Science.gov

Sample records for gag facilitates hiv-1

  1. The phosphorylation of HIV-1 Gag by atypical protein kinase C facilitates viral infectivity by promoting Vpr incorporation into virions

    PubMed Central

    2014-01-01

    Background Human immunodeficiency virus type 1 (HIV-1) Gag is the main structural protein that mediates the assembly and release of virus-like particles (VLPs) from an infected cell membrane. The Gag C-terminal p6 domain contains short sequence motifs that facilitate virus release from the plasma membrane and mediate incorporation of the viral Vpr protein. Gag p6 has also been found to be phosphorylated during HIV-1 infection and this event may affect virus replication. However, the kinase that directs the phosphorylation of Gag p6 toward virus replication remains to be identified. In our present study, we identified this kinase using a proteomic approach and further delineate its role in HIV-1 replication. Results A proteomic approach was designed to systematically identify human protein kinases that potently interact with HIV-1 Gag and successfully identified 22 candidates. Among this panel, atypical protein kinase C (aPKC) was found to phosphorylate HIV-1 Gag p6. Subsequent LC-MS/MS and immunoblotting analysis with a phospho-specific antibody confirmed both in vitro and in vivo that aPKC phosphorylates HIV-1 Gag at Ser487. Computer-assisted structural modeling and a subsequent cell-based assay revealed that this phosphorylation event is necessary for the interaction between Gag and Vpr and results in the incorporation of Vpr into virions. Moreover, the inhibition of aPKC activity reduced the Vpr levels in virions and impaired HIV-1 infectivity of human primary macrophages. Conclusion Our current results indicate for the first time that HIV-1 Gag phosphorylation on Ser487 is mediated by aPKC and that this kinase may regulate the incorporation of Vpr into HIV-1 virions and thereby supports virus infectivity. Furthermore, aPKC inhibition efficiently suppresses HIV-1 infectivity in macrophages. aPKC may therefore be an intriguing therapeutic target for HIV-1 infection. PMID:24447338

  2. HIV-1 Nef promotes the localization of Gag to the cell membrane and facilitates viral cell-to-cell transfer

    PubMed Central

    2013-01-01

    Background Newly synthesized HIV-1 particles assemble at the plasma membrane of infected cells, before being released as free virions or being transferred through direct cell-to-cell contacts to neighboring cells. Localization of HIV-1 Gag precursor at the cell membrane is necessary and sufficient to trigger viral assembly, whereas the GagPol precursor is additionally required to generate a fully matured virion. HIV-1 Nef is an accessory protein that optimizes viral replication through partly defined mechanisms. Whether Nef modulates Gag and/or GagPol localization and assembly at the membrane and facilitates viral cell-to-cell transfer has not been extensively characterized so far. Results We report that Nef increases the total amount of Gag proteins present in infected cells, and promotes Gag localization at the cell membrane. Moreover, the processing of p55 into p24 is improved in the presence of Nef. We also examined the effect of Nef during HIV-1 cell-to-cell transfer. We show that without Nef, viral transfer through direct contacts between infected cells and target cells is impaired. With a nef-deleted virus, the number of HIV-1 positive target cells after a short 2h co-culture is reduced, and viral material transferred to uninfected cells is less matured. At later time points, this defect is associated with a reduction in the productive infection of new target cells. Conclusions Our results highlight a previously unappreciated role of Nef during the viral replication cycle. Nef promotes HIV-1 Gag membrane localization and processing, and facilitates viral cell-to-cell transfer. PMID:23899341

  3. p6gag domain confers cis HIV-1 Gag-Pol assembly and release capability.

    PubMed

    Guo, Ting-Wei; Yu, Fu-Hsien; Huang, Kuo-Jung; Wang, Chin-Tien

    2016-01-01

    During virus assembly, HIV-1 Gag-Pol is packaged into virions via interaction with Pr55gag. Studies suggest that Gag-Pol by itself is incapable of virus particle assembly or cell release, perhaps due to the lack of a budding domain in the form of p6gag, which is truncated within Gag-Pol because of a ribosomal frameshift during Gag translation. Additionally (or alternatively), large molecular size may not support Gag-Pol assembly into virus-like particles (VLPs) or release from cells. To test these hypotheses, we constructed Gag-Pol expression vectors retaining and lacking p6gag, and then reduced Gag-Pol molecular size by removing various lengths of the Pol sequence. Results indicate that Gag-Pol constructs retaining p6gag were capable of forming VLPs with a WT HIV-1 particle density. Gag-Pol molecular size reduction via partial removal of the Pol sequence mitigated the Gag-Pol assembly defect to a moderate degree. Our results suggest that the Gag-Pol assembly and budding defects are largely due to a lack of p6gag, but also in part due to size limitation. PMID:26489905

  4. Citron kinase enhances ubiquitination of HIV-1 Gag protein and intracellular HIV-1 budding.

    PubMed

    Ding, Jiwei; Zhao, Jianyuan; Sun, Lei; Mi, Zeyun; Cen, Shan

    2016-09-01

    Assembly and budding of human immunodeficiency virus type 1 (HIV-1) particles is a complex process involving a number of host proteins. We have previously reported that the RhoA effector citron kinase enhances HIV-1 production. However, the underlying mechanism is not clear. In this study, we found that citron kinase interacted with HIV-1 Gag protein via its zinc finger and leucine zipper domains. Electron microscopy analysis revealed that citron kinase induced viral particle assembly in multivesicular bodies (MVBs). Citron kinase enhanced ubiquitination of HIV-1 Gag protein. Knockdown of Nedd4L, a member of the HECT ubiquitin E3 ligase family, partly decreased the ability of citron kinase to enhance HIV-1 production and reduced ubiquitination of HIV-1 Gag. Interestingly, the function of citron kinase to promote HIV-1 budding was severely impaired when endogenous ALIX was knocked down. Overexpression of the AAA-type ATPase VPS4 eliminated citron-kinase-mediated enhancement of HIV-1 production. Our results suggest that citron kinase interacts with HIV-1 Gag and enhances HIV-1 production by promoting Gag ubiquitination and inducing viral release via the MVB pathway. PMID:27339686

  5. Solution Properties of Murine Leukemia Virus Gag Protein: Differences from HIV-1 Gag

    SciTech Connect

    Datta, Siddhartha A.K.; Zuo, Xiaobing; Clark, Patrick K.; Campbell, Stephen J.; Wang, Yun-Xing; Rein, Alan

    2012-05-09

    Immature retrovirus particles are assembled from the multidomain Gag protein. In these particles, the Gag proteins are arranged radially as elongated rods. We have previously characterized the properties of HIV-1 Gag in solution. In the absence of nucleic acid, HIV-1 Gag displays moderately weak interprotein interactions, existing in monomer-dimer equilibrium. Neutron scattering and hydrodynamic studies suggest that the protein is compact, and biochemical studies indicate that the two ends can approach close in three-dimensional space, implying the need for a significant conformational change during assembly. We now describe the properties of the Gag protein of Moloney murine leukemia virus (MLV), a gammaretrovirus. We found that this protein is very different from HIV-1 Gag: it has much weaker protein-protein interaction and is predominantly monomeric in solution. This has allowed us to study the protein by small-angle X-ray scattering and to build a low-resolution molecular envelope for the protein. We found that MLV Gag is extended in solution, with an axial ratio of {approx}7, comparable to its dimensions in immature particles. Mutational analysis suggests that runs of prolines in its matrix and p12 domains and the highly charged stretch at the C terminus of its capsid domain all contribute to this extended conformation. These differences between MLV Gag and HIV-1 Gag and their implications for retroviral assembly are discussed.

  6. N6-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression

    PubMed Central

    Tirumuru, Nagaraja; Zhao, Boxuan Simen; Lu, Wuxun; Lu, Zhike; He, Chuan; Wu, Li

    2016-01-01

    The internal N6-methyladenosine (m6A) methylation of eukaryotic nuclear RNA controls post-transcriptional gene expression, which is regulated by methyltransferases (writers), demethylases (erasers), and m6A-binding proteins (readers) in cells. The YTH domain family proteins (YTHDF1–3) bind to m6A-modified cellular RNAs and affect RNA metabolism and processing. Here, we show that YTHDF1–3 proteins recognize m6A-modified HIV-1 RNA and inhibit HIV-1 infection in cell lines and primary CD4+ T-cells. We further mapped the YTHDF1–3 binding sites in HIV-1 RNA from infected cells. We found that the overexpression of YTHDF proteins in cells inhibited HIV-1 infection mainly by decreasing HIV-1 reverse transcription, while knockdown of YTHDF1–3 in cells had the opposite effects. Moreover, silencing the m6A writers decreased HIV-1 Gag protein expression in virus-producing cells, while silencing the m6A erasers increased Gag expression. Our findings suggest an important role of m6A modification of HIV-1 RNA in viral infection and HIV-1 protein synthesis. DOI: http://dx.doi.org/10.7554/eLife.15528.001 PMID:27371828

  7. N(6)-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression.

    PubMed

    Tirumuru, Nagaraja; Zhao, Boxuan Simen; Lu, Wuxun; Lu, Zhike; He, Chuan; Wu, Li

    2016-01-01

    The internal N(6)-methyladenosine (m(6)A) methylation of eukaryotic nuclear RNA controls post-transcriptional gene expression, which is regulated by methyltransferases (writers), demethylases (erasers), and m(6)A-binding proteins (readers) in cells. The YTH domain family proteins (YTHDF1-3) bind to m(6)A-modified cellular RNAs and affect RNA metabolism and processing. Here, we show that YTHDF1-3 proteins recognize m(6)A-modified HIV-1 RNA and inhibit HIV-1 infection in cell lines and primary CD4(+) T-cells. We further mapped the YTHDF1-3 binding sites in HIV-1 RNA from infected cells. We found that the overexpression of YTHDF proteins in cells inhibited HIV-1 infection mainly by decreasing HIV-1 reverse transcription, while knockdown of YTHDF1-3 in cells had the opposite effects. Moreover, silencing the m(6)A writers decreased HIV-1 Gag protein expression in virus-producing cells, while silencing the m(6)A erasers increased Gag expression. Our findings suggest an important role of m(6)A modification of HIV-1 RNA in viral infection and HIV-1 protein synthesis. PMID:27371828

  8. Matrix Domain Modulates HIV-1 Gag's Nucleic Acid Chaperone Activity via Inositol Phosphate Binding ▿

    PubMed Central

    Jones, Christopher P.; Datta, Siddhartha A. K.; Rein, Alan; Rouzina, Ioulia; Musier-Forsyth, Karin

    2011-01-01

    Retroviruses replicate by reverse transcribing their single-stranded RNA genomes into double-stranded DNA using specific cellular tRNAs to prime cDNA synthesis. In HIV-1, human tRNA3Lys serves as the primer and is packaged into virions during assembly. The viral Gag protein is believed to chaperone tRNA3Lys placement onto the genomic RNA primer binding site; however, the timing and possible regulation of this event are currently unknown. Composed of the matrix (MA), capsid (CA), nucleocapsid (NC), and p6 domains, the multifunctional HIV-1 Gag polyprotein orchestrates the highly coordinated process of virion assembly, but the contribution of these domains to tRNA3Lys annealing is unclear. Here, we show that NC is absolutely essential for annealing and that the MA domain inhibits Gag's tRNA annealing capability. During assembly, MA specifically interacts with inositol phosphate (IP)-containing lipids in the plasma membrane (PM). Surprisingly, we find that IPs stimulate Gag-facilitated tRNA annealing but do not stimulate annealing in Gag variants lacking the MA domain or containing point mutations involved in PM binding. Moreover, we find that IPs prevent MA from binding to nucleic acids but have little effect on NC or Gag. We propose that Gag binds to RNA either with both NC and MA domains or with NC alone and that MA-IP interactions alter Gag's binding mode. We propose that MA's interactions with the PM trigger the switch between these two binding modes and stimulate Gag's chaperone function, which may be important for the regulation of events such as tRNA primer annealing. PMID:21123373

  9. RRE-dependent HIV-1 Env RNA effects on Gag protein expression, assembly and release

    SciTech Connect

    López, Claudia S.; Sloan, Rachel; Cylinder, Isabel; Kozak, Susan L.; Kabat, David; Barklis, Eric

    2014-08-15

    The HIV-1 Gag proteins are translated from the full-length HIV-1 viral RNA (vRNA), whereas the envelope (Env) protein is translated from incompletely spliced Env mRNAs. Nuclear export of vRNAs and Env mRNAs is mediated by the Rev accessory protein which binds to the rev-responsive element (RRE) present on these RNAs. Evidence has shown there is a direct or indirect interaction between the Gag protein, and the cytoplasmic tail (CT) of the Env protein. Our current work shows that env gene expression impacts HIV-1 Gag expression and function in two ways. At the protein level, full-length Env expression altered Gag protein expression, while Env CT-deletion proteins did not. At the RNA level, RRE-containing Env mRNA expression reduced Gag expression, processing, and virus particle release from cells. Our results support models in which Gag is influenced by the Env CT, and Env mRNAs compete with vRNAs for nuclear export. - Highlights: • At the protein level, full-length HIV-1 Env alters Gag protein expression. • HIV-1 Env RNA expression reduces Gag levels and virus release. • Env RNA effects on Gag are dependent on the RRE. • RRE-containing Env RNAs compete with vRNAs for nuclear export.

  10. Reconstitution of selective HIV-1 RNA packaging in vitro by membrane-bound Gag assemblies

    PubMed Central

    Carlson, Lars-Anders; Bai, Yun; Keane, Sarah C; Doudna, Jennifer A; Hurley, James H

    2016-01-01

    HIV-1 Gag selects and packages a dimeric, unspliced viral RNA in the context of a large excess of cytosolic human RNAs. As Gag assembles on the plasma membrane, the HIV-1 genome is enriched relative to cellular RNAs by an unknown mechanism. We used a minimal system consisting of purified RNAs, recombinant HIV-1 Gag and giant unilamellar vesicles to recapitulate the selective packaging of the 5’ untranslated region of the HIV-1 genome in the presence of excess competitor RNA. Mutations in the CA-CTD domain of Gag which subtly affect the self-assembly of Gag abrogated RNA selectivity. We further found that tRNA suppresses Gag membrane binding less when Gag has bound viral RNA. The ability of HIV-1 Gag to selectively package its RNA genome and its self-assembly on membranes are thus interdependent on one another. DOI: http://dx.doi.org/10.7554/eLife.14663.001 PMID:27343348

  11. Solution Properties of Murine Leukemia Virus Gag Protein: Differences from HIV-1 Gag▿

    PubMed Central

    Datta, Siddhartha A. K.; Zuo, Xiaobing; Clark, Patrick K.; Campbell, Stephen J.; Wang, Yun-Xing; Rein, Alan

    2011-01-01

    Immature retrovirus particles are assembled from the multidomain Gag protein. In these particles, the Gag proteins are arranged radially as elongated rods. We have previously characterized the properties of HIV-1 Gag in solution. In the absence of nucleic acid, HIV-1 Gag displays moderately weak interprotein interactions, existing in monomer-dimer equilibrium. Neutron scattering and hydrodynamic studies suggest that the protein is compact, and biochemical studies indicate that the two ends can approach close in three-dimensional space, implying the need for a significant conformational change during assembly. We now describe the properties of the Gag protein of Moloney murine leukemia virus (MLV), a gammaretrovirus. We found that this protein is very different from HIV-1 Gag: it has much weaker protein-protein interaction and is predominantly monomeric in solution. This has allowed us to study the protein by small-angle X-ray scattering and to build a low-resolution molecular envelope for the protein. We found that MLV Gag is extended in solution, with an axial ratio of ∼7, comparable to its dimensions in immature particles. Mutational analysis suggests that runs of prolines in its matrix and p12 domains and the highly charged stretch at the C terminus of its capsid domain all contribute to this extended conformation. These differences between MLV Gag and HIV-1 Gag and their implications for retroviral assembly are discussed. PMID:21917964

  12. Roles played by acidic lipids in HIV-1 Gag membrane binding

    PubMed Central

    Olety, Balaji; Ono, Akira

    2014-01-01

    The MA domain mediates plasma membrane (PM) targeting of HIV-1 Gag, leading to particle assembly at the PM. The interaction between MA and acidic phospholipids, in addition to N-terminal myristoyl moiety, promotes Gag binding to lipid membranes. Among acidic phospholipids, PI(4,5)P2, a PM-specific phosphoinositide, is essential for proper HIV-1 Gag localization to the PM and efficient virus particle production. Recent studies further revealed that MA-bound RNA negatively regulates HIV-1 Gag membrane binding and that PI(4,5)P2 is necessary to overcome this RNA-imposed block. In this review, we will summarize the current understanding of Gag-membrane interactions and discuss potential roles played by acidic phospholipids. PMID:24998886

  13. HIV-1 Gag Blocks Selenite-Induced Stress Granule Assembly by Altering the mRNA Cap-Binding Complex

    PubMed Central

    Cinti, Alessandro; Le Sage, Valerie; Ghanem, Marwan

    2016-01-01

    ABSTRACT Stress granules (SGs) are dynamic accumulations of stalled preinitiation complexes and translational machinery that assemble under stressful conditions. Sodium selenite (Se) induces the assembly of noncanonical type II SGs that differ in morphology, composition, and mechanism of assembly from canonical SGs. Se inhibits translation initiation by altering the cap-binding activity of eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4EBP1). In this work, we show that human immunodeficiency virus type 1 (HIV-1) Gag is able to block the assembly of type II noncanonical SGs to facilitate continued Gag protein synthesis. We demonstrate that expression of Gag reduces the amount of hypophosphorylated 4EBP1 associated with the 5′ cap potentially through an interaction with its target, eIF4E. These results suggest that the assembly of SGs is an important host antiviral defense that HIV-1 has evolved for inhibition through several distinct mechanisms. PMID:27025252

  14. Fluorescence-linked Antigen Quantification (FLAQ) Assay for Fast Quantification of HIV-1 p24Gag

    PubMed Central

    Gesner, Marianne; Maiti, Mekhala; Grant, Robert; Cavrois, Marielle

    2016-01-01

    The fluorescence-linked antigen quantification (FLAQ) assay allows a fast quantification of HIV-1 p24Gag antigen. Viral supernatant are lysed and incubated with polystyrene microspheres coated with polyclonal antibodies against HIV-1 p24Gag and detector antibodies conjugated to fluorochromes (Figure 1). After washes, the fluorescence of microspheres is measured by flow cytometry and reflects the abundance of the antigen in the lysate. The speed, simplicity, and wide dynamic range of the FLAQ assay are optimum for many applications performed in HIV-1 research laboratories.

  15. Visualization of HIV-1 Gag Binding to Giant Unilamellar Vesicle (GUV) Membranes.

    PubMed

    Olety, Balaji; Veatch, Sarah L; Ono, Akira

    2016-01-01

    The structural protein of HIV-1, Pr55(Gag) (or Gag), binds to the plasma membrane in cells during the virus assembly process. Membrane binding of Gag is an essential step for virus particle formation, since a defect in Gag membrane binding results in severe impairment of viral particle production. To gain mechanistic details of Gag-lipid membrane interactions, in vitro methods based on NMR, protein footprinting, surface plasmon resonance, liposome flotation centrifugation, or fluorescence lipid bead binding have been developed thus far. However, each of these in vitro methods has its limitations. To overcome some of these limitations and provide a complementary approach to the previously established methods, we developed an in vitro assay in which interactions between HIV-1 Gag and lipid membranes take place in a "cell-like" environment. In this assay, Gag binding to lipid membranes is visually analyzed using YFP-tagged Gag synthesized in a wheat germ-based in vitro translation system and GUVs prepared by an electroformation technique. Here we describe the background and the protocols to obtain myristoylated full-length Gag proteins and GUV membranes necessary for the assay and to detect Gag-GUV binding by microscopy. PMID:27500610

  16. Live-cell observation of cytosolic HIV-1 assembly onset reveals RNA-interacting Gag oligomers

    PubMed Central

    Hendrix, Jelle; Baumgärtel, Viola; Schrimpf, Waldemar; Ivanchenko, Sergey; Digman, Michelle A.; Gratton, Enrico; Kräusslich, Hans-Georg; Müller, Barbara

    2015-01-01

    Assembly of the Gag polyprotein into new viral particles in infected cells is a crucial step in the retroviral replication cycle. Currently, little is known about the onset of assembly in the cytosol. In this paper, we analyzed the cytosolic HIV-1 Gag fraction in real time in live cells using advanced fluctuation imaging methods and thereby provide detailed insights into the complex relationship between cytosolic Gag mobility, stoichiometry, and interactions. We show that Gag diffuses as a monomer on the subsecond timescale with severely reduced mobility. Reduction of mobility is associated with basic residues in its nucleocapsid (NC) domain, whereas capsid (CA) and matrix (MA) domains do not contribute significantly. Strikingly, another diffusive Gag species was observed on the seconds timescale that oligomerized in a concentration-dependent manner. Both NC- and CA-mediated interactions strongly assist this process. Our results reveal potential nucleation steps of cytosolic Gag fractions before membrane-assisted Gag assembly. PMID:26283800

  17. Tandem immunoprecipitation approach to identify HIV-1 Gag associated host factors.

    PubMed

    Gao, Wei; Li, Min; Zhang, Jingxin

    2014-07-01

    HIV-1 Gag by itself is able to assemble and release from host cells and thus serves as a simplified model to identify host factors involved in this stage of the HIV-1 life cycle. In this study, a tandem immunoprecipitation approach is taken to immunoprecipitate Gag-interacting host proteins from transfected 293T cells. It is demonstrated that with the tandem immunoprecipitation method Gag-interacting host factors can be precipitated more efficiently than by single-step immunoprecipitation. Gag proteins are found to interact with multiple RNA-binding proteins such as hnRNPs, nucleolin, EF1a and ribosomal proteins. Such interactions are mediated by cellular RNAs and the Gag Nuclear Capsid (NC) domain. Deletion of the NC domain results in removal of most of the RNA-binding proteins, as well as a reduction of the Gag releasing capability, which can be restored by replacing the deleted NC domain with another multimerization motif. Importantly, interactions between Gag and host factors are relevant functionally, as evidenced by significantly increased nucleolin protein in the cytoplasm where it is recruited into the Gag complex, and enhanced Gag release when nucleolin is over-expressed. PMID:24690621

  18. HIV-1 Gag shares a signature motif with annexin (Anx7), which is required for virus replication

    PubMed Central

    Srivastava, M.; Cartas, M.; Rizvi, T. A.; Singh, S. P.; Serio, D.; Kalyanaraman, V. S.; Pollard, H. B.; Srinivasan, A.

    1999-01-01

    Genetic and biochemical analyses of the Gag protein of HIV-1 indicate a crucial role for this protein in several functions related to viral replication, including viral assembly. It has been suggested that Gag may fulfill some of the functions by recruiting host cellular protein(s). In our effort to identify structural and functional homologies between Gag and cellular cytoskeletal and secretory proteins involved in transport, we observed that HIV-1 Gag contains a unique PGQM motif in the capsid region. This motif was initially noted in the regulatory domain of synexin the membrane fusion protein of Xenopus laevis. To evaluate the functional significance of the highly conserved PGQM motif, we introduced alanine (A) in place of individual residues of the PGQM and deleted the motif altogether in a Gag expression plasmid and in an HIV-1 proviral DNA. The proviral DNA containing mutations in the PGQM motif showed altered expression, assembly, and release of viral particles in comparison to parental (NL4-3) DNA. When tested in multiple- and single-round replication assays, the mutant viruses exhibited distinct replication phenotypes; the viruses containing the A for the G and Q residues failed to replicate, whereas A in place of the P and M residues did not inhibit viral replication. Deletion of the tetrapeptide also resulted in the inhibition of replication. These results suggest that the PGQM motif may play an important role in the infection process of HIV-1 by facilitating protein–protein interactions between viral and/or viral and cellular proteins. PMID:10077575

  19. HIV-1 Nef-associated Factor 1 Enhances Viral Production by Interacting with CRM1 to Promote Nuclear Export of Unspliced HIV-1 gag mRNA.

    PubMed

    Ren, Xiao-Xin; Wang, Hai-Bo; Li, Chuan; Jiang, Jin-Feng; Xiong, Si-Dong; Jin, Xia; Wu, Li; Wang, Jian-Hua

    2016-02-26

    HIV-1 depends on host-cell-encoded factors to complete its life cycle. A comprehensive understanding of how HIV-1 manipulates host machineries during viral infection can facilitate the identification of host targets for antiviral drugs or gene therapy. The cellular protein Naf1 (HIV-1 Nef-associated factor 1) is a CRM1-dependent nucleo-cytoplasmic shuttling protein, and has been identified to regulate multiple receptor-mediated signal pathways in inflammation. The cytoplasm-located Naf1 can inhibit NF-κB activation through binding to A20, and the loss of Naf1 controlled NF-κB activation is associated with multiple autoimmune diseases. However, the effect of Naf1 on HIV-1 mRNA expression has not been characterized. In this study we found that the nucleus-located Naf1 could promote nuclear export of unspliced HIV-1 gag mRNA. We demonstrated that the association between Naf1 and CRM1 was required for this function as the inhibition or knockdown of CRM1 expression significantly impaired Naf1-promoted HIV-1 production. The mutation of Naf1 nuclear export signals (NESs) that account for CRM1 recruitment for nuclear export decreased Naf1 function. Additionally, the mutation of the nuclear localization signal (NLS) of Naf1 diminished its ability to promote HIV-1 production, demonstrating that the shuttling property of Naf1 is required for this function. Our results reveal a novel role of Naf1 in enhancing HIV-1 production, and provide a potential therapeutic target for controlling HIV-1 infection. PMID:26733199

  20. Methods to Study Determinants for Membrane Targeting of HIV-1 Gag In Vitro.

    PubMed

    Todd, Gabrielle C; Ono, Akira

    2016-01-01

    Assembly of HIV-1 viral particles is a critical step of the HIV-1 life cycle; yet many details of this complex process are unknown. The Gag polyprotein drives viral particle assembly at the plasma membrane via three different types of interactions: protein-protein, protein-RNA, and protein-membrane interactions. As an approach to tease apart the importance of these interactions during viral particle assembly, in particular at the step of Gag membrane binding, we have developed an in vitro liposome-binding assay. Below we describe how to prepare liposomes, which serve as model membranes, and how to assess their interaction with Gag by liposome flotation centrifugation. Additionally, we outline extensions of this basic assay that can be used to address the role of RNA in regulating Gag-membrane interactions. PMID:26714712

  1. HIV-1 RNA genome dimerizes on the plasma membrane in the presence of Gag protein.

    PubMed

    Chen, Jianbo; Rahman, Sheikh Abdul; Nikolaitchik, Olga A; Grunwald, David; Sardo, Luca; Burdick, Ryan C; Plisov, Sergey; Liang, Edward; Tai, Sheldon; Pathak, Vinay K; Hu, Wei-Shau

    2016-01-12

    Retroviruses package a dimeric genome comprising two copies of the viral RNA. Each RNA contains all of the genetic information for viral replication. Packaging a dimeric genome allows the recovery of genetic information from damaged RNA genomes during DNA synthesis and promotes frequent recombination to increase diversity in the viral population. Therefore, the strategy of packaging dimeric RNA affects viral replication and viral evolution. Although its biological importance is appreciated, very little is known about the genome dimerization process. HIV-1 RNA genomes dimerize before packaging into virions, and RNA interacts with the viral structural protein Gag in the cytoplasm. Thus, it is often hypothesized that RNAs dimerize in the cytoplasm and the RNA-Gag complex is transported to the plasma membrane for virus assembly. In this report, we tagged HIV-1 RNAs with fluorescent proteins, via interactions of RNA-binding proteins and motifs in the RNA genomes, and studied their behavior at the plasma membrane by using total internal reflection fluorescence microscopy. We showed that HIV-1 RNAs dimerize not in the cytoplasm but on the plasma membrane. Dynamic interactions occur among HIV-1 RNAs, and stabilization of the RNA dimer requires Gag protein. Dimerization often occurs at an early stage of the virus assembly process. Furthermore, the dimerization process is probably mediated by the interactions of two RNA-Gag complexes, rather than two RNAs. These findings advance the current understanding of HIV-1 assembly and reveal important insights into viral replication mechanisms. PMID:26712001

  2. Interaction of HIV-1 Gag protein components with single DNA molecules

    NASA Astrophysics Data System (ADS)

    Cruceanu, Margareta; Gorelick, Robert J.; Williams, Mark C.

    2003-03-01

    The Gag protein of the HIV-1 retrovirus is cleaved into three major proteins as part of viral maturation: nucleocapsid (NC), capsid, and matrix. NC is the first of these proteins to be cleaved, and it is cleaved in three stages into NCp15, followed by NCp9, and finally NCp7. In this study, we use optical tweezers to investigate the capability of these NC proteins to alter the helix-coil transition of single DNA molecules. We have previously shown that the capability to alter the DNA helix-coil transition is an excellent probe of the nucleic acid chaperone activity of NC proteins, in which the secondary structure of nucleic acids is rearranged to facilitate reverse transcription. By examining the capability of NCp15, NCp9, and NCp7 to alter DNA stretching, the current studies will test the role of proteolytic cleavage of Gag in regulating the nucleic acid chaperone activity of NC. Whereas binding studies suggest that NCp9 and NCp15 bind more strongly to DNA than NCp7, our DNA stretching results indicate that these proteins all have similar effects on DNA stretching.

  3. Glutamic Acid Residues in HIV-1 p6 Regulate Virus Budding and Membrane Association of Gag

    PubMed Central

    Friedrich, Melanie; Setz, Christian; Hahn, Friedrich; Matthaei, Alina; Fraedrich, Kirsten; Rauch, Pia; Henklein, Petra; Traxdorf, Maximilian; Fossen, Torgils; Schubert, Ulrich

    2016-01-01

    The HIV-1 Gag p6 protein regulates the final abscission step of nascent virions from the cell membrane by the action of its two late (l-) domains, which recruit Tsg101 and ALIX, components of the ESCRT system. Even though p6 consists of only 52 amino acids, it is encoded by one of the most polymorphic regions of the HIV-1 gag gene and undergoes various posttranslational modifications including sumoylation, ubiquitination, and phosphorylation. In addition, it mediates the incorporation of the HIV-1 accessory protein Vpr into budding virions. Despite its small size, p6 exhibits an unusually high charge density. In this study, we show that mutation of the conserved glutamic acids within p6 increases the membrane association of Pr55 Gag followed by enhanced polyubiquitination and MHC-I antigen presentation of Gag-derived epitopes, possibly due to prolonged exposure to membrane bound E3 ligases. The replication capacity of the total glutamic acid mutant E0A was almost completely impaired, which was accompanied by defective virus release that could not be rescued by ALIX overexpression. Altogether, our data indicate that the glutamic acids within p6 contribute to the late steps of viral replication and may contribute to the interaction of Gag with the plasma membrane. PMID:27120610

  4. Immunological Characterization of Plant-Based HIV-1 Gag/Dgp41 Virus-Like Particles

    PubMed Central

    Kessans, Sarah A.; Linhart, Mark D.; Meador, Lydia R.; Kilbourne, Jacquelyn; Hogue, Brenda G.; Fromme, Petra; Matoba, Nobuyuki; Mor, Tsafrir S.

    2016-01-01

    It is widely anticipated that a prophylactic vaccine may be needed to control the HIV/AIDS epidemic worldwide. Despite over two decades of research, a vaccine against HIV-1 remains elusive, although a recent clinical trial has shown promising results. Recent studies have focused on highly conserved domains within HIV-1 such as the membrane proximal external region (MPER) of the envelope glycoprotein, gp41. MPER has been shown to play critical roles in mucosal transmission of HIV-1, though this peptide is poorly immunogenic on its own. Here we provide evidence that plant-produced HIV-1 enveloped virus-like particles (VLPs) consisting of Gag and a deconstructed form of gp41 comprising the MPER, transmembrane, and cytoplasmic domains (Dgp41) provides an effective platform to display MPER for use as an HIV vaccine candidate. Prime-boost strategies combining systemic and mucosal priming with systemic boosting using two different vaccine candidates (VLPs and CTB-MPR—a fusion of MPER and the B-subunit of cholera toxin) were investigated in BALB/c mice. Serum antibody responses against both the Gag and gp41 antigens were elicited when systemically primed with VLPs. These responses could be recalled following systemic boosting with VLPs. In addition, mucosal priming with VLPs allowed for a boosting response against Gag and gp41 when boosted with either candidate. Importantly, the VLPs also induced Gag-specific CD4 and CD8 T-cell responses. This report on the immunogenicity of plant-based Gag/Dgp41 VLPs may represent an important milestone on the road towards a broadly efficacious and inexpensive subunit vaccine against HIV-1. PMID:26986483

  5. Involvement of the Rac1-IRSp53-Wave2-Arp2/3 Signaling Pathway in HIV-1 Gag Particle Release in CD4 T Cells

    PubMed Central

    Thomas, Audrey; Mariani-Floderer, Charlotte; López-Huertas, Maria Rosa; Gros, Nathalie; Hamard-Péron, Elise; Favard, Cyril; Ohlmann, Theophile; Alcamí, José

    2015-01-01

    facilitating Gag assembly and particle formation. Activated small Rho GTPases and effectors are regulators of actin dynamics and membrane remodeling. We thus studied the effects of the Rac1, Cdc42, and RhoA GTPases and their specific effectors on HIV-1 Gag membrane localization and viral particle release in T cells. Our results show that activated Rac1 and the IRSp53-Wave2-Arp2/3 signaling pathway are involved in Gag plasma membrane localization and viral particle production. This work uncovers a role for cortical actin through the activation of Rac1 and the IRSp53/Wave2 signaling pathway in HIV-1 particle formation in CD4 T lymphocytes. PMID:26018170

  6. A novel minimal in vitro system for analyzing HIV-1 Gag-mediated budding.

    PubMed

    Gui, Dong; Gupta, Sharad; Xu, Jun; Zandi, Roya; Gill, Sarjeet; Huang, I-Chueh; Rao, A L N; Mohideen, Umar

    2015-03-01

    A biomimetic minimalist model membrane was used to study the mechanism and kinetics of cell-free in vitro HIV-1 Gag budding from a giant unilamellar vesicle (GUV). Real-time interaction of Gag, RNA, and lipid, leading to the formation of mini-vesicles, was measured using confocal microscopy. Gag forms resolution-limited punctae on the GUV lipid membrane. Introduction of the Gag and urea to a GUV solution containing RNA led to the budding of mini-vesicles on the inside surface of the GUV. The GUV diameter showed a linear decrease in time due to bud formation. Both bud formation and decrease in GUV size were proportional to Gag concentration. In the absence of RNA, addition of urea to GUVs incubated with Gag also resulted in subvesicle formation. These observations suggest the possibility that clustering of GAG proteins leads to membrane invagination even in the absence of host cell proteins. The method presented here is promising, and allows for systematic study of the dynamics of assembly of immature HIV and help classify the hierarchy of factors that impact the Gag protein initiated assembly of retroviruses such as HIV. PMID:25515930

  7. Fundamental differences between the nucleic acid chaperone activities of HIV-1 nucleocapsid protein and Gag or Gag-derived proteins: Biological implications

    PubMed Central

    Wu, Tiyun; Datta, Siddhartha A.K.; Mitra, Mithun; Gorelick, Robert J.; Rein, Alan; Levin, Judith G.

    2010-01-01

    The HIV-1 Gag polyprotein precursor has multiple domains including nucleocapsid (NC). Although mature NC and NC embedded in Gag are nucleic acid chaperones (proteins that remodel nucleic acid structure), few studies include detailed analysis of the chaperone activity of partially processed Gag proteins and comparison with NC and Gag. Here we address this issue by using a reconstituted minus-strand transfer system. NC and NC-containing Gag proteins exhibited annealing and duplex destabilizing activities required for strand transfer. Surprisingly, unlike NC, with increasing concentrations, Gag proteins drastically inhibited the DNA elongation step. This result is consistent with “nucleic acid-driven multimerization” of Gag and the reported slow dissociation of Gag from bound nucleic acid, which prevent reverse transcriptase from traversing the template (“roadblock” mechanism). Our findings illustrate one reason why NC (and not Gag) has evolved as a critical cofactor in reverse transcription, a paradigm that might also extend to other retrovirus systems. PMID:20655566

  8. Specific recognition of the HIV-1 genomic RNA by the Gag precursor.

    PubMed

    Abd El-Wahab, Ekram W; Smyth, Redmond P; Mailler, Elodie; Bernacchi, Serena; Vivet-Boudou, Valérie; Hijnen, Marcel; Jossinet, Fabrice; Mak, Johnson; Paillart, Jean-Christophe; Marquet, Roland

    2014-01-01

    During assembly of HIV-1 particles in infected cells, the viral Pr55(Gag) protein (or Gag precursor) must select the viral genomic RNA (gRNA) from a variety of cellular and viral spliced RNAs. However, there is no consensus on how Pr55(Gag) achieves this selection. Here, by using RNA binding and footprinting assays, we demonstrate that the primary Pr55(Gag) binding site on the gRNA consists of the internal loop and the lower part of stem-loop 1 (SL1), the upper part of which initiates gRNA dimerization. A double regulation ensures specific binding of Pr55(Gag) to the gRNA despite the fact that SL1 is also present in spliced viral RNAs. The region upstream of SL1, which is present in all HIV-1 RNAs, prevents binding to SL1, but this negative effect is counteracted by sequences downstream of SL4, which are unique to the gRNA. PMID:24986025

  9. How HIV-1 Gag assembles in cells: putting together pieces of the puzzle

    PubMed Central

    Lingappa, Jaisri R; Reed, Jonathan C; Tanaka, Motoko; Chutiraka, Kasana; Robinson, Bridget A

    2014-01-01

    During the late stage of the viral life cycle, HIV-1 Gag assembles into a spherical immature capsid, and undergoes budding, release, and maturation. Here we review events involved in immature capsid assembly from the perspective of five different approaches used to study this process: mutational analysis, structural studies, assembly of purified recombinant Gag, assembly of newly-translated Gag in a cell-free system, and studies in cells using biochemical and imaging techniques. We summarize key findings obtained using each approach, point out where there is consensus, and highlight unanswered questions. Particular emphasis is placed on reconciling data suggesting that Gag assembles by two different paths, depending on the assembly environment. Specifically, in assembly systems that lack cellular proteins, high concentrations of Gag can spontaneously assemble using purified nucleic acid as a scaffold. However, in the more complex intracellular environment, barriers that limit self-assembly are present in the form of cellular proteins, organelles, host defenses, and the absence of free nucleic acid. To overcome these barriers and promote efficient immature capsid formation in an unfavorable environment, Gag appears to utilize an energy-dependent, host-catalyzed, pathway of assembly intermediates in cells. Overall, we show how data obtained using a variety of techniques has led to our current understanding of HIV assembly. PMID:25066606

  10. The Life-Cycle of the HIV-1 Gag-RNA Complex.

    PubMed

    Mailler, Elodie; Bernacchi, Serena; Marquet, Roland; Paillart, Jean-Christophe; Vivet-Boudou, Valérie; Smyth, Redmond P

    2016-01-01

    Human immunodeficiency virus type 1 (HIV-1) replication is a highly regulated process requiring the recruitment of viral and cellular components to the plasma membrane for assembly into infectious particles. This review highlights the recent process of understanding the selection of the genomic RNA (gRNA) by the viral Pr55(Gag) precursor polyprotein, and the processes leading to its incorporation into viral particles. PMID:27626439

  11. Structural Basis for Specific Membrane Targeting by the HIV-1 Gag Protein.

    NASA Astrophysics Data System (ADS)

    Summers, Michael F.

    2006-03-01

    In HIV-1 infected cells, newly synthesized retroviral Gag polyproteins are directed to specific cellular membranes where they assemble and bud to form immature virions. Membrane binding is mediated by Gag's matrix (MA) domain, a 132-residue polypeptide containing an N-terminal myristyl group that can adopt sequestered and exposed conformations. Membane specificity was recently shown to be regulated by phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2), a cellular factor abundant in the inner leaflet of the plasma membrane (PM). We now show that phosphoinositides, including soluble analogs of PI(4,5)P2 with truncated lipids, bind HIV-1 MA and trigger myristate exposure. The phosphoinositol moiety and one of the fatty acid tails binds to a cleft on the surface of the protein. The other fatty acid chain of PI(4,5)P2 and the exposed myristyl group of MA bracket a conserved basic surface patch implicated in membrane binding. Our findings indicate that PI(4,5)P2 acts as both a trigger of the myristyl switch and as a membrane anchor, and suggest a structure-based mechanism for the specific targeting HIV-1 Gag to PI(4,5)P2-enriched membranes.

  12. Cytoplasmic HIV-1 RNA is mainly transported by diffusion in the presence or absence of Gag protein.

    PubMed

    Chen, Jianbo; Grunwald, David; Sardo, Luca; Galli, Andrea; Plisov, Sergey; Nikolaitchik, Olga A; Chen, De; Lockett, Stephen; Larson, Daniel R; Pathak, Vinay K; Hu, Wei-Shau

    2014-12-01

    Full-length HIV-1 RNA plays a central role in viral replication by serving as the mRNA for essential viral proteins and as the genome packaged into infectious virions. Proper RNA trafficking is required for the functions of RNA and its encoded proteins; however, the mechanism by which HIV-1 RNA is transported within the cytoplasm remains undefined. Full-length HIV-1 RNA transport is further complicated when group-specific antigen (Gag) protein is expressed, because a significant portion of HIV-1 RNA may be transported as Gag-RNA complexes, whose properties could differ greatly from Gag-free RNA. In this report, we visualized HIV-1 RNA and monitored its movement in the cytoplasm by using single-molecule tracking. We observed that most of the HIV-1 RNA molecules move in a nondirectional, random-walk manner, which does not require an intact cytoskeletal structure, and that the mean-squared distance traveled by the RNA increases linearly with time, indicative of diffusive movement. We also observed that a single HIV-1 RNA molecule can move at various speeds when traveling through the cytoplasm, indicating that its movement is strongly affected by the immediate environment. To examine the effect of Gag protein on HIV-1 RNA transport, we analyzed the cytoplasmic HIV-1 RNA movement in the presence of sufficient Gag for virion assembly and found that HIV-1 RNA is still transported by diffusion with mobility similar to the mobility of RNAs unable to express functional Gag. These studies define a major mechanism of HIV-1 gene expression and resolve the long-standing question of how the RNA genome is transported to the assembly site. PMID:25404326

  13. HIV-1 Gag as an Antiviral Target: Development of Assembly and Maturation Inhibitors.

    PubMed

    Spearman, Paul

    2016-01-01

    HIV-1 Gag is the master orchestrator of particle assembly. The central role of Gag at multiple stages of the HIV lifecycle has led to efforts to develop drugs that directly target Gag and prevent the formation and release of infectious particles. Until recently, however, only the catalytic site protease inhibitors have been available to inhibit late stages of HIV replication. This review summarizes the current state of development of antivirals that target Gag or disrupt late events in the retrovirus lifecycle such as maturation of the viral capsid. Maturation inhibitors represent an exciting new series of antiviral compounds, including those that specifically target CA-SP1 cleavage and the allosteric integrase inhibitors that inhibit maturation by a completely different mechanism. Numerous small molecules and peptides targeting CA have been studied in attempts to disrupt steps in assembly. Efforts to target CA have recently gained considerable momentum from the development of small molecules that bind CA and alter capsid stability at the post-entry stage of the lifecycle. Efforts to develop antivirals that inhibit incorporation of genomic RNA or to inhibit late budding events remain in preliminary stages of development. Overall, the development of novel antivirals targeting Gag and the late stages in HIV replication appears much closer to success than ever, with the new maturation inhibitors leading the way. PMID:26329615

  14. Crystallographic and Functional Analysis of the ESCRT-I /HIV-1 Gag PTAP Interaction

    SciTech Connect

    Im, Young Jun; Kuo, Lillian; Ren, Xuefeng; Burgos, Patricia V.; Zhao, Xue Zhi; Liu, Fa; Burke, Jr., Terrence R.; Bonifacino, Juan S.; Freed, Eric O.; Hurley, James H.

    2010-12-03

    Budding of HIV-1 requires the binding of the PTAP late domain of the Gag p6 protein to the UEV domain of the TSG101 subunit of ESCRT-I. The normal function of this motif in cells is in receptor downregulation. Here, we report the 1.41.6 {angstrom} structures of the human TSG101 UEV domain alone and with wild-type and mutant HIV-1 PTAP and Hrs PSAP nonapeptides. The hydroxyl of the Thr or Ser residue in the P(S/T)AP motif hydrogen bonds with the main chain of Asn69. Mutation of the Asn to Pro, blocking the main-chain amide, abrogates PTAP motif binding in vitro and blocks budding of HIV-1 from cells. N69P and other PTAP binding-deficient alleles of TSG101 did not rescue HIV-1 budding. However, the mutant alleles did rescue downregulation of endogenous EGF receptor. This demonstrates that the PSAP motif is not rate determining in EGF receptor downregulation under normal conditions.

  15. The use of directed evolution to create a stable and immunogenic recombinant BCG expressing a modified HIV-1 Gag antigen.

    PubMed

    Chapman, Rosamund; Bourn, William R; Shephard, Enid; Stutz, Helen; Douglass, Nicola; Mgwebi, Thandi; Meyers, Ann; Chin'ombe, Nyasha; Williamson, Anna-Lise

    2014-01-01

    Numerous features make Mycobacterium bovis BCG an attractive vaccine vector for HIV. It has a good safety profile, it elicits long-lasting cellular immune responses and in addition manufacturing costs are affordable. Despite these advantages it is often difficult to express viral antigens in BCG, which results in genetic instability and low immunogenicity. The aim of this study was to generate stable recombinant BCG (rBCG) that express high levels of HIV antigens, by modification of the HIV genes. A directed evolution process was applied to recombinant mycobacteria that expressed HIV-1 Gag fused to the green fluorescent protein (GFP). Higher growth rates and increased GFP expression were selected for. Through this process a modified Gag antigen was selected. Recombinant BCG that expressed the modified Gag (BCG[pWB106] and BCG[pWB206]) were more stable, produced higher levels of antigen and grew faster than those that expressed the unmodified Gag (BCG[pWB105]). The recombinant BCG that expressed the modified HIV-1 Gag induced 2 to 3 fold higher levels of Gag-specific CD4 T cells than those expressing the unmodified Gag (BCG[pWB105]). Mice primed with 10(7) CFU BCG[pWB206] and then boosted with MVA-Gag developed Gag-specific CD8 T cells with a frequency of 1343±17 SFU/10(6) splenocytes, 16 fold greater than the response induced with MVA-Gag alone. Levels of Gag-specific CD4 T cells were approximately 5 fold higher in mice primed with BCG[pWB206] and boosted with MVA-Gag than in those receiving the MVA-Gag boost alone. In addition mice vaccinated with BCG[pWB206] were protected from a surrogate vaccinia virus challenge. PMID:25061753

  16. Dual mechanisms of translation initiation of the full-length HIV-1 mRNA contribute to gag synthesis.

    PubMed

    Monette, Anne; Valiente-Echeverría, Fernando; Rivero, Matias; Cohen, Éric A; Lopez-Lastra, Marcelo; Mouland, Andrew J

    2013-01-01

    The precursor group-specific antigen (pr55(Gag)) is central to HIV-1 assembly. Its expression alone is sufficient to assemble into virus-like particles. It also selects the genomic RNA for encapsidation and is involved in several important virus-host interactions for viral assembly and restriction, making its synthesis essential for aspects of viral replication. Here, we show that the initiation of translation of the HIV-1 genomic RNA is mediated through both a cap-dependent and an internal ribosome entry site (IRES)-mediated mechanisms. In support of this notion, pr55(Gag) synthesis was maintained at 70% when cap-dependent translation initiation was blocked by the expression of eIF4G- and PABP targeting viral proteases in two in vitro systems and in HIV-1-expressing cells directly infected with poliovirus. While our data reveal that IRES-dependent translation of the viral genomic RNA ensures pr55(Gag) expression, the synthesis of other HIV-1 proteins, including that of pr160(Gag/Pol), Vpr and Tat is suppressed early during progressive poliovirus infection. The data presented herein implies that the unspliced HIV-1 genomic RNA utilizes both cap-dependent and IRES-dependent translation initiation to supply pr55(Gag) for virus assembly and production. PMID:23861855

  17. A Temporospatial Map That Defines Specific Steps at Which Critical Surfaces in the Gag MA and CA Domains Act during Immature HIV-1 Capsid Assembly in Cells

    PubMed Central

    Robinson, Bridget A.; Reed, Jonathan C.; Geary, Clair D.; Swain, J. Victor

    2014-01-01

    ABSTRACT During HIV-1 assembly, Gag polypeptides target to the plasma membrane, where they multimerize to form immature capsids that undergo budding and maturation. Previous mutational analyses identified residues within the Gag matrix (MA) and capsid (CA) domains that are required for immature capsid assembly, and structural studies showed that these residues are clustered on four exposed surfaces in Gag. Exactly when and where the three critical surfaces in CA function during assembly are not known. Here, we analyzed how mutations in these four critical surfaces affect the formation and stability of assembly intermediates in cells expressing the HIV-1 provirus. The resulting temporospatial map reveals that critical MA residues act during membrane targeting, residues in the C-terminal CA subdomain (CA-CTD) dimer interface are needed for the stability of the first membrane-bound assembly intermediate, CA-CTD base residues are necessary for progression past the first membrane-bound intermediate, and residues in the N-terminal CA subdomain (CA-NTD) stabilize the last membrane-bound intermediate. Importantly, we found that all four critical surfaces act while Gag is associated with the cellular facilitators of assembly ABCE1 and DDX6. When correlated with existing structural data, our findings suggest the following model: Gag dimerizes via the CA-CTD dimer interface just before or during membrane targeting, individual CA-CTD hexamers form soon after membrane targeting, and the CA-NTD hexameric lattice forms just prior to capsid release. This model adds an important new dimension to current structural models by proposing the potential order in which key contacts within the immature capsid lattice are made during assembly in cells. IMPORTANCE While much is known about the structure of the completed HIV-1 immature capsid and domains of its component Gag proteins, less is known about the sequence of events leading to formation of the HIV-1 immature capsid. Here we used

  18. Dendritic cells primed with a chimeric plasmid containing HIV-1-gag associated with lysosomal-associated protein-1 (LAMP/gag) is a potential therapeutic vaccine against HIV.

    PubMed

    Lucas, Carolina G D O; Matassoli, Flavio L; Peçanha, Ligia M T; Santillo, Bruna Tereso; Oliveira, Luanda Mara da Silva; Oshiro, Telma Miyuki; Marques, Ernesto T D A; Oxenius, Annette; de Arruda, Luciana B

    2016-08-01

    The decline in number and function of T cells is a hallmark of HIV infection, and preservation or restoration of HIV-specific cellular immune response is a major goal of AIDS treatment. Dendritic cells (DCs) play a key role in the initiation and maintenance of the immune response, and their use as a vaccine vehicle is a promising strategy for enhancing vaccine efficacy. We evaluated the potential of DC-mediated immunization with a DNA vaccine consisting of HIV-1-p55gag (gag, group-specific antigen) associated to lysosomal associated protein (LAMP) sequence (LAMP/gag vaccine). Immunization of mice with mouse DCs transfected with LAMP/gag (Lg-mDCs) stimulated more potent B- and T-cell responses than naked DNA or DCs pulsed with inactivated HIV. Anti-Gag antibody levels were sustained for at least 3 mo after immunization, and recall T-cell responses were also strongly detected at this time point. Human DCs transfected with LAMP/gag (Lg-hDCs) were also activated and able to stimulate greater T-cell response than native gag-transfected DCs. Coculture between Lg-hDCs and T lymphocytes obtained from patients with HIV resulted in upregulation of CD38, CD69, HLA-DR, and granzyme B by CD4(+) and CD8(+) T cells, and increased IFN-γ and TNF-α production. These results indicate that the use of LAMP/gag-DC may be an efficient strategy for enhancing immune function in patients with HIV.-Lucas, C. G. D. O., Matassoli, F. L., Peçanha, L. M. T., Santillo, B. T., Oliveira, L. M. D. S., Oshiro, T. M., Marques, E. T. D. A., Jr., Oxenius, A., de Arruda, L. B. Dendritic cells primed with a chimeric plasmid containing HIV-1-gag associated with lysosomal-associated protein-1 (LAMP/gag) is a potential therapeutic vaccine against HIV. PMID:27199296

  19. Purification of HIV-1 gag virus-like particles and separation of other extracellular particles.

    PubMed

    Steppert, Petra; Burgstaller, Daniel; Klausberger, Miriam; Berger, Eva; Aguilar, Patricia Pereira; Schneider, Tobias A; Kramberger, Petra; Tover, Andres; Nöbauer, Katharina; Razzazi-Fazeli, Ebrahim; Jungbauer, Alois

    2016-07-15

    Enveloped virus-like particles (VLPs) are increasingly used as vaccines and immunotherapeutics. Frequently, very time consuming density gradient centrifugation techniques are used for purification of VLPs. However, the progress towards optimized large-scale VLP production increased the demand for fast, cost efficient and scale able purification processes. We developed a chromatographic procedure for purification of HIV-1 gag VLPs produced in CHO cells. The clarified and filtered cell culture supernatant was directly processed on an anion-exchange monolith. The majority of host cell impurities passed through the column, whereas the VLPs were eluted by a linear or step salt gradient; the major fraction of DNA was eluted prior to VLPs and particles in the range of 100-200nm in diameter could be separated into two fractions. The earlier eluted fraction was enriched with extracellular particles associated to exosomes or microvesicles, whereas the late eluting fractions contained the majority of most pure HIV-1 gag VLPs. DNA content in the exosome-containing fraction could not be reduced by Benzonase treatment which indicated that the DNA was encapsulated. Many exosome markers were identified by proteomic analysis in this fraction. We present a laboratory method that could serve as a basis for rapid downstream processing of enveloped VLPs. Up to 2000 doses, each containing 1×10(9) particles, could be processed with a 1mL monolith within 47min. The method compared to density gradient centrifugation has a 220-fold improvement in productivity. PMID:27286649

  20. HIV-1 p24(gag) derived conserved element DNA vaccine increases the breadth of immune response in mice.

    PubMed

    Kulkarni, Viraj; Rosati, Margherita; Valentin, Antonio; Ganneru, Brunda; Singh, Ashish K; Yan, Jian; Rolland, Morgane; Alicea, Candido; Beach, Rachel Kelly; Zhang, Gen-Mu; Le Gall, Sylvie; Broderick, Kate E; Sardesai, Niranjan Y; Heckerman, David; Mothe, Beatriz; Brander, Christian; Weiner, David B; Mullins, James I; Pavlakis, George N; Felber, Barbara K

    2013-01-01

    Viral diversity is considered a major impediment to the development of an effective HIV-1 vaccine. Despite this diversity, certain protein segments are nearly invariant across the known HIV-1 Group M sequences. We developed immunogens based on the highly conserved elements from the p24(gag) region according to two principles: the immunogen must (i) include strictly conserved elements of the virus that cannot mutate readily, and (ii) exclude both HIV regions capable of mutating without limiting virus viability, and also immunodominant epitopes located in variable regions. We engineered two HIV-1 p24(gag) DNA immunogens that express 7 highly Conserved Elements (CE) of 12-24 amino acids in length and differ by only 1 amino acid in each CE ('toggle site'), together covering >99% of the HIV-1 Group M sequences. Altering intracellular trafficking of the immunogens changed protein localization, stability, and also the nature of elicited immune responses. Immunization of C57BL/6 mice with p55(gag) DNA induced poor, CD4(+) mediated cellular responses, to only 2 of the 7 CE; in contrast, vaccination with p24CE DNA induced cross-clade reactive, robust T cell responses to 4 of the 7 CE. The responses were multifunctional and composed of both CD4(+) and CD8(+) T cells with mature cytotoxic phenotype. These findings provide a method to increase immune response to universally conserved Gag epitopes, using the p24CE immunogen. p24CE DNA vaccination induced humoral immune responses similar in magnitude to those induced by p55(gag), which recognize the virus encoded p24(gag) protein. The inclusion of DNA immunogens composed of conserved elements is a promising vaccine strategy to induce broader immunity by CD4(+) and CD8(+) T cells to additional regions of Gag compared to vaccination with p55(gag) DNA, achieving maximal cross-clade reactive cellular and humoral responses. PMID:23555935

  1. Comparison of HIV-1 nef and gag Variations and Host HLA Characteristics as Determinants of Disease Progression among HIV-1 Vertically Infected Kenyan Children

    PubMed Central

    Saina, Matilda Chelimo; Bi, Xiuqiong; Lihana, Raphael; Lwembe, Raphael; Ishizaki, Azumi; Panikulam, Annie; Palakudy, Tresa; Musoke, Rachel; Owens, Mary; Songok, Elijah Maritim; Ichimura, Hiroshi

    2015-01-01

    Objectives Disease progression varies among HIV-1-infected individuals. The present study aimed to explore possible viral and host factors affecting disease progression in HIV-1-infected children. Methods Since 2000, 102 HIV-1 vertically-infected children have been followed-up in Kenya. Here we studied 29 children (15 male/14 female) who started antiretroviral treatment at <5 years of age (rapid progressors; RP), and 32 (17 male/15 female) who started at >10 years of age (slow progressors; SP). Sequence variations in the HIV-1 gag and nef genes and the HLA class I-related epitopes were compared between the two groups. Results Based on nef sequences, HIV-1 subtypes A1/D were detected in 62.5%/12.5% of RP and 66.7%/20% of SP, with no significant difference in subtype distribution between groups (p = 0.8). In the ten Nef functional domains, only the PxxP3 region showed significantly greater variation in RP (33.3%) than SP (7.7%, p = 0.048). Gag sequences did not significantly differ between groups. The reportedly protective HLA-A alleles, A*74:01, A*32:01 and A*26, were more commonly observed in SP (50.0%) than RP (11.1%, p = 0.010), whereas the reportedly disease-susceptible HLA-B*45:01 was more common in RP (33.3%) than SP (7.4%, p = 0.045). Compared to RP, SP showed a significantly higher median number of predicted HLA-B-related 12-mer epitopes in Nef (3 vs. 2, p = 0.037), HLA-B-related 11-mer epitopes in Gag (2 vs. 1, p = 0.029), and HLA-A-related 9-mer epitopes in Gag (4 vs. 1, p = 0.051). SP also had fewer HLA-C-related epitopes in Nef (median 4 vs. 5, p = 0.046) and HLA-C-related 11-mer epitopes in Gag (median 1 vs. 1.5, p = 0.044) than RP. Conclusions Compared to rapid progressors, slow progressors had more protective HLA-A alleles and more HLA-B-related epitopes in both the Nef and Gag proteins. These results suggest that the host factor HLA plays a stronger role in disease progression than the Nef and Gag sequence variations in HIV-1-infected Kenyan children

  2. Huwe1, a novel cellular interactor of Gag-Pol through integrase binding, negatively influences HIV-1 infectivity.

    PubMed

    Yamamoto, Seiji P; Okawa, Katsuya; Nakano, Takashi; Sano, Kouichi; Ogawa, Kanako; Masuda, Takao; Morikawa, Yuko; Koyanagi, Yoshio; Suzuki, Youichi

    2011-04-01

    Integration, an indispensable step for retrovirus replication, is executed by integrase (IN), which is expressed as a part of a Gag-Pol precursor. Although mechanistic detail of the IN-catalyzed integration reaction is well defined, numerous evidence have demonstrated that IN is involved in multiple steps of retrovirus replication other than integration. In this study, Huwe1, a HECT-type E3 ubiquitin ligase, was identified as a new cellular interactor of human immunodeficiency virus type 1 (HIV-1) IN. The interaction was mediated through the catalytic core domain of IN and a wide-range region of Huwe1. Interestingly, although depletion of Huwe1 in target cells did not affect the early phase of HIV-1 infection in a human T cell line, we found that infectivity of HIV-1 released from the Huwe1 knockdown cells was significantly augmented more than that of virus produced from control cells. The increase in infectivity occurred in proviral DNA synthesis. Further analysis revealed that Huwe1 interacted with HIV-1 Gag-Pol precursor protein through an IN domain. Our results suggest that Huwe1 in HIV-1 producer cells has a negative impact on early post-entry events during the next round of virus infection via association with an IN region of Gag-Pol. PMID:21167302

  3. Role of the HIV-1 Matrix Protein in Gag Intracellular Trafficking and Targeting to the Plasma Membrane for Virus Assembly

    PubMed Central

    Ghanam, Ruba H.; Samal, Alexandra B.; Fernandez, Timothy F.; Saad, Jamil S.

    2012-01-01

    Human immunodeficiency virus type-1 (HIV-1) encodes a polypeptide called Gag that is able to form virus-like particles in vitro in the absence of any cellular or viral constituents. During the late phase of the HIV-1 infection, Gag polyproteins are transported to the plasma membrane (PM) for assembly. In the past two decades, in vivo, in vitro, and structural studies have shown that Gag trafficking and targeting to the PM are orchestrated events that are dependent on multiple factors including cellular proteins and specific membrane lipids. The matrix (MA) domain of Gag has been the focus of these studies as it appears to be engaged in multiple intracellular interactions that are suggested to be critical for virus assembly and replication. The interaction between Gag and the PM is perhaps the most understood. It is now established that the ultimate localization of Gag on punctate sites on the PM is mediated by specific interactions between the MA domain of Gag and phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2], a minor lipid localized on the inner leaflet of the PM. Structure-based studies revealed that binding of PI(4,5)P2 to MA induces minor conformational changes, leading to exposure of the myristyl (myr) group. Exposure of the myr group is also triggered by binding of calmodulin, enhanced by factors that promote protein self-association like the capsid domain of Gag, and is modulated by pH. Despite the steady progress in defining both the viral and cellular determinants of retroviral assembly and release, Gag’s intracellular interactions and trafficking to its assembly sites in the infected cell are poorly understood. In this review, we summarize the current understanding of the structural and functional role of MA in HIV replication. PMID:22363329

  4. Cell Type-Specific Proteasomal Processing of HIV-1 Gag-p24 Results in an Altered Epitope Repertoire▿

    PubMed Central

    Steers, Nicholas J.; Currier, Jeffrey R.; Kijak, Gustavo H.; di Targiani, Robert C.; Saxena, Ashima; Marovich, Mary A.; Kim, Jerome H.; Michael, Nelson L.; Alving, Carl R.; Rao, Mangala

    2011-01-01

    Proteasomes are critical for the processing of antigens for presentation through the major histocompatibility complex (MHC) class I pathway. HIV-1 Gag protein is a component of several experimental HIV-1 vaccines. Therefore, understanding the processing of HIV-1 Gag protein and the resulting epitope repertoire is essential. Purified proteasomes from mature dendritic cells (DC) and activated CD4+ T cells from the same volunteer were used to cleave full-length Gag-p24 protein, and the resulting peptide fragments were identified by mass spectrometry. Distinct proteasomal degradation patterns and peptide fragments were unique to either mature DC or activated CD4+ T cells. Almost half of the peptides generated were cell type specific. Two additional differences were observed in the peptides identified from the two cell types. These were in the HLA-B35-Px epitope and the HLA-B27-KK10 epitope. These epitopes have been linked to HIV-1 disease progression. Our results suggest that the source of generation of precursor MHC class I epitopes may be a critical factor for the induction of relevant epitope-specific cytotoxic T cells. PMID:21106750

  5. Implications for Viral Capsid Assembly from Crystal Structures of HIV-1 Gag1-278 and CAN133-278

    SciTech Connect

    Kelly,B.; Howard, B.; Wang, H.; Robinson, H.; Sundquist, W.; Hill, C.

    2006-01-01

    Gag, the major structural protein of retroviruses such as HIV-1, comprises a series of domains connected by flexible linkers. These domains drive viral assembly by mediating multiple interactions between adjacent Gag molecules and by binding to viral genomic RNA and host cell membranes. Upon viral budding, Gag is processed by the viral protease to liberate distinct domains as separate proteins. The first two regions of Gag are MA, a membrane-binding module, and CA, which is a two-domain protein that makes important Gag-Gag interactions, forms the cone-shaped outer shell of the core (the capsid) in the mature HIV-1 particle, and makes an important interaction with the cellular protein cyclophilin A (CypA). Here, we report crystal structures of the mature CA N-terminal domain (CA{sup N}{sub 133-278}) and a MA-CA{sup N} fusion (Gag{sub 1-278}) at resolutions/R{sub free} values of 1.9 Angstroms/25.7% and 2.2 Angstroms/25.8%, respectively. Consistent with earlier studies, a comparison of these structures indicates that processing at the MA-CA junction causes CA to adopt an N-terminal {beta}-hairpin conformation that seems to be required for capsid morphology and viral infectivity. In contrast with an NMR study, structural overlap reveals only small relative displacements for helix 6, which is located between the {beta}-hairpin and the CypA-binding loop. These observations argue against the proposal that CypA binding is coupled with {beta}-hairpin formation and support an earlier surface plasmon resonance study, which concluded that {beta}-hairpin formation and CypA-binding are energetically independent events.

  6. A Rev-independent human immunodeficiency virus type 1 (HIV-1)-based vector that exploits a codon-optimized HIV-1 gag-pol gene.

    PubMed

    Kotsopoulou, E; Kim, V N; Kingsman, A J; Kingsman, S M; Mitrophanous, K A

    2000-05-01

    The human immunodeficiency virus (HIV) genome is AU rich, and this imparts a codon bias that is quite different from the one used by human genes. The codon usage is particularly marked for the gag, pol, and env genes. Interestingly, the expression of these genes is dependent on the presence of the Rev/Rev-responsive element (RRE) regulatory system, even in contexts other than the HIV genome. The Rev dependency has been explained in part by the presence of RNA instability sequences residing in these coding regions. The requirement for Rev also places a limitation on the development of HIV-based vectors, because of the requirement to provide an accessory factor. We have now synthesized a complete codon-optimized HIV-1 gag-pol gene. We show that expression levels are high and that expression is Rev independent. This effect is due to an increase in the amount of gag-pol mRNA. Provision of the RRE in cis did not lower protein or RNA levels or stimulate a Rev response. Furthermore we have used this synthetic gag-pol gene to produce HIV vectors that now lack all of the accessory proteins. These vectors should now be safer than murine leukemia virus-based vectors. PMID:10775623

  7. A Rev-Independent Human Immunodeficiency Virus Type 1 (HIV-1)-Based Vector That Exploits a Codon-Optimized HIV-1 gag-pol Gene

    PubMed Central

    Kotsopoulou, Ekaterini; Kim, V. Narry; Kingsman, Alan J.; Kingsman, Susan M.; Mitrophanous, Kyriacos A.

    2000-01-01

    The human immunodeficiency virus (HIV) genome is AU rich, and this imparts a codon bias that is quite different from the one used by human genes. The codon usage is particularly marked for the gag, pol, and env genes. Interestingly, the expression of these genes is dependent on the presence of the Rev/Rev-responsive element (RRE) regulatory system, even in contexts other than the HIV genome. The Rev dependency has been explained in part by the presence of RNA instability sequences residing in these coding regions. The requirement for Rev also places a limitation on the development of HIV-based vectors, because of the requirement to provide an accessory factor. We have now synthesized a complete codon-optimized HIV-1 gag-pol gene. We show that expression levels are high and that expression is Rev independent. This effect is due to an increase in the amount of gag-pol mRNA. Provision of the RRE in cis did not lower protein or RNA levels or stimulate a Rev response. Furthermore we have used this synthetic gag-pol gene to produce HIV vectors that now lack all of the accessory proteins. These vectors should now be safer than murine leukemia virus-based vectors. PMID:10775623

  8. A Novel Immunodominant CD8+ T Cell Response Restricted by a Common HLA-C Allele Targets a Conserved Region of Gag HIV-1 Clade CRF01_AE Infected Thais

    PubMed Central

    Pitakpolrat, Patrawadee; Allgaier, Rachel L.; Thantivorasit, Pattarawat; Lorenzen, Sven-Iver; Sirivichayakul, Sunee; Hildebrand, William H.; Altfeld, Marcus; Brander, Christian; Walker, Bruce D.; Phanuphak, Praphan; Hansasuta, Pokrath; Rowland-Jones, Sarah L.; Allen, Todd M.; Ruxrungtham, Kiat

    2011-01-01

    Background CD8+ T cell responses play an important role in the control of HIV-1. The extensive sequence diversity of HIV-1 represents a critical hurdle to developing an effective HIV-1 vaccine, and it is likely that regional-specific vaccine strains will be required to overcome the diversity of the different HIV-1 clades distributed world-wide. Unfortunately, little is known about the CD8+ T cell responses against CRF01_AE, which is responsible for the majority of infections in Southeast Asia. Methodology/Principal Findings To identify dominant CD8+ T cell responses recognized in HIV-1 clade CRF01_AE infected subjects we drew upon data from an immunological screen of 100 HIV-1 clade CRF01_AE infected subjects using IFN-gamma ELISpot to characterize a novel immunodominant CD8+ T cell response in HIV-1 Gag restricted by HLA-Cw*0102 (p24, 277YSPVSILDI285, YI9). Over 75% of Cw*0102+ve subjects targeted this epitope, representing the strongest response in more than a third of these individuals. This novel CD8 epitope was located in a highly conserved region of HIV-1 Gag known to contain immunodominant CD8 epitopes, which are restricted by HLA-B*57 and -B*27 in clade B infection. Nonetheless, viral escape in this epitope was frequently observed in Cw*0102+ve subjects, suggestive of strong selection pressure being exerted by this common CD8+ T cell response. Conclusions/Significance As HLA-Cw*0102 is frequently expressed in the Thai population (allelic frequency of 16.8%), this immunodominant Cw*0102-restricted Gag epitope may represent an attractive candidate for vaccines specific to CRF01_AE and may help facilitate further studies of immunopathogenesis in this understudied HIV-1 clade. PMID:21887282

  9. Mapping the RNA binding sites for human immunodeficiency virus type-1 gag and NC proteins within the complete HIV-1 and -2 untranslated leader regions.

    PubMed Central

    Damgaard, C K; Dyhr-Mikkelsen, H; Kjems, J

    1998-01-01

    Encapsidation of HIV-1 genomic RNA is mediated by specific interactions between the RNA packaging signal and the Gag protein. During maturation of the virion, the Gag protein is processed into smaller fragments, including the nucleocapsid (NC) domain which remains associated with the viral genomic RNA. We have investigated the binding of glutathione- S -transferase (GST) Gag and NC fusion proteins from HIV-1, to the entire HIV-1 and -2 leader RNAencompassing the packaging signal. We have mapped the binding sites at conditions where only about two complexes are formed and find that GST-Gag and GST-NC fusion proteins bind specifically to discrete sites within the leader. Analysis of the HIV-1 leader indicated that GST-Gag strongly associates with the PSI stem-loop and to a lesser extent with regions near the primer binding site. GST-NC binds the same regions but with reversed preferences. The HIV-1 proteins also interact specifically with the 5'-leader of HIV-2 and the major site of interaction mapped to a stem-loop, with homology to the HIV-1 PSI stem-loop structure. The different specificities of Gag and NC may reflect functionally distinct roles in the viral replication, and suggest that the RNA binding specificity of NC is modulated by its structural context. PMID:9685481

  10. The ESCRT-Associated Protein Alix Recruits the Ubiquitin Ligase Nedd4-1 To Facilitate HIV-1 Release through the LYPXnL L Domain Motif▿

    PubMed Central

    Sette, Paola; Jadwin, Joshua A.; Dussupt, Vincent; Bello, Nana F.; Bouamr, Fadila

    2010-01-01

    The p6 region of HIV-1 Gag contains two late (L) domains, PTAP and LYPXnL, that bind Tsg101 and Alix, respectively. Interactions with these two cellular proteins recruit members of the host's fission machinery (ESCRT) to facilitate HIV-1 release. Other retroviruses gain access to the host ESCRT components by utilizing a PPXY-type L domain that interacts with cellular Nedd4-like ubiquitin ligases. Despite the absence of a PPXY motif in HIV-1 Gag, interaction with the ubiquitin ligase Nedd4-2 was recently shown to stimulate HIV-1 release. We show here that another Nedd4-like ubiquitin ligase, Nedd4-1, corrected release defects resulting from the disruption of PTAP (PTAP−), suggesting that HIV-1 Gag also recruits Nedd4-1 to facilitate virus release. Notably, Nedd4-1 remediation of HIV-1 PTAP− budding defects is independent of cellular Tsg101, implying that Nedd4-1's function in HIV-1 release does not involve ESCRT-I components and is therefore distinct from that of Nedd4-2. Consistent with this finding, deletion of the p6 region decreased Nedd4-1-Gag interaction, and disruption of the LYPXnL motif eliminated Nedd4-1-mediated restoration of HIV-1 PTAP−. This result indicated that both Nedd4-1 interaction with Gag and function in virus release occur through the Alix-binding LYPXnL motif. Mutations of basic residues located in the NC domain of Gag that are critical for Alix's facilitation of HIV-1 release, also disrupted release mediated by Nedd4-1, further confirming a Nedd4-1-Alix functional interdependence. In fact we found that Nedd4-1 binds Alix in both immunoprecipitation and yeast-two-hybrid assays. In addition, Nedd4-1 requires its catalytic activity to promote virus release. Remarkably, RNAi knockdown of cellular Nedd4-1 eliminated Alix ubiquitination in the cell and impeded its ability to function in HIV-1 release. Together our data support a model in which Alix recruits Nedd4-1 to facilitate HIV-1 release mediated through the LYPXnL/Alix budding pathway

  11. Certification assays for HIV-1-based vectors: frequent passage of gag sequences without evidence of replication-competent viruses.

