation dose. AGuIX nanoparticles are small, multifunctional gadolinium-based nanoparticles that can carry radioisotopes or fluorescent markers for single-photon emission computed tomography (SPECT), positron emission tomography (PET), fluorescence imaging, and even multimodality imaging. In addition, due to the high atomic number of gadolinium, it can also serve as a tumor radiation sensitizer. It is critical to define the biodistribution and pharmacokinetics of these gadolinium-based nanoparticles to quantitate the magnitude and duration of their retention within the tumor microenvironment during radiotherapy. Therefore, in this study, we successfully labeled AGuIX with 64 Cu through the convenient built-in chelator. The biodistribution studies indicated that the radiotracer 64 Cu-AGuIX accumulates to high levels in the HepG2 xenograft of nude mice, suggesting that it would be a potential theranostic nanoprobe for image-guided radiotherapy in HCC. We also used a transmission electron microscope to confirm AGuIX uptake in the HepG2 cells. In radiation therapy studies, a decrease in 18 F-FDG uptake was observed in the xenografts of the nude mice irradiated with AGuIX, which was injected 1 h before. These results provide proof-of-concept that AGuIX can be used as a theranostic radiosensitizer for PET imaging to guide radiotherapy for liver cancer.

  18. Intraindividual Analysis of Signal Intensity Changes in the Dentate Nucleus After Consecutive Serial Applications of Linear and Macrocyclic Gadolinium-Based Contrast Agents.

    PubMed

    Radbruch, Alexander; Weberling, Lukas D; Kieslich, Pascal J; Hepp, Johanna; Kickingereder, Philipp; Wick, Wolfgang; Schlemmer, Heinz-Peter; Bendszus, Martin

    2016-11-01

    Recent studies reported an increase in the dentate nucleus (DN)-to-pons signal intensity (SI) ratio (DN-pons SI ratio) on unenhanced T1-weighted images in patients who received consecutive serial injections of linear gadolinium-based contrast agents (GBCAs). In contrast, most studies found no increase in the DN-pons SI ratio when patients were treated with consecutive serial injections of macrocyclic GBCAs. However, the potential difference between macrocyclic and linear GBCAs has never been assessed in individuals who received subsequent applications of both contrast agents. In this retrospective study, we assessed the evolution of the DN-pons SI ratio change in patients that were treated with a comparable number of serial consecutive injections of the linear GBCA gadopentetate dimeglumine and subsequent serial injections of the macrocyclic GBCAs gadobutrol and gadoterate meglumine. Data of 36 patients was analyzed. All patients underwent at least 5 consecutive administrations of the linear GBCA gadopentetate dimeglumine followed by an equal number of consecutive administrations of the macrocyclic GBCA gadobutrol. In 12 of the 36 patients, 5 or more final consecutive injections of the macrocyclic GBCA gadoterate meglumine were analyzed additionally. The difference of DN-pons SI ratios on unenhanced T1-weighted images was calculated by subtracting the ratio at the first examination from the ratio at the last examination in each of the 3 periods. The mean DN-pons SI ratio difference in the gadopentetate dimeglumine period was significantly greater than 0 (mean ± SD, 0.0448 ± 0.0345; P < 0.001), whereas the mean DN-pons SI ratio difference in the subsequent gadobutrol and gadoterate meglumine period was significantly smaller than 0 (gadobutrol: -0.0178 ± 0.0459, P = 0.026; gadoterate meglumine: -0.0250 ± 0.0284, P = 0.011). In this observational study, the application of the linear GBCA gadopentetate dimeglumine was associated with a DN-pons SI ratio increase

  19. Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging

    PubMed Central

    Orcutt, Kelly Davis; Slusarczyk, Adrian L; Cieslewicz, Maryelise; Ruiz-Yi, Benjamin; Bhushan, Kumar R; Frangioni, John V; Wittrup, K Dane

    2014-01-01

    Introduction In pretargeted radioimmunotherapy (PRIT), a bifunctional antibody is administered and allowed to pre-localize to tumor cells. Subsequently, a chelated radionuclide is administered and captured by cell-bound antibody while unbound hapten clears rapidly from the body. We aim to engineer high-affinity binders to DOTA chelates for use in PRIT applications. Methods We mathematically modeled antibody and hapten pharmacokinetics to analyze hapten tumor retention as a function of hapten binding affinity. Motivated by model predictions, we used directed evolution and yeast surface display to affinity mature the 2D12.5 antibody to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), reformatted as a single chain variable fragment (scFv). Results Modeling predicts that for high antigen density and saturating bsAb dose, a hapten binding affinity of 100 picomolar (pM) is needed for near-maximal hapten retention. We affinity matured 2D12.5 with an initial binding constant of about 10 nanomolar (nM) to DOTA-yttrium chelates. Affinity maturation resulted in a 1000-fold affinity improvement to biotinylated DOTA-yttrium, yielding an 8.2 ± 1.9 picomolar binder. The high-affinity scFv binds DOTA complexes of lutetium and gadolinium with similar picomolar affinity and indium chelates with low nanomolar affinity. When engineered into a bispecific antibody construct targeting carcinoembryonic antigen (CEA), pretargeted high-affinity scFv results in significantly higher tumor retention of a 111In-DOTA hapten compared to pretargeted wild-type scFv in a xenograft mouse model. Conclusions We have engineered a versatile, high-affinity DOTA-chelate-binding scFv. We anticipate it will prove useful in developing pretargeted imaging and therapy protocols to exploit the potential of a variety of radiometals. PMID:21315278

  20. Global and Regional Brain Assessment with Quantitative MR Imaging in Patients with Prior Exposure to Linear Gadolinium-based Contrast Agents.

    PubMed

    Kuno, Hirofumi; Jara, Hernán; Buch, Karen; Qureshi, Muhammad Mustafa; Chapman, Margaret N; Sakai, Osamu

    2017-04-01

    Purpose To assess the association of global and regional brain relaxation times in patients with prior exposure to linear gadolinium-based contrast agents (GBCAs). Materials and Methods The institutional review board approved this cross-sectional study. Thirty-five patients (nine who had received GBCA gadopentetate dimeglumine injections previously [one to eight times] and 26 patients who did not) who underwent brain magnetic resonance (MR) imaging with a mixed fast spin-echo pulse sequence were assessed. The whole brain was segmented according to white and gray matter by using a dual-clustering algorithm. In addition, regions of interest were measured in the globus pallidus, dentate nucleus, thalamus, and pons. The Mann-Whitney U test was used to assess the difference between groups. Multiple regression analysis was performed to assess the association of T1 and T2 with prior GBCA exposure. Results T1 values of gray matter were significantly shorter for patients with than for patients without prior GBCA exposure (P = .022). T1 of the gray matter of the whole brain (P < .001), globus pallidus (P = .002), dentate nucleus (P = .046), and thalamus (P = .026) and T2 of the whole brain (P = .004), dentate nucleus (P = .023), and thalamus (P = .002) showed a significant correlation with the accumulated dose of previous GBCA administration. There was no significant correlation between T1 and the accumulated dose of previous GBCA injections in the white matter (P = .187). Conclusion Global and regional quantitative assessments of T1 and T2 demonstrated an association with prior GBCA exposure, especially for gray matter structures. The results of this study confirm previous research findings that there is gadolinium deposition in wider distribution throughout the brain. © RSNA, 2016 Online supplemental material is available for this article.

  1. Liposome encapsulation of chelating agents

    DOEpatents

    Rahman, Yueh Erh

    1976-01-13

    A method for transferring a chelating agent across a cellular membrane by encapsulating the charged chelating agent within liposomes and carrying the liposome-encapsulated chelating agent to the cellular membrane where the liposomes containing the chelating agent will be taken up by the cells, thereby transferring the chelating agent across the cellular membrane. A chelating agent can be introduced into the interior of a cell of a living organism wherein the liposomes will be decomposed, releasing the chelating agent to the interior of the cell. The released chelating agent will complex intracellularly deposited toxic heavy metals, permitting the more soluble metal complex to transfer across the cellular membrane from the cell and subsequently be removed from the living organism.

  2. In vivo magnetic resonance imaging of atherosclerotic lesions with a newly developed Evans blue-DTPA-gadolinium contrast medium in apolipoprotein-E-deficient mice.

    PubMed

    Yasuda, Satoshi; Ikuta, Kenjiro; Uwatoku, Toyokazu; Oi, Keiji; Abe, Kohtaro; Hyodo, Fuminori; Yoshimitsu, Kengo; Sugimura, Kohtaro; Utsumi, Hideo; Katayama, Yoshiki; Shimokawa, Hiroaki

    2008-01-01

    Magnetic resonance imaging (MRI) contrast agents that specifically detect atherosclerotic plaque may be useful for the noninvasive detection of the plaque. We have recently developed a new contrast agent, Evans blue-DTPA-gadolinium (EB-DTPA-Gd), which selectively accumulates vascular lesions with endothelial removal. In this study, we examined whether EB-DTPA-Gd is also useful for in vivo imaging of atherosclerotic plaques. We used male apolipoprotein-E-deficient (ApoE-/-) mice of different ages (3, 6 and 12 months old) and age-matched male wild-type mice. After a single intravenous administration of EB-DTPA-Gd (160 microM/kg body weight), MRI T(1) signal was obtained in vivo. Increased signal intensity in the aortic wall was noted within 10-20 min after intravenous injection of EB-DTPA-Gd and was maintained for 30 min. The MRI enhancement in the aorta of ApoE-/- mice was increased in accordance with age, whereas no such enhancement was noted in wild-type mice. Histological examination demonstrated that there was a topological correlation between the site of MRI enhancement and that of atherosclerotic plaque. These results indicate that EB-DTPA-Gd is a useful MRI contrast medium for the in vivo detection of atherosclerotic plaques. Copyright (c) 2007 S. Karger AG, Basel.

  3. Dual-mode T1 and T2 magnetic resonance imaging contrast agent based on ultrasmall mixed gadolinium-dysprosium oxide nanoparticles: synthesis, characterization, and in vivo application

    NASA Astrophysics Data System (ADS)

    Tegafaw, Tirusew; Xu, Wenlong; Wasi Ahmad, Md; Baeck, Jong Su; Chang, Yongmin; Bae, Ji Eun; Chae, Kwon Seok; Kim, Tae Jeong; Lee, Gang Ho

    2015-09-01

    A new type of dual-mode T1 and T2 magnetic resonance imaging (MRI) contrast agent based on mixed lanthanide oxide nanoparticles was synthesized. Gd3+ (8S7/2) plays an important role in T1 MRI contrast agents because of its large electron spin magnetic moment resulting from its seven unpaired 4f-electrons, and Dy3+ (6H15/2) has the potential to be used in T2 MRI contrast agents because of its very large total electron magnetic moment: among lanthanide oxide nanoparticles, Dy2O3 nanoparticles have the largest magnetic moments at room temperature. Using these properties of Gd3+ and Dy3+ and their oxide nanoparticles, ultrasmall mixed gadolinium-dysprosium oxide (GDO) nanoparticles were synthesized and their potential to act as a dual-mode T1 and T2 MRI contrast agent was investigated in vitro and in vivo. The D-glucuronic acid coated GDO nanoparticles (davg = 1.0 nm) showed large r1 and r2 values (r2/r1 ≈ 6.6) and as a result clear dose-dependent contrast enhancements in R1 and R2 map images. Finally, the dual-mode imaging capability of the nanoparticles was confirmed by obtaining in vivo T1 and T2 MR images.

  4. Chelator free gallium-68 radiolabelling of silica coated iron oxide nanorods via surface interactions

    NASA Astrophysics Data System (ADS)

    Burke, Benjamin P.; Baghdadi, Neazar; Kownacka, Alicja E.; Nigam, Shubhanchi; Clemente, Gonçalo S.; Al-Yassiry, Mustafa M.; Domarkas, Juozas; Lorch, Mark; Pickles, Martin; Gibbs, Peter; Tripier, Raphaël; Cawthorne, Christopher; Archibald, Stephen J.

    2015-09-01

    The commercial availability of combined magnetic resonance imaging (MRI)/positron emission tomography (PET) scanners for clinical use has increased demand for easily prepared agents which offer signal or contrast in both modalities. Herein we describe a new class of silica coated iron-oxide nanorods (NRs) coated with polyethylene glycol (PEG) and/or a tetraazamacrocyclic chelator (DO3A). Studies of the coated NRs validate their composition and confirm their properties as in vivo T2 MRI contrast agents. Radiolabelling studies with the positron emitting radioisotope gallium-68 (t1/2 = 68 min) demonstrate that, in the presence of the silica coating, the macrocyclic chelator was not required for preparation of highly stable radiometal-NR constructs. In vivo PET-CT and MR imaging studies show the expected high liver uptake of gallium-68 radiolabelled nanorods with no significant release of gallium-68 metal ions, validating our innovation to provide a novel simple method for labelling of iron oxide NRs with a radiometal in the absence of a chelating unit that can be used for high sensitivity liver imaging.The commercial availability of combined magnetic resonance imaging (MRI)/positron emission tomography (PET) scanners for clinical use has increased demand for easily prepared agents which offer signal or contrast in both modalities. Herein we describe a new class of silica coated iron-oxide nanorods (NRs) coated with polyethylene glycol (PEG) and/or a tetraazamacrocyclic chelator (DO3A). Studies of the coated NRs validate their composition and confirm their properties as in vivo T2 MRI contrast agents. Radiolabelling studies with the positron emitting radioisotope gallium-68 (t1/2 = 68 min) demonstrate that, in the presence of the silica coating, the macrocyclic chelator was not required for preparation of highly stable radiometal-NR constructs. In vivo PET-CT and MR imaging studies show the expected high liver uptake of gallium-68 radiolabelled nanorods with no

  5. Metal-chelating active packaging film enhances lysozyme inhibition of Listeria monocytogenes.

    PubMed

    Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2014-07-01

    Several studies have demonstrated that metal chelators enhance the antimicrobial activity of lysozyme. This study examined the effect of metal-chelating active packaging film on the antimicrobial activity of lysozyme against Listeria monocytogenes. Polypropylene films were surface modified by photoinitiated graft polymerization of acrylic acid (PP-g-PAA) from the food contact surface of the films to impart chelating activity based on electrostatic interactions. PP-g-PAA exhibited a carboxylic acid density of 113 ± 5.4 nmol cm(-2) and an iron chelating activity of 53.7 ± 9.8 nmol cm(-2). The antimicrobial interaction of lysozyme and PP-g-PAA depended on growth media composition. PP-g-PAA hindered lysozyme activity at low ionic strength (2.48-log increase at 64.4 mM total ionic strength) and enhanced lysozyme activity at moderate ionic strength (5.22-log reduction at 120 mM total ionic strength). These data support the hypothesis that at neutral pH, synergy between carboxylate metal-chelating films (pKa(bulk) 6.45) and lysozyme (pI 11.35) is optimal in solutions of moderate to high ionic strength to minimize undesirable charge interactions, such as lysozyme absorption onto film. These findings suggest that active packaging, which chelates metal ions based on ligand-specific interactions, in contrast to electrostatic interactions, may improve antimicrobial synergy. This work demonstrates the potential application of metal-chelating active packaging films to enhance the antimicrobial activity of membrane-disrupting antimicrobials, such as lysozyme.

  6. In vitro study of novel gadolinium-loaded liposomes guided by GBI-10 aptamer for promising tumor targeting and tumor diagnosis by magnetic resonance imaging.

    PubMed

    Gu, Meng-Jie; Li, Kun-Feng; Zhang, Lan-Xin; Wang, Huan; Liu, Li-Si; Zheng, Zhuo-Zhao; Han, Nan-Yin; Yang, Zhen-Jun; Fan, Tian-Yuan

    2015-01-01

    Novel gadolinium-loaded liposomes guided by GBI-10 aptamer were developed and evaluated in vitro to enhance magnetic resonance imaging (MRI) diagnosis of tumor. Nontargeted gadolinium-loaded liposomes were achieved by incorporating amphipathic material, Gd (III) [N,N-bis-stearylamidomethyl-N'-amidomethyl] diethylenetriamine tetraacetic acid, into the liposome membrane using lipid film hydration method. GBI-10, as the targeting ligand, was then conjugated onto the liposome surface to get GBI-10-targeted gadolinium-loaded liposomes (GTLs). Both nontargeted gadolinium-loaded liposomes and GTLs displayed good dispersion stability, optimal size, and zeta potential for tumor targeting, as well as favorable imaging properties with enhanced relaxivity compared with a commercial MRI contrast agent (CA), gadopentetate dimeglumine. The use of GBI-10 aptamer in this liposomal system was intended to result in increased accumulation of gadolinium at the periphery of C6 glioma cells, where the targeting extracellular matrix protein tenascin-C is overexpressed. Increased cellular binding of GTLs to C6 cells was confirmed by confocal microscopy, flow cytometry, and MRI, demonstrating the promise of this novel delivery system as a carrier of MRI contrast agent for the diagnosis of tumor. These studies provide a new strategy furthering the development of nanomedicine for both diagnosis and therapy of tumor.

  7. In vitro study of novel gadolinium-loaded liposomes guided by GBI-10 aptamer for promising tumor targeting and tumor diagnosis by magnetic resonance imaging

    PubMed Central

    Gu, Meng-Jie; Li, Kun-Feng; Zhang, Lan-Xin; Wang, Huan; Liu, Li-Si; Zheng, Zhuo-Zhao; Han, Nan-Yin; Yang, Zhen-Jun; Fan, Tian-Yuan

    2015-01-01

    Novel gadolinium-loaded liposomes guided by GBI-10 aptamer were developed and evaluated in vitro to enhance magnetic resonance imaging (MRI) diagnosis of tumor. Nontargeted gadolinium-loaded liposomes were achieved by incorporating amphipathic material, Gd (III) [N,N-bis-stearylamidomethyl-N′-amidomethyl] diethylenetriamine tetraacetic acid, into the liposome membrane using lipid film hydration method. GBI-10, as the targeting ligand, was then conjugated onto the liposome surface to get GBI-10-targeted gadolinium-loaded liposomes (GTLs). Both nontargeted gadolinium-loaded liposomes and GTLs displayed good dispersion stability, optimal size, and zeta potential for tumor targeting, as well as favorable imaging properties with enhanced relaxivity compared with a commercial MRI contrast agent (CA), gadopentetate dimeglumine. The use of GBI-10 aptamer in this liposomal system was intended to result in increased accumulation of gadolinium at the periphery of C6 glioma cells, where the targeting extracellular matrix protein tenascin-C is overexpressed. Increased cellular binding of GTLs to C6 cells was confirmed by confocal microscopy, flow cytometry, and MRI, demonstrating the promise of this novel delivery system as a carrier of MRI contrast agent for the diagnosis of tumor. These studies provide a new strategy furthering the development of nanomedicine for both diagnosis and therapy of tumor. PMID:26316749

  8. SWI enhances vein detection using gadolinium in multiple sclerosis

    PubMed Central

    Mazzoni, Lorenzo N; Moretti, Marco; Grammatico, Matteo; Chiti, Stefano; Massacesi, Luca

    2015-01-01

    Susceptibility weighted imaging (SWI) combined with the FLAIR sequence provides the ability to depict in vivo the perivenous location of inflammatory demyelinating lesions – one of the most specific pathologic features of multiple sclerosis (MS). In addition, in MS white matter (WM) lesions, gadolinium-based contrast media (CM) can increase vein signal loss on SWI. This report focuses on two cases of WM inflammatory lesions enhancing on SWI images after CM injection. In these lesions in fact the CM increased the contrast between the parenchyma and the central vein allowing as well, in one of the two cases, the detection of a vein not visible on the same SWI sequence acquired before CM injection. PMID:25815209

  9. Ultra-wide range field-dependent measurements of the relaxivity of Gd1−xEuxVO4 nanoparticle contrast agents using a mechanical sample-shuttling relaxometer

    PubMed Central

    Chou, Ching-Yu; Abdesselem, Mouna; Bouzigues, Cedric; Chu, Minglee; Guiga, Angelo; Huang, Tai-Huang; Ferrage, Fabien; Gacoin, Thierry; Alexandrou, Antigoni; Sakellariou, Dimitris

    2017-01-01

    The current trend for Magnetic Resonance Imaging points towards higher magnetic fields. Even though sensitivity and resolution are increased in stronger fields, T1 contrast is often reduced, and this represents a challenge for contrast agent design. Field-dependent measurements of relaxivity are thus important to characterize contrast agents. At present, the field-dependent curves of relaxivity are usually carried out in the field range of 0 T to 2 T, using fast field cycling relaxometers. Here, we employ a high-speed sample shuttling device to switch the magnetic fields experienced by the nuclei between virtually zero field, and the center of any commercial spectrometer. We apply this approach on rare-earth (mixed Gadolinium-Europium) vanadate nanoparticles, and obtain the dispersion curves from very low magnetic field up to 11.7 T. In contrast to the relaxivity profiles of Gd chelates, commonly used for clinical applications, which display a plateau and then a decrease for increasing magnetic fields, these nanoparticles provide maximum contrast enhancement for magnetic fields around 1–1.5 T. These field-dependent curves are fitted using the so-called Magnetic Particle (MP) model and the extracted parameters discussed as a function of particle size and composition. We finally comment on the new possibilities offered by this approach. PMID:28317892

  10. Gadolinium Enhanced MR Coronary Vessel Wall Imaging at 3.0 Tesla.

    PubMed

    Kelle, Sebastian; Schlendorf, Kelly; Hirsch, Glenn A; Gerstenblith, Gary; Fleck, Eckart; Weiss, Robert G; Stuber, Matthias

    2010-10-11

    Purpose. We evaluated the influence of the time between low-dose gadolinium (Gd) contrast administration and coronary vessel wall enhancement (LGE) detected by 3T magnetic resonance imaging (MRI) in healthy subjects and patients with coronary artery disease (CAD). Materials and Methods. Four healthy subjects (4 men, mean age 29 ± 3 years and eleven CAD patients (6 women, mean age 61 ± 10 years) were studied on a commercial 3.0 Tesla (T) whole-body MR imaging system (Achieva 3.0 T; Philips, Best, The Netherlands). T1-weighted inversion-recovery coronary magnetic resonance imaging (MRI) was repeated up to 75 minutes after administration of low-dose Gadolinium (Gd) (0.1 mmol/kg Gd-DTPA). Results. LGE was seen in none of the healthy subjects, however in all of the CAD patients. In CAD patients, fifty-six of 62 (90.3%) segments showed LGE of the coronary artery vessel wall at time-interval 1 after contrast. At time-interval 2, 34 of 42 (81.0%) and at time-interval 3, 29 of 39 evaluable segments (74.4%) were enhanced. Conclusion. In this work, we demonstrate LGE of the coronary artery vessel wall using 3.0 T MRI after a single, low-dose Gd contrast injection in CAD patients but not in healthy subjects. In the majority of the evaluated coronary segments in CAD patients, LGE of the coronary vessel wall was already detectable 30-45 minutes after administration of the contrast agent.

  11. Chelation in Metal Intoxication

    PubMed Central

    Flora, Swaran J.S.; Pachauri, Vidhu

    2010-01-01

    Chelation therapy is the preferred medical treatment for reducing the toxic effects of metals. Chelating agents are capable of binding to toxic metal ions to form complex structures which are easily excreted from the body removing them from intracellular or extracellular spaces. 2,3-Dimercaprol has long been the mainstay of chelation therapy for lead or arsenic poisoning, however its serious side effects have led researchers to develop less toxic analogues. Hydrophilic chelators like meso-2,3-dimercaptosuccinic acid effectively promote renal metal excretion, but their ability to access intracellular metals is weak. Newer strategies to address these drawbacks like combination therapy (use of structurally different chelating agents) or co-administration of antioxidants have been reported recently. In this review we provide an update of the existing chelating agents and the various strategies available for the treatment of heavy metals and metalloid intoxications. PMID:20717537

  12. Macrocyclic bifunctional chelating agents

    DOEpatents

    Meares, Claude F.; DeNardo, Sally J.; Cole, William C.; Mol, Min K.

    1987-01-01

    A copper chelate conjugate which is stable in human serum. The conjugate includes the copper chelate of a cyclic tetraaza di-, tri-, or tetra-acetic acid, a linker attached at one linker end to a ring carbon of the chelate, and a biomolecule joined at the other end of the linker. The conjugate, or the linker-copper chelate compound used in forming the conjugate, are designed for use in diagnostic and therapeutic applications which involve Cu(II) localization via the systemic route.

  13. Gadolinium deposition disease: Initial description of a disease that has been around for a while.

    PubMed

    Semelka, Richard C; Ramalho, Joana; Vakharia, Ami; AlObaidy, Mamdoh; Burke, Lauren M; Jay, Michael; Ramalho, Miguel

    2016-12-01

    To describe the clinical manifestations of presumed gadolinium toxicity in patients with normal renal function. Participants were recruited from two online gadolinium toxicity support groups. The survey was anonymous and individuals were instructed to respond to the survey only if they had evidence of normal renal function, evidence of gadolinium in their system beyond 30days of this MRI, and no pre-existent clinical symptoms and/or signs of this type. 42 subjects responded to the survey (age: 28-69, mean 49.1±22.4years). The most common findings were: central pain (n=15), peripheral pain (n=26), headache (n=28), and bone pain (n=26). Only subjects with distal leg and arm distribution described skin thickening (n=22). Clouded mentation and headache were the symptoms described as persistent beyond 3months in 29 subjects. Residual disease was present in all patients. Twenty-eight patients described symptoms following administration of one brand of Gadolinium-Based Contrast Agent (GBCA), 21 after a single GBCA administration and 7 after multiple GBCA administrations, including: gadopentetate dimeglumine, n=9; gadodiamide, n=4; gadoversetamide, n=4; gadobenate dimeglumine, n=4; gadobutrol, n=1; gadoteridol, n=2; and unknown, n=4. Gadolinium toxicity appears to arise following GBCA administration, which appears to contain clinical features seen in Nephrogenic Systemic Fibrosis, but also features not observed in that condition. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Contrast enhanced liver MRI in patients with primary sclerosing cholangitis: inverse appearance of focal confluent fibrosis on delayed phase MR images with hepatocyte specific versus extracellular gadolinium based contrast agents.

    PubMed

    Husarik, Daniela B; Gupta, Rajan T; Ringe, Kristina I; Boll, Daniel T; Merkle, Elmar M

    2011-12-01

    To assess the enhancement pattern of focal confluent fibrosis (FCF) on contrast-enhanced hepatic magnetic resonance imaging (MRI) using hepatocyte-specific (Gd-EOB-DTPA) and extracellular (ECA) gadolinium-based contrast agents in patients with primary sclerosing cholangitis (PSC). After institutional review board approval, 10 patients with PSC (6 male, 4 female; 33-61 years) with 13 FCF were included in this retrospective study. All patients had a Gd-EOB-DTPA-enhanced liver MRI exam, and a comparison ECA-enhanced MRI. On each T1-weighted dynamic dataset, the signal intensity (SI) of FCF and the surrounding liver as well as the paraspinal muscle (M) were measured. In the Gd-EOB-DTPA group, hepatocyte phase images were also included. SI FCF/SI M, SI liver/SI M, and [(SI liver - SI FCF)/SI liver] were compared between the different contrast agents for each dynamic phase using the paired Student's t-test. There was no significant difference in SI FCF/SI M in all imaging phases. SI liver/SI M was significantly higher for the Gd-EOB-DTPA group in the delayed phase (P < .001), whereas there was no significant difference in all other imaging phases. In the Gd-EOB-DTPA group, mean [(SI liver - SI FCF)/SI liver] were as follows (values for ECA group in parentheses): unenhanced phase: 0.26 (0.26); arterial phase: 0.01 (-0.31); portal venous phase (PVP): -0.05 (-0.26); delayed phase (DP): 0.14 (-0.54); and hepatocyte phase: 0.26. Differences were significant for the DP (P < .001). On delayed phase MR images the FCF-to-liver contrast is reversed with the lesions appearing hyperintense on ECA enhanced images and hypointense on Gd-EOB-DTPA-enhanced images. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  15. Measurement of gadolinium retention: current status and review from an applied radiation physics perspective.

    PubMed

    Gräfe, James L; McNeill, Fiona E

    2018-06-28

    This article briefly reviews the main measurement techniques for the non-invasive detection of residual gadolinium (Gd) in those exposed to gadolinium-based contrast agents (GBCAs). Approach and Main results: The current status of in vivo Gd measurement is discussed and is put into the context of concerns within the radiology community. The main techniques are based on applied atomic/nuclear medicine utilizing the characteristic atomic and nuclear spectroscopic signature of Gd. The main emission energies are in the 40-200 keV region and require spectroscopic detectors with good energy resolution. The two main techniques, prompt gamma neutron activation analysis and x-ray fluorescence, provide adequate detection limits for in vivo measurement, whilst delivering a low effective radiation dose on the order of a few µSv. Gadolinium is being detected in measureable quantities in people with healthy renal function who have received FDA approved GBCAs. The applied atomic/nuclear medicine techniques discussed in this review will be useful in determining the significance of this retention, and will help on advising future administration protocols.

  16. Gadolinium accumulation in organs of Sprague-Dawley® rats after implantation of a biodegradable magnesium-gadolinium alloy.

    PubMed

    Myrissa, Anastasia; Braeuer, Simone; Martinelli, Elisabeth; Willumeit-Römer, Regine; Goessler, Walter; Weinberg, Annelie Martina

    2017-01-15

    Biodegradable magnesium implants are under investigation because of their promising properties as medical devices. For enhancing the mechanical properties and the degradation resistance, rare earth elements are often used as alloying elements. In this study Mg10Gd pins were implanted into Sprague-Dawley® rats. The pin volume loss and a possible accumulation of magnesium and gadolinium in the rats' organs and blood were investigated in a long-term study over 36weeks. The results showed that Mg10Gd is a fast disintegrating material. Already 12weeks after implantation the alloy is fragmented to smaller particles, which can be found within the intramedullary cavity and the cortical bones. They disturbed the bone remodeling until the end of the study. The results concerning the elements' distribution in the animals' bodies were even more striking, since an accumulation of gadolinium could be observed in the investigated organs over the whole time span. The most affected tissue was the spleen, with up to 3240μgGd/kg wet mass, followed by the lung, liver and kidney (up to 1040, 685 and 207μgGd/kg). In the brain, muscle and heart, the gadolinium concentrations were much smaller (less than 20μg/kg), but an accumulation could still be detected. Interestingly, blood serum samples showed no accumulation of magnesium and gadolinium. This is the first time that an accumulation of gadolinium in animal organs was observed after the application of a gadolinium-containing degradable magnesium implant. These findings demonstrate the importance of future investigations concerning the distribution of the constituents of new biodegradable materials in the body, to ensure the patients' safety. In the last years, biodegradable Mg alloys are under investigation due to their promising properties as orthopaedic devices used for bone fracture stabilization. Gadolinium as Rare Earth Element enhances the mechanical properties of Mg-Gd alloys but its toxicity in humans is still questionable

  17. Saline as the Sole Contrast Agent for Successful MRI-guided Epidural Injections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deli, Martin, E-mail: martin.deli@web.de; Fritz, Jan, E-mail: jfritz9@jhmi.edu; Mateiescu, Serban, E-mail: mateiescu@microtherapy.de

    Purpose. To assess the performance of sterile saline solution as the sole contrast agent for percutaneous magnetic resonance imaging (MRI)-guided epidural injections at 1.5 T. Methods. A retrospective analysis of two different techniques of MRI-guided epidural injections was performed with either gadolinium-enhanced saline solution or sterile saline solution for documentation of the epidural location of the needle tip. T1-weighted spoiled gradient echo (FLASH) images or T2-weighted single-shot turbo spin echo (HASTE) images visualized the test injectants. Methods were compared by technical success rate, image quality, table time, and rate of complications. Results. 105 MRI-guided epidural injections (12 of 105 withmore » gadolinium-enhanced saline solution and 93 of 105 with sterile saline solution) were performed successfully and without complications. Visualization of sterile saline solution and gadolinium-enhanced saline solution was sufficient, good, or excellent in all 105 interventions. For either test injectant, quantitative image analysis demonstrated comparable high contrast-to-noise ratios of test injectants to adjacent body substances with reliable statistical significance levels (p < 0.001). The mean table time was 22 {+-} 9 min in the gadolinium-enhanced saline solution group and 22 {+-} 8 min in the saline solution group (p = 0.75). Conclusion. Sterile saline is suitable as the sole contrast agent for successful and safe percutaneous MRI-guided epidural drug delivery at 1.5 T.« less

  18. The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy

    PubMed Central

    Sancey, L; Kotb, S; Roux, S; Dufort, S; Bianchi, A; Crémillieux, Y; Fries, P; Coll, J-L; Rodriguez-Lafrasse, C; Janier, M; Dutreix, M; Barberi-Heyob, M; Boschetti, F; Denat, F; Louis, C; Porcel, E; Lacombe, S; Le Duc, G; Deutsch, E; Perfettini, J-L; Detappe, A; Verry, C; Berbeco, R; Butterworth, K T; McMahon, S J; Prise, K M; Perriat, P; Tillement, O

    2014-01-01

    A new efficient type of gadolinium-based theranostic agent (AGuIX®) has recently been developed for MRI-guided radiotherapy (RT). These new particles consist of a polysiloxane network surrounded by a number of gadolinium chelates, usually 10. Owing to their small size (<5 nm), AGuIX typically exhibit biodistributions that are almost ideal for diagnostic and therapeutic purposes. For example, although a significant proportion of these particles accumulate in tumours, the remainder is rapidly eliminated by the renal route. In addition, in the absence of irradiation, the nanoparticles are well tolerated even at very high dose (10 times more than the dose used for mouse treatment). AGuIX particles have been proven to act as efficient radiosensitizers in a large variety of experimental in vitro scenarios, including different radioresistant cell lines, irradiation energies and radiation sources (sensitizing enhancement ratio ranging from 1.1 to 2.5). Pre-clinical studies have also demonstrated the impact of these particles on different heterotopic and orthotopic tumours, with both intratumoural or intravenous injection routes. A significant therapeutical effect has been observed in all contexts. Furthermore, MRI monitoring was proven to efficiently aid in determining a RT protocol and assessing tumour evolution following treatment. The usual theoretical models, based on energy attenuation and macroscopic dose enhancement, cannot account for all the results that have been obtained. Only theoretical models, which take into account the Auger electron cascades that occur between the different atoms constituting the particle and the related high radical concentrations in the vicinity of the particle, provide an explanation for the complex cell damage and death observed. PMID:24990037

  19. New Clathrin-Based Nanoplatforms for Magnetic Resonance Imaging

    PubMed Central

    Vitaliano, Gordana D.; Vitaliano, Franco; Rios, Jose D.; Renshaw, Perry F.; Teicher, Martin H.

    2012-01-01

    Background Magnetic Resonance Imaging (MRI) has high spatial resolution, but low sensitivity for visualization of molecular targets in the central nervous system (CNS). Our goal was to develop a new MRI method with the potential for non-invasive molecular brain imaging. We herein introduce new bio-nanotechnology approaches for designing CNS contrast media based on the ubiquitous clathrin cell protein. Methodology/Principal Findings The first approach utilizes three-legged clathrin triskelia modified to carry 81 gadolinium chelates. The second approach uses clathrin cages self-assembled from triskelia and designed to carry 432 gadolinium chelates. Clathrin triskelia and cages were characterized by size, structure, protein concentration, and chelate and gadolinium contents. Relaxivity was evaluated at 0.47 T. A series of studies were conducted to ascertain whether fluorescent-tagged clathrin nanoplatforms could cross the blood brain barriers (BBB) unaided following intranasal, intravenous, and intraperitoneal routes of administration. Clathrin nanoparticles can be constituted as triskelia (18.5 nm in size), and as cages assembled from them (55 nm). The mean chelate: clathrin heavy chain molar ratio was 27.04±4.8: 1 for triskelia, and 4.2±1.04: 1 for cages. Triskelia had ionic relaxivity of 16 mM−1s−1, and molecular relaxivity of 1,166 mM−1s−1, while cages had ionic relaxivity of 81 mM−1s−1 and molecular relaxivity of 31,512 mM−1s−1. Thus, cages exhibited 20 times higher ionic relaxivity and 8,000-fold greater molecular relaxivity than gadopentetate dimeglumine. Clathrin nanoplatforms modified with fluorescent tags were able to cross or bypass the BBB without enhancements following intravenous, intraperitoneal and intranasal administration in rats. Conclusions/Significance Use of clathrin triskelia and cages as carriers of CNS contrast media represents a new approach. This new biocompatible protein-based nanotechnology demonstrated suitable

  20. Separation of Gd-humic complexes and Gd-based magnetic resonance imaging contrast agent in river water with QAE-Sephadex A-25 for the fractionation analysis.

    PubMed

    Matsumiya, Hiroaki; Inoue, Hiroto; Hiraide, Masataka

    2014-10-01

    Gadolinium complexed with naturally occurring, negatively charged humic substances (humic and fulvic acids) was collected from 500 mL of sample solution onto a column packed with 150 mg of a strongly basic anion-exchanger (QAE-Sephadex A-25). A Gd-based magnetic resonance imaging contrast agent (diethylenetriamine-N,N,N',N″,N″-pentaacetato aquo gadolinium(III), Gd-DTPA(2-)) was simultaneously collected on the same column. The Gd-DTPA complex was desorbed by anion-exchange with 50mM tetramethylammonium sulfate, leaving the Gd-humic complexes on the column. The Gd-humic complexes were subsequently dissociated with 1M nitric acid to desorb the humic fraction of Gd. The two-step desorption with small volumes of the eluting agents allowed the 100-fold preconcentration for the fractionation analysis of Gd at low ng L(-1) levels by inductively coupled plasma-mass spectrometry (ICP-MS). On the other hand, Gd(III) neither complexed with humic substances nor DTPA, i.e., free species, was not sorbed on the column. The free Gd in the effluent was preconcentrated 100-fold by a conventional solid-phase extraction with an iminodiacetic acid-type chelating resin and determined by ICP-MS. The proposed analytical fractionation method was applied to river water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Aiming for a shorter rheumatoid arthritis MRI protocol: can contrast-enhanced MRI replace T2 for the detection of bone marrow oedema?

    PubMed

    Stomp, Wouter; Krabben, Annemarie; van der Heijde, Désirée; Huizinga, Tom W J; Bloem, Johan L; van der Helm-van Mil, Annette H M; Reijnierse, Monique

    2014-10-01

    To determine whether T1 post-gadolinium chelate images (T1Gd) can replace T2-weighted images (T2) for evaluating bone marrow oedema (BME), thereby allowing a shorter magnetic resonance imaging (MRI) protocol in rheumatoid arthritis (RA). In 179 early arthritis patients and 43 advanced RA patients, wrist and metacarpophalangeal joints were examined on a 1.5-T extremity MRI system with a standard protocol (coronal T1, T2 fat-saturated and coronal and axial T1 fat-saturated after Gd). BME was scored according to OMERACT RAMRIS by two observers with and without T2 images available. Agreement was assessed using intraclass correlation coefficients (ICCs) for semi-quantitative scores and test characteristics with T2 images as reference. Agreement between scores based on T2 and T1Gd images was excellent ICC (0.80-0.99). At bone level, sensitivity and specificity of BME on T1Gd compared to T2 were high for both patient groups and both readers (all ≥80 %). T1Gd and T2 images are equally suitable for evaluating BME. Because contrast is usually administered to assess (teno)synovitis, a short MRI protocol of T1 and T1Gd is sufficient in RA. • Bone marrow oedema scores are equal on T2 and T1-Gd-chelate enhanced sequences. • Agreement between scores based on T2 and T1-Gd-chelate images was excellent. • Sensitivity and specificity for presence of bone marrow oedema were high. • A short protocol without T2 images suffices in rheumatoid arthritis patients.

  2. Retention of gadolinium compounds used in magnetic resonance imaging: a critical review and the recommendations of regulatory agencies.

    PubMed

    Martí-Bonmatí, L; Martí-Bonmatí, E

    The Spanish Agency for Drugs and Healthcare Products (AEMPS), based on the recommendations of the European Committee for Risk Assessment in Pharmacovigilance, established on 13 March 2017 that linear gadolinium-based MR contrast media, such as MultiHance, Omniscan, Magnevist (currently not marketed) and Optimark (no longer marketed in Spain), the clinical benefits do not outweigh the potential risks derived from their use. AEMPS recommends to suspend its marketing for general use based on the retention of these compounds in the brain. On the other hand, the AEMPS justifies the maintenance of Primovist and MultiHance for liver studies, and Magnevist of intra-articular administration (not commercialized in Spain), and justified the almost exclusive use of macrocyclic structure contrasts (Gadovist, ProHance and Dotarem). However, this retention is known to be different for each of the contrast media. All existing gadolinium contrasts agents have a distribution phase with tissue retention, due to a very slow exchange, in the interstitium of bone, skin, kidney, brain and other organs. The existence of histological effects or clinical symptoms associated with the accumulation of these trace amounts of gadolinium has not been demonstrated. The major toxicological concern with these contrast agents is related to nephrogenic systemic fibrosis (NSF). Since the safety profiles are mainly related to the interstitial retention space in the tissues, it does not seem justified to actually exclude contrast media that do not have cases related to the NSF. Based on all of this, we disagree with the latest AEMPS recommendation suggesting the marketing stoppage of linear agents without considering the individual retention profiles. This recommendation is not based neither on the data nor existing knowledge about the retention, relaxivity and clinical efficiency of the Gd compounds. It is therefore necessary to carry out prospective studies on the histological and clinical relevance of

  3. Element-specific spectral imaging of multiple contrast agents: a phantom study

    NASA Astrophysics Data System (ADS)

    Panta, R. K.; Bell, S. T.; Healy, J. L.; Aamir, R.; Bateman, C. J.; Moghiseh, M.; Butler, A. P. H.; Anderson, N. G.

    2018-02-01

    This work demonstrates the feasibility of simultaneous discrimination of multiple contrast agents based on their element-specific and energy-dependent X-ray attenuation properties using a pre-clinical photon-counting spectral CT. We used a photon-counting based pre-clinical spectral CT scanner with four energy thresholds to measure the X-ray attenuation properties of various concentrations of iodine (9, 18 and 36 mg/ml), gadolinium (2, 4 and 8 mg/ml) and gold (2, 4 and 8 mg/ml) based contrast agents, calcium chloride (140 and 280 mg/ml) and water. We evaluated the spectral imaging performances of different energy threshold schemes between 25 to 82 keV at 118 kVp, based on K-factor and signal-to-noise ratio and ranked them. K-factor was defined as the X-ray attenuation in the K-edge containing energy range divided by the X-ray attenuation in the preceding energy range, expressed as a percentage. We evaluated the effectiveness of the optimised energy selection to discriminate all three contrast agents in a phantom of 33 mm diameter. A photon-counting spectral CT using four energy thresholds of 27, 33, 49 and 81 keV at 118 kVp simultaneously discriminated three contrast agents based on iodine, gadolinium and gold at various concentrations using their K-edge and energy-dependent X-ray attenuation features in a single scan. A ranking method to evaluate spectral imaging performance enabled energy thresholds to be optimised to discriminate iodine, gadolinium and gold contrast agents in a single spectral CT scan. Simultaneous discrimination of multiple contrast agents in a single scan is likely to open up new possibilities of improving the accuracy of disease diagnosis by simultaneously imaging multiple bio-markers each labelled with a nano-contrast agent.

  4. Thermodynamic stability and kinetic inertness of a Gd-DTPA bisamide complex grafted onto gold nanoparticles.

    PubMed

    Mogilireddy, Vijetha; Déchamps-Olivier, Isabelle; Alric, Christophe; Laurent, Gautier; Laurent, Sophie; Vander Elst, Luce; Muller, Robert; Bazzi, Rana; Roux, Stéphane; Tillement, Olivier; Chuburu, Françoise

    2015-01-01

    Gold nanoparticles coated by gadolinium (III) chelates (Au@DTDTPA) where DTDTPA is a dithiolated bisamide derivative of diethylenetriamine-N,N,N',N'',N''-pentaacetic acid (DTPA), constituted contrast agents for both X-ray computed tomography and magnetic resonance imaging. In an MRI context, highly stable Gd(3+) complexes are needed for in vivo applications. Thus, knowledge of the thermodynamic stability and kinetic inertness of these chelates, when grafted onto gold nanoparticles, is crucial since bisamide DTPA chelates are usually less suited for Gd(3+) coordination than DTPA. Therefore, these parameters were evaluated by means of potentiometric titrations and relaxivity measurements. The results showed that, when the chelates were grafted onto the nanoparticle, not only their thermodynamic stability but also their kinetic inertness were improved. These positive effects were correlated to the chelate packing at the nanoparticle surface that stabilized the corresponding Gd(3+) complexes and greatly enhanced their kinetic inertness. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Towards the Rational Design of MRI Contrast Agents: Electron Spin Relaxation Is Largely Unaffected by the Coordination Geometry of Gadolinium(III)–DOTA-Type Complexes

    PubMed Central

    Bean, Jonathan F.; Clarkson, Robert B.; Helm, Lothar; Moriggi, Loïck; Sherry, A. Dean

    2009-01-01

    Electron-spin relaxation is one of the determining factors in the efficacy of MRI contrast agents. Of all the parameters involved in determining relaxivity it remains the least well understood, particularly as it relates to the structure of the complex. One of the reasons for the poor understanding of electron-spin relaxation is that it is closely related to the ligand-field parameters of the Gd3+ ion that forms the basis of MRI contrast agents and these complexes generally exhibit a structural isomerism that inherently complicates the study of electron spin relaxation. We have recently shown that two DOTA-type ligands could be synthesised that, when coordinated to Gd3+, would adopt well defined coordination geometries and are not subject to the problems of intramolecular motion of other complexes. The EPR properties of these two chelates were studied and the results examined with theory to probe their electron-spin relaxation properties. PMID:18283704

  6. Gadolinium photoionization process

    DOEpatents

    Paisner, J.A.; Comaskey, B.J.; Haynam, C.A.; Eggert, J.H.

    1993-04-13

    A method is provided for selective photoionization of the odd-numbered atomic mass gadolinium isotopes 155 and 157. The selective photoionization is accomplished by circular or linear parallel polarized laser beam energy effecting a three-step photoionization pathway.

  7. Gadolinium photoionization process

    DOEpatents

    Paisner, Jeffrey A.; Comaskey, Brian J.; Haynam, Christopher A.; Eggert, Jon H.

    1993-01-01

    A method is provided for selective photoionization of the odd-numbered atomic mass gadolinium isotopes 155 and 157. The selective photoionization is accomplished by circular or linear parallel polarized laser beam energy effecting a three-step photoionization pathway.

  8. Effect of the chelation of metal cation on the antioxidant activity of chondroitin sulfates.

    PubMed

    Ajisaka, Katsumi; Oyanagi, Yutaka; Miyazaki, Tatsuo; Suzuki, Yasuhiro

    2016-06-01

    The antioxidant potencies of chondroitin sulfates (CSs) from shark cartilage, salmon cartilage, bovine trachea, and porcine intestinal mucosa were compared by three representative methods for the measurement of the antioxidant activity; DPPH radical scavenging activity, superoxide radical scavenging activity, and hydroxyl radical scavenging activity. CSs from salmon cartilage and bovine trachea showed higher potency in comparison with CSs from shark cartilage and porcine intestinal mucosa. Next, CS from salmon cartilage chelating with Ca(2+), Mg(2+), Mn(2+), or Zn(2+) were prepared, and their antioxidant potencies were compared. CS chelating with Ca(2+) or Mg(2+) ions showed rather decreased DPPH radical scavenging activity in comparison with CS of H(+) form. In contrast, CS chelating with Ca(2+) or Mg(2+) ion showed remarkably enhanced superoxide radical scavenging activity than CS of H(+) or Na(+) form. Moreover, CS chelating with divalent metal ions, Ca(2+), Mg(2+), Mn(2+), or Zn(2+), showed noticeably higher hydroxyl radical scavenging activity than CS of H(+) or Na(+) form. The present results revealed that the scavenging activities of, at least, superoxide radical and hydroxyl radical were enhanced by the chelation with divalent metal ions.

  9. Chelation therapy after the Trial to Assess Chelation Therapy: results of a unique trial

    PubMed Central

    Avila, Maria D.; Escolar, Esteban; Lamas, Gervasio A.

    2014-01-01

    Purpose of review EDTA chelation therapy has been in off-label use for the treatment of atherosclerosis. We review the results of the first large-scale randomized trial of this treatment. Recent findings The trial to assess chelation therapy was a $30 million National Institutes of Health-funded study of the safety and efficacy of EDTA-based chelation infusions in 1708 post-myocardial infarction (MI) patients. The trial to assess chelation therapy demonstrated a significant (P = 0.035) 18% reduction in a combined primary endpoint of death, MI, stroke, coronary revascularization, or hospitalization for angina. In diabetic patients the benefit was more extreme, with a 41% relative reduction in risk (P = 0.0002) and a 43% reduction in total mortality (P = 0.011). Safety data were favorable. A reduction of oxidative stress by chelation of toxic metals has been proposed as a possible mechanism of action. Summary Recent research suggests that EDTA chelation may be a well-tolerated and effective treatment for post-MI patients. Future replication and mechanistic studies are important prior to implementation in all post-MI patients. PMID:25023079

  10. Hydroxypyridonate chelating agents and synthesis thereof

    DOEpatents

    Raymond, K.N.; Scarrow, R.C.; White, D.L.

    1985-11-12

    Chelating agents having 1-hydroxy-2-pyridinone (HOPO) and related moieties incorporated within their structures, including polydentate HOPO-substituted polyamines such as spermidine and spermine, and HOPO-substituted desferrioxamine. The chelating agents are useful in selectively removing certain cations from solution, and are particularly useful as ferric ion and actinide chelators. Novel syntheses of the chelating agents are provided. 4 tabs.

  11. Natural chelating agents for radionuclide decorporation

    DOEpatents

    Premuzic, E.T.

    1985-06-11

    This invention relates to the production of metal-binding compounds useful for the therapy of heavy metal poisoning, for biological mining and for decorporation of radionuclides. The present invention deals with an orderly and effective method of producing new therapeutically effective chelating agents. This method uses challenge biosynthesis for the production of chelating agents that are specific for a particular metal. In this approach, the desired chelating agents are prepared from microorganisms challenged by the metal that the chelating agent is designed to detoxify. This challenge induces the formation of specific or highly selective chelating agents. The present invention involves the use of the challenge biosynthetic method to produce new complexing/chelating agents that are therapeutically useful to detoxify uranium, plutonium, thorium and other toxic metals. The Pseudomonas aeruginosa family of organisms is the referred family of microorganisms to be used in the present invention to produce the new chelating agent because this family is known to elaborate strains resistant to toxic metals.

  12. Relationship among chelator adherence, change in chelators, and quality of life in thalassemia.

    PubMed

    Trachtenberg, Felicia L; Gerstenberger, Eric; Xu, Yan; Mednick, Lauren; Sobota, Amy; Ware, Hannah; Thompson, Alexis A; Neufeld, Ellis J; Yamashita, Robert

    2014-10-01

    Thalassemia, a chronic blood disease, necessitates life-long adherence to blood transfusions and chelation therapy to reduce iron overload. We examine stability of health-related quality of life (HRQOL) in thalassemia and adherence to chelation therapy over time, especially after changes in chelator choice. Thalassemia Longitudinal Cohort participants in the USA, UK, and Canada completed the SF-36v2 (ages 14+) and the PF-28 CHQ (parents of children <14 years). Chelation adherence was defined as self-reported percent of doses administered in the last 4 weeks. Two hundred and fifty-eight adults/adolescents (mean 29.7 years) and 133 children (mean 8.5 years) completed a mean of 2.8-years follow-up. Children made few chelator changes, whereas a mean of 2.2 changes was observed among the 37% of adults/adolescents who made chelator changes, mainly due to patient preference or medical necessity. Physical HRQOL improved among those with lower iron burden (better health status) at baseline who made a single change in chelator, but declined among participants with multiple changes and/or high iron burden (worse health status). Mental health improved among participants with lower iron burden, but iron overload was negatively associated with social functioning. Adherence did not significantly change over follow-up except for an increase after a change from deferoxamine (DFO) infusion to oral deferasirox (p = 0.03). Predictors of lower adherence for adults/adolescents at follow-up included side effects, smoking, younger age, problems preparing DFO, increased number of days per week DFO prescribed, and lower physical quality of life . Strategies to balance medical needs with family, work, and personal life may assist in adherence.

  13. Biologically-compatible gadolinium(at)(carbon nanostructures) as advanced contrast agents for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Sitharaman, Balaji

    2005-11-01

    Paramagnetic gadolinium-based carbon nanostructures are introduced as a new paradigm in high-performance magnetic resonance imaging (MRI) contrast agent (CA) design. Two Gd C60-based nanomaterials, Gd C60 [C(COOH)2]10 and Gd C60(OH)x are shown to have MRI efficacies (relaxivities) 5 to 20 times larger than any current Gd3+-based CA in clinical use. The first detailed and systematic physicochemical characterization was performed on these materials using the same experimental techniques usually applied to traditional Gd 3+-based CAs. Water-proton relaxivities were measured for the first time on these materials, as a function of magnetic field (5 x 10-4--9.4 T) to elucidate the different interaction mechanisms and dynamic processes influencing the relaxation behavior. These studies attribute the observed enhanced relaxivities completely to the "outer sphere" proton relaxation mechanism. These "outer sphere" relaxation effects are the largest reported for any Gd3+-based agent without inner-sphere water molecules. The proton relaxivities displayed a remarkable pH-dependency, increasing dramatically with decreasing pH (pH: 3--12). The increase in relaxivity resulted mainly from aggregation and subsequent three-order-of-magnitude increase in tauR, the rotational correlation time. Water-soluble fullerene materials (such as the neuroprotective fullerene drug, C3) readily cross cell membranes, suggesting an application for these gadofullerenes as the first intracellular, as well as pH-responsive MRI CAs. Studies performed at 60 MHz in the presence of phosphate-buffered saline (PBS, mice serum pH: 7.4) to mimic physiological conditions demonstrated that the aggregates can be disrupted by addition of salts, leading to a decrease in relaxivity. Biological fluids present a high salt concentration and should strongly modify the behavior of any fullerenes/metallofullerene-based drug in vivo. Gd C60[C(COOH)2]10 also showed enhanced relaxivity (23% increase) in the presence of the

  14. Influence of delayed gadolinium enhanced MRI of cartilage (dGEMRIC) protocol on T2-mapping: is it possible to comprehensively assess knee cartilage composition in one post-contrast MR examination at 3 Tesla?

    PubMed

    Verschueren, J; van Tiel, J; Reijman, M; Bron, E E; Klein, S; Verhaar, J A N; Bierma-Zeinstra, S M A; Krestin, G P; Wielopolski, P A; Oei, E H G

    2017-09-01

    To evaluate the possibility of assessing knee cartilage with T2-mapping and delayed gadolinium enhanced magnetic resonance imaging (MRI) of cartilage (dGEMRIC) in one post-contrast MR examination at 3 Tesla (T). T2 mapping was performed in 10 healthy volunteers at baseline; directly after baseline; after 10 min of cycling; and after 90 min delay, and in 16 osteoarthritis patients before and after intravenous administration of a double dose gadolinium dimeglumine contrast agent, reflecting key dGEMRIC protocol elements. Differences in T2 relaxation times between each timepoint and baseline were calculated for 6 cartilage regions using paired t tests or Wilcoxon signed-rank tests and the smallest detectable change (SDC). After cycling, a significant change in T2 relaxation times was found in the lateral weight-bearing tibial plateau (+1.0 ms, P = 0.04). After 90 min delay, significant changes were found in the lateral weight-bearing femoral condyle (+1.2 ms, P = 0.03) and the lateral weight-bearing tibial plateau (+1.3 ms, P = 0.01). In these regions of interests (ROIs), absolute differences were small and lower than the corresponding SDCs. T2-mapping after contrast administration only showed statistically significantly lower T2 relaxation times in the medial posterior femoral condyle (-2.4 ms, P < 0.001) with a change exceeding the SDC. Because dGEMRIC protocol elements resulted in only small differences in T2 relaxation times that were not consistent and lower than the SDC in the majority of regions, our results suggest that T2-mapping and dGEMRIC can be performed reliably in a single imaging session to assess cartilage biochemical composition in knee osteoarthritis (OA) at 3 T. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  15. Iron chelating active packaging: Influence of competing ions and pH value on effectiveness of soluble and immobilized hydroxamate chelators.

    PubMed

    Ogiwara, Yoshiko; Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2016-04-01

    Many packaged foods utilize synthetic chelators (e.g. ethylenediaminetetraacetic acid, EDTA) to inhibit iron-promoted oxidation or microbial growth which would result in quality loss. To address consumer demands for all natural products, we have previously developed a non-migratory iron chelating active packaging material by covalent immobilization of polyhydroxamate and demonstrated its efficacy in delaying lipid oxidation. Herein, we demonstrate the ability of this hydroxamate-functionalized iron chelating active packaging to retain iron chelating capacity; even in the presence of competing ions common in food. Both immobilized and soluble hydroxamate chelators retained iron chelating capacity in the presence of calcium, magnesium, and sodium competing ions, although at pH 5.0 the presence of calcium reduced immobilized hydroxamate iron chelation. A strong correlation was found between colorimetric and mass spectral analysis of iron chelation by the chelating packaging material. Such chelating active packaging may support reducing additive use in product formulations, while retaining quality and shelf life. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Safety assessment of nanoparamagnetic contrast agents with different coatings for molecular MRI

    NASA Astrophysics Data System (ADS)

    Azizian, Gholamreza; Riyahi-Alam, Nader; Haghgoo, Soheila; Saffari, Mojtaba; Zohdiaghdam, Reza; Gorji, Ensieh

    2013-04-01

    Despite the wide application of gadolinium as a contrast agent for magnetic resonance imaging (MRI), there is a serious lack of information on its toxicity. Gadolinium and gadolinium oxide (Gd-oxide) are used as contrast agents for magnetic resonance imaging (MRI). There are methods for reducing toxicity of these materials, such as core nanoparticles coating or conjugating. Therefore, for toxicity evaluation, we compared the viability of commercial contrast agents in MRI (Gd-DTPA) and three nanoparticles with the same core Gd2O3 and small particulate gadolinium oxide or SPGO (< 40 nm) but different coatings of diethyleneglycol (DEG) as Gd2O3-DEG and methoxy polyethylene glycol-silane (mPEG-silane: 550 and 2000 Dalton) as SPGO-mPEG-silane550 and SPGO-mPEG-silane2000, respectively, in the SK-MEL3 cell line, by light microscopy, MTT assay using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide, and the LDH assay detecting lactate dehydrogenase activity. The viability values were not statistically different between the three nanoparticles and Gd-DTPA. The MTT and LDH assay results showed that Gd2O3-DEG nanoparticles were more toxic than Gd-DTPA and other nanoparticles. Also, SPGO-mPEG-silane2000 was more biocompatible than other nanoparticles. The obtained results did not show any significant increase in cytotoxicity of the nanoparticles and Gd-DTPA, neither dose-dependent nor time-dependent. Therefore, DEG and PEG, due to their considerable properties and irregular sizes (different molecular weights), were selected as the useful surface covering materials of nanomagnetic particles that could reveal noticeable relaxivity and biocompatibility characteristics.

  17. Cross-linkable liposomes stabilize a magnetic resonance contrast-enhancing polymeric fastener.

    PubMed

    Smith, Cartney E; Kong, Hyunjoon

    2014-04-08

    Liposomes are commonly used to deliver drugs and contrast agents to their target site in a controlled manner. One of the greatest obstacles in the performance of such delivery vehicles is their stability in the presence of serum. Here, we demonstrate a method to stabilize a class of liposomes that load gadolinium, a magnetic resonance (MR) contrast agent, as a model cargo on their surfaces. We hypothesized that the sequential adsorption of a gadolinium-binding chitosan fastener on the liposome surface followed by covalent cross-linking of the lipid bilayer would provide enhanced stability and improved MR signal in the presence of human serum. To investigate this hypothesis, liposomes composed of diyne-containing lipids were assembled and functionalized via chitosan conjugated with a hydrophobic anchor and diethylenetriaminepentaacetic acid (DTPA). This postadsorption cross-linking strategy served to stabilize the thermodynamically favorable association between liposome and polymeric fastener. Furthermore, the chitosan-coated, cross-linked liposomes proved more effective as delivery vehicles of gadolinium than uncross-linked liposomes due to the reduced liposome degradation and chitosan desorption. Overall, this study demonstrates a useful method to stabilize a broad class of particles used for systemic delivery of various molecular payloads.

  18. Cross-Linkable Liposomes Stabilize a Magnetic Resonance Contrast-Enhancing Polymeric Fastener

    PubMed Central

    2015-01-01

    Liposomes are commonly used to deliver drugs and contrast agents to their target site in a controlled manner. One of the greatest obstacles in the performance of such delivery vehicles is their stability in the presence of serum. Here, we demonstrate a method to stabilize a class of liposomes that load gadolinium, a magnetic resonance (MR) contrast agent, as a model cargo on their surfaces. We hypothesized that the sequential adsorption of a gadolinium-binding chitosan fastener on the liposome surface followed by covalent cross-linking of the lipid bilayer would provide enhanced stability and improved MR signal in the presence of human serum. To investigate this hypothesis, liposomes composed of diyne-containing lipids were assembled and functionalized via chitosan conjugated with a hydrophobic anchor and diethylenetriaminepentaacetic acid (DTPA). This postadsorption cross-linking strategy served to stabilize the thermodynamically favorable association between liposome and polymeric fastener. Furthermore, the chitosan-coated, cross-linked liposomes proved more effective as delivery vehicles of gadolinium than uncross-linked liposomes due to the reduced liposome degradation and chitosan desorption. Overall, this study demonstrates a useful method to stabilize a broad class of particles used for systemic delivery of various molecular payloads. PMID:24635565

  19. A polymeric micelle magnetic resonance imaging (MRI) contrast agent reveals blood-brain barrier (BBB) permeability for macromolecules in cerebral ischemia-reperfusion injury.

    PubMed

    Shiraishi, Kouichi; Wang, Zuojun; Kokuryo, Daisuke; Aoki, Ichio; Yokoyama, Masayuki

    2017-05-10

    Blood-brain barrier (BBB) opening is a key phenomenon for understanding ischemia-reperfusion injuries that are directly linked to hemorrhagic transformation. The recombinant human tissue-type plasminogen activator (rtPA) increases the risk of symptomatic intracranial hemorrhages. Recent imaging technologies have advanced our understanding of pathological BBB disorders; however, an ongoing challenge in the pre-"rtPA treatment" stage is the task of developing a rigorous method for hemorrhage-risk assessments. Therefore, we examined a novel method for assessment of rtPA-extravasation through a hyper-permeable BBB. To examine the image diagnosis of rtPA-extravasation for a rat transient occlusion-reperfusion model, in this study we used a polymeric micelle MRI contrast-agent (Gd-micelles). Specifically, we used two MRI contrast agents at 1h after reperfusion. Gd-micelles provided very clear contrast images in 15.5±10.3% of the ischemic hemisphere at 30min after i.v. injection, whereas a classic gadolinium chelate MRI contrast agent provided no satisfactorily clear images. The obtained images indicate both the hyper-permeable BBB area for macromolecules and the distribution area of macromolecules in the ischemic hemisphere. Owing to their large molecular weight, Gd-micelles remained in the ischemic hemisphere through the hyper-permeable BBB. Our results indicate the feasibility of a novel clinical diagnosis for evaluating rtPA-related hemorrhage risks. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Contrast media controversies in 2015: imaging patients with renal impairment or risk of contrast reaction.

    PubMed

    Davenport, Matthew S; Cohan, Richard H; Ellis, James H

    2015-06-01

    The incidence and significance of complications related to intravascular contrast material administration have become increasingly controversial. This review will highlight current thinking regarding the imaging of patients with renal impairment and those at risk for an allergiclike contrast reaction. The risk of contrast-induced acute kidney injury remains uncertain for patients with an estimated glomerular filtration rate (GFR) less than 45 mL/min/1.73 m(2), but if there is a risk, it is greatest in those with estimated GFR less than 30 mL/min/1.73 m(2). In this population, low-risk gadolinium-based contrast agents appear to have a large safety margin. Corticosteroid prophylaxis remains the standard of care in the United States for patients identified to be at high risk of a contrast reaction, but it has an incomplete mitigating effect on contrast reaction rates and the number needed to treat is large.

  1. Natural chelates for radionuclide decorporation

    DOEpatents

    Premuzic, E.T.

    1983-08-25

    This invention relates to the method and resulting chelates of desorbing a radionuclide selected from thorium, uranium, and plutonium containing cultures in a bioavailable form involving pseudomonas or other microorganisms. A preferred microorganism is Pseudomonas aeruginosa which forms multiple chelates with thorium in the range of molecular weight 1000 to 1000 and also forms chelates with uranium of molecular weight in the area of 100 to 1000 and 1000 to 2000.

  2. Nano-assemblies of cationic mPEG brush block copolymers with gadolinium polyoxotungstate [Gd(W5O18)2]9- form stable, high relaxivity MRI contrast agents.

    PubMed

    Ly, Joanne; Li, Yuhuan; Vu, Mai N; Moffat, Bradford A; Jack, Kevin S; Quinn, John F; Whittaker, Michael R; Davis, Thomas P

    2018-04-19

    Polyoxometalates (POMs) incorporating paramagnetic ions, such as gadolinium, show promise as contrast agents for application in magnetic resonance imaging (MRI). Specifically, [Gd(W5O18)2]9- (denoted as GdWO) has been reported to have a higher relaxivity than commercially available contrast agents, but it's clinical utility has been limited by the intrinsic instability of POMs at physiological pH (7.4). In the current report we present a stability study on neat GdWO and nano-assemblies of block copolymers with GdWO in the pH range 5.0-7.4 to assess their suitability as MRI contrast agents. Neat GdWO only maintained structural stability between pH 5.4 and 6.4, and demonstrated poor MRI contrast at pH 7.4. To address this pH instability, GdWO was self-assembled with cationic mPEG brush block copolymers containing 20 or 40 units derived from the cationic monomer, 2-dimethylaminoethyl methacrylate (DMAEMA). Nano-assemblies with different charge ratios were synthesised and characterised according to their size, stability, contrasting properties and toxicity. The longitudinal relaxivity (r1) of the nano-assemblies was found to be dependent on the charge ratio, but not on the length of the cationic polymer block. Further investigation of PDMAEMA20 nano-assemblies demonstrated that they were stable over the pH range 5.0-7.4, exhibiting a higher r1 than either neat GdWO (2.77 s-1 mM-1) or clinical MRI contrast agent Gd-DTPA (4.1 s-1 mM-1) at pH 7.4. Importantly, the nano-assembly with the lowest charge ratio (0.2), showed the highest r1 (12.1 s-1 mM-1) whilst, stabilising GdWO over the pH range studied, eliciting low toxicity with MDA-MB231 cells.

  3. High longitudinal relaxivity of ultra-small gadolinium oxide prepared by microsecond laser ablation in diethylene glycol

    NASA Astrophysics Data System (ADS)

    Luo, Ningqi; Tian, Xiumei; Xiao, Jun; Hu, Wenyong; Yang, Chuan; Li, Li; Chen, Dihu

    2013-04-01

    Ultra-small gadolinium oxide (Gd2O3) can be used as T1-weighted Magnetic Resonance Imaging (MRI) contrast agent own to its high longitudinal relaxivity (r1) and has attracted intensive attention in these years. In this paper, ultra-small Gd2O3 nanoparticles of 3.8 nm in diameter have been successfully synthesized by a microsecond laser ablating a gadolinium (Gd) target in diethylene glycol (DEG). The growth inhibition effect induced by the large viscosity of DEG makes it possible to synthesize ultra-small Gd2O3 by laser ablation in DEG. The r1 value and T1-weighted MR images are measured by a 3.0 T MRI spectroscope. The results show these nanoparticles with a high r1 value of 9.76 s-1 mM-1 to be good MRI contrast agents. We propose an explanation for the high r1 value of ultra-small Gd2O3 by considering the decreasing factor (surface to volume ratio of the nanoparticles, S/V) and the increasing factor (water hydration number of the Gd3+ on Gd2O3 surface, q), which offer a new look into the relaxivity studies of MRI contrast agents. Our research provides a new approach to preparing ultra-small Gd2O3 of high r1 value by laser ablation in DEG and develops the understanding of high relaxivity of ultra-small Gd2O3 MRI contrast agents.

  4. The stability of gadolinium-based contrast agents in human serum: A reanalysis of literature data and association with clinical outcomes.

    PubMed

    Prybylski, John P; Semelka, Richard C; Jay, Michael

    2017-05-01

    To reanalyze literature data of gadolinium (Gd)-based contrast agents (GBCAs) in plasma with a kinetic model of dissociation to provide a comprehensive assessment of equilibrium conditions for linear GBCAs. Data for the release of Gd from GBCAs in human serum was extracted from a previous report in the literature and fit to a kinetic dissociation/association model. The conditional stabilities (logK cond ) and percent intact over time were calculated using the model rate constants. The correlations between clinical outcomes and logK cond or other stability indices were determined. The release curves for Omniscan®, gadodiamide, OptiMARK®, gadoversetamide Magnevist® and Multihance® were extracted and all fit well to the kinetic model. The logK cond s calculated from the rate constants were on the order of ~4-6, and were not significantly altered by excess ligand or phosphate. The stability constant based on the amount intact by the initial elimination half-life of GBCAs in plasma provided good correlation with outcomes observed in patients. Estimation of the kinetic constants for GBCA dissociation/association revealed that their stability in physiological fluid is much lower than previous approaches would suggest, which correlates well with deposition and pharmacokinetic observations of GBCAs in human patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. MRI and CT contrast media extravasation

    PubMed Central

    Heshmatzadeh Behzadi, Ashkan; Farooq, Zerwa; Newhouse, Jeffery H.; Prince, Martin R.

    2018-01-01

    Abstract Background: This systematic review combines data from multiple papers on contrast media extravasation to identify factors contributing to increased extravasation risk. Methods: Data were extracted from 17 papers reporting 2191 extravasations in 1,104,872 patients (0.2%) undergoing computed tomography (CT) or magnetic resonance imaging (MRI). Results: Extravasation rates were 0.045% for gadolinium-based contrast agents (GBCA) and nearly 6-fold higher, 0.26% for iodinated contrast agents. Factors associated with increased contrast media extravasations included: older age, female gender, using an existing intravenous (IV) instead of placing a new IV in radiology, in-patient status, use of automated power injection, high injection rates, catheter location, and failing to warm up the more viscous contrast media to body temperature. Conclusion: Contrast media extravasation is infrequent but nearly 6 times less frequent with GBCA for MRI compared with iodinated contrast used in CT. PMID:29489663

  6. Use of trimetasphere metallofullerene MRI contrast agent for the non-invasive longitudinal tracking of stem cells in the lung

    PubMed Central

    Murphy, Sean V.; Hale, Austin; Reid, Tanya; Olson, John; Kidiyoor, Amritha; Tan, Josh; Zhou, Zhiguo; Jackson, John; Atala, Anthony

    2016-01-01

    Magnetic Resonance Imaging (MRI) is a commonly used, non-invasive imaging technique that provides visualization of soft tissues with high spatial resolution. In both a research and clinical setting, the major challenge has been identifying a non-invasive and safe method for longitudinal tracking of delivered cells in vivo. The labeling and tracking of contrast agent labeled cells using MRI has the potential to fulfill this need. Contrast agents are often used to enhance the image contrast between the tissue of interest and surrounding tissues with MRI. The most commonly used MRI contrast agents contain Gd(III) ions. However, Gd(III) ions are highly toxic in their ionic form, as they tend to accumulate in the liver, spleen, kidney and bones and block calcium channels. Endohedral metallofullerenes such as trimetallic nitride endohedral metallofullerenes (Trimetasphere®) are one unique class of fullerene molecules where a Gd3N cluster is encapsulated inside a C80 carbon cage referred to as Gd3N@C80. These endohedral metallofullerenes have several advantages over small chelated Gd(III) complexes such as increased stability of the Gd(III) ion, minimal toxic effects, high solubility in water and high proton relativity. In this study, we describe the evaluation of gadolinium-based Trimetasphere® positive contrast agent for the in vitro labeling and in vivo tracking of human amniotic fluid-derived stem cells within lung tissue. In addition, we conducted a ‘proof-of-concept’ experiment demonstrating that this methodology can be used to track the homing of stem cells to injured lung tissue and provide longitudinal analysis of cell localization over an extended time course. PMID:26546729

  7. Use of trimetasphere metallofullerene MRI contrast agent for the non-invasive longitudinal tracking of stem cells in the lung.

    PubMed

    Murphy, Sean V; Hale, Austin; Reid, Tanya; Olson, John; Kidiyoor, Amritha; Tan, Josh; Zhou, Zhiguo; Jackson, John; Atala, Anthony

    2016-04-15

    Magnetic Resonance Imaging (MRI) is a commonly used, non-invasive imaging technique that provides visualization of soft tissues with high spatial resolution. In both a research and clinical setting, the major challenge has been identifying a non-invasive and safe method for longitudinal tracking of delivered cells in vivo. The labeling and tracking of contrast agent labeled cells using MRI has the potential to fulfill this need. Contrast agents are often used to enhance the image contrast between the tissue of interest and surrounding tissues with MRI. The most commonly used MRI contrast agents contain Gd(III) ions. However, Gd(III) ions are highly toxic in their ionic form, as they tend to accumulate in the liver, spleen, kidney and bones and block calcium channels. Endohedral metallofullerenes such as trimetallic nitride endohedral metallofullerenes (Trimetasphere®) are one unique class of fullerene molecules where a Gd3N cluster is encapsulated inside a C80 carbon cage referred to as Gd3N@C80. These endohedral metallofullerenes have several advantages over small chelated Gd(III) complexes such as increased stability of the Gd(III) ion, minimal toxic effects, high solubility in water and high proton relativity. In this study, we describe the evaluation of gadolinium-based Trimetasphere® positive contrast agent for the ​in vitro labeling and in vivo tracking of human amniotic fluid-derived stem cells within lung tissue. In addition, we conducted a 'proof-of-concept' experiment demonstrating that this methodology can be used to track the homing of stem cells to injured lung tissue and provide longitudinal analysis of cell localization over an extended time course. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Luminescent lanthanide chelates and methods of use

    DOEpatents

    Selvin, Paul R.; Hearst, John

    1997-01-01

    The invention provides lanthanide chelates capable of intense luminescence. The celates comprise a lanthanide chelator covalently joined to a coumarin-like or quinolone-like sensitizer. Exemplary sensitzers include 2- or 4-quinolones, 2- or 4-coumarins, or derivatives thereof e.g. carbostyril 124 (7-amino-4-methyl-2-quinolone), coumarin 120 (7-amino-4-methyl-2-coumarin), coumarin 124 (7-amino-4-(trifluoromethyl)-2-coumarin), aminomethyltrimethylpsoralen, etc. The chelates form high affinity complexes with lanthanides, such as terbium or europium, through chelator groups, such as DTPA. The chelates may be coupled to a wide variety of compounds to create specific labels, probes, diagnostic and/or therapeutic reagents, etc. The chelates find particular use in resonance energy transfer between chelate-lanthanide complexes and another luminescent agent, often a fluorescent non-metal based resonance energy acceptor. The methods provide useful information about the structure, conformation, relative location and/or interactions of macromolecules.

  9. Hyperintense Dentate Nuclei on T1-Weighted MRI: Relation to Repeat Gadolinium Administration

    PubMed Central

    Adin, M.E.; Kleinberg, L.; Vaidya, D.; Zan, E.; Mirbagheri, S.; Yousem, D.M.

    2016-01-01

    BACKGROUND AND PURPOSE A hyperintense appearance of the dentate nucleus on T1-weighted MR images has been related to various clinical conditions, but the etiology remains indeterminate. We aimed to investigate the possible associations between a hyperintense appearance of the dentate nucleus on T1-weighted MR images in patients exposed to radiation and factors including, but not limited to, the cumulative number of contrast-enhanced MR images, amount of gadolinium administration, dosage of ionizing radiation, and patient demographics. MATERIALS AND METHODS The medical records of 706 consecutive patients who were treated with brain irradiation at The Johns Hopkins Medical Institutions between 1995 and 2010 were blindly reviewed by 2 readers. RESULTS One hundred eighty-four subjects were included for dentate nuclei analysis. Among the 184 subjects who cumulatively underwent 2677 MR imaging studies following intravenous gadolinium administration, 103 patients had hyperintense dentate nuclei on precontrast T1-weighted MR images. The average number of gadolinium-enhanced MR imaging studies performed in the group with normal dentate nuclei was significantly lower than that of the group with hyperintense dentate nuclei. The average follow-up time was 62.5 months. No significant difference was observed between hyperintense and normal dentate nuclei groups in terms of exposed radiation dose, serum creatinine and calcium/phosphate levels, patient demographics, history of chemotherapy, and strength of the scanner. No dentate nuclei abnormalities were found on the corresponding CT scans of patients with hyperintense dentate nuclei (n = 44). No dentate nuclei abnormalities were found in 53 healthy volunteers. CONCLUSIONS Repeat performance of gadolinium-enhanced studies likely contributes to a long-standing hyperintense appearance of dentate nuclei on precontrast T1-weighted-MR images. PMID:26294649

  10. A simple polyol-free synthesis route to Gd2O3 nanoparticles for MRI applications: an experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Ahrén, Maria; Selegård, Linnéa; Söderlind, Fredrik; Linares, Mathieu; Kauczor, Joanna; Norman, Patrick; Käll, Per-Olov; Uvdal, Kajsa

    2012-08-01

    Chelated gadolinium ions, e.g., Gd-DTPA, are today used clinically as contrast agents for magnetic resonance imaging (MRI). An attractive alternative contrast agent is composed of gadolinium oxide nanoparticles as they have shown to provide enhanced contrast and, in principle, more straightforward molecular capping possibilities. In this study, we report a new, simple, and polyol-free way of synthesizing 4-5-nm-sized Gd2O3 nanoparticles at room temperature, with high stability and water solubility. The nanoparticles induce high-proton relaxivity compared to Gd-DTPA showing r 1 and r 2 values almost as high as those for free Gd3+ ions in water. The Gd2O3 nanoparticles are capped with acetate and carbonate groups, as shown with infrared spectroscopy, near-edge X-ray absorption spectroscopy, X-ray photoelectron spectroscopy and combined thermogravimetric and mass spectroscopy analysis. Interpretation of infrared spectroscopy data is corroborated by extensive quantum chemical calculations. This nanomaterial is easily prepared and has promising properties to function as a core in a future contrast agent for MRI.

  11. The Chelate Effect Redefined.

    ERIC Educational Resources Information Center

    da Silva, J. J. R. Frausto

    1983-01-01

    Discusses ambiguities of the accepted definition of the chelate effect, suggesting that it be defined in terms of experimental observation rather than mathematical abstraction. Indicates that the effect depends on free energy change in reaction, ligand basicity, pH of medium, type of chelates formed, and concentration of ligands in solution. (JN)

  12. Gadolinium oxide nanoplates with high longitudinal relaxivity for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Cho, Minjung; Sethi, Richa; Ananta Narayanan, Jeyarama Subramanian; Lee, Seung Soo; Benoit, Denise N.; Taheri, Nasim; Decuzzi, Paolo; Colvin, Vicki L.

    2014-10-01

    Molecular-based contrast agents for magnetic resonance imaging (MRI) are often characterized by insufficient relaxivity, thus requiring the systemic injection of high doses to induce sufficient contrast enhancement at the target site. In this work, gadolinium oxide (Gd2O3) nanoplates are produced via a thermal decomposition method. The nanoplates have a core diameter varying from 2 to 22 nm, a thickness of 1 to 2 nm and are coated with either an oleic acid bilayer or an octylamine modified poly(acrylic acid) (PAA-OA) polymer layer. For the smaller nanoplates, longitudinal relaxivities (r1) of 7.96 and 47.2 (mM s)-1 were measured at 1.41 T for the oleic acid bilayer and PAA-OA coating, respectively. These values moderately reduce as the size of the Gd2O3 nanoplates increases, and are always larger for the PAA-OA coating. Cytotoxicity studies on human dermal fibroblast cells documented no significant toxicity, with 100% cell viability preserved up to 250 μM for the PAA-OA coated Gd2O3 nanoplates. Given the 10 times increase in longitudinal relaxivity over the commercially available Gd-based molecular agents and the favorable toxicity profile, the 2 nm PAA-OA coated Gd2O3 nanoplates could represent a new class of highly effective T1 MRI contrast agents.Molecular-based contrast agents for magnetic resonance imaging (MRI) are often characterized by insufficient relaxivity, thus requiring the systemic injection of high doses to induce sufficient contrast enhancement at the target site. In this work, gadolinium oxide (Gd2O3) nanoplates are produced via a thermal decomposition method. The nanoplates have a core diameter varying from 2 to 22 nm, a thickness of 1 to 2 nm and are coated with either an oleic acid bilayer or an octylamine modified poly(acrylic acid) (PAA-OA) polymer layer. For the smaller nanoplates, longitudinal relaxivities (r1) of 7.96 and 47.2 (mM s)-1 were measured at 1.41 T for the oleic acid bilayer and PAA-OA coating, respectively. These values

  13. Dual modal ultra-bright nanodots with aggregation-induced emission and gadolinium-chelation for vascular integrity and leakage detection.

    PubMed

    Feng, Guangxue; Li, Jackson Liang Yao; Claser, Carla; Balachander, Akhila; Tan, Yingrou; Goh, Chi Ching; Kwok, Immanuel Weng Han; Rénia, Laurent; Tang, Ben Zhong; Ng, Lai Guan; Liu, Bin

    2018-01-01

    The study of blood brain barrier (BBB) functions is important for neurological disorder research. However, the lack of suitable tools and methods has hampered the progress of this field. Herein, we present a hybrid nanodot strategy, termed AIE-Gd dots, comprising of a fluorogen with aggregation-induced emission (AIE) characteristics as the core to provide bright and stable fluorescence for optical imaging, and gadolinium (Gd) for accurate quantification of vascular leakage via inductively-coupled plasma mass spectrometry (ICP-MS). In this report, we demonstrate that AIE-Gd dots enable direct visualization of brain vascular networks under resting condition, and that they form localized punctate aggregates and accumulate in the brain tissue during experimental cerebral malaria, indicative of hemorrhage and BBB malfunction. With its superior detection sensitivity and multimodality, we hereby propose that AIE-Gd dots can serve as a better alternative to Evans blue for visualization and quantification of changes in brain barrier functions. Copyright © 2017. Published by Elsevier Ltd.

  14. Chelation for Coronary Heart Disease

    MedlinePlus

    ... also turn to chelation therapy using disodium EDTA (ethylene diamine tetra-acetic acid), a controversial complementary health ... and answers about two trials of an EDTA (ethylene diamine tetra-acetic acid) chelation therapy regimen for ...

  15. Antioxidant and mercury chelating activity of Psidium guajava var. pomifera L. leaves hydroalcoholic extract.

    PubMed

    Pinho, Antonio Ivanildo; Oliveira, Cláudia Sirlene; Lovato, Fabricio Luís; Waczuk, Emily Pansera; Piccoli, Bruna Candia; Boligon, Aline Augusti; Leite, Nadghia Figueredo; Coutinho, Henrique Douglas Melo; Posser, Thais; Da Rocha, João Batista Teixeira; Franco, Jeferson Luis

    2017-01-01

    Mercury (Hg) is widely distributed in the environment and is known to produce several adverse effects in organisms. The aim of the present study was to examine the in vitro antioxidant activity and Hg chelating ability of the hydroalcoholic extract of Psidium guajava leaves (HEPG). In addition, the potential protective effects of HEPG against Hg(II) were evaluated using a yeast model (Saccharomyces cerevisiae). HEPG was found to exert significant antioxidant activity in 2,2-diphenyl-1-picrylhydrazyl scavenger and inhibition of lipid peroxidation induced by Fe(II) assays in a concentration-dependent manner. The extract also exhibited significant Hg(II) chelating activity. In yeast, Hg(II) induced a significant decrease in cell viability. In contrast, HEPG partially prevented the fall in cell viability induced by Hg(II). In conclusion, HEPG exhibited protective effects against Hg(II)-mediated toxicity, which may be related to both antioxidant and Hg(II)-chelating activities.

  16. Gadolinium-encapsulating iron oxide nanoprobe as activatable NMR/MRI contrast agent.

    PubMed

    Santra, Santimukul; Jativa, Samuel D; Kaittanis, Charalambos; Normand, Guillaume; Grimm, Jan; Perez, J Manuel

    2012-08-28

    Herein we report a novel gadolinium-encapsulating iron oxide nanoparticle-based activatable NMR/MRI nanoprobe. In our design, Gd-DTPA is encapsulated within the poly(acrylic acid) (PAA) polymer coating of a superparamagnetic iron oxide nanoparticle (IO-PAA), yielding a composite magnetic nanoprobe (IO-PAA-Gd-DTPA) with quenched longitudinal spin-lattice magnetic relaxation (T(1)). Upon release of the Gd-DTPA complex from the nanoprobe's polymeric coating in acidic media, an increase in the T(1) relaxation rate (1/T(1)) of the composite magnetic nanoprobe was observed, indicating a dequenching of the nanoprobe with a corresponding increase in the T(1)-weighted MRI signal. When a folate-conjugated nanoprobe was incubated in HeLa cells, a cancer cell line overexpressing folate receptors, an increase in the 1/T(1) signal was observed. This result suggests that, upon receptor-mediated internalization, the composite magnetic nanoprobe degraded within the cell's lysosome acidic (pH 5.0) environment, resulting in an intracellular release of Gd-DTPA complex with subsequent T(1) activation. In addition, when an anticancer drug (Taxol) was coencapsulated with the Gd-DTPA within the folate receptor targeting composite magnetic nanoprobe, the T(1) activation of the probe coincided with the rate of drug release and corresponding cytotoxic effect in cell culture studies. Taken together, these results suggest that our activatable T(1) nanoagent could be of great importance for the detection of acidic tumors and assessment of drug targeting and release by MRI.

  17. Magnetic resonance characteristics and susceptibility weighted imaging of the brain in gadolinium encephalopathy.

    PubMed

    Samardzic, Dejan; Thamburaj, Krishnamoorthy

    2015-01-01

    To report the brain imaging features on magnetic resonance imaging (MRI) in inadvertent intrathecal gadolinium administration. A 67-year-old female with gadolinium encephalopathy from inadvertent high dose intrathecal gadolinium administration during an epidural steroid injection was studied with multisequence 3T MRI. T1-weighted imaging shows pseudo-T2 appearance with diffusion of gadolinium into the brain parenchyma, olivary bodies, and membranous labyrinth. Nulling of cerebrospinal fluid (CSF) signal is absent on fluid attenuation recovery (FLAIR). Susceptibility-weighted imaging (SWI) demonstrates features similar to subarachnoid hemorrhage. CT may demonstrate a pseudo-cerebral edema pattern given the high attenuation characteristics of gadolinium. Intrathecal gadolinium demonstrates characteristic imaging features on MRI of the brain and may mimic subarachnoid hemorrhage on susceptibility-weighted imaging. Identifying high dose gadolinium within the CSF spaces on MRI is essential to avoid diagnostic and therapeutic errors. Copyright © 2013 by the American Society of Neuroimaging.

  18. Density of Gadolinium Nitrate Solutions for the High Flux Isotope Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Paul Allen; Lee, Denise L

    2009-05-01

    In late 1992, the High Flux Isotope Reactor (HFIR) was planning to switch the solution contained in the poison injection tank from cadmium nitrate to gadolinium nitrate. The poison injection system is an emergency system used to shut down the reactor by adding a neutron poison to the cooling water. This system must be able to supply a minimum of 69 pounds of gadolinium to the reactor coolant system in order to guarantee that the reactor would become subcritical. A graph of the density of gadolinium nitrate solutions over a concentration range of 5 to 30 wt% and a temperaturemore » range of 15 to 40{sup o}C was prepared. Routine density measurements of the solution in the poison injection tank are made by HFIR personnel, and an adaptation of the original graph is used to determine the gadolinium nitrate concentration. In late 2008, HFIR personnel decided that the heat tracing that was present on the piping for the poison injection system could be removed without any danger of freezing the solution; however, the gadolinium nitrate solution might get as cold as 5{sup o}C. This was outside the range of the current density-concentration correlation, so the range needed to be expanded. This report supplies a new density-concentration correlation that covers the extended temperature range. The correlation is given in new units, which greatly simplifies the calculation that is required to determine the pounds of gadolinium in the tank solution. The procedure for calculating the amount of gadolinium in the HFIR poison injection system is as follows: (1) Calculate the usable volume in the system; (2) Measure the density of the solution; (3) Calculate the gadolinium concentration using the following equation: Gd(lb/ft{sup 3}) = measured density (g/mL) x 34.681 - 34.785; (4) Calculate the amount of gadolinium in the system using the following equation: Amount of Gd(lb) = Gd concentration (lb/ft{sup 3}) x usable volume (ft{sup 3}). The equation in step 3 is exact for a

  19. Method and apparatus for back-extracting metal chelates

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Lin, Yuehe

    1998-01-01

    A method of extracting metal and metalloid species from a solid or liquid substrate using a supercritical fluid solvent containing one or more chelating agents followed by back-extracting the metal and metalloid species from the metal and metalloid chelates formed thereby. The back-extraction acidic solution is performed utilizing an acidic solution. Upon sufficient exposure of the metal and metalloid chelates to the acidic solution, the metal and metalloid species are released from the chelates into the acid solution, while the chelating agent remains in the supercritical fluid solvent. The chelating agent is thereby regenerated and the metal and metalloid species recovered.

  20. Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures

    DOE PAGES

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; ...

    2014-11-07

    High pressure structural transition studies have been carried out on rare earth metal gadolinium in a diamond anvil cell at room temperature to 169 GPa. Gadolinium has been compressed to 38% of its initial volume at this pressure. With increasing pressure, a crystal structure sequence of hcp → Smtype→ dhcp → fcc → dfcc → monoclinic has been observed in our studies on gadolinium. The measured equation of state of gadolinium is presented to 169 GPa at ambient temperature. Magnetic ordering temperature of gadolinium has been studied using designer diamond anvils to a pressure of 25 GP and a temperaturemore » of 10 K. The magnetic ordering temperature has been determined from the four-point electrical resistivity measurements carried out on gadolinium. Furthermore, our experiments show that the magnetic transition temperature decreases with increasing pressure to 19 GPa and then increases when gadolinium is subjected to higher pressures.« less

  1. Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.

    High pressure structural transition studies have been carried out on rare earth metal gadolinium in a diamond anvil cell at room temperature to 169 GPa. Gadolinium has been compressed to 38% of its initial volume at this pressure. With increasing pressure, a crystal structure sequence of hcp → Smtype→ dhcp → fcc → dfcc → monoclinic has been observed in our studies on gadolinium. The measured equation of state of gadolinium is presented to 169 GPa at ambient temperature. Magnetic ordering temperature of gadolinium has been studied using designer diamond anvils to a pressure of 25 GP and a temperaturemore » of 10 K. The magnetic ordering temperature has been determined from the four-point electrical resistivity measurements carried out on gadolinium. Furthermore, our experiments show that the magnetic transition temperature decreases with increasing pressure to 19 GPa and then increases when gadolinium is subjected to higher pressures.« less

  2. Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures

    NASA Astrophysics Data System (ADS)

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; Vohra, Yogesh K.

    2014-10-01

    High pressure structural transition studies have been carried out on rare earth metal gadolinium in a diamond anvil cell at room temperature to 169 GPa. Gadolinium has been compressed to 38% of its initial volume at this pressure. With increasing pressure, a crystal structure sequence of hcp → Sm-type → dhcp → fcc → dfcc → monoclinic has been observed in our studies on gadolinium. The measured equation of state of gadolinium is presented to 169 GPa at ambient temperature. Magnetic ordering temperature of gadolinium has been studied using designer diamond anvils to a pressure of 25 GPa and a temperature of 10 K. The magnetic ordering temperature has been determined from the four-point electrical resistivity measurements carried out on gadolinium. Our experiments show that the magnetic transition temperature decreases with increasing pressure to 19 GPa and then increases when gadolinium is subjected to higher pressures.

  3. Fluid extraction using carbon dioxide and organophosphorus chelating agents

    DOEpatents

    Smart, N.G.; Wai, C.M.; Lin, Y.; Kwang, Y.H.

    1998-11-24

    Methods for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical CO{sub 2}, and a chelating agent are described. The chelating agent forms a chelate with the species, the chelate being soluble in the fluid to allow removal of the species from the material. In preferred embodiments the extraction solvent is supercritical CO{sub 2} and the chelating agent comprises an organophosphorous chelating agent, particularly sulfur-containing organophosphorous chelating agents, including mixtures of chelating agents. Examples of chelating agents include monothiophosphinic acid, di-thiophosphinic acid, phosphine sulfite, phosphorothioic acid, and mixtures thereof. The method provides an environmentally benign process for removing metal and metalloids from industrial waste solutions, particularly acidic solutions. Both the chelate and the supercritical fluid can be regenerated and the contaminant species recovered to provide an economic, efficient process. 1 fig.

  4. Fluid extraction using carbon dioxide and organophosphorus chelating agents

    DOEpatents

    Smart, Neil G.; Wai, Chien M.; Lin, Yuehe; Kwang, Yak Hwa

    1998-01-01

    Methods for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical CO.sub.2, and a chelating agent are described. The chelating agent forms a chelate with the species, the chelate being soluble in the fluid to allow removal of the species from the material. In preferred embodiments the extraction solvent is supercritical CO.sub.2 and the chelating agent comprises an organophosphorous chelating agent, particularly sulfur-containing organophosphorous chelating agents, including mixtures of chelating agents. Examples of chelating agents include monothiophosphinic acid, di-thiophosphinic acid, phosphine sulfite, phosphorothioic acid, and mixtures thereof. The method provides an environmentally benign process for removing metal and metalloids from industrial waste solutions, particularly acidic solutions. Both the chelate and the supercritical fluid can be regenerated and the contaminant species recovered to provide an economic, efficient process.

  5. Effect of Contrast Media on Single Shot EPI: Implications for Abdominal Diffusion Imaging

    PubMed Central

    Gulani, Vikas; Willatt, Jonathan M.; Blaimer, Martin; Hussain, Hero K.; Duerk, Jeffrey L.; Griswold, Mark A.

    2010-01-01

    Purpose The goal of this study was to determine the effect of contrast media on the signal behavior of single shot echo planar imaging (ssEPI) used for abdominal diffusion imaging. Materials and Methods The signal of a ssEPI spin echo sequence in a water phantom with varying concentrations of gadolinium was modeled with Bloch equations and the predicted behavior validated on a phantom at 1.5 T. Six volunteers were given gadolinium contrast, and signal intensity (SI) time courses for regions of interest (ROIs) in the liver, pancreas, spleen, renal cortex and medulla were analyzed. The Student's t-test was used to compare pre-contrast SI to 0, 1, 4, 5, 10, and 13 minutes following contrast. Results The results show that following contrast, ssEPI SI goes through a nadir, recovering differently for each organ. Maximal contrast related signal losses relative to pre-contrast signal are 20%, 20%, 53%, and 67%, for the liver, pancreas, renal cortex and medulla respectively. The SIs remain statistically below the pre-contrast values for 5, 4, and 1 minutes for the pancreas, liver, and spleen, and for all times measured for the renal cortex and medulla. Conclusion Abdominal diffusion imaging should be performed prior to contrast due to adverse effects on the signal in ssEPI. PMID:19856456

  6. Method and apparatus for back-extracting metal chelates

    DOEpatents

    Wai, C.M.; Smart, N.G.; Lin, Y.

    1998-08-11

    A method is described for extracting metal and metalloid species from a solid or liquid substrate using a supercritical fluid solvent containing one or more chelating agents followed by back-extracting the metal and metalloid species from the metal and metalloid chelates formed thereby. The back-extraction acidic solution is performed utilizing an acidic solution. Upon sufficient exposure of the metal and metalloid chelates to the acidic solution, the metal and metalloid species are released from the chelates into the acid solution, while the chelating agent remains in the supercritical fluid solvent. The chelating agent is thereby regenerated and the metal and metalloid species recovered. 3 figs.

  7. Interference of medical contrast media on laboratory testing.

    PubMed

    Lippi, Giuseppe; Daves, Massimo; Mattiuzzi, Camilla

    2014-01-01

    The use of contrast media such as organic iodine molecules and gadolinium contrast agents is commonplace in diagnostic imaging. Although there is widespread perception that side effects and drug interactions may be the leading problems caused by these compounds, various degrees of interference with some laboratory tests have been clearly demonstrated. Overall, the described interference for iodinate contrast media include inappropriate gel barrier formation in blood tubes, the appearance of abnormal peaks in capillary zone electrophoresis of serum proteins, and a positive bias in assessment of cardiac troponin I with one immunoassay. The interference for gadolinium contrast agents include negative bias in calcium assessment with ortho-cresolphthalein colorimetric assays and occasional positive bias using some Arsenazo reagents, negative bias in measurement of angiotensin converting enzyme (ACE) and zinc (colorimetric assay), as well as positive bias in creatinine (Jaffe reaction), total iron binding capacity (TIBC, ferrozine method), magnesium (calmagite reagent) and selenium (mass spectrometry) measurement. Interference has also been reported in assessment of serum indices, pulse oximetry and methaemoglobin in samples of patients receiving Patent Blue V. Under several circumstances the interference was absent from manufacturer-supplied information and limited to certain type of reagents and/or analytes, so that local verification may be advisable to establish whether or not the test in use may be biased. Since the elimination half-life of these compounds is typically lower than 2 h, blood collection after this period may be a safer alternative in patients who have received contrast media for diagnostic purposes.

  8. Interference of medical contrast media on laboratory testing

    PubMed Central

    Lippi, Giuseppe; Daves, Massimo; Mattiuzzi, Camilla

    2014-01-01

    The use of contrast media such as organic iodine molecules and gadolinium contrast agents is commonplace in diagnostic imaging. Although there is widespread perception that side effects and drug interactions may be the leading problems caused by these compounds, various degrees of interference with some laboratory tests have been clearly demonstrated. Overall, the described interference for iodinate contrast media include inappropriate gel barrier formation in blood tubes, the appearance of abnormal peaks in capillary zone electrophoresis of serum proteins, and a positive bias in assessment of cardiac troponin I with one immunoassay. The interference for gadolinium contrast agents include negative bias in calcium assessment with ortho-cresolphthalein colorimetric assays and occasional positive bias using some Arsenazo reagents, negative bias in measurement of angiotensin converting enzyme (ACE) and zinc (colorimetric assay), as well as positive bias in creatinine (Jaffe reaction), total iron binding capacity (TIBC, ferrozine method), magnesium (calmagite reagent) and selenium (mass spectrometry) measurement. Interference has also been reported in assessment of serum indices, pulse oximetry and methaemoglobin in samples of patients receiving Patent Blue V. Under several circumstances the interference was absent from manufacturer-supplied information and limited to certain type of reagents and/or analytes, so that local verification may be advisable to establish whether or not the test in use may be biased. Since the elimination half-life of these compounds is typically lower than 2 h, blood collection after this period may be a safer alternative in patients who have received contrast media for diagnostic purposes. PMID:24627717

  9. Alkali metal and alkali earth metal gadolinium halide scintillators

    DOEpatents

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  10. Hypersensitivity to contrast media and dyes.

    PubMed

    Brockow, Knut; Sánchez-Borges, Mario

    2014-08-01

    This article updates current knowledge on hypersensitivity reactions to diagnostic contrast media and dyes. After application of a single iodinated radiocontrast medium (RCM), gadolinium-based contrast medium, fluorescein, or a blue dye, a hypersensitivity reaction is not a common finding; however, because of the high and still increasing frequency of those procedures, patients who have experienced severe reactions are nevertheless frequently encountered in allergy departments. Evidence on allergologic testing and management is best for iodinated RCM, limited for blue dyes, and insufficient for fluorescein. Skin tests can be helpful in the diagnosis of patients with hypersensitivity reactions to these compounds. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Gadolinium-modulated 19F signals from Perfluorocarbon Nanoparticles as a New Strategy for Molecular Imaging

    PubMed Central

    Neubauer, Anne M.; Myerson, Jacob; Caruthers, Shelton D.; Hockett, Franklin D.; Winter, Patrick M.; Chen, Junjie; Gaffney, Patrick J.; Robertson, J. David; Lanza, Gregory M.; Wickline, Samuel A.

    2008-01-01

    Recent advances in the design of fluorinated nanoparticles for magnetic resonance molecular imaging have enabled specific detection of 19F nuclei, providing unique and quantifiable spectral signatures. However, a pressing need for signal enhancement exists because the total 19F in imaging voxels is often limited. By directly incorporating a relaxation agent (gadolinium) into the lipid monolayer that surrounds the perfluorocarbon, a marked augmentation of the 19F signal from 200nm nanoparticles was achieved. This design increases the magnetic relaxation rate of the 19F nuclei 4-fold at 1.5 T and effects a 125% increase in signal, an effect which is maintained when they are targeted to human plasma clots. By varying the surface concentration of gadolinium, the relaxation effect can be quantitatively modulated to tailor particle properties. This novel strategy dramatically improves the sensitivity and range of 19F MRI/MRS and forms the basis for designing contrast agents capable of sensing their surface chemistry. PMID:18956457

  12. Self-Assembled Nanomicelles as MRI Blood-Pool Contrast Agent.

    PubMed

    Babič, Andrej; Vorobiev, Vassily; Xayaphoummine, Céline; Lapicorey, Gaëlle; Chauvin, Anne-Sophie; Helm, Lothar; Allémann, Eric

    2018-01-26

    Gadolinium-loaded nanomicelles show promise as future magnetic resonance imaging (MRI) contrast agents (CAs). Their increased size and high gadolinium (Gd) loading gives them an edge in proton relaxivity over smaller molecular Gd-complexes. Their size and stealth properties are fundamental for their long blood residence time, opening the possibility for use as blood-pool contrast agents. Using l-tyrosine as a three-functional scaffold we synthesized a nanostructure building block 8. The double C18 aliphatic chain on one side, Gd-1,4,7,10-tetraazacyclododecane-1-4-7-triacetic acid (Gd-DO3A) with access to bulk water in the center and 2 kDa PEG on the hydrophilic side gave the amphiphilic properties required for the core-shell nanomicellar architecture. The self-assembly into Gd-loaded monodispersed 10-20 nm nanomicelles occurred spontaneously in water. These nanomicelles (Tyr-MRI) display very high relaxivity at 29 mm -1  s -1 at low field strength and low cytotoxicity. Good contrast enhancement of the blood vessels and the heart together with prolonged circulation time in vivo, makes Tyr-MRI an excellent candidate for a new supramolecular blood-pool MRI CA. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Complex imaging features of accidental cerebral intraventricular gadolinium administration.

    PubMed

    Nayak, Nita B; Huang, Jimmy C; Hathout, Gasser M; Shaba, Wisam; El-Saden, Suzie M

    2013-05-01

    Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA) is a contrast agent commonly used for enhancing MRI. In this paper, the authors report on 2 cases of postoperative inadvertent administration of Gd-DTPA directly into a ventriculostomy tubing side port that was mistaken for intravenous tubing. Both cases demonstrated a low signal on MRI throughout the ventricular system and dependent portions of the subarachnoid spaces, which was originally believed to be CSF with areas of T1 shortening in the nondependent portions of the subarachnoid spaces, and misinterpreted as basal leptomeningeal enhancement and meningitis. The authors propose that the appearance of profound T1 hypointensity within the ventricles and diffuse susceptibility artifact along the ependyma is pathognomonic of intraventricular Gd-DTPA and should be recognized.

  14. Self-assembled gemcitabine-gadolinium nanoparticles for magnetic resonance imaging and cancer therapy.

    PubMed

    Li, Lele; Tong, Rong; Li, Mengyuan; Kohane, Daniel S

    2016-03-01

    Nanoparticles with combined diagnostic and therapeutic functions are promising tools for cancer diagnosis and treatment. Here, we demonstrate a theranostic nanoparticle that integrates an active gemcitabine metabolite and a gadolinium-based magnetic resonance imaging agent via a facile supramolecular self-assembly synthesis, where the anti-cancer drug gemcitabine-5'-monophosphate (a phosphorylated active metabolite of the anti-cancer drug gemcitabine) was used to coordinate with Gd(III) to self-assemble into theranostic nanoparticles. The formulation exhibits a strong T1 contrast signal for magnetic resonance imaging of tumors in vivo, with enhanced retention time. Furthermore, the nanoparticles did not require other inert nanocarriers or excipients and thus had an exceptionally high drug loading (55 wt%), resulting in the inhibition of MDA-MB-231 tumor growth in mice. Recent advances in nanoparticle-based drug delivery systems have spurred the development of "theranostic" multifunctional nanoparticles, which combine therapeutic and diagnostic functionalities in a single formulation. Developing simple and efficient synthetic strategies for the construction of nanotheranostics with high drug loading remains a challenge. Here, we demonstrate a theranostic nanoparticle that integrates high loadings of an active gemcitabine metabolite and a gadolinium-based magnetic resonance imaging agent via a facile synthesis. The nanoparticles were better T1 contrast agents than currently used Gd-DTPA and had prolonged retention in tumor. Moreover they exhibited enhanced in vivo antitumor activity compared to free drug in a breast cancer xenograft mouse model. The strategy provides a scalable way to fabricate nanoparticles that enables enhancement of both therapeutic and diagnostic capabilities. Published by Elsevier Ltd.

  15. Method of encapsulating polyaminopolycarboxylic acid chelating agents in liposomes

    DOEpatents

    Rahman, Yueh Erh

    1977-11-10

    A method is provided for transferring a polyaminopolycarboxylic acid chelating agent across a cellular membrane by encapsulating the charged chelating agent within liposomes, which liposomes will be taken up by the cells, thereby transferring the chelating agent across the cellular membrane. The chelating agent is encapsulated within liposomes by drying a lipid mixture to form a thin film and wetting the lipid film with a solution containing the chelating agent. Mixing then results in the formation of a suspension of liposomes encapsulating the chelating agent, which liposomes can then be separated.

  16. Chelation protocols for the elimination and prevention of iron overload in thalassaemia.

    PubMed

    Kolnagou, Annita; Kontoghiorghes, George John

    2018-01-01

    Iron overload toxicity is the main cause of mortality and morbidity in thalassaemia patients. The complete elimination and prevention of iron overload is the main aim of chelation therapy, which can be achieved by chelation protocols that can effectively remove excess iron load and maintain body iron at normal levels. Deferiprone and selected combinations with deferoxamine can be designed, adjusted and used effectively for removing all excess stored iron and for maintaining normal iron stores (NIS) in different categories of thalassaemia patients. High doses of deferiprone (75-100 mg/kg/day) and deferoxamine (50-60 mg/kg, 1-7 days/week) combinations can be used for achieving and maintaining NIS in heavily iron loaded transfused patients. In contrast, deferiprone (75-100 mg/kg/day) can be used effectively and sometimes intermittently for maintaining NIS in non heavily transfused patients. Deferasirox can in particular be used in patients not tolerating deferoxamine and deferiprone. The design of tailored made personalised protocols using deferiprone and selected combinations with deferoxamine should be considered as optimum chelation therapies for the complete treatment and the prevention of iron overload in thalassaemia.

  17. Thermodynamic properties of gadolinium in Ga-Sn and Ga-Zn eutectic based alloys

    NASA Astrophysics Data System (ADS)

    Maltsev, Dmitry S.; Volkovich, Vladimir A.; Yamshchikov, Leonid F.; Chukin, Andrey V.

    2016-09-01

    Thermodynamic properties of gadolinium in Ga-Sn and Ga-Zn eutectic based alloys were studied. Temperature dependences of gadolinium activity in the studied alloys were determined at 573-1073 K employing the EMF method. Solubility of gadolinium in the Ga-Sn and Ga-Zn alloys was measured at 462-1073 K using IMCs sedimentation method. Activity coefficients as well as partial and excess thermodynamic functions of gadolinium in the studied alloys were calculated on the basis of the obtained experimental data.

  18. Method for preparing radionuclide-labeled chelating agent-ligand complexes

    DOEpatents

    Meares, Claude F.; Li, Min; DeNardo, Sally J.

    1999-01-01

    Radionuclide-labeled chelating agent-ligand complexes that are useful in medical diagnosis or therapy are prepared by reacting a radionuclide, such as .sup.90 Y or .sup.111 In, with a polyfunctional chelating agent to form a radionuclide chelate that is electrically neutral; purifying the chelate by anion exchange chromatography; and reacting the purified chelate with a targeting molecule, such as a monoclonal antibody, to form the complex.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Ranu, E-mail: ranu.dutta16@gmail.com; NanoeRA Medicare Private Limited, Uttar Pradesh; Pandey, Avinash C.

    Gadolinium chelates and gadolinium based inorganic nanoparticles have been extensively studied, because of the high magnetic moment of gadolinium. Here, metallic gadolinium nanocongregates have been developed. Upon injecting these nanoparticles in the mice, they initially circulate in the blood stream and are localized at the cancer site, which could be visualized upon application of magnetic field hence acting as small magnetic nanosensors searching for even small cancers, detecting cancers at a very early stage.

  20. Thermodynamic stability and relaxation studies of small, triaza-macrocyclic Mn(II) chelates.

    PubMed

    de Sá, Arsénio; Bonnet, Célia S; Geraldes, Carlos F G C; Tóth, Éva; Ferreira, Paula M T; André, João P

    2013-04-07

    Due to its favorable relaxometric properties, Mn(2+) is an appealing metal ion for magnetic resonance imaging (MRI) contrast agents. This paper reports the synthesis and characterization of three new triazadicarboxylate-type ligands and their Mn(2+) chelates (NODAHep, 1,4,7-triazacyclononane-1,4-diacetate-7-heptanil; NODABA, 1,4,7-triazacyclononane-1,4-diacetate-7-benzoic acid; and NODAHA, 1,4,7-triazacyclononane-1,4-diacetate-7-hexanoic acid). The protonation constants of the ligands and the stability constants of the chelates formed with Mn(2+) and the endogenous Zn(2+) ion have been determined by potentiometry. In overall, the thermodynamic stability of the chelates is lower than that of the corresponding NOTA analogues (NOTA = 1,4,7-triazacyclononane-1,4,7-triacetate), consistent with the decreased number of coordinating carboxylate groups. Variable temperature (1)H NMRD and (17)O NMR measurements have been performed on the paramagnetic chelates to provide information on the water exchange rates and the rotational dynamics. The values of the (17)O chemical shifts are consistent with the presence of one water molecule in the first coordination sphere of Mn(2+). The three complexes are in the slow to intermediate regime for the water exchange rate, and they all display relatively high rotational correlation times, which explain the relaxivity values between 4.7 and 5.8 mM(-1) s(-1) (20 MHz and 298 K). These relaxivities are higher than expected for Mn(2+) chelates of such size and comparable to those of small monohydrated Gd(3+) complexes. The amphiphilic [Mn(NODAHep)] forms micelles above 22 mM (its critical micellar concentration was determined by relaxometry and fluorescence), and interacts with HSA via its alkylic carbon chain providing a 60% relaxivity increase at 20 MHz due to a longer tumbling time.

  1. Role of MRI T2-DRIVE in the assessment of pituitary stalk abnormalities without gadolinium in pituitary diseases.

    PubMed

    Godano, Elisabetta; Morana, Giovanni; Di Iorgi, Natascia; Pistorio, Angela; Allegri, Anna Elsa Maria; Napoli, Flavia; Gastaldi, Roberto; Calcagno, Annalisa; Patti, Giuseppa; Gallizia, Annalisa; Notarnicola, Sara; Giaccardi, Marta; Noli, Serena; Severino, Mariasavina; Tortora, Domenico; Rossi, Andrea; Maghnie, Mohamad

    2018-06-01

    To investigate the role of T2-DRIVE MRI sequence in the accurate measurement of pituitary stalk (PS) size and the identification of PS abnormalities in patients with hypothalamic-pituitary disorders without the use of gadolinium. This was a retrospective study conducted on 242 patients who underwent MRI due to pituitary dysfunction between 2006 and 2015. Among 135 eligible patients, 102 showed eutopic posterior pituitary (PP) gland and 33 showed 'ectopic' PP (EPP). Two readers independently measured the size of PS in patients with eutopic PP at the proximal, midpoint and distal levels on pre- and post-contrast T1-weighted as well as T2-DRIVE images; PS visibility was assessed on pre-contrast T1 and T2-DRIVE sequences in those with EPP. The length, height, width and volume of the anterior pituitary (AP), PP height and length and PP area were analyzed. Significant agreement between the two readers was obtained for T2-DRIVE PS measurements in patients with 'eutopic' PP; a significant difference was demonstrated between the intraclass correlation coefficient calculated on the T2-DRIVE and the T1-pre- and post-contrast sequences. The percentage of PS identified by T2-DRIVE in EPP patients was 72.7% compared to 30.3% of T1 pre-contrast sequences. A significant association was found between the visibility of PS on T2-DRIVE and the height of AP. T2-DRIVE sequence is extremely precise and reliable for the evaluation of PS size and the recognition of PS abnormalities; the use of gadolinium-based contrast media does not add significant information and may thus be avoided. © 2018 European Society of Endocrinology.

  2. Contrast-enhanced computed tomography plus gadolinium-ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging for gross classification of hepatocellular carcinoma.

    PubMed

    Chen, Chuang; Zhao, Hui; Fu, Xu; Huang, LuoShun; Tang, Min; Yan, XiaoPeng; Sun, ShiQuan; Jia, WenJun; Mao, Liang; Shi, Jiong; Chen, Jun; He, Jian; Zhu, Jin; Qiu, YuDong

    2017-05-02

    Accurate gross classification through imaging is critical for determination of hepatocellular carcinoma (HCC) patient prognoses and treatment strategies. The present retrospective study evaluated the utility of contrast-enhanced computed tomography (CE-CT) combined with gadolinium-ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (EOB-MRI) for diagnosis and classification of HCCs prior to surgery. Ninety-four surgically resected HCC nodules were classified as simple nodular (SN), SN with extranodular growth (SN-EG), confluent multinodular (CMN), or infiltrative (IF) types. SN-EG, CMN and IF samples were grouped as non-SN. The abilities of the two imaging modalities to differentiate non-SN from SN HCCs were assessed using the EOB-MRI hepatobiliary phase and CE-CT arterial, portal, and equilibrium phases. Areas under the ROC curves for non-SN diagnoses were 0.765 (95% confidence interval [CI]: 0.666-0.846) for CE-CT, 0.877 (95% CI: 0.793-0.936) for EOB-MRI, and 0.908 (95% CI: 0.830-0.958) for CE-CT plus EOB-MRI. Sensitivities, specificities, and accuracies with respect to identification of non-SN tumors of all sizes were 71.4%, 81.6%, and 75.5% for CE-CT; 96.4%, 78.9%, and 89.3% for EOB-MRI; and 98.2%, 84.2%, and 92.5% for CE-CT plus EOB-MRI. These results show that CE-CT combined with EOB-MRI offers a more accurate imaging evaluation for HCC gross classification than either modality alone.

  3. Adverse allergic reactions to linear ionic gadolinium-based contrast agents: experience with 194, 400 injections.

    PubMed

    Aran, S; Shaqdan, K W; Abujudeh, H H

    2015-05-01

    To report the authors' experience with the administration of four gadolinium-based contrast agents (GBCA; gadopentetate dimeglumine, gadofosveset trisodium, gadoxetate disodium and gadobenate dimeglumine) in a large study population at a single, large academic medical centre. The institutional review board approved this retrospective study in which data in the electronic incident reporting system were searched. A total of 194, 400 intravenous administrations of linear ionic GBCAs were assessed for the incidence of adverse reactions and risk factors from 1 January 2007 to 14 January 2014. The severity of reactions (mild, moderate, and severe), patient type (outpatients, inpatients, and emergency), examination type, and treatment options were also investigated. In total, 204/194400 (0.1%) patients (mean age 45.7 ± 14.9) showed adverse reactions, consisting of 6/746 (0.80%), 10/3200 (0.31%), 14/6236 (0.22%) and 174/184218 (0.09%), for gadofosveset trisodium, gadoxetate disodium, gadobenate dimeglumine, and gadopentetate dimeglumine, respectively. An overall significant difference was found between different GBCAs regarding the total number of reactions (p < 0.0001). When comparing the GBCAs together, significant differences were found between gadofosveset trisodium versus gadopentetate dimeglumine (p < 0.0001), gadofosveset trisodium versus gadobenate dimeglumine (p = 0.0051), gadoxetate disodium versus gadopentetate dimeglumine (p < 0.0001) and gadopentetate dimeglumine versus gadobenate dimeglumine (p = 0.0013). Rate of reaction was higher in females (F: 146/113187, 0.13%/M: 58/81213, 0.07%; p < 0.0001). Rate of reactions was higher in outpatient (180/158885, 0.11%), emergency (10/10413, 0.10%), and inpatients (14/25102, 0.05%), respectively (p < 0.0001). Most of the patients had mild symptoms 171/204 (83.8%). Abdomen-pelvis, liver, and thoracic examinations had highest rates of reactions (0.17 versus 0.16 versus 0.15). The overall rate of adverse reaction to GBCAs

  4. Molecular engineering of lanthanide ion chelating phospholipids generating assemblies with a switched magnetic susceptibility.

    PubMed

    Isabettini, Stéphane; Massabni, Sarah; Hodzic, Arnel; Durovic, Dzana; Kohlbrecher, Joachim; Ishikawa, Takashi; Fischer, Peter; Windhab, Erich J; Walde, Peter; Kuster, Simon

    2017-08-09

    Lanthanide ion (Ln 3+ ) chelating amphiphiles are powerful molecules for tailoring the magnetic response of polymolecular assemblies. Mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylene triaminepentaacetate (DMPE-DTPA) complexed to Ln 3+ deliver highly magnetically responsive bicelles. Their magnetic properties are readily tuned by changing the bicellar size or the magnetic susceptibility Δχ of the bilayer lipids. The former technique is intrinsically bound to the region of the phase diagram guarantying the formation of bicelles. Methods aiming towards manipulating the Δχ of the bilayer are comparatively more robust, flexible and lacking. Herein, we synthesized a new Ln 3+ chelating phospholipid using glutamic acid as a backbone: DMPE-Glu-DTPA. The chelate polyhedron was specifically engineered to alter the Δχ, whilst remaining geometrically similar to DMPE-DTPA. Planar asymmetric assemblies hundreds of nanometers in size were achieved presenting unprecedented magnetic alignments. The DMPE-Glu-DTPA/Ln 3+ complex switched the Δχ, achieving perpendicular alignment of assemblies containing Dy 3+ and parallel alignment of those containing Tm 3+ . Moreover, samples with chelated Yb 3+ were more alignable than the Tm 3+ chelating counterparts. Such a possibility has never been demonstrated for planar Ln 3+ chelating polymolecular assemblies. The physico-chemical properties of these novel assemblies were further studied by monitoring the alignment behavior at different temperatures and by including 16 mol% of cholesterol (Chol-OH) in the phospholipid bilayer. The DMPE-Glu-DTPA/Ln 3+ complex and the resulting assemblies are promising candidates for applications in numerous fields including pharmaceutical technologies, structural characterization of membrane biomolecules by NMR spectroscopy, as contrasting agents for magnetic resonance imaging, and for the development of smart optical gels.

  5. Chelation in root canal therapy reconsidered.

    PubMed

    Zehnder, Matthias; Schmidlin, Patrick; Sener, Beatrice; Waltimo, Tuomas

    2005-11-01

    The aim of this study was to assess interactions of EDTA and citric acid (CA) with sodium hypochlorite (NaOCl), the indispensable endodontic irrigant. Other chelators were simultaneously evaluated as possible alternatives: sodium triphosphate (STP), amino tris methylenephosphonic acid (ATMA), and 1- hydroxyethylidene-1, 1-bisphosphonate (HEBP). Available chlorine was titrated in chelator-NaOCl solutions. All chelators other than HEBP and STP caused an almost complete, immediate loss of available chlorine in solution. Atomic absorbtion spectrometry and SEM evaluation of root canal walls of instrumented teeth indicated that NaOCl had no negative effect on calcium-complexing ability of chelators. STP was too weak a complexing agent to warrant further studies. Finally, CA-, EDTA-, and HEBP-NaOCl mixtures were evaluated for their antimicrobial capacity. Again, EDTA and CA negatively interfered with NaOCl, while HEBP did not.

  6. MRI and CT contrast media extravasation: A systematic review.

    PubMed

    Heshmatzadeh Behzadi, Ashkan; Farooq, Zerwa; Newhouse, Jeffery H; Prince, Martin R

    2018-03-01

    This systematic review combines data from multiple papers on contrast media extravasation to identify factors contributing to increased extravasation risk. Data were extracted from 17 papers reporting 2191 extravasations in 1,104,872 patients (0.2%) undergoing computed tomography (CT) or magnetic resonance imaging (MRI). Extravasation rates were 0.045% for gadolinium-based contrast agents (GBCA) and nearly 6-fold higher, 0.26% for iodinated contrast agents. Factors associated with increased contrast media extravasations included: older age, female gender, using an existing intravenous (IV) instead of placing a new IV in radiology, in-patient status, use of automated power injection, high injection rates, catheter location, and failing to warm up the more viscous contrast media to body temperature. Contrast media extravasation is infrequent but nearly 6 times less frequent with GBCA for MRI compared with iodinated contrast used in CT.

  7. Modular Carbon and Gold Nanoparticles for High Field MR Imaging and Theranostics

    NASA Astrophysics Data System (ADS)

    Rammohan, Nikhil

    The ability to track labeled cancer cells in vivo would allow researchers to study their distribution, growth and metastatic potential within the intact organism. Magnetic Resonance (MR) imaging is invaluable for tracking cancer cells in vivo as it benefits from high spatial resolution and absence of ionizing radiation. However, many MR contrast agents (CAs) required to label cells either do not significantly accumulate in cells or are not biologically compatible for translational studies. Accordingly, we have developed carbon- and gold-nanoparticles coupled to gadolinium(III) [Gd(III)] chelates for T1-weighted MR imaging that demonstrated remarkable properties for cell tracking in vitro and in vivo.. We created nanodiamond-Gd(III) aggregates (NDG) by peptide coupling Gd(III) chelates to aminated nanodiamonds. NDG had high relaxivity independent of field strength (unprecedented for Gd(III)-nanoparticle conjugates), and demonstrated a 300-fold increase in cellular delivery of Gd(III) compared to clinical Gd(III) chelates. Further, we were able to monitor the tumor growth of NDG-labeled flank tumors by T1-weighted MRI for 26 days in vivo, longer than reported for other MR CAs or nuclear agents. Further, theranostic nanodiamond-gadolinium(III)-doxorubicin (ND-Gd-Dox) aggregates were generated by conjugating doxorubicin (ND-Gd-Dox), which enabled efficient cancer chemotherapy in breast cancer cells. Further, we synthesized Gd(III)-gold nanoconjugates (Gd AuNPs) with varied chelate structure and nanoparticle-chelate linker length. Significantly enhanced cell labeling was demonstrated compared to previous gadolinium-gold-DNA nanoconstructs. Differences in Gd(III) loading, surface packing and cell uptake were observed between four different Gd AuNP formulations suggesting that linker length and surface charge play an important role in cell labeling. The best performing Gd AuNPs afforded 23.6 +/- 3.6 fmol of Gd(III) per cell at an incubation concentration of 27.5 micro

  8. In vivo cleavage rate of a dextran-bound magnetic resonance imaging contrast agent: preparation and intravascular pharmacokinetic characteristics in the rabbit.

    PubMed

    Hals, Petter Arnt; Sontum, Per Christian; Holtz, Eckart; Klaveness, Jo; Rongved, Pål

    2013-02-01

    Earlier described dextran-based contrast agents for magnetic resonance imaging (MRI) comprising the gadolinium chelate diethylenetriamine pentaacetic acid (GdDTPA, 1) have shown significantly shorter in vivo contrast duration in rat than what would be expected from the initial average molecular weight (Mw) of the dextran fraction (71.4 kD). To investigate this further, four dextran fractions with given initial average molecular weight (Mw) of 10.4, 41.0, 71.4 and 580 kD were used as starting material to prepare products 2-5 where one of the carboxylic acid functionalities in GdDTPA was used as a direct covalent ester linker to hydroxyl groups in dextrans. A fifth derivative (6) was an amide-ester bound β-alanine-DTPAGd conjugate with dextran having Mw 71.4 kD. The reference compound GdDTPA (1) and gadoliniumlabelled dextran derivatives 2-6 were injected intravenously in rabbits. Pharmacokinetic parameters showed that when GdDTPA is ester-bound directly to dextran hydroxyls, the cleavage rates of 2-5 were only moderately dependent on the molecular weights of the dextrans, having blood pool half-lives comparable to the low-molecular reference compound (t 1/2,β 0.3 - 0.5 hrs.). Presence of a β-alanine spacer in 6 prolonged the plasma half-life t 1/2,β to 6.9 hours, rendering a blood residence time suitable for blood pool slow release of GdDTPA. Biological cleavage regenerates the clinically acceptable carrier dextran and the β-alanine derivative of GdDTPA, pointing at a clinically acceptable product class for blood-pool contrast in MRI.

  9. Tumor Xenograft Response to Redox-Active Therapies Assessed by Magnetic Resonance Imaging Using a Thiol-Bearing DOTA Complex of Gadolinium1

    PubMed Central

    Guntle, Gerald P; Jagadish, Bhumasamudram; Mash, Eugene A; Powis, Garth; Dorr, Robert T; Raghunand, Natarajan

    2012-01-01

    Gd-LC6-SH is a thiol-bearing DOTA complex of gadolinium designed to bind plasma albumin at the conserved Cys34 site. The binding of Gd-LC6-SH shows sensitivity to the presence of competing thiols. We hypothesized that Gd-LC6-SH could provide magnetic resonance imaging (MRI) enhancement that is sensitive to tumor redox state and that the prolonged retention of albumin-bound Gd-LC6-SH in vivo can be exploited to identify a saturating dose above which the shortening of MRI longitudinal relaxation time (T1) of tissue is insensitive to the injected gadolinium dose. In the Mia-PaCa-2 pancreatic tumor xenograft model in SCID mice, both the small-molecule Gd-DTPA-BMA and the macromolecule Galbumin MRI contrast agents produced dose-dependent decreases in tumor T1. By contrast, the decreases in tumor T1 provided by Gd-LC6-SH at 0.05 and 0.1 mmol/kg were not significantly different at longer times after injection. SCID mice bearing Mia-PaCa-2 or NCI-N87 tumor xenografts were treated with either the glutathione synthesis inhibitor buthionine sulfoximine or the thiol-oxidizing anticancer drug Imexon, respectively. In both models, there was a significantly greater increase in tumor R1 (=1/T1) 60 minutes after injection of Gd-LC6-SH in drug-treated animals relative to saline-treated controls. In addition, Mercury Orange staining for nonprotein sulfhydryls was significantly decreased by drug treatment relative to controls in both tumor models. In summary, these studies show that thiol-bearing complexes of gadolinium such as Gd-LC6-SH can serve as redox-sensitive MRI contrast agents for detecting differences in tumor redox status and can be used to evaluate the effects of redox-active drugs. PMID:22741038

  10. Dose Reduction Study in Vaginal Balloon Packing Filled With Contrast for HDR Brachytherapy Treatment;HDR; Uterine cervix cancer; Vaginal balloon packing; Contrast; Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saini, Amarjit S.; Zhang, Geoffrey G., E-mail: geoffrey.zhang@moffitt.org; Finkelstein, Steven E.

    2011-07-15

    Purpose: Vaginal balloon packing is a means to displace organs at risk during high dose rate brachytherapy of the uterine cervix. We tested the hypothesis that contrast-filled vaginal balloon packing reduces radiation dose to organs at risk, such as the bladder and rectum, in comparison to water- or air-filled balloons. Methods and Materials: In a phantom study, semispherical vaginal packing balloons were filled with air, saline solution, and contrast agents. A high dose rate iridium-192 source was placed on the anterior surface of the balloon, and the diode detector was placed on the posterior surface. Dose ratios were taken withmore » each material in the balloon. Monte Carlo (MC) simulations, by use of the MC computer program DOSXYZnrc, were performed to study dose reduction vs. balloon size and contrast material, including commercially available iodine- and gadolinium-based contrast agents. Results: Measured dose ratios on the phantom with the balloon radius of 3.4 cm were 0.922 {+-} 0.002 for contrast/saline solution and 0.808 {+-} 0.001 for contrast/air. The corresponding ratios by MC simulations were 0.895 {+-} 0.010 and 0.781 {+-} 0.010. The iodine concentration in the contrast was 23.3% by weight. The dose reduction of contrast-filled balloon ranges from 6% to 15% compared with water-filled balloon and 11% to 26% compared with air-filled balloon, with a balloon size range between 1.4 and 3.8 cm, and iodine concentration in contrast of 24.9%. The dose reduction was proportional to the contrast agent concentration. The gadolinium-based contrast agents showed less dose reduction because of much lower concentrations in their solutions. Conclusions: The dose to the posterior wall of the bladder and the anterior wall of the rectum can be reduced if the vaginal balloon is filled with contrast agent in comparison to vaginal balloons filled with saline solution or air.« less

  11. Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents.

    PubMed

    Evangelou, Michael W H; Ebel, Mathias; Schaeffer, Andreas

    2007-06-01

    The low-cost, plant-based phytoextraction technique has often been described as a promising technique to remediate heavy metal contaminated agricultural land. The application of chelating agents has shown positive effects in increasing the solubility of heavy metals in soil and therefore in enhancing phytoextraction. This paper gives an overview of the chelating agents applied in recent studies. Various synthetic aminopolycarboxylic acids, such as ethylene diamine tetraacetic acid, and natural ones such as, ethylene diamine disuccinate and nitrilotriacetic acid, are described. Additionally, results of the application of natural low molecular weight organic acids, such as citric and tartaric acid are given. The effectiveness of these different chelating agents varies according to the plant and the heavy metals used. Furthermore, a focus is laid on the chelating agents fate after application and on its toxicity to plants and soil microorganisms, as well as it degradation. The rate of degradation is of great importance for the future of chelate assisted phytoextraction as it has a direct impact on the leaching probability. An effective prevention of leaching will be crucial for the acceptance and the economic breakthrough of enhanced phytoextraction, but a satisfactory solution to this key issue has so far not been found. Possibly further experiments in the field of enhanced phytoextraction will be able to solve this major problem, but over decades various greenhouse experiments and recently field experiments have resulted in different observations. Therefore, it is questionable if further research in this direction will lead to a promising solution. Phytoextraction has possibly reached a turning point in which it should distance itself from chelate assisted phytoextraction and focus on alternative options.

  12. Contrast-enhanced peripheral MRA: technique and contrast agents.

    PubMed

    Nielsen, Yousef W; Thomsen, Henrik S

    2012-09-01

    In the last decade contrast-enhanced magnetic resonance angiography (CE-MRA) has gained wide acceptance as a valuable tool in the diagnostic work-up of patients with peripheral arterial disease. This review presents current concepts in peripheral CE-MRA with emphasis on MRI technique and contrast agents. Peripheral CE-MRA is defined as an MR angiogram of the arteries from the aortic bifurcation to the feet. Advantages of CE-MRA include minimal invasiveness and lack of ionizing radiation. The basic technique employed for peripheral CE-MRA is the bolus-chase method. With this method a paramagnetic MRI contrast agent is injected intravenously and T1-weighted images are acquired in the subsequent arterial first-pass phase. In order to achieve high quality MR angiograms without interfering venous contamination or artifacts, a number of factors need to be taken into account. This includes magnetic field strength of the MRI system, receiver coil configuration, use of parallel imaging, contrast bolus timing technique, and k-space filling strategies. Furthermore, it is possible to optimize peripheral CE-MRA using venous compression techniques, hybrid scan protocols, time-resolved imaging, and steady-state MRA. Gadolinium(Gd)-based contrast agents are used for CE-MRA of the peripheral arteries. Extracellular Gd agents have a pharmacokinetic profile similar to iodinated contrast media. Accordingly, these agents are employed for first-pass MRA. Blood-pool Gd-based agents are characterized by prolonged intravascular stay, due to macromolecular structure or protein binding. These agents can be used for first-pass, as well as steady-state MRA. Some Gd-based contrast agents with low thermodynamic stability have been linked to development of nephrogenic systemic fibrosis in patients with severe renal insufficiency. Using optimized technique and a stable MRI contrast agent, peripheral CE-MRA is a safe procedure with diagnostic accuracy close to that of conventional catheter X

  13. Iron chelation and multiple sclerosis

    PubMed Central

    Weigel, Kelsey J.; Lynch, Sharon G.; LeVine, Steven M.

    2014-01-01

    Histochemical and MRI studies have demonstrated that MS (multiple sclerosis) patients have abnormal deposition of iron in both gray and white matter structures. Data is emerging indicating that this iron could partake in pathogenesis by various mechanisms, e.g., promoting the production of reactive oxygen species and enhancing the production of proinflammatory cytokines. Iron chelation therapy could be a viable strategy to block iron-related pathological events or it can confer cellular protection by stabilizing hypoxia inducible factor 1α, a transcription factor that normally responds to hypoxic conditions. Iron chelation has been shown to protect against disease progression and/or limit iron accumulation in some neurological disorders or their experimental models. Data from studies that administered a chelator to animals with experimental autoimmune encephalomyelitis, a model of MS, support the rationale for examining this treatment approach in MS. Preliminary clinical studies have been performed in MS patients using deferoxamine. Although some side effects were observed, the large majority of patients were able to tolerate the arduous administration regimen, i.e., 6–8 h of subcutaneous infusion, and all side effects resolved upon discontinuation of treatment. Importantly, these preliminary studies did not identify a disqualifying event for this experimental approach. More recently developed chelators, deferasirox and deferiprone, are more desirable for possible use in MS given their oral administration, and importantly, deferiprone can cross the blood–brain barrier. However, experiences from other conditions indicate that the potential for adverse events during chelation therapy necessitates close patient monitoring and a carefully considered administration regimen. PMID:24397846

  14. A Metal-Free Method for Producing MRI Contrast at Amyloid-Beta

    PubMed Central

    Hilt, Silvia; Tang, Tang; Walton, Jeffrey H.; Budamagunta, Madhu; Maezawa, Izumi; Kálai, Tamás; Hideg, Kálmán; Singh, Vikrant; Wulff, Heike; Gong, Qizhi; Jin, Lee-Way; Louie, Angelique; Voss, John C.

    2017-01-01

    Alzheimer’s disease (AD) is characterized by depositions of the amyloid-β (Aβ) peptide in the brain. The disease process develops over decades, with substantial neurological loss occurring before a clinical diagnosis of dementia can be rendered. It is therefore imperative to develop methods that permit early detection and monitoring of disease progression. In addition, the multifactorial pathogenesis of AD has identified several potential avenues for AD intervention. Thus, evaluation of therapeutic candidates over lengthy trial periods also demands a practical, noninvasive method for measuring Aβ in the brain. Magnetic resonance imaging (MRI) is the obvious choice for such measurements, but contrast enhancement for Aβ has only been achieved using Gd(III)-based agents. There is great interest in gadolinium-free methods to image the brain. In this study, we provide the first demonstration that a nitroxide-based small-molecule produces MRI contrast in brain specimens with elevated levels of Aβ. The molecule is comprised of a fluorene (a molecule with high affinity for Aβ) and a nitroxide spin label (a paramagnetic MRI contrast species). Labeling of brain specimens with the spin-labeled fluorene produces negative contrast in samples from AD model mice whereas no negative contrast is seen in specimens harvested from wild-type mice. Injection of SLF into live mice resulted in good brain penetration, with the compound able to generate contrast 24-hr post injection. These results provide a proof of concept method that can be used for early, noninvasive, gadolinium-free detection of amyloid plaques by magnetic resonance imaging (MRI). PMID:27911291

  15. [Susceptibility of enterococci to natural and synthetic iron chelators].

    PubMed

    Lisiecki, Paweł; Mikucki, Jerzy

    2002-01-01

    A total of 79 strains of enterococci belonging to 10 species were tested for susceptibility to natural and synthetic iron chelators. All strains produced siderophores. These enterococci were susceptible to three synthetic iron chelators only: 8-hydroxyquinoline, disodium versenate (EDTA) and o-phenanthroline. They were resistant to all other synthetic chelators: ethylenediamine-di(o-hydroxyphenylacetic acid) (EDDHA), nitrilotriacetate, 2,2'-bipiridyl, salicylic acid, 8-hydroxy-5-sulphonic acid and to all natural chelators: ovotransferrine, human apotransferrine, horse apoferritine, desferrioxamine B, ferrichrome and rhodotorulic acid. The relations between susceptibility/resistance, iron assimilation and structure and stability constants of iron chelators were discussed.

  16. Histology and Gadolinium Distribution in the Rodent Brain After the Administration of Cumulative High Doses of Linear and Macrocyclic Gadolinium-Based Contrast Agents.

    PubMed

    Lohrke, Jessica; Frisk, Anna-Lena; Frenzel, Thomas; Schöckel, Laura; Rosenbruch, Martin; Jost, Gregor; Lenhard, Diana Constanze; Sieber, Martin A; Nischwitz, Volker; Küppers, Astrid; Pietsch, Hubertus

    2017-06-01

    Retrospective studies in patients with primary brain tumors or other central nervous system pathologies as well as postmortem studies have suggested that gadolinium (Gd) deposition occurs in the dentate nucleus (DN) and globus pallidus (GP) after multiple administrations of primarily linear Gd-based contrast agents (GBCAs). However, this deposition has not been associated with any adverse effects or histopathological alterations. The aim of this preclinical study was to systematically examine differences between linear and macrocyclic GBCAs in their potential to induce changes in brain and skin histology including Gd distribution in high spatial resolution. Fifty male Wistar-Han rats were randomly allocated into control (saline, n = 10 rats) and 4 GBCA groups (linear GBCAs: gadodiamide and gadopentetate dimeglumine, macrocyclic GBCAs: gadobutrol and gadoteridol; n = 10 rats per group). The animals received 20 daily intravenous injections at a dose of 2.5 mmol Gd/kg body weight. Eight weeks after the last GBCA administration, the animals were killed, and the brain and skin samples were histopathologically assessed (hematoxylin and eosin; cresyl violet [Nissl]) and by immunohistochemistry. The Gd concentration in the skin, bone, brain, and skeletal muscle samples were analyzed using inductively coupled plasma mass spectroscopy (ICP-MS, n = 4). The spatial Gd distribution in the brain and skin samples was analyzed in cryosections using laser ablation coupled with ICP-MS (LA-ICP-MS, n = 3). For the ultra-high resolution of Gd distribution, brain sections of rats injected with gadodiamide or saline (n = 1) were assessed by scanning electron microscopy coupled to energy dispersive x-ray spectroscopy and transmission electron microscopy, respectively. No histological changes were observed in the brain. In contrast, 4 of 10 animals in the gadodiamide group but none of the animals in other groups showed macroscopic and histological nephrogenic systemic fibrosis-like skin

  17. Compensated gadolinium-loaded plastic scintillators for thermal neutron detection (and counting)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumazert, Jonathan; Coulon, Romain; Bertrand, Guillaume H. V.

    2015-07-01

    Plastic scintillator loading with gadolinium-rich organometallic complexes shows a high potential for the deployment of efficient and cost-effective neutron detectors. Due to the low-energy photon and electron signature of thermal neutron capture by gadolinium-155 and gadolinium-157, alternative treatment to Pulse Shape Discrimination has to be proposed in order to display a trustable count rate. This paper discloses the principle of a compensation method applied to a two-scintillator system: a detection scintillator interacts with photon radiation and is loaded with gadolinium organometallic compound to become a thermal neutron absorber, while a non-gadolinium loaded compensation scintillator solely interacts with the photon partmore » of the incident radiation. Posterior to the nonlinear smoothing of the counting signals, a hypothesis test determines whether the resulting count rate after photon response compensation falls into statistical fluctuations or provides a robust image of a neutron activity. A laboratory prototype is tested under both photon and neutron irradiations, allowing us to investigate the performance of the overall compensation system in terms of neutron detection, especially with regards to a commercial helium-3 counter. The study reveals satisfactory results in terms of sensitivity and orientates future investigation toward promising axes. (authors)« less

  18. Oxidation-Induced Degradable Nanogels for Iron Chelation

    NASA Astrophysics Data System (ADS)

    Liu, Zhi; Wang, Yan; Purro, Max; Xiong, May P.

    2016-02-01

    Iron overload can increase cellular oxidative stress levels due to formation of reactive oxygen species (ROS); untreated, it can be extremely destructive to organs and fatal to patients. Since elevated oxidative stress levels are inherent to the condition in such patients, oxidation-induced degradable nanogels for iron chelation were rationally designed by simultaneously polymerizing oxidation-sensitive host-guest crosslinkers between β-cyclodextrin (β-CD) and ferrocene (Fc) and iron chelating moieties composed of deferoxamine (DFO) into the final gel scaffold in reverse emulsion reaction chambers. UV-Vis absorption and atomic absorption spectroscopy (AAS) was used to verify iron chelating capability of nanogels. These materials can degrade into smaller chelating fragments at rates proportional to the level of oxidative stress present. Conjugating DFO reduces the cytotoxicity of the chelator in the macrophage cells. Importantly, the nanogel can effectively reduce cellular ferritin expression in iron overloaded cells and regulate intracellular iron levels at the same time, which is important for maintaining a homeostatic level of this critical metal in cells.

  19. Oxidation-Induced Degradable Nanogels for Iron Chelation

    PubMed Central

    Liu, Zhi; Wang, Yan; Purro, Max; Xiong, May P.

    2016-01-01

    Iron overload can increase cellular oxidative stress levels due to formation of reactive oxygen species (ROS); untreated, it can be extremely destructive to organs and fatal to patients. Since elevated oxidative stress levels are inherent to the condition in such patients, oxidation-induced degradable nanogels for iron chelation were rationally designed by simultaneously polymerizing oxidation-sensitive host-guest crosslinkers between β-cyclodextrin (β-CD) and ferrocene (Fc) and iron chelating moieties composed of deferoxamine (DFO) into the final gel scaffold in reverse emulsion reaction chambers. UV-Vis absorption and atomic absorption spectroscopy (AAS) was used to verify iron chelating capability of nanogels. These materials can degrade into smaller chelating fragments at rates proportional to the level of oxidative stress present. Conjugating DFO reduces the cytotoxicity of the chelator in the macrophage cells. Importantly, the nanogel can effectively reduce cellular ferritin expression in iron overloaded cells and regulate intracellular iron levels at the same time, which is important for maintaining a homeostatic level of this critical metal in cells. PMID:26868174

  20. Heavy metal staining, a comparative assessment of gadolinium chloride and osmium tetroxide for inner ear labyrinthine contrast enhancement using X-ray microtomography.

    PubMed

    Wong, Christopher C; Curthoys, Ian S; O'Leary, Stephen J; Jones, Allan S

    2013-01-01

    The use of both gadolinium chloride (GdCl(3)) and osmium tetroxide (OsO(4)) allowed for the visualization of the membranous labyrinth and other intralabyrinthine structures, at different intensities, as compared with the control sample. This initial comparison shows the advantages of GdCl(3) in radiological assessments and OsO(4) in more detailed anatomical studies and pathways of labyrinthine pathogenesis using X-ray microtomography (microCT). To assess an improved OsO(4) staining protocol and compare the staining affinities against GdCl(3). Guinea pig temporal bones were stained with either GdCl(3) (2% w/v) for 7 days or OsO(4) (2% w/v) for 3 days, and scanned in a microCT system. The post-scanned datasets were then assessed in a 3D rendering program. The enhanced soft tissue contrast as presented in the temporal bones stained with either GdCl(3) or OsO(4) allowed for the membranous labyrinth to be visualized throughout the whole specimen. GdCl(3)-stained specimens presented more defined contours of the bone profile in the radiographs, while OsO(4)-stained specimens provided more anatomical detail of individual intralabyrinthine structures, hence allowing spatial relationships to be visualized with ease in a 3D rendering context and 2D axial slice images.

  1. Timed non-transferrin bound iron determinations probe the origin of chelatable iron pools during deferiprone regimens and predict chelation response

    PubMed Central

    Aydinok, Yesim; Evans, Patricia; Manz, Chantal Y.; Porter, John B.

    2012-01-01

    Background Plasma non-transferrin bound iron refers to heterogeneous plasma iron species, not bound to transferrin, which appear in conditions of iron overload and ineffective erythropoiesis. The clinical utility of non-transferrin bound iron in predicting complications from iron overload, or response to chelation therapy remains unproven. We undertook carefully timed measurements of non-transferrin bound iron to explore the origin of chelatable iron and to predict clinical response to deferiprone. Design and Methods Non-transferrin bound iron levels were determined at baseline and after 1 week of chelation in 32 patients with thalassemia major receiving deferiprone alone, desferrioxamine alone, or a combination of the two chelators. Samples were taken at baseline, following a 2-week washout without chelation, and after 1 week of chelation, this last sample being taken 10 hours after the previous evening dose of deferiprone and, in those receiving desferrioxamine, 24 hours after cessation of the overnight subcutaneous infusion. Absolute or relative non-transferrin bound iron levels were related to transfusional iron loading rates, liver iron concentration, 24-hour urine iron and response to chelation therapy over the subsequent year. Results Changes in non-transferrin bound iron at week 1 were correlated positively with baseline liver iron, and inversely with transfusional iron loading rates, with deferiprone-containing regimens but not with desferrioxamine monotherapy. Changes in week 1 non-transferrin bound iron were also directly proportional to the plasma concentration of deferiprone-iron complexes and correlated significantly with urine iron excretion and with changes in liver iron concentration over the next 12 months. Conclusions The widely used assay chosen for this study detects both endogenous non-transferrin bound iron and the iron complexes of deferiprone. The week 1 increments reflect chelatable iron derived both from liver stores and from red cell

  2. Developing Targeted Hybrid Imaging Probes by Chelator Scaffolding

    PubMed Central

    2017-01-01

    Positron emission tomography (PET) as well as optical imaging (OI) with peptide receptor targeting probes have proven their value for oncological applications but also show restrictions depending on the clinical field of interest. Therefore, the combination of both methods, particularly in a single molecule, could improve versatility in clinical routine. This proof of principle study aims to show that a chelator, Fusarinine C (FSC), can be utilized as scaffold for novel dimeric dual-modality imaging agents. Two targeting vectors (a minigastrin analogue (MG11) targeting cholecystokinin-2 receptor overexpression (CCK2R) or integrin αVβ3 targeting cyclic pentapeptides (RGD)) and a near-infrared fluorophore (Sulfo-Cyanine7) were conjugated to FSC. The probes were efficiently labeled with gallium-68 and in vitro experiments including determination of logD, stability, protein binding, cell binding, internalization, and biodistribution studies as well as in vivo micro-PET/CT and optical imaging in U-87MG αVβ3- and A431-CCK2R expressing tumor xenografted mice were carried out. Novel bioconjugates showed high receptor affinity and highly specific targeting properties at both receptors. Ex vivo biodistribution and micro-PET/CT imaging studies revealed specific tumor uptake accompanied by slow blood clearance and retention in nontargeted tissues (spleen, liver, and kidneys) leading to visualization of tumors at early (30 to 120 min p.i.). Excellent contrast in corresponding optical imaging studies was achieved especially at delayed time points (24 to 72 h p.i.). Our findings show the proof of principle of chelator scaffolding for hybrid imaging agents and demonstrate FSC being a suitable bifunctional chelator for this approach. Improvements to fine-tune pharmacokinetics are needed to translate this into a clinical setting. PMID:28462989

  3. Gd-doped BNNTs as T2-weighted MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Ciofani, Gianni; Boni, Adriano; Calucci, Lucia; Forte, Claudia; Gozzi, Alessandro; Mazzolai, Barbara; Mattoli, Virgilio

    2013-08-01

    This work describes, for the first time, doping of boron nitride nanotubes (BNNTs) with gadolinium (Gd@BNNTs), a stable functionalization that permits non-invasive BNNT tracking via magnetic resonance imaging (MRI). We report the structure, Gd loading, and relaxometric properties in water suspension at 7 T of Gd@BNNTs, and show the behaviour of these nanostructures as promising T2-weighted contrast agents. Finally, we demonstrate their complete biocompatibility in vitro on human neuroblastoma cells, together with their ability to effectively label and affect contrast in MRI images at 7 T.

  4. Questions and Answers on Unapproved Chelation Products

    MedlinePlus

    ... OTC) to prevent or treat diseases. Companies are marketing unapproved OTC chelation therapy products to patients with ... 4. Why did FDA take this action? Companies marketing unapproved OTC chelation products with unsubstantiated treatment claims ...

  5. The Ca(2+)-EDTA chelation as standard reaction to validate Isothermal Titration Calorimeter measurements (ITC).

    PubMed

    Ràfols, Clara; Bosch, Elisabeth; Barbas, Rafael; Prohens, Rafel

    2016-07-01

    A study about the suitability of the chelation reaction of Ca(2+)with ethylenediaminetetraacetic acid (EDTA) as a validation standard for Isothermal Titration Calorimeter measurements has been performed exploring the common experimental variables (buffer, pH, ionic strength and temperature). Results obtained in a variety of experimental conditions have been amended according to the side reactions involved in the main process and to the experimental ionic strength and, finally, validated by contrast with the potentiometric reference values. It is demonstrated that the chelation reaction performed in acetate buffer 0.1M and 25°C shows accurate and precise results and it is robust enough to be adopted as a standard calibration process. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Simple Estimation of the Endolymphatic Volume Ratio after Intravenous Administration of a Single-dose of Gadolinium Contrast

    PubMed Central

    NAGANAWA, Shinji; KANOU, Mai; OHASHI, Toshio; KUNO, Kayao; SONE, Michihiko

    2016-01-01

    Purpose: To evaluate the feasibility of a simple estimation for the endolymphatic volume ratio (endolymph volume/total lymph volume = %ELvolume) from an area ratio obtained from only one slice (%EL1slice) or from three slices (%EL3slices). The %ELvolume, calculated from a time-consuming measurement on all magnetic resonance (MR) slices, was compared to the %EL1slice and the %EL3slices. Methods: In 40 ears of 20 patients with a clinical suspicion of endolymphatic hydrops, MR imaging was performed 4 hours after intravenous administration of a single dose of gadolinium-based contrast material (IV-SD-GBCM). Using previously reported HYDROPS2-Mi2 MR imaging, the %ELvolume values in the cochlea and the vestibule were measured separately by two observers. The correlations between the %EL1slice or the %EL3slices and the %ELvolume values were evaluated. Results: A strong linear correlation was observed between the %ELvolume and the %EL3slices or the %EL1slice in the cochlea. The Pearson correlation coefficient (r) was 0.968 (3 slices) and 0.965 (1 slice) for observer A, and 0.968 (3 slices) and 0.964 (1 slice) for observer B (P < 0.001, for all). A strong linear correlation was also observed between the %ELvolume and the %EL3slices or the %EL1slice in the vestibule. The Pearson correlation coefficient (r) was 0.980 (3 slices) and 0.953 (1 slice) for observer A, and 0.979 (3 slices) and 0.952 (1 slice) for observer B (P < 0.001, for all). The high intra-class correlation coefficients (0.991–0.997) between the endolymph volume ratios by two observers were observed in both the cochlea and the vestibule for values of the %ELvolume, the %EL3slices and the %EL1slice. Conclusion: The %ELvolume might be easily estimated from the %EL3slices or the %EL1slice. PMID:27001396

  7. Simple Estimation of the Endolymphatic Volume Ratio after Intravenous Administration of a Single-dose of Gadolinium Contrast.

    PubMed

    Naganawa, Shinji; Kanou, Mai; Ohashi, Toshio; Kuno, Kayao; Sone, Michihiko

    2016-10-11

    To evaluate the feasibility of a simple estimation for the endolymphatic volume ratio (endolymph volume/total lymph volume = %EL volume ) from an area ratio obtained from only one slice (%EL 1slice ) or from three slices (%EL 3slices ). The %EL volume, calculated from a time-consuming measurement on all magnetic resonance (MR) slices, was compared to the %EL 1slice and the %EL 3slices . In 40 ears of 20 patients with a clinical suspicion of endolymphatic hydrops, MR imaging was performed 4 hours after intravenous administration of a single dose of gadolinium-based contrast material (IV-SD-GBCM). Using previously reported HYDROPS2-Mi2 MR imaging, the %EL volume values in the cochlea and the vestibule were measured separately by two observers. The correlations between the %EL 1slice or the %EL 3slices and the %EL volume values were evaluated. A strong linear correlation was observed between the %EL volume and the %EL 3slices or the %EL 1slice in the cochlea. The Pearson correlation coefficient (r) was 0.968 (3 slices) and 0.965 (1 slice) for observer A, and 0.968 (3 slices) and 0.964 (1 slice) for observer B (P < 0.001, for all). A strong linear correlation was also observed between the %EL volume and the %EL 3slices or the %EL 1slice in the vestibule. The Pearson correlation coefficient (r) was 0.980 (3 slices) and 0.953 (1 slice) for observer A, and 0.979 (3 slices) and 0.952 (1 slice) for observer B (P < 0.001, for all). The high intra-class correlation coefficients (0.991-0.997) between the endolymph volume ratios by two observers were observed in both the cochlea and the vestibule for values of the %EL volume , the %EL 3slices and the %EL 1slice . The %EL volume might be easily estimated from the %EL 3slices or the %EL 1slice .

  8. Enhancing Potentially Plant-Available Lead Concentrations in Contaminated Residential Soils Using a Biodegradable Chelating Agent

    NASA Astrophysics Data System (ADS)

    Andra, S.; Datta, R.; Sarkar, D.; Saminathan, S.

    2007-12-01

    properties showed that plant available Pb fraction could be assessed from the two inter-related soil parameters: soil organic matter and soil pH. Although EDTA was more effective in Pb solubilization than EDDS, the rapid kinetics of the Pb-EDTA complexation process and the prolonged persistence of EDTA in soils pose a potential groundwater contamination problem via metal leaching. In contrast to EDTA, EDDS addition caused relatively slow release of Pb from the soil matrix. The biodegradable nature (and short half life) of EDDS in soils makes it a promising chelating agent for use as soil amendment to enhance Pb solubilization and hence, potential plant uptake.

  9. Mechanical delivery of aerosolized gadolinium-DTPA for pulmonary ventilation assessment in MR imaging.

    PubMed

    Haage, P; Adam, G; Karaagac, S; Pfeffer, J; Glowinski, A; Döhmen, S; Günther, R W

    2001-04-01

    To evaluate a new technique with mechanical administration of aerosolized gadolinium (Gd)-DTPA for MR visualization of lung ventilation. Ten experimental procedures were performed in six domestic pigs. Gd-DTPA was aerosolized by a small-particle generator. The intubated animals were mechanically aerosolized with the nebulized contrast agent and studied on a 1.5-T MR imager. Respiratory gated T1-weighted turbo spin-echo images were obtained before, during, and after contrast administration. Pulmonary signal intensity (SI) changes were calculated for corresponding regions of both lungs. Homogeneity of aerosol distribution was graded independently by two radiologists. To achieve a comparable SI increase as attained in previous trials that used manual aerosol ventilation, a ventilation period of 20 minutes (formerly 30 minutes) was sufficient. Mean SI changes of 116% were observed after that duration. Contrast delivery was rated evenly distributed in all cases by the reviewers. The feasibility of applying Gd-DTPA as a contrast agent to demonstrate pulmonary ventilation in large animals has been described before. The results of this refined technique substantiate the potential of Gd-based ventilation MR imaging by improving aerosol distribution and shortening the nebulization duration in the healthy lung.

  10. Luminescent Properties of Eu(III) Chelates on Metal Nanorods

    PubMed Central

    Zhang, Jian; Fu, Yi; Ray, Krishanu; Wang, Yuan; Lakowicz, Joseph. R.

    2013-01-01

    In this article, we report the change of optical properties for europium chelates on silver nanorods by near-field interactions. The silver rods were fabricated in a seed-growth method followed by depositing thin layers of silica on the surfaces. The europium chelates were physically absorbed in the silica layers on the silver rods. The silver rods were observed to exhibit two plasmon absorption bands from longitudinal and transverse directions, respectively, centered at 394 and 675 nm, close to absorption and emission bands from the Eu(III) chelates. As a result, the immobilized Eu(III) chelates on the silver rods should have strong interactions with the silver nanorods and lead to greatly improved optical properties. The Eu–Ag rod complexes were observed to have enhanced emission intensity up to 240-fold in comparison with the Eu(III) chelates in the metal-free silica templates. This enhancement is much larger than the value for the Eu(III) chelates on the gold rods or silver spheres indicating the presence of stronger interactions for the Eu(III) chelates with the silver rods. The interactions of Eu(III) chelates with the silver rods were also proven by extremely reduced lifetime. Moreover, the Eu–Ag rod complexes exhibited a polarized emission, which was also due to strong interactions of the Eu(III) chelates with the silver rods. All of these features may promise that the Eu(III)–Ag rod complexes have great potential for use as fluorescence imaging agents in biological assays. PMID:24363816

  11. Micronutrient metal speciation is driven by competitive organic chelation in grassland soils.

    NASA Astrophysics Data System (ADS)

    Boiteau, R.; Shaw, J. B.; Paša-Tolić, L.; Koppenaal, D.; Jansson, J.

    2017-12-01

    Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or how they interact and compete for metal binding. Identifying these metallo-organic species within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrix. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) from Kansas Prairie soil. Both plant and fungal chelators were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant iron acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamine, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2-57 pmol / g soil). In contrast, the fungal siderophore ferricrocine bound comparatively more trivalent Fe (9pmol / g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population.

  12. Spectroscopic properties and Judd-Ofelt theory analysis of erbium chelates.

    PubMed

    Wang, Huaishan; Qian, Guodong; Wang, Zhiyu; Wang, Minquan

    2005-11-01

    Erbium chelates including tris(acetylacetonato) erbium(III) monohydrate, tris(acetylacetonato)(1,10-phenanthroline) erbium(III) and tris(trifluoroacetylacetonato)(1,10-phenanthroline) erbium(III) are synthesized. Judd-Ofelt theory is employed on basis of the UV-Vis-NIR absorption spectra of erbium chelates dissolved in methanol. Judd-Ofelt parameters of erbium chelates are determined by a least square fitting and dealt with the chemical structure of erbium chelates. Photoluminescence characteristics of erbium chelates are investigated upon excitation at 488 nm by an Ar(+) laser. The qualitative correlation of Judd-Ofelt parameters with photoluminescence properties for erbium chelates is also discussed. It is found that larger Omega(6) value for erbium chelate is and larger photoluminescence intensity at 1.54 microm is, and Omega(2) value should contribute to the photoluminescence full width at half maximum (FWHM) at 1.54 microm. The changes of Judd-Ofelt parameters result from the introduction of the second ligand phenathroline or the substitution of electron-drawing group CF(3) in beta-diketone for erbium chelates.

  13. Gadolinium-Encapsulating Iron Oxide Nanoprobe as Activatable NMR/MRI Contrast Agent

    PubMed Central

    Santra, Santimukul; Jativa, Samuel D.; Kaittanis, Charalambos; Normand, Guillaume; Grimm, Jan; Perez, J. Manuel

    2012-01-01

    Herein we report a novel gadolinium-encapsulating iron oxide nanoparticle-based activatable NMR/MRI nanoprobe. In our design, Gd-DTPA is encapsulated within the polyacrylic acid (PAA) polymer coating of a superparamagnetic iron oxide nanoparticle (IO-PAA) yielding a composite magnetic nanoprobe (IO-PAA-Gd-DTPA) with quenched longitudinal spin-lattice magnetic relaxation (T1). Upon release of the Gd-DTPA complex from the nanoprobe's polymeric coating in acidic media, an increase in the T1 relaxation rate (1/T1) of the composite magnetic nanoprobe was observed, indicating a dequenching of the nanoprobe with a corresponding increase in the T1-weighted MRI signal. When a folate-conjugated nanoprobe was incubated in HeLa cells, a cancer cell line overexpressing folate receptors, an increase in the 1/T1 signal was observed. This result suggests that upon receptor-mediated internalization, the composite magnetic nanoprobe degraded within the cell's lysosome acidic (pH = 5.0) environment, resulting in an intracellular release of Gd-DTPA complex with subsequent T1 activation. No change in T1 was observed when the Gd-DTPA complex was chemically conjugated on the surface of the nanoparticle's polymeric coating or when encapsulated in the polymeric coating of a non-magnetic nanoparticle. These results confirmed that the observed (T1) quenching of the composite magnetic nanoprobe is due to the encapsulation and close proximity of the Gd ion to the nanoparticles superparamagnetic iron oxide (IO) core. In addition, when an anticancer drug (Taxol) was co-encapsulated with the Gd-DTPA within the folate receptor targeting composite magnetic nanoprobe, the T1 activation of the probe coincide with the rate of drug release and corresponding cytotoxic effect in cell culture studies. Taken together, these results suggest that our activatable T1 nanoagent could be of great importance for the detection of acidic tumors and assessment of drug targeting and release by MRI. PMID:22809405

  14. Various ligand-coated ultrasmall gadolinium-oxide nanoparticles: Water proton relaxivity and in-vivo T1 MR image

    NASA Astrophysics Data System (ADS)

    Park, Ja Young; Kim, Sung June; Lee, Gang Ho; Jin, Seonguk; Chang, Yongmin; Bae, Ji Eun; Chae, Kwon Seok

    2015-04-01

    Surface coating of nanoparticles with ligands is essential in magnetic resonance imaging (MRI) because of solubility in water and biocompatibility. In this study, five organic molecules were used for surface coating of ultrasmall gadolinium-oxide (Gd2O3) nanoparticles (d avg = 2.0 nm). All of the samples showed large longitudinal (r1) and transverse (r2) water proton relaxivities with r2/r1 ratios that were close to one, corresponding to ideal conditions for T1 MRI contrast agents. Finally, in-vivo T1 MR images were acquired to prove the effectiveness of the surface-coated ultrasmall Gd2O3 nanoparticles as a T1 MRI contrast agent.

  15. Chelators whose affinity for calcium is decreased by illumination

    NASA Technical Reports Server (NTRS)

    Tsien, Roger Y. (Inventor); Grynkiewicz, Grzegorz (Inventor); Minta, Akwasi (Inventor)

    1987-01-01

    The present invention discloses a group of calcium chelating compounds which have a descreased affinity for calcium following illumination. These new compounds contain a photolabile nitrobenzyl derivative coupled to a tetracarboxylate Ca.sup.2+ chelating parent compound having the octacoordinate chelating groups characteristic of EGTA or BAPTA. In a first form, the new compounds are comprised of a BAPTA-like chelator coupled to a single 2-nitrobenzyl derivative, which in turn is a photochemical precursor of a 2-nitrosobenzophenone. In a second form, the new compounds are comprised of a BAPTA-like chelator coupled to two 2-nitrobenzyl derivatives, themselves photochemical prcursors of the related 2-nitrosobenzophenones. The present invention also discloses a novel method for preparing 1-hydroxy- or 1-alkoxy-1-(2-nitroaryl)-1-aryl methanes. Methanes of this type are critical to the preparation of, or actually constitute, the photolabile Ca.sup.2+ chelating compounds disclosed and claimed herein.

  16. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, K.N.; Xu, J.

    1997-04-29

    Disclosed is a series of improved metal chelating agents, which are highly effective upon both injection and oral administration; several of the most effective are of low toxicity. These chelating agents incorporate within their structure 1-hydroxy-2-pyridinone (1,2-HOPO) and 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy or oxo groups of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with its adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provides a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity. Also disclosed is a method of making the chelating agents and a method of producing a known compound, 3-hydroxy-1-alkyl-2(1H)pyridinone, used as a precursor to the chelating agent, safely and in large quantities. 2 figs.

  17. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, Kenneth N.; Xu, Jide

    1997-01-01

    Disclosed is a series of improved metal chelating agents, which are highly effective upon both injection and oral administration; several of the most effective are of low toxicity. These chelating agents incorporate within their structure 1-hydroxy-2-pyridinone (1,2-HOPO) and 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy or oxo groups of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity of the hydroxypyridinones. In the metal complexes of said chelating agents, the amide protons form very strong hydrogen bonds with its adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provides a certain degree of lipophilicity to said 3,2-HOPO, increasing oral activity. Also disclosed is a method of making the chelating agents and a method of producing a known compound, 3-hydroxy-1-alkyl-2(1H)pyridinone, used as a precursor to the chelating agent, safely and in large quantities.

  18. Biocompatible Nanocomplexes for Molecular Targeted MRI Contrast Agent

    NASA Astrophysics Data System (ADS)

    Chen, Zhijin; Yu, Dexin; Wang, Shaojie; Zhang, Na; Ma, Chunhong; Lu, Zaijun

    2009-07-01

    Accurate diagnosis in early stage is vital for the treatment of Hepatocellular carcinoma. The aim of this study was to investigate the potential of poly lactic acid-polyethylene glycol/gadolinium-diethylenetriamine-pentaacetic acid (PLA-PEG/Gd-DTPA) nanocomplexes using as biocompatible molecular magnetic resonance imaging (MRI) contrast agent. The PLA-PEG/Gd-DTPA nanocomplexes were obtained using self-assembly nanotechnology by incubation of PLA-PEG nanoparticles and the commercial contrast agent, Gd-DTPA. The physicochemical properties of nanocomplexes were measured by atomic force microscopy and photon correlation spectroscopy. The T1-weighted MR images of the nanocomplexes were obtained in a 3.0 T clinical MR imager. The stability study was carried out in human plasma and the distribution in vivo was investigated in rats. The mean size of the PLA-PEG/Gd-DTPA nanocomplexes was 187.9 ± 2.30 nm, and the polydispersity index was 0.108, and the zeta potential was -12.36 ± 3.58 mV. The results of MRI test confirmed that the PLA-PEG/Gd-DTPA nanocomplexes possessed the ability of MRI, and the direct correlation between the MRI imaging intensities and the nano-complex concentrations was observed ( r = 0.987). The signal intensity was still stable within 2 h after incubation of the nanocomplexes in human plasma. The nanocomplexes gave much better image contrast effects and longer stagnation time than that of commercial contrast agent in rat liver. A dose of 0.04 mmol of gadolinium per kilogram of body weight was sufficient to increase the MRI imaging intensities in rat livers by five-fold compared with the commercial Gd-DTPA. PLA-PEG/Gd-DTPA nanocomplexes could be prepared easily with small particle sizes. The nanocomplexes had high plasma stability, better image contrast effect, and liver targeting property. These results indicated that the PLA-PEG/Gd-DTPA nanocomplexes might be potential as molecular targeted imaging contrast agent.

  19. Development of iron chelators for Cooley's anemia. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crosby, W.H.; Green, R.

    Iron chelators were screened in an iron-loaded rat model using selective radioiron probes. In all experiments, chelators D and F, in that order, induced significant loss of radioiron compared with controls. However, use of chelator D was associated with side effects, and resulted in the death of some animals. There was some evidence that chelator A also caused iron loss significantly greater than controls. Chelators B, C and E were without apparent enhancing effect on radioiron excretion. This was a blind study and the compounds used were A - 2,3-Dihydroxybenzoic acid; B - N,N1-Dimethyladipohydroxamic acid; C - DL-Phenylalanine hydroxamic acid;more » D - Ethylenediamine-N,N1-bis(2-hydroxphenylacetic acid); E - Propionohydroxamic acid; and F - Deferrioxamine B.« less

  20. Zn2+ chelation by serum albumin improves hexameric Zn2+-insulin dissociation into monomers after exocytosis

    PubMed Central

    Pertusa, José A. G.; León-Quinto, Trinidad; Berná, Genoveva; Tejedo, Juan R.; Hmadcha, Abdelkrim; Bedoya, Francisco J.; Soria, Bernat

    2017-01-01

    β-cells release hexameric Zn2+-insulin into the extracellular space, but monomeric Zn2+-free insulin appears to be the only biologically active form. The mechanisms implicated in dissociation of the hexamer remain unclear, but they seem to be Zn2+ concentration-dependent. In this study, we investigate the influence of albumin binding to Zn2+ on Zn2+-insulin dissociation into Zn2+-free insulin and its physiological, methodological and therapeutic relevance. Glucose and K+-induced insulin release were analyzed in isolated mouse islets by static incubation and perifusion experiments in the presence and absence of albumin and Zn2+ chelators. Insulin tolerance tests were performed in rats using different insulin solutions with and without Zn2+ and/or albumin. Albumin-free buffer does not alter quantification by RIA of Zn2+-free insulin but strongly affects RIA measurements of Zn2+-insulin. In contrast, accurate determination of Zn2+-insulin was obtained only when bovine serum albumin or Zn2+ chelators were present in the assay buffer solution. Albumin and Zn2+ chelators do not modify insulin release but do affect insulin determination. Preincubation with albumin or Zn2+ chelators promotes the conversion of “slow” Zn2+-insulin into “fast” insulin. Consequently, insulin diffusion from large islets is ameliorated in the presence of Zn2+ chelators. These observations support the notion that the Zn2+-binding properties of albumin improve the dissociation of Zn2+-insulin into subunits after exocytosis, which may be useful in insulin determination, insulin pharmacokinetic assays and islet transplantation. PMID:29099856

  1. [Rapid imaging in orbito-ocular pathology. Contribution of gadolinium].

    PubMed

    Pigeau, I; Legeais, J M; D'Hermies, F; Fayet, B; Leport, M; Abenhaim, A; Guinet, C; Levy, C; Renard, G; Vadrot, D

    1990-01-01

    To evaluate Gradient-Echo Imaging (GEI) in orbito-ocular pathology, 15 volunteers and 34 patients (40 lesions) were examined with GEA T1 and GEA T2 (0.5 T). Results were compared with SE T1 in all cases, with SE T2 in 20 cases and with other imaging modalities (CT). 30 patients were examined before and after injection of gadolinium. Final diagnosis was obtained by surgery or biopsy in 24 cases or by combined results of imaging and clinical findings in 16 cases. Compared with SE, GEA demonstrated a better visualisation of optic nerve, orbital muscles, choroidal-retinal layer, lens capsule and episclera and a better detection of small lesions. It is very helpful for characterisation of lesions containing hemorrhages or paramagnetic components (melanine, gadolinium) or of vascular nature (angioma). Gadolinium was useful for detection of small lesions or characterisation of a few lesions. Thus GEA seems to be an efficient method for the evaluation of orbito-ocular pathology.

  2. Gadolinium-Based Contrast Agents in Kidney Disease: Comprehensive Review and Clinical Practice Guideline Issued by the Canadian Association of Radiologists.

    PubMed

    Schieda, Nicola; Blaichman, Jason I; Costa, Andreu F; Glikstein, Rafael; Hurrell, Casey; James, Matthew; Jabehdar Maralani, Pejman; Shabana, Wael; Tang, An; Tsampalieros, Anne; van der Pol, Christian; Hiremath, Swapnil

    2018-05-01

    Use of gadolinium-based contrast agents (GBCAs) in renal impairment is controversial, with physician and patient apprehension in acute kidney injury (AKI), chronic kidney disease (CKD), and dialysis because of concerns regarding nephrogenic systemic fibrosis (NSF). The position that GBCAs are absolutely contraindicated in AKI, CKD stage 4 or 5 (estimated glomerular filtration rate [eGFR] <30 mL/min/1.73 m 2 ) and dialysis-dependent patients is outdated, and may limit access to clinically necessary contrast-enhanced MRI examinations. Following a comprehensive review of the literature and reported NSF cases to date, a committee of radiologists and nephrologists developed clinical practice guidelines to assist physicians in making decisions regarding GBCA administrations. In patients with mild-to-moderate CKD (eGFR ≥30 and <60 mL/min/1.73 m 2 ), administration of standard doses of GBCA is safe and no additional precautions are necessary. In patients with AKI, with severe CKD (eGFR <30 mL/min/1.73 m 2 ), or on dialysis, administration of GBCAs should be considered individually and alternative imaging modalities utilized whenever possible. If GBCAs are necessary, newer GBCAs may be administered with patient consent obtained by a physician (or their delegate), citing an exceedingly low risk (much less than 1%) of developing NSF. Standard GBCA dosing should be used; half or quarter dosing is not recommended and repeat injections should be avoided. Dialysis-dependent patients should receive dialysis; however, initiating dialysis or switching from peritoneal to hemodialysis to reduce the risk of NSF is unproven. Use of a macrocyclic ionic instead of macrocyclic nonionic GBCA or macrocyclic instead of newer linear GBCA to further prevent NSF is unproven. Gadopentetate dimeglumine, gadodiamide, and gadoversetamide remain absolutely contraindicated in patients with AKI, with stage 4 or 5 CKD, or on dialysis. The panel agreed that screening for renal disease is

  3. Effect of injection rate on contrast-enhanced MR angiography image quality: Modulation transfer function analysis.

    PubMed

    Clark, Toshimasa J; Wilson, Gregory J; Maki, Jeffrey H

    2017-07-01

    Contrast-enhanced (CE)-MRA optimization involves interactions of sequence duration, bolus timing, contrast recirculation, and both R 1 relaxivity and R2*-related reduction of signal. Prior data suggest superior image quality with slower gadolinium injection rates than typically used. A computer-based model of CE-MRA was developed, with contrast injection, physiologic, and image acquisition parameters varied over a wide gamut. Gadolinium concentration was derived using Verhoeven's model with recirculation, R 1 and R2* calculated at each time point, and modulation transfer curves used to determine injection rates, resulting in optimal resolution and image contrast for renal and carotid artery CE-MRA. Validation was via a vessel stenosis phantom and example patients who underwent carotid CE-MRA with low effective injection rates. Optimal resolution for renal and carotid CE-MRA is achieved with injection rates between 0.5 to 0.9 mL/s and 0.2 to 0.3 mL/s, respectively, dependent on contrast volume. Optimal image contrast requires slightly faster injection rates. Expected signal-to-noise ratio varies with both contrast volume and cardiac output. Simulated vessel phantom and clinical carotid CE-MRA exams at an effective contrast injection rate of 0.4 to 0.5 mL/s demonstrate increased resolution. Optimal image resolution is achieved at intuitively low, effective injection rates (0.2-0.9 mL/s, dependent on imaging parameters and contrast injection volume). Magn Reson Med 78:357-369, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  4. Feasibility and accuracy of dual-layer spectral detector computed tomography for quantification of gadolinium: a phantom study.

    PubMed

    van Hamersvelt, Robbert W; Willemink, Martin J; de Jong, Pim A; Milles, Julien; Vlassenbroek, Alain; Schilham, Arnold M R; Leiner, Tim

    2017-09-01

    The aim of this study was to evaluate the feasibility and accuracy of dual-layer spectral detector CT (SDCT) for the quantification of clinically encountered gadolinium concentrations. The cardiac chamber of an anthropomorphic thoracic phantom was equipped with 14 tubular inserts containing different gadolinium concentrations, ranging from 0 to 26.3 mg/mL (0.0, 0.1, 0.2, 0.4, 0.5, 1.0, 2.0, 3.0, 4.0, 5.1, 10.6, 15.7, 20.7 and 26.3 mg/mL). Images were acquired using a novel 64-detector row SDCT system at 120 and 140 kVp. Acquisitions were repeated five times to assess reproducibility. Regions of interest (ROIs) were drawn on three slices per insert. A spectral plot was extracted for every ROI and mean attenuation profiles were fitted to known attenuation profiles of water and pure gadolinium using in-house-developed software to calculate gadolinium concentrations. At both 120 and 140 kVp, excellent correlations between scan repetitions and true and measured gadolinium concentrations were found (R > 0.99, P < 0.001; ICCs > 0.99, CI 0.99-1.00). Relative mean measurement errors stayed below 10% down to 2.0 mg/mL true gadolinium concentration at 120 kVp and below 5% down to 1.0 mg/mL true gadolinium concentration at 140 kVp. SDCT allows for accurate quantification of gadolinium at both 120 and 140 kVp. Lowest measurement errors were found for 140 kVp acquisitions. • Gadolinium quantification may be useful in patients with contraindication to iodine. • Dual-layer spectral detector CT allows for overall accurate quantification of gadolinium. • Interscan variability of gadolinium quantification using SDCT material decomposition is excellent.

  5. Gd³⁺ Tethered Gold Nanorods for Combined Magnetic Resonance Imaging and Photo-Thermal Therapy.

    PubMed

    Pitchaimani, Arunkumar; Duong, Tuyen; Nguyen, Thanh; Maurmann, Leila; Key, Jaehong; Bossmann, Stefan H; Aryal, Santosh

    2017-04-01

    Near infrared (NIR) mediated photothermal therapy and magnetic resonance imaging (MRI) are promising treatment and imaging modalities in the field of cancer theranostics. Gold nanorods are the first choice of materials for NIR-mediated photothermal therapy due to their strong localized surface plasmon resonance (LSPR) at NIR region. Similarly, gadolinium based MRI contrast agents have an ability to increase the ionic and molecular relaxivity, thereby enhancing the solvent proton relaxation rate resulting in contrast enhancement. Herein, the effort has been made to engineer a dual front theranostic agent with combined photothermal and magnetic resonance imaging capacity using gadolinium tethered gold nanorods (Gd3+-AuNR). NIR-responsive gold nanorods were surface fabricated by means of Au-thiol interaction using a thiolated macrocyclic chelator that chelates Gd3+ ions, and further stabilized by thiolated polyethylene glycol (PEG-SH). The magnetic properties of the Gd3+-AuNR displayed an enhanced r 1 relaxivity of 12.1 mM–1s–1, with higher biological stability, and contrast enhancement in both solution state and in cell pellets. In-vitro (cell-free) and ex-vivo (on pig skin) analysis of the Gd3+-AuNR shows enhanced photothermal properties as equivalent to that of the raw AuNR. Furthermore, Gd3+-AuNR showed competent cellular entry and intracellular distribution as revealed by hyperspectral microscopy. In addition, Gd3+-AuNR also exhibits significant thermal ablation of B16–F10 cells in the presence of NIR. Thus, Gd3+-AuNR features a significant theranostic potential with combined photothermal and imaging modality, suggesting a great potential in anticancer therapy.

  6. Contrast media use in the operating room.

    PubMed

    Bickham, Peggy; Golembiewski, Julie

    2010-04-01

    Iodinated contrast media is frequently used in the OR, but often is not well understood by health care providers who are administering it. Although used for diagnosis rather than treatment, contrast media is classified as a drug by the FDA, and has indications, contraindications, adverse effects, drug interactions, disease interactions, and laboratory interference issues related to its use. Iodinated contrast media is classified according to osmolarity and ionicity, and these characteristics contribute to potential for adverse effects and choice of agent. Financial and safety concerns are factors to be considered when selecting an appropriate agent. Adverse effects can range from mild and self-limited to severe and life threatening; potentially the most serious of these are anaphylactoid reactions and contrast-induced acute renal failure. Knowledge of risk factors and preventive strategies is vital, as are issues related to substitution of gadolinium-based contrast, an off-label use. It is important for the perianesthesia nurse to become familiar with these commonly used imaging medications. Copyright 2010 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  7. Micronutrient metal speciation is controlled by competitive organic chelation in grassland soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boiteau, Rene M.; Shaw, Jared B.; Pasa-Tolic, Ljiljana

    Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or howmore » they interact and compete for metal binding. Identifying these metallo-organic species within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrix. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) from Kansas Prairie soil. Both plant and fungal chelators were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant iron acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamine, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2-57 pmol / g soil). In contrast, the fungal siderophore ferricrocine bound comparatively more trivalent Fe (9pmol / g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population. Even small structural

  8. Metal regeneration of iron chelates in nitric oxide scrubbing

    DOEpatents

    Chang, S.G.; Littlejohn, D.; Shi, Y.

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH{sub 3}. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: (a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20 and 90 C to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution. 34 figs.

  9. Metal regeneration of iron chelates in nitric oxide scrubbing

    DOEpatents

    Chang, Shih-Ger; Littlejohn, David; Shi, Yao

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH.sub.3. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20.degree. and 90.degree. C. to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution.

  10. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, K.; Xu, J.

    1999-04-06

    Disclosed is a series of improved chelating agents and the chelates formed from these agents, which are highly effective upon both injection and oral administration. Several of the most effective are of low toxicity. These chelating agents incorporate within their structure 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy group of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity, as well as the chemical stability towards oxidation and reduction, of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with the adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provide a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity. 2 figs.

  11. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, Kenneth; Xu, Jide

    1999-01-01

    Disclosed is a series of improved chelating agents and the chelates formed from these agents, which are highly effective upon both injection and oral administration. Several of the most effective are of low toxicity. These chelating agents incorporate within their structure 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy group of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity, as well as the chemical stability towards oxidation and reduction, of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with the adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provide a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity.

  12. Histology and Gadolinium Distribution in the Rodent Brain After the Administration of Cumulative High Doses of Linear and Macrocyclic Gadolinium-Based Contrast Agents

    PubMed Central

    Lohrke, Jessica; Frisk, Anna-Lena; Frenzel, Thomas; Schöckel, Laura; Rosenbruch, Martin; Jost, Gregor; Lenhard, Diana Constanze; Sieber, Martin A.; Nischwitz, Volker; Küppers, Astrid; Pietsch, Hubertus

    2017-01-01

    Objectives Retrospective studies in patients with primary brain tumors or other central nervous system pathologies as well as postmortem studies have suggested that gadolinium (Gd) deposition occurs in the dentate nucleus (DN) and globus pallidus (GP) after multiple administrations of primarily linear Gd-based contrast agents (GBCAs). However, this deposition has not been associated with any adverse effects or histopathological alterations. The aim of this preclinical study was to systematically examine differences between linear and macrocyclic GBCAs in their potential to induce changes in brain and skin histology including Gd distribution in high spatial resolution. Materials and Methods Fifty male Wistar-Han rats were randomly allocated into control (saline, n = 10 rats) and 4 GBCA groups (linear GBCAs: gadodiamide and gadopentetate dimeglumine, macrocyclic GBCAs: gadobutrol and gadoteridol; n = 10 rats per group). The animals received 20 daily intravenous injections at a dose of 2.5 mmol Gd/kg body weight. Eight weeks after the last GBCA administration, the animals were killed, and the brain and skin samples were histopathologically assessed (hematoxylin and eosin; cresyl violet [Nissl]) and by immunohistochemistry. The Gd concentration in the skin, bone, brain, and skeletal muscle samples were analyzed using inductively coupled plasma mass spectroscopy (ICP-MS, n = 4). The spatial Gd distribution in the brain and skin samples was analyzed in cryosections using laser ablation coupled with ICP-MS (LA-ICP-MS, n = 3). For the ultra-high resolution of Gd distribution, brain sections of rats injected with gadodiamide or saline (n = 1) were assessed by scanning electron microscopy coupled to energy dispersive x-ray spectroscopy and transmission electron microscopy, respectively. Results No histological changes were observed in the brain. In contrast, 4 of 10 animals in the gadodiamide group but none of the animals in other groups showed macroscopic and histological

  13. Gadolinium-Based Contrast Agent Extravasation Mimicking Subarachnoid Hemorrhage After Electroconvulsive Therapy.

    PubMed

    Taydas, Onur; Ogul, Hayri; Ozcan, Halil; Kantarci, Mecit

    2018-06-01

    Electroconvulsive therapy (ECT) is a safe method that has been applied for many years in medical treatment-resistant depression treatment. In this case report, contrast extravasation due to deterioration of the blood-brain barrier after ECT mimicking subarachnoid hemorrhage (SAH) on magnetic resonance imaging (MRI) is discussed. A 70-year-old male patient who underwent ECT presented with sulcal hyperintensities suggesting subarachnoid hemorrhage on fluid-attenuated inversion recovery sequence of MRI obtained after ECT. However, there was no evidence to suggest SAH on nonenhanced brain computed tomography. It should be kept in mind that patients may have contrast extravasation due to deterioration of the blood-brain barrier after ECT, and other alternative methods should be used for the diagnosis of SAH in these patients, not MRI. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Novel hexadentate and pentadentate chelators for 64Cu-based targeted PET imaging

    PubMed Central

    Sin, Inseok; Kang, Chisoo; Bandara, Nilantha; Sun, Xiang; Zhong, Yongliang; Rogers, Buck E.; Chong, Hyun-Soon

    2014-01-01

    A series of new hexadentate and pentadentate chelators were designed and synthesized as chelators of 64Cu. The new pentadentate and hexadentate chelators contain different types of donor groups and are expected to form neutral complexes with Cu(II). The new chelators were evaluated for complex kinetics and stability with 64Cu. The new chelators instantly bound to 64Cu with high labeling efficiency and maximum specific activity. All 64Cu-radiolabeled complexes in human serum remained intact for 2 days. The 64Cu-radiolabeled complexes were further challenged by EDTA in a 100-fold molar excess. Among the 64Cu-radiolabeled complexes evaluated, 64Cu-complex of the new chelator E was well tolerated with a minimal transfer of 64Cu to EDTA. 64Cu-radiolabeled complex of the new chelator E was further evaluated for biodistribution studies using mice and displayed rapid blood clearance and low organ uptake. 64Cu-chelator E produced a favorable in vitro and in vivo complex stability profiles comparable to 64Cu complex of the known hexadentate NOTA chelator. The in vitro and in vivo data highlight strong potential of the new chelator E for targeted PET imaging application. PMID:24657050

  15. Carboxylate-containing chelating agent interactions with amorphous chromium hydroxide: Adsorption and dissolution

    NASA Astrophysics Data System (ADS)

    Carbonaro, Richard F.; Gray, Benjamin N.; Whitehead, Charles F.; Stone, Alan T.

    2008-07-01

    Anthropogenic chelating agents and biological chelating agents produced by indigenous organisms may dissolve Cr III (hydr)oxides in soils and sediments. The resulting dissolved Cr III-chelating agent complexes are more readily transported through porous media, thereby spreading contamination. With this work, we examine chelating agent-assisted dissolution of amorphous chromium hydroxide (ACH) by the (amino)carboxylate chelating agents iminodiacetic acid (IDA), nitrilotriacetic acid (NTA), tricarballylic acid (TCA), citric acid (CIT), ethylenediaminetetraacetic acid (EDTA), trans-1,2-cyclohexanediaminetetraacetic acid (CDTA), and trimethylenediaminetetraacetic acid (TMDTA). The extent of chelating agent adsorption onto ACH increased quickly over the first few hours, and then increased more gradually until a constant extent was attained. The extent of chelating agent adsorption versus pH followed "ligand-like" behavior. All chelating agents with the exception of TCA and IDA effectively dissolved significant amounts of ACH within 10 days from pH 4.0 to 9.4. IDA dissolved ACH below pH 6.5 and above pH 7.5. Rates of ACH dissolution normalized to the extent of chelating agent adsorption were pH dependent. IDA, NTA, CIT, and CDTA exhibited an increase in normalized dissolution rate with decreasing pH. EDTA and TMDTA exhibited a maximum in normalized dissolution rate near pH 8.5. Use of acetic acid as a pH buffer in experiments decreased the extent of chelating agent adsorption for IDA, NTA, and CIT but increased normalized rates of chelating agent-assisted dissolution for all chelating agents except EDTA. The results from this study provide the necessary information to calculate the extents and time scales of ACH dissolution in the presence of (amino)carboxylate chelating agents.

  16. Glyphosate, a chelating agent-relevant for ecological risk assessment?

    PubMed

    Mertens, Martha; Höss, Sebastian; Neumann, Günter; Afzal, Joshua; Reichenbecher, Wolfram

    2018-02-01

    Glyphosate-based herbicides (GBHs), consisting of glyphosate and formulants, are the most frequently applied herbicides worldwide. The declared active ingredient glyphosate does not only inhibit the EPSPS but is also a chelating agent that binds macro- and micronutrients, essential for many plant processes and pathogen resistance. GBH treatment may thus impede uptake and availability of macro- and micronutrients in plants. The present study investigated whether this characteristic of glyphosate could contribute to adverse effects of GBH application in the environment and to human health. According to the results, it has not been fully elucidated whether the chelating activity of glyphosate contributes to the toxic effects on plants and potentially on plant-microorganism interactions, e.g., nitrogen fixation of leguminous plants. It is also still open whether the chelating property of glyphosate is involved in the toxic effects on organisms other than plants, described in many papers. By changing the availability of essential as well as toxic metals that are bound to soil particles, the herbicide might also impact soil life, although the occurrence of natural chelators with considerably higher chelating potentials makes an additional impact of glyphosate for most metals less likely. Further research should elucidate the role of glyphosate (and GBH) as a chelator, in particular, as this is a non-specific property potentially affecting many organisms and processes. In the process of reevaluation of glyphosate its chelating activity has hardly been discussed.

  17. Chelation therapy to prevent diabetes-associated cardiovascular events.

    PubMed

    Diaz, Denisse; Fonseca, Vivian; Aude, Yamil W; Lamas, Gervasio A

    2018-05-24

    For over 60 years, chelation therapy with disodium ethylene diamine tetraacetic acid (EDTA, edetate) had been used for the treatment of cardiovascular disease (CVD) despite lack of scientific evidence for efficacy and safety. The Trial to Assess Chelation Therapy (TACT) was developed and received funding from the National Institutes of Health (NIH) to ascertain the safety and efficacy of chelation therapy in patients with CVD. This pivotal trial demonstrated an improvement in outcomes in postmyocardial infarction (MI) patients. Interestingly, it also showed a particularly large reduction in CVD events and all-cause mortality in the prespecified subgroup of patients with diabetes. The TACT results may support the concept of metal chelation to reduce metal-catalyzed oxidation reactions that promote the formation of advanced glycation end products, a precursor of diabetic atherosclerosis. In this review, we summarize the epidemiological and basic evidence linking toxic metal accumulation and diabetes-related CVD, supported by the salutary effects of chelation in TACT. If the ongoing NIH-funded TACT2, in diabetic post-MI patients, proves positive, this unique therapy will enter the armamentarium of endocrinologists and cardiologists seeking to reduce the atherosclerotic risk of their diabetic patients.

  18. Quantification and Assessment of the Chemical Form of Residual Gadolinium in the Brain After Repeated Administration of Gadolinium-Based Contrast Agents

    PubMed Central

    Frenzel, Thomas; Apte, Chirag; Jost, Gregor; Schöckel, Laura; Lohrke, Jessica; Pietsch, Hubertus

    2017-01-01

    Objective Multiple clinical and preclinical studies have reported a signal intensity increase and the presence of gadolinium (Gd) in the brain after repeated administration of Gd-based contrast agents (GBCAs). This bioanalytical study in rat brain tissue was initiated to investigate whether the residual Gd is present as intact GBCA or in other chemical forms by using tissue fractionation and chromatography. Materials and Methods Rats were divided randomly in 6 groups of 10 animals each. They received 10 daily injections of 2.5 mmol/kg bodyweight of 1 of 5 different GBCAs: linear GBCAs such as gadodiamide (Omniscan; GE Healthcare), gadopentetate dimeglumine (Gd-DTPA, Magnevist; Bayer), or gadobenate dimeglumine (Multihance; Bracco) and macrocyclic GBCAs such as gadobutrol (Gadovist; Bayer) and gadoterate meglumine (Gd-DOTA, Dotarem; Guerbet) or saline. On days 3 and 24 after the last injection (p.i.), 5 randomly chosen animals of each group were killed by exsanguination, and their brains were excised and divided into cerebrum, pons, and cerebellum. The brain sections were homogenized by sonication in ice-cold buffer at pH 7.4. Soluble and insoluble fractions were separated by centrifugation, and the soluble fractions were further separated by gel permeation chromatography (GPC). The Gd concentration in all tissue fractions and in the GPC eluate was measured by inductively coupled plasma–mass spectrometry. In a recovery control experiment, all GBCAs were spiked to blank brain tissue and more than 94% recovery of Gd in the tissue fractions was demonstrated. Results Only traces of the administered Gd were found in the rat brain tissue on day 3 and day 24 p.i. In the animals treated with macrocyclic GBCAs, Gd was found only in the soluble brain fraction and was present solely as low molecular weight molecules, most likely the intact GBCA. In the animals treated with linear GBCAs Gd was found to a large extent in the insoluble tissue fraction. The Gd concentration in

  19. Method of separating and purifying gadolinium-153

    DOEpatents

    Bray, Lane A [Richland, WA; Corneillie, Todd M [Davis, CA

    2001-01-01

    The present invention is an improvement to the method of separating and purifying gadolinium from a mixture of gadolinium and europium having the steps of (a) dissolving the mixture in an acid; (b) reducing europium+3 to europium+2; and (c) precipitating the europium+2 with a sulfate ion in a superstoichiometric amount; wherein the improvement is achieved by using one or more of the following: (i) the acid is an anoic acid; (ii) the reducing is with zinc metal in the absence of a second metal or with an amount of the second metal that is ineffective in the reducing; (iii) adding a group IIA element after step (c) for precipitating the excess sulfate prior to repeating step (c); (iv) the sulfate is a sulfate salt with a monovalent cation; (v) adding cold europium+3 prior to repeating step (c).

  20. The Effect of Different Tea Varieties on Iron Chelation

    NASA Astrophysics Data System (ADS)

    Truong, S. K.; Karim, R.

    2016-12-01

    The chief objectives of this experiment are to distinguish which type of tea of four variants, pomegranate blackberry green, green, lemon chamomile (herbal), and earl grey (black), are capable of chelating the most iron (III) chloride (FeCl3) through titration. We hypothesized that if each tea variety chelates differing amounts of iron chloride, and if we conduct an experiment in which four different teas are mixed in the same amount of water, iron chloride, and iron chloride indicator EDTA, then the pomegranate blackberry green tea will bind to the most iron due to its large amount of fruit antioxidants. To summarize our methodology, we prepared three solutions of each tea, dissolved with 1 gram of FeCl3 to test three trials per tea variety. The chelation process took place overnight as teas cooled. Six drops of iron chloride indicator added to each solution began the titration. The necessary amount of 0.1M EDTA (ethylenediaminetetraacetic acid) drops required for each solution to turn to a universal amber color from its original dark tone indicates how many free iron molecules were left unbound by the tea solution. After careful analysis of the data, we discovered that blackberry pomegranate green tea possessed the best chelating abilities with 97.48% of FeCl3 adsorbed. Green tea followed with 96.67%. Herbal tea chelated 94.24% of the iron while earl grey absorbed the least amount at 93.43%. From our conclusion, we drew that since blackberry pomegranate green tea contained the highest amount of polyphenols and antioxidants as well as epigallocatechin gallate (EGCG) found in green teas, it was able to chelate the most amount of iron. The substances mentioned in blackberry pomegranate green tea possess the ability to form strong bonds with multiple heavy metals, such as iron (III) chloride atoms. Overall, each variety of tea contains different organic substances. Each of these substances possesses a unique chelating ability, determining how well the type of tea can

  1. Primed infusion with delayed equilibrium of Gd.DTPA for enhanced imaging of small pulmonary metastases.

    PubMed

    Kalber, Tammy L; Campbell-Washburn, Adrienne E; Siow, Bernard M; Sage, Elizabeth; Price, Anthony N; Ordidge, Katherine L; Walker-Samuel, Simon; Janes, Sam M; Lythgoe, Mark F

    2013-01-01

    To use primed infusions of the magnetic resonance imaging (MRI) contrast agent Gd.DTPA (Magnevist), to achieve an equilibrium between blood and tissue (eqMRI). This may increase tumor Gd concentrations as a novel cancer imaging methodology for the enhancement of small tumor nodules within the low signal-to-noise background of the lung. A primed infusion with a delay before equilibrium (eqMRI) of the Gd(III) chelator Gd.DTPA, via the intraperitoneal route, was used to evaluate gadolinium tumor enhancement as a function of a bolus injection, which is applied routinely in the clinic, compared to gadolinium maintained at equilibrium. A double gated (respiration and cardiac) spin-echo sequence at 9.4T was used to evaluate whole lungs pre contrast and then at 15 (representative of bolus enhancement), 25 and 35 minutes (representative of eqMRI). This was carried out in two lung metastasis models representative of high and low tumor cell seeding. Lungs containing discrete tumor nodes where inflation fixed and taken for haematoxylin and eosin staining as well as CD34 staining for correlation to MRI. We demonstrate that sustained Gd enhancement, afforded by Gd equilibrium, increases the detection of pulmonary metastases compared to bolus enhancement and those tumors which enhance at equilibrium are sub-millimetre in size (<0.7 mm(2)) with a similar morphology to early bronchoalveolar cell carcinomas. As Gd-chelates are routinely used in the clinic for detecting tumors by MRI, this methodology is readily transferable to the clinic and advances MRI as a methodology for the detection of small pulmonary tumors.

  2. Metal chelate process to remove pollutants from fluids

    DOEpatents

    Chang, Shih-Ger T.

    1994-01-01

    The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO.sub.x and optionally SO.sub.2 from a fluid using a metal ion (Fe.sup.2+) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC' is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution.

  3. Metal chelate process to remove pollutants from fluids

    DOEpatents

    Chang, S.G.T.

    1994-12-06

    The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO[sub x] and optionally SO[sub 2] from a fluid using a metal ion (Fe[sup 2+]) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution. 26 figures.

  4. Magnetic resonance imaging with gadolinium arthrography to assess acetabular cartilage delamination.

    PubMed

    Zaragoza, Edward; Lattanzio, Pierre-Jean; Beaule, Paul E

    2009-01-01

    Recent reports have demonstrated magnetic resonance imaging (MRI) as a promising technique in detecting articular cartilage lesions of the hip joint. The purpose of our study was to evaluate the diagnostic performance of MRI with gadolinium arthrography in detecting acetabular cartilage delamination in patients with pre-arthritic hip pain. 46 patients (48 hips) underwent surgical dislocation of the hip. Mean age was 38.8 (range 17-56). There were 26 males and 20 females. All patients had Magnetic Resonance Imaging with gadolinium arthrography (MRA) before undergoing open hip surgery where the acetabular cartilage was inspected. Acetabular cartilage delamination on MRA was seen on sagittal images as a linear intra-articular filling defect of low signal intensity >1mm in thickness on T1 weighted images and surrounded by contrast. On MRA all hips had a labral tear confirmed at surgery. At surgery 30 hips had evidence of acetabular cartilage delamination, 4 hips had ulceration and 14 had no articular cartilage damage. The majority of labral tears and cartilage damage were located in the antero-superior quadrant. The sensitivity and specificity of MRA detection of cartilage delamination confirmed at surgery were 97% and 84%, respectively. The positive and negative predictive values of the MRA finding were 90% and 94%, respectively. The presence of the acetabular cartilage delamination represents an early stage of articular cartilage degeneration. When evaluating a young adult with hip pain, labral tears in association with cartilage delamination should be considered. MRA represents an effective diagnostic tool.

  5. High contrast computed tomography with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Itai, Yuji; Takeda, Tohoru; Akatsuka, Takao; Maeda, Tomokazu; Hyodo, Kazuyuki; Uchida, Akira; Yuasa, Tetsuya; Kazama, Masahiro; Wu, Jin; Ando, Masami

    1995-02-01

    This article describes a new monochromatic x-ray CT system using synchrotron radiation with applications in biomedical diagnosis which is currently under development. The system is designed to provide clear images and to detect contrast materials at low concentration for the quantitative functional evaluation of organs in correspondence with their anatomical structures. In this system, with x-ray energy changing from 30 to 52 keV, images can be obtained to detect various contrast materials (iodine, barium, and gadolinium), and K-edge energy subtraction is applied. Herein, the features of the new system designed to enhance the advantages of SR are reported. With the introduction of a double-crystal monochromator, the high-order x-ray contamination is eliminated. The newly designed CCD detector with a wide dynamic range of 60 000:1 has a spatial resolution of 200 μm. The resulting image quality, which is expected to show improved contrast and spatial resolution, is currently under investigation.

  6. Caspase-responsive smart gadolinium-based contrast agent for magnetic resonance imaging of drug-induced apoptosis.

    PubMed

    Ye, Deju; Shuhendler, Adam J; Pandit, Prachi; Brewer, Kimberly D; Tee, Sui Seng; Cui, Lina; Tikhomirov, Grigory; Rutt, Brian; Rao, Jianghong

    2014-10-01

    Non-invasive detection of caspase-3/7 activity in vivo has provided invaluable predictive information regarding tumor therapeutic efficacy and anti-tumor drug selection. Although a number of caspase-3/7 targeted fluorescence and positron emission tomography (PET) imaging probes have been developed, there is still a lack of gadolinium (Gd)-based magnetic resonance imaging (MRI) probes that enable high spatial resolution detection of caspase-3/7 activity in vivo . Here we employ a self-assembly approach and develop a caspase-3/7 activatable Gd-based MRI probe for monitoring tumor apoptosis in mice. Upon reduction and caspase-3/7 activation, the caspase-sensitive nano-aggregation MR probe (C-SNAM: 1 ) undergoes biocompatible intramolecular cyclization and subsequent self-assembly into Gd-nanoparticles (GdNPs). This results in enhanced r 1 relaxivity-19.0 (post-activation) vs. 10.2 mM -1 s -1 (pre-activation) at 1 T in solution-and prolonged accumulation in chemotherapy-induced apoptotic cells and tumors that express active caspase-3/7. We demonstrate that C-SNAM reports caspase-3/7 activity by generating a significantly brighter T 1 -weighted MR signal compared to non-treated tumors following intravenous administration of C-SNAM, providing great potential for high-resolution imaging of tumor apoptosis in vivo .

  7. Supercritical Fluid Extraction of Metal Chelate: A Review.

    PubMed

    Ding, Xin; Liu, Qinli; Hou, Xiongpo; Fang, Tao

    2017-03-04

    Supercritical fluid extraction (SFE), as a new green extraction technology, has been used in extracting various metal species. The solubilities of chelating agents and corresponding metal chelates are the key factors which influence the efficiency of SFE. Other main properties of them such as stability and selectivity are also reviewed. The extraction mechanisms of mainly used chelating agents are explained by typical examples in this paper. This is the important aspect of SFE of metal ions. Moreover, the extraction efficiencies of metal species also depend on other factors such as temperature, pressure, extraction time and matrix effect. The two main complexation methods namely in-situ and on-line chelating SFE are described in detail. As an efficient chelating agent, tributyl phosphate-nitric acid (TBP-HNO 3 ) complex attracts much attention. The SFE of metal ions, lanthanides and actinides as well as organometallic compounds are also summarized. With the proper selection of ligands, high efficient extraction of metal species can be obtained. As an efficient sample analysis method, supercritical fluid chromatography (SFC) is introduced in this paper. Recently, the extraction method combining ionic liquids (ILs) with supercritical fluid has been becoming a novel technology for treating metal ions. The kinetics related to SFE of metal species is discussed with some specific examples.

  8. MRI contrast agent for targeting glioma: interleukin-13 labeled liposome encapsulating gadolinium-DTPA

    PubMed Central

    Liu, Xiaoli; Madhankumar, Achuthamangalam B.; Miller, Patti A.; Duck, Kari A.; Hafenstein, Susan; Rizk, Elias; Slagle-Webb, Becky; Sheehan, Jonas M.; Connor, James R.; Yang, Qing X.

    2016-01-01

    Background Detection of glioma with MRI contrast agent is limited to cases in which the blood-brain barrier (BBB) is compromised as contrast agents cannot cross the BBB. Thus, an early-stage infiltrating tumor is not detectable. Interleukin-13 receptor alpha 2 (IL-13Rα2), which has been shown to be overexpressed in glioma, can be used as a target moiety. We hypothesized that liposomes conjugated with IL-13 and encapsulating MRI contrast agent are capable of passing through an intact BBB and producing MRI contrast with greater sensitivity. Methods The targeted MRI contrast agent was created by encapsulating Magnevist (Gd-DTPA) into liposomes conjugated with IL-13 and characterized by particle size distribution, cytotoxicity, and MRI relaxivity. MR image intensity was evaluated in the brain in normal mice post injection of Gd-DTPA and IL-13-liposome-Gd-DTPA one day apart. The specificity for glioma detection by IL-13-liposome-Gd-DTPA was demonstrated in an intracranial glioma mouse model and validated histologically. Results The average size of IL-13-liposome-Gd-DTPA was 137 ± 43 nm with relaxivity of 4.0 ± 0.4 L/mmole-s at 7 Tesla. No significant cytotoxicity was observed with MTS assay and serum chemistry in mice. The MRI signal intensity was enhanced up to 15% post injection of IL-13-liposome-Gd-DTPA in normal brain tissue following a similar time course as that for the pituitary gland outside of the BBB. MRI enhanced by IL-13-liposome-Gd-DTPA detected small tumor masses in addition to those seen with Magnevist-enhanced MRI. Conclusions IL-13-liposome-Gd-DTPA is able to pass through the uncompromised BBB and detect an early stage glioma that cannot be seen with conventional contrast-enhanced MRI. PMID:26519740

  9. Gadolinium: Central Metal of the Lanthanoids

    ERIC Educational Resources Information Center

    Laing, Michael

    2009-01-01

    The physical and chemical properties of gadolinium are compared with those of the other lanthanoids. Some properties are intermediate between those of lanthanum and lutetium; some between those of barium and hafnium; and others (unexpectedly) between those of ytterbium and lutetium. Both the remarkably high molar heat capacity of the metal and the…

  10. Intravenous Imaging Contrast Media Complications: The Basics That Every Clinician Needs to Know.

    PubMed

    Rose, Trevor A; Choi, Jung W

    2015-09-01

    Intravenous contrast is commonly used in noninvasive imaging procedures such as magnetic resonance imaging and computed tomography and can evaluate blood vessels and better characterize soft-tissue lesions. Although the incidence of adverse events after administration of contrast is low, it is important that clinicians and radiologists minimize risks and respond quickly and effectively when reactions occur. We will discuss a range of adverse events to iodinated and gadolinium-based contrast agents, including allergic-like reactions, nephrotoxicity, extravasation, and nephrogenic systemic fibrosis. We will review risk stratification for patients, as well as premedication and treatment of adverse events. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Comparison of macrocyclic and acyclic chelators for gallium-68 radiolabelling.

    PubMed

    Tsionou, Maria Iris; Knapp, Caroline E; Foley, Calum A; Munteanu, Catherine R; Cakebread, Andrew; Imberti, Cinzia; Eykyn, Thomas R; Young, Jennifer D; Paterson, Brett M; Blower, Philip J; Ma, Michelle T

    2017-10-24

    Gallium-68 ( 68 Ga) is a positron-emitting isotope used for clinical PET imaging of peptide receptor expression. 68 Ga radiopharmaceuticals used in molecular PET imaging consist of disease-targeting biomolecules tethered to chelators that complex 68 Ga 3+ . Ideally, the chelator will rapidly, quantitatively and stably coordinate 68 Ga 3+ at room temperature, near neutral pH and low chelator concentration, allowing for simple routine radiopharmaceutical formulation. Identification of chelators that fulfil these requirements will facilitate development of kit-based 68 Ga radiopharmaceuticals. Herein the reaction of a range of widely used macrocyclic and acyclic chelators with 68 Ga 3+ is reported. Radiochemical yields have been measured under conditions of varying chelator concentrations, pH (3.5 and 6.5) and temperature (25 and 90 °C). These chelators are: 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA), 1,4,7-triazacyclononane macrocycles substituted with phosphonic (NOTP) and phosphinic (TRAP) groups at the amine, bis(2-hydroxybenzyl)ethylenediaminediacetic acid (HBED), a tris(hydroxypyridinone) containing three 1,6-dimethyl-3-hydroxypyridin-4-one groups (THP) and the hexadentate tris(hydroxamate) siderophore desferrioxamine-B (DFO). Competition studies have also been undertaken to assess relative complexation efficiencies of each chelator for 68 Ga 3+ under different pH and temperature conditions. Performing radiolabelling reactions at pH 6.5, 25 °C and 5-50 μM chelator concentration resulted in near quantitative radiochemical yields for all chelators, except DOTA. Radiochemical yields either decreased or were not substantially improved when the reactions were undertaken at lower pH or at higher temperature, except in the case of DOTA. THP and DFO were the most effective 68 Ga 3+ chelators at near-neutral pH and 25 °C, rapidly providing near-quantitative radiochemical yields at very low

  12. Fabrication and evaluation of tumor-targeted positive MRI contrast agent based on ultrasmall MnO nanoparticles.

    PubMed

    Huang, Haitao; Yue, Tao; Xu, Ke; Golzarian, Jafar; Yu, Jiahui; Huang, Jin

    2015-07-01

    Gd(III) chelate is currently used as positive magnetic resonance imaging (MRI) contrast agent in clinical diagnosis, but generally induces the risk of nephrogenic systemic fibrosis (NSF) due to the dissociated Gd(3+) from Gd(III) chelates. To develop a novel positive MRI contrast agent with low toxicity and high sensitivity, ultrasmall MnO nanoparticles were PEGylated via catechol-Mn chelation and conjugated with cRGD as active targeting function to tumor. Particularly, the MnO nanoparticles with a size of ca. 5nm were modified by α,β-poly(aspartic acid)-based graft polymer containing PEG and DOPA moieties and, meanwhile, conjugated with cRGD to produce the contrast agent with a size of ca. 100nm and a longitudinal relaxivity (r1) of 10.2mM(-1)S(-1). Such nanoscaled contrast agent integrated passive- and active-targeting function to tumor, and its efficient accumulation behavior in tumor was verified by in vivo distribution study. At the same time, the PEG moiety played a role of hydrophilic coating to improve the biocompatibility and stability under storing and physiological conditions, and especially might guarantee enough circulation time in blood. Moreover, in vivo MRI revealed a good and long-term effect of enhancing MRI signal for as-fabricated contrast agent while cell viability assay proved its acceptable cytotoxicity for MRI application. On the whole, the as-fabricated PEGylated and cRGD-functionalized contrast agent based on ultrasmall MnO nanoparticles showed a great potential to the T1-weighted MRI diagnosis of tumor. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  13. Nanoengineered multimodal contrast agent for medical image guidance

    NASA Astrophysics Data System (ADS)

    Perkins, Gregory J.; Zheng, Jinzi; Brock, Kristy; Allen, Christine; Jaffray, David A.

    2005-04-01

    Multimodality imaging has gained momentum in radiation therapy planning and image-guided treatment delivery. Specifically, computed tomography (CT) and magnetic resonance (MR) imaging are two complementary imaging modalities often utilized in radiation therapy for visualization of anatomical structures for tumour delineation and accurate registration of image data sets for volumetric dose calculation. The development of a multimodal contrast agent for CT and MR with prolonged in vivo residence time would provide long-lasting spatial and temporal correspondence of the anatomical features of interest, and therefore facilitate multimodal image registration, treatment planning and delivery. The multimodal contrast agent investigated consists of nano-sized stealth liposomes encapsulating conventional iodine and gadolinium-based contrast agents. The average loading achieved was 33.5 +/- 7.1 mg/mL of iodine for iohexol and 9.8 +/- 2.0 mg/mL of gadolinium for gadoteridol. The average liposome diameter was 46.2 +/- 13.5 nm. The system was found to be stable in physiological buffer over a 15-day period, releasing 11.9 +/- 1.1% and 11.2 +/- 0.9% of the total amounts of iohexol and gadoteridol loaded, respectively. 200 minutes following in vivo administration, the contrast agent maintained a relative contrast enhancement of 81.4 +/- 13.05 differential Hounsfield units (ΔHU) in CT (40% decrease from the peak signal value achieved 3 minutes post-injection) and 731.9 +/- 144.2 differential signal intensity (ΔSI) in MR (46% decrease from the peak signal value achieved 3 minutes post-injection) in the blood (aorta), a relative contrast enhancement of 38.0 +/- 5.1 ΔHU (42% decrease from the peak signal value achieved 3 minutes post-injection) and 178.6 +/- 41.4 ΔSI (62% decrease from the peak signal value achieved 3 minutes post-injection) in the liver (parenchyma), a relative contrast enhancement of 9.1 +/- 1.7 ΔHU (94% decrease from the peak signal value achieved 3 minutes

  14. Theoretical study of structure and stability of small gadolinium carboxylate complexes in liquid scintillator solvents.

    PubMed

    Huang, Pin-Wen

    2014-09-01

    The structural properties of three small gadolinium carboxylate complexes in three liquid scintillator solvents (pseudocumene, linear alkylbenzene, and phenyl xylylethane) were theoretically investigated using density functional theory (B3LYP/LC-RECP) and polarizable continuum model (PCM). The average interaction energy between gadolinium atom and carboxylate ligand (E(int)) and the energy difference of the highest singly occupied molecular orbital and lowest unoccupied molecular orbital (Δ(SL)) were calculated to evaluate and compare the relative stability of these complexes in solvents. The calculation results show that the larger (with a longer alkyl chain) gadolinium carboxylate complex has greater stability than the smaller one, while these gadolinium carboxylates in linear alkylbenzene were found to have greater stability than those in the other two solvents.

  15. Influence of acquired obesity on coronary vessel wall late gadolinium enhancement in discordant monozygote twins.

    PubMed

    Makowski, Marcus R; Jansen, Christian H P; Ebersberger, Ullrich; Schaeffter, Tobias; Razavi, Reza; Mangino, Massimo; Spector, Tim D; Botnar, Rene M; Greil, Gerald F

    2017-11-01

    The aim of this study was to investigate the impact of BMI on late gadolinium enhancement (LGE) of the coronary artery wall in identical monozygous twins discordant for BMI. Coronary LGE represents a useful parameter for the detection and quantification of atherosclerotic coronary vessel wall disease. Thirteen monozygote female twin pairs (n = 26) with significantly different BMIs (>1.6 kg/m2) were recruited out of >10,000 twin pairs (TwinsUK Registry). A coronary 3D-T2prep-TFE MR angiogram and 3D-IR-TFE vessel wall scan were performed prior to and following the administration of 0.2 mmol/kg of Gd-DTPA on a 1.5 T MR scanner. The number of enhancing coronary segments and contrast to noise ratios (CNRs) of the coronary wall were quantified. An increase in BMI was associated with an increased number of enhancing coronary segments (5.3 ± 1.5 vs. 3.5 ± 1.6, p < 0.0001) and increased coronary wall enhancement (6.1 ± 1.1 vs. 4.8 ± 0.9, p = 0.0027) compared to matched twins with lower BMI. This study in monozygous twins indicates that acquired factors predisposing to obesity, including lifestyle and environmental factors, result in increased LGE of the coronary arteries, potentially reflecting an increase in coronary atherosclerosis in this female study population. • BMI-discordant twins allow the investigation of the influence of lifestyle factors independent from genetic confounders. • Only thirteen obesity-discordant twins were identified underlining the strong genetic component of BMI. • In female twins, a BMI increase is associated with increased coronary late gadolinium enhancement. • Increased late gadolinium enhancement in the coronary vessel wall potentially reflects increased atherosclerosis.

  16. Toxicological and pharmacological effects of gadolinium and samarium chlorides

    PubMed Central

    Haley, T. J.; Raymond, K.; Komesu, N.; Upham, H. C.

    1961-01-01

    A study has been made of the toxicology and pharmacology of gadolinium and samarium chlorides. The symptoms of acute toxicity following intraperitoneal injection are described. The chronic oral ingestion of both chemicals for 12 weeks produced no effects on growth or the blood picture, and only the male rats receiving gadolinium chloride showed liver damage. The pharmacological responses to both chemicals were mainly depressant on all systems studied, and death was associated with cardiovascular collapse coupled with respiratory paralysis. The greatest damage seen was on abraded skin, where non-healing ulcers were produced by both chemicals, whereas irritation of intact skin and ocular tissues was only transient in nature. PMID:13903826

  17. Synthetic and natural iron chelators: therapeutic potential and clinical use

    PubMed Central

    Hatcher, Heather C; Singh, Ravi N; Torti, Frank M; Torti, Suzy V

    2013-01-01

    Iron-chelation therapy has its origins in the treatment of iron-overload syndromes. For many years, the standard for this purpose has been deferoxamine. Recently, considerable progress has been made in identifying synthetic chelators with improved pharmacologic properties relative to deferoxamine. Most notable are deferasirox (Exjade®) and deferiprone (Ferriprox®), which are now available clinically. In addition to treatment of iron overload, there is an emerging role for iron chelators in the treatment of diseases characterized by oxidative stress, including cardiovascular disease, atherosclerosis, neurodegenerative diseases and cancer. While iron is not regarded as the underlying cause of these diseases, it does play an important role in disease progression, either through promotion of cellular growth and proliferation or through participation in redox reactions that catalyze the formation of reactive oxygen species and increase oxidative stress. Thus, iron chelators may be of therapeutic benefit in many of these conditions. Phytochemicals, many of which bind iron, may also owe some of their beneficial properties to iron chelation. This review will focus on the advances in iron-chelation therapy for the treatment of iron-overload disease and cancer, as well as neurodegenerative and chronic inflammatory diseases. Established and novel iron chelators will be discussed, as well as the emerging role of dietary plant polyphenols that effectively modulate iron biochemistry. PMID:21425984

  18. Efficacy of chelation therapy to remove aluminium intoxication.

    PubMed

    Fulgenzi, Alessandro; De Giuseppe, Rachele; Bamonti, Fabrizia; Vietti, Daniele; Ferrero, Maria Elena

    2015-11-01

    There is a distinct correlation between aluminium (Al) intoxication and neurodegenerative diseases (ND). We demonstrated how patients affected by ND showing Al intoxication benefit from short-term treatment with calcium disodium ethylene diamine tetraacetic acid (EDTA) (chelation therapy). Such therapy further improved through daily treatment with the antioxidant Cellfood. In the present study we examined the efficacy of long-term treatment, using both EDTA and Cellfood. Slow intravenous treatment with the chelating agent EDTA (2 g/10 mL diluted in 500 mL physiological saline administered in 2 h) (chelation test) removed Al, which was detected (using inductively coupled plasma mass spectrometry) in urine samples collected from patients over 12 h. Patients that revealed Al intoxication (expressed in μg per g creatinine) underwent EDTA chelation therapy once a week for ten weeks, then once every two weeks for a further six or twelve months. At the end of treatment (a total of 22 or 34 chelation therapies, respectively), associated with daily assumption of Cellfood, Al levels in the urine samples were analysed. In addition, the following blood parameters were determined: homocysteine, vitamin B12, and folate, as well as the oxidative status e.g. reactive oxygen species (ROS), total antioxidant capacity (TAC), oxidized LDL (oxLDL), and glutathione. Our results showed that Al intoxication reduced significantly following EDTA and Cellfood treatment, and clinical symptoms improved. After treatment, ROS, oxLDL, and homocysteine decreased significantly, whereas vitamin B12, folate and TAC improved significantly. In conclusion, our data show the efficacy of chelation therapy associated with Cellfood in subjects affected by Al intoxication who have developed ND.

  19. Extraction of metals using supercritical fluid and chelate forming legand

    DOEpatents

    Wai, Chien M.; Laintz, Kenneth E.

    1998-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  20. Extraction of metals using supercritical fluid and chelate forming ligand

    DOEpatents

    Wai, C.M.; Laintz, K.E.

    1998-03-24

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated {beta}-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated {beta}-diketone and a trialkyl phosphate, or a fluorinated {beta}-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated {beta}-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs.

  1. MRI contrast agent for targeting glioma: interleukin-13 labeled liposome encapsulating gadolinium-DTPA.

    PubMed

    Liu, Xiaoli; Madhankumar, Achuthamangalam B; Miller, Patti A; Duck, Kari A; Hafenstein, Susan; Rizk, Elias; Slagle-Webb, Becky; Sheehan, Jonas M; Connor, James R; Yang, Qing X

    2016-05-01

    Detection of glioma with MRI contrast agent is limited to cases in which the blood-brain barrier (BBB) is compromised as contrast agents cannot cross the BBB. Thus, an early-stage infiltrating tumor is not detectable. Interleukin-13 receptor alpha 2 (IL-13Rα2), which has been shown to be overexpressed in glioma, can be used as a target moiety. We hypothesized that liposomes conjugated with IL-13 and encapsulating MRI contrast agent are capable of passing through an intact BBB and producing MRI contrast with greater sensitivity. The targeted MRI contrast agent was created by encapsulating Magnevist (Gd-DTPA) into liposomes conjugated with IL-13 and characterized by particle size distribution, cytotoxicity, and MRI relaxivity. MR image intensity was evaluated in the brain in normal mice post injection of Gd-DTPA and IL-13-liposome-Gd-DTPA one day apart. The specificity for glioma detection by IL-13-liposome-Gd-DTPA was demonstrated in an intracranial glioma mouse model and validated histologically. The average size of IL-13-liposome-Gd-DTPA was 137 ± 43 nm with relaxivity of 4.0 ± 0.4 L/mmole-s at 7 Tesla. No significant cytotoxicity was observed with MTS assay and serum chemistry in mice. The MRI signal intensity was enhanced up to 15% post injection of IL-13-liposome-Gd-DTPA in normal brain tissue following a similar time course as that for the pituitary gland outside of the BBB. MRI enhanced by IL-13-liposome-Gd-DTPA detected small tumor masses in addition to those seen with Magnevist-enhanced MRI. IL-13-liposome-Gd-DTPA is able to pass through the uncompromised BBB and detect an early stage glioma that cannot be seen with conventional contrast-enhanced MRI. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Removal of gadolinium, a neutron poison from the moderator system of nuclear reactors.

    PubMed

    Rufus, A L; Kumar, Padma S; Jeena, K; Velmurugan, S

    2018-01-15

    Gadolinium as gadolinium nitrate is used as neutron poison in the moderator system for regulating and controlling the power generation of Pressurized Heavy Water Reactors (PHWR) and proposed to be used in Advanced Heavy Water Reactors (AHWR) owing to its high neutron absorption cross section. Removal of the added gadolinium nitrate (Gd 3+ and NO 3 - ) from the system after its intended use is done using ion exchange resins. In the present investigation, attempts have been made to optimize the ion exchange process for generation of low radioactive waste and maximize utilization of the ion exchange resins by employing different types of resins and different modes of operation. The investigations revealed that use of mixed bed (MB) resin column consisting of Strong Acid Cation (SAC) resin and Strong Base Anion (SBA) resin followed by SAC resin column is efficient in removing the Gd 3+ and NO 3 - from the system besides maintaining the pH of the moderator system in the desirable regime, where gadolinium does not get precipitated as its hydroxide. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Gadolinium Scandium Gallium Garnet (GSGG) as a Solid-State Laser Host

    DTIC Science & Technology

    1987-07-01

    o*SATI CODSi1.SBEC EM (otne nrvrs fnceayad dniy nb)k ubr ~~~~~~~~ Gadolinium Scandium Gallium Garnet (GSGG)asaSldtteLerHt 17. ABSTRACT 6.SUJCTTEM...certain other garnet materials for replacement. It also addresses the solid-state laser host material Gadolinium Scandium Gal- lium Garnet (GSGG) and its...by neodymium-doped yttrium aluminum garnet (Nd:YAG) or other mate- rials for most applications. In the years after the invention of the ruby laser, in

  4. Enhancements in hepatobiliary imaging: the spectrum of gadolinium-ethoxybenzyl diethylenetriaminepentaacetic acid usages in hepatobiliary magnetic resonance imaging.

    PubMed

    Channual, Stephanie; Pahwa, Anokh; Lu, David S; Raman, Steven S

    2016-09-01

    Gadolinium-ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA) is a unique hepatocyte-specific contrast agent approved for clinical use in the United States in 2008. Gd-EOB-DTPA-enhanced MR has shown to improve detection and characterization of hepatic lesions. Gd-EOB-DTPA is now being routinely used in daily clinical practice worldwide. Therefore, it is important for radiologists to be familiar with the potential uses and pitfalls of Gd-EOB-DTPA, which extends beyond the assessment of focal hepatic lesions. The purpose of this article is to review the various usages of Gd-EOB-DTPA in hepatobiliary MR imaging.

  5. 3D map of theranostic nanoparticles distribution in mice brain and liver by means of X-ray Phase Contrast Tomography

    NASA Astrophysics Data System (ADS)

    Longo, E.; Bravin, A.; Brun, F.; Bukreeva, I.; Cedola, A.; Fratini, M.; Le Guevel, X.; Massimi, L.; Sancey, L.; Tillement, O.; Zeitoun, P.; de La Rochefoucauld, O.

    2018-01-01

    The word "theranostic" derives from the fusion of two terms: therapeutic and diagnostic. It is a promising research field that aims to develop innovative therapies with high target specificity by exploiting the therapeutic and diagnostic properties, in particular for metal-based nanoparticles (NPs) developed to erase cancer. In the framework of a combined research program on low dose X-ray imaging and theranostic nanoparticles (NPs), high resolution Phase-Contrast Tomography images of mice organs injected with gadolinium and gold-NPs were acquired at the European Synchrotron Radiation Facility (ESRF). Both compounds are good X-ray contrast agents due to their high attenuation coefficient with respect to biological tissues, especially immediately above K-edge energy. X-ray tomography is a powerful non-invasive technique to image the 3D vasculature network in order to detect abnormalities. Phase contrast methods provide more detailed anatomical information with higher discrimination among soft tissues. We present the images of mice liver and brain injected with gold and gadolinium NPs, respectively. We discuss different image processing methods used aiming at enhancing the accuracy on localizing nanoparticles.

  6. Desferrithiocin: A Search for Clinically Effective Iron Chelators

    PubMed Central

    2015-01-01

    The successful search for orally active iron chelators to treat transfusional iron-overload diseases, e.g., thalassemia, is overviewed. The critical role of iron in nature as a redox engine is first described, as well as how primitive life forms and humans manage the metal. The problems that derive when iron homeostasis in humans is disrupted and the mechanism of the ensuing damage, uncontrolled Fenton chemistry, are discussed. The solution to the problem, chelator-mediated iron removal, is clear. Design options for the assembly of ligands that sequester and decorporate iron are reviewed, along with the shortcomings of the currently available therapeutics. The rationale for choosing desferrithiocin, a natural product iron chelator (a siderophore), as a platform for structure–activity relationship studies in the search for an orally active iron chelator is thoroughly developed. The study provides an excellent example of how to systematically reengineer a pharmacophore in order to overcome toxicological problems while maintaining iron clearing efficacy and has led to three ligands being evaluated in human clinical trials. PMID:25207964

  7. Grading of inflammatory disease activity in the sacroiliac joints with magnetic resonance imaging: comparison between short-tau inversion recovery and gadolinium contrast-enhanced sequences.

    PubMed

    Madsen, Karen Berenth; Egund, Niels; Jurik, Anne Grethe

    2010-02-01

    We investigated the potential concordance of 2 different magnetic resonance (MR) sequences - short-tau inversion recovery (STIR) and fat-saturated T1-weighted spin-echo after application of gadolinium (Gd) contrast medium to detect active bone marrow abnormalities at the sacroiliac joints (SIJ) in patients with spondyloarthritis (SpA). Blinded and using the Danish scoring method, we evaluated transaxial MR images of the 2 sequences in 40 patients with SpA with disease duration of 3-14 years. Both the cartilaginous and ligamentous portions of the SIJ were analyzed. There was a significant positive correlation between the activity scores obtained by STIR and Gd-enhanced sequences (p < 0.0001). Agreement in the detection of bone marrow abnormalities occurred in 60 of the 80 joints, 35 with and 25 without signs of active disease. Discordance with STIR-positive marrow activity scores occurred in only 11 joints; Gd-enhanced positive scores in 9 joints. The STIR sequence detected remnants of marrow activity in the periphery of chronic fatty replacement not seen or partly obscured on the Gd sequence. Small subchondral enhancing lesions may not be scored on the STIR sequence, mostly because of reduced image resolution. Active bone marrow abnormalities were detected nearly equally well with STIR and Gd-enhanced fat-suppressed T1 sequences in patients with SpA, with STIR being most sensitive to visualize active abnormalities in the periphery of chronic changes.

  8. Objective evaluation of acute adverse events and image quality of gadolinium-based contrast agents (gadobutrol and gadobenate dimeglumine) by blinded evaluation. Pilot study.

    PubMed

    Semelka, Richard C; Hernandes, Mateus de A; Stallings, Clifton G; Castillo, Mauricio

    2013-01-01

    The purpose was to objectively evaluate a recently FDA-approved gadolinium-based contrast agent (GBCA) in comparison to our standard GBCA for acute adverse events and image quality by blinded evaluation. Evaluation was made of a recently FDA-approved GBCA, gadobutrol (Gadavist; Bayer), in comparison to our standard GBCA, gadobenate dimeglumine (MultiHance; Bracco), in an IRB- and HIPAA-compliant study. Both the imaging technologist and patient were not aware of the brand of the GBCA used. A total of 59 magnetic resonance studies were evaluated (59 patients, 31 men, 28 women, age range of 5-85 years, mean age of 52 years). Twenty-nine studies were performed with gadobutrol (22 abdominal and 7 brain studies), and 30 studies were performed with gadobenate dimeglumine (22 abdominal and 8 brain studies). Assessment was made of acute adverse events focusing on objective observations of vomiting, hives, and moderate and severe reactions. Adequacy of enhancement was rated as poor, fair and good by one of two experienced radiologists who were blinded to the type of agent evaluated. No patient experienced acute adverse events with either agent. The target minor adverse events of vomiting or hives, and moderate and severe reactions were not observed in any patient. Adequacy of enhancement was rated as good for both agents in all patients. Objective, blinded evaluation is feasible and readily performable for the evaluation of GBCAs. This proof-of-concept study showed that both GBCAs evaluated exhibited consistent good image quality and no noteworthy adverse events. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Contrast-enhanced fluid-attenuated inversion recovery vs. contrast-enhanced spin echo T1-weighted brain imaging.

    PubMed

    Falzone, Cristian; Rossi, Federica; Calistri, Maurizio; Tranquillo, Massimo; Baroni, Massimo

    2008-01-01

    In humans, contrast-enhanced fluid-attenuated inversion recovery (FLAIR) imaging plays an important role in detecting brain disease. The aim of this study was to define the clinical utility of contrast-enhanced FLAIR imaging by comparing the results with those with contrast-enhanced spin echo T1-weighted images (SE T1WI) in animals with different brain disorders. Forty-one dogs and five cats with a clinical suspicion of brain disease and 30 normal animals (25 dogs and five cats) were evaluated using a 0.2 T permanent magnet. Before contrast medium injection, spin echo T1-weighted, SE T1WI, and FLAIR sequences were acquired in three planes. SE T1WI and FLAIR images were also acquired after gadolinium injection. Sensitivity in detecting the number, location, margin, and enhancement pattern and rate were evaluated. No lesions were found in a normal animal. In affected animals, 48 lesions in 34 patients were detected in contrast-enhanced SE T1WI whereas 81 lesions in 44 patients were detected in contrast-enhanced FLAIR images. There was no difference in the characteristics of the margins or enhancement pattern of the detected lesions. The objective enhancement rate, the mean value between lesion-to-white matter ratio and lesion-to-gray matter ratio, although representing an overlap of T1 and T2 effects and not pure contrast medium shortening of T1 relaxation, was better in contrast-enhanced FLAIR images. These results suggest a superiority of contrast-enhanced FLAIR images as compared with contrast-enhanced SE T1WI in detecting enhancing brain lesions.

  10. Direct comparison of intra-articular versus intravenous delayed gadolinium-enhanced MRI of hip joint cartilage.

    PubMed

    Zilkens, Christoph; Miese, Falk; Kim, Young-Jo; Jäger, Marcus; Mamisch, Tallal C; Hosalkar, Harish; Antoch, Gerald; Krauspe, Rüdiger; Bittersohl, Bernd

    2014-01-01

    To investigate the potential of delayed gadolinium-enhanced magnetic resonance imaging in cartilage (dGEMRIC) after intra-articular (ia) contrast agent administration at 3 Tesla (T), a paired study comparing intravenous (iv) dGEMRIC (standard) with ia-dGEMRIC was performed. Thirty-five symptomatic patients with suspected cartilage damage underwent ia- and iv-dGEMRIC. MRI was performed with a 3T system wherein the interval between both measurements was 2 weeks. For iv-dGEMRIC, FDA approved Gd-DOTA(-) was injected intravenously 45 min before the MRI scan. For ia-dGEMRIC, 10-20 mL of a 2 mM solution of Gd- DOTA(-) was injected under fluoroscopic guidance 30 min before the MRI scan. Both ia- and iv-dGEMRIC demonstrated the typical T1Gd pattern in hip joint cartilage with increasing values toward the superior regions in acetabular cartilage reflecting the higher glycosaminoglycan (GAG) content in the main weight-bearing area. Correlation analysis revealed a moderate correlation between both techniques (r = 0.439, P-value < 0.001), whereas the T1Gd values for iv-dGEMRIC were significantly higher than those for ia-dGEMRIC. This corresponds with the Bland-Altman plot analysis, which revealed a systemic bias (higher T1Gd values after iv gadolinium application) of ∼70 ms. Ia-dGEMRIC was able to reveal the characteristic T1Gd pattern in hip joint cartilage confirming the sensitivity of ia-dGEMRIC for GAG. In addition, there was a significant correlation between iv-dGEMRIC and ia-dGEMRIC. However, the T1Gd values after ia contrast media application were significantly lower than those after iv application that has to be considered for future studies. Copyright © 2013 Wiley Periodicals, Inc.

  11. MO-FG-BRA-07: Theranostic Gadolinium-Based AGuIX Nanoparticles for MRI-Guided Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detappe, A; Institut Lumiere-Matiere, Villeurbanne; Nano-H, St-Quentin Fallavier

    2015-06-15

    Purpose: AGuIX are gadolinium-based nanoparticles, initially developed for MRI, that have a potential role in radiation therapy as a radiosensitizer. Our goal is to demonstrate that these nanoparticles can both be used as an MRI contrast agent, as well as to obtain local dose enhancement in a pancreatic tumor when delivered in combination with an external beam irradiation. Methods: We performed in vitro cell uptake and radiosensitization studies of a pancreatic cancer cell line in a low energy (220kVp) beam, a standard clinical 6MV beam (STD) and a flattening filter free clinical 6MV beam (FFF). After injection of 40mM ofmore » nanoparticles, a biodistribution study was performed in vivo on mice with subcutaneous xenograft pancreatic tumors. In vivo radiation therapy studies were performed at the time point of maximum tumor uptake. Results: The concentration of AGuIX nanoparticles in Panc-1 pancreatic cancer cells, determined in vitro by MRI and ICPMS, peaks after 30 minutes with 0.3% of the initial concentration (5mg/g). Clonogenic assays show a significant effect (p<0.05) when the AGuIX are coupled with MV photon irradiation (DEF20%=1.31). Similar AGuIX tumor uptake is found in vivo by both MRI and ICPMS 30 minutes after intravenous injection. For long term survival studies, the choice of the radiation dose is determined with 5 control groups (3mice/group) irradiated with 0, 5, 10, 15, and 20Gy. Afterwards, 4 groups (8mice/group) are used to evaluate the effect of the nanoparticles. A Logrank test is performed as a statistical test to evaluate the effect of the nanoparticles. Conclusion: The combination of the MRI contrast and radiosensitization properties of gadolinium nanoparticles reveals a strong potential for usage with MRI-guided radiation therapy.« less

  12. Combinational chelation therapy abrogates lead-induced neurodegeneration in rats.

    PubMed

    Pachauri, Vidhu; Saxena, Geetu; Mehta, Ashish; Mishra, Deepshikha; Flora, Swaran J S

    2009-10-15

    Lead, a ubiquitous and potent neurotoxicant causes oxidative stress which leads to numerous neurobehavioral and physiological alterations. The ability of lead to bind sulfhydryl groups or compete with calcium could be one of the reasons for its debilitating effects. In the present study, we addressed: i) if chelation therapy could circumvent the altered oxidative stress and prevent neuronal apoptosis in chronic lead-intoxicated rats, ii) whether chelation therapy could reverse biochemical and behavioral changes, and iii) if mono or combinational therapy with captopril (an antioxidant) and thiol chelating agents (DMSA/MiADMSA) is more effective than individual thiol chelator in lead-exposed rats. Results indicated that lead caused a significant increase in reactive oxygen species, nitric oxide, and intracellular free calcium levels along with altered behavioral abnormalities in locomotor activity, exploratory behavior, learning, and memory that were supported by changes in neurotransmitter levels. A fall in membrane potential, release of cytochrome c, and DNA damage indicated mitochondrial-dependent apoptosis. Most of these alterations showed significant recovery following combined therapy with captopril with MiADMSA and to a smaller extend with captopril+DMSA over monotherapy with these chelators. It could be concluded from our present results that co-administration of a potent antioxidant (like captopril) might be a better treatment protocol than monotherapy to counter lead-induced oxidative stress. The major highlight of the work is an interesting experimental evidence of the efficacy of combinational therapy using an antioxidant with a thiol chelator in reversing neurological dystrophy caused due to chronic lead exposure in rats.

  13. Rates of cuticular penetration of chelated Fe(III): role of humidity, concentration, adjuvants, temperature, and type of chelate.

    PubMed

    Schönherr, Jörg; Fernández, Victoria; Schreiber, Lukas

    2005-06-01

    Time courses of cuticular penetration of FeCl3 and Fe(III) complexes of citric acid, EDTA, EDDHA (Sequestrene 138Fe), imidodisuccinic acid (IDHA), and ligninsulfonic acid (Natrel) were studied using astomatous cuticular membranes (CMs) isolated from Populus x canescens leaves. At 100% relative humidity, the Fe(III) chelates disappeared exponentially with time from the surface of the CMs; that is, penetration was a first-order process that can be described using rate constants or half-times of penetration (t(1/2)). Half-times ranged from 20 to 30 h. At 90% humidity, penetration rates were insignificant with the exception of Natrel, for which t(1/2) amounted to 58 h. Rate constants were independent of temperature (15, 25, and 35 degrees C). Permeability decreased with increasing Fe chelate concentration (IDHA and EDTA). At 100% humidity, half-times measured with FeIDHA were 11 h (2 mmol L(-1)), 17 h (10 mmol L(-1)) and 36 h (20 mmol L(-1)), respectively. In the presence of FeEDTA, penetration of CaCl2 was slowed greatly. Half-times for penetration of CaCl2, which were 1.9 h in the absence of FeEDTA, rose to 3.12 h in the presence of an equimolar concentration of EDTA and 13.3 h when the FeEDTA concentration was doubled. Hence, Fe chelates reduced permeability of CMs to CaCl2 and to the Fe chelates themselves. It is suggested that Fe chelates reduced the size of aqueous pores. This view is supported by the fact that rate constants for calcium salts were about 5 times higher than for Fe chelates with the same molecular weights. Adding Tween 20 (5 g L(-1)) as a humectant did not increase permeability to FeIDHA at 90% humidity and below, while addition of glycine betaine did. Penetration of FeCl3 applied at 5 g L(-1) (pH 1.5) was not a first order process as rate constants decreased rapidly with time. Only 2% of the dose penetrated during the first 2 h and less than that in the subsequent 8 h. Recovery was only 70%. This was attributed to the formation of insoluble Fe

  14. Performance of Nonmigratory Iron Chelating Active Packaging Materials in Viscous Model Food Systems.

    PubMed

    Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2015-09-01

    Many packaged food products undergo quality deterioration due to iron promoted oxidative reactions. Recently, we have developed a nonmigratory iron chelating active packaging material that represents a novel approach to inhibit oxidation of foods while addressing consumer demands for "cleanˮ labels. A challenge to the field of nonmigratory active packaging is ensuring that surface-immobilized active agents retain activity in a true food system despite diffusional limitations. Yet, the relationship between food viscosity and nonmigratory active packaging activity retention has never been characterized. The objective of this study was to investigate the influence of food viscosity on iron chelation by a nonmigratory iron chelating active packaging material. Methyl cellulose was added to aqueous buffered iron solutions to yield model systems with viscosities ranging from ∼1 to ∼10(5)  mPa·s, representing viscosities ranging from beverage to mayonnaise. Iron chelation was quantified by material-bound iron content using colorimetry and inductively coupled plasma-optical emission spectrometry (ICP-OES).  Maximum iron chelation was reached in solutions up to viscosity ∼10(2)  mPa·s. In more viscous solutions (up to ∼10(4)  mPa·s), there was a significant decrease in iron chelating capacity (P < 0.05). However, materials still retained at least 76% iron chelating capacity. Additionally, the influence of different food hydrocolloids on the performance of nonmigratory iron chelating active packaging was characterized. Methyl cellulose and carrageenan did not compete with the material for specific iron chelation (P > 0.05). Materials retained 32% to 45% chelating capacity when in contact with competitively chelating hydrocolloids guar gum, locust bean gum, and xanthan gum. This work demonstrates the potential application of nonmigratory iron chelating active packaging in liquid and semi-liquid foods to allow for the removal of synthetic chelators, while

  15. Scaffold design of trivalent chelator heads dictates high-affinity and stable His-tagged protein labeling in vitro and in cellulo.

    PubMed

    Gatterdam, Karl; Joest, Eike F; Gatterdam, Volker; Tampé, Robert

    2018-05-29

    Small chemical/biological interaction pairs are at the forefront in tracing proteins' function and interaction at high signal-to-background ratio in cellular pathways. Pharma ventures have eager plans to develop trisNTA probes for in vitro and in vivo screening of His-tagged protein targets. However, the optimal design of scaffold, linker, and chelator head yet deserves systematic investigations to achieve highest affinity and kinetic stability for in vitro and especially cell applications. In this study, we report on a library of N-nitrilotriacetic acid (NTA) based multivalent chelator heads (MCHs) built up on linear, cyclic, and dendritic scaffolds and contrast these with regard to their binding affinity and stability for labeling of cellular His-tagged proteins. Furthermore, we assign a new approach for tracing cellular target proteins at picomolar probe concentrations in cells. Finally, we describe fundamental differences between the MCH scaffold and define a cyclic trisNTA chelator, which displays the highest affinity and kinetic stability of all reversible, low-molecular weight interaction pairs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Comparing potential copper chelation mechanisms in Parkinson's disease protein

    NASA Astrophysics Data System (ADS)

    Rose, Frisco; Hodak, Miroslav; Bernholc, Jerry

    2011-03-01

    We have implemented the nudged elastic band (NEB) as a guided dynamics framework for our real-space multigrid method of DFT-based quantum simulations. This highly parallel approach resolves a minimum energy pathway (MEP) on the energy hypersurface by relaxing intermediates in a chain-of-states. As an initial application we present an investigation of chelating agents acting on copper ion bound to α -synuclein, whose misfolding is implicated in Parkinson's disease (PD). Copper ions are known to act as highly effective misfolding agents in a-synuclein and are thus an important target in understanding PD. Furthermore, chelation therapy has shown promise in the treatment of Alzheimer's and other neuro-degenerative diseases with similar metal-correlated pathologies. At present, our candidate chelating agents include nicotine, curcumin and clioquinol. We examine their MEP activation barriers in the context of a PD onset mechanism to assess the viability of various chelators for PD remediation.

  17. Ocular pharmacokinetic study using T₁ mapping and Gd-chelate- labeled polymers.

    PubMed

    Shi, Xianfeng; Liu, Xin; Wu, Xueming; Lu, Zheng-Rong; Li, S Kevin; Jeong, Eun-Kee

    2011-12-01

    Recent advances in drug discovery have led to the development of a number of therapeutic macromolecules for treatment of posterior eye diseases. We aimed to investigate the clearance of macromolecular contrast probes (polymers conjugated with Gd-chelate) in the vitreous after intravitreal injections with the recently developed ms-DSEPI-T12 MRI and to examine the degradation of disulfide-containing biodegradable polymers in the vitreous humor in vivo. Intravitreal injections of model contrast agents poly[N-(2-hydroxypropyl)methacrylamide]-GG-1,6-hexanediamine-(Gd-DO3A), biodegradable (Gd-DTPA)-cystine copolymers, and MultiHance were performed in rabbits; their distribution and elimination from the vitreous after injections were determined by MRI. Times for macromolecular contrast agents to decrease to half their initial concentrations in the vitreous ranged from 0.4-1.3 days post-injection. Non-biodegradable polymers demonstrated slower vitreal clearance than those of disulfide-biodegradable polymers. Biodegradable polymers had similar clearance as MultiHance. Usefulness of T(1) mapping and ms-DSEPI-T12 MRI to study ocular pharmacokinetics was demonstrated. Results suggest an enzymatic degradation mechanism for the disulfide linkage in polymers in the vitreous leading to breakup of polymers in vitreous humor over time.

  18. Myocardial late gadolinium enhancement in specific cardiomyopathies by cardiovascular magnetic resonance: a preliminary experience.

    PubMed

    Silva, Caterina; Moon, James C; Elkington, Andrew G; John, Anna S; Mohiaddin, Raad H; Pennell, Dudley J

    2007-12-01

    Late gadolinium enhancement cardiovascular magnetic resonance (CMR) can visualize myocardial interstitial abnormalities. The aim of this study was to assess whether regions of abnormal myocardium can also be visualized by late enhancement gadolinium CMR in the specific cardiomyopathies. A retrospective review of all referrals for gadolinium CMR with specific cardiomyopathy over 20 months. Nine patients with different specific cardiomyopathies were identified. Late enhancement was demonstrated in all patients, with a mean signal intensity of 390 +/- 220% compared with normal regions. The distribution pattern of late enhancement was unlike the subendocardial late enhancement related to coronary territories found in myocardial infarction. The affected areas included papillary muscles (sarcoid), the mid-myocardium (Anderson-Fabry disease, glycogen storage disease, myocarditis, Becker muscular dystrophy) and the global sub-endocardium (systemic sclerosis, Loeffler's endocarditis, amyloid, Churg-Strauss). Focal myocardial late gadolinium enhancement is found in the specific cardiomyopathies, and the pattern is distinct from that seen in infarction. Further systematic studies are warranted to assess whether the pattern and extent of late enhancement may aid diagnosis and prognostic assessment.

  19. Development of an iron chelating polyethylene film for active packaging applications.

    PubMed

    Tian, Fang; Decker, Eric A; Goddard, Julie M

    2012-02-29

    Metal-promoted oxidation reactions are a major cause of food quality deterioration. Active packaging offers novel approaches to controlling such oxidation for the purpose of extending shelf life. Herein, we report modification of the surface of polyethylene (PE) films to possess metal chelating activity. Metal chelating carboxylic acids were introduced to the film surface using cross-linking agents [polyethylenimine (PEI) or ethylenediamine (ED)] to increase the number of available carboxylic acids. ATR-FTIR, contact angle, dye assay, and iron chelating assay were used to characterize changes in surface chemistry after each functionalization step. The chelator poly(acrylic acid) (PAA) was attached to the surface at a density of 9.12 ± 0.71 nmol carboxyl groups/cm², and exhibited an iron chelating activity. The results indicate that PAA-modified PE films might have a higher affinity to Fe³⁺ than Fe²⁺ with the optimum binding pH at 5.0. Such inexpensive active packaging materials are promising in food industry for the preservation of liquid and semiliquid food products and have application in heavy metal chelation therapy for biomedical materials as well.

  20. Primed Infusion with Delayed Equilibrium of Gd.DTPA for Enhanced Imaging of Small Pulmonary Metastases

    PubMed Central

    Kalber, Tammy L.; Campbell-Washburn, Adrienne E.; Siow, Bernard M.; Sage, Elizabeth; Price, Anthony N.; Ordidge, Katherine L.; Walker-Samuel, Simon

    2013-01-01

    Objectives To use primed infusions of the magnetic resonance imaging (MRI) contrast agent Gd.DTPA (Magnevist), to achieve an equilibrium between blood and tissue (eqMRI). This may increase tumor Gd concentrations as a novel cancer imaging methodology for the enhancement of small tumor nodules within the low signal-to-noise background of the lung. Methods A primed infusion with a delay before equilibrium (eqMRI) of the Gd(III) chelator Gd.DTPA, via the intraperitoneal route, was used to evaluate gadolinium tumor enhancement as a function of a bolus injection, which is applied routinely in the clinic, compared to gadolinium maintained at equilibrium. A double gated (respiration and cardiac) spin-echo sequence at 9.4T was used to evaluate whole lungs pre contrast and then at 15 (representative of bolus enhancement), 25 and 35 minutes (representative of eqMRI). This was carried out in two lung metastasis models representative of high and low tumor cell seeding. Lungs containing discrete tumor nodes where inflation fixed and taken for haematoxylin and eosin staining as well as CD34 staining for correlation to MRI. Results We demonstrate that sustained Gd enhancement, afforded by Gd equilibrium, increases the detection of pulmonary metastases compared to bolus enhancement and those tumors which enhance at equilibrium are sub-millimetre in size (<0.7 mm2) with a similar morphology to early bronchoalveolar cell carcinomas. Conclusion As Gd-chelates are routinely used in the clinic for detecting tumors by MRI, this methodology is readily transferable to the clinic and advances MRI as a methodology for the detection of small pulmonary tumors. PMID:23382996

  1. In vitro radiosensitizing effects of ultrasmall gadolinium based particles on tumour cells.

    PubMed

    Mowat, P; Mignot, A; Rima, W; Lux, F; Tillement, O; Roulin, C; Dutreix, M; Bechet, D; Huger, S; Humbert, L; Barberi-Heyob, M; Aloy, M T; Armandy, E; Rodriguez-Lafrasse, C; Le Duc, G; Roux, S; Perriat, P

    2011-09-01

    Since radiotherapy is widely used in cancer treatment, it is essential to develop strategies which lower the irradiation burden while increasing efficacy and become efficient even in radio resistant tumors. Our new strategy is relying on the development of solid hybrid nanoparticles based on rare-earth such as gadolinium. In this paper, we then evidenced that gadolinium-based particles can be designed to enter efficiently into the human glioblastoma cell line U87 in quantities that can be tuned by modifying the incubation conditions. These sub-5 nm particles consist in a core of gadolinium oxide, a shell of polysiloxane and are functionalized by diethylenetriaminepentaacetic acid (DTPA). Although photoelectric effect is maximal in the [10-100 keV] range, such particles were found to possess efficient in-vitro radiosensitizing properties at an energy of 660 keV by using the "single-cell gel electrophoresis comet assay," an assay that measures the number of DNA damage that occurs during irradiation. Even more interesting, the particles have been evidenced by MTT assays to be also efficient radiosensitizers at an energy of 6 MeV for doses comprised between 2 and 8 Gy. The properties of the gadolinium-based particles give promising opening to a particle-assisted radio-therapy by using irradiation systems already installed in the majority of hospitals.

  2. Cage-like bifunctional chelators, copper-64 radiopharmaceuticals and PET imaging using the same

    DOEpatents

    Conti, Peter S.; Cai, Hancheng; Li, Zibo; Liu, Shuanglong

    2016-08-02

    Disclosed is a class of versatile Sarcophagine based bifunctional chelators (BFCs) containing a hexa-aza cage for labeling with metals having either imaging, therapeutic or contrast applications radiolabeling and one or more linkers (A) and (B). The compounds have the general formula ##STR00001## where A is a functional group selected from group consisting of an amine, a carboxylic acid, an ester, a carbonyl, a thiol, an azide and an alkene, and B is a functional group selected from the group consisting of hydrogen, an amine, a carboxylic acid, and ester, a carbonyl, a thiol, an azide and an alkene. Also disclosed are conjugate of the BFC and a targeting moiety, which may be a peptide or antibody. Also disclosed are metal complexes of the BFC/targeting moiety conjugates that are useful as radiopharmaceuticals, imaging agents or contrast agents.

  3. New tris(dopamine) derivative as an iron chelator. Synthesis, solution thermodynamic stability, and antioxidant research.

    PubMed

    Zhang, Qingchun; Jin, Bo; Shi, Zhaotao; Wang, Xiaofang; Lei, Shan; Tang, Xingyan; Liang, Hua; Liu, Qiangqiang; Gong, Mei; Peng, Rufang

    2017-06-01

    A new tris(dopamine) derivative, containing three dopamine chelate moieties which were attached to a trimesic acid molecular scaffold, has been prepared and fully characterized by NMR, FTIR and HRMS. The solution thermodynamic stability of the chelator with Fe(III), Mg(II), Zn(II) and Fe(II) ions was investigated. Results demonstrated that the chelator exhibited effective binding ability and improved selectivity to Fe(III) ion. The chelator possessed affinity similar to that of diethylenetriaminepentaacetic acid chelator for Fe(III) ion. The high affinity could be attributed to the favorable geometric arrangement between the chelator and Fe(III) ion coordination preference. The chelator also exhibited high antioxidant activity and nontoxicity to neuron-like rat pheochromocytoma cells. Hence, the chelator could be used as chelating agent for iron overload situations without depleting essential metal ions, such as Mg(II) and Zn(II) ions. Copyright © 2017. Published by Elsevier Inc.

  4. The influence of functional groups on the permeation and distribution of antimycobacterial rhodamine chelators.

    PubMed

    Moniz, T; Leite, A; Silva, T; Gameiro, P; Gomes, M S; de Castro, B; Rangel, M

    2017-10-01

    We formerly hypothesized a mechanism whereby the antimycobacterial efficiency of a set of rhodamine labelled iron chelators is improved via the rhodamine fluorophore which enhances the chelators' permeation properties through membranes. To validate our hypothesis in a cellular context and to understand the influence of the structure of the fluorophore on the chelator's uptake and distribution within macrophages we now report comparative confocal microscopy studies performed with a set of rhodamine labelled chelators. We identify the functional groups of the chelator's framework that favor uptake by macrophages and conclude that the antimycobacterial effect is strongly related with the capacity of the chelator to distribute within the host cell and its compartments, a property that is closely related with the chelators' ability to interact with membranes. The quantification of the chelators' interaction with membranes was assessed through measurement of the corresponding partition constants in liposomes. The overall results support that the compounds which are preferentially taken up are the most efficient antimycobacterial chelators and for that reason we infer that the biological activity is modulated by the structural features of the fluorophore. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Myths and misconceptions concerning contrast media-induced anaphylaxis: a narrative review.

    PubMed

    Böhm, Ingrid; Morelli, John; Nairz, Knud; Silva Hasembank Keller, Patricia; Heverhagen, Johannes T

    2017-03-01

    Contrast-enhanced radiological examinations are an increasingly important diagnostic tool in modern medicine. All approved and available contrast media (iodinated and gadolinium-based) are safe compounds that are well-tolerated by most patients. However, a small percentage of patients exhibit contrast medium-induced adverse drug reactions that are dose-dependent and predictable (type A) or an even smaller cohort experience so-called type B (dose-independent, non-predictable). To increase patients' safety, recommendations/guidelines have been put forth in the literature and advice passed down informally by radiologists in practice to ensure contrast media safety. Through these, both reasonable suggestions as well as misinterpretations and myths (such as the misleading terms "allergy-like" reactions, and "iodine-allergy", the wrong assumption that the initial contact to a contrast medium could not induce an allergy, the estimation that an anti-allergy premedication could suppress all possible adverse reactions, and interleukin-2 as a risk/trigger for contrast medium adverse events) have arisen. Since the latter are not only unhelpful but also potentially reduce patients' safety, such myths and misconceptions are the focus of this review.

  6. Gadolinium-hydrogen ion exchange of zirconium phosphate

    NASA Technical Reports Server (NTRS)

    Liu, D. C.; Power, J. L.

    1972-01-01

    The Gd(+3)/H(+) ion exchange on a commercial zirconium phosphate ion exchanger was investigated in chloride, sulfate, and phosphate solutions of Gd(+3) at gadolinium concentrations of 0.001 to 1 millimole per cc and in the pH range of 0 to 3.5. Relatively low Gd(+3) capacities, in the range of 0.01 to 0.1 millimole per g of ion exchanger were found at room temperature. A significant difference in Gd(+3) sorption was observed, depending on whether the ion exchanger was converted from initial conditions of greater or lesser Gd(+3) sorption than the specific final conditions. Correlations were found between decrease in Gd(+3) capacity and loss of exchanger phosphate groups due to hydrolysis during washing and between increase in capacity and treatment with H3PO4. Fitting of the experimental data to ideal ion exchange equilibrium expressions indicated that each Gd(+3) ion is sorbed on only one site of the ion exchanger. The selectivity quotient was determined to be 2.5 + or - 0.4 at room temperature on gadolinium desorption in chloride solutions.

  7. Advancing pharmacovigilance through academic-legal collaboration: the case of gadolinium-based contrast agents and nephrogenic systemic fibrosis-a Research on Adverse Drug Events and Reports (RADAR) report.

    PubMed

    Edwards, B J; Laumann, A E; Nardone, B; Miller, F H; Restaino, J; Raisch, D W; McKoy, J M; Hammel, J A; Bhatt, K; Bauer, K; Samaras, A T; Fisher, M J; Bull, C; Saddleton, E; Belknap, S M; Thomsen, H S; Kanal, E; Cowper, S E; Abu Alfa, A K; West, D P

    2014-10-01

    To compare and contrast three databases, that is, The International Centre for Nephrogenic Systemic Fibrosis Registry (ICNSFR), the Food and Drug Administration Adverse Event Reporting System (FAERS) and a legal data set, through pharmacovigilance and to evaluate international nephrogenic systemic fibrosis (NSF) safety efforts. The Research on Adverse Drug events And Reports methodology was used for assessment-the FAERS (through June 2009), ICNSFR and the legal data set (January 2002 to December 2010). Safety information was obtained from the European Medicines Agency, the Danish Medicine Agency and the Food and Drug Administration. The FAERS encompassed the largest number (n = 1395) of NSF reports. The ICNSFR contained the most complete (n = 335, 100%) histopathological data. A total of 382 individual biopsy-proven, product-specific NSF cases were analysed from the legal data set. 76.2% (291/382) identified exposure to gadodiamide, of which 67.7% (197/291) were unconfounded. Additionally, 40.1% (153/382) of cases involved gadopentetate dimeglumine, of which 48.4% (74/153) were unconfounded, while gadoversetamide was identified in 7.3% (28/382) of which 28.6% (8/28) were unconfounded. Some cases involved gadobenate dimeglumine or gadoteridol, 5.8% (22/382), all of which were confounded. The mean number of exposures to gadolinium-based contrast agents (GBCAs) was gadodiamide (3), gadopentetate dimeglumine (5) and gadoversetamide (2). Of the 279 unconfounded cases, all involved a linear-structured GBCA. 205 (73.5%) were a non-ionic GBCA while 74 (26.5%) were an ionic GBCA. Clinical and legal databases exhibit unique characteristics that prove complementary in safety evaluations. Use of the legal data set allowed the identification of the most commonly implicated GBCA. This article is the first to demonstrate explicitly the utility of a legal data set to pharmacovigilance research.

  8. Theoretical analysis of the influence of chelate-ring size and vicinal effects on electronic circular dichroism spectra of cobalt(III) EDDA-type complexes.

    PubMed

    Wang, Ai; Wang, Yuekui; Jia, Jie; Feng, Lixia; Zhang, Chunxia; Liu, Linlin

    2013-06-20

    To assess the contributions of configurational and vicinal effects as well as chelate-ring size to rotational strengths, the geometries of a series of cobalt(III) complexes [Co(EDDA-type)(L)](±) with the tetradentate EDDA-type ligands, EDDA (ethylenediamine-N,N'-diacetate), DMEDDA (N,N'-dimethylethylenediamine-N,N'-diacetate), DEEDDA (N,N'-diethylethylenediamine-N,N'-diacetate), and a bidentate ancillary ligand L (L = ethylenediamine, oxalate, carbonate, (S)-alanine, and malonate) in aqueous solution have been optimized at the DFT/B3LYP/6-311++G(2d,p) level of theory. Based on the optimized geometries, the excitation energies and oscillator and rotational strengths have been calculated using the time-dependent density functional theory (TDDFT) method with the same functional and basis set. The calculated circular dichroism (CD) curves are in excellent agreement with the observed ones except for some small red or blue shifts in peak wavelengths. For the influence of chelate-ring size of the bidentate ligands on the CD intensities, a qualitative analysis together with the quantitative TDDFT calculation reveal that it depends on the symmetry of the cobalt-EDDA backbone. For the s-cis-isomers, the influence is negligible due to the perturbation is symmetric. For the uns-cis-isomers, the perturbation is unsymmetric. Since a small ring size means a large perturbation, this leads to the integral CD intensities decreasing with increasing the chelate ring size. The vicinal effects of asymmetric nitrogens incorporate both the substitutent effects and conformational relaxation effects, with the former being dominant. By analyzing the contributions of chiral arrays to rotational strengths, we found that the part of contributions dominated by the S-type chiral nitrogens could be considered as a good measure for the vicinal effects of chiral nitrogens. In addition, we found that the twist form (δ/λ) of the backbone ethylenediamine ring (E-ring) of the coordinated EDDA

  9. The Effect of gadolinium on the ESR response of alanine and ammonium tartrate exposed to thermal neutrons.

    PubMed

    Marrale, Maurizio; Brai, Maria; Gennaro, Gaetano; Bartolotta, Antonio; D'Oca, Maria Cristina

    2008-02-01

    Many efforts have been made to develop neutron capture therapy (NCT) for cancer treatment. Among the challenges in using NCT is the characterization of the features of the mixed radiation field and of its components. In this study, we examined the enhancement of the ESR response of pellets of alanine and ammonium tartrate with gadolinium oxide exposed to a thermal neutron beam. In particular, the ESR response of these dosimeters as a function of the gadolinium content inside the dosimeter was analyzed. We found that the addition of gadolinium improves the sensitivity of both alanine and ammonium tartrate. However, the use of gadolinium reduces or abolishes tissue equivalence because of its high atomic number (Z(Gd) = 64). Therefore, it is necessary to find the optimum compromise between the sensitivity to thermal neutrons and the reduction of tissue equivalence. Our analysis showed that a low concentration of gadolinium oxide (of the order of 5% of the total mass of the dosimeter) can enhance the thermal neutron sensitivity more than 13 times with an insignificant reduction of tissue equivalence.

  10. Aptamer-Targeted Magnetic Resonance Imaging Contrast Agents and Their Applications.

    PubMed

    Zhang, Yajie; Zhang, Tingting; Liu, Min; Kuang, Ye; Zu, Guangyue; Zhang, Kunchi; Cao, Yi; Pei, Renjun

    2018-06-01

    Magnetic resonance imaging is a powerful diagnostic technology with high spatial resolution and non-invasion. The contrast agents have significant effect on the resolution of the MR imaging. However, the commercial contrast agents (CAs) usually consist of individual Gd3+ chelated with a low molecular weight acyclic or cyclic ligand, and these small-molecule CAs are usually subjected to nonspecificity, thus leading to rapid renal clearance and modest contrast enhancement for tumor imaging. In recent years, the nanostructured materials conjugated with aptamers were widely used and opened a new door in biomedical imaging due to excellent specificity, non-immunogenicity, easily synthesis and chemical modification of aptamers. This review summarizes all kinds of aptamertargeted MRI CAs and their applications.

  11. In vitro and in vivo evaluation of potential aluminum chelators.

    PubMed

    Graff, L; Muller, G; Burnel, D

    1995-10-01

    The potential for aluminium (Al) chelation by different compounds was determined using 2 in vitro techniques. The formation of stable complexes with Al in an aqueous solution was evaluated using pulse polarography. This technique allowed the influence of temperature and calcium (Ca) to be studied for each compound. Certain compounds (EDDHA, HAES, citric acid and HBED) showed great chelation in the absence of Ca2+ at a temperature of 37 +/- 1 C. An ultrafiltration technique combined with Al determination by atomic emission spectroscopy allowed the efficiency of different substances to complex Al that were previously bound to serum proteins to be estimated. The kinetics of chelation and minimum efficient concentration have been determined for all products studied. EDDHA had chelation potential similar to DFO. The real efficacies of the compounds were studied in vivo to compare the effectiveness of repeated administrations of the best chelating agents (EDDHA, DFO, HAES and tartaric acid) on the distribution and excretion of Al after repeated i.p. administrations to rats. Intraperitoneal EDDHA significantly increased urinary metal (Al, Ca, Cu, Fe and Zn) excretion. These excretions may be correlated to a renal toxic potential property.

  12. Iron chelation therapy for transfusional iron overload: a swift evolution.

    PubMed

    Musallam, Khaled M; Taher, Ali T

    2011-01-01

    Chronic transfusional iron overload leads to significant morbidity and mortality. While deferoxamine (DFO) is an effective iron chelator with over four decades of experience, it requires tedious subcutaneous infusions that reflect negatively on patient compliance. The novel oral iron chelators deferiprone (L1) and deferasirox (DFRA) opened new horizons for the management of transfusional siderosis. A large body of evidence is now available regarding their efficacy and safety in various populations and settings. Nevertheless, experience with both drugs witnessed some drawbacks, and the search for an ideal and cost-effective iron chelator continues.

  13. Chelate effects in sulfate binding by amide/urea-based ligands.

    PubMed

    Jia, Chuandong; Wang, Qi-Qiang; Begum, Rowshan Ara; Day, Victor W; Bowman-James, Kristin

    2015-07-07

    The influence of chelate and mini-chelate effects on sulfate binding was explored for six amide-, amide/amine-, urea-, and urea/amine-based ligands. Two of the urea-based hosts were selective for SO4(2-) in water-mixed DMSO-d6 systems. Results indicated that the mini-chelate effect provided by a single urea group with two NH binding sites appears to provide enhanced binding over two amide groups. Furthermore, additional urea binding sites incorporated into the host framework appeared to overcome to some extent competing hydration effects with increasing water content.

  14. Effect of Iron Chelation Therapy on Glucose Metabolism in Non-Transfusion-Dependent Thalassaemia.

    PubMed

    Chuansumrit, Ampaiwan; Pengpis, Pimprae; Mahachoklertwattana, Pat; Sirachainan, Nongnuch; Poomthavorn, Preamrudee; Sungkarat, Witaya; Kadegasem, Praguywan; Khlairit, Patcharin; Wongwerawattanakoon, Pakawan

    2017-01-01

    To compare insulin sensitivity, β-cell function and iron status biomarkers in non-transfusion-dependent thalassaemia (NTDT) with iron excess during pre- and post-iron chelation. Subjects with NTDT, aged older than 10 years, with serum ferritin >300 ng/ml, were included. Iron chelation with deferasirox (10 mg/kg/day) was prescribed daily for 6 months. Ten patients with a median age of 17.4 years were enrolled. The comparison between pre- and post-chelation demonstrated significantly lower iron load: median serum ferritin (551.4 vs. 486.2 ng/ml, p = 0.047), median TIBC (211.5 vs. 233.5 µg/dl, p = 0.009) and median non-transferrin binding iron (5.5 vs. 1.4 µM, p = 0.005). All patients had a normal oral glucose tolerance test (OGTT) both pre- and post-chelation. However, fasting plasma glucose was significantly reduced after iron chelation (85.0 vs.79.5 mg/dl, p = 0.047). MRI revealed no significant changes of iron accumulation in the heart and liver after chelation, but there was a significantly lower iron load in the pancreas, assessed by higher T2* at post-chelation compared with pre-chelation (41.9 vs. 36.7 ms, p = 0.047). No adverse events were detected. A trend towards improving insulin sensitivity and β-cell function as well as a reduced pancreatic iron load was observed following 6 months of iron chelation (TCTR20160523003). © 2016 S. Karger AG, Basel.

  15. Function of the iron-binding chelator produced by Coriolus versicolor in lignin biodegradation.

    PubMed

    Wang, Lu; Yan, WenChao; Chen, JiaChuan; Huang, Feng; Gao, PeiJi

    2008-03-01

    An ultrafiltered low-molecular-weight preparation of chelating compounds was isolated from a wood-containing culture of the white-rot basidiomycete Coriolus versicolor. This preparation could chelate Fe3+ and reduce Fe3+ to Fe2+, demonstrating that the substance may serve as a ferric chelator, oxygen-reducing agent, and redox-cycling molecule, which would include functioning as the electron transport carrier in Fenton reaction. Lignin was treated with the iron-binding chelator and the changes in structure were investigated by 1H-NMR, 13C-NMR, difference spectrum caused by ionization under alkaline conditions and nitrobenzene oxidation. The results indicated that the iron-binding chelator could destroy the beta-O-4 bonds in etherified lignin units and insert phenolic hydroxyl groups. The low-molecular-weight chelator secreted by C. versicolor resulted in new phenolic substructures in the lignin polymer, making it susceptible to attack by laccase or manganese peroxidase. Thus, the synergic action of the iron-binding chelator and the lignocellulolytic enzymes made the substrate more accessible to degradation.

  16. Comparison of Contrast-Enhanced Ultrasound and Gadolinium-Ethoxybenzyl-Diethylenetriamine Pentaacetic Acid-Enhanced MRI for the Diagnosis of Macroscopic Type of Hepatocellular Carcinoma.

    PubMed

    Iwamoto, Takayuki; Imai, Yasuharu; Kogita, Sachiyo; Igura, Takumi; Sawai, Yoshiyuki; Fukuda, Kazuto; Yamaguchi, Yoshitaka; Matsumoto, Yasushi; Nakahara, Masanori; Morimoto, Osakuni; Seki, Yasushi; Ohashi, Hiroshi; Fujita, Norihiko; Kudo, Masatoshi; Takehara, Tetsuo

    We compared the efficacy of contrast-enhanced ultrasound sonography (CEUS) with sonazoid and gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced MRI for the assessment of macroscopic classification of nodular hepatocellular carcinoma (HCC). Seventy-seven consecutive patients with 79 surgically resected HCCs who underwent both preoperative CEUS and Gd-EOB-DTPA-enhanced MRI were enrolled in this retrospective study. Based on the macroscopic diagnosis of resected specimens, nodules were categorized into the simple nodular (SN) and non-SN type HCC. Two hepatologists independently assessed image datasets of the post-vascular phase of CEUS and hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI to compare their diagnostic performance. Gd-EOB-DTPA-enhanced MRI enabled the evaluation of macroscopic classification in a significantly larger number of nodules than CEUS (78/79 (98.7%) vs. 70/79 (88.6%), p < 0.05). Of 70 nodules that could be evaluated by both modalities, 41 and 29 nodules were pathologically categorized as SN and non-SN, respectively. The areas under the receiver operating characteristic curve (AUC) for non-SN did not differ between CEUS and Gd-EOB-DTPA-enhanced MRI (reader 1: 0.748 for CEUS, 0.808 for MRI; reader 2: 0.759 for CEUS, 0.787 for MRI). The AUC of combined CEUS and Gd-EOB-DTPA-enhanced MRI for SN HCC was 0.855 (reader 1) and 0.824 (reader 2), indicating higher AUC values for the combined modalities. The diagnostic performance for macroscopic classification of nodular HCC of CEUS was comparable with that of Gd-EOB-DTPA-enhanced MRI, although some HCCs could not be evaluated by CEUS owing to lower detectability. The combination of the 2 modalities had a more accurate diagnostic performance. © 2016 S. Karger AG, Basel.

  17. Chelation Treatment for Autism Spectrum Disorders: A Systematic Review

    ERIC Educational Resources Information Center

    Davis, Tonya N.; O'Reilly, Mark; Kang, Soyeon; Lang, Russell; Rispoli, Mandy; Sigafoos, Jeff; Lancioni, Giulio; Copeland, Daelynn; Attai, Shanna; Mulloy, Austin

    2013-01-01

    Chelation treatment is used to eliminate specific metals from the body, such as mercury. It has been hypothesized that mercury poisoning may be a factor in autism and data suggest that perhaps 7% of individuals with autism spectrum disorder (ASD) have received chelation treatment. It would therefore seem timely to review studies investigating the…

  18. Intraoperative Near-Infrared Optical Imaging Can Localize Gadolinium-Enhancing Gliomas During Surgery

    PubMed Central

    Lee, John Y-K.; Thawani, Jayesh P.; Pierce, John; Zeh, Ryan; Martinez-Lage, Maria; Chanin, Michelle; Venegas, Ollin; Nims, Sarah; Learned, Kim; Keating, Jane; Singhal, Sunil

    2016-01-01

    Background Although real-time localization of gliomas has improved with intraoperative image guidance systems, these tools are limited by brain shift, surgical cavity deformation, and expense. Objective To propose a novel method to perform near-infrared (NIR) imaging during glioma resections based on preclinical and clinical investigations, in order to localize tumors and to potentially identify residual disease. Methods Fifteen patients were identified and administered an FDA-approved, NIR contrast agent (Second Window indocyanine green [ICG], 5 mg/kg) prior to surgical resection. An NIR camera was utilized to localize the tumor prior to resection and to visualize surgical margins following resection. Neuropathology and MR imaging data were used to assess the accuracy and precision of NIR-fluorescence in identifying tumor tissue. Results NIR visualization of 15 gliomas (10 glioblastoma multiforme, 1 anaplastic astrocytoma, 2 low grade astrocytoma, 1 juvenile pilocytic astrocytoma, and 1 ganglioglioma) was performed 22.7 hours (mean) after intravenous injection of ICG. During surgery, 12/15 tumors were visualized with the NIR camera. The mean signal-to-background ratio was 9.5 ± 0.8 and fluorescence was noted through the dura to a maximum parenchymal depth of 13 mm. The best predictor of positive fluorescence was enhancement on T1-weighted imaging; this correlated with SBR (P = .03). Non-enhancing tumors did not demonstrate NIR fluorescence. Using pathology as the gold standard, the technique demonstrated a sensitivity of 98% and specificity of 45% to identify tumor in gadolinium-enhancing specimens (n = 71). Conclusion Using Second Window ICG, gadolinium-enhancing tumors can be localized through brain parenchyma intraoperatively. Its utility for margin detection is promising but limited by lower specificity. PMID:27741220

  19. Copper chelators: chemical properties and bio-medical applications.

    PubMed

    Tegoni, M; Valensin, D; Toso, L; Remelli, M

    2014-01-01

    Copper is present in different concentrations and chemical forms throughout the earth crust, surface and deep water and even, in trace amounts, in the atmosphere itself. Copper is one of the first metals used by humans, the first artifacts dating back 10,000 years ago. Currently, the world production of refined copper exceeds 16,000 tons/year. Copper is a micro-element essential to life, principally for its red-ox properties that make it a necessary cofactor for many enzymes, like cytochrome-c oxidase and superoxide dismutase. In some animal species (e.g. octopus, snails, spiders, oysters) copper-hemocyanins also act as carriers of oxygen instead of hemoglobin. However, these red-ox properties also make the pair Cu(+)/Cu(2+) a formidable catalyst for the formation of reactive oxygen species, when copper is present in excess in the body or in tissues. The treatment of choice in cases of copper overloading or intoxication is the chelation therapy. Different molecules are already in clinical use as chelators or under study or clinical trial. It is worth noting that chelation therapy has also been suggested to treat some neurodegenerative diseases or cardiovascular disorders. In this review, after a brief description of the homeostasis and some cases of dyshomeostasis of copper, the main (used or potential) chelators are described; their properties in solution, even in relation to the presence of metal or ligand competitors, under physiological conditions, are discussed. The legislation of the most important Western countries, regarding both the use of chelating agents and the limits of copper in foods, drugs and cosmetics, is also outlined.

  20. Non-invasive magnetic resonance imaging follow-up of sono-sensitive liposome tumor delivery and controlled release after high-intensity focused ultrasound.

    PubMed

    Fowler, Robert Andrew; Fossheim, Sigrid L; Mestas, Jean-Louis; Ngo, Jacqueline; Canet-Soulas, Emmanuelle; Lafon, Cyril

    2013-12-01

    This work examines the use of lanthanide-based contrast agents and magnetic resonance imaging in monitoring liposomal behavior in vivo. Dysprosium (Dy) and gadolinium (Gd) chelates, Dy-diethylenetriaminepentaacetic acid bismethylamide (Dy-DTPA-BMA) and Gd-DTPA-BMA, were encapsulated in pegylated distearoylphosphatidylethanolamine-based (saturated) liposomes, and then intravenously injected into Copenhagen rats with subcutaneous Dunning AT2 xenografts. Liposome-encapsulated Dy chelate shortens transverse relaxation times (T(2) and T(2)*) of tissue; thus, liposomal accumulation in the tumor can be monitored by observing the decrease in T(2)* relaxation time over time. The tumor was treated at the time of maximum liposomal accumulation (48 h) with confocal, cavitating high-intensity focused ultrasound to induce liposomal payload release. Using liposome-encapsulated Gd chelate at high enough concentrations and saturated liposomal phospholipids induces an exchange-limited longitudinal (T(1)) relaxation when the liposomes are intact; when the liposomes are released, exchange limitation is relieved, thus allowing in vivo observation of payload release as a decrease in tumor T(1). Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Gadolinium-loaded Plastic Scintillators for Thermal Neutron Detection using Compensation

    NASA Astrophysics Data System (ADS)

    Dumazert, Jonathan; Coulon, Romain; Hamel, Matthieu; Carrel, Frédérick; Sguerra, Fabien; Normand, Stéphane; Méchin, Laurence; Bertrand, Guillaume H. V.

    2016-06-01

    Plastic scintillator loading with gadolinium-rich organometallic complexes shows a high potential for the deployment of efficient and cost-effective neutron detectors. Due to the low-energy photon and electron signature of thermal neutron capture by Gd-155 and Gd-157, alternative treatment to pulse-shape discrimination has to be proposed in order to display a count rate. This paper discloses the principle of a compensation method applied to a two-scintillator system: a detection scintillator interacts with photon and fast neutron radiation and is loaded with gadolinium organometallic compound to become a thermal neutron absorber, while a not-gadolinium loaded compensation scintillator solely interacts with the fast neutron and photon part of incident radiation. After the nonlinear smoothing of the counting signals, a hypothesis test determines whether the resulting count rate post-background response compensation falls into statistical fluctuations or provides a robust indication of neutron activity. Laboratory samples are tested under both photon and neutron irradiations, allowing the authors to investigate the performance of the overall detection system in terms of sensitivity and detection limits, especially with regards to a similar-active volume He-3 based commercial counter. The study reveals satisfactory figures of merit in terms of sensitivity and directs future investigation toward promising paths.

  2. A review of pitfalls and progress in chelation treatment of metal poisonings.

    PubMed

    Andersen, Ole; Aaseth, Jan

    2016-12-01

    Most acute and chronic human metal poisonings are due to oral or inhalation exposure. Almost 80% of published animal experiments on chelation in metal poisoning used single or repeated intraperitoneal, intramuscular or intravenous administration of metal and chelator, impeding extrapolation to clinical settings. Intramuscular administration of dimercaptopropanol (BAL) has until now been used in acute arsenic, lead, and mercury poisonings, but repeated BAL administration increased the brain uptake of As, Pb and Hg in experimental animals. Also, diethyl dithiocarbamate (DDC) has been used as antidote in acute experimental animal parenteral Cd poisoning, and both DDC and tetraethylthiuram disulfide (TTD, disulfiram, Antabuse) have been used in nickel allergic patients. However, even one dose of DDC given immediately after oral Cd or Ni increased their brain uptake considerably. The calcium salt of ethylenediamminetetraacetic acid (CaEDTA) but not dimercaptosuccinic acid (DMSA) increased the brain uptake of Pb. In oral Cd or Hg poisoning, early oral administration of DMSA or dimercaptopropane sulfonate (DMPS) increased survival and reduced intestinal metal uptake. Oral administration of Prussian Blue or resins with fixed chelating groups that are not absorbed offer chelation approaches for decorporation after oral exposure to various metals. Diethylenetriaminepentaacetic acid (DTPA) nebulizers for pulmonary chelation after inhalation exposure need further development. Also, combined chelation with more than one compound may offer extensive advances. Solid knowledge on the chemistry of metal chelates together with relevant animal experiments should guide development of chelation procedures to alleviate and not aggravate the clinical status of poisoned patients. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Quality-of-life outcomes with a disodium EDTA chelation regimen for coronary disease: results from the trial to assess chelation therapy randomized trial.

    PubMed

    Mark, Daniel B; Anstrom, Kevin J; Clapp-Channing, Nancy E; Knight, J David; Boineau, Robin; Goertz, Christine; Rozema, Theodore C; Liu, Diane M; Nahin, Richard L; Rosenberg, Yves; Drisko, Jeanne; Lee, Kerry L; Lamas, Gervasio A

    2014-07-01

    The National Institutes of Health.funded Trial to Assess Chelation Therapy (TACT) randomized 1708 stablecoronary disease patients aged .50 years who were .6 months post.myocardial infarction (2003.2010) to 40 infusions ofa multicomponent EDTA chelation solution or placebo. Chelation reduced the primary composite end point of mortality,recurrent myocardial infarction, stroke, coronary revascularization, or hospitalization for angina (hazard ratio, 0.82; 95%confidence interval, 0.69.0.99; P=0.035). In a randomly selected subset of 911 patients, we prospectively collected a battery of quality-of-life(QOL) instruments at baseline and at 6, 12, and 24 months after randomization. The prespecified primary QOL measures were the Duke Activity Status Index (Table I in the Data Supplement) and the Medical Outcomes Study Short-Form 36 Mental Health Inventory-5. All comparisons were by intention to treat. Baseline clinical and QOL variables were well balanced in the 451 patients randomized to chelation and in the 460 patients randomized to placebo. The Duke Activity Status Index improved in both groups during the first 6 months of therapy, but we found no evidence for a treatment-related difference (mean difference [chelation.placebo] during follow-up, 0.9 [95% confidence interval, .0.7 to 2.6; P=0.27]).There was no statistically significant evidence of a treatment-related difference in the Mental Health Inventory-5 during follow-up (mean difference, 1.0; 95% confidence interval, .0.1 to 2.0; P=0.08). None of the secondary QOL measures showed a consistent treatment-related difference. In stable, predominantly asymptomatic coronary disease patients with a history of myocardial infarction,EDTA chelation therapy did not have a detectable effect on QOL during 2 years of follow-up. URL: http://clinicaltrials.gov. Unique identifier: NCT00044213.

  4. A choline derivate-modified nanoprobe for glioma diagnosis using MRI

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Huang, Shixian; Shao, Kun; Liu, Yang; An, Sai; Kuang, Yuyang; Guo, Yubo; Ma, Haojun; Wang, Xuxia; Jiang, Chen

    2013-04-01

    Gadolinium (Gd) chelate contrast-enhanced magnetic resonance imaging (MRI) is a preferred method of glioma detection and preoperative localisation because it offers high spatial resolution and non-invasive deep tissue penetration. Gd-based contrast agents, such as Gd-diethyltriaminepentaacetic acid (DTPA-Gd, Magnevist), are widely used clinically for tumor diagnosis. However, the Gd-based MRI approach is limited for patients with glioma who have an uncompromised blood-brain barrier (BBB). Moreover, the rapid renal clearance and non-specificity of such contrast agents further hinders their prevalence. We present a choline derivate (CD)-modified nanoprobe with BBB permeability, glioma specificity and a long blood half-life. Specific accumulation of the nanoprobe in gliomas and subsequent MRI contrast enhancement are demonstrated in vitro in U87 MG cells and in vivo in a xenograft nude model. BBB and glioma dual targeting by this nanoprobe may facilitate precise detection of gliomas with an uncompromised BBB and may offer better preoperative and intraoperative tumor localization.

  5. Reusable chelating resins concentrate metal ions from highly dilute solutions

    NASA Technical Reports Server (NTRS)

    Bauman, A. J.; Weetal, H. H.; Weliky, N.

    1966-01-01

    Column chromatographic method uses new metal chelating resins for recovering heavy-metal ions from highly dilute solutions. The absorbed heavy-metal cations may be removed from the chelating resins by acid or base washes. The resins are reusable after the washes are completed.

  6. Micronutrient metal speciation is controlled by competitive organic chelation in grassland soils

    DOE PAGES

    Boiteau, Rene M.; Shaw, Jared B.; Pasa-Tolic, Ljiljana; ...

    2018-03-08

    Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or howmore » they interact and compete for metal binding. Identifying these metallophores within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrices. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) of soils from native tallgrass prairies in Kansas and Iowa. Both plant and fungal metallophores were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant Fe acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamines, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2–90 pmol/g soil). In contrast, the fungal siderophore ferricrocin was specific for trivalent Fe (7–32 pmol/g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population. In

  7. Time-resolved delayed luminescence image microscopy using an europium ion chelate complex.

    PubMed Central

    Marriott, G.; Heidecker, M.; Diamandis, E. P.; Yan-Marriott, Y.

    1994-01-01

    Improvements and extended applications of time-resolved delayed luminescence imaging microscopy (TR-DLIM) in cell biology are described. The emission properties of europium ion complexed to a fluorescent chelating group capable of labeling proteins are exploited to provide high contrast images of biotin labeled ligands through detection of the delayed emission. The streptavidin-based macromolecular complex (SBMC) employs streptavidin cross-linked to thyroglobulin multiply labeled with the europium-fluorescent chelate. The fluorescent chelate is efficiently excited with 340-nm light, after which it sensitizes europium ion emission at 612 nm hundreds of microseconds later. The SBMC complex has a high quantum yield orders of magnitude higher than that of eosin, a commonly used delayed luminescent probe, and can be readily seen by the naked eye, even in specimens double-labeled with prompt fluorescent probes. Unlike triplet-state phosphorescent probes, sensitized europium ion emission is insensitive to photobleaching and quenching by molecular oxygen; these properties have been exploited to obtain delayed luminescence images of living cells in aerated medium thus complementing imaging studies using prompt fluorescent probes. Since TR-DLIM has the unique property of rejecting enormous signals that originate from scattered light, autofluorescence, and prompt fluorescence it has been possible to resolve double emission images of living amoeba cells containing an intensely stained lucifer yellow in pinocytosed vesicles and membrane surface-bound SBMC-labeled biotinylated concanavalin A. Images of fixed cells represented in terms of the time decay of the sensitized emission show the lifetime of the europium ion emission is sensitive to the environment in which it is found. Through the coupling of SBMC to streptavidin,a plethora of biotin-based tracer molecules are available for immunocytochemical studies. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7

  8. Micronutrient metal speciation is controlled by competitive organic chelation in grassland soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boiteau, Rene M.; Shaw, Jared B.; Pasa-Tolic, Ljiljana

    Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or howmore » they interact and compete for metal binding. Identifying these metallophores within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrices. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) of soils from native tallgrass prairies in Kansas and Iowa. Both plant and fungal metallophores were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant Fe acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamines, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2–90 pmol/g soil). In contrast, the fungal siderophore ferricrocin was specific for trivalent Fe (7–32 pmol/g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population. In

  9. Polyamine-iron chelator conjugate.

    PubMed

    Bergeron, Raymond J; McManis, James S; Franklin, April M; Yao, Hua; Weimar, William R

    2003-12-04

    The current study demonstrates unequivocally that polyamines can serve as vectors for the intracellular delivery of the bidentate chelator 1,2-dimethyl-3-hydroxypyridin-4-one (L1). The polyamine-hydroxypyridinone conjugate 1-(12-amino-4,9-diazadodecyl)-2-methyl-3-hydroxy-4(1H)-pyridinone is assembled from spermine and 3-O-benzylmaltol. The conjugate is shown to form a 3:1 complex with Fe(III) and to be taken up by the polyamine transporter 1900-fold against a concentration gradient. The K(i) of the conjugate is 3.7 microM vs spermidine for the polyamine transporter. The conjugate is also at least 230 times more active in suppressing the growth of L1210 murine leukemia cells than is the parent ligand, decreases the activities of the polyamine biosynthetic enzymes ornithine decarboxylase and S-adenosylmethionine decarboxylase, and upregulates spermidine-spermine N (1)-acetyltransferase. However, the effect on native polyamine pools is a moderate one. These findings are in keeping with the idea that polyamines can also serve as efficient vectors for the intracellular delivery of other iron chelators.

  10. Interaction of chelating agents with cadmium in mice and rats.

    PubMed Central

    Eybl, V; Sýkora, J; Koutenský, J; Caisová, D; Schwartz, A; Mertl, F

    1984-01-01

    The influence of several chelating agents (CaDTPA, ZnDTPA, CaEDTA, ZnEDTA, DMSA, D-penicillamine and DMPS, DMP and DDC) on the acute toxicity of CdCl2 and on the whole body retention and tissue distribution of cadmium after the IV application of 115mCdCl2 was compared in mice. The chelating agents were applied immediately after the application of cadmium. CaDTPA, ZnDTPA and DMSA appeared to be the most effective antidotes. However, DMSA increased the amount of cadmium retained in kidneys. The treatment of cadmium-poisoned mice with the combination of DMSA (IP) and ZnDTPA (SC) (all the compounds were injected in equimolar dose) decreased the toxicity of cadmium more than treatment with one chelating agents (given in a 2:1 dose). However, by studying the effect of these chelating agents and their combination of the retention and distribution of Cd in mice, it was demonstrated that the combined application of the antidotes showed little or no improvement over the results obtained with the most effective of the individual components. In the urine of rats injected with CdCl2 and treated with the chelating agents (CaDTPA, ZnDTPA, DMSA), the presence of cadmium complexes was demonstrated. The formation of mixed ligand chelates in vivo was not proved. Experiments in mice given a single injection of 115mCd-labeled Cd complexes of DMPS, DMSA and DTPA showed a high retention of cadmium in the organisms after the IV application of CdDMPS and CdDMSA complexes. PMID:6734561

  11. Normal spinal bone marrow in adults: dynamic gadolinium-enhanced MR imaging.

    PubMed

    Montazel, Jean-Luc; Divine, Marine; Lepage, Eric; Kobeiter, Hicham; Breil, Stephane; Rahmouni, Alain

    2003-12-01

    To determine the patterns of dynamic enhancement of normal spinal bone marrow in adults at gadolinium-enhanced magnetic resonance (MR) imaging and the changes that occur with aging. Dynamic contrast material-enhanced MR imaging of the thoracolumbar spine was performed in 71 patients. The maximum percentage of enhancement (Emax), enhancement slope, and enhancement washout were determined from bone marrow enhancement time curves (ETCs). The bone marrow signal intensity on T1-weighted spin-echo MR images was qualitatively classified into three grade categories. Quantitative ETC values were correlated with patient age and bone marrow fat content grade. Statistical analysis included mean t test comparison, analysis of variance, and regression analysis of the correlations between age and quantitative MR parameters. Emax, slope, and washout varied widely among the patients. Emax values were obtained within 1 minute after contrast material injection and ranged from 0% to 430%. Emax values were significantly higher in patients younger than 40 years than in those aged 40 years or older (P <.001). These values decreased with increasing age in a logarithmic relationship (r = 0.71). Emax values decreased as fat content increased, but some overlap among the fat content grades was noted. Analysis of variance revealed that Emax was significantly related to age (younger than 40 years vs 40 years or older) (P <.001) and fat content grade (P <.001) but not significantly related to sex. Dynamic contrast-enhanced MR imaging patterns of normal spinal bone marrow are dependent mainly on patient age and fat content.

  12. Hepatocellular carcinoma metastasizing to the skull base involving multiple cranial nerves.

    PubMed

    Kim, Soo Ryang; Kanda, Fumio; Kobessho, Hiroshi; Sugimoto, Koji; Matsuoka, Toshiyuki; Kudo, Masatoshi; Hayashi, Yoshitake

    2006-11-07

    We describe a rare case of HCV-related recurrent multiple hepatocellular carcinoma (HCC) metastasizing to the skull base involving multiple cranial nerves in a 50-year-old woman. The patient presented with symptoms of ptosis, fixation of the right eyeball, and left abducens palsy, indicating disturbances of the right oculomotor and trochlear nerves and bilateral abducens nerves. Brain contrast-enhanced computed tomography (CT) revealed an ill-defined mass with abnormal enhancement around the sella turcica. Brain magnetic resonance imaging (MRI) disclosed that the mass involved the clivus, cavernous sinus, and petrous apex. On contrast-enhanced MRI with gadolinium-chelated contrast medium, the mass showed inhomogeneous intermediate enhancement. The diagnosis of metastatic HCC to the skull base was made on the basis of neurological findings and imaging studies including CT and MRI, without histological examinations. Further studies may provide insights into various methods for diagnosing HCC metastasizing to the craniospinal area.

  13. Lanthanide chelates of (bis)-hydroxymethyl-substituted DTTA with potential application as contrast agents in magnetic resonance imaging.

    PubMed

    Silvério, Sara; Torres, Susana; Martins, André F; Martins, José A; André, João P; Helm, Lothar; Prata, M Isabel M; Santos, Ana C; Geraldes, Carlos F G C

    2009-06-28

    A novel bis-hydroxymethyl-substituted DTTA chelator N'-Bz-C(4,4')-(CH(2)OH)(2)-DTTA () and its DTPA analogue C(4,4')-(CH(2)OH)(2)-DTPA () were synthesized and characterized. A variable-temperature (1)H NMR spectroscopy study of the solution dynamics of their diamagnetic (La) and paramagnetic (Sm, Eu) Ln(3+) complexes showed them to be rigid when compared with analogous Ln(3+)-DTTA and Ln(3+)-DTPA complexes, as a result of their C(4,4')-(CH(2)OH)(2) ligand backbone substitution. The parameters that govern the water (1)H relaxivity of the [Gd()(H(2)O)(2)](-) and [Gd()(H(2)O)](2-) complexes were obtained by (17)O and (1)H NMR relaxometry. While the relaxometric behaviour of the [Gd()(H(2)O)](2-) complex is very similar to the parent [Gd(DTPA)(H(2)O)](2-) system, the [Gd()(H(2)O)(2)](-) complex displays higher relaxivity, due to the presence of two inner sphere water molecules and an accelerated, near optimal water exchange rate. The [Gd()(H(2)O)(2)](-) complex interacts weakly with human serum albumin (HSA), and its fully bound relaxivity is limited by slow water exchange, as monitored by (1)H NMR relaxometry. This complex interacts weakly with phosphate, but does not form ternary complexes with bidentate bicarbonate and l-lactate anions, indicating that the two inner-sphere water molecules of the [Gd()(H(2)O)(2)](-) complex are not located in adjacent positions in the coordination sphere of the Gd(3+) ion. The transmetallation reaction rate of [Gd()(H(2)O)(2)](-) with Zn(2+) in phosphate buffer solution (pH 7.0) was measured to be similar to that of the backbone unsubstituted [Gd(DTTA-Me)(H(2)O)(2)](-), but twice faster than for [Gd(DTPA-BMA)(H(2)O)]. The in vivo biodistribution studies of the (153)Sm(3+)-labelled ligand () in Wistar rats reveal slow blood elimination and short term fixation in various organs, indicating some dissociation. The bis-hydroxymethyl-substituted DTTA skeleton can be seen as a new lead for the synthesis of high relaxivity contrast agents

  14. Chelation therapy to treat atherosclerosis, particularly in diabetes: Is it time to reconsider?

    PubMed Central

    Lamas, Gervasio A; Ergui, Ian

    2016-01-01

    Summary Reports and case series have suggested a possible beneficial effect of chelation therapy in patients with atherosclerotic disease. Small randomized trials conducted in patients with angina or peripheral artery disease, however, were not sufficiently powered to provide conclusive evidence on clinical outcomes. The Trial to Assess Chelation Therapy (TACT) was the first randomized trial adequately powered to detect the effects of chelation therapy on clinical endpoints. Chelation reduced adverse cardiovascular events in a post myocardial infarction (MI) population. Patients with diabetes demonstrated even greater benefit, with a number needed to treat of 6.5 patients to prevent a cardiac event over 5 years. These results led to the revision of the ACC/AHA guideline recommendations for chelation therapy, changing its classification from class III to class IIb. TACT2, a replicative trial, will assess the effects of chelation therapy on cardiovascular outcomes in diabetic patients with a prior myocardial infarction. PMID:27149141

  15. Impact of agglomeration on the relaxometric properties of paramagnetic ultra-small gadolinium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Faucher, Luc; Gossuin, Yves; Hocq, Aline; Fortin, Marc-André

    2011-07-01

    Ultra-small gadolinium oxide nanoparticles (US-Gd2O3) are used to provide 'positive' contrast effects in magnetic resonance imaging (MRI), and are being considered for molecular and cellular imaging applications. However, these nanoparticles can aggregate over time in aqueous medium, as well as when internalized into cells. This study is aimed at measuring in vitro, in aqueous medium, the impact of aggregation on the relaxometric properties of paramagnetic US-Gd2O3 particles. First, the nanoparticle core size as well as aggregation behaviour was assessed by HRTEM. DLS (hydrodynamic diameter) was used to measure the hydrodynamic diameter of nanoparticles and nanoaggregates. The relaxometric properties were measured by NMRD profiling, as well as with 1H NMR relaxometers. Then, the positive contrast enhancement effect was assessed by using magnetic resonance scanners (at 1.5 and 7 T). At every magnetic field, the longitudinal relaxivity (r1) decreased upon agglomeration, while remaining high enough to provide positive contrast. On the other hand, the transverse relaxivity (r2) slightly decreased at 0.47 and 1.41 T, but it was enhanced at higher fields (7 and 11.7 T) upon agglomeration. All NMRD profiles revealed a characteristic relaxivity peak in the range 60-100 MHz, suggesting the possibility to use US-Gd2O3 as an efficient 'positive-T1' contrast agent at clinical magnetic fields (1-3 T), in spite of aggregation.

  16. Phenomenon of hot-cold hemolysis: chelator-induced lysis of sphingomyelinase-treated erythrocytes.

    PubMed Central

    Smyth, C J; Möllby, R; Wadström, T

    1975-01-01

    Staphylococcus aureus produces a phospholipase C specific for sphingomyelin (beta-hemolysin). Erythrocytes with approximately 50% sphingomyelin in their membranes, e.g., from sheep, have been shown to have up to 60% of this phospholipid hydrolyzed by this enzyme at 37 C in isotonic buffered saline without hemolysis. Cooling of sphingomyelinase C-treated erythrocytes to 4 C causes complete lysis of the cells, a phenomenon known as hot-cold hemolysis. The addition of ethylenediaminetetraacetate (EDTA) to sheep erythrocytes preincubated with sphingomyelinase C was found to induce rapid hemolysis at 37 C. The treated cells became susceptible to chelator-induced hemolysis and to hot-cold hemolysis simultaneously, and the degree of lysis of both mechanisms increased equally with prolonged preincubation with sphingomyelinase C. Erythrocytes of species not readily susceptible to hot-cold hemolysis were equally insusceptible to chelator-induced lysis. Chelators of the EDTA series were the most effective, whereas chelators more specific for Ca2+, Zn2+, Fe2+, Cu2+, and Mg2+ were without effect. The rate of chelator-induced lysis was dependent on the preincubation period with beta-hemolysin and on the concentration of chelator added. The optimal concentration of EDTA was found to equal the amount of exogenously added Mg2+, a cation necessary for sphingomyelinase C activity. Hypotonicity increased the rate of chelator-induced hemolysis, whereas increasing the osmotic pressure to twice isotonic completely inhibited chelator-induced lysis. The data suggest that exogenously added and/or membrane-bound divalent cations are important for the stability of sphingomyelin-depleted membranes. The phenomenon of hot-cold hemolysis may be a consequence of the temperature dependence of divalent ion stabilization. Images PMID:333

  17. Synergy and antagonism between iron chelators and antifungal drugs in Cryptococcus.

    PubMed

    Lai, Yu-Wen; Campbell, Leona T; Wilkins, Marc R; Pang, Chi Nam Ignatius; Chen, Sharon; Carter, Dee A

    2016-10-01

    Fungal infections remain very difficult to treat, and developing new antifungal drugs is difficult and expensive. Recent approaches therefore seek to augment existing antifungals with synergistic agents that can lower the therapeutic dose, increase efficacy and prevent resistance from developing. Iron limitation can inhibit microbial growth, and iron chelators have been employed to treat fungal infections. In this study, chequerboard testing was used to explore combinations of iron chelators with antifungal agents against pathogenic Cryptococcus spp. with the aim of determining how disruption to iron homeostasis affects antifungal susceptibility. The iron chelators ethylenediaminetetraacetic acid (EDTA), deferoxamine (DFO), deferiprone (DFP), deferasirox (DSX), ciclopirox olamine and lactoferrin (LF) were paired with the antifungal agents amphotericin B (AmB), fluconazole, itraconazole, voriconazole and caspofungin. All chelators except for DFO increased the efficacy of AmB, and significant synergy was seen between AmB and LF for all Cryptococcus strains. Addition of exogenous iron rescued cells from the antifungal effect of LF alone but could not prevent inhibition by AmB + LF, indicating that synergy was not due primarily to iron chelation but to other properties of LF that were potentiated in the presence of AmB. Significant synergy was not seen consistently for other antifungal-chelator combinations, and EDTA, DSX and DFP antagonised the activity of azole drugs in strains of Cryptococcus neoformans var. grubii. This study highlights the range of interactions that can be induced by chelators and indicates that most antifungal drugs are not enhanced by iron limitation in Cryptococcus. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  18. Di-macrocyclic terephthalamide ligands as chelators for the PET radionuclide zirconium-89

    DOE PAGES

    Pandya, Darpan N.; Pailloux, Sylvie; Tatum, David; ...

    2014-12-18

    The development of bifunctional chelators (BFCs) which can stably chelate zirconium-89 ((89)Zr) while being conjugated to targeting molecules is an area of active research. Herein we report the first octadentate terephthalamide ligands, which are easily radiolabeled with (89)Zr and are highly stable in vitro. Lastly, they represent a novel class of chelators, which are worthy of further development as BFCs for (89)Zr.

  19. Diagnosis of Bell palsy with gadolinium magnetic resonance imaging.

    PubMed

    Becelli, R; Perugini, M; Carboni, A; Renzi, G

    2003-01-01

    Bell palsy is a condition resulting from a peripheral edematous compression on the nervous fibers of the facial nerve. This pathological condition often has clinical characteristics of no importance and spontaneously disappears in a short time in a high percentage of cases. Facial palsy concerning cranial nerve VII can also be caused by other conditions such as mastoid fracture, acoustic neurinoma, tumor spread to the temporal lobe (e.g., cholesteatoma), neoformation of the parotid gland, Melkersson-Rosenthal syndrome, and Ramsay-Hunt syndrome. Therefore, it is important to adopt an accurate diagnostic technique allowing the rapid detection of Bell palsy and the exclusion of causes of facial paralysis requiring surgical treatment. Magnetic resonance imaging (MRI) with medium contrast of the skull shows a marked increase in revealing lesions, even of small dimensions, inside the temporal bone and at the cerebellopontine angle. The authors present a clinical case to show the important role played by gadolinium MRI in reaching a diagnosis of Bell palsy in the differential diagnosis of the various conditions that determine paralysis of the facial nerve and in selecting the most suitable treatment or surgery to be adopted.

  20. Role of MRI and added value of diffusion-weighted and gadolinium-enhanced MRI for the diagnosis of local recurrence from rectal cancer.

    PubMed

    Molinelli, Valeria; Angeretti, Maria Gloria; Duka, Ejona; Tarallo, Nicola; Bracchi, Elena; Novario, Raffaele; Fugazzola, Carlo

    2018-03-14

    To evaluate whether the addition of gadolinium-enhanced MRI and diffusion-weighted imaging (DWI) improves T2 sequence performance for the diagnosis of local recurrence (LR) from rectal cancer and to assess which approach is better at formulating this diagnosis among readers with different experience. Forty-three patients with suspected LR underwent pelvic MRI with T2 weighted (T2) sequences, gadolinium fat-suppressed T1 weighted sequences (post-contrast T1), and DWI sequences. Three readers (expert: G, intermediate: E, resident: V) scored the likelihood of LR on T2, T2 + post-contrast T1, T2 + DWI, and T2 + post-contrast T1 + DWI. In total, 18/43 patients had LR; on T2 images, the expert reader achieved an area under the ROC curve (AUC) of 0.916, sensitivity of 88.9%, and specificity of 76%; the intermediate reader achieved values of 0.890, 88.9%, and 48%, respectively, and the resident achieved values of 0.852, 88.9%, and 48%, respectively. DWI significantly improved the AUC value for the expert radiologist by up to 0.999 (p = 0.04), while post-contrast T1 significantly improved the AUC for the resident by up to 0.950 (p = 0.04). For the intermediate reader, both the T2 + DWI AUC and T2 + post-contrast T1 AUC were better than the T2 AUC (0.976 and 0.980, respectively), but with no statistically significant difference. No statistically significant difference was achieved by any of the three readers by comparing either the T2 + DWI AUCs to the T2 + post-contrast T1 AUCs or the AUCs of the two pairs of sequences to those of the combined three sequences. Furthermore, using the T2 sequences alone, all of the readers achieved a fair number of "equivocal" cases: they decreased with the addition of either DWI or post-contrast T1 sequences and, for the two less experienced readers, they decreased even more with the three combined sequences. Both DWI and T1 post-contrast MRI increased diagnostic performance for LR diagnosis compared to T2; however, no

  1. Synthetic Ni3S2/Ni hybrid architectures as potential contrast agents in MRI

    NASA Astrophysics Data System (ADS)

    Ma, J.; Chen, K.

    2016-04-01

    Traditional magnetic resonance imaging (MRI) contrast agents mainly include superparamagnetic (SPM) iron oxide nanoparticle as T 2 contrast agent for liver and paramagnetic Gd (III)-chelate as T 1 contrast agent for all organs. In this work, weak ferromagnetic kale-like and SPM cabbage-like Ni3S2@Ni hybrid architectures were synthesized and evaluated as potential T 1 MRI contrast agents. Their relatively small r 2/r 1 ratios of 2.59 and 2.38, and high r 1 values of 11.27 and 4.89 mmol-1 L s-1 (for the kale-like and cabbage-like Ni3S2@Ni, respectively) will shed some light on the development of new-type MRI contrast agents.

  2. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil

    PubMed Central

    Fan, Liren; Song, Jiqing; Bai, Wenbo; Wang, Shengping; Zeng, Ming; Li, Xiaoming; Zhou, Yang; Li, Haifeng; Lu, Haiwei

    2016-01-01

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shell Fe3O4@SiO2 (FS) nanoparticles. These reactions used a silane coupling agent and sodium chloroacetate. The results show that FS@IDA could chelate the heavy metal component of Cd, Zn, Pb, Cu and Ni carbonates, lead sulfate and lead chloride in water-insoluble salt systems. The resulting FS@IDA-Cd and FS@IDA-Pb chelates could be magnetically separated, resulting in removal rates of approximately 84.9% and 72.2% for Cd and Pb, respectively. FS@IDA could not remove the residual heavy metals and those bound to organic matter in the soil. FS@IDA did not significantly alter the chemical composition of the soil, and it allowed for fast chelating capture, simple magnetic separation and facilitated heavy metal elution. FS@IDA could also be easily prepared and reprocessed. PMID:26878770

  3. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil.

    PubMed

    Fan, Liren; Song, Jiqing; Bai, Wenbo; Wang, Shengping; Zeng, Ming; Li, Xiaoming; Zhou, Yang; Li, Haifeng; Lu, Haiwei

    2016-02-16

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shell Fe3O4@SiO2 (FS) nanoparticles. These reactions used a silane coupling agent and sodium chloroacetate. The results show that FS@IDA could chelate the heavy metal component of Cd, Zn, Pb, Cu and Ni carbonates, lead sulfate and lead chloride in water-insoluble salt systems. The resulting FS@IDA-Cd and FS@IDA-Pb chelates could be magnetically separated, resulting in removal rates of approximately 84.9% and 72.2% for Cd and Pb, respectively. FS@IDA could not remove the residual heavy metals and those bound to organic matter in the soil. FS@IDA did not significantly alter the chemical composition of the soil, and it allowed for fast chelating capture, simple magnetic separation and facilitated heavy metal elution. FS@IDA could also be easily prepared and reprocessed.

  4. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil

    NASA Astrophysics Data System (ADS)

    Fan, Liren; Song, Jiqing; Bai, Wenbo; Wang, Shengping; Zeng, Ming; Li, Xiaoming; Zhou, Yang; Li, Haifeng; Lu, Haiwei

    2016-02-01

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shell Fe3O4@SiO2 (FS) nanoparticles. These reactions used a silane coupling agent and sodium chloroacetate. The results show that FS@IDA could chelate the heavy metal component of Cd, Zn, Pb, Cu and Ni carbonates, lead sulfate and lead chloride in water-insoluble salt systems. The resulting FS@IDA-Cd and FS@IDA-Pb chelates could be magnetically separated, resulting in removal rates of approximately 84.9% and 72.2% for Cd and Pb, respectively. FS@IDA could not remove the residual heavy metals and those bound to organic matter in the soil. FS@IDA did not significantly alter the chemical composition of the soil, and it allowed for fast chelating capture, simple magnetic separation and facilitated heavy metal elution. FS@IDA could also be easily prepared and reprocessed.

  5. Assessment of iron chelates efficiency for photo-Fenton at neutral pH.

    PubMed

    De Luca, Antonella; Dantas, Renato F; Esplugas, Santiago

    2014-09-15

    In this study, homogeneous photo-Fenton like at neutral pH was applied to remove sulfamethoxazole from water. The process was performed using different chelating agents in order to solubilize iron in a neutral water solution. The chelating agents tested were: ethylenediaminetetraacetic acid (EDTA); nitrilotriacetic acid (NTA); oxalic acid (OA) and tartaric acid (TA). The iron leaching was monitored over reaction time to evaluate the chelates stability and their resistance to HO· and UV-A radiation. Chelates of EDTA and NTA presented more stability than OA and TA, which also confirmed their higher efficiency. Total Organic Carbon (TOC) analyses were also performed to evaluate the contribution in terms of solution contamination related to the use of chelating agents. The better properties of biodegradability in respect of EDTA combined with better efficiency in terms of microcontaminant removal and the smallest TOC contribution indicate that NTA could represent a useful option to perform photo-Fenton processes at neutral pH. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Heavy metal displacement in chelate-irrigated soil during phytoremediation

    NASA Astrophysics Data System (ADS)

    Madrid, F.; Liphadzi, M. S.; Kirkham, M. B.

    2003-03-01

    Heavy metals in wastewater sewage sludge (biosolids), applied to land, contaminate soils. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with and without roots following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals in biosolids applied to the surface of soil columns (76 cm long; 17 cm diam.) with or without plants (barley; Hordeum vulgare L.). Three weeks after barley was planted, all columns were irrigated with the disodium salt of the chelating agent, EDTA (ethylenediamine tetraacetic acid) (0.5 g/kg soil). Drainage water, soil, and plants were analyzed for heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, Zn). Total concentrations of the heavy metals in all columns at the end of the experiment generally were lower in the top 30 cm of soil with EDTA than without EDTA. The chelate increased concentrations of heavy metals in shoots. With or without plants, the EDTA mobilized Cd, Fe, Mn, Ni, Pb, and Zn, which leached to drainage water. Drainage water from columns without EDTA had concentrations of these heavy metals below detection limits. Only Cu did not leach in the presence of EDTA. Even though roots retarded the movement of Cd, Fe, Mn, Ni, Pb, and Zn through the EDTA-treated soil from 1 d (Cd) to 5 d (Fe), the drainage water from columns with EDTA had concentrations of Cd, Fe, Mn, and Pb that exceeded drinking water standards by 1.3, 500, 620, and 8.6 times, respectively. Because the chelate rendered Cd, Fe, Mn, Ni, Pb, and Zn mobile, it is suggested that the theory for leaching of soluble salts, put forward by Nielsen and associates in 1965, could be applied to control movement of the heavy metals for maximum uptake during chelate-assisted phytoremediation.

  7. Characterization of commercial iron chelates and their behavior in an alkaline and calcareous soil.

    PubMed

    Cantera, Rodrigo G; Zamarreño, Angel M; García-Mina, José M

    2002-12-18

    Iron deficiency is a common problem for many plants grown in alkaline and calcareous soils. To correct this problem, iron is supplied to plants as chelates. Several iron chelates are sold under diverse trademarks with different characteristics. This work evaluated 18 commercial products containing the most representative chelated iron sources used in agricultural practice in Spain when the study was done, namely the ferric chelates of EDDHA, EDDHMA, EDDCHA, EDDHSA, EDTA, and DTPA. The chelates were comprehensively characterized and quantitated by several techniques, including several chromatographic methods. Iron and chelate dynamics in soil were also studied in a model alkaline and calcareous soil. Results indicate that, in this model soil, among the different iron compounds studied only FeEDDHA and analogues have the capacity to maintain soluble iron in soil solution over time. These results are in agreement with general experience under field conditions. Furthermore, among the different ortho-ortho isomers of FeEDDHA's, FeEDDHSA and FeEDDCHA showed greater capacity than FeEDDHA and FeEDDHMA to maintain the chelated iron in soil solution over time.

  8. Chelation therapy and cardiovascular disease: connecting scientific silos to benefit cardiac patients.

    PubMed

    Peguero, Julio G; Arenas, Ivan; Lamas, Gervasio A

    2014-08-01

    Medical practitioners have treated atherosclerotic disease with chelation therapy for over 50 years. Lack of strong of evidence led conventional practitioners to abandon its use in the 1960s and 1970s. This relegated chelation therapy to complementary and alternative medicine practitioners, who reported good anecdotal results. Concurrently, the epidemiologic evidence linking xenobiotic metals with cardiovascular disease and mortality gradually accumulated, suggesting a plausible role for chelation therapy. On the basis of the continued use of chelation therapy without an evidence base, the National Institutes of Health released a Request for Applications for a definitive trial of chelation therapy. The Trial to Assess Chelation Therapy (TACT) was formulated as a 2 × 2 factorial randomized controlled trial of intravenous EDTA-based chelation vs. placebo and high-dose oral multivitamins and multiminerals vs. oral placebo. The composite primary endpoint was death, reinfarction, stroke, coronary revascularization, or hospitalization for angina. A total of 1708 post-MI patients who were 50 years or older with a creatinine of 2.0 or less were enrolled and received 55,222 infusions of disodium EDTA or placebo with a median follow-up of 55 months. Patients were on evidence-based post-MI medications including statins. EDTA proved to be safe. EDTA chelation therapy reduced cardiovascular events by 18%, with a 5-year number needed to treat (NNT) of 18. Prespecified subgroup analysis revealed a robust benefit in patients with diabetes mellitus with a 41% reduction in the primary endpoint (5-year NNT = 6.5), and a 43% 5-year relative risk reduction in all-cause mortality (5-year NNT = 12). The magnitude of benefit is such that it suggests urgency in replication and implementation, which could, due to the excellent safety record, occur simultaneously. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Measurement of gamma-ray production from thermal neutron capture on gadolinium for neutrino experiments

    NASA Astrophysics Data System (ADS)

    Yano, Takatomi; 2012B0025 Collaboration; 2014B0126 Collaboration

    2017-02-01

    Recently, several scientific applications of gadolinium are found in neutrino physics experiments. Gadolinium-157 is the nucleus, which has the largest thermal neutron capture cross-section among all stable nuclei. Gadolinium-155 also has the large cross-section. These neutron capture reactions provide the gamma-ray cascade with the total energy of about 8 MeV. This reaction is applied for several neutrino experiments, e.g. reactor neutrino experiments and Gd doped large water Cherenkov detector experiments, to recognize inverse-beta-decay reaction. A good Gd(n,γ) simulation model is needed to evaluate the detection efficiency of the neutron capture reaction, i.e. the efficiency of IBD detection. In this presentation, we will report the development and study status of a Gd(n,γ) calculation model and comparison with our experimental data taken at ANNRI/MLF beam line, J-PARC.

  10. Type-II domains in ferroelectric gadolinium molybdate (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohm, J.; Kuersten, H.D.

    Etching (001)-faces of gadolinium molybdate (GMO) reveals new kinds of domains. They are created by a translation, that leaves the spontaneous polarization and the transition parameter invariant. The translation vector is a part of a lattice vector, similar to stacking faults. (auth)

  11. Controlling lipid oxidation via a biomimetic iron chelating active packaging material.

    PubMed

    Tian, Fang; Decker, Eric A; Goddard, Julie M

    2013-12-18

    Previously, a siderophore-mimetic metal chelating active packaging film was developed by grafting poly(hydroxamic acid) (PHA) from the surface of polypropylene (PP) films. The objective of the current work was to demonstrate the potential applicability of this PP-g-PHA film to control iron-promoted lipid oxidation in food emulsions. The iron chelating activity of this film was investigated, and the surface chemistry and color intensity of films were also analyzed after iron chelation. In comparison to the iron chelating activity in the free Fe(3+) solution, the PP-g-PHA film retained approximately 50 and 30% of its activity in nitrilotriacetic acid (NTA)/Fe(3+) and citric acid/Fe(3+) solutions, respectively (pH 5.0), indicating a strong chelating strength for iron. The ability of PP-g-PHA films to control lipid oxidation was demonstrated in a model emulsion system (pH 3.0). PP-g-PHA films performed even better than ethylenediaminetetraacetic acid (EDTA) in preventing the formation of volatile oxidation products. The particle size and ζ potential results of emulsions indicated that PP-g-PHA films had no adverse effects on the stability of the emulsion system. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analysis suggested a non-migratory nature of the PP-g-PHA film surface. These results suggest that such biomimetic, non-migratory metal chelating active packaging films have commercial potential in protecting foods against iron-promoted lipid oxidation.

  12. Super-Chelators for Advanced Protein Labeling in Living Cells.

    PubMed

    Gatterdam, Karl; Joest, Eike F; Dietz, Marina S; Heilemann, Mike; Tampé, Robert

    2018-05-14

    Live-cell labeling, super-resolution microscopy, single-molecule applications, protein localization, or chemically induced assembly are emerging approaches, which require specific and very small interaction pairs. The minimal disturbance of protein function is essential to derive unbiased insights into cellular processes. Herein, we define a new class of hexavalent N-nitrilotriacetic acid (hexaNTA) chelators, displaying the highest affinity and stability of all NTA-based small interaction pairs described so far. Coupled to bright organic fluorophores with fine-tuned photophysical properties, the super-chelator probes were delivered into human cells by chemically gated nanopores. These super-chelators permit kinetic profiling, multiplexed labeling of His 6 - and His 12 -tagged proteins as well as single-molecule-based super-resolution imaging. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Nanoamplifiers synthesized from gadolinium and gold nanocomposites for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Tian, Xiumei; Shao, Yuanzhi; He, Haoqiang; Liu, Huan; Shen, Yingying; Huang, Wenlin; Li, Li

    2013-03-01

    We have synthesized an efficient and highly sensitive nanoamplifier composed of gadolinium-doped silica nanoparticles and gold nanoparticles (AuNPs). Magnetic resonance imaging (MRI) in vitro and in vivo assays revealed enhancement of signal sensitivity, which may be explained by electron transfer between water and gadolinium-doped nanoparticles, apparent in the presence of gold. In vitro and in vivo evaluation demonstrated nanoamplifier incurred minimal cytotoxicity and immunotoxicity, increased stability, and gradual excretion patterns. Tumor targeted properties were preliminarily determined when the nanoamplifier was injected into mouse models of colon cancer liver metastasis. Furthermore, although AuNPs departed from the nanoamplifiers in specific mice tissues, optical and magnetic resonance imaging was efficient, especially in metastatic tumors. These assays validate our nanoamplifier as an effective MRI signal enhancer with sensitive cancer diagnosis potential.We have synthesized an efficient and highly sensitive nanoamplifier composed of gadolinium-doped silica nanoparticles and gold nanoparticles (AuNPs). Magnetic resonance imaging (MRI) in vitro and in vivo assays revealed enhancement of signal sensitivity, which may be explained by electron transfer between water and gadolinium-doped nanoparticles, apparent in the presence of gold. In vitro and in vivo evaluation demonstrated nanoamplifier incurred minimal cytotoxicity and immunotoxicity, increased stability, and gradual excretion patterns. Tumor targeted properties were preliminarily determined when the nanoamplifier was injected into mouse models of colon cancer liver metastasis. Furthermore, although AuNPs departed from the nanoamplifiers in specific mice tissues, optical and magnetic resonance imaging was efficient, especially in metastatic tumors. These assays validate our nanoamplifier as an effective MRI signal enhancer with sensitive cancer diagnosis potential. Electronic supplementary information

  14. Chelation therapy to treat atherosclerosis, particularly in diabetes: is it time to reconsider?

    PubMed

    Lamas, Gervasio A; Ergui, Ian

    2016-08-01

    Case reports and case series have suggested a possible beneficial effect of chelation therapy in patients with atherosclerotic disease. Small randomized trials conducted in patients with angina or peripheral artery disease, however, were not sufficiently powered to provide conclusive evidence on clinical outcomes. The Trial to Assess Chelation Therapy (TACT) was the first randomized trial adequately powered to detect the effects of chelation therapy on clinical endpoints. We discuss results and future research. Expert commentary: Chelation reduced adverse cardiovascular events in a post myocardial infarction (MI) population. Patients with diabetes demonstrated even greater benefit, with a number needed to treat of 6.5 patients to prevent a cardiac event over 5 years, with a 41% relative reduction in risk of a cardiac event (p = 0.0002). These results led to the revision of the ACC/AHA guideline recommendations for chelation therapy, changing its classification from class III to class IIb. TACT2, a replicative trial, will assess the effects of chelation therapy on cardiovascular outcomes in diabetic patients with a prior myocardial infarction. We are seeking participating sites for TACT2.

  15. Delayed Contrast-Enhanced MRI of the Coronary Artery Wall in Takayasu Arteritis

    PubMed Central

    Schneeweis, Christopher; Schnackenburg, Bernhard; Stuber, Matthias; Berger, Alexander; Schneider, Udo; Yu, Jing; Gebker, Rolf; Weiss, Robert G.; Fleck, Eckart; Kelle, Sebastian

    2012-01-01

    Background Takayasu arteritis (TA) is a rare form of chronic inflammatory granulomatous arteritis of the aorta and its major branches. Late gadolinium enhancement (LGE) with magnetic resonance imaging (MRI) has demonstrated its value for the detection of vessel wall alterations in TA. The aim of this study was to assess LGE of the coronary artery wall in patients with TA compared to patients with stable CAD. Methods We enrolled 9 patients (8 female, average age 46±13 years) with proven TA. In the CAD group 9 patients participated (8 male, average age 65±10 years). Studies were performed on a commercial 3T whole-body MR imaging system (Achieva; Philips, Best, The Netherlands) using a 3D inversion prepared navigator gated spoiled gradient-echo sequence, which was repeated 34–45 minutes after low-dose gadolinium administration. Results No coronary vessel wall enhancement was observed prior to contrast in either group. Post contrast, coronary LGE on IR scans was detected in 28 of 50 segments (56%) seen on T2-Prep scans in TA and in 25 of 57 segments (44%) in CAD patients. LGE quantitative assessment of coronary artery vessel wall CNR post contrast revealed no significant differences between the two groups (CNR in TA: 6.0±2.4 and 7.3±2.5 in CAD; p = 0.474). Conclusion Our findings suggest that LGE of the coronary artery wall seems to be common in patients with TA and similarly pronounced as in CAD patients. The observed coronary LGE seems to be rather unspecific, and differentiation between coronary vessel wall fibrosis and inflammation still remains unclear. PMID:23236382

  16. Delayed contrast-enhanced MRI of the coronary artery wall in takayasu arteritis.

    PubMed

    Schneeweis, Christopher; Schnackenburg, Bernhard; Stuber, Matthias; Berger, Alexander; Schneider, Udo; Yu, Jing; Gebker, Rolf; Weiss, Robert G; Fleck, Eckart; Kelle, Sebastian

    2012-01-01

    Takayasu arteritis (TA) is a rare form of chronic inflammatory granulomatous arteritis of the aorta and its major branches. Late gadolinium enhancement (LGE) with magnetic resonance imaging (MRI) has demonstrated its value for the detection of vessel wall alterations in TA. The aim of this study was to assess LGE of the coronary artery wall in patients with TA compared to patients with stable CAD. We enrolled 9 patients (8 female, average age 46±13 years) with proven TA. In the CAD group 9 patients participated (8 male, average age 65±10 years). Studies were performed on a commercial 3T whole-body MR imaging system (Achieva; Philips, Best, The Netherlands) using a 3D inversion prepared navigator gated spoiled gradient-echo sequence, which was repeated 34-45 minutes after low-dose gadolinium administration. No coronary vessel wall enhancement was observed prior to contrast in either group. Post contrast, coronary LGE on IR scans was detected in 28 of 50 segments (56%) seen on T2-Prep scans in TA and in 25 of 57 segments (44%) in CAD patients. LGE quantitative assessment of coronary artery vessel wall CNR post contrast revealed no significant differences between the two groups (CNR in TA: 6.0±2.4 and 7.3±2.5 in CAD; p = 0.474). Our findings suggest that LGE of the coronary artery wall seems to be common in patients with TA and similarly pronounced as in CAD patients. The observed coronary LGE seems to be rather unspecific, and differentiation between coronary vessel wall fibrosis and inflammation still remains unclear.

  17. SEPARATION OF PLUTONIUM FROM LANTHANUM BY CHELATION-EXTRACTION

    DOEpatents

    James, R.A.; Thompson, S.G.

    1958-12-01

    Plutonium can be separated from a mixture of plutonlum and lanthanum in which the lanthanum to plutonium molal ratio ls at least five by adding the ammonium salt of N-nitrosoarylhydroxylamine to an aqueous solution having a pH between about 3 and 0.2 and containing the plutonium in a valence state of at least +3, to form a plutonium chelate compound of N-nitrosoarylhydroxylamine. The plutonium chelate compound may be recovered from the solution by extracting with an immiscible organic solvent such as chloroform.

  18. Polyethylene glycol and contrast-enhanced MRI of Crohn's disease in children: preliminary experience.

    PubMed

    Magnano, Gianmichele; Granata, Claudio; Barabino, Arrigo; Magnaguagno, Francesca; Rossi, Umberto; Calevo, Maria Grazia; Toma, Paolo

    2003-06-01

    To assess the ability of MRI to detect bowel abnormalities in children affected by Crohn's disease (CD). We studied 22 children (age range 8-18 years) referred to us with a known history of CD. MRI was carried out using a 1.5-T unit with a maximum gradient field strength of 16 mT and a phased-array body coil. The sequences performed were breath-hold coronal and axial T2-weighted, express fat saturation, followed by T1-weighted, spoiled gradient, fast fat saturation after IV injection of gadolinium chelate (0.3 mmol/kg) for contrast enhancement of the bowel wall. Bowel distension was achieved using oral administration of isosmotic polyethylene glycol solution. Ileo-colonoscopy was considered the gold standard for evaluation of superficial abnormalities and stenoses of the colon and terminal ileum. MRI findings of bowel-wall thickening, increased vascularisation and extramural involvement were compared with the findings using B-mode and Doppler US. Concordance between MRI and endoscopy, B-mode US and Doppler US findings was determined by the Kappa statistical method. Superficial lesions were not shown by MRI. MR enteroclysis easily detected stenoses, thickening and hyperaemia of bowel wall. Concordance of findings between MRI and endoscopy was 90% (K=0.79, substantial concordance). Concordance of findings between MRI and US concerning bowel-wall thickening and increased vascularisation was 95% (K=0.875, excellent concordance) and 80% (K=0.6, fairly good concordance), respectively. Our initial results show that MRI can detect intra- and extra-mural lesions of CD. The high concordance observed between MRI, endoscopy, US and Doppler US findings suggests that MRI is at least comparable for diagnostic capability with these techniques offering, thanks to multiplanar projections, an improved visualisation of the bowel without ionising radiation.

  19. Pre-clinical evaluation of a nanoparticle-based blood-pool contrast agent for MR imaging of the placenta.

    PubMed

    Ghaghada, Ketan B; Starosolski, Zbigniew A; Bhayana, Saakshi; Stupin, Igor; Patel, Chandreshkumar V; Bhavane, Rohan C; Gao, Haijun; Bednov, Andrey; Yallampalli, Chandrasekhar; Belfort, Michael; George, Verghese; Annapragada, Ananth V

    2017-09-01

    Non-invasive 3D imaging that enables clear visualization of placental margins is of interest in the accurate diagnosis of placental pathologies. This study investigated if contrast-enhanced MRI performed using a liposomal gadolinium blood-pool contrast agent (liposomal-Gd) enables clear visualization of the placental margins and the placental-myometrial interface (retroplacental space). Non-contrast MRI and contrast-enhanced MRI using a clinically approved conventional contrast agent were used as comparators. Studies were performed in pregnant rats under an approved protocol. MRI was performed at 1T using a permanent magnet small animal scanner. Pre-contrast and post-liposomal-Gd contrast images were acquired using T1-weighted and T2-weighted sequences. Dynamic Contrast enhanced MRI (DCE-MRI) was performed using gadoterate meglumine (Gd-DOTA, Dotarem ® ). Visualization of the retroplacental clear space, a marker of normal placentation, was judged by a trained radiologist. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were calculated for both single and averaged acquisitions. Images were reviewed by a radiologist and scored for the visualization of placental features. Contrast-enhanced CT (CE-CT) imaging using a liposomal CT agent was performed for confirmation of the MR findings. Transplacental transport of liposomal-Gd was evaluated by post-mortem elemental analysis of tissues. Ex-vivo studies in perfused human placentae from normal, GDM, and IUGR pregnancies evaluated the transport of liposomal agent across the human placental barrier. Post-contrast T1w images acquired with liposomal-Gd demonstrated significantly higher SNR (p = 0.0002) in the placenta compared to pre-contrast images (28.0 ± 4.7 vs. 6.9 ± 1.8). No significant differences (p = 0.39) were noted between SNR in pre-contrast and post-contrast liposomal-Gd images of the amniotic fluid, indicating absence of transplacental passage of the agent. The placental margins were

  20. Inorganic nanoparticle-based T1 and T1/T2 magnetic resonance contrast probes

    NASA Astrophysics Data System (ADS)

    Hu, Fengqin; Zhao, Yong Sheng

    2012-09-01

    Magnetic resonance imaging (MRI) yields high spatially resolved contrast with anatomical details for diagnosis, deeper penetration depth and rapid 3D scanning. To improve imaging sensitivity, adding contrast agents accelerates the relaxation rate of water molecules, thereby greatly increasing the contrast between specific issues or organs of interest. Currently, the majority of T1 contrast agents are paramagnetic molecular complexes, typically Gd(iii) chelates. Various nanoparticulate T1 and T1/T2 contrast agents have recently been investigated as novel agents possessing the advantages of both the T1 contrast effect and nanostructural characteristics. In this minireview, we describe the recent progress of these inorganic nanoparticle-based MRI contrast agents. Specifically, we mainly report on Gd and Mn-based inorganic nanoparticles and ultrasmall iron oxide/ferrite nanoparticles.

  1. Electron magnetic resonance investigation of gadolinium diffusion in zircon powders

    NASA Astrophysics Data System (ADS)

    de Biasi, R. S.; Grillo, M. L. N.

    2011-11-01

    The electron magnetic resonance (EMR) technique was used to investigate the diffusion of gadolinium in zircon (ZrSiO4) powders. The EMR absorption intensity was measured for several annealing times and three different temperatures of isothermal annealing: 1273, 1323 and 1373 K. The activation energy for diffusion, calculated from the experimental data using a theoretical model based on the Fick equation, was found to be EA=506±5 kJ mol-1. This value is close to the ones for the diffusion of Gd in UO2 and CeO2, but much larger than for the diffusion of gadolinium in a compound with the same crystal structure as zircon, YVO4. This is attributed to a difference in the relative sizes of the ions involved in the diffusion process.

  2. Gadolinium concentration analysis in brain phantom by X-ray fluorescence.

    PubMed

    Almalki, Musaed; Majid, Samir Abdul; Butler, Philip H; Reinisch, Lou

    2010-06-01

    We have measured the X-ray fluorescence from gadolinium as a function of concentration and position in tumors of different sizes and shapes in a head phantom. The gadolinium fluorescence was excited with a 36 GBq Am-241 source. The fluorescence signal was detected with a CdTe detector and a multi-channel analyzer. The fluorescence peak was clearly separated from the scattered X-rays. Concentrations of 5.62-78.63 mg/ml of Gd ion were used in 1, 2, and 3 cm diameter spherical tumors and a 2x4 cm oblate spheroid tumor. The data show trends approaching saturation for the highest concentrations, probably due to reabsorption in the tumor. A comparison of X-ray photographic imaging and densitometer measurements to determine concentration is also presented.

  3. Clioquinol-zinc chelate: a candidate causative agent of subacute myelo-optic neuropathy.

    PubMed Central

    Arbiser, J. L.; Kraeft, S. K.; van Leeuwen, R.; Hurwitz, S. J.; Selig, M.; Dickersin, G. R.; Flint, A.; Byers, H. R.; Chen, L. B.

    1998-01-01

    BACKGROUND: 5-chloro-7-iodo-8-hydroxyquinoline (clioquinol) was used clinically three decades ago as an oral antiparasitic agent and to increase intestinal absorption of zinc in patients with acrodermatitis enteropathica, a genetic disorder of zinc absorption. Use of clioquinol was epidemiologically linked to subacute myelo-optic neuropathy (SMON), characterized by peripheral neuropathy and blindness, which affected 10,000 patients in Japan. Discontinuation of oral clioquinol use led to elimination of SMON, however, the mechanism of how clioquinol induces neurotoxicity is unclear. MATERIALS AND METHODS: We tested the effect of clioquinol-metal chelates on neural crest-derived melanoma cells. The effect of clioquinol chelates on cells was further studied by electron microscopy and by a mitochondrial potential-sensitive fluorescent dye. RESULTS: Of the ions tested, only clioquinol-zinc chelate demonstrated cytotoxicity. The cytotoxicity of clioquinol-zinc chelate was extremely rapid, suggesting that its primary effect was on the mitochondria. Electron microscopic analysis demonstrated that clioquinol-zinc chelate caused mitochondrial damage. This finding was further confirmed by the observation that clioquinol-zinc chelate caused a decrease in mitochondrial membrane potential. CONCLUSIONS: We demonstrate that clioquinol, in the presence of zinc, is converted to a potent mitochondrial toxin. The phenomenon of clioquinol mediated toxicity appears to be specific to zinc and is not seen with other metals tested. Since clioquinol has been shown to cause increased systemic absorption of zinc in humans, it is likely that clioquinol-zinc chelate was present in appreciable levels in patients with SMON and may be the ultimate causative toxin of SMON. Images Fig. 2 Fig. 3 PMID:9848083

  4. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89

    PubMed Central

    Xu, Jide; Tatum, David; Magda, Darren

    2017-01-01

    The development of bifunctional chelators (BFCs) for zirconium-89 immuno-PET applications is an area of active research. Herein we report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2) as zirconium-89 chelators. While both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. Differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimization is necessary to enhance 89Zr chelation. PMID:28575044

  5. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89.

    PubMed

    Bhatt, Nikunj B; Pandya, Darpan N; Xu, Jide; Tatum, David; Magda, Darren; Wadas, Thaddeus J

    2017-01-01

    The development of bifunctional chelators (BFCs) for zirconium-89 immuno-PET applications is an area of active research. Herein we report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2) as zirconium-89 chelators. While both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. Differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimization is necessary to enhance 89Zr chelation.

  6. [Studies of three-dimensional cardiac late gadolinium enhancement MRI at 3.0 Tesla].

    PubMed

    Ishimoto, Takeshi; Ishihara, Masaru; Ikeda, Takayuki; Kawakami, Momoe

    2008-12-20

    Cardiac late Gadolinium enhancement MR imaging has been shown to allow assessment of myocardial viability in patients with ischemic heart disease. The current standard approach is a 3D inversion recovery sequence at 1.5 Tesla. The aims of this study were to evaluate the technique feasibility and clinical utility of MR viability imaging at 3.0 Tesla in patients with myocardial infarction and cardiomyopathy. In phantom and volunteer studies, the inversion time required to suppress the signal of interests and tissues was prolonged at 3.0 Tesla. In the clinical study, the average inversion time to suppress the signal of myocardium at 3.0 Tesla with respect to MR viability imaging at 1.5 Tesla was at 15 min after the administration of contrast agent (304.0+/-29.2 at 3.0 Tesla vs. 283.9+/-20.9 at 1.5 Tesla). The contrast between infarction and viable myocardium was equal at both field strengths (4.06+/-1.30 at 3.0 Tesla vs. 4.42+/-1.85 at 1.5 Tesla). Even at this early stage, MR viability imaging at 3.0 Tesla provides high quality images in patients with myocardial infarction. The inversion time is significantly prolonged at 3.0 Tesla. The contrast between infarction and viable myocardium at 3.0 Tesla are equal to 1.5 Tesla. Further investigation is needed for this technical improvement, for clinical evaluation, and for limitations.

  7. Inhibitory activity of chelating agent against bacteria associated with poultry processing

    USDA-ARS?s Scientific Manuscript database

    Ethylenediaminetetraacetic acid (EDTA) and ethylenediamine-N, N’-disuccinic acid (EDDS) are chelating agents that can bind minerals that produce water hardness. By sequestering minerals in hard water, chelators reduce water hardness and increase the ability of cleansers to remove dirt and debris dur...

  8. Selective modification of NMR relaxation time in human colorectal carcinoma by using gadolinium-diethylenetriaminepentaacetic acid conjugated with monoclonal antibody 19-9.

    PubMed Central

    Curtet, C; Tellier, C; Bohy, J; Conti, M L; Saccavini, J C; Thedrez, P; Douillard, J Y; Chatal, J F; Koprowski, H

    1986-01-01

    Monoclonal antibody 19-9 (mAb 19-9) against human colon adenocarcinoma was conjugated with gadolinium X diethylenetriaminepentaacetic acid (Gd X DTPA) and used as a contrast agent in nuclear magnetic resonance (NMR) in an effort to improve tumor target selectivity in nude mice. The data indicate that Gd X DTPA-mAb 19-9 in solution decreased the T1 relaxation of water protons at 90 MHz in direct proportion to the gadolinium concentration, and this effect was greater than in Gd X DTPA solutions. T1 relaxation time at 90 MHz, measured in tumors removed from nude mice 24 hr after injection of Gd X DTPA-mAb 19-9 (Gd, 20 mumol/kg; 16 DTPA molecules per mAb molecule), was significantly decreased (by 15%) as compared with the control group. Similar results were obtained in tumors from mice injected with Gd X DTPA-mAb 19-9 solutions in which Gd was used at 2, 6, or 10 mumol/kg (16 DTPA molecules per mAb molecule). These doses are lower than those commonly used for Gd X DTPA (10-100 mumol/kg) as contrast agent. Tumor localization by the Gd X DTPA-mAb 19-9 complex containing radioactive Gd (0.3 microCi/microgram of 153Gd) to confirm scintigraphy revealed significant concentrations of the complex (5% of the injected dose per gram of tissue) in the tumor. Scan images recorded in planar scintigraphy at day 5 showed good visualization of tumors. Images PMID:3459174

  9. Recovery of methamphetamine associated cardiomyopathy predicted by late gadolinium enhanced cardiovascular magnetic resonance.

    PubMed

    Lopez, Javier E; Yeo, Khung; Caputo, Gary; Buonocore, Michael; Schaefer, Saul

    2009-11-11

    Methamphetamine is known to cause a cardiomyopathy which may be reversible with appropriate medical therapy and cessation of use. Late gadolinium enhancement cardiovascular magnetic resonance (CMR) has been shown to identify fibrosis in ischemic and non-ischemic cardiomyopathies. We present a case of severe methamphetamine-associated cardiomyopathy in which cardiac function recovered after 6 months. Evaluation by CMR using late gadolinium enhancement was notable for an absence of enhancement, suggesting an absence of irreversible myocyte injury and a good prognosis. CMR may be useful to predict recovery in toxin-associated non-ischemic cardiomyopathies.

  10. Recovery of methamphetamine associated cardiomyopathy predicted by late gadolinium enhanced cardiovascular magnetic resonance

    PubMed Central

    2009-01-01

    Methamphetamine is known to cause a cardiomyopathy which may be reversible with appropriate medical therapy and cessation of use. Late gadolinium enhancement cardiovascular magnetic resonance (CMR) has been shown to identify fibrosis in ischemic and non-ischemic cardiomyopathies. We present a case of severe methamphetamine-associated cardiomyopathy in which cardiac function recovered after 6 months. Evaluation by CMR using late gadolinium enhancement was notable for an absence of enhancement, suggesting an absence of irreversible myocyte injury and a good prognosis. CMR may be useful to predict recovery in toxin-associated non-ischemic cardiomyopathies. PMID:19906310

  11. Layered gadolinium hydroxides for low-temperature magnetic cooling.

    PubMed

    Abellán, Gonzalo; Espallargas, Guillermo Mínguez; Lorusso, Giulia; Evangelisti, Marco; Coronado, Eugenio

    2015-09-28

    Layered gadolinium hydroxides have revealed to be excellent candidates for cryogenic magnetic refrigeration. These materials behave as pure 2D magnetic systems with a Heisenberg-Ising critical crossover, induced by dipolar interactions. This 2D character and the possibility offered by these materials to be delaminated open the possibility of rapid heat dissipation upon substrate deposition.

  12. Timing for a sustainable fertilisation of Glycine max by using HBED/Fe3+ and EDDHA/Fe3+ chelates.

    PubMed

    Martín-Fernández, Clara; López-Rayo, Sandra; Hernández-Apaolaza, Lourdes; Lucena, Juan J

    2017-07-01

    Efficient use of Fe chelates is crucial to avoid environmental risks and reduce economic losses. HBED/Fe 3+ has been recently approved by the European Union for soil fertilisation, but studies delving into the best timing for its application are necessary. In this work, a batch incubation experiment and two biological experiments were developed to determine the optimal physiological stage for a sustainable application of HBED/Fe 3+ in soil fertilisation compared with EDDHA/Fe 3+ fertilisers using 57 Fe. HBED/Fe 3+ demonstrated a high durability in soils and soil materials, maintaining more than 80% of Fe chelated after 70 days, and its application at an early physiological stage resulted in a high Fe accumulation in soybean and soil after 36 days. In contrast, the stability of EDDHA/Fe 3+ decreased because of the retention of its lowest stable isomers. The best timing for chelates application was confirmed in a 52 day experiment. The application of HBED/Fe 3+ at the early stage increased the Fe translocation to fruits; while o,o-EDDHA/Fe 3+ accumulated more Fe in fruits when added at the fructification stage. The high HBED/Fe 3+ stability in calcareous soil requires a differentiate application timing, and its addition at early physiological stages leads into the most efficient fertilisation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakshminarayan, Raghuram, E-mail: raghuram.lakshminarayan@hey.nhs.u; Simpson, James O.; Ettles, Duncan F., E-mail: Duncan.Ettles@hey.nhs.u

    Magnetic resonance angiography (MRA) has become an established imaging modality in the management of lower-limb arterial disease, with emerging roles in treatment planning and follow-up. Contrast-enhanced MRA is now the most widely used technique with clinically acceptable results in the majority of patients. Difficulties in imaging and image interpretation are recognised in certain subgroups, including patients with critical limb ischaemia as well as patients with stents. Although newer contrast agents and refined imaging protocols may offer some solutions to these problems, this optimism is balanced by concerns about the toxicity of certain gadolinium chelates. Further development of interventional MRA remainsmore » one of the most significant challenges in the development of magnetic resonance imaging-guided peripheral vascular intervention. The status of MRA in managing patients with lower-limb arterial disease in current clinical practice is reviewed.« less

  14. Hydroxypyridinone Derivatives: A Fascinating Class of Chelators with Therapeutic Applications - An Update.

    PubMed

    Chaves, Sílvia; Piemontese, Luca; Hiremathad, Asha; Santos, Maria A

    2018-01-01

    Hydroxypyridinones (HPs) are a family of N-heterocyclic metal chelators, which have been an attractive target in the development of a variety of new pharmaceutical drugs, due to their high metal chelating efficacy/specificity and easy derivatization to tune the desired biological properties. In fact, along the last decades, hydroxypyridinone derivatives, but mostly 3-hydroxy-4-pyridinone (3,4-HP), have been intensively used in drug design, following either a multitarget approach, in which one chelating unity is extrafunctionalized (hybridized) to enable the interaction with other important specific biological sites, or a polydenticity approach, in which more than one chelating moiety is conveniently attached to one scaffold, to increase the metal chelating efficacy. This review represents an update of the most recent publications (2014-2016) in mono-HP hybrids, namely as potential anti-Alzheimer's drugs, inhibitors of metalloenzymes and anti-microbials, and also polychelating compounds (poly- HP), in view of potential application, such as anti-microbial/biostatic agents, luminescent biosensors or diagnostic agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Gadolinium-148 and other spallation production cross section measurements for accelerator target facilities

    NASA Astrophysics Data System (ADS)

    Kelley, Karen Corzine

    At the Los Alamos Neutron Science Center accelerator complex, protons are accelerated to 800 MeV and directed to two tungsten targets, Target 4 at the Weapons Neutron Research facility and the 1L target at the Lujan Center. The Department of Energy requires hazard classification analyses to be performed on these targets and places limits on certain radionuclide inventories in the targets to avoid characterizing the facilities as "nuclear facilities." Gadolinium-148 is a radionuclide created from the spallation of tungsten. Allowed isotopic inventories are particularly low for this isotope because it is an alpha-particle emitter with a 75-year half-life. The activity level of Gadolinium-148 is low, but it encompasses almost two-thirds of the total dose burden for the two tungsten targets based on present yield estimates. From a hazard classification standpoint, this severely limits the lifetime of these tungsten targets. The cross section is not well-established experimentally and this is the motivation for measuring the Gadolinium-148 production cross section from tungsten. In a series of experiments at the Weapons Neutron Research facility, Gadolinium-148 production was measured for 600- and 800-MeV protons on tungsten, tantalum, and gold. These experiments used 3 mum thin tungsten, tantalum, and gold foils and 10 mum thin aluminum activation foils. In addition, spallation yields were determined for many short-lived and long-lived spallation products with these foils using gamma and alpha spectroscopy and compared with predictions of the Los Alamos National Laboratory codes CEM2k+GEM2 and MCNPX. The cumulative Gadolinium-148 production cross section measured from tantalum, tungsten, and gold for incident 600-MeV protons were 15.2 +/- 4.0, 8.31 +/- 0.92, and 0.591 +/- 0.155, respectively. The average production cross sections measured at 800 MeV were 28.6 +/- 3.5, 19.4 +/- 1.8, and 3.69 +/- 0.50 for tantalum, tungsten, and gold, respectively. These cumulative

  16. Study of Anti-Fatigue Effect in Rats of Ferrous Chelates Including Hairtail Protein Hydrolysates

    PubMed Central

    Huang, Saibo; Lin, Huimin; Deng, Shang-gui

    2015-01-01

    The ability of ferrous chelates including hairtail protein hydrolysates to prevent and reduce fatigue was studied in rats. After hydrolysis of hairtail surimi with papain, the hairtail protein hydrolysates (HPH) were separated into three groups by range of relative molecular weight using ultrafiltration membrane separation. Hairtail proteins were then chelated with ferrous ions, and the antioxidant activity, the amino acid composition and chelation rate of the three kinds of ferrous chelates including hairtail protein hydrolysates (Fe-HPH) were determined. Among the three groups, the Fe-HPH chelate showing the best conditions was selected for the anti-fatigue animal experiment. For it, experimental rats were randomly divided into seven groups. Group A was designated as the negative control group given distilled water. Group B, the positive control group, was given glutathione. Groups C, D and E were designated as the Fe-HPH chelate treatment groups and given low, medium, and high doses, respectively. Group F was designated as HPH hydrolysate treatment group, and Group G was designated as FeCl2 treatment group. The different diets were orally administered to rats for 20 days. After that time, rats were subjected to forced swimming training after 1 h of gavage. Rats given Fe-FPH chelate had higher haemoglobin regeneration efficiency (HRE), longer exhaustive swimming time and higher SOD activity. Additionally, Fe-FPH chelate was found to significantly decrease the malondialdehyde content, visibly enhance the GSH-Px activity in liver and reduce blood lactic acid of rats. Fe-HPH chelate revealed an anti-fatigue effect, similar to or better than the positive control substance and superior to HPH or Fe when provided alone. PMID:26633476

  17. Enhanced in vitro activity of tigecycline in the presence of chelating agents.

    PubMed

    Deitchman, Amelia N; Singh, Ravi Shankar Prasad; Rand, Kenneth H; Derendorf, Hartmut

    2018-05-01

    The lack of availability of novel antibiotic agents and the rise of resistance to existing therapies has led clinicians to utilise combination therapy to adequately treat bacterial infections. Here we examined how chelators may impact the in vitro activity of tigecycline (TIG) against Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae. Minimum inhibitory concentrations (MICs) were determined by broth dilution with and without various combinations of chelators (EDTA and other tetracyclines) and metal ions (i.e. calcium, magnesium). Trimethoprim (TMP) was used as a non-chelating control. Addition of metal ions led to increases in MICs, whilst addition of EDTA led to decreases in MICs. The chelating effects of EDTA were reversed by addition of magnesium and most profoundly calcium. Similar effects of EDTA and calcium were observed for tetracycline (TET) and TMP. When other tetracyclines (TET, oxytetracycline (OXY) and chlortetracycline (CHL)) were used as chelators at concentrations below their MICs, TIG MICs decreased for P. aeruginosa but not for E. coli. Some decreases in TIG MICs were observed for K. pneumoniae when TET and CHL were added. A dose-dependent decrease in TIG MIC was observed for TET and was reversed by the addition of calcium. The presence of effects of EDTA and calcium on TMP MICs indicates that mechanisms outside of TIG chelation likely play a role in enhanced activity. Full characterisation of an unexpected interaction such as TIG-TET with different microorganisms could provide valuable insights into the underlying mechanisms and design of physiologically viable chelators as candidates for future combinations regimens. Copyright © 2018 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  18. Ocular Pharmacokinetic Study Using T1 Mapping and Gd-Chelate-Labeled Polymers

    PubMed Central

    Shi, Xianfeng; Liu, Xin; Wu, Xueming; Lu, Zheng-Rong; Li, S. Kevin

    2011-01-01

    Purpose Recent advances in drug discovery have led to the development of a number of therapeutic macromolecules for treatment of posterior eye diseases. We aimed to investigate the clearance of macromolecular contrast probes (polymers conjugated with Gd-chelate) in the vitreous after intravitreal injections with the recently developed ms-DSEPI-T12 MRI and to examine the degradation of disulfide-containing biodegradable polymers in the vitreous humor in vivo. Methods Intravitreal injections of model contrast agents poly[N-(2-hydroxypropyl)methacrylamide]-GG-1,6-hexanediamine-(Gd-DO3A), biodegradable (Gd-DTPA)-cystine copolymers, and MultiHance were performed in rabbits; their distribution and elimination from the vitreous after injections were determined by MRI. Results Times for macromolecular contrast agents to decrease to half their initial concentrations in the vitreous ranged from 0.4–1.3 days post-injection. Non-biodegradable polymers demonstrated slower vitreal clearance than those of disulfide-biodegradable polymers. Biodegradable polymers had similar clearance as MultiHance. Conclusions Usefulness of T1 mapping and ms-DSEPI-T12 MRI to study ocular pharmacokinetics was demonstrated. Results suggest an enzymatic degradation mechanism for the disulfide linkage in polymers in the vitreous leading to breakup of polymers in vitreous humor over time. PMID:21691891

  19. Gadolinium-labeled dendronized gold nanoparticles as new targeted MRI contrast agent

    NASA Astrophysics Data System (ADS)

    Pan, Hongmu; Daniel, Marie-Christine

    2010-04-01

    Early diagnosis is critical for positive outcome of cancer treatments. In many cases, lives would be saved if the tumor could be detected at a very early stage. Nanoparticles have the property of passively targeting tumor sites due to their enhanced permeation and retention (EPR) effect. Thus they can play a critical role in improving the ability to find cancer in its earliest and most treatable stages. Furthermore magnetic resonance imaging is one of the most precise techniques for cancer screening since it can show 3D images of the tumors. For a better enhancement of the sensitivity of this method, MRI contrast agent (DOTA)Gd was attached to poly(propylene imine) dendrons of third generation and the obtained dendrons were used for modification of gold nanoparticles.

  20. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, Nikunj B.; Pandya, Darpan N.; Xu, Jide

    The development of bifunctional chelators (BFCs) for zirconium-89 immuno-PET applications is an area of active research. We report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2) as zirconium-89 chelators. And while both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. The differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimizationmore » is necessary to enhance 89Zr chelation.« less

  1. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89

    DOE PAGES

    Bhatt, Nikunj B.; Pandya, Darpan N.; Xu, Jide; ...

    2017-06-02

    The development of bifunctional chelators (BFCs) for zirconium-89 immuno-PET applications is an area of active research. We report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2) as zirconium-89 chelators. And while both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. The differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimizationmore » is necessary to enhance 89Zr chelation.« less

  2. Effect of intravenous gadolinium-DTPA on diffusion tensor MR imaging for the evaluation of brain tumors.

    PubMed

    Bae, Min Sun; Jahng, Geon-Ho; Ryu, Chang Woo; Kim, Eui Jong; Choi, Woo Suk; Yang, Dal Mo

    2009-12-01

    The aim of this study was to investigate whether indices of diffusion tensor MRI (DT-MRI) are altered after contrast medium injection in patients with brain tumors. DT-MRIs at a 3-T unit before and 6 min after gadolinium-diethylenetriamine penta-acetic acid injection were obtained in nine patients (five women, four men) with histologically confirmed brain tumors (four metastases, one glioblastoma multiforme, three meningiomas, and one lymphoma). Fractional anisotropy (FA), trace and mean raw DT-MRI data without (DT_b0, b value = 0 s/mm(2)) and with (DT_b800, b value = 800 s/mm(2)) diffusion-encoded gradients were calculated. Regions of interest (ROIs) were placed in the tumor, peritumoral edema, and normal-appearing symmetric contralateral brain tissue for each patient. The Kruskal-Wallis rank sum test was used to determine the effects of contrast medium and ROI for all of the maps, and the Wilcoxon signed-rank test was performed for either paired t test between pre- and post-contrast values of DTI indices for the ROIs or the post hoc test. Statistically significant differences between pre-contrast and post-contrast DT-MRI are shown in the trace value of the peritumoral edema area (p = 0.0195) and the FA value of the tumor area (p = 0.0273). Trace and FA values of the other areas show no statistically significant differences between pre- and post-contrast (p > 0.05). In addition, we find a significant ROI effect for both FA (chi (2) = 26.514, df = 2, p = 0.0001) and trace (chi (2) = 21.218, df = 2, p = 0.0001). DT-MRI obtained after contrast medium injection of 6 min results in significant changes in diffusion isotropic and anisotropic values. Therefore, clinical applications of DT-MRI after administrating a contrast medium require caution in interpretation.

  3. Solid solutions of gadolinium doped zinc oxide nanorods by combined microwave-ultrasonic irradiation assisted crystallization

    NASA Astrophysics Data System (ADS)

    Kiani, Armin; Dastafkan, Kamran; Obeydavi, Ali; Rahimi, Mohammad

    2017-12-01

    Nanocrystalline solid solutions consisting of un-doped and gadolinium doped zinc oxide nanorods were fabricated by a modified sol-gel process utilizing combined ultrasonic-microwave irradiations. Polyvinylpyrrolidone, diethylene glycol, and triethylenetetramine respectively as capping, structure directing, and complexing agents were used under ultrasound dynamic aging and microwave heating to obtain crystalline nanorods. Crystalline phase monitoring, lattice parameters and variation, morphology and shape, elemental analysis, functional groups, reducibility, and the oxidation state of emerged species were examined by PXRD, FESEM, TEM, EDX, FTIR, micro Raman, H2-TPR, and EPR techniques. Results have verified that irradiation mechanism of gelation and crystallization reduces the reaction time, augments the crystal quality, and formation of hexagonal close pack structure of Wurtzite morphology. Besides, dissolution of gadolinium within host lattice involves lattice deformation, unit cell distortion, and angular position variation. Structure related shape and growth along with compositional purity were observed through microscopic and spectroscopic surveys. Furthermore, TPR and EPR studies elucidated more detailed behavior upon exposure to the exerted irradiations and subsequent air-annealing including the formed oxidation states and electron trapping centers, presence of gadolinium, zinc, and oxygen disarrays and defects, as well as alteration in the host unit cell via gadolinium addition.

  4. Quantification and Assessment of the Chemical Form of Residual Gadolinium in the Brain After Repeated Administration of Gadolinium-Based Contrast Agents: Comparative Study in Rats.

    PubMed

    Frenzel, Thomas; Apte, Chirag; Jost, Gregor; Schöckel, Laura; Lohrke, Jessica; Pietsch, Hubertus

    2017-07-01

    Multiple clinical and preclinical studies have reported a signal intensity increase and the presence of gadolinium (Gd) in the brain after repeated administration of Gd-based contrast agents (GBCAs). This bioanalytical study in rat brain tissue was initiated to investigate whether the residual Gd is present as intact GBCA or in other chemical forms by using tissue fractionation and chromatography. Rats were divided randomly in 6 groups of 10 animals each. They received 10 daily injections of 2.5 mmol/kg bodyweight of 1 of 5 different GBCAs: linear GBCAs such as gadodiamide (Omniscan; GE Healthcare), gadopentetate dimeglumine (Gd-DTPA, Magnevist; Bayer), or gadobenate dimeglumine (Multihance; Bracco) and macrocyclic GBCAs such as gadobutrol (Gadovist; Bayer) and gadoterate meglumine (Gd-DOTA, Dotarem; Guerbet) or saline. On days 3 and 24 after the last injection (p.i.), 5 randomly chosen animals of each group were killed by exsanguination, and their brains were excised and divided into cerebrum, pons, and cerebellum. The brain sections were homogenized by sonication in ice-cold buffer at pH 7.4. Soluble and insoluble fractions were separated by centrifugation, and the soluble fractions were further separated by gel permeation chromatography (GPC). The Gd concentration in all tissue fractions and in the GPC eluate was measured by inductively coupled plasma-mass spectrometry. In a recovery control experiment, all GBCAs were spiked to blank brain tissue and more than 94% recovery of Gd in the tissue fractions was demonstrated. Only traces of the administered Gd were found in the rat brain tissue on day 3 and day 24 p.i. In the animals treated with macrocyclic GBCAs, Gd was found only in the soluble brain fraction and was present solely as low molecular weight molecules, most likely the intact GBCA. In the animals treated with linear GBCAs Gd was found to a large extent in the insoluble tissue fraction. The Gd concentration in the soluble fraction was comparable to the

  5. Chelation and stabilization of berkelium in oxidation state +IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deblonde, Gauthier J. -P.; Sturzbecher-Hoehne, Manuel; Rupert, Peter B.

    Berkelium (Bk) has been predicted to be the only transplutonium element able to exhibit both +III and +IV oxidation states in solution, but evidence of a stable oxidized Bk chelate has so far remained elusive. Here, in this work, we describe the stabilization of the heaviest 4+ ion of the periodic table, under mild aqueous conditions, using a siderophore derivative. The resulting Bk(IV) complex exhibits luminescence via sensitization through an intramolecular antenna effect. This neutral Bk(IV) coordination compound is not sequestered by the protein siderocalin - a mammalian metal transporter - in contrast to the negatively charged species obtained withmore » neighbouring trivalent actinides americium, curium and californium (Cf). The corresponding Cf(III)-ligand-protein ternary adduct was characterized by X-ray diffraction analysis. Finally, combined with theoretical predictions, these data add significant insight to the field of transplutonium chemistry, and may lead to innovative Bk separation and purification processes.« less

  6. Chelation and stabilization of berkelium in oxidation state +IV

    DOE PAGES

    Deblonde, Gauthier J. -P.; Sturzbecher-Hoehne, Manuel; Rupert, Peter B.; ...

    2017-04-10

    Berkelium (Bk) has been predicted to be the only transplutonium element able to exhibit both +III and +IV oxidation states in solution, but evidence of a stable oxidized Bk chelate has so far remained elusive. Here, in this work, we describe the stabilization of the heaviest 4+ ion of the periodic table, under mild aqueous conditions, using a siderophore derivative. The resulting Bk(IV) complex exhibits luminescence via sensitization through an intramolecular antenna effect. This neutral Bk(IV) coordination compound is not sequestered by the protein siderocalin - a mammalian metal transporter - in contrast to the negatively charged species obtained withmore » neighbouring trivalent actinides americium, curium and californium (Cf). The corresponding Cf(III)-ligand-protein ternary adduct was characterized by X-ray diffraction analysis. Finally, combined with theoretical predictions, these data add significant insight to the field of transplutonium chemistry, and may lead to innovative Bk separation and purification processes.« less

  7. The network formers role of gadolinium(III) ions in some zinc-borate glass ceramics

    NASA Astrophysics Data System (ADS)

    Bosca, Maria; Pop, Lidia; Pascuta, Petru

    2017-12-01

    EPR and magnetic susceptibility measurements were performed on glass ceramics from the (Gd2O3)x.(B2O3)(60-x).(ZnO)40 system, with 0 ≤ x ≤ 15 mol%, in order to determine the role of gadolinium ions on structural and magnetic properties. At low Gd2O3 contents (x ≤ 1 mol%) the EPR spectra show four resonance lines with effective g-values of ˜ 6, 4.8, 2.8 and 2, typical for Gd3+ ions uniformly distributed in the glass and glass ceramic samples. For higher contents of gadolinium ions (x ≥ 3 mol%) the EPR spectra are dominated by a single broad line centered at g ˜ 2, which can be due to the magnetic clusters containing Gd3+ ions. The magnetic susceptibility data show that the gadolinium ions are involved in superexchange interactions in all the investigated glass ceramics, being antiferromagnetically coupled.

  8. Sensitive and transportable gadolinium-core plastic scintillator sphere for neutron detection and counting

    NASA Astrophysics Data System (ADS)

    Dumazert, Jonathan; Coulon, Romain; Carrel, Frédérick; Corre, Gwenolé; Normand, Stéphane; Méchin, Laurence; Hamel, Matthieu

    2016-08-01

    Neutron detection forms a critical branch of nuclear-related issues, currently driven by the search for competitive alternative technologies to neutron counters based on the helium-3 isotope. The deployment of plastic scintillators shows a high potential for efficient detectors, safer and more reliable than liquids, more easily scalable and cost-effective than inorganic. In the meantime, natural gadolinium, through its 155 and mostly 157 isotopes, presents an exceptionally high interaction probability with thermal neutrons. This paper introduces a dual system including a metal gadolinium core inserted at the center of a high-scale plastic scintillator sphere. Incident fast neutrons are thermalized by the scintillator shell and then may be captured with a significant probability by gadolinium 155 and 157 nuclei in the core. The deposition of a sufficient fraction of the capture high-energy prompt gamma signature inside the scintillator shell will then allow discrimination from background radiations by energy threshold, and therefore neutron detection. The scaling of the system with the Monte Carlo MCNPX2.7 code was carried out according to a tradeoff between the moderation of incident fast neutrons and the probability of slow neutron capture by a moderate-cost metal gadolinium core. Based on the parameters extracted from simulation, a first laboratory prototype for the assessment of the detection method principle has been synthetized. The robustness and sensitivity of the neutron detection principle are then assessed by counting measurement experiments. Experimental results confirm the potential for a stable, highly sensitive, transportable and cost-efficient neutron detector and orientate future investigation toward promising axes.

  9. Labeling Biomolecules with Radiorhenium - a Review of the Bifunctional Chelators

    PubMed Central

    Liu, Guozheng; Hnatowich, Donald J.

    2007-01-01

    For radiotherapy, biomolecules such as intact antibodies, antibody fragments, peptides, DNAs and other oligomers have all been labeled with radiorhenium (186Re and 188Re). Three different approaches have been employed that may be referred to as direct, indirect and integral labeling. Direct labeling applies to proteins and involves the initial reduction of endogenous disulfide bridges to provide chelation sites. Indirect labeling can apply to most biomolecules and involves the initial attachment of an exogenous chelator. Finally, integral labeling is a special case applying only to small molecules in which the metallic radionuclide serves to link two parts of a biomolecule together in forming the labeled complex. While the number of varieties for the direct and integral radiolabeling approaches is rather limited, a fairly large and diverse number of chelators have been reported in the case of indirect labeling. Our objective herein is to provide an overview of the various chelators that have been used in the indirect labeling of biomolecules with radiorhenium, including details on the labeling procedures, the stability of the radiolabel and, where possible, the influence of the label on biological properties. PMID:17504162

  10. Tuning the relaxation rates of dual-mode T1/T2 nanoparticle contrast agents: a study into the ideal system

    NASA Astrophysics Data System (ADS)

    Keasberry, Natasha A.; Bañobre-López, Manuel; Wood, Christopher; Stasiuk, Graeme. J.; Gallo, Juan; Long, Nicholas. J.

    2015-09-01

    Magnetic resonance imaging (MRI) is an excellent imaging modality. However the low sensitivity of the technique poses a challenge to achieving an accurate image of function at the molecular level. To overcome this, contrast agents are used; typically gadolinium based agents for T1 weighted imaging, or iron oxide based agents for T2 imaging. Traditionally, only one imaging mode is used per diagnosis although several physiological situations are known to interfere with the signal induced by the contrast agents in each individual imaging mode acquisition. Recently, the combination of both T1 and T2 imaging capabilities into a single platform has emerged as a tool to reduce uncertainties in MR image analysis. To date, contradicting reports on the effect on the contrast of the coupling of a T1 and T2 agent have hampered the application of these specialised probes. Herein, we present a systematic experimental study on a range of gadolinium-labelled magnetite nanoparticles envisioned to bring some light into the mechanism of interaction between T1 and T2 components, and advance towards the design of efficient (dual) T1 and T2 MRI probes. Unexpected behaviours observed in some of the constructs will be discussed. In this study, we demonstrate that the relaxivity of such multimodal probes can be rationally tuned to obtain unmatched potentials in MR imaging, exemplified by preparation of the magnetite-based nanoparticle with the highest T2 relaxivity described to date.Magnetic resonance imaging (MRI) is an excellent imaging modality. However the low sensitivity of the technique poses a challenge to achieving an accurate image of function at the molecular level. To overcome this, contrast agents are used; typically gadolinium based agents for T1 weighted imaging, or iron oxide based agents for T2 imaging. Traditionally, only one imaging mode is used per diagnosis although several physiological situations are known to interfere with the signal induced by the contrast agents in

  11. Usefulness of the dynamic gadolinium-enhanced magnetic resonance imaging with simultaneous acquisition of coronal and sagittal planes for detection of pituitary microadenomas.

    PubMed

    Lee, Han Bee; Kim, Sung Tae; Kim, Hyung-Jin; Kim, Keon Ha; Jeon, Pyoung; Byun, Hong Sik; Choi, Jin Wook

    2012-03-01

    Does dynamic gadolinium-enhanced imaging with simultaneous acquisition of coronal and sagittal planes improve diagnostic accuracy of pituitary microadenomas compared with coronal images alone? Fifty-six patients underwent 3-T sella MRI including dynamic simultaneous acquisition of coronal and sagittal planes after gadolinium injection. According to conspicuity, lesions were divided into four scores (0, no; 1, possible; 2, probable; 3, definite delayed enhancing lesion). Additional information on supplementary sagittal images compared with coronal ones was evaluated with a 4-point score (0, no; 1, possible; 2, probable; 3, definite additional information). Accuracy of tumour detection was calculated. Average scores for lesion detection of a combination of two planes, coronal, and sagittal images were 2.59, 2.32, and 2.18. 6/10 lesions negative on coronal images were detected on sagittal ones. Accuracy of a combination of two planes, of coronal and of sagittal images was 92.86%, 82.14% and 75%. Six patients had probable or definite additional information on supplementary sagittal images compared with coronal ones alone (10.71%). Dynamic MRI with combined coronal and sagittal planes was more accurate for detection of pituitary microadenomas than routinely used coronal images. Simultaneous dynamic enhanced acquisition can make study time fast and costs low. We present a new dynamic MRI technique for evaluating pituitary microadenomas • This technique provides simultaneous acquisition of contrast enhanced coronal and sagittal images. • This technique makes the diagnosis more accurate and reduces the examination time. • Such MR imaging only requires one single bolus of contrast agent.

  12. Radiopharmaceutical stannic Sn-117m chelate compositions and methods of use

    DOEpatents

    Srivastava, Suresh C.; Meinken, George E.

    2001-01-01

    Radiopharmaceutical compositions including .sup.117m Sn labeled stannic (Sn.sup.4+) chelates are provided. The chelates are preferably polyhydroxycarboxylate, such as oxalates, tartrates, citrates, malonates, gluconates, glucoheptonates and the like. Methods of making .sup.117m Sn-labeled (Sn.sup.4+) polyhydroxycarboxylic chelates are also provided. The foregoing pharmaceutical compositions can be used in methods of preparing bone for scintigraphical analysis, for radiopharmaceutical skeletal imaging, treatment of pain resulting from metastatic bone involvement, treatment of primary bone cancer, treatment of cancer resulting from metastatic spread to bone from other primary cancers, treatment of pain resulting from rheumatoid arthritis, treatment of bone/joint disorders and to monitor radioactively the skeletal system.

  13. Contrast-enhanced ultrasonography (CEUS) vs. MRI of the small bowel in the evaluation of Crohn's disease activity.

    PubMed

    Malagò, R; D'Onofrio, M; Mantovani, W; D'Alpaos, G; Foti, G; Pezzato, A; Caliari, G; Cusumano, D; Benini, L; Pozzi Mucelli, R

    2012-03-01

    The presence of disease activity in Crohn's disease (CD) is one of the main parameters used to establish whether optimal therapy should be drug therapy or surgery. However, a major problem in monitoring CD is the common mismatch between the patient's symptoms and imaging objective signs of disease activity. Bowel ultrasonography (US) has emerged as a low-cost, noninvasive technique in the diagnosis and follow-up of patients with CD. Accordingly, the use of contrast-enhanced US (CEUS) has made possible an evaluation of the vascular enhancement pattern, similar to the use of magnetic resonance imaging (MRI). The aim of our study was to evaluate the role of CEUS in comparison with small-bowel MRI for assessing Crohn's disease activity. We prospectively enrolled 30 consecutive patients with known CD. Clinical and laboratory data were compared with imaging findings obtained from MRI and CEUS of the small bowel. MRI was performed with a 1.5-T system using phased-array coils and biphasic orally administered contrast agent prior to and after gadolinium chelate administration. We performed US with a 7.5-MHz linear-array probe and a second-generation contrast agent. The parameters analysed in both techniques were the following: lesion length, wall thickness, layered wall appearance, comb sign, fibroadipose proliferation, presence of enlarged lymph nodes and stenosis. We classified parietal enhancement curves into two types in relation to the contrast pattern obtained with the time-intensity curves at MRI and CEUS: (1) quick washin, quick washout, (2) slow washin, plateau with a slow washout. Comparison between Crohn's disease activity index (CDAI) and MRI showed a low correlation, with an rho=0.398; correlation between CDAI-laboratory data and CEUS activity was low, with rho=0.354; correlation between MRI activity and CEUS activity was good, with rho = 0.791; high correlation was found between CEUS and MRI of the small bowel when assessing wall-thickness, lymph nodes and

  14. Magnetization reversal and inverted magnetoresistance of exchange-biased spin valves with a gadolinium layer

    NASA Astrophysics Data System (ADS)

    Milyaev, M.; Naumova, L.; Chernyshova, T.; Proglyado, V.; Kamensky, I.; Krinitsina, T.; Ryabukhina, M.; Ustinov, V.

    2017-03-01

    FeMn-based spin valves with a gadolinium layer have been fabricated by magnetron sputtering. The magnetoresistive properties of the spin valves have been investigated at temperatures of 80-293 K. Temperature-induced switching between low- and high-resistance magnetic states has been revealed. Realization of the low- or high-resistance states depends on which magnetic moment dominates in the exchange-coupled Gd/CoFe, of Gd or CoFe. It has been shown that the switching temperature depends on the thickness of the gadolinium layer.

  15. Role of the Diphosphine Chelate in Emissive, Charge-Neutral Iridium(III) Complexes.

    PubMed

    Liao, Jia-Ling; Devereux, Leon R; Fox, Mark A; Yang, Chun-Chieh; Chiang, Yu-Cheng; Chang, Chih-Hao; Lee, Gene-Hsiang; Chi, Yun

    2018-01-12

    A class of neutral tris-bidentate Ir III metal complexes incorporating a diphosphine as a chelate is prepared and characterized here for the first time. Treatment of [Ir(dppBz)(tht)Cl 3 ] (1, dppBz=1,2-bis(diphenylphosphino)benzene, tht=tetrahydrothiophene) with fppzH (3-trifluoromethyl-5-(2'-pyridyl)-1H-pyrazole) afforded the dichloride complexes, trans-(Cl,Cl)[Ir(dppBz)(fppz)Cl 2 ] (2) and cis-(Cl,Cl)[Ir(dppBz)(fppz)Cl 2 ] (3). The reaction of 3 with the dianionic chelate precursor, 5,5'-di(trifluoromethyl)-3,3'-bipyrazole (bipzH 2 ) or 5,5'-(1-methylethylidene)-bis(3-trifluoromethyl-1H-pyrazole) (mepzH 2 ), in DMF gave the tris-bidentate complex [Ir(dppBz)(fppz)(bipz)] (4) or [Ir(dppBz)(fppz)(mepz)] (5), respectively. In contrast, a hydride complex [Ir(dppBz)(fppz)(bipzH)H] (6) was isolated instead of 4 in protic solvent, namely: diethylene glycol monomethyl ether (DGME). All complexes 2-6 are luminescent in powder form and thin films where the dichlorides (2, 3) emit with maxima at 590-627 nm (orange) and quantum yields (QYs) up to 90 % whereas the tris-bidentate (4, 5) and hydride (6) complexes emit at 455-458 nm (blue) with QYs up to 70 %. Hybrid (time-dependent) DFT calculations showed considerable metal-to-ligand charge transfer contribution to the orange-emitting 2 and 3 but substantial ligand-centered 3 π-π* transition character in the blue-emitting 4-6. The dppBz does not participate in the radiative transitions in 4-6, but it provides the rigidity and steric bulk needed to promote the luminescence by suppressing the self-quenching in the solid state. Fabrication of an organic light-emitting diode (OLED) with dopant 5 gave a deep-blue CIE chromaticity of (0.16, 0.15). Superior blue emitters, which are vital in OLED applications, may be found in other neutral Ir III complexes containing phosphine chelates. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Photo-Curable Metal-Chelating Coatings Offer a Scalable Approach to Production of Antioxidant Active Packaging.

    PubMed

    Lin, Zhuangsheng; Goddard, Julie

    2018-02-01

    Synthetic metal chelators (for example, ethylenediaminetetraacetic acid, EDTA) are widely used as additives to control trace transition metal induced oxidation in consumer products. To enable removal of synthetic chelators in response to increasing consumer demand for clean label products, metal-chelating active food packaging technologies have been developed with demonstrated antioxidant efficacy in simulated food systems. However, prior work in fabrication of metal-chelating materials leveraged batch chemical reactions to tether metal-chelating ligands, a process with limited industrial translatability for large-scale fabrication. To improve the industrial translatability, we have designed a 2-step laminated photo-grafting process to introduce metal chelating functionality onto common polymeric packaging materials. Iminodiacetic acid (IDA) functionalized materials were fabricated by photo-grafting poly(acrylic acid) onto polypropylene (PP) films, followed by a second photo-grafting process to graft-polymerize an IDA functionalized vinyl monomer (GMA-IDA). The photo-grafting was conducted under atmospheric conditions and was completed in 2 min. The resulting IDA functionalized metal-chelating material was able to chelate iron and copper, and showed antioxidant efficacy against ascorbic acid degradation, supporting its potential to be used synergistically with natural antioxidants for preservation of food and beverage products. The 2-step photo-grafting process improves the throughput of active packaging coatings, enabling potential roll-to-roll fabrication of metal-chelating active packaging materials for antioxidant food packaging applications. To address consumer and retail demands for "clean label" foods and beverages without a corresponding loss in product quality and shelf life, producers are seeking next generation technologies such as active packaging. In this work, we will report the synthesis of metal-chelating active packaging films, which enable removal

  17. [Radiographic, MR or ultrasound contrast media in pregnant or breast-feeding women: what are the key issues?].

    PubMed

    Fröhlich, J M; Kubik-Huch, R A

    2013-01-01

    The use and the safety of radiographic, MR- or ultrasound contrast media in the diagnostic work-up of pregnant or lactating patients is a frequently discussed question. As only sparse clinical data is available, a careful benefit-risk assessment must contain physico-chemical properties, preclinical data including teratogeneity and embryotoxicity, as well as maternal and foetal exposure. With consideration to the individual risks, iodinated contrast media, macrocyclic MR contrast media with increased stability or sulphur hexafluoride ultrasound contrast media may, if clinically justified, be administered in the smallest possible doses throughout pregnancy. After parental administration of an iodinated contrast medium after the 12th week of pregnancy, the neonate's thyroidal function should be checked during the first week after birth. After parental administration of iodinated, stable macrocyclic, gadolinium or ultrasound contrast media, lactation can be continued normally. In any case, contrast media should be used with caution and only if the benefits outweigh the risk. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Photocatalysts Based on Cobalt-Chelating Conjugated Polymers for Hydrogen Evolution from Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lianwei; Hadt, Ryan G.; Yao, Shiyu

    Developing photocatalytic systems for water splitting to generate oxygen and hydrogen is one of the biggest chemical challenges in solar energy utilization. In this work, we report the first example of heterogeneous photocatalysts for hydrogen evolution based on in-chain cobalt-chelating conjugated polymers. Four conjugated polymers chelated with earth abundant cobalt ions were synthesized and found to evolve hydrogen photocatalytically from water. These polymers are designed to combine functions of the conjugated backbone as light-harvesting antenna and electron transfer conduit with the in-chain bipyridyl chelated transition metal centers as catalytic active sites. In addition, these polymers are soluble in organic solvents,more » enabling effective interactions with the substrates as well as detailed characterization. We also found a polymer-dependent optimal cobalt chelating concentration at which the highest photocatalytic hydrogen production (PHP) activity can be achieved.« less

  19. Transfusional iron overload and iron chelation therapy in thalassemia major and sickle cell disease.

    PubMed

    Marsella, Maria; Borgna-Pignatti, Caterina

    2014-08-01

    Iron overload is an inevitable consequence of blood transfusions and is often accompanied by increased iron absorption from the gut. Chelation therapy is necessary to prevent the consequences of hemosiderosis. Three chelators, deferoxamine, deferiprone, and deferasirox, are presently available and a fourth is undergoing clinical trials. The efficacy of all 3 available chelators has been demonstrated. Also, many studies have shown the efficacy of the combination of deferoxamine plus deferiprone as an intensive treatment of severe iron overload. Alternating chelators can reduce adverse effects and improve compliance. Adherence to therapy is crucial for good results. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. A Novel Nuclease Activity that is Activated by Ca2+ Chelated to EGTA

    PubMed Central

    Dominguez, Kenneth; Ward, W. Steven

    2010-01-01

    Most nucleases require a divalent cation as a cofactor, usually Mg2+ or Ca2+, and are inhibited by the chelators EDTA and EGTA. We report the existence of a novel nuclease activity, initially identified in the luminal fluids of the mouse male reproductive tract but subsequently found in other tissues, that requires EGTA chelated to calcium to digest DNA. We refer to this unique enzyme as CEAN (Chelated EGTA Activated Nuclease). Using a fraction of vas deferens luminal fluid, plasmid DNA was degraded in the presence of excess Ca2+ (Ca2+:EGTA = 16) or excess EGTA (Ca2+:EGTA = 0.25), but required the presence of both. Higher levels of EGTA (Ca2+:EGTA = 0.10) prevented activity, suggesting that unchelated EGTA may be a competitive inhibitor. The EGTA-Ca2+ activation of CEAN is reversible as removing EGTA-Ca2+ stops ongoing DNA degradation, but adding EGTA-Ca2+ again reactivates the enzyme. This suggests the possibility that CEAN binds directly to EGTA-Ca2+. CEAN has a greater specificity for the chelator than for the divalent cation. Two other chelators, BAPTA and sodium citrate, do not activate CEAN in the presence of cation, but chelated EDTA does. EGTA chelated to other divalent cations such as Mn2+, Zn2+, and Cu2+ activate CEAN, but not Mg2+. The activity is lost upon boiling suggesting that it is a protein. These data suggest that EGTA and EDTA may not always prevent DNA from nuclease damage. PMID:19938954

  1. Iron Chelation Nanoparticles with Delayed Saturation as an Effective Therapy for Parkinson Disease.

    PubMed

    Wang, Nan; Jin, Xin; Guo, Dongbo; Tong, Gangsheng; Zhu, Xinyuan

    2017-02-13

    Iron accumulation in substantia nigra pars compacta (SNpc) has been proved to be a prominent pathophysiological feature of Parkinson's diseases (PD), which can induce the death of dopaminergic (DA) neurons, up-regulation of reactive oxygen species (ROS), and further loss of motor control. In recent years, iron chelation therapy has been demonstrated to be an effective treatment for PD, which has shown significant improvements in clinical trials. However, the current iron chelators are suboptimal due to their short circulation time, side effects, and lack of proper protection from chelation with ions in blood circulation. In this work, we designed and constructed iron chelation therapeutic nanoparticles protected by a zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) to delay the saturation of iron chelators in blood circulation and prolong the in vivo lifetime, with HIV-1 trans-activating transcriptor (TAT) served as a shuttle to enhance the blood-brain barrier (BBB) permeability. We explored and investigated whether the Parkinsonian neurodegeneration and the corresponding symptoms in behaviors and physiologies could be prevented or reversed both in vitro and in vivo. The results demonstrated that iron chelator loaded therapeutic nanoparticles could reverse functional deficits in Parkinsonian mice not only physiologically but also behaviorally. On the contrary, both untreated PD mice and non-TAT anchored nanoparticle treated PD mice showed similar loss in DA neurons and difficulties in behaviors. Therefore, with protection of zwitterionic polymer and prolonged in vivo lifetime, iron chelator loaded nanoparticles with delayed saturation provide a PD phenotype reversion therapy and significantly improve the living quality of the Parkinsonian mice.

  2. Method for separating metal chelates from other materials based on solubilities in supercritical fluids

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Phelps, Cindy

    2001-01-01

    A method for separating a desired metal or metalloi from impurities using a supercritical extraction process based on solubility differences between the components, as well as the ability to vary the solvent power of the supercritical fluid, is described. The use of adduct-forming agents, such as phosphorous-containing ligands, to separate metal or metalloid chelates in such processes is further disclosed. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones; phosphine oxides, such as trialkylphosphine oxides, triarylphosphine oxides and alkylarylphosphine oxides; phosphinic acids; carboxylic acids; phosphates, such as trialkylphosphates, triarylphosphates and alkylarylphosphates; crown ethers; dithiocarbamates; phosphine sulfides; phosphorothioic acids; thiophosphinic acids; halogenated analogs of these chelating agents; and mixtures of these chelating agents. In especially preferred embodiments, at least one of the chelating agents is fluorinated.

  3. The MCK mouse heart model of Friedreich's ataxia: Alterations in iron-regulated proteins and cardiac hypertrophy are limited by iron chelation

    PubMed Central

    Whitnall, Megan; Rahmanto, Yohan Suryo; Sutak, Robert; Xu, Xiangcong; Becker, Erika M.; Mikhael, Marc R.; Ponka, Prem; Richardson, Des R.

    2008-01-01

    There is no effective treatment for the cardiomyopathy of the most common autosomal recessive ataxia, Friedreich's ataxia (FA). The identification of potentially toxic mitochondrial (MIT) iron (Fe) deposits in FA suggests that Fe plays a role in its pathogenesis. This study used the muscle creatine kinase conditional frataxin (Fxn) knockout (mutant) mouse model that reproduces the classical traits associated with cardiomyopathy in FA. We examined the mechanisms responsible for the increased cardiac MIT Fe loading in mutants. Moreover, we explored the effect of Fe chelation on the pathogenesis of the cardiomyopathy. Our investigation showed that increased MIT Fe in the myocardium of mutants was due to marked transferrin Fe uptake, which was the result of enhanced transferrin receptor 1 expression. In contrast to the mitochondrion, cytosolic ferritin expression and the proportion of cytosolic Fe were decreased in mutant mice, indicating cytosolic Fe deprivation and markedly increased MIT Fe targeting. These studies demonstrated that loss of Fxn alters cardiac Fe metabolism due to pronounced changes in Fe trafficking away from the cytosol to the mitochondrion. Further work showed that combining the MIT-permeable ligand pyridoxal isonicotinoyl hydrazone with the hydrophilic chelator desferrioxamine prevented cardiac Fe loading and limited cardiac hypertrophy in mutants but did not lead to overt cardiac Fe depletion or toxicity. Fe chelation did not prevent decreased succinate dehydrogenase expression in the mutants or loss of cardiac function. In summary, we show that loss of Fxn markedly alters cellular Fe trafficking and that Fe chelation limits myocardial hypertrophy in the mutant. PMID:18621680

  4. Synthesis and characterization of gadolinium nanosheets with bound rose bengal: potential use in photodynamic therapy and MRI

    NASA Astrophysics Data System (ADS)

    Stefanakis, Dimitrios; Seimenis, Ioannis; Ghanotakis, Demetrios

    2014-11-01

    Gadolinium (Gd) is a trivalent paramagnetic element, making it useful as a contrast agent for magnetic resonance imaging (MRI). Gd2(OH)5NO3· xH2O belongs to a new family of nanosheets. The advantages of these materials are their relatively small size, paramagnetic behavior, stability, lack of toxicity and highly ordered structure. In the present study, Gd2(OH)5NO3 nanosheets were functionalized with amino groups and modified with the photosensitiser rose bengal (RB). This surface modification makes possible the use of the nanosheets in photodynamic therapy. The coated nanosheets were characterized with X-ray diffraction, fourier transform infrared spectroscopy and UV-Vis spectroscopy, as well as transmission electron microscopy. The possibility of using these nanosheets as potential spin-lattice ( T 1) and spin-spin relaxation ( T 2) contrast agents in MRI was evaluated at 1.5 T. Finally, the ability of Gd2(OH)5NO3-RB to catalyze photooxidization reactions was examined using nuclear magnetic resonance (1H NMR) and gas chromatography-mass spectrometry (GC/MS).

  5. Gadolinium Accumulation in the Deep Cerebellar Nuclei and Globus Pallidus After Exposure to Linear but Not Macrocyclic Gadolinium-Based Contrast Agents in a Retrospective Pig Study With High Similarity to Clinical Conditions.

    PubMed

    Boyken, Janina; Frenzel, Thomas; Lohrke, Jessica; Jost, Gregor; Pietsch, Hubertus

    2018-05-01

    The aim of this retrospective study was to determine the gadolinium (Gd) concentration in different brain areas in a pig cohort that received repeated administration of Gd-based contrast agents (GBCAs) at standard doses over several years, comparable with a clinical setting. Brain tissue was collected from 13 Göttingen mini pigs that had received repeated intravenous injections of gadopentetate dimeglumine (Gd-DTPA; Magnevist) and/or gadobutrol (Gadovist). The animals have been included in several preclinical imaging studies since 2008 and received cumulative Gd doses ranging from 7 to 129 mmol per animal over an extended period. Two animals with no history of administration of GBCA were included as controls. Brain autopsies were performed not earlier than 8 and not later than 38 months after the last GBCA application. Tissues from multiple brain areas including cerebellar and cerebral deep nuclei, cerebellar and cerebral cortex, and pons were analyzed for Gd using inductively coupled plasma mass spectrometry. Of the 13 animals, 8 received up to 48 injections of gadobutrol and Gd-DTPA and 5 received up to 29 injections of gadobutrol only. In animals that had received both Gd-DTPA and gadobutrol, a median (interquartile range) Gd concentration of 1.0 nmol/g tissue (0.44-1.42) was measured in the cerebellar nuclei and 0.53 nmol/g (0.29-0.62) in the globus pallidus. The Gd concentration in these areas in gadobutrol-only animals was 50-fold lower with median concentrations of 0.02 nmol/g (0.01-0.02) for cerebellar nuclei and 0.01 nmol/g (0.01-0.01) for globus pallidus and was comparable with control animals with no GBCA history. Accordingly, in animals that received both GBCAs, the amount of residual Gd correlated with the administered dose of Gd-DTPA (P ≤ 0.002) but not with the total Gd dose, consisting of Gd-DTPA and gadobutrol. The Gd concentration in cortical tissue and in the pons was very low (≤0.07 nmol/g tissue) in all animals analyzed. Multiple exposure

  6. Characterization of the reaction products and precipitates at the interface of carbon fiber reinforced magnesium–gadolinium composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yaping; Jiang, Longtao, E-mail: longtaojiang@163.com; Chen, Guoqin

    2016-03-15

    In the present work, carbon fiber reinforced magnesium-gadolinium composite was fabricated by pressure infiltration method. The phase composition, micro-morphology, and crystal structure of reaction products and precipitates at the interface of the composite were investigated. Scanning electron microscopy and energy dispersive spectroscopy analysis revealed the segregation of gadolinium element at the interface between carbon fiber and matrix alloy. It was shown that block-shaped Gd4C5, GdC2 and nano-sized Gd2O3 were formed at the interface during the fabrication process due to the interfacial reaction. Furthermore, magnesium-gadolinium precipitates including needle-like Mg5Gd (or Mg24Gd5) and thin plate-shaped long period stacking-ordered phase, were also observedmore » at the interface and in the matrix near the interface. The interfacial microstructure and bonding mode were influenced by these interfacial products, which were beneficial for the improvement of the interfacial bonding strength. - Highlights: • Gadolinium element segregated on the surface of carbon fibers. • Block-shaped Gd{sub 4}C{sub 5} and GdC{sub 2} were formed at the interface via chemical reaction. • Gadolinium and oxygen reacted at the interface and formed nano-scaled Gd{sub 2}O{sub 3}. • The precipitates formed in the interface were identified to be Mg{sub 5}Gd (or Mg{sub 24}Gd{sub 5}) and plate-shaped long period stacking-ordered phase.« less

  7. In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron-capture therapy of cancer.

    PubMed

    Shikata, Futoshi; Tokumitsu, Hiroyuki; Ichikawa, Hideki; Fukumori, Yoshinobu

    2002-01-01

    The accumulation of gadolinium loaded as gadopentetic acid (Gd-DTPA) in chitosan nanoparticles (Gd-nanoCPs), which were designed for gadolinium neutron-capture therapy (Gd-NCT) for cancer, was evaluated in vitro in cultured cells. Using L929 fibroblast cells, the Gd accumulation for 12 h at 37 degrees C was investigated at Gd concentrations lower than 40 ppm. The accumulation leveled above 20 ppm and reached 18.0+/-2.7 (mean+/-S.D.) microg Gd/10(6) cells at 40 ppm. Furthermore, the corresponding accumulations in B16F10 melanoma cells and SCC-VII squamous cell carcinoma, which were used in the previous Gd-NCT trials in vivo, were 27.1+/-2.9 and 59.8+/-9.8 microg Gd/10(6) cells, respectively, hence explaining the superior growth-suppression in the in vivo trials using SCC-VII cells. The accumulation of Gd-nanoCPs in these cells was 100-200 times higher in comparison to dimeglumine gadopentetate aqueous solution (Magnevist), a magnetic resonance imaging contrast agent. The endocytic uptake of Gd-nanoCPs, strongly holding Gd-DTPA, was suggested from transmission electron microscopy and comparative studies at 4 degrees C and with the solution system. These findings indicated that Gd-nanoCPs had a high affinity to the cells, probably contributing to the long retention of Gd in tumor tissue and leading to the significant suppression of tumor growth in the in vivo studies that were previously reported.

  8. Use of Iron Chelating Agents in Transfusion Dependent Thalassaemia Major Patients.

    PubMed

    Santra, S; Bhattacharya, A; Mukhopadhyay, T; Agrawal, D; Kumar, S; Das, P; Chakrabarty, P

    2015-10-01

    This cross-sectional study was done to find and investigate the utilization pattern of iron chelating agents among 73 transfusion-dependent thalassaemia major patients with continuous enrolment for at least 1 year in a day care treatment centre run by The Thalassaemia Society of India, Kolkata from November 2014 to January 2015. Transfusion dependent thalassaemia major patients above the age of 2 years managed by various haematologists and Thalassaemia specialists were studied. The administration of iron chelators namely Desferrioxamine (DFO), Deferiprone (DFP) and Deferasirox (DFX) were evaluated. Forty seven (64%) of the thalassaemics had serum ferritin level below 2500 ng/dl, of whom 20(27%) patients have ferritin level below 1000ng/dl. A number of 55(75%) of 73 patients who were treated with a single chelating agent consisted 50 patients only on DFX. Exact 8(67%) patients were on DFO+DFP and 4(33%) are treated with DFX+DFP. The mean age was 19 and mean serum ferritin level was 2280 ng/dl among the thalassaemia major patients. DFX was used 68% of patients as monotherapy and 5% patients in combination therapy with DFP. DFX in the dose of 30-40 mg/kg/day was prescribed in 52% of patients. Mean dose of 15 mg/kg/day of DFX was been administered in combination with DFP (75 mg/kg/day) in 5% patients. DFO+DFP were preferred by 8 patients, out of which 6 were aged above 25. Cost of monotherapy is twice that of combination therapy. These data demonstrates the ferritin status and present scenario of utilization of chelating agents among thalassaemia major patients on repeated transfusions. The dosing of new drug, Deferasirox and the cost analysis of various chelating regimen has also been dealt. Individualization rather than rationalization of chelation therapy should be focussed upon in managing iron overload in thalassaemia.

  9. Targeted Catalytic Inactivation of Angiotensin Converting Enzyme by Lisinopril-Coupled Transition Metal Chelates

    PubMed Central

    Joyner, Jeff C.; Hocharoen, Lalintip; Cowan, J. A.

    2012-01-01

    A series of compounds that target reactive transition metal chelates to somatic Angiotensin Converting Enzyme (sACE-1) have been synthesized. Half maximal inhibitory concentrations (IC50) and rate constants for both inactivation and cleavage of full length sACE-1 have been determined and evaluated in terms of metal-chelate size, charge, reduction potential, coordination unsaturation, and coreactant selectivity. Ethylenediamine-tetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA), and tripeptide GGH were linked to the lysine sidechain of lisinopril by EDC/NHS coupling. The resulting amide-linked chelate-lisinopril (EDTA-lisinopril, NTA-lisinopril, DOTA-lisinopril, and GGH-lisinopril) conjugates were used to form coordination complexes with iron, cobalt, nickel and copper, such that lisinopril could mediate localization of the reactive metal chelates to sACE-1. ACE activity was assayed by monitoring cleavage of the fluorogenic substrate Mca-RPPGFSAFK(Dnp)-OH, a derivative of bradykinin, following pre-incubation with metal-chelate-lisinopril compounds. Concentration-dependent inhibition of sACE-1 by metal-chelate-lisinopril complexes revealed IC50 values ranging from 44 nM to 4,500 nM for Ni-NTA-lisinopril and Ni-DOTA-lisinopril, respectively, versus 1.9 nM for lisinopril. Stronger inhibition was correlated with smaller size and lower negative charge of the attached metal chelates. Time-dependent inactivation of sACE-1 by metal-chelate-lisinopril complexes revealed a remarkable range of catalytic activities, with second order rate constants as high as 150,000 M−1min−1 (Cu-GGH-lisinopril), while catalyst-mediated cleavage of sACE-1 typically occurred at much lower rates, indicating that inactivation arose primary from sidechain modification. Optimal inactivation of sACE-1 was observed when the reduction potential for the metal center was poised near 1000 mV, reflecting the difficulty of protein

  10. Targeted catalytic inactivation of angiotensin converting enzyme by lisinopril-coupled transition-metal chelates.

    PubMed

    Joyner, Jeff C; Hocharoen, Lalintip; Cowan, J A

    2012-02-22

    A series of compounds that target reactive transition-metal chelates to somatic angiotensin converting enzyme (sACE-1) have been synthesized. Half-maximal inhibitory concentrations (IC(50)) and rate constants for both inactivation and cleavage of full-length sACE-1 have been determined and evaluated in terms of metal chelate size, charge, reduction potential, coordination unsaturation, and coreactant selectivity. Ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), and tripeptide GGH were linked to the lysine side chain of lisinopril by 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride/N-hydroxysuccinimide coupling. The resulting amide-linked chelate-lisinopril (EDTA-lisinopril, NTA-lisinopril, DOTA-lisinopril, and GGH-lisinopril) conjugates were used to form coordination complexes with iron, cobalt, nickel, and copper, such that lisinopril could mediate localization of the reactive metal chelates to sACE-1. ACE activity was assayed by monitoring cleavage of the fluorogenic substrate Mca-RPPGFSAFK(Dnp)-OH, a derivative of bradykinin, following preincubation with metal chelate-lisinopril compounds. Concentration-dependent inhibition of sACE-1 by metal chelate-lisinopril complexes revealed IC(50) values ranging from 44 to 4500 nM for Ni-NTA-lisinopril and Ni-DOTA-lisinopril, respectively, versus 1.9 nM for lisinopril. Stronger inhibition was correlated with smaller size and lower negative charge of the attached metal chelates. Time-dependent inactivation of sACE-1 by metal chelate-lisinopril complexes revealed a remarkable range of catalytic activities, with second-order rate constants as high as 150,000 M(-1) min(-1) (Cu-GGH-lisinopril), while catalyst-mediated cleavage of sACE-1 typically occurred at much lower rates, indicating that inactivation arose primarily from side chain modification. Optimal inactivation of sACE-1 was observed when the reduction potential for the

  11. Time-resolved MR angiography of renal artery stenosis in a swine model at 3 Tesla using gadobutrol with digital subtraction angiography correlation.

    PubMed

    Morelli, John N; Ai, Fei; Runge, Val M; Zhang, Wei; Li, Xiaoming; Schmitt, Peter; McNeal, Gary; Michaely, Henrick J; Schoenberg, Stefan O; Miller, Matthew; Gerdes, Clint M; Sincleair, Spencer T; Spratt, Heidi; Attenberger, Ulrike I

    2012-09-01

    To establish the minimum dose required for detection of renal artery stenosis using high temporal resolution, contrast enhanced MR angiography (MRA) in a porcine model. Surgically created renal artery stenoses were imaged with 3 Tesla MR and digital subtraction angiography (DSA) in 12 swine in this IACUC approved protocol. Gadobutrol was injected intravenously at doses of 0.5, 1, 2, and 4 mL for time-resolved MRA (1.5 × 1.5 mm(2) spatial resolution). Region of interest analysis was performed together with stenosis assessment and qualitative evaluation by two blinded readers. Mean signal to noise ratio (SNR) and contrast to noise ratio (CNR) values were statistically significantly less with the 0.5-mL protocol (P < 0.001). There were no statistically significant differences among the other evaluated doses. Both readers found 10/12 cases with the 0.5-mL protocol to be of inadequate diagnostic quality (κ = 1.0). All other scans were found to be adequate for diagnosis. Accuracies in distinguishing between mild/insignificant (<50%) and higher grade stenoses (>50%) were comparable among the higher-dose protocols (sensitivities 73-93%, specificities 62-100%). Renal artery stenosis can be assessed with very low doses (~0.025 mmol/kg bodyweight) of a high concentration, high relaxivity gadolinium chelate formulation in a swine model, results which are promising with respect to limiting exposure to gadolinium based contrast agents. Copyright © 2012 Wiley Periodicals, Inc.

  12. Conception of the first magnetic resonance imaging contrast agents: a brief history.

    PubMed

    de Haën, C

    2001-08-01

    About 20 years ago, a technological innovation process started that eventually led to the affirmation of magnetic resonance imaging (MRI) contrast agents, which are used today in about 25% of all MRI procedures, as medical diagnostic tools. The process began with exploration of various technical possibilities and the conception in the years 1981 to 1982 of two types of agents (soluble paramagnetic chelates and protection colloid-stabilized colloidal particle solutions of magnetite) that eventually found embodiments in commercially available products. The pioneering products that eventually reached the market were gadopentetate dimeglumine (Magnevist, Schering AG) and the ferumoxides (Endorem, Guerbet SA; or Ferridex , Berlex Laboratories Inc.). The history of the conception phase of the technology is reconstructed here, focusing on the social dynamics rather than on technological aspects. In the period 1981 to 1982, a number of independent inventors from industry and academia conceived of water-soluble paramagnetic chelates and protection colloid-stabilized colloidal solutions of small particles of magnetite, both of acceptable tolerability, as contrast agents for MRI. Priorities on patents conditioned the further course of events. The analyzed history helps in understanding the typical roles of different institutions in technological innovation. The foundation of MRI contrast agent technology in basic science clearly was laid in academia. During the conception of practical products, industry assumed a dominant role. Beginning with the radiological evaluation of candidate products, the collaboration between industry and academia became essential.

  13. Which psychosocial factors are related to chelation adherence in thalassemia? A systematic review.

    PubMed

    Evangeli, Michael; Mughal, Kulsoom; Porter, John B

    2010-06-01

    Good adherence to iron chelation therapy in thalassemia is crucial. Although there is evidence that adherence is related to regimen factors, there has been less emphasis on the relationship between psychosocial (psychological, demographic and social) factors and adherence. We present a systematic review of psychosocial correlates of chelation adherence in thalassemia. Nine studies met the inclusion criteria. Information was extracted regarding the study characteristics and the relationship between psychosocial factors and chelation adherence. Methodological quality was rated. The studies took place in a range of countries, were mostly cross sectional in design, and examined adherence to deferoxamine (DFO) only. Sample sizes ranged from 15 to 1573. A variety of psychosocial variables were examined. Definitions of adherence varied between studies and non adherence rates were also variable (9 to 66%). Older age was consistently associated with lower levels of chelation adherence. There were few other consistent findings. The methodological quality of studies was variable. There is a need for more methodologically sophisticated and theoretically informed studies on psychosocial correlates of chelation adherence. We offer specific suggestions.

  14. A smart magnetic resonance contrast agent for selective copper sensing.

    PubMed

    Que, Emily L; Chang, Christopher J

    2006-12-20

    We describe the synthesis and properties of Copper-Gad-1 (CG1), a new type of smart magnetic resonance (MR) sensor for selective detection of copper. CG1 is composed of a gadolinium contrast agent core tethered to copper-selective recognition motif. Cu2+-induced modulation of inner-sphere water access to the Gd3+ center provides a sensing mechanism for reporting Cu2+ levels by reading out changes in longitudinal proton relaxivity values. CG1 features good selectivity for Cu2+ over abundant biological cations and a 41% increase in relaxivity upon Cu2+ binding and is capable of detecting micromolar changes in Cu2+ concentrations in aqueous media.

  15. Deaths associated with hypocalcemia from chelation therapy--Texas, Pennsylvania, and Oregon, 2003-2005.

    PubMed

    2006-03-03

    Chelating agents bind lead in soft tissues and are used in the treatment of lead poisoning to enhance urinary and biliary excretion of lead, thus decreasing total lead levels in the body. During the past 30 years, environmental and dietary exposures to lead have decreased substantially, resulting in a considerable decrease in population blood lead levels (BLLs) and a corresponding decrease in the number of patients requiring chelation therapy. Chelating agents also increase excretion of other heavy metals and minerals, such as zinc and, in certain cases, calcium. This report describes three deaths associated with chelation-therapy--related hypocalcemia that resulted in cardiac arrest. Several drugs are used in the treatment of lead poisoning, including edetate disodium calcium (CaEDTA), dimercaperol (British anti-Lewisite), D-penicillamine, and meso-2,3-dimercaptosuccinic acid (succimer). Health-care providers who are unfamiliar with chelating agents and are considering this treatment for lead poisoning should consult an expert in the chemotherapy of lead poisoning. Hospital pharmacies should evaluate whether continued stocking of Na2EDTA is necessary, given the established risk for hypocalcemia, the availability of less toxic alternatives, and an ongoing safety review by the Food and Drug Administration (FDA). Health-care providers and pharmacists should ensure that Na2EDTA is not administered to children during chelation therapy.

  16. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents

    PubMed Central

    Zhang, Weizhong; Liu, Lin; Chen, Hongmin; Hu, Kai; Delahunty, Ian; Gao, Shi; Xie, Jin

    2018-01-01

    Magnetic resonance imaging (MRI) is one of the most widely used diagnostic tools in the clinic. To improve imaging quality, MRI contrast agents, which can modulate local T1 and T2 relaxation times, are often injected prior to or during MRI scans. However, clinically used contrast agents, including Gd3+-based chelates and iron oxide nanoparticles (IONPs), afford mediocre contrast abilities. To address this issue, there has been extensive research on developing alternative MRI contrast agents with superior r1 and r2 relaxivities. These efforts are facilitated by the fast progress in nanotechnology, which allows for preparation of magnetic nanoparticles (NPs) with varied size, shape, crystallinity, and composition. Studies suggest that surface coatings can also largely affect T1 and T2 relaxations and can be tailored in favor of a high r1 or r2. However, the surface impact of NPs has been less emphasized. Herein, we review recent progress on developing NP-based T1 and T2 contrast agents, with a focus on the surface impact. PMID:29721097

  17. Metal transport capabilities of anticancer copper chelators.

    PubMed

    Gaál, Anikó; Orgován, Gábor; Mihucz, Victor G; Pape, Ian; Ingerle, Dieter; Streli, Christina; Szoboszlai, Norbert

    2018-05-01

    In the present study, several Cu chelators [2,2'-biquinoline, 8-hydroxiquinoline (oxine), ammonium pyrrolidinedithiocarbamate (APDTC), Dp44mT, dithizone, neocuproine] were used to study Cu uptake, depletion and localization in different cancer cell lines. To better understand the concentration dependent fluctuations in the Cu intracellular metal content and Cu-dependent in vitro antiproliferative data, the conditional stability constants of the Cu complex species of the investigated ligands were calculated. Each investigated chelator increased the intracellular Cu content on HT-29 cells causing Cu accumulation depending on the amount of the free Cu(II). Copper accumulation was 159 times higher for Dp44mT compared to the control. Investigating a number of other transition metals, intracellular accumulation of Cd was observed only for two chelators. Intracellular Zn content slightly decreased (cca. 10%) for MCF-7 cells, while a dramatic decrease was observed on MDA-MB-231 ones (cca. 50%). A similar decrease was observed for HCT-116, while Zn depletion for HT-29 corresponded to cca. 20%. The IC 50 values were registered for the investigated four cell lines at increasing external Cu(II) concentration, namely, MDA-MB-231 cells had the lowest IC 50 values for Dp44mT ranging between 7 and 35 nM. Thus, Zn depletion could be associated with lower IC 50 values. Copper depletion was observed for all ligands being less pronounced for Dp44mT and neocuproine. Copper localization and its colocalization with Zn were determined by μ-XRF imaging. Loose correlation (0.57) was observed for the MCF-7 cells independently of the applied chelator. Similarly, a weak correlation (0.47) was observed for HT-29 cells treated with Cu(II) and oxine. Colocalization of Cu and Zn in the nucleus of HT-29 cells was observed for Dp44mT (correlation coefficient of 0.85). Copyright © 2018 Elsevier GmbH. All rights reserved.

  18. Kinetically and thermodynamically stable isomers of thorium chelates of polyaza polycarboxylic macrocycles

    NASA Astrophysics Data System (ADS)

    Jacques, Vincent; Desreux, Jean F.

    1994-10-01

    The solution conformation of the thorium(IV) complexes of two polyaza polycarboxylic macrocycles, DOTA and HEHA (1,4,7,10-tetraazacyclododecane-N, N', N(double prime), N(triple prime)-tetraacetic acid and 1,4,7,10,13,16-hexaazacyclooctadecane-N, N', N(double prime), N(triple prime), N(double prime)(double prime), N(double prime)(triple prime)-hexaacetic acid), was investigated by one- and two-dimensional nuclear magnetic resonance spectroscopy. ThHEHA(2+) forms a kinetically stable topomer of C2 symmetry and a thermodynamically stable topomer of S6 symmetry. Both complexes are assigned an icosahedral geometry. The activation energy for the intermolecular exchange is very high (214 kJ/mol). The behavior of ThHEHA(2+) contrasts with the properties of the other Th(IV) chelates that are known to be fluxional.

  19. A functional form for injected MRI Gd-chelate contrast agent concentration incorporating recirculation, extravasation and excretion

    NASA Astrophysics Data System (ADS)

    Horsfield, Mark A.; Thornton, John S.; Gill, Andrew; Jager, H. Rolf; Priest, Andrew N.; Morgan, Bruno

    2009-05-01

    A functional form for the vascular concentration of MRI contrast agent after intravenous bolus injection was developed that can be used to model the concentration at any vascular site at which contrast concentration can be measured. The form is based on previous models of blood circulation, and is consistent with previously measured data at long post-injection times, when the contrast agent is fully and evenly dispersed in the blood. It allows the first-pass and recirculation peaks of contrast agent to be modelled, and measurement of the absolute concentration of contrast agent at a single time point allows the whole time course to be rescaled to give absolute contrast agent concentration values. This measure of absolute concentration could be performed at a long post-injection time using either MRI or blood-sampling methods. In order to provide a model that is consistent with measured data, it was necessary to include both rapid and slow extravasation, together with excretion via the kidneys. The model was tested on T1-weighted data from the descending aorta and hepatic portal vein, and on T*2-weighted data from the cerebral arteries. Fitting of the model was successful for all datasets, but there was a considerable variation in fit parameters between subjects, which suggests that the formation of a meaningful population-averaged vascular concentration function is precluded.

  20. Synthesis and evaluation of novel polysaccharide-Gd-DTPA compounds as contrast agent for MRI

    NASA Astrophysics Data System (ADS)

    Sun, Guoying; Feng, Jianghua; Jing, Fengying; Pei, Fengkui; Liu, Maili

    2003-09-01

    Macromolecular conjugates of two kinds of natural polysaccharides, that from Panax quinquefolium linn (PQPS) and Ganoderma applanatum pat (GAPS), with gadolinium-diethylenetriaminepenta-acetic acid (Gd-DTPA) have been synthesized and characterized by means of FTIR, elementary analysis and ICP-AES. Their stability was investigated by competition study with Ca 2+, EDTA (ethylenediaminetetraacetic acid) and DTPA. Polysaccharide-bound complexes exhibit T1 relaxivities of 1.5-1.7 times that of Gd-DTPA in D 2O at 25°C and 9.4 T. MR imaging of Sprague-Dawley (SD) rats showed remarkable enhancement in rat liver and kidney after i.v. injection of these two complexes: liver parenchyma 60.9±5.6%, 57.8±7.4% at 65-85 min; kidney 144.9±14.5%, 199.9±25.4% at 10-30 min for PQPS-Gd-DTPA, GAPS-Gd-DTPA at gadolinium dose of 0.083 and 0.082 mmol/kg, respectively. Our preliminary in vivo and in vitro study indicates that the two kinds of polysaccharide-bound complexes are potential tissue-specific contrast agents for MRI.