Science.gov

Sample records for gadolinium gallium garnet

  1. LASERS: Efficient neodymium-doped gadolinium gallium garnet crystal laser

    NASA Astrophysics Data System (ADS)

    Doroshenko, Maxim E.; Osiko, Vyacheslav V.; Sigachev, V. B.; Timoshechkin, M. I.

    1991-07-01

    An investigation was made of the stimulated emission parameters of a laser utilizing a gadolinium gallium garnet crystal doped with neodymium ions (YAG:Nd) at the 1.062 μm wavelength. The free-running efficiency was the highest so far achieved for flashlamp-pumped lasers utilizing unsensitized garnets. For an active element 8 mm in diameter and 120 mm long the absolute efficiency was 5.4% and the differential efficiency was 5.9%. The average free-running power was 170 W. A comparison was made of the optical powers of thermal lenses in cylindrical GGG:Nd and YAG:Nd active elements and this was found to be 2.4 times higher for a GGG:Nd crystal at the same pump powers. It was shown that by using traditional methods of compensating for the thermal lens in cylindrical active elements, it is possible to develop pulsed GGG:Nd crystal lasers having an average output power higher than 100 W, an efficiency of ~ 4%, and an angular divergence of less than 10 mrad.

  2. Optical absorption of Ni2+ and Ni3+ ions in gadolinium gallium garnet epitaxial films

    NASA Astrophysics Data System (ADS)

    Vasileva, N. V.; Gerus, P. A.; Sokolov, V. O.; Plotnichenko, V. G.

    2012-12-01

    Single-crystal Ni-doped gadolinium gallium garnet films were grown for the first time from supercooled Bi2O3-B2O3-based melt solutions by liquid-phase epitaxy. Optical absorption bands due to Ni2+, Ni3+ and Bi3+ ions were observed in those films. Interpretation and tabulation of all absorption bands of nickel ions occupying octahedral and tetrahedral sites in the garnet lattice are presented.

  3. Thermodynamic property evaluation and magnetic refrigeration cycle analysis for gadolinium gallium garnet

    SciTech Connect

    Murphy, R.W.

    1994-12-01

    Based on relevant material property data and previous model formulations, a magnetothermodynamic property map for gadolinium gallium garnet (Gd{sub 3}Ga{sub 5}O{sub 12}) was adapted for refrigeration cycle analysis in the temperature range 4-40 K and the magnetic field range 0-6 T. Employing methods similar to those previously developed for other materials and temperature ranges, assessments of limitations and relative performance were made for Carnot, ideal regenerative, and pseudo-constant field regenerative cycles. It was found that although Carnot cycle limitations on available temperature lift for gadolinium gallium garnet are not as severe as the limitations for materials previously examined, considerable improvement in cooling capacity and temperature lift combinations can be achieved by using regenerative cycles if serious loss mechanisms are avoided.

  4. Modification of the crystal structure of gadolinium gallium garnet by helium ion irradiation

    SciTech Connect

    Ostafiychuk, B. K.; Yaremiy, I. P. Yaremiy, S. I.; Fedoriv, V. D.; Tomyn, U. O.; Umantsiv, M. M.; Fodchuk, I. M.; Kladko, V. P.

    2013-12-15

    The structure of gadolinium gallium garnet (GGG) single crystals before and after implantation by He{sup +} ions has been investigated using high-resolution X-ray diffraction methods and the generalized dynamic theory of X-ray scattering. The main types of growth defects in GGG single crystals and radiation-induced defects in the ion-implanted layer have been determined. It is established that the concentration of dislocation loops in the GGG surface layer modified by ion implantation increases and their radius decreases with an increase in the implantation dose.

  5. Structural and luminescence investigation on gadolinium gallium garnet nanocrystalline powders prepared by solution combustion synthesis

    NASA Astrophysics Data System (ADS)

    Krsmanović, R.; Morozov, V. A.; Lebedev, O. I.; Polizzi, S.; Speghini, A.; Bettinelli, M.; Van Tendeloo, G.

    2007-08-01

    Nanocrystalline powders of undoped and lanthanide (Pr3+, Tm3+)-doped gadolinium gallium garnet, Gd3Ga5O12 (GGG), were prepared by propellant synthesis and studied by x-ray powder diffraction (XRD), electron diffraction (ED), high-resolution electron microscopy (HREM) and luminescence spectroscopy. The x-ray diffraction patterns of the GGG samples were analysed using the Rietveld method. The Rietveld refinement reveals the existence of two garnet-type phases: both are cubic (space group Ia\\bar {3}d ) with a slightly different lattice parameter and probably a slightly different composition. Electron diffraction and electron microscopy measurements confirm the x-ray diffraction results. EDX measurements for lanthanide-doped samples show that stable solid solutions with composition Gd3-xLnxGa5O12, xap0.3 (Ln = Pr; Tm) have been obtained. The luminescence properties of the Tm3+-doped nanocrystalline GGG samples were measured and analysed.

  6. An experimental search for the electron Electric Dipole Moment in Gadolinium Gallium Garnet

    NASA Astrophysics Data System (ADS)

    Kim, Young Jin; Liu, Chen-Yu

    2011-04-01

    A discovery of a permanent electric dipole moment of the electron (eEDM) would provide crucial information about the nature of T-violation and imply new sources of CP-violation beyond the Standard Model. While the leading experimental technique used to measure EDM is based on the nuclear magnetic resonance, we are pursuing research that would improve the present experimental limit of the eEDM using a new technique in solid-state systems at low temperatures. The experiment uses a paramagnetic insulator Gadolinium Gallium Garnet with a large magnetic response. The presence of the eEDM leads to a finite magnetization when the garnet sample is subjected to a strong electric field. The resulting magnetization can be measured using the Superconducting Quantum Interference Device (SQUID) as a sensitive magnetometer. In this talk, we will discuss the progress to control the systematic effects and improve the sensitivity. The major efforts include the design and implementation of a 24-bit data acquisition system with ultra-low level of channel crosstalk, and the control of the high voltage drift from the supply. With these considerable progresses, we report our first background-free experimental limit of the eEDM on the order of 10-24 e.cm.

  7. Out-of-plane swelling of gadolinium gallium garnet induced by swift heavy ions

    NASA Astrophysics Data System (ADS)

    Toulemonde, M.; Meftah, A.; Costantini, J. M.; Schwartz, K.; Trautmann, C.

    1998-12-01

    Single crystals of gadolinium gallium garnet (Gd3Ga5O12) have been irradiated with various ions (Cr 10.6 MeV/u, Cu 0.8 MeV/u, Kr 9 MeV/u, and Pb 4 MeV/u) in the electronic stopping power regime. The irradiated areas of the crystals exhibited a pronounced volume expansion. Using a profilometer, the out-of-plane swelling was measured by scanning over the border line between an irradiated and virgin area of the sample surface. The step height varied between 25 and 160 nm depending on the fluence, the electronic stopping power and the total range of the ions. In the high fluence regime, the swelling effect approaches saturation. In order to compare the results obtained for different ion species, the initial swelling per ion was normalised by the length of the damage track. Such an analysis makes evident that swelling occurs only above a critical energy loss of 7±2 keV/nm. The results of Gd3Ga5O12 will be compared with data obtained earlier in SiO2 and LiNbO3.

  8. A diode-pumped Nd3+-doped gadolinium gallium garnet quasi-three-level laser at 933 nm

    NASA Astrophysics Data System (ADS)

    Liu, J. H.; Han, Y. H.; Zhao, Y. D.

    2013-11-01

    We report for the first time a Nd3+-doped gadolinium gallium garnet (Nd:GGG) laser operating on a quasi-three-level laser at 933 nm, based on the 4F3/2-4I9/2 transition. Continuous wave 691 mW output power at 933 nm is obtained under 10.2 W of incident pump power. Moreover, intracavity second-harmonic generation has also been achieved with a blue power of 89 mW by using a LiB3O5 (LBO) nonlinear crystal.

  9. Enhancement of the electron electric dipole moment in gadolinium garnets

    SciTech Connect

    Mukhamedjanov, T.N.; Dzuba, V.A.; Sushkov, O.P.

    2003-10-01

    Effects caused by the electron electric dipole moment (EDM) in gadolinium garnets are considered. Experimental studies of these effects could improve the current upper limit on the electron EDM by several orders of magnitude. We suggest a consistent theoretical model and perform calculations of observable effects in gadolinium gallium garnet and gadolinium iron garnet. Our calculation accounts for both direct and exchange diagrams.

  10. Thermal, spectroscopic and laser properties of Nd3+ in gadolinium scandium gallium garnet crystal produced by optical floating zone method

    NASA Astrophysics Data System (ADS)

    Tian, Li; Wang, Shuxian; Wu, Kui; Wang, Baolin; Yu, Haohai; Zhang, Huaijin; Cai, Huaqiang; Huang, Hui

    2013-12-01

    A neodymium-doped gadolinium scandium gallium garnet (Nd:GSGG) single crystal with dimensions of Φ 5 × 20 mm2 has been grown by means of optical floating zone (OFZ). X-ray powder diffraction (XRPD) result shows that the as-grown Nd:GSGG crystal possesses a cubic structure with space group Ia3d and a cell parameter of a = 1.2561 nm. Effective elemental segregation coefficients of the Nd:GSGG as-grown crystal were calculated by using X-ray fluorescence (XRF). The thermal properties of the Nd:GSGG crystal were systematically studied by measuring the specific heat, thermal expansion and thermal diffusion coefficient, and the thermal conductivity of this crystal was calculated. The absorption and luminescence spectra of Nd:GSGG were measured at room temperature (RT). By using the Judd-Ofelt (J-O) theory, the theoretical radiative lifetime was calculated and compared with the experimental result. Continuous wave (CW) laser performance was achieved with the Nd:GSGG at the wavelength of 1062 nm when it was pumped by a laser diode (LD). A maximum output power of 0.792 W at 1062 nm was obtained with a slope efficiency of 11.89% under a pump power of 7.36 W, and an optical-optical conversion efficiency of 11.72%.

  11. LETTER TO THE EDITOR: Pressure-induced amorphization in gadolinium scandium gallium garnet by x-ray diffraction and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Hua, Hong; Liu, Jun; Vohra, Yogesh K.

    1996-03-01

    We report the first example of amorphization of garnets at high pressure and ambient temperature. Synchrotron x-ray diffraction and fluorescence spectroscopy at high pressure were performed on polycrystalline gadolinium scandium gallium garnet (GSGG) doped with 0953-8984/8/10/002/img1 and 0953-8984/8/10/002/img2. X-ray diffraction measurements reveal a loss of long-range order beginning at 0953-8984/8/10/002/img3 GPa. This is followed by a change in local environment for dopants at 70 GPa as indicated by the loss of fluorescence emission. The amorphous phase is retained at ambient conditions, after decompression. We present possible mechanisms for these two distinct transformations in GSGG.

  12. Band-gap modulation via gallium substitution in cerium doped gadolinium aluminum garnet using a mixed fuel combustion approach

    SciTech Connect

    Tyagi, Mohit; Pitale, Shreyas S.; Ghosh, Manoranjan; Shinde, Seema

    2014-04-24

    Cerium doped Gadolinium garnets (Gd{sub 3}Al{sub x}Ga{sub 5−x}O{sub 12} where 0≤x≤5) are synthesized via combustion synthesis using mixture of urea and glycine fuels. A 4h Post annealing at 1400 oC is found to be necessary for pure phase formation. Lattice spacing variation as a result of partial or total Ga substitution at Al site was mapped by X-ray diffraction. Photoluminescence emission of Ce shifts as a consequence of Ga substitution and therefore suggests a local re-adjustment of crystal field around activator site.

  13. Longitudinal spin Seebeck effect in Nd{sub 2}BiFe{sub 5−x}Ga{sub x}O{sub 12} prepared on gadolinium gallium garnet (001) by metal organic decomposition method

    SciTech Connect

    Asada, H. Kuwahara, A.; Sakata, N.; Ono, T.; Kishimoto, K.; Koyanagi, T.; Ishibashi, T.; Meguro, A.; Hashinaka, T.

    2015-05-07

    Nd{sub 2}BiFe{sub 5−x}Ga{sub x}O{sub 12} thin films with the Ga composition x = 0, 0.5, and 1.0 are prepared on (001) oriented gadolinium gallium garnet substrates by a metal organic decomposition method. Only (001) peaks are observed in x-ray diffraction patterns for all the films, suggesting that the highly oriented Nd{sub 2}BiFe{sub 5−x}Ga{sub x}O{sub 12} thin films were formed. Increasing Ga composition, the saturation magnetization decreases, and the perpendicular easy axis is enhanced due to the decrease of the shape anisotropy. Longitudinal spin Seebeck effects (LSSEs) in Nd{sub 2}BiFe{sub 5−x}Ga{sub x}O{sub 12} thin films with a Pt layer of 10 nm in thickness were investigated. Magnetic field dependence of the thermoelectric voltage caused by the LSSE in Nd{sub 2}BiFe{sub 5−x}Ga{sub x}O{sub 12} films indicates the hysteresis loop with the small coercivity reflecting the magnetization curve. The decrease of LSSE voltage in Nd{sub 2}BiFe{sub 5−x}Ga{sub x}O{sub 12} is clearly observed with the decrease of Fe composition.

  14. Growth of epitaxial bismuth and gallium substituted lutetium iron garnet films by pulsed laser deposition

    SciTech Connect

    Leitenmeier, Stephan; Heinrich, Andreas; Lindner, Joerg K. N.; Stritzker, Bernd

    2006-04-15

    Epitaxial bismuth and gallium substituted lutetium iron garnet thin films have been grown on (100) oriented gadolinium gallium garnet Gd{sub 3}Ga{sub 5}O{sub 12} substrates by pulsed laser deposition. The films have been studied using x-ray diffraction, high resolution x-ray diffraction, Rutherford backscattering spectroscopy, transmission electron microscopy, and electron diffraction. We obtained smooth films with thicknesses between 0.3 and 1.0 {mu}m showing good crystalline quality and epitaxial growth.

  15. Investigation of the variations in the crystallization front shape during growth of gadolinium gallium and terbium gallium crystals by the Czochralski method

    SciTech Connect

    Budenkova, O. N. Vasiliev, M. G.; Yuferev, V. S.; Ivanov, I. A.; Bul'kanov, A. M.; Kalaev, V. V.

    2008-12-15

    Numerical investigation of the variations in the crystallization front shape during growth of gadolinium gallium and terbium gallium garnet crystals in the same thermal zone and comparison of the obtained results with the experimental data have been performed. It is shown that the difference in the behavior of the crystallization front during growth of the crystals is related to their different transparency in the IR region. In gadolinium gallium garnet crystals, which are transparent to thermal radiation, a crystallization front, strongly convex toward the melt, is formed in the growth stage, which extremely rapidly melts under forced convection. Numerical analysis of this process has been performed within the quasistationary and nonstationary models. At the same time, in terbium gallium garnet crystals, which are characterized by strong absorption of thermal radiation, the phase boundary shape changes fairly smoothly and with a small amplitude. In this case, as the crystal is pulled, the crystallization front tends to become convex toward the crystal bulk.

  16. Thermal effects on cavity stability of chromium- and neodymium-doped gadolinium scandium gallium garnet laser under solar-simulator pumping

    NASA Technical Reports Server (NTRS)

    Kim, Kyong H.; Venable, Demetrius D.; Brown, Lamarr A.; Lee, Ja H.

    1991-01-01

    Results are presented on testing a Cr- and Nd-codoped Gd-Sc-Ga-garnet (Cr:Nd:GSGG) crystal and a Nd:YAG crystal (both of 3.2 mm diam and 76-mm long) for pulsed and CW laser operations using a flashlamp and solar simulator as pumping sources. Results from experiments with the flashlamp show that, at pulse lengths of 0.11, 0.28, and 0.90 ms, the slope efficiency of the Cd:Nd:GSGG crystal was higher than that of the Nd:YAG crystal and increased with pulse width. With the solar simulator, however, the CW laser operation of the Cr:Nd:GSGG crystal was limited to intensities not greater than 1500 solar constants, while the Nd:YAG laser successfully performed for all pump beam intensities available. It was found that the exposure for several minutes of the Cr:Nd:GSGG crystal to pump beam intensity of 3000 solar constants led to its damage by thermal cracking, indicating that a better solar-pumped CW laser performance may be difficult to realize with rod geometry.

  17. Heat capacity of rare-earth cuprates, orthovanadates, and aluminum garnets, gallium garnets, and iron garnets

    NASA Astrophysics Data System (ADS)

    Denisova, L. T.; Kargin, Yu. F.; Denisov, V. M.

    2015-08-01

    The correlation between the heat capacities of rare-earth cuprates, orthovanadates, and garnets with ionic radius R 3+ has been analyzed. It has been shown that the values of C {/p 0} change consistently depending on the radius R 3+ within the corresponding tetrads (La-Nd, Pm-Gd, Gd-Ho, Eu-Lu).

  18. Synthesis and characterisation of chromium lutetium gallium garnet solid solution

    SciTech Connect

    Galindo, R.; Badenes, J.A. . E-mail: jbadenes@qio.uji.es; Llusar, M.; Tena, M.A.; Monros, G.

    2007-03-22

    The chromium lutetium gallium garnet system has been studied. Samples with 2xCaOxCr{sub 2}O{sub 3}(3 - 2x)Lu{sub 2}O{sub 3}5Ga{sub 2}O{sub 3} (x = 0.025, 0.05, 0.075, 0.1, 0.2 and 0.3,) and xCr{sub 2}O{sub 3}(3 - x)Lu{sub 2}O{sub 3}5Ga{sub 2}O{sub 3} (x = 0, 0.05, 0.075 and 0.3) compositions have been prepared in Ca,Cr:LGG and Cr:LGG systems, respectively. Samples were prepared by ceramic method, fired at 1250 deg. C/6 h and characterised by XRD, lattice parameters, UV-vis-NIR spectroscopy, CIE L * a * b * measurements and SEM/EDX. Results indicate that Ca,Cr:LGG and Cr:LGG solid solutions are obtained. In Cr:LGG system only Cr(III) is stabilised in octahedral positions substituting for Lu(III) and Ga(III). Both Cr(III) and Cr(IV) are present in Ca,Cr:LGG. The calcium is a charge compensator to stabilise Cr(IV) and this is the predominant oxidation state up to x = 0.075 composition. From this composition, Cr(III) becomes more stabilised in garnet lattice. Cr(IV) occupies generally tetrahedral and dodecahedral sites substituting for Ga(III) and Lu(III), while Cr(III) is in octahedral site substituting for Ga(III)

  19. Vertical Bridgman growth of calcium lithium niobium gallium garnet crystals

    NASA Astrophysics Data System (ADS)

    Xu, Xuewu; Chong, Tow-Chong; Zhang, Guangyu; Li, Minghua; Soo, Lay Hiok; Xu, Wei; Freeman, Bill

    2003-03-01

    The growth of calcium lithium niobium gallium garnet (CLNGG) crystal has been carried out using platinum crucibles in a vertical Bridgman (VB) furnace with three resistance-heating zones. Transparent CLNGG crystals grown from the congruent melts with and without weight loss compensation are different in color and are 25 mm in diameter and about 70 mm in length. The phase identification of the sintered raw materials, grown crystals and white compound formed on the side surface of the grown crystal has been done using the powder X-ray diffraction method. The formation of the white compound is related to the {1 0 0} facet growth near the side surface. The naturally selected growth direction of the CLNGG crystal grown without a seed is near <1 1 1> , which is in good agreement with the morphological importance analysis according to the BFDH law. The VB-grown CLNGG also shows a cleavable feature parallel to {1 1 0} face and no absorption peaks in the wavelength range of 1100-1600 nm. The linear thermal-expansion coefficient of the CLNGG crystal along <1 1 1> direction is also reported and compared with that of CNGG, GGG and platinum crucible.

  20. Low-temperature thermal conductivity of terbium-gallium garnet

    SciTech Connect

    Inyushkin, A. V. Taldenkov, A. N.

    2010-11-15

    Thermal conductivity of paramagnetic Tb{sub 3}Ga{sub 5}O{sub 12} (TbGG) terbium-gallium garnet single crystals is investigated at temperatures from 0.4 to 300 K in magnetic fields up to 3.25 T. A minimum is observed in the temperature dependence {kappa}(T) of thermal conductivity at T{sub min} = 0.52 K. This and other singularities on the {kappa}(T) dependence are associated with scattering of phonons from terbium ions. The thermal conductivity at T = 5.1 K strongly depends on the magnetic field direction relative to the crystallographic axes of the crystal. Experimental data are considered using the Debye theory of thermal conductivity taking into account resonance scattering of phonons from Tb{sup 3+} ions. Analysis of the temperature and field dependences of the thermal conductivity indicates the existence of a strong spin-phonon interaction in TbGG. The low-temperature behavior of the thermal conductivity (field and angular dependences) is mainly determined by resonance scattering of phonons at the first quasi-doublet of the electron spectrum of Tb{sup 3+} ion.

  1. Structural and thermal investigation of gadolinium gallium mixed oxides obtained by coprecipitation: Observation of a new metastable phase

    NASA Astrophysics Data System (ADS)

    Bazzoni, Marco; Bettinelli, Marco; Daldosso, Matteo; Enzo, Stefano; Serra, Filomena; Speghini, Adolfo

    2005-07-01

    Polycrystalline gadolinium gallium mixed oxides were prepared by coprecipitation and annealing at various temperatures below 1000 °C. The oxide materials appear to be X-ray amorphous after a heat treatment at 500 °C for 30 h, but after 30 h at 800 and 900 °C a major, unreported, hexagonal phase, isostructural with TAlO 3 compounds (where T=Y, Eu, Gd, Tb, Dy, Ho, Er) appears to crystallize. On the other hand, a highly energetic mechanical treatment of the amorphous powder previously annealed at 500 °C changes considerably the shape and position of exothermal events occurring in the range from 700 up to 900 °C. Subsequent annealing at 900 °C of the mechanically treated powder gives rise to the complete formation of the Gd 3Ga 5O 12 garnet structure at the expense of the hexagonal phase and of the minor Gd 4Ga 2O 9 oxide phase. However, a 7.0 wt% contamination is found to be due to tetragonal zirconia coming from vials and balls colliding media. The garnet phase may have strong deviations from the nominal stoichiometry of the garnet, as suggested by the refined lattice parameter obtained from the powder diffraction patterns and by the remarkable absence of intensity relative to the (220) Bragg peak position.

  2. Structural and thermal investigation of gadolinium gallium mixed oxides obtained by coprecipitation: Observation of a new metastable phase

    SciTech Connect

    Bazzoni, Marco; Bettinelli, Marco; Daldosso, Matteo; Enzo, Stefano . E-mail: enzo@uniss.it; Serra, Filomena; Speghini, Adolfo

    2005-07-15

    Polycrystalline gadolinium gallium mixed oxides were prepared by coprecipitation and annealing at various temperatures below 1000 deg. C. The oxide materials appear to be X-ray amorphous after a heat treatment at 500 deg. C for 30 h, but after 30 h at 800 and 900 deg. C a major, unreported, hexagonal phase, isostructural with TAlO{sub 3} compounds (where T=Y, Eu, Gd, Tb, Dy, Ho, Er) appears to crystallize. On the other hand, a highly energetic mechanical treatment of the amorphous powder previously annealed at 500 deg. C changes considerably the shape and position of exothermal events occurring in the range from 700 up to 900 deg. C. Subsequent annealing at 900 deg. C of the mechanically treated powder gives rise to the complete formation of the Gd{sub 3}Ga{sub 5}O{sub 12} garnet structure at the expense of the hexagonal phase and of the minor Gd{sub 4}Ga{sub 2}O{sub 9} oxide phase. However, a 7.0 wt% contamination is found to be due to tetragonal zirconia coming from vials and balls colliding media. The garnet phase may have strong deviations from the nominal stoichiometry of the garnet, as suggested by the refined lattice parameter obtained from the powder diffraction patterns and by the remarkable absence of intensity relative to the (220) Bragg peak position.

  3. High magneto-optical characteristics of Holmium-doped terbium gallium garnet crystal.

    PubMed

    Chen, Zhe; Yang, Lei; Wang, Xiangyong; Yin, Hang

    2016-06-01

    Magneto-optical characteristics of a new magneto-active material, (Tb(1-x)Hox)3Ga5O12 crystal, have been grown by the Czochralski (Cz) method. A high value of the Verdet constant was obtained at room temperature-namely, 214.9 and 77.8  rad·m-1 T-1 for 632.8 and 1064 nm, respectively. The Verdet constant of the Ho-doped terbium gallium garnet crystal at 1064 nm is about 2 times higher than that of terbium gallium garnet crystal. High value of magneto-optical figure-of-merit makes it an attractive next-generation magneto-optics material for high-power Faraday isolators. PMID:27244419

  4. Defects in laser crystals of rare-earth aluminum and gallium garnets

    SciTech Connect

    Vorob`ev, Yu.P.; Goncharov, O.Yu.

    1994-12-01

    Using thermodynamic and crystallochemical analysis of garnets R{sub 3}Ga{sub 5}O{sub 12}(R=Sm - Lu, Y) and R{sub 3}Al{sub 5}O{sub 12} (R = Gd - Lu, Y) and their solid solutions, we characterized point defects present in their structure and, for the first time, estimated their contents. We showed that the garnets under consideration contain cationic defects and oxygen vacancies: (1) In aluminum garnets R{sub 3}Al{sub 5}O{sub 12}, improper-valence ions form at octahedral sites. (2) In gallium garnets R{sub 3}Ga{sub 5}O{sub 12} and Ga-containing solid solutions, there are Ga vacancies at octahedral sites. (3) In Dy{sub 3}(Ga{sub c}Al{sub 1-c}){sub 5}O{sub 12} solid solutions, in addition to the above-mentioned defects typical of gallium garnets, antistructural, substitutional defects (Ga{sup 3+}{sub IV}) are present. The Ga{sup 3+}ions occupy preferentially octahedra; that is, they exhibit a higher affinity for octahedral coordination than Alk{sup 3+} ions, in agreement with Goldschmidt`s crystallochemical approach. The refined solid-solution ranges for R{sub 3}Ga{sub c}Al{sub 1-c}{sub 5}O{sub 12}(R=Nd,Sm,Eu,Gd) are 0.75 {le}c{le} 1 for Nd, 0.5 {le}c{le} 1 for Sm, 0.4 {le}c{le} 1 for Eu, and 0.25 {le}c{le} 1 for Gd.

  5. The effects of the sputtering conditions on bismuth doped gadolinium iron garnet films

    SciTech Connect

    Eppler, W.; Kryder, M.H. )

    1989-09-01

    The effects of the sputtering conditions on the magnetic and magneto-optic properties of bismuth substituted gadolinium iron garnet (GdIG) films are studied. GdIG films with uniaxial perpendicular anisotropy and room temperature coercivities greater than 1 kOe have been deposited on glass substrates by rf magnetron sputtering. These films have Faraday rotations between 0.6 */{mu}m and 1.3 */{mu}/m and temperature dependent coercivities similar to rare earth-transition metal alloys. Increasing the rf power or argon bleeding pressure results in an increase in the compensation temperature (T/sub comp/) with little change in the Curie temperature (T/sub c/).

  6. Dramatic impact of the giant local magnetic fields on spin-dependent recombination processes in gadolinium based garnets

    SciTech Connect

    Romanov, N. G. Tolmachev, D. O.; Gurin, A. S.; Uspenskaya, Yu. A.; Asatryan, H. R.; Badalyan, A. G.; Baranov, P. G.; Wieczorek, H.; Ronda, C.

    2015-06-29

    A giant magnetic field effect on spin-dependent recombination of the radiation-induced defects has been found in cerium doped gadolinium based garnet crystals and ceramics, promising materials for scintillator applications. A sharp and strong increase in the afterglow intensity stimulated by external magnetic field and an evidence of the magnetic field memory have been discovered. The effect was ascribed to huge Gd-induced internal magnetic fields, which suppress the recombination, and cross-relaxation with Gd{sup 3+} ions leading to reorientation of the spins of the electron and hole centers. Thus, the spin system of radiation-induced defects in gadolinium garnet based scintillator materials was shown to accumulate significant energy which can be released in external magnetic fields.

  7. Structural, elastic and vibrational properties of nanocrystalline lutetium gallium garnet under high pressure.

    PubMed

    Monteseguro, V; Rodríguez-Hernández, P; Ortiz, H M; Venkatramu, V; Manjón, F J; Jayasankar, C K; Lavín, V; Muñoz, A

    2015-04-14

    An ab initio study of the structural, elastic and vibrational properties of the lutetium gallium garnet (Lu3Ga5O12) under pressure has been performed in the framework of the density functional theory, up to 95 GPa. Pressure dependence of the elastic constants and the mechanical stability are analyzed, showing that the garnet structure is mechanically unstable above 87 GPa. Lattice-dynamics calculations in bulk at different pressures have been performed and compared with Raman scattering measurements of the nanocrystalline Tm(3+)-doped Lu3Ga5O12 up to 60 GPa. The theoretical frequencies and pressure coefficients of the Raman active modes for bulk Lu3Ga5O12 are in good agreement with the experimental data measured for the nano-crystals. The contributions of the different atoms to the vibrational modes have been analyzed based on the calculated total and partial phonon density of states. The vibrational modes have been discussed in relation to the internal and external modes of the GaO4 tetrahedron and the GaO6 octahedron. The calculated infrared modes and their pressure dependence are also reported. Our results show that with this nano-garnet size the sample has essentially bulk properties. PMID:25767835

  8. Luminescence properties and electronic structure of Ce{sup 3+}-doped gadolinium aluminum garnet

    SciTech Connect

    Dotsenko, V.P.; Berezovskaya, I.V.; Voloshinovskii, A.S.; Zadneprovski, B.I.; Efryushina, N.P.

    2015-04-15

    Highlights: • The luminescence properties of Ce{sup 3+} ions in (Y, Gd){sub 3}Al{sub 5}O{sub 12} are analyzed. • The Gd{sup 3+} → Y{sup 3+} substitution leads to increasing of Ce{sup 3+} noncubic crystal field splitting parameter. • The excitation spectra for the Ce{sup 3+} emission in GdAG contain bands at 6.67, 7.75, and 9.76 eV. • These features are due to the Ce{sup 3+}-bound exciton formation and O 2p → Al 3s, 3p transitions. • Contributions from Al atoms to the conduction-band density of states are quite essential. - Abstract: Yttrium-gadolinium aluminum garnets (YGdAG) doped with Ce{sup 3+} ions have been prepared by co-precipitation method. The luminescent properties of Ce{sup 3+} ions in Gd{sub 3(1−x)}Ce{sub 3x}Al{sub 5}O{sub 12} (x = 0.01) have been studied upon excitation in the 2–20 eV region. The substitution of Gd{sup 3+} for Y{sup 3+} in the garnet structure results in broadening the emission band and shifting its maximum towards the longer wavelengths. It was found that in addition to the 4f → 5d excitation bands of Ce{sup 3+} ions, the excitation spectra for the Ce{sup 3+} emission contain bands at 6.67, 7.75, and 9.76 eV. These bands are attributed to the Ce{sup 3+}-bound exciton formation and O 2p → Al 3s, 3p transitions, respectively. Although gadolinium states dominate near the bottom of the conduction band of Gd{sub 3}Al{sub 5}O{sub 12}, contributions from Al{sub tetr} and Al{sub oct} atoms to the conduction-band density of states are evaluated as quite essential.

  9. Thermally induced depolarization in terbium gallium garnet ceramics rod with natural convection cooling

    NASA Astrophysics Data System (ADS)

    Slezak, Ondrej; Yasuhara, Ryo; Lucianetti, Antonio; Vojna, David; Mocek, Tomas

    2015-06-01

    Thermal birefringence-induced depolarization in terbium gallium garnet (TGG) ceramic rods has been numerically evaluated for the geometry and heating conditions in a previous experiment. In this model, the spatially resolved heat transfer coefficient corresponding to natural convection cooling and the offset of the beam from the rotational axis of the rod have been incorporated and the realistic beam profile used in the experiment has been considered. A resulting beam depolarization ratio of 4.3 × 10-4 has been calculated for an input power of 117 W. The results were found to be in good agreement with the measured values. Furthermore, a parametric study of the depolarization ratio for higher input powers has been performed leading to a depolarization ratio of 3.3 × 10-2 for 1 kW input power.

  10. Low-temperature time-domain terahertz spectroscopy of terbium gallium garnet crystals

    NASA Astrophysics Data System (ADS)

    Mikhaylovskiy, R. V.; Hendry, E.; Ogrin, F. Y.; Kruglyak, V. V.

    2013-03-01

    We report an experimental observation of high frequency magnetic excitations in terbium gallium garnet crystals using terahertz time-domain spectroscopy. We show that precessional modes of terbium magnetic sublattices can be excited by a magnetic field of a terahertz broadband pulse. We study and discuss the dependence of the observed resonances upon the temperature and the strength and orientation of the bias magnetic field. The behavior of the observed magnetic modes is in agreement with the theory of paramagnetic resonance in the multisublattice system. We also show that the illumination of the crystal with intense optical pulses destroys the magnetic ordering. Our results demonstrate that the time-domain terahertz spectroscopy can be a powerful tool by which to study high frequency properties of dielectric magnetic materials, with perceived extensions to studies in femtomagnetism and magnonics.

  11. Faraday effect improvement by Dy3+-doping of terbium gallium garnet single crystal

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Yang, Lei; Hang, Yin; Wang, Xiangyong

    2016-01-01

    Highly transparent Dy3+-doped terbium gallium garnet (TGG) single crystal was grown by Czochralski (Cz) method. Phase composition of the crystal was tested by XRD measurements. The distribution coefficient of Dy3+ in the crystal was obtained. The optical and magneto-optical properties were analyzed in detail, and magnetic properties of the Dy3+-TGG crystal were studied. The paramagnetic behavior is observed down to 10 K. The as-grown crystal exhibited high optical transmittance, particularly in the visible region. The Faraday rotation was investigated over visible and near-infrared regions (VIS-NIR) at room temperature. The Verdet constants increase at measured wavelengths and high thermal stability was found in Dy3+-doped TGG, as compared to the properties of pure TGG, indicating that Dy3+-doped crystals are preferable for magneto-active materials used in Faraday devices at VIS-NIR wavelengths.

  12. Stabilization of cubic lithium-stuffed garnets of the type “Li7La3Zr2O12” by addition of gallium

    NASA Astrophysics Data System (ADS)

    El Shinawi, Hany; Janek, Jürgen

    2013-03-01

    Cubic lithium-stuffed garnets of the type Li7La3Zr2O12 have been successfully stabilized by incorporation of gallium. The materials have been prepared by a sol-gel procedure with final calcination at 1085 °C for 6 h. Under the applied synthesis conditions, 0.3 mole of gallium ions (per mole of Li7La3Zr2O12) were sufficient to fully stabilize the cubic garnet-type phase. Increasing the fraction of gallium led to significant improvement of sinterability and lithium ion conductivity. Excess gallium ions, in the form of LiGaO2, act as a sintering aid and reside exclusively at the grain boundaries. The gallium-modified garnets showed conductivities up to 5.4 × 10-4 S cm-1 at 20 °C, and activation energies in the range 0.32-0.37 eV.

  13. The effect of gallium substitution on the microstructure and magnetic properties of yttrium iron garnet

    SciTech Connect

    Zaini, N. Z. M. Ibrahim, N. B.

    2015-09-25

    Y{sub 3}Fe{sub (5-y)}Ga{sub y}O{sub 12} (y = 0, 0.4, 1.4 and 2,4) thin films were prepared by sol-gel method and annealed for 2h in oxygen. The thin film’s characteristic were studied by an X-ray diffraction (XRD), a field emission scanning electron microscope (FESEM) and a vibration sample magnetometer (VSM). The XRD show that all films have the garnet phase structure. The grain size particles measured using FESEM were between 45.08 nm to 51.58 nm, and the thickness were between 42 nm to 90 nm. The magnetic properties measured using VSM showed that result was shown with hysteresis loop. The magnetization saturation decreased from 144.26 to 2.76 emu/cm{sup 3} with the increasing substitution gallium. The substitution for y = 2.4 was shown the saturation magnetization was very low. The coercivity increased 35 to 75 Oe due the the increasing grain size.

  14. Decontamination of deep dentin by means of erbium, chromium:yttrium-scandium-gallium-garnet laser irradiation.

    PubMed

    Franzen, René; Esteves-Oliveira, Marcella; Meister, Jörg; Wallerang, Anja; Vanweersch, Leon; Lampert, Friedrich; Gutknecht, Norbert

    2009-01-01

    The aim of this in vitro study was to evaluate the depth of effectiveness of erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser irradiation on microorganism reduction. From human roots, dentin slices of 100 microm to 1,000 microm thickness were prepared. These specimens were sterilized and then inoculated with 1 microl of Enterococcus faecalis suspension. The backs of the specimens were then irradiated with Er,Cr:YSGG radiation at a pulse energy of 3.13 mJ, delivered at an incidence angle of 5 degrees to the dentin slice surface. A control group was left without irradiation. The remaining bacteria were collected in 1 ml sterilized NaCl solution, serially diluted and seeded in Columbia-Agar plates. Despite the low pulse energy of 3.13 mJ, the Er,Cr:YSGG laser irradiation resulted in significant bacterial reduction up to a dentin thickness of 500 microm (P < 0.05). Scanning electron microscopy (SEM) micrographs of the contaminated and irradiated surfaces showed the absence of a smear layer and opened dentinal tubules. PMID:18027063

  15. Preparation and characterization of highly transparent Ce3+ doped terbium gallium garnet single crystal

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Yang, Lei; Hang, Yin; Wang, Xiangyong

    2015-09-01

    A Ce3+ doped terbium gallium garnet crystal (TCGG) with 30 mm in diameter and 25 mm in length has been grown by the Czochralski (Cz) method. The cation distributions in the TCGG crystal and thermal expansion coefficient have been investigated. Absorption spectrum was evaluated in the visible and near-infrared region (VIS-NIR) at room temperature, which indicated the crystal had low absorption coefficient at 500-1500 nm. The specific Faraday rotation of single crystal was measured at room temperature in 532, 633, and 1064 nm. The Verdet constant of the crystal at 633 nm comes up to 164.3 rad m-1 T-1, 26.3% larger than that of TGG at 633 nm. The thermal conductivity and laser induced damage threshold (LIDT) were also measured. Overall, the TCGG single crystal studied here exhibits superior properties than the commercial TGG so far, therefore it has potential to cover the increasing demand for new and improved Faraday rotators in the VIS-NIR region.

  16. Planar waveguides in neodymium-doped calcium niobium gallium garnet crystals produced by proton implantation

    NASA Astrophysics Data System (ADS)

    Chun-Xiao, Liu; Meng, Chen; Li-Li, Fu; Rui-Lin, Zheng; Hai-Tao, Guo; Zhi-Guang, Zhou; Wei-Nan, Li; She-Bao, Lin; Wei, Wei

    2016-04-01

    In this work, the fabrication and optical properties of a planar waveguide in a neodymium-doped calcium niobium gallium garnet (Nd:CNGG) crystal are reported. The waveguide is produced by proton (H+) implantation at 480 keV and a fluence of 1.0×1017 ions/cm2. The prism-coupling measurement is performed to obtain the dark mode of the waveguide at a wavelength of 632.8 nm. The reflectivity calculation method (RCM) is used to reconstruct the refractive index profile. The finite-difference beam propagation method (FD-BPM) is employed to calculate the guided mode profile of the waveguide. The stopping and range of ions in matter 2010 (SRIM 2010) code is used to simulate the damage profile induced by the ion implantation. The experimental and theoretical results indicate that the waveguide can confine the light propagation. Project supported by the National Natural Science Foundation of China (Grant Nos. 11405041, 61405240, 61077070, 61177086, 51002181, and 61177084), the Scientific Research Starting Foundation for New Teachers of Nanjing University of Posts and Telecommunications (NUPTSF) (Grant No. NY214159), and the Research Center of Optical Communications Engineering & Technology, Jiangsu Province, China (Grant No. ZSF0401).

  17. Dispersionless Spin Waves and Underlying Field-Induced Magnetic Order in Gadolinium Gallium Garnet.

    PubMed

    d'Ambrumenil, N; Petrenko, O A; Mutka, H; Deen, P P

    2015-06-01

    We report the results of neutron diffraction and inelastic neutron scattering on a powder sample of Gd_{3}Ga_{5}O_{12} at high magnetic fields. Analysis of the diffraction data shows that in high fields (B≳1.8 T) the spins are not fully aligned, but are canted slightly as a result of the dipolar interaction. The magnetic phase for fields ≲1.8 T is characterized by antiferromagnetic peaks at (210) and an incommensurate wave vector. The dominant contribution to inelastic scattering at large momentum transfers is from a band of almost dispersionless excitations. We show that these correspond to the spin waves localized on ten site rings, expected on the basis of nearest neighbor exchange interaction, and that the spectrum at high fields B≳1.8 T is well described by a spin wave theory. PMID:26196642

  18. Highly transparent terbium gallium garnet crystal fabricated by the floating zone method for visible-infrared optical isolators

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; yang, Lei; Wang, Xiangyong; Wang, Jun; Hang, Yin

    2015-08-01

    Highly transparent terbium gallium garnet (Tb3Ga5O12; TGG) single crystal having a large Verdet constant based on the visible and near-infrared region (VIS-NIR) Faraday rotator was grown by Floating Zone (FZ) growth machine. We successfully grew TGG single-crystal rods of 8-10 mm in diameter, which was suitable for the use in optical devices. The crystal showed a full-width at half-maximum as little as 18 arcsec by the X-ray rocking curve measurement. The Faraday rotation (B = 0.55T) was investigated at wavelength of 532, 632.8, 1064 nm at room temperature. The lower weak absorption coefficient, higher Verdet constant, thermal conductivity and laser induced damage threshold (LIDT) compared to the commercial TGG gives the great potential of using this new method to meet the increasing demand of VIS-NIR Faraday rotators (FRs).

  19. Symmetry reduction due to gallium substitution in the garnet Li6.43(2)Ga0.52(3)La2.67(4)Zr2O12

    PubMed Central

    Robben, Lars; Merzlyakova, Elena; Heitjans, Paul; Gesing, Thorsten M.

    2016-01-01

    Single-crystal structure refinements on lithium lanthanum zirconate (LLZO; Li7La3Zr2O12) substituted with gallium were successfully carried out in the cubic symmetry space group I 3d. Gallium was found on two lithium sites as well as on the lanthanum position. Due to the structural distortion of the resulting Li6.43(2)Ga0.52(3)La2.67(4)Zr2O12 (Ga–LLZO) single crystals, a reduction of the LLZO cubic garnet symmetry from Ia d to I 3d was necessary, which could hardly be analysed from X-ray powder diffraction data. PMID:27006788

  20. Characteristics of epitaxial garnets grown by CVD using single metal alloy sources. [Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Besser, P. J.; Hamilton, T. N.; Mee, J. E.; Stermer, R. L.

    1974-01-01

    Single metal alloys have been explored as the cation source in the chemical vapor deposition (CVD) of iron garnets. Growth of good quality single crystal garnet films containing as many as five different cations has been achieved over a wide range of deposition conditions. The relationship of film composition to alloy compositions and deposition conditions has been determined for several materials. By proper choice of the alloy composition and the deposition conditions, uncrazed deposits were grown on (111) gadolinium gallium garnet (GGG) substrates. Data on physical, magnetic and optical properties of representative films is presented and discussed.

  1. Gallium

    SciTech Connect

    1996-01-01

    Discovered in 1875 through a study of its spectral properties, gallium was the first element to be uncovered following the publication of Mendeleev`s Periodic Table. French chemist, P.E. Lecoq de Boisbaudran, named his element discovery in honor of his native country; gallium is derived from the Latin word for France-{open_quotes}Gallia.{close_quotes}. This paper describes the properties, sources, and market for gallium.

  2. Photon self-induced spin-to-orbital conversion in a terbium-gallium-garnet crystal at high laser power

    SciTech Connect

    Mosca, S.; De Rosa, R.; Milano, L.; Canuel, B.; Genin, E.; Karimi, E.; Piccirillo, B.; Santamato, E.; Marrucci, L.

    2010-10-15

    In this paper, we present experimental evidence of a third-order nonlinear optical process, self-induced spin-to-orbital conversion (SISTOC) of the photon angular momentum. This effect is the physical mechanism at the origin of the depolarization of very intense laser beams propagating in isotropic materials. The SISTOC process, like self-focusing, is triggered by laser heating leading to a radial temperature gradient in the medium. In this work we tested the occurrence of SISTOC in a terbium-gallium-garnet rod for an impinging laser power of about 100 W. To study the SISTOC process we used different techniques: polarization analysis, interferometry, and tomography of the photon orbital angular momentum. Our results confirm, in particular, that the apparent depolarization of the beam is due to the occurrence of maximal entanglement between the spin and orbital angular momentum of the photons undergoing the SISTOC process. This explanation of the true nature of the depolarization mechanism could be of some help in finding novel methods to reduce or to compensate for this usually unwanted depolarization effect in all cases where very high laser power and good beam quality are required.

  3. Symmetry reduction due to gallium substitution in the garnet Li6.43(2)Ga0.52(3)La2.67(4)Zr2O12.

    PubMed

    Robben, Lars; Merzlyakova, Elena; Heitjans, Paul; Gesing, Thorsten M

    2016-03-01

    Single-crystal structure refinements on lithium lanthanum zirconate (LLZO; Li7La3Zr2O12) substituted with gallium were successfully carried out in the cubic symmetry space group I [Formula: see text]3d. Gallium was found on two lithium sites as well as on the lanthanum position. Due to the structural distortion of the resulting Li6.43(2)Ga0.52(3)La2.67(4)Zr2O12 (Ga-LLZO) single crystals, a reduction of the LLZO cubic garnet symmetry from Ia[Formula: see text] d to I [Formula: see text]3d was necessary, which could hardly be analysed from X-ray powder diffraction data. PMID:27006788

  4. High-pressure and high-temperature studies on oxide garnets

    NASA Astrophysics Data System (ADS)

    Hua, Hong; Mirov, Sergey; Vohra, Yogesh K.

    1996-09-01

    We report high-pressure and high-temperature studies on a series of oxide garnets of chemical composition A3B2C3O12. The members of this family investigated are gadolinium scandium gallium garnet (GSGG), gadolinium gallium garnet (GGG), and yttrium aluminum garnet (YAG). The GSGG and GGG are doped with both neodymium and chromium while the YAG is doped only with neodymium. Photoluminescence, synchrotron x-ray-diffraction, and laser heating studies were carried out in a diamond-anvil cell. Variety of optical sensors (ruby, Sm-doped YAG) and x-ray pressure marker (copper) were employed for pressure measurement. Pressure-induced amorphization was observed in GSGG at 58+/-3 GPa and GGG at 84+/-4 GPa by x-ray-diffraction studies. The photoluminescence studies show only gradual broadening of emission bands through the amorphization transition. On increasing pressure beyond amorphization, very broad and featureless emission bands were observed in the fluorescence spectra at 77+/-2 GPa for GSGG and at 88+/-2 GPa for GGG. Laser heating of the pressure-induced amorphous phase in GSGG caused recrystallization to the stable cubic phase. High-pressure x-ray study on YAG shows that it retains cubic phase up to 101+/-4 GPa. A pressure-volume relation for each member of the oxide garnet at ambient temperatures is presented, structural transformation mechanisms, and application of oxide garnets as pressure sensors are also discussed.

  5. Coupling Single-Mode Fiber to Uniform and Symmetrically Tapered Thin-Film Waveguide Structures Using Gadolinium Gallium Garnet

    NASA Technical Reports Server (NTRS)

    Gadi, Jagannath; Yalamanchili, Raj; Shahid, Mohammad

    1995-01-01

    The need for high efficiency components has grown significantly due to the expanding role of fiber optic communications for various applications. Integrated optics is in a state of metamorphosis and there are many problems awaiting solutions. One of the main problems being the lack of a simple and efficient method of coupling single-mode fibers to thin-film devices for integrated optics. In this paper, optical coupling between a single-mode fiber and a uniform and tapered thin-film waveguide is theoretically modeled and analyzed. A novel tapered structure presented in this paper is shown to produce perfect match for power transfer.

  6. Improved laser efficiency by direct diode laser pumping of the radiation-resistant Nd:gadolinium-scandium-gallium garnet

    NASA Astrophysics Data System (ADS)

    Lupei, V.; Pavel, N.; Lupei, A.

    2014-04-01

    Spectroscopic investigation of the radiation-resistant Nd:GSGG crystals and ceramics reported in this paper evidences that the absorption line at 883 nm corresponding to the unusual situation of quasi-degenerate absorption transitions 4I9/2(2) →4F3/2(1) and 4I9/2(3) →4F3/2(2) can be used for efficient direct diode laser pumping of this material, with stable absorption over an extended temperature range. It is inferred that the reduction of the quantum defect at this wavelength of pump compared to the traditional 807 nm pumping could improve the laser parameters and reduce drastically the heat generation, leading to a considerable extension of the power scalability. This possibility is demonstrated for the first time in the case of the 1061 nm laser emission in a continuous-wave and in the repetitive active acousto-optic and passive Q-switched laser emission. In all regimes this manifests in the reduction of the laser threshold, increase of slope efficiency and extension of the average power range. Additionally, in the active Q-switching this enables increased pulse energy and reduced pulse duration. The direct pumping could revitalize the utilization of Nd:GSGG for construction of lasers with storage of population inversion or working in an ionizing radiation environment.

  7. High power single-frequency and frequency-doubled laser with active compensation for the thermal lens effect of terbium gallium garnet crystal.

    PubMed

    Yin, Qiwei; Lu, Huadong; Su, Jing; Peng, Kunchi

    2016-05-01

    The thermal lens effect of terbium gallium garnet (TGG) crystal in a high power single-frequency laser severely limits the output power and the beam quality of the laser. By inserting a potassium dideuterium phosphate (DKDP) slice with negative thermo-optical coefficient into the laser resonator, the harmful influence of the thermal lens effect of the TGG crystal can be effectively mitigated. Using this method, the stable range of the laser is broadened, the bistability phenomenon of the laser during the process of changing the pump power is completely eliminated, the highest output power of an all-solid-state continuous-wave intracavity-frequency-doubling single-frequency laser at 532 nm is enhanced to 30.2 W, and the beam quality of the laser is significantly improved. PMID:27128067

  8. Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power

    SciTech Connect

    Yasuhara, Ryo; Snetkov, Ilya; Starobor, Alexey; Palashov, Oleg

    2014-12-15

    A scalable aperture Faraday isolator for high-energy pulsed lasers with kW-level average power was demonstrated using terbium gallium garnet ceramics with water cooling and compensation of thermally induced depolarization in a magnetic field. An isolation ratio of 35 dB (depolarization ratio γ of 3.4 × 10{sup −4}) was experimentally observed at a maximum laser power of 740 W. By using this result, we estimated that this isolator maintains an isolation ratio of 30 dB for laser powers of up to 2.7 kW. Our results provide the solution for achieving optical isolation in high-energy (100 J to kJ) laser systems with a repetition rate greater than 10 Hz.

  9. Mid-Infrared Spectroscopy Analysis of the Effects of Erbium, Chromium:Yattrium-Scandium-Gallium-Garnet (Er,Cr:YSGG) Laser Irradiation on Bone Mineral and Organic Components.

    PubMed

    Benetti, Carolina; Ana, Patricia Aparecida; Bachmann, Luciano; Zezell, Denise Maria

    2015-12-01

    The effects of varying the energy density of a high-intensity erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser on the mineral and organic components of bone tissue were evaluated using Fourier transform infrared spectroscopy. Bone samples obtained from the tibias of rabbits were irradiated with five energy densities (3, 6, 8, 12, and 15 J/cm(2)), and the effects on the carbonate to phosphate ratio and in the organic components were compared with those of nonirradiated samples. The increased temperature during the laser irradiation was also measured using infrared thermography to relate the observed spectral changes to the laser thermal effects. The analyses of the infrared spectra suggests that the irradiation with Er,Cr:YSGG promoted changes in bone tissue in both the mineral and organic components that depend on the laser energy density, pointing to the importance of using the proper energy density in clinical procedures. PMID:26555304

  10. Synthesis and characterization of nanocrystalline Nd{sup 3+}-doped gadolinium scandium aluminum garnet powders by a gel-combustion method

    SciTech Connect

    Su, Jing; Miao, Ju-hong; Xu, Lin-hua; Ji, Yu-qing; Wang, Chu-qin

    2012-07-15

    Graphical abstract: The graph shows the emission spectra (λ{sub ex} = 808 nm) of 1 at.% Nd:GSAG powders sintered at different temperatures for 3 h. Compared with the powder sintered at 900 °C, the PL intensity of the powder sintered at 1000 °C decreased significantly. The changes in the PL intensity should mainly due to the crystallinity and dispersion of the powders. Highlights: ► We synthesized Nd:GSAG nano-powders by gel-combustion method successfully. ► We analyzed the structure and the morphology of the heat-treated products. ► We studied the optical characteristics of Nd:GSAG nano-powders. -- Abstract: Nd{sup 3+}-doped gadolinium scandium aluminum garnet (Nd:GSAG) precursor was synthesized by a gel combustion method using metal nitrates and citric acid as raw materials. The structure and morphology of the precursor and the sintered powders were studied by means of X-ray diffraction (XRD), infrared spectroscopy (IR) and transmission electron microscopy (TEM). The results showed that the precursor transformed into pure GSAG polycrystalline phase at about 800 °C, and the powders sintered at 800–1000 °C were well-dispersed with average particle sizes in the range of 30–80 nm. Optical properties of Nd:GSAG nano-powders were characterized by using photoluminescence spectroscopy. The highest photoluminescence intensity was achieved for the powder sintered at 900 °C.

  11. Effects of an interaction of magnetostatic and elastic waves in structures with a tangentially magnetized submicron-thickness film of yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Andreev, A. S.; Zilberman, P. E.; Kravchenko, V. B.; Ogrin, Iu. F.; Temiriazev, A. G.; Filimonova, L. M.

    1984-01-01

    The first observation of a resonant electrostrictive interaction of magnetostatic waves with Lamb elastic waves in structures that include a tangentially saturation-magnetized YIG film of submicron thickness on a substrate of gadolinium-gallium garnet is reported. Also reported are distinctive features of the propagation of a magnetostatic-wave pulse in such structures as the result of magnetoelastic coupling. A sweep-frequency generator tunable over the 2-4 GHz range was used for measurements in the continuous mode.

  12. The effect of an erbium, chromium: yttrium-scandium-gallium-garnet laser on the microleakage and bond strength of silorane and micro-hybrid composite restorations

    PubMed Central

    Korkmaz, Fatih Mehmet; Baygin, Ozgul; Tuzuner, Tamer; Bagis, Bora; Arslan, Ipek

    2013-01-01

    Objective: The aim of this in vitro study was to compare the microleakage and bond strength of Class V silorane-based and universal micro-hybrid composite restorations prepared either with diamond bur or with an erbium, chromium: yttrium-scandium-gallium-garnet (Er, Cr:YSGG) laser. Materials and Methods: A total of 160 molar teeth were used for microleakage assessment and shear bond strength (SBS) test. The specimens were prepared using either diamond bur or 3 W-, 4 W- and 5 W-20 Hz Er, Cr:YSGG laser irradiation. All specimens were subjected to thermocycling (500 times at 5 ± 2°C to 55 ± 2°C, dwell time 15 s and transfer time 10 s). Microleakage was assessed using a 0.5% basic-fuchsin solution. The bond strengths were determined using a microtensile tester at a crosshead speed of 0.5 mm/min. The Kruskal Wallis test was used for the analysis of microleakage and a one-way analysis of variance test was used to analyze the SBS (P < 0.05). Results: No statistically significant differences were found (P > 0.05) between Er, Cr:YSGG laser and bur preparation methods regarding microleakage and bond strength values. Conclusion: Irradiation with Er, Cr:YSGG laser was confirmed to be as effective as conventional methods for preparing cavities before adhesive restorations. PMID:24966726

  13. Garnet-to-perovskite transition in Gd3Sc2Ga3O12 at high pressure and high temperature.

    PubMed

    Lin, Chuanlong; Liu, Jing; Lin, Jung-Fu; Li, Xiaodong; Li, Yanchun; Zhang, Qingli; Xiong, Lun; Li, Rui

    2013-01-01

    The structural phase transition of gadolinium-scandium-gallium garnet (Gd(3)Sc(2)Ga(3)O(12), GSGG) has been studied at high pressure and high temperature using the synchrotron X-ray diffraction technique in a laser-heated diamond anvil cell. The GSGG garnet transformed to an orthorhombic perovskite structure at approximately 24 GPa after laser heating to 1500-2000 K. The garnet-to-perovskite phase transition is associated with an ∼8% volume reduction and an increase in the coordination number of the Ga(3+) or Sc(3+) ion. The orthorhombic perovskite GSGG has bulk modulus B(0) = 194(15) GPa with B(0)' = 5.3(8), exhibiting slightly less compression than the cubic garnet structure of GSGG with B(0) = 157(15) GPa and B(0)' = 6.5(10). Upon compression at room temperature, the cubic GSGG garnet became amorphous at ∼65 GPa. Coupled with the amorphous-to-perovskite phase transition in Y(3)Fe(5)O(12) and Gd(3)Ga(5)O(12) at high-pressure-temperature conditions, we conclude that amorphization should represent a new thermodynamic state resulting from hindrance of the garnet-to-perovskite phase transition, whereas the garnet-to-amorphous transition in rare-earth garnets should be kinetically hindered at room temperature. PMID:23240758

  14. Fabrication, characterisation and magneto-optical enhancement of thin-film bismuth gallium:dysprosium iron garnet

    NASA Astrophysics Data System (ADS)

    Teggart, Brian Joseph

    This thesis describes the production of BiGa:Dy Iron garnet thins films by the processes of both pulsed laser deposition and r.f. magnetron sputtering. High quality films with large magneto-optical effects, perpendicular magnetic anisotropy, square hysteresis loops and smooth surfaces with small grain size have been produced by both methods from the same Bi2.3Dy0.8 Fe4.0Ga0.9O12 target. The optimised PLD conditions required to produce films of maximum MO activity onto GGG(111) substrates included a substrate temperature of 590°C and an oxygen pressure of 0.2mbar. Film composition exhibited the same stoichiometry as the target material. The films produced by r.f. magnetron sputtering displayed a low bismuth content, compared to those of the PLD films. Optimised conditions, including a post annealing temperature of 690°C and an argon pressure of 0.04mbar, produced films of composition Bi1.2Dy1.3Fe4.4Ga 1.1O12. Optical and MO characterisation of both types of film, in terms of the intrinsic complex refractive index (n) and Voigt parameter (Q), throughout the visible region, revealed the increased Bi content harvested from the PLD process led to significantly larger optical absorption and MO effects. However, the sputtering technique produced films with superior surface quality, and film uniformity over a larger area. The optical and MO characterisation enabled the design and fabrication of multilayer enhancement structures to maximise the Kerr rotation, whilst minimising the Kerr ellipticity for a given reflectance value at a chosen wavelength. Large MO enhancement proved possible towards higher wavelengths (>500nm) where the absorption of the garnet was low, despite the much lower intrinsic MO activity displayed at these wavelengths.

  15. The Adjunctive Use of the Erbium, Chromium: Yttrium Scandium Gallium Garnet Laser in Closed Flap Periodontal Therapy. A Retrospective Cohort Study

    PubMed Central

    Al-Falaki, Rana; Cronshaw, Mark; Parker, Steven

    2016-01-01

    Objectives: The current periodontal literature has been inconsistent in finding an added advantage to using lasers in periodontal therapy. The aim of this study was to compare treatment outcomes following root surface instrumentation alone (NL group), or with adjunctive use of Erbium, Chromium: Yttrium Scandium Gallium Garnet (Er,Cr:YSGG) laser (L group). Material and Methods: Patients diagnosed with generalized chronic periodontitis, having a minimum of 1 year follow up were selected by a blinded party for inclusion in a retrospective analysis from patients treated prior to and after integration of laser in a single clinic setting. Probing depths (PD) of all sites ≥5 mm and full mouth bleeding scores were analyzed. Further analysis was carried out on the treatment outcomes of only the molar teeth and of pockets >6mm. Results: 53 patients were included (25 NL,28 L). There was no significant difference between baseline PDs (NL=6.19mm, L=6.27mm, range 5-11mm). The mean PD after one year was 2.83mm (NL) 2.45mm (L), with the mean PD reductions being 3.35mm (NL) and 3.82mm (L) (p<0.002). The mean PD reduction for the molars were 3.32mm (NL) and 3.86mm (L) (p< 0.007), and for ≥7mm group were 4.75mm (NL) compared to 5.14mm (L) (p< 0.009). There was significantly less bleeding on probing in the laser group after one year (p<0.001) Conclusion: Both treatment modalities were effective in treating chronic periodontitis, but the added use of laser may have advantages, particularly in molar tooth sites and deeper pockets. Further research with RCTs is needed to test this hypothesis further. PMID:27350796

  16. Comparative evaluation of surface topography of tooth prepared using erbium, chromium: Yttrium, scandium, gallium, garnet laser and bur and its clinical implications

    PubMed Central

    Verma, Mahesh; Kumari, Pooja; Gupta, Rekha; Gill, Shubhra; Gupta, Ankur

    2015-01-01

    Background: Erbium, chromium: Yttrium, scandium, gallium, garnet (Er, Cr: YSGG) laser has been successfully used in the ablation of dental hard and soft tissues. It has been reported that this system is also useful for preparing tooth surfaces and etching, but no consensus exist in the literature regarding the advantage of lasers over conventional tooth preparation technique. Materials and Methods: Labial surfaces of 25 extracted human maxillary central incisors were divided into two halves. Right half was prepared with diamond bur and left half with Er, Cr; YSGG laser and a reduction of 0.3–0.5 mm was carried out. Topography of prepared surfaces of five teeth were examined under scanning electron microscope (SEM). The remaining samples were divided into 4 groups of 10 specimens each based on the surface treatment received: One group was acid etched and other was nonetched. Composite resin cylinders were bonded on prepared surfaces and shear bond strength was assessed using a universal testing machine. Results: The SEM observation revealed that the laser prepared surfaces were clean, highly irregular and devoid of a smear layer. Bur prepared surfaces were relatively smooth but covered with smear layer. Highest bond strength was shown by laser prepared acid etched group, followed by bur prepared the acid etched group. The bur prepared nonacid etched group showed least bond strength. Conclusions: Er, Cr: YSGG laser can be used for preparing tooth and bond strength value achieved by laser preparation alone without surface treatment procedure lies in the range of clinical acceptability. PMID:26929482

  17. Phase stable rare earth garnets

    SciTech Connect

    Kuntz, Joshua D.; Cherepy, Nerine J.; Roberts, Jeffery J.; Payne, Stephen A.

    2013-06-11

    A transparent ceramic according to one embodiment includes a rare earth garnet comprising A.sub.hB.sub.iC.sub.jO.sub.12, where h is 3.+-.10%, i is 2.+-.10%, and j is 3.+-.10%. A includes a rare earth element or a mixture of rare earth elements, B includes at least one of aluminum, gallium and scandium, and C includes at least one of aluminum, gallium and scandium, where A is at a dodecahedral site of the garnet, B is at an octahedral site of the garnet, and C is at a tetrahedral site of the garnet. In one embodiment, the rare earth garment has scintillation properties. A radiation detector in one embodiment includes a transparent ceramic as described above and a photo detector optically coupled to the rare earth garnet.

  18. Thickness- and temperature-dependent magnetodynamic properties of yttrium iron garnet thin films

    SciTech Connect

    Haidar, M. Ranjbar, M.; Balinsky, M.; Dumas, R. K.; Khartsev, S.; Åkerman, J.

    2015-05-07

    The magnetodynamical properties of nanometer-thick yttrium iron garnet films are studied using ferromagnetic resonance as a function of temperature. The films were grown on gadolinium gallium garnet substrates by pulsed laser deposition. First, we found that the damping coefficient increases as the temperature increases for different film thicknesses. Second, we found two different dependencies of the damping on film thickness: at room temperature, the damping coefficient increases as the film thickness decreases, while at T = 8 K, we find the damping to depend only weakly on the thickness. We attribute this behavior to an enhancement of the relaxation of the magnetization by impurities or defects at the surfaces.

  19. Exquisite growth control and magnetic properties of yttrium iron garnet thin films

    NASA Astrophysics Data System (ADS)

    Tang, Chi; Aldosary, Mohammed; Jiang, Zilong; Chang, Houchen; Madon, Benjamin; Chan, Kyle; Wu, Mingzhong; Garay, Javier E.; Shi, Jing

    2016-03-01

    A layer-by-layer epitaxial growth up to 227 atomic layers of ferrimagnetic insulator yttrium iron garnet (YIG) thin films is achieved on (110)-oriented gadolinium gallium garnet substrates using pulsed laser deposition. Atomically smooth terraces are observed on YIG films up to 100 nm in thickness. The root-mean-square roughness is as low as 0.067 nm. The easy-axis lies in the film plane, indicating the dominance of shape anisotropy. For (110)-YIG films, there is well-defined two-fold in-plane anisotropy, with the easiest axis directed along [001]. The Gilbert damping constant is determined to be 1.0 × 10-4 for 100 nm thick films.

  20. Platinum/yttrium iron garnet inverted structures for spin current transport

    NASA Astrophysics Data System (ADS)

    Aldosary, Mohammed; Li, Junxue; Tang, Chi; Xu, Yadong; Zheng, Jian-Guo; Bozhilov, Krassimir N.; Shi, Jing

    2016-06-01

    30-80 nm thick yttrium iron garnet (YIG) films are grown by pulsed laser deposition on a 5 nm thick sputtered Pt atop gadolinium gallium garnet substrate (GGG) (110). Upon post-growth rapid thermal annealing, single crystal YIG(110) emerges as if it were epitaxially grown on GGG(110) despite the presence of the intermediate Pt film. The YIG surface shows atomic steps with the root-mean-square roughness of 0.12 nm on flat terraces. Both Pt/YIG and GGG/Pt interfaces are atomically sharp. The resulting YIG(110) films show clear in-plane uniaxial magnetic anisotropy with a well-defined easy axis along <001> and a peak-to-peak ferromagnetic resonance linewidth of 7.5 Oe at 9.32 GHz, similar to YIG epitaxially grown on GGG. Both spin Hall magnetoresistance and longitudinal spin Seebeck effects in the inverted bilayers indicate excellent Pt/YIG interface quality.

  1. Thick-Film Yttrium Iron Garnet Coatings via Aerosol Deposition

    NASA Astrophysics Data System (ADS)

    Johnson, Scooter D.; Glaser, Evan R.; Cheng, Shu-Fan; Eddy, Charles R.; Kub, Fritz; Gorzkowski, Edward P.

    2016-03-01

    Aerosol deposition is a thick-film deposition process that can produce layers up to several hundred micrometers thick with densities greater than 95 pct of the theoretical value. The primary advantage of aerosol deposition is that the deposition takes place entirely at room temperature, thereby enabling film growth in material systems with disparate melting temperatures. We show representative characterization results of yttrium iron garnet thick films deposited onto a <111> gadolinium gallium garnet substrate by aerosol deposition using scanning electron microscopy, X-ray diffraction, profilometry, vibrating sample magnetometry, and ferromagnetic resonance. To further elucidate the effect of density and grain size on the magnetic properties, we perform post-deposition annealing of the films to study the effect on the structural and magnetic properties of the films. Our results indicate that our system can successfully deposit dense, thick yttrium iron garnet films and that with moderate annealing the films can achieve a ferromagnetic resonance linewidth comparable to that reported for polycrystalline films deposited by other higher temperature growth techniques.

  2. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2001-01-01

    A general overview of the industrial garnet industry is provided. About 20 percent of global industrial garnet production takes place in the U.S. During 2000, an estimated 300 kt of industrial garnets were produced worldwide. The U.S. is the world's largest consumer of industrial garnet, consuming 56.9 kt in 2000.

  3. Pulsed laser deposition of epitaxial yttrium iron garnet films with low Gilbert damping and bulk-like magnetization

    SciTech Connect

    Onbasli, M. C. Kim, D. H.; Ross, C. A.; Kehlberger, A.; Jakob, G.; Kläui, M.; Chumak, A. V.; Hillebrands, B.

    2014-10-01

    Yttrium iron garnet (YIG, Y {sub 3}Fe{sub 5}O{sub 12}) films have been epitaxially grown on Gadolinium Gallium Garnet (GGG, Gd{sub 3}Ga{sub 5}O{sub 12}) substrates with (100) orientation using pulsed laser deposition. The films were single-phase, epitaxial with the GGG substrate, and the root-mean-square surface roughness varied between 0.14 nm and 0.2 nm. Films with thicknesses ranging from 17 to 200 nm exhibited low coercivity (<2 Oe), near-bulk room temperature saturation moments (∼135 emu cm{sup −3}), in-plane easy axis, and damping parameters as low as 2.2 × 10{sup −4}. These high quality YIG thin films are useful in the investigation of the origins of novel magnetic phenomena and magnetization dynamics.

  4. Low-relaxation spin waves in laser-molecular-beam epitaxy grown nanosized yttrium iron garnet films

    NASA Astrophysics Data System (ADS)

    Lutsev, L. V.; Korovin, A. M.; Bursian, V. E.; Gastev, S. V.; Fedorov, V. V.; Suturin, S. M.; Sokolov, N. S.

    2016-05-01

    Synthesis of nanosized yttrium iron garnet (Y3Fe5O12, YIG) films followed by the study of ferromagnetic resonance (FMR) and spin wave propagation in these films is reported. The YIG films were grown on gadolinium gallium garnet substrates by laser molecular beam epitaxy. It has been shown that spin waves propagating in YIG deposited at 700 °C have low damping. At the frequency of 3.29 GHz, the spin-wave damping parameter is less than 3.6 × 10-5. Magnetic inhomogeneities of the YIG films give the main contribution to the FMR linewidth. The contribution of the relaxation processes to the FMR linewidth is as low as 1.2%.

  5. Light-emitting diodes of 'Warm' white luminescence on the basis of p-n heterostructures of the InGaN/AlGaN/GaN type coated with phosphors made of yttrium-gadolinium garnets

    SciTech Connect

    Soshchin, N. P.; Galchina, N. A.; Kogan, L. M.; Shirokov, S. S.; Yunovich, A. E.

    2009-05-15

    Electroluminescence spectra and color characteristics of light-emitting diodes of white luminescence based on p-n heterostructures of the InGaN/AlGaN/GaN type with blue emission ({lambda}{sub max} {approx} 455 nm) coated with phosphors of the type of aluminum-yttrium-gadolinium garnets activated with the Ce{sup 3+} ions are studied. The maximum in the excitation spectra of phosphors varies in the range 460-470 nm. The luminescence spectra of phosphors have the peaks from 530 to 590 nm and a width at half-maximum of intensity from 120 to 135 nm depending of the compound composition. The selection of intensities of blue and yellow-orange bands allows one to shift the coordinates of chromaticity of white light-emitting diodes to the region of 'warm' luminescence with a correlated color temperature to T{sub CC} = 3000 K and maximum luminous efficiency up to 50 lm/W.

  6. RBS and XRD Characterization of Yttrium Iron Garnet Thin Films

    NASA Astrophysics Data System (ADS)

    Mansour, M.; Roumie, M.; Abdel Samad, B.; Basma, H.; Korek, M.

    2015-03-01

    Magnetic materials such as yttrium iron garnet (YIG or Y3Fe5O12) present a great importance for their magneto-optic properties. They are potential materials used for applications in the domain of optical telecommunications for example. In this work, we have investigated YIG thin films deposited on substrates of quartz and GGG (gadolinium gallium garnet or Gd3Ga5O12). Using Rutherford backscattering spectrometry (RBS) we characterized the performed layers (thickness and stoichiometry) in order to correlate the films preparation conditions with the quality of the final material. We determined the optimal energy of the alpha particles beam used for RBS measurements and we fitted the experimental spectra using the SIMNRA simulated code. Our RBS results showed that the films have a stoichiometry close to that of the starting material. In addition, we found that the film thickness is proportional to deposition time but inversely proportional to the substrate temperature. Moreover, using x-ray diffraction (XRD) we determined the annealing effect on the structure of the profile of our thin films.

  7. Effect of Gallium and Indium Co-Substituting on Upconversion Properties of Er/Yb:Yttrium Aluminum Garnet Powders Prepared by the Co-Precipitation Method.

    PubMed

    Zhang, Wei; Liang, Yun-Ling; Hu, Zheng-Fa; Feng, Zu-Yong; Lun, Ma; Zhang, Xiu-ping; Sheng, Xia; Liu, Qian; Luo, Jie

    2016-04-01

    Gallium and Indium co-substituted Yb, Er:YAG was fabricated through the chemical co-precipitation method. The formation process and structure of the Ga3+ and In3+ substituted phosphor powders were characterized by the X-ray diffraction, thermo-gravimetry analyzer, infrared spectra, and X-ray photoelectron spectroscopy, and the effects of Ga3+ and In3+ concentration on the luminescence properties were investigated by spectrum. The results showed that the blue shift occurred after the substitution of Ga3+ and In3+ for Al3+ in matrix, and the intensity of emission spectrum was affected by the concentration of Ga3+ and In3+. PMID:27451659

  8. Ce-doped single crystal and ceramic garnets for γ ray detection

    SciTech Connect

    Hull, G; Roberts, J; Kuntz, J; Fisher, S; Sanner, R; Tillotson, T; Drobshoff, A; Payne, S; Cherepy, N

    2007-07-30

    Ceramic and single crystal Lutetium Aluminum Garnet scintillators exhibit energy resolution with bialkali photomultiplier tube detection as good as 8.6% at 662 keV. Ceramic fabrication allows production of garnets that cannot easily be grown as single crystals, such as Gadolinium Aluminum Garnet and Terbium Aluminum Garnet. Measured scintillation light yields of Cerium-doped ceramic garnets indicate prospects for high energy resolution.

  9. Garnet polycrystals

    NASA Astrophysics Data System (ADS)

    Whitney, Donna; Seaton, Nca

    2010-05-01

    Electron backscattered diffraction (EBSD) studies have revealed complex microstructures in garnet, including features developed during crystal growth and/or deformation. New data show that garnets commonly grow as clusters of grains (polycrystals) juxtaposed by high-angle boundaries. Garnet polycrystals may form at any stage of metamorphism following nucleation of garnet: polycrystals may form early as a result of close spacing of nuclei, or later via impingement of larger grains. EBSD analysis of garnets in metamorphic rocks from 9 localities in the US, Canada, Turkey, Iran, and Colombia detected polycrystals at every site. Evidence for internal deformation of garnet was observed in only one sample, a calc-pelite dominated by plagioclase; all other samples are mica schists. Three sites displayed garnet shape-preferred orientation, but none had a crystallographic preferred orientation of garnet. In some samples, polycrystals comprise ~20-30% of garnets analyzed. Some early-coalescing polycrystals exhibit growth zoning concentric about the geometric center of the polycrystal; i.e., zoning is unrelated to the location of internal grain boundaries. In other polycrystals, Fe-Mn-Mg zoning has a different pattern than that of Ca. Some polycrystals are characterized by high-angle misorientation boundaries in special orientations, indicating that these polycrystals are not random clusters of grains. Special boundaries were detected in 0-60% of garnets analyzed. Polycrystal formation may relate to the presence of chemical or textural heterogeneities (e.g. precursor phases, deformation features) that allowed close spacing of garnet nuclei. It is important to recognize polycrystals because internal grain boundaries may affect diffusion pathways and length scales and may facilitate communication of garnet interiors with matrix phases, thereby influencing reaction history and garnet composition and zoning.

  10. Gallium scan

    MedlinePlus

    Liver gallium scan; Bony gallium scan ... You will get a radioactive material called gallium injected into your vein. The gallium travels through the bloodstream and collects in the bones and certain organs. Your health care provider will ...

  11. Faraday effect of bismuth iron garnet thin film prepared by mist CVD method

    NASA Astrophysics Data System (ADS)

    Yao, Situ; Sato, Takafumi; Kaneko, Kentaro; Murai, Shunsuke; Fujita, Koji; Tanaka, Katsuhisa

    2015-06-01

    Metastable bismuth iron garnet (BIG, an abbreviation of Bi3Fe5O12), one kind of garnet-type ferrites, is known to manifest very large Faraday rotation as well as low optical absorption in the visible to infrared region. We report on successful synthesis of thin film composed of single-phase BIG epitaxially grown on single-crystalline gadolinium gallium garnet (Gd3Ga5O12, GGG) substrate by using mist chemical vapor deposition (CVD) method, which is an emerging technique for preparation of thin films. The crystal structure, surface morphology, and magnetic, optical and magneto-optical properties of the resultant thin films have been explored. The BIG thin film has a relatively flat surface free from roughness compared to those prepared by other vapor deposition methods. Saturation magnetization is about 1620 G at room temperature, which is close to that expected from the ideal magnetic structure of BIG. The maximum value of Faraday rotation angle reaches 54.3 deg/µm at a wavelength of 424 nm. This value is rather large when compared with those reported for BIG thin films prepared by other techniques. The wavelength dependence of Faraday rotation angle is analyzed well in terms of the crystal electric field (CEF) level schema. Our result suggests that the mist CVD method is a simple and effective technique to synthesize BIG thin film with excellent magneto-optical properties.

  12. Fabrication and characterization of Bismuth-Cerium composite iron garnet epitaxial films for magneto optical applications

    SciTech Connect

    Chandra Sekhar, M.; Singh, Mahi R.

    2012-10-15

    The Bi{sub x}Ce{sub 3-x}Fe{sub 5}O{sub 12} (x = 0.8) epitaxial films of high quality were grown by means of pulsed laser deposition on paramagnetic substrates of Gadolinium Gallium Garnet. We study the modifications of substitutions in the parent garnet Y{sub 3}Fe{sub 5}O{sub 12} that produces a higher magneto-optical response at communication wavelengths. These films displayed a strong in plane textures which are treated in argon as well as reduced atmosphere conditions. The elemental constituents of these films were confirmed by energy dispersive-X ray analysis, elastic recoil detection system, Rutherford backscattering spectroscopy, and X-ray photoelectron spectroscopy measurements. The transmittance spectra were measured and found these films exhibit good transmittance values. The transmittance-spectra were fitted with the theoretical model and the optical constants such as refractive index and absorption edge were evaluated. The highest (negative) Faraday rotation was found for these films treated in the environment of Ar + H{sub 2}. A density matrix theory has been developed for the Faraday rotation and a good agreement between the theory and experiment is found. These epitaxial garnet films can be used in a wide range of frequencies from visible to infrared spectra making them ideal for many magneto optical applications. Therefore, these films may overcome many issues in fabricating all optical isolators which is the viable solution for integrated photonics.

  13. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2011-01-01

    Garnet has been used as a gemstone since the Bronze Age. However, garnet's angular fractures, relatively high hardness and specific gravity, chemical inertness and nontoxicity make it ideal for many industrial applications. It is also free of crystalline silica and can be recycled.

  14. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2012-01-01

    Garnet has been used as a gemstone since the Bronze Age. However, garnet's angular fractures, relatively high hardness and specific gravity, chemical inertness, and nontoxicity make it ideal for many industrial applications. It is also free of crystalline silica and can be recycled.

  15. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2010-01-01

    In 2009, U.S. production of crude garnet concentrate for industrial use was estimated to be 56.5 kt (62,300 st), valued at about $8.85 million. This was a 10-percent decrease in quantity compared with 2008 production. Refined garnet material sold or used was 28 kt (31,000 st) valued at $7.96 million.

  16. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2006-01-01

    In 2005, US production of crude garnet concentrate for industrial use was 28.4 kt valued at $3.05 million. Refined garnet material sold or used was 30.4 kt valued at $10 million. For the year, the US was one of the world's leading consumers of industrial garnet. Domestic values for crude concentrates for different applications ranged from about $53 to $120/t. In the short term, excess production capacity, combined with suppliers that vary in quality, grain size and mineral type, will keep prices down.

  17. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2000-01-01

    The state of the global industrial garnet industry in 1999 is discussed. Industrial garnet mined in the U.S., which accounts for approximately one-third of the world's total, is usually a solid-solution of almandine and pyrope. The U.S. is the largest consumer of industrial garnet, using an estimated 47,800 st in 1999 as an abrasive and as a filtration medium in the petroleum industry, filtration plants, aircraft and motor vehicle manufacture, shipbuilding, wood furniture finishing operations, electronic component manufacture, ceramics manufacture, and glass production. Prices for crude concentrates ranged from approximately $50 to $110/st and refined garnet from $50 to $215/st in 1999, depending on type, source, quantity purchased, quality, and application.

  18. Growth and characterization of Bi, Pr- and Bi, Sc-substituted lutetium iron garnet films with planar magnetization for magneto-optic visualization

    NASA Astrophysics Data System (ADS)

    Syvorotka, Igor M.; Ubizskii, Sergii B.; Kucera, Miroslav; Kuhn, Marcus; Vértesy, Zofia

    2001-04-01

    The series of epitaxial garnet films of general composition Lu3-x-yBixPryFe5- zAlzO12 and Lu3-xBixFe5-y- zScyAlzO12 were grown on (111) oriented GGG (gadolinium gallium garnet) substrates by the liquid phase epitaxy. Their magnetic and magneto-optical properties were studied using both experimental techniques and modelling. All obtained films demonstrated generally a magnetic anisotropy close to the easy-plane type. The Pr-containing films exhibited large negative uniaxial anisotropy and significant cubic anisotropy. The latter causes a distortion of magnetization curves in samples magnetized in a direction normal to the film plane, especially at low temperatures. The large negative uniaxial anisotropy of Pr-substituted iron garnets allows us to increase the saturation field up to 0.5 T at liquid nitrogen temperature. The Sc-doped films displayed small positive uniaxial anisotropy that did not exceed the shape anisotropy. The magnetization curves of these films did not show any distortion due to the cubic anisotropy. The suitability of Pr- and Sc-doped garnets that meet the requirements for indicator layers for magneto-optic visualization at liquid nitrogen temperature is discussed.

  19. Influence of erbium, chromium-doped: Yttrium scandium-gallium-garnet laser etching and traditional etching systems on depth of resin penetration in enamel: A confocal laser scanning electron microscope study

    PubMed Central

    Vijayan, Vishal; Rajasigamani, K.; Karthik, K.; Maroli, Sasidharan; Chakkarayan, Jitesh; Haris, Mohamed

    2015-01-01

    Objective: This study was performed to assess the resin tag length penetration in enamel surface after bonding of brackets to identify which system was most efficient. Methodology: Our study was based on a more robust confocal microscopy for visualizing the resin tags in enamel. Totally, 100 extracted human first and second premolars have been selected for this study and were randomly divided into ten groups of 10 teeth each. In Group 1, the buccal enamel surface was etched with 37% phosphoric acid (3M ESPE), Group 2 with 37% phosphoric (Ultradent). In Groups 5, 6, and 7, erbium, chromium-doped: Yttrium scandium-gallium-garnet (Er, Cr: YSGG) laser (Biolase) was used for etching the using following specifications: Group 5 (1.5 W/20 Hz, 15 s), Group 6 (2 W/10 Hz, 15 s), and Group 7 (2 W/20 Hz, 15 s). In Groups 8, 9, and 10, Er, Cr: YSGG laser (Biolase) using same specifications and additional to this step, conventional etching on the buccal enamel surface was etched with 37% (3M ESPE) after laser etching. In Groups 1, 5, 6, 7, 8, 9, and 10 3M Unitek Transbond XT primer was mixed with Rhodamine B dye (Sigma-Aldrich, Germany) to etched surface and then cured for 20 s. In Group 2, Ultradents bonding agent was mixed with Rhodamine B. In Group 3, 3M Unitek Transbond PLUS, Monrovia, USA, which was mixed with Rhodamine B dye (Sigma-Aldrich, Germany). Group 4, with self-etching primer (Ultradent-Peak SE, USA) was mixed with Rhodamine B dye (Sigma-Aldrich, Germany). Later (3M Unitek, Transbond XT, Monrovia USA) [Figure 1] was used to bond the modified Begg brackets (T. P. Orthodontics) in Groups 1, 3, 5, 6, 7, 8, 9, and 10. In Groups 2, 4 Ultradent-Peak LC Bond was used to bond the modified brackets. After curing brackets were debonded, and enamel depth penetration was assessed using confocal laser scanning microscope. Results: Group J had a mean maximum depth of penetration of 100.876 μm, and Group D was the least having a maximum value of 44.254 μm. Conclusions: Laser

  20. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2013-01-01

    Garnet has been used as a gemstone since the Bronze Age. However, garnet’s angular fractures, relatively high hardness and specific gravity, chemical inertness and nontoxicity make it ideal for many industrial applications. It is also free of crystalline silica and can be recycled.

  1. Magneto-optical properties of yttrium iron garnet (YIG) thin films elaborated by radio frequency sputtering

    NASA Astrophysics Data System (ADS)

    Boudiar, Toufik; Payet-Gervy, Beatrice; Blanc-Mignon, Marie-Francoise; Rousseau, Jean-Jacques; Le Berre, Martine; Joisten, H.; Canut, Bruno

    2004-02-01

    Thin films of Yttrium Iron Garnet (YIG) are grown by radio frequency magnetron non reactive sputtering system. Thin films are crystallised by heat-treatment to obtain magneto-optical properties. On quartz substrate, the network of cracks observed on the annealed samples can be explained by the difference between the thermal expansion coefficient of substrate and YIG. The Faraday rotation of thin films is measured with a classical ellipsometric system based in transmission which allows us to obtained an accuracy of 0.01°. We studied the variation of Faraday rotation versus the applied magnetic field. The variation of the Faraday rotation is the same that this obtained by VSM (vibrating sample magnetometer) analysis. With a quartz substrate, maximum Faraday rotation is observed to be 1900°/cm at the wavelength of 594 nm for an annealing of 740°C. The variation of the Faraday rotation versus the wavelength is studied. The obtained values are comparable to those of the literature for the bulk material. In order to eliminate the stress due to the heat-treatment, we made some films on Gadolinium Gallium Garnet (GGG) which thermal expansion coefficient is near than the YIG one. The material crystallises with no cracks and the Faraday effect is equivalent.

  2. Induced magnetism in exfoliated graphene via proximity effect with yttrium iron garnet thin films

    NASA Astrophysics Data System (ADS)

    Amado, Mario; Li, Yang; di Bernardo, Angelo; Lombardo, Antonio; Ferrari, Andrea C.; Robinson, Jason

    The recent discovery of the quantum anomalous Hall effect (QAHE) in magnetically doped topological insulators cooled below in the milikelvin regime represents breakthrough in the field of spintronics. Theoretically, the QAHE should occur in graphene proximity coupled to a ferromagnetic insulato but with the promise of much higher operating temperatures for practical applications. Hints of proximity-induced magnetism in graphene coupled to yttrium iron garnet (YIG) films have been reported although the QAHE remains unobserved; the lack of a fully developed plateau in graphene/YIG devices can be attributed to poor interfacial coupling and therefore a dramatically reduced magnetic proximity effect. Here we report the deposition and characterisation of epitaxial thin-films of YIG on lattice-matched gadolinium gallium garnet substrates by pulsed laser deposition. Pristine exfoliated graphene flakes transferred mechanically onto the YIG are reported alongside results that correlate the effects of YIG morphology on the electronic and crystal properties of graphene by electrical (low temperature magnetoresistance measurements in Hall-bar-like configuration) and optical (Raman) means.

  3. Thermally induced transparency for short spin wave pulses in yttrium iron garnet (YIG) films

    NASA Astrophysics Data System (ADS)

    Ordonez Romero, Cesar Leonardo; Kolokoltsev, Oleg; Gomez Arista, Ivan; Qureshi, Naser; Monsiváis Galindo, Guillermo; Vargas Hernández, Hesiquio

    2014-03-01

    The compensation of spin wave propagation losses plays a very important role in the development of novel magnonic devices. Up to now, however, most of the known amplification methods present relative narrow frequency bandwidths due to their resonant nature. In this work, we present compensation of the propagation losses or pseudo-amplification of travelling spin waves by tailoring the bias magnetic field profile. The thermally-induced non-uniform profile of the magnetization introduced on an Yttrium Iron Garnet (YIG) thin film by a localized spot of a cw argon-ion laser creates the conditions to observe the complete compensation of the spin wave propagation losses. The spin wave evolution was mapped with a time and spaced resolved inductive magneto-dynamic prove system. The experiment was carried out using a uniform sample of single-crystal YIG film grown on a gallium-gadolinium garnet (GGG) substrate. The 2mm-wide, 20mm-long and 6microns-thick YIG strip was saturated with an external magnetic field enabling the set up for the propagation of magneto-static surface waves. This work was supported by the UNAM-DGAPA-PAPIIT IA100413.

  4. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2007-01-01

    World production of industrial garnet was about 326 kt in 2006, with the U.S. producing about 11 percent of this total. U.S. consumption, imports, and exports were estimated at 74.3 kt, 52.3 kt, and 13.2 kt, respectively. The most important exporters are Australia, China, and India. Although demand is expected to rise over the next 5 years, prices are expected to remain low in the short term.

  5. Nonreciprocity of spin waves in magnonic crystals created by surface acoustic waves in structures with yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Kryshtal, R. G.; Medved, A. V.

    2015-12-01

    Experimental results of investigations of nonreciprocity for surface magnetostatic spin waves (SMSW) in the magnonic crystal created by surface acoustic waves (SAW) in yttrium iron garnet films on a gallium gadolinium garnet substrate as without metallization and with aluminum films with different electrical conductivities (thicknesses) are presented. In structures without metallization, the frequency of magnonic gaps is dependent on mutual directions of propagation of the SAW and SMSW, showing nonreciprocal properties for SMSW in SAW - magnonic crystals even with the symmetrical dispersion characteristic. In metalized SAW - magnonic crystals the shift of the magnonic band gaps frequencies at the inversion of the biasing magnetic field was observed. The frequencies of magnonic band gaps as functions of SAW frequency are presented. Measured dependencies, showing the decrease of magnonic gaps frequency and the expansion of the magnonic band gap width with the decreasing of the metal film conductivity are given. Such nonreciprocal properties of the SAW - magnonic crystals are promising for signal processing in the GHz range.

  6. Thin yttrium iron garnet films grown by pulsed laser deposition: Crystal structure, static, and dynamic magnetic properties

    NASA Astrophysics Data System (ADS)

    Sokolov, N. S.; Fedorov, V. V.; Korovin, A. M.; Suturin, S. M.; Baranov, D. A.; Gastev, S. V.; Krichevtsov, B. B.; Maksimova, K. Yu.; Grunin, A. I.; Bursian, V. E.; Lutsev, L. V.; Tabuchi, M.

    2016-01-01

    Pulsed laser deposition has been used to grow thin (10-84 nm) epitaxial layers of Yttrium Iron Garnet Y3Fe5O12 (YIG) on (111)-oriented Gadolinium Gallium Garnet substrates at different growth conditions. Atomic force microscopy showed flat surface morphology both on micrometer and nanometer scales. X-ray diffraction measurements revealed that the films are coherent with the substrate in the interface plane. The interplane distance in the [111] direction was found to be by 1.2% larger than expected for YIG stoichiometric pseudomorphic film indicating presence of rhombohedral distortion in this direction. Polar Kerr effect and ferromagnetic resonance measurements showed existence of additional magnetic anisotropy, which adds to the demagnetizing field to keep magnetization vector in the film plane. The origin of the magnetic anisotropy is related to the strain in YIG films observed by XRD. Magneto-optical Kerr effect measurements revealed important role of magnetization rotation during magnetization reversal. An unusual fine structure of microwave magnetic resonance spectra has been observed in the film grown at reduced (0.5 mTorr) oxygen pressure. Surface spin wave propagation has been demonstrated in the in-plane magnetized films.

  7. Swift heavy ion-beam induced amorphization and recrystallization of yttrium iron garnet.

    PubMed

    Costantini, Jean-Marc; Miro, Sandrine; Beuneu, François; Toulemonde, Marcel

    2015-12-16

    Pure and (Ca and Si)-substituted yttrium iron garnet (Y3Fe5O12 or YIG) epitaxial layers and amorphous films on gadolinium gallium garnet (Gd3Ga5O12, or GGG) single crystal substrates were irradiated by 50 MeV (32)Si and 50 MeV (or 60 MeV) (63)Cu ions for electronic stopping powers larger than the threshold value (~4 MeV μm(-1)) for amorphous track formation in YIG crystals. Conductivity data of crystalline samples in a broad ion fluence range (10(11)-10(16) cm(-2)) are modeled with a set of rate equations corresponding to the amorphization and recrystallization induced in ion tracks by electronic excitations. The data for amorphous layers confirm that a recrystallization process takes place above ~10(14) cm(-2). Cross sections for both processes deduced from this analysis are discussed in comparison to previous determinations with reference to the inelastic thermal-spike model of track formation. Micro-Raman spectroscopy was also used to follow the related structural modifications. Raman spectra show the progressive vanishing and randomization of crystal phonon modes in relation to the ion-induced damage. For crystalline samples irradiated at high fluences (⩾10(14) cm(-2)), only two prominent broad bands remain like for amorphous films, thereby reflecting the phonon density of states of the disordered solid, regardless of samples and irradiation conditions. The main band peaked at ~660 cm(-1) is assigned to vibration modes of randomized bonds in tetrahedral (FeO4) units. PMID:26580459

  8. Magneto-optical properties of yttrium iron garnet (YIG) thin films elaborated by radio frequency sputtering

    NASA Astrophysics Data System (ADS)

    Boudiar, T.; Payet-Gervy, B.; Blanc-Mignon, M.-F.; Rousseau, J.-J.; Le Berre, M.; Joisten, H.

    2004-12-01

    Thin films of yttrium iron garnet (YIG) are grown by radio frequency magnetron non reactive sputtering system. Thin films are crystallised by heat-treatment to obtain magneto-optical properties. On quartz substrate, the network of cracks observed on the annealed samples can be explained by the difference between the thermal expansion coefficient of substrate and YIG. Physico-chemical analysis shown that the obtained material has a correct stoichiometry and is crystallised as FCC. The Faraday rotation of thin films is measured with a classical ellipsometric system based on transmission which allows us to obtained an accuracy of 0.01 ° . The variation of Faraday rotation is studied on the one hand versus radio frequency power applied to the cathode during the deposition and on the other hand versus the applied magnetic field. The results are compared with those obtained by vibrating sample magnetometer analysis in perpendicular configuration. A maximum Faraday rotation is observed to be 1900 ° / cm at the wavelength of 594 nm for a YIG thin film formed on quartz substrate and annealed at 740 ° C . The values of the Faraday rotation coefficients obtained in the study versus the wavelength are comparable to those of the literature for the bulk material. In order to eliminate the stress due to the heat-treatment, we made some films on single crystals of gadolinium gallium garnet (1 1 1) substrates for which thermal expansion coefficient is near than the YIG one. The material crystallises with no crackles and the Faraday effect is equivalent.

  9. Swift heavy ion-beam induced amorphization and recrystallization of yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Costantini, Jean-Marc; Miro, Sandrine; Beuneu, François; Toulemonde, Marcel

    2015-12-01

    Pure and (Ca and Si)-substituted yttrium iron garnet (Y3Fe5O12 or YIG) epitaxial layers and amorphous films on gadolinium gallium garnet (Gd3Ga5O12, or GGG) single crystal substrates were irradiated by 50 MeV 32Si and 50 MeV (or 60 MeV) 63Cu ions for electronic stopping powers larger than the threshold value (~4 MeV μm-1) for amorphous track formation in YIG crystals. Conductivity data of crystalline samples in a broad ion fluence range (1011-1016 cm-2) are modeled with a set of rate equations corresponding to the amorphization and recrystallization induced in ion tracks by electronic excitations. The data for amorphous layers confirm that a recrystallization process takes place above ~1014 cm-2. Cross sections for both processes deduced from this analysis are discussed in comparison to previous determinations with reference to the inelastic thermal-spike model of track formation. Micro-Raman spectroscopy was also used to follow the related structural modifications. Raman spectra show the progressive vanishing and randomization of crystal phonon modes in relation to the ion-induced damage. For crystalline samples irradiated at high fluences (⩾1014 cm-2), only two prominent broad bands remain like for amorphous films, thereby reflecting the phonon density of states of the disordered solid, regardless of samples and irradiation conditions. The main band peaked at ~660 cm-1 is assigned to vibration modes of randomized bonds in tetrahedral (FeO4) units.

  10. Band-gap and band-edge engineering of multicomponent garnet scintillators from first principles

    DOE PAGESBeta

    Yadav, Satyesh K.; Uberuaga, Blas P.; Nikl, Martin; Jiang, Chao; Stanek, Christopher R.

    2015-11-24

    Complex doping schemes in R3Al5O12 (where R is the rare-earth element) garnet compounds have recently led to pronounced improvements in scintillator performance. Specifically, by admixing lutetium and yttrium aluminate garnets with gallium and gadolinium, the band gap is altered in a manner that facilitates the removal of deleterious electron trapping associated with cation antisite defects. Here, we expand upon this initial work to systematically investigate the effect of substitutional admixing on the energy levels of band edges. Density-functional theory and hybrid density-functional theory (HDFT) are used to survey potential admixing candidates that modify either the conduction-band minimum (CBM) or valence-bandmore » maximum (VBM). We consider two sets of compositions based on Lu3B5O12 where B is Al, Ga, In, As, and Sb, and R3Al5O12, where R is Lu, Gd, Dy, and Er. We find that admixing with various R cations does not appreciably affect the band gap or band edges. In contrast, substituting Al with cations of dissimilar ionic radii has a profound impact on the band structure. We further show that certain dopants can be used to selectively modify only the CBM or the VBM. Specifically, Ga and In decrease the band gap by lowering the CBM, while As and Sb decrease the band gap by raising the VBM, the relative change in band gap is quantitatively validated by HDFT. These results demonstrate a powerful approach to quickly screen the impact of dopants on the electronic structure of scintillator compounds, identifying those dopants which alter the band edges in very specific ways to eliminate both electron and hole traps responsible for performance limitations. Furthermore, this approach should be broadly applicable for the optimization of electronic and optical performance for a wide range of compounds by tuning the VBM and CBM.« less

  11. Band-Gap and Band-Edge Engineering of Multicomponent Garnet Scintillators from First Principles

    NASA Astrophysics Data System (ADS)

    Yadav, Satyesh K.; Uberuaga, Blas P.; Nikl, Martin; Jiang, Chao; Stanek, Christopher R.

    2015-11-01

    Complex doping schemes in R3 Al5 O12 (where R is the rare-earth element) garnet compounds have recently led to pronounced improvements in scintillator performance. Specifically, by admixing lutetium and yttrium aluminate garnets with gallium and gadolinium, the band gap is altered in a manner that facilitates the removal of deleterious electron trapping associated with cation antisite defects. Here, we expand upon this initial work to systematically investigate the effect of substitutional admixing on the energy levels of band edges. Density-functional theory and hybrid density-functional theory (HDFT) are used to survey potential admixing candidates that modify either the conduction-band minimum (CBM) or valence-band maximum (VBM). We consider two sets of compositions based on Lu3 B5O12 where B is Al, Ga, In, As, and Sb, and R3Al5 O12 , where R is Lu, Gd, Dy, and Er. We find that admixing with various R cations does not appreciably affect the band gap or band edges. In contrast, substituting Al with cations of dissimilar ionic radii has a profound impact on the band structure. We further show that certain dopants can be used to selectively modify only the CBM or the VBM. Specifically, Ga and In decrease the band gap by lowering the CBM, while As and Sb decrease the band gap by raising the VBM, the relative change in band gap is quantitatively validated by HDFT. These results demonstrate a powerful approach to quickly screen the impact of dopants on the electronic structure of scintillator compounds, identifying those dopants which alter the band edges in very specific ways to eliminate both electron and hole traps responsible for performance limitations. This approach should be broadly applicable for the optimization of electronic and optical performance for a wide range of compounds by tuning the VBM and CBM.

  12. Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of 200–1770 nm

    NASA Astrophysics Data System (ADS)

    Onbasli, Mehmet C.; Beran, Lukáš; Zahradník, Martin; Kučera, Miroslav; Antoš, Roman; Mistrík, Jan; Dionne, Gerald F.; Veis, Martin; Ross, Caroline A.

    2016-03-01

    Magneto-optical cerium-substituted yttrium iron garnet (Ce:YIG) thin films display Faraday and Kerr rotation (rotation of light polarisation upon transmission and reflection, respectively) as well as a nonreciprocal phase shift due to their non-zero off-diagonal permittivity tensor elements, and also possess low optical absorption in the near-infrared. These properties make Ce:YIG useful in providing nonreciprocal light propagation in integrated photonic circuits, which is essential for accomplishing energy-efficient photonic computation and data transport architectures. In this study, 80 nm-thick Ce:YIG films were grown on Gadolinium Gallium Garnet substrates with (100), (110) and (111) orientations using pulsed laser deposition. The films had bulk-like structural and magnetic quality. Faraday and Kerr spectroscopies along with spectroscopic ellipsometry were used to deduce the complete permittivity tensor of the films in the ultraviolet, visible and near-infrared spectral region, and the magneto-optical figure of merit as a function of wavelength was determined. The samples showed the highest IR Faraday rotation reported for thin films of Ce:YIG, which indicates the importance of this material in development of nonreciprocal photonic devices.

  13. Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of 200-1770 nm.

    PubMed

    Onbasli, Mehmet C; Beran, Lukáš; Zahradník, Martin; Kučera, Miroslav; Antoš, Roman; Mistrík, Jan; Dionne, Gerald F; Veis, Martin; Ross, Caroline A

    2016-01-01

    Magneto-optical cerium-substituted yttrium iron garnet (Ce:YIG) thin films display Faraday and Kerr rotation (rotation of light polarisation upon transmission and reflection, respectively) as well as a nonreciprocal phase shift due to their non-zero off-diagonal permittivity tensor elements, and also possess low optical absorption in the near-infrared. These properties make Ce:YIG useful in providing nonreciprocal light propagation in integrated photonic circuits, which is essential for accomplishing energy-efficient photonic computation and data transport architectures. In this study, 80 nm-thick Ce:YIG films were grown on Gadolinium Gallium Garnet substrates with (100), (110) and (111) orientations using pulsed laser deposition. The films had bulk-like structural and magnetic quality. Faraday and Kerr spectroscopies along with spectroscopic ellipsometry were used to deduce the complete permittivity tensor of the films in the ultraviolet, visible and near-infrared spectral region, and the magneto-optical figure of merit as a function of wavelength was determined. The samples showed the highest IR Faraday rotation reported for thin films of Ce:YIG, which indicates the importance of this material in development of nonreciprocal photonic devices. PMID:27025269

  14. Red Shift of Faraday Rotation in Thin Films of Completely Bismuth-Substituted Iron Garnet Bi3Fe5O12

    NASA Astrophysics Data System (ADS)

    Chern, Ming-Yau; Lo, Fang-Yuh; Liu, Da-Ren; Yang, Kuang; Liaw, Juin-Sen

    1999-12-01

    The magnetooptical Faraday rotations of epitaxial films of BixY3-xFe5O12 (Bi:YIG) grown on [111]-oriented gadolinium gallium garnet (GGG) substrates by pulsed laser deposition (PLD) were studied with bismuth content x = 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0. The Faraday rotation angles, θF, of the films were measured by the method of rotating analyzer ellipsometry (RAE) with the photon energy varied from 1.5 to 3.5 eV. It was shown that in addition to the increase of the Faraday rotation with increasing x, the peaks of θF shifted toward the red region as x changed from 1.0 to 1.5. The peak positions of θF for the completely Bi-substituted iron garnet, Bi3Fe5O12 (BIG), were found at 2.4 and 2.8 eV with peak values as large as -23 deg/µm and 44 deg/µm, respectively

  15. Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of 200–1770 nm

    PubMed Central

    Onbasli, Mehmet C.; Beran, Lukáš; Zahradník, Martin; Kučera, Miroslav; Antoš, Roman; Mistrík, Jan; Dionne, Gerald F.; Veis, Martin; Ross, Caroline A.

    2016-01-01

    Magneto-optical cerium-substituted yttrium iron garnet (Ce:YIG) thin films display Faraday and Kerr rotation (rotation of light polarisation upon transmission and reflection, respectively) as well as a nonreciprocal phase shift due to their non-zero off-diagonal permittivity tensor elements, and also possess low optical absorption in the near-infrared. These properties make Ce:YIG useful in providing nonreciprocal light propagation in integrated photonic circuits, which is essential for accomplishing energy-efficient photonic computation and data transport architectures. In this study, 80 nm-thick Ce:YIG films were grown on Gadolinium Gallium Garnet substrates with (100), (110) and (111) orientations using pulsed laser deposition. The films had bulk-like structural and magnetic quality. Faraday and Kerr spectroscopies along with spectroscopic ellipsometry were used to deduce the complete permittivity tensor of the films in the ultraviolet, visible and near-infrared spectral region, and the magneto-optical figure of merit as a function of wavelength was determined. The samples showed the highest IR Faraday rotation reported for thin films of Ce:YIG, which indicates the importance of this material in development of nonreciprocal photonic devices. PMID:27025269

  16. Electrically and magnetically tunable phase shifters based on a barium strontium titanate-yttrium iron garnet layered structure

    NASA Astrophysics Data System (ADS)

    Leach, J. H.; Liu, H.; Avrutin, V.; Rowe, E.; Özgür, Ü.; Morkoç, H.; Song, Y.-Y.; Wu, M.

    2010-09-01

    We report on the tuning of permittivity and permeability of a ferroelectric/ferromagnetic bilayer structure which can be used as a microwave phase shifter with two degrees of tuning freedom. The structure was prepared by the growth of a yttrium iron garnet (YIG) layer on a gadolinium gallium garnet substrate by liquid phase epitaxy, the growth of a barium strontium titanate (BST) layer on the YIG layer through pulsed laser deposition, and then the fabrication of a coplanar waveguide on the top of BST through e-beam evaporation and trilayer liftoff techniques. The phase shifters exhibit a differential phase shift of 38°/cm at 6 GHz through permittivity tuning under an applied electric field of ˜75 kV/cm and a static magnetic field of 1700 Oe. By tuning the permeability through the applied magnetic field we increase the differential phase shift to 52°/cm and simultaneously obtain a better match to the zero applied electric field condition, resulting in an improvement in the return loss from 22.4 to 24.9 dB. Additionally, we demonstrate the use of a lead magnesium niobate-lead titanate (PMN-PT) layer to tune the permeability of the YIG layer. This tuning relies on the piezoelectric and magnetostrictive effects of PMN-PT and YIG, respectively. Tuning of the ferromagnetic response through strain and magnetostriction as opposed to applied magnetic field can potentially pave the way for low power consumption, continuously and rapidly tunable, impedance matched phase shifters.

  17. Rare-Earth Garnets and Perovskites for Space-Based ADR Cooling at High T and Low H

    NASA Technical Reports Server (NTRS)

    King, T. T.; Rowlett, B. A.; Ramirez, R. A.; Shirron, P. J.; Canavan, E. R.; DiPirro, M. J.; Panek, J. S.; Tuttle, J. G.; Shull, R. D.; Fry, R. A.; Brodeur, Stephen J. (Technical Monitor)

    2001-01-01

    Future NASA satellite detector systems must be cooled to the 0.1 K temperature range to meet the stringent energy resolution and sensitivity requirements demanded by mid-term astronomy missions. The development of adiabatic demagnetization refrigeration (ADR) materials that can efficiently cool from the passive radiative cooling limit of approx. 30 K down to sub-Kelvin under low magnetic fields (H less than or equal to 3 T) would represent a significant improvement in space-based cooling technology. Governed by these engineering goals, our efforts have focused on quantifying the change in magnetic entropy of rare-earth garnets and perovskites. Various compositions within the gadolinium gallium iron garnet solid solution series (GGIG, Gd3Ga(5-x)Fe(x)O12, 0.00 less than or equal to X less than or equal to 5.00) and gadolinium aluminum perovskite (GAP, GdAlO3) have been synthesized via an organometallic complex approach and confirmed with powder x-ray diffraction. The magnetization of the GGIG and GAP materials has been measured as a function of composition (0.00 less than or equal to X less than or equal to 5.00), temperature (2 K less than or equal to T less than or equal to 30 K) and applied magnetic field (0 T less than or equal to H less than or equal to 3 T). The magnetic entropy change (DeltaS(sub mag)) between 0 T and 3 T was determined from the magnetization data. In the GGIG system, DeltaS(sub mag) was compositionally dependent; Fe(sup 3+) additions up to X less than or equal to 2.44 increased DeltaS(sub mag) at T > 5 K. For GAP, DeltaS(sub mag) was similar to that of GGIG, X = 0.00, both in terms of magnitude and temperature dependence at T > 10 K. However, the DeltaS(sub mag) of GAP at T < 10 K was less than the endmember GGIG composition, X = 0.00, and exhibited maximum approx. 5 K.

  18. Gallium fluoroarsenates.

    PubMed

    Marshall, Kayleigh L; Armstrong, Jennifer A; Weller, Mark T

    2015-07-28

    Six new phases in the gallium-fluoride-arsenate system have been synthesised hydrofluorothermally using a fluoride-rich medium and "HAsF6" (HF : AsF5) as a reactant. RbGaF3(H2AsO4), KGaF(H2AsO4) and [piperazine-H2]2[Ga2F8(HAsO4)]·H2O have one dimensional structures, [DABCO-H2]2[Ga4F7O2H(AsO4)2]·4H2O consists of two dimensionally connected polyhedral layers, while GaF(AsO3[OH,F])2 and (NH4)3Ga4F9(AsO4)2 both have three-dimensionally connected polyhedral frameworks. PMID:26095086

  19. Gadolinium photoionization process

    DOEpatents

    Paisner, J.A.; Comaskey, B.J.; Haynam, C.A.; Eggert, J.H.

    1993-04-13

    A method is provided for selective photoionization of the odd-numbered atomic mass gadolinium isotopes 155 and 157. The selective photoionization is accomplished by circular or linear parallel polarized laser beam energy effecting a three-step photoionization pathway.

  20. Gadolinium photoionization process

    DOEpatents

    Paisner, Jeffrey A.; Comaskey, Brian J.; Haynam, Christopher A.; Eggert, Jon H.

    1993-01-01

    A method is provided for selective photoionization of the odd-numbered atomic mass gadolinium isotopes 155 and 157. The selective photoionization is accomplished by circular or linear parallel polarized laser beam energy effecting a three-step photoionization pathway.

  1. Band-gap and band-edge engineering of multicomponent garnet scintillators from first principles

    SciTech Connect

    Yadav, Satyesh K.; Uberuaga, Blas P.; Nikl, Martin; Jiang, Chao; Stanek, Christopher R.

    2015-11-24

    Complex doping schemes in R3Al5O12 (where R is the rare-earth element) garnet compounds have recently led to pronounced improvements in scintillator performance. Specifically, by admixing lutetium and yttrium aluminate garnets with gallium and gadolinium, the band gap is altered in a manner that facilitates the removal of deleterious electron trapping associated with cation antisite defects. Here, we expand upon this initial work to systematically investigate the effect of substitutional admixing on the energy levels of band edges. Density-functional theory and hybrid density-functional theory (HDFT) are used to survey potential admixing candidates that modify either the conduction-band minimum (CBM) or valence-band maximum (VBM). We consider two sets of compositions based on Lu3B5O12 where B is Al, Ga, In, As, and Sb, and R3Al5O12, where R is Lu, Gd, Dy, and Er. We find that admixing with various R cations does not appreciably affect the band gap or band edges. In contrast, substituting Al with cations of dissimilar ionic radii has a profound impact on the band structure. We further show that certain dopants can be used to selectively modify only the CBM or the VBM. Specifically, Ga and In decrease the band gap by lowering the CBM, while As and Sb decrease the band gap by raising the VBM, the relative change in band gap is quantitatively validated by HDFT. These results demonstrate a powerful approach to quickly screen the impact of dopants on the electronic structure of scintillator compounds, identifying those dopants which alter the band edges in very specific ways to eliminate both electron and hole traps responsible for performance limitations. Furthermore, this approach should be broadly applicable for the optimization of electronic and optical performance for a wide range of compounds by tuning the VBM and CBM.

  2. An Appraisal of Endmember Energy and Mixing Properties of Rare Earth Garnets

    NASA Astrophysics Data System (ADS)

    Moretti, R.; Ottonello, G.

    1998-04-01

    The thermodynamic properties of rare earth aluminum (REE 3Al 5O 12), iron (REE 3Fe 5O 12), and gallium (REE 3Ga 5O 12) garnets are assessed by means of critical evaluation of the existing experimental data and thermodynamic treatment of their vibrational, static and volumetric properties. The mixing properties of the various REE garnet components are calculated from these endmember thermodynamic data and the interionic static potential model developed earlier for major silicate garnet components. These results permit evaluation of the solubility behavior for REE in natural phases. The results suggest that the mixing of REE garnet components at trace level (i.e., below about 10 2 ppm) with major silicate garnet components is virtually ideal, but strong positive deviations, associated with generalized polyhedral distortion of the host phase at higher concentration level of the solute, prevent bulk REE solubility from exceeding a few hundreds ppm. The computed rare earth element fractionations between garnet and supercritical fluid at various P, T conditions put in evidence the main control operated by the intrinsic energy properties of REE-garnet end members in determining the light REE/heavy REE (LREE/HREE) fractionation observed in natural garnet specimens.

  3. Hydroxyl in garnets from Garnet Ridge, northern Arizona

    NASA Astrophysics Data System (ADS)

    Ogasawara, Y.; Sakamaki, K.; Koga, I.

    2012-12-01

    Various kinds of garnets and garnet-bearing rocks occur in Garnet Ridge, northern Arizona. These garnets have diverse origins such as mantle peridotite, subducted oceanic slab and crustal level metasomatic products (Koga & Ogasawara, 2012, AGU Fall Meeting Abstract). A typical garnet from Garnet Ridge, called "Navajo Ruby" is Cr-bearing pyrope-rich garnet that could be of the mantle peridotite origin, and another interesting garnet occurs in eclogite xenoliths of subducted slab origin, probably of Farallon plate origin (Usui et al., 2003). To understand the water behavior underneath the Colorado Plateau, we measured micro FT-IR spectra for several kinds of garnets from Garnet Ridge. The samples for micro FT-IR analyses are thick sections (50 - 500 micrometer in thickness). The size of analyzed areas is 50 x 50 μm square. We detected significant amounts of OH in "Navajo Ruby" garnets and in other types of garnets; however, OH in the garnet in eclogite xenolith was negligible or below detection limit. The peridotitic garnets (up to 2 cm across) look purplish to red brownish and are rich in pyrope component (up to 78 mol%) with significant amounts of Cr2O3 (up to 5.9 wt%) without chemical zonation. The inclusions of olivine, clinopyroxene, orthopyroxene and apatite were confirmed by laser Raman spectroscopy. The representative FT-IR absorption spectra of this type garnet are: 1) grain A (Pyp52 Alm29 Sps1 Grs14 And2 Uv2) shows two very strong IR absorption bands by OH centered at 3575 and 3660 cm-1, 2) grain B (Pyp63 Alm14 Sps0 Grs12 And1 Uv10) shows a very strong IR absorption at 3575 cm-1, and 3) grain C (Pyp62 Alm20 Sps1 Grs12 And0 Uv5) did not show IR absorption by OH. No heterogeneity of IR absorption by OH was detected in a single grain. The garnets in eclogite xenolith show clear prograde chemical zonation; core (Pyp6 Alm54 Sps1 Grs34 And5 Uv0) to rim (Pyp21 Alm64 Sps2 Grs15 And1 Uv0). The well developed rim of this garnet has no IR absorption band by OH

  4. Temperature dependence of the 1.06-mum stimulated emission cross section of neodymium in YAG and in GSGG

    NASA Astrophysics Data System (ADS)

    Rapaport, Alexandra; Zhao, Shengzhi; Xiao, Guohua; Howard, Andrew; Bass, Michael

    2002-11-01

    A linear temperature dependence between -70 degC and +70 degC is reported for the peak stimulated emission cross section of Nd3+ ions in both yttrium aluminum garnet (YAG) and gadolinium scandium gallium garnet (GSGG).

  5. Temperature dependence of the 1.06-microm stimulated emission cross section of neodymium in YAG and in GSGG.

    PubMed

    Rapaport, Alexandra; Zhao, Shengzhi; Xiao, Guohua; Howard, Andrew; Bass, Michael

    2002-11-20

    A linear temperature dependence between -70 degrees C and +70 degrees C is reported for the peak stimulated emission cross section of Nd3+ ions in both yttrium aluminum garnet (YAG) and gadolinium scandium gallium garnet (GSGG). PMID:12463252

  6. Mineral of the month: garnet

    USGS Publications Warehouse

    Olson, Donald

    2005-01-01

    Garnet is the general name given to a group of complex silicate minerals, all with isometric crystal structure, similar properties and chemical compositions. Garnet occurs in every color of the spectrum except blue, but it is most commonly red, purple, brown and green. Garnet necklaces dating from the Bronze Age have been found in graves and also among the ornaments adorning the oldest Egyptian mummies.

  7. Investigations in gallium removal

    SciTech Connect

    Philip, C.V.; Pitt, W.W.; Beard, C.A.

    1997-11-01

    Gallium present in weapons plutonium must be removed before it can be used for the production of mixed-oxide (MOX) nuclear reactor fuel. The main goal of the preliminary studies conducted at Texas A and M University was to assist in the development of a thermal process to remove gallium from a gallium oxide/plutonium oxide matrix. This effort is being conducted in close consultation with the Los Alamos National Laboratory (LANL) personnel involved in the development of this process for the US Department of Energy (DOE). Simple experiments were performed on gallium oxide, and cerium-oxide/gallium-oxide mixtures, heated to temperatures ranging from 700--900 C in a reducing environment, and a method for collecting the gallium vapors under these conditions was demonstrated.

  8. Gallium nitride optoelectronic devices

    NASA Technical Reports Server (NTRS)

    Chu, T. L.; Chu, S. S.

    1972-01-01

    The growth of bulk gallium nitride crystals was achieved by the ammonolysis of gallium monochloride. Gallium nitride single crystals up to 2.5 x 0.5 cm in size were produced. The crystals are suitable as substrates for the epitaxial growth of gallium nitride. The epitaxial growth of gallium nitride on sapphire substrates with main faces of (0001) and (1T02) orientations was achieved by the ammonolysis of gallium monochloride in a gas flow system. The grown layers had electron concentrations in the range of 1 to 3 x 10 to the 19th power/cu cm and Hall mobilities in the range of 50 to 100 sq cm/v/sec at room temperature.

  9. Gadolinium-Induced Fibrosis.

    PubMed

    Todd, Derrick J; Kay, Jonathan

    2016-01-01

    Gadolinium-based contrast agents (GBCAs), once believed to be safe for patients with renal disease, have been strongly associated with nephrogenic systemic fibrosis (NSF), a severe systemic fibrosing disorder that predominantly afflicts individuals with advanced renal dysfunction. We provide a historical perspective on the appearance and disappearance of NSF, including its initial recognition as a discrete clinical entity, its association with GBCA exposure, and the data supporting a causative relationship between GBCA exposure and NSF. On the basis of this body of evidence, we propose that the name gadolinium-induced fibrosis (GIF) more accurately reflects the totality of knowledge regarding this disease. Use of high-risk GBCAs, such as formulated gadodiamide, should be avoided in patients with renal disease. Restriction of GBCA use in this population has almost completely eradicated new cases of this debilitating condition. Emerging antifibrotic therapies may be useful for patients who suffer from GIF. PMID:26768242

  10. A primer on gadolinium chemistry

    PubMed Central

    Sherry, A. Dean; Caravan, Peter; Lenkinski, Robert E.

    2010-01-01

    Gadolinium is widely known by all practitioners of MRI but few appreciate the basic solution chemistry of this trivalent lanthanide ion. Given the recent linkage between gadolinium contrast agents and nephrogenic systemic fibrosis, some basic chemistry of this ion must be more widely understood. This short primer on gadolinium chemistry is intended to provide the reader the background principles necessary to understand the basics of chelation chemistry, water hydration numbers, and the differences between thermodynamic stability and kinetic stability or inertness. We illustrate the fundamental importance of kinetic dissociation rates in determining gadolinium toxicity in vivo by presenting new data for a novel europium DOTA-tetraamide complex that is relatively unstable thermodynamically yet extraordinarily inert kinetically and also quite non-toxic. This, plus other literature evidence forms the basis of the fundamental axiom that it is the kinetic stability of a gadolinium complex, not its thermodynamic stability, that determines its in vivo toxicity. PMID:19938036

  11. Lung gallium scan

    MedlinePlus

    ... inflammation in the lungs, most often due to sarcoidosis or a certain type of pneumonia. Normal Results ... up very little gallium. What Abnormal Results Mean Sarcoidosis Other respiratory infections, most often pneumocystis jirovecii pneumonia ...

  12. Preventing Supercooling Of Gallium

    NASA Technical Reports Server (NTRS)

    Massucco, Arthur A.; Wenghoefer, Hans M.; Wilkins, Ronnie

    1994-01-01

    Principle of heterogeneous nucleation exploited to prevent gallium from supercooling, enabling its use as heat-storage material that crystallizes reproducibly at its freezing or melting temperature of 29 to 30 degrees C. In original intended application, gallium used as heat-storage material in gloves of space suits. Terrestrial application lies in preparation of freezing-temperature reference samples for laboratories. Principle of heterogeneous nucleation also exploited similarly in heat pipes filled with sodium.

  13. Electrodeposition of gallium for photovoltaics

    DOEpatents

    Bhattacharya, Raghu N.

    2016-08-09

    An electroplating solution and method for producing an electroplating solution containing a gallium salt, an ionic compound and a solvent that results in a gallium thin film that can be deposited on a substrate.

  14. Crystal Chemistry of Melanite Garnet

    NASA Technical Reports Server (NTRS)

    Nguyen, Dawn Marie

    1999-01-01

    This original project resulted in a detailed crystal chemical data map of a titanium rich garnet (melanite) suite that originates from the Crowsnest Volcanics of Alberta Canada. Garnet is typically present during the partial melting of the earth's mantle to produce basalt. Prior studies conducted at Youngstown State University have yielded questions as to the crystal structure of the melanite. In the Studies conducted at Youngstown State University, through the use of single crystal x-ray diffraction, the c-axis appears to be distorted creating a tetragonal crystal instead of the typical cubic crystal of garnets. The micro probe was used on the same suite of titanium rich garnets as used in the single crystal x-ray diffraction. The combination of the single crystal x-ray research and the detailed microprobe research will allow us to determine the exact crystal chemical structure of the melanite garnet. The crystal chemical data was gathered through the utilization of the SX100 Electron Probe Micro Analyzer. Determination of the exact chemical nature may prove useful in modeling the ultramafic source rock responsible for the formation of the titanium rich lunar basalts.

  15. Laserspektroskopie Gadoliniums Fingerabdruck

    SciTech Connect

    Blaum, Klaus; Bushaw, Bruce A.; Nortershauser, Wilfried

    2003-05-31

    The minimum energy that is required to remove the first electron from e neutral atom, one call ionization energy E1. It is not only for every element of the periodic table but also even for every nuclide characteristic and therefore belongs to the most basic atomic properties. The ionization energy is important for the determination of a ‘row’ of properties, from the chemical reactivity to the color light absorbed and emitted from an atom. The value of E1 depends on the stationary state that the farthest electron originally occupies. If the electron finds itself, however, in the first excited stat, only 3.4 eV is required. Previously the ionization energy could be determined with high accuracy in the range of 10-8 by means of laser spectroscopy only for atoms with one or two valence electrons, whereby the most accurate to date result from measurements on Hydrogen. We could now, for the first time in a rare earth element, reach that kind of accuracy. Motivation for these investigations was the development of an analysis method for the ultra-trace detection of Gadolinium in tissue- and meteorite samples.

  16. Garnet Random-Access Memory

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.

    1995-01-01

    Random-access memory (RAM) devices of proposed type exploit magneto-optical properties of magnetic garnets exhibiting perpendicular anisotropy. Magnetic writing and optical readout used. Provides nonvolatile storage and resists damage by ionizing radiation. Because of basic architecture and pinout requirements, most likely useful as small-capacity memory devices.

  17. Chapter L: U.S. Industrial Garnet

    USGS Publications Warehouse

    Evans, James G.; Moyle, Phillip R.

    2006-01-01

    The United States presently consumes about 16 percent of global production of industrial garnet for use in abrasive airblasting, abrasive coatings, filtration media, waterjet cutting, and grinding. As of 2005, domestic garnet production has decreased from a high of 74,000 t in 1998, and imports have increased to the extent that as much as 60 percent of the garnet used in the United States in 2003 was imported, mainly from India, China, and Australia; Canada joined the list of suppliers in 2005. The principal type of garnet used is almandite (almandine), because of its specific gravity and hardness; andradite is also extensively used, although it is not as hard or dense as almandite. Most industrial-grade garnet is obtained from gneiss, amphibolite, schist, skarn, and igneous rocks and from alluvium derived from weathering and erosion of these rocks. Garnet mines and occurrences are located in 21 States, but the only presently active (2006) mines are in northern Idaho (garnet placers; one mine), southeastern Montana (garnet placers; one mine), and eastern New York (unweathered bedrock; two mines). In Idaho, garnet is mined from Tertiary and (or) Quaternary sedimentary deposits adjacent to garnetiferous metapelites that are correlated with the Wallace Formation of the Proterozoic Belt Supergroup. In New York, garnet is mined from crystalline rocks of the Adirondack Mountains that are part of the Proterozoic Grenville province, and from the southern Taconic Range that is part of the northern Appalachian Mountains. In Montana, sources of garnet in placers include amphibolite, mica schist, and gneiss of Archean age and younger granite. Two mines that were active in the recent past in southwestern Montana produced garnet from gold dredge tailings and saprolite. In this report, we review the history of garnet mining and production and describe some garnet occurrences in most of the Eastern States along the Appalachian Mountains and in some of the Western States where

  18. Gallium-containing anticancer compounds

    PubMed Central

    Chitambar, Christopher R

    2013-01-01

    There is an ever pressing need to develop new drugs for the treatment of cancer. Gallium nitrate, a group IIIa metal salt, inhibits the proliferation of tumor cells in vitro and in vivo and has shown activity against non-Hodgkin’s lymphoma and bladder cancer in clinical trials. Gallium can function as an iron mimetic and perturb iron-dependent proliferation and other iron-related processes in tumor cells. Gallium nitrate lacks cross resistance with conventional chemotherapeutic drugs and is not myelosuppressive; it can be used when other drugs have failed or when the blood count is low. Given the therapeutic potential of gallium, newer generations of gallium compounds are now in various phases of preclinical and clinical development. These compounds hold the promise of greater anti-tumor activity against a broader spectrum of cancers. The development of gallium compounds for cancer treatment and their mechanisms of action will be discussed. PMID:22800370

  19. Thermodynamic properties of gadolinium disilicide

    SciTech Connect

    Lukashenko, G.M.; Polotskaya, R.I.

    1986-11-01

    The authors determine the Gibbs energy, enthalpy, formation heat, and other thermodynamic properties of gadolinium disilicide by measuring the electromotive force in the 830-960 K temperature range in electrolytes consisting of molten tin and various chlorides. The relationship of these properties to crystal structure is briefly discussed.

  20. Gallium interactions with Zircaloy

    SciTech Connect

    Woods, A.L.; West, M.K.

    1999-01-01

    This study focuses on the effects of gallium ion implantation into zircaloy cladding material to investigate the effects that gallium may have in a reactor. High fluence ion implantation of Ga ions was conducted on heated Zircaloy-4 in the range of 10{sup 16}--10{sup 18} Ga ions/cm2. Surface effects were studied using SEM and electron microprobe analysis. The depth profile of Ga in the Zircaloy was characterized with Rutherford backscattering and SIMS techniques. Results indicate that the Zirc-4 is little affected up to a fluence of 10{sup 17} Ga ions/cm{sup 2}. After implantation of 10{sup 18} Ga ions/cm{sup 2}, sub-grain features on the order of 2 {micro}m were observed which may be due to intermetallic compound formation between Ga and Zr. For the highest fluence implant, Ga content in the Zirc-4 reached a saturation value of between 30 and 40 atomic %; significant enhanced diffusion was observed but gallium was not seen to concentrate at grain boundaries.

  1. Gallium--A smart metal

    USGS Publications Warehouse

    Foley, Nora; Jaskula, Brian

    2013-01-01

    Gallium is a soft, silvery metallic element with an atomic number of 31 and the chemical symbol Ga. The French chemist Paul-Emile Lecoq de Boisbaudran discovered gallium in sphalerite (a zinc-sulfide mineral) in 1875 using spectroscopy. He named the element "gallia" after his native land of France (formerly Gaul; in Latin, Gallia). The existence of gallium had been predicted in 1871 by Dmitri Mendeleev, the Russian chemist who published the first periodic table of the elements. Mendeleev noted a gap in his table and named the missing element "eka-aluminum" because he determined that its location was one place away from aluminum in the table. Mendeleev thought that the missing element (gallium) would be very much like aluminum in its chemical properties, and he was right. Solid gallium has a low melting temperature (~29 degrees Celsius, or °C) and an unusually high boiling point (~2,204 °C). Because of these properties, the earliest uses of gallium were in high-temperature thermometers and in designing metal alloys that melt easily. The development of a gallium-based direct band-gap semiconductor in the 1960s led to what is now one of the most well-known applications for gallium-based products--the manufacture of smartphones and data-centric networks.

  2. Garnet Porphyroblastesis: Growing Inward or Outward?

    NASA Astrophysics Data System (ADS)

    Cho, M.; Kim, Y.

    2008-12-01

    The microstructure, composition and crystallographic orientation of a garnet porphyroblast in the garnet-zone schist, Imjingang belt, Korea, were investigated in order to delineate chemical and microstructural processes during the crystallization. This garnet hypidioblast is ~1 mm in size, and consists of relatively inclusion- poor core and inclusion-rich rim. The inclusion minerals, mainly composed of quartz together with minor ilmenite and clinozoisite, are distributed in complex patterns. In general, inclusion trails are discontinuous in the core region of garnet, but apparently curved to wrap around the core. The presence of TiO2 needles in the core part suggests that garnet replaced a Ti-bearing precursor such as biotite. Compositional zoning profile of the garnet porphyroblast is characterized by bimodal distribution of the spessartine component: e.g., Mn-poor core and rim bounded by Mn-rich intermediate part. The zoning pattern of grossular varies in an antithetic fashion to that of spessartine. These microstructural and compositional features are different from those of the majority of other garnet porphyroblasts in metapelites, including: (1) relatively inclusion-rich core of syn-kinematic garnet growing mainly at the expense of chlorite; (2) post- kinematic garnet overgrowth replacing the biotite porphyroblast; and (3) monotonous decrease in the spessartine content towards the rim. Electron back-scattered diffraction analyses of garnet reveal multiple, intracrystalline domains, less than 200 μm in size. These domains show small angular differences (1°-2°) in orientation across narrow boundaries, and are common in the Mn-rich intermediate part of garnet. However, they are absent in the Mn-poor core region. The lack of compositional anomalies and nearly identical crystallographic orientations in the intracrystalline domains suggest an absence of multiple nuclei, but the implications for this crystallographic feature are uncertain. All the above

  3. Tumor growth suppression by gadolinium-neutron capture therapy using gadolinium-entrapped liposome as gadolinium delivery agent.

    PubMed

    Dewi, Novriana; Yanagie, Hironobu; Zhu, Haito; Demachi, Kazuyuki; Shinohara, Atsuko; Yokoyama, Kazuhito; Sekino, Masaki; Sakurai, Yuriko; Morishita, Yasuyuki; Iyomoto, Naoko; Nagasaki, Takeshi; Horiguchi, Yukichi; Nagasaki, Yukio; Nakajima, Jun; Ono, Minoru; Kakimi, Kazuhiro; Takahashi, Hiroyuki

    2013-07-01

    Neutron capture therapy (NCT) is a promising non-invasive cancer therapy approach and some recent NCT research has focused on using compounds containing gadolinium as an alternative to currently used boron-10 considering several advantages that gadolinium offers compared to those of boron. In this study, we evaluated gadolinium-entrapped liposome compound as neutron capture therapy agent by in vivo experiment on colon-26 tumor-bearing mice. Gadolinium compound were injected intravenously via tail vein and allowed to accumulate into tumor site. Tumor samples were taken for quantitative analysis by ICP-MS at 2, 12, and 24 h after gadolinium compound injection. Highest gadolinium concentration was observed at about 2 h after gadolinium compound injection with an average of 40.3 μg/g of wet tumor tissue. We performed neutron irradiation at JRR-4 reactor facility of Japan Atomic Energy Research Institute in Tokaimura with average neutron fluence of 2×10¹² n/cm². The experimental results showed that the tumor growth suppression of gadolinium-injected irradiated group was revealed until about four times higher compared to the control group, and no significant weight loss were observed after treatment suggesting low systemic toxicity of this compound. The gadolinium-entrapped liposome will become one of the candidates for Gd delivery system on NCT. PMID:23743325

  4. Gallium phosphide energy converters

    NASA Technical Reports Server (NTRS)

    Sims, P. E.; DiNetta, Louis C.; DuganCavanagh, K.; Goetz, M. A.

    1996-01-01

    Betavoltaic power supplies based on gallium phosphide can supply long term low-level power with high reliability. Results are presented for GaP devices powered by Ni-63 and tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/cm(exp 2) have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. A small demonstration system has been assembled that generates and stores enough electricity to light up an LED.

  5. Gallium nitride nanotube lasers

    SciTech Connect

    Li, Changyi; Liu, Sheng; Hurtado, Antonio; Wright, Jeremy Benjamin; Xu, Huiwen; Luk, Ting Shan; Figiel, Jeffrey J.; Brener, Igal; Brueck, Steven R. J.; Wang, George T.

    2015-01-01

    Lasing is demonstrated from gallium nitride nanotubes fabricated using a two-step top-down technique. By optically pumping, we observed characteristics of lasing: a clear threshold, a narrow spectral, and guided emission from the nanotubes. In addition, annular lasing emission from the GaN nanotube is also observed, indicating that cross-sectional shape control can be employed to manipulate the properties of nanolasers. The nanotube lasers could be of interest for optical nanofluidic applications or application benefitting from a hollow beam shape.

  6. Gallium Arsenide Domino Circuit

    NASA Technical Reports Server (NTRS)

    Yang, Long; Long, Stephen I.

    1990-01-01

    Advantages include reduced power and high speed. Experimental gallium arsenide field-effect-transistor (FET) domino circuit replicated in large numbers for use in dynamic-logic systems. Name of circuit denotes mode of operation, which logic signals propagate from each stage to next when successive stages operated at slightly staggered clock cycles, in manner reminiscent of dominoes falling in a row. Building block of domino circuit includes input, inverter, and level-shifting substages. Combinational logic executed in input substage. During low half of clock cycle, result of logic operation transmitted to following stage.

  7. Electrospun Gallium Nitride Nanofibers

    SciTech Connect

    Melendez, Anamaris; Morales, Kristle; Ramos, Idalia; Campo, Eva; Santiago, Jorge J.

    2009-04-19

    The high thermal conductivity and wide bandgap of gallium nitride (GaN) are desirable characteristics in optoelectronics and sensing applications. In comparison to thin films and powders, in the nanofiber morphology the sensitivity of GaN is expected to increase as the exposed area (proportional to the length) increases. In this work we present electrospinning as a novel technique in the fabrication of GaN nanofibers. Electrospinning, invented in the 1930s, is a simple, inexpensive, and rapid technique to produce microscopically long ultrafine fibers. GaN nanofibers are produced using gallium nitrate and dimethyl-acetamide as precursors. After electrospinning, thermal decomposition under an inert atmosphere is used to pyrolyze the polymer. To complete the preparation, the nanofibers are sintered in a tube furnace under a NH{sub 3} flow. Both scanning electron microscopy and profilometry show that the process produces continuous and uniform fibers with diameters ranging from 20 to a few hundred nanometers, and lengths of up to a few centimeters. X-ray diffraction (XRD) analysis shows the development of GaN nanofibers with hexagonal wurtzite structure. Future work includes additional characterization using transmission electron microscopy and XRD to understand the role of precursors and nitridation in nanofiber synthesis, and the use of single nanofibers for the construction of optical and gas sensing devices.

  8. Chemical properties of Garnets from Garnet Ridge, Navajo volcanic field in the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Koga, I.; Ogasawara, Y.

    2012-12-01

    Significant amounts of garnet crystals have derived from kimberlitic diatremes at Garnet Ridge in northern Arizona. These garnets are chemically diverse and their origins have been still controversial. The diatremes at Garnet Ridge were dated at 30Ma (Smith et al., 2004). Coesite-bearing lawsonite eclogite reported by Usui et al., (2003) is important evidence for subduction of the Fallaron Plate below the Colorado plateau. This study characterized various kinds of garnets with several origins by petrographical observations and electron microprobe analyses (JXA-8900 WDS mode and JXA-733 EDS mode). On the basis of the chemical compositions and other features, the garnets were classified into the following 8 groups (A to H). Inclusions and exsolved phases were identified by laser Raman spectroscopy. (A) Garnet crystals (5-8 mm) with purple color are called ''Navajo Ruby''. A significant amount of Cr2O3 is a typical feature (up to ~5.9 wt. %). These garnet were rich in pyrope (66-78 mol. %). Olivine, Cpx, and exsolved lamellae of rutile were contained. (B) Reddish brown garnets were Pyp-rich (60-75 mol. %), and contained a minor amount of Cr2O3 (less than ~1 wt. %). The inclusions were rod-shaped rutile , Cpx, Opx, zircon, olivine and exsolved lamellae of apatite. (C) Garnet megacrysts (8-12 cm) were plotted near the center of Prp-Alm-Grs triangle (Pyp30-35 Alm28-33 Grs29-35). Exsolved apatite lamellae were confirmed. (D) Some of reddish brown garnets were plotted on same area as the Type-C. (E) Garnets in eclogite have Alm-rich composition (Pyp6-22 Alm52-65 Grs16-42). They clearly showed prograde chemical zonation; MgO: 1.4 to 5.4 wt. %, CaO: 14.0 to 5.6 wt. % both from core to rim. (F) Garnets in altered or metasomatized eclogite had a wide range of chemical composition (Pyp7-38 Alm52-69 Grs4-31) with similar prograde zonation. The cores were plotted near the rim of Type-E garnet. (G) Garnets in unidentified rock (strongly altered) had Alm-rich composition near Alm

  9. GADOLINIUM SOLUBILITY AND VOLATILITY DURING DWPF PROCESSING

    SciTech Connect

    Reboul, S

    2008-01-30

    Understanding of gadolinium behavior, as it relates to potential neutron poisoning applications at the DWPF, has increased over the past several years as process specific data have been generated. Of primary importance are phenomena related to gadolinium solubility and volatility, which introduce the potential for gadolinium to be separated from fissile materials during Chemical Process Cell (CPC) and Melter operations. Existing data indicate that gadolinium solubilities under moderately low pH conditions can vary over several orders of magnitude, depending on the quantities of other constituents that are present. With respect to sludge batching processes, the gadolinium solubility appears to be highly affected by iron. In cases where the mass ratio of Fe:Gd is 300 or more, the gadolinium solubility has been observed to be low, one milligram per liter or less. In contrast, when the ratio of Fe:Gd is 20 or less, the gadolinium solubility has been found to be relatively high, several thousands of milligrams per liter. For gadolinium to serve as an effective neutron poison in CPC operations, the solubility needs to be limited to approximately 100 mg/L. Unfortunately, the Fe:Gd ratio that corresponds to this solubility limit has not been identified. Existing data suggest gadolinium and plutonium are not volatile during melter operations. However, the data are subject to inherent uncertainties preventing definitive conclusions on this matter. In order to determine if gadolinium offers a practical means of poisoning waste in DWPF operations, generation of additional data is recommended. This includes: Gd solubility testing under conditions where the Fe:Gd ratio varies from 50 to 150; and Gd and Pu volatility studies tailored to quantifying high temperature partitioning. Additional tests focusing on crystal aging of Gd/Pu precipitates should be pursued if receipt of gadolinium-poisoned waste into the Tank Farm becomes routine.

  10. Magnetic and electronic properties of nanocrystalline Gd{sub 3}Fe{sub 5}O{sub 12} garnet

    SciTech Connect

    Lassri, H.; Hlil, E.K.; Prasad, S.; Krishnan, R.

    2011-12-15

    The Gd{sub 3}Fe{sub 5}O{sub 12} nanocrystalline Gadolinium Iron Garnet (GdIG) obtained from a sintered block was milled in a high energy ball mill. We measured the magnetization at 5 K under applied fields up to 12 T. We report here our study of approach to saturation magnetization. The results have been interpreted within the framework of random anisotropy model. From an analysis of the approach to saturation magnetization some fundamental parameters have been extracted. We have determined the anisotropy field H{sub r} and the local magnetic anisotropy constant K{sub L}. In addition, first-principles spin-density functional calculations, using the Full potential Linear Augmented Plane Waves (FLAPW) method are performed to investigate electronic and magnetic structures. All computed parameters are discussed and compared to available experimental data. - Graphical abstract: Random anisotropy fields, random anisotropy constant, substantial interstitial magnetism as well as magnetic quadrupolar feature on oxygen are determined from magnetization, theoretical random magnetic anisotropy model and FLAPW calculations in nanocrystalline Gadolinium Iron Garnet (GdIG). Highlights: Black-Right-Pointing-Pointer Nanocrystalline Gadolinium Iron Garnet (GdIG) prepared by a high energy ball mill. Black-Right-Pointing-Pointer Random magnetic anisotropy model developed for amorphous is used for Nanocrystalline GdIG. Black-Right-Pointing-Pointer Random anisotropy fields and random anisotropy constant are determined. Black-Right-Pointing-Pointer FLAPW calculations performed to investigate both magnetic and electronic structures. Black-Right-Pointing-Pointer Substantial interstitial magnetism and magnetic quadrupolar feature on oxygen are revealed.

  11. Raman spectroscopy of garnet-group minerals

    USGS Publications Warehouse

    Mingsheng, P.; Mao, Ho-kwang; Dien, L.; Chao, E.C.T.

    1994-01-01

    The Raman spectra of the natural end members of the garnet-group minerals, which include pyrope, almandine and spessarite of Fe-Al garnet series and grossularite, andradite and uvarovite of Ca-Fe garnet series, have been studied. Measured Raman spectra of these minerals are reasonably and qualitatively assigned to the internal modes, translational and rotatory modes of SiO4 tetrahedra, as well as the translational motion of bivalent cations in the X site. The stretch and rotatory Alg modes for the Fe-Al garnet series show obvious Raman shifts as compared with those for the Ca-Fe garnet series, owing to the cations residing in the X site connected with SiO4 tetrahedra by sharing the two edges. The Raman shifts of all members within either of the series are attributed mainly to the properties of cations in the X site for the Fe-Al garnet series and in the Y site for the Ca-Fe garnet series. ?? 1994 Institute of Geochemistry, Chinese Academy of Sciences.

  12. Rare Earth Garnet Selective Emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional

  13. Metals Fact Sheet: Gadolinium GD

    SciTech Connect

    1992-10-01

    Gadolinium is a silvery-white, malleable, ductile metallic element used to improve the high-temperature characteristics of iron, chromium, and related metallic alloys. It was named after the French chemist, Gadolin, discoverer of yttrium. This article discusses sources of the element, the world supply and demand, and also a number of applications. With the largest thermal neutron absorption cross section of any element, one of these applications is as a burnable poison in reactors and as neutron absorbers in other nuclear devices.

  14. Gallium Safety in the Laboratory

    SciTech Connect

    Cadwallader, L.C.

    2003-05-07

    A university laboratory experiment for the US Department of Energy magnetic fusion research program required a simulant for liquid lithium. The simulant choices were narrowed to liquid gallium and galinstan (Ga-In-Sn) alloy. Safety information on liquid gallium and galinstan were compiled, and the choice was made to use galinstan. A laboratory safety walkthrough was performed in the fall of 2002 to support the galinstan experiment. The experiment has been operating successfully since early 2002.

  15. Gallium Safety in the Laboratory

    SciTech Connect

    Lee C. Cadwallader

    2003-06-01

    A university laboratory experiment for the US Department of Energy magnetic fusion research program required a simulant for liquid lithium. The simulant choices were narrowed to liquid gallium and galinstan (Ga-In-Sn) alloy. Safety information on liquid gallium and galinstan were compiled, and the choice was made to use galinstan. A laboratory safety walkthrough was performed in the fall of 2002 to support the galinstan experiment. The experiment has been operating successfully since early 2002.

  16. Limit on the electron electric dipole moment in gadolinium-iron garnet.

    PubMed

    Heidenreich, B J; Elliott, O T; Charney, N D; Virgien, K A; Bridges, A W; McKeon, M A; Peck, S K; Krause, D; Gordon, J E; Hunter, L R; Lamoreaux, S K

    2005-12-16

    A new method for the detection of the electron electric dipole moment (EDM) using a solid is described. The method involves the measurement of a voltage induced across the solid by the alignment of the sample's magnetic dipoles in an applied magnetic field, H. A first application of the method to GdIG has resulted in a limit on the electron EDM of 5 x 10(-24)e cm, which is a factor of 40 below the limit obtained from the only previous solid-state EDM experiment. The result is limited by the imperfect discrimination of an unexpectedly large voltage that is even upon the reversal of the sample magnetization. PMID:16384457

  17. Limit on the Electron Electric Dipole Moment in Gadolinium-Iron Garnet

    SciTech Connect

    Heidenreich, B.J.; Elliott, O.T.; Charney, N.D.; Virgien, K.A.; Bridges, A.W.; McKeon, M.A.; Peck, S.K.; Krause, D. Jr.; Gordon, J.E.; Hunter, L.R.; Lamoreaux, S.K.

    2005-12-16

    A new method for the detection of the electron electric dipole moment (EDM) using a solid is described. The method involves the measurement of a voltage induced across the solid by the alignment of the sample's magnetic dipoles in an applied magnetic field, H. A first application of the method to GdIG has resulted in a limit on the electron EDM of 5x10{sup -24}e cm, which is a factor of 40 below the limit obtained from the only previous solid-state EDM experiment. The result is limited by the imperfect discrimination of an unexpectedly large voltage that is even upon the reversal of the sample magnetization.

  18. Intercomparison of garnet barometers and implications for garnet mixing models

    SciTech Connect

    Anovitz, L.M.; Essene, E.J.

    1985-01-01

    Several well-calibrated barometers are available in the system Ca-Fe-Ti-Al-Si-O, including: Alm+3Ru-3Ilm+Sil+2Qtz (GRAIL), 2Alm+Grreverse arrow6Ru=6Ilm+3An+3Qtz (GRIPS); 2Alm+Gr=3Fa+3An (FAG); 3AnGr+Ky+Qtz (GASP); 2Fs-Fa+Qtz (FFQ); and Gr+Qtz=An+2Wo (WAGS). GRIPS, GRAIL and GASP form a linearly dependent set such that any two should yield the third given an a/X model for the grossular/almandine solid-solution. Application to barometry of garnet granulite assemblages from the Grenville in Ontario yields average pressures 0.1 kb lower for GRIPS and 0.4 kb higher for FAGS using our mixing model. Results from Parry Island, Ontario, yield 8.7 kb from GRAIL as opposed to 9.1 kb using Ganguly and Saxena's model. For GASP, Parry Island assemblages yield 8.4 kb with the authors calibration. Ganguly and Saxena's model gives 5.4 kb using Gasparik's reversals and 8.1 kb using the position of GASP calculated from GRIPS and GRAIL. These corrections allow GRIPS, GRAIL, GASP and FAGS to yield consistent pressures to +/- 0.5 kb in regional metamorphic terranes. Application of their mixing model outside of the fitted range 700-1000 K is not encouraged as extrapolation may yield erroneous results.

  19. Toxicity of Gadolinium to Some Aquatic Microbes

    SciTech Connect

    Wilde, E.W.

    2001-01-24

    The toxicity of gadolinium to algae and bacteria was determined as part of an effort to develop a biological process to purify drums containing spent nuclear reactor heavy water moderator (D2O). This water was contaminated with high concentrations of gadolinium nitrate, a chemical used as a neutron poison during former nuclear reactor operations at the Savannah River Site (SRS) near Aiken, SC. Nuclear reactors were operated for approximately 30 years at the SRS to produce nuclear weapons materials for national defense. Throughout this period, a heavy water solution of gadolinium nitrate was utilized in a standby emergency shutdown system that could inject this chemical into the reactor moderator coolant water. The chemical was used for this purpose because the high neutron absorption cross sections of some gadolinium isotopes make gadolinium salts such as GdNO3 effective in controlling nuclear activity in aqueous systems (Gilbert et al. 1985; Rodenas et al. 1990). The use of this practice resulted in a large inventory of this degraded heavy water containing gadolinium nitrate. Microbiological and chemical studies were initiated to evaluate the potential use of bacteria and algae for water purification of the drums. Since metals are often toxic to microbes when present at concentrations substantially higher than natural environmental levels, it was hypothesized that Gd may be toxic to selected microorganisms (algae and bacteria) at the very high concentrations (average 80,000 mg/L, maximum 259,000 mg/L) present in most of the drums. Two principal components of the study included: (1) chemical and microbiological characterization of representative drums, and (2) an evaluation of the toxicity of gadolinium to selected species of algae. In addition to wastewater from nuclear production reactor operations, gadolinium waste is also generated from medical applications, especially MRI, and various electronic components including CD disks. Despite growing and widespread

  20. Garnet ships in a quartzite sea

    NASA Astrophysics Data System (ADS)

    Rogowitz, Anna; Rice, A. Hugh N.; Grasemann, Bernhard; Huet, Benjamin

    2016-04-01

    During progressive deformation, a strong inclusion in a weaker matrix causes a stress concentration that may result in strain localization, seen in a matrix grain-size reduction. A superb example of this phenomena, but rather more complex, has been observed in north Norwegian Caledonides. A probably subvertical metadolerite dyke has been rotated to lie parallel to the penetrative regional low-angled foliation during the emplacement of the overlying nappe. The metadolerite, now only ~1.4 cm thick and lying between two quartzite layers has been retrogressed to a biotite schist with an assemblage of biotite, titanite, epidote group, garnet and quartz. Garnets are from 0.2 mm to 4 cm in size, subhedral and have two growth zones, with inclusions of predominantly titanite and rare amphibole. The country-rock metasedimentary schists contain staurolite, indicating mid-amphibolite-facies conditions (~550 °C and 6 kbar). During late deformation, some garnets were forced into the quartzite, resulting in the development of pronounced gouges (tectoglyphs), up to 70 mm long, 14 mm wide and 14 mm deep, deepening in the direction of movement. Quartz was pushed up at the sides of the gouges and forms a pronounced bow-wave at the front of the garnets. Where garnets are gouged into the quartzite, intense strain localization occurs. Both in front of and under the garnet, a up to 18 mm wide zone of quartz mylonite developed. The mylonitic foliation curves around the garnet, with a relatively sharp boundary to the adjacent quartzite that preserves an older random fabric. Deformation in the mylonite, which shows a strong crystallographic preferred orientation, seems to have occurred by (1) intense dislocation glide followed by (2) subgrain rotation resulting in an almost foam-like fabric. The grain size of the mylonite (at the quartzite-biotite schist interface) increases with increasing distance behind the present position of the garnets. This observation is consistent with an expected

  1. Rare earth garnet selective emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approximately equal to 0.74, ((4)l(sub 15/2)) - ( (4)l(sub13/2)), for Er-YAG and epsilon(sub lambda) approximately equal to 0.65, ((5)l(sub 7))-((5)l(sub 8)) for Ho-YAG) at excellent candidates for high efficiency selective emitters in the thermophotovoltaics (TPV) systems operating at moderate temperatures (1200-1500K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. This paper presents normal spectral emittance, epsilon(sub lambda), measurements of holmium (Ho), and erbium (Er) doped YAG thin film selective emitters at 1500 K, and compares those results with the theoretical spectral emittance.

  2. Rare earth garnet selective emitter

    SciTech Connect

    Lowe, R.A.; Chubb, D.L.; Farmer, S.C.; Good, B.S.

    1994-09-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon{sub {lambda}}) approximately equal to 0.74, ((4)l{sub 15/2}) - ((4)l{sub 13/2}), for Er-YAG and epsilon{sub {lambda}} approximately equal to 0.65, ((5)l{sub 7})-((5)l{sub 8}) for (Ho-YAG) at excellent candidates for high efficiency selective emitters in the thermophotovoltaics (TPV) systems operating at moderate temperatures (1200-1500K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper the authors present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. This paper presents normal spectral emittance, epsilon{sub {lambda}} measurements of holmium (Ho), and erbium (Er) doped YAG thin film selective emitters at 1500 K, and compares those results with the theoretical spectral emittance.

  3. Gallium phosphide energy converters

    NASA Technical Reports Server (NTRS)

    Sims, P. E.; Dinetta, L. C.; Goetz, M. A.

    1995-01-01

    Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/sq cm have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.

  4. 49 CFR 173.162 - Gallium.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Gallium. 173.162 Section 173.162 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.162 Gallium. (a) Except when packaged in cylinders or steel flasks, gallium must be packaged in packagings which meet...

  5. 49 CFR 173.162 - Gallium.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Gallium. 173.162 Section 173.162 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.162 Gallium. (a) Except when packaged in cylinders or steel flasks, gallium must be packaged in packagings which meet...

  6. 49 CFR 173.162 - Gallium.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Gallium. 173.162 Section 173.162 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.162 Gallium. (a) Except when packaged in cylinders or steel flasks, gallium must be packaged in packagings which meet...

  7. 49 CFR 173.162 - Gallium.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Gallium. 173.162 Section 173.162 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.162 Gallium. (a) Except when packaged in cylinders or steel flasks, gallium must be packaged in packagings which meet...

  8. 49 CFR 173.162 - Gallium.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Gallium. 173.162 Section 173.162 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.162 Gallium. (a) Except when packaged in cylinders or steel flasks, gallium must be packaged in packagings which meet...

  9. Empirical garnet muscovite geothermometry in metapelites

    NASA Astrophysics Data System (ADS)

    Wu, Chun-Ming; Wang, Xin-She; Yang, Chong-Hui; Geng, Yuan-Sheng; Liu, Fu-Lai

    2002-05-01

    Two empirical garnet-muscovite geothermometers, assuming no ferric iron (Model A) and 50% ferric iron (Model B) in muscovite, respectively, were calibrated under the physical conditions of P=3.0-14.0 kbar and T=530-700 °C. The input temperatures and pressures were determined by simultaneously applying the garnet-biotite thermometer [Am. Mineral. 85 (2000) 881.] and the GASP geobarometer [Am. Mineral. 86 (2001) 1117.] to natural metapelites. To confirm internal thermodynamic consistency, Holdaway's [Am. Mineral. 85 (2000) 881.] garnet mixing properties were adopted. Muscovite was treated as a symmetric Fe-Mg-Al VI ternary solid solution, and its Margules parameters were derived in this work. The resulting two formulae reproduced the input garnet-biotite temperatures well within ±50 °C, and gave identical results for a great body of natural samples. Moreover, they successfully distinguished the systematic changes of temperatures of different grade rocks from a prograde sequence, inverted metamorphic zone, and thermal contact aureole. Pressure estimation has almost no effect on the two formalisms of the garnet-muscovite geothermometer. Assuming analytical error of ±5% for the relevant components of both garnet and muscovite, the total random uncertainty of the two formulations will generally be within ±5 °C. The two thermometers derived in this work may be used as practical tools to metamorphic pelites under the conditions of 480 to 700 °C, low- to high-pressure, in the composition ranges Xalm=0.51-0.82, Xpyr=0.04-0.22, and Xgros=0.03-0.24 in garnet, and Fe tot=0.03-0.17, and Mg=0.04-0.14 atoms p.f.u. in muscovite.

  10. Water contents of garnets from the Garnet Ridge, northern Arizona: H2O behavior underneath the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Ogasawara, Y.; Sakamaki, K.; Sato, Y.

    2013-12-01

    Kimberlitic volcanism at the Garnet Ridge delivered a wide variety of garnets and garnet-associated rocks in large vertical range from the deep mantle to shallow depths underneath the Colorado Plateau (Smith et al., 2004). Koga and Ogasawara (2012) classified the garnets at the Garnet Ridge into the following nine groups; (a) Cr and pyrope-rich garnet, (b) pyrope-rich reddish brown garnet, (c) reddish brown garnet, (d) garnet in eclogite, (e) garnet in metasomatized eclogite, (f) garnet aggregate, (g) garnet megacryst, (h) garnet in metasomatic rock I, (i) garnet in metasomatic rock II. They regarded these garnets as the four origins: mantle peridotite (a, b), subducted oceanic crust (d, e), high-pressure metasomatism (c, f, g), low-pressure metasomatism (h, i). On the garnets (a, b, d), Sakamaki et al. (2012) preliminary reported OH qualitatively using micro FT-IR spectroscopy. In garnets (a, b), OH was detected clearly, but in garnet (d) OH was below detection limit because the thickness of a doubly polished section of garnet (d) was too small (thickness: ~70 μm) and the concentration was too low. Using micro FT-IR method, this study conducted the quantitative analysis of H2O for 20 grains of group (a), 18 grains of group (b) and 6 grains of group (d). The garnet samples were prepared as doubly polished thick sections (thicknesses of 0.1-1.3 mm). An IR absorption coefficient of 8770 L/mol/cm2 (Katayama et al., 2005) for garnets was used. Significant amounts of hydroxyl were detected in garnets (a, b, d); clear OH bands were identified in garnets (a, b), but very week and extremely broad OH bands in garnet (d). In the analyzed garnets, no zonal distribution of OH was identified. Garnet (a): the IR spectra have a main OH band at 3575 cm-1 and often with a week band at 3675 cm-1. The resultant H2O contents range from the below detection limit to 119 ppm wt. and are distributed at 0~10 and at ca. 100 ppm wt., bimodally. Garnet (b): the IR spectra have a main OH band

  11. Mineral resource of the month: gallium

    USGS Publications Warehouse

    Jaskula, Brian

    2009-01-01

    The metal element gallium occurs in very small concentrations in rocks and ores of other metals — native gallium is not known. As society gets more and more high-tech, gallium becomes more useful. Gallium is one of only five metals that are liquid at or close to room temperature. It has one of the longest liquid ranges of any metal (29.8 degrees Celsius to 2204 degrees Celsius) and has a low vapor pressure even at high temperatures. Ultra-pure gallium has a brilliant silvery appearance, and the solid metal exhibits conchoidal fracture similar to glass.

  12. Biodistribution of gadolinium-based contrast agents, including gadolinium deposition

    PubMed Central

    Aime, Silvio; Caravan, Peter

    2010-01-01

    The biodistribution of approved gadolinium (Gd) based contrast agents (GBCA) is reviewed. After intravenous injection GBCA distribute in the blood and the extracellular space and transiently through the excretory organs. Preclinical animal studies and the available clinical literature indicate that all these compounds are excreted intact. Elimination tends to be rapid and for the most part, complete. In renally insufficient patients the plasma elimination half-life increases substantially from hours to days depending on renal function. In patients with impaired renal function and nephrogenic systemic fibrosis (NSF), the agents gadodiamide, gadoversetamide, and gadopentetate dimeglumine have been shown to result in Gd deposition in the skin and internal organs. In these cases, it is likely that the Gd is no longer present as the GBCA, but this has still not been definitively shown. In preclinical models very small amounts of Gd are retained in the bone and liver, and the amount retained correlates with the kinetic and thermodynamic stability of the GBCA with respect to Gd release in vitro. The pattern of residual Gd deposition in NSF subjects may be different than that observed in preclinical rodent models. GBCA are designed to be used via intravenous administration. Altering the route of administration and/or the formulation of the GBCA can dramatically alter the biodistribution of the GBCA and can increase the likelihood of Gd deposition. PMID:19938038

  13. Potential effects of gallium on cladding materials

    SciTech Connect

    Wilson, D.F.; Beahm, E.C.; Besmann, T.M.; DeVan, J.H.; DiStefano, J.R.; Gat, U.; Greene, S.R.; Rittenhouse, P.L.; Worley, B.A.

    1997-10-01

    This paper identifies and examines issues concerning the incorporation of gallium in weapons derived plutonium in light water reactor (LWR) MOX fuels. Particular attention is given to the more likely effects of the gallium on the behavior of the cladding material. The chemistry of weapons grade (WG) MOX, including possible consequences of gallium within plutonium agglomerates, was assessed. Based on the calculated oxidation potentials of MOX fuel, the effect that gallium may have on reactions involving fission products and possible impact on cladding performance were postulated. Gallium transport mechanisms are discussed. With an understanding of oxidation potentials and assumptions of mechanisms for gallium transport, possible effects of gallium on corrosion of cladding were evaluated. Potential and unresolved issues and suggested research and development (R and D) required to provide missing information are presented.

  14. 19. General view showing garneting machine number eight on right, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. General view showing garneting machine number eight on right, and garneting machines numbers four through seven on left in background - Norfolk Manufacturing Company Cotton Mill, 90 Milton Street, Dedham, Norfolk County, MA

  15. Combinatorial pulsed laser deposition of doped yttrium iron garnet films on yttrium aluminium garnet

    SciTech Connect

    Sposito, A. Eason, R. W.; Gregory, S. A.; Groot, P. A. J. de

    2014-02-07

    We investigate the crystalline growth of yttrium iron garnet (YIG) films doped with bismuth (Bi) and cerium (Ce) by combinatorial pulsed laser deposition, co-ablating a YIG target and either a Bi{sub 2}O{sub 3} or a CeO{sub 2} target, for applications in microwave and optical communications. Substrate temperature is critical for crystalline growth of YIG with simultaneous inclusion of Bi in the garnet lattice, whereas Ce is not incorporated in the garnet structure, but forms a separate CeO{sub 2} phase.

  16. P-type gallium nitride

    DOEpatents

    Rubin, M.; Newman, N.; Fu, T.; Ross, J.; Chan, J.

    1997-08-12

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5{times}10{sup 11} /cm{sup 3} and hole mobilities of about 500 cm{sup 2} /V-sec, measured at 250 K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al. 9 figs.

  17. P-type gallium nitride

    DOEpatents

    Rubin, Michael; Newman, Nathan; Fu, Tracy; Ross, Jennifer; Chan, James

    1997-01-01

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5.times.10.sup.11 /cm.sup.3 and hole mobilities of about 500 cm.sup.2 /V-sec, measured at 250.degree. K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al.

  18. Liquid gallium rotary electric contract

    NASA Technical Reports Server (NTRS)

    Przybyszewski, J. S.

    1969-01-01

    Due to its low vapor pressure, gallium, when substituted for mercury in a liquid slip ring system, transmits substantial amounts of electrical current to rotating components in an ultrahigh vacuum. It features low electrical loss, little or no wear, and long maintenance-free life.

  19. Gallium scan in intracerebral sarcoidosis

    SciTech Connect

    Makhija, M.C.; Anayiotos, C.P.

    1981-07-01

    Sarcoidosis involving the nervous system probably occurs in about 4% of patients. The usefulness of brain scintigraphy in these cases has been suggested. In this case of cerebral sarcoid granuloma, gallium imaging demonstrated the lesion before treatment and showed disappearance of the lesion after corticosteroid treatment, which correlated with the patient's clinical improvement.

  20. Gallium nitride electronics

    NASA Astrophysics Data System (ADS)

    Rajan, Siddharth; Jena, Debdeep

    2013-07-01

    In the past two decades, there has been increasing research and industrial activity in the area of gallium nitride (GaN) electronics, stimulated first by the successful demonstration of GaN LEDs. While the promise of wide band gap semiconductors for power electronics was recognized many years before this by one of the contributors to this issue (J Baliga), the success in the area of LEDs acted as a catalyst. It set the field of GaN electronics in motion, and today the technology is improving the performance of several applications including RF cell phone base stations and military radar. GaN could also play a very important role in reducing worldwide energy consumption by enabling high efficiency compact power converters operating at high voltages and lower frequencies. While GaN electronics is a rapidly evolving area with active research worldwide, this special issue provides an opportunity to capture some of the great advances that have been made in the last 15 years. The issue begins with a section on epitaxy and processing, followed by an overview of high-frequency HEMTs, which have been the most commercially successful application of III-nitride electronics to date. This is followed by review and research articles on power-switching transistors, which are currently of great interest to the III-nitride community. A section of this issue is devoted to the reliability of III-nitride devices, an area that is of increasing significance as the research focus has moved from not just high performance but also production-worthiness and long-term usage of these devices. Finally, a group of papers on new and relatively less studied ideas for III-nitride electronics, such as interband tunneling, heterojunction bipolar transistors, and high-temperature electronics is included. These areas point to new areas of research and technological innovation going beyond the state of the art into the future. We hope that the breadth and quality of articles in this issue will make it

  1. Effect of grossular on garnet-biotite, Fe Mg exchange reactions: evidence from garnet with mixed growth and diffusion zoning

    NASA Astrophysics Data System (ADS)

    Alcock, J.

    1996-07-01

    Garnets that exhibit mixed growth and diffusion zoning are used to evaluate the effect of grossular content on garnet Fe Mg exchange reactions. These garnets from the uppermost amphibolite-facies to granulite-facies gneiss of the Wissahickon Group, southeastern Pennsylvania, show variation in grossular content (0.035< X Ca<0.14) but nearly constant Mg? ( X Mg/( X Mg+ X Fe) and X Mn through the interior indicating re-equilibration of garnet and matrix minerals with respect to iron, magnesium, and manganese. Mg? is not correlated with calcium content, evidence that the effect of calcium on garnet Fe Mg exchange reactions is small or is offset by other interactions in almandine-rich garnets. In either case, the data presented here indicate that correction for calcium content of garnets in the application of garnet-biotite geothermometry to high-grade metapelites is unnecessary and may lead to an overestimate of peak temperature.

  2. Evaluation of absorbed dose in Gadolinium neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Abdullaeva, Gayane; Djuraeva, Gulnara; Kim, Andrey; Koblik, Yuriy; Kulabdullaev, Gairatulla; Rakhmonov, Turdimukhammad; Saytjanov, Shavkat

    2015-02-01

    Gadolinium neutron capture therapy (GdNCT) is used for treatment of radioresistant malignant tumors. The absorbed dose in GdNCT can be divided into four primary dose components: thermal neutron, fast neutron, photon and natural gadolinium doses. The most significant is the dose created by natural gadolinium. The amount of gadolinium at the irradiated region is changeable and depends on the gadolinium delivery agent and on the structure of the location where the agent is injected. To de- fine the time dependence of the gadolinium concentration ρ(t) in the irradiated region the pharmacokinetics of gadolinium delivery agent (Magnevist) was studied at intratumoral injection in mice and intramuscular injection in rats. A polynomial approximation was applied to the experimental data and the influence of ρ(t) on the relative change of the absorbed dose of gadolinium was studied.

  3. Hydrous Na-garnet from Garnet Ridge; products of mantle metasomatism underneath the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Sakamaki, Kunihiko; Sato, Yuto; Ogasawara, Yoshihide

    2016-12-01

    This is the first report on amphibole exsolution in pyrope from the Colorado Plateau. Pyrope crystals delivered from mantle depths underneath the Colorado Plateau by kimberlitic volcanism at 30 Ma were collected at Garnet Ridge, northern Arizona. The garnet grains analyzed in this study occur as discrete crystals (without adjacent rock matrix) and are classified into two major groups, Cr-rich pyrope and Cr-poor pyrope. The Cr-poor pyrope group is divided into four subgroups based on exsolved phases: amphibole lamella type, ilmenite lamella type, dense lamellae type, and clinopyroxene/amphibole lamellae type. Exsolved amphibole occurs in amphibole lamella type, dense lamellae type, and clinopyroxene/amphibole lamellae type of Cr-poor pyrope. The amphibole crystals tend to have preferred orientations in their garnet hosts and occur as monomineralic hexagonal or rhombic prisms and tablets, and as multimineralic needles or blades with other exsolved phases. Exsolved amphibole has pargasitic compositions (Na2O up to 1.6 apfu based on 23 oxygen). Garnet host crystals that have undergone amphibole exsolution have low OH contents (2-42 ppmw H2O) compared to garnets that do not have amphibole lamellae (up to 115 ppmw H2O). The low OH contents of garnets hosting amphibole lamellae suggest loss of OH from garnet during amphibole exsolution. Amphibole exsolution from pyrope resulted from breakdown of a precursor "hydrous Na-garnet" composition (Mg,Na+ x)3(Al2 - x, Mgx)2Si3O12 - 2x(OH)2x. Exsolution of amphibole and other phases probably occurred during exhumation to depths shallower than 100 km prior to volcanic eruption.

  4. Domain Collapse in Grooved Magnetic Garnet Material

    NASA Technical Reports Server (NTRS)

    Peredo, J.; Fedyunin, Y.; Patterson, G.

    1995-01-01

    Domain collapse fields in grooved garnet material were investigated by experimental observation and numerical simulation. The results indicate that the change in domain collapse field is largely due to magnetostatic effects produced by the groove edge. A simplified model based on the effective field produced at a groove edge, and local changes in the material thickness explain the observed trends very well.!.

  5. Inhibitors in LPE growth of garnets

    NASA Astrophysics Data System (ADS)

    De Roode, W. H.; Robertson, J. M.

    1983-09-01

    The growth rate of LPE growth garnets can be reduced considerably by the addition of small amounts of group II oxides. This effect can be helpful for the controlled growth of very thin garnet films for sub-micron bubbles and optical devices. The largest effect was found with the addition of Mg 2+ and Ca 2+, resulting in a maximum decrease of the growth rate of approximately 70%. A semi-empirical formula was used to describe the growth rate as a function of the dipping temperature. The change in the growth rate on the addition of the inhibitor ion at constant temperature was found to be proportional to ( aMO)/( aMO+2 Ln 2O 3), where M is a group II element, Ln 2O 2 is the sum of the yttrium and RE oxides in the melt, and a is the inhibitor factor. The value of the inhibitor factor depends on both the inhibitor ion as well as the composition of the garnet. The lowering of the growth rate on the addition of an inhibitor ion is explained by the introduction of an extra growth resistance due to the charge compensation mechanism of the divalent ions. The influence of the different charge compensation possibilities in the garnet system is examined and the relative importance of these possibilities for charge compensation is discussed.

  6. Structural, optical and magnetic properties of gadolinium sesquioxide nanobars synthesized via thermal decomposition of gadolinium oxalate

    SciTech Connect

    Manigandan, R.; Giribabu, K.; Suresh, R.; Vijayalakshmi, L.; Stephen, A.; Narayanan, V.

    2013-10-15

    Graphical abstract: - Highlights: • The cubic Gd{sub 2}O{sub 3} nanobars are synthesized by decomposition of C{sub 6}H{sub 20}Gd{sub 2}O{sub 22}. • The nanoparticles are rectangular bar shape with high porous surface. • The combination of magnetic and optical properties within a single particle. • The Gd{sub 2}O{sub 3} nanobars have tailorable nanostructure, wide bandgap and are paramagnetic. - Abstract: Gadolinium oxide nanobars were obtained by thermal decomposition of gadolinium oxalate, which was synthesized by the chemical precipitation method along with glycerol. The functional group analysis and formation of gadolinium oxide from gadolinium oxalate were characterized by the Fourier transform infrared spectroscopy and thermo gravimetric analyzer. The crystal structure, average crystallite size, and lattice parameter were analyzed by X-ray diffraction technique. Moreover, Raman shifts, elemental composition and morphology of the gadolinium oxide was widely investigated by the laser Raman microscope, X-ray photoelectron spectroscopy, FE-SEM-EDAX and HR-TEM, respectively. Furthermore, the optical properties like band gap, absorbance measurement of the gadolinium oxide were extensively examined. In addition, the paramagnetic property of gadolinium oxide nanobars was explored by the vibrating sample magnetometer.

  7. Microwave filter based on Lamb modes for optoelectronic generator

    NASA Astrophysics Data System (ADS)

    Vitko, V. V.; Nikitin, A. A.; Kondrashov, A. V.; Nikitin, A. A.; Ustinov, A. B.; Belyavskiy, P. Yu; Kalinikos, B. A.; Butler, J. E.

    2015-12-01

    Experimental results for narrowband filter based on yttrium iron garnet film epitaxially grown on gadolinium gallium garnet substrate have been shown. The principle of operation of the filter is based on excitation of Lamb modes in the substrate. We demonstrated also that the use of single crystal diamond as a substrate will significantly reduce the phase noise of the designed optoelectronic microwave generator.

  8. Valid garnet biotite (GB) geothermometry and garnet aluminum silicate plagioclase quartz (GASP) geobarometry in metapelitic rocks

    NASA Astrophysics Data System (ADS)

    Wu, Chun-Ming; Cheng, Ben-He

    2006-06-01

    At present there are many calibrations of both the garnet-biotite (GB) thermometer and the garnet-aluminum silicate-plagioclase-quartz (GASP) barometer that may confuse geologists in choosing a reliable thermometer and/or barometer. To test the accuracy of the GB thermometers we have applied the various GB thermometers to reproduce the experimental data and data from natural metapelitic rocks of various prograde sequences, inverted metamorphic zones and thermal contact aureoles. We have concluded that the four GB thermometers (Perchuk, L.L., Lavrent'eva, I.V., 1983. Experimental investigation of exchange equilibria in the system cordierite-garnet-biotite. In: Saxena, S.K. (ed.) Kinetics and equilibrium in mineral reactions. Springer-Verlag New York, Berlin, Heidelberg. pp. 199-239.; Kleemann, U., Reinhardt, J., 1994. Garnet-biotite thermometry revised: the effect of Al VI and Ti in biotite. European Journal of Mineralogy 6, 925-941.; Holdaway, M.J., 2000. Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. American Mineralogist 85, 881-892., Model 6AV; Kaneko, Y., Miyano, T., 2004. Recalibration of mutually consistent garnet-biotite and garnet-cordierite geothermometers. Lithos 73, 255-269. Model B) are the most valid and reliable of this kind of thermometer. More specifically, we prefer the Holdaway (Holdaway, M.J., 2000. Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. American Mineralogist 85, 881-892.) and the Kleemann and Reinhardt (Kleemann, U., Reinhardt, J., 1994. Garnet-biotite thermometry revised: the effect of Al VI and Ti in biotite. European Journal of Mineralogy 6, 925-941.) calibrations due to their small errors in reproducing the experimental temperatures and good accuracy in successfully discerning the systematic temperature changes of the different sequences. In addition, after applying the GASP barometer to 335 natural metapelitic samples containing one kind

  9. Epitaxial Deposition Of Germanium Doped With Gallium

    NASA Technical Reports Server (NTRS)

    Huffman, James E.

    1994-01-01

    Epitaxial layers of germanium doped with gallium made by chemical vapor deposition. Method involves combination of techniques and materials used in chemical vapor deposition with GeH4 or GeCl4 as source of germanium and GaCl3 as source of gallium. Resulting epitaxial layers of germanium doped with gallium expected to be highly pure, with high crystalline quality. High-quality material useful in infrared sensors.

  10. Tuberculosis peritonitis: gallium-67 scintigraphic appearance.

    PubMed

    Sumi, Y; Ozaki, Y; Hasegawa, H; Shindoh, N; Katayama, H; Tamamoto, F

    1999-06-01

    Tuberculosis peritonitis is a rare manifestation of extrapulmonary tuberculosis. The results of gallium-67 scintigraphy of three patients with tuberculosis peritonitis were reviewed to assess its usefulness in the diagnosis of this condition. Tuberculosis peritonitis was associated with diffuse or focal abdominal localization and decreased hepatic accumulation of gallium-67. These gallium-67 scan features of tuberculosis peritonitis may help to optimize the diagnosis and management of this disease. PMID:10435380

  11. Neutron autoradiography of trace amounts of gadolinium

    SciTech Connect

    Shih, J.L.A.; Brugger, R.M. )

    1992-05-01

    This paper reports that application of gadolinium in neutron capture therapy is under evaluation. Crucial to development of this therapy is an imaging technique that would show the distribution and concentration of parts-per-million amounts of {sup 157}Gd in sliced samples. A technique that utilizes the principles of autoradiography and neutron radiography has been tried. The images taken with this method display the gadolinium distribution and its relative concentration in samples. Concentrations of {sup 157}Gd ranging from {approximately}20 to 500 ppm can be determined. The intrinsic spatial resolution of the system used in the Missouri University Research Reactor is 70 {mu}m.

  12. Thermal oxidation of gallium arsenide

    SciTech Connect

    Monteiro, O.R.; Evans, J.W.

    1989-01-01

    Here we present some results of transmission electron microscopy and secondary ion mass spectroscopy of thermally oxidized gallium arsenide with different types of dopants. At temperatures below 400 /sup 0/C an amorphous oxide is formed. Oxidation at temperatures between 500 and 600 /sup 0/C initially produces an epitaxial film of ..gamma..-Ga/sub 2/O/sub 3/. As the reaction proceeds, this film becomes polycrystalline and then transforms to ..beta..-Ga/sub 2/O/sub 3/. This film contains small crystallites of As/sub 2/O/sub 5/ and As/sub 2/O/sub 3/ in the case of the chromium doped samples, whereas only the former was detected in the case of silicon and tellurium doped samples. Elemental arsenic was always found at the interface between the oxide and GaAs. Chromium doped gallium also exhibited a slower oxidation kinetics than the other materials.

  13. Recovering gallium from residual bayer process liquor

    NASA Astrophysics Data System (ADS)

    Afonso de Magalhães, Maria Elizabeth; Tubino, Matthieu

    1991-06-01

    Gallium is normally obtained by direct electrolysis as a by-product from Bayer process residual liquor at an aluminum processing plant. However, to permit any net accumulation of the metal, the gallium concentration must be at least about 0.3 g/l in the liquor. This article describes a continuous process of extraction with organic solvents and rhodamine-B, followed by a re-extraction step into aqueous media. The final product is a solid containing up to 18 wt.% Ga in a solid mixture of hydroxides and oxides of gallium and aluminum. This final product can then be electrolyzed to recover the gallium more efficiently.

  14. Gadolinium: Central Metal of the Lanthanoids

    ERIC Educational Resources Information Center

    Laing, Michael

    2009-01-01

    The physical and chemical properties of gadolinium are compared with those of the other lanthanoids. Some properties are intermediate between those of lanthanum and lutetium; some between those of barium and hafnium; and others (unexpectedly) between those of ytterbium and lutetium. Both the remarkably high molar heat capacity of the metal and the…

  15. A toxicological study of gadolinium nitrate

    SciTech Connect

    London, J.E.

    1988-05-01

    The sensitization study in the guinea pig did not show gadolinium nitrate to have potential sensitizing properties. Skin application studies in the rabbit demonstrated that it was cutaneously a severe irritant. This material was considered an irritant in the rabbit eye application studies. 3 refs., 1 tab.

  16. Garnet phosphors prepared via hydrothermal synthesis

    SciTech Connect

    Phillips, M.L.F.; Walko, R.J.; Shea, L.E.

    1996-05-01

    This project studied hydrothermal synthesis as a route to producing green-emitting cathodoluminescent phosphorus isostructural with yttrium aluminum garnet (Y{sub 3}Al{sub 5}O{sub 12}, or YAG). Aqueous precipitation of Y, Gd, Al, Ga, and Tb salts produced amorphous gels, which were heated with water at 600 C and 3,200 bar to produce crystalline YAG:Tb, Y{sub 3}Ga{sub 5}O{sub 12}:Tb, Y{sub 3}Al{sub 3}Ga{sub 2}O{sub 12}:Tb, and Gd{sub 3}Ga{sub 5}O{sub 12}:Tb powders. Process parameters were identified that yielded submicron YAG:Tb and Y{sub 3}Ga{sub 5}O{sub 12}:Tb powders without grinding. Cathodoluminescent efficiencies were measured as functions of power density at 600 V, using both the hydrothermal garnets and identical phosphor compositions synthesized at high temperatures. Saturation behavior was independent of synthetic technique, however, the hydrothermal phosphorus were less susceptible to damage (irreversible efficiency loss) at very high power densities (up to 0.1 W/cm{sup 2}). The fine grain sizes available with hydrothermal synthesis make it an attractive method for preparing garnet phosphorus for field emission, projection, and head-up displays.

  17. Decreased gallium uptake in acute hematogenous osteomyelitis

    SciTech Connect

    Ang, J.G.; Gelfand, M.J.

    1983-07-01

    Decreased radiopharmaceutical uptake was noted on both bone and gallium scans in the case of acute hematogenous osteomyelitis of the right ilium (acetabular roof). This combination of findings is probably rare. The mechanism of decreased gallium uptake is unknown, but may be related to decreased blood flow.

  18. Myocardial gallium-67 imaging in dilated cardiomyopathy

    PubMed Central

    O'Connell, John B.; Henkin, Robert E.

    1985-01-01

    The use of gallium-67, an isotope that is avid for areas of inflammation in patients with dilated cardiomyopathy, is described and compared with endomyocardial biopsy in 68 consecutive patients with dilated cardiomyopathy. Myocarditis was diagnosed in 8% on biopsy and the likelihood of a positive biopsy when the gallium scan was positive for inflammation, rose to 36%. It is concluded that gallium scanning is a useful adjunct to biopsy in detecting myocarditis in patients with dilated cardiomyopathy and in following patients with evidence of myocarditis on biopsy. Disadvantages of gallium-67 imaging include the radiation dose accumulated with multiple scans and 72h delay from initial injection of the isotope to imaging. It is suggested that definitive conclusions regarding the technique should await the results of a large multicentre trial evaluating gallium in comparison with endomyocardial biopsy in the diagnosis of myocarditis. ImagesFigure 1Figure 2

  19. Gallium Electromagnetic (GEM) Thrustor Concept and Design

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.

    2006-01-01

    We describe the design of a new type of two-stage pulsed electromagnetic accelerator, the gallium electromagnetic (GEM) thruster. A schematic illustration of the GEM thruster concept is given in Fig. 1. In this concept, liquid gallium propellant is pumped into the first stage through a porous metal electrode using an electromagneticpump[l]. At a designated time, a pulsed discharge (approx.10-50 J) is initiated in the first stage, ablating the liquid gallium from the porous electrode surface and ejecting a dense thermal gallium plasma into the second state. The presence of the gallium plasma in the second stage serves to trigger the high-energy (approx.500 I), send-stage puke which provides the primary electromagnetic (j x B) acceleration.

  20. Processing to obtain high-purity gallium

    NASA Astrophysics Data System (ADS)

    Bautista, Renato G.

    2003-03-01

    Gallium has become increasingly popular as a substrate material for electronic devices. Aside from ore, gallium can be obtained from such industrial sources as the Bayer process caustic liquor that is a byproduct of bauxite processing, flue dust removed from the fume-collection system in plants that produce aluminum by the electrolytic process, zinc refinery residues, gallium scrap materials, and coal fly ash. The purification process for gallium can start with solvent-extraction processes where the concentrations of impurities, especially metals, are reduced to the ppm range. This article describes how ultra-purification techniques can be employed to reduce the undesirable impurities to the low ppb range. The various procedures described give an idea as to the extent of work needed to obtain and prepare high-purity gallium for electronic application.

  1. Pressure-induced diffusion in natural garnets

    NASA Astrophysics Data System (ADS)

    Floess, David; Vrijmoed, Johannes; Baumgartner, Lukas; Podladchikov, Yuri

    2015-04-01

    Recent efforts in metamorphic petrology suggest that significant pressure gradients exist on the grain-scale and provide tools for its quantification [1,2]. Here we propose that pressure gradients around coesite inclusions induced diffusion of major elements within garnet crystals upon exhumation. This is based on the fact that the molar mass of garnet endmembers vary between 403 and 497 g/mol, thus up to 23 %. Whiteschists from the Dora Maira Massive in the Western Alps underwent eclogite facies metamorphism (3.3-4.3 GPa, 720-780 °C) during the Alpine event at 35 Ma [3]. Coesite included in garnet (py0.96gr0.02alm0.02) during the HP stage was partially transformed to quartz during the subsequent, rapid exhumation (from 3.5 to 1 GPa within 2 Ma [4]). Coesite is preserved by maintaining a high pressure on the inclusion wall due to the large volume change of the phase transition. The surface of the host garnet experiences a lower pressure controlled by the exhumation P-T path. This pressure difference should induce diffusion of major elements in the garnet surrounding the inclusion. Element distribution maps show well-defined Fe-rich, Ca-poor halos surrounding the coesite-inclusions. The observed diffusion profiles are in agreement with predictions, assuming a positive ΔP around the inclusions. The results are based on thermodynamic equilibrium calculations assuming heterogeneous pressure [5]. Hence, the observed profiles are interpreted as an equilibrium state reflecting the pressure (stress) distribution within the crystal and can be used as tool to constrain the exhumation path. Understanding the effect of pressure gradients on diffusion and, alternatively, the generation of pressure due to relaxation of chemical gradients by diffusion, is crucial for interpreting P-T-t paths of zoned minerals correctly. [1] Baumgartner et al. (2010), GSA meeting Denver. [2] Tajčmanová et al. (2014) CMP 32, 195-207. [3] Compagnoni & Rolfo (2003), UHP Metamorphism - EMU notes 5

  2. Polycrystalline Garnet Porphyroblasts, an EBSD Study

    NASA Astrophysics Data System (ADS)

    Seaton, N. C.; Whitney, D. L.; Anderson, C.; Alpert, A.

    2008-12-01

    Polycrystalline garnet porphyroblasts (PGP's) are significant because their formation provides information about metamorphic crystalline mechanisms, in particular during early stages of crystal growth, which may differ from those governing later stages; and because their existence may affect the chemical and structural evolution of metamorphic rocks. For example, the extent of element exchange between the garnet interior and the matrix may be affected by the presence of grain boundaries within PGP's. There have been several previous studies of PGP's but important questions about them remain; e.g. whether early coalescence is a common method by which garnets crystallize, whether grains rotate during growth to attain an energetically favorable grain-grain contact, and whether deformation and/or precursor minerals or other chemical or mechanical heterogeneities influence the formation of PGP's. PGP's have been detected by us in several different localities including; micaschist from SE Vermont (USA), including locality S35j of Rosenfeld (1968); the Solitude Range (British Columbia, Canada); the Southern Menderes Massif (Turkey); and three zones (garnet, staurolite, kyanite) from the Dutchess County Barrovian sequence in NY (USA). We have identified two types of PGP: cryptic and morphologically distinct. Cryptic PGP have no obvious morphological expression of the high angle boundaries within them and appear to be a single crystal. Morphologically distinct PGP have an obvious depression in the outer grain boundary where it is intersected by the internal grain boundary. Most PGP's contain inclusion trails and the high angle grain boundaries crosscut the trend of these as well as the inclusions themselves. PGP also show major element growth zoning that is not influenced by the internal grain boundaries except in rare cases. PGP's comprise ~ 5-35% of the garnet populations analyzed. More than 95% of the PGP's we have analyzed are comprised of 2-3 domains; the rest contain

  3. Inclusion/lamella mineralogy and chemical characteristics of garnets from the Garnet Ridge in the Colorado Plateau, northern Arizona

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Ogasawara, Y.

    2013-12-01

    A wide variety of garnets as xenocrysts and those in xenoliths, come from kimberlitic diatreme (Smith et al. 2004), occurs at the Garnet Ridge. Koga and Ogasawara (2012) classified these garnets into 9 groups: (a) Cr and pyrope-rich garnet, (b) pyrope-rich reddish brown garnet, (c) reddish brown garnet, (d) garnet in eclogite, (e) garnet in metasomatized eclogite, (f) garnet aggregate, (g) garnet megacryst, (h) garnet in metasomatic rock I, (i) garnet in metasomatic rock II. They divided genetically these groups into four: mantle peridotite (a, b), subducted oceanic crust (d, e), high-pressure metasomatism (c, f, g), low-pressure metasomatism (h, i).In this study, the following 4 groups (a, b, f, g) were chose for inclusion mineralogy by laser Raman spectroscopy. Groups (a) and (b): pyrope-rich garnets (a: 45-82, b: 61-80 Prp mol%) both Cr-rich and Cr-poor (a: 1.0-5.9, b: 0.0-1.0 wt.% Cr2O3) are Ca-poor (1.5-7.0 wt.% CaO) and single-crystals of 5-15 mm in diameter. Group (a) is identical to chrome-pyrope based on the classification of kimberlitic garnets by Dawson and Stephens (1975). CaO-Cr2O3 ratio of (a, b) indicates lherzorite origin (Turkin and Sobolev 2009). Wang et al. (1999) have reported the detailed inclusion and lamella mineralogy of pyrope-rich garnets from the Garnet Ridge. We identified inclusions of Chl (OH: 3450, 3582, 3679 cm-1), Amp (OH: 3685, 3711 cm-1), Ol, Opx, Cpx, Rt (OH: 3295 cm-1), Mgs, Dol, Cal, sulfides, fluid (OH: 3445 cm-1) and spherical composite inclusions of Amp, Ap, Dol, Mgs, Rt and sulfides, and oriented lamellae (presumable exsolution) of Qz, Ol, Opx, Cpx, Amp, Chl, Rt, Ilm, crichtonite (6-7 Peaks at 120-820 cm-1), carmichaelite (710-782 cm-1, OH: 3340 cm-1), Ap (OH: 3570 cm-1) and Ti-Chn (OH: 3404, 3527, 3564 cm-1) adjacent to the oriented Ol. The mineral assemblages of the inclusion and lamella show a correlation with the host garnet compositions; inclusions: (a, b) Ol + Opx + Cpx × composite, (b, low Mg) Opx + Cpx + Amp

  4. Gadolinium diethylenetriaminopentaacetic acid-loaded chitosan microspheres for gadolinium neutron-capture therapy.

    PubMed

    Saha, Tapan Kumar; Ichikawa, Hideki; Fukumori, Yoshinobu

    2006-12-11

    In order to provide a suitable device that would contain water-soluble drugs, highly water-soluble gadolinium diethylenetriaminopentaacetic acid-loaded chitosan microspheres (CMS-Gd-DTPA) were prepared by the emulsion method using glutaraldehyde as a cross-linker and Span 80 as a surfactant for gadolinium neutron-capture therapy of cancer. The gadolinium content and the mass median diameter of CMS-Gd-DTPA were estimated. The size and morphology of the CMS-Gd-DTPA were strongly influenced by the initial applied weight ratio of Gd-DTPA:chitosan. FTIR spectra showed that the electrostatic interaction between chitosan and Gd-DTPA accelerated the formation of gadolinium-enriched chitosan microspheres. Sufficient amounts of glutaraldehyde and Span 80 were necessary for producing discrete CMS-Gd-DTPA. The CMS-Gd-DTPA having a mass median diameter 11.7microm and 11.6% of gadolinium could be used in Gd-NCT following intratumoral injection. PMID:17045253

  5. Significance of hydrous silicate lamellae in pyrope-rich garnets from the Garnet Ridge in the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Ogasawara, Y.; Sakamaki, K.; Sato, Y.

    2014-12-01

    Pyrope-rich garnets originated from the upper mantle underneath the Colorado Plateau occur at the Garnet Ridge. These garnets contain the following lamellae of hydrous and anhydrous minerals; Rt, Ilm, crichtonites, Cr-Spl, Amp, Cpx, Chl, rarely Apt, srilankite and carmichealite. The origin of these lamellae in the garnets is controversial; exsolved origin or epitaxial growth. We emphasize here the close relations between the presence of hydrous lamellae and the OH concentrations in the host garnets. Lamella phases were identified with a standard-less quantitative EDS system and a laser Raman spectrometer with Ar+ laser (514.5 nm). OH concentrations in garnets were quantitated on the basis of IR absorption spectra of garnet by micro FT-IR method using IR absorption coefficient (8770 L/mol/cm2, Katayama et al., 2006). Pyrope-rich reddish brown garnet (group B by Sato et al., AGU2014F) has large variations of major chemical compositions (Prp: 49-76, Alm: 6-43, Grs: 6-26 mol%), and OH contents (2-177 ppm wt. H2O). Among this group garnets, Ca-rich ones (Prp: 49-66; Alm: 18-28; Grs: 16-26 mol%) have lamellae of both hydrous (Amp and Chl) and anhydrous (Rt, Ilm, and Cpx) minerals. Amp and Chl lamellae are pargasitic amphibole and clinochlore, respectively, and their host garnets contain significantly low amounts of OH (2-42 ppm). Cr and pyrope-rich garnet (group A by Sato et al., AGU2014F) has chemical compositions of Prp: 67-74, Alm: 13-18, Grs: 7-11 mol% with Cr2O3 up to 5.9 wt.%, and contains lamellae of anhydrous minerals (Rt, Ilm, crichtonites, and Cr-Spl). The host garnet with these anhydrous lamellae contains a little higher OH ranging 24 to 115 ppm. Summarizing the present results, the OH contents of the host garnets depend on the presence of hydrous silicate lamella phase; OH in the garnet with hydrous silicate lamellae is lower than that in the garnet with anhydrous lamellae. The precursor OH incorporated in the host garnet structure was exsolved as hydrous

  6. Method of separating and purifying gadolinium-153

    DOEpatents

    Bray, Lane A [Richland, WA; Corneillie, Todd M [Davis, CA

    2001-01-01

    The present invention is an improvement to the method of separating and purifying gadolinium from a mixture of gadolinium and europium having the steps of (a) dissolving the mixture in an acid; (b) reducing europium+3 to europium+2; and (c) precipitating the europium+2 with a sulfate ion in a superstoichiometric amount; wherein the improvement is achieved by using one or more of the following: (i) the acid is an anoic acid; (ii) the reducing is with zinc metal in the absence of a second metal or with an amount of the second metal that is ineffective in the reducing; (iii) adding a group IIA element after step (c) for precipitating the excess sulfate prior to repeating step (c); (iv) the sulfate is a sulfate salt with a monovalent cation; (v) adding cold europium+3 prior to repeating step (c).

  7. Isoelectronic Traps in Gallium Phosphide

    NASA Astrophysics Data System (ADS)

    Christian, Theresa; Alberi, Kirstin; Beaton, Daniel; Fluegel, Brian; Mascarenhas, Angelo

    2015-03-01

    Isoelectronic substitutional dopants can result in strongly localized exciton traps within a host bandstructure such as gallium arsenide (GaAs) or gallium phosphide (GaP). These traps have received great attention for their role in the anomalous bandgap bowing of nitrogen or bismuth-doped GaAs, creating the dramatic bandgap tunability of these unusual dilute alloys. In the wider, indirect-bandgap host material GaP, these same isoelectronic dopants create bound states within the gap that can have very high radiative efficiency and a wealth of discrete spectral transitions illuminating the symmetry of the localized excitonic trap state. We will present a comparative study of nitrogen and bismuth isoelectronic traps in GaP. Research was supported by the U. S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division under contract DE-AC36-08GO28308 and by the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under contract no. DE-AC05-06OR23100.

  8. Electrospun Gallium Nitride Nanofibers (abstract)

    NASA Astrophysics Data System (ADS)

    Meléndez, Anamaris; Morales, Kristle; Ramos, Idalia; Campo, Eva; Santiago, Jorge J.

    2009-04-01

    The high thermal conductivity and wide bandgap of gallium nitride (GaN) are desirable characteristics in optoelectronics and sensing applications. In comparison to thin films and powders, in the nanofiber morphology the sensitivity of GaN is expected to increase as the exposed area (proportional to the length) increases. In this work we present electrospinning as a novel technique in the fabrication of GaN nanofibers. Electrospinning, invented in the 1930s, is a simple, inexpensive, and rapid technique to produce microscopically long ultrafine fibers. GaN nanofibers are produced using gallium nitrate and dimethyl-acetamide as precursors. After electrospinning, thermal decomposition under an inert atmosphere is used to pyrolyze the polymer. To complete the preparation, the nanofibers are sintered in a tube furnace under a NH3 flow. Both scanning electron microscopy and profilometry show that the process produces continuous and uniform fibers with diameters ranging from 20 to a few hundred nanometers, and lengths of up to a few centimeters. X-ray diffraction (XRD) analysis shows the development of GaN nanofibers with hexagonal wurtzite structure. Future work includes additional characterization using transmission electron microscopy and XRD to understand the role of precursors and nitridation in nanofiber synthesis, and the use of single nanofibers for the construction of optical and gas sensing devices.

  9. Progress Towards Laser Cooling and Trapping Gadolinium

    NASA Astrophysics Data System (ADS)

    Adhikari, Upendra; Simien, Clayton

    2016-05-01

    Lanthanide elements are of interest because of their potential for investigating next generation optical clock transitions, novel non-S ground state ultracold collisions, and the physics of quantum degenerate dipolar gases. We present our progress towards laser cooling and trapping atomic Gadolinium (Gd). A magneto-optical trap is the first step towards precision measurements, ultracold collision studies, and for probing dipolar physics of Gd. The design, construction, and performance of the apparatus will be presented.

  10. Mineralogical controls on garnet composition in the cratonic mantle

    NASA Astrophysics Data System (ADS)

    Hill, P. J. A.; Kopylova, M.; Russell, J. K.; Cookenboo, H.

    2015-02-01

    Garnet concentrates are a rich source of geochemical information on the mantle, but the mineralogical implications of wide ranging garnet compositions are poorly understood. We model chemical reactions between mantle minerals that may buffer the Ca-Cr lherzolitic garnet trend common in the lithospheric mantle. A harzburgitic trend of garnet compositions featuring a lower increase in Cr with Ca relative to the conventional lherzolitic trend is reported for the first time. Representation of garnet chemistry in terms of additive and exchange components in the Thompson space shows that the lherzolitic and harzburgitic trends are controlled by the cation exchanges MgFeAl ↔ Ca2Cr and MgFeAl4 ↔ Ca2Cr4, respectively. Various equilibrium reactions are presented to explain the trends assuming a closed or open system mantle. The compositional variability of the natural garnets from the Canastra 8 kimberlite (Brazil) is modeled by a linear system of mass balance equations. The solution returns the reaction coefficients of products (positive values) and reactants (negative values), which are then evaluated against the observed mantle mineralogy. In the isochemical mantle, the lherzolitic trend can form in the absence of clinopyroxene, but requires the presence of spinel and reflects the thickness of the spinel-garnet transition zone. This requirement contradicts observations on natural occurrences of the trend and the thermobarometry of the host peridotites. In the preferred model of a variably depleted mantle, the lherzolitic trend critically depends on the presence of clinopyroxene. The occurrence of lherzolitic garnet compositions in harzburgite can be explained by exhaustion of clinopyroxene as a result of garnet buffering. The open system behavior of the peridotitic mantle also provides a better explanation for the harzburgitic trend in garnet compositions. In an isochemical mantle, the trend can be controlled by many possible reactions, and no single mineral is

  11. Interface Engineering of Garnet Solid Electrolytes

    NASA Astrophysics Data System (ADS)

    Cheng, Lei

    Solid lithium ion conductors represent a promising class of materials for next generation high energy density batteries, with the potential for enabling use of high capacity Li metal anodes and providing opportunities for novel lithium-free cathode materials. However, highly resistive interfaces stymie their practical use. This urgent scientific challenge requires mechanistic understanding of ion transport at interfaces, as well as development of novel processes to achieve low interfacial resistances. The goal of this PhD dissertation was to generate fundamental understandings of garnet-structured Al substituted Li7La3Zr2O 12 (LLZO) electrolyte surfaces and interfaces with lithium metal electrodes. Specifically in this research, the topmost surface microstructure, local chemical environment, and surface chemistry were carefully studied. The ceramic processing of garnet is discussed and ways to control the sintering behavior and microstructures were explored and successfully demonstrated. Factors contributing to high interfacial resistance were systematically studied. The source of the high interfacial impedance has been traced to the presence of Li2CO 3 on pellet surfaces resulting from air exposure after processing. In addition, it was discovered that surface grain boundaries are surprisingly fast ion transport pathways and surface microstructure is critically important to lithium ion transport at interfaces. Complex homo- and heterostructured LLZO solid electrolytes with controllable surface and bulk microstructures were successfully fabricated, which allowed the comparison and separation of the contribution from the surface and the bulk. Engineered pellet surfaces allowed us to achieve the lowest interfacial resistance ever reported for this composition, resulting in significantly improved cycling behavior. Lastly, it was found that LLZO surfaces can be effectively stabilized under air exposure conditions, preventing Li2CO3 formation and maintaining low

  12. Status of gallium-67 in tumor detector

    SciTech Connect

    Hoffer, P.

    1980-04-01

    The efficacy of gallium-67 citrate in detecting specific tumors is discussed. Tumors in which gallium-67 imaging is useful as a diagnostic tool include Hodgkin's disease, histiocystic lymphoma, Burkitt's lymphoma, hepatoma melanoma, and leukemia. It has not been found to be effective in diagnosing head and neck tumors, gastrointestinal tumors, genitourinary tract tumors, breast tumors, and pediatric tumors. Gallium may be useful in the evaluation of non-Hodgkin's lymphoma, testicular carcinoma, mesothelioma, and carcinoma of the lung. It may also be useful for determining response to treatment and prognosis in some neoplasms.

  13. The surface tension of liquid gallium

    NASA Technical Reports Server (NTRS)

    Hardy, S. C.

    1985-01-01

    The surface tension of liquid gallium has been measured using the sessile drop technique in an Auger spectrometer. The experimental method is described. The surface tension in mJ/sq m is found to decrease linearly with increasing temperature and may be represented as 708-0.66(T-29.8), where T is the temperature in centigrade. This result is of interest because gallium has been suggested as a model fluid for Marangoni flow experiments. In addition, the surface tension is of technological significance in the processing of compound semiconductors involving gallium.

  14. Majorite Garnet and Lithosphere Evolution: Kaapvaal Craton

    NASA Astrophysics Data System (ADS)

    Griffin, W. L.; Tessalina, S.; O'Reilly, S. Y.

    2013-12-01

    The uppermost 50-70 km of the subcontinental lithospheric mantle (SCLM) beneath the Kaapvaal Craton (S. Africa) consists largely of highly-depleted chromite harzburgites. These rocks are understudied, mainly because of their uniformity and their lack of indicator minerals such as garnet and clinopyroxene (cpx). Kimberlite-borne xenoliths of these rocks contain rare volumes of cpx-spinel (modal 76/24) symplectite, with smooth grain boundaries; many studies have suggested that these might represent low-pressure breakdown products of garnet (majorite + olivine → cpx + spinel). Our reconstruction of a suite of these grains, using element mapping and EMP analysis of constituent minerals, gives a majoritic garnet with mean composition 21.8% CaO, 15.8% Cr2O3, 9.22% Al2O3, Si=3.118, mg#=0.93. The majorite contents suggest formation at depths of 250-280 km. Ni contents imply temperatures ≥1500 °C, but have large uncertainties related to the subtraction of olivine (ca 20%) during the reconstruction calculation. LAM-ICPMS analyses show strongly sinuous REE patterns with CN Dy/Lu <0.1 and Ce/Dy >100. Most analyses have negative Eu anomalies, consistent with chromite compositions that indicate strongly reducing conditions (ΔfO2(FMQ) = -4 to -5). Melt modeling suggests that the harzburgites are products of 30-40% melting of asthenospheric mantle at 250 km depth, leaving residues of ol+opx+chromite. The presence of the majorites and their overall LREE enrichment are ascribed to the introduction of carbonatitic metasomatic fluids, similar to those recorded by diamond-inclusions (subcalcic garnets), shortly after the depletion. We suggest that the melting, the metasomatism and the ultimate breakdown of the majorite track a process of mantle upwelling, with melt-extraction at depth providing the buoyancy that allowed the residual harzburgites to rise to shallow levels and stabilize the SCLM. Os-isotope analyses of sulfides associated with the majorites give TRD = 2.5-3.4 Ga

  15. Elastic moduli of pyrope rich garnets

    NASA Astrophysics Data System (ADS)

    Pandey, B. K.; Pandey, A. K.; Singh, C. K.

    2013-06-01

    The elastic properties of minerals depend on its composition, crystal structure, temperature and level of defects. The elastic parameters are important for the interpretation of the structure and composition of the garnet rich family. In present work we have calculated the elastic moduli such as isothermal bulk modulus, Young's modulus and Shear modulus over a wide range of temperature from 300 K to 1000 K by using Birch EOS and Poirrier Tarantola equation of state. The obtained results are compared with the experimental results obtained by measuring the elastic moduli of single crystal. The calculated results show that the logarithmic isothermal EOS does not cooperate well with experimental results.

  16. Very high-pressure orogenic garnet peridotites

    PubMed Central

    Liou, J. G.; Zhang, R. Y.; Ernst, W. G.

    2007-01-01

    Mantle-derived garnet peridotites are a minor component in many very high-pressure metamorphic terranes that formed during continental subduction and collision. Some of these mantle rocks contain trace amounts of zircon and micrometer-sized inclusions. The constituent minerals exhibit pre- and postsubduction microstructures, including polymorphic transformation and mineral exsolution. Experimental, mineralogical, petrochemical, and geochronological characterizations using novel techniques with high spatial, temporal, and energy resolutions are resulting in unexpected discoveries of new phases, providing better constraints on deep mantle processes. PMID:17519341

  17. Very high-pressure orogenic garnet peridotites.

    PubMed

    Liou, J G; Zhang, R Y; Ernst, W G

    2007-05-29

    Mantle-derived garnet peridotites are a minor component in many very high-pressure metamorphic terranes that formed during continental subduction and collision. Some of these mantle rocks contain trace amounts of zircon and micrometer-sized inclusions. The constituent minerals exhibit pre- and postsubduction microstructures, including polymorphic transformation and mineral exsolution. Experimental, mineralogical, petrochemical, and geochronological characterizations using novel techniques with high spatial, temporal, and energy resolutions are resulting in unexpected discoveries of new phases, providing better constraints on deep mantle processes. PMID:17519341

  18. Unconventional Superfluidity in Yttrium Iron Garnet Films.

    PubMed

    Sun, Chen; Nattermann, Thomas; Pokrovsky, Valery L

    2016-06-24

    We argue that the magnon condensate in yttrium iron garnet may display experimentally observable superfluidity at room temperature despite the 100 times dominance of the normal density over superfluid ones. The superfluidity has a more complicated nature than in known superfluids since the U(1) symmetry of the global phase shift is violated by the dipolar interaction leading to the exchange of spin moment between the condensate and the crystal lattice. It produces periodic inhomogeneity in the stationary superfluid flow. We discuss the manner of observation and possible applications of magnon superfluidity. It may strongly enhance the spin-torque effects and reduce the energy consumption of the magnonic devices. PMID:27391750

  19. Unconventional Superfluidity in Yttrium Iron Garnet Films

    NASA Astrophysics Data System (ADS)

    Sun, Chen; Nattermann, Thomas; Pokrovsky, Valery L.

    2016-06-01

    We argue that the magnon condensate in yttrium iron garnet may display experimentally observable superfluidity at room temperature despite the 100 times dominance of the normal density over superfluid ones. The superfluidity has a more complicated nature than in known superfluids since the U(1) symmetry of the global phase shift is violated by the dipolar interaction leading to the exchange of spin moment between the condensate and the crystal lattice. It produces periodic inhomogeneity in the stationary superfluid flow. We discuss the manner of observation and possible applications of magnon superfluidity. It may strongly enhance the spin-torque effects and reduce the energy consumption of the magnonic devices.

  20. Emerging concepts for myocardial late gadolinium enhancement MRI.

    PubMed

    Doltra, Adelina; Amundsen, Brage Hoyem; Gebker, Rolf; Fleck, Eckart; Kelle, Sebastian

    2013-08-01

    Late gadolinium enhancement is a useful tool for scar detection, based on differences in the volume of distribution of gadolinium, an extracellular agent. The presence of fibrosis in the myocardium amenable to be detected with late gadolinium enhancement MRI is found not only in ischemic cardiomyopathy, in which it offers information regarding viability and prognosis, but also in a wide variety of non-ischemic cardiomyopathies. In the following review we will discuss the methodological aspects of gadolinium-based imaging, as well as its applications and anticipated future developments. PMID:23909638

  1. Garnet and pyroxene compositions in some diamondiferous eclogites

    NASA Technical Reports Server (NTRS)

    Reid, A. M.; Brown, R. W.; Dawson, J. B.; Whitfield, G. G.; Siebert, J. C.

    1976-01-01

    Analyses are reported for garnet and pyroxene from 17 eclogites that contain diamond. The garnets contain small but significant contents of Na, Ti and P and the pyroxenes contain traces of K. The diamond-bearing eclogites do not constitute a unique compositional group but show a range of mineral compositions consistent with a very high P-T environment.

  2. The Garnet to Majorite Transformation in Mafic Compositions

    NASA Technical Reports Server (NTRS)

    Xirouchakis, D.; Draper, David S.; Agee, C. B.

    2002-01-01

    The garnet to majorite transformation in mafic compositions is controlled by bulk composition and the presence of silicate melt, clinopyroxene, and silicate perovskite as well as pressure. Thus, the use of empirical geobarometers based on garnet Si(4+) and/or [Al(3+) +/- Cr(3+)] (p.f.u) seems unjustified. Additional information is contained in the original extended abstract.

  3. Garnet megacrysts of the Williams diatremes, north-central Montana.

    USGS Publications Warehouse

    McGee, E.S.

    1986-01-01

    The physical characteristics of garnet megacrysts from the Williams diatremes are described, analysed and compared with other garnet megacryst suites. The only correlation found between the physical characteristics and the composition of the megacrysts related deep-red colour to high Cr content.-J.A.Z.

  4. Imaging Domains In Magnetic Garnets By Use Of TSMFM

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.; Wu, Jiin-Chuan; Stadler, Henry L.; Rice, Paul

    1994-01-01

    Tunneling-stabilized magnetic-force microscopy (TSMFM) demonstrated to yield images of magnetic domains in low-coercivity magnetic garnets with perpendicular anisotropy. Ability to generate images of domain walls and minute vertical Bloch lines aids study of vertical-Bloch-line magnetic memory devices that contain garnets. TSMFM provides desired resolution because its resolution not limited by diffraction.

  5. Chemistry and mineralogy of garnet pyroxenites from Sabah, Malaysia

    USGS Publications Warehouse

    Morgan, B.A.

    1974-01-01

    Garnet pyroxenites and corundum-garnet amphibolites from the Dent peninsula of eastern Sabah (North Borneo) occur as blocks in a slump breccia deposit of late Miocene age. The earliest formed minerals include pyrope-almandine garnet, tschermakitic augite, pargasite, and rutile. Cumulate textures are present in two of the six specimens studied. The earlier fabric has been extensively brecciated and partly replaced by plagioclase, ilmenite, and a fibrous amphibole. The bulk composition and mineralogy of these rocks are similar to those of garnet pyroxenite lenses within ultramafic rocks. Estimated temperature and pressure for the origin of the Sabah garnet pyroxenites is 850??150?? C and 19??4 kbar. ?? 1974 Springer-Verlag.

  6. Gallium and its competing roles with iron in biological systems.

    PubMed

    Chitambar, Christopher R

    2016-08-01

    Gallium, a group IIIa metal, shares chemical properties with iron. Studies have shown that gallium-based compounds have potential therapeutic activity against certain cancers and infectious microorganisms. By functioning as an iron mimetic, gallium perturbs iron-dependent proliferation processes in tumor cells. Gallium's action on iron homeostasis leads to disruption of ribonucleotide reductase, mitochondrial function, and the regulation of transferrin receptor and ferritin. In addition, gallium nitrate stimulates an increase in mitochondrial reactive oxygen species in cells which triggers downstream upregulation of metallothionein and hemoxygenase-1. Gallium's anti-infective activity against bacteria and fungi results from disruption of microbial iron utilization through mechanisms which include gallium binding to siderophores and downregulation of bacterial iron uptake. Gallium compounds lack cross-resistance to conventional chemotherapeutic drugs and antibiotics thus making them attractive agents for drug development. This review will focus on the mechanisms of action of gallium with emphasis on its interaction with iron and iron proteins. PMID:27150508

  7. Gallium-67 activity in bronchoalveolar lavage fluid in sarcoidosis

    SciTech Connect

    Trauth, H.A.; Heimes, K.; Schubotz, R.; von Wichert, P.

    1986-01-01

    Roentgenograms and gallium-67 scans and gallium-67 counts of BAL fluid samples, together with differential cell counts, have proved to be useful in assessing activity and lung involvement in sarcoidosis. In active pulmonary sarcoidosis gallium-67 scans are usually positive. Quantitation of gallium-67 uptake in lung scans, however, may be difficult. Because gallium-67 uptake and cell counts in BAL fluid may be correlated, we set out to investigate gallium-67 activity in BAL fluid recovered from patient of different groups. Sixteen patients with recently diagnosed and untreated sarcoidosis, nine patients with healthy lungs, and five patients with CFA were studied. Gallium-67 uptake of the lung, gallium-67 activity in the lavage fluid, SACE and LACE levels, and alpha 1-AT activity were measured. Significantly more gallium-67 activity was found in BAL fluid from sarcoidosis patients than in that from CFA patients (alpha = .001) or patients with healthy lungs (alpha = .001). Gallium-67 activity in BAL fluid could be well correlated with the number of lymphocytes in BAL fluid, but poorly with the number of macrophages. Subjects with increased levels of SACE or serum alpha 1-AT showed higher lavage gallium-67 activity than did normals, but no correlation could be established. High gallium-67 activity in lavage fluid may be correlated with acute sarcoidosis or physiological deterioration; low activity denotes change for the better. The results show that gallium-67 counts in BAL fluid reflects the intensity of gallium-67 uptake and thus of activity of pulmonary sarcoidosis.

  8. Radiochemical separation of gallium by amalgam exchange

    USGS Publications Warehouse

    Ruch, R.R.

    1969-01-01

    An amalgam-exchange separation of radioactive gallium from a number of interfering radioisotopes has been developed. A dilute (ca. 0.3%) gallium amalgam is agitated with a slightly acidic solution of 72Ga3+ containing concentrations of sodium thiocyanate and either perchlorate or chloride. The amalgam is then removed and the radioactive gallium stripped by agitation with dilute nitric acid. The combined exchange yield of the perchlorate-thiocyanate system is 90??4% and that of the chloride-thiocyanate system is 75??4%. Decontamination yields of most of the 11 interfering isotopes studied were less than 0.02%. The technique is applicable for use with activation analysis for the determination of trace amounts of gallium. ?? 1969.

  9. NIM Realization of the Gallium Triple Point

    NASA Astrophysics Data System (ADS)

    Xiaoke, Yan; Ping, Qiu; Yuning, Duan; Yongmei, Qu

    2003-09-01

    In the last three years (1999 to 2001), the gallium triple-point cell has been successfully developed, and much corresponding research has been carried out at the National Institute of Metrology (NIM), Beijing, China. This paper presents the cell design, apparatus and procedure for realizing the gallium triple point, and presents studies on the different freezing methods. The reproducibility is 0.03 mK, and the expanded uncertainty of realization of the gallium triple point is evaluated to be 0.17 mK (p=0.99, k=2.9). Also, the reproducibility of the gallium triple point was compared with that of the triple point of water.

  10. Recovery of gallium from aluminum industry residues

    SciTech Connect

    Carvalho, M.S.; Neto, K.C.M.; Nobrega, A.W.; Medeiros, J.A.

    2000-01-01

    A procedure is proposed to recover gallium from flue dust aluminum residues produced in plants by using solid-phase extraction with a commercial polyether-type polyurethane foam (PUF). Gallium can be separated from high concentrations of aluminum, iron, nickel, titanium, vanadium, copper, zinc, sulfate, fluoride, and chloride by extraction with PUF from 3 M sulfuric acid and 3 M sodium chloride concentration medium with at least a 92% efficiency. Gallium backextraction was fast and quantitative with ethanol solution. In all recovery steps commercial-grade reagents could be used, including tap water. The recovered gallium was precipitated with sodium hydroxide solution, purified by dissolution and precipitation, calcinated, and the final oxide was 98.6% pure.

  11. Development of gallium arsenide solar cells

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The potential of ion implantation as a means of developing gallium arsenide solar cells with high efficiency performance was investigated. Computer calculations on gallium arsenide cell characteristics are presented to show the effects of surface recombination, junction space-charge recombination, and built-in fields produced by nonuniform doping of the surface region. The fabrication technology is summarized. Electrical and optical measurements on samples of solar cells are included.

  12. Generator for gallium-68 and compositions obtained therefrom

    DOEpatents

    Neirinckx, Rudi D.; Davis, Michael A.

    1981-01-01

    A generator for obtaining radioactive gallium-68 from germanium-68 bound in a resin containing unsubstituted phenolic hydroxyl groups. The germanium-68 is loaded into the resin from an aqueous solution of the germanium-68. A physiologically acceptable solution of gallium-68 having an activity of 0.1 to 50 millicuries per milliliter of gallium-68 solution is obtained. The solution is obtained from the bound germanium-68 which forms gallium-68 in situ by eluting the column with a hydrochloric acid solution to form an acidic solution of gallium-68. The acidic solution of gallium-68 can be neutralized.

  13. Resonance parameter measurements and analysis of gadolinium

    SciTech Connect

    Leinweber, G.; Barry, D. P.; Trbovich, M. J.; Burke, J. A.; Drindak, N. J.; Knox, H. D.; Ballad, R. V.; Block, R. C.; Danon, Y.; Severnyak, L. I.

    2006-07-01

    The purpose of the present work is to measure the neutron cross sections of gadolinium accurately. Gd has the highest thermal absorption cross section of any natural element. Therefore it is an important element for thermal reactor applications Neutron capture and transmission measurements were performed by the time-of-flight technique at the Rensselaer Polytechnic Inst. (RPI) LINAC facility using metallic and liquid Gd samples. The liquid samples were isotopically-enriched in either {sup 155}Gd or {sup 157}Gd. The capture measurements were made at the 25-m flight station with a sodium iodide detector, and the transmission measurements were performed at 15- and 25-m flight stations with {sup 6}Li glass scintillation detectors. The multilevel R-matrix Bayesian code SAMMY was used to extract resonance parameters. The results of the thermal region analysis are significant. Resonance parameters for the low energy doublet, at 0.025 and 0.032 eV, are presented. The thermal (2200 m/s) capture cross section of {sup 157}Gd has been measured to be 11% smaller than that calculated from ENDF/B-VI updated through release 8. Thermal capture cross sections and capture resonance integrals for each isotope as well as elemental gadolinium are presented. In the epithermal region, natural metal samples were measured in capture and transmission. Neutron interaction data up to 300 eV have been analyzed. Substantial improvement to the understanding of gadolinium cross sections is presented, particularly above 180 eV where the ENDF resolved region for {sup 155}Gd ends. (authors)

  14. Extraction-chromatographic affinage in gadolinium-153 preparation production technology

    SciTech Connect

    Melnik, M.I.; Karelin, E.A.; Kuznetsov, R.A.

    1993-12-31

    The gadolinium 153 preparation is used for production of medical gamma-sources which are applicable in bone densimeters for early diagnostics of osteoporosis. This preparation must meet strict requirements with respect to the content of europium radionuclides and specific activity. In The Research Institute of Atomic Reactors (RIAR) the gadolinium 153 is produced by neutron irradiation of Europium 151. This process is described.

  15. Coupled diffusion of lithium and yttrium (+HREE) in garnet

    NASA Astrophysics Data System (ADS)

    Cahalan, R. C.; Kelly, E. D.; Carlson, W. D.

    2012-12-01

    Partially resorbed garnets from the aureole of the Makhavinekh Lake Pluton (MLP) developed strong compositional gradients at their rims for both major and trace elements, due to restricted intracrystalline diffusion during resorption. Similarities between these stranded diffusion profiles for Li and Y+HREEs, as well as the inversion of expected partitioning relationships for Li between garnet rims and cordierite, provide evidence that the rate of intracrystalline diffusion of Li in garnet is linked to, and thus no more rapid than, the diffusivity of Y+HREEs. This linkage is interpreted to result from the requirement for local charge balance by means of the coupled substitution of Li+ + (Y,HREE)%^{+3} for two divalent cations in dodecahedral sites in garnet. Stranded diffusion profiles for Li, Y, and Yb have been measured on one central section and six non-centered sections through garnets at distances of 1100, 1500, and 2400 m from the intrusive contact, using LA-ICPMS with a rectangular slit (5x50 μm) aperture to achieve optimal spatial resolution. These distances correspond to peak temperatures during resorption of 894, 882, and 846 °C, respectively, at 0.53 GPa. The Li profiles measured in these garnets display nearly homogenous concentrations in the interiors and sharp increases at the rims, across regions 25-50 μm wide. These profiles also correlate strongly with measured Y+HREE profiles, which exhibit flat interiors leading to sharp gradients, with increases starting roughly 25-50 μm from the garnet edge. Dutrow et al. (1986, Contrib Mineral Petrol 94: 496-506) measured equilibrium partitioning of Li among various minerals, including garnet and cordierite, and found that Li normally partitions preferentially into cordierite over garnet. Because cordierite is mineralogically dominant in the reaction coronas of the MLP garnets, the Li build-up at the garnet rims is the inverse of what would normally be expected. The likely explanation for this observation

  16. Light deflection in gadolinium molybdate ferroelastic crystals

    NASA Astrophysics Data System (ADS)

    Staniorowski, Piotr; Bornarel, Jean

    2000-02-01

    The deflection of a He-Ne light beam by polydomain gadolinium molybdate (GMO) crystals has been studied with respect to incidence angle icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i on the sample at room temperature. The A and B deflected beams do not cross each other during the icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i variation, in contrast to results and calculations previously published. The model using the Fresnel equation confirms this result. The model presented is more accurate for numerical calculation than that using the Huygens construction.

  17. Towards modeling gadolinium-lead-borate glasses

    SciTech Connect

    Rada, S.; Ristoiu, T.; Rada, M.; Coroiu, I.; Maties, V.; Culea, E.

    2010-01-15

    Infrared spectra of gadolinium-lead-borate glasses of the xGd{sub 2}O{sub 3}.(100 - x)[3B{sub 2}O{sub 3}.PbO] system, where x = 0, 5, 10, 15, 25, 35 and 50 mol.%, have been recorded to explore the role of content of gadolinium ions behaving as glass modifier. The FTIR spectroscopy data for the xGd{sub 2}O{sub 3}.(1 - x)[3B{sub 2}O{sub 3}.PbO] glasses show the structural role of lead ions as a network-formers and of the gadolinium ions network modifiers. Adding of the rare earth ion up to 35 mol.% into the glass matrix, the IR bands characteristic to the studied glasses become sharper and more pronounced. Structural changes, as recognized by analyzing band shapes of IR spectra, revealed that Gd{sub 2}O{sub 3} causes a change from the continuous borate network to the continuous lead-borate network interconnected through Pb-O-B and B-O-B bridges and the transformation of some tetrahedral [BO{sub 4}] units into trigonal [BO{sub 3}] units. Then, gadolinium ions have affinity towards [BO{sub 3}] structural units which contain non-bridging oxygens necessary for the charge compensation because the more electronegative [BO{sub 3}] structural units were implied in the formation of B-O-Gd bonds and the transformation of glass network into a glass ceramic. We propose a possible structural model of building blocks for the formation of continuous random 3B{sub 2}O{sub 3}.PbO network glass used by density functional theory (DFT) calculations. DFT calculations show that lead atoms occupy three different sites in the proposed model. The first is coordinated with six oxygen atoms forming distorted octahedral geometries. The second lead atom has an octahedral oxygen environment and the five longer Pb-O bonds are considered as participating in the metal coordination scheme. The third lead atom has ionic character. In agreement with the results offered by the experimental FTIR data, the theoretical IR data confirm that our proposed structure is highly possible.

  18. Geothermobarometric history of subduction recorded by quartz inclusions in garnet

    NASA Astrophysics Data System (ADS)

    Ashley, Kyle T.; Caddick, Mark J.; Steele-MacInnis, Matthew J.; Bodnar, Robert J.; Dragovic, Besim

    2014-02-01

    Burial histories of subduction zone rocks are often difficult to accurately constrain, owing to a lack of robust mineral geobarometers applicable to high pressure mineral assemblages. Knowledge of the depth-histories of subduction is, however, required for our understanding of global geochemical cycles, subduction-related seismicity, and the evolution of destructive tectonic boundaries. The high spatial resolution of quartz inclusion geobarometry can be used to determine pressure evolution during metamorphic growth of individual garnet crystals. Quartz inclusions in garnet from Sifnos, Greece, preserve such a record of the pressure of garnet growth, allowing detailed reconstruction of the metamorphic evolution of these rocks. Pressure-dependent Raman spectra of quartz inclusions were combined with elastic modeling to infer the conditions at which they were trapped during garnet growth. All measured inclusions suggest that garnet growth occurred between 19 and 20.5 kbars, with little evidence for significant pressure variation during the garnet growth interval, which is interpreted to record ˜100°C of heating. Coupled with thermometry and geochronology, these results show that early, cold burial was followed by a phase of rapid heating, which immediately preceded exhumation. Garnet growth occurred primarily during this heating phase.

  19. Terbium photoluminescence in yttrium aluminum garnet xerogels

    SciTech Connect

    Maliarevich, G. K.; Gaponenko, N. V. Mudryi, A. V.; Drozdov, Yu. N.; Stepikhova, M. V.; Stepanova, E. A.

    2009-02-15

    Based on a colloidal solution containing terbium, yttrium, and aluminum metal ions, a powder was synthesized and films of terbium-doped yttrium aluminum garnet Tb{sub 0.15}Y{sub 2.85}Al{sub 5}O{sub 12} were grown on single-crystal silicon and porous anodic alumina. Annealing of the sample in a temperature range from 200-1100 deg. C results in an increase in the photoluminescence intensity in the wavelength range from 480-640 nm, which is caused by Tb{sup 3+} ion intra-atomic transitions {sup 5}D{sub 4}{sup {yields}}{sup 7}F{sub j} (j = 3, 4, 5, 6). Annealing at 900 deg. C and higher temperatures gives rise to low-intensity photoluminescence bands in the region of 667 and 681 nm, which correspond to transitions {sup 5}D{sub 4}{sup {yields}}{sup 7}F{sub 0}, {sup 5}D{sub 4}{sup {yields}}{sup 7}F{sub 1}, and room-temperature Stark term splitting, which suggests the existence of a crystalline environment of Tb{sup 3+} ions. The FWHM of spectral lines in the region of 543 nm decreases from {approx}10 to {approx}(2-3) nm as the xerogel annealing temperature is increased from 700 to 900 deg. C and higher. Three bands with maxima at 280, 330, and 376 nm, which correspond to Tb{sup 3+} ion transitions {sup 7}F{sub 6}{sup {yields}}{sup 5}I{sub 8}, {sup 5}L{sub 6}, {sup 5}G{sub 6}, {sup 5}D{sub 3}, are observed in the photoluminescence excitation spectra of the studied structures for the emission wavelength at 543 nm. X-ray diffraction detected the formation of a crystalline phase for a terbium-doped yttrium aluminum garnet powder after annealing at 1100 deg. C.

  20. Thermochromism in yttrium iron garnet compounds.

    PubMed

    Serier-Brault, Hélène; Thibault, Lucile; Legrain, Magalie; Deniard, Philippe; Rocquefelte, Xavier; Leone, Philippe; Perillon, Jean-Luc; Le Bris, Stéphanie; Waku, Jean; Jobic, Stéphane

    2014-12-01

    Polycrystalline yttrium iron garnet (Y3Fe5O12, hereafter labeled YIG) has been synthesized by solid-state reaction, characterized by X-ray diffraction, Mössbauer spectroscopy, and UV-vis-NIR diffuse reflectance spectroscopy, and its optical properties from room temperature (RT) to 300 °C are discussed. Namely, its greenish color at RT is assigned to an O(2-) → Fe(3+) ligand-to-metal charge transfer at 2.57 eV coupled with d-d transitions peaking at 1.35 and 2.04 eV. When the temperature is raised, YIG displays a marked thermochromic effect; i.e., the color changes continuously from greenish to brownish, which offers opportunities for potential application as a temperature indicator for everyday uses. The origin of the observed thermochromism is assigned to a gradual red shift of the ligand-to-metal charge transfer with temperature while the positioning in energy of the d-d transitions is almost unaltered. Attempts to achieve more saturated colors via doping (e.g., Al(3+), Ga(3+), Mn(3+), ...) remained unsuccessful except for chromium. Indeed, Y3Fe5O12:Cr samples exhibit at RT the same color than the undoped garnet at 200 °C. The introduction of Cr(3+) ions strongly impacts the color of the Y3Fe5O12 parent either by an inductive effect or, more probably, by a direct effect on the electronic structure of the undoped material with formation of a midgap state. PMID:25382733

  1. Window structure for passivating solar cells based on gallium arsenide

    NASA Technical Reports Server (NTRS)

    Barnett, Allen M. (Inventor)

    1985-01-01

    Passivated gallium arsenide solar photovoltaic cells with high resistance to moisture and oxygen are provided by means of a gallium arsenide phosphide window graded through its thickness from arsenic rich to phosphorus rich.

  2. Controlled Electrochemical Deformation of Liquid-Phase Gallium.

    PubMed

    Chrimes, Adam F; Berean, Kyle J; Mitchell, Arnan; Rosengarten, Gary; Kalantar-zadeh, Kourosh

    2016-02-17

    Pure gallium is a soft metal with a low temperature melting point of 29.8 °C. This low melting temperature can potentially be employed for creating optical components with changeable configurations on demand by manipulating gallium in its liquid state. Gallium is a smooth and highly reflective metal that can be readily maneuvered using electric fields. These features allow gallium to be used as a reconfigurable optical reflector. This work demonstrates the use of gallium for creating reconfigurable optical reflectors manipulated through the use of electric fields when gallium is in a liquid state. The use of gallium allows the formed structures to be frozen and preserved as long as the temperature of the metal remains below its melting temperature. The lens can be readily reshaped by raising the temperature above the melting point and reapplying an electric field to produce a different curvature of the gallium reflector. PMID:26820807

  3. Vacuum annealed cerium-substituted yttrium iron garnet films on non-garnet substrates for integrated optical circuits

    SciTech Connect

    Goto, Taichi; Ross, C. A.; Eto, Yu; Kobayashi, Keiichi; Haga, Yoji; Inoue, Mitsuteru

    2013-05-07

    Polycrystalline cerium-substituted yttrium iron garnet (CeYIG) showing large Faraday rotation (FR) in the near-IR region was grown on non-garnet (synthetic fused silica, Si, and Si-on-insulator) substrates by sputtering followed by thermal annealing in vacuum. The FR of the films is comparable to the single crystal value. Structural characterization, magnetic properties, refractive index, extinction coefficient, surface topography, and FR vs. wavelength were measured and the magnetooptical figure of merit was compared with that of CeYIG films on garnet substrates.

  4. Magnetohydrodynamic convection in liquid gallium.

    NASA Astrophysics Data System (ADS)

    Juel, Anne; Mullin, Tom

    1996-11-01

    Results are presented from a study of convective flow of liquid gallium confined in a rectangular cavity of length/depth ratio 4, subject to a horizontal temperature gradient. The origin of the problem lies in the area of crystal growth, where it is known that the dynamics of the fluid flow in semiconductor geometries are of vital importance in determining the quality of the crystal. Application of a magnetic field, for instance, damps out the time-dependent convection in the liquid phase that creates striations in the crystal and reduces its quality. Prior to the study of dynamical phenomena, the nature of the steady flow is investigated. In the absence of a magnetic field, a direct comparison between experimental results, the Hadley cell model and two and three-dimensional numerical simulations clearly shows that the flow is three-dimensional in nature. The effect of a uniform transverse magnetic field is then examined. Direct comparison between experimental results and three dimensional simulations shows identical damping of the convective circulation. Numerically, it is found that the magnetic field restricts the flow to 2d motion. Experimentally, this is confirmed from the measurement of isotherms. Hence, the detailed knowledge of the steady flow provides us with a robust basis for studies of time dependent behaviour.

  5. Single gallium nitride nanowire lasers.

    PubMed

    Johnson, Justin C; Choi, Heon-Jin; Knutsen, Kelly P; Schaller, Richard D; Yang, Peidong; Saykally, Richard J

    2002-10-01

    There is much current interest in the optical properties of semiconductor nanowires, because the cylindrical geometry and strong two-dimensional confinement of electrons, holes and photons make them particularly attractive as potential building blocks for nanoscale electronics and optoelectronic devices, including lasersand nonlinear optical frequency converters. Gallium nitride (GaN) is a wide-bandgap semiconductor of much practical interest, because it is widely used in electrically pumped ultraviolet-blue light-emitting diodes, lasers and photodetectors. Recent progress in microfabrication techniques has allowed stimulated emission to be observed from a variety of GaN microstructures and films. Here we report the observation of ultraviolet-blue laser action in single monocrystalline GaN nanowires, using both near-field and far-field optical microscopy to characterize the waveguide mode structure and spectral properties of the radiation at room temperature. The optical microscope images reveal radiation patterns that correlate with axial Fabry-Perot modes (Q approximately 10(3)) observed in the laser spectrum, which result from the cylindrical cavity geometry of the monocrystalline nanowires. A redshift that is strongly dependent on pump power (45 meV microJ x cm(-2)) supports the idea that the electron-hole plasma mechanism is primarily responsible for the gain at room temperature. This study is a considerable advance towards the realization of electron-injected, nanowire-based ultraviolet-blue coherent light sources. PMID:12618824

  6. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN...

  7. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN...

  8. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN...

  9. Phase Change of Gallium Enables Highly Reversible and Switchable Adhesion.

    PubMed

    Ye, Zhou; Lum, Guo Zhan; Song, Sukho; Rich, Steven; Sitti, Metin

    2016-07-01

    Gallium exhibits highly reversible and switchable adhesion when it undergoes a solid-liquid phase transition. The robustness of gallium is notable as it exhibits strong performance on a wide range of smooth and rough surfaces, under both dry and wet conditions. Gallium may therefore find numerous applications in transfer printing, robotics, electronic packaging, and biomedicine. PMID:27146217

  10. Magneto-Optical Experiments on Rare Earth Garnet Films.

    ERIC Educational Resources Information Center

    Tanner, B. K.

    1980-01-01

    Describes experiments in which inexpensive or standard laboratory equipment is used to measure several macroscopic magnetic properties of thin rare earth garnet films used in the manufacture of magnetic bubble devices. (Author/CS)

  11. Symplectites in garnet megacrysts captured by alkali mafic magma

    NASA Astrophysics Data System (ADS)

    Aseeva, Anna; Vysotskiy, Sergey; Karabtsov, Alexander; Alexandrov, Igor; Chashchin, Alexander

    2014-05-01

    Megacrysts are widespread in Cenozoic alkali-basalts of many volcanic provinces of the world. Garnet megacrysts containing symplectites are the most interesting, as can be used for reconstruction of physical and chemical conditions in liquid basalt at the moment of garnet crystal capture. The collection of garnet megacrysts and garnet-pyroxene aggregates from Shavaryn-Tsaram (Hangaj plateau, Mongolia) and Bartoj (Dzhida basaltic field, Russia) paleovolcanoes has studied. Cenozoic alkali basaltic volcanism of these two spatially separated areas is considered to be related to a uniform process of lithosphere spreading in Baikal and related Central Asian rift systems. The studying of garnet-pyroxene aggregate and fragments of garnet megacrysts from these two paleovolcanoes revealed two mineral associations: primary and secondary. The former includes garnet and clinopyroxene, the letter (symplectite) is presented by products of garnet disintegration (clinopyroxene remain unaltered). At least two paragenesis can be allocated: 1) shpinel - plagioclase-olivine sometimes with gedrite and orthopyroxene; 2) olivine (with glass). Experimental modeling of decomposition process in garnet megacryst has been carried out with the help of 'Selector' softwear at various P-T parameters. Physical and chemical conditions of this paragenesis occurrence have also been estimated by up-to-date geothermometers and geobarometers (T 950-1000 C, P 4-4.5 kbar. Conclusions: 1. Garnet megacrysts are apparently in non-equilibrium with alkali-basalts. They were formed in conditions corresponding to zones of mantle plums at the bottom of crust, in magmatic chambers at constant infiltration of fluid. Subsequently megacrysts were captured by alkali-basalt magma and taken out to the surface. 2. Kelyphitic rims on garnet megacrysts is a result of partial melting of megacrysts on interaction with the hosting alkali basaltic rock. During melting garnet transforms with the formation of Na-K glass and Mg

  12. Garnet--An Essential Industrial Mineral and January's Birthstone

    USGS Publications Warehouse

    Evans, James G.; Moyle, Phillip R.; Frank, David G.; Olson, Donald W.

    2006-01-01

    Garnet is one of the most common minerals in the world. Occurring in almost any color, it is most widely known for its beauty as a gem stone. Because of its hardness and other properties, garnet is also an essential industrial mineral used in abrasive products, non-slip surfaces, and filtration. To help manage our Nation's resources of such essential minerals, the U.S. Geological Survey (USGS) provides crucial data and scientific information to industry, policymakers, and the public.

  13. Indus Basin sediment provenance constrained using garnet geochemistry

    NASA Astrophysics Data System (ADS)

    Alizai, Anwar; Clift, Peter D.; Still, John

    2016-08-01

    The chemical and mineralogical diversity of western Himalayan rivers is the result of each of them draining different tectonic and lithologic units, whose character is partly transferred to the sediments carried by those rivers. Garnet geochemistry was employed to discriminate provenance in the Indus River system. We characterized the geochemistry of garnet sediment grains from the modern Indus and all its major tributaries, as well as the related but ephemeral Ghaggar-Hakra River and dune sand from the Thar Desert. Garnet geochemistry displays a unique signature for the Himalayan rivers on the east of the Indus drainage compared to those in the western drainage. The trunk Indus remains distinct because of the dominant arc-type pyrope-garnet derived from Kohistan and the Karakoram. The Jhellum, which lies just east of the modern Indus has modest concentrations of arc-type pyrope garnets, which are more depleted in the other eastern tributaries. Their presence in the Jhellum reflects recycling of trunk Indus garnets through the Miocene Siwalik Group foreland sedimentary rocks. The Thar Desert dune sample contains significant numbers of grains similar to those in the trunk Indus, likely reworked by monsoon winds from the SW. Our data further indicate the presence of a Himalayan river channel east of the present Indus, close to the delta, in the Nara River valley during the middle Holocene. Sands from this channel cannot be distinguished from the Indus on the basis of their garnet geochemistry alone but we favour their sedimentation from an Indus channel rather than reworking of desert sands by another stream. The garnet geochemistry shows some potential as a provenance tool, but cannot be used alone to uniquely discriminate Indus Basin provenance.

  14. Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control.

    PubMed

    Sarkar, Sujoy; Sampath, S

    2016-05-11

    A ternary, ionically conducting, deep eutectic solvent based on acetamide, urea and gallium nitrate is reported for the electrodeposition of gallium nitride/gallium indium nitride under ambient conditions; blue and white light emitting photoluminescent deposits are obtained under potential control. PMID:27074315

  15. Garnets from the Camafuca-Camazambo kimberlite (Angola).

    PubMed

    Correia, Eugénio A; Laiginhas, Fernando A T P

    2006-06-01

    This work presents a geochemical study of a set of garnets, selected by their colors, from the Camafuca-Camazambo kimberlite, located on northeast Angola. Mantle-derived garnets were classified according to the scheme proposed by Grütter et al. (2004) and belong to the G1, G4, G9 and G10 groups. Both sub-calcic (G10) and Ca-saturated (G9) garnets, typical, respectively, of harzburgites and lherzolites, were identified. The solubility limit of knorringite molecule in G10D garnets suggests they have crystallized at a minimum pressure of about 40 to 45 kbar (4-4.5 GPa). The occurrence of diamond stability field garnets (G10D) is a clear indicator of the potential of this kimberlite for diamond. The chemistry of the garnets suggests that the source for the kimberlite was a lherzolite that has suffered a partial melting that formed basaltic magma, leaving a harzburgite as a residue. PMID:16710568

  16. Alkali metal and alkali earth metal gadolinium halide scintillators

    DOEpatents

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  17. Gadolinium enrichment technology at Lawrence Livermore National Laboratory

    NASA Astrophysics Data System (ADS)

    Haynam, Christopher A.; Comaskey, Brian J.; Conway, John; Eggert, Jon; Glaser, Joseph; Ng, Edmund W.; Paisner, Jeffrey A.; Solarz, Richard W.; Worden, Earl F.

    1993-05-01

    A method based on polarization selectivity and three step laser photoionization is presented for separation of the odd isotopes of gadolinium. Measurements of the spectroscopic parameters needed to quantify the excitation pathway are discussed. Model results are presented for the efficiency of photoionization. The vapor properties of electron beam vaporized gadolinium are presented which show dramatic cooling during the expansion of the hot dense vapor into a vacuum. This results in a significant increase in the efficiency of conversion of natural feed into enriched product in the AVLIS process. Production of enriched gadolinium for use in commercial power reactors appears to be economically viable using technology in use at LLNL.

  18. Radiation damage of gallium arsenide production cells

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Joslin, D.; Garlick, J.; Lillington, D.; Gillanders, M.; Cavicchi, B.; Scott-Monck, J.; Kachare, R.; Anspaugh, B.

    1987-01-01

    High efficiency liquid phase epitaxy (LPE) gallium arsenide cells were irradiated with 1 Mev electrons up to fluences of 1 times 10 to the 16th power cm-2. Measurements of spectral response and dark and illuminated I-V data were made at each fluence and then, using computer codes, the experimental data was fitted to gallium arsenide cell models. In this way it was possible to determine the extent of the damage, and hence damage coefficients in both the emitter and base of the cell.

  19. /sup 67/Gallium lung scans in progressive systemic sclerosis

    SciTech Connect

    Baron, M.; Feiglin, D.; Hyland, R.; Urowitz, M.B.; Shiff, B.

    1983-08-01

    /sup 67/Gallium lung scans were performed in 19 patients with progressive systemic sclerosis (scleroderma). Results were expressed quantitatively as the /sup 67/Gallium Uptake Index. The mean total pulmonary /sup 67/Gallium Uptake Index in patients was significantly higher than that in controls (41 versus 25), and 4 patients (21%) fell outside the normal range. There were no clinical or laboratory variables that correlated with the /sup 56/Gallium uptake. Increased pulmonary /sup 67/Gallium uptake in scleroderma may prove useful as an index of pulmonary disease activity.

  20. Four Terminal Gallium Nitride MOSFETs

    NASA Astrophysics Data System (ADS)

    Veety, Matthew Thomas

    All reported gallium nitride (GaN) transistors to date have been three-terminal devices with source, drain, and gate electrodes. In the case of GaN MOSFETs, this leaves the bulk of the device at a floating potential which can impact device threshold voltage. In more traditional silicon-based MOSFET fabrication a bulk contact can be made on the back side of the silicon wafer. For GaN grown on sapphire substrates, however, this is not possible and an alternate, front-side bulk contact must be investigated. GaN is a III-V, wide band gap semiconductor that as promising material parameters for use in high frequency and high power applications. Possible applications are in the 1 to 10 GHz frequency band and power inverters for next generation grid solid state transformers and inverters. GaN has seen significant academic and commercial research for use in Heterojunction Field Effect Transistors (HFETs). These devices however are depletion-mode, meaning the device is considered "on" at zero gate bias. A MOSFET structure allows for enhancement mode operation, which is normally off. This mode is preferrable in high power applications as the device has lower off-state power consumption and is easier to implement in circuits. Proper surface passivation of seminconductor surface interface states is an important processing step for any device. Preliminary research on surface treatments using GaN wet etches and depletion-mode GaN devices utilizing this process are discussed. Devices pretreated with potassium pursulfate prior to gate dielectric deposition show significant device improvements. This process can be applied to any current GaN FET. Enhancement-mode GaN MOSFETs were fabricated on magnesium doped p-type Wurtzite gallium nitride grown by Metal Organic Chemical Vapor Deposition (MOCVD) on c-plane sapphire substrates. Devices utilized ion implant source and drain which was activated under NH3 overpressure in MOCVD. Also, devices were fabricated with a SiO2 gate dielectric

  1. Removal of gadolinium nitrate from heavy water

    SciTech Connect

    Wilde, E.W.

    2000-03-22

    Work was conducted to develop a cost-effective process to purify 181 55-gallon drums containing spent heavy water moderator (D2O) contaminated with high concentrations of gadolinium nitrate, a chemical used as a neutron poison during former nuclear reactor operations at the Savannah River Site (SRS). These drums also contain low level radioactive contamination, including tritium, which complicates treatment options. Presently, the drums of degraded moderator are being stored on site. It was suggested that a process utilizing biological mechanisms could potentially lower the total cost of heavy water purification by allowing the use of smaller equipment with less product loss and a reduction in the quantity of secondary waste materials produced by the current baseline process (ion exchange).

  2. Garnet: a key to unraveling Earth's dynamic lithosphere

    NASA Astrophysics Data System (ADS)

    Smit, M. A.; Scherer, E. E.; Mezger, K.; Lee, J.; Ratschbacher, L.; Kooijman, E.; Stearns, M. A.

    2015-12-01

    Garnet enables constraints on all parameters relevant to lithosphere studies: pressure, temperature, strain, and time. This aspect, in combination with its widespread occurrence in metamorphic rocks and ability to resist retrogression, make the mineral a prime target in research into the dynamics of mountain belts. Garnet-based petrological and geochemical tools have diversified and improved as a result of recent advancements in spatial and analytical resolution. In particular, our ability to obtain precise age constraints using garnet Lu-Hf and Sm-Nd geochronology, and interpret these in a geological context has greatly improved. This contribution highlights a series of recent enhancements to the garnet toolkit and demonstrates its versatility in two case studies set in an archetypal collisional orogen: the Pamir-Himalaya-Tibet mountain chain. To enable a more effective use of garnet geochronology, we investigated the retentiveness of Lu-Hf and Sm-Nd isotope signatures in naturally metamorphosed garnet. Diffusive re-equilibration of these signatures is shown to occur to a minor, if not insignificant, extent during crustal metamorphism, thus firmly establishing these methods as reliable geochronometers. Diffusive major-element zoning analysis of the same garnet led to the development of a new thermometric tool, which was shown to provide reliable temperature estimates for a wide variety of rocks and terranes. We used Lu-Hf garnet geochronology to show that mid-crustal flow and 'Barrovian-type' metamorphism of rocks now exposed in the North Himalayan Gneiss Domes in Central Tibet commenced in the early Eocene. This result is the first to confirm that crustal thickening and contraction in the Tibetan Himalaya was broadly synchronous with the collision between Greater India and Eurasia. Garnet dating and thermometry, and rutile U-Pb thermochronology in the Pamir revealed a history of heating to 750-830 °C, commencing at 37 Ma in the South Pamir and occurring

  3. Evaluation of thermobarometers for garnet peridotites

    NASA Technical Reports Server (NTRS)

    Finnerty, A. A.; Boyd, F. R.

    1984-01-01

    Twenty-one geothermometers and six geobarometers are evaluated for accuracy and precision for garnet lherzolites, with a suite of well-equilibrated xenoliths from kimberlites of northern Lesotho. Accuracy was tested by comparison of P-T estimates for a diamond-bearing and a graphite-bearing xenolith with the experimentally determined diamond-graphite univariant curve and by comparison of P-T estimates for phlogopite-bearing xenoliths to the high-temperature stability limit of phlogopite. Precision was evaluated by measuring the scatter of P-T estimates for each of four xenoliths from a wide range of P and T when many point analyses of the constituent minerals are used for P-T estimation. Most satisfactory is a thermobarometer composed of the uncorrected diopside-enstatite miscibility gap of Lindsley and Dixon (1976), combined with the uncorrected isopleths for aluminum in enstatite coexisting with pyrope of MacGregor (1974). The inflection observed in the northern Lesotho paleogeotherm cannot be an artifact of the method of temperature estimation.

  4. Multistep sintering to synthesize fast lithium garnets

    NASA Astrophysics Data System (ADS)

    Xu, Biyi; Duan, Huanan; Xia, Wenhao; Guo, Yiping; Kang, Hongmei; Li, Hua; Liu, Hezhou

    2016-01-01

    A multistep sintering schedule is developed to synthesize Li7La3Zr2O12 (LLZO) doped with 0.2 mol% Al3+. The effect of sintering steps on phase, relative density and ionic conductivity of Al-doped LLZO has been evaluated using powder X-Ray diffraction (XRD), scanning electron microscopy (SEM), 27Al magic spinning nuclear magnetic resonance (NMR) spectroscopy and electrochemical impedance spectroscopy (EIS). The results show that by holding the sample at 900 °C for 6 h, the mixture of tetragonal and cubic garnet phases are obtained; by continuously holding at 1100 °C for 6 h, the tetragonal phase completely transforms into cubic phase; by holding at 1200 °C, the relative density increases without decomposition of the cubic phase. The Al-LLZO pellets after multistep sintering exhibit cubic phase, relative density of 94.25% and ionic conductivity of 4.5 × 10-4 S cm-1 at room temperature. Based on the observation, a sintering model is proposed and discussed.

  5. Thermal conductivity of garnet laser crystals

    NASA Astrophysics Data System (ADS)

    Wang, B. S.; Jiang, H. H.; Zhang, Q. L.; Yin, S. T.

    2008-03-01

    The thermal conductivities of nine different synthetic garnet laser crystals at various temperatures, range from 273 to 393 K have been investigated by instantaneous measurement method. The results show that the thermal conductivity of each crystal decreases exponentially with the temperature increasing. It is notable that, different host crystals, such as YAG, GGG, and GSGG have different thermal conductivity, which is attributed to the crucial influence of crystal structure and composition on the absolute value of their thermal conductivity. Moreover, with respect to the same host crystals, the impurity scattering also results in the change of their thermal conductivities. This is because that a higher concentration of doped ions leads to a more phonon scattering modes, which results in a shorter mean free path of the phonons and a lower thermal conductivity. In addition, different host crystals have various dependences of thermal conductivity on dopant concentration. This works provides reliable and useful information for designing high power, high quality, and high stability laser devices.

  6. Thermal conductivity of synthetic garnet laser crystals

    NASA Astrophysics Data System (ADS)

    Wang, B. S.; Jiang, H. H.; Zhang, Q. L.; Yin, S. T.

    2007-07-01

    The thermal conductivities of nine different synthetic garnet laser crystals at various temperatures, range from 273 to 393K have been investigated by instantaneous measurement method. The results show that the thermal conductivity of each crystal decreases exponentially with the temperature increasing. It is notable that, different host crystals, such as YAG, GGG, and GSGG have different thermal conductivity, which is attributed to the crucial influence of crystal structure and composition on the absolute value of their thermal conductivity. Moreover, with respect to the same host crystals, the impurity scattering also results in the change of their thermal conductivities. This is because that a higher concentration of doped ions leads to a more phonon scattering modes, which results in a shorter mean free path of the phonons and a lower thermal conductivity. In addition, different host crystals have various dependences of thermal conductivity on dopant concentration. This works provides reliable and useful information for designing high power, high quality, and high stability laser devices.

  7. Synthesis of gadolinium oxide magnetoliposomes for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Roberts, Danielle; Zhu, Weibe L.; Frommen, Christoph M.; Rosenzweig, Zeev

    2000-05-01

    A method for the synthesis of gadolinium oxide magnetoliposomes, i.e., nanosized gadolinium oxide magnetic particles coated by a phospholipid membrane, is presented. Magnetoliposomes were prepared by reacting lauric acid coated gadolinium oxide nanoparticles with dimyristoylphosphatidylcholine liposomes prepared using a direct injection method. The gadolinium oxide magnetoliposomes were characterized using transmission electron microscopy imaging, x-ray diffraction, and fluorescence. The magnetic properties of the magnetoliposomes were investigated with a superconducting quantum interference device magnetometer and nuclear magnetic resonance (NMR) spectrometry. Our results indicate that the magnetoliposomes contain approximately spherical nanoparticles averaging 20 nm in diameter. The occurrence of a phospholipid bilayer surrounding the magnetic particles is confirmed both by transmission electron micrographs of samples negatively stained with uranyl acetate and by digital fluorescence imaging microscopy measurements of magnetoliposomes labeled with fluorescein. The particles are paramagnetic at room temperature. NMR measurements show that the ratio between the relaxivities of the particles depends largely on their preparation.

  8. Presumed Multiple Metasomatism underneath the Colorado Plateau; Decoding from Chemistry and Inclusion/Lamella Mineralogy of Diverse Garnets from the Garnet Ridge, Northern Arizona

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Ogasawara, Y.

    2015-12-01

    Various garnets containing the information on mantle petrology and related metasomatism occur at the Garnet Ridge, Colorado Plateau. The origins of garnets range from deep mantle to shallow continental crust. These garnets were delivered by kimberlitic diatreme of 30 Ma (Smith et al. 2004). We have classified the garnets into 10 groups (A to J, see figure) by naked eye observation, major chemistry, minor Na-Ti-P, inclusion/lamella mineralogy. Among them, groups A to D are of mantle origin, E to G of subducted oceanic crust origin, and H to J of continental crust origin. We summarized results as in the followings. A: Cr and pyrope-rich garnet has Cr2O3(0.8-6.3 wt.%) and inclusions of Ol, Cpx, Opx, Ti-Chu/Chn and carbonates, indicating carbonated garnet lherzolites as host. Cr contents negatively correlates with Na-Ti-P contents and occurrence of exsolved Rt, Ilm and crichtonite. This indicates Cr-rich end-member is the most "primitive" mantle garnet before metasomatism. B: Pyrope-rich reddish brown garnet of peridotitic origins was subdivided into 4 subgroups (B1 to B4, see figure). Compositional range in Ca-Mg-Fe triangle expands to Fe-rich side from group A. Exsolved Na-bearing amphibole and inclusions of Ap, carbonates and fluid were identified. These indicate metasomatism of group A. C: Garnet megacryst is coarse-grained garnet (2-10 cm across) with crystal faces. This garnet has wide chemical variation plotted in the center area of Ca-Mg-Fe triangle. D: Garnet aggregate has similar chemistry of group C and is composed of several grains. Grain boundaries of garnet were recognized by Rt, Ilm and other minerals and oscillatory zonings of Ca, Mg, Fe and Na-Ti-P. Fluid inclusions of groups C and D suggest these garnets might crystalized from fluid. E: Garnet in eclogite and F: Garnet in metasomatized eclogite are xenolith samples (the Fallaron Plate origin?). Aggregate of Zo+Ab contained in group E indicates decomposed precursor lawsonite inclusion. G: Quartz

  9. Structure and thermodynamics of uranium-containing iron garnets

    DOE PAGESBeta

    Guo, Xiaofeng; Navrotsky, Alexandra; Kukkadapu, Ravi K.; Engelhard, Mark H.; Lanzirotti, Antonio; Newville, Matthew; Ilton, Eugene S.; Sutton, Stephen R.; Xu, Hongwu

    2016-06-14

    Use of crystalline garnet as a waste form phase appears to be advantageous for accommodating actinides from nuclear waste. Previous studies show that large amounts of uranium (U) and its analogues such as cerium (Ce) and thorium (Th) can be incorporated into the garnet structure. In this study, we synthesized U loaded garnet phases, Ca3UxZr2–xFe3O12 (x = 0.5–0.7), along with the endmember phase, Ca3(Zr2)SiFe3+2O12, for comparison. The oxidation states of U were determined by X-ray photoelectron and absorption spectroscopies, revealing the presence of mixed pentavalent and hexavalent uranium in the phases with x = 0.6 and 0.7. The oxidation statesmore » and coordination environments of Fe were measured using transmission 57Fe-Mössbauer spectroscopy, which shows that all iron is tetrahedrally coordinated Fe3+. U substitution had a significant effect on local environments, the extent of U substitution within this range had a minimal effect on the structure, and unlike in the x = 0 sample, Fe exists in two different environments in the substituted garnets. The enthalpies of formation of garnet phases from constituent oxides and elements were first time determined by high temperature oxide melt solution calorimetry. The results indicate that these substituted garnets are thermodynamically stable under reducing conditions. Furthermore, our structural and thermodynamic analysis further provides explanation for the formation of natural uranium garnet, elbrusite-(Zr), and supports the potential use of Ca3UxZr2–xFe3O12 as viable waste form phases for U and other actinides.« less

  10. Structure and thermodynamics of uranium-containing iron garnets

    NASA Astrophysics Data System (ADS)

    Guo, Xiaofeng; Navrotsky, Alexandra; Kukkadapu, Ravi K.; Engelhard, Mark H.; Lanzirotti, Antonio; Newville, Matthew; Ilton, Eugene S.; Sutton, Stephen R.; Xu, Hongwu

    2016-09-01

    Use of crystalline garnet as a waste form phase appears to be advantageous for accommodating actinides from nuclear waste. Previous studies show that large amounts of uranium (U) and its analogues such as cerium (Ce) and thorium (Th) can be incorporated into the garnet structure. In this study, we synthesized U loaded garnet phases, Ca3UxZr2-xFe3O12 (x = 0.5-0.7), along with the endmember phase, Ca3(Zr2)SiFe3+2O12, for comparison. The oxidation states of U were determined by X-ray photoelectron and absorption spectroscopies, revealing the presence of mixed pentavalent and hexavalent uranium in the phases with x = 0.6 and 0.7. The oxidation states and coordination environments of Fe were measured using transmission 57Fe-Mössbauer spectroscopy, which shows that all iron is tetrahedrally coordinated Fe3+. U substitution had a significant effect on local environments, the extent of U substitution within this range had a minimal effect on the structure, and unlike in the x = 0 sample, Fe exists in two different environments in the substituted garnets. The enthalpies of formation of garnet phases from constituent oxides and elements were first time determined by high temperature oxide melt solution calorimetry. The results indicate that these substituted garnets are thermodynamically stable under reducing conditions. Our structural and thermodynamic analysis further provides explanation for the formation of natural uranium garnet, elbrusite-(Zr), and supports the potential use of Ca3UxZr2-xFe3O12 as viable waste form phases for U and other actinides.