    PubMed

    Sastry, Lakshmi; Xu, Yi; Johnson, Terry; Desai, Kunal; Rissing, David; Marsh, Jonathan; Cornetta, Kenneth

    2003-11-01

    A principal concern regarding the safety of HIV-1-based vectors is replication-competent lentivirus (RCL). We have developed two PCR assays for detecting RCL; the first detects recombination between gag regions in the transfer vector and the packaging construct (sensitivity of detection approximately 10-100 copies of target sequence). The second assay uses real-time PCR to detect vesicular stomatitis virus glycoprotein (VSVG) envelope DNA (sensitivity approximately 5-50 VSVG sequences). In an attempt to amplify any RCL, test vectors were used to transduce C8166 and 293 cells, which were then screened weekly for 3 weeks. Psi-gag recombinants were routinely detected (20 of 21 analyses) in four transductions using the RRL-CMV-GFP vector. In contrast, VSVG sequences were detected only once in 21 analyses. Interestingly, p24 levels (as measured by ELISA) were occasionally detectable after 3 weeks of culture. To determine if a true RCL was present, 21-day cell-free medium was used to transduce naïve cells. No evidence of psi-gag or VSVG transfer was detected, indicating that the recombination events were insufficient to reconstitute a true RCL. These findings have important implications for the design and safety of HIV-1-based vectors intended for clinical applications. PMID:14599817

  12. Modulation of HIV-1 Gag NC/p1 cleavage efficiency affects protease inhibitor resistance and viral replicative capacity

    PubMed Central

    2012-01-01

    Background Mutations in the substrate of HIV-1 protease, especially changes in the NC/p1 cleavage site, can directly contribute to protease inhibitor (PI) resistance and also compensate for defects in viral replicative capacity (RC) due to a drug resistant protease. These NC/p1 changes are known to enhance processing of the Gag protein. To investigate the capacity of HIV-1 to modulate Gag cleavage and its consequences for PI resistance and RC, we performed a detailed enzymatic and virological analysis using a set of PI resistant NC/p1 variants (HXB2431V, HXB2436E+437T, HXB2437T and HXB2437V). Results Here, we demonstrate that single NC/p1 mutants, which displayed only a slight increase in PI resistance did not show an obvious change in RC. In contrast, the double NC/p1 mutant, which displayed a clear increase in processing efficiency and PI resistance, demonstrated a clear reduction in RC. Cleavage analysis showed that a tridecameric NC/p1 peptide representing the double NC/p1 mutant was cleaved in two specific ways instead of one. The observed decrease in RC for the double NC/p1 mutant (HXB2436E+437T) could (partially) be restored by either reversion of the 436E change or by acquisition of additional changes in the NC/p1 cleavage site at codon 435 or 438 as was revealed during in vitro evolution experiments. These changes not only restored RC but also reduced PI resistance levels. Furthermore these changes normalized Gag processing efficiency and obstructed the novel secondary cleavage site observed for the double NC/p1 mutant. Conclusions The results of this study clearly demonstrate that HIV-1 can modulate Gag processing and thereby PI resistance. Distinct increases in Gag cleavage and PI resistance result in a reduced RC that can only be restored by amino acid changes in NC/p1 which reduce Gag processing to an optimal rate. PMID:22462820

  13. Mucosal Immunization with Newcastle Disease Virus Vector Coexpressing HIV-1 Env and Gag Proteins Elicits Potent Serum, Mucosal, and Cellular Immune Responses That Protect against Vaccinia Virus Env and Gag Challenges

    PubMed Central

    Khattar, Sunil K.; Manoharan, Vinoth; Bhattarai, Bikash; LaBranche, Celia C.; Montefiori, David C.

    2015-01-01

    ABSTRACT Newcastle disease virus (NDV) avirulent strain LaSota was used to coexpress gp160 Env and p55 Gag from a single vector to enhance both Env-specific and Gag-specific immune responses. The optimal transcription position for both Env and Gag genes in the NDV genome was determined by generating recombinant NDV (rNDV)-Env-Gag (gp160 located between the P and M genes and Gag between the HN and L genes), rNDV-Gag-Env (Gag located between the P and M genes and gp160 between the HN and L genes), rNDV-Env/Gag (gp160 followed by Gag located between the P and M genes), and rNDV-Gag/Env (Gag followed by gp160 located between the P and M genes). All the recombinant viruses replicated at levels similar to those seen with parental NDV in embryonated chicken eggs and in chicken fibroblast cells. Both gp160 and Gag proteins were expressed at high levels in cell culture, with gp160 found to be incorporated into the envelope of NDV. The Gag and Env proteins expressed by all the recombinants except rNDV-Env-Gag self-assembled into human immunodeficiency virus type 1 (HIV-1) virus-like particles (VLPs). Immunization of guinea pigs by the intranasal route with these rNDVs produced long-lasting Env- and Gag-specific humoral immune responses. The Env-specific humoral and mucosal immune responses and Gag-specific humoral immune responses were higher in rNDV-Gag/Env and rNDV-Env/Gag than in the other recombinants. rNDV-Gag/Env and rNDV-Env/Gag were also more efficient in inducing cellular as well as protective immune responses to challenge with vaccinia viruses expressing HIV-1 Env and Gag in mice. These results suggest that vaccination with a single rNDV coexpressing Env and Gag represents a promising strategy to enhance immunogenicity and protective efficacy against HIV. PMID:26199332

  14. Immunization of HIV-1-Infected Persons With Autologous Dendritic Cells Transfected With mRNA Encoding HIV-1 Gag and Nef: Results of a Randomized, Placebo-Controlled Clinical Trial

    PubMed Central

    Kwon, Douglas S.; Macklin, Eric A.; Shopis, Janet R.; McLean, Anna P.; McBrine, Nicole; Flynn, Theresa; Peter, Lauren; Sbrolla, Amy; Kaufmann, Daniel E.; Porichis, Filippos; Walker, Bruce D.; Bhardwaj, Nina; Barouch, Dan H.; Kavanagh, Daniel G.

    2016-01-01

    Background: HIV-1 eradication may require reactivation of latent virus along with stimulation of HIV-1-specific immune responses to clear infected cells. Immunization with autologous dendritic cells (DCs) transfected with viral mRNA is a promising strategy for eliciting HIV-1-specific immune responses. We performed a randomized controlled clinical trial to evaluate the immunogenicity of this approach in HIV-1-infected persons on antiretroviral therapy. Methods: Fifteen participants were randomized 2:1 to receive intradermal immunization with HIV-1 Gag- and Nef-transfected DCs (vaccine) or mock-transfected DCs (placebo) at weeks 0, 2, 6, and 10. All participants also received DCs pulsed with keyhole limpet hemocyanin (KLH) to assess whether responses to a neo-antigen could be induced. Results: After immunization, there were no differences in interferon-gamma enzyme-linked immunospot responses to HIV-1 Gag or Nef in the vaccine or placebo group. CD4 proliferative responses to KLH increased 2.4-fold (P = 0.026) and CD8 proliferative responses to KLH increased 2.5-fold (P = 0.053) after vaccination. There were increases in CD4 proliferative responses to HIV-1 Gag (2.5-fold vs. baseline, 3.4-fold vs. placebo, P = 0.054) and HIV-1 Nef (2.3-fold vs. baseline, 6.3-fold vs. placebo, P = 0.009) among vaccine recipients, but these responses were short-lived. Conclusion: Immunization with DCs transfected with mRNA encoding HIV-1 Gag and Nef did not induce significant interferon-gamma enzyme-linked immunospot responses. There were increases in proliferative responses to HIV-1 antigens and to a neo-antigen, KLH, but the effects were transient. Dendritic cell vaccination should be optimized to elicit stronger and long-lasting immune responses for this strategy to be effective as an HIV-1 therapeutic vaccine. PMID:26379068

  15. Quantitative Effect of Suboptimal Codon Usage on Translational Efficiency of mRNA Encoding HIV-1 gag in Intact T Cells

    PubMed Central

    Ngumbela, Kholiswa C.; Ryan, Kieran P.; Sivamurthy, Rohini; Brockman, Mark A.; Gandhi, Rajesh T.; Bhardwaj, Nina; Kavanagh, Daniel G.

    2008-01-01

    Background The sequences of wild-isolate strains of Human Immunodeficiency Virus-1 (HIV-1) are characterized by low GC content and suboptimal codon usage. Codon optimization of DNA vectors can enhance protein expression both by enhancing translational efficiency, and by altering RNA stability and export. Although gag codon optimization is widely used in DNA vectors and experimental vaccines, the actual effect of altered codon usage on gag translational efficiency has not been quantified. Methodology and Principal Findings To quantify translational efficiency of gag mRNA in live T cells, we transfected Jurkat cells with increasing doses of capped, polyadenylated synthetic mRNA corresponding to wildtype or codon-optimized gag sequences, measured Gag production by quantitative ELISA and flow cytometry, and estimated the translational efficiency of each transcript as pg of Gag antigen produced per µg of input mRNA. We found that codon optimization yielded a small increase in gag translational efficiency (approximately 1.6 fold). In contrast when cells were transfected with DNA vectors requiring nuclear transcription and processing of gag mRNA, codon optimization resulted in a very large enhancement of Gag production. Conclusions We conclude that suboptimal codon usage by HIV-1 results in only a slight loss of gag translational efficiency per se, with the vast majority of enhancement in protein expression from DNA vectors due to altered processing and export of nuclear RNA. PMID:18523584

  16. Soluble multi-trimeric TNF superfamily ligand adjuvants enhance immune responses to a HIV-1 Gag DNA vaccine

    PubMed Central

    Kanagavelu, Saravana K.; Snarsky, Victoria; Termini, James M.; Gupta, Sachin; Barzee, Suzanne; Wright, Jacqueline A.; Khan, Wasif N.; Kornbluth, Richard S.; Stone, Geoffrey W.

    2011-01-01

    Background DNA vaccines remain an important component of HIV vaccination strategies, typically as part of a prime/boost vaccination strategy with viral vector or protein boost. A number of DNA prime/viral vector boost vaccines are currently being evaluated for both preclinical studies and in Phase I and Phase II clinical trials. These vaccines would benefit from molecular adjuvants that increase correlates of immunity during the DNA prime. While HIV vaccine immune correlates are still not well defined, there are a number of immune assays that have been shown to correlate with protection from viral challenge including CD8+ T cell avidity, antigen-specific proliferation, and polyfunctional cytokine secretion. Methodology and Principal Findings Recombinant DNA vaccine adjuvants composed of a fusion between Surfactant Protein D (SP-D) and either CD40 Ligand (CD40L) or GITR Ligand (GITRL) were previously shown to enhance HIV-1 Gag DNA vaccines. Here we show that similar fusion constructs composed of the TNF superfamily ligands (TNFSFL) 4-1BBL, OX40L, RANKL, LIGHT, CD70, and BAFF can also enhanced immune responses to a HIV-1 Gag DNA vaccine. BALB/c mice were vaccinated intramuscularly with plasmids expressing secreted Gag and SP-D-TNFSFL fusions. Initially, mice were analyzed 2 weeks or 7 weeks following vaccination to evaluate the relative efficacy of each SP-D-TNFSFL construct. All SP-D-TNFSFL constructs enhanced at least one Gag-specific immune response compared to the parent vaccine. Importantly, the constructs SP-D-4-1BBL, SP-D-OX40L, and SP-D-LIGHT enhanced CD8+ T cell avidity and CD8+/CD4+ T cell proliferation 7 weeks post vaccination. These avidity and proliferation data suggest that 4-1BBL, OX40L, and LIGHT fusion constructs may be particularly effective as vaccine adjuvants. Constructs SP-D-OX40L, SP-D-LIGHT, and SP-D-BAFF enhanced Gag-specific IL-2 secretion in memory T cells, suggesting these adjuvants can increase the number of self-renewing Gag-specific CD8

  17. HIV-1 Subtype C Mosaic Gag Expressed by BCG and MVA Elicits Persistent Effector T Cell Responses in a Prime-Boost Regimen in Mice

    PubMed Central

    Jongwe, Tsungai Ivai; Chapman, Ros; Douglass, Nicola; Chetty, Shivan; Chege, Gerald; Williamson, Anna-Lise

    2016-01-01

    Over 90% of HIV/AIDS positive individuals in sub-Saharan Africa are infected with highly heterogeneous HIV-1 subtype C (HIV-1C) viruses. One of the best ways to reduce the burden of this disease is the development of an affordable and effective prophylactic vaccine. Mosaic immunogens are computationally designed to overcome the hurdle of HIV diversity by maximizing the expression of potential T cell epitopes. Mycobacterium bovis BCG ΔpanCD auxotroph and modified vaccinia Ankara (MVA) vaccines expressing HIV-1C mosaic Gag (GagM) were tested in a prime-boost regimen to demonstrate immunogenicity in a mouse study. The BCG-GagM vaccine was stable and persisted 11.5 weeks post vaccination in BALB/c mice. Priming with BCG-GagM and boosting with MVA-GagM elicited higher Gag-specific IFN-γ ELISPOT responses than the BCG-GagM only and MVA-GagM only homologous vaccination regimens. The heterologous vaccination also generated a more balanced and persistent CD4+ and CD8+ T cell Gag-specific IFN-γ ELISPOT response with a predominant effector memory phenotype. A Th1 bias was induced by the vaccines as determined by the predominant secretion of IFN-γ, TNF-α, and IL-2. This study shows that a low dose of MVA (104 pfu) can effectively boost a BCG prime expressing the same mosaic immunogen, generating strong, cellular immune responses against Gag in mice. Our data warrants further evaluation in non-human primates. A low dose vaccine would be an advantage in the resource limited countries of sub-Saharan Africa and India (where the predominating virus is HIV-1 subtype C). PMID:27427967

  18. Impact of Preexisting Vector Immunity on the Efficacy of Adeno-Associated Virus-Based HIV-1 Gag Vaccines

    PubMed Central

    Lin, Jianping; Calcedo, Roberto; Vandenberghe, Luk H.; Figueredo, Joanita M.

    2008-01-01

    Abstract Vectors based on primate-derived adeno-associated virus (AAV) are being considered in the development of genetic vaccines against a number of diseases including infection with HIV-1. Preexisting immunity to the vaccine carrier as a result of natural infections could potentially compromise vaccine efficacy. This study evaluates the impact of neutralizing antibodies against AAV capsids on the ability of HIV-1 Gag-expressing vectors to elicit transgene-specific T and B cell responses. Mice were passively transferred with pooled human immunoglobulin at various doses to simulate human antivector humoral immunity. Vectors based on serotype 2, which were evaluated in the clinic, were compared with those created from the novel monkey isolates AAV7 and AAV8. Inhibition of AAV2-directed Gag responses occurred at doses of human immunoglobulin 10- to 20-fold less than was required to inhibit immunogenicity of AAV7 and AAV8 vectors. Cynomolgus macaques were screened for preexisting immunity to AAV7 and AAV8 and sera from individual animals were passively transferred into mice that were analyzed for AAV vaccine efficacy. There was a correlation between the level of preexisting capsid neutralizing titers and diminution of vaccine efficacy; sera from a number of animals with no detectable neutralizing antibodies showed partial vaccine inhibition, suggesting that the in vitro assay is less sensitive than the in vivo passive transfer assay for detecting neutralizing antibodies to AAV. PMID:18549307

  19. The Fitness Landscape of HIV-1 Gag: Advanced Modeling Approaches and Validation of Model Predictions by In Vitro Testing

    PubMed Central

    Omarjee, Saleha; Walker, Bruce D.; Chakraborty, Arup; Ndung'u, Thumbi

    2014-01-01

    Viral immune evasion by sequence variation is a major hindrance to HIV-1 vaccine design. To address this challenge, our group has developed a computational model, rooted in physics, that aims to predict the fitness landscape of HIV-1 proteins in order to design vaccine immunogens that lead to impaired viral fitness, thus blocking viable escape routes. Here, we advance the computational models to address previous limitations, and directly test model predictions against in vitro fitness measurements of HIV-1 strains containing multiple Gag mutations. We incorporated regularization into the model fitting procedure to address finite sampling. Further, we developed a model that accounts for the specific identity of mutant amino acids (Potts model), generalizing our previous approach (Ising model) that is unable to distinguish between different mutant amino acids. Gag mutation combinations (17 pairs, 1 triple and 25 single mutations within these) predicted to be either harmful to HIV-1 viability or fitness-neutral were introduced into HIV-1 NL4-3 by site-directed mutagenesis and replication capacities of these mutants were assayed in vitro. The predicted and measured fitness of the corresponding mutants for the original Ising model (r = −0.74, p = 3.6×10−6) are strongly correlated, and this was further strengthened in the regularized Ising model (r = −0.83, p = 3.7×10−12). Performance of the Potts model (r = −0.73, p = 9.7×10−9) was similar to that of the Ising model, indicating that the binary approximation is sufficient for capturing fitness effects of common mutants at sites of low amino acid diversity. However, we show that the Potts model is expected to improve predictive power for more variable proteins. Overall, our results support the ability of the computational models to robustly predict the relative fitness of mutant viral strains, and indicate the potential value of this approach for understanding viral immune evasion

  20. Vaccination with a Fusion Protein That Introduces HIV-1 Gag Antigen into a Multitrimer CD40L Construct Results in Enhanced CD8+ T Cell Responses and Protection from Viral Challenge by Vaccinia-Gag

    PubMed Central

    Gupta, Sachin; Termini, James M.; Raffa, Francesca N.; Williams, Cindi-Ann; Kornbluth, Richard S.

    2014-01-01

    CD40 ligand (CD40L, CD154) is a membrane protein that is important for the activation of dendritic cells (DCs) and DC-induced CD8+ T cell responses. To be active, CD40L must cluster CD40 receptors on responding cells. To produce a soluble form of CD40L that clusters CD40 receptors necessitates the use of a multitrimer construct. With this in mind, a tripartite fusion protein was made from surfactant protein D (SPD), HIV-1 Gag as a test antigen, and CD40L, where SPD serves as a scaffold for the multitrimer protein complex. This SPD-Gag-CD40L protein activated CD40-bearing cells and bone marrow-derived DCs in vitro. Compared to a plasmid for Gag antigen alone (pGag), DNA vaccination of mice with pSPD-Gag-CD40L induced an increased number of Gag-specific CD8+ T cells with increased avidity for major histocompatibility complex class I-restricted Gag peptide and improved vaccine-induced protection from challenge by vaccinia-Gag virus. The importance of the multitrimeric nature of the complex was shown using a plasmid lacking the N terminus of SPD that produced a single trimer fusion protein. This plasmid, pTrimer-Gag-CD40L, was only weakly active on CD40-bearing cells and did not elicit strong CD8+ T cell responses or improve protection from vaccinia-Gag challenge. An adenovirus 5 (Ad5) vaccine incorporating SPD-Gag-CD40L was much stronger than Ad5 expressing Gag alone (Ad5-Gag) and induced complete protection (i.e., sterilizing immunity) from vaccinia-Gag challenge. Overall, these results show the potential of a new vaccine design in which antigen is introduced into a construct that expresses a multitrimer soluble form of CD40L, leading to strongly protective CD8+ T cell responses. PMID:24227853

  1. Efficient in vitro inhibition of HIV-1 gag reverse transcription by peptide nucleic acid (PNA) at minimal ratios of PNA/RNA.

    PubMed Central

    Koppelhus, U; Zachar, V; Nielsen, P E; Liu, X; Eugen-Olsen, J; Ebbesen, P

    1997-01-01

    We have tested the inhibitory potential of peptide nucleic acid (PNA) on in vitro reverse transcription of the HIV-1 gag gene. PNA was designed to target different regions of the HIV-1 gag gene and the effect on reverse transcription by HIV-1, MMLV and AMV reverse transcriptases (RTs) was investigated. We found that a bis-PNA (parallel antisense 10mer linked to antiparallel antisense 10mer) was superior to both the parallel antisense 10mer and antiparallel antisense 10mer in inhibiting reverse transcription of the gene, thus indicating triplex formation at the target sequence. A complete arrest of reverse transcription was obtained at approximately 6-fold molar excess of the bis-PNA with respect to the gag RNA. At this molar ratio we found no effect on in vitro translation of gag RNA. A 15mer duplex-forming PNA was also found to inhibit reverse transcription at very low molar ratios of PNA/ gag RNA. Specificity of the inhibition of reverse transcription by PNA was confirmed by RNA sequencing, which revealed that all tested RTs were stopped by the PNA/RNA complex at the predicted site. We propose that the effect of PNA is exclusively due to steric hindrance, as we found no signs of RNA degradation that would indicate PNA-mediated RNase H activation of the tested RTs. In conclusion, PNA appears to have a potential to become a specific and efficient inhibitor of reverse transcription in vivo , provided sufficient intracellular levels are achievable. PMID:9153317

  2. Construction and Immunological Evaluation of Dual Cell Surface Display of HIV-1 Gag and Salmonella enterica Serovar Typhimurium FliC in Lactobacillus acidophilus for Vaccine Delivery

    PubMed Central

    Kajikawa, Akinobu; Zhang, Lin; Long, Julie; Nordone, Shila; Stoeker, Laura; LaVoy, Alora; Bumgardner, Sara; Klaenhammer, Todd

    2012-01-01

    Oral vaccines that elicit a mucosal immune response may be effective against human immunodeficiency virus type 1 (HIV-1) because its transmission occurs mainly at the mucosa. The aim of this study was to construct recombinant Lactobacillus for oral delivery of oral vaccines against HIV-1 and to evaluate their immunogenicity. A recombinant Lactobacillus acidophilus strain expressing the HIV-1 Gag on the bacterial cell surface was established by fusion with the signal peptide and anchor motif of a mucus binding protein (Mub) from L. acidophilus with or without coexpression of Salmonella enterica serovar Typhimurium flagellin (FliC) fused to a different Mub signal peptide and anchor. Using HEK293 cells engineered to express Toll-like receptor 5 (TLR5), the biological activity of FliC on the bacterial cell surfaces was determined. The surface-exposed flagellin retained its TLR5-stimulating activity, suggesting that the recombinant strain with Gag and FliC dual display might provide a different immunopotency than the strain expressing only Gag. The immunological properties of the recombinant strains were assessed by coculture with human myeloid dendritic cells (DCs). The heterologous antigens on the cell surface affected maturation and cytokine responses of DCs. Acquired immune responses were also investigated by intragastric immunization of mice. The enzyme-linked immunosorbent spot assay showed induction of gamma interferon-producing cells at local mucosa after immunization of mice with the Gag-producing strain. Meanwhile, the immunization with L. acidophilus displaying both Gag and FliC resulted in an increase of Gag-specific IgA-secreting cells. These results suggested that the Gag-displaying L. acidophilus elicited specific immune responses and the coexistence of FliC conferred an adjuvant effect on local IgA production. PMID:22761297

  3. Mutations of Conserved Residues in the Major Homology Region Arrest Assembling HIV-1 Gag as a Membrane-Targeted Intermediate Containing Genomic RNA and Cellular Proteins

    PubMed Central

    Tanaka, Motoko; Robinson, Bridget A.; Chutiraka, Kasana; Geary, Clair D.; Reed, Jonathan C.

    2015-01-01

    ABSTRACT The major homology region (MHR) is a highly conserved motif that is found within the Gag protein of all orthoretroviruses and some retrotransposons. While it is widely accepted that the MHR is critical for assembly of HIV-1 and other retroviruses, how the MHR functions and why it is so highly conserved are not understood. Moreover, consensus is lacking on when HIV-1 MHR residues function during assembly. Here, we first addressed previous conflicting reports by confirming that MHR deletion, like conserved MHR residue substitution, leads to a dramatic reduction in particle production in human and nonhuman primate cells expressing HIV-1 proviruses. Next, we used biochemical analyses and immunoelectron microscopy to demonstrate that conserved residues in the MHR are required after assembling Gag has associated with genomic RNA, recruited critical host factors involved in assembly, and targeted to the plasma membrane. The exact point of inhibition at the plasma membrane differed depending on the specific mutation, with one MHR mutant arrested as a membrane-associated intermediate that is stable upon high-salt treatment and other MHR mutants arrested as labile, membrane-associated intermediates. Finally, we observed the same assembly-defective phenotypes when the MHR deletion or conserved MHR residue substitutions were engineered into Gag from a subtype B, lab-adapted provirus or Gag from a subtype C primary isolate that was codon optimized. Together, our data support a model in which MHR residues act just after membrane targeting, with some MHR residues promoting stability and another promoting multimerization of the membrane-targeted assembling Gag oligomer. IMPORTANCE The retroviral Gag protein exhibits extensive amino acid sequence variation overall; however, one region of Gag, termed the major homology region, is conserved among all retroviruses and even some yeast retrotransposons, although the reason for this conservation remains poorly understood. Highly

  4. Novel Adenovirus type 5 vaccine platform induces cellular immunity against HIV-1 Gag, Pol, Nef despite the presence of Ad5 immunity.

    PubMed

    Gabitzsch, Elizabeth S; Xu, Younong; Yoshida, Lois H; Balint, Joseph; Amalfitano, Andrea; Jones, Frank R

    2009-10-30

    Recombinant Adenovirus serotype 5 (Ad5) vectors have been used as vaccine platforms in numerous animal and human clinical studies. The immune response induced by Ad5 vaccines can be mitigated due to pre-existing Ad5 immunity. We previously reported the use of a novel Ad5 platform to induce cellular immune responses (CMI) against HIV-1 Gag in Ad5 hyper immune mice. Here, the effectiveness of the Ad5 [E1-, E2b-] vaccine platform was evaluated using a triad mixture of HIV-1 Gag, Pol, and Nef as antigenic transgenes. Broad CMI was induced following vaccination with the HIV-1 expressing vectors in Ad5 naïve and Ad5 immunized mice. A mixture of the three vaccines induced CMI against each transgene product even in the presence of hyper Ad5 immunity. These studies revealed that CMI responses to immunization with Ad5 [E1-, E2b-]-gag, Ad5 [E1-, E2b-]-pol or Ad5 [E1-, E2b-]-nef vectors were transgene specific and did not induce CMI responses against irrelevant antigens such as carcinoembryonic antigen (CEA), herpes simplex virus glycoprotein B (HSV), cytomegalovirus (CMV) or influenza virus antigens. We are evaluating this recombinant triad viral vector as an HIV-1 vaccine in a non-human primate model and the data indicate that the vaccine is worthy of clinical evaluation. PMID:19559110

  5. Mutation of the Highly Conserved Ser-40 of the HIV-1 p6 Gag Protein to Phe Causes the Formation of a Hydrophobic Patch, Enhances Membrane Association, and Polyubiquitination of Gag

    PubMed Central

    Hahn, Friedrich; Setz, Christian; Friedrich, Melanie; Rauch, Pia; Solbak, Sara Marie; Frøystein, Nils Åge; Henklein, Petra; Votteler, Jörg; Fossen, Torgils; Schubert, Ulrich

    2014-01-01

    The HIV-1 p6 Gag protein contains two late assembly (l-) domains that recruit proteins of the endosomal sorting complex required for transport (ESCRT) pathway to mediate membrane fission between the nascent virion and the cell membrane. It was recently demonstrated that mutation of the highly conserved Ser-40 to Phe (S40F) disturbs CA-SP1 processing, virus morphogenesis, and infectivity. It also causes the formation of filopodia-like structures, while virus release remains unaffected. Here, we show that the mutation S40F, but not the conservative mutation to Asp (S40D) or Asn (S40N), augments membrane association, K48-linked polyubiquitination, entry into the 26S proteasome, and, consequently, enhances MHC-I antigen presentation of Gag derived epitopes. Nuclear magnetic resonance (NMR) structure analyses revealed that the newly introduced Phe-40, together with Tyr-36, causes the formation of a hydrophobic patch at the C-terminal α-helix of p6, providing a molecular rationale for the enhanced membrane association of Gag observed in vitro and in HIV-1 expressing cells. The extended exposure of the S40F mutant to unidentified membrane-resident ubiquitin E3-ligases might trigger the polyubiquitination of Gag. The cumulative data support a previous model of a so far undefined property of p6, which, in addition to MA, acts as membrane targeting domain of Gag. PMID:25279819

  6. A cis-Acting Element Present within the gag Open Reading Frame Negatively Impacts on the Activity of the HIV-1 IRES

    PubMed Central

    Valiente-Echeverría, Fernando; Vallejos, Maricarmen; Monette, Anne; Pino, Karla; Letelier, Alejandro; Huidobro-Toro, J. Pablo; Mouland, Andrew J.; López-Lastra, Marcelo

    2013-01-01

    Translation initiation from the human immunodeficiency virus type-1 (HIV-1) mRNA can occur through a cap or an IRES dependent mechanism. Cap-dependent translation initiation of the HIV-1 mRNA can be inhibited by the instability element (INS)-1, a cis-acting regulatory element present within the gag open reading frame (ORF). In this study we evaluated the impact of the INS-1 on HIV-1 IRES-mediated translation initiation. Using heterologous bicistronic mRNAs, we show that the INS-1 negatively impact on HIV-1 IRES-driven translation in in vitro and in cell-based experiments. Additionally, our results show that the inhibitory effect of the INS-1 is not general to all IRESes since it does not hinder translation driven by the HCV IRES. The inhibition by the INS-1 was partially rescued in cells by the overexpression of the viral Rev protein or hnRNPA1. PMID:23451120

  7. Photothermal Imaging and Measurement of Protein Shell Stoichiometry of Single HIV-1 Gag Virus-Like Nanoparticles

    PubMed Central

    Vieweger, Mario; Goicochea, Nancy; Koh, Eun Sohl; Dragnea, Bogdan

    2011-01-01

    Virus life stages often constitute a complex chain of events, difficult to track in-vivo and in real-time. Challenges are associated with spatial and time limitations of current probes: most viruses are smaller than the diffraction limit of optical microscopes while the entire time-scale of virus dynamics spans over 8 orders of magnitude. Thus, virus processes such as entry, disassembly, and egress have generally remained poorly understood. Here we discuss photothermal heterodyne imaging (PHI) as a possible alternative to fluorescence microscopy in the study of single virus-like nanoparticle (VNP) dynamics, with relevance in particular to virus uncoating. Being based on optical absorption rather than emission, PHI could potentially surpass some of the current limitations associated with fluorescent labels. As proof-of-principle, single VNPs self-assembled from 60 nm DNA-functionalized gold nanoparticles (DNA-Au NPs) encapsulated in a Gag protein shell of the Human immunodeficiency virus (HIV-1) were imaged and their photothermal response compared with DNA-Au NPs. For the first-time, the protein stoichiometry of a single virus-like particle was estimated by a method other than electron microscopy. PMID:21854038

  8. Photothermal imaging and measurement of protein shell stoichiometry of single HIV-1 Gag virus-like nanoparticles.

    PubMed

    Vieweger, Mario; Goicochea, Nancy; Koh, Eun Sohl; Dragnea, Bogdan

    2011-09-27

    Virus life stages often constitute a complex chain of events, difficult to track in vivo and in real-time. Challenges are associated with spatial and time limitations of current probes: most viruses are smaller than the diffraction limit of optical microscopes while the entire time scale of virus dynamics spans over 8 orders of magnitude. Thus, virus processes such as entry, disassembly, and egress have generally remained poorly understood. Here we discuss photothermal heterodyne imaging (PHI) as a possible alternative to fluorescence microscopy in the study of single virus-like nanoparticle (VNP) dynamics, with relevance in particular to virus uncoating. Being based on optical absorption rather than emission, PHI could potentially surpass some of the current limitations associated with fluorescent labels. As proof-of-principle, single VNPs self-assembled from 60 nm DNA-functionalized gold nanoparticles (DNA-Au NPs) encapsulated in a Gag protein shell of the human immunodeficiency virus (HIV-1) were imaged, and their photothermal response was compared with DNA-Au NPs. For the first time, the protein stoichiometry of a single virus-like particle was estimated by a method other than electron microscopy. PMID:21854038

  9. Identification and Characterization of BMS-955176, a Second-Generation HIV-1 Maturation Inhibitor with Improved Potency, Antiviral Spectrum, and Gag Polymorphic Coverage

    PubMed Central

    Nowicka-Sans, Beata; Protack, Tricia; Lin, Zeyu; Li, Zhufang; Zhang, Sharon; Sun, Yongnian; Samanta, Himadri; Terry, Brian; Liu, Zheng; Chen, Yan; Sin, Ny; Sit, Sing-Yuen; Swidorski, Jacob J.; Chen, Jie; Venables, Brian L.; Healy, Matthew; Meanwell, Nicholas A.; Cockett, Mark; Hanumegowda, Umesh; Regueiro-Ren, Alicia; Krystal, Mark

    2016-01-01

    BMS-955176 is a second-generation human immunodeficiency virus type 1 (HIV-1) maturation inhibitor (MI). A first-generation MI, bevirimat, showed clinical efficacy in early-phase studies, but ∼50% of subjects had viruses with reduced susceptibility associated with naturally occurring polymorphisms in Gag near the site of MI action. MI potency was optimized using a panel of engineered reporter viruses containing site-directed polymorphic changes in Gag that reduce susceptibility to bevirimat (including V362I, V370A/M/Δ, and T371A/Δ), leading incrementally to the identification of BMS-955176. BMS-955176 exhibits potent activity (50% effective concentration [EC50], 3.9 ± 3.4 nM [mean ± standard deviation]) toward a library (n = 87) of gag/pr recombinant viruses representing 96.5% of subtype B polymorphic Gag diversity near the CA/SP1 cleavage site. BMS-955176 exhibited a median EC50 of 21 nM toward a library of subtype B clinical isolates assayed in peripheral blood mononuclear cells (PBMCs). Potent activity was maintained against a panel of reverse transcriptase, protease, and integrase inhibitor-resistant viruses, with EC50s similar to those for the wild-type virus. A 5.4-fold reduction in EC50 occurred in the presence of 40% human serum plus 27 mg/ml of human serum albumin (HSA), which corresponded well to an in vitro measurement of 86% human serum binding. Time-of-addition and pseudotype reporter virus studies confirm a mechanism of action for the compound that occurs late in the virus replication cycle. BMS-955176 inhibits HIV-1 protease cleavage at the CA/SP1 junction within Gag in virus-like particles (VLPs) and in HIV-1-infected cells, and it binds reversibly and with high affinity to assembled Gag in purified HIV-1 VLPs. Finally, in vitro combination studies showed no antagonistic interactions with representative antiretrovirals (ARVs) of other mechanistic classes. In conclusion, BMS-955176 is a second-generation MI with potent in vitro anti-HIV-1

  10. Identification and Characterization of BMS-955176, a Second-Generation HIV-1 Maturation Inhibitor with Improved Potency, Antiviral Spectrum, and Gag Polymorphic Coverage.

    PubMed

    Nowicka-Sans, Beata; Protack, Tricia; Lin, Zeyu; Li, Zhufang; Zhang, Sharon; Sun, Yongnian; Samanta, Himadri; Terry, Brian; Liu, Zheng; Chen, Yan; Sin, Ny; Sit, Sing-Yuen; Swidorski, Jacob J; Chen, Jie; Venables, Brian L; Healy, Matthew; Meanwell, Nicholas A; Cockett, Mark; Hanumegowda, Umesh; Regueiro-Ren, Alicia; Krystal, Mark; Dicker, Ira B

    2016-07-01

    BMS-955176 is a second-generation human immunodeficiency virus type 1 (HIV-1) maturation inhibitor (MI). A first-generation MI, bevirimat, showed clinical efficacy in early-phase studies, but ∼50% of subjects had viruses with reduced susceptibility associated with naturally occurring polymorphisms in Gag near the site of MI action. MI potency was optimized using a panel of engineered reporter viruses containing site-directed polymorphic changes in Gag that reduce susceptibility to bevirimat (including V362I, V370A/M/Δ, and T371A/Δ), leading incrementally to the identification of BMS-955176. BMS-955176 exhibits potent activity (50% effective concentration [EC50], 3.9 ± 3.4 nM [mean ± standard deviation]) toward a library (n = 87) of gag/pr recombinant viruses representing 96.5% of subtype B polymorphic Gag diversity near the CA/SP1 cleavage site. BMS-955176 exhibited a median EC50 of 21 nM toward a library of subtype B clinical isolates assayed in peripheral blood mononuclear cells (PBMCs). Potent activity was maintained against a panel of reverse transcriptase, protease, and integrase inhibitor-resistant viruses, with EC50s similar to those for the wild-type virus. A 5.4-fold reduction in EC50 occurred in the presence of 40% human serum plus 27 mg/ml of human serum albumin (HSA), which corresponded well to an in vitro measurement of 86% human serum binding. Time-of-addition and pseudotype reporter virus studies confirm a mechanism of action for the compound that occurs late in the virus replication cycle. BMS-955176 inhibits HIV-1 protease cleavage at the CA/SP1 junction within Gag in virus-like particles (VLPs) and in HIV-1-infected cells, and it binds reversibly and with high affinity to assembled Gag in purified HIV-1 VLPs. Finally, in vitro combination studies showed no antagonistic interactions with representative antiretrovirals (ARVs) of other mechanistic classes. In conclusion, BMS-955176 is a second-generation MI with potent in vitro anti-HIV-1

  11. Phosphatidylinositol-(4,5)-Bisphosphate Acyl Chains Differentiate Membrane Binding of HIV-1 Gag from That of the Phospholipase Cδ1 Pleckstrin Homology Domain

    PubMed Central

    Olety, Balaji; Veatch, Sarah L.

    2015-01-01

    ABSTRACT HIV-1 Gag, which drives virion assembly, interacts with a plasma membrane (PM)-specific phosphoinositide, phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]. While cellular acidic phospholipid-binding proteins/domains, such as the PI(4,5)P2-specific pleckstrin homology domain of phospholipase Cδ1 (PHPLCδ1), mediate headgroup-specific interactions with corresponding phospholipids, the exact nature of the Gag-PI(4,5)P2 interaction remains undetermined. In this study, we used giant unilamellar vesicles (GUVs) to examine how PI(4,5)P2 with unsaturated or saturated acyl chains affect membrane binding of PHPLCδ1 and Gag. Both unsaturated dioleoyl-PI(4,5)P2 [DO-PI(4,5)P2] and saturated dipalmitoyl-PI(4,5)P2 [DP-PI(4,5)P2] successfully recruited PHPLCδ1 to membranes of single-phase GUVs. In contrast, DO-PI(4,5)P2 but not DP-PI(4,5)P2 recruited Gag to GUVs, indicating that PI(4,5)P2 acyl chains contribute to stable membrane binding of Gag. GUVs containing PI(4,5)P2, cholesterol, and dipalmitoyl phosphatidylserine separated into two coexisting phases: one was a liquid phase, and the other appeared to be a phosphatidylserine-enriched gel phase. In these vesicles, the liquid phase recruited PHPLCδ1 regardless of PI(4,5)P2 acyl chains. Likewise, Gag bound to the liquid phase when PI(4,5)P2 had DO-acyl chains. DP-PI(4,5)P2-containing GUVs showed no detectable Gag binding to the liquid phase. Unexpectedly, however, DP-PI(4,5)P2 still promoted recruitment of Gag, but not PHPLCδ1, to the dipalmitoyl-phosphatidylserine-enriched gel phase of these GUVs. Altogether, these results revealed different roles for PI(4,5)P2 acyl chains in membrane binding of two PI(4,5)P2-binding proteins, Gag and PHPLCδ1. Notably, we observed that nonmyristylated Gag retains the preference for PI(4,5)P2 containing an unsaturated acyl chain over DP-PI(4,5)P2, suggesting that Gag sensitivity to PI(4,5)P2 acyl chain saturation is determined directly by the matrix-PI(4,5)P2 interaction, rather

  12. Live attenuated measles vaccine expressing HIV-1 Gag virus like particles covered with gp160DELTAV1V2 is strongly immunogenic

    SciTech Connect

    Guerbois, Mathilde; Moris, Arnaud; Combredet, Chantal; Najburg, Valerie; Ruffie, Claude; Fevrier, Michele; Cayet, Nadege; Brandler, Samantha; Schwartz, Olivier; Tangy, Frederic

    2009-05-25

    Although a live attenuated HIV vaccine is not currently considered for safety reasons, a strategy inducing both T cells and neutralizing antibodies to native assembled HIV-1 particles expressed by a replicating virus might mimic the advantageous characteristics of live attenuated vaccine. To this aim, we generated a live attenuated recombinant measles vaccine expressing HIV-1 Gag virus-like particles (VLPs) covered with gp160DELTAV1V2 Env protein. The measles-HIV virus replicated efficiently in cell culture and induced the intense budding of HIV particles covered with Env. In mice sensitive to MV infection, this recombinant vaccine stimulated high levels of cellular and humoral immunity to both MV and HIV with neutralizing activity. The measles-HIV virus infected human professional antigen-presenting cells, such as dendritic cells and B cells, and induced efficient presentation of HIV-1 epitopes and subsequent activation of human HIV-1 Gag-specific T cell clones. This candidate vaccine will be next tested in non-human primates. As a pediatric vaccine, it might protect children and adolescents simultaneously from measles and HIV.

  13. Potent Cell-Intrinsic Immune Responses in Dendritic Cells Facilitate HIV-1-Specific T Cell Immunity in HIV-1 Elite Controllers

    PubMed Central

    Martin-Gayo, Enrique; Buzon, Maria Jose; Ouyang, Zhengyu; Hickman, Taylor; Cronin, Jacqueline; Pimenova, Dina; Walker, Bruce D.; Lichterfeld, Mathias; Yu, Xu G.

    2015-01-01

    The majority of HIV-1 elite controllers (EC) restrict HIV-1 replication through highly functional HIV-1-specific T cell responses, but mechanisms supporting the evolution of effective HIV-1-specific T cell immunity in these patients remain undefined. Cytosolic immune recognition of HIV-1 in conventional dendritic cells (cDC) can facilitate priming and expansion of HIV-1-specific T cells; however, HIV-1 seems to be able to avoid intracellular immune recognition in cDCs in most infected individuals. Here, we show that exposure of cDCs from EC to HIV-1 leads to a rapid and sustained production of type I interferons and upregulation of several interferon-stimulated effector genes. Emergence of these cell-intrinsic immune responses was associated with a reduced induction of SAMHD1 and LEDGF/p75, and an accumulation of viral reverse transcripts, but inhibited by pharmacological blockade of viral reverse transcription or siRNA-mediated silencing of the cytosolic DNA sensor cGAS. Importantly, improved cell-intrinsic immune recognition of HIV-1 in cDCs from elite controllers translated into stronger abilities to stimulate and expand HIV-1-specific CD8 T cell responses. These data suggest an important role of cell-intrinsic type I interferon secretion in dendritic cells for the induction of effective HIV-1-specific CD8 T cells, and may be helpful for eliciting functional T cell immunity against HIV-1 for preventative or therapeutic clinical purposes. PMID:26067651

  14. The S40 residue in HIV-1 Gag p6 impacts local and distal budding determinants, revealing additional late domain activities

    PubMed Central

    2013-01-01

    Background HIV-1 budding is directed primarily by two motifs in Gag p6 designated as late domain-1 and −2 that recruit ESCRT machinery by binding Tsg101 and Alix, respectively, and by poorly characterized determinants in the capsid (CA) domain. Here, we report that a conserved Gag p6 residue, S40, impacts budding mediated by all of these determinants. Results Whereas budding normally results in formation of single spherical particles ~100 nm in diameter and containing a characteristic electron-dense conical core, the substitution of Phe for S40, a change that does not alter the amino acids encoded in the overlapping pol reading frame, resulted in defective CA-SP1 cleavage, formation of strings of tethered particles or filopodia-like membrane protrusions containing Gag, and diminished infectious particle formation. The S40F-mediated release defects were exacerbated when the viral-encoded protease (PR) was inactivated or when L domain-1 function was disrupted or when budding was almost completely obliterated by the disruption of both L domain-1 and −2. S40F mutation also resulted in stronger Gag-Alix interaction, as detected by yeast 2-hybrid assay. Reducing Alix binding by mutational disruption of contact residues restored single particle release, implicating the perturbed Gag-Alix interaction in the aberrant budding events. Interestingly, introduction of S40F partially rescued the negative effects on budding of CA NTD mutations EE75,76AA and P99A, which both prevent membrane curvature and therefore block budding at an early stage. Conclusions The results indicate that the S40 residue is a novel determinant of HIV-1 egress that is most likely involved in regulation of a critical assembly event required for budding in the Tsg101-, Alix-, Nedd4- and CA N-terminal domain affected pathways. PMID:24257210

  15. A Conserved Target Site in HIV-1 Gag RNA is Accessible to Inhibition by Both an HDV Ribozyme and a Short Hairpin RNA

    PubMed Central

    Scarborough, Robert J; Lévesque, Michel V; Boudrias-Dalle, Etienne; Chute, Ian C; Daniels, Sylvanne M; Ouellette, Rodney J; Perreault, Jean-Pierre; Gatignol, Anne

    2014-01-01

    Antisense-based molecules targeting HIV-1 RNA have the potential to be used as part of gene or drug therapy to treat HIV-1 infection. In this study, HIV-1 RNA was screened to identify more conserved and accessible target sites for ribozymes based on the hepatitis delta virus motif. Using a quantitative screen for effects on HIV-1 production, we identified a ribozyme targeting a highly conserved site in the Gag coding sequence with improved inhibitory potential compared to our previously described candidates targeting the overlapping Tat/Rev coding sequence. We also demonstrate that this target site is highly accessible to short hairpin directed RNA interference, suggesting that it may be available for the binding of antisense RNAs with different modes of action. We provide evidence that this target site is structurally conserved in diverse viral strains and that it is sufficiently different from the human transcriptome to limit off-target effects from antisense therapies. We also show that the modified hepatitis delta virus ribozyme is more sensitive to a mismatch in its target site compared to the short hairpin RNA. Overall, our results validate the potential of a new target site in HIV-1 RNA to be used for the development of antisense therapies. PMID:25072692

  16. Intracellular interactions between APOBEC3G, RNA, and HIV-1 Gag: APOBEC3G multimerization is dependent on its association with RNA

    PubMed Central

    Friew, Yeshitila N; Boyko, Vitaly; Hu, Wei-Shau; Pathak, Vinay K

    2009-01-01

    Background Host restriction factor APOBEC3G (A3G) blocks human immunodeficiency virus type 1 (HIV-1) replication by G-to-A hypermutation, and by inhibiting DNA synthesis and provirus formation. Previous reports have suggested that A3G is a dimer and its virion incorporation is mediated through interactions with viral or nonviral RNAs and/or HIV-1 Gag. We have now employed a bimolecular fluorescence complementation assay (BiFC) to analyze the intracellular A3G-A3G, A3G-RNA, and A3G-Gag interactions in living cells by reconstitution of yellow fluorescent protein (YFP) from its N- or C-terminal fragments. Results The results obtained with catalytic domain 1 and 2 (CD1 and CD2) mutants indicate that A3G-A3G and A3G-Gag multimerization is dependent on an intact CD1 domain, which is required for RNA binding. A mutant HIV-1 Gag that exhibits reduced RNA binding also failed to reconstitute BiFC with wild-type A3G, indicating a requirement for both HIV-1 Gag and A3G to bind to RNA for their multimerization. Addition of a non-specific RNA binding peptide (P22) to the N-terminus of a CD1 mutant of A3G restored BiFC and virion incorporation, but failed to inhibit viral replication, indicating that the mutations in CD1 resulted in additional defects that interfere with A3G's antiviral activity. Conclusion These studies establish a robust BiFC assay for analysis of intracellular interactions of A3G with other macromolecules. The results indicate that in vivo A3G is a monomer that forms multimers upon binding to RNA. In addition, we observed weak interactions between wild-type A3G molecules and RNA binding-defective mutants of A3G, which could explain previously described protein-protein interactions between purified A3G molecules. PMID:19497112

  17. Host Genetic Determinants of T Cell Responses to the MRKAd5 HIV-1 gag/pol/nef Vaccine in the Step Trial

    PubMed Central

    Fellay, Jacques; Frahm, Nicole; Shianna, Kevin V.; Cirulli, Elizabeth T.; Casimiro, Danilo R.; Robertson, Michael N.; Haynes, Barton F.; Geraghty, Daniel E.; McElrath, M. Juliana

    2011-01-01

    Understanding how human genetic variation impacts individual response to immunogens is fundamental for rational vaccine development. To explore host mechanisms involved in cellular immune responses to the MRKAd5 human immunodeficiency virus type 1 (HIV-1) gag/pol/nef vaccine tested in the Step trial, we performed a genome-wide association study of determinants of HIV-specific T cell responses, measured by interferon γ enzyme-linked immunospot assays. No human genetic variant reached genome-wide significance, but polymorphisms located in the major histocompatibility complex (MHC) region showed the strongest association with response to the HIV-1 Gag protein: HLA-B alleles known to be associated with differences in HIV-1 control were responsible for these associations. The implication of the same HLA alleles in vaccine-induced cellular immunity and in natural immune control is of relevance for vaccine design. Furthermore, our results demonstrate the importance of considering the host immunogenetic background in the analysis of immune responses to T cell vaccines. PMID:21278214

  18. A novel combined RNA-protein interaction analysis distinguishes HIV-1 Gag protein binding sites from structural change in the viral RNA leader.

    PubMed

    Kenyon, Julia C; Prestwood, Liam J; Lever, Andrew M L

    2015-01-01

    RNA-protein interactions govern many viral and host cell processes. Conventional 'footprinting' to examine RNA-protein complex formation often cannot distinguish between sites of RNA-protein interaction and sites of RNA structural remodelling. We have developed a novel technique combining photo crosslinking with RNA 2' hydroxyl reactivity ('SHAPE') that achieves rapid and hitherto unachievable resolution of both RNA structural changes and the sites of protein interaction within an RNA-protein complex. 'XL-SHAPE' was validated using well-characterized viral RNA-protein interactions: HIV-1 Tat/TAR and bacteriophage MS2 RNA/Coat Binding Protein. It was then used to map HIV-1 Gag protein interactions on 2D and 3D models of the viral RNA leader. Distinct Gag binding sites were identified on exposed RNA surfaces corresponding to regions identified by mutagenesis as important for genome packaging. This widely applicable technique has revealed a first view of the stoichiometry and structure of the initial complex formed when HIV captures its genome. PMID:26449409

  19. Stability studies of HIV-1 Pr55gag virus-like particles made in insect cells after storage in various formulation media

    PubMed Central

    2012-01-01

    Background HIV-1 Pr55gag virus-like particles (VLPs) expressed by baculovirus in insect cells are considered to be a very promising HIV-1 vaccine candidate, as they have been shown to elicit broad cellular immune responses when tested in animals, particularly when used as a boost to DNA or BCG vaccines. However, it is important for the VLPs to retain their structure for them to be fully functional and effective. The medium in which the VLPs are formulated and the temperature at which they are stored are two important factors affecting their stability. Findings We describe the screening of 3 different readily available formulation media (sorbitol, sucrose and trehalose) for their ability to stabilise HIV-1 Pr55gag VLPs during prolonged storage. Transmission electron microscopy (TEM) was done on VLPs stored at two different concentrations of the media at three different temperatures (4°C, –20°C and −70°C) over different time periods, and the appearance of the VLPs was compared. VLPs stored in 15% trehalose at −70°C retained their original appearance the most effectively over a period of 12 months. VLPs stored in 5% trehalose, sorbitol or sucrose were not all intact even after 1 month storage at the temperatures tested. In addition, we showed that VLPs stored under these conditions were able to be frozen and re-thawed twice before showing changes in their appearance. Conclusions Although the inclusion of other analytical tools are essential to validate these preliminary findings, storage in 15% trehalose at −70°C for 12 months is most effective in retaining VLP stability. PMID:22988963

  20. Helical structure determined by NMR of the HIV-1 (345–392)Gag sequence, surrounding p2: Implications for particle assembly and RNA packaging

    PubMed Central

    Morellet, Nelly; Druillennec, Sabine; Lenoir, Christine; Bouaziz, Serge; Roques, Bernard P.

    2005-01-01

    Gag protein oligomerization, an essential step during virus assembly, results in budding of spherical virus particles. This process is critically dependent on the spacer p2, located between the capsid and the nucleocapsid proteins. P2 contributes also, in association with NCp7, to specific recognition of the HIV-1 packaging signal resulting in viral genome encapsidation. There is no structural information about the 20 last amino acids of the C-terminal part of capsid (CA[CTD]) and p2, in the molecular mechanism of Gag assembly. In this study the structure of a peptide encompassing the 14 residues of p2 with the upstream 21 residues and the downstream 13 residues was determined by 1H NMR in 30% trifluoroethanol (TFE). The main structural motif is a well-defined amphipathic α-helix including p2, the seven last residues of the CA(CTD), and the two first residues of NCp7. Peptides containing the p2 domain have a strong tendency to aggregate in solution, as shown by gel filtration analyses in pure H2O. To take into account the aggregation phenomena, models of dimer and trimer formed through hydrophobic or hydrophilic interfaces were constructed by molecular dynamic simulations. Gel shift experiments demonstrate that the presence of at least p2 and the 13 first residues of NCp7 is required for RNA binding. A computer-generated model of the Gag polyprotein segment (282–434)Gag interacting with the packaging element SL3 is proposed, illustrating the importance of p2 and NCp7 in genomic encapsidation. PMID:15659370

  1. Selection of an HLA-C*03:04-Restricted HIV-1 p24 Gag Sequence Variant Is Associated with Viral Escape from KIR2DL3+ Natural Killer Cells: Data from an Observational Cohort in South Africa

    PubMed Central

    Jimenez Cruz, Camilo A.; Garcia-Beltran, Wilfredo F.; Carlson, Jonathan M.; van Teijlingen, Nienke H.; Mann, Jaclyn K.; Jaggernath, Manjeetha; Kang, Seung-gu; Körner, Christian; Chung, Amy W.; Schafer, Jamie L.; Evans, David T.; Alter, Galit; Walker, Bruce D.; Goulder, Philip J.; Carrington, Mary; Hartmann, Pia; Pertel, Thomas; Zhou, Ruhong; Ndung’u, Thumbi; Altfeld, Marcus

    2015-01-01

    Background Viruses can evade immune surveillance, but the underlying mechanisms are insufficiently understood. Here, we sought to understand the mechanisms by which natural killer (NK) cells recognize HIV-1-infected cells and how this virus can evade NK-cell-mediated immune pressure. Methods and Findings Two sequence mutations in p24 Gag associated with the presence of specific KIR/HLA combined genotypes were identified in HIV-1 clade C viruses from a large cohort of infected, untreated individuals in South Africa (n = 392), suggesting viral escape from KIR+ NK cells through sequence variations within HLA class I—presented epitopes. One sequence polymorphism at position 303 of p24 Gag (TGag303V), selected for in infected individuals with both KIR2DL3 and HLA-C*03:04, enabled significantly better binding of the inhibitory KIR2DL3 receptor to HLA-C*03:04-expressing cells presenting this variant epitope compared to the wild-type epitope (wild-type mean 18.01 ± 10.45 standard deviation [SD] and variant mean 44.67 ± 14.42 SD, p = 0.002). Furthermore, activation of primary KIR2DL3+ NK cells from healthy donors in response to HLA-C*03:04+ target cells presenting the variant epitope was significantly reduced in comparison to cells presenting the wild-type sequence (wild-type mean 0.78 ± 0.07 standard error of the mean [SEM] and variant mean 0.63 ± 0.07 SEM, p = 0.012). Structural modeling and surface plasmon resonance of KIR/peptide/HLA interactions in the context of the different viral sequence variants studied supported these results. Future studies will be needed to assess processing and antigen presentation of the investigated HIV-1 epitope in natural infection, and the consequences for viral control. Conclusions These data provide novel insights into how viruses can evade NK cell immunity through the selection of mutations in HLA-presented epitopes that enhance binding to inhibitory NK cell receptors. Better understanding of the mechanisms by which HIV-1 evades

  2. Strand Transfer and Elongation of HIV-1 Reverse Transcription Is Facilitated by Cell Factors In Vitro

    PubMed Central

    Warrilow, David; Warren, Kylie; Harrich, David

    2010-01-01

    Recent work suggests a role for multiple host factors in facilitating HIV-1 reverse transcription. Previously, we identified a cellular activity which increases the efficiency of HIV-1 reverse transcription in vitro. Here, we describe aspects of the activity which shed light on its function. The cellular factor did not affect synthesis of strong-stop DNA but did improve downstream DNA synthesis. The stimulatory activity was isolated by gel filtration in a single fraction of the exclusion volume. Velocity-gradient purified HIV-1, which was free of detectable RNase activity, showed poor reverse transcription efficiency but was strongly stimulated by partially purified cell proteins. Hence, the cell factor(s) did not inactivate an RNase activity that might degrade the viral genomic RNA and block completion of reverse transcription. Instead, the cell factor(s) enhanced first strand transfer and synthesis of late reverse transcription suggesting it stabilized the reverse transcription complex. The factor did not affect lysis of HIV-1 by Triton X-100 in the endogenous reverse transcription (ERT) system, and ERT reactions with HIV-1 containing capsid mutations, which varied the biochemical stability of viral core structures and impeded reverse transcription in cells, showed no difference in the ability to be stimulated by the cell factor(s) suggesting a lack of involvement of the capsid in the in vitro assay. In addition, reverse transcription products were found to be resistant to exogenous DNase I activity when the active fraction was present in the ERT assay. These results indicate that the cell factor(s) may improve reverse transcription by facilitating DNA strand transfer and DNA synthesis. It also had a protective function for the reverse transcription products, but it is unclear if this is related to improved DNA synthesis. PMID:20949087

  3. Biochemical and Biologic Characterization of Exosomes and Microvesicles as Facilitators of HIV-1 Infection in Macrophages1

    PubMed Central

    Kadiu, Irena; Narayanasamy, Prabagaran; Dash, Prasanta K.; Zhang, Wei; Gendelman, Howard E.

    2013-01-01

    Exosomes and microvesicles are cell membranous sacs originating from multivesicular bodies and plasma membranes that facilitate long-distance intercellular communications. Lipidomic, proteomic and cell biologic approaches uncovered processes by which the human immunodeficiency virus type-1 (HIV-1) can use exosomes and MV to facilitate its dissemination. Macrophage MV and exosomes were isolated by immunoaffinity and sucrose cushion centrifugation and characterized by morphologic, biochemical and molecular assays. HIV-1 was “entrapped” in exosome aggregates. Robust HIV-1 replication followed infection with exosome-enhanced fractions isolated from infected cell supernatants. MV and exosomes facilitated viral infection that was affected by a range of cell surface receptors and adhesion proteins. HIV-1 readily completed its life cycle in human monocyte-derived macrophages but not in CD4 negative cells. The data support a significant role for exosomes as facilitators of viral infection. PMID:22711894

  4. Different Patterns of Expansion, Contraction and Memory Differentiation of HIV-1 Gag-Specific CD8 T Cells Elicited by Adenovirus Type 5 and Modified Vaccinia Ankara Vaccines

    PubMed Central

    Pillai, Vinod Kumar Bhaskara; Kannanganat, Sunil; Penaloza-MacMaster, Pablo; Chennareddi, Lakshmi; Robinson, Harriet L.; Blackwell, Jerry; Amara, Rama Rao

    2011-01-01

    The magnitude and functional quality of antiviral CD8 T cell responses are critical for the efficacy of T cell based vaccines. Here, we investigate the influence of two popular viral vectors, adenovirus type 5 (Ad5) and modified vaccinia Ankara (MVA), on expansion, contraction and memory differentiation of HIV-1 Gag insert-specific CD8 T cell responses following immunization and show different patterns for the two recombinant viral vectors. The Ad5 vector primed 6-fold higher levels of insert-specific CD8 effector T cells than the MVA vector. The Ad5-primed effector cells also underwent less contraction (< 2-fold) than the MVA-primed cells (>5-fold). The Ad5-primed memory cells were predominantly CD62L negative (effector memory) whereas the MVA-primed memory cells were predominantly CD62L positive (central memory). Consistent with their memory phenotype, MVA-primed CD8 T cells underwent higher fold expansion than Ad5-primed CD8 T cells following a homologous or heterologous boost. Impressively, the Ad5 boost changed the quality of MVA-primed memory response such that they undergo less contraction with effector memory phenotype. However, the MVA boost did not influence the contraction and memory phenotype of Ad5-primed response. In conclusion, our results demonstrate that vaccine vector strongly influences the expansion, contraction and the functional quality of insert-specific CD8 T cell responses and have implications for vaccine development against infectious diseases. PMID:21651938

  5. The extradomain A of fibronectin (EDA) combined with poly(I:C) enhances the immune response to HIV-1 p24 protein and the protection against recombinant Listeria monocytogenes-Gag infection in the mouse model.

    PubMed

    San Román, Beatriz; De Andrés, Ximena; Muñoz, Pilar-María; Obregón, Patricia; Asensio, Aaron-C; Garrido, Victoria; Mansilla, Cristina; Arribillaga, Laura; Lasarte, Juan-José; De Andrés, Damián; Amorena, Beatriz; Grilló, María-Jesús

    2012-03-28

    The development of effective vaccines against HIV-1 infection constitutes one of the major challenges in viral immunology. One of the protein candidates in vaccination against this virus is p24, since it is a conserved HIV antigen that has cytotoxic and helper T cell epitopes as well as B cell epitopes that may jointly confer enhanced protection against infection when used in immunization-challenge approaches. In this context, the adjuvant effect of EDA (used as EDAp24 fusion protein) and poly(I:C), as agonists of TLR4 and TLR3, respectively, was assessed in p24 immunizations using a recombinant Listeria monocytogenes HIV-1 Gag proteins (Lm-Gag, where p24 is the major antigen) for challenge in mice. Immunization with EDAp24 fusion protein together with poly(I:C) adjuvant induced a specific p24 IFN-γ production (Th1 profile) as well as protection against a Lm-Gag challenge, suggesting an additive or synergistic effect between both adjuvants. The combination of EDA (as a fusion protein with the antigen, which may favor antigen targeting to dendritic cells through TLR4) and poly(I:C) could thus be a good adjuvant candidate to enhance the immune response against HIV-1 proteins and its use may open new ways in vaccine investigations on this virus. PMID:22326778

  6. Replication Competent Molecular Clones of HIV-1 Expressing Renilla Luciferase Facilitate the Analysis of Antibody Inhibition in PBMC

    PubMed Central

    Edmonds, Tara G.; Ding, Haitao; Yuan, Xing; Wei, Qing; Smith, Kendra S.; Conway, Joan A.; Wieczorek, Lindsay; Brown, Bruce; Polonis, Victoria; West, John T.; Montefiori, David C.; Kappes, John C.; Ochsenbauer, Christina

    2010-01-01

    Effective vaccine development for human immunodeficiency virus type 1 (HIV-1) will require assays that ascertain the capacity of vaccine immunogens to elicit neutralizing antibodies (NAb) to diverse HIV-1 strains. To facilitate NAb assessment in peripheral blood mononuclear cell (PBMC)-based assays, we developed an assay-adaptable platform based on a Renilla luciferase (LucR) expressing HIV-1 proviral backbone. LucR was inserted into pNL4-3 DNA, preserving all viral open reading frames. The proviral genome was engineered to facilitate expression of diverse HIV-1 env sequences, allowing analysis in an isogenic background. The resulting Env-IMC-LucR viruses are infectious, and LucR is stably expressed over multiple replications in PBMC. HIV-1 neutralization, targeting TZM-bl cells, was highly correlative comparing virus (LucR) and cell (firefly luciferase) readouts. In PBMC, NAb activity can be analyzed either within a single or multiple cycles of replication. These results represent advancement toward a standardizable PBMC-based neutralization assay for assessing HIV-1 vaccine immunogen efficacy. PMID:20863545

  7. Filamin A Protein Interacts with Human Immunodeficiency Virus Type 1 Gag Protein and Contributes to Productive Particle Assembly*

    PubMed Central

    Cooper, JoAnn; Liu, Ling; Woodruff, Elvin A.; Taylor, Harry E.; Goodwin, J. Shawn; D'Aquila, Richard T.; Spearman, Paul; Hildreth, James E. K.; Dong, Xinhong

    2011-01-01

    HIV-1 Gag precursor directs virus particle assembly and release. In a search for Gag-interacting proteins that are involved in late stages of the HIV-1 replication cycle, we performed yeast two-hybrid screening against a human cDNA library and identified the non-muscle actin filament cross-linking protein filamin A as a novel Gag binding partner. The 280-kDa filamin A regulates cortical actin network dynamics and participates in the anchoring of membrane proteins to the actin cytoskeleton. Recent studies have shown that filamin A facilitates HIV-1 cell-to-cell transmission by binding to HIV receptors and coreceptors and regulating their clustering on the target cell surface. Here we report a novel role for filamin A in HIV-1 Gag intracellular trafficking. We demonstrate that filamin A interacts with the capsid domain of HIV-1 Gag and that this interaction is involved in particle release in a productive manner. Disruption of this interaction eliminated Gag localization at the plasma membrane and induced Gag accumulation within internal compartments. Moreover, blocking clathrin-dependent endocytic pathways did not relieve the restriction to particle release induced by filamin A depletion. These results suggest that filamin A is involved in the distinct step of the Gag trafficking pathway. The discovery of the Gag-filamin A interaction may provide a new therapeutic target for the treatment of HIV infection. PMID:21705339

  8. Structure of an anti-HIV-1 hammerhead ribozyme complex with a 17-mer DNA substrate analog of HIV-1 gag RNA and a mechanism for the cleavage reaction: 750 MHz NMR and computer experiments

    NASA Technical Reports Server (NTRS)

    Ojha, R. P.; Dhingra, M. M.; Sarma, M. H.; Myer, Y. P.; Setlik, R. F.; Shibata, M.; Kazim, A. L.; Ornstein, R. L.; Rein, R.; Turner, C. J.; Sarma, R. H.

    1997-01-01

    between the anti HIV-1 gag ribozyme and its abortive DNA substrate manifests in the detection of a continuous track of A.T base pairs; this suggests that the interaction between the ribozyme and its DNA substrate is stronger than the one observed in the case of the free ribozyme where the bases in stem I and stem III regions interact strongly with the ribozyme core region (Sarma, R. H., et al. FEBS Letters 375, 317-23, 1995). The complex formation provides certain guidelines in the design of suitable therapeutic ribozymes. If the residues in the ribozyme stem regions interact with the conserved core, it may either prevent or interfere with the formation of a catalytically active tertiary structure.

  9. Structure of an anti-HIV-1 hammerhead ribozyme complex with a 17-mer DNA substrate analog of HIV-1 gag RNA and a mechanism for the cleavage reaction: 750 MHz NMR and computer experiments.

    PubMed

    Ojha, R P; Dhingra, M M; Sarma, M H; Myer, Y P; Setlik, R F; Shibata, M; Kazim, A L; Ornstein, R L; Rein, R; Turner, C J; Sarma, R H

    1997-10-01

    between the anti HIV-1 gag ribozyme and its abortive DNA substrate manifests in the detection of a continuous track of A.T base pairs; this suggests that the interaction between the ribozyme and its DNA substrate is stronger than the one observed in the case of the free ribozyme where the bases in stem I and stem III regions interact strongly with the ribozyme core region (Sarma, R. H., et al. FEBS Letters 375, 317-23, 1995). The complex formation provides certain guidelines in the design of suitable therapeutic ribozymes. If the residues in the ribozyme stem regions interact with the conserved core, it may either prevent or interfere with the formation of a catalytically active tertiary structure. PMID:9399149

  10. Ectopic ATP synthase facilitates transfer of HIV-1 from antigen-presenting cells to CD4+ target cells

    PubMed Central

    Yavlovich, Amichai; Viard, Mathias; Zhou, Ming; Veenstra, Timothy D.; Wang, Ji Ming; Gong, Wanghua; Heldman, Eliahu; Blumenthal, Robert

    2012-01-01

    Antigen-presenting cells (APCs) act as vehicles that transfer HIV to their target CD4+ cells through an intercellular junction, termed the virologic synapse. The molecules that are involved in this process remain largely unidentified. In this study, we used photoaffinity labeling and a proteomic approach to identify new proteins that facilitate HIV-1 transfer. We identified ectopic mitochondrial ATP synthase as a factor that mediates HIV-1 transfer between APCs and CD4+ target cells. Monoclonal antibodies against the β-subunit of ATP synthase inhibited APC-mediated transfer of multiple strains HIV-1 to CD4+ target cells. Likewise, the specific inhibitors of ATPase, citreoviridin and IF1, completely blocked APC-mediated transfer of HIV-1 at the APC-target cell interaction step. Confocal fluorescent microscopy showed localization of extracellular ATP synthase at junctions between APC and CD4+ target cells. We conclude that ectopic ATP synthase could be an accessible molecular target for inhibiting HIV-1 proliferation in vivo. PMID:22753871

  11. High frequency of transmitted HIV-1 Gag HLA class I-driven immune escape variants but minimal immune selection over the first year of clade C infection.

    PubMed

    Gounder, Kamini; Padayachi, Nagavelli; Mann, Jaclyn K; Radebe, Mopo; Mokgoro, Mammekwa; van der Stok, Mary; Mkhize, Lungile; Mncube, Zenele; Jaggernath, Manjeetha; Reddy, Tarylee; Walker, Bruce D; Ndung'u, Thumbi

    2015-01-01

    In chronic HIV infection, CD8+ T cell responses to Gag are associated with lower viral loads, but longitudinal studies of HLA-restricted CD8+ T cell-driven selection pressure in Gag from the time of acute infection are limited. In this study we examined Gag sequence evolution over the first year of infection in 22 patients identified prior to seroconversion. A total of 310 and 337 full-length Gag sequences from the earliest available samples (median = 14 days after infection [Fiebig stage I/II]) and at one-year post infection respectively were generated. Six of 22 (27%) individuals were infected with multiple variants. There was a trend towards early intra-patient viral sequence diversity correlating with viral load set point (p = 0.07, r = 0.39). At 14 days post infection, 59.7% of Gag CTL epitopes contained non-consensus polymorphisms and over half of these (35.3%) comprised of previously described CTL escape variants. Consensus and variant CTL epitope proportions were equally distributed irrespective of the selecting host HLA allele and most epitopes remained unchanged over 12 months post infection. These data suggest that intrapatient diversity during acute infection is an indicator of disease outcome. In this setting, there is a high rate of transmitted CTL escape variants and limited immune selection in Gag during the first year of infection. These data have relevance for vaccine strategies designed to elicit effective CD8+ T cell immune responses. PMID:25781986

  12. Recombination enhances HIV-1 envelope diversity by facilitating the survival of latent genomic fragments in the plasma virus population

    SciTech Connect

    Immonen, Taina T.; Conway, Jessica M.; Romero-Severson, Ethan O.; Perelson, Alan S.; Leitner, Thomas; Kouyos, Roger Dimitri

    2015-12-22

    HIV-1 is subject to immune pressure exerted by the host, giving variants that escape the immune response an advantage. Virus released from activated latent cells competes against variants that have continually evolved and adapted to host immune pressure. Nevertheless, there is increasing evidence that virus displaying a signal of latency survives in patient plasma despite having reduced fitness due to long-term immune memory. We investigated the survival of virus with latent envelope genomic fragments by simulating within-host HIV-1 sequence evolution and the cycling of viral lineages in and out of the latent reservoir. Our model incorporates a detailed mutation process including nucleotide substitution, recombination, latent reservoir dynamics, diversifying selection pressure driven by the immune response, and purifying selection pressure asserted by deleterious mutations. We evaluated the ability of our model to capture sequence evolution in vivo by comparing our simulated sequences to HIV-1 envelope sequence data from 16 HIV-infected untreated patients. Empirical sequence divergence and diversity measures were qualitatively and quantitatively similar to those of our simulated HIV-1 populations, suggesting that our model invokes realistic trends of HIV-1 genetic evolution. Moreover, reconstructed phylogenies of simulated and patient HIV-1 populations showed similar topological structures. Our simulation results suggest that recombination is a key mechanism facilitating the persistence of virus with latent envelope genomic fragments in the productively infected cell population. Recombination increased the survival probability of latent virus forms approximately 13-fold. Prevalence of virus with latent fragments in productively infected cells was observed in only 2% of simulations when we ignored recombination, while the proportion increased to 27% of simulations when we allowed recombination. We also found that the selection pressures exerted by different fitness

  13. Recombination Enhances HIV-1 Envelope Diversity by Facilitating the Survival of Latent Genomic Fragments in the Plasma Virus Population

    PubMed Central

    Immonen, Taina T.; Conway, Jessica M.; Romero-Severson, Ethan O.; Perelson, Alan S.; Leitner, Thomas

    2015-01-01

    HIV-1 is subject to immune pressure exerted by the host, giving variants that escape the immune response an advantage. Virus released from activated latent cells competes against variants that have continually evolved and adapted to host immune pressure. Nevertheless, there is increasing evidence that virus displaying a signal of latency survives in patient plasma despite having reduced fitness due to long-term immune memory. We investigated the survival of virus with latent envelope genomic fragments by simulating within-host HIV-1 sequence evolution and the cycling of viral lineages in and out of the latent reservoir. Our model incorporates a detailed mutation process including nucleotide substitution, recombination, latent reservoir dynamics, diversifying selection pressure driven by the immune response, and purifying selection pressure asserted by deleterious mutations. We evaluated the ability of our model to capture sequence evolution in vivo by comparing our simulated sequences to HIV-1 envelope sequence data from 16 HIV-infected untreated patients. Empirical sequence divergence and diversity measures were qualitatively and quantitatively similar to those of our simulated HIV-1 populations, suggesting that our model invokes realistic trends of HIV-1 genetic evolution. Moreover, reconstructed phylogenies of simulated and patient HIV-1 populations showed similar topological structures. Our simulation results suggest that recombination is a key mechanism facilitating the persistence of virus with latent envelope genomic fragments in the productively infected cell population. Recombination increased the survival probability of latent virus forms approximately 13-fold. Prevalence of virus with latent fragments in productively infected cells was observed in only 2% of simulations when we ignored recombination, while the proportion increased to 27% of simulations when we allowed recombination. We also found that the selection pressures exerted by different fitness

  14. Virus Maturation as a Novel HIV-1 Therapeutic Target

    PubMed Central

    Adamson, Catherine S.; Salzwedel, Karl; Freed, Eric O.

    2009-01-01

    Development of novel therapeutic targets against HIV-1 is a high research priority due to the serious clinical consequences associated with acquisition of resistance to current antiretroviral drugs. The HIV-1 structural protein Gag represents a potential novel therapeutic target as it plays a central role in virus particle production, yet is not targeted by any of the currently approved antiretroviral drugs. The Gag polyprotein precursor multimerizes to form immature particles that bud from the infected cell. Concomitant with virus release, the Gag precursor undergoes proteolytic processing by the viral protease to generate the mature Gag proteins, which include capsid (CA). Once liberated from the Gag polyprotein precursor, CA molecules interact to reassemble into a condensed conical core, which organizes the viral RNA genome and several viral proteins to facilitate virus replication in the next round of infection. Correct Gag proteolytic processing and core assembly are therefore essential for virus infectivity. In this review, we discuss novel strategies to inhibit maturation by targeting proteolytic cleavage sites in Gag or CA-CA interactions required for core formation. The identification and development of lead maturation inhibitors are highlighted. PMID:19534569

  15. HIV-1 Gag p17 presented as virus-like particles on the E2 scaffold from Geobacillus stearothermophilus induces sustained humoral and cellular immune responses in the absence of IFNγ production by CD4+ T cells

    PubMed Central

    Caivano, Antonella; Doria-Rose, Nicole A.; Buelow, Benjamin; Sartorius, Rossella; Trovato, Maria; D’Apice, Luciana; Domingo, Gonzalo J.; Sutton, William F.; Haigwood, Nancy L.; De Berardinis, Piergiuseppe

    2012-01-01

    We have constructed stable virus-like particles displaying the HIV-1 Gag(p17) protein as an N-terminal fusion with an engineered protein domain from the Geobacillus stearothermophilus pyruvate dehydrogenase subunit E2. Mice immunized with the Gag(p17)-E2 60-mer scaffold particles mounted a strong and sustained antibody response. Antibodies directed to Gag(p17) were boosted significantly with additional immunizations, while anti-E2 responses reached a plateau. The isotype of the induced antibodies was biased towards IgG1, and the E2-primed CD4+ T cells did not secrete IFNγ. Using transgenic mouse model systems, we demonstrated that CD8+ T cells primed with E2 particles were able to exert lytic activity and produce IFNγ. These results show that the E2 scaffold represents a powerful vaccine delivery system for whole antigenic proteins or polyepitope engineered proteins, evoking antibody production and antigen specific CTL activity even in the absence of IFNγ-producing CD4+ T cells. PMID:20850858

  16. HIV-1 Gag p17 presented as virus-like particles on the E2 scaffold from Geobacillus stearothermophilus induces sustained humoral and cellular immune responses in the absence of IFN{gamma} production by CD4+ T cells

    SciTech Connect

    Caivano, Antonella; Doria-Rose, Nicole A.; Buelow, Benjamin; Sartorius, Rossella; Trovato, Maria; D'Apice, Luciana; Domingo, Gonzalo J.; Sutton, William F.; Haigwood, Nancy L.; De Berardinis, Piergiuseppe

    2010-11-25

    We have constructed stable virus-like particles displaying the HIV-1 Gag(p17) protein as an N-terminal fusion with an engineered protein domain from the Geobacillus stearothermophilus pyruvate dehydrogenase subunit E2. Mice immunized with the Gag(p17)-E2 60-mer scaffold particles mounted a strong and sustained antibody response. Antibodies directed to Gag(p17) were boosted significantly with additional immunizations, while anti-E2 responses reached a plateau. The isotype of the induced antibodies was biased towards IgG1, and the E2-primed CD4+ T cells did not secrete IFN{gamma}. Using transgenic mouse model systems, we demonstrated that CD8+ T cells primed with E2 particles were able to exert lytic activity and produce IFN{gamma}. These results show that the E2 scaffold represents a powerful vaccine delivery system for whole antigenic proteins or polyepitope engineered proteins, evoking antibody production and antigen specific CTL activity even in the absence of IFN{gamma}-producing CD4+ T cells.

  17. ADAR1 Facilitates HIV-1 Replication in Primary CD4+ T Cells

    PubMed Central

    van Hamme, John L.; Jansen, Machiel H.; van Dort, Karel A.; Vanderver, Adeline; Rice, Gillian I.; Crow, Yanick J.; Kootstra, Neeltje A.; Kuijpers, Taco W.

    2015-01-01

    Unlike resting CD4+ T cells, activated CD4+T cells are highly susceptible to infection of human immunodeficiency virus 1 (HIV-1). HIV-1 infects T cells and macrophages without activating the nucleic acid sensors and the anti-viral type I interferon response. Adenosine deaminase acting on RNA 1 (ADAR1) is an RNA editing enzyme that displays antiviral activity against several RNA viruses. Mutations in ADAR1 cause the autoimmune disorder Aicardi-Goutieères syndrome (AGS). This disease is characterized by an inappropriate activation of the interferon-stimulated gene response. Here we show that HIV-1 replication, in ADAR1-deficient CD4+T lymphocytes from AGS patients, is blocked at the level of protein translation. Furthermore, viral protein synthesis block is accompanied by an activation of interferon-stimulated genes. RNA silencing of ADAR1 in Jurkat cells also inhibited HIV-1 protein synthesis. Our data support that HIV-1 requires ADAR1 for efficient replication in human CD4+T cells. PMID:26629815

  18. Gag-Specific CD4 and CD8 T-Cell Proliferation in Adolescents and Young Adults with Perinatally Acquired HIV-1 Infection Is Associated with Ethnicity — The ANRS-EP38-IMMIP Study

    PubMed Central

    Le Chenadec, Jérôme; Scott-Algara, Daniel; Blanche, Stéphane; Didier, Céline; Montange, Thomas; Viard, Jean-Paul; Dollfus, Catherine; Avettand-Fenoel, Véronique; Rouzioux, Christine; Warszawski, Josiane; Buseyne, Florence

    2015-01-01

    The ANRS-EP38-IMMIP study aimed to provide a detailed assessment of the immune status of perinatally infected youths living in France. We studied Gag-specific CD4 and CD8 T-cell proliferation and the association between the proliferation of these cells, demographic factors and HIV disease history. We included 93 youths aged between 15 and 24 years who had been perinatally infected with HIV. Sixty-nine had undergone valid CFSE-based T-cell proliferation assays. Gag-specific proliferation of CD4 and CD8 T cells was detected in 12 (16%) and 30 (38%) patients, respectively. The Gag-specific proliferation of CD4 and CD8 T cells was more frequently observed in black patients than in patients from other ethnic groups (CD4: 32% vs. 4%, P = 0.001; CD8: 55% vs. 26%, P = 0.02). Among aviremic patients, the duration of viral suppression was shorter in CD8 responders than in CD8 nonresponders (medians: 54 vs. 20 months, P = 0.04). Among viremic patients, CD8 responders had significantly lower plasma HIV RNA levels than CD8 nonresponders (2.7 vs. 3.7 log10 HIV-RNA copies/ml, P = 0.02). In multivariate analyses including sex and HIV-1 subtype as covariables, Gag-specific CD4 T-cell proliferation was associated only with ethnicity, whereas Gag-specific CD8 T-cell proliferation was associated with both ethnicity and the duration of viral suppression. Both CD4 and CD8 responders reached their nadir CD4 T-cell percentages at younger ages than their nonresponder counterparts (6 vs. 8 years, P = 0.04 for both CD4 and CD8 T-cell proliferation). However, these associations were not significant in multivariate analysis. In conclusion, after at least 15 years of HIV infection, Gag-specific T-cell proliferation was found to be more frequent in black youths than in patients of other ethnic groups, despite all the patients being born in the same country, with similar access to care. PMID:26650393

  19. HIV Type 1 Gag as a Target for Antiviral Therapy

    PubMed Central

    2012-01-01

    Abstract The Gag proteins of HIV-1 are central players in virus particle assembly, release, and maturation, and also function in the establishment of a productive infection. Despite their importance throughout the replication cycle, there are currently no approved antiretroviral therapies that target the Gag precursor protein or any of the mature Gag proteins. Recent progress in understanding the structural and cell biology of HIV-1 Gag function has revealed a number of potential Gag-related targets for possible therapeutic intervention. In this review, we summarize our current understanding of HIV-1 Gag and suggest some approaches for the development of novel antiretroviral agents that target Gag. PMID:21848364

  20. Evidence for a Stable Interaction of gp41 with Pr55Gag in Immature Human Immunodeficiency Virus Type 1 Particles

    PubMed Central

    Wyma, Donald J.; Kotov, Alexander; Aiken, Christopher

    2000-01-01

    Assembly of infectious human immunodeficiency virus type 1 (HIV-1) virions requires incorporation of the viral envelope glycoproteins gp41 and gp120. Several lines of evidence have suggested that the cytoplasmic tail of the transmembrane glycoprotein, gp41, associates with Pr55Gag in infected cells to facilitate the incorporation of HIV-1 envelope proteins into budding virions. However, direct evidence for an interaction between gp41 and Pr55Gag in HIV-1 particles has not been reported. To determine whether gp41 is associated with Pr55Gag in HIV-1 particles, viral cores were isolated from immature HIV-1 virions by sedimentation through detergent. The cores contained a major fraction of the gp41 that was present on untreated virions. Association of gp41 with cores required the presence of the gp41 cytoplasmic tail. In HIV-1 particles containing a functional protease, a mutation that prevents cleavage of Pr55Gag at the matrix-capsid junction was sufficient for the detergent-resistant association of gp41 with the isolated cores. In addition to gp41, a major fraction of virion-associated gp120 was also detected on immature HIV-1 cores. Isolation of cores under conditions known to disrupt lipid rafts resulted in the removal of a raft-associated protein incorporated into virions but not the HIV-1 envelope proteins. These results provide biochemical evidence for a stable interaction between Pr55Gag and the cytoplasmic tail of gp41 in immature HIV-1 particles. Moreover, findings in this study suggest that the interaction of Pr55Gag with gp41 may regulate the function of the envelope proteins during HIV-1 maturation. PMID:11000206

  1. CRISPR-Cas9 Can Inhibit HIV-1 Replication but NHEJ Repair Facilitates Virus Escape

    PubMed Central

    Wang, Gang; Zhao, Na; Berkhout, Ben; Das, Atze T

    2016-01-01

    Several recent studies demonstrated that the clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease Cas9 can be used for guide RNA (gRNA)-directed, sequence-specific cleavage of HIV proviral DNA in infected cells. We here demonstrate profound inhibition of HIV-1 replication by harnessing T cells with Cas9 and antiviral gRNAs. However, the virus rapidly and consistently escaped from this inhibition. Sequencing of the HIV-1 escape variants revealed nucleotide insertions, deletions, and substitutions around the Cas9/gRNA cleavage site that are typical for DNA repair by the nonhomologous end-joining pathway. We thus demonstrate the potency of CRISPR-Cas9 as an antiviral approach, but any therapeutic strategy should consider the viral escape implications. PMID:26796669

  2. Recombination enhances HIV-1 envelope diversity by facilitating the survival of latent genomic fragments in the plasma virus population

    DOE PAGESBeta

    Immonen, Taina T.; Conway, Jessica M.; Romero-Severson, Ethan O.; Perelson, Alan S.; Leitner, Thomas; Kouyos, Roger Dimitri

    2015-12-22

    HIV-1 is subject to immune pressure exerted by the host, giving variants that escape the immune response an advantage. Virus released from activated latent cells competes against variants that have continually evolved and adapted to host immune pressure. Nevertheless, there is increasing evidence that virus displaying a signal of latency survives in patient plasma despite having reduced fitness due to long-term immune memory. We investigated the survival of virus with latent envelope genomic fragments by simulating within-host HIV-1 sequence evolution and the cycling of viral lineages in and out of the latent reservoir. Our model incorporates a detailed mutation processmore » including nucleotide substitution, recombination, latent reservoir dynamics, diversifying selection pressure driven by the immune response, and purifying selection pressure asserted by deleterious mutations. We evaluated the ability of our model to capture sequence evolution in vivo by comparing our simulated sequences to HIV-1 envelope sequence data from 16 HIV-infected untreated patients. Empirical sequence divergence and diversity measures were qualitatively and quantitatively similar to those of our simulated HIV-1 populations, suggesting that our model invokes realistic trends of HIV-1 genetic evolution. Moreover, reconstructed phylogenies of simulated and patient HIV-1 populations showed similar topological structures. Our simulation results suggest that recombination is a key mechanism facilitating the persistence of virus with latent envelope genomic fragments in the productively infected cell population. Recombination increased the survival probability of latent virus forms approximately 13-fold. Prevalence of virus with latent fragments in productively infected cells was observed in only 2% of simulations when we ignored recombination, while the proportion increased to 27% of simulations when we allowed recombination. We also found that the selection pressures exerted by different

  3. Imperfect DNA mirror repeats in the gag gene of HIV-1 (HXB2) identify key functional domains and coincide with protein structural elements in each of the mature proteins

    PubMed Central

    Lang, Dorothy M

    2007-01-01

    Background A DNA mirror repeat is a sequence segment delimited on the basis of its containing a center of symmetry on a single strand, e.g. 5'-GCATGGTACG-3'. It is most frequently described in association with a functionally significant site in a genomic sequence, and its occurrence is regarded as noteworthy, if not unusual. However, imperfect mirror repeats (IMRs) having ≥ 50% symmetry are common in the protein coding DNA of monomeric proteins and their distribution has been found to coincide with protein structural elements – helices, β sheets and turns. In this study, the distribution of IMRs is evaluated in a polyprotein – to determine whether IMRs may be related to the position or order of protein cleavage or other hierarchal aspects of protein function. The gag gene of HIV-1 [GenBank:K03455] was selected for the study because its protein motifs and structural components are well documented. Results There is a highly specific relationship between IMRs and structural and functional aspects of the Gag polyprotein. The five longest IMRs in the polyprotein translate a key functional segment in each of the five cleavage products. Throughout the protein, IMRs coincide with functionally significant segments of the protein. A detailed annotation of the protein, which combines structural, functional and IMR data illustrates these associations. There is a significant statistical correlation between the ends of IMRs and the ends of PSEs in each of the mature proteins. Weakly symmetric IMRs (≥ 33%) are related to cleavage positions and processes. Conclusion The frequency and distribution of IMRs in HIV-1 Gag indicates that DNA symmetry is a fundamental property of protein coding DNA and that different levels of symmetry are associated with different functional aspects of the gene and its protein. The interaction between IMRs and protein structure and function is precise and interwoven over the entire length of the polyprotein. The distribution of IMRs and their

  4. Pseudotyping human immunodeficiency virus type 1 (HIV-1) by the glycoprotein of vesicular stomatitis virus targets HIV-1 entry to an endocytic pathway and suppresses both the requirement for Nef and the sensitivity to cyclosporin A.

    PubMed Central

    Aiken, C

    1997-01-01

    Human immunodeficiency virus type 1 (HIV-1) normally enters cells by direct fusion with the plasma membrane. In this report, HIV-1 particles capable of infecting cells through an endocytic pathway are described. Chimeric viruses composed of the HIV-1 core and the envelope glycoprotein of vesicular stomatitis virus (VSV-G) were constructed and are herein termed HIV-1(VSV) pseudotypes. HIV-1(VSV) pseudotypes were 20- to 130-fold more infectious than nonpseudotyped HIV-1. Infection by HIV-1(VSV) pseudotypes was markedly diminished by ammonium chloride and concanamycin A, a selective inhibitor of vacuolar H+ ATPases, demonstrating that these viruses require endosomal acidification to achieve productive infection. HIV-1 is thus capable of performing all of the viral functions necessary for infection when entry is targeted to an endocytic route. Maximal HIV-1 infectivity requires the presence of the viral Nef protein and the cellular protein cyclophilin A (CyPA) during virus assembly. Pseudotyping by VSV-G markedly suppressed the requirement for Nef. HIV-1(VSV) particles were also resistant to inhibition by cyclosporin A; however, the deleterious effect of a gag mutation inhibiting CyPA incorporation was not relieved by VSV-G. These results suggest that Nef acts at a step of the HIV-1 life cycle that is either circumvented or facilitated by targeting virus entry to an endocytic pathway. The findings also support the hypothesis that Nef and CyPA enhance HIV-1 infectivity through independent processes and demonstrate a mechanistic difference between reduction of HIV-1 infectivity by cyclosporin A and gag mutations that decrease HIV-1 incorporation of CyPA. PMID:9223476

  5. Sequential Deletion of the Integrase (Gag-Pol) Carboxyl Terminus Reveals Distinct Phenotypic Classes of Defective HIV-1 ▿ † §

    PubMed Central

    Mohammed, Kevin D.; Topper, Michael B.; Muesing, Mark A.

    2011-01-01

    A requisite step in the life cycle of human immunodeficiency virus type 1 (HIV-1) is the insertion of the viral genome into that of the host cell, a process catalyzed by the 288-amino-acid (32-kDa) viral integrase (IN). IN recognizes and cleaves the ends of reverse-transcribed viral DNA and directs its insertion into the chromosomal DNA of the target cell. IN function, however, is not limited to integration, as the protein is required for other aspects of viral replication, including assembly, virion maturation, and reverse transcription. Previous studies demonstrated that IN is comprised of three domains: the N-terminal domain (NTD), catalytic core domain (CCD), and C-terminal domain (CTD). Whereas the CCD is mainly responsible for providing the structural framework for catalysis, the roles of the other two domains remain enigmatic. This study aimed to elucidate the primary and subsidiary roles that the CTD has in protein function. To this end, we generated and tested a nested set of IN C-terminal deletion mutants in measurable assays of virologic function. We discovered that removal of up to 15 residues (IN 273) resulted in incremental diminution of enzymatic function and infectivity and that removal of the next three residues resulted in a loss of infectivity. However, replication competency was surprisingly reestablished with one further truncation, corresponding to IN 269 and coinciding with partial restoration of integration activity, but it was lost permanently for all truncations extending N terminal to this position. Our analyses of these replication-competent and -incompetent truncation mutants suggest potential roles for the IN CTD in precursor protein processing, reverse transcription, integration, and IN multimerization. PMID:21367893

  6. A Case of Seronegative HIV-1 Infection

    PubMed Central

    Spivak, Adam M.; Brennan, Tim; O'Connell, Karen; Sydnor, Emily; Williams, Thomas M.; Siliciano, Robert F.; Gallant, Joel E.; Blankson, Joel N.

    2009-01-01

    Patients infected with HIV-1 typically seroconvert within weeks of primary infection. In rare cases, patients do not develop antibodies against HIV-1 despite demonstrable infection. We describe an HLA-B*5802 positive individual who presented with AIDS despite repeatedly negative HIV-1 antibody screening tests. Phylogenetic analysis of env clones revealed little sequence diversity, and weak HIV-1 specific CD8+ T cell responses were present to Gag epitopes. The patient seroconverted after immune reconstitution on HAART. Lack of an antibody response to HIV-1 is rare and appears to be due to a defect in HIV-1-specific immunity rather than infection with attenuated virus. PMID:20039801

  7. BioAfrica's HIV-1 proteomics resource: combining protein data with bioinformatics tools.

    PubMed

    Doherty, Ryan S; De Oliveira, Tulio; Seebregts, Chris; Danaviah, Sivapragashini; Gordon, Michelle; Cassol, Sharon

    2005-01-01

    Most Internet online resources for investigating HIV biology contain either bioinformatics tools, protein information or sequence data. The objective of this study was to develop a comprehensive online proteomics resource that integrates bioinformatics with the latest information on HIV-1 protein structure, gene expression, post-transcriptional/post-translational modification, functional activity, and protein-macromolecule interactions. The BioAfrica HIV-1 Proteomics Resource http://bioafrica.mrc.ac.za/proteomics/index.html is a website that contains detailed information about the HIV-1 proteome and protease cleavage sites, as well as data-mining tools that can be used to manipulate and query protein sequence data, a BLAST tool for initiating structural analyses of HIV-1 proteins, and a proteomics tools directory. The Proteome section contains extensive data on each of 19 HIV-1 proteins, including their functional properties, a sample analysis of HIV-1HXB2, structural models and links to other online resources. The HIV-1 Protease Cleavage Sites section provides information on the position, subtype variation and genetic evolution of Gag, Gag-Pol and Nef cleavage sites. The HIV-1 Protein Data-mining Tool includes a set of 27 group M (subtypes A through K) reference sequences that can be used to assess the influence of genetic variation on immunological and functional domains of the protein. The BLAST Structure Tool identifies proteins with similar, experimentally determined topologies, and the Tools Directory provides a categorized list of websites and relevant software programs. This combined database and software repository is designed to facilitate the capture, retrieval and analysis of HIV-1 protein data, and to convert it into clinically useful information relating to the pathogenesis, transmission and therapeutic response of different HIV-1 variants. The HIV-1 Proteomics Resource is readily accessible through the BioAfrica website at: http

  8. Recombination elevates the effective evolutionary rate and facilitates the establishment of HIV-1 infection in infants after mother-to-child transmission

    DOE PAGESBeta

    Sanborn, Keri B.; Somasundaran, Mohan; Luzuriaga, Katherine; Leitner, Thomas K.

    2015-11-16

    Some previous studies have demonstrated that single HIV-1 genotypes are commonly transmitted from mother to child, but such analyses primarily used single samples from mother and child. It is possible that in a single sample, obtained early after infection, only the most replication competent virus is detected even when other forms may have been transmitted. Such forms may have advantages later in infection, and may thus be detected in follow-up samples. Furthermore, because HIV-1 frequently recombines, phylogenetic analyses that ignore recombination may miss transmission of multiple forms if they recombine after transmission. Moreover, recombination may facilitate adaptation, thus providing anmore » advantage in establishing infection. The effect of recombination on viral evolution in HIV-1 infected children has not been well defined.« less

  9. Recombination elevates the effective evolutionary rate and facilitates the establishment of HIV-1 infection in infants after mother-to-child transmission

    SciTech Connect

    Sanborn, Keri B.; Somasundaran, Mohan; Luzuriaga, Katherine; Leitner, Thomas K.

    2015-11-16

    Some previous studies have demonstrated that single HIV-1 genotypes are commonly transmitted from mother to child, but such analyses primarily used single samples from mother and child. It is possible that in a single sample, obtained early after infection, only the most replication competent virus is detected even when other forms may have been transmitted. Such forms may have advantages later in infection, and may thus be detected in follow-up samples. Furthermore, because HIV-1 frequently recombines, phylogenetic analyses that ignore recombination may miss transmission of multiple forms if they recombine after transmission. Moreover, recombination may facilitate adaptation, thus providing an advantage in establishing infection. The effect of recombination on viral evolution in HIV-1 infected children has not been well defined.

  10. HIV-1 Protease: Structure, Dynamics and Inhibition

    SciTech Connect

    Louis, John M.; Ishima, R.; Torchia, D.A.; Weber, Irene T.

    2008-06-03

    The HIV-1 protease is synthesized as part of a large Gag-Pol precursor protein. It is responsible for its own release from the precursor and the processing of the Gag and Gag-Pol polyproteins into the mature structural and functional proteins required for virus maturation. Because of its indispensable role, the mature HIV-1 protease dimer has proven to be a successful target for the development of antiviral agents. In the last 5 years, a major emphasis in protease research has been to improve inhibitor design and treatment regimens.

  11. Membrane interaction of retroviral Gag proteins

    PubMed Central

    Dick, Robert A.; Vogt, Volker M.

    2014-01-01

    Assembly of an infectious retroviral particle relies on multimerization of the Gag polyprotein at the inner leaflet of the plasma membrane. The three domains of Gag common to all retroviruses – MA, CA, and NC – provide the signals for membrane binding, assembly, and viral RNA packaging, respectively. These signals do not function independently of one another. For example, Gag multimerization enhances membrane binding and is more efficient when NC is interacting with RNA. MA binding to the plasma membrane is governed by several principles, including electrostatics, recognition of specific lipid head groups, hydrophobic interactions, and membrane order. HIV-1 uses many of these principles while Rous sarcoma virus (RSV) appears to use fewer. This review describes the principles that govern Gag interactions with membranes, focusing on RSV and HIV-1 Gag. The review also defines lipid and membrane behavior, and discusses the complexities in determining how lipid and membrane behavior impact Gag membrane binding. PMID:24808894

  12. Linker-Extended Native Cyanovirin-N Facilitates PEGylation and Potently Inhibits HIV-1 by Targeting the Glycan Ligand

    PubMed Central

    Wei, Bo; Wu, Chongchao; Peng, Zhou; Fan, Jun; Hou, Zhibo; Fang, Yongsheng; Wang, Yifei; Kitazato, Kaio; Yu, Guoying; Zou, Chunbin; Qian, Chuiwen; Xiong, Sheng

    2014-01-01

    Cyanovirin-N (CVN) potently inhibits human immunodeficiency virus type 1 (HIV-1) infection, but both cytotoxicity and immunogenicity have hindered the translation of this protein into a viable therapeutic. A molecular docking analysis suggested that up to 12 residues were involved in the interaction of the reverse parallel CVN dimer with the oligosaccharide targets, among which Leu-1 was the most prominent hot spot residue. This finding provided a possible explanation for the lack of anti-HIV-1 activity observed with N-terminal PEGylated CVN. Therefore, linker-CVN (LCVN) was designed as a CVN derivative with a flexible and hydrophilic linker (Gly4Ser)3 at the N-terminus. The N-terminal α-amine of LCVN was PEGylated to create 10 K PEG-aldehyde (ALD)-LCVN. LCVN and 10 K PEG-ALD-LCVN retained the specificity and affinity of CVN for high mannose N-glycans. Moreover, LCVN exhibited significant anti-HIV-1 activity with attenuated cytotoxicity in the HaCaT keratinocyte cell line and MT-4 T lymphocyte cell lines. 10 K PEG-ALD-LCVN also efficiently inactivated HIV-1 with remarkably decreased cytotoxicity and pronounced cell-to-cell fusion inhibitory activity in vitro. The linker-extended CVN and the mono-PEGylated derivative were determined to be promising candidates for the development of an anti-HIV-1 agent. This derivatization approach provided a model for the PEGylation of biologic candidates without introducing point mutations. PMID:24475123

  13. Nef enhances HIV-1 infectivity via association with the virus assembly complex

    SciTech Connect

    Qi Mingli; Aiken, Christopher

    2008-04-10

    The HIV-1 accessory protein Nef enhances virus infectivity by facilitating an early post-entry step of infection. Nef acts in the virus producer cell, leading to a beneficial modification to HIV-1 particles. Nef itself is incorporated into HIV-1 particles, where it is cleaved by the viral protease during virion maturation. To probe the role of virion-associated Nef in HIV-1 infection, we generated a fusion protein consisting of the host protein cyclophilin A (CypA) linked to the amino terminus of Nef. The resulting CypA-Nef protein enhanced the infectivity of Nef-defective HIV-1 particles and was specifically incorporated into the virions via association with Gag during particle assembly. Pharmacologic or genetic inhibition of CypA-Nef binding to Gag prevented incorporation of CypA-Nef into virions and inhibited infectivity enhancement. Our results indicate that infectivity enhancement by Nef requires its association with a component of the assembling HIV-1 particle.

  14. Nef Enhances HIV-1 Infectivity via Association with the Virus Assembly Complex

    PubMed Central

    Qi, Mingli; Aiken, Christopher

    2008-01-01

    The HIV-1 accessory protein Nef enhances virus infectivity by facilitating an early post-entry step of infection. Nef acts in the virus producer cell, leading to a beneficial modification to HIV-1 particles. Nef itself is incorporated into HIV-1 particles, where it is cleaved by the viral protease during virion maturation. To probe the role of virion-associated Nef in HIV-1 infection, we generated a fusion protein consisting of the host protein cyclophilin A (CypA) linked to the amino terminus of Nef. The resulting CypA-Nef protein enhanced the infectivity of Nef-defective HIV-1 particles and was specifically incorporated into the virions via association with Gag during particle assembly. Pharmacologic or genetic inhibition of CypA-Nef binding to Gag prevented incorporation of CypA-Nef into virions and inhibited infectivity enhancement. Our results indicate that infectivity enhancement by Nef requires its association with a component of the assembling HIV-1 particle. PMID:18191978

  15. NLRX1 Sequesters STING to Negatively Regulate the Interferon Response, Thereby Facilitating the Replication of HIV-1 and DNA Viruses.

    PubMed

    Guo, Haitao; König, Renate; Deng, Meng; Riess, Maximilian; Mo, Jinyao; Zhang, Lu; Petrucelli, Alex; Yoh, Sunnie M; Barefoot, Brice; Samo, Melissa; Sempowski, Gregory D; Zhang, Aiping; Colberg-Poley, Anamaris M; Feng, Hui; Lemon, Stanley M; Liu, Yong; Zhang, Yanping; Wen, Haitao; Zhang, Zhigang; Damania, Blossom; Tsao, Li-Chung; Wang, Qi; Su, Lishan; Duncan, Joseph A; Chanda, Sumit K; Ting, Jenny P-Y

    2016-04-13

    Understanding the negative regulators of antiviral immune responses will be critical for advancing immune-modulated antiviral strategies. NLRX1, an NLR protein that negatively regulates innate immunity, was previously identified in an unbiased siRNA screen as required for HIV infection. We find that NLRX1 depletion results in impaired nuclear import of HIV-1 DNA in human monocytic cells. Additionally, NLRX1 was observed to reduce type-I interferon (IFN-I) and cytokines in response to HIV-1 reverse-transcribed DNA. NLRX1 sequesters the DNA-sensing adaptor STING from interaction with TANK-binding kinase 1 (TBK1), which is a requisite for IFN-1 induction in response to DNA. NLRX1-deficient cells generate an amplified STING-dependent host response to cytosolic DNA, c-di-GMP, cGAMP, HIV-1, and DNA viruses. Accordingly, Nlrx1(-/-) mice infected with DNA viruses exhibit enhanced innate immunity and reduced viral load. Thus, NLRX1 is a negative regulator of the host innate immune response to HIV-1 and DNA viruses. PMID:27078069

  16. Equine infectious anemia virus utilizes a YXXL motif within the late assembly domain of the Gag p9 protein.

    PubMed Central

    Puffer, B A; Parent, L J; Wills, J W; Montelaro, R C

    1997-01-01

    We have previously demonstrated that the Gag p9 protein of equine infectious anemia virus (EIAV) is functionally homologous with Rous sarcoma virus (RSV) p2b and human immunodeficiency virus type 1 (HIV-1) p6 in providing a critical late assembly function in RSV Gag-mediated budding from transfected COS-1 cells (L. J. Parent et al., J. Virol. 69:5455-5460, 1995). In light of the absence of amino acid sequence homology between EIAV p9 and the functional homologs of RSV and HIV-1, we have now designed an EIAV Gag-mediated budding assay to define the late assembly (L) domain peptide sequences contained in the EIAV p9 protein. The results of these particle budding assays revealed that expression of EIAV Gag polyprotein in COS-1 cells yielded extracellular Gag particles with a characteristic density of 1.18 g/ml, while expression of EIAV Gag polyprotein lacking p9 resulted in a severe reduction in the release of extracellular Gag particles. The defect in EIAV Gag polyprotein particle assembly could be corrected by substituting either the RSV p2b or HIV-1 p6 protein for EIAV p9. These observations demonstrated that the L domains of EIAV, HIV-1, and RSV were interchangeable in mediating assembly of EIAV Gag particles in the COS-1 cell budding assay. To localize the L domain of EIAV p9, we next assayed the effects of deletions and site-specific mutations in the p9 protein on its ability to mediate budding of EIAV Gag particles. Analyses of EIAV Gag constructs with progressive N-terminal or C-terminal deletions of the p9 protein identified a minimum sequence of 11 amino acids (Q20N21L22Y23P24D25L26S27E28I29K30) capable of providing the late assembly function. Alanine scanning studies of this L-domain sequence demonstrated that mutations of residues Y23, P24, and L26 abrogated the p9 late budding function; mutations of other residues in the p9 L domain did not substantially affect the level of EIAV Gag particle assembly. These data indicate that the L domain in EIAV p9

  17. Immunodominant HIV-1 Cd4+ T Cell Epitopes in Chronic Untreated Clade C HIV-1 Infection

    PubMed Central

    Ramduth, Danni; Day, Cheryl L.; Thobakgale, Christina F.; Mkhwanazi, Nompumelelo P.; de Pierres, Chantal; Reddy, Sharon; van der Stok, Mary; Mncube, Zenele; Nair, Kriebashne; Moodley, Eshia S.; Kaufmann, Daniel E.; Streeck, Hendrik; Coovadia, Hoosen M.; Kiepiela, Photini; Goulder, Philip J. R.; Walker, Bruce D.

    2009-01-01

    Background A dominance of Gag-specific CD8+ T cell responses is significantly associated with a lower viral load in individuals with chronic, untreated clade C human immunodeficiency virus type 1 (HIV-1) infection. This association has not been investigated in terms of Gag-specific CD4+ T cell responses, nor have clade C HIV-1–specific CD4+ T cell epitopes, likely a vital component of an effective global HIV-1 vaccine, been identified. Methodology/Principal Findings Intracellular cytokine staining was conducted on 373 subjects with chronic, untreated clade C infection to assess interferon-gamma (IFN-γ) responses by CD4+ T cells to pooled Gag peptides and to determine their association with viral load and CD4 count. Gag-specific IFN-γ–producing CD4+ T cell responses were detected in 261/373 (70%) subjects, with the Gag responders having a significantly lower viral load and higher CD4 count than those with no detectable Gag response (p<0.0001 for both parameters). To identify individual peptides targeted by HIV-1–specific CD4+ T cells, separate ELISPOT screening was conducted on CD8-depleted PBMCs from 32 chronically infected untreated subjects, using pools of overlapping peptides that spanned the entire HIV-1 clade C consensus sequence, and reconfirmed by flow cytometry to be CD4+ mediated. The ELISPOT screening identified 33 CD4+ peptides targeted by 18/32 patients (56%), with 27 of the 33 peptides located in the Gag region. Although the breadth of the CD4+ responses correlated inversely with viral load (p = 0.015), the magnitude of the response was not significantly associated with viral load. Conclusions/Significance These data indicate that in chronic untreated clade C HIV-1 infection, IFN-γ–secreting Gag-specific CD4+ T cell responses are immunodominant, directed at multiple distinct epitopes, and associated with viral control. PMID:19352428

  18. Interleukin-1- and Type I Interferon-Dependent Enhanced Immunogenicity of an NYVAC-HIV-1 Env-Gag-Pol-Nef Vaccine Vector with Dual Deletions of Type I and Type II Interferon-Binding Proteins

    PubMed Central

    Delaloye, Julie; Filali-Mouhim, Abdelali; Cameron, Mark J.; Haddad, Elias K.; Harari, Alexandre; Goulet, Jean-Pierre; Gomez, Carmen E.; Perdiguero, Beatriz; Esteban, Mariano; Pantaleo, Giuseppe; Roger, Thierry; Sékaly, Rafick-Pierre

    2015-01-01

    ABSTRACT NYVAC, a highly attenuated, replication-restricted poxvirus, is a safe and immunogenic vaccine vector. Deletion of immune evasion genes from the poxvirus genome is an attractive strategy for improving the immunogenic properties of poxviruses. Using systems biology approaches, we describe herein the enhanced immunological profile of NYVAC vectors expressing the HIV-1 clade C env, gag, pol, and nef genes (NYVAC-C) with single or double deletions of genes encoding type I (ΔB19R) or type II (ΔB8R) interferon (IFN)-binding proteins. Transcriptomic analyses of human monocytes infected with NYVAC-C, NYVAC-C with the B19R deletion (NYVAC-C-ΔB19R), or NYVAC-C with B8R and B19R deletions (NYVAC-C-ΔB8RB19R) revealed a concerted upregulation of innate immune pathways (IFN-stimulated genes [ISGs]) of increasing magnitude with NYVAC-C-ΔB19R and NYVAC-C-ΔB8RB19R than with NYVAC-C. Deletion of B8R and B19R resulted in an enhanced activation of IRF3, IRF7, and STAT1 and the robust production of type I IFNs and of ISGs, whose expression was inhibited by anti-type I IFN antibodies. Interestingly, NYVAC-C-ΔB8RB19R induced the production of much higher levels of proinflammatory cytokines (tumor necrosis factor [TNF], interleukin-6 [IL-6], and IL-8) than NYVAC-C or NYVAC-C-ΔB19R as well as a strong inflammasome response (caspase-1 and IL-1β) in infected monocytes. Top network analyses showed that this broad response mediated by the deletion of B8R and B19R was organized around two upregulated gene expression nodes (TNF and IRF7). Consistent with these findings, monocytes infected with NYVAC-C-ΔB8RB19R induced a stronger type I IFN-dependent and IL-1-dependent allogeneic CD4+ T cell response than monocytes infected with NYVAC-C or NYVAC-C-ΔB19R. Dual deletion of type I and type II IFN immune evasion genes in NYVAC markedly enhanced its immunogenic properties via its induction of the increased expression of type I IFNs and IL-1β and make it an attractive candidate HIV

  19. Phenyl-1-Pyridin-2yl-ethanone-based iron chelators increase IκB-α expression, modulate CDK2 and CDK9 activities, and inhibit HIV-1 transcription.

    PubMed

    Kumari, Namita; Iordanskiy, Sergey; Kovalskyy, Dmytro; Breuer, Denitra; Niu, Xiaomei; Lin, Xionghao; Xu, Min; Gavrilenko, Konstantin; Kashanchi, Fatah; Dhawan, Subhash; Nekhai, Sergei

    2014-11-01

    HIV-1 transcription is activated by the Tat protein, which recruits CDK9/cyclin T1 to the HIV-1 promoter. CDK9 is phosphorylated by CDK2, which facilitates formation of the high-molecular-weight positive transcription elongation factor b (P-TEFb) complex. We previously showed that chelation of intracellular iron inhibits CDK2 and CDK9 activities and suppresses HIV-1 transcription, but the mechanism of the inhibition was not understood. In the present study, we tested a set of novel iron chelators for the ability to inhibit HIV-1 transcription and elucidated their mechanism of action. Novel phenyl-1-pyridin-2yl-ethanone (PPY)-based iron chelators were synthesized and examined for their effects on cellular iron, HIV-1 inhibition, and cytotoxicity. Activities of CDK2 and CDK9, expression of CDK9-dependent and CDK2-inhibitory mRNAs, NF-κB expression, and HIV-1- and NF-κB-dependent transcription were determined. PPY-based iron chelators significantly inhibited HIV-1, with minimal cytotoxicity, in cultured and primary cells chronically or acutely infected with HIV-1 subtype B, but they had less of an effect on HIV-1 subtype C. Iron chelators upregulated the expression of IκB-α, with increased accumulation of cytoplasmic NF-κB. The iron chelators inhibited CDK2 activity and reduced the amount of CDK9/cyclin T1 in the large P-TEFb complex. Iron chelators reduced HIV-1 Gag and Env mRNA synthesis but had no effect on HIV-1 reverse transcription. In addition, iron chelators moderately inhibited basal HIV-1 transcription, equally affecting HIV-1 and Sp1- or NF-κB-driven transcription. By virtue of their involvement in targeting several key steps in HIV-1 transcription, these novel iron chelators have the potential for the development of new therapeutics for the treatment of HIV-1 infection. PMID:25155598

  20. Phenyl-1-Pyridin-2yl-Ethanone-Based Iron Chelators Increase IκB-α Expression, Modulate CDK2 and CDK9 Activities, and Inhibit HIV-1 Transcription

    PubMed Central

    Kumari, Namita; Iordanskiy, Sergey; Kovalskyy, Dmytro; Breuer, Denitra; Niu, Xiaomei; Lin, Xionghao; Xu, Min; Gavrilenko, Konstantin; Kashanchi, Fatah; Dhawan, Subhash

    2014-01-01

    HIV-1 transcription is activated by the Tat protein, which recruits CDK9/cyclin T1 to the HIV-1 promoter. CDK9 is phosphorylated by CDK2, which facilitates formation of the high-molecular-weight positive transcription elongation factor b (P-TEFb) complex. We previously showed that chelation of intracellular iron inhibits CDK2 and CDK9 activities and suppresses HIV-1 transcription, but the mechanism of the inhibition was not understood. In the present study, we tested a set of novel iron chelators for the ability to inhibit HIV-1 transcription and elucidated their mechanism of action. Novel phenyl-1-pyridin-2yl-ethanone (PPY)-based iron chelators were synthesized and examined for their effects on cellular iron, HIV-1 inhibition, and cytotoxicity. Activities of CDK2 and CDK9, expression of CDK9-dependent and CDK2-inhibitory mRNAs, NF-κB expression, and HIV-1- and NF-κB-dependent transcription were determined. PPY-based iron chelators significantly inhibited HIV-1, with minimal cytotoxicity, in cultured and primary cells chronically or acutely infected with HIV-1 subtype B, but they had less of an effect on HIV-1 subtype C. Iron chelators upregulated the expression of IκB-α, with increased accumulation of cytoplasmic NF-κB. The iron chelators inhibited CDK2 activity and reduced the amount of CDK9/cyclin T1 in the large P-TEFb complex. Iron chelators reduced HIV-1 Gag and Env mRNA synthesis but had no effect on HIV-1 reverse transcription. In addition, iron chelators moderately inhibited basal HIV-1 transcription, equally affecting HIV-1 and Sp1- or NF-κB-driven transcription. By virtue of their involvement in targeting several key steps in HIV-1 transcription, these novel iron chelators have the potential for the development of new therapeutics for the treatment of HIV-1 infection. PMID:25155598

  1. Contact-Induced Mitochondrial Polarization Supports HIV-1 Virological Synapse Formation

    PubMed Central

    Groppelli, Elisabetta; Starling, Shimona

    2014-01-01

    ABSTRACT Rapid HIV-1 spread between CD4 T lymphocytes occurs at retrovirus-induced immune cell contacts called virological synapses (VS). VS are associated with striking T cell polarization and localized virus budding at the site of contact that facilitates cell-cell spread. In addition to this, spatial clustering of organelles, including mitochondria, to the contact zone has been previously shown. However, whether cell-cell contact specifically induces dynamic T cell remodeling during VS formation and what regulates this process remain unclear. Here, we report that contact between an HIV-1-infected T cell and an uninfected target T cell specifically triggers polarization of mitochondria concomitant with recruitment of the major HIV-1 structural protein Gag to the site of cell-cell contact. Using fixed and live-cell imaging, we show that mitochondrial and Gag polarization in HIV-1-infected T cells occurs within minutes of contact with target T cells, requires the formation of stable cell-cell contacts, and is an active, calcium-dependent process. We also find that perturbation of mitochondrial polarization impairs cell-cell spread of HIV-1 at the VS. Taken together, these data suggest that HIV-1-infected T cells are able to sense and respond to contact with susceptible target cells and undergo dynamic cytoplasmic remodeling to create a synaptic environment that supports efficient HIV-1 VS formation between CD4 T lymphocytes. IMPORTANCE HIV-1 remains one of the major global health challenges of modern times. The capacity of HIV-1 to cause disease depends on the virus's ability to spread between immune cells, most notably CD4 T lymphocytes. Cell-cell transmission is the most efficient way of HIV-1 spread and occurs at the virological synapse (VS). The VS forms at the site of contact between an infected cell and an uninfected cell and is characterized by polarized assembly and budding of virions and clustering of cellular organelles, including mitochondria. Here, we

  2. Facilitation of hammerhead ribozyme catalysis by the nucleocapsid protein of HIV-1 and the heterogeneous nuclear ribonucleoprotein A1.

    PubMed Central

    Bertrand, E L; Rossi, J J

    1994-01-01

    In order to improve the activity of hammerhead ribozymes in vivo, we have analyzed the effect of several prototypical RNA binding proteins on the ribozyme cleavage reaction: bacteriophage T4 gene 32 protein (gp32), hnRNP A1 (A1) and the nucleocapsid protein of HIV-1 (NCp7). We show that, while gp32 has no effect on the cleavage reaction, A1 and NCp7 affect different steps of the reaction. Moreover, some of these effects depend upon the ribozyme-substrate hybrid length. A1 and NCp7 inhibit the reaction of the least stable ribozyme-substrate complexes, which have 12 bp of duplex. NCp7, but not A1, inhibits the cleavage of substrates that have long ribozyme-substrate duplexes (17 or 20 bp), while cleavage of complexes having shorter duplexes (13 or 14 bp) is not affected. NCp7 and A1 enhance the turnover of ribozymes by increasing the rate of product dissociation, but only when both cleavage products are bound with < or = 7 bp. A1 and NCp7 enhance ribozyme binding to long substrates, such as mRNAs, the structure of which otherwise limits ribozyme binding. Therefore, the effects of A1 or NCp7 on the different steps of the cleavage reaction define a length of the ribozyme-substrate duplex which allows enhancement of the rate of binding and product release without inhibiting the cleavage step. Interestingly, this duplex length (14 bases, or 7 on each side of the cleavage site) is identical for A1 and NCp7. Since A1 is thought to interact with most, if not all mRNAs in vivo, it may enhance the intracellular activity of ribozymes targeted against any mRNA.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8026475

  3. The Vaginal Acquisition and Dissemination of HIV-1 Infection in a Novel Transgenic Mouse Model Is Facilitated by Coinfection with Herpes Simplex Virus 2 and Is Inhibited by Microbicide Treatment

    PubMed Central

    Seay, Kieran; Khajoueinejad, Nazanin; Zheng, Jian Hua; Kiser, Patrick; Ochsenbauer, Christina; Kappes, John C.; Herold, Betsy

    2015-01-01

    ABSTRACT Epidemiological studies have demonstrated that herpes simplex virus 2 (HSV-2) infection significantly increases the risk of HIV-1 acquisition, thereby contributing to the expanding HIV-1 epidemic. To investigate whether HSV-2 infection directly facilitates mucosal HIV-1 acquisition, we used our transgenic hCD4/R5/cT1 mouse model which circumvents major entry and transcription blocks preventing murine HIV-1 infection by targeting transgenic expression of human CD4, CCR5, and cyclin T1 genes to CD4+ T cells and myeloid-committed cells. Productive infection of mucosal leukocytes, predominantly CD4+ T cells, was detected in all hCD4/R5/cT1 mice intravaginally challenged with an HIV-1 infectious molecular clone, HIV-Du151.2env-NLuc, which expresses an env gene (C.Du151.2) cloned from an acute heterosexually infected woman and a NanoLuc luciferase reporter gene. Lower genital tract HIV-1 infection after HIV-Du151.2env-NLuc intravaginal challenge was increased ∼4-fold in hCD4/R5/cT1 mice coinfected with HSV-2. Furthermore, HIV-1 dissemination to draining lymph nodes was detected only in HSV-2-coinfected mice. HSV-2 infection stimulated local infiltration and activation of CD4+ T cells and dendritic cells, likely contributing to the enhanced HIV-1 infection and dissemination in HSV-2-coinfected mice. We then used this model to demonstrate that a novel gel containing tenofovir disoproxil fumarate (TDF), the more potent prodrug of tenofovir (TFV), but not the TFV microbicide gel utilized in the recent CAPRISA 004, VOICE (Vaginal and Oral Interventions to Control the Epidemic), and FACTS 001 clinical trials, was effective as preexposure prophylaxis (PrEP) to completely prevent vaginal HIV-1 infection in almost half of HSV-2-coinfected mice. These results also support utilization of hCD4/R5/cT1 mice as a highly reproducible immunocompetent preclinical model to evaluate HIV-1 acquisition across the female genital tract. IMPORTANCE Multiple epidemiological studies

  4. HIV-1 transmission linkage in an HIV-1 prevention clinical trial

    SciTech Connect

    Leitner, Thomas; Campbell, Mary S; Mullins, James I; Hughes, James P; Wong, Kim G; Raugi, Dana N; Scrensen, Stefanie

    2009-01-01

    HIV-1 sequencing has been used extensively in epidemiologic and forensic studies to investigate patterns of HIV-1 transmission. However, the criteria for establishing genetic linkage between HIV-1 strains in HIV-1 prevention trials have not been formalized. The Partners in Prevention HSV/HIV Transmission Study (ClinicaITrials.gov NCT00194519) enrolled 3408 HIV-1 serodiscordant heterosexual African couples to determine the efficacy of genital herpes suppression with acyclovir in reducing HIV-1 transmission. The trial analysis required laboratory confirmation of HIV-1 linkage between enrolled partners in couples in which seroconversion occurred. Here we describe the process and results from HIV-1 sequencing studies used to perform transmission linkage determination in this clinical trial. Consensus Sanger sequencing of env (C2-V3-C3) and gag (p17-p24) genes was performed on plasma HIV-1 RNA from both partners within 3 months of seroconversion; env single molecule or pyrosequencing was also performed in some cases. For linkage, we required monophyletic clustering between HIV-1 sequences in the transmitting and seroconverting partners, and developed a Bayesian algorithm using genetic distances to evaluate the posterior probability of linkage of participants sequences. Adjudicators classified transmissions as linked, unlinked, or indeterminate. Among 151 seroconversion events, we found 108 (71.5%) linked, 40 (26.5%) unlinked, and 3 (2.0%) to have indeterminate transmissions. Nine (8.3%) were linked by consensus gag sequencing only and 8 (7.4%) required deep sequencing of env. In this first use of HIV-1 sequencing to establish endpoints in a large clinical trial, more than one-fourth of transmissions were unlinked to the enrolled partner, illustrating the relevance of these methods in the design of future HIV-1 prevention trials in serodiscordant couples. A hierarchy of sequencing techniques, analysis methods, and expert adjudication contributed to the linkage

  5. Macrophage Internal HIV-1 Is Protected from Neutralizing Antibodies

    PubMed Central

    Koppensteiner, Herwig; Banning, Carina; Schneider, Carola; Hohenberg, Heinrich

    2012-01-01

    In macrophages, HIV-1 accumulates in intracellular vesicles designated virus-containing compartments (VCCs). These might play an important role in the constitution of macrophages as viral reservoirs and allow HIV-1 to evade the immune system by sequestration in an internal niche, which is difficult to access from the exterior. However, until now, evidence of whether internal virus accumulations are protected from the host's humoral immune response is still lacking. In order to be able to study the formation and antibody accessibility of VCCs, we generated HIV-1 with green fluorescent protein (GFP)-tagged Gag replicating in primary macrophages. Live-cell observations revealed faint initial cytosolic Gag expression and subsequent large intracellular Gag accumulations which stayed stable over days. Taking advantage of the opportunity to study the accessibility of intracellular VCCs via the cell surface, we demonstrate that macrophage internal HIV-1-containing compartments cannot be targeted by neutralizing antibodies. Furthermore, HIV-1 was efficiently transferred from antibody-treated macrophages to T cells. Three-dimensional reconstruction of electron microscopic slices revealed that Gag accumulations correspond to viral particles within enclosed compartments and convoluted membranes. Thus, although some VCCs were connected to the plasma membrane, the complex membrane architecture of the HIV-1-containing compartment might shield viral particles from neutralizing antibodies. In sum, our study provides evidence that HIV-1 is sequestered into a macrophage internal membranous web, posing an obstacle for the elimination of this viral reservoir. PMID:22205742

  6. Hyperthermia Stimulates HIV-1 Replication

    PubMed Central

    Roesch, Ferdinand; Meziane, Oussama; Kula, Anna; Nisole, Sébastien; Porrot, Françoise; Anderson, Ian; Mammano, Fabrizio; Fassati, Ariberto; Marcello, Alessandro; Benkirane, Monsef; Schwartz, Olivier

    2012-01-01

    HIV-infected individuals may experience fever episodes. Fever is an elevation of the body temperature accompanied by inflammation. It is usually beneficial for the host through enhancement of immunological defenses. In cultures, transient non-physiological heat shock (42–45°C) and Heat Shock Proteins (HSPs) modulate HIV-1 replication, through poorly defined mechanisms. The effect of physiological hyperthermia (38–40°C) on HIV-1 infection has not been extensively investigated. Here, we show that culturing primary CD4+ T lymphocytes and cell lines at a fever-like temperature (39.5°C) increased the efficiency of HIV-1 replication by 2 to 7 fold. Hyperthermia did not facilitate viral entry nor reverse transcription, but increased Tat transactivation of the LTR viral promoter. Hyperthermia also boosted HIV-1 reactivation in a model of latently-infected cells. By imaging HIV-1 transcription, we further show that Hsp90 co-localized with actively transcribing provirus, and this phenomenon was enhanced at 39.5°C. The Hsp90 inhibitor 17-AAG abrogated the increase of HIV-1 replication in hyperthermic cells. Altogether, our results indicate that fever may directly stimulate HIV-1 replication, in a process involving Hsp90 and facilitation of Tat-mediated LTR activity. PMID:22807676

  7. HIV-1 subtype C is not associated with higher risk of heterosexual HIV-1 transmission: a multinational study among African HIV-1 serodiscordant couples

    PubMed Central

    Kahle, Erin; Campbell, Mary; Lingappa, Jairam; Donnell, Deborah; Celum, Connie; Ondondo, Raphael; Mujugira, Andrew; Fife, Kenneth; Mugo, Nelly; Kapiga, Saidi; Mullins, James I.; Baeten, Jared M.

    2014-01-01

    Background HIV-1 subtype C has emerged as the most prevalent strain of HIV-1 worldwide, leading to speculation that subtype C may be more transmissible than other subtypes. We compared the risk of HIV-1 transmission for subtype C versus non-C subtypes (A, D, G and recombinant forms) among heterosexual African HIV-1 serodiscordant couples. Methods We conducted a nested case-control analysis using data from two prospective cohort studies of heterosexual HIV-1 serodiscordant couples from 6 countries in eastern and southern Africa. Cases (N=121) included incident HIV-1 transmissions that were established as linked within the serodiscordant partnership by viral sequencing; controls (N=501) were non-transmitting HIV-1 infected partners. Subtype was determined for partial env and gag genes. Multiple logistic regression controlled for age and gender of the HIV-1 infected partner and self-reported unprotected sex. Plasma and genital HIV-1 RNA concentrations were compared between subtype C and non-C subtypes using generalized estimating equations. Results HIV-1 subtype C was not associated with increased risk of HIV-1 transmission compared to non-C subtypes: env adjusted odds ratio (adjOR) 1.14 (95% confidence interval [CI] 0.74–1.75, p=0.6) and gag adjOR 0.98 (95% CI 0.63–1.52, p=0.9). Plasma and genital HIV-1 RNA levels did not differ significantly for subtype C versus non-C. Conclusion In a geographically diverse population of heterosexual African HIV-1 serodiscordant couples, subtype C was not associated with greater risk of HIV-1 transmission compared to non-C subtypes, arguing against the hypothesis that subtype C is more transmissible compared to other common subtypes. PMID:24413311

  8. [A new unique HIV-1 recombinant form detected in Belarus].

    PubMed

    Eremin, V F; Gasich, E L; Sosinovich, S V

    2012-01-01

    Republican Research-and-Practical Center for Epidemiology and Microbiology, Ministry of Health of Belarus, Minsk The paper presents data on the molecular genetic characteristics of a new HIV-1 recombinant form. The study has shown that the virus is referred to as HIV-1 subtype B in terms of the gag gene and HIV-1 subtype A in terms of the pol and env genes. At the same time the new isolate is closer, in terms of the gag gene, to the HIV-1 DQ207943 strain isolated in Georgia, in terms of the pol gene, to the HIV-1 AF413987.1 strain isolated in Ukraine and, in terms of the env gene to the HIV-1 AY500393 strain isolated in Russia. Thus, the described new HIV-1 recombinant form has the following structure: BgagApolAenv. The gag, pol, and env gene sequences from the new unique HIV-1 recombinant form have been registered in the international database EMBL/Genbank/DDBJ under accession numbers FR775442.1, FN995656.1, and FR775443.1. PMID:22905420

  9. Transcription elongation regulator 1 (TCERG1) regulates competent RNA polymerase II-mediated elongation of HIV-1 transcription and facilitates efficient viral replication

    PubMed Central

    2013-01-01

    Background Control of RNA polymerase II (RNAPII) release from pausing has been proposed as a checkpoint mechanism to ensure optimal RNAPII activity, especially in large, highly regulated genes. HIV-1 gene expression is highly regulated at the level of elongation, which includes transcriptional pausing that is mediated by both viral and cellular factors. Here, we present evidence for a specific role of the elongation-related factor TCERG1 in regulating the extent of HIV-1 elongation and viral replication in vivo. Results We show that TCERG1 depletion diminishes the basal and viral Tat-activated transcription from the HIV-1 LTR. In support of a role for an elongation mechanism in the transcriptional control of HIV-1, we found that TCERG1 modifies the levels of pre-mRNAs generated at distal regions of HIV-1. Most importantly, TCERG1 directly affects the elongation rate of RNAPII transcription in vivo. Furthermore, our data demonstrate that TCERG1 regulates HIV-1 transcription by increasing the rate of RNAPII elongation through the phosphorylation of serine 2 within the carboxyl-terminal domain (CTD) of RNAPII and suggest a mechanism for the involvement of TCERG1 in relieving pausing. Finally, we show that TCERG1 is required for HIV-1 replication. Conclusions Our study reveals that TCERG1 regulates HIV-1 transcriptional elongation by increasing the elongation rate of RNAPII and phosphorylation of Ser 2 within the CTD. Based on our data, we propose a general mechanism for TCERG1 acting on genes that are regulated at the level of elongation by increasing the rate of RNAPII transcription through the phosphorylation of Ser2. In the case of HIV-1, our evidence provides the basis for further investigation of TCERG1 as a potential therapeutic target for the inhibition of HIV-1 replication PMID:24165037

  10. MAS NMR of HIV-1 protein assemblies

    NASA Astrophysics Data System (ADS)

    Suiter, Christopher L.; Quinn, Caitlin M.; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.

  11. MAS NMR of HIV-1 protein assemblies.

    PubMed

    Suiter, Christopher L; Quinn, Caitlin M; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates. PMID:25797001

  12. No-Go'ing Back: Co-opting RVB-2 to Control HIV-1 Gene Expression and Immune Response.

    PubMed

    Le Sage, Valerie; Cinti, Alessandro; Mouland, Andrew J

    2015-10-01

    Production of infectious HIV-1 particles requires viral envelope (Env) glycoprotein incorporation. Although, the precise mechanism remains elusive, interaction between Env and the matrix (MA) domain of Gag plays a central role. Work by Mu and colleagues demonstrates how the Env-MA interaction regulates gag mRNA stability and Gag expression levels. PMID:26342234

  13. Tetraspanin CD63 is a regulator of HIV-1 replication

    PubMed Central

    Fu, Enqing; Pan, Lei; Xie, Yonghong; Mu, Deguang; Liu, Wei; Jin, Faguang; Bai, Xuefan

    2015-01-01

    Macrophages and CD4+ T-cells are the major reservoirs for HIV-1 infection. CD63 is a tetraspanin transmembrane protein, which has been shown to play an essential role during HIV-1 replication in macrophages. In this study, we further confirm the requirement of CD63 in HIV-1 replication events in primary human CD4+ T-cells, dendritic cells, and a CD4+ cell line. Most interestingly, we also show the evidences for the co-localization and internalization of CD63 and HIV-1 major receptor CD4 in primary human macrophages and CD4+ cell line by confocal microscopy and Co-Immunoprecipitation assay. Analysis revealed that CD63-depleted CD4+ T-cells, dendritic cells, and a cell line showed significant decrease in HIV-1 production. Further analysis showed that CD63 down regulation reduced production of the early HIV protein Tat, and affected HIV protein Gag by CD63-Gag interaction. In agreement, CD63 silencing also inhibited production of the late protein p24. Furthermore, we revealed that CD63 silencing has no effect on HIV-1 replication with extensive viral challenge (MOI > 0.2). These findings suggest that CD63 plays a dual-role both in early and late HIV-1 life cycle with a range of HIV-1 infection (MOI < 0.2). PMID:25973004

  14. M2BP inhibits HIV-1 virion production in a vimentin filaments-dependent manner

    PubMed Central

    Wang, Qin; Zhang, Xiaolin; Han, Yuling; Wang, Xinlu; Gao, Guangxia

    2016-01-01

    M2BP (also called 90K) is an interferon-stimulated gene product that is upregulated in HIV-1 infection. A recent study revealed that M2BP reduces the infectivity of HIV-1 by inhibiting the processing of the viral envelope protein. Here we report that in addition to reducing viral infectivity, M2BP inhibits HIV-1 virion production. We provide evidence showing that M2BP inhibits HIV-1 Gag trafficking to the plasma membrane in a vimentin-dependent manner. When vimentin filaments were collapsed by treating cells with acrylamide or by overexpression of a dominant-negative mutant of vimentin, M2BP inhibition of HIV-1 virion production was significantly relieved. We further show that M2BP interacts with both HIV-1 Gag and vimentin and thereby mediates their interactions. We propose that M2BP traps HIV-1 Gag to vimentin filaments to inhibit the transportation of HIV-1 Gag to the plasma membrane. These findings uncover a novel mechanism by which a host antiviral factor inhibits HIV-1 virion production. PMID:27604950

  15. M2BP inhibits HIV-1 virion production in a vimentin filaments-dependent manner.

    PubMed

    Wang, Qin; Zhang, Xiaolin; Han, Yuling; Wang, Xinlu; Gao, Guangxia

    2016-01-01

    M2BP (also called 90K) is an interferon-stimulated gene product that is upregulated in HIV-1 infection. A recent study revealed that M2BP reduces the infectivity of HIV-1 by inhibiting the processing of the viral envelope protein. Here we report that in addition to reducing viral infectivity, M2BP inhibits HIV-1 virion production. We provide evidence showing that M2BP inhibits HIV-1 Gag trafficking to the plasma membrane in a vimentin-dependent manner. When vimentin filaments were collapsed by treating cells with acrylamide or by overexpression of a dominant-negative mutant of vimentin, M2BP inhibition of HIV-1 virion production was significantly relieved. We further show that M2BP interacts with both HIV-1 Gag and vimentin and thereby mediates their interactions. We propose that M2BP traps HIV-1 Gag to vimentin filaments to inhibit the transportation of HIV-1 Gag to the plasma membrane. These findings uncover a novel mechanism by which a host antiviral factor inhibits HIV-1 virion production. PMID:27604950

  16. ACTG 5197: A Placebo Controlled Trial of Immunization of HIV-1 Infected Persons with a Replication Deficient Ad5 Vaccine Expressing the HIV-1 Core Protein

    PubMed Central

    Schooley, Robert T.; Spritzler, John; Wang, Hongying; Lederman, Michael M.; Havlir, Diane; Kuritzkes, Daniel R.; Pollard, Richard; Battaglia, Cathy; Robertson, Michael; Mehrotra, Devan; Casimiro, Danilo; Cox, Kara; Schock, Barbara

    2010-01-01

    Background HIV-1 specific cellular immunity contributes to control of HIV-1 replication. HIV-1 infected volunteers on antiretroviral therapy received a replication defective Ad5 HIV-1 gag vaccine in a randomized, blinded therapeutic vaccination study. Methods HIV-1-infected vaccine or placebo recipients underwent a 16-wk analytical treatment interruption (ATI). The log10 HIV-1 RNA at the ATI set point and time averaged area under the curve (TA-AUC) served as co-primary endpoints. Immune responses were measured by intracellular cytokine staining and CFSE dye dilution. Results Vaccine benefit trends were seen for both primary endpoints, but did not reach a pre-specified p ≤ 0.025 level of significance. The estimated shift in TA-AUC and set point were 0.24 (unadjusted p=0.04) and 0.26 (unadjusted p=0.07) log10 copies lower in the vaccine than in the placebo arm. HIV-1 gag-specific CD4+ interferon-γ producing cells were an immunologic correlate of viral control. Conclusion The vaccine was generally safe and well tolerated. Despite a trend favoring viral suppression among vaccine recipients, differences in HIV-1 RNA levels did not meet the pre-specified level of significance. Induction of HIV-1 gag-specific CD4 cells correlated with control of viral replication in vivo. Future immunogenicity studies should require a substantially higher immunogenicity threshold before an ATI is contemplated. PMID:20662716

  17. A Phase I Double Blind, Placebo-Controlled, Randomized Study of the Safety and Immunogenicity of an Adjuvanted HIV-1 Gag-Pol-Nef Fusion Protein and Adenovirus 35 Gag-RT-Int-Nef Vaccine in Healthy HIV-Uninfected African Adults

    PubMed Central

    Omosa-Manyonyi, Gloria; Mpendo, Juliet; Ruzagira, Eugene; Kilembe, William; Chomba, Elwyn; Roman, François; Bourguignon, Patricia; Koutsoukos, Marguerite; Collard, Alix; Voss, Gerald; Laufer, Dagna; Stevens, Gwynn; Hayes, Peter; Clark, Lorna; Cormier, Emmanuel; Dally, Len; Barin, Burc; Ackland, Jim; Syvertsen, Kristen; Zachariah, Devika; Anas, Kamaal; Sayeed, Eddy; Lombardo, Angela; Gilmour, Jill; Cox, Josephine; Fast, Patricia; Priddy, Frances

    2015-01-01

    Background Sequential prime-boost or co-administration of HIV vaccine candidates based on an adjuvanted clade B p24, RT, Nef, p17 fusion protein (F4/AS01) plus a non-replicating adenovirus 35 expressing clade A Gag, RT, Int and Nef (Ad35-GRIN) may lead to a unique immune profile, inducing both strong T-cell and antibody responses. Methods In a phase 1, double-blind, placebo-controlled trial, 146 healthy adult volunteers were randomized to one of four regimens: heterologous prime-boost with two doses of F4/AS01E or F4/AS01B followed by Ad35-GRIN; Ad35-GRIN followed by two doses of F4/AS01B; or three co-administrations of Ad35-GRIN and F4/AS01B. T cell and antibody responses were measured. Results The vaccines were generally well-tolerated, and did not cause serious adverse events. The response rate, by IFN-γ ELISPOT, was greater when Ad35-GRIN was the priming vaccine and in the co-administration groups. F4/AS01 induced CD4+ T-cells expressing primarily CD40L and IL2 +/- TNF-α, while Ad35-GRIN induced predominantly CD8+ T-cells expressing IFN-γ +/- IL2 or TNF-α. Viral inhibition was induced after Ad35-GRIN vaccination, regardless of the regimen. Strong F4-specific antibody responses were induced. Immune responses persisted at least a year after the last vaccination. The complementary response profiles, characteristic of each vaccine, were both expressed after co-administration. Conclusion Co-administration of an adjuvanted protein and an adenovirus vector showed an acceptable safety and reactogenicity profile and resulted in strong, multifunctional and complementary HIV-specific immune responses. Trial Registration ClinicalTrials.gov NCT01264445 PMID:25961283

  18. Multimerization of Human Immunodeficiency Virus Type 1 Gag Promotes Its Localization to Barges, Raft-Like Membrane Microdomains

    PubMed Central

    Lindwasser, O. Wolf; Resh, Marilyn D.

    2001-01-01

    The Gag polyprotein of human immunodeficiency virus type 1 (HIV-1) organizes the assembly of nascent virions at the plasma membrane of infected cells. Here we demonstrate that a population of Gag is present in distinct raft-like membrane microdomains that we have termed “barges.” Barges have a higher density than standard rafts, most likely due to the presence of oligomeric Gag-Gag assembly complexes. The regions of the Gag protein responsible for barge targeting were mapped by examining the flotation behavior of wild-type and mutant proteins on Optiprep density gradients. N-myristoylation of Gag was necessary for association with barges. Removal of the NC and p6 domains shifted much of the Gag from barges into typical raft fractions. These data are consistent with a model in which multimerization of myristoylated Gag proteins drives association of Gag oligomers into raft-like barges. The functional significance of barge association was revealed by several lines of evidence. First, Gag isolated from virus-like particles was almost entirely localized in barges. Moreover, a comparison of wild-type Gag with Fyn(10)Gag, a chimeric protein containing the N-terminal sequence of Fyn, revealed that Fyn(10)Gag exhibited increased affinity for barges and a two- to fourfold increase in particle production. These results imply that association of Gag with raft-like barge membrane microdomains plays an important role in the HIV-1 assembly process. PMID:11483736

  19. TIM-family proteins inhibit HIV-1 release

    PubMed Central

    Li, Minghua; Ablan, Sherimay D.; Miao, Chunhui; Zheng, Yi-Min; Fuller, Matthew S.; Rennert, Paul D.; Maury, Wendy; Johnson, Marc C.; Freed, Eric O.; Liu, Shan-Lu

    2014-01-01

    Accumulating evidence indicates that T-cell immunoglobulin (Ig) and mucin domain (TIM) proteins play critical roles in viral infections. Herein, we report that the TIM-family proteins strongly inhibit HIV-1 release, resulting in diminished viral production and replication. Expression of TIM-1 causes HIV-1 Gag and mature viral particles to accumulate on the plasma membrane. Mutation of the phosphatidylserine (PS) binding sites of TIM-1 abolishes its ability to block HIV-1 release. TIM-1, but to a much lesser extent PS-binding deficient mutants, induces PS flipping onto the cell surface; TIM-1 is also found to be incorporated into HIV-1 virions. Importantly, TIM-1 inhibits HIV-1 replication in CD4-positive Jurkat cells, despite its capability of up-regulating CD4 and promoting HIV-1 entry. In addition to TIM-1, TIM-3 and TIM-4 also block the release of HIV-1, as well as that of murine leukemia virus (MLV) and Ebola virus (EBOV); knockdown of TIM-3 in differentiated monocyte-derived macrophages (MDMs) enhances HIV-1 production. The inhibitory effects of TIM-family proteins on virus release are extended to other PS receptors, such as Axl and RAGE. Overall, our study uncovers a novel ability of TIM-family proteins to block the release of HIV-1 and other viruses by interaction with virion- and cell-associated PS. Our work provides new insights into a virus-cell interaction that is mediated by TIMs and PS receptors. PMID:25136083

  20. Enhancement of the basal-level activity of HIV-1 long terminal repeat by HIV-1 nucleocapsid protein.

    PubMed

    Zhang, J L; Sharma, P L; Crumpacker, C S

    2000-03-15

    Two HIV-1 proteins, Tat and NCp7 (NC), have zinc finger-like structures. NC is a virion protein and has been shown to accumulate in the nucleus 8 h postinfection. Since transcription factors with zinc fingers assist the transcriptional activity of both RNA polymerases II and III, we examined the effect of NC on HIV-1 LTR-directed gene expression. The HIV-1 NC binds to the HIV-1 LTR and results in a mobility shift in polyacrylamide gel electrophoresis. Competition assays with cold probes revealed that the binding of NC and formation of a DNA-protein complex could be prevented by the addition of excess unlabeled LTR self-probe, but not the HIV-1 V3 envelope gene. The DNase I footprint analysis showed that NC binds to six regions within HIV-1 LTR, four of which are near the transcription start site. The NC alone enhances LTR basal-level activity in RNA runoff experiments. When the general transcription factors (GTFs) were added in the assay, NC enhances NF-kappaB, Sp1, and TFIIB-induced HIV-1 LTR-directed RNA transcription. RNA transcription directed by the adenovirus major late promoter, however, is not significantly affected by NC in the cell-free system. Transient transfection of human T lymphocytes with the plasmids containing HIV-1 nc or gag showed enhancement of LTR-CAT activity. Moreover, transfection of HIV-1 provirus containing mutations in NC zinc-finger domains dramatically decreases the enhancement activity in human T cells, in which HIV-1 LTR is stably integrated into the cellular genome. These observations show that NC binds to HIV-1 LTR and cooperatively enhances GTFs and NF-kappaB induced HIV-1 LTR basal-level activity. NC may play the role of a nucleation protein, which binds to LTR and enhances basal-level transcription by recruiting cellular transcription factors to the HIV-1 promoter in competition with cellular promoters. PMID:10704334

  1. Identification of potent maturation inhibitors against HIV-1 clade C.

    PubMed

    Timilsina, Uddhav; Ghimire, Dibya; Timalsina, Bivek; Nitz, Theodore J; Wild, Carl T; Freed, Eric O; Gaur, Ritu

    2016-01-01

    Antiretroviral therapy has led to a profound improvement in the clinical care of HIV-infected patients. However, drug tolerability and the evolution of drug resistance have limited treatment options for many patients. Maturation inhibitors are a new class of antiretroviral agents for treatment of HIV-1. They act by interfering with the maturation of the virus by blocking the last step in Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA by the viral protease (PR). The first-in-class maturation inhibitor bevirimat (BVM) failed against a subset of HIV-1 isolates in clinical trials due to polymorphisms present in the CA-SP1 region of the Gag protein. Sequence analysis indicated that these polymorphisms are more common in non-clade B strains of HIV-1 such as HIV-1 clade C. Indeed, BVM was found to be ineffective against HIV-1 clade C molecular clones tested in this study. A number of BVM analogs were synthesized by chemical modifications at the C-28 position to improve its activity. The new BVM analogs displayed potent activity against HIV-1 clade B and C and also reduced infectivity of the virus. This study identifies novel and broadly active BVM analogs that may ultimately demonstrate efficacy in the clinic. PMID:27264714

  2. Identification of potent maturation inhibitors against HIV-1 clade C

    PubMed Central

    Timilsina, Uddhav; Ghimire, Dibya; Timalsina, Bivek; Nitz, Theodore J.; Wild, Carl T.; Freed, Eric O.; Gaur, Ritu

    2016-01-01

    Antiretroviral therapy has led to a profound improvement in the clinical care of HIV-infected patients. However, drug tolerability and the evolution of drug resistance have limited treatment options for many patients. Maturation inhibitors are a new class of antiretroviral agents for treatment of HIV-1. They act by interfering with the maturation of the virus by blocking the last step in Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA by the viral protease (PR). The first-in-class maturation inhibitor bevirimat (BVM) failed against a subset of HIV-1 isolates in clinical trials due to polymorphisms present in the CA-SP1 region of the Gag protein. Sequence analysis indicated that these polymorphisms are more common in non-clade B strains of HIV-1 such as HIV-1 clade C. Indeed, BVM was found to be ineffective against HIV-1 clade C molecular clones tested in this study. A number of BVM analogs were synthesized by chemical modifications at the C-28 position to improve its activity. The new BVM analogs displayed potent activity against HIV-1 clade B and C and also reduced infectivity of the virus. This study identifies novel and broadly active BVM analogs that may ultimately demonstrate efficacy in the clinic. PMID:27264714

  3. Differential effects of hnRNP D/AUF1 isoforms on HIV-1 gene expression

    PubMed Central

    Lund, Nicole; Milev, Miroslav P.; Wong, Raymond; Sanmuganantham, Tharmila; Woolaway, Kathryn; Chabot, Benoit; Abou Elela, Sherif; Mouland, Andrew J.; Cochrane, Alan

    2012-01-01

    Control of RNA processing plays a major role in HIV-1 gene expression. To explore the role of several hnRNP proteins in this process, we carried out a siRNA screen to examine the effect of depletion of hnRNPs A1, A2, D, H, I and K on HIV-1 gene expression. While loss of hnRNPs H, I or K had little effect, depletion of A1 and A2 increased expression of viral structural proteins. In contrast, reduced hnRNP D expression decreased synthesis of HIV-1 Gag and Env. Loss of hnRNP D induced no changes in viral RNA abundance but reduced the accumulation of HIV-1 unspliced and singly spliced RNAs in the cytoplasm. Subsequent analyses determined that hnRNP D underwent relocalization to the cytoplasm upon HIV-1 infection and was associated with Gag protein. Screening of the four isoforms of hnRNP D determined that, upon overexpression, they had differential effects on HIV-1 Gag expression, p45 and p42 isoforms increased viral Gag synthesis while p40 and p37 suppressed it. The differential effect of hnRNP D isoforms on HIV-1 expression suggests that their relative abundance could contribute to the permissiveness of cell types to replicate the virus, a hypothesis subsequently confirmed by selective depletion of p45 and p42. PMID:22187150

  4. Combined Antiviral Therapy Using Designed Molecular Scaffolds Targeting Two Distinct Viral Functions, HIV-1 Genome Integration and Capsid Assembly

    PubMed Central

    Khamaikawin, Wannisa; Saoin, Somphot; Nangola, Sawitree; Chupradit, Koollawat; Sakkhachornphop, Supachai; Hadpech, Sudarat; Onlamoon, Nattawat; Ansari, Aftab A; Byrareddy, Siddappa N; Boulanger, Pierre; Hong, Saw-See; Torbett, Bruce E; Tayapiwatana, Chatchai

    2015-01-01

    Designed molecular scaffolds have been proposed as alternative therapeutic agents against HIV-1. The ankyrin repeat protein (AnkGAG1D4) and the zinc finger protein (2LTRZFP) have recently been characterized as intracellular antivirals, but these molecules, used individually, do not completely block HIV-1 replication and propagation. The capsid-binder AnkGAG1D4, which inhibits HIV-1 assembly, does not prevent the genome integration of newly incoming viruses. 2LTRZFP, designed to target the 2-LTR-circle junction of HIV-1 cDNA and block HIV-1 integration, would have no antiviral effect on HIV-1-infected cells. However, simultaneous expression of these two molecules should combine the advantage of preventive and curative treatments. To test this hypothesis, the genes encoding the N-myristoylated Myr(+)AnkGAG1D4 protein and the 2LTRZFP were introduced into human T-cells, using a third-generation lentiviral vector. SupT1 cells stably expressing 2LTRZFP alone or with Myr(+)AnkGAG1D4 showed a complete resistance to HIV-1 in viral challenge. Administration of the Myr(+)AnkGAG1D4 vector to HIV-1-preinfected SupT1 cells resulted in a significant antiviral effect. Resistance to viral infection was also observed in primary human CD4+ T-cells stably expressing Myr(+)AnkGAG1D4, and challenged with HIV-1, SIVmac, or SHIV. Our data suggest that our two anti-HIV-1 molecular scaffold prototypes are promising antiviral agents for anti-HIV-1 gene therapy. PMID:26305555

  5. Extreme Genetic Fragility of the HIV-1 Capsid

    PubMed Central

    Rihn, Suzannah J.; Wilson, Sam J.; Loman, Nick J.; Alim, Mudathir; Bakker, Saskia E.; Bhella, David; Gifford, Robert J.; Rixon, Frazer J.; Bieniasz, Paul D.

    2013-01-01

    Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to maintain function in the face of mutations. Viruses that replicate via RNA intermediates exhibit high mutation rates, and robustness should be particularly advantageous to them. The capsid (CA) domain of the HIV-1 Gag protein is under strong pressure to conserve functional roles in viral assembly, maturation, uncoating, and nuclear import. However, CA is also under strong immunological pressure to diversify. Therefore, it would be particularly advantageous for CA to evolve genetic robustness. To measure the genetic robustness of HIV-1 CA, we generated a library of single amino acid substitution mutants, encompassing almost half the residues in CA. Strikingly, we found HIV-1 CA to be the most genetically fragile protein that has been analyzed using such an approach, with 70% of mutations yielding replication-defective viruses. Although CA participates in several steps in HIV-1 replication, analysis of conditionally (temperature sensitive) and constitutively non-viable mutants revealed that the biological basis for its genetic fragility was primarily the need to coordinate the accurate and efficient assembly of mature virions. All mutations that exist in naturally occurring HIV-1 subtype B populations at a frequency >3%, and were also present in the mutant library, had fitness levels that were >40% of WT. However, a substantial fraction of mutations with high fitness did not occur in natural populations, suggesting another form of selection pressure limiting variation in vivo. Additionally, known protective CTL epitopes occurred preferentially in domains of the HIV-1 CA that were even more genetically fragile than HIV-1 CA as a whole. The extreme genetic fragility of HIV-1 CA may be one reason why cell-mediated immune responses to Gag correlate with better prognosis in HIV-1 infection, and suggests that CA is a good target for therapy and vaccination strategies

  6. Extreme genetic fragility of the HIV-1 capsid.

    PubMed

    Rihn, Suzannah J; Wilson, Sam J; Loman, Nick J; Alim, Mudathir; Bakker, Saskia E; Bhella, David; Gifford, Robert J; Rixon, Frazer J; Bieniasz, Paul D

    2013-01-01

    Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to maintain function in the face of mutations. Viruses that replicate via RNA intermediates exhibit high mutation rates, and robustness should be particularly advantageous to them. The capsid (CA) domain of the HIV-1 Gag protein is under strong pressure to conserve functional roles in viral assembly, maturation, uncoating, and nuclear import. However, CA is also under strong immunological pressure to diversify. Therefore, it would be particularly advantageous for CA to evolve genetic robustness. To measure the genetic robustness of HIV-1 CA, we generated a library of single amino acid substitution mutants, encompassing almost half the residues in CA. Strikingly, we found HIV-1 CA to be the most genetically fragile protein that has been analyzed using such an approach, with 70% of mutations yielding replication-defective viruses. Although CA participates in several steps in HIV-1 replication, analysis of conditionally (temperature sensitive) and constitutively non-viable mutants revealed that the biological basis for its genetic fragility was primarily the need to coordinate the accurate and efficient assembly of mature virions. All mutations that exist in naturally occurring HIV-1 subtype B populations at a frequency >3%, and were also present in the mutant library, had fitness levels that were >40% of WT. However, a substantial fraction of mutations with high fitness did not occur in natural populations, suggesting another form of selection pressure limiting variation in vivo. Additionally, known protective CTL epitopes occurred preferentially in domains of the HIV-1 CA that were even more genetically fragile than HIV-1 CA as a whole. The extreme genetic fragility of HIV-1 CA may be one reason why cell-mediated immune responses to Gag correlate with better prognosis in HIV-1 infection, and suggests that CA is a good target for therapy and vaccination strategies

  7. Hydrodynamic and Membrane Binding Properties of Purified Rous Sarcoma Virus Gag Protein

    PubMed Central

    Nanda, Hirsh; Fang, Xianyang; Wen, Yi; Barros, Marilia; Wang, Yun-Xing; Rein, Alan; Vogt, Volker M.

    2015-01-01

    ABSTRACT Previously, no retroviral Gag protein has been highly purified in milligram quantities and in a biologically relevant and active form. We have purified Rous sarcoma virus (RSV) Gag protein and in parallel several truncation mutants of Gag and have studied their biophysical properties and membrane interactions in vitro. RSV Gag is unusual in that it is not naturally myristoylated. From its ability to assemble into virus-like particles in vitro, we infer that RSV Gag is biologically active. By size exclusion chromatography and small-angle X-ray scattering, Gag in solution appears extended and flexible, in contrast to previous reports on unmyristoylated HIV-1 Gag, which is compact. However, by neutron reflectometry measurements of RSV Gag bound to a supported bilayer, the protein appears to adopt a more compact, folded-over conformation. At physiological ionic strength, purified Gag binds strongly to liposomes containing acidic lipids. This interaction is stimulated by physiological levels of phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] and by cholesterol. However, unlike HIV-1 Gag, RSV Gag shows no sensitivity to acyl chain saturation. In contrast with full-length RSV Gag, the purified MA domain of Gag binds to liposomes only weakly. Similarly, both an N-terminally truncated version of Gag that is missing the MA domain and a C-terminally truncated version that is missing the NC domain bind only weakly. These results imply that NC contributes to membrane interaction in vitro, either by directly contacting acidic lipids or by promoting Gag multimerization. IMPORTANCE Retroviruses like HIV assemble at and bud from the plasma membrane of cells. Assembly requires the interaction between thousands of Gag molecules to form a lattice. Previous work indicated that lattice formation at the plasma membrane is influenced by the conformation of monomeric HIV. We have extended this work to the more tractable RSV Gag. Our results show that RSV Gag is highly flexible

  8. Psychoneuroimmunology and HIV-1.

    ERIC Educational Resources Information Center

    Antoni, Michael H.; And Others

    1990-01-01

    Presents evidence describing benefits of behavioral interventions such as aerobic exercise training on both psychological and immunological functioning among high risk human immunodeficiency virus-Type 1 (HIV-1) seronegative and very early stage seropositive homosexual men. HIV-1 infection is cast as chronic disease for which early…

  9. A Bipartite Membrane-Binding Signal in the Human Immunodeficiency Virus Type 1 Matrix Protein Is Required for the Proteolytic Processing of Gag Precursors in a Cell Type-Dependent Manner

    PubMed Central

    Lee, Young-Min; Tian, Chun-Juan; Yu, Xiao-Fang

    1998-01-01

    It is unclear whether proteolytic processing of the human immunodeficiency virus type 1 (HIV-1) Gag protein is dependent on virus assembly at the plasma membrane. Mutations that prevent myristylation of HIV-1 Gag proteins have been shown to block virus assembly and release from the plasma membrane of COS cells but do not prevent processing of Gag proteins. In contrast, in HeLa cells similar mutations abolished processing of Gag proteins as well as virus production. We have now addressed this issue with CD4+ T cells, which are natural target cells of HIV-1. In these cells, myristylation of Gag proteins was required for proteolytic processing of Gag proteins and production of extracellular viral particles. This result was not due to a lack of expression of the viral protease in the form of a Gag-Pol precursor or a lack of interaction between unmyristylated Gag and Gag-Pol precursors. The processing defect of unmyristylated Gag was partially rescued ex vivo by coexpression with wild-type myristylated Gag proteins in HeLa cells. The cell type-dependent processing of HIV-1 Gag precursors was also observed when another part of the plasma membrane binding signal, a polybasic region in the matrix protein, was mutated. The processing of unmyristylated Gag precursors was inhibited in COS cells by HIV-1 protease inhibitors. Altogether, our findings demonstrate that the processing of HIV-1 Gag precursors in CD4+ T cells occurs normally at the plasma membrane during viral morphogenesis. The intracellular environment of COS cells presumably allows activation of the viral protease and proteolytic processing of HIV-1 Gag proteins in the absence of plasma membrane binding. PMID:9765451

  10. Viral Evolution and Cytotoxic T Cell Restricted Selection in Acute Infant HIV-1 Infection

    PubMed Central

    Garcia-Knight, Miguel A.; Slyker, Jennifer; Payne, Barbara Lohman; Pond, Sergei L. Kosakovsky; de Silva, Thushan I.; Chohan, Bhavna; Khasimwa, Brian; Mbori-Ngacha, Dorothy; John-Stewart, Grace; Rowland-Jones, Sarah L.; Esbjörnsson, Joakim

    2016-01-01

    Antiretroviral therapy-naive HIV-1 infected infants experience poor viral containment and rapid disease progression compared to adults. Viral factors (e.g. transmitted cytotoxic T- lymphocyte (CTL) escape mutations) or infant factors (e.g. reduced CTL functional capacity) may explain this observation. We assessed CTL functionality by analysing selection in CTL-targeted HIV-1 epitopes following perinatal infection. HIV-1 gag, pol and nef sequences were generated from a historical repository of longitudinal specimens from 19 vertically infected infants. Evolutionary rate and selection were estimated for each gene and in CTL-restricted and non-restricted epitopes. Evolutionary rate was higher in nef and gag vs. pol, and lower in infants with non-severe immunosuppression vs. severe immunosuppression across gag and nef. Selection pressure was stronger in infants with non-severe immunosuppression vs. severe immunosuppression across gag. The analysis also showed that infants with non-severe immunosuppression had stronger selection in CTL-restricted vs. non-restricted epitopes in gag and nef. Evidence of stronger CTL selection was absent in infants with severe immunosuppression. These data indicate that infant CTLs can exert selection pressure on gag and nef epitopes in early infection and that stronger selection across CTL epitopes is associated with favourable clinical outcomes. These results have implications for the development of paediatric HIV-1 vaccines. PMID:27403940

  11. SERINC3 and SERINC5 restrict HIV-1 infectivity and are counteracted by Nef.

    PubMed

    Usami, Yoshiko; Wu, Yuanfei; Göttlinger, Heinrich G

    2015-10-01

    HIV-1 Nef and the unrelated mouse leukaemia virus glycosylated Gag (glycoGag) strongly enhance the infectivity of HIV-1 virions produced in certain cell types in a clathrin-dependent manner. Here we show that Nef and glycoGag prevent the incorporation of the multipass transmembrane proteins serine incorporator 3 (SERINC3) and SERINC5 into HIV-1 virions to an extent that correlates with infectivity enhancement. Silencing of both SERINC3 and SERINC5 precisely phenocopied the effects of Nef and glycoGag on HIV-1 infectivity. The infectivity of nef-deficient virions increased more than 100-fold when produced in double-knockout human CD4(+) T cells that lack both SERINC3 and SERINC5, and re-expression experiments confirmed that the absence of SERINC3 and SERINC5 accounted for the infectivity enhancement. Furthermore, SERINC3 and SERINC5 together restricted HIV-1 replication, and this restriction was evaded by Nef. SERINC3 and SERINC5 are highly expressed in primary human HIV-1 target cells, and inhibiting their downregulation by Nef is a potential strategy to combat HIV/AIDS. PMID:26416733

  12. The triple threat of HIV-1 protease inhibitors.

    PubMed

    Potempa, Marc; Lee, Sook-Kyung; Wolfenden, Richard; Swanstrom, Ronald

    2015-01-01

    Newly released human immunodeficiency virus type 1 (HIV-1) particles obligatorily undergo a maturation process to become infectious. The HIV-1 protease (PR) initiates this step, catalyzing the cleavage of the Gag and Gag-Pro-Pol structural polyproteins. Proper organization of the mature virus core requires that cleavage of these polyprotein substrates proceeds in a highly regulated, specific series of events. The vital role the HIV-1 PR plays in the viral life cycle has made it an extremely attractive target for inhibition and has accordingly fostered the development of a number of highly potent substrate-analog inhibitors. Though the PR inhibitors (PIs) inhibit only the HIV-1 PR, their effects manifest at multiple different stages in the life cycle due to the critical importance of the PR in preparing the virus for these subsequent events. Effectively, PIs masquerade as entry inhibitors, reverse transcription inhibitors, and potentially even inhibitors of post-reverse transcription steps. In this chapter, we review the triple threat of PIs: the intermolecular cooperativity in the form of a cooperative dose-response for inhibition in which the apparent potency increases with increasing inhibition; the pleiotropic effects of HIV-1 PR inhibition on entry, reverse transcription, and post-reverse transcription steps; and their potency as transition state analogs that have the potential for further improvement that could lead to an inability of the virus to evolve resistance in the context of single drug therapy. PMID:25778681

  13. Specific binding of human immunodeficiency virus type 1 gag polyprotein and nucleocapsid protein to viral RNAs detected by RNA mobility shift assays.

    PubMed Central

    Berkowitz, R D; Luban, J; Goff, S P

    1993-01-01

    Packaging of retroviral genomic RNA during virion assembly is thought to be mediated by specific interactions between the gag polyprotein and RNA sequences (often termed the psi or E region) near the 5' end of the genome. For many retroviruses, including human immunodeficiency virus type 1 (HIV-1), the portions of the gag protein and the RNA that are required for this interaction remain poorly defined. We have used an RNA gel mobility shift assay to measure the in vitro binding of purified glutathione S-transferase-HIV-1 gag fusion proteins to RNA riboprobes. Both the complete gag polyprotein and the nucleocapsid (NC) protein alone were found to bind specifically to an HIV-1 riboprobe. Either Cys-His box of NC could be removed without eliminating specific binding to the psi riboprobe, but portions of gag containing only the MA and CA proteins without NC did not bind to RNA. There were at least two binding sites in HIV-1 genomic RNA that bound to the gag polyprotein: one entirely 5' to gag and one entirely within gag. The HIV-1 NC protein bound to riboprobes containing other retroviral psi sequences almost as well as to the HIV-1 psi riboprobe. Images PMID:8230441

  14. Maturation-Induced Cloaking of Neutralization Epitopes on HIV-1 Particles

    PubMed Central

    Joyner, Amanda S.; Willis, Jordan R.; Crowe, James E.; Aiken, Christopher

    2011-01-01

    To become infectious, HIV-1 particles undergo a maturation process involving proteolytic cleavage of the Gag and Gag-Pol polyproteins. Immature particles contain a highly stable spherical Gag lattice and are impaired for fusion with target cells. The fusion impairment is relieved by truncation of the gp41 cytoplasmic tail (CT), indicating that an interaction between the immature viral core and gp41 within the particle represses HIV-1 fusion by an unknown mechanism. We hypothesized that the conformation of Env on the viral surface is regulated allosterically by interactions with the HIV-1 core during particle maturation. To test this, we quantified the binding of a panel of monoclonal antibodies to mature and immature HIV-1 particles by immunofluorescence imaging. Surprisingly, immature particles exhibited markedly enhanced binding of several gp41-specific antibodies, including two that recognize the membrane proximal external region (MPER) and neutralize diverse HIV-1 strains. Several of the differences in epitope exposure on mature and immature particles were abolished by truncation of the gp41 CT, thus linking the immature HIV-1 fusion defect with altered Env conformation. Our results suggest that perturbation of fusion-dependent Env conformational changes contributes to the impaired fusion of immature particles. Masking of neutralization-sensitive epitopes during particle maturation may contribute to HIV-1 immune evasion and has practical implications for vaccine strategies targeting the gp41 MPER. PMID:21931551

  15. A radiometric assay for HIV-1 protease

    SciTech Connect

    Hyland, L.J.; Dayton, B.D.; Moore, M.L.; Shu, A.Y.; Heys, J.R.; Meek, T.D. )

    1990-08-01

    A rapid, high-throughput radiometric assay for HIV-1 protease has been developed using ion-exchange chromatography performed in 96-well filtration plates. The assay monitors the activity of the HIV-1 protease on the radiolabeled form of a heptapeptide substrate, (tyrosyl-3,5-3H)Ac-Ser-Gln-Asn-Tyr-Pro-Val-Val-NH2, which is based on the p17-p24 cleavage site found in the viral polyprotein substrate Pr55gag. Specific cleavage of this uncharged heptapeptide substrate by HIV-1 protease releases the anionic product (tyrosyl-3,5-3H)Ac-Ser-Gln-Asn-Tyr, which is retained upon minicolumns of the anion-exchange resin AG1-X8. Protease activity is determined from the recovery of this radiolabeled product following elution with formic acid. This facile and highly sensitive assay may be utilized for steady-state kinetic analysis of the protease, for measurements of enzyme activity during its purification, and as a routine assay for the evaluation of protease inhibitors from natural product or synthetic sources.

  16. Cyclophilin A regulates HIV-1 infectivity, as demonstrated by gene targeting in human T cells

    PubMed Central

    Braaten, Douglas; Luban, Jeremy

    2001-01-01

    The human immunodeficiency virus type 1 (HIV-1) Gag polyprotein binds most members of the cyclophilin family of peptidyl-prolyl isomerases. Of 15 known human cyclophilins, cyclophilin A (CypA) has been the focus of investigation because it was detected in HIV-1 virions. To determine whether CypA promotes HIV-1 replication, we deleted the gene encoding CypA (PPIA) in human CD4+ T cells by homologous recombination. HIV-1 replication in PPIA–/– cells was decreased and not inhibited further by cyclosporin or gag mutations that disrupt Gag’s interaction with cyclophilins, indicating that no other cyclophilin family members promote HIV-1 replication. The defective replication phenotype was specific for wild-type HIV-1 since HIV-2/SIV isolates, as well as HIV-1 bearing a gag mutation that confers cyclosporin resistance, replicated the same in PPIA+/+ and PPIA–/– cells. Stable re-expression of CypA in PPIA–/– cells restored HIV-1 replication to an extent that correlated with steady-state levels of CypA. Finally, virions from PPIA–/– cells possessed no obvious biochemical abnormalities but were less infectious than virions from wild-type cells. These data formally demonstrate that CypA regulates the infectivity of HIV-1 virions. PMID:11250896

  17. Understanding HIV-1 protease autoprocessing for novel therapeutic development

    PubMed Central

    Huang, Liangqun; Chen, Chaoping

    2013-01-01

    In the infected cell, HIV-1 protease (PR) is initially synthesized as part of the GagPol polyprotein. PR autoprocessing is a virus-specific process by which the PR domain embedded in the precursor catalyzes proteolytic reactions responsible for liberation of free mature PRs, which then recognize and cleave at least ten different peptide sequences in the Gag and GagPol polyproteins. Despite extensive structure and function studies of the mature PRs as well as the successful development of ten US FDA-approved catalytic-site inhibitors, the precursor autoprocessing mechanism remains an intriguing yet-to-be-solved puzzle. This article discusses current understanding of the autoprocessing mechanism, in an effort to prompt the development of novel anti-HIV drugs that selectively target precursor autoprocessing. PMID:23859204

  18. GB virus type C envelope protein E2 elicits antibodies that react with a cellular antigen on HIV-1 particles and neutralize diverse HIV-1 isolates.

    PubMed

    Mohr, Emma L; Xiang, Jinhua; McLinden, James H; Kaufman, Thomas M; Chang, Qing; Montefiori, David C; Klinzman, Donna; Stapleton, Jack T

    2010-10-01

    Broadly neutralizing Abs to HIV-1 are well described; however, identification of Ags that elicit these Abs has proven difficult. Persistent infection with GB virus type C (GBV-C) is associated with prolonged survival in HIV-1-infected individuals, and among those without HIV-1 viremia, the presence of Ab to GBV-C glycoprotein E2 is also associated with survival. GBV-C E2 protein inhibits HIV-1 entry, and an antigenic peptide within E2 interferes with gp41-induced membrane perturbations in vitro, suggesting the possibility of structural mimicry between GBV-C E2 protein and HIV-1 particles. Naturally occurring human and experimentally induced GBV-C E2 Abs were examined for their ability to neutralize infectious HIV-1 particles and HIV-1-enveloped pseudovirus particles. All GBV-C E2 Abs neutralized diverse isolates of HIV-1 with the exception of rabbit anti-peptide Abs raised against a synthetic GBV-C E2 peptide. Rabbit anti-GBV-C E2 Abs neutralized HIV-1-pseudotyped retrovirus particles but not HIV-1-pseudotyped vesicular stomatitis virus particles, and E2 Abs immune-precipitated HIV-1 gag particles containing the vesicular stomatitis virus type G envelope, HIV-1 envelope, GBV-C envelope, or no viral envelope. The Abs did not neutralize or immune-precipitate mumps or yellow fever viruses. Rabbit GBV-C E2 Abs inhibited HIV attachment to cells but did not inhibit entry following attachment. Taken together, these data indicate that the GBV-C E2 protein has a structural motif that elicits Abs that cross-react with a cellular Ag present on retrovirus particles, independent of HIV-1 envelope glycoproteins. The data provide evidence that a heterologous viral protein can induce HIV-1-neutralizing Abs. PMID:20826757

  19. Multiscale Computer Simulation of the Immature HIV-1 Virion

    PubMed Central

    Ayton, Gary S.; Voth, Gregory A.

    2010-01-01

    Multiscale computer simulations, employing a combination of experimental data and coarse-graining methods, are used to explore the structure of the immature HIV-1 virion. A coarse-grained (CG) representation is developed for the virion membrane shell and Gag polypeptides using molecular level information. Building on the results from electron cryotomography experiments, the simulations under certain conditions reveal the existence of an incomplete p6 hexameric lattice formed from hexameric bundles of the Gag CA domains. In particular, the formation and stability of the immature Gag lattice at the CG level requires enhanced interfacial interactions of the CA protein C-terminal domains (CTDs). An exact mapping of the CG representation back to the molecular level then allows for detailed atomistic molecular dynamics studies to confirm the existence of these enhanced CACTD interactions and to probe their possible origin. The multiscale simulations further provide insight into potential CACTD mutations that may disrupt or modify the Gag immature lattice assembly process in the immature HIV-1 virion. PMID:21044572

  20. Measuring T Cell-to-T Cell HIV-1 Transfer, Viral Fusion, and Infection Using Flow Cytometry.

    PubMed

    Durham, Natasha D; Chen, Benjamin K

    2016-01-01

    Direct T cell-to-T cell HIV-1 infection is a distinct mode of HIV-1 infection that requires physical contact between an HIV-1-infected "donor" cell and an uninfected, CD4-expressing "target" cell. In vitro studies indicate that HIV-1 cell-to-cell infection is much more efficient than infection by cell-free viral particles; however, the exact mechanisms of the enhanced efficiency of this infection pathway are still unclear. Several assays have been developed to study the mechanism of direct cell-to-cell HIV-1 transmission and to assess sensitivity to neutralizing antibodies and pharmacologic inhibitors. These assays are based on the coculture of donor and target cells. Here, we describe methods that utilize flow cytometry, which can discriminate donor and target cells and can assess different stages of entry and infection following cell-to-cell contact. HIV Gag-iGFP, a clone that makes fluorescent virus particles, can be used to measure cell-to-cell transfer of virus particles. HIV NL-GI, a clone that expresses GFP as an early gene, facilitates the measure of productive infection after cell-to-cell contact. Lastly, a variation of the β-lactamase (BlaM)-Vpr fusion assay can be used to measure the viral membrane fusion process after coculture of donor and target cells in a manner that is independent of cell-cell fusion. These assays can be performed in the presence of neutralizing antibodies/inhibitors to determine the 50 % inhibitory concentration (IC50) required to block infection specifically in the target cells. PMID:26714702

  1. Identification of a Key Target Sequence To Block Human Immunodeficiency Virus Type 1 Replication within the gag-pol Transframe Domain

    PubMed Central

    Sei, Shizuko; Yang, Quan-en; O'Neill, Dennis; Yoshimura, Kazuhisa; Nagashima, Kunio; Mitsuya, Hiroaki

    2000-01-01

    Although the full sequence of the human immunodeficiency virus type 1 (HIV-1) genome has been known for more than a decade, effective genetic antivirals have yet to be developed. Here we show that, of 22 regions examined, one highly conserved sequence (ACTCTTTGGCAACGA) near the 3′ end of the HIV-1 gag-pol transframe region, encoding viral protease residues 4 to 8 and a C-terminal Vpr-binding motif of p6Gag protein in two different reading frames, can be successfully targeted by an antisense peptide nucleic acid oligomer named PNAPR2. A disrupted translation of gag-pol mRNA induced at the PNAPR2-annealing site resulted in a decreased synthesis of Pr160Gag-Pol polyprotein, hence the viral protease, a predominant expression of Pr55Gag devoid of a fully functional p6Gag protein, and the excessive intracellular cleavage of Gag precursor proteins, hindering the processes of virion assembly. Treatment with PNAPR2 abolished virion production by up to 99% in chronically HIV-1-infected H9 cells and in peripheral blood mononuclear cells infected with clinical HIV-1 isolates with the multidrug-resistant phenotype. This particular segment of the gag-pol transframe gene appears to offer a distinctive advantage over other regions in invading viral structural genes and restraining HIV-1 replication in infected cells and may potentially be exploited as a novel antiviral genetic target. PMID:10775598

  2. Three-Dimensional Analysis of Budding Sites and Released Virus Suggests a Revised Model for HIV-1 Morphogenesis

    SciTech Connect

    Carlson, L.; Simon, M.; Briggs, J. A. G.; Glass, B.; Riches, J. D.; Johnson, M. C.; Muller, B.; Grunewald, K.; Krausslich, H.-G.

    2008-12-11

    Current models of HIV-1 morphogenesis hold that newly synthesized viral Gag polyproteins traffic to and assemble at the cell membrane into spherical protein shells. The resulting late-budding structure is thought to be released by the cellular ESCRT machinery severing the membrane tether connecting it to the producer cell. Using electron tomography and scanning transmission electron microscopy, we find that virions have a morphology and composition distinct from late-budding sites. Gag is arranged as a continuous but incomplete sphere in the released virion. In contrast, late-budding sites lacking functional ESCRT exhibited a nearly closed Gag sphere. The results lead us to propose that budding is initiated by Gag assembly, but is completed in an ESCRT-dependent manner before the Gag sphere is complete. This suggests that ESCRT functions early in HIV-1 release - akin to its role in vesicle formation - and is not restricted to severing the thin membrane tether.

  3. Cooperative and specific binding of Vif to the 5' region of HIV-1 genomic RNA.

    PubMed

    Henriet, Simon; Richer, Delphine; Bernacchi, Serena; Decroly, Etienne; Vigne, Robert; Ehresmann, Bernard; Ehresmann, Chantal; Paillart, Jean-Christophe; Marquet, Roland

    2005-11-18

    The viral infectivity factor (Vif) protein of human immunodeficiency virus type 1 (HIV-1) is essential for viral replication in vivo. Packaging of Vif into viral particles is mediated by an interaction with viral genomic RNA and association with viral nucleoprotein complexes. Despite recent findings on the RNA-binding properties of Vif suggesting that Vif could be involved in retroviral assembly, no RNA sequence or structure specificity has been determined so far. To gain further insight into the mechanisms by which Vif might regulate viral replication, we studied the interactions of Vif with HIV-1 genomic RNA in vitro. Using extensive biochemical analysis, we have measured the affinity of recombinant Vif proteins for synthetic RNAs corresponding to various regions of the HIV-1 genome. We found that recombinant Vif proteins bind specifically to HIV-1 viral RNA fragments corresponding to the 5'-untranslated region (5'-UTR), gag and the 5' part of pol (K(d) between 45 nM and 65 nM). RNA encompassing nucleotides 1-497 or 499-996 of the HIV-1 genomic RNA bind 9+/-2 and 21+/-3 Vif molecules, respectively, and at least some of these proteins bind in a cooperative manner (Hill constant alpha(H) = 2.3). In contrast, RNAs corresponding to other parts of the HIV-1 genome or heterologous RNAs showed poor binding capacity and weak cooperativity (K(d) > 200 nM). Moreover, RNase T1 footprinting revealed a hierarchical binding of Vif, pointing to TAR and the poly(A) stem-loop structures as primary strong affinity targets, and downstream structures as secondary sites with moderate affinity. Taken together, our findings suggest that Vif may assist other proteins to maintain a correct folding of the genomic RNA in order to facilitate its packaging and further steps such as reverse transcription. Interestingly, our results suggest also that Vif could bind the viral RNA in order to protect it from the action of the antiviral factor APOBEC-3G/3F. PMID:16236319

  4. SERINC3 and SERINC5 restrict HIV-1 infectivity and are counteracted by Nef

    PubMed Central

    Usami, Yoshiko; Wu, Yuanfei; Göttlinger, Heinrich G.

    2015-01-01

    HIV-1 Nef and the unrelated murine leukemia virus glycoGag strongly enhance the infectivity of HIV-1 virions produced in certain cell types in a clathrin-dependent manner. Here we show that Nef and glycoGag prevent the incorporation of the multipass transmembrane proteins SERINC3 and SERINC5 into HIV-1 virions to an extent that correlates with infectivity enhancement. Silencing of SERINC3 together with SERINC5 precisely phenocopied the effects of Nef and glycoGag on HIV-1 infectivities. The infectivity of nef-deficient virions increased more than 100-fold when produced in double-knockout human CD4+ T cells that lack both SERINC3 and SERINC5, and re-expression experiments confirmed that the absence of SERINC3 and SERINC5 accounted for the infectivity enhancement. Furthermore, SERINC3 and SERINC5 together restricted HIV-1 replication, and this restriction was evaded by Nef. SERINC3 and SERINC5 are highly expressed in primary human HIV-1 target cells, and inhibiting their downregulation by Nef is a potential strategy to combat HIV/AIDS. PMID:26416733

  5. HIV-1 Assembly, Budding, and Maturation

    PubMed Central

    Sundquist, Wesley I.; Kräusslich, Hans-Georg

    2012-01-01

    A defining property of retroviruses is their ability to assemble into particles that can leave producer cells and spread infection to susceptible cells and hosts. Virion morphogenesis can be divided into three stages: assembly, wherein the virion is created and essential components are packaged; budding, wherein the virion crosses the plasma membrane and obtains its lipid envelope; and maturation, wherein the virion changes structure and becomes infectious. All of these stages are coordinated by the Gag polyprotein and its proteolytic maturation products, which function as the major structural proteins of the virus. Here, we review our current understanding of the mechanisms of HIV-1 assembly, budding, and maturation, starting with a general overview and then providing detailed descriptions of each of the different stages of virion morphogenesis. PMID:22762019

  6. The hunt for HIV-1 integrase inhibitors.

    PubMed

    Lataillade, Max; Kozal, Michael J

    2006-07-01

    Currently, there are three distinct mechanistic classes of antiretrovirals: inhibitors of the HIV- 1 reverse transcriptase and protease enzymes and inhibitors of HIV entry, including receptor and coreceptor binding and cell fusion. A new drug class that inhibits the HIV-1 integrase enzyme (IN) is in development and may soon be available in the clinic. IN is an attractive drug target because it is essential for a stable and productive HIV-1 infection and there is no mammalian homologue of IN. Inhibitors of integrase enzyme (INI) block the integration of viral double-stranded DNA into the host cell's chromosomal DNA. HIV-1 integration has many potential steps that can be inhibited and several new compounds that target specific integration steps have been identified by drug developers. Recently, two INIs, GS-9137 and MK-0518, demonstrated promising early clinical trial results and have been advanced into later stage trials. In this review, we describe how IN facilitates HIV-1 integration, the needed enzyme cofactors, and the resultant byproducts created during integration. Furthermore, we review the different INIs under development, their mechanism of actions, site of IN inhibition, potency, resistance patterns, and discuss the early clinical trial results. PMID:16839248

  7. Control of HIV-1 replication in vitro by vaccine-induced human CD8+ T cells through conserved subdominant Pol epitopes

    PubMed Central

    Ahmed, Tina; Borthwick, Nicola J.; Gilmour, Jill; Hayes, Peter; Dorrell, Lucy; Hanke, Tomáš

    2016-01-01

    Objective The specificity of CD8+ T cells is critical for early control of founder/transmitted and reactivated HIV-1. To tackle HIV-1 variability and escape, we designed vaccine immunogen HIVconsv assembled from 14 highly conserved regions of mainly Gag and Pol proteins. When administered to HIV-1-negative human volunteers in trial HIV-CORE 002, HIVconsv vaccines elicited CD8+ effector T cells which inhibited replication of up to 8 HIV-1 isolates in autologous CD4+ cells. This inhibition correlated with interferon-γ production in response to Gag and Pol peptide pools, but direct evidence of the inhibitory specificity was missing. Here, we aimed to define through recognition of which epitopes these effectors inhibit HIV-1 replication. Design CD8+ T-cells from the 3 broadest HIV-1 inhibitors out of 23 vaccine recipients were expanded in culture by Gag or Pol peptide restimulation and tested in viral inhibition assay (VIA) using HIV-1 clade B and A isolates. Methods Frozen PBMCs were expanded first using peptide pools from Gag or Pol conserved regions and tested on HIV-1-infected cells in VIA or by individual peptides for their effector functions. Single peptide specificities responsible for inhibition of HIV-1 replication were then confirmed by single-peptide expanded effectors tested on HIV-1-infected cells. Results We formally demonstrated that the vaccine-elicited inhibitory human CD8+ T cells recognized conserved epitopes of both Pol and Gag proteins. We defined 7 minimum epitopes, of which 3 were novel, presumably naturally subdominant. The effectors were oligofunctional producing several cytokines and chemokines and killing peptide-pulsed target cells. Conclusions These results implicate the use of functionally conserved regions of Pol in addition to the widely used Gag for T-cell vaccine design. Proportion of volunteers developing these effectors and their frequency in circulating PBMC are separate issues, which can be addressed, if needed, by more efficient

  8. HIV-1 Modulates the tRNA Pool to Improve Translation Efficiency

    PubMed Central

    van Weringh, Anna; Ragonnet-Cronin, Manon; Pranckeviciene, Erinija; Pavon-Eternod, Mariana; Kleiman, Lawrence; Xia, Xuhua

    2011-01-01

    Despite its poorly adapted codon usage, HIV-1 replicates and is expressed extremely well in human host cells. HIV-1 has recently been shown to package non-lysyl transfer RNAs (tRNAs) in addition to the tRNALys needed for priming reverse transcription and integration of the HIV-1 genome. By comparing the codon usage of HIV-1 genes with that of its human host, we found that tRNAs decoding codons that are highly used by HIV-1 but avoided by its host are overrepresented in HIV-1 virions. In particular, tRNAs decoding A-ending codons, required for the expression of HIV's A-rich genome, are highly enriched. Because the affinity of Gag-Pol for all tRNAs is nonspecific, HIV packaging is most likely passive and reflects the tRNA pool at the time of viral particle formation. Codon usage of HIV-1 early genes is similar to that of highly expressed host genes, but codon usage of HIV-1 late genes was better adapted to the selectively enriched tRNA pool, suggesting that alterations in the tRNA pool are induced late in viral infection. If HIV-1 genes are adapting to an altered tRNA pool, codon adaptation of HIV-1 may be better than previously thought. PMID:21216840

  9. HIV-1 MATRIX ORGANIZES AS A HEXAMER OF TRIMERS ON MEMBRANES CONTAINING PHOSPHATIDYLINOSITOL-(4,5)-BISPHOSPHATE

    PubMed Central

    Alfadhli, Ayna; Barklis, Robin Lid; Barklis, Eric

    2009-01-01

    The human immunodeficiency virus type 1 (HIV-1) matrix (MA) protein represents the N-terminal domain of the HIV-1 precursor Gag (PrGag) protein and carries an N-terminal myristate (Myr) group. HIV-1 MA fosters PrGag membrane binding, as well as assembly of envelope (Env) proteins into virus particles, and recent studies have shown that HIV-1 MA preferentially directs virus assembly at plasma membrane sites enriched in cholesterol and phosphatidylinositol-(4,5)-bisphosphate (PI[4,5]P2). To characterize the membrane binding of MA and PrGag proteins, we have examined how Myr-MA proteins, and proteins composed of Myr-MA and its neighbor Gag capsid (CA) protein associate on membranes containing cholesterol and PI[4,5]P2. Our results indicate that Myr-MA assembles as a hexamer of trimers on such membranes, and imply that MA trimers interconnect CA hexamer rings in immature virus particles. Our observations suggest a model for the organization of PrGag proteins, and for MA-Env protein interactions. PMID:19327811

  10. HIV-1 Fusion Assay

    PubMed Central

    Cavrois, Marielle; Neidleman, Jason; Greene, Warner C.

    2016-01-01

    The HIV-1 fusion assay measures all steps in the HIV-1 life cycle up to and including viral fusion. It relies on the incorporation of a β-lactamase Vpr (BlaM-Vpr) protein chimera into the virion and the subsequent transfer of this chimera into the target cell by fusion (Figure 1). The transfer is monitored by the enzymatic cleavage of CCF2, a fluorescent dye substrate of β-lactamase, loaded into the target cells. Cleavage of the β-lactam ring in CCF2 by β-lactamase changes the fluorescence emission spectrum of the dye from green (520 nm) to blue (447 nm). This change reflects virion fusion and can be detected by flow cytometry (Figure 2).

  11. On the Selective Packaging of Genomic RNA by HIV-1.

    PubMed

    Comas-Garcia, Mauricio; Davis, Sean R; Rein, Alan

    2016-01-01

    Like other retroviruses, human immunodeficiency virus type 1 (HIV-1) selectively packages genomic RNA (gRNA) during virus assembly. However, in the absence of the gRNA, cellular messenger RNAs (mRNAs) are packaged. While the gRNA is selected because of its cis-acting packaging signal, the mechanism of this selection is not understood. The affinity of Gag (the viral structural protein) for cellular RNAs at physiological ionic strength is not much higher than that for the gRNA. However, binding to the gRNA is more salt-resistant, implying that it has a higher non-electrostatic component. We have previously studied the spacer 1 (SP1) region of Gag and showed that it can undergo a concentration-dependent conformational transition. We proposed that this transition represents the first step in assembly, i.e., the conversion of Gag to an assembly-ready state. To explain selective packaging of gRNA, we suggest here that binding of Gag to gRNA, with its high non-electrostatic component, triggers this conversion more readily than binding to other RNAs; thus we predict that a Gag-gRNA complex will nucleate particle assembly more efficiently than other Gag-RNA complexes. New data shows that among cellular mRNAs, those with long 3'-untranslated regions (UTR) are selectively packaged. It seems plausible that the 3'-UTR, a stretch of RNA not occupied by ribosomes, offers a favorable binding site for Gag. PMID:27626441

  12. Assessment of the antiviral capacity of primary natural killer cells by optimized in vitro quantification of HIV-1 replication.

    PubMed

    He, Xuan; Simoneau, Camille R; Granoff, Mitchell E; Lunemann, Sebastian; Dugast, Anne-Sophie; Shao, Yiming; Altfeld, Marcus; Körner, Christian

    2016-07-01

    Despite a growing number of studies investigating the impact of natural killer (NK) cells on HIV-1 pathogenesis, the exact mechanism by which NK cells recognize HIV-1-infected cells and exert immunological pressure on HIV-1 remains unknown. Previously several groups including ours have introduced autologous HIV-1-infected CD4(+) T cells as suitable target cells to study NK-cell function in response to HIV-1 infection in vitro. Here, we re-evaluated and optimized a standardized in vitro assay that allows assessing the antiviral capacity of NK cells. This includes the implementation of HIV-1 RNA copy numbers as readout for NK-cell-mediated inhibition of HIV-1 replication and the investigation of inter-assay variation in comparison to previous methods, such as HIV-1 p24 Gag production and frequency of p24(+) CD4(+) T cells. Furthermore, we investigated the possibility to hasten the duration of the assay and provide concepts for downstream applications. Autologous CD4(+) T cells and NK cells were obtained from peripheral blood of HIV-negative healthy individuals and were separately enriched through negative selection. CD4(+) T cells were infected with the HIV-1 strain JR-CSF at an MOI of 0.01. Infected CD4(+) T cells were then co-cultured with primary NK cells at various effector:target ratios for up to 14days. Supernatants obtained from media exchanged at days 4, 7, 11 and 14 were used for quantification of HIV-1 p24 Gag and HIV-1 RNA copy numbers. In addition, frequency of infected CD4(+) T cells was determined by flow cytometric detection of intracellular p24 Gag. The assay displayed minimal inter-assay variation when utilizing viral RNA quantification or p24 Gag concentration for the assessment of viral replication. Viral RNA quantification was more rigorous to display magnitude and kinetics of NK-cell-mediated inhibition of HIV-1 replication, longitudinally and between tested individuals. The results of this study demonstrate that NK-cell-mediated inhibition of

  13. Interaction between the Human Immunodeficiency Virus Type 1 Gag Matrix Domain and Phosphatidylinositol-(4,5)-Bisphosphate Is Essential for Efficient Gag Membrane Binding▿

    PubMed Central

    Chukkapalli, Vineela; Hogue, Ian B.; Boyko, Vitaly; Hu, Wei-Shau; Ono, Akira

    2008-01-01

    Human immunodeficiency virus type 1 (HIV-1) particle assembly mediated by the viral structural protein Gag occurs predominantly on the plasma membrane (PM). Although it is known that the matrix (MA) domain of Gag plays a major role in PM localization, molecular mechanisms that determine the location of assembly remain to be elucidated. We observed previously that overexpression of polyphosphoinositide 5-phosphatase IV (5ptaseIV) that depletes PM phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] impairs virus particle production and redirects processed Gag to intracellular compartments. In this study, we examined the impact of PI(4,5)P2 depletion on the subcellular localization of the entire Gag population using Gag-fluorescent protein chimeras. Upon 5ptaseIV overexpression, in addition to perinuclear localization, Gag also showed a hazy cytosolic signal, suggesting that PI(4,5)P2 depletion impairs Gag membrane binding. Indeed, Gag was less membrane bound in PI(4,5)P2-depleted cells, as assessed by biochemical analysis. These observations are consistent with the hypothesis that Gag interacts with PI(4,5)P2. To examine a putative Gag interaction with PI(4,5)P2, we developed an in vitro binding assay using full-length myristoylated Gag and liposome-associated PI(4,5)P2. Using this assay, we observed that PI(4,5)P2 significantly enhances liposome binding of wild-type Gag. In contrast, a Gag derivative lacking MA did not require PI(4,5)P2 for efficient liposome binding. To analyze the involvement of MA in PI(4,5)P2 binding further, we examined MA basic amino acid substitution mutants. These mutants, previously shown to localize in perinuclear compartments, bound PI(4,5)P2-containing liposomes weakly. Altogether, these results indicate that HIV-1 Gag binds PI(4,5)P2 on the membrane and that the MA basic domain mediates this interaction. PMID:18094158

  14. Clustering and Mobility of HIV-1 Env at Viral Assembly Sites Predict Its Propensity To Induce Cell-Cell Fusion

    PubMed Central

    Roy, Nathan H.; Chan, Jany; Lambelé, Marie

    2013-01-01

    HIV-1 Env mediates virus attachment to and fusion with target cell membranes, and yet, while Env is still situated at the plasma membrane of the producer cell and before its incorporation into newly formed particles, Env already interacts with the viral receptor CD4 on target cells, thus enabling the formation of transient cell contacts that facilitate the transmission of viral particles. During this first encounter with the receptor, Env must not induce membrane fusion, as this would prevent the producer cell and the target cell from separating upon virus transmission, but how Env's fusion activity is controlled remains unclear. To gain a better understanding of the Env regulation that precedes viral transmission, we examined the nanoscale organization of Env at the surface of producer cells. Utilizing superresolution microscopy (stochastic optical reconstruction microscopy [STORM]) and fluorescence recovery after photobleaching (FRAP), we quantitatively assessed the clustering and dynamics of Env upon its arrival at the plasma membrane. We found that Gag assembly induced the aggregation of small Env clusters into larger domains and that these domains were completely immobile. Truncation of the cytoplasmic tail (CT) of Env abrogated Gag's ability to induce Env clustering and restored Env mobility at assembly sites, both of which correlated with increased Env-induced fusion of infected and uninfected cells. Hence, while Env trapping by Gag secures Env incorporation into viral particles, Env clustering and its sequestration at assembly sites likely also leads to the repression of its fusion function, and thus, by preventing the formation of syncytia, Gag helps to secure efficient transfer of viral particles to target cells. PMID:23637402

  15. The choreography of HIV-1 proteolytic processing and virion assembly.

    PubMed

    Lee, Sook-Kyung; Potempa, Marc; Swanstrom, Ronald

    2012-11-30

    HIV-1 has been the target of intensive research at the molecular and biochemical levels for >25 years. Collectively, this work has led to a detailed understanding of viral replication and the development of 24 approved drugs that have five different targets on various viral proteins and one cellular target (CCR5). Although most drugs target viral enzymatic activities, our detailed knowledge of so much of the viral life cycle is leading us into other types of inhibitors that can block or disrupt protein-protein interactions. Viruses have compact genomes and employ a strategy of using a small number of proteins that can form repeating structures to enclose space (i.e. condensing the viral genome inside of a protein shell), thus minimizing the need for a large protein coding capacity. This creates a relatively small number of critical protein-protein interactions that are essential for viral replication. For HIV-1, the Gag protein has the role of a polyprotein precursor that contains all of the structural proteins of the virion: matrix, capsid, spacer peptide 1, nucleocapsid, spacer peptide 2, and p6 (which contains protein-binding domains that interact with host proteins during budding). Similarly, the Gag-Pro-Pol precursor encodes most of the Gag protein but now includes the viral enzymes: protease, reverse transcriptase (with its associated RNase H activity), and integrase. Gag and Gag-Pro-Pol are the substrates of the viral protease, which is responsible for cleaving these precursors into their mature and fully active forms (see Fig. 1A). PMID:23043111

  16. Neuropathology of early HIV-1 infection.

    PubMed

    Gray, F; Scaravilli, F; Everall, I; Chretien, F; An, S; Boche, D; Adle-Biassette, H; Wingertsmann, L; Durigon, M; Hurtrel, B; Chiodi, F; Bell, J; Lantos, P

    1996-01-01

    Early HIV-1 invasion of the central nervous system has been demonstrated by many cerebrospinal fluid studies; however, most HIV-1 carriers remain neurologically unimpaired during the so called "asymptomatic" period lasting from seroconversion to symptomatic AIDS. Therefore, neuropathological studies in the early pre-AIDS stages are very few, and the natural history of central nervous system changes in HIV-1 infection remains poorly understood. Examination of brains of asymptomatic HIV-1 positive individuals who died accidentally and of rare cases with acute fatal encephalopathy revealing HIV infection, and comparison with experimental simian immunodeficiency virus and feline immunodeficiency virus infections suggest that, invasion of the CNS by HIV-1 occurs at the time of primary infection and induces an immunological process in the central nervous system. This includes an inflammatory T-cell reaction with vasculitis and leptomeningitis, and immune activation of brain parenchyma with increased number of microglial cells, upregulation of major histocompatibility complex class II antigens and local production of cytokines. Myelin pallor and gliosis of the white matter are usually found and are likely to be the consequence of opening of the blood brain barrier due to vasculitis; direct damage to oligodendrocytes by cytokines may also interfere. These white matter changes may explain, at least partly, the early cerebral atrophy observed, by magnetic resonance imaging, in asymptomatic HIV-1 carriers. In contrast, cortical damage seems to be a late event in the course of HIV-1 infection. There is no significant neuronal loss at the early stages of the disease, no accompanying increase in glial fibrillary acid protein staining in the cortex, and only exceptional neuronal apoptosis. Although HIV-1 proviral DNA may be demonstrated in a number of brains, viral replication remains very low during the asymptomatic stage of HIV-1 infection. This makes it likely that, although

  17. Glutamate metabolism in HIV-1 infected macrophages: Role of HIV-1 Vpr.

    PubMed

    Datta, Prasun K; Deshmane, Satish; Khalili, Kamel; Merali, Salim; Gordon, John C; Fecchio, Chiara; Barrero, Carlos A

    2016-09-01

    HIV-1 infected macrophages play a significant role in the neuropathogenesis of AIDS. HIV-1 viral protein R (Vpr) not only facilitates HIV-1 infection but also contribute to long-lived persistence in macrophages. Our previous studies using SILAC-based proteomic analysis showed that the expression of critical metabolic enzymes in the glycolytic pathway and tricarboxylic acid (TCA) cycle were altered in response to Vpr expression in macrophages. We hypothesized that Vpr-induced modulation of glycolysis and TCA cycle regulates glutamate metabolism and release in HIV-1 infected macrophages. We assessed the amount of specific metabolites induced by Vpr and HIV-1 in macrophages at the intracellular and extracellular level in a time-dependent manner utilizing multiple reaction monitoring (MRM) targeted metabolomics. In addition, stable isotope-labeled glucose and an MRM targeted metabolomics assay were used to evaluate the de novo synthesis and release of glutamate in Vpr overexpressing macrophages and HIV-1 infected macrophages, throughout the metabolic flux of glycolytic pathway and TCA cycle activation. The metabolic flux studies demonstrated an increase in glucose uptake, glutamate release and accumulation of α-ketoglutarate (α-KG) and glutamine in the extracellular milieu in Vpr expressing and HIV-1 infected macrophages. Interestingly, glutamate pools and other intracellular intermediates (glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), citrate, malate, α-KG, and glutamine) showed a decreased trend except for fumarate, in contrast to the glutamine accumulation observed in the extracellular space in Vpr overexpressing macrophages. Our studies demonstrate that dysregulation of mitochondrial glutamate metabolism induced by Vpr in HIV-1 infected macrophages commonly seen, may contribute to neurodegeneration via excitotoxic mechanisms in the context of NeuroAIDS. PMID:27245560

  18. Restricting HIV-1 pathways for escape using rationally designed anti–HIV-1 antibodies

    PubMed Central

    Klein, Florian; Horwitz, Joshua A.; Halper-Stromberg, Ariel; Sather, D. Noah; Marcovecchio, Paola M.; Lee, Terri; West, Anthony P.; Gao, Han; Seaman, Michael S.; Stamatatos, Leonidas; Nussenzweig, Michel C.; Bjorkman, Pamela J.

    2013-01-01

    Recently identified broadly neutralizing antibodies (bNAbs) that potently neutralize most HIV-1 strains are key to potential antibody-based therapeutic approaches to combat HIV/AIDS in the absence of an effective vaccine. Increasing bNAb potencies and resistance to common routes of HIV-1 escape through mutation would facilitate their use as therapeutics. We previously used structure-based design to create the bNAb NIH45-46G54W, which exhibits superior potency and/or breadth compared with other bNAbs. We report new, more effective NIH45-46G54W variants designed using analyses of the NIH45-46–gp120 complex structure and sequences of NIH45-46G54W–resistant HIV-1 strains. One variant, 45-46m2, neutralizes 96% of HIV-1 strains in a cross-clade panel and viruses isolated from an HIV-infected individual that are resistant to all other known bNAbs, making it the single most broad and potent anti–HIV-1 antibody to date. A description of its mechanism is presented based on a 45-46m2–gp120 crystal structure. A second variant, 45-46m7, designed to thwart HIV-1 resistance to NIH45-46G54W arising from mutations in a gp120 consensus sequence, targets a common route of HIV-1 escape. In combination, 45-46m2 and 45-46m7 reduce the possible routes for the evolution of fit viral escape mutants in HIV-1YU-2–infected humanized mice, with viremic control exhibited when a third antibody, 10–1074, was added to the combination. PMID:23712429

  19. Protective efficacy of a global HIV-1 mosaic vaccine against heterologous SHIV challenges in rhesus monkeys.

    PubMed

    Barouch, Dan H; Stephenson, Kathryn E; Borducchi, Erica N; Smith, Kaitlin; Stanley, Kelly; McNally, Anna G; Liu, Jinyan; Abbink, Peter; Maxfield, Lori F; Seaman, Michael S; Dugast, Anne-Sophie; Alter, Galit; Ferguson, Melissa; Li, Wenjun; Earl, Patricia L; Moss, Bernard; Giorgi, Elena E; Szinger, James J; Eller, Leigh Anne; Billings, Erik A; Rao, Mangala; Tovanabutra, Sodsai; Sanders-Buell, Eric; Weijtens, Mo; Pau, Maria G; Schuitemaker, Hanneke; Robb, Merlin L; Kim, Jerome H; Korber, Bette T; Michael, Nelson L

    2013-10-24

    The global diversity of HIV-1 represents a critical challenge facing HIV-1 vaccine development. HIV-1 mosaic antigens are bioinformatically optimized immunogens designed for improved coverage of HIV-1 diversity. However, the protective efficacy of such global HIV-1 vaccine antigens has not previously been evaluated. Here, we demonstrate the capacity of bivalent HIV-1 mosaic antigens to protect rhesus monkeys against acquisition of infection following heterologous challenges with the difficult-to-neutralize simian-human immunodeficiency virus SHIV-SF162P3. Adenovirus/poxvirus and adenovirus/adenovirus vector-based vaccines expressing HIV-1 mosaic Env, Gag, and Pol afforded a significant reduction in the per-exposure acquisition risk following repetitive, intrarectal SHIV-SF162P3 challenges. Protection against acquisition of infection correlated with vaccine-elicited binding, neutralizing, and functional nonneutralizing antibodies, suggesting that the coordinated activity of multiple antibody functions may contribute to protection against difficult-to-neutralize viruses. These data demonstrate the protective efficacy of HIV-1 mosaic antigens and suggest a potential strategy for the development of a global HIV-1 vaccine. PAPERCLIP: PMID:24243013

  20. HIV-1 nucleocapsid protein localizes efficiently to the nucleus and nucleolus.

    PubMed

    Yu, Kyung Lee; Lee, Sun Hee; Lee, Eun Soo; You, Ji Chang

    2016-05-01

    The HIV-1 nucleocapsid (NC) is an essential viral protein containing two highly conserved retroviral-type zinc finger (ZF) motifs, which functions in multiple stages of the HIV-1 life cycle. Although a number of functions for NC either in its mature form or as a domain of Gag have been revealed, little is known about the intracellular localization of NC and, moreover, its role in Gag protein trafficking. Here, we have investigated various forms of HIV-1 NC protein for its cellular localization and found that the NC has a strong nuclear and nucleolar localization activity. The linker region, composed of a stretch of basic amino acids between the two ZF motifs, was necessary and sufficient for the activity. PMID:26967976

  1. An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation.

    PubMed

    Schur, Florian K M; Obr, Martin; Hagen, Wim J H; Wan, William; Jakobi, Arjen J; Kirkpatrick, Joanna M; Sachse, Carsten; Kräusslich, Hans-Georg; Briggs, John A G

    2016-07-29

    Immature HIV-1 assembles at and buds from the plasma membrane before proteolytic cleavage of the viral Gag polyprotein induces structural maturation. Maturation can be blocked by maturation inhibitors (MIs), thereby abolishing infectivity. The CA (capsid) and SP1 (spacer peptide 1) region of Gag is the key regulator of assembly and maturation and is the target of MIs. We applied optimized cryo-electron tomography and subtomogram averaging to resolve this region within assembled immature HIV-1 particles at 3.9 angstrom resolution and built an atomic model. The structure reveals a network of intra- and intermolecular interactions mediating immature HIV-1 assembly. The proteolytic cleavage site between CA and SP1 is inaccessible to protease. We suggest that MIs prevent CA-SP1 cleavage by stabilizing the structure, and MI resistance develops by destabilizing CA-SP1. PMID:27417497

  2. A Truncated Nef Peptide from SIVcpz Inhibits the Production of HIV-1 Infectious Progeny.

    PubMed

    Sabino Cunha, Marcela; Lima Sampaio, Thatiane; Peterlin, B Matija; Jesus da Costa, Luciana

    2016-01-01

    Nef proteins from all primate Lentiviruses, including the simian immunodeficiency virus of chimpanzees (SIVcpz), increase viral progeny infectivity. However, the function of Nef involved with the increase in viral infectivity is still not completely understood. Nonetheless, until now, studies investigating the functions of Nef from SIVcpz have been conducted in the context of the HIV-1 proviruses. In an attempt to investigate the role played by Nef during the replication cycle of an SIVcpz, a Nef-defective derivative was obtained from the SIVcpzWTGab2 clone by introducing a frame shift mutation at a unique restriction site within the nef sequence. This nef-deleted clone expresses an N-terminal 74-amino acid truncated peptide of Nef and was named SIVcpz-tNef. We found that the SIVcpz-tNef does not behave as a classic nef-deleted HIV-1 or simian immunodeficiency virus of macaques SIVmac. Markedly, SIVcpz-tNef progeny from both Hek-293T and Molt producer cells were completely non-infectious. Moreover, the loss in infectivity of SIVcpz-tNef correlated with the inhibition of Gag and GagPol processing. A marked accumulation of Gag and very low levels of reverse transcriptase were detected in viral lysates. Furthermore, these observations were reproduced once the tNef peptide was expressed in trans both in SIVcpzΔNef and HIV-1WT expressing cells, demonstrating that the truncated peptide is a dominant negative for viral processing and infectivity for both SIVcpz and HIV-1. We demonstrated that the truncated Nef peptide binds to GagPol outside the protease region and by doing so probably blocks processing of both GagPol and Gag precursors at a very early stage. This study demonstrates for the first time that naturally-occurring Nef peptides can potently block lentiviral processing and infectivity. PMID:27399760

  3. A Truncated Nef Peptide from SIVcpz Inhibits the Production of HIV-1 Infectious Progeny

    PubMed Central

    Sabino Cunha, Marcela; Lima Sampaio, Thatiane; Peterlin, B. Matija; Jesus da Costa, Luciana

    2016-01-01

    Nef proteins from all primate Lentiviruses, including the simian immunodeficiency virus of chimpanzees (SIVcpz), increase viral progeny infectivity. However, the function of Nef involved with the increase in viral infectivity is still not completely understood. Nonetheless, until now, studies investigating the functions of Nef from SIVcpz have been conducted in the context of the HIV-1 proviruses. In an attempt to investigate the role played by Nef during the replication cycle of an SIVcpz, a Nef-defective derivative was obtained from the SIVcpzWTGab2 clone by introducing a frame shift mutation at a unique restriction site within the nef sequence. This nef-deleted clone expresses an N-terminal 74-amino acid truncated peptide of Nef and was named SIVcpz-tNef. We found that the SIVcpz-tNef does not behave as a classic nef-deleted HIV-1 or simian immunodeficiency virus of macaques SIVmac. Markedly, SIVcpz-tNef progeny from both Hek-293T and Molt producer cells were completely non-infectious. Moreover, the loss in infectivity of SIVcpz-tNef correlated with the inhibition of Gag and GagPol processing. A marked accumulation of Gag and very low levels of reverse transcriptase were detected in viral lysates. Furthermore, these observations were reproduced once the tNef peptide was expressed in trans both in SIVcpzΔNef and HIV-1WT expressing cells, demonstrating that the truncated peptide is a dominant negative for viral processing and infectivity for both SIVcpz and HIV-1. We demonstrated that the truncated Nef peptide binds to GagPol outside the protease region and by doing so probably blocks processing of both GagPol and Gag precursors at a very early stage. This study demonstrates for the first time that naturally-occurring Nef peptides can potently block lentiviral processing and infectivity. PMID:27399760

  4. Elucidation of the Molecular Mechanism Driving Duplication of the HIV-1 PTAP Late Domain

    PubMed Central

    Martins, Angelica N.; Waheed, Abdul A.; Ablan, Sherimay D.; Huang, Wei; Newton, Alicia; Petropoulos, Christos J.; Brindeiro, Rodrigo D. M.

    2015-01-01

    ABSTRACT HIV-1 uses cellular machinery to bud from infected cells. This cellular machinery is comprised of several multiprotein complexes known as endosomal sorting complexes required for transport (ESCRTs). A conserved late domain motif, Pro-Thr-Ala-Pro (PTAP), located in the p6 region of Gag (p6Gag), plays a central role in ESCRT recruitment to the site of virus budding. Previous studies have demonstrated that PTAP duplications are selected in HIV-1-infected patients during antiretroviral therapy; however, the consequences of these duplications for HIV-1 biology and drug resistance are unclear. To address these questions, we constructed viruses carrying a patient-derived PTAP duplication with and without drug resistance mutations in the viral protease. We evaluated the effect of the PTAP duplication on viral release efficiency, viral infectivity, replication capacity, drug susceptibility, and Gag processing. In the presence of protease inhibitors, we observed that the PTAP duplication in p6Gag significantly increased the infectivity and replication capacity of the virus compared to those of viruses bearing only resistance mutations in protease. Our biochemical analysis showed that the PTAP duplication, in combination with mutations in protease, enhances processing between the nucleocapsid and p6 domains of Gag, resulting in more complete Gag cleavage in the presence of protease inhibitors. These results demonstrate that duplication of the PTAP motif in p6Gag confers a selective advantage in viral replication by increasing Gag processing efficiency in the context of protease inhibitor treatment, thereby enhancing the drug resistance of the virus. These findings highlight the interconnected role of PTAP duplications and protease mutations in the development of resistance to antiretroviral therapy. IMPORTANCE Resistance to current drug therapy limits treatment options in many HIV-1-infected patients. Duplications in a Pro-Thr-Ala-Pro (PTAP) motif in the p6 domain of

  5. The roles of lipids and nucleic acids in HIV-1 assembly

    PubMed Central

    Alfadhli, Ayna; Barklis, Eric

    2014-01-01

    During HIV-1 assembly, precursor Gag (PrGag) proteins are delivered to plasma membrane (PM) assembly sites, where they are triggered to oligomerize and bud from cells as immature virus particles. The delivery and triggering processes are coordinated by the PrGag matrix (MA) and nucleocapsid (NC) domains. Targeting of PrGag proteins to membranes enriched in cholesterol and phosphatidylinositol-4,5-bisphosphate (PI[4,5]P2) is mediated by the MA domain, which also has been shown to bind both RNA and DNA. Evidence suggests that the nucleic-acid-binding function of MA serves to inhibit PrGag binding to inappropriate intracellular membranes, prior to delivery to the PM. At the PM, MA domains putatively trade RNA ligands for PI(4,5)P2 ligands, fostering high-affinity membrane binding. Triggering of oligomerization, budding, and virus particle release results when NC domains on adjacent PrGag proteins bind to viral RNA, leading to capsid (CA) domain oligomerization. This process leads to the assembly of immature virus shells in which hexamers of membrane-bound MA trimers appear to organize above interlinked CA hexamers. Here, we review the functions of retroviral MA proteins, with an emphasis on the nucleic-acid-binding capability of the HIV-1 MA protein, and its effects on membrane binding. PMID:24917853

  6. [Psychic aspects of the overactive gag reflex (gagging) in connection with a clinical case].

    PubMed

    Gáspár, Judit; Fejérdy, László; Fábián, Tibor Károly

    2002-10-01

    The overactive gag reflex is one of the etiologic categories of psychosomatic symptoms, which most often arise from environmental stressors. If organic disturbances, anatomic anomalies, or biomechanical inadequacies of existing prostheses are not key causes, the services of trained specialists are needed to help with behavioural management of the problem. Hypnosis can provide the clinician with a set of techniques, which may be used to augment or facilitate a particular course of treatment. In the case report, the patient's history and her overactive gag reflex suggested to use hypnosis therapy. The responsibility of a dentist can be found in his possible recognition of eventually necessary psychotherapy when consulting a patient. PMID:12434707

  7. The role of human dendritic cells in HIV-1 infection.

    PubMed

    Ahmed, Zahra; Kawamura, Tatsuyoshi; Shimada, Shinji; Piguet, Vincent

    2015-05-01

    Dendritic cells (DCs) and their subsets have multifaceted roles in the early stages of HIV-1 transmission and infection. DC studies have led to remarkable discoveries, including identification of restriction factors, cellular structures promoting viral transmission including the infectious synapse or the interplay of the C-type lectins, Langerin on Langerhans cells (LCs), and dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin on other DC subsets, limiting or facilitating HIV transmission to CD4(+) T cells, respectively. LCs/DCs are also exposed to encountering HIV-1 and other sexually transmitted infections (herpes simplex virus-2, bacteria, fungi), which reprogram HIV-1 interaction with these cells. This review will summarize advances in the role of DCs during HIV-1 infection and discuss their potential involvement in the development of preventive strategies against HIV-1 and other sexually transmitted infections. PMID:25407434

  8. Myristate Exposure in the HIV-1 Matrix Protein is Modulated by pH

    PubMed Central

    Fledderman, Emily L.; Fujii, Ken; Ghanam, Ruba H.; Waki, Kayoko; Prevelige, Peter E.; Freed, Eric O.; Saad, Jamil S.

    2010-01-01

    Human immunodeficiency virus type-1 (HIV-1) encodes a polypeptide called Gag that is capable of forming virus-like particles (VLPs) in vitro in the absence of other cellular or viral constituents. During the late phase of HIV-1 infection, Gag polyproteins are transported to the plasma membrane (PM) for assembly. A combination of in vivo, in vitro and structural studies have shown that Gag targeting and assembly on the PM are mediated by specific interactions between the myristoylated matrix (myr(+)MA) domain of Gag and phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2). Exposure of the MA myristyl (myr) group is triggered by PI(4,5)P2 binding and is enhanced by factors that promote protein self-association. In the studies reported herein, we demonstrate that myr exposure in MA is modulated by pH. Our data show that deprotonation of the His89 imidazole ring in myr(+)MA destabilizes the salt bridge formed between His89(Hδ2) and Glu12(COO-), leading to tight sequestration of the myr group and a shift in the equilibrium from trimer to monomer. Furthermore, we show that oligomerization of a Gag-like construct containing matrix-capsid is also pH-dependent. Disruption of the His-Glu salt bridge by single amino acid substitutions greatly altered the myr-sequestered–myr-exposed equilibrium. In vivo intracellular localization data revealed that H89G mutation retargets Gag to intracellular compartments and severely inhibits virus production. Our findings reveal that the MA domain acts as a “pH sensor” in vitro, suggesting that the effect of pH on HIV-1 Gag targeting and binding to the PM warrants investigation. PMID:20886905

  9. HIV-1 Protease in the Fission Yeast Schizosaccharomyces pombe

    PubMed Central

    Benko, Zsigmond; Elder, Robert T.; Li, Ge; Liang, Dong; Zhao, Richard Y.

    2016-01-01

    Background HIV-1 protease (PR) is an essential viral enzyme. Its primary function is to proteolyze the viral Gag-Pol polyprotein for production of viral enzymes and structural proteins and for maturation of infectious viral particles. Increasing evidence suggests that PR cleaves host cellular proteins. However, the nature of PR-host cellular protein interactions is elusive. This study aimed to develop a fission yeast (Schizosaccharomyces pombe) model system and to examine the possible interaction of HIV-1 PR with cellular proteins and its potential impact on cell proliferation and viability. Results A fission yeast strain RE294 was created that carried a single integrated copy of the PR gene in its chromosome. The PR gene was expressed using an inducible nmt1 promoter so that PR-specific effects could be measured. HIV-1 PR from this system cleaved the same indigenous viral p6/MA protein substrate as it does in natural HIV-1 infections. HIV-1 PR expression in fission yeast cells prevented cell proliferation and induced cellular oxidative stress and changes in mitochondrial morphology that led to cell death. Both these PR activities can be prevented by a PR-specific enzymatic inhibitor, indinavir, suggesting that PR-mediated proteolytic activities and cytotoxic effects resulted from enzymatic activities of HIV-1 PR. Through genome-wide screening, a serine/threonine kinase, Hhp2, was identified that suppresses HIV-1 PR-induced protease cleavage and cell death in fission yeast and in mammalian cells, where it prevented PR-induced apoptosis and cleavage of caspase-3 and caspase-8. Conclusions This is the first report to show that HIV-1 protease is functional as an enzyme in fission yeast, and that it behaves in a similar manner as it does in HIV-1 infection. HIV-1 PR-induced cell death in fission yeast could potentially be used as an endpoint for mechanistic studies, and this system could be used for developing a high-throughput system for drug screenings. PMID:26982200

  10. Ribozyme-mediated inhibition of HIV 1 suggests nucleolar trafficking of HIV-1 RNA

    PubMed Central

    Michienzi, Alessandro; Cagnon, Laurence; Bahner, Ingrid; Rossi, John J.

    2000-01-01

    The HIV regulatory proteins Tat and Rev have a nucleolar localization property in human cells. However, no functional role has been attributed to this localization. Recently it has been demonstrated that expression of Rev induces nucleolar relocalization of some protein factors involved in Rev export. Because the function of Rev is to bind HIV RNA and facilitate transport of singly spliced and unspliced RNA to the cytoplasm, it is likely that the nucleolus plays a critical role in HIV-1 RNA export. As a test for trafficking of HIV-1 RNAs into the nucleolus, a hammerhead ribozyme that specifically cleaves HIV-1 RNA was inserted into the body of the U16 small nucleolar RNA, resulting in accumulation of the ribozyme within the nucleoli of human cells. HeLa CD4+ and T cells expressing this nucleolar localized ribozyme exhibit dramatically suppressed HIV-1 replication. The results presented here suggest a trafficking of HIV-1 RNA through the nucleoli of human cells, thus posing a different paradigm for lentiviral RNA processing. PMID:10922055

  11. Revisiting HIV-1 uncoating.

    PubMed

    Arhel, Nathalie

    2010-01-01

    HIV uncoating is defined as the loss of viral capsid that occurs within the cytoplasm of infected cells before entry of the viral genome into the nucleus. It is an obligatory step of HIV-1 early infection and accompanies the transition between reverse transcription complexes (RTCs), in which reverse transcription occurs, and pre-integration complexes (PICs), which are competent to integrate into the host genome. The study of the nature and timing of HIV-1 uncoating has been paved with difficulties, particularly as a result of the vulnerability of the capsid assembly to experimental manipulation. Nevertheless, recent studies of capsid structure, retroviral restriction and mechanisms of nuclear import, as well as the recent expansion of technical advances in genome-wide studies and cell imagery approaches, have substantially changed our understanding of HIV uncoating. Although early work suggested that uncoating occurs immediately following viral entry in the cell, thus attributing a trivial role for the capsid in infected cells, recent data suggest that uncoating occurs several hours later and that capsid has an all-important role in the cell that it infects: for transport towards the nucleus, reverse transcription and nuclear import. Knowing that uncoating occurs at a later stage suggests that the viral capsid interacts extensively with the cytoskeleton and other cytoplasmic components during its transport to the nucleus, which leads to a considerable reassessment of our efforts to identify potential therapeutic targets for HIV therapy. This review discusses our current understanding of HIV uncoating, the functional interplay between infectivity and timely uncoating, as well as exposing the appropriate methods to study uncoating and addressing the many questions that remain unanswered. PMID:21083892

  12. HIV-1 Capsid Stabilization Assay.

    PubMed

    Fricke, Thomas; Diaz-Griffero, Felipe

    2016-01-01

    The stability of the HIV-1 core in the cytoplasm is crucial for productive HIV-1 infection. Mutations that stabilize or destabilize the core showed defects in HIV-1 reverse transcription and infection. We developed a novel and simple assay to measure stability of in vitro-assembled HIV-1 CA-NC complexes. This assay allowed us to demonstrate that cytosolic extracts strongly stabilize the HIV-1 core (Fricke et al., J Virol 87:10587-10597, 2013). By using our novel assay, one can measure the ability of different drugs to modulate the stability of in vitro-assembled HIV-1 CA-NC complexes, such as PF74, CAP-1, IXN-053, cyclosporine A, Bi2, and the peptide CAI. We also found that purified CPSF6 (1-321) protein stabilizes in vitro-assembled HIV-1 CA-NC complexes (Fricke et al., J Virol 87:10587-10597, 2013). Here we describe in detail the use of this capsid stability assay. We believe that our assay can be a powerful tool to assess HIV-1 capsid stability in vitro. PMID:26714703

  13. HIV-1 Vpr—a still “enigmatic multitasker”

    PubMed Central

    Guenzel, Carolin A.; Hérate, Cécile; Benichou, Serge

    2014-01-01

    Like other HIV-1 auxiliary proteins, Vpr is conserved within all the human (HIV-1, HIV-2) and simian (SIV) immunodeficiency viruses. However, Vpr and homologous HIV-2, and SIV Vpx are the only viral auxiliary proteins specifically incorporated into virus particles through direct interaction with the Gag precursor, indicating that this presence in the core of the mature virions is mainly required for optimal establishment of the early steps of the virus life cycle in the newly infected cell. In spite of its small size, a plethora of effects and functions have been attributed to Vpr, including induction of cell cycle arrest and apoptosis, modulation of the fidelity of reverse transcription, nuclear import of viral DNA in macrophages and other non-dividing cells, and transcriptional modulation of viral and host cell genes. Even if some more recent studies identified a few cellular targets that HIV-1 Vpr may utilize in order to perform its different tasks, the real role and functions of Vpr during the course of natural infection are still enigmatic. In this review, we will summarize the main reported functions of HIV-1 Vpr and their significance in the context of the viral life cycle. PMID:24744753

  14. Curcumin inhibits HIV-1 by promoting Tat protein degradation.

    PubMed

    Ali, Amjad; Banerjea, Akhil C

    2016-01-01

    HIV-1 Tat is an intrinsically unfolded protein playing a pivotal role in viral replication by associating with TAR region of viral LTR. Unfolded proteins are degraded by 20S proteasome in an ubiquitin independent manner. Curcumin is known to activate 20S proteasome and promotes the degradation of intrinsically unfolded p53 tumor suppressor protein. Since HIV-1 Tat protein is largerly unfolded, we hypothesized that Tat may also be targeted through this pathway. Curcumin treated Tat transfected HEK-293T cells showed a dose and time dependent degradation of Tat protein. Contrary to this HIV-1 Gag which is a properly folded protein, remained unaffected with curcumin. Semi-quantitative RT-PCR analysis showed that curcumin treatment did not affect Tat gene transcription. Curcumin increased the rate of Tat protein degradation as shown by cycloheximide (CHX) chase assay. Degradation of the Tat protein is accomplished through proteasomal pathway as proteasomal inhibitor MG132 blocked Tat degradation. Curcumin also decreased Tat mediated LTR promoter transactivation and inhibited virus production from HIV-1 infected cells. Taken together our study reveals a novel observation that curcumin causes potent degradation of Tat which may be one of the major mechanisms behind its anti HIV activity. PMID:27283735

  15. Curcumin inhibits HIV-1 by promoting Tat protein degradation

    PubMed Central

    Ali, Amjad; Banerjea, Akhil C.

    2016-01-01

    HIV-1 Tat is an intrinsically unfolded protein playing a pivotal role in viral replication by associating with TAR region of viral LTR. Unfolded proteins are degraded by 20S proteasome in an ubiquitin independent manner. Curcumin is known to activate 20S proteasome and promotes the degradation of intrinsically unfolded p53 tumor suppressor protein. Since HIV-1 Tat protein is largerly unfolded, we hypothesized that Tat may also be targeted through this pathway. Curcumin treated Tat transfected HEK-293T cells showed a dose and time dependent degradation of Tat protein. Contrary to this HIV-1 Gag which is a properly folded protein, remained unaffected with curcumin. Semi-quantitative RT-PCR analysis showed that curcumin treatment did not affect Tat gene transcription. Curcumin increased the rate of Tat protein degradation as shown by cycloheximide (CHX) chase assay. Degradation of the Tat protein is accomplished through proteasomal pathway as proteasomal inhibitor MG132 blocked Tat degradation. Curcumin also decreased Tat mediated LTR promoter transactivation and inhibited virus production from HIV-1 infected cells. Taken together our study reveals a novel observation that curcumin causes potent degradation of Tat which may be one of the major mechanisms behind its anti HIV activity. PMID:27283735

  16. Circulation of HIV-1 Multiple Complexity Recombinant Forms Among Female Sex Workers Recently Infected with HIV-1 in Thailand.

    PubMed

    Saeng-Aroon, Siriphan; Loket, Ruangchai; Plipat, Tanarak; Lumyai, Suttiwat; Chu, Pei-Yu; Sangkitporn, Somchai; Nakayama, Emi E; Takeda, Naokazu; Shioda, Tatsuo; Motomura, Kazushi

    2016-07-01

    The circulating subtype distribution of HIV-1 has not been well characterized in female sex worker (FSW) populations in Thailand. To understand the mechanisms and interrelationships of epidemics involving FSWs in Thailand, we performed a large molecular epidemiological study of FSWs aged 25 years with recently acquired HIV-1 infections. The samples were collected in 2005, 2007, 2009, and 2011 in 38 provinces, representing every region of Thailand. After gag (p24), pol (pro-RT), and env (C2/V3) were sequenced, comprehensive genome analysis was performed. Genetic subtypes were determined in 159 plasma samples. The percentage of circulating recombinant forms (CRFs) CRF01_AE (90.6%) predominated, while subtype B (1.3%), other CRFs (1.9%), and unique recombinant forms (URFs) (6.2%) were identified as minor populations. Interestingly, the unique recombinant nature of these HIV-1 strains was verified in 10 specimens, indicating the presence of new forms of HIV-1 intersubtypes G/A, C/B, AE/B/C, and AE/B with different recombination breakpoints. Subtype B has contributed to these new generations of unique CRF01/B recombinants, especially in the pol (RT) gene, in which the template switching of the RT genomes occurred during reverse transcription. These results imply that the several unique recombinant viruses circulating in Thailand were probably generated in the population or introduced from neighboring countries. Our study helps clarify the patterns of viral transmission and define transmission pathways in Thailand. PMID:26892382

  17. Membrane Binding of the Rous Sarcoma Virus Gag Protein Is Cooperative and Dependent on the Spacer Peptide Assembly Domain

    PubMed Central

    Barros, Marilia; Jin, Danni; Lösche, Mathias; Vogt, Volker M.

    2015-01-01

    ABSTRACT The principles underlying membrane binding and assembly of retroviral Gag proteins into a lattice are understood. However, little is known about how these processes are related. Using purified Rous sarcoma virus Gag and Gag truncations, we studied the interrelation of Gag-Gag interaction and Gag-membrane interaction. Both by liposome binding and by surface plasmon resonance on a supported bilayer, Gag bound to membranes much more tightly than did matrix (MA), the isolated membrane binding domain. In principle, this difference could be explained either by protein-protein interactions leading to cooperativity in membrane binding or by the simultaneous interaction of the N-terminal MA and the C-terminal nucleocapsid (NC) of Gag with the bilayer, since both are highly basic. However, we found that NC was not required for strong membrane binding. Instead, the spacer peptide assembly domain (SPA), a putative 24-residue helical sequence comprising the 12-residue SP segment of Gag and overlapping the capsid (CA) C terminus and the NC N terminus, was required. SPA is known to be critical for proper assembly of the immature Gag lattice. A single amino acid mutation in SPA that abrogates assembly in vitro dramatically reduced binding of Gag to liposomes. In vivo, plasma membrane localization was dependent on SPA. Disulfide cross-linking based on ectopic Cys residues showed that the contacts between Gag proteins on the membrane are similar to the known contacts in virus-like particles. Taken together, we interpret these results to mean that Gag membrane interaction is cooperative in that it depends on the ability of Gag to multimerize. IMPORTANCE The retroviral structural protein Gag has three major domains. The N-terminal MA domain interacts directly with the plasma membrane (PM) of cells. The central CA domain, together with immediately adjoining sequences, facilitates the assembly of thousands of Gag molecules into a lattice. The C-terminal NC domain interacts with

  18. HIV-1 Adaptation to Antigen Processing Results in Population-Level Immune Evasion and Affects Subtype Diversification

    PubMed Central

    Tenzer, Stefan; Crawford, Hayley; Pymm, Phillip; Gifford, Robert; Sreenu, Vattipally B.; Weimershaus, Mirjana; de Oliveira, Tulio; Burgevin, Anne; Gerstoft, Jan; Akkad, Nadja; Lunn, Daniel; Fugger, Lars; Bell, John; Schild, Hansjörg; van Endert, Peter; Iversen, Astrid K.N.

    2014-01-01

    Summary The recent HIV-1 vaccine failures highlight the need to better understand virus-host interactions. One key question is why CD8+ T cell responses to two HIV-Gag regions are uniquely associated with delayed disease progression only in patients expressing a few rare HLA class I variants when these regions encode epitopes presented by ∼30 more common HLA variants. By combining epitope processing and computational analyses of the two HIV subtypes responsible for ∼60% of worldwide infections, we identified a hitherto unrecognized adaptation to the antigen-processing machinery through substitutions at subtype-specific motifs. Multiple HLA variants presenting epitopes situated next to a given subtype-specific motif drive selection at this subtype-specific position, and epitope abundances correlate inversely with the HLA frequency distribution in affected populations. This adaptation reflects the sum of intrapatient adaptations, is predictable, facilitates viral subtype diversification, and increases global HIV diversity. Because low epitope abundance is associated with infrequent and weak T cell responses, this most likely results in both population-level immune evasion and inadequate responses in most people vaccinated with natural HIV-1 sequence constructs. Our results suggest that artificial sequence modifications at subtype-specific positions in vitro could refocus and reverse the poor immunogenicity of HIV proteins. PMID:24726370

  19. HIV-1 Virus-Like Particles Produced by Stably Transfected Drosophila S2 Cells: a Desirable Vaccine Component

    PubMed Central

    Yang, Lifei; Song, Yufeng; Li, Xiaomin; Huang, Xiaoxing; Liu, Jingjing; Ding, Heng; Zhu, Ping

    2012-01-01

    The development of a successful vaccine against human immunodeficiency virus type 1 (HIV-1) likely requires immunogens that elicit both broadly neutralizing antibodies against envelope spikes and T cell responses that recognize multiple viral proteins. HIV-1 virus-like particles (VLP), because they display authentic envelope spikes on the particle surface, may be developed into such immunogens. However, in one way or the other current systems for HIV-1 VLP production have many limitations. To overcome these, in the present study we developed a novel strategy to produce HIV-1 VLP using stably transfected Drosophila S2 cells. We cotransfected S2 cells with plasmids encoding HIV-1 envelope, Gag, and Rev proteins and a selection marker. After stably transfected S2 clones were established, HIV-1 VLP and their immunogenicity in mice were carefully evaluated. Here, we report that HIV-1 envelope proteins are properly cleaved, glycosylated, and incorporated into VLP with Gag. The amount of VLP released into culture supernatants is comparable to those produced by insect cells infected with recombinant baculoviruses. Moreover, cryo-electron microscopy tomography revealed average 17 spikes per purified VLP, and antigenic epitopes on the spikes were recognized by the broadly neutralizing antibodies 2G12, b12, VRC01, and 4E10 but not by PG16. Finally, mice primed with DNA and boosted with VLP in the presence of CpG exhibited anti-envelope antibody responses, including ELISA-binding, neutralizing, antibody-dependent cell-mediated cytotoxicity and antibody-dependent cell-mediated viral inhibition, as well as envelope and Gag-specific CD8 T cell responses. Thus, we conclude that HIV-1 VLP produced by the S2 expression system has many desirable features to be developed into a vaccine component against HIV-1. PMID:22553333

  20. Single-Cell and Single-Cycle Analysis of HIV-1 Replication.

    PubMed

    Holmes, Mowgli; Zhang, Fengwen; Bieniasz, Paul D

    2015-06-01

    The dynamics of the late stages of the HIV-1 life cycle are poorly documented. Viral replication dynamics are typically measured in populations of infected cells, but asynchrony that is introduced during the early steps of HIV-1 replication complicates the measurement of the progression of subsequent steps and can mask replication dynamics and their variation in individual infected cells. We established microscopy-based methods to dynamically measure HIV-1-encoded reporter gene and antiviral gene expression in individual infected cells. We coupled these measurements with conventional analyses to quantify delays in the HIV-1 replication cycle imposed by the biphasic nature of HIV-1 gene expression and by the assembly-inhibiting property of the matrix domain of Gag. We further related the dynamics of restriction factor (APOBEC3G) removal to the dynamics of HIV-1 replication in individual cells. These studies provide a timeline for key events in the HIV-1 replication cycle, and reveal that the interval between the onset of early and late HIV-1 gene expression is only ~3 h, but matrix causes a ~6-12 h delay in the generation of extracellular virions. Interestingly, matrix delays particle assembly to a time at which APOBEC3G has largely been removed from the cell. Thus, a need to prepare infected cells to be efficient producers of infectious HIV-1 may provide an impetus for programmed delays in HIV-1 virion genesis. Our findings also emphasize the significant heterogeneity in the length of the HIV-1 replication cycle in homogenous cell populations and suggest that a typical infected cell generates new virions for only a few hours at the end of a 48 h lifespan. Therefore, small changes in the lifespan of infected cells might have a large effect on viral yield in a single cycle and the overall clinical course in infected individuals. PMID:26086614

  1. In vitro infection of human umbilical cord blood CD34+ hematopoietic progenitor cells by HIV-1 CRF07_BC enveloped pseudovirus.

    PubMed

    Li, Lin; Qiu, Chao; Li, Liangzhu; Liu, Aiping; Zhou, Mingzhe; Han, Zhimin; Qiu, Chenli; Zhang, Xiaoyan; Xu, Jianqing; Zhu, Huanzhang

    2012-10-01

    To determine whether CRF07_BC, one of the most predominant strains that accounts for one third HIV-1 prevalence in China, has the ability to infect hematopoietic progenitor cells (HPCs), human Umbilical Cord Blood (UCB) derived CD34+ HPCs isolated with high purity were infected by HIV-1 pseudotyped with CRF07_BC envelope. After HIV-1 infection, ~0.86% CD34+ HPCs were co-stained for CD34 and intracellular HIV Gag. HIV p24 antigen was detectable and reached maximal release between day 2-4 after HIV-1 infection. The data of nested Alu-LTR PCR proved the integration of HIV-1 genome into the host genome occurred in HIV-1-infected HPCs. These data demonstrated that the envelope of CRF07_BC from China has the capability of resulting in infection to CD34+ HPCs, which may serve as a mechanism for long-term latency of HIV-1 infection in vivo. PMID:22934658

  2. Analysis of a rape case by direct sequencing of the human immunodeficiency virus type 1 pol and gag genes.

    PubMed Central

    Albert, J; Wahlberg, J; Leitner, T; Escanilla, D; Uhlén, M

    1994-01-01

    Transmission of human immunodeficiency virus type 1 (HIV-1) from a male accused of rape and deliberate transmission of HIV-1 was investigated by sequencing of the HIV-1 pol and gag genes from virus obtained from the male and from the female victim. Parts of the reverse transcriptase and p17gag genes were amplified and directly sequenced from uncultured peripheral blood mononuclear cells. The sequences were compared with sequences from 21 unrelated HIV-1-infected controls from the same geographic area (Stockholm, Sweden). Bootstrap analysis of phylogenetic trees demonstrated that the sequences from the female were significantly more closely related to the sequences from the male than to sequences from the controls. Furthermore, we found that the male and female shared two distinct genetic variants of HIV-1. In p17gag the major variant had an unusual, out-of-frame deletion of 3 nucleotides which the minor variant lacked. These results indicated that the male had transmitted more than one infectious unit to the female. From this study we concluded that it was highly likely that the HIV-1 strains carried by the male and female were closely epidemiologically linked. PMID:7520096

  3. Human Immunodeficiency Virus Type 2 (HIV-2) Gag Is Trafficked in an AP-3 and AP-5 Dependent Manner

    PubMed Central

    Alford, Justine E.; Marongiu, Michela; Watkins, Gemma L.

    2016-01-01

    Although human immunodeficiency virus (HIV) types 1 and 2 are closely related lentiviruses with similar replication cycles, HIV-2 infection is associated with slower progression to AIDS, a higher proportion of long term non-progressors, and lower rates of transmission than HIV-1, likely as a consequence of a lower viral load during HIV-2 infection. A mechanistic explanation for the differential viral load remains unclear but knowledge of differences in particle production between HIV-1 and HIV-2 may help to shed light on this issue. In contrast to HIV-1, little is known about the assembly of HIV-2 particles, and the trafficking of HIV-2 Gag, the structural component of the virus, within cells. We have established that HIV-2 Gag accumulates in intracellular CD63 positive compartments, from which it may be delivered or recycled to the cell surface, or degraded. HIV-2 particle release was dependent on the adaptor protein complex AP-3 and the newly identified AP-5 complex, but much less so on AP-1. In contrast, HIV-1 particle release required AP-1 and AP-3, but not AP-5. AP-2, an essential component of clathrin-mediated endocytosis, which was previously shown to be inhibitory to HIV-1 particle release, had no effect on HIV-2. The differential requirement for adaptor protein complexes confirmed that HIV-1 and HIV-2 Gag have distinct cellular trafficking pathways, and that HIV-2 particles may be more susceptible to degradation prior to release. PMID:27392064

  4. Alkyl Amine Bevirimat Derivatives Are Potent and Broadly Active HIV-1 Maturation Inhibitors

    PubMed Central

    Urano, Emiko; Ablan, Sherimay D.; Mandt, Rebecca; Pauly, Gary T.; Sigano, Dina M.; Schneider, Joel P.; Martin, David E.; Nitz, Theodore J.; Wild, Carl T.

    2015-01-01

    Concomitant with the release of human immunodeficiency virus type 1 (HIV-1) particles from the infected cell, the viral protease cleaves the Gag polyprotein precursor at a number of sites to trigger virus maturation. We previously reported that a betulinic acid-derived compound, bevirimat (BVM), blocks HIV-1 maturation by disrupting a late step in protease-mediated Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA. BVM was shown in multiple clinical trials to be safe and effective in reducing viral loads in HIV-1-infected patients. However, naturally occurring polymorphisms in the SP1 region of Gag (e.g., SP1-V7A) led to a variable response in some BVM-treated patients. The reduced susceptibility of SP1-polymorphic HIV-1 to BVM resulted in the discontinuation of its clinical development. To overcome the loss of BVM activity induced by polymorphisms in SP1, we carried out an extensive medicinal chemistry campaign to develop novel maturation inhibitors. In this study, we focused on alkyl amine derivatives modified at the C-28 position of the BVM scaffold. We identified a set of derivatives that are markedly more potent than BVM against an HIV-1 clade B clone (NL4-3) and show robust antiviral activity against a variant of NL4-3 containing the V7A polymorphism in SP1. One of the most potent of these compounds also strongly inhibited a multiclade panel of primary HIV-1 isolates. These data demonstrate that C-28 alkyl amine derivatives of BVM can, to a large extent, overcome the loss of susceptibility imposed by polymorphisms in SP1. PMID:26482309

  5. Identification of HIV-1 Inhibitors Targeting The Nucleocapsid Protein

    PubMed Central

    Breuer, Sebastian; Chang, Max W.; Yuan, Jinyun; Torbett, Bruce E.

    2012-01-01

    The HIV-1 nucleocapsid (NC) is a RNA/DNA binding protein encoded within the Gag polyprotein, which is critical for the selection and chaperoning of viral genomic RNA during virion assembly. RNA/DNA binding occurs through a highly conserved zinc-knuckle motif present in NC. Given the necessity of NC-viral RNA/DNA interaction for viral replication, identification of compounds that disrupt the NC-RNA/DNA interaction may have value as an anti-viral strategy. To identify small molecules that disrupt NC-viral RNA/DNA binding a high-throughput fluorescence polarization assay was developed and a library of 14,400 diverse, drug-like compounds was screened. Compounds that disrupted NC binding to a fluorescence-labeled DNA tracer were next evaluated by differential scanning fluorimetry to identify compounds that must bind to NC or Gag to impart their effects. Two compounds were identified that inhibited NC-DNA interaction, specifically bound NC with nM affinity, and showed modest anti-HIV-1 activity in ex vivo cell assays. PMID:22587465

  6. Transcriptome Sequencing of Gene Expression in the Brain of the HIV-1 Transgenic Rat

    PubMed Central

    Li, Ming D.; Cao, Junran; Wang, Shaolin; Wang, Ju; Sarkar, Sraboni; Vigorito, Michael; Ma, Jennie Z.; Chang, Sulie L.

    2013-01-01

    The noninfectious HIV-1 transgenic (HIV-1Tg) rat was developed as a model of AIDs-related pathology and immune dysfunction by manipulation of a noninfectious HIV-1gag-pol virus with a deleted 3-kb SphI-MscI fragment containing the 3′ -region of gag and the 5′ region of pol into F344 rats. Our previous studies revealed significant behavioral differences between HIV-1Tg and F344 control rats in their performance in the Morris water maze and responses to psychostimulants. However, the molecular mechanisms underlying these behavioral differences remain largely unknown. The primary goal of this study was to identify differentially expressed genes and enriched pathways affected by the gag-pol-deleted HIV-1 genome. Using RNA deep sequencing, we sequenced RNA transcripts in the prefrontal cortex, hippocampus, and striatum of HIV-1Tg and F344 rats. A total of 72 RNA samples were analyzed (i.e., 12 animals per group × 2 strains × 3 brain regions). Following deep-sequencing analysis of 50-bp paired-end reads of RNA-Seq, we used Bowtie/Tophat/Cufflinks suites to align these reads into transcripts based on the Rn4 rat reference genome and to measure the relative abundance of each transcript. Statistical analyses on each brain region in the two strains revealed that immune response- and neurotransmission-related pathways were altered in the HIV-1Tg rats, with brain region differences. Other neuronal survival-related pathways, including those encoding myelin proteins, growth factors, and translation regulators, were altered in the HIV-1Tg rats in a brain region-dependent manner. This study is the first deep-sequencing analysis of RNA transcripts associated the HIV-1Tg rat. Considering the functions of the pathways and brain regions examined in this study, our findings of abnormal gene expression patterns in HIV-1Tg rats suggest mechanisms underlying the deficits in learning and memory and vulnerability to drug addiction and other psychiatric disorders observed in HIV

  7. Chemically Programmed Antibodies As HIV-1 Attachment Inhibitors

    PubMed Central

    2013-01-01

    Herein, we describe the design and application of two small-molecule anti-HIV compounds for the creation of chemically programmed antibodies. N-Acyl-β-lactam derivatives of two previously described molecules BMS-378806 and BMS-488043 that inhibit the interaction between HIV-1 gp120 and T-cells were synthesized and used to program the binding activity of aldolase antibody 38C2. Discovery of a successful linkage site to BMS-488043 allowed for the synthesis of chemically programmed antibodies with affinity for HIV-1 gp120 and potent HIV-1 neutralization activity. Derivation of a successful conjugation strategy for this family of HIV-1 entry inhibitors enables its application in chemically programmed antibodies and vaccines and may facilitate the development of novel bispecific antibodies and topical microbicides. PMID:23750312

  8. Biochemical evidence of a role for matrix trimerization in HIV-1 envelope glycoprotein incorporation.

    PubMed

    Tedbury, Philip R; Novikova, Mariia; Ablan, Sherimay D; Freed, Eric O

    2016-01-12

    The matrix (MA) domain of HIV Gag has important functions in directing the trafficking of Gag to sites of assembly and mediating the incorporation of the envelope glycoprotein (Env) into assembling particles. HIV-1 MA has been shown to form trimers in vitro; however, neither the presence nor the role of MA trimers has been documented in HIV-1 virions. We developed a cross-linking strategy to reveal MA trimers in virions of replication-competent HIV-1. By mutagenesis of trimer interface residues, we demonstrated a correlation between loss of MA trimerization and loss of Env incorporation. Additionally, we found that truncating the long cytoplasmic tail of Env restores incorporation of Env into MA trimer-defective particles, thus rescuing infectivity. We therefore propose a model whereby MA trimerization is required to form a lattice capable of accommodating the long cytoplasmic tail of HIV-1 Env; in the absence of MA trimerization, Env is sterically excluded from the assembling particle. These findings establish MA trimerization as an obligatory step in the assembly of infectious HIV-1 virions. As such, the MA trimer interface may represent a novel drug target for the development of antiretrovirals. PMID:26711999

  9. APOBEC3G ubiquitination by Nedd4-1 favors its packaging into HIV-1 particles.

    PubMed

    Dussart, Sylvie; Douaisi, Marc; Courcoul, Marianne; Bessou, Gilles; Vigne, Robert; Decroly, Etienne

    2005-01-21

    APOBEC3G is a cytidine deaminase that limits the replication of many retroviruses. This antiviral host factor is packaged into retrovirus particles, where it targets single-stranded DNA generated during reverse transcription and induces up to 2% of G-to-A mutations, which are lethal for the HIV-1 provirus. Vif protein counteracts this antiviral factor by decreasing its packaging into lentivirus particles. Here, we demonstrate that Nedd4-1, an HECT E3 ubiquitin ligase, interacts with APOBEC3G, through its WW2 and WW3 domains. As a result of this interaction, APOBEC3G undergoes post-translational modification by addition of ubiquitin moieties. Accordingly, we demonstrate that the dominant negative Nedd4-1 C/S form prevents APOBEC3G ubiquitination. Moreover, the packaging of APOBEC3G into Pr55 Gag virus-like particles and into HIV-1 virions is reduced when Nedd4-1 C/S is expressed. During HIV-1 viral production in the presence of APOBEC3G, Nedd4-1 C/S restores partially the infectivity of Deltavif HIV-1. We conclude that the ubiquitination of APOBEC3G by Nedd4-1 favors its targeting to the virus assembly site where APOBEC3G interacts with Gag and is packaged into HIV-1 particles in the absence of Vif. PMID:15581898

  10. Cyclophilin B enhances HIV-1 infection.

    PubMed

    DeBoer, Jason; Madson, Christian J; Belshan, Michael

    2016-02-01

    Cyclophilin B (CypB) is a member of the immunophilin family and intracellular chaperone. It predominantly localizes to the ER, but also contains a nuclear localization signal and is secreted from cells. CypB has been shown to interact with the Gag protein of human immunodeficiency type 1 (HIV-1). Several proteomic and genetic studies identified it as a potential factor involved in HIV replication. Herein, we show that over-expression of CypB enhances HIV infection by increasing nuclear import of viral DNA. This enhancement was unaffected by cyclosporine treatment and requires the N-terminus of the protein. The N-terminus contains an ER leader sequence, putative nuclear localization signal, and is required for secretion. Deletion of the N-terminus resulted in mislocalization from the ER and suppression of HIV infection. Passive transfer experiments showed that secreted CypB did not impact HIV infection. Combined, these experiments show that intracellular CypB modulates a pathway of HIV nuclear import. PMID:26774171

  11. Genome sequence of a novel HIV-1 circulating recombinant form 54_01B from Malaysia.

    PubMed

    Ng, Kim Tien; Ong, Lai Yee; Takebe, Yutaka; Kamarulzaman, Adeeba; Tee, Kok Keng

    2012-10-01

    We report here the first novel HIV-1 circulating recombinant form (CRF) 54_01B (CRF54_01B) isolated from three epidemiologically unlinked subjects of different risk groups in Malaysia. These recently sampled recombinants showed a complex genome organization composed of parental subtype B' and CRF01_AE, with identical recombination breakpoints observed in the gag, pol, and vif genes. Such a discovery highlights the ongoing active generation and spread of intersubtype recombinants involving the subtype B' and CRF01_AE lineages and indicates the potential of the new CRF in bridging HIV-1 transmission among different risk groups in Southeast Asia. PMID:22997423

  12. In vitro selection of RNAs that bind to the human immunodeficiency virus type-1 gag polyprotein.

    PubMed Central

    Lochrie, M A; Waugh, S; Pratt, D G; Clever, J; Parslow, T G; Polisky, B

    1997-01-01

    RNA ligands that bind to the human immunodeficiency virus type-1 (HIV-1) gag polyprotein with 10(-9) M affinity were isolated from a complex pool of RNAs using an in vitro selection method. The ligands bind to two different regions within gag, either to the matrix protein or to the nucleocapsid protein. Binding of a matrix ligand to gag did not interfere with the binding of a nucleocapsid ligand, and binding of a nucleocapsid ligand to gag did not interfere with the binding of a matrix ligand. However, binding of a nucleocapsid ligand to gag did interfere with binding of an RNA containing the HIV-1 RNA packaging element (psi), even though the sequence of the nucleocapsid ligand is not similar topsi. The minimal sequences required for the ligands to bind to matrix or nucleocapsid were determined. Minimal nucleocapsid ligands are predicted to form a stem-loop structure that has a self-complementary sequence at one end. Minimal matrix ligands are predicted to form a different stem-loop structure that has a CAARU loop sequence. The properties of these RNA ligands may provide tools for studying RNA interactions with matrix and nucleocapsid, and a novel method for inhibiting HIV replication. PMID:9207041

  13. HIV-1 DNA predicts disease progression and post-treatment virological control.

    PubMed

    Williams, James P; Hurst, Jacob; Stöhr, Wolfgang; Robinson, Nicola; Brown, Helen; Fisher, Martin; Kinloch, Sabine; Cooper, David; Schechter, Mauro; Tambussi, Giuseppe; Fidler, Sarah; Carrington, Mary; Babiker, Abdel; Weber, Jonathan; Koelsch, Kersten K; Kelleher, Anthony D; Phillips, Rodney E; Frater, John

    2014-01-01

    In HIV-1 infection, a population of latently infected cells facilitates viral persistence despite antiretroviral therapy (ART). With the aim of identifying individuals in whom ART might induce a period of viraemic control on stopping therapy, we hypothesised that quantification of the pool of latently infected cells in primary HIV-1 infection (PHI) would predict clinical progression and viral replication following ART. We measured HIV-1 DNA in a highly characterised randomised population of individuals with PHI. We explored associations between HIV-1 DNA and immunological and virological markers of clinical progression, including viral rebound in those interrupting therapy. In multivariable analyses, HIV-1 DNA was more predictive of disease progression than plasma viral load and, at treatment interruption, predicted time to plasma virus rebound. HIV-1 DNA may help identify individuals who could safely interrupt ART in future HIV-1 eradication trials. PMID:25217531

  14. Differential Effects of Tra2ß Isoforms on HIV-1 RNA Processing and Expression

    PubMed Central

    Platt, Craig; Calimano, Maria; Nemet, Josip; Bubenik, Jodi; Cochrane, Alan

    2015-01-01

    Balanced processing of HIV-1 RNA is critical to virus replication and is regulated by host factors. In this report, we demonstrate that overexpression of either Tra2α or Tra2β results in a marked reduction in HIV-1 Gag/ Env expression, an effect associated with changes in HIV-1 RNA accumulation, altered viral splice site usage, and a block to export of HIV-1 genomic RNA. A natural isoform of Tra2β (Tra2ß3), lacking the N-terminal RS domain, also suppressed HIV-1 expression but had different effects on viral RNA processing. The functional differences between the Tra2β isoforms were also observed in the context of another RNA substrate indicating that these factors have distinct functions within the cell. Finally, we demonstrate that Tra2ß depletion results in a selective reduction in HIV-1 Env expression as well as an increase in multiply spliced viral RNA. Together, the findings indicate that Tra2α/β can play important roles in regulating HIV-1 RNA metabolism and expression. PMID:25970345

  15. High frequency of HIV-1 infections with multiple HIV-1 strains in men having sex with men (MSM) in Senegal.

    PubMed

    Leye, Nafissatou; Vidal, Nicole; Ndiaye, Ousseynou; Diop-Ndiaye, Halimatou; Wade, Abdoulaye Sidibé; Mboup, Souleymane; Delaporte, Eric; Toure-Kane, Coumba; Peeters, Martine

    2013-12-01

    Circulating and unique recombinant HIV-1 strains continue to be identified and their number increases over time, suggesting that co-infection with multiple HIV-1 is frequent. In this study we analyzed to what extent dual infections with different HIV-1 variants occur in a population group with high risk behaviour, high HIV-1 prevalence and in an area where multiple HIV-1 subtypes and Circulating Recombinant Forms (CRFs) co-circulate. We studied 69 MSM with our recently developed multi-region hybridization assay (MHA), based on fluorescent probe detection for eight common variants circulating in West and West Central Africa. At least 11 (15.9%) of the 69 patients were simultaneously infected with two different HIV-1 subtypes and/or CRFs. Among the 29 samples identified as subtype C by MHA in gag, 15 (57.7%) reacted with both C1 and C2 probes. Sequence analysis suggests that the majority of the samples reactive with C1 and C2 probes are most likely infected with two different subtype C clades. Single genome amplification and DNA dilutions confirmed dual infection with subtype D and C for MSM1193, triple infection with two different C subtype strains and one CRF02_AG strain in MSM1157 and showed that MSM3017 is at least co-infected with CRF06_cpx and CRF02_AG and another strain that could not be classified. Comparison of all subtype C sequences from the MSM population and from the general population from this and previous studies confirmed the intermixing of HIV-1 variants between low-risk women and high-risk men as shown by the intermixing of subtype C variants from MSM1157 and a female patient (02SN-HALD478). Comparison of dual infection rates between the general population and MSM in Senegal, show also clearly the importance of high HIV prevalence and high risk behavior in dual infections and subsequent intermixing of HIV-1 variants which can lead to emergence and spread of new recombinants (CRFs). PMID:24035811

  16. Drug-Based Lead Discovery: The Novel Ablative Antiretroviral Profile of Deferiprone in HIV-1-Infected Cells and in HIV-Infected Treatment-Naive Subjects of a Double-Blind, Placebo-Controlled, Randomized Exploratory Trial

    PubMed Central

    Saxena, Deepti; Spino, Michael; Tricta, Fernando; Connelly, John; Cracchiolo, Bernadette M.; Hanauske, Axel-Rainer; D’Alliessi Gandolfi, Darlene; Mathews, Michael B.; Karn, Jonathan; Holland, Bart; Park, Myung Hee; Pe’ery, Tsafi; Palumbo, Paul E.; Hanauske-Abel, Hartmut M.

    2016-01-01

    cluster (‘polyproline’)-containing proteins, exemplified by Gag/p24, and facilitated by the excess of deoxyhypusine-containing eIF5A, releases the innate apoptotic defense of HIV-infected cells from viral blockade, thus depleting the cellular reservoir of HIV-1 DNA that drives breakthrough and rebound. Trial Registration: ClinicalTrial.gov NCT02191657 PMID:27191165

  17. Ectopic expression of anti-HIV-1 shRNAs protects CD8+ T cells modified with CD4ζ CAR from HIV-1 infection and alleviates impairment of cell proliferation

    PubMed Central

    Kamata, Masakazu; Kim, Patrick Y.; Ng, Hwee L.; Ringpis, Gene-Errol E.; Kranz, Emiko; Chan, Joshua; O'Connor, Sean; Yang, Otto O.; Chen, Irvin S.Y.

    2015-01-01

    Chimeric antigen receptors (CARs) are artificially engineered receptors that confer a desired specificity to immune effector T cells. As an HIV-1-specific CAR, CD4ζ CAR has been extensively tested in vitro as well as in clinical trials. T cells modified with this CAR mediated highly potent anti-HIV-1 activities in vitro and were well-tolerated in vivo, but exerted limited effects on viral load and reservoir size due to poor survival and/or functionality of the transduced cells in patients. We hypothesize that ectopic expression of CD4ζ on CD8+ T cells renders them susceptible to HIV-1 infection, resulting in poor survival of those cells. To test this possibility, highly purified CD8+ T cells were genetically modified with a CD4ζ-encoding lentiviral vector and infected with HIV-1. CD8+ T cells were vulnerable to HIV-1 infection upon expression of CD4ζ as evidenced by elevated levels of p24Gag in cells and culture supernatants. Concurrently, the number of CD4ζ-modified CD8+ T cells was reduced relative to control cells upon HIV-1 infection. To protect these cells from HIV-1 infection, we co-expressed two anti-HIV-1 shRNAs previously developed by our group together with CD4ζ. This combination vector was able to suppress HIV-1 infection without impairing HIV-1-dependent effector activities of CD4ζ. In addition, the number of CD4ζ-modified CD8+ T cells maintained similar levels to that of the control even under HIV-1 infection. These results suggest that protecting CD4ζ-modified CD8+ T cells from HIV-1 infection is required for prolonged HIV-1-specific immune surveillance. PMID:25998390

  18. Effective Cytotoxic T Lymphocyte Targeting of Persistent HIV-1 during Antiretroviral Therapy Requires Priming of Naive CD8+ T Cells

    PubMed Central

    Smith, Kellie N.; Mailliard, Robbie B.; Piazza, Paolo A.; Fischer, Will; Korber, Bette T.; Fecek, Ronald J.; Ratner, Deena; Gupta, Phalguni; Mullins, James I.

    2016-01-01

    ABSTRACT Curing HIV-1 infection will require elimination of persistent cellular reservoirs that harbor latent virus in the face of combination antiretroviral therapy (cART). Proposed immunotherapeutic strategies to cure HIV-1 infection include enhancing lysis of these infected cells by cytotoxic T lymphocytes (CTL). A major challenge in this strategy is overcoming viral immune escape variants that have evaded host immune control. Here we report that naive CD8+ T cells from chronic HIV-1-infected participants on long-term cART can be primed by dendritic cells (DC). These DC must be mature, produce high levels of interleukin 12p70 (IL-12p70), be responsive to CD40 ligand (CD40L), and be loaded with inactivated, autologous HIV-1. These DC-primed CD8+ T cell responders produced high levels of gamma interferon (IFN-γ) in response to a broad range of both conserved and variable regions of Gag and effectively killed CD4+ T cell targets that were either infected with the autologous latent reservoir-associated virus or loaded with autologous Gag peptides. In contrast, HIV-1-specific memory CD8+ T cells stimulated with autologous HIV-1-loaded DC produced IFN-γ in response to a narrow range of conserved and variable Gag peptides compared to the primed T cells and most notably, displayed significantly lower cytolytic function. Our findings highlight the need to selectively induce new HIV-1-specific CTL from naive precursors while avoiding activation of existing, dysfunctional memory T cells in potential curative immunotherapeutic strategies for HIV-1 infection. PMID:27247230

  19. Structure of the immature HIV-1 capsid in intact virus particles at 8.8 Å resolution

    NASA Astrophysics Data System (ADS)

    Schur, Florian K. M.; Hagen, Wim J. H.; Rumlová, Michaela; Ruml, Tomáš; Müller, Barbara; Kräusslich, Hans-Georg; Briggs, John A. G.

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) assembly proceeds in two stages. First, the 55 kilodalton viral Gag polyprotein assembles into a hexameric protein lattice at the plasma membrane of the infected cell, inducing budding and release of an immature particle. Second, Gag is cleaved by the viral protease, leading to internal rearrangement of the virus into the mature, infectious form. Immature and mature HIV-1 particles are heterogeneous in size and morphology, preventing high-resolution analysis of their protein arrangement in situ by conventional structural biology methods. Here we apply cryo-electron tomography and sub-tomogram averaging methods to resolve the structure of the capsid lattice within intact immature HIV-1 particles at subnanometre resolution, allowing unambiguous positioning of all α-helices. The resulting model reveals tertiary and quaternary structural interactions that mediate HIV-1 assembly. Strikingly, these interactions differ from those predicted by the current model based on in vitro-assembled arrays of Gag-derived proteins from Mason-Pfizer monkey virus. To validate this difference, we solve the structure of the capsid lattice within intact immature Mason-Pfizer monkey virus particles. Comparison with the immature HIV-1 structure reveals that retroviral capsid proteins, while having conserved tertiary structures, adopt different quaternary arrangements during virus assembly. The approach demonstrated here should be applicable to determine structures of other proteins at subnanometre resolution within heterogeneous environments.

  20. Different effects of the TAR structure on HIV-1 and HIV-2 genomic RNA translation

    PubMed Central

    Soto-Rifo, Ricardo; Limousin, Taran; Rubilar, Paulina S.; Ricci, Emiliano P.; Décimo, Didier; Moncorgé, Olivier; Trabaud, Mary-Anne; André, Patrice; Cimarelli, Andrea; Ohlmann, Théophile

    2012-01-01

    The 5′-untranslated region (5′-UTR) of the genomic RNA of human immunodeficiency viruses type-1 (HIV-1) and type-2 (HIV-2) is composed of highly structured RNA motifs essential for viral replication that are expected to interfere with Gag and Gag-Pol translation. Here, we have analyzed and compared the properties by which the viral 5′-UTR drives translation from the genomic RNA of both human immunodeficiency viruses. Our results showed that translation from the HIV-2 gRNA was very poor compared to that of HIV-1. This was rather due to the intrinsic structural motifs in their respective 5′-UTR without involvement of any viral protein. Further investigation pointed to a different role of TAR RNA, which was much inhibitory for HIV-2 translation. Altogether, these data highlight important structural and functional differences between these two human pathogens. PMID:22121214

  1. Genetic Characteristics, Coreceptor Usage Potential and Evolution of Nigerian HIV-1 Subtype G and CRF02_AG Isolates

    PubMed Central

    Ajoge, Hannah O.; Gordon, Michelle L.; de Oliveira, Tulio; Green, Taryn N.; Ibrahim, Sani; Shittu, Oladapo S.; Olonitola, Stephen O.; Ahmad, Aliyu A.; Ndung'u, Thumbi

    2011-01-01

    HIV-1 CRF02_AG and subtype G (HIV-1G) account for most HIV infections in Nigeria, but their evolutionary trends have not been well documented. To better elucidate the dynamics of the epidemic in Nigeria we characterised the gag and env genes of North-Central Nigerian HIV-1 isolates from pregnant women. Of 28 samples sequenced in both genes, the predominant clades were CRF02_AG (39%) and HIV-1G (32%). Higher predicted proportion of CXCR4-tropic (X4) HIV-1G isolates was noted compared to CRF02_AG (p = 0.007, Fisher's exact test). Phylogenetic and Bayesian analysis conducted on our sequences and all the dated available Nigerian sequences on the Los Alamos data base showed that CRF02_AG and HIV-1G entered into Nigeria through multiple entries, with presence of HIV-1G dating back to early 1980s. This study underlines the genetic complexity of the HIV-1 epidemic in Nigeria, possible subtype-specific differences in co-receptor usage, and the evolutionary trends of the predominant HIV-1 strains in Nigeria, which may have implications for the design of biomedical interventions and better understanding of the epidemic. PMID:21423811

  2. High sensitivity detection of HIV-1 using two genomic targets compared with single target PCR.

    PubMed

    Shah, Krishna; Ragupathy, Viswanath; Saga, Anusha; Hewlett, Indira

    2016-06-01

    The genetic diversity of Human Immunodeficiency Virus type-1(HIV-1) has been shown to affect the performance of Nucleic Acid Testing (NAT) of Human Immunodeficiency Virus type-1. Although, majority NAT assays were designed to detect the conserved regions of HIV-1 mutations at the primer or probe binding regions may lead to false negatives. In this study, we evaluated the feasibility of detecting two genomic targets for enhanced sensitivity. A total of 180 tests using HIV-1 VQA RNA quantitation standard, 240 tests using EQAPOL HIV-1 viral diversity subtype panel, and 30 clinical plasma samples from Cameroon were evaluated. The analysis was based on probit and hit rate. The genomic targets LOD estimated by PROBIT for the gag target was 118 cps/ml (95%CI 64 cps/ml lower bound), Pol or POL/LTR was at 40 cps/ml (95%CI 17, 16 cps/ml), LTR 45 cps/ml (95%CI 20 cps/ml lower bound), and Gag/LTR at 67.8 cps/ml (95%CI 32 cps/ml lower bound). For HIV-1 subtypes the overall reactivity was 55-100% when tested at 100 and 1000 cps/ml and combination of genomic targets detection increased the reactivity to 100%. The plasma samples evaluation showed LTR or pol/LTR combination yielded higher sensitivity for patients with lower viral load (<40 cps/ml). We conclude that detection of two HIV-1 genomic targets improved sensitivity for detection of genetically diverse HIV-1 strains. J. Med. Virol. 88:1092-1097, 2016. © 2015 Wiley Periodicals, Inc. PMID:26575693

  3. Structure of the antiviral assembly inhibitor CAP-1 bound to the HIV-1 CA protein

    PubMed Central

    Kelly, Brian N.; Kyere, Sampson; Kinde, Isaac; Tang, Chun; Howard, Bruce R.; Robinson, Howard; Sundquist, Wesley I.; Summers, Michael F.; Hill, Christopher P.

    2007-01-01

    The CA domain of the HIV-1 Gag polyprotein plays critical roles in both the early and late phases of viral replication and is therefore an attractive antiviral target. Compounds with antiviral activity were recently identified that bind to the N-terminal domain of CA (CAN) and inhibit core assembly during viral maturation. We have determined the structure of the complex between CAN and the antiviral assembly inhibitor N-(3-chloro-4-methylphenyl)-N'-{2-[({5-[(dimethylamino)-methyl]-2-furyl}-methyl)-sulfanyl]ethyl}-urea) (CAP-1) using a combination of NMR spectroscopy and X-ray crystallography. The protein undergoes a remarkable conformational change upon CAP-1 binding, in which Phe32 is displaced from its buried position in the protein core to open a deep hydrophobic cavity that serves as the ligand binding site. The aromatic ring of CAP-1 inserts into the cavity, with the urea NH groups forming hydrogen bonds with the backbone oxygen of Val59 and the dimethylamino group interacting with the side chains of Glu28 and Glu29. Elements that could be exploited to improve binding affinity are apparent in the structure. The displacement of Phe32 by CAP-1 appears to be facilitated by a strained main chain conformation, which suggests a potential role for a Phe32 conformational switch during normal capsid assembly. PMID:17826792

  4. Engineering T Cells to Functionally Cure HIV-1 Infection

    PubMed Central

    Leibman, Rachel S; Riley, James L

    2015-01-01

    Despite the ability of antiretroviral therapy to minimize human immunodeficiency virus type 1 (HIV-1) replication and increase the duration and quality of patients' lives, the health consequences and financial burden associated with the lifelong treatment regimen render a permanent cure highly attractive. Although T cells play an important role in controlling virus replication, they are themselves targets of HIV-mediated destruction. Direct genetic manipulation of T cells for adoptive cellular therapies could facilitate a functional cure by generating HIV-1–resistant cells, redirecting HIV-1–specific immune responses, or a combination of the two strategies. In contrast to a vaccine approach, which relies on the production and priming of HIV-1–specific lymphocytes within a patient's own body, adoptive T-cell therapy provides an opportunity to customize the therapeutic T cells prior to administration. However, at present, it is unclear how to best engineer T cells so that sustained control over HIV-1 replication can be achieved in the absence of antiretrovirals. This review focuses on T-cell gene-engineering and gene-editing strategies that have been performed in efforts to inhibit HIV-1 replication and highlights the requirements for a successful gene therapy–mediated functional cure. PMID:25896251

  5. Temporal and spatial organization of ESCRT protein recruitment during HIV-1 budding.

    PubMed

    Bleck, Marina; Itano, Michelle S; Johnson, Daniel S; Thomas, V Kaye; North, Alison J; Bieniasz, Paul D; Simon, Sanford M

    2014-08-19

    HIV-1 virions assemble at the plasma membrane of mammalian cells and recruit the endosomal sorting complex required for transport (ESCRT) machinery to enable particle release. However, little is known about the temporal and spatial organization of ESCRT protein recruitment. Using multiple-color live-cell total internal reflection fluorescence microscopy, we observed that the ESCRT-I protein Tsg101 is recruited together with Gag to the sites of HIV-1 assembly, whereas later-acting ESCRT proteins (Chmp4b and Vps4A) are recruited sequentially, once Gag assembly is completed. Chmp4b, a protein that is required to mediate particle scission, is recruited to HIV-1 assembly sites ∼10 s before the ATPase Vps4A. Using two-color superresolution imaging, we observed that the ESCRT machinery (Tsg101, Alix, and Chmp4b/c proteins) is positioned at the periphery of the nascent virions, with the Tsg101 assemblages positioned closer to the Gag assemblages than Alix, Chmp4b, or Chmp4c. These results are consistent with the notion that the ESCRT machinery is recruited transiently to the neck of the assembling particle and is thus present at the appropriate time and place to mediate fission between the nascent virus and the plasma membrane. PMID:25099357

  6. Role of individual’s T-cell immunome in controlling HIV-1 progression

    PubMed Central

    Grifoni, Alba; Montesano, Carla; Palma, Paolo; Giovannetti, Marta; Castelli-Gattinara, Guido; Ciccozzi, Massimo; Mattei, Maurizio; Mancino, Giorgio; Salerno, Alfredo; Colizzi, Vittorio; Amicosante, Massimo

    2014-01-01

    Viral and host factors can influence HIV-1 progression, among them human leucocyte antigen (HLA) has shown the strongest effect. However, studies on the functional contribution of HLA in controlling HIV progression toward AIDS are limited by multiple issues, including the viral strain variability within the study subjects. In this study, in a cohort of children infected with a monophyletic strain (CRF02_AG) during an outbreak, we evaluated the HIV-1 Gag, Vif, Vpr, Tat and hepatitis C virus E1/E2 (as control) proteins circulating in a cohort for the capability to be presented by the HLA molecules in the same population. A total of 70 Non-progressors and 37 Progressors to AIDS were evaluated. In the presence of a constant capability of HIV-1 to mutate in the region containing epitopes of Gag protein, the number of epitopes recognized in silico by the combination of the HLA alleles along the Gag consensus sequence is significantly higher in the Non-progressors compared with Progressors (HLA-A: Non-progressors = 1·532 ± 1·211, Progressors = 0·7714± 1·031, P = 0·0016; HLA-B: Non-progressors = 1·556 ± 1·298, Progressors = 1·000 ± 0·817, P = 0·0319; HLA-DR: Non-progressors = 13·30± 9·488, Progressors = 7·294 ± 6·952, P = 0·0006). Similar results were obtained for the other HIV-1 proteins Vif and Vpr, whereas no differences were obtained in the number of epitopes for the hepatitis C virus E1/E2 protein sequence or for the scrambled HIV-1 sequence. Finally, the results were confirmed also in a subgroup of subjects where both HLA typing and Gag sequence were available. In conclusion, in the absence of bias due to viral strain diversity, it is the overall fitting of the HLA molecules that are capable of better binding HIV-1 proteins in determining the major role in the control of HIV-1 replication and progression to AIDS. PMID:24954875

  7. Schistosoma mansoni soluble egg antigens enhance Listeria monocytogenes vector HIV-1 vaccine induction of cytotoxic T cells.

    PubMed

    Bui, Cac T; Shollenberger, Lisa M; Paterson, Yvonne; Harn, Donald A

    2014-09-01

    Vaccines are an important public health measure for prevention and treatment of diseases. In addition to the vaccine immunogen, many vaccines incorporate adjuvants to stimulate the recipient's immune system and enhance vaccine-specific responses. While vaccine development has advanced from attenuated organism to recombinant protein or use of plasmid DNA, the development of new adjuvants that safely increase immune responses has not kept pace. Previous studies have shown that the complex mixture of molecules that comprise saline soluble egg antigens (SEA) from Schistosoma mansoni eggs functions to promote CD4(+) T helper 2 (Th2) responses. Therefore, we hypothesized that coadministration of SEA with a Listeria vector HIV-1 Gag (Lm-Gag) vaccine would suppress host cytotoxic T lymphocyte (CTL) and T helper 1 (Th1) responses to HIV-1 Gag epitopes. Surprisingly, instead of driving HIV-1 Gag-specific responses toward Th2 type, we found that coadministration of SEA with Lm-Gag vaccine significantly increased the frequency of gamma interferon (IFN-γ)-producing Gag-specific Th1 and CTL responses over that seen in mice administered Lm-Gag only. Analysis of the functionality and durability of vaccine responses suggested that SEA not only enlarged different memory T cell compartments but induced functional and long-lasting vaccine-specific responses as well. These results suggest there are components in SEA that can synergize with potent inducers of strong and durable Th1-type responses such as those to Listeria. We hypothesize that SEA contains moieties that, if defined, can be used to expand type 1 proinflammatory responses for use in vaccines. PMID:24990901

  8. Protease Cleavage Leads to Formation of Mature Trimer Interface in HIV-1 Capsid

    PubMed Central

    Ke, Danxia; Ning, Jiying; DeLucia, Maria; Ahn, Jinwoo; Gronenborn, Angela M.; Aiken, Christopher; Zhang, Peijun

    2012-01-01

    During retrovirus particle maturation, the assembled Gag polyprotein is cleaved by the viral protease into matrix (MA), capsid (CA), and nucleocapsid (NC) proteins. To form the mature viral capsid, CA rearranges, resulting in a lattice composed of hexameric and pentameric CA units. Recent structural studies of assembled HIV-1 CA revealed several inter-subunit interfaces in the capsid lattice, including a three-fold interhexamer interface that is critical for proper capsid stability. Although a general architecture of immature particles has been provided by cryo-electron tomographic studies, the structural details of the immature particle and the maturation pathway remain unknown. Here, we used cryo-electron microscopy (cryoEM) to determine the structure of tubular assemblies of the HIV-1 CA-SP1-NC protein. Relative to the mature assembled CA structure, we observed a marked conformational difference in the position of the CA-CTD relative to the NTD in the CA-SP1-NC assembly, involving the flexible hinge connecting the two domains. This difference was verified via engineered disulfide crosslinking, revealing that inter-hexamer contacts, in particular those at the pseudo three-fold axis, are altered in the CA-SP1-NC assemblies compared to the CA assemblies. Results from crosslinking analyses of mature and immature HIV-1 particles containing the same Cys substitutions in the Gag protein are consistent with these findings. We further show that cleavage of preassembled CA-SP1-NC by HIV-1 protease in vitro leads to release of SP1 and NC without disassembly of the lattice. Collectively, our results indicate that the proteolytic cleavage of Gag leads to a structural reorganization of the polypeptide and creates the three-fold interhexamer interface, important for the formation of infectious HIV-1 particles. PMID:22927821

  9. Rational development of radiopharmaceuticals for HIV-1.

    PubMed

    Lau, Chuen-Yen; Maldarelli, Frank; Eckelman, William C; Neumann, Ronald D

    2014-04-01

    The global battle against HIV-1 would benefit from a sensitive and specific radiopharmaceutical to localize HIV-infected cells. Ideally, this probe would be able to identify latently infected host cells containing replication competent HIV sequences. Clinical and research applications would include assessment of reservoirs, informing clinical management by facilitating assessment of burden of infection in different compartments, monitoring disease progression and monitoring response to therapy. A "rational" development approach could facilitate efficient identification of an appropriate targeted radiopharmaceutical. Rational development starts with understanding characteristics of the disease that can be effectively targeted and then engineering radiopharmaceuticals to hone in on an appropriate target, which in the case of HIV-1 (HIV) might be an HIV-specific product on or in the host cell, a differentially expressed gene product, an integrated DNA sequence specific enzymatic activity, part of the inflammatory response, or a combination of these. This is different from the current approach that starts with a radiopharmaceutical for a target associated with a disease, mostly from autopsy studies, without a strong rationale for the potential to impact patient care. At present, no targeted therapies are available for HIV latency, although a number of approaches are under study. Here we discuss requirements for a radiopharmaceutical useful in strategies targeting persistently infected cells. The radiopharmaceutical for HIV should be developed based on HIV biology, studied in an animal model and then in humans, and ultimately used in clinical and research settings. PMID:24607432

  10. HIV-1 progression links with viral genetic variability and subtype, and patient's HLA type: analysis of a Nairobi-Kenyan cohort.

    PubMed

    Abidi, Syed Hani; Shahid, Aniqa; Lakhani, Laila S; Shah, Reena; Okinda, Nancy; Ojwang, Peter; Abbas, Farhat; Rowland-Jones, Sarah; Ali, Syed

    2014-02-01

    In a Nairobi-Kenyan cohort of 50 HIV-1 positive patients, we analysed the prevalence of HIV-1 subtypes and human leucocyte antigen (HLA) alleles. From this cohort, 33 patients were selected for the analysis of HIV-1 infection progression markers (i.e. CD4 cell counts and viral loads) and their association with HIV-1 genetic variability and subtype, and patient's HLA type. HIV-1 gag genetic variability, analysed using bioinformatics tools, showed an inverse relationship with CD4 cell count whereas with viral load that relationship was direct. Certain HLA types and viral subtypes were also found to associate with patients' viral load. Associations between disease parameters and the genetic makeup of the host and virus may be crucial in determining the outcome of HIV-1 infection. PMID:24142198

  11. Genital HIV-1 RNA Quantity Predicts Risk of Heterosexual HIV-1 Transmission

    PubMed Central

    Baeten, Jared M.; Kahle, Erin; Lingappa, Jairam R.; Coombs, Robert W.; Delany-Moretlwe, Sinead; Nakku-Joloba, Edith; Mugo, Nelly R.; Wald, Anna; Corey, Lawrence; Donnell, Deborah; Campbell, Mary S.; Mullins, James I.; Celum, Connie

    2011-01-01

    High plasma HIV-1 RNA concentrations are associated with an increased risk of HIV-1 transmission. Although plasma and genital HIV-1 RNA concentrations are correlated, no study has evaluated the relationship between genital HIV-1 RNA and the risk of heterosexual HIV-1 transmission. In a prospective study of 2521 African HIV-1 serodiscordant couples, we assessed genital HIV-1 RNA quantity and HIV-1 transmission risk. HIV-1 transmission linkage was established within the partnership by viral sequence analysis. We tested endocervical samples from 1805 women, including 46 who transmitted HIV-1 to their partner, and semen samples from 716 men, including 32 who transmitted HIV-1 to their partner. Genital and plasma HIV-1 concentrations were correlated: For endocervical swabs, Spearman’s rank correlation coefficient rho was 0.56 (p<0.001), and for semen rho was 0.55 (p<0.001). Each 1 log10 increase in genital HIV-1 RNA was associated with a 2.20-fold (for endocervical swabs, 95% confidence interval 1.60–3.04, p<0.001) and a 1.79-fold (for semen, 95% confidence interval 1.30–2.47, p<0.001) increased risk of HIV-1 transmission. Genital HIV-1 RNA independently predicted HIV-1 transmission risk after adjusting for plasma HIV-1 quantity (hazard ratio 1.67 for endocervical swabs and 1.68 for semen). Seven female-to-male and four male-to-female HIV-1 transmissions (incidence <1% per year) occurred from persons with undetectable genital HIV-1 RNA, but in all eleven plasma HIV-1 RNA was detected. Thus, higher genital HIV-1 RNA concentrations are associated with greater risk of heterosexual HIV-1 transmission, and this effect was independent of plasma HIV-1 concentrations. These data suggest that HIV-1 RNA in genital secretions could be used as a marker of HIV-1 sexual transmission risk. PMID:21471433

  12. Platelet Factor 4 Inhibits and Enhances HIV-1 Infection in a Concentration-Dependent Manner by Modulating Viral Attachment.

    PubMed

    Parker, Zahra F; Rux, Ann H; Riblett, Amber M; Lee, Fang-Hua; Rauova, Lubica; Cines, Douglas B; Poncz, Mortimer; Sachais, Bruce S; Doms, Robert W

    2016-07-01

    Platelet factor 4 (PF4) has been recently shown to inhibit infection by a broad range of human immunodeficiency virus type 1 (HIV-1) isolates in vitro. We found that the inhibitory effects of PF4 are limited to a defined concentration range where PF4 exists largely in a monomeric state. Under these conditions, PF4 bound the HIV-1 envelope protein and inhibited HIV-1 attachment to the cell surface. However, as concentrations increased to the point where PF4 exists largely in tetrameric or higher-order forms, viral infection in vitro was enhanced. Enhancement could be inhibited by mutations in PF4 that shift the oligomeric equilibrium toward the monomeric state, or by using soluble glycosaminoglycans (GAGs) to which tetrameric PF4 avidly binds. We conclude that at physiologically relevant concentrations, oligomeric PF4 enhances infection by HIV-1 by interacting with the viral envelope protein as well as cell surface GAGs, enhancing virus attachment to the cell surface. This effect was not specific to HIV-1, as enhancement was seen with some but not all other viruses tested. The biphasic effects of PF4 on HIV-1 infection suggest that native PF4 will not be a useful antiviral agent and that PF4 could contribute to the hematologic abnormalities commonly seen in HIV-infected individuals by enhancing virus infection in the bone marrow. PMID:26847431

  13. Stoichiometry of the antiviral protein APOBEC3G in HIV-1 virions.

    PubMed

    Xu, Hongzhan; Chertova, Elena; Chen, Jianbo; Ott, David E; Roser, James D; Hu, Wei-Shau; Pathak, Vinay K

    2007-04-10

    A host cytidine deaminase, APOBEC3G (A3G), inhibits replication of human immunodeficiency virus type 1 (HIV-1) by incorporating into virions in the absence of the virally encoded Vif protein (Deltavif virions), at least in part by causing G-to-A hypermutation. To gain insight into the antiretroviral function of A3G, we determined the quantities of A3G molecules that are incorporated in Deltavif virions. We combined three experimental approaches-reversed-phase high-pressure liquid chromatography (HPLC), scintillation proximity assay (SPA), and quantitative immunoblotting-to determine the molar ratio of A3G to HIV-1 capsid protein in Deltavif virions. Our studies revealed that the amount of the A3G incorporated into Deltavif virions was proportional to the level of its expression in the viral producing cells, and the ratio of the A3G to Gag in the Deltavif virions produced from activated human peripheral blood mononuclear cells (PBMC) was approximately 1:439. Based on previous estimates of the stoichiometry of HIV-1 Gag in virions (1400-5000), we conclude that approximately 7 (+/-4) molecules of A3G are incorporated into Deltavif virions produced from human PBMCs. These results indicate that virion incorporation of only a few molecules of A3G is sufficient to inhibit HIV-1 replication. PMID:17126871

  14. An HIV-1 transgenic rat that develops HIV-related pathology and immunologic dysfunction

    PubMed Central

    Reid, W.; Sadowska, M.; Denaro, F.; Rao, S.; Foulke, J.; Hayes, N.; Jones, O.; Doodnauth, D.; Davis, H.; Sill, A.; O'Driscoll, P.; Huso, D.; Fouts, T.; Lewis, G.; Hill, M.; Kamin-Lewis, R.; Wei, C.; Ray, P.; Gallo, R. C.; Reitz, M.; Bryant, J.

    2001-01-01

    We report, to our knowledge, the first HIV type 1 (HIV-1) transgenic (Tg) rat. Expression of the transgene, consisting of an HIV-1 provirus with a functional deletion of gag and pol, is regulated by the viral long terminal repeat. Spliced and unspliced viral transcripts were expressed in lymph nodes, thymus, liver, kidney, and spleen, suggesting that Tat and Rev are functional. Viral proteins were identified in spleen tissue sections by immunohistochemistry and gp120 was present in splenic macrophages, T and B cells, and in serum. Clinical signs included wasting, mild to severe skin lesions, opaque cataracts, neurological signs, and respiratory difficulty. Histopathology included a selective loss of splenocytes within the periarterial lymphoid sheath, increased apoptosis of endothelial cells and splenocytes, follicular hyperplasia of the spleen, lymphocyte depletion of mesenteric lymph nodes, interstitial pneumonia, psoriatic skin lesions, and neurological, cardiac, and renal pathologies. Immunologically, delayed-type hypersensitivity response to keyhole limpet hemocyanin was diminished. By contrast, Ab titers and proliferative response to recall antigen (keyhole limpet hemocyanin) were normal. The HIV-1 Tg rat thus has many similarities to humans infected with HIV-1 in expression of viral genes, immune-response alterations, and pathologies resulting from infection. The HIV-1 Tg rat may provide a valuable model for some of the pathogenic manifestations of chronic HIV-1 diseases and could be useful in testing therapeutic regimens targeted to stages of viral replication subsequent to proviral integration. PMID:11481487

  15. Impact of Human Immunodeficiency Virus Type 1 (HIV-1) Genetic Diversity on Performance of Four Commercial Viral Load Assays: LCx HIV RNA Quantitative, AMPLICOR HIV-1 MONITOR v1.5, VERSANT HIV-1 RNA 3.0, and NucliSens HIV-1 QT

    PubMed Central

    Swanson, Priscilla; de Mendoza, Carmen; Joshi, Yagnya; Golden, Alan; Hodinka, Richard L.; Soriano, Vincent; Devare, Sushil G.; Hackett, John

    2005-01-01

    Human immunodeficiency virus type 1 (HIV-1) evolution and changing strain distribution present a challenge to nucleic acid-based assays. Reliable patient monitoring of viral loads requires the detection and accurate quantification of genetically diverse HIV-1. A panel of 97 HIV-1-seropositive plasma samples collected from Cameroon, Brazil, and South Africa was used to compare the performance of four commercially available HIV RNA quantitative tests: Abbott LCx HIV RNA Quantitative assay (LCx), Bayer Versant HIV-1 RNA 3.0 (bDNA), Roche AMPLICOR HIV-1 MONITOR v1.5 (Monitor v1.5), and bioMérieux NucliSens HIV-1 QT (NucliSens). The panel included group M, group O, and recombinant viruses based on sequence analysis of gag p24, pol integrase, and env gp41. The LCx HIV assay quantified viral RNA in 97 (100%) of the samples. In comparison, bDNA, Monitor v1.5, and NucliSens quantified viral RNA in 96.9%, 94.8%, and 88.6% of the samples, respectively. The two group O specimens were quantified only by the LCx HIV assay. Analysis of nucleotide mismatches at the primer/probe binding sites for Monitor v1.5, NucliSens, and LCx assays revealed that performance characteristics reflected differences in the level of genetic conservation within the target regions. PMID:16081923

  16. tRNAs Promote Nuclear Import of HIV-1 Intracellular Reverse Transcription Complexes

    PubMed Central

    Zaitseva, Lyubov; Myers, Richard; Fassati, Ariberto

    2006-01-01

    Infection of non-dividing cells is a biological property of HIV-1 crucial for virus transmission and AIDS pathogenesis. This property depends on nuclear import of the intracellular reverse transcription and pre-integration complexes (RTCs/PICs). To identify cellular factors involved in nuclear import of HIV-1 RTCs, cytosolic extracts were fractionated by chromatography and import activity examined by the nuclear import assay. A near-homogeneous fraction was obtained, which was active in inducing nuclear import of purified and labeled RTCs. The active fraction contained tRNAs, mostly with defective 3′ CCA ends. Such tRNAs promoted HIV-1 RTC nuclear import when synthesized in vitro. Active tRNAs were incorporated into and recovered from virus particles. Mutational analyses indicated that the anticodon loop mediated binding to the viral complex whereas the T-arm may interact with cellular factors involved in nuclear import. These tRNA species efficiently accumulated into the nucleus on their own in a energy- and temperature-dependent way. An HIV-1 mutant containing MLV gag did not incorporate tRNA species capable of inducing HIV-1 RTC nuclear import and failed to infect cell cycle–arrested cells. Here we provide evidence that at least some tRNA species can be imported into the nucleus of human cells and promote HIV-1 nuclear import. PMID:17020411

  17. Mutations in the Spacer Peptide and Adjoining Sequences in Rous Sarcoma Virus Gag Lead to Tubular Budding ▿

    PubMed Central

    Keller, Paul W.; Johnson, Marc C.; Vogt, Volker M.

    2008-01-01

    All orthoretroviruses encode a single structural protein, Gag, which is necessary and sufficient for the assembly and budding of enveloped virus-like particles from the cell. The Gag proteins of Rous sarcoma virus (RSV) and human immunodeficiency virus type 1 (HIV-1) contain a short spacer peptide (SP or SP1, respectively) separating the capsid (CA) and nucleocapsid (NC) domains. SP or SP1 and the residues immediately upstream are known to be critical for proper assembly. Using mutagenesis and electron microscopy analysis of insect cells or chicken cells overexpressing RSV Gag, we defined the SP assembly domain to include the last 8 residues of CA, all 12 residues of SP, and the first 4 residues of NC. Five- or two-amino acid glycine-rich insertions or substitutions in this critical region uniformly resulted in the budding of abnormal, long tubular particles. The equivalent SP1-containing HIV-1 Gag sequence was unable to functionally replace the RSV sequence in supporting normal RSV spherical assembly. According to secondary structure predictions, RSV and HIV-1 SP/SP1 and adjoining residues may form an alpha helix, and what is likely the functionally equivalent sequence in murine leukemia virus Gag has been inferred by mutational analysis to form an amphipathic alpha helix. However, our alanine insertion mutagenesis did not provide evidence for an amphipathic helix in RSV Gag. Taken together, these results define a short assembly domain between the folded portions of CA and NC, which is essential for formation of the immature Gag shell. PMID:18448521

  18. Neuroinflammation and Behavior in HIV-1 Transgenic Rats Exposed to Chronic Adolescent Stress

    PubMed Central

    Rowson, Sydney A.; Harrell, Constance S.; Bekhbat, Mandakh; Gangavelli, Apoorva; Wu, Matthew J.; Kelly, Sean D.; Reddy, Renuka; Neigh, Gretchen N.

    2016-01-01

    Highly active antiretroviral therapy (HAART) has improved prognosis for people living with HIV (PLWH) and dramatically reduced the incidence of AIDS. However, even when viral load is controlled, PLWH develop psychiatric and neurological disorders more frequently than those living without HIV. Adolescents with HIV are particularly susceptible to the development of psychiatric illnesses and neurocognitive impairments. While both psychiatric and neurocognitive disorders have been found to be exacerbated by stress, the extent to which chronic stress and HIV-1 viral proteins interact to impact behavior and relevant neuroinflammatory processes is unknown. Determination of the individual contributions of stress and HIV to neuropsychiatric disorders is heavily confounded in humans. In order to isolate the influence of HIV-1 proteins and chronic stress on behavior and neuroinflammation, we employed the HIV-1 transgenic (Tg) rat model, which expresses HIV-1 proteins with a gag and pol deletion, allowing for viral protein expression without viral replication. This Tg line has been characterized as a model of HAART-controlled HIV-1 infection due to the lack of viral replication but continued presence of HIV-1 proteins. We exposed male and female adolescent HIV-1 Tg rats to a mixed-modality chronic stress paradigm consisting of isolation, social defeat and restraint, and assessed behavior, cerebral vascularization, and neuroinflammatory endpoints. Stress, sex, and presence of the HIV-1 transgene impacted weight gain in adolescent rats. Female HIV-1 Tg rats showed decreases in central tendency during the light cycle in the open field regardless of stress exposure. Both male and female HIV-1 Tg rats exhibited decreased investigative behavior in the novel object recognition task, but no memory impairments. Adolescent stress had no effect on the tested behaviors. Microglia in female HIV-1 Tg rats exhibited a hyper-ramified structure, and gene expression of complement factor B was

  19. Neuroinflammation and Behavior in HIV-1 Transgenic Rats Exposed to Chronic Adolescent Stress.

    PubMed

    Rowson, Sydney A; Harrell, Constance S; Bekhbat, Mandakh; Gangavelli, Apoorva; Wu, Matthew J; Kelly, Sean D; Reddy, Renuka; Neigh, Gretchen N

    2016-01-01

    Highly active antiretroviral therapy (HAART) has improved prognosis for people living with HIV (PLWH) and dramatically reduced the incidence of AIDS. However, even when viral load is controlled, PLWH develop psychiatric and neurological disorders more frequently than those living without HIV. Adolescents with HIV are particularly susceptible to the development of psychiatric illnesses and neurocognitive impairments. While both psychiatric and neurocognitive disorders have been found to be exacerbated by stress, the extent to which chronic stress and HIV-1 viral proteins interact to impact behavior and relevant neuroinflammatory processes is unknown. Determination of the individual contributions of stress and HIV to neuropsychiatric disorders is heavily confounded in humans. In order to isolate the influence of HIV-1 proteins and chronic stress on behavior and neuroinflammation, we employed the HIV-1 transgenic (Tg) rat model, which expresses HIV-1 proteins with a gag and pol deletion, allowing for viral protein expression without viral replication. This Tg line has been characterized as a model of HAART-controlled HIV-1 infection due to the lack of viral replication but continued presence of HIV-1 proteins. We exposed male and female adolescent HIV-1 Tg rats to a mixed-modality chronic stress paradigm consisting of isolation, social defeat and restraint, and assessed behavior, cerebral vascularization, and neuroinflammatory endpoints. Stress, sex, and presence of the HIV-1 transgene impacted weight gain in adolescent rats. Female HIV-1 Tg rats showed decreases in central tendency during the light cycle in the open field regardless of stress exposure. Both male and female HIV-1 Tg rats exhibited decreased investigative behavior in the novel object recognition task, but no memory impairments. Adolescent stress had no effect on the tested behaviors. Microglia in female HIV-1 Tg rats exhibited a hyper-ramified structure, and gene expression of complement factor B was

  20. Ectopic expression of anti-HIV-1 shRNAs protects CD8{sup +} T cells modified with CD4ζ CAR from HIV-1 infection and alleviates impairment of cell proliferation

    SciTech Connect

    Kamata, Masakazu; Kim, Patrick Y.; Ng, Hwee L.; Ringpis, Gene-Errol E.; Kranz, Emiko; Chan, Joshua; O'Connor, Sean; Yang, Otto O.; Chen, Irvin S.Y.

    2015-07-31

    Chimeric antigen receptors (CARs) are artificially engineered receptors that confer a desired specificity to immune effector T cells. As an HIV-1-specific CAR, CD4ζ CAR has been extensively tested in vitro as well as in clinical trials. T cells modified with this CAR mediated highly potent anti-HIV-1 activities in vitro and were well-tolerated in vivo, but exerted limited effects on viral load and reservoir size due to poor survival and/or functionality of the transduced cells in patients. We hypothesize that ectopic expression of CD4ζ on CD8{sup +} T cells renders them susceptible to HIV-1 infection, resulting in poor survival of those cells. To test this possibility, highly purified CD8{sup +} T cells were genetically modified with a CD4ζ-encoding lentiviral vector and infected with HIV-1. CD8{sup +} T cells were vulnerable to HIV-1 infection upon expression of CD4ζ as evidenced by elevated levels of p24{sup Gag} in cells and culture supernatants. Concurrently, the number of CD4ζ-modified CD8{sup +} T cells was reduced relative to control cells upon HIV-1 infection. To protect these cells from HIV-1 infection, we co-expressed two anti-HIV-1 shRNAs previously developed by our group together with CD4ζ. This combination vector was able to suppress HIV-1 infection without impairing HIV-1-dependent effector activities of CD4ζ. In addition, the number of CD4ζ-modified CD8{sup +} T cells maintained similar levels to that of the control even under HIV-1 infection. These results suggest that protecting CD4ζ-modified CD8{sup +} T cells from HIV-1 infection is required for prolonged HIV-1-specific immune surveillance. - Highlights: • Ectopic expression of CD4ζ CAR in CD8{sup +} T cells renders them susceptible to HIV-1 infection. • Co-expression of two anti-HIV-1 shRNAs protects CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection. • Protecting CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection suppresses its cytopathic effect.

  1. HIV-1 assembly in macrophages

    PubMed Central

    2010-01-01

    The molecular mechanisms involved in the assembly of newly synthesized Human Immunodeficiency Virus (HIV) particles are poorly understood. Most of the work on HIV-1 assembly has been performed in T cells in which viral particle budding and assembly take place at the plasma membrane. In contrast, few studies have been performed on macrophages, the other major target of HIV-1. Infected macrophages represent a viral reservoir and probably play a key role in HIV-1 physiopathology. Indeed macrophages retain infectious particles for long periods of time, keeping them protected from anti-viral immune response or drug treatments. Here, we present an overview of what is known about HIV-1 assembly in macrophages as compared to T lymphocytes or cell lines. Early electron microscopy studies suggested that viral assembly takes place at the limiting membrane of an intracellular compartment in macrophages and not at the plasma membrane as in T cells. This was first considered as a late endosomal compartment in which viral budding seems to be similar to the process of vesicle release into multi-vesicular bodies. This view was notably supported by a large body of evidence involving the ESCRT (Endosomal Sorting Complex Required for Transport) machinery in HIV-1 budding, the observation of viral budding profiles in such compartments by immuno-electron microscopy, and the presence of late endosomal markers associated with macrophage-derived virions. However, this model needs to be revisited as recent data indicate that the viral compartment has a neutral pH and can be connected to the plasma membrane via very thin micro-channels. To date, the exact nature and biogenesis of the HIV assembly compartment in macrophages remains elusive. Many cellular proteins potentially involved in the late phases of HIV-1 cycle have been identified; and, recently, the list has grown rapidly with the publication of four independent genome-wide screens. However, their respective roles in infected cells

  2. GB virus type C E2 protein inhibits human immunodeficiency virus type 1 Gag assembly by downregulating human ADP-ribosylation factor 1

    PubMed Central

    Wang, Chenliang; Timmons, Christine L.; Shao, Qiujia; Kinlock, Ballington L.; Turner, Tiffany M.; Iwamoto, Aikichi; Zhang, Hui; Liu, Huanliang; Liu, Bindong

    2015-01-01

    GB virus type C (GBV-C) glycoprotein E2 protein disrupts HIV-1 assembly and release by inhibiting Gag plasma membrane targeting, however the mechanism by which the GBV-C E2 inhibits Gag trafficking remains unclear. In the present study, we identified ADP-ribosylation factor 1 (ARF1) contributed to the inhibitory effect of GBV-C E2 on HIV-1 Gag membrane targeting. Expression of GBV-C E2 decreased ARF1 expression in a proteasomal degradation-dependent manner. The restoration of ARF1 expression rescued the HIV-1 Gag processing and membrane targeting defect imposed by GBV-C E2. In addition, GBV-C E2 expression also altered Golgi morphology and suppressed protein traffic through the secretory pathway, which are all consistent with a phenotype of disrupting the function of ARF1 protein. Thus, our results indicate that GBV-C E2 inhibits HIV-1 assembly and release by decreasing ARF1, and may provide insights regarding GBV-C E2's potential for a new therapeutic approach for treating HIV-1. PMID:26675377

  3. Interaction of the phospholipid scramblase 1 with HIV-1 Tat results in the repression of Tat-dependent transcription

    SciTech Connect

    Kusano, Shuichi Eizuru, Yoshito

    2013-04-19

    Highlights: •PLSCR1 specifically interacted with HIV-1 Tat in vitro and in vivo. •PLSCR1 repressed Tat-dependent transactivation of the HIV-1 LTR. •Suppression of PLSCR1 expression enhanced the levels of HIV-1 transcripts. •PLSCR1 reduced the nuclear localization of Tat. -- Abstract: Human phospholipid scramblase 1 (PLSCR1) is an interferon (IFN)-stimulated gene and possesses an IFN-mediated antiviral function. We show here that PLSCR1 directly interacts with human immunodeficiency virus type-1 (HIV-1) Tat. This interaction occurs both in vitro and in vivo through amino acids 160–250 of PLSCR1. Overexpression of PLSCR1 efficiently represses the Tat-dependent transactivation of the HIV-1 long terminal repeat (LTR) and reduces the nuclear translocation of Tat. In addition, shRNA-mediated suppression of endogenous PLSCR1 expression enhances the levels of gag mRNA in an HIV-1-infected T-cell line. These findings indicate that PLSCR1 negatively regulates the Tat-dependent transactivation of the HIV-1 LTR during HIV-1 infection.

  4. Cell type specificity and structural determinants of IRES activity from the 5' leaders of different HIV-1 transcripts.

    PubMed

    Plank, Terra-Dawn M; Whitehurst, James T; Kieft, Jeffrey S

    2013-07-01

    Internal ribosome entry site (IRES) RNAs are important regulators of gene expression, but their diverse molecular mechanisms remain partially understood. The HIV-1 gag transcript leader contains an IRES that may be a good model for understanding the function of many other IRESs. We investigated the possibility that this IRES' function is linked to both the structure of the RNA and its cellular environment. We find that in the context of a bicistronic reporter construct, HIV-1 gag IRES' activity is cell type-specific, with higher activity in T-cell culture systems that model the natural target cells for HIV-1 infection. This finding underscores how an IRES may be fine tuned to function in certain cells, perhaps owing to cell type-specific protein factors. Using RNA probing and mutagenesis, we demonstrate that the HIV-1 gag IRES does not use pre-folded RNA structure to drive function, a finding that gives insight into how conformationally dynamic IRESs operate. Furthermore, we find that a common exon drives IRES activity in a diverse set of alternatively spliced transcripts. We propose a mechanism in which a structurally plastic RNA element confers the ability to initiate translation internally, and activity from this common element is modulated by 3' nucleotides added by alternative splicing. PMID:23661682

  5. Cell type specificity and structural determinants of IRES activity from the 5′ leaders of different HIV-1 transcripts

    PubMed Central

    Plank, Terra-Dawn M.; Whitehurst, James T.; Kieft, Jeffrey S.

    2013-01-01

    Internal ribosome entry site (IRES) RNAs are important regulators of gene expression, but their diverse molecular mechanisms remain partially understood. The HIV-1 gag transcript leader contains an IRES that may be a good model for understanding the function of many other IRESs. We investigated the possibility that this IRES’ function is linked to both the structure of the RNA and its cellular environment. We find that in the context of a bicistronic reporter construct, HIV-1 gag IRES’ activity is cell type-specific, with higher activity in T-cell culture systems that model the natural target cells for HIV-1 infection. This finding underscores how an IRES may be fine tuned to function in certain cells, perhaps owing to cell type-specific protein factors. Using RNA probing and mutagenesis, we demonstrate that the HIV-1 gag IRES does not use pre-folded RNA structure to drive function, a finding that gives insight into how conformationally dynamic IRESs operate. Furthermore, we find that a common exon drives IRES activity in a diverse set of alternatively spliced transcripts. We propose a mechanism in which a structurally plastic RNA element confers the ability to initiate translation internally, and activity from this common element is modulated by 3′ nucleotides added by alternative splicing. PMID:23661682

  6. Identification of primary HIV-1C infection in Botswana.

    PubMed

    Novitsky, V; Woldegabriel, E; Wester, C; McDonald, E; Rossenkhan, R; Ketunuti, M; Makhema, J; Seage, G R; Essex, M

    2008-08-01

    Methods for identification of primary HIV infections seem increasingly important to understand pathogenesis, and to prevent transmission, which is particularly efficient during acute infection. Most current algorithms for HIV testing are based on detection of HIV antibodies and are unable to identify early infections before seroconversion. The efficiency of prospective cohorts, which is a standard approach for identifying primary HIV-1 infection, depends on a variety of epidemiological and cultural factors including HIV incidence and stigma and, not surprisingly, varies significantly in different geographical areas. We report a voluntary counseling and testing (VCT)-based approach to identifying primary HIV-1C infection that was developed as part of a primary HIV-1 subtype C infection study in Botswana. The referral strategy was based on: (1) collaboration with VCT centers at city clinics operated by the Ministry of Health; (2) partnering with the busiest non-government VCT center; (3) educating healthcare workers and the community about primary HIV infection; and (4) pairing with diverse VCT providers, including NGOs and private-sector organizations. Acute HIV-1 infections were defined by a negative HIV-1 serology combined with a positive HIV-1 RT-PCR test. Recent HIV-1 infections were identified by detuned EIA testing according to the classic STARTH algorithm. The VCT-based referral strategy resulted in the successful identification of 57 cases of acute and early HIV infection. A referral strategy of expanded VCT with viral RNA (Ribonucleic acid) testing to a national program in Botswana may be a promising approach for identification of primary HIV infections on a countrywide level. The program should offer VCT with viral RNA testing to the general public, facilitate proper counseling and risk reduction, and allow initiation of early HAART, and may reduce new viral transmissions. PMID:18608056

  7. Constitutively Active MAVS Inhibits HIV-1 Replication via Type I Interferon Secretion and Induction of HIV-1 Restriction Factors

    PubMed Central

    Gupta, Sachin; Termini, James M.; Issac, Biju; Guirado, Elizabeth; Stone, Geoffrey W.

    2016-01-01

    Type I interferon is known to inhibit HIV-1 replication through the induction of interferon stimulated genes (ISG), including a number of HIV-1 restriction factors. To better understand interferon-mediated HIV-1 restriction, we constructed a constitutively active form of the RIG-I adapter protein MAVS. Constitutive MAVS was generated by fusion of full length MAVS to a truncated form of the Epstein Barr virus protein LMP1 (ΔLMP1). Supernatant from ΔLMP1-MAVS-transfected 293T cells contained high levels of type I interferons and inhibited HIV replication in both TZM-bl and primary human CD4+ T cells. Supernatant from ΔLMP1-MAVS-transfected 293T cells also inhibited replication of VSV-G pseudotyped single cycle SIV in TZM-bl cells, suggesting restriction was post-entry and common to both HIV and SIV. Gene array analysis of ΔLMP1-MAVS-transfected 293T cells and trans-activated CD4+ T cells showed significant upregulation of ISG, including previously characterized HIV restriction factors Viperin, Tetherin, MxB, and ISG56. Interferon blockade studies implicated interferon-beta in this response. In addition to direct viral inhibition, ΔLMP1-MAVS markedly enhanced secretion of IFN-β and IL-12p70 by dendritic cells and the activation and maturation of dendritic cells. Based on this immunostimulatory activity, an adenoviral vector (Ad5) expressing ΔLMP1-MAVS was tested as a molecular adjuvant in an HIV vaccine mouse model. Ad5-Gag antigen combined with Ad5-ΔLMP1-MAVS enhanced control of vaccinia-gag replication in a mouse challenge model, with 4/5 animals showing undetectable virus following challenge. Overall, ΔLMP1-MAVS is a promising reagent to inhibit HIV-1 replication in infected tissues and enhance vaccine-mediated immune responses, while avoiding toxicity associated with systemic type I interferon administration. PMID:26849062

  8. Striking HIV-1 Entry by Targeting HIV-1 gp41. But, Where Should We Target?

    PubMed Central

    Teixeira, Cátia; Barbault, Florent; Couesnon, Thierry; Gomes, José R. B.; Gomes, Paula; Maurel, François

    2016-01-01

    HIV-1 gp41 facilitates the viral fusion through a conformational switch involving the association of three C-terminal helices along the conserved hydrophobic grooves of three N-terminal helices coiled-coil. The control of these structural rearrangements is thought to be central to HIV-1 entry and, therefore, different strategies of intervention are being developed. Herewith, we describe a procedure to simulate the folding of an HIV-1 gp41 simplified model. This procedure is based on the construction of plausible conformational pathways, which describe protein transition between non-fusogenic and fusogenic conformations. The calculation of the paths started with 100 molecular dynamics simulations of the non-fusogenic conformation, which were found to converge to different intermediate states. Those presenting defined criteria were selected for separate targeted molecular dynamics simulations, subjected to a force constant imposing a movement towards the gp41 fusogenic conformation. Despite significant diversity, a preferred sequence of events emerged when the simulations were analyzed in terms of the formation, breakage and evolution of the contacts. We pointed out 29 residues as the most relevant for the movement of gp41; also, 2696 possible interactions were reduced to only 48 major interactions, which reveals the efficiency of the method. The analysis of the evolution of the main interactions lead to the detection of four main behaviors for those contacts: stable, increasing, decreasing and repulsive interactions. Altogether, these results suggest a specific small cavity of the HIV-1 gp41 hydrophobic groove as the preferred target to small molecules. PMID:26785380

  9. Polypropylene Sulfide Nanoparticle p24 Vaccine Promotes Dendritic Cell-Mediated Specific Immune Responses against HIV-1.

    PubMed

    Caucheteux, Stephan M; Mitchell, John P; Ivory, Matthew O; Hirosue, Sachiko; Hakobyan, Svetlana; Dolton, Garry; Ladell, Kristin; Miners, Kelly; Price, David A; Kan-Mitchell, June; Sewell, Andrew K; Nestle, Frank; Moris, Arnaud; Karoo, Richard O; Birchall, James C; Swartz, Melody A; Hubbel, Jeffrey A; Blanchet, Fabien P; Piguet, Vincent

    2016-06-01

    Delivery of vaccine formulations into the dermis using antigen-coated microneedle patches is a promising and safe approach because of efficient antigen delivery and safety. We evaluated an intradermal vaccine using HIV-1 p24 Gag peptide-conjugated polypropylene sulfide nanoparticles to induce immunity against HIV-1. This peptide-conjugated polypropylene sulfide nanoparticle formulation did not accelerate the maturation of blood- or skin-derived subsets of dendritic cells, either generated in vitro or purified ex vivo, despite efficient uptake in the absence of adjuvant. Moreover, dendritic cell-mediated capture of particulate antigen in this form induced potent HIV-1-specific CD4(+) T-cell responses, as well as B-cell-mediated antibody production. Nanoparticle-based intradermal antigen delivery may therefore provide a new option in the global effort to develop an effective vaccine against HIV-1. PMID:26896775

  10. Sequence-specific interaction between HIV-1 matrix protein and viral genomic RNA revealed by in vitro genetic selection.

    PubMed Central

    Purohit, P; Dupont, S; Stevenson, M; Green, M R

    2001-01-01

    The human immunodeficiency virus type-1 matrix protein (HIV-1 MA) is a multifunctional structural protein synthesized as part of the Pr55 gag polyprotein. We have used in vitro genetic selection to identify an RNA consensus sequence that specifically interacts with MA (Kd = 5 x 10(-7) M). This 13-nt MA binding consensus sequence bears a high degree of homology (77%) to a region (nt 1433-1446) within the POL open reading frame of the HIV-1 genome (consensus sequence from 38 HIV-1 strains). Chemical interference experiments identified the nucleotides within the MA binding consensus sequence involved in direct contact with MA. We further demonstrate that this RNA-protein interaction is mediated through a stretch of basic amino acids within MA. Mutations that disrupt the interaction between MA and its RNA binding site within the HIV-1 genome resulted in a measurable decrease in viral replication. PMID:11345436

  11. Newly Exerted T Cell Pressures on Mutated Epitopes following Transmission Help Maintain Consensus HIV-1 Sequences

    PubMed Central

    Eriksson, Emily M.; Liegler, Teri; Keh, Chris E.; Karlsson, Annika C.; Holditch, Sara J.; Pilcher, Christopher D.; Loeb, Lisa; Nixon, Douglas F.; Hecht, Frederick M.

    2015-01-01

    CD8+ T cells are important for HIV-1 virus control, but are also a major contributing factor that drives HIV-1 virus sequence evolution. Although HIV-1 cytotoxic T cell (CTL) escape mutations are a common aspect during HIV-1 infection, less is known about the importance of T cell pressure in reversing HIV-1 virus back to a consensus sequences. In this study we aimed to assess the frequency with which reversion of transmitted mutations in T cell epitopes were associated with T cell responses to the mutation. This study included 14 HIV-1 transmission pairs consisting of a ‘source’ (virus-donor) and a ‘recipient’ (newly infected individual). Non-consensus B sequence amino acids (mutations) in T cell epitopes in HIV-1 gag regions p17, p24, p2 and p7 were identified in each pair and transmission of mutations to the recipient was verified with population viral sequencing. Longitudinal analyses of the recipient’s viral sequence were used to identify whether reversion of mutations back to the consensus B sequence occurred. Autologous 12-mer peptides overlapping by 11 were synthesized, representing the sequence region surrounding each reversion and longitudinal analysis of T cell responses to source-derived mutated and reverted epitopes were assessed. We demonstrated that mutations in the source were frequently transmitted to the new host and on an average 17 percent of mutated epitopes reverted to consensus sequence in the recipient. T cell responses to these mutated epitopes were detected in 7 of the 14 recipients in whom reversion occurred. Overall, these findings indicate that transmitted non-consensus B epitopes are frequently immunogenic in HLA-mismatched recipients and new T cell pressures to T cell escape mutations following transmission play a significant role in maintaining consensus HIV-1 sequences. PMID:25919393

  12. Structure and immune recognition of trimeric prefusion HIV-1 Env

    PubMed Central

    Pancera, Marie; Zhou, Tongqing; Druz, Aliaksandr; Georgiev, Ivelin S.; Soto, Cinque; Gorman, Jason; Huang, Jinghe; Acharya, Priyamvada; Chuang, Gwo-Yu; Ofek, Gilad; Stewart-Jones, Guillaume B. E.; Stuckey, Jonathan; Bailer, Robert T.; Joyce, M. Gordon; Louder, Mark K.; Tumba, Nancy; Yang, Yongping; Zhang, Baoshan; Cohen, Myron S.; Haynes, Barton F.; Mascola, John R.; Morris, Lynn; Munro, James B.; Blanchard, Scott C.; Mothes, Walther; Connors, Mark; Kwong, Peter D.

    2015-01-01

    The HIV-1-envelope (Env) spike, comprising three gp120 and three gp41 subunits, is a conformational machine that facilitates HIV-1 entry by rearranging from a mature unliganded state, through receptor-bound intermediates, to a postfusion state. As the sole viral antigen on the HIV-1-virion surface, Env is both the target of neutralizing antibodies and a focus of vaccine efforts. Here we report the structure at 3.5-Å resolution for an HIV-1-Env trimer captured in a mature closed state by antibodies PGT122 and 35O22. This structure reveals the prefusion conformation of gp41, indicates rearrangements needed for fusion activation, and defines parameters of immune evasion and immune recognition. Prefusion gp41 encircles N- and C-terminal strands of gp120 with four helices that form a membrane-proximal collar, fastened by insertion of a fusion peptide-proximal methionine into a gp41-tryptophan clasp. Spike rearrangements required for entry likely involve opening the clasp and expelling the termini. N-linked glycosylation and sequence-variable regions cover the prefusion closed spike: we used chronic cohorts to map the prevalence and location of effective HIV-1-neutralizing responses, which were distinguished by their recognition of N-linked glycan and tolerance for epitope-sequence variation. PMID:25296255

  13. HIV-1 and Human PEG10 Frameshift Elements Are Functionally Distinct and Distinguished by Novel Small Molecule Modulators

    PubMed Central

    Sleebs, Brad E.; Lackovic, Kurt; Parisot, John P.; Moss, Rebecca M.; Crowe-McAuliffe, Caillan; Mathew, Suneeth F.; Edgar, Christina D.; Kleffmann, Torsten; Tate, Warren P.

    2015-01-01

    Frameshifting during translation of viral or in rare cases cellular mRNA results in the synthesis of proteins from two overlapping reading frames within the same mRNA. In HIV-1 the protease, reverse transcriptase, and integrase enzymes are in a second reading frame relative to the structural group-specific antigen (gag), and their synthesis is dependent upon frameshifting. This ensures that a strictly regulated ratio of structural proteins and enzymes, which is critical for HIV-1 replication and viral infectivity, is maintained during protein synthesis. The frameshift element in HIV-1 RNA is an attractive target for the development of a new class of anti HIV-1 drugs. However, a number of examples are now emerging of human genes using −1 frameshifting, such as PEG10 and CCR5. In this study we have compared the HIV-1 and PEG10 frameshift elements and shown they have distinct functional characteristics. Frameshifting occurs at several points within each element. Moreover, frameshift modulators that were isolated by high-throughput screening of a library of 114,000 lead-like compounds behaved differently with the PEG10 frameshift element. The most effective compounds affecting the HIV-1 element enhanced frameshifting by 2.5-fold at 10 μM in two different frameshift reporter assay systems. HIV-1 protease:gag protein ratio was affected by a similar amount in a specific assay of virally-infected cultured cell, but the modulation of frameshifting of the first-iteration compounds was not sufficient to show significant effects on viral infectivity. Importantly, two compounds did not affect frameshifting with the human PEG10 element, while one modestly inhibited rather than enhanced frameshifting at the human element. These studies indicate that frameshift elements have unique characteristics that may allow targeting of HIV-1 and of other viruses specifically for development of antiviral therapeutic molecules without effect on human genes like PEG10 that use the same

  14. A cis-acting element in retroviral genomic RNA links Gag-Pol ribosomal frameshifting to selective viral RNA encapsidation

    PubMed Central

    Chamanian, Mastooreh; Purzycka, Katarzyna J.; Wille, Paul T.; Ha, Janice S.; McDonald, David; Gao, Yong; Le Grice, Stuart F.J.; Arts, Eric J.

    2013-01-01

    SUMMARY During retroviral RNA encapsidation two full length genomic (g) RNAs are selectively incorporated into assembling virions. Packaging involves a cis-acting packaging element (ψ) within the 5'-untranslated region of unspliced HIV-1 RNA genome. However, the mechanism(s) that selects and limits gRNAs for packaging remains uncertain. Using a dual complementation system involving bipartite HIV-1 gRNA, we observed that gRNA packaging is additionally dependent on a cis-acting RNA element, the Genomic RNA Packaging Enhancer (GRPE), found within the gag p1–p6 domain and overlapping the Gag-Pol ribosomal frameshift signal. Deleting or disrupting the two conserved GRPE stem-loops diminished gRNA packaging and infectivity >50-fold, while deleting gag sequences between ψ and GRPE had no effect. Downregulating the translation termination factor eRF1 produces defective virus particles containing 20-times more gRNA. Thus, only the HIV-1 RNAs employed for Gag-Pol translation may be specifically selected for encapsidation, possibly explaining the limitation of two gRNAs per virion. PMID:23414758

  15. The Use of an Alternative Extraoral Periapical Technique for Patients with Severe Gag Reflex

    PubMed Central

    e Silva, Mauro Henrique Chagas; Santos, Mariane Floriano Lopes; de Lima, Carolina Oliveira; Campos, Celso Neiva

    2016-01-01

    Gag reflex is a physiologic mechanism that promotes contraction of the muscles of the tongue and pharyngeal walls. Different factors, including intraoral radiographic films and sensors, may trigger this reflex. Patients with severe gag reflex may not be able to tolerate the presence of intraoral radiographic films or sensors during root canal therapy (RCT). This factor may prevent an appropriate intraoral radiograph, which is important in RCT. Different approaches have been used to facilitate dental procedures in patients suffering from severe gag reflex. The use of an extraoral radiographic technique is an alternative method to obtain working length confirmation in patients with severe gag reflex. In this report of 2 cases, the use of an extraoral radiographic technique as an alternative approach during RCT in patients with severe gag reflex associated with phobic behavior and trismus was successfully demonstrated. PMID:27547474

  16. The Use of an Alternative Extraoral Periapical Technique for Patients with Severe Gag Reflex.

    PubMed

    E Silva, Mauro Henrique Chagas; Coelho, Marcelo Santos; Santos, Mariane Floriano Lopes; de Lima, Carolina Oliveira; Campos, Celso Neiva

    2016-01-01

    Gag reflex is a physiologic mechanism that promotes contraction of the muscles of the tongue and pharyngeal walls. Different factors, including intraoral radiographic films and sensors, may trigger this reflex. Patients with severe gag reflex may not be able to tolerate the presence of intraoral radiographic films or sensors during root canal therapy (RCT). This factor may prevent an appropriate intraoral radiograph, which is important in RCT. Different approaches have been used to facilitate dental procedures in patients suffering from severe gag reflex. The use of an extraoral radiographic technique is an alternative method to obtain working length confirmation in patients with severe gag reflex. In this report of 2 cases, the use of an extraoral radiographic technique as an alternative approach during RCT in patients with severe gag reflex associated with phobic behavior and trismus was successfully demonstrated. PMID:27547474

  17. Equine Infectious Anemia Virus Gag Assembly and Export Are Directed by Matrix Protein through trans-Golgi Networks and Cellular Vesicles

    PubMed Central

    Zhang, Zeli; Ma, Jian; Zhang, Xiang; Su, Chao; Yao, Qiu-Cheng

    2015-01-01

    ABSTRACT Gag intracellular assembly and export are very important processes for lentiviruses replication. Previous studies have demonstrated that equine infectious anemia virus (EIAV) matrix (MA) possesses distinct phosphoinositide affinity compared with HIV-1 MA and that phosphoinositide-mediated targeting to peripheral and internal membranes is a critical factor in EIAV assembly and release. In this study, we compared the cellular assembly sites of EIAV and HIV-1. We observed that the assembly of EIAV particles occurred on interior cellular membranes, while HIV-1 was targeted to the plasma membrane (PM) for assembly. Then, we determined that W7 and K9 in the EIAV MA N terminus were essential for Gag assembly and release but did not affect the cellular distribution of Gag. The replacement of EIAV MA with HIV-1 MA directed chimeric Gag to the PM but severely impaired Gag release. MA structural analysis indicated that the EIAV and HIV-1 MAs had similar spatial structures but that helix 1 of the EIAV MA was closer to loop 2. Further investigation indicated that EIAV Gag accumulated in the trans-Golgi network (TGN) but not the early and late endosomes. The 9 N-terminal amino acids of EIAV MA harbored the signal that directed Gag to the TGN membrane system. Additionally, we demonstrated that EIAV particles were transported to the extracellular space by the cellular vesicle system. This type of EIAV export was not associated with multivesicular bodies or microtubule depolymerization but could be inhibited by the actin-depolymerizing drug cytochalasin D, suggesting that dynamic actin depolymerization may be associated with EIAV production. IMPORTANCE In previous studies, EIAV Gag was reported to localize to both the cell interior and the plasma membrane. Here, we demonstrate that EIAV likely uses the TGN as the assembly site in contrast to HIV-1, which is targeted to the PM for assembly. These distinct assembly features are determined by the MA domain. We also identified

  18. Membrane Binding and Subcellular Localization of Retroviral Gag Proteins Are Differentially Regulated by MA Interactions with Phosphatidylinositol-(4,5)-Bisphosphate and RNA

    PubMed Central

    Inlora, Jingga; Collins, David R.; Trubin, Marc E.; Chung, Ji Yeon J.

    2014-01-01

    ABSTRACT The matrix (MA) domain of HIV-1 mediates proper Gag localization and membrane binding via interaction with a plasma-membrane (PM)-specific acidic phospholipid, phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]. HIV-1 MA also interacts with RNA, which prevents Gag from binding to membranes containing phosphatidylserine, a prevalent cellular acidic phospholipid. These results suggest that the MA-bound RNA promotes PM-specific localization of HIV-1 Gag by blocking nonspecific interactions with cellular membranes that do not contain PI(4,5)P2. To examine whether PI(4,5)P2 dependence and RNA-mediated inhibition collectively determine MA phenotypes across a broad range of retroviruses and elucidate the significance of their interrelationships, we compared a panel of Gag-leucine zipper constructs (GagLZ) containing MA of different retroviruses. We found that in vitro membrane binding of GagLZ via HIV-1 MA and Rous sarcoma virus (RSV) MA is both PI(4,5)P2 dependent and susceptible to RNA-mediated inhibition. The PM-specific localization and virus-like particle (VLP) release of these GagLZ proteins are severely impaired by overexpression of a PI(4,5)P2-depleting enzyme, polyphosphoinositide 5-phosphatase IV (5ptaseIV). In contrast, membrane binding of GagLZ constructs that contain human T-lymphotropic virus type 1 (HTLV-1) MA, murine leukemia virus (MLV) MA, and human endogenous retrovirus K (HERV-K) MA is PI(4,5)P2 independent and not blocked by RNA. The PM localization and VLP release of these GagLZ chimeras were much less sensitive to 5ptaseIV expression. Notably, single amino acid substitutions that confer a large basic patch rendered HTLV-1 MA susceptible to the RNA-mediated block, suggesting that RNA readily blocks MA containing a large basic patch, such as HIV-1 and RSV MA. Further analyses of these MA mutants suggest a possibility that HIV-1 and RSV MA acquired PI(4,5)P2 dependence to alleviate the membrane binding block imposed by RNA. PMID:25491356

  19. A Generalized Entropy Measure of Within-Host Viral Diversity for Identifying Recent HIV-1 Infections.

    PubMed

    Wu, Julia Wei; Patterson-Lomba, Oscar; Novitsky, Vladimir; Pagano, Marcello

    2015-10-01

    There is a need for incidence assays that accurately estimate HIV incidence based on cross-sectional specimens. Viral diversity-based assays have shown promises but are not particularly accurate. We hypothesize that certain viral genetic regions are more predictive of recent infection than others and aim to improve assay accuracy by using classification algorithms that focus on highly informative regions (HIRs).We analyzed HIV gag sequences from a cohort in Botswana. Forty-two subjects newly infected by HIV-1 Subtype C were followed through 500 days post-seroconversion. Using sliding window analysis, we screened for genetic regions within gag that best differentiate recent versus chronic infections. We used both nonparametric and parametric approaches to evaluate the discriminatory abilities of sequence regions. Segmented Shannon Entropy measures of HIRs were aggregated to develop generalized entropy measures to improve prediction of recency. Using logistic regression as the basis for our classification algorithm, we evaluated the predictive power of these novel biomarkers and compared them with recently reported viral diversity measures using area under the curve (AUC) analysis.Change of diversity over time varied across different sequence regions within gag. We identified the top 50% of the most informative regions by both nonparametric and parametric approaches. In both cases, HIRs were in more variable regions of gag and less likely in the p24 coding region. Entropy measures based on HIRs outperformed previously reported viral-diversity-based biomarkers. These methods are better suited for population-level estimation of HIV recency.The patterns of diversification of certain regions within the gag gene are more predictive of recency of infection than others. We expect this result to apply in other HIV genetic regions as well. Focusing on these informative regions, our generalized entropy measure of viral diversity demonstrates the potential for improving

  20. Interplay between the alpharetroviral Gag protein and SR proteins SF2 and SC35 in the nucleus

    PubMed Central

    Rice, Breanna L.; Kaddis, Rebecca J.; Stake, Matthew S.; Lochmann, Timothy L.; Parent, Leslie J.

    2015-01-01

    Retroviruses are positive-sense, single-stranded RNA viruses that reverse transcribe their RNA genomes into double-stranded DNA for integration into the host cell chromosome. The integrated provirus is used as a template for the transcription of viral RNA. The full-length viral RNA can be used for the translation of the Gag and Gag-Pol structural proteins or as the genomic RNA (gRNA) for encapsidation into new virions by the Gag protein. The mechanism by which Gag selectively incorporates unspliced gRNA into virus particles is poorly understood. Although Gag was previously thought to localize exclusively to the cytoplasm and plasma membrane where particles are released, we found that the Gag protein of Rous sarcoma virus, an alpharetrovirus, undergoes transient nuclear trafficking. When the nuclear export signal of RSV Gag is mutated (Gag.L219A), the protein accumulates in discrete subnuclear foci reminiscent of nuclear bodies such as splicing speckles, paraspeckles, and PML bodies. In this report, we observed that RSV Gag.L219A foci appeared to be tethered in the nucleus, partially co-localizing with the splicing speckle components SC35 and SF2. Overexpression of SC35 increased the number of Gag.L219A nucleoplasmic foci, suggesting that SC35 may facilitate the formation of Gag foci. We previously reported that RSV Gag nuclear trafficking is required for efficient gRNA packaging. Together with the data presented herein, our findings raise the intriguing hypothesis that RSV Gag may co-opt splicing factors to localize near transcription sites. Because splicing occurs co-transcriptionally, we speculate that this mechanism could allow Gag to associate with unspliced viral RNA shortly after its transcription initiation in the nucleus, before the viral RNA can be spliced or exported from the nucleus as an mRNA template. PMID:26441864

  1. Induction of Human Immunodeficiency Virus Type 1 (HIV-1)-Specific T-Cell Responses in HIV Vaccine Trial Participants Who Subsequently Acquire HIV-1 Infection

    PubMed Central

    Horton, Helen; Havenar-Daughton, Colin; Lee, Deborah; Moore, Erin; Cao, Jianhong; McNevin, John; Andrus, Thomas; Zhu, Haiying; Rubin, Abbe; Zhu, Tuofu; Celum, Connie; McElrath, M. Juliana

    2006-01-01

    Candidate human immunodeficiency virus type 1 (HIV-1) vaccines designed to elicit T-cell immunity in HIV-1-uninfected persons are under investigation in phase I to III clinical trials. Little is known about how these vaccines impact the immunologic response postinfection in persons who break through despite vaccination. Here, we describe the first comprehensive characterization of HIV-specific T-cell immunity in vaccine study participants following breakthrough HIV-1 infection in comparison to 16 nonvaccinated subjects with primary HIV-1 infection. Whereas none of the 16 breakthrough infections possessed vaccine-induced HIV-1-specific T-cell responses preinfection, 85% of vaccinees and 86% of nonvaccinees with primary HIV-1 infection developed HIV-specific T-cell responses postinfection. Breakthrough subjects' T cells recognized 43 unique HIV-1 T-cell epitopes, of which 8 are newly described, and 25% were present in the vaccine. The frequencies of gamma interferon (IFN-γ)-secreting cells recognizing epitopes within gene products that were and were not encoded by the vaccine were not different (P = 0.64), which suggests that responses were not anamnestic. Epitopes within Nef and Gag proteins were the most commonly recognized in both vaccinated and nonvaccinated infected subjects. One individual controlled viral replication without antiretroviral therapy and, notably, mounted a novel HIV-specific HLA-C14-restricted Gag LYNTVATL-specific T-cell response. Longitudinally, HIV-specific T cells in this individual were able to secrete IFN-γ and tumor necrosis factor alpha, as well as proliferate and degranulate in response to their cognate antigenic peptides up to 5 years postinfection. In conclusion, a vaccinee's ability to mount an HIV-specific T-cell response postinfection is not compromised by previous immunization, since the CD8+ T-cell responses postinfection are similar to those seen in vaccine-naïve individuals. Finding an individual who is controlling infection

  2. Recombinant Viruses and Early Global HIV-1 Epidemic

    PubMed Central

    Robbins, Kenneth E.; Pieniazek, Danuta; Schaefer, Amanda; Nzilambi, Nzila; Quinn, Thomas C.; St. Louis, Michael E.; Youngpairoj, Ae S.; Phillips, Jonathan; Jaffe, Harold W.; Folks, Thomas M.

    2004-01-01

    Central Africa was the epicenter of the HIV type 1 (HIV-1) pandemic. Understanding the early epidemic in the Democratic Republic of the Congo, formerly Zaire, could provide insight into how HIV evolved and assist vaccine design and intervention efforts. Using enzyme immunosorbent assays, we tested 3,988 serum samples collected in Kinshasa in the mid-1980s and confirmed seroreactivity by Western blot. Polymerase chain reaction of gag p17, env C2V3C3, and/or gp41; DNA sequencing; and genetic analyses were performed. Gene regions representing all the HIV-1 group M clades and unclassifiable sequences were found. From two or three short gene regions, 37% of the strains represented recombinant viruses, multiple infections, or both, which suggests that if whole genome sequences were available, most of these strains would have mosaic genomes. We propose that the HIV epidemic was well established in central Africa by the early 1980s and that some recombinant viruses most likely seeded the early global epidemic. PMID:15324542

  3. New insights into retroviral Gag–Gag and Gag–membrane interactions

    PubMed Central

    Maldonado, José O.; Martin, Jessica L.; Mueller, Joachim D.; Zhang, Wei; Mansky, Louis M.

    2014-01-01

    A critical aspect of viral replication is the assembly of virus particles, which are subsequently released as progeny virus. While a great deal of attention has been focused on better understanding this phase of the viral life cycle, many aspects of the molecular details remain poorly understood. This is certainly true for retroviruses, including that of the human immunodeficiency virus type 1 (HIV-1; a lentivirus) as well as for human T-cell leukemia virus type 1 (HTLV-1; a deltaretrovirus). This review discusses the retroviral Gag protein and its interactions with itself, the plasma membrane and the role of lipids in targeting Gag to virus assembly sites. Recent progress using sophisticated biophysical approaches to investigate – in a comparative manner – retroviral Gag–Gag and Gag–membrane interactions are discussed. Differences among retroviruses in Gag–Gag and Gag–membrane interactions imply dissimilar molecular aspects of the viral assembly pathway, including the interactions of Gag with lipids at the membrane. PMID:25009535

  4. Polymorphism, recombination, and mutations in HIV type 1 gag-infecting Peruvian male sex workers.

    PubMed

    Yabar, Carlos Augusto; Salvatierra, Javier; Quijano, Eberth

    2008-11-01

    HIV genetic diversity in female sex workers (FSW) has been previously described in Peru; however this information is not yet available for male sex workers (MSW). Therefore, purified peripheral blood mononuclear cell DNA from 147 HIV-infected subjects identified as MSW and FSW was used to amplify a 460-bp fragment corresponding to the p24-p7 region of the gag gene. The PCR product was digested with restriction enzymes to identify genetic polymorphism. Later, a random group of samples (n = 19) was sequenced to perform phylogenetic analysis, intragenic recombination analysis, and deleterious mutations leading to a nonfunctional protein in conservative regions of the Gag protein. RFLP analysis revealed 11 genetic variants for AluI and five for MspI. A group of nonsex workers (NSW) used for comparison showed different RFLP genetic variant distributions. Of interest, nine cases of mixed genetic variants were observed for MSW, one case for FSW, and none for NSW. Phylogenetic analysis revealed that all HIV-1 species were subtype B. Intragenic recombination analysis showed a B/C recombination case from an FSW (boostrap = 1000; p value < 0.05). Of interest, deleterious mutations were observed in three cases of conservative D2 zinc domains for Gag 3/19 and one case of the high homology region (1/19). This study shows that gag of HIV circulating from MSW has high genetic polymorphism involving deleterious mutations in conserved domains from the p24-p7 gag region. PMID:19000025

  5. Vaccine-elicited Human T Cells Recognizing Conserved Protein Regions Inhibit HIV-1

    PubMed Central

    Borthwick, Nicola; Ahmed, Tina; Ondondo, Beatrice; Hayes, Peter; Rose, Annie; Ebrahimsa, Umar; Hayton, Emma-Jo; Black, Antony; Bridgeman, Anne; Rosario, Maximillian; Hill, Adrian VS; Berrie, Eleanor; Moyle, Sarah; Frahm, Nicole; Cox, Josephine; Colloca, Stefano; Nicosia, Alfredo; Gilmour, Jill; McMichael, Andrew J; Dorrell, Lucy; Hanke, Tomáš

    2014-01-01

    Virus diversity and escape from immune responses are the biggest challenges to the development of an effective vaccine against HIV-1. We hypothesized that T-cell vaccines targeting the most conserved regions of the HIV-1 proteome, which are common to most variants and bear fitness costs when mutated, will generate effectors that efficiently recognize and kill virus-infected cells early enough after transmission to potentially impact on HIV-1 replication and will do so more efficiently than whole protein-based T-cell vaccines. Here, we describe the first-ever administration of conserved immunogen vaccines vectored using prime-boost regimens of DNA, simian adenovirus and modified vaccinia virus Ankara to uninfected UK volunteers. The vaccine induced high levels of effector T cells that recognized virus-infected autologous CD4+ cells and inhibited HIV-1 replication by up to 5.79 log10. The virus inhibition was mediated by both Gag- and Pol- specific effector CD8+ T cells targeting epitopes that are typically subdominant in natural infection. These results provide proof of concept for using a vaccine to target T cells at conserved epitopes, showing that these T cells can control HIV-1 replication in vitro. PMID:24166483

  6. The RNA Binding Specificity of Human APOBEC3 Proteins Resembles That of HIV-1 Nucleocapsid.

    PubMed

    York, Ashley; Kutluay, Sebla B; Errando, Manel; Bieniasz, Paul D

    2016-08-01

    The APOBEC3 (A3) cytidine deaminases are antiretroviral proteins, whose targets include human immunodeficiency virus type-1 (HIV-1). Their incorporation into viral particles is critical for antiviral activity and is driven by interactions with the RNA molecules that are packaged into virions. However, it is unclear whether A3 proteins preferentially target RNA molecules that are destined to be packaged and if so, how. Using cross-linking immunoprecipitation sequencing (CLIP-seq), we determined the RNA binding preferences of the A3F, A3G and A3H proteins. We found that A3 proteins bind preferentially to RNA segments with particular properties, both in cells and in virions. Specifically, A3 proteins target RNA sequences that are G-rich and/or A-rich and are not scanned by ribosomes during translation. Comparative analyses of HIV-1 Gag, nucleocapsid (NC) and A3 RNA binding to HIV-1 RNA in cells and virions revealed the striking finding that A3 proteins partially mimic the RNA binding specificity of the HIV-1 NC protein. These findings suggest a model for A3 incorporation into HIV-1 virions in which an NC-like RNA binding specificity is determined by nucleotide composition rather than sequence. This model reconciles the promiscuity of A3 RNA binding that has been observed in previous studies with a presumed advantage that would accompany selective binding to RNAs that are destined to be packaged into virions. PMID:27541140

  7. The RNA Binding Specificity of Human APOBEC3 Proteins Resembles That of HIV-1 Nucleocapsid

    PubMed Central

    Errando, Manel; Bieniasz, Paul D.

    2016-01-01

    The APOBEC3 (A3) cytidine deaminases are antiretroviral proteins, whose targets include human immunodeficiency virus type-1 (HIV-1). Their incorporation into viral particles is critical for antiviral activity and is driven by interactions with the RNA molecules that are packaged into virions. However, it is unclear whether A3 proteins preferentially target RNA molecules that are destined to be packaged and if so, how. Using cross-linking immunoprecipitation sequencing (CLIP-seq), we determined the RNA binding preferences of the A3F, A3G and A3H proteins. We found that A3 proteins bind preferentially to RNA segments with particular properties, both in cells and in virions. Specifically, A3 proteins target RNA sequences that are G-rich and/or A-rich and are not scanned by ribosomes during translation. Comparative analyses of HIV-1 Gag, nucleocapsid (NC) and A3 RNA binding to HIV-1 RNA in cells and virions revealed the striking finding that A3 proteins partially mimic the RNA binding specificity of the HIV-1 NC protein. These findings suggest a model for A3 incorporation into HIV-1 virions in which an NC-like RNA binding specificity is determined by nucleotide composition rather than sequence. This model reconciles the promiscuity of A3 RNA binding that has been observed in previous studies with a presumed advantage that would accompany selective binding to RNAs that are destined to be packaged into virions. PMID:27541140

  8. HIV-1 Nef promotes infection by excluding SERINC5 from virion incorporation

    PubMed Central

    Rosa, Annachiara; Chande, Ajit; Ziglio, Serena; Sanctis, Veronica De; Bertorelli, Roberto; Goh, Shih Lin; McCauley, Sean M.; Nowosielska, Anetta; Antonarakis, Stylianos E.; Luban, Jeremy; Santoni, Federico Andrea; Pizzato, Massimo

    2016-01-01

    HIV-1 Nef, a protein important for the development of AIDS, has well-characterized effects on host membrane trafficking and receptor downregulation. By an unidentified mechanism, Nef increases the intrinsic infectivity of HIV-1 virions in a host-cell-dependent manner. Here we identify the host transmembrane protein SERINC5, and to a lesser extent SERINC3, as a potent inhibitor of HIV-1 particle infectivity that is counteracted by Nef. SERINC5 localizes to the plasma membrane, where it is efficiently incorporated into budding HIV-1 virions and impairs subsequent virion penetration of susceptible target cells. Nef redirects SERINC5 to a Rab7-positive endosomal compartment and thereby excludes it from HIV-1 particles. The ability to counteract SERINC5 was conserved in Nef encoded by diverse primate immunodeficiency viruses, as well as in the structurally unrelated glycosylated Gag from murine leukaemia virus. These examples of functional conservation and convergent evolution emphasize the fundamental importance of SERINC5 as a potent anti-retroviral factor. PMID:26416734

  9. U3 Region in the HIV-1 Genome Adopts a G-Quadruplex Structure in Its RNA and DNA Sequence

    PubMed Central

    2015-01-01

    Genomic regions rich in G residues are prone to adopt G-quadruplex structure. Multiple Sp1-binding motifs arranged in tandem have been suggested to form this structure in promoters of cancer-related genes. Here, we demonstrate that the G-rich proviral DNA sequence of the HIV-1 U3 region, which serves as a promoter of viral transcription, adopts a G-quadruplex structure. The sequence contains three binding elements for transcription factor Sp1, which is involved in the regulation of HIV-1 latency, reactivation, and high-level virus expression. We show that the three Sp1 binding motifs can adopt different forms of G-quadruplex structure and that the Sp1 protein can recognize and bind to its site folded into a G-quadruplex. In addition, a c-kit2 specific antibody, designated hf2, binds to two different G-quadruplexes formed in Sp1 sites. Since U3 is encoded at both viral genomic ends, the G-rich sequence is also present in the RNA genome. We demonstrate that the RNA sequence of U3 forms dimers with characteristics known for intermolecular G-quadruplexes. Together with previous reports showing G-quadruplex dimers in the gag and cPPT regions, these results suggest that integrity of the two viral genomes is maintained through numerous intermolecular G-quadruplexes formed in different RNA genome locations. Reconstituted reverse transcription shows that the potassium-dependent structure formed in U3 RNA facilitates RT template switching, suggesting that the G-quadruplex contributes to recombination in U3. PMID:24735378

  10. Intranasal Vaccination against HIV-1 with Adenoviral Vector-Based Nanocomplex Using Synthetic TLR-4 Agonist Peptide as Adjuvant.

    PubMed

    Li, Man; Jiang, Yuhong; Gong, Tao; Zhang, Zhirong; Sun, Xun

    2016-03-01

    Recombinant type 5 adenovirus (rAd5) vaccines hold the promise to prevent HIV-1 infections. Intranasal vaccination not only stimulates systemic immunity but also elicits mucosal immunity that provides first defense for mucosally transmitted diseases like HIV-1. Adjuvants such as TLR agonists are usually codelivered with antigens to enhance the immunogenicity of vaccines. Here, we present a rAd5 vaccine delivery system using DEG-PEI as the carrier. Adenovirus encoding HIV gag was used as antigen, and was complexed with DEG-PEI polymer via electrostatic interaction. A novel synthetic TLR-4 agonist, RS09, was either chemically linked with DEG-PEI (DP-RS09) or physically mixed with it(DP/RS09) to enhance the immunogenticity of rAd5 vaccine. After intranasal immunization, the systemic antigen-specific immune responses and cytotoxicity T lymphocytes responses induced by DP-RS09-rAd5 and DP/RS09-rAd5 were analyzed. The mucosal secretory IgA level was detected in both nasal and vaginal washes to determine the mucosal immunity. Furthermore, cytokine productions on RAW264.7 cells were tested after preincubation with TLR-4 pathway inhibitors. The results indicated that DEG-PEI could facilitate the intranasal delivery of rAd5 vaccine. Both chemically linked (DP-RS09) and physically mixed RS09 (DP/RS09) could further enhance the mucosal immunity of rAd5 vaccine via TLR-4 pathway. This RS09 adjuvanted DEG-PEI polymer represents a potential intranasal vaccine delivery system and may have a wider application for other viral vectors. PMID:26824411

  11. Defective HIV-1 proviruses produce novel protein-coding RNA species in HIV-infected patients on combination antiretroviral therapy.

    PubMed

    Imamichi, Hiromi; Dewar, Robin L; Adelsberger, Joseph W; Rehm, Catherine A; O'Doherty, Una; Paxinos, Ellen E; Fauci, Anthony S; Lane, H Clifford

    2016-08-01

    Despite years of plasma HIV-RNA levels <40 copies per milliliter during combination antiretroviral therapy (cART), the majority of HIV-infected patients exhibit persistent seropositivity to HIV-1 and evidence of immune activation. These patients also show persistence of proviruses of HIV-1 in circulating peripheral blood mononuclear cells. Many of these proviruses have been characterized as defective and thus thought to contribute little to HIV-1 pathogenesis. By combining 5'LTR-to-3'LTR single-genome amplification and direct amplicon sequencing, we have identified the presence of "defective" proviruses capable of transcribing novel unspliced HIV-RNA (usHIV-RNA) species in patients at all stages of HIV-1 infection. Although these novel usHIV-RNA transcripts had exon structures that were different from those of the known spliced HIV-RNA variants, they maintained translationally competent ORFs, involving elements of gag, pol, env, rev, and nef to encode a series of novel HIV-1 chimeric proteins. These novel usHIV-RNAs were detected in five of five patients, including four of four patients with prolonged viral suppression of HIV-RNA levels <40 copies per milliliter for more than 6 y. Our findings suggest that the persistent defective proviruses of HIV-1 are not "silent," but rather may contribute to HIV-1 pathogenesis by stimulating host-defense pathways that target foreign nucleic acids and proteins. PMID:27432972

  12. Structured Observations Reveal Slow HIV-1 CTL Escape

    PubMed Central

    Roberts, Hannah E.; Hurst, Jacob; Robinson, Nicola; Brown, Helen; Flanagan, Peter; Vass, Laura; Fidler, Sarah; Weber, Jonathan; Babiker, Abdel; Phillips, Rodney E.; McLean, Angela R.; Frater, John

    2015-01-01

    The existence of viral variants that escape from the selection pressures imposed by cytotoxic T-lymphocytes (CTLs) in HIV-1 infection is well documented, but it is unclear when they arise, with reported measures of the time to escape in individuals ranging from days to years. A study of participants enrolled in the SPARTAC (Short Pulse Anti-Retroviral Therapy at HIV Seroconversion) clinical trial allowed direct observation of the evolution of CTL escape variants in 125 adults with primary HIV-1 infection observed for up to three years. Patient HLA-type, longitudinal CD8+ T-cell responses measured by IFN-γ ELISpot and longitudinal HIV-1 gag, pol, and nef sequence data were used to study the timing and prevalence of CTL escape in the participants whilst untreated. Results showed that sequence variation within CTL epitopes at the first time point (within six months of the estimated date of seroconversion) was consistent with most mutations being transmitted in the infecting viral strain rather than with escape arising within the first few weeks of infection. Escape arose throughout the first three years of infection, but slowly and steadily. Approximately one third of patients did not drive any new escape in an HLA-restricted epitope in just under two years. Patients driving several escape mutations during these two years were rare and the median and modal numbers of new escape events in each patient were one and zero respectively. Survival analysis of time to escape found that possession of a protective HLA type significantly reduced time to first escape in a patient (p = 0.01), and epitopes escaped faster in the face of a measurable CD8+ ELISpot response (p = 0.001). However, even in an HLA matched host who mounted a measurable, specific, CD8+ response the average time before the targeted epitope evolved an escape mutation was longer than two years. PMID:25642847

  13. Excision of HIV-1 DNA by gene editing: a proof-of-concept in vivo study.

    PubMed

    Kaminski, R; Bella, R; Yin, C; Otte, J; Ferrante, P; Gendelman, H E; Li, H; Booze, R; Gordon, J; Hu, W; Khalili, K

    2016-08-01

    A CRISPR/Cas9 gene editing strategy has been remarkable in excising segments of integrated HIV-1 DNA sequences from the genome of latently infected human cell lines and by introducing InDel mutations, suppressing HIV-1 replication in patient-derived CD4+ T-cells, ex vivo. Here, we employed a short version of the Cas9 endonuclease, saCas9, together with a multiplex of guide RNAs (gRNAs) for targeting the viral DNA sequences within the 5'-LTR and the Gag gene for removing critically important segments of the viral DNA in transgenic mice and rats encompassing the HIV-1 genome. Tail-vein injection of transgenic mice with a recombinant Adeno-associated virus 9 (rAAV9) vector expressing saCas9 and the gRNAs, rAAV:saCas9/gRNA, resulted in the cleavage of integrated HIV-1 DNA and excision of a 978 bp DNA fragment spanning between the LTR and Gag gene in the spleen, liver, heart, lung and kidney as well as in the circulating lymphocytes. Retro-orbital inoculation of rAAV9:saCas9/gRNA in transgenic rats eliminated a targeted segment of viral DNA and substantially decreased the level of viral gene expression in circulating blood lymphocytes. The results from the proof-of-concept studies, for the first time, demonstrate the in vivo eradication of HIV-1 DNA by CRISPR/Cas9 on delivery by an rAAV9 vector in a range of cells and tissues that harbor integrated copies of viral DNA. PMID:27194423

  14. Multiple T-cell responses are associated with better control of acute HIV-1 infection: An observational study.

    PubMed

    Sun, Jianping; Zhao, Yan; Peng, Yanchun; Han, Zhen; Liu, Guihai; Qin, Ling; Liu, Sai; Sun, Huanhuan; Wu, Hao; Dong, Tao; Zhang, Yonghong

    2016-07-01

    Cytotoxic T lymphocyte (CTL) responses play pivotal roles in controlling the replication of human immunodeficiency virus type 1 (HIV-1), but the correlation between CTL responses and the progression of HIV-1 infection are controversial on account of HIV immune escape mutations driven by CTL pressure were reported.The acute HIV-1-infected patients from Beijing were incorporated into our study to investigate the effects of CTL response on the progression of HIV-1 infection.A longitudinal study was performed on acute HIV-1-infected patients to clarify the kinetic of T-cell responses, the dynamic of escape mutations, as well as the correlation between effective T-cell response and the progression of HIV infection.Seven human leukocyte antigen-B51+ (HLA-B51+) individuals were screened from 105 acute HIV-1 infectors. The detailed kinetic of HLA-B51-restricted CTL responses was described through blood sampling time points including seroconversion, 3 and 6 months after HIV-1 infection in the 7 HLA-B51+ individuals, by using 16 known HLA-B51 restricted epitopes. Pol743-751 (LPPVVAKEI, LI9), Pol283-289 (TAFTIPSI, TI8), and Gag327-3459 (NANPDCKTI, NI9) were identified as 3 dominant epitopes, and ranked as starting with LI9, followed by TI8 and NI9 in the ability to induce T-cell responses. The dynamics of escape mutations in the 3 epitopes were also found with the same order as T-cell response, by using sequencing for viral clones on blood sampling at seroconversion, 3 and 6 months after HIV-1 infection.We use solid evidence to demonstrate the correlation between T-cell response and HIV-1 mutation, and postulate that multiple T-cell responses might benefit the control of HIV-1 infection, especially in acute infection phase. PMID:27472741

  15. Continued Follow-Up of Phambili Phase 2b Randomized HIV-1 Vaccine Trial Participants Supports Increased HIV-1 Acquisition among Vaccinated Men

    PubMed Central

    Moodie, Zoe; Metch, Barbara; Bekker, Linda-Gail; Churchyard, Gavin; Nchabeleng, Maphoshane; Mlisana, Koleka; Laher, Fatima; Roux, Surita; Mngadi, Kathryn; Innes, Craig; Mathebula, Matsontso; Allen, Mary; Bentley, Carter; Gilbert, Peter B.; Robertson, Michael; Kublin, James; Corey, Lawrence; Gray, Glenda E.

    2015-01-01

    Background The Phase 2b double-blinded, randomized Phambili/HVTN 503 trial evaluated safety and efficacy of the MRK Ad5 gag/pol/nef subtype B HIV-1 preventive vaccine vs placebo in sexually active HIV-1 seronegative participants in South Africa. Enrollment and vaccinations stopped and participants were unblinded but continued follow-up when the Step study evaluating the same vaccine in the Americas, Caribbean, and Australia was unblinded for non-efficacy. Final Phambili analyses found more HIV-1 infections amongst vaccine than placebo recipients, impelling the HVTN 503-S recall study. Methods HVTN 503-S sought to enroll all 695 HIV-1 uninfected Phambili participants, provide HIV testing, risk reduction counseling, physical examination, risk behavior assessment and treatment assignment recall. After adding HVTN 503-S data, HIV-1 infection hazard ratios (HR vaccine vs. placebo) were estimated by Cox models. Results Of the 695 eligible, 465 (67%) enrolled with 230 from the vaccine group and 235 from the placebo group. 38% of the 184 Phambili dropouts were enrolled. Enrollment did not differ by treatment group, gender, or baseline HSV-2. With the additional 1286 person years of 503-S follow-up, the estimated HR over Phambili and HVTN 503-S follow-up was 1.52 (95% CI 1.08–2.15, p = 0.02, 82 vaccine/54 placebo infections). The HR was significant for men (HR = 2.75, 95% CI 1.49, 5.06, p = 0.001) but not for women (HR = 1.12, 95% CI 0.73, 1.72, p = 0.62). Conclusion The additional follow-up from HVTN 503-S supported the Phambili finding of increased HIV-1 acquisition among vaccinated men and strengthened the evidence of lack of vaccine effect among women. Trial Registration clinicaltrials.gov NCT00413725 SA National Health Research Database DOH-27-0207-1539 PMID:26368824

  16. Movements of HIV-1 genomic RNA-APOBEC3F complexes and PKR reveal cytoplasmic and nuclear PKR defenses and HIV-1 evasion strategies.

    PubMed

    Marin, Mariana; Golem, Sheetal; Kozak, Susan L; Kabat, David

    2016-02-01

    APOBEC3 cytidine deaminases and viral genomic RNA (gRNA) occur in virions, polysomes, and cytoplasmic granules, but have not been tracked together. Moreover, gRNA traffic is important, but the factors that move it into granules are unknown. Using in situ hybridization of transfected cells and protein synthesis inhibitors that drive mRNAs between locales, we observed APOBEC3F cotrafficking with gRNA without altering its movements. Whereas cells with little cytoplasmic gRNA were translationally active and accumulated Gag, suprathreshold amounts induced autophosphorylation of the cytoplasmic double-stranded RNA (dsRNA)-dependent protein kinase (PKR), causing eIF2α phosphorylation, protein synthesis suppression, and gRNA sequestration in stress granules. Additionally, we confirmed recent evidence that PKR is activated by chromosome-associated cellular dsRNAs after nuclear membranes disperse in prophase. By arresting cells in G2, HIV-1 blocks this mechanism for PKR activation and eIF2α phosphorylation. However, cytopathic membrane damage in CD4- and coreceptor-positive cultures infected with laboratory-adapted fusogenic HIV-1LAI eventually enabled PKR entry and activation in interphase nuclei. These results reveal multiple stages in the PKR-HIV-1 battleground that culminate in cell death. We discuss evidence suggesting that HIV-1s evolve in vivo to prevent or delay PKR activation by all these mechanisms. PMID:26626364

  17. HIV-1 proteins accelerate HPA axis habituation in female rats.

    PubMed

    Panagiotakopoulos, Leonidas; Kelly, Sean; Neigh, Gretchen N

    2015-10-15

    Congenital infection by the Human Immunodeficiency Virus (HIV) has been shown to lead to multiple co-morbidities, and people living with HIV have a higher incidence of affective and anxiety disorders. A marked increase in mood disorders is evident during the sensitive phase of adolescence and this is further pronounced in females. Depression has been linked to dysfunction of the intracellular response system to corticosteroids at the level of the hippocampus (HC) and prefrontal cortex (PFC) with a notable role of the glucocorticoid receptor (GR) and its co-chaperones (FKBP5 and FKBP4). The current study examined the extent to which HIV protein expression in adolescent female rats altered the stress response at both the level of corticosterone output and molecular regulation of the glucocorticoid receptor in the brain. WT and HIV-1 genotype female rats were randomly allocated in control, acute stress and repeat stress groups. Corticosterone plasma levels and expression of GR, FKBP4, and FKBP5 in the HC and PFC were measured. The presence of HIV-1 proteins facilitates habituation of the corticosterone response to repeated stressors, such that HIV-1 TG rats habituated to repeated restraint and WT rats did not. This was reflected by interactions between stress exposure and HIV-1 protein expression at the level of GR co-chaperones. Although expression of the GR was similarly reduced after acute and repeat stress in both genotypes, expression of FKBP5 and FKBP4 was altered in a brain-region specific manner depending on the duration of the stress exposure and the presence or absence of HIV-1 proteins. Collectively, the data presented demonstrate that HIV-1 proteins accelerate habituation to repeated stressors and modify the influence of acute and repeat stressors on GR co-chaperones in a brain region-specific manner. PMID:25666308

  18. Strategies for Eliciting HIV-1 Inhibitory Antibodies

    PubMed Central

    Tomaras, Georgia D.; Haynes, Barton F.

    2012-01-01

    Purpose of review Major roadblocks persist in the development of vaccines that elicit potent neutralizing antibodies targeting diverse HIV-1 strains, similar to known broadly neutralizing HIV-1 human monoclonal antibodies. Alternatively, other types of anti-HIV-1 envelope antibodies that may not neutralize HIV-1 in traditional neutralization assays but have other anti-HIV-1 activities (hereafter termed HIV-1 inhibitory antibodies) can be elicited by current vaccine strategies, and numerous studies are exploring their roles in preventing HIV-1 acquisition. We review examples of strategies for eliciting potentially protective HIV-1 inhibitory antibodies. Recent Findings Heterologous prime-boost strategies can yield anti-HIV immune responses; although only one (canarypox prime, Env protein boost) has been tested and shown positive results in an efficacy trial (RV144). Although the immune correlates of protection are as yet undefined, the reduced rate of acquisition without a significant effect on initial viral loads or CD4+ T cell counts, have raised the hypothesis of an RV144 vaccine-elicited transient protective B cell response. Summary In light of the RV144 trial, there is a critical need to define the entire functional spectrum of anti-HIV-1 antibodies, how easily each can be elicited, and how effective different types of antibody effector mechanisms can be in prevention of HIV-1 transmission. PMID:20978384

  19. Development of a novel anti-HIV-1 agent from within: Effect of chimeric Vpr-containing protease cleavage site residues on virus replication

    PubMed Central

    Serio, D.; Rizvi, T. A.; Cartas, M.; Kalyanaraman, V. S.; Weber, I. T.; Koprowski, H.; Srinivasan, A.

    1997-01-01

    Effective antiviral agents will be of great value in controlling virus replication and delaying the onset of HIV-1-related disease symptoms. Current therapy involves the use of antiviral agents that target the enzymatic functions of the virus, resulting in the emergence of resistant viruses to these agents, thus lowering their effectiveness. To overcome this problem, we have considered the idea of developing novel agents from within HIV-1 as inhibitors of virus replication. The specificity of the Vpr protein for the HIV-1 virus particle makes it an attractive molecule for the development of antiviral agents targeting the events associated with virus maturation. We have generated chimeric Vpr proteins containing HIV-1-specific sequences added to the C terminus of Vpr. These sequences correspond to nine cleavage sites of the Gag and Gag–Pol precursors of HIV-1. The chimeric Vpr constructs were introduced into HIV-1 proviral DNA to assess their effect on virus infectivity using single- and multiple-round replication assays. The virus particles generated exhibited a variable replication pattern depending on the protease cleavage site used as a fusion partner. Interestingly, the chimeric Vpr containing the cleavage sequences from the junction of p24 and p2, 24/2, completely abolished virus infectivity. These results show that chimeric proteins generated from within HIV-1 have the ability to suppress HIV-1 replication and make ideal agents for gene therapy or intracellular immunization to treat HIV-1 infection. PMID:9096396

  20. HIV-1 nucleocapsid and ESCRT-component Tsg101 interplay prevents HIV from turning into a DNA-containing virus.

    PubMed

    Chamontin, Célia; Rassam, Patrice; Ferrer, Mireia; Racine, Pierre-Jean; Neyret, Aymeric; Lainé, Sébastien; Milhiet, Pierre-Emmanuel; Mougel, Marylène

    2015-01-01

    HIV-1, the agent of the AIDS pandemic, is an RNA virus that reverse transcribes its RNA genome (gRNA) into DNA, shortly after its entry into cells. Within cells, retroviral assembly requires thousands of structural Gag proteins and two copies of gRNA as well as cellular factors, which converge to the plasma membrane in a finely regulated timeline. In this process, the nucleocapsid domain of Gag (GagNC) ensures gRNA selection and packaging into virions. Subsequent budding and virus release require the recruitment of the cellular ESCRT machinery. Interestingly, mutating GagNC results into the release of DNA-containing viruses, by promo-ting reverse transcription (RTion) prior to virus release, through an unknown mechanism. Therefore, we explored the biogenesis of these DNA-containing particles, combining live-cell total internal-reflection fluorescent microscopy, electron microscopy, trans-complementation assays and biochemical characterization of viral particles. Our results reveal that DNA virus production is the consequence of budding defects associated with Gag aggregation at the plasma membrane and deficiency in the recruitment of Tsg101, a key ESCRT-I component. Indeed, targeting Tsg101 to virus assembly sites restores budding, restricts RTion and favors RNA packaging into viruses. Altogether, our results highlight the role of GagNC in the spatiotemporal control of RTion, via an ESCRT-I-dependent mechanism. PMID:25488808

  1. Function of ubiquitin (Ub) specific protease 15 (USP15) in HIV-1 replication and viral protein degradation.

    PubMed

    Pyeon, Dohun; Timani, Khalid Amine; Gulraiz, Fahad; He, Johnny J; Park, In-Woo

    2016-09-01

    HIV-1 Nef is necessary and may be sufficient for HIV-1-associated AIDS pathogenicity, in that knockout of Nef alone can protect HIV-infected patients from AIDS. We therefore investigated the feasibility of physical knockout of Nef, using the host ubiquitin proteasome system in HIV-1-infected cells. Our co-immunoprecipitation analysis demonstrated that Nef interacted with ubiquitin specific protease 15 (USP15), and that USP15, which is known to stabilize cellular proteins, degraded Nef. Nef could also cause decay of USP15, although Nef-mediated degradation of USP15 was weaker than USP15-mediated Nef degradation. Direct interaction between Nef and USP15 was essential for the observed reciprocal decay of the proteins. Further, USP15 degraded not only Nef but also HIV-1 structural protein, Gag, thereby substantially inhibiting HIV-1 replication. However, Gag did not degrade USP15, indicating that the Nef and USP15 complex, in distinction to other viral proteins, play an integral role in coordinating viral protein degradation and hence HIV-1 replication. Moreover, Nef and USP15 globally suppressed ubiquitylation of cellular proteins, indicating that these proteins are major determinants for the stability of cellular as well as viral proteins. Taken together, these data indicate that Nef and USP15 are vital in regulating degradation of viral and cellular proteins and thus HIV-1 replication, and specific degradation of viral, not cellular proteins, by USP15 points to USP15 as a candidate therapeutic agent to combat AIDS by eliminating viral proteins from the infected cells via USP15-mediated proteosomal degradation. PMID:27460547

  2. Effect of rAd5-Vector HIV-1 Preventive Vaccines on HIV-1 Acquisition: A Participant-Level Meta-Analysis of Randomized Trials

    PubMed Central

    Huang, Yunda; Follmann, Dean; Nason, Martha; Zhang, Lily; Huang, Ying; Mehrotra, Devan V.; Moodie, Zoe; Metch, Barbara; Janes, Holly; Keefer, Michael C.; Churchyard, Gavin; Robb, Merlin L.; Fast, Patricia E.; Duerr, Ann; McElrath, M. Juliana; Corey, Lawrence; Mascola, John R.; Graham, Barney S.; Sobieszczyk, Magdalena E.; Kublin, James G.; Robertson, Michael; Hammer, Scott M.; Gray, Glenda E.; Buchbinder, Susan P.; Gilbert, Peter B.

    2015-01-01

    Background Three phase 2b, double-blind, placebo-controlled, randomized efficacy trials have tested recombinant Adenovirus serotype-5 (rAd5)-vector preventive HIV-1 vaccines: MRKAd5 HIV-1 gag/pol/nef in Step and Phambili, and DNA/rAd5 HIV-1 env/gag/pol in HVTN505. Due to efficacy futility observed at the first interim analysis in Step and HVTN505, participants of all three studies were unblinded to their vaccination assignments during the study but continued follow–up. Rigorous meta-analysis can provide crucial information to advise the future utility of rAd5-vector vaccines. Methods We included participant-level data from all three efficacy trials, and three Phase 1–2 trials evaluating the HVTN505 vaccine regimen. We predefined two co-primary analysis cohorts for assessing the vaccine effect on HIV-1 acquisition. The modified-intention-to-treat (MITT) cohort included all randomly assigned participants HIV-1 uninfected at study entry, who received at least the first vaccine/placebo, and the Ad5 cohort included MITT participants who received at least one dose of rAd5-HIV vaccine or rAd5-placebo. Multivariable Cox regression models were used to estimate hazard ratios (HRs) of HIV-1 infection (vaccine vs. placebo) and evaluate HR variation across vaccine regimens, time since vaccination, and subgroups using interaction tests. Findings Results are similar for the MITT and Ad5 cohorts; we summarize MITT cohort results. Pooled across the efficacy trials, over all follow-up time 403 (n = 224 vaccine; n = 179 placebo) of 6266 MITT participants acquired HIV-1, with a non-significantly higher incidence in vaccine recipients (HR 1.21, 95% CI 0.99–1.48, P = 0.06). The HRs significantly differed by vaccine regimen (interaction P = 0.03; MRKAd5 HR 1.41, 95% CI 1.11–1.78, P = 0.005 vs. DNA/rAd5 HR 0.88, 95% CI 0.61–1.26, P = 0.48). Results were similar when including the Phase 1–2 trials. Exploratory analyses based on the efficacy trials supported that the MRKAd5

  3. Structural And Functional Studies of ALIX Interactions With YPXnL Late Domains of HIV-1 And EIAV

    SciTech Connect

    Zhai, Q.; Fisher, R.D.; Chung, H.-Y.; Myszka, D.G.; Sundquist, W.I.; Hill, C.P.

    2009-05-28

    Retrovirus budding requires short peptide motifs (late domains) located within the viral Gag protein that function by recruiting cellular factors. The YPX{sub n}L late domains of HIV and other lentiviruses recruit the protein ALIX (also known as AIP1), which also functions in vesicle formation at the multivesicular body and in the abscission stage of cytokinesis. Here, we report the crystal structures of ALIX in complex with the YPX{sub n}L late domains from HIV-1 and EIAV. The two distinct late domains bind at the same site on the ALIX V domain but adopt different conformations that allow them to make equivalent contacts. Binding studies and functional assays verified the importance of key interface residues and revealed that binding affinities are tuned by context-dependent effects. These results reveal how YPX{sub n}L late domains recruit ALIX to facilitate virus budding and how ALIX can bind YPX{sub n}L sequences with both n = 1 and n = 3.

  4. Enhanced Anti-HIV Functional Activity Associated with Gag-Specific CD8 T-Cell Responses▿ †

    PubMed Central

    Julg, B.; Williams, K. L.; Reddy, S.; Bishop, K.; Qi, Y.; Carrington, M.; Goulder, P. J.; Ndung'u, T.; Walker, B. D.

    2010-01-01

    Effective HIV-specific T-cell immunity requires the ability to inhibit virus replication in the infected host, but the functional characteristics of cells able to mediate this effect are not well defined. Since Gag-specific CD8 T cells have repeatedly been associated with lower viremia, we examined the influence of Gag specificity on the ability of unstimulated CD8 T cells from chronically infected persons to inhibit virus replication in autologous CD4 T cells. Persons with broad (≥6; n = 13) or narrow (≤1; n = 13) Gag-specific responses, as assessed by gamma interferon enzyme-linked immunospot assay, were selected from 288 highly active antiretroviral therapy (HAART)-naive HIV-1 clade C-infected South Africans, matching groups for total magnitude of HIV-specific CD8 T-cell responses and CD4 T-cell counts. CD8 T cells from high Gag responders suppressed in vitro replication of a heterologous HIV strain in autologous CD4 cells more potently than did those from low Gag responders (P < 0.003) and were associated with lower viral loads in vivo (P < 0.002). As previously shown in subjects with low viremia, CD8 T cells from high Gag responders exhibited a more polyfunctional cytokine profile and a stronger ability to proliferate in response to HIV stimulation than did low Gag responders, which mainly exhibited monofunctional CD8 T-cell responses. Furthermore, increased polyfunctionality was significantly correlated with greater inhibition of viral replication in vitro. These data indicate that enhanced suppression of HIV replication is associated with broader targeting of Gag. We conclude that it is not the overall magnitude but rather the breadth, magnitude, and functional capacity of CD8 T-cell responses to certain conserved proteins, like Gag, which predict effective antiviral HIV-specific CD8 T-cell function. PMID:20335261

  5. Rab27a controls HIV-1 assembly by regulating plasma membrane levels of phosphatidylinositol 4,5-bisphosphate

    PubMed Central

    Gerber, Pehuén Pereyra; Cabrini, Mercedes; Jancic, Carolina; Paoletti, Luciana; Banchio, Claudia; von Bilderling, Catalina; Sigaut, Lorena; Pietrasanta, Lía I.; Duette, Gabriel; Freed, Eric O.; de Saint Basile, Genevieve; Moita, Catarina Ferreira; Moita, Luis Ferreira; Amigorena, Sebastian; Benaroch, Philippe; Geffner, Jorge

    2015-01-01

    During the late stages of the HIV-1 replication cycle, the viral polyprotein Pr55Gag is recruited to the plasma membrane (PM), where it binds phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and directs HIV-1 assembly. We show that Rab27a controls the trafficking of late endosomes carrying phosphatidylinositol 4-kinase type 2 α (PI4KIIα) toward the PM of CD4+ T cells. Hence, Rab27a promotes high levels of PM phosphatidylinositol 4-phosphate and the localized production of PI(4,5)P2, therefore controlling Pr55Gag membrane association. Rab27a also controls PI(4,5)P2 levels at the virus-containing compartments of macrophages. By screening Rab27a effectors, we identified that Slp2a, Slp3, and Slac2b are required for the association of Pr55Gag with the PM and that Slp2a cooperates with Rab27a in the recruitment of PI4KIIα to the PM. We conclude that by directing the trafficking of PI4KIIα-positive endosomes toward the PM, Rab27a controls PI(4,5)P2 production and, consequently, HIV-1 replication. PMID:25940347

  6. HIV-1 Adapts To Replicate in Cells Expressing Common Marmoset APOBEC3G and BST2

    PubMed Central

    Fernández-Oliva, Alberto; Finzi, Andrés; Haim, Hillel; Menéndez-Arias, Luis; Sodroski, Joseph

    2015-01-01

    ABSTRACT Previous studies have shown that a major block to HIV-1 replication in common marmosets operates at the level of viral entry and that this block can be overcome by adaptation of the virus in tissue-cultured cells. However, our current studies indicate that HIV-1 encounters additional postentry blocks in common marmoset peripheral blood mononuclear cells. Here, we show that the common marmoset APOBEC3G (A3G) and BST2 proteins block HIV-1 in cell cultures. Using a directed-evolution method that takes advantage of the natural ability of HIV-1 to mutate during replication, we have been able to overcome these blocks in tissue-cultured cells. In the adapted viruses, specific changes were observed in gag, vif, env, and nef. The contribution of these changes to virus replication in the presence of the A3G and BST2 restriction factors was studied. We found that certain amino acid changes in Vif and Env that arise during adaptation to marmoset A3G and BST2 allow the virus to replicate in the presence of these restriction factors. The changes in Vif reduce expression levels and encapsidation of marmoset APOBEC3G, while the changes in Env increase viral fitness and discretely favor cell-to-cell transmission of the virus, allowing viral escape from these restriction factors. IMPORTANCE HIV-1 can infect only humans and chimpanzees. The main reason for this narrow tropism is the presence in many species of dominant-acting factors, known as restriction factors, that block viral replication in a species-specific way. We have been exploring the blocks to HIV-1 in common marmosets, with the ultimate goal of developing a new animal model of HIV-1 infection in these monkeys. In this study, we observed that common marmoset APOBEC3G and BST2, two known restriction factors, are able to block HIV-1 in cell cultures. We have adapted HIV-1 to replicate in the presence of these restriction factors and have characterized the mechanisms of escape. These studies can help in the

  7. Microbial exposure alters HIV-1-induced mucosal CD4+ T cell death pathways Ex vivo

    PubMed Central

    2014-01-01

    Background Early HIV-1 infection causes massive CD4+ T cell death in the gut and translocation of bacteria into the circulation. However, the programmed cell death (PCD) pathways used by HIV-1 to kill CD4+ T cells in the gut, and the impact of microbial exposure on T cell loss, remain unclear. Understanding mucosal HIV-1 triggered PCD could be advanced by an ex vivo system involving lamina propria mononuclear cells (LPMCs). We therefore modeled the interactions of gut LPMCs, CCR5-tropic HIV-1 and a commensal gut bacterial species, Escherichia coli. In this Lamina Propria Aggregate Culture (LPAC) model, LPMCs were infected with HIV-1BaL by spinoculation and cultured in the presence or absence of heat killed E.coli. CD4+ T cell numbers derived from flow cytometry and viable cell counts were reported relative to mock infection. Viable cells were identified by viability dye exclusion (AqVi), and intracellular HIV-1 Gag p24 protein was used to identify infected cells. Annexin V and AqVi were used to identify apoptotic versus necrotic cells. Caspase-1 and Caspase-3 activities were blocked using specific inhibitors YVAD and DEVD, respectively. Results CD4+ T cell depletion following HIV-1 infection was reproducibly observed by 6 days post infection (dpi). Depletion at 6 dpi strongly correlated with infection frequency at 4 dpi, was significantly blocked by Efavirenz treatment, and was primarily driven by p24-negative cells that were predominantly necrotic. HIV-1 infection significantly induced CD4+ T-cell intrinsic Caspase-1 activity, whereas Caspase-1 inhibition, but not Caspase-3 inhibition, significantly blocked CD4+ T cell depletion. Exposure to E.coli enhanced HIV-1 infection and CD4+ T depletion, and significantly increased the number of apoptotic p24+ cells. Notably, CD4+ T cell depletion in the presence of E.coli was partially blocked by Caspase-3, but not by Caspase-1 inhibition. Conclusions In the LPAC model, HIV-1 induced Caspase-1 mediated pyroptosis in

  8. Identification of unique reciprocal and non reciprocal cross packaging relationships between HIV-1, HIV-2 and SIV reveals an efficient SIV/HIV-2 lentiviral vector system with highly favourable features for in vivo testing and clinical usage

    PubMed Central

    Strappe, Padraig M; Hampton, David W; Brown, Douglas; Cachon-Gonzalez, Begona; Caldwell, Maeve; Fawcett, James W; Lever, Andrew ML

    2005-01-01

    Background Lentiviral vectors have shown immense promise as vehicles for gene delivery to non-dividing cells particularly to cells of the central nervous system (CNS). Improvements in the biosafety of viral vectors are paramount as lentiviral vectors move into human clinical trials. This study investigates the packaging relationship between gene transfer (vector) and Gag-Pol expression constructs of HIV-1, HIV-2 and SIV. Cross-packaged vectors expressing GFP were assessed for RNA packaging, viral vector titre and their ability to transduce rat primary glial cell cultures and human neural stem cells. Results HIV-1 Gag-Pol demonstrated the ability to cross package both HIV-2 and SIV gene transfer vectors. However both HIV-2 and SIV Gag-Pol showed a reduced ability to package HIV-1 vector RNA with no significant gene transfer to target cells. An unexpected packaging relationship was found to exist between HIV-2 and SIV with SIV Gag-Pol able to package HIV-2 vector RNA and transduce dividing SV2T cells and CNS cell cultures with an efficiency equivalent to the homologous HIV-1 vector however HIV-2 was unable to deliver SIV based vectors. Conclusion This new non-reciprocal cross packaging relationship between SIV and HIV-2 provides a novel way of significantly increasing bio-safety with a reduced sequence homology between the HIV-2 gene transfer vector and the SIV Gag-Pol construct thus ensuring that vector RNA packaging is unidirectional. PMID:16168051

  9. Stimulation of HIV-1 Replication in Immature Dendritic Cells in Contact with Primary CD4 T or B Lymphocytes ▿

    PubMed Central

    Holl, Vincent; Xu, Ke; Peressin, Maryse; Lederle, Alexandre; Biedma, Marina Elizabeth; Delaporte, Maryse; Decoville, Thomas; Schmidt, Sylvie; Laumond, Géraldine; Aubertin, Anne-Marie; Moog, Christiane

    2010-01-01

    Sexual transmission is the major route of HIV-1 infection worldwide. Dendritic cells (DCs) from the mucosal layers are considered to be the initial targets of HIV-1 and probably play a crucial role in HIV-1 transmission. We investigated the role of cell-to-cell contact between HIV-1-exposed immature DCs and various lymphocyte subsets in the stimulation of HIV-1 replication. We found that HIV-1 replication and production in DCs were substantially enhanced by the coculture of DCs with primary CD4 T or nonpermissive B lymphocytes but not with primary activated CD8 T lymphocytes or human transformed CD4 T lymphocytes. Most of the new virions released by cocultures of HIV-1-exposed immature DCs and primary B lymphocytes expressed the DC-specific marker CD1a and were infectious for both immature DCs and peripheral blood mononuclear cells (PBMCs). Cocultured DCs thus produced large numbers of infectious viral particles under these experimental conditions. The soluble factors present in the supernatants of the cocultures were not sufficient to enhance HIV-1 replication in DCs, for which cell-to-cell contact was required. The neutralizing monoclonal antibody IgG1b12 and polyclonal anti-HIV-1 sera efficiently blocked HIV-1 transfer to CD4 T lymphocytes but did not prevent the increase in viral replication in DCs. Neutralizing antibodies thus proved to be more efficient at blocking HIV-1 transfer than previously thought. Our findings show that HIV-1 exploits DC-lymphocyte cross talk to upregulate replication within the DC reservoir. We provide evidence for a novel mechanism that may facilitate HIV-1 replication and transmission. This mechanism may favor HIV-1 pathogenesis, immune evasion, and persistence. PMID:20147388

  10. A Phase I Randomized Therapeutic MVA-B Vaccination Improves the Magnitude and Quality of the T Cell Immune Responses in HIV-1-Infected Subjects on HAART

    PubMed Central

    Gómez, Carmen Elena; Perdiguero, Beatriz; García-Arriaza, Juan; Cepeda, Victoria; Sánchez-Sorzano, Carlos Óscar; Mothe, Beatriz; Jiménez, José Luis; Muñoz-Fernández, María Ángeles; Gatell, Jose M.; López Bernaldo de Quirós, Juan Carlos; Brander, Christian; García, Felipe; Esteban, Mariano

    2015-01-01

    Trial Design Previous studies suggested that poxvirus-based vaccines might be instrumental in the therapeutic HIV field. A phase I clinical trial was conducted in HIV-1-infected patients on highly active antiretroviral therapy (HAART), with CD4 T cell counts above 450 cells/mm3 and undetectable viremia. Thirty participants were randomized (2:1) to receive either 3 intramuscular injections of MVA-B vaccine (coding for clade B HIV-1 Env, Gag, Pol and Nef antigens) or placebo, followed by interruption of HAART. Methods The magnitude, breadth, quality and phenotype of the HIV-1-specific T cell response were assayed by intracellular cytokine staining (ICS) in 22 volunteers pre- and post-vaccination. Results MVA-B vaccine induced newly detected HIV-1-specific CD4 T cell responses and expanded pre-existing responses (mostly against Gag, Pol and Nef antigens) that were high in magnitude, broadly directed and showed an enhanced polyfunctionality with a T effector memory (TEM) phenotype, while maintaining the magnitude and quality of the pre-existing HIV-1-specific CD8 T cell responses. In addition, vaccination also triggered preferential CD8+ T cell polyfunctional responses to the MVA vector antigens that increase in magnitude after two and three booster doses. Conclusion MVA-B vaccination represents a feasible strategy to improve T cell responses in individuals with pre-existing HIV-1-specific immunity. Trial Registration ClinicalTrials.gov NCT01571466 PMID:26544853

  11. HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can elicit IL-10 production and T cell regulation

    NASA Astrophysics Data System (ADS)

    Granelli-Piperno, Angela; Golebiowska, Angelika; Trumpfheller, Christine; Siegal, Frederick P.; Steinman, Ralph M.

    2004-05-01

    Dendritic cells (DCs) undergo maturation during virus infection and thereby become potent stimulators of cell-mediated immunity. HIV-1 replicates in immature DCs, but we now find that infection is not accompanied by many components of maturation in either infected cells or uninfected bystanders. The infected cultures do not develop potent stimulating activity for the mixed leukocyte reaction (MLR), and the DCs producing HIV-1 gag p24 do not express CD83 and DC-lysosome-associated membrane protein maturation markers. If different maturation stimuli are applied to DCs infected with HIV-1, the infected cells selectively fail to mature. When DCs from HIV-1-infected patients are infected and cultured with autologous T cells, IL-10 was produced in 6 of 10 patients. These DC-T cell cocultures could suppress another immune response, the MLR. The regulation was partially IL-10-dependent and correlated in extent with the level of IL-10 produced. Suppressor cells only developed from infected patients, rather than healthy controls, and the DCs had to be exposed to live virus rather than HIV-1 gag peptides or protein. These results indicate that HIV-1-infected DCs have two previously unrecognized means to evade immune responses: maturation can be blocked reducing the efficacy of antigen presentation from infected cells, and T cell-dependent suppression can be induced.

  12. Dendritic Cells from HIV Controllers Have Low Susceptibility to HIV-1 Infection In Vitro but High Capacity to Capture HIV-1 Particles

    PubMed Central

    Hamimi, Chiraz; David, Annie; Versmisse, Pierre; Weiss, Laurence; Bruel, Timothée; Zucman, David; Appay, Victor; Moris, Arnaud; Ungeheuer, Marie-Noëlle; Lascoux-Combe, Caroline; Barré-Sinoussi, Françoise; Muller-Trutwin, Michaela; Boufassa, Faroudy; Lambotte, Olivier; Pancino, Gianfranco; Sáez-Cirión, Asier

    2016-01-01

    HIV controllers (HICs), rare HIV-1 infected individuals able to control viral replication without antiretroviral therapy, are characterized by an efficient polyfunctional and cytolytic HIV-specific CD8+ T cell response. The mechanisms underlying the induction and maintenance of such response in many HICs despite controlled viremia are not clear. Dendritic cells play a crucial role in the generation and reactivation of T cell responses but scarce information is available on those cells in HICs. We found that monocyte derived dendritic cells (MDDCs) from HICs are less permissive to HIV-1 infection than cells from healthy donors. In contrast MDDCs from HICs are particularly efficient at capturing HIV-1 particles when compared to cells from healthy donors or HIV-1 patients with suppressed viral load on antiretroviral treatment. MDDCs from HICs expressed on their surface high levels of syndecan-3, DC-SIGN and MMR, which could cooperate to facilitate HIV-1 capture. The combination of low susceptibility to HIV-1 infection but enhanced capacity to capture particles might allow MDDCs from HICs to preserve their function from the deleterious effect of infection while facilitating induction of HIV-specific CD8+ T cells by cross-presentation in a context of low viremia. PMID:27505169

  13. Dendritic Cells from HIV Controllers Have Low Susceptibility to HIV-1 Infection In Vitro but High Capacity to Capture HIV-1 Particles.

    PubMed

    Hamimi, Chiraz; David, Annie; Versmisse, Pierre; Weiss, Laurence; Bruel, Timothée; Zucman, David; Appay, Victor; Moris, Arnaud; Ungeheuer, Marie-Noëlle; Lascoux-Combe, Caroline; Barré-Sinoussi, Françoise; Muller-Trutwin, Michaela; Boufassa, Faroudy; Lambotte, Olivier; Pancino, Gianfranco; Sáez-Cirión, Asier

    2016-01-01

    HIV controllers (HICs), rare HIV-1 infected individuals able to control viral replication without antiretroviral therapy, are characterized by an efficient polyfunctional and cytolytic HIV-specific CD8+ T cell response. The mechanisms underlying the induction and maintenance of such response in many HICs despite controlled viremia are not clear. Dendritic cells play a crucial role in the generation and reactivation of T cell responses but scarce information is available on those cells in HICs. We found that monocyte derived dendritic cells (MDDCs) from HICs are less permissive to HIV-1 infection than cells from healthy donors. In contrast MDDCs from HICs are particularly efficient at capturing HIV-1 particles when compared to cells from healthy donors or HIV-1 patients with suppressed viral load on antiretroviral treatment. MDDCs from HICs expressed on their surface high levels of syndecan-3, DC-SIGN and MMR, which could cooperate to facilitate HIV-1 capture. The combination of low susceptibility to HIV-1 infection but enhanced capacity to capture particles might allow MDDCs from HICs to preserve their function from the deleterious effect of infection while facilitating induction of HIV-specific CD8+ T cells by cross-presentation in a context of low viremia. PMID:27505169

  14. HIV-1 protease-induced apoptosis

    PubMed Central

    2014-01-01

    Background Apoptosis is one of the presumptive causes of CD4+ T cell depletion during HIV infection and progression to AIDS. However, the precise role of HIV-1 in this process remains unexplained. HIV-1 protease (PR) has been suggested as a possible factor, but a direct link between HIV-1 PR enzymatic activity and apoptosis has not been established. Results Here, we show that expression of active HIV-1 PR induces death in HeLa and HEK-293 cells via the mitochondrial apoptotic pathway. This conclusion is based on in vivo observations of the direct localization of HIV-1 PR in mitochondria, a key player in triggering apoptosis. Moreover, we observed an HIV-1 PR concentration-dependent decrease in mitochondrial membrane potential and the role of HIV-1 PR in activation of caspase 9, PARP cleavage and DNA fragmentation. In addition, in vitro data demonstrated that HIV-1 PR mediates cleavage of mitochondrial proteins Tom22, VDAC and ANT, leading to release of AIF and Hsp60 proteins. By using yeast two-hybrid screening, we also identified a new HIV-1 PR interaction partner, breast carcinoma-associated protein 3 (BCA3). We found that BCA3 accelerates p53 transcriptional activity on the bax promoter, thus elevating the cellular level of pro-apoptotic Bax protein. Conclusion In summary, our results describe the involvement of HIV-1 PR in apoptosis, which is caused either by a direct effect of HIV-1 PR on mitochondrial membrane integrity or by its interaction with cellular protein BCA3. PMID:24886575

  15. High Prevalence of HIV-1 Intersubtype B′/C Recombinants among Injecting Drug Users in Dehong, China

    PubMed Central

    Han, Xiaoxu; An, Minghui; Zhao, Bin; Duan, Song; Yang, Shaomin; Xu, Junjie; Zhang, Min; McGoogan, Jennifer M.; Takebe, Yutaka; Shang, Hong

    2013-01-01

    Objective To examine the distribution of HIV-1 genotypes among injecting drug users (IDUs) from Dehong, Yunnan province. Materials and Methods Blood samples from a total of 95 HIV-positive IDUs were retrospectively analyzed. Samples were collected between 2005 and 2009 from four cities in Dehong prefecture, western Yunnan province, the geographical origin of the HIV epidemic in China. HIV-1 gag, partial pol, vpr-env fragment, half-genome, or near-full-length sequences were analyzed to determine the HIV-1 genotypes of each subject. Results were compared with findings from past studies of IDUs in Dehong and in neighboring Myanmar. Results We observed a high prevalence of B′/C recombinants (82.4%) among IDUs in Dehong, the structural profiles of which do not match those previously reported in Dehong or in Myanmar. Furthermore, statistically significant differences in geographical and temporal distributions of HIV-1 genotypes were characterized by a predominance of HIV-1 B′/C recombinant forms among older subjects(p = 0.034), subjects from Longchuan district (p = 0.022), and subjects diagnosed between 2000 and 2004 (p = 0.004). Conclusions The increasing prevalence of multiple, new B′/C recombinant forms suggest that HIV-1 intersubtype recombination is substantial and ongoing in western Yunnan. This reflects the high-risk behavior of IDUs in this region and argues the need for stronger monitoring and prevention measures in Dehong and other high-prevalence areas around China. PMID:23741489

  16. Design and implementation of a particle concentration fluorescence method for the detection of HIV-1 protease inhibitors.

    PubMed

    Manetta, J V; Lai, M H; Osborne, H E; Dee, A; Margolin, N; Sportsman, J R; Vlahos, C J; Yan, S B; Heath, W F

    1992-04-01

    A critical step in the replicative cycle of the human immunodeficiency virus HIV-1 involves the proteolytic processing of the polyprotein products Prgag and Prgag-pol that are encoded by the gag and pol genes in the viral genome. Inhibitors of this processing step have the potential to be important therapeutic agents in the management of acquired immunodeficiency syndrome. Current assays for inhibitors of HIV-1 protease are slow, cumbersome, or susceptible to interference by test compounds. An approach to the generation of a rapid, sensitive assay for HIV-1 protease inhibitors that is devoid of interference problems is to use a capture system which allows for isolation of the products from the reaction mixture prior to signal quantitation. In this paper, we describe a novel method for the detection of HIV-1 protease inhibitors utilizing the concept of particle concentration fluorescence. Our approach involves the use of the HIV-1 protease peptide substrate Ser-Gln-Asn-Tyr-Pro-Ile-Val which has been modified to contain a biotin moiety on one side and a fluorescein reporter molecule on the other side of the scissile Tyr-Pro bond. This substrate is efficiently cleaved by the HIV-1 protease and the reaction can be readily quantitated. Known inhibitors of the protease were readily detected using this new assay. In addition, this approach is compatible with existing instrumentation in use for broad screening and is highly sensitive, accurate, and reproducible. PMID:1621970

  17. RNA and DNA binding properties of HIV-1 Vif protein: a fluorescence study.

    PubMed

    Bernacchi, Serena; Henriet, Simon; Dumas, Philippe; Paillart, Jean-Christophe; Marquet, Roland

    2007-09-01

    The HIV-1 viral infectivity factor (Vif) is a small basic protein essential for viral fitness and pathogenicity. Some "non-permissive" cell lines cannot sustain replication of Vif(-) HIV-1 virions. In these cells, Vif counteracts the natural antiretroviral activity of the DNA-editing enzymes APOBEC3G/3F. Moreover, Vif is packaged into viral particles through a strong interaction with genomic RNA in viral nucleoprotein complexes. To gain insights into determinants of this binding process, we performed the first characterization of Vif/nucleic acid interactions using Vif intrinsic fluorescence. We determined the affinity of Vif for RNA fragments corresponding to various regions of the HIV-1 genome. Our results demonstrated preferential and moderately cooperative binding for RNAs corresponding to the 5'-untranslated region of HIV-1 (5'-untranslated region) and gag (cooperativity parameter omega approximately 65-80, and K(d) = 45-55 nM). In addition, fluorescence spectroscopy allowed us to point out the TAR apical loop and a short region in gag as primary strong affinity binding sites (K(d) = 9.5-14 nM). Interestingly, beside its RNA binding properties, the Vif protein can also bind the corresponding DNA oligonucleotides and their complementary counterparts with an affinity similar to the one observed for the RNA sequences, while other DNA sequences displayed reduced affinity. Taken together, our results suggest that Vif binding to RNA and DNA offers several non-exclusive ways to counteract APOBEC3G/3F factors, in addition to the well documented Vif-induced degradation by the proteasome and to the Vif-mediated repression of translation of these antiviral factors. PMID:17609216

  18. Electron Cryotomography Studies of Maturing HIV-1 Particles Reveal the Assembly Pathway of the Viral Core

    PubMed Central

    Woodward, Cora L.; Cheng, Sarah N.

    2014-01-01

    ABSTRACT To better characterize the assembly of the HIV-1 core, we have used electron cryotomography (ECT) to image infected cells and the viral particles cryopreserved next to them. We observed progressive stages of virus assembly and egress, including flower-like flat Gag lattice assemblies, hemispherical budding profiles, and virus buds linked to the plasma membrane via a thin membrane neck. The population of budded viral particles contains immature, maturation-intermediate, and mature core morphologies. Structural characteristics of the maturation intermediates suggest that the core assembly pathway involves the formation of a CA sheet that associates with the condensed ribonucleoprotein (RNP) complex. Our analysis also reveals a correlation between RNP localization within the viral particle and the formation of conical cores, suggesting that the RNP helps drive conical core assembly. Our findings support an assembly pathway for the HIV-1 core that begins with a small CA sheet that associates with the RNP to form the core base, followed by polymerization of the CA sheet along one side of the conical core toward the tip, and then closure around the body of the cone. IMPORTANCE During HIV-1 assembly and release, the Gag polyprotein is organized into a signature hexagonal lattice, termed the immature lattice. To become infectious, the newly budded virus must disassemble the immature lattice by proteolyzing Gag and then reassemble the key proteolytic product, the structural protein p24 (CA), into a distinct, mature hexagonal lattice during a process termed maturation. The mature HIV-1 virus contains a conical capsid that encloses the condensed viral genome at its wide base. Mutations or small molecules that interfere with viral maturation also disrupt viral infectivity. Little is known about the assembly pathway that results in the conical core and genome encapsidation. Here, we have used electron cryotomography to structurally characterize HIV-1 particles that are

  19. Selected Drugs with Reported Secondary Cell-Differentiating Capacity Prime Latent HIV-1 Infection for Reactivation

    PubMed Central

    Shishido, Takao; Wolschendorf, Frank; Duverger, Alexandra; Wagner, Frederic; Kappes, John; Jones, Jennifer

    2012-01-01

    Reactivation of latent HIV-1 infection is considered our best therapeutic means to eliminate the latent HIV-1 reservoir. Past therapeutic attempts to systemically trigger HIV-1 reactivation using single drugs were unsuccessful. We thus sought to identify drug combinations consisting of one component that would lower the HIV-1 reactivation threshold and a synergistic activator. With aclacinomycin and dactinomycin, we initially identified two FDA-approved drugs that primed latent HIV-1 infection in T cell lines and in primary T cells for reactivation and facilitated complete reactivation at the population level. This effect was correlated not with the reported primary drug effects but with the cell-differentiating capacity of the drugs. We thus tested other cell-differentiating drugs/compounds such as cytarabine and aphidicolin and found that they also primed latent HIV-1 infection for reactivation. This finding extends the therapeutic promise of N′-N′-hexamethylene-bisacetamide (HMBA), another cell-differentiating agent that has been reported to trigger HIV-1 reactivation, into the group of FDA-approved drugs. To this end, it is also noteworthy that suberoylanilide hydroxamic acid (SAHA), a polar compound that was initially developed as a second-generation cell-differentiating agent using HMBA as a structural template and which is now marketed as the histone deacetylase (HDAC) inhibitor vorinostat, also has been reported to trigger HIV-1 reactivation. Our findings suggest that drugs with primary or secondary cell-differentiating capacity should be revisited as HIV-1-reactivating agents as some could potentially be repositioned as candidate drugs to be included in an induction therapy to trigger HIV-1 reactivation. PMID:22696646

  20. Selected drugs with reported secondary cell-differentiating capacity prime latent HIV-1 infection for reactivation.

    PubMed

    Shishido, Takao; Wolschendorf, Frank; Duverger, Alexandra; Wagner, Frederic; Kappes, John; Jones, Jennifer; Kutsch, Olaf

    2012-09-01

    Reactivation of latent HIV-1 infection is considered our best therapeutic means to eliminate the latent HIV-1 reservoir. Past therapeutic attempts to systemically trigger HIV-1 reactivation using single drugs were unsuccessful. We thus sought to identify drug combinations consisting of one component that would lower the HIV-1 reactivation threshold and a synergistic activator. With aclacinomycin and dactinomycin, we initially identified two FDA-approved drugs that primed latent HIV-1 infection in T cell lines and in primary T cells for reactivation and facilitated complete reactivation at the population level. This effect was correlated not with the reported primary drug effects but with the cell-differentiating capacity of the drugs. We thus tested other cell-differentiating drugs/compounds such as cytarabine and aphidicolin and found that they also primed latent HIV-1 infection for reactivation. This finding extends the therapeutic promise of N'-N'-hexamethylene-bisacetamide (HMBA), another cell-differentiating agent that has been reported to trigger HIV-1 reactivation, into the group of FDA-approved drugs. To this end, it is also noteworthy that suberoylanilide hydroxamic acid (SAHA), a polar compound that was initially developed as a second-generation cell-differentiating agent using HMBA as a structural template and which is now marketed as the histone deacetylase (HDAC) inhibitor vorinostat, also has been reported to trigger HIV-1 reactivation. Our findings suggest that drugs with primary or secondary cell-differentiating capacity should be revisited as HIV-1-reactivating agents as some could potentially be repositioned as candidate drugs to be included in an induction therapy to trigger HIV-1 reactivation. PMID:22696646

  1. SAMHD1 Limits HIV-1 Antigen Presentation by Monocyte-Derived Dendritic Cells

    PubMed Central

    Bruel, Timothée; Cardinaud, Sylvain; Porrot, Françoise; Prado, Julia G.; Moris, Arnaud

    2015-01-01

    ABSTRACT Monocyte-derived dendritic cells (MDDC) stimulate CD8+ cytotoxic T lymphocytes (CTL) by presenting endogenous and exogenous viral peptides via major histocompatibility complex class I (MHC-I) molecules. MDDC are poorly susceptible to HIV-1, in part due to the presence of SAMHD1, a cellular enzyme that depletes intracellular deoxynucleoside triphosphates (dNTPs) and degrades viral RNA. Vpx, an HIV-2/SIVsm protein absent from HIV-1, antagonizes SAMHD1 by inducing its degradation. The impact of SAMHD1 on the adaptive cellular immune response remains poorly characterized. Here, we asked whether SAMHD1 modulates MHC-I-restricted HIV-1 antigen presentation. Untreated MDDC or MDDC pretreated with Vpx were exposed to HIV-1, and antigen presentation was examined by monitoring the activation of an HIV-1 Gag-specific CTL clone. SAMHD1 depletion strongly enhanced productive infection of MDDC as well as endogenous HIV-1 antigen presentation. Time-lapse microscopy analysis demonstrated that in the absence of SAMHD1, the CTL rapidly killed infected MDDC. We also report that various transmitted/founder (T/F) HIV-1 strains poorly infected MDDC and, as a consequence, did not stimulate CTL. Vesicular stomatitis virus glycoprotein (VSV-G) pseudotyping of T/F alleviated a block in viral entry and induced antigen presentation only in the absence of SAMHD1. Furthermore, by using another CTL clone that mostly recognizes incoming HIV-1 antigens, we demonstrate that SAMHD1 does not influence exogenous viral antigen presentation. Altogether, our results demonstrate that the antiviral activity of SAMHD1 impacts antigen presentation by DC, highlighting the link that exists between restriction factors and adaptive immune responses. IMPORTANCE Upon viral infection, DC may present antigens derived from incoming viral material in the absence of productive infection of DC or from newly synthesized viral proteins. In the case of HIV, productive infection of DC is blocked at an early

  2. Defining the level of human immunodeficiency virus type 1 (HIV-1) protease activity required for HIV-1 particle maturation and infectivity.

    PubMed Central

    Rosé, J R; Babé, L M; Craik, C S

    1995-01-01

    The human immunodeficiency virus type 1 (HIV-1) protease is the enzyme required for processing of the Gag and Gag-Pol polyproteins to yield mature, infectious virions. Although the complete absence of proteolytic activity prevents maturation, the level of activity sufficient for maturation and subsequent infectivity has not been determined. Amino acid substitutions that reduce catalytic activity without affecting substrate recognition have been engineered into the active site of the HIV-1 protease. The catalytic efficiency (kcat) of the HIV-1 protease is decreased 4-fold when threonine 26 is replaced by serine (T26S) and approximately 50-fold when alanine 28 is replaced by serine (A28S). Genes containing these mutations were cloned into a proviral vector for analysis of their effects on virion maturation and infectivity. The results show that virions containing the T26S protease variant, in which only 25% of the protease is active, are very similar to wild-type virions, although slight reductions in infectivity are observed. Virions containing the A28S protease variant are not infectious, even though a limited amount of polyprotein processing does occur. There appears to be a linear correlation between the level of protease activity and particle infectivity. Our observations suggest that a threshold of protease activity exists between a 4-fold and 50-fold reduction, below which processing is insufficient to yield infectious particles. Our data also suggest that a reduction of protease activity by 50-fold or greater is sufficient to prevent the formation of infectious particles. PMID:7535864

  3. Electrostatic Interactions Drive Membrane Association of the Human Immunodeficiency Virus Type 1 Gag MA Domain▿

    PubMed Central

    Dalton, Amanda K.; Ako-Adjei, Danso; Murray, Paul S.; Murray, Diana; Vogt, Volker M.

    2007-01-01

    The assembly of most retroviruses occurs at the plasma membrane. Membrane association is directed by MA, the N-terminal domain of the Gag structural protein. For human immunodeficiency virus type 1 (HIV-1), this association is mediated in part by a myristate fatty acid modification. Conflicting evidence has been presented on the relative importance of myristoylation, of ionic interactions between protein and membrane, and of Gag multimerization in membrane association in vivo. We addressed these questions biochemically by determining the affinity of purified myristoylated HIV-1 MA for liposomes of defined composition, both for monomeric and for dimeric forms of the protein. Myristoylation increases the barely detectable intrinsic affinity of the apo-protein for liposomes by only 10-fold, and the resulting affinity is still weak, similar to that of the naturally nonmyristoylated MA of Rous sarcoma virus. Membrane binding of HIV-1 MA is absolutely dependent on the presence of negatively charged lipid and is abrogated at high ionic strength. Forced dimerization of MA increases its membrane affinity by several orders of magnitude. When green fluorescent protein fusions of monomeric or dimeric MA are expressed in cells, the dimeric but not the monomeric protein becomes strongly membrane associated. Computational modeling supports these results and suggests a molecular mechanism for the modest effect of myristoylation on binding, wherein the membrane provides a hydrophobic environment for the myristate that is energetically similar to that provided by the protein. Overall, the results imply that the driving force for membrane association stems largely from ionic interactions between multimerized Gag and negatively charged phospholipids. PMID:17392361

  4. A unique spumavirus Gag N-terminal domain with functional properties of orthoretroviral matrix and capsid.

    PubMed

    Goldstone, David C; Flower, Thomas G; Ball, Neil J; Sanz-Ramos, Marta; Yap, Melvyn W; Ogrodowicz, Roksana W; Stanke, Nicole; Reh, Juliane; Lindemann, Dirk; Stoye, Jonathan P; Taylor, Ian A

    2013-05-01

    The Spumaretrovirinae, or foamyviruses (FVs) are complex retroviruses that infect many species of monkey and ape. Although FV infection is apparently benign, trans-species zoonosis is commonplace and has resulted in the isolation of the Prototypic Foamy Virus (PFV) from human sources and the potential for germ-line transmission. Despite little sequence homology, FV and orthoretroviral Gag proteins perform equivalent functions, including genome packaging, virion assembly, trafficking and membrane targeting. In addition, PFV Gag interacts with the FV Envelope (Env) protein to facilitate budding of infectious particles. Presently, there is a paucity of structural information with regards FVs and it is unclear how disparate FV and orthoretroviral Gag molecules share the same function. Therefore, in order to probe the functional overlap of FV and orthoretroviral Gag and learn more about FV egress and replication we have undertaken a structural, biophysical and virological study of PFV-Gag. We present the crystal structure of a dimeric amino terminal domain from PFV, Gag-NtD, both free and in complex with the leader peptide of PFV Env. The structure comprises a head domain together with a coiled coil that forms the dimer interface and despite the shared function it is entirely unrelated to either the capsid or matrix of Gag from other retroviruses. Furthermore, we present structural, biochemical and virological data that reveal the molecular details of the essential Gag-Env interaction and in addition we also examine the specificity of Trim5α restriction of PFV. These data provide the first information with regards to FV structural proteins and suggest a model for convergent evolution of gag genes where structurally unrelated molecules have become functionally equivalent. PMID:23675305

  5. Is acupuncturing effective in controlling the gag reflex during dental procedures? A review of literature

    PubMed Central

    Daneshkazemi, Alireza; Daneshkazemi, Pedram; Davoudi, Amin; Badrian, Hamid; Firouzabadi, Vahid Pourtalebi

    2016-01-01

    Traditional acupuncture has been introduced more than 2500 years ago which provides an alternative and complementary option during clinical practices. Its main mechanism is based on stimulating the nerves by altering the processes and perception of pain transmitters. It facilitates releasing natural pain relievers such as endorphins and serotonin. Its success for various dental procedures has been proved earlier. However, its effects on controlling the gag reflex seem to be overlooked. The gag reflex is recognized as a protective reaction for stopping the entrance of any foreign bodies into the oropharynx. Pronounced gag reflexes can have negative impacts on the quality of dental procedures. Many techniques have been suggested for managing this reflex and acupuncturing is one of those which seems to be overlooked recently. The aim of this paper is reviewing the published high-quality researches about the efficacy of this technique for eliminating the gag reflex during dental procedures. PMID:27212742

  6. A Novel Drug-Resistant HIV-1 Circulating Recombinant Form CRF76_01B Identified by Near Full-Length Genome Analysis.

    PubMed

    Ogawa, Satoko; Hachiya, Atsuko; Hosaka, Masumi; Matsuda, Masakazu; Ode, Hirotaka; Shigemi, Urara; Okazaki, Reiko; Sadamasu, Kenji; Nagashima, Mami; Toyokawa, Takao; Tateyama, Masao; Tanaka, Yasuhito; Sugiura, Wataru; Yokomaku, Yoshiyuki; Iwatani, Yasumasa

    2016-03-01

    HIV-1 CRF01_AE and subtype B (B) have dominated and their different circulating recombinant forms (CRFs) have emerged in East and Southeast Asian countries. Here, we report a novel drug-resistant HIV-1 CRF. Five independent recombinant specimens exhibiting discordant subtype results for the gag, pol, and env sequences were isolated. These recombinants had the CRF01_AE (gag p17)/B (pol PR-RT and IN)/CRF01_AE (env C2-V3) pattern similar to CRF69_01B. Sequence analysis of four near full-length HIV-1 genomes revealed a unique phylogenetic cluster distinct from previously reported CRFs. Of the four recombinants, three shared an identical mosaic structure including seven breakpoints in the gag, pol, vif, and env regions, designated CRF76_01B. The one remaining recombinant had additional recombination breakpoints in the vpu region and exhibited another unique recombinant form composed of CRF76_01B and B. These findings provide important insight into the transmission dynamics of HIV-1 in Asia that may be important for its effective prevention. PMID:26528581

  7. The Host Proteins Transportin SR2/TNPO3 and Cyclophilin A Exert Opposing Effects on HIV-1 Uncoating

    PubMed Central

    Shah, Vaibhav B.; Shi, Jiong; Hout, David R.; Oztop, Ilker; Krishnan, Lavanya; Ahn, Jinwoo; Shotwell, Matthew S.; Engelman, Alan

    2013-01-01

    Following entry of the HIV-1 core into target cells, productive infection depends on the proper disassembly of the viral capsid (uncoating). Although much is known regarding HIV-1 entry, the actions of host cell proteins that HIV-1 utilizes during early postentry steps are poorly understood. One such factor, transportin SR2 (TRN-SR2)/transportin 3 (TNPO3), promotes infection by HIV-1 and some other lentiviruses, and recent studies have genetically linked TNPO3 dependence of infection to the viral capsid protein (CA). Here we report that purified recombinant TNPO3 stimulates the uncoating of HIV-1 cores in vitro. The stimulatory effect was reduced by RanGTP, a known ligand for transportin family members. Depletion of TNPO3 in target cells rendered HIV-1 less susceptible to inhibition by PF74, a small-molecule HIV-1 inhibitor that induces premature uncoating. In contrast to the case for TNPO3, addition of the CA-binding host protein cyclophilin A (CypA) inhibited HIV-1 uncoating and reduced the stimulatory effect of TNPO3 on uncoating in vitro. In cells in which TNPO3 was depleted, HIV-1 infection was enhanced 4-fold by addition of cyclosporine, indicating that the requirement for TNPO3 in HIV-1 infection is modulated by CypA-CA interactions. Although TNPO3 was localized primarily to the cytoplasm, depletion of TNPO3 from target cells inhibited HIV-1 infection without reducing the accumulation of nuclear proviral DNA, suggesting that TNPO3 facilitates a stage of the virus life cycle subsequent to nuclear entry. Our results suggest that TNPO3 and cyclophilin A facilitate HIV-1 infection by coordinating proper uncoating of the core in target cells. PMID:23097435

  8. The host proteins transportin SR2/TNPO3 and cyclophilin A exert opposing effects on HIV-1 uncoating.

    PubMed

    Shah, Vaibhav B; Shi, Jiong; Hout, David R; Oztop, Ilker; Krishnan, Lavanya; Ahn, Jinwoo; Shotwell, Matthew S; Engelman, Alan; Aiken, Christopher

    2013-01-01

    Following entry of the HIV-1 core into target cells, productive infection depends on the proper disassembly of the viral capsid (uncoating). Although much is known regarding HIV-1 entry, the actions of host cell proteins that HIV-1 utilizes during early postentry steps are poorly understood. One such factor, transportin SR2 (TRN-SR2)/transportin 3 (TNPO3), promotes infection by HIV-1 and some other lentiviruses, and recent studies have genetically linked TNPO3 dependence of infection to the viral capsid protein (CA). Here we report that purified recombinant TNPO3 stimulates the uncoating of HIV-1 cores in vitro. The stimulatory effect was reduced by RanGTP, a known ligand for transportin family members. Depletion of TNPO3 in target cells rendered HIV-1 less susceptible to inhibition by PF74, a small-molecule HIV-1 inhibitor that induces premature uncoating. In contrast to the case for TNPO3, addition of the CA-binding host protein cyclophilin A (CypA) inhibited HIV-1 uncoating and reduced the stimulatory effect of TNPO3 on uncoating in vitro. In cells in which TNPO3 was depleted, HIV-1 infection was enhanced 4-fold by addition of cyclosporine, indicating that the requirement for TNPO3 in HIV-1 infection is modulated by CypA-CA interactions. Although TNPO3 was localized primarily to the cytoplasm, depletion of TNPO3 from target cells inhibited HIV-1 infection without reducing the accumulation of nuclear proviral DNA, suggesting that TNPO3 facilitates a stage of the virus life cycle subsequent to nuclear entry. Our results suggest that TNPO3 and cyclophilin A facilitate HIV-1 infection by coordinating proper uncoating of the core in target cells. PMID:23097435

  9. GADD45 proteins inhibit HIV-1 replication through specific suppression of HIV-1 transcription.

    PubMed

    Liang, Zhibin; Liu, Ruikang; Zhang, Hui; Zhang, Suzhen; Hu, Xiaomei; Tan, Juan; Liang, Chen; Qiao, Wentao

    2016-06-01

    GADD45 proteins are a group of stress-induced proteins and participate in various cellular pathways including cell cycle regulation, cell survival and death, DNA repair and demethylation. It was recently shown that HIV-1 infection induces the expression of GADD45 proteins. However, the effect of GADD45 on HIV-1 replication has not been studied. Here, we report that overexpression of GADD45 proteins reduces HIV-1 production through suppressing transcription from the HIV-1 LTR promoter. This inhibitory effect is specific to HIV-1, since GADD45 proteins neither inhibit the LTR promoters from other retroviruses nor reduce the production of these viruses. Knockdown of endogenous GADD45 modestly activates HIV-1 in the J-Lat A72 latency cell line, which suggests GADD45 proteins might play a role in maintaining HIV-1 latency. PMID:26994425

  10. Sulfonation Pathway Inhibitors Block Reactivation of Latent HIV-1

    PubMed Central

    Murry, Jeffrey P.; Godoy, Joseph; Mukim, Amey; Swann, Justine; Bruce, James W.; Ahlquist, Paul; Bosque, Alberto; Planelles, Vicente; Spina, Celsa A.; Young, John A. T.

    2015-01-01

    Long-lived pools of latently infected cells are a significant barrier to the development of a cure for HIV-1 infection. A better understanding of the mechanisms of reactivation from latency is needed to facilitate the development of novel therapies that address this problem. Here we show that chemical inhibitors of the sulfonation pathway prevent virus reactivation, both in latently infected J-Lat and U1 cell lines and in a primary human CD4+ T cell model of latency. In each of these models, sulfonation inhibitors decreased transcription initiation from the HIV-1 promoter. These inhibitors block transcription initiation at a step that lies downstream of nucleosome remodeling and affects RNA polymerase II recruitment to the viral promoter. These results suggest that the sulfonation pathway acts by a novel mechanism to regulate efficient virus transcription initiation during reactivation from latency, and further that augmentation of this pathway could be therapeutically useful. PMID:25310595

  11. HIV-1 Adenoviral Vector Vaccines Expressing Multi-Trimeric BAFF and 4-1BBL Enhance T Cell Mediated Anti-Viral Immunity

    PubMed Central

    Gupta, Sachin; Raffa, Francesca N.; Fuller, Katherine A.; Rivas, Yaelis; Philip, Sakhi; Kornbluth, Richard S.; Stone, Geoffrey W.

    2014-01-01

    Adenoviral vectored vaccines have shown considerable promise but could be improved by molecular adjuvants. Ligands in the TNF superfamily (TNFSF) are potential adjuvants for adenoviral vector (Ad5) vaccines based on their central role in adaptive immunity. Many TNFSF ligands require aggregation beyond the trimeric state (multi-trimerization) for optimal biological function. Here we describe Ad5 vaccines for HIV-1 Gag antigen (Ad5-Gag) adjuvanted with the TNFSF ligands 4-1BBL, BAFF, GITRL and CD27L constructed as soluble multi-trimeric proteins via fusion to Surfactant Protein D (SP-D) as a multimerization scaffold. Mice were vaccinated with Ad5-Gag combined with Ad5 expressing one of the SP-D-TNFSF constructs or single-chain IL-12p70 as adjuvant. To evaluate vaccine-induced protection, mice were challenged with vaccinia virus expressing Gag (vaccinia-Gag) which is known to target the female genital tract, a major route of sexually acquired HIV-1 infection. In this system, SP-D-4-1BBL or SP-D-BAFF led to significantly reduced vaccinia-Gag replication when compared to Ad5-Gag alone. In contrast, IL-12p70, SP-D-CD27L and SP-D-GITRL were not protective. Histological examination following vaccinia-Gag challenge showed a dramatic lymphocytic infiltration into the uterus and ovaries of SP-D-4-1BBL and SP-D-BAFF-treated animals. By day 5 post challenge, proinflammatory cytokines in the tissue were reduced, consistent with the enhanced control over viral replication. Splenocytes had no specific immune markers that correlated with protection induced by SP-D-4-1BBL and SP-D-BAFF versus other groups. IL-12p70, despite lack of anti-viral efficacy, increased the total numbers of splenic dextramer positive CD8+ T cells, effector memory T cells, and effector Gag-specific CD8+ T cells, suggesting that these markers are poor predictors of anti-viral immunity in this model. In conclusion, soluble multi-trimeric 4-1BBL and BAFF adjuvants led to strong protection from vaccinia-Gag

  12. Uneven Genetic Robustness of HIV-1 Integrase

    PubMed Central

    Rihn, Suzannah J.; Hughes, Joseph; Wilson, Sam J.

    2014-01-01

    ABSTRACT Genetic robustness (tolerance of mutation) may be a naturally selected property in some viruses, because it should enhance adaptability. Robustness should be especially beneficial to viruses like HIV-1 that exhibit high mutation rates and exist in immunologically hostile environments. Surprisingly, however, the HIV-1 capsid protein (CA) exhibits extreme fragility. To determine whether fragility is a general property of HIV-1 proteins, we created a large library of random, single-amino-acid mutants in HIV-1 integrase (IN), covering >40% of amino acid positions. Despite similar degrees of sequence variation in naturally occurring IN and CA sequences, we found that HIV-1 IN was significantly more robust than CA, with random nonsilent IN mutations only half as likely to cause lethal defects. Interestingly, IN and CA were similar in that a subset of mutations with high in vitro fitness were rare in natural populations. IN mutations of this type were more likely to occur in the buried interior of the modeled HIV-1 intasome, suggesting that even very subtle fitness effects suppress variation in natural HIV-1 populations. Lethal mutations, in particular those that perturbed particle production, proteolytic processing, and particle-associated IN levels, were strikingly localized at specific IN subunit interfaces. This observation strongly suggests that binding interactions between particular IN subunits regulate proteolysis during HIV-1 virion morphogenesis. Overall, use of the IN mutant library in conjunction with structural models demonstrates the overall robustness of IN and highlights particular regions of vulnerability that may be targeted in therapeutic interventions. IMPORTANCE The HIV-1 integrase (IN) protein is responsible for the integration of the viral genome into the host cell chromosome. To measure the capacity of IN to maintain function in the face of mutation, and to probe structure/function relationships, we created a library of random single

  13. Impact of insertions in the HIV-1 p6 PTAPP region on the virological response to amprenavir.

    PubMed

    Lastere, Stephane; Dalban, Cecile; Collin, Gilles; Descamps, Diane; Girard, Pierre-Marie; Clavel, Francois; Costagliola, Dominique; Brun-Vezinet, Francoise

    2004-04-01

    We evaluated the impact of genetic changes within p6Gag gene on the virological response (VR, mean decrease in plasma viral load at week 12) to unboosted amprenavir (APV). Gag-protease fragments, including gag p2, p7, p1, p6 regions and whole protease (PR) were sequenced from baseline plasma specimens of 84 highly pre-treated but APV-naive patients included in the NARVAL (ANRS 088) trial. The correlation between baseline p6Gag polymorphism, PR mutations, baseline characteristics and VR to APV was analysed in univariate analysis. Insertions (P459Ins) within p6 protein, leading to partial or complete duplication of the PTAPP motif, were significantly associated with a decreased VR (P459Ins versus wild-type; -0.3 +/- 0.8 vs -1.1 +/- 1.2 log copies/ml, P=0.007) and were more frequent when the V82A/F/T/S PR mutation was present (P=0.020). In multivariate analysis, after adjustment on the predictive factors of the VR in the NARVAL trial and on the PR mutations linked with response, there was a strong trend to an association (P=0.058) between the presence of P459Ins and an altered VR. In conclusion, these results suggest that insertions in the p6 region of HIV-1 gag gene may affect the VR, in highly pre-treated patients receiving an unboosted APV-containing regimen. PMID:15134184

  14. Cytoplasmic dynein promotes HIV-1 uncoating.

    PubMed

    Pawlica, Paulina; Berthoux, Lionel

    2014-11-01

    Retroviral capsid (CA) cores undergo uncoating during their retrograde transport (toward the nucleus), and/or after reaching the nuclear membrane. However, whether HIV-1 CA core uncoating is dependent upon its transport is not understood. There is some evidence that HIV-1 cores retrograde transport involves cytoplasmic dynein complexes translocating on microtubules. Here we investigate the role of dynein-dependent transport in HIV-1 uncoating. To interfere with dynein function, we depleted dynein heavy chain (DHC) using RNA interference, and we over-expressed p50/dynamitin. In immunofluorescence microscopy experiments, DHC depletion caused an accumulation of CA foci in HIV-1 infected cells. Using a biochemical assay to monitor HIV-1 CA core disassembly in infected cells, we observed an increase in amounts of intact (pelletable) CA cores upon DHC depletion or p50 over-expression. Results from these two complementary assays suggest that inhibiting dynein-mediated transport interferes with HIV-1 uncoating in infected cells, indicating the existence of a functional link between HIV-1 transport and uncoating. PMID:25375884

  15. HIV-1 DNA predicts disease progression and post-treatment virological control

    PubMed Central

    Williams, James P; Hurst, Jacob; Stöhr, Wolfgang; Robinson, Nicola; Brown, Helen; Fisher, Martin; Kinloch, Sabine; Cooper, David; Schechter, Mauro; Tambussi, Giuseppe; Fidler, Sarah; Carrington, Mary; Babiker, Abdel; Weber, Jonathan

    2014-01-01

    In HIV-1 infection, a population of latently infected cells facilitates viral persistence despite antiretroviral therapy (ART). With the aim of identifying individuals in whom ART might induce a period of viraemic control on stopping therapy, we hypothesised that quantification of the pool of latently infected cells in primary HIV-1 infection (PHI) would predict clinical progression and viral replication following ART. We measured HIV-1 DNA in a highly characterised randomised population of individuals with PHI. We explored associations between HIV-1 DNA and immunological and virological markers of clinical progression, including viral rebound in those interrupting therapy. In multivariable analyses, HIV-1 DNA was more predictive of disease progression than plasma viral load and, at treatment interruption, predicted time to plasma virus rebound. HIV-1 DNA may help identify individuals who could safely interrupt ART in future HIV-1 eradication trials. Clinical trial registration: ISRCTN76742797 and EudraCT2004-000446-20 DOI: http://dx.doi.org/10.7554/eLife.03821.001 PMID:25217531

  16. In vitro Uncoating of HIV-1 Cores

    PubMed Central

    Shah, Vaibhav B.; Aiken, Christopher

    2011-01-01

    The genome of the retroviruses is encased in a capsid surrounded by a lipid envelope. For lentiviruses, such as HIV-1, the conical capsid shell is composed of CA protein arranged as a lattice of hexagon. The capsid is closed by 7 pentamers at the broad end and 5 at the narrow end of the cone1, 2. Encased in this capsid shell is the viral ribonucleoprotein complex, and together they comprise the core. Following fusion of the viral membrane with the target cell membrane, the HIV-1 is released into the cytoplasm. The capsid then disassembles releasing free CA in the soluble form3 in a process referred to as uncoating. The intracellular location and timing of HIV-1 uncoating are poorly understood. Single amino-acid substitutions in CA that alter the stability of the capsid also impair the ability of HIV-1 to infect cells4. This indicates that the stability of the capsid is critical for HIV-1 infection. HIV-1 uncoating has been difficult to study due to lack of availability of sensitive and reliable assays for this process. Here we describe a quantitative method for studying uncoating in vitro using cores isolated from infectious HIV-1 particles. The approach involves isolation of cores by sedimentation of concentrated virions through a layer of detergent and into a linear sucrose gradient, in the cold. To quantify uncoating, the isolated cores are incubated at 37°C for various timed intervals and subsequently pelleted by ultracentrifugation. The extent of uncoating is analyzed by quantifying the fraction of CA in the supernatant. This approach has been employed to analyze effects of viral mutations on HIV-1 capsid stability4, 5, 6. It should also be useful for studying the role of cellular factors in HIV-1 uncoating. PMID:22105356

  17. In vitro uncoating of HIV-1 cores.

    PubMed

    Shah, Vaibhav B; Aiken, Christopher

    2011-01-01

    The genome of the retroviruses is encased in a capsid surrounded by a lipid envelope. For lentiviruses, such as HIV-1, the conical capsid shell is composed of CA protein arranged as a lattice of hexagon. The capsid is closed by 7 pentamers at the broad end and 5 at the narrow end of the cone(1, 2). Encased in this capsid shell is the viral ribonucleoprotein complex, and together they comprise the core. Following fusion of the viral membrane with the target cell membrane, the HIV-1 is released into the cytoplasm. The capsid then disassembles releasing free CA in the soluble form(3) in a process referred to as uncoating. The intracellular location and timing of HIV-1 uncoating are poorly understood. Single amino-acid substitutions in CA that alter the stability of the capsid also impair the ability of HIV-1 to infect cells(4). This indicates that the stability of the capsid is critical for HIV-1 infection. HIV-1 uncoating has been difficult to study due to lack of availability of sensitive and reliable assays for this process. Here we describe a quantitative method for studying uncoating in vitro using cores isolated from infectious HIV-1 particles. The approach involves isolation of cores by sedimentation of concentrated virions through a layer of detergent and into a linear sucrose gradient, in the cold. To quantify uncoating, the isolated cores are incubated at 37°C for various timed intervals and subsequently pelleted by ultracentrifugation. The extent of uncoating is analyzed by quantifying the fraction of CA in the supernatant. This approach has been employed to analyze effects of viral mutations on HIV-1 capsid stability(4, 5, 6). It should also be useful for studying the role of cellular factors in HIV-1 uncoating. PMID:22105356

  18. The Scaffolding Protein Dlg1 Is a Negative Regulator of Cell-Free Virus Infectivity but Not of Cell-to-Cell HIV-1 Transmission in T Cells

    PubMed Central

    Nzounza, Patrycja; Chazal, Maxime; Guedj, Chloé; Schmitt, Alain; Massé, Jean-Marc; Randriamampita, Clotilde; Pique, Claudine; Ramirez, Bertha Cecilia

    2012-01-01

    Background Cell-to-cell virus transmission of Human immunodeficiency virus type-1 (HIV-1) is predominantly mediated by cellular structures such as the virological synapse (VS). The VS formed between an HIV-1-infected T cell and a target T cell shares features with the immunological synapse (IS). We have previously identified the human homologue of the Drosophila Discs Large (Dlg1) protein as a new cellular partner for the HIV-1 Gag protein and a negative regulator of HIV-1 infectivity. Dlg1, a scaffolding protein plays a key role in clustering protein complexes in the plasma membrane at cellular contacts. It is implicated in IS formation and T cell signaling, but its role in HIV-1 cell-to-cell transmission was not studied before. Methodology/Principal Findings Kinetics of HIV-1 infection in Dlg1-depleted Jurkat T cells show that Dlg1 modulates the replication of HIV-1. Single-cycle infectivity tests show that this modulation does not take place during early steps of the HIV-1 life cycle. Immunofluorescence studies of Dlg1-depleted Jurkat T cells show that while Dlg1 depletion affects IS formation, it does not affect HIV-1-induced VS formation. Co-culture assays and quantitative cell-to-cell HIV-1 transfer analyses show that Dlg1 depletion does not modify transfer of HIV-1 material from infected to target T cells, or HIV-1 transmission leading to productive infection via cell contact. Dlg1 depletion results in increased virus yield and infectivity of the viral particles produced. Particles with increased infectivity present an increase in their cholesterol content and during the first hours of T cell infection these particles induce higher accumulation of total HIV-1 DNA. Conclusion Despite its role in the IS formation, Dlg1 does not affect the VS and cell-to-cell spread of HIV-1, but plays a role in HIV-1 cell-free virus transmission. We propose that the effect of Dlg1 on HIV-1 infectivity is at the stage of virus entry. PMID:22272285

  19. Macrophages and HIV-1: An Unhealthy Constellation.

    PubMed

    Sattentau, Quentin J; Stevenson, Mario

    2016-03-01

    Lentiviruses have a long-documented association with macrophages. Abundant evidence exists for in vitro and, in a tissue-specific manner, in vivo infection of macrophages by the primate lentiviruses HIV-1 and SIV. However, macrophage contribution to aspects of HIV-1 and SIV pathogenesis, and their role in viral persistence in individuals on suppressive antiretroviral therapy, remains unclear. Here we discuss recent evidence implicating macrophages in HIV-1-mediated disease and highlight directions for further investigation. PMID:26962941

  20. The Roles of HIV-1 Proteins and Antiretroviral Drug Therapy in HIV-1-Associated Endothelial Dysfunction

    PubMed Central

    Kline, Erik R.; Sutliff, Roy L.

    2008-01-01

    Since the emergence of highly active antiretroviral therapy (HAART), human immunodeficiency virus-1 (HIV-1)-infected patients have demonstrated dramatic decreases in viral burden and opportunistic infections, and an overall increase in life expectancy. Despite these positive HAART-associated outcomes, it has become increasingly clear that HIV-1 patients have an enhanced risk of developing cardiovascular disease over time. Clinical studies are instrumental in our understanding of vascular dysfunction in the context of HIV-1 infection. However, most clinical studies often do not distinguish whether HIV-1 proteins, HAART, or a combination of these 2 factors cause cardiovascular complications. This review seeks to address the roles of both HIV-1 proteins and antiretroviral drugs in the development of endothelial dysfunction because endothelial dysfunction is the hallmark initial step of many cardiovascular diseases. We analyze recent in vitro and in vivo studies examining endothelial toxicity in response to HIV-1 proteins or in response to the various classes of antiretroviral drugs. Furthermore, we discuss the multiple mechanisms by which HIV-1 proteins and HAART injure the vascular endothelium in HIV-1 patients. By understanding the molecular mechanisms of HIV-1 protein- and antiretroviral-induced cardiovascular disease, we may ultimately improve the quality of life of HIV-1 patients through better drug design and the discovery of new pharmacological targets. PMID:18525451

  1. HIV-1 RNA quantification in CRF02_AG HIV-1 infection: too easy to make mistakes.

    PubMed

    Tatarelli, Paola; Taramasso, Lucia; Di Biagio, Antonio; Sticchi, Laura; Nigro, Nicola; Barresi, Renata; Viscoli, Claudio; Bruzzone, Bianca

    2016-04-01

    The number of patients newly infected by HIV-1 non-B subtypes and circulating recombinant forms (CRFs) is increasing worldwide, including in the western countries. We report on a primary HIV-1 infection in a Caucasian patient. A routine quantitative assay (Nuclisens EasyQ HIV-1 2.0, BioMérieux SA) showed 6,700 HIV-1 RNA copies/ml. A combined antiretroviral therapy (cART) consistent with low baseline HIV-1 RNA was started. Few days later, the analysis performed with REGA HIV-1 Subtyping Tool - Version 3.0 attributed the HIV-1 sequence to the CRF02_AG recombinant form. Therefore, a second real-time PCR assay was performed, using the Versant HIV-1 RNA 1.0 Assay (kPCR) (Siemens HealthCare Diagnostics) which revealed a HIV-1 RNA of 230,000 copies/ml. Consequently, the ongoing cART was potentiated. This case suggests that the wide genetic variability of HIV-1 subtypes may affect the capability of the commonly used assays to detect and accurately quantify HIV-1 RNA in non-B subtypes and CRFs. In presence of CRFs different commercial HIV-1 RNA tests should be performed to find the most reliable for viral load quantification at the diagnosis, because it influences the choice of cART, and during the follow-up. Indeed, international guidelines for HIV-1 infection management suggest to monitor patient' HIV-RNA with the same assay over the course of treatment. As different commercial tests can be performed in the same laboratory with considerable difficulty, the laboratory should select an assay that is suitable not only for the more prevalent strain, but also for less frequent ones that, nevertheless, can occur. Then, knowing and investigating the spread of non-B strains has essential clinical and laboratory implications. PMID:27196556

  2. Characterization of A Myristoylated, Monomeric HIV Gag Protein

    PubMed Central

    Dou, Jun; Wang, Jaang-Jiun; Chen, Xuemin; Li, Hua; Ding, Lingmei; Spearman, Paul

    2009-01-01

    The process of HIV assembly requires extensive homomultimerization of the Gag polyprotein on cellular membranes to generate the nascent particle bud. Here we generated a full-length, monomeric Gag polyprotein bearing mutations that eliminated multimerization in living cells as indicated by fluorescence resonance energy transfer (FRET). Monomeric Gag resembled non-myristoylated Gag in its weak membrane binding characteristics and lack of association with detergent-resistant membranes (DRMs or lipid rafts). Monomeric Gag failed to assemble virus-like particles, but was inefficiently rescued into particles by wildtype Gag through the influence of the matrix domain. The subcellular distribution of monomeric Gag was remarkably different than either non-myristoylated Gag or wildtype Gag. Monomeric Gag was found on intracellular membranes and at the plasma membrane, where it induced the formation of plasma membrane extensions and ruffles. This study indicates that monomeric Gag can traffic to assembly sites in the cell, where it interacts weakly with membranes. PMID:19285328

  3. Gag grouper larvae pathways on the West Florida Shelf

    NASA Astrophysics Data System (ADS)

    Weisberg, Robert H.; Zheng, Lianyuan; Peebles, Ernst

    2014-10-01

    A numerical circulation model, quantitatively assessed against in situ observations, is used to describe the circulation on the West Florida Continental Shelf during spring 2007 when pre-settlement gag (Mycteroperca microlepis) were present in the surf zone near Tampa Bay, Florida. The pre-settlement fish were found to be isotopically distinct from settled juveniles in the area, which is consistent with recent arrival at near shore nursery habitats from offshore spawning grounds. Simulated particle trajectories are employed to test hypotheses relating to either a surface or a near-bottom route of across-shelf transport. The surface-route hypothesis is rejected, whereas the bottom-route hypothesis is found to be consistent with the location of pre-settlement fish and their co-occurrence with macroalgae of offshore, hard-bottom origin. We conclude that gag larvae are transported to the near shore via the bottom Ekman layer and that such transport is facilitated by remote forcing associated with Gulf of Mexico Loop Current interactions with the shelf slope near the Dry Tortugas. Being that such remote forcing occurs inter-annually and not always in phase with the preferred spawning months (late winter through early spring), gag recruitment success should similarly vary with year and location.

  4. HIV-1 Genetic Variability in Cuba and Implications for Transmission and Clinical Progression.

    PubMed

    Blanco, Madeline; Machado, Liuber Y; Díaz, Héctor; Ruiz, Nancy; Romay, Dania; Silva, Eladio

    2015-10-01

    INTRODUCTION Serological and molecular HIV-1 studies in Cuba have shown very low prevalence of seropositivity, but an increasing genetic diversity attributable to introduction of many HIV-1 variants from different areas, exchange of such variants among HIV-positive people with several coinciding routes of infection and other epidemiologic risk factors in the seropositive population. The high HIV-1 genetic variability observed in Cuba has possible implications for transmission and clinical progression. OBJECTIVE Study genetic variability for the HIV-1 env, gag and pol structural genes in Cuba; determine the prevalence of B and non-B subtypes according to epidemiologic and behavioral variables and determine whether a relationship exists between genetic variability and transmissibility, and between genetic variability and clinical disease progression in people living with HIV/AIDS. METHODS Using two molecular assays (heteroduplex mobility assay and nucleic acid sequencing), structural genes were characterized in 590 people with HIV-1 (480 men and 110 women), accounting for 3.4% of seropositive individuals in Cuba as of December 31, 2013. Nonrandom sampling, proportional to HIV prevalence by province, was conducted. Relationships between molecular results and viral factors, host characteristics, and patients' clinical, epidemiologic and behavioral variables were studied for molecular epidemiology, transmission, and progression analyses. RESULTS Molecular analysis of the three HIV-1 structural genes classified 297 samples as subtype B (50.3%), 269 as non-B subtypes (45.6%) and 24 were not typeable. Subtype B prevailed overall and in men, mainly in those who have sex with men. Non-B subtypes were prevalent in women and heterosexual men, showing multiple circulating variants and recombinant forms. Sexual transmission was the predominant form of infection for all. B and non-B subtypes were encountered throughout Cuba. No association was found between subtypes and

  5. Structural Basis for Broad and Potent Neutralization of HIV-1 by Antibody VRC01

    SciTech Connect

    Zhou, Tongqing; Georgiev, Ivelin; Wu, Xueling; Yang, Zhi-Yong; Dai, Kaifan; Finzi, Andrés; Kwon, Young Do; Scheid, Johannes F.; Shi, Wei; Xu, Ling; Yang, Yongping; Zhu, Jiang; Nussenzweig, Michel C.; Sodroski, Joseph; Shapiro, Lawrence; Nabel, Gary J.; Mascola, John R.; Kwong, Peter D.

    2010-08-26

    During HIV-1 infection, antibodies are generated against the region of the viral gp120 envelope glycoprotein that binds CD4, the primary receptor for HIV-1. Among these antibodies, VRC01 achieves broad neutralization of diverse viral strains. We determined the crystal structure of VRC01 in complex with a human immunodeficiency virus HIV-1 gp120 core. VRC01 partially mimics CD4 interaction with gp120. A shift from the CD4-defined orientation, however, focuses VRC01 onto the vulnerable site of initial CD4 attachment, allowing it to overcome the glycan and conformational masking that diminishes the neutralization potency of most CD4-binding-site antibodies. To achieve this recognition, VRC01 contacts gp120 mainly through immunoglobulin V-gene regions substantially altered from their genomic precursors. Partial receptor mimicry and extensive affinity maturation thus facilitate neutralization of HIV-1 by natural human antibodies.

  6. Long noncoding RNA NRON contributes to HIV-1 latency by specifically inducing tat protein degradation

    PubMed Central

    Li, Jun; Chen, Cancan; Ma, Xiancai; Geng, Guannan; Liu, Bingfeng; Zhang, Yijun; Zhang, Shaoyang; Zhong, Fudi; Liu, Chao; Yin, Yue; Cai, Weiping; Zhang, Hui

    2016-01-01

    Long noncoding RNAs (lncRNAs) play multiple key regulatory roles in various cellular pathways. However, their functions in HIV-1 latent infection remain largely unknown. Here we show that a lncRNA named NRON, which is highly expressed in resting CD4+ T lymphocytes, could be involved in HIV-1 latency by specifically inducing Tat protein degradation. Our results suggest that NRON lncRNA potently suppresses the viral transcription by decreasing the cellular abundance of viral transactivator protein Tat. NRON directly links Tat to the ubiquitin/proteasome components including CUL4B and PSMD11, thus facilitating Tat degradation. Depletion of NRON, especially in combination with a histone deacetylase (HDAC) inhibitor, significantly reactivates the viral production from the HIV-1-latently infected primary CD4+ T lymphocytes. Our data indicate that lncRNAs play a role in HIV-1 latency and their manipulation could be a novel approach for developing latency-reversing agents. PMID:27291871

  7. HIV-1 Eradication: Early Trials (and Tribulations).

    PubMed

    Spivak, Adam M; Planelles, Vicente

    2016-01-01

    Antiretroviral therapy (ART) has rendered HIV-1 infection a manageable illness for those with access to treatment. However, ART does not lead to viral eradication owing to the persistence of replication-competent, unexpressed proviruses in long-lived cellular reservoirs. The potential for long-term drug toxicities and the lack of access to ART for most people living with HIV-1 infection have fueled scientific interest in understanding the nature of this latent reservoir. Exploration of HIV-1 persistence at the cellular and molecular level in resting memory CD4(+) T cells, the predominant viral reservoir in patients on ART, has uncovered potential strategies to reverse latency. We review recent advances in pharmacologically based 'shock and kill' HIV-1 eradication strategies, including comparative analysis of early clinical trials. PMID:26691297

  8. Development of prophylactic vaccines against HIV-1

    PubMed Central

    2013-01-01

    The focus of most current HIV-1 vaccine development is on antibody-based approaches. This is because certain antibody responses correlated with protection from HIV-1 acquisition in the RV144 phase III trial, and because a series of potent and broad spectrum neutralizing antibodies have been isolated from infected individuals. Taken together, these two findings suggest ways forward to develop a neutralizing antibody-based vaccine. However, understanding of the correlates of protection from disease in HIV-1 and other infections strongly suggests that we should not ignore CTL-based research. Here we review recent progress in the field and highlight the challenges implicit in HIV-1 vaccine design and some potential solutions. PMID:23866844

  9. Drug-Eluting Fibers for HIV-1 Inhibition and Contraception

    PubMed Central

    Ball, Cameron; Krogstad, Emily; Chaowanachan, Thanyanan; Woodrow, Kim A.

    2012-01-01

    Multipurpose prevention technologies (MPTs) that simultaneously prevent sexually transmitted infections (STIs) and unintended pregnancy are a global health priority. Combining chemical and physical barriers offers the greatest potential to design effective MPTs, but integrating both functional modalities into a single device has been challenging. Here we show that drug-eluting fiber meshes designed for topical drug delivery can function as a combination chemical and physical barrier MPT. Using FDA-approved polymers, we fabricated nanofiber meshes with tunable fiber size and controlled degradation kinetics that facilitate simultaneous release of multiple agents against HIV-1, HSV-2, and sperm. We observed that drug-loaded meshes inhibited HIV-1 infection in vitro and physically obstructed sperm penetration. Furthermore, we report on a previously unknown activity of glycerol monolaurate (GML) to potently inhibit sperm motility and viability. The application of drug-eluting nanofibers for HIV-1 prevention and sperm inhibition may serve as an innovative platform technology for drug delivery to the lower female reproductive tract. PMID:23209601

  10. Drug-eluting fibers for HIV-1 inhibition and contraception.

    PubMed

    Ball, Cameron; Krogstad, Emily; Chaowanachan, Thanyanan; Woodrow, Kim A

    2012-01-01

    Multipurpose prevention technologies (MPTs) that simultaneously prevent sexually transmitted infections (STIs) and unintended pregnancy are a global health priority. Combining chemical and physical barriers offers the greatest potential to design effective MPTs, but integrating both functional modalities into a single device has been challenging. Here we show that drug-eluting fiber meshes designed for topical drug delivery can function as a combination chemical and physical barrier MPT. Using FDA-approved polymers, we fabricated nanofiber meshes with tunable fiber size and controlled degradation kinetics that facilitate simultaneous release of multiple agents against HIV-1, HSV-2, and sperm. We observed that drug-loaded meshes inhibited HIV-1 infection in vitro and physically obstructed sperm penetration. Furthermore, we report on a previously unknown activity of glycerol monolaurate (GML) to potently inhibit sperm motility and viability. The application of drug-eluting nanofibers for HIV-1 prevention and sperm inhibition may serve as an innovative platform technology for drug delivery to the lower female reproductive tract. PMID:23209601

  11. Nuclear trafficking of the HIV-1 pre-integration complex depends on the ADAM10 intracellular domain

    SciTech Connect

    Endsley, Mark A.; Somasunderam, Anoma D.; Li, Guangyu; Oezguen, Numan; Thiviyanathan, Varatharasa; Murray, James L.; Rubin, Donald H.; Hodge, Thomas W.; and others

    2014-04-15

    Previously, we showed that ADAM10 is necessary for HIV-1 replication in primary human macrophages and immortalized cell lines. Silencing ADAM10 expression interrupted the HIV-1 life cycle prior to nuclear translocation of viral cDNA. Furthermore, our data indicated that HIV-1 replication depends on the expression of ADAM15 and γ-secretase, which proteolytically processes ADAM10. Silencing ADAM15 or γ-secretase expression inhibits HIV-1 replication between reverse transcription and nuclear entry. Here, we show that ADAM10 expression also supports replication in CD4{sup +} T lymphocytes. The intracellular domain (ICD) of ADAM10 associates with the HIV-1 pre-integration complex (PIC) in the cytoplasm and immunoprecipitates and co-localizes with HIV-1 integrase, a key component of PIC. Taken together, our data support a model whereby ADAM15/γ-secretase processing of ADAM10 releases the ICD, which then incorporates into HIV-1 PIC to facilitate nuclear trafficking. Thus, these studies suggest ADAM10 as a novel therapeutic target for inhibiting HIV-1 prior to nuclear entry. - Highlights: • Nuclear trafficking of the HIV-1 pre-integration complex depends on ADAM10. • ADAM10 associates with HIV-1 integrase in the pre-integration complex. • HIV-1 replication depends on the expression of ADAM15 and γ-secretase. • Silencing ADAM15 or γ-secretase expression inhibits nuclear import of viral cDNA. • ADAM10 is important for HIV-1 replication in human macrophages and CD4{sup +} T lymphocytes.

  12. A Phylogenetic Survey on the Structure of the HIV-1 Leader RNA Domain That Encodes the Splice Donor Signal

    PubMed Central

    Mueller, Nancy; Das, Atze T.; Berkhout, Ben

    2016-01-01

    RNA splicing is a critical step in the human immunodeficiency virus type 1 (HIV-1) replication cycle because it controls the expression of the complex viral proteome. The major 5′ splice site (5′ss) that is positioned in the untranslated leader of the HIV-1 RNA transcript is of particular interest because it is used for the production of the more than 40 differentially spliced subgenomic mRNAs. HIV-1 splicing needs to be balanced tightly to ensure the proper levels of all viral proteins, including the Gag-Pol proteins that are translated from the unspliced RNA. We previously presented evidence that the major 5′ss is regulated by a repressive local RNA structure, the splice donor (SD) hairpin, that masks the 11 nucleotides (nts) of the 5′ss signal for recognition by U1 small nuclear RNA (snRNA) of the spliceosome machinery. A strikingly different multiple-hairpin RNA conformation was recently proposed for this part of the HIV-1 leader RNA. We therefore inspected the sequence of natural HIV-1 isolates in search for support, in the form of base pair (bp) co-variations, for the different RNA conformations. PMID:27455303

  13. A Phylogenetic Survey on the Structure of the HIV-1 Leader RNA Domain That Encodes the Splice Donor Signal.

    PubMed

    Mueller, Nancy; Das, Atze T; Berkhout, Ben

    2016-01-01

    RNA splicing is a critical step in the human immunodeficiency virus type 1 (HIV-1) replication cycle because it controls the expression of the complex viral proteome. The major 5' splice site (5'ss) that is positioned in the untranslated leader of the HIV-1 RNA transcript is of particular interest because it is used for the production of the more than 40 differentially spliced subgenomic mRNAs. HIV-1 splicing needs to be balanced tightly to ensure the proper levels of all viral proteins, including the Gag-Pol proteins that are translated from the unspliced RNA. We previously presented evidence that the major 5'ss is regulated by a repressive local RNA structure, the splice donor (SD) hairpin, that masks the 11 nucleotides (nts) of the 5'ss signal for recognition by U1 small nuclear RNA (snRNA) of the spliceosome machinery. A strikingly different multiple-hairpin RNA conformation was recently proposed for this part of the HIV-1 leader RNA. We therefore inspected the sequence of natural HIV-1 isolates in search for support, in the form of base pair (bp) co-variations, for the different RNA conformations. PMID:27455303

  14. Exosomes: Implications in HIV-1 Pathogenesis

    PubMed Central

    Madison, Marisa N.; Okeoma, Chioma M.

    2015-01-01

    Exosomes are membranous nanovesicles of endocytic origin that carry host and pathogen derived genomic, proteomic, and lipid cargos. Exosomes are secreted by most cell types into the extracellular milieu and are subsequently internalized by recipient cells. Upon internalization, exosomes condition recipient cells by donating their cargos and/or activating various signal transduction pathways, consequently regulating physiological and pathophysiological processes. The role of exosomes in viral pathogenesis, especially human immunodeficiency virus type 1 [HIV-1] is beginning to unravel. Recent research reports suggest that exosomes from various sources play important but different roles in the pathogenesis of HIV-1. From these reports, it appears that the source of exosomes is the defining factor for the exosomal effect on HIV-1. In this review, we will describe how HIV-1 infection is modulated by exosomes and in turn how exosomes are targeted by HIV-1 factors. Finally, we will discuss potentially emerging therapeutic options based on exosomal cargos that may have promise in preventing HIV-1 transmission. PMID:26205405

  15. HIV-1 Genetic Diversity and Transmitted Drug Resistance Among Recently Infected Individuals at Men Who Have Sex with Men Sentinel Surveillance Points in Hebei Province, China.

    PubMed

    Lu, Xinli; Kang, Xianjiang; Chen, Suliang; Zhao, Hongru; Liu, Yongjian; Zhao, Cuiying; Zhang, Yuqi; Li, Jingyun; Cui, Ze; Wang, Xianfeng

    2015-10-01

    For this study, 50 HIV-1 plasma samples of recently infected men who have sex with men (MSM) were amplified and sequenced. Multiple subtypes were identified by phylogenetic analyses of HIV-1 gag, env, and pol gene regions, including CRF01_AE (56.0%), CRF07_BC (30.0%), subtype B (12.0%), and unique recombinant forms (URFs, 6.0%). CRF01_AE was the most frequent genotype in the epidemic. Three recombination patterns of URFs were identified: 01BC, 01B, and 01C. The rate of HIV-1 transmitted drug resistance (TDR) mutation (M46L) was 2.08% (1/48). URFs and TDR first identified in this study suggest that HIV-1 prevalence is more and more complicated, and HIV-1 drug-resistant strains have begun to spread among at risk populations in Hebei. Our findings can provide vital information for an efficient surveillance system and strategic HIV prevention and control measures in China by revealing the evolutionary status and HIV-1 TDR of HIV-1 strains among recently infected MSM in Hebei Province. PMID:26200883

  16. Exercise and Human Immunodeficiency Virus (HIV-1) Infection

    NASA Technical Reports Server (NTRS)

    Lawless, DeSales; Jackson, Catherine G. R.; Greenleaf, John E.

    1995-01-01

    The human immune system is highly efficient and remarkably protective when functioning properly. Similar to other physiological systems, it functions best when the body is maintained with a balanced diet, sufficient rest and a moderately stress-free lifestyle. It can be disrupted by inappropriate drug use and extreme emotion or exertion. The functioning of normal or compromised immune systems can be enhanced by properly prescribed moderate exercise conditioning regimens in healthy people, and in some human immunodeficiency virus (HIV-1)-infected patients but not in others who unable to complete an interval training program. Regular exercise conditioning in healthy people reduces cardiovascular risk factors, increases stamina, facilitates bodyweight control, and reduces stress by engendering positive feelings of well-being. Certain types of cancer may also be suppressed by appropriate exercise conditioning. Various exercise regimens are being evaluated as adjunct treatments for medicated patients with the HIV-1 syndrome. Limited anecdotal evidence from patients suggests that moderate exercise conditioning is per se responsible for their survival well beyond expectancy. HIV-1-infected patients respond positively, both physiologically and psychologically, to moderate exercise conditioning. However, the effectiveness of any exercise treatment programme depends on its mode, frequency, intensity and duration when prescribed o complement the pathological condition of the patient. The effectiveness of exercise conditioning regimens in patients with HIV-1 infection is reviewed in this article. In addition, we discuss mechanisms and pathways, involving the interplay of psychological and physiological factors, through which the suppressed immune system can be enhanced. The immune modulators discussed are endogenous opioids, cytokines, neurotransmitters and other hormones. Exercise conditioning treatment appears to be more effective when combined with other stress management

  17. Requirements for nucleocapsid-mediated regulation of reverse transcription during the late steps of HIV-1 assembly

    PubMed Central

    Racine, Pierre-Jean; Chamontin, Célia; de Rocquigny, Hugues; Bernacchi, Serena; Paillart, Jean-Christophe; Mougel, Marylène

    2016-01-01

    HIV-1 is a retrovirus replicating within cells by reverse transcribing its genomic RNA (gRNA) into DNA. Within cells, virus assembly requires the structural Gag proteins with few accessory proteins, notably the viral infectivity factor (Vif) and two copies of gRNA as well as cellular factors to converge to the plasma membrane. In this process, the nucleocapsid (NC) domain of Gag binds to the packaging signal of gRNA which consists of a series of stem-loops (SL1-SL3) ensuring gRNA selection and packaging into virions. Interestingly, mutating NC activates a late-occurring reverse transcription (RT) step in producer cells, leading to the release of DNA-containing HIV-1 particles. In order to decipher the molecular mechanism regulating this late RT, we explored the role of several key partners of NC, such as Vif, gRNA and the cellular cytidine deaminase APOBEC3G that restricts HIV-1 infection by targeting the RT. By studying combinations of deletions of these putative players, we revealed that NC, SL1-SL3 and in lesser extent Vif, but not APOBEC3G, interplay regulates the late RT. PMID:27273064

  18. Requirements for nucleocapsid-mediated regulation of reverse transcription during the late steps of HIV-1 assembly.

    PubMed

    Racine, Pierre-Jean; Chamontin, Célia; de Rocquigny, Hugues; Bernacchi, Serena; Paillart, Jean-Christophe; Mougel, Marylène

    2016-01-01

    HIV-1 is a retrovirus replicating within cells by reverse transcribing its genomic RNA (gRNA) into DNA. Within cells, virus assembly requires the structural Gag proteins with few accessory proteins, notably the viral infectivity factor (Vif) and two copies of gRNA as well as cellular factors to converge to the plasma membrane. In this process, the nucleocapsid (NC) domain of Gag binds to the packaging signal of gRNA which consists of a series of stem-loops (SL1-SL3) ensuring gRNA selection and packaging into virions. Interestingly, mutating NC activates a late-occurring reverse transcription (RT) step in producer cells, leading to the release of DNA-containing HIV-1 particles. In order to decipher the molecular mechanism regulating this late RT, we explored the role of several key partners of NC, such as Vif, gRNA and the cellular cytidine deaminase APOBEC3G that restricts HIV-1 infection by targeting the RT. By studying combinations of deletions of these putative players, we revealed that NC, SL1-SL3 and in lesser extent Vif, but not APOBEC3G, interplay regulates the late RT. PMID:27273064

  19. Development of a high-throughput detection system for HIV-1 using real-time NASBA based on molecular beacons

    NASA Astrophysics Data System (ADS)

    van Beuningen, Rinie; Marras, Salvatore A.; Kramer, Fred R.; Oosterlaken, Tom; Weusten, Jos; Borst, G.; van de Wiel, Paul

    2001-04-01

    HIV-1 viral load assays require accuracy and sensitivity at low RNA levels with the capability to detect all subtypes. Furthermore, the assay should be easy to perform and fast to be useful for routine diagnostics. In order to meet these demands we have combined isothermal NASBA amplification with molecular beacon probes for real-time detection and quantitation of HIV-1 RNA. Quantitation is based on co-amplification of the HIV-1 RNA in the clinical sample and a synthetic calibrator RNA which is amplified by the same primer set but detected with a differently labeled molecular beacon. The entire procedure is simple and analysis of 48 samples requires less than 1» hours with minimal hands-on time. A fluorescent plate reader is used for real-time detection and isothermal amplification. The linearity and precision of the assay was determined with the VQC HIV-1 type B standard of the Central Laboratory of the Dutch Red Cross Blood Banks, The Netherlands. Sensitivity was shown to be 50 copies per ml (cps/ml). The average assay precision was 0,19 log10 over a range of 100-300,000 cps/ml tested at nine concentrations. The linearity of dilution series of 15 cultured HIV-1 gag clades A-H was shown. The specificity was 100% on non HIV-1 samples HIV-2, HTLV-1 and HTLV-2. The assay robustness in terms of valid results was 99%. In conclusion, the new real-time NASBA assay meets state-of-the-art HIV-1 viral load performance requirements combined with a high level of user convenience.

  20. Galectin-1 promotes HIV-1 infectivity in macrophages through stabilization of viral adsorption

    SciTech Connect

    Mercier, Simon; St-Pierre, Christian; Pelletier, Isabelle; Ouellet, Michel; Tremblay, Michel J. Sato, Sachiko

    2008-02-05

    Following primary infection with human immunodeficiency virus type-1 (HIV-1), macrophages are thought to play an important role, as they are one of the first target cells the virus encounters and can also sustain a significant production of viruses over extended periods of time. While the interaction between the primary cellular receptor CD4 and the virus-encoded external envelope glycoprotein gp120 initiates the infection process, it has been suggested that various host factors are exploited by HIV-1 to facilitate adsorption onto the cell surface. Macrophages and other cells found at the infection site can secrete a soluble mammalian lectin, galectin-1, which binds to {beta}-galactoside residues through its carbohydrate recognition domain. Being a dimer, galectin-1 can cross-link ligands expressed on different constituents to mediate adhesion between cells or between cells and pathogens. We report here that galectin-1, but not galectin-3, increased HIV-1 infectivity in monocyte-derived macrophages (MDMs). This phenomenon was likely due to an enhancement of virus adsorption kinetics, which facilitates HIV-1 entry. The fusion inhibitors T-20 and TAK779 remained effective at reducing infection even in the presence of galectin-1, indicating that the galectin-1-mediated effect is occurring at a step prior to fusion. Together, our data suggest that galectin-1 can facilitate HIV-1 infection in MDMs by promoting early events of the virus replicative cycle (i.e. adsorption)

  1. Envelope gene evolution and HIV-1 neuropathogenesis

    PubMed Central

    Vázquez-Santiago, Fabián J.; Rivera-Amill, Vanessa

    2016-01-01

    In the era of combined antiretroviral therapy (cART), HIV-associated neurocognitive disorders (HAND) account for 40 to 56% of all HIV+ cases. During the acute stage of HIV-1 infection (<6 months), the virus invades and replicates within the central nervous system (CNS). Compared to peripheral tissues, the local CNS cell population expresses distinct levels of chemokine receptors, which levels exert selective pressure on the invading virus. HIV-1 envelope (env) sequences recovered from the brains and cerebrospinal fluid (CSF) of neurocognitively impaired HIV+ subjects often display higher nucleotide variability as compared to non-impaired HIV+ subjects. Specifically, env evolution provides HIV-1 with the strategies to evade host immune response, to reduce chemokine receptor dependence, to increase co-receptor binding efficiency, and to potentiate neurotoxicity. The evolution of env within the CNS leads to changes that may result in the emergence of novel isolates with neurotoxic and neurovirulent features. However, whether specific factors of HIV-1 evolution lead to the emergence of neurovirulent and neurotropic isolates remains ill-defined. HIV-1 env evolution is an ongoing phenomenon that occurs independently of neurological and neurocognitive disease severity; thus HIV env evolution may play a pivotal and reciprocal role in the etiology of HAND. Despite the use of cART, the reactivation of latent viral reservoirs represents a clinical challenge because of the replenishment of the viral pool that may subsequently lead to persistent infection. Therefore, gaining a more complete understanding of how HIV-1 env evolves over the course of the disease should be considered for the development of future therapies aimed at controlling CNS burden, diminishing persistent viremia, and eradicating viral reservoirs. Here we review the current literature on the role of HIV-1 env evolution in the setting of HAND disease progression and on the impact of cART on the dynamics of

  2. ADAR1 is a Novel Multi Targeted Anti HIV-1 Cellular Protein

    PubMed Central

    Biswas, Nabanita; Wang, Tianyi; Ding, Ming; Tumne, Ashwin; Chen, Yue; Wang, Qingde; Gupta, Phalguni

    2011-01-01

    We examined the antiviral activity of ADAR1 against HIV-1. Our results indicated that ADAR1 in a transfection system inhibited production of viral proteins and infectious HIV-1 in various cell lines including 293T, HeLa, Jurkat T and primary CD4+ T cells, and was active against a number of X4 and R5 HIV-1 of different clades. Further analysis showed that ADAR1 inhibited viral protein synthesis without any effect on viral RNA synthesis. Mutational analysis showed that ADAR1 introduced most of the A-to-G mutations in the rev RNA, in the region of RNA encoding for Rev Response Element (RRE) binding domain and in env RNA. These mutations inhibited the binding of rev to the RRE and inhibited transport of primary transcripts like gag, pol and env from nucleus to cytoplasm resulting in inhibition of viral protein synthesis without any effect on viral RNA synthesis. Furthermore, ADAR1 induced mutations in the env gene inhibited viral infectivity. PMID:22104209

  3. Herpes simplex virus type-2 stimulates HIV-1 replication in cervical tissues: implications for HIV-1 transmission and efficacy of anti-HIV-1 microbicides

    PubMed Central

    Rollenhagen, C; Lathrop, M J; Macura, S L; Doncel, G F; Asin, S N

    2014-01-01

    Herpes Simplex virus Type-2 (HSV-2) increases the risk of HIV-1 acquisition, yet the mechanism for this viral pathogen to regulate the susceptibility of the cervicovaginal mucosa to HIV-1 is virtually unknown. Using ex vivo human ectocervical tissue models, we report greater levels of HIV-1 reverse transcription, DNA integration, RNA expression, and virions release in HIV-1/HSV-2 co-infected tissues compared with HIV-1 only infected tissues (P<0.05). Enhanced HIV-1 replication was associated with increased CD4, CCR5, and CD38 transcription (P<0.05) and increased number of CD4+/CCR5+/CD38+ T cells in HIV-1/HSV-2 co-infected tissues compared with tissues infected with HIV-1 alone. Tenofovir (TFV) 1% gel, the leading microbicide candidate, demonstrated only partial protection against HIV-1, when applied vaginally before and after sexual intercourse. It is possible that mucosal inflammation, in particular that induced by HSV-2 infection, may have decreased TFV efficacy. HSV-2 upregulated the number of HIV-1-infected cells and elevated the concentration of TFV needed to decrease HIV-1 infection. Similarly, only high concentrations of TFV inhibited HSV-2 replication in HIV-1/HSV-2-infected tissues. Thus, HSV-2 co-infection and mucosal immune cell activation should be taken into consideration when designing preventative strategies for sexual transmission of HIV-1. PMID:24496317

  4. Specific Elimination of Latently HIV-1 Infected Cells Using HIV-1 Protease-Sensitive Toxin Nanocapsules

    PubMed Central

    Wen, Jing; Yan, Ming; Liu, Yang; Li, Jie; Xie, Yiming; Lu, Yunfeng; Kamata, Masakazu; Chen, Irvin S. Y.

    2016-01-01

    Anti-retroviral drugs suppress HIV-1 plasma viremia to undetectable levels; however, latent HIV-1 persists in reservoirs within HIV-1-infected patients. The silent provirus can be activated through the use of drugs, including protein kinase C activators and histone deacetylase inhibitors. This “shock” approach is then followed by “kill” of the producing cells either through direct HIV-1-induced cell death or natural immune mechanisms. However, these mechanisms are relatively slow and effectiveness is unclear. Here, we develop an approach to specifically target and kill cells that are activated early in the process of virus production. We utilize a novel nanocapsule technology whereby the ricin A chain is encapsulated in an inactive form within a polymer shell. Specificity for release of the ricin A toxin is conferred by peptide crosslinkers that are sensitive to cleavage by HIV-1 protease. By using well-established latent infection models, J-Lat and U1 cells, we demonstrate that only within an HIV-1-producing cell expressing functional HIV-1 protease will the nanocapsule release its ricin A cargo, shutting down viral and cellular protein synthesis, and ultimately leading to rapid death of the producer cell. Thus, we provide proof of principle for a novel technology to kill HIV-1-producing cells without effects on non-target cells. PMID:27049645

  5. Specific Elimination of Latently HIV-1 Infected Cells Using HIV-1 Protease-Sensitive Toxin Nanocapsules.

    PubMed

    Wen, Jing; Yan, Ming; Liu, Yang; Li, Jie; Xie, Yiming; Lu, Yunfeng; Kamata, Masakazu; Chen, Irvin S Y

    2016-01-01

    Anti-retroviral drugs suppress HIV-1 plasma viremia to undetectable levels; however, latent HIV-1 persists in reservoirs within HIV-1-infected patients. The silent provirus can be activated through the use of drugs, including protein kinase C activators and histone deacetylase inhibitors. This "shock" approach is then followed by "kill" of the producing cells either through direct HIV-1-induced cell death or natural immune mechanisms. However, these mechanisms are relatively slow and effectiveness is unclear. Here, we develop an approach to specifically target and kill cells that are activated early in the process of virus production. We utilize a novel nanocapsule technology whereby the ricin A chain is encapsulated in an inactive form within a polymer shell. Specificity for release of the ricin A toxin is conferred by peptide crosslinkers that are sensitive to cleavage by HIV-1 protease. By using well-established latent infection models, J-Lat and U1 cells, we demonstrate that only within an HIV-1-producing cell expressing functional HIV-1 protease will the nanocapsule release its ricin A cargo, shutting down viral and cellular protein synthesis, and ultimately leading to rapid death of the producer cell. Thus, we provide proof of principle for a novel technology to kill HIV-1-producing cells without effects on non-target cells. PMID:27049645

  6. Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site

    PubMed Central

    Liu, Chuang; Perilla, Juan R.; Ning, Jiying; Lu, Manman; Hou, Guangjin; Ramalho, Ruben; Himes, Benjamin A.; Zhao, Gongpu; Bedwell, Gregory J.; Byeon, In-Ja; Ahn, Jinwoo; Gronenborn, Angela M.; Prevelige, Peter E.; Rousso, Itay; Aiken, Christopher; Polenova, Tatyana; Schulten, Klaus; Zhang, Peijun

    2016-01-01

    The host cell factor cyclophilin A (CypA) interacts directly with the HIV-1 capsid and regulates viral infectivity. Although the crystal structure of CypA in complex with the N-terminal domain of the HIV-1 capsid protein (CA) has been known for nearly two decades, how CypA interacts with the viral capsid and modulates HIV-1 infectivity remains unclear. We determined the cryoEM structure of CypA in complex with the assembled HIV-1 capsid at 8-Å resolution. The structure exhibits a distinct CypA-binding pattern in which CypA selectively bridges the two CA hexamers along the direction of highest curvature. EM-guided all-atom molecular dynamics simulations and solid-state NMR further reveal that the CypA-binding pattern is achieved by single-CypA molecules simultaneously interacting with two CA subunits, in different hexamers, through a previously uncharacterized non-canonical interface. These results provide new insights into how CypA stabilizes the HIV-1 capsid and is recruited to facilitate HIV-1 infection. PMID:26940118

  7. Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site.

    PubMed

    Liu, Chuang; Perilla, Juan R; Ning, Jiying; Lu, Manman; Hou, Guangjin; Ramalho, Ruben; Himes, Benjamin A; Zhao, Gongpu; Bedwell, Gregory J; Byeon, In-Ja; Ahn, Jinwoo; Gronenborn, Angela M; Prevelige, Peter E; Rousso, Itay; Aiken, Christopher; Polenova, Tatyana; Schulten, Klaus; Zhang, Peijun

    2016-01-01

    The host cell factor cyclophilin A (CypA) interacts directly with the HIV-1 capsid and regulates viral infectivity. Although the crystal structure of CypA in complex with the N-terminal domain of the HIV-1 capsid protein (CA) has been known for nearly two decades, how CypA interacts with the viral capsid and modulates HIV-1 infectivity remains unclear. We determined the cryoEM structure of CypA in complex with the assembled HIV-1 capsid at 8-Å resolution. The structure exhibits a distinct CypA-binding pattern in which CypA selectively bridges the two CA hexamers along the direction of highest curvature. EM-guided all-atom molecular dynamics simulations and solid-state NMR further reveal that the CypA-binding pattern is achieved by single-CypA molecules simultaneously interacting with two CA subunits, in different hexamers, through a previously uncharacterized non-canonical interface. These results provide new insights into how CypA stabilizes the HIV-1 capsid and is recruited to facilitate HIV-1 infection. PMID:26940118

  8. Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site

    NASA Astrophysics Data System (ADS)

    Liu, Chuang; Perilla, Juan R.; Ning, Jiying; Lu, Manman; Hou, Guangjin; Ramalho, Ruben; Himes, Benjamin A.; Zhao, Gongpu; Bedwell, Gregory J.; Byeon, In-Ja; Ahn, Jinwoo; Gronenborn, Angela M.; Prevelige, Peter E.; Rousso, Itay; Aiken, Christopher; Polenova, Tatyana; Schulten, Klaus; Zhang, Peijun

    2016-03-01

    The host cell factor cyclophilin A (CypA) interacts directly with the HIV-1 capsid and regulates viral infectivity. Although the crystal structure of CypA in complex with the N-terminal domain of the HIV-1 capsid protein (CA) has been known for nearly two decades, how CypA interacts with the viral capsid and modulates HIV-1 infectivity remains unclear. We determined the cryoEM structure of CypA in complex with the assembled HIV-1 capsid at 8-Å resolution. The structure exhibits a distinct CypA-binding pattern in which CypA selectively bridges the two CA hexamers along the direction of highest curvature. EM-guided all-atom molecular dynamics simulations and solid-state NMR further reveal that the CypA-binding pattern is achieved by single-CypA molecules simultaneously interacting with two CA subunits, in different hexamers, through a previously uncharacterized non-canonical interface. These results provide new insights into how CypA stabilizes the HIV-1 capsid and is recruited to facilitate HIV-1 infection.

  9. Structural Determinants for the Selective Anti-HIV-1 Activity of the All-β Alternative Conformer of XCL1

    PubMed Central

    Guzzo, Christina; Fox, Jamie C.; Miao, Huiyi; Volkman, Brian F.

    2015-01-01

    ABSTRACT HIV-1 replication is regulated in vivo by a complex network of cytokines and chemokines. XCL1/lymphotactin, a unique metamorphic chemokine, was recently identified as a broad-spectrum endogenous HIV-1 inhibitor that blocks viral entry via direct interaction with the gp120 envelope glycoprotein. HIV-1 inhibition by XCL1 requires access to the alternative all-β conformation, which interacts with glycosaminoglycans (GAGs) but not with the specific XCL1 receptor, XCR1. To investigate the structural determinants of the HIV-inhibitory function of XCL1, we performed a detailed structure-function analysis of a stabilized all-β variant, XCL1 W55D. Individual alanine substitutions of two basic residues within the 40s' loop, K42 and R43, abrogated the ability of XCL1 to bind to the viral envelope and block HIV-1 infection; moreover, a loss of HIV-inhibitory function, albeit less marked, was seen upon individual mutation of three additional basic residues: R18, R35, and K46. In contrast, mutation of K42 to arginine did not cause any loss of function, suggesting that the interaction with gp120 is primarily electrostatic in nature. Strikingly, four of these five residues cluster to form a large (∼350 Å2) positively charged surface in the all-β XCL1 conformation, whereas they are dissociated in the classic chemokine fold, which is inactive against HIV-1, providing a structural basis for the selective antiviral activity of the alternatively folded XCL1. Furthermore, we observed that changes to the N-terminal domain, which is proximal to the cluster of putative HIV-1 gp120-interacting residues, also affect the antiviral activity of XCL1. Interestingly, the complement of residues involved in HIV-1 blockade is partially overlapping, but distinct from those involved in the GAG-binding function of XCL1. These data identify key structural determinants of anti-HIV activity in XCL1, providing new templates for the development of HIV-1 entry inhibitors. IMPORTANCE The host

  10. TopoisomeraseIIβ in HIV-1 transactivation.

    PubMed

    Chekuri, Anil; Bhaskar, C; Bollimpelli, V Satish; Kondapi, Anand K

    2016-03-01

    TopoisomeraseIIβ, an isoform of type II topoisomerase, was found to be functional in various viral infections. Its plausible role in HIV life cycle was also suggested earlier, but not clearly established. In the present study, we have investigated the role of TopoIIβ in HIV-1 infection by its gain and loss of function. Overexpression of TopoIIβ lead to an increase in viral replication, resulting in enhanced virion production. HIV-1 replication was impaired when TopoIIβ was down regulated by siRNA and inhibited by ICRF-193 and merbarone. The role of TopoIIβ in HIV-1 transcription was shown through its interaction with Tat and recruitement to long terminal repeat (LTR) region by co-immunoprecipitation and ChIP assays. Involvement of TopoIIβ in transactivation of HIV-1 LTR was confirmed by luciferase assay in reporter cell line, TZM bl and also by transfection of reporter exogenously. It was also observed that LTR transactivation commensurated with the expression of TopoIIβ in the presence of Tat. In addition, a decreased viral gene expression on treatment with merbarone exemplifies the importance of catalytic activity of TopoIIβ in viral replication. These observations indicate that TopoIIβ is involved in the cascade of coactivator complexes that are recruited to LTR for regulation of HIV-1 transcription. PMID:26876283

  11. HIV-1 Genetic Variability and Clinical Implications

    PubMed Central

    Santoro, Maria Mercedes; Perno, Carlo Federico

    2013-01-01

    Despite advances in antiretroviral therapy that have revolutionized HIV disease management, effective control of the HIV infection pandemic remains elusive. Beyond the classic non-B endemic areas, HIV-1 non-B subtype infections are sharply increasing in previous subtype B homogeneous areas such as Europe and North America. As already known, several studies have shown that, among non-B subtypes, subtypes C and D were found to be more aggressive in terms of disease progression. Luckily, the response to antiretrovirals against HIV-1 seems to be similar among different subtypes, but these results are mainly based on small or poorly designed studies. On the other hand, differences in rates of acquisition of resistance among non-B subtypes are already being observed. This different propensity, beyond the type of treatment regimens used, as well as access to viral load testing in non-B endemic areas seems to be due to HIV-1 clade specific peculiarities. Indeed, some non-B subtypes are proved to be more prone to develop resistance compared to B subtype. This phenomenon can be related to the presence of subtype-specific polymorphisms, different codon usage, and/or subtype-specific RNA templates. This review aims to provide a complete picture of HIV-1 genetic diversity and its implications for HIV-1 disease spread, effectiveness of therapies, and drug resistance development. PMID:23844315

  12. HIV-1 Reservoirs During Suppressive Therapy.

    PubMed

    Barton, Kirston; Winckelmann, Anni; Palmer, Sarah

    2016-05-01

    The introduction of antiretroviral therapy (ART) 20 years ago has dramatically reduced morbidity and mortality associated with HIV-1. Initially there was hope that ART would be curative, but it quickly became clear that even though ART was able to restore CD4(+) T cell counts and suppress viral loads below levels of detection, discontinuation of treatment resulted in a rapid rebound of infection. This is due to persistence of a small reservoir of latently infected cells with a long half-life, which necessitates life-long ART. Over the past few years, significant progress has been made in defining and characterizing the latent reservoir of HIV-1, and here we review how understanding the latent reservoir during suppressive therapy will lead to significant advances in curative approaches for HIV-1. PMID:26875617

  13. HIV-1 immunopathogenesis in humanized mouse models

    PubMed Central

    Zhang, Liguo; Su, Lishan

    2012-01-01

    In recent years, the technology of constructing chimeric mice with humanized immune systems has markedly improved. Multiple lineages of human immune cells develop in immunodeficient mice that have been transplanted with human hematopoietic stem cells. More importantly, these mice mount functional humoral and cellular immune responses upon immunization or microbial infection. Human immunodeficiency virus type I (HIV-1) can establish an infection in humanized mice, resulting in CD4+ T-cell depletion and an accompanying nonspecific immune activation, which mimics the immunopathology in HIV-1-infected human patients. This makes humanized mice an optimal model for studying the mechanisms of HIV-1 immunopathogenesis and for developing novel immune-based therapies. PMID:22504952

  14. Population genomics of intrapatient HIV-1 evolution.

    PubMed

    Zanini, Fabio; Brodin, Johanna; Thebo, Lina; Lanz, Christa; Bratt, Göran; Albert, Jan; Neher, Richard A

    2015-01-01

    Many microbial populations rapidly adapt to changing environments with multiple variants competing for survival. To quantify such complex evolutionary dynamics in vivo, time resolved and genome wide data including rare variants are essential. We performed whole-genome deep sequencing of HIV-1 populations in 9 untreated patients, with 6-12 longitudinal samples per patient spanning 5-8 years of infection. The data can be accessed and explored via an interactive web application. We show that patterns of minor diversity are reproducible between patients and mirror global HIV-1 diversity, suggesting a universal landscape of fitness costs that control diversity. Reversions towards the ancestral HIV-1 sequence are observed throughout infection and account for almost one third of all sequence changes. Reversion rates depend strongly on conservation. Frequent recombination limits linkage disequilibrium to about 100 bp in most of the genome, but strong hitch-hiking due to short range linkage limits diversity. PMID:26652000

  15. Trio engagement via plasma membrane phospholipids and the myristoyl moiety governs HIV-1 matrix binding to bilayers

    PubMed Central

    Vlach, Jiri; Saad, Jamil S.

    2013-01-01

    Localization of the HIV type-1 (HIV-1) Gag protein on the plasma membrane (PM) for virus assembly is mediated by specific interactions between the N-terminal myristoylated matrix (MA) domain and phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]. The PM bilayer is highly asymmetric, and this asymmetry is considered crucial in cell function. In a typical mammalian cell, the inner leaflet of the PM is enriched in phosphatidylserine (PS) and phosphatidylethanolamine (PE) and contains minor populations of phosphatidylcholine (PC) and PI(4,5)P2. There is strong evidence that efficient binding of HIV-1 Gag to membranes is sensitive not only to lipid composition and net negative charge, but also to the hydrophobic character of the acyl chains. Here, we show that PS, PE, and PC interact directly with MA via a region that is distinct from the PI(4,5)P2 binding site. Our NMR data also show that the myristoyl group is readily exposed when MA is bound to micelles or bicelles. Strikingly, our structural data reveal a unique binding mode by which the 2′-acyl chain of PS, PE, and PC lipids is buried in a hydrophobic pocket whereas the 1′-acyl chain is exposed. Sphingomyelin, a major lipid localized exclusively on the outer layer of the PM, does not bind to MA. Our findings led us to propose a trio engagement model by which HIV-1 Gag is anchored to the PM via the 1′-acyl chains of PI(4,5)P2 and PS/PE/PC and the myristoyl group, which collectively bracket a basic patch projecting toward the polar leaflet of the membrane. PMID:23401539

  16. Viremic HIV controllers exhibit high plasmacytoid dendritic cell\\reactive opsonophagocytic IgG antibody responses against HIV-1 p24 associated with greater antibody isotype diversification

    PubMed Central

    Tjiam, M. Christian; Taylor, James P. A.; Morshidi, Mazmah A.; Sariputra, Lucy; Burrows, Sally; Martin, Jeffrey N.; Deeks, Steven G.; Tan, Dino B.A.; Lee, Silvia; Fernandez, Sonia; French, Martyn A.

    2015-01-01

    Identifying the mechanisms of natural control of HIV-1 infection could lead to novel approaches to prevent or cure HIV infection. Several studies have associated natural control of HIV-1 infection with IgG antibodies against HIV-1 Gag proteins (e.g. p24) and/or production of IgG2 antibodies against HIV-1 proteins. These antibodies likely exert their effect by activating anti-viral effector cell responses rather than virus neutralization. We hypothesized that an opsonophagocytic IgG antibody response against HIV-1 p24 that activates plasmacytoid dendritic cells (pDCs) through FcγRIIa would be associated with control of HIV and that this would be enhanced by antibody isotype diversification. Using the Gen2.2 pDC cell line, we demonstrated that pDC-reactive opsonophagocytic IgG antibody responses against HIV-1 p24 were higher in HIV controllers (HIV RNA <2000 copies/mL) than non-controllers (HIV RNA >10,000 copies/mL) particularly in controllers with low but detectable viremia (HIV RNA 75–2000 copies/mL). Opsonophagocytic antibody responses correlated with plasma levels of IgG1 and IgG2 anti-HIV-1 p24 and notably, correlated inversely with plasma HIV RNA levels in viremic HIV patients. Phagocytosis of these antibodies was mediated via FcγRIIa. Isotype diversification (towards IgG2) was greatest in HIV controllers and depletion of IgG2 from immunoglobulin preparations indicated that IgG2 antibodies to HIV-1 p24 do not enhance phagocytosis, suggesting that they enhance other aspects of antibody function, such as antigen opsonization. Our findings emulate those for pDC-reactive opsonophagocytic antibody responses against coxsackie, picorna and influenza viruses and demonstrate a previously undefined immune correlate of HIV-1 control that may be relevant to HIV vaccine development. PMID:25911748

  17. Novel vaccine vectors for HIV-1

    PubMed Central

    Picker, Louis J.

    2014-01-01

    The ultimate solution to the global HIV-1 epidemic will probably require the development of a safe and effective vaccine. Multiple vaccine platforms have been evaluated in both preclinical and clinical trials, but, given the disappointing results of the clinical efficacy studies so far, novel vaccine approaches are needed. In this Opinion article, we discuss the scientific basis and clinical potential of novel adenovirus and cytomegalovirus vaccine vectors for HIV-1 as two contrasting, but potentially complementary, vector approaches. Both of these vector platforms have demonstrated partial protection against stringent simian immunodeficiency virus challenges in rhesus monkeys using different immunological mechanisms. PMID:25296195

  18. Laparoscopic sterilization in HIV-1-positive women.

    PubMed

    Intaraprasert, S; Taneepanichskul, S; Chaturachinda, K

    1996-11-01

    Laparoscopic sterilizations in HIV-1-positive women were performed. Patients, who were HIV-1-positive, underwent voluntary laparoscopic sterilization. The mean age of patients was 27.5 +/- 3.8 years. Most were of low socioeconomic status. The mean duration of the operation was 14.4 +/- 5.4 min. No accidental injury to the surgical team was recorded, and no complications occurred among the patients. It was concluded that laparoscopic sterilization in HIV-positive patients was safe with low risk of HIV transmission to the surgical team. PMID:8934065

  19. Oral Immunization with a Recombinant Lactococcus lactis-Expressing HIV-1 Antigen on Group A Streptococcus Pilus Induces Strong Mucosal Immunity in the Gut.

    PubMed

    Chamcha, Venkateswarlu; Jones, Andrew; Quigley, Bernard R; Scott, June R; Amara, Rama Rao

    2015-11-15

    The induction of a potent humoral and cellular immune response in mucosal tissue is important for the development of an effective HIV vaccine. Most of the current HIV vaccines under development use the i.m. route for immunization, which is relatively poor in generating potent and long-lived mucosal immune responses. In this article, we explore the ability of an oral vaccination with a probiotic organism, Lactococcus lactis, to elicit HIV-specific immune responses in the mucosal and systemic compartments of BALB/c mice. We expressed the HIV-1 Gag-p24 on the tip of the T3 pilus of Streptococcus pyogenes as a fusion to the Cpa protein (LL-Gag). After four monthly LL-Gag oral immunizations, we observed strong Gag-specific IgG and IgA responses in serum, feces, and vaginal secretions. However, the Gag-specific CD8 T cell responses in the blood were at or below our detection limit. After an i.m. modified vaccinia Ankara/Gag boost, we observed robust Gag-specific CD8 T cell responses both in systemic and in mucosal tissues, including intraepithelial and lamina propria lymphocytes of the small intestine, Peyer's patches, and mesenteric lymph nodes. Consistent with strong immunogenicity, the LL-Gag induced activation of CD11c(+) CD11b(+) dendritic cells in the Peyer's patches after oral immunization. Our results demonstrate that oral immunization with L. lactis expressing an Ag on the tip of the group A Streptococcus pilus serves as an excellent vaccine platform to induce strong mucosal humoral and cellular immunity against HIV. PMID:26482408

  20. HIV type 1 gag genetic diversity among antenatal clinic attendees in North Rift Valley, Kenya.

    PubMed

    Nyagaka, Benuel; Kiptoo, Michael K; Lihana, Raphael W; Khamadi, Samoel A; Makokha, Ernest P; Kinyua, Joyceline G; Mwangi, Joseph; Osman, Saida; Lagat, Nancy J; Muriuki, Joseph; Okoth, Vincent; Gicheru, Michael; Ng'ang'a, Zipporah; Songok, Elijah M

    2012-05-01

    HIV genetic recombination and high mutation rate increase diversity allowing it to escape from host immune response or antiretroviral drugs. This diversity has enabled specific viral subtypes to be predominant in specific regions. To determine HIV-1 subtypes among seropositive antenatal clinic attendees in Kenya's North Rift Valley, a cross-sectional study was carried out on 116 HIV-1-positive blood samples. Proviral DNA was extracted from peripheral blood mononuclear cells by DNAzol lysis and ethanol precipitation. Polymerase chain reactions using specific primers for HIV-1 gag and population sequencing on resulting amplicons were carried out. Phylogenetic analysis revealed that 81 (70%) were subtype A1, 13 (11%) subtype D, 8 (7%) subtype C, 3 (3%) subtype A2, 1 (1%) subtype G, and 10 showed possible recombinants: 5 (4%) subtype A1D, 4 (3%) subtype A1C, and 1 (1%) subtype A2C. These data support the need to establish circulating subtypes for better evaluation of effective HIV diagnostic and treatment options in Kenya. PMID:21827277

  1. Safety and Immunogenicity Study of Multiclade HIV-1 Adenoviral Vector Vaccine Alone or as Boost following a Multiclade HIV-1 DNA Vaccine in Africa

    PubMed Central

    Allen, Susan; Than, Soe; Adams, Elizabeth M.; Graham, Barney S.; Koup, Richard A.; Bailer, Robert T.; Smith, Carol; Dally, Len; Tarragona-Fiol, Tony; Bergin, Philip J.; Hayes, Peter; Ho, Martin; Loughran, Kelley; Komaroff, Wendy; Stevens, Gwynneth; Thomson, Helen; Boaz, Mark J.; Cox, Josephine H.; Schmidt, Claudia; Gilmour, Jill; Nabel, Gary J.; Fast, Patricia

    2010-01-01

    Background We conducted a double-blind, randomized, placebo-controlled Phase I study of a recombinant replication-defective adenovirus type 5 (rAd5) vector expressing HIV-1 Gag and Pol from subtype B and Env from subtypes A, B and C, given alone or as boost following a DNA plasmid vaccine expressing the same HIV-1 proteins plus Nef, in 114 healthy HIV-uninfected African adults. Methodology/Principal Findings Volunteers were randomized to 4 groups receiving the rAd5 vaccine intramuscularly at dosage levels of 1×1010 or 1×1011 particle units (PU) either alone or as boost following 3 injections of the DNA vaccine given at 4 mg/dose intramuscularly by needle-free injection using Biojector® 2000. Safety and immunogenicity were evaluated for 12 months. Both vaccines were well-tolerated. Overall, 62% and 86% of vaccine recipients in the rAd5 alone and DNA prime - rAd5 boost groups, respectively, responded to the HIV-1 proteins by an interferon-gamma (IFN-γ) ELISPOT. The frequency of immune responses was independent of rAd5 dosage levels. The highest frequency of responses after rAd5 alone was detected at 6 weeks; after DNA prime - rAd5 boost, at 6 months (end of study). At baseline, neutralizing antibodies against Ad5 were present in 81% of volunteers; the distribution was similar across the 4 groups. Pre-existing immunity to Ad5 did not appear to have a significant impact on reactogenicity or immune response rates to HIV antigens by IFN-γ ELISPOT. Binding antibodies against Env were detected in up to 100% recipients of DNA prime - rAd5 boost. One volunteer acquired HIV infection after the study ended, two years after receipt of rAd5 alone. Conclusions/Significance The HIV-1 rAd5 vaccine, either alone or as a boost following HIV-1 DNA vaccine, was well-tolerated and immunogenic in African adults. DNA priming increased the frequency and magnitude of cellular and humoral immune responses, but there was no effect of rAd5 dosage on immunogenicity endpoints. Trial

  2. Heterologous Prime-Boost Regimens with a Recombinant Chimpanzee Adenoviral Vector and Adjuvanted F4 Protein Elicit Polyfunctional HIV-1-Specific T-Cell Responses in Macaques

    PubMed Central

    Lorin, Clarisse; Vanloubbeeck, Yannick; Baudart, Sébastien; Ska, Michaël; Bayat, Babak; Brauers, Geoffroy; Clarinval, Géraldine; Donner, Marie-Noëlle; Marchand, Martine; Koutsoukos, Marguerite; Mettens, Pascal; Cohen, Joe; Voss, Gerald

    2015-01-01

    HIV-1-specific CD4+ and CD8+ T lymphocytes are important for HIV-1 replication control. F4/AS01 consists of F4 recombinant fusion protein (containing clade B Gag/p24, Pol/RT, Nef and Gag/p17) formulated in AS01 Adjuvant System, and was shown to induce F4-specific polyfunctional CD4+ T-cell responses in humans. While replication-incompetent recombinant HIV-1/SIV antigen-expressing human adenoviral vectors can elicit high-frequency antigen-specific CD8+ T-cell responses, their use is hampered by widespread pre-existing immunity to human serotypes. Non-human adenovirus serotypes associated with lower prevalence may offer an alternative strategy. We evaluated the immunogenicity of AdC7-GRN (‘A’), a recombinant chimpanzee adenovirus type 7 vector expressing clade B Gag, RT and Nef, and F4/AS01 (‘P’), when delivered intramuscularly in homologous (PP or AA) and heterologous (AAPP or PPAA) prime-boost regimens, in macaques and mice. Vaccine-induced HIV-1-antigen-specific T cells in peripheral blood (macaques), liver, spleen, and intestinal and genital mucosa (mice) were characterized by intracellular cytokine staining. Vaccine-specific IgG antibodies (macaques) were detected using ELISA. In macaques, only the heterologous prime-boost regimens induced polyfunctional, persistent and balanced CD4+ and CD8+ T-cell responses specific to each HIV-1 vaccine antigen. AdC7-GRN priming increased the polyfunctionality of F4/AS01-induced CD4+ T cells. Approximately 50% of AdC7-GRN-induced memory CD8+ T cells exhibited an effector-memory phenotype. HIV-1-specific antibodies were detected with each regimen. In mice, antigen-specific CD4+ and CD8+ T-cell responses were detected in the mucosal and systemic anatomical compartments assessed. When administered in heterologous prime-boost regimens, AdC7-GRN and F4/AS01 candidate vaccines acted complementarily in inducing potent and persistent peripheral blood HIV-1-specific CD4+ and CD8+ T-cell responses and antibodies in macaques

  3. First-in-Human Evaluation of the Safety and Immunogenicity of a Recombinant Vesicular Stomatitis Virus Human Immunodeficiency Virus-1 gag Vaccine (HVTN 090)

    PubMed Central

    Fuchs, Jonathan D.; Frank, Ian; Elizaga, Marnie L.; Allen, Mary; Frahm, Nicole; Kochar, Nidhi; Li, Sue; Edupuganti, Srilatha; Kalams, Spyros A.; Tomaras, Georgia D.; Sheets, Rebecca; Pensiero, Michael; Tremblay, Marc A.; Higgins, Terry J.; Latham, Theresa; Egan, Michael A.; Clarke, David K.; Eldridge, John H.

    2015-01-01

    Background. We report the first-in-human safety and immunogenicity evaluation of a highly attenuated, replication-competent recombinant vesicular stomatitis virus (rVSV) human immunodeficiency virus (HIV)-1 vaccine. Methods. Sixty healthy, HIV-1-uninfected adults were enrolled in a randomized, double-blinded, placebo-controlled dose-escalation study. Groups of 12 participants received rVSV HIV-1 gag vaccine at 5 dose levels (4.6 × 103 to 3.4 × 107 particle forming units) (N = 10/group) or placebo (N = 2/group), delivered intramuscularly as bilateral injections at 0 and 2 months. Safety monitoring included VSV cultures from blood, urine, saliva, and swabs of oral lesions. Vesicular stomatitis virus-neutralizing antibodies, T-cell immunogenicity, and HIV-1 specific binding antibodies were assessed. Results. Local and systemic reactogenicity symptoms were mild to moderate and increased with dose. No severe reactogenicity or product-related serious adverse events were reported, and all rVSV cultures were negative. All vaccine recipients became seropositive for VSV after 2 vaccinations. gag-specific T-cell responses were detected in 63% of participants by interferon-γ enzyme-linked immunospot at the highest dose post boost. Conclusions. An attenuated replication-competent rVSV gag vaccine has an acceptable safety profile in healthy adults. This rVSV vector is a promising new vaccine platform for the development of vaccines to combat HIV-1 and other serious human diseases. PMID:26199949

  4. Structure of glycosylated and unglycosylated gag and gag-pol precursor proteins of Moloney murine leukemia virus.

    PubMed Central

    Saris, C J; van Eenbergen, J; Liskamp, R M; Bloemers, H P

    1983-01-01

    Precursor polyproteins containing translational products of the gag gene of Moloney murine leukemia virus were purified by gel electrophoresis and cleaved into large fragments by hydroxylamine, mild acid hydrolysis, or cyanogen bromide. The hydroxylamine cleavage method (specific for asparagine-glycine bonds) was adapted especially for this study. The electrophoretic mobility and antigenicity of the fragments and, in some cases, the presence or absence of [35S]methionine revealed detailed information on the structure of Pr65gag, gPr80gag, and Pr75gag (the unglycosylated variant of gPr80gag formed in vivo in the presence of tunicamycin or in vitro in a reticulocyte cell-free system). When compared with Pr65gag, gPr80gag contains 7,000 daltons of additional amino acids, presumably as, or as part of, a leader sequence at or very close to its N terminus. We present evidence that this leader may have replaced part of the p15 sequence. Furthermore, gPr80gag contains three separate carbohydrate groups. One is attached to the presumed leader sequence or to the p15 domain, and two are attached to the p30 domain. Each of the Moloney murine leukemia virus gag precursor proteins Pr65gag, gPr80gag, and Pr75gag corresponds with a read-through product into the pol gene. We designated these products Pr180gag-pol, gPr200gag-pol, and Pr190gag-pol (the unglycosylated variant of gPr200gag-pol), respectively. gPr200gag-pol contains all of the extra amino acids and carbohydrate groups present in gPr80gag and at least one carbohydrate group in its pol sequences. Images PMID:6602220

  5. The HPA axis in HIV-1 infection.

    PubMed

    Kumar, Mahendra; Kumar, Adarsh M; Waldrop, Drenna; Antoni, Michael H; Schneiderman, Neil; Eisdorfer, Carl

    2002-10-01

    Several lines of evidence suggest that neuroendocrine abnormalities in general and HPA axis activity in particular occur in both HIV-1 infection and individuals engaging in chronic drug use. For instance, our studies showing attenuated norepinephrine as well as ACTH and cortisol responses to a cold pressor challenge in asymptomatic HIV-1 persons support such a concept. Furthermore, our data on investigations on mirror-star tracing and speech challenges also support the finding that neuroendocrine responses are compromised in HIV-1 infection. Although the mechanisms leading to adverse effects on HPA axis activity in HIV infection are not fully understood, several lines of evidence suggest that a number of mechanisms may be involved, including homologies in molecular structures of various mediators of neuroendocrine activity and HIV-related structures, HIV as a chronic stress model, and virus-induced toxic factors. This article reviews our recent findings in this area and also presents research hypotheses needed for testing and understanding the mechanisms involved in the development of neuroendocrine abnormalities in HIV-1-infected injection drug users. PMID:12394788

  6. HIV-1 remodels the nuclear pore complex

    PubMed Central

    Monette, Anne; Panté, Nelly

    2011-01-01

    Human immunodeficiency virus type 1 (HIV-1) commandeers host cell proteins and machineries for its replication. Our earlier work showed that HIV-1 induced the cytoplasmic retention of nucleocytoplasmic shuttling and ribonucleic acid (RNA)–binding proteins. This retention is dependent on nuclear export of the viral genomic RNA and on changes in the localization and expression level of the nucleoporin (Nup) p62 (Nup62). To further characterize the extent of perturbation induced by HIV-1, we performed proteomics analyses of nuclear envelopes (NEs) isolated from infected T cells. Infection induced extensive changes in the composition of the NE and its associated proteins, including a remarkable decrease in the abundance of Nups. Immunogold electron microscopy revealed the translocation of Nups into the cytoplasm. Nup62 was identified as a component of purified virus, and small interfering RNA depletion studies revealed an important role for this Nup in virus gene expression and infectivity. This detailed analysis highlights the profound effects on NE composition induced by HIV-1 infection, providing further evidence of the magnitude of viral control over the cell biology of its host. PMID:21576391

  7. HIV-1 integrase: from biology to chemotherapeutics.

    PubMed

    Zeinalipour-Loizidou, Eriketi; Nicolaou, Christos; Nicolaides, Athanasios; Kostrikis, Leondios G

    2007-07-01

    AIDS has claimed the lives of 25 million people worldwide, an additional 40 million people are HIV-infected and new cases are being diagnosed every year. Despite the fact that HAART has moved AIDS from the category of terminal diseases to that of treatable chronic illnesses, its long-term therapeutic success may be compromised by the development of resistance to the currently used drugs. Despite the availability of RT, PR and fusion inhibitors, the development of further drugs such as inhibitors that target the third enzyme IN is essential for the clinical management of HIV-infected patients. The absence of cellular homolgues to IN and the unique nature of the reactions catalyzed by IN, make it an ideal target for drug design. Considerable progress towards designing HIV-1 IN inhibitors has been made over the last years and several lead compounds have been identified, synthesized and clinically studied. This review focuses on the existing knowledge of the biology of HIV-1 IN with emphasis on the mechanism of integration, structure and function and the technologies for measuring IN activity. This is followed by the current trends on designing HIV-1 IN inhibitors with the aid of molecular informatics and a review on the main classes of HIV-1 IN inhibitors reported this far with special emphasis on the clinical candidates. PMID:17627500

  8. HIV-1 transcription and latency: an update

    PubMed Central

    2013-01-01

    Combination antiretroviral therapy, despite being potent and life-prolonging, is not curative and does not eradicate HIV-1 infection since interruption of treatment inevitably results in a rapid rebound of viremia. Reactivation of latently infected cells harboring transcriptionally silent but replication-competent proviruses is a potential source of persistent residual viremia in cART-treated patients. Although multiple reservoirs may exist, the persistence of resting CD4+ T cells carrying a latent infection represents a major barrier to eradication. In this review, we will discuss the latest reports on the molecular mechanisms that may regulate HIV-1 latency at the transcriptional level, including transcriptional interference, the role of cellular factors, chromatin organization and epigenetic modifications, the viral Tat trans-activator and its cellular cofactors. Since latency mechanisms may also operate at the post-transcriptional level, we will consider inhibition of nuclear RNA export and inhibition of translation by microRNAs as potential barriers to HIV-1 gene expression. Finally, we will review the therapeutic approaches and clinical studies aimed at achieving either a sterilizing cure or a functional cure of HIV-1 infection, with a special emphasis on the most recent pharmacological strategies to reactivate the latent viruses and decrease the pool of viral reservoirs. PMID:23803414

  9. Incorporation of 12-methoxydodecanoate into the human immunodeficiency virus 1 gag polyprotein precursor inhibits its proteolytic processing and virus production in a chronically infected human lymphoid cell line

    SciTech Connect

    Bryant, M.L.; Ratner, L.; Duronio, R.J.; Gordon, J.I. ); Kishore, N.S. ); Devadas, B.; Adams, S.P. )

    1991-03-15

    Covalent linkage of myristate (tetradecanoate; 14:0) to the NH{sub 2}-terminal glycine residue of the human immunodeficiency virus 1 (HIV-1) 55-kDa gag polyprotein precursor (Pr55{sup gag}) is necessary for its proteolytic processing and viral assembly. The authors have shown recently that several analogs of myristate in which a methylene group is replaced by a single oxygen or sulfur atom are substrates for Saccharomyces cerevisiae and mammalian myristoyl-CoA:protein N-myristoyltransferase despite their reduced hydrophobicity. To examine the mechanism of their antiviral effects, they performed labeling studies with two analogs, 12-methoxydodecanoate (13-oxamyristate; 13-OxaMyr) and 5-octyloxypentanoate (6-oxamyristate; 6-OxaMyr), the former being much more effective than the latter in blocking virus production. ({sup 3}H)Myristate and ({sup 3}H)13-OxaMyr were incorporated into Pr55{sup gag} with comparable efficiency when it was coexpressed with S. cerevisiae NMT in Escherichia coli. Unlike AZT, the analog is able to inhibit virus production (up to 70%) in chronically infected H9 cells. Moreover, the inhibitory effect lasts 6-8 days. These results suggest that (i) its mechanism of action is distinct from that of AZT and involves a late step in virus assembly; (ii) the analog may allow reduction in the dose of AZT required to affect viral replication; and (iii) combinations of analog and HIV-1 protease inhibitors may have synergistic effects on the processing of Pr55{sup gag}.

  10. Emerging Variability in HIV-1 Genetics among Recently Infected Individuals in Yunnan, China

    PubMed Central

    Chen, Min; Yang, Li; Ma, Yanling; Su, Yingzhen; Yang, Chaojun; Luo, Hongbing; Chen, Huichao; Chen, Ling; Yan, Wenyun; Shi, Yuhua; Jia, Manhong; Lu, Lin

    2013-01-01

    Background Yunnan has the longest endured Human Immunodeficiency Virus-1 (HIV-1) epidemic in China, and the genetic diversity of HIV-1 constitutes an essential characteristic of molecular epidemiology in this region. To obtain a more comprehensive picture of the dynamic changes in Yunnan’s HIV-1 epidemic, a cross-sectional molecular epidemiological investigation was carried out among recently infected individuals. Methodology/Principal Findings We sequenced partial gag (HXB2∶781–1861) and env (HXB2∶7002–7541) genes from 308 plasma samples of recently infected patients. With phylogenetic analysis, 130 specimens generated interpretable genotyping data. We found that the circulating genotypes included: CRF08_BC (40.8%), unique recombinant forms (URFs, 27.7%), CRF01_AE (18.5%), CRF07_BC (9.2%), subtype B (2.3%) and C (1.5%). CRF08_BC was the most common genotype, and was predominant in both intravenous drug users (IDUs) and heterosexually transmitted populations. CRF08_BC and CRF07_BC still predominated in eastern Yunnan, but CRF08_BC showed increasing prevalence in western Yunnan. Strikingly, the URFs raised dramatically in most regions of Yunnan. Seven different types of URFs were detected from 12 prefectures, suggesting that complicated and frequent recombination is a salient feature of Yunnan’s HIV-1 epidemic. Among URFs, two BC clusters with distinctive recombination patterns might be potential new CRF_BCs. CRF01_AE was no longer confined to the prefectures bordering Myanmar, and had spread to the eastern part of Yunnan, especially the capital city of Kunming, with a large number of infections in the transient population. The ratios of the main genotypes showed no statistical differences between infected IDUs and heterosexually transmitted infections. Conclusions/Significance The changing patterns of the dominant HIV-1 genotypes in Yunnan indicate the complex evolving dynamic nature of the epidemic. Understanding new trends in molecular epidemiology of

  11. Lower Viral Loads and Slower CD4+ T-Cell Count Decline in MRKAd5 HIV-1 Vaccinees Expressing Disease-Susceptible HLA-B*58:02

    PubMed Central

    Leitman, Ellen M.; Hurst, Jacob; Mori, Masahiko; Kublin, James; Ndung'u, Thumbi; Walker, Bruce D.; Carlson, Jonathan; Gray, Glenda E.; Matthews, Philippa C.; Frahm, Nicole; Goulder, Philip J.R.

    2016-01-01

    Background. HLA strongly influences human immunodeficiency virus type 1 (HIV-1) disease progression. A major contributory mechanism is via the particular HLA-presented HIV-1 epitopes that are recognized by CD8+ T-cells. Different populations vary considerably in the HLA alleles expressed. We investigated the HLA-specific impact of the MRKAd5 HIV-1 Gag/Pol/Nef vaccine in a subset of the infected Phambili cohort in whom the disease-susceptible HLA-B*58:02 is highly prevalent. Methods. Viral loads, CD4+ T-cell counts, and enzyme-linked immunospot assay–determined anti-HIV-1 CD8+ T-cell responses for a subset of infected antiretroviral-naive Phambili participants, selected according to sample availability, were analyzed. Results. Among those expressing disease-susceptible HLA-B*58:02, vaccinees had a lower chronic viral set point than placebo recipients (median, 7240 vs 122 500 copies/mL; P = .01), a 0.76 log10 lower longitudinal viremia level (P = .01), and slower progression to a CD4+ T-cell count of <350 cells/mm3 (P = .02). These differences were accompanied by a higher Gag-specific breadth (4.5 vs 1 responses; P = .04) and magnitude (2300 vs 70 spot-forming cells/106 peripheral blood mononuclear cells; P = .06) in vaccinees versus placebo recipients. Conclusions. In addition to the known enhancement of HIV-1 acquisition resulting from the MRKAd5 HIV-1 vaccine, these findings in a nonrandomized subset of enrollees show an HLA-specific vaccine effect on the time to CD4+ T-cell count decline and viremia level after infection and the potential for vaccines to differentially alter disease outcome according to population HLA composition. Clinical Trials Registration. NCT00413725, DOH-27-0207-1539. PMID:26951820

  12. Molecular Epidemiology of HIV-1 Infection among Men who Have Sex with Men in Taiwan in 2012

    PubMed Central

    Huang, Szu-Wei; Wang, Sheng-Fan; Cowó, Ángel E.; Chen, Marcelo; Lin, Yu-Ting; Hung, Chun-Po; Chen, Yi-Hsien; Yang, Jyh-Yuan; Tang, Hung-Jen; Chen, Yi-Ming Arthur

    2015-01-01

    The number of men who have sex with men (MSM) infected with HIV-1 in Taiwan has increased rapidly in the past few years. The goal of this study was to conduct a molecular epidemiological study of HIV-1 infection among MSM in Taiwan to identify risk factors for intervention. Voluntary counseling program and anonymous testing were provided to patrons at 1 gay bar, 7 night clubs and 3 gay saunas in Taipei and New Taipei Cities in 2012. HIV-1 subtypes were determined using gag subtype-specific PCR and phylogenetic analysis by env sequences. Recent HIV-1 infection was determined using LAg-Avidity EIA. In-depth interviews and questionnaires were used to identify risk factors. The prevalence and incidence of HIV-1 among MSM in Taiwan were 4.38% (53/1,208) and 3.29 per 100 person-years, respectively. Of 49 cases genotyped, 48 (97.9%) were infected with subtype B and 1 with CRF01_AE (2%). Phylogenetic analysis of 46 HIV-1 strains showed that 25 (54.4%) subtype B strains formed 9 clusters with each other or with other local strains. The CRF01_AE case clustered with a reference strain from a Thai blood donor with bootstrap value of 99. Multivariate logistic regression analysis showed that risk factors associated with HIV-1 infection included use of oil-based solution as lubricant (vs. saliva or water-based lubricants, OR= 4.23; p <0.001); exclusively receptive role (vs. insertive role, OR= 9.69; p <0.001); versatile role (vs. insertive role, OR= 6.45; p= 0.003); oral sex (vs. insertive role, OR= 11.93; p= 0.044); times of sexual contact per week (2-3 vs. zero per week, OR= 3.41; p= 0.021); illegal drug use (OR= 4.12; p <0.001); and history of sexually transmitted diseases (OR= 3.65; p= 0.002). In conclusion, there was no new HIV-1 subtype or circulating recombinant form responsible for the increase of HIV-1 among MSM in Taiwan in 2012. Misuse of oil-based solution as lubricant is a new risk factor identified among MSM in Taiwan. The Taiwan’s Centers for Disease Control has

  13. Molecular Epidemiology of HIV-1 Infection among Men who Have Sex with Men in Taiwan in 2012.

    PubMed

    Huang, Szu-Wei; Wang, Sheng-Fan; Cowó, Ángel E; Chen, Marcelo; Lin, Yu-Ting; Hung, Chun-Po; Chen, Yi-Hsien; Yang, Jyh-Yuan; Tang, Hung-Jen; Chen, Yi-Ming Arthur

    2015-01-01

    The number of men who have sex with men (MSM) infected with HIV-1 in Taiwan has increased rapidly in the past few years. The goal of this study was to conduct a molecular epidemiological study of HIV-1 infection among MSM in Taiwan to identify risk factors for intervention. Voluntary counseling program and anonymous testing were provided to patrons at 1 gay bar, 7 night clubs and 3 gay saunas in Taipei and New Taipei Cities in 2012. HIV-1 subtypes were determined using gag subtype-specific PCR and phylogenetic analysis by env sequences. Recent HIV-1 infection was determined using LAg-Avidity EIA. In-depth interviews and questionnaires were used to identify risk factors. The prevalence and incidence of HIV-1 among MSM in Taiwan were 4.38% (53/1,208) and 3.29 per 100 person-years, respectively. Of 49 cases genotyped, 48 (97.9%) were infected with subtype B and 1 with CRF01_AE (2%). Phylogenetic analysis of 46 HIV-1 strains showed that 25 (54.4%) subtype B strains formed 9 clusters with each other or with other local strains. The CRF01_AE case clustered with a reference strain from a Thai blood donor with bootstrap value of 99. Multivariate logistic regression analysis showed that risk factors associated with HIV-1 infection included use of oil-based solution as lubricant (vs. saliva or water-based lubricants, OR= 4.23; p <0.001); exclusively receptive role (vs. insertive role, OR= 9.69; p <0.001); versatile role (vs. insertive role, OR= 6.45; p= 0.003); oral sex (vs. insertive role, OR= 11.93; p= 0.044); times of sexual contact per week (2-3 vs. zero per week, OR= 3.41; p= 0.021); illegal drug use (OR= 4.12; p <0.001); and history of sexually transmitted diseases (OR= 3.65; p= 0.002). In conclusion, there was no new HIV-1 subtype or circulating recombinant form responsible for the increase of HIV-1 among MSM in Taiwan in 2012. Misuse of oil-based solution as lubricant is a new risk factor identified among MSM in Taiwan. The Taiwan's Centers for Disease Control has

  14. Evidence for Vpr-dependent HIV-1 Replication in Human CD4+ CEM.NKR T-Cells

    PubMed Central

    2012-01-01

    Background Vpr is exclusively expressed in primate lentiviruses and contributes to viral replication and disease progression in vivo. HIV-1 Vpr has two major activities in vitro: arrest of cell cycle in the G2 phase (G2 arrest), and enhancement of viral replication in macrophages. Previously, we reported a potent HIV-1 restriction in the human CD4+ CEM.NKR (NKR) T cells, where wild-type (WT) HIV-1 replication was inhibited by almost 1,000-fold. From the parental NKR cells, we isolated eight clones by limiting dilution. These clones showed three levels of resistance to the WT HIV-1 infection: non-permissive (NP), semi-permissive (SP), and permissive (P). Here, we compared the replication of WT, Vif-defective, Vpr-defective, and Vpu-defective viruses in these cells. Results Although both WT and Vpu-defective viruses could replicate in the permissive and semi-permissive clones, the replication of Vif-defective and Vpr-defective viruses was completely restricted. The expression of APOBEC3G (A3G) cytidine deaminase in NKR cells explains why Vif, but not Vpr, was required for HIV-1 replication. When the Vpr-defective virus life cycle was compared with the WT virus life cycle in the semi-permissive cells, it was found that the Vpr-defective virus could enter the cell and produce virions containing properly processed Gag and Env proteins, but these virions showed much less efficiency for reverse transcription during the next-round of infection. In addition, although viral replication was restricted in the non-permissive cells, treatment with arsenic trioxide (As2O3) could completely restore WT, but not Vpr-defective virus replication. Moreover, disruption of Vpr binding to its cofactor DCAF1 and/or induction of G2 arrest activity did not disrupt the Vpr activity in enhancing HIV-1 replication in NKR cells. Conclusions These results demonstrate that HIV-1 replication in NKR cells is Vpr-dependent. Vpr promotes HIV-1 replication from the 2nd cycle likely by overcoming a

  15. HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1.

    PubMed

    Schoofs, Till; Klein, Florian; Braunschweig, Malte; Kreider, Edward F; Feldmann, Anna; Nogueira, Lilian; Oliveira, Thiago; Lorenzi, Julio C C; Parrish, Erica H; Learn, Gerald H; West, Anthony P; Bjorkman, Pamela J; Schlesinger, Sarah J; Seaman, Michael S; Czartoski, Julie; McElrath, M Juliana; Pfeifer, Nico; Hahn, Beatrice H; Caskey, Marina; Nussenzweig, Michel C

    2016-05-20

    3BNC117 is a broad and potent neutralizing antibody to HIV-1 that targets the CD4 binding site on the viral envelope spike. When administered passively, this antibody can prevent infection in animal models and suppress viremia in HIV-1-infected individuals. Here we report that HIV-1 immunotherapy with a single injection of 3BNC117 affects host antibody responses in viremic individuals. In comparison to untreated controls that showed little change in their neutralizing activity over a 6-month period, 3BNC117 infusion significantly improved neutralizing responses to heterologous tier 2 viruses in nearly all study participants. We conclude that 3BNC117-mediated immunotherapy enhances host humoral immunity to HIV-1. PMID:27199429

  16. Enhanced clearance of HIV-1-infected cells by broadly neutralizing antibodies against HIV-1 in vivo.

    PubMed

    Lu, Ching-Lan; Murakowski, Dariusz K; Bournazos, Stylianos; Schoofs, Till; Sarkar, Debolina; Halper-Stromberg, Ariel; Horwitz, Joshua A; Nogueira, Lilian; Golijanin, Jovana; Gazumyan, Anna; Ravetch, Jeffrey V; Caskey, Marina; Chakraborty, Arup K; Nussenzweig, Michel C

    2016-05-20

    Antiretroviral drugs and antibodies limit HIV-1 infection by interfering with the viral life cycle. In addition, antibodies also have the potential to guide host immune effector cells to kill HIV-1-infected cells. Examination of the kinetics of HIV-1 suppression in infected individuals by passively administered 3BNC117, a broadly neutralizing antibody, suggested that the effects of the antibody are not limited to free viral clearance and blocking new infection but also include acceleration of infected cell clearance. Consistent with these observations, we find that broadly neutralizing antibodies can target CD4(+) T cells infected with patient viruses and can decrease their in vivo half-lives by a mechanism that requires Fcγ receptor engagement in a humanized mouse model. The results indicate that passive immunotherapy can accelerate elimination of HIV-1-infected cells. PMID:27199430

  17. Deletions in the fifth alpha helix of HIV-1 Matrix block virus release

    PubMed Central

    Sanford, Bridget; Li, Yan; Maly, Connor J.; Madson, Christian J.; Chen, Han; Zhou, You; Belshan, Michael

    2014-01-01

    The Matrix (MA) protein of HIV-1 is the N-terminal component of the Gag structural protein and is critical for the early and late stages of viral replication. MA contains five α-helices (α1-α5). Deletions in the N-terminus of α5 as small as three amino acids impaired virus release. Electron microscopy of one deletion mutant (MAΔ96-120) showed that its particles were tethered to the surface of cells by membranous stalks. Immunoblots indicated all mutants were processed completely, but mutants with large deletions had alternative processing intermediates. Consistent with the EM data, MAΔ96-120 retained membrane association and multimerization capability. Co-expression of this mutant inhibited wild type particle release. Alanine scanning mutation in this region did not affect virus release, although the progeny virions were poorly infectious. Combined, these data demonstrate that structural ablation of the α5 of MA inhibits virus release. PMID:25217711

  18. Large-Scale Functional Purification of Recombinant HIV-1 Capsid

    PubMed Central

    Jin, Debi; Wong, Melanie; Leavitt, Stephanie; Brendza, Katherine M.; Liu, Xiaohong; Sakowicz, Roman

    2013-01-01

    During human immunodeficiency virus type-1 (HIV-1) virion maturation, capsid proteins undergo a major rearrangement to form a conical core that protects the viral nucleoprotein complexes. Mutations in the capsid sequence that alter the stability of the capsid core are deleterious to viral infectivity and replication. Recently, capsid assembly has become an attractive target for the development of a new generation of anti-retroviral agents. Drug screening efforts and subsequent structural and mechanistic studies require gram quantities of active, homogeneous and pure protein. Conventional means of laboratory purification of Escherichia coli expressed recombinant capsid protein rely on column chromatography steps that are not amenable to large-scale production. Here we present a function-based purification of wild-type and quadruple mutant capsid proteins, which relies on the inherent propensity of capsid protein to polymerize and depolymerize. This method does not require the packing of sizable chromatography columns and can generate double-digit gram quantities of functionally and biochemically well-behaved proteins with greater than 98% purity. We have used the purified capsid protein to characterize two known assembly inhibitors in our in-house developed polymerization assay and to measure their binding affinities. Our capsid purification procedure provides a robust method for purifying large quantities of a key protein in the HIV-1 life cycle, facilitating identification of the next generation anti-HIV agents. PMID:23472130

  19. Large-scale functional purification of recombinant HIV-1 capsid.

    PubMed

    Hung, Magdeleine; Niedziela-Majka, Anita; Jin, Debi; Wong, Melanie; Leavitt, Stephanie; Brendza, Katherine M; Liu, Xiaohong; Sakowicz, Roman

    2013-01-01

    During human immunodeficiency virus type-1 (HIV-1) virion maturation, capsid proteins undergo a major rearrangement to form a conical core that protects the viral nucleoprotein complexes. Mutations in the capsid sequence that alter the stability of the capsid core are deleterious to viral infectivity and replication. Recently, capsid assembly has become an attractive target for the development of a new generation of anti-retroviral agents. Drug screening efforts and subsequent structural and mechanistic studies require gram quantities of active, homogeneous and pure protein. Conventional means of laboratory purification of Escherichia coli expressed recombinant capsid protein rely on column chromatography steps that are not amenable to large-scale production. Here we present a function-based purification of wild-type and quadruple mutant capsid proteins, which relies on the inherent propensity of capsid protein to polymerize and depolymerize. This method does not require the packing of sizable chromatography columns and can generate double-digit gram quantities of functionally and biochemically well-behaved proteins with greater than 98% purity. We have used the purified capsid protein to characterize two known assembly inhibitors in our in-house developed polymerization assay and to measure their binding affinities. Our capsid purification procedure provides a robust method for purifying large quantities of a key protein in the HIV-1 life cycle, facilitating identification of the next generation anti-HIV agents. PMID:23472130

  20. Intra-spike crosslinking overcomes antibody evasion by HIV-1.

    PubMed

    Galimidi, Rachel P; Klein, Joshua S; Politzer, Maria S; Bai, Shiyu; Seaman, Michael S; Nussenzweig, Michel C; West, Anthony P; Bjorkman, Pamela J

    2015-01-29

    Antibodies developed during HIV-1 infection lose efficacy as the viral spike mutates. We postulated that anti-HIV-1 antibodies primarily bind monovalently because HIV's low spike density impedes bivalent binding through inter-spike crosslinking, and the spike structure prohibits bivalent binding through intra-spike crosslinking. Monovalent binding reduces avidity and potency, thus expanding the range of mutations permitting antibody evasion. To test this idea, we engineered antibody-based molecules capable of bivalent binding through intra-spike crosslinking. We used DNA as a "molecular ruler" to measure intra-epitope distances on virion-bound spikes and construct intra-spike crosslinking molecules. Optimal bivalent reagents exhibited up to 2.5 orders of magnitude increased potency (>100-fold average increases across virus panels) and identified conformational states of virion-bound spikes. The demonstration that intra-spike crosslinking lowers the concentration of antibodies required for neutralization supports the hypothesis that low spike densities facilitate antibody evasion and the use of molecules capable of intra-spike crosslinking for therapy or passive protection. PMID:25635457

  1. Antibody and Antiretroviral Preexposure Prophylaxis Prevent Cervicovaginal HIV-1 Infection in a Transgenic Mouse Model

    PubMed Central

    Gruell, Henning; Bournazos, Stylianos; Ravetch, Jeffrey V.; Ploss, Alexander

    2013-01-01

    The development of an effective vaccine preventing HIV-1 infection remains elusive. Thus, the development of novel approaches capable of preventing HIV-1 transmission is of paramount importance. However, this is partly hindered by the lack of an easily accessible small-animal model to rapidly measure viral entry. Here, we report the generation of a human CD4- and human CCR5-expressing transgenic luciferase reporter mouse that facilitates measurement of peritoneal and genitomucosal HIV-1 pseudovirus entry in vivo. We show that antibodies and antiretrovirals mediate preexposure protection in this mouse model and that the serum antibody concentration required for protection from cervicovaginal infection is comparable to that required to protect macaques. Our results suggest that this system represents a model for the preclinical evaluation of prophylactic or vaccine candidates. It further supports the idea that broadly neutralizing antibodies should be evaluated for use as preexposure prophylaxis in clinical trials. PMID:23720722

  2. Transplanting Supersites of HIV-1 Vulnerability

    PubMed Central

    Yang, Yongping; Gorman, Jason; Ofek, Gilad; Srivatsan, Sanjay; Druz, Aliaksandr; Lees, Christopher R.; Lu, Gabriel; Soto, Cinque; Stuckey, Jonathan; Burton, Dennis R.; Koff, Wayne C.; Connors, Mark; Kwon, Peter D.

    2014-01-01

    One strategy for isolating or eliciting antibodies against a specific target region on the envelope glycoprotein trimer (Env) of the human immunodeficiency virus type 1 (HIV-1) involves the creation of site transplants, which present the target region on a heterologous protein scaffold with preserved antibody-binding properties. If the target region is a supersite of HIV-1 vulnerability, recognized by a collection of broadly neutralizing antibodies, this strategy affords the creation of “supersite transplants”, capable of binding (and potentially eliciting) antibodies similar to the template collection of effective antibodies. Here we transplant three supersites of HIV-1 vulnerability, each targeted by effective neutralizing antibodies from multiple donors. To implement our strategy, we chose a single representative antibody against each of the target supersites: antibody 10E8, which recognizes the membrane-proximal external region (MPER) on the HIV-1 gp41 glycoprotein; antibody PG9, which recognizes variable regions one and two (V1V2) on the HIV-1 gp120 glycoprotein; and antibody PGT128 which recognizes a glycopeptide supersite in variable region 3 (glycan V3) on gp120. We used a structural alignment algorithm to identify suitable acceptor proteins, and then designed, expressed, and tested antigenically over 100-supersite transplants in a 96-well microtiter-plate format. The majority of the supersite transplants failed to maintain the antigenic properties of their respective template supersite. However, seven of the glycan V3-supersite transplants exhibited nanomolar affinity to effective neutralizing antibodies from at least three donors and recapitulated the mannose9-N-linked glycan requirement of the template supersite. The binding of these transplants could be further enhanced by placement into self-assembling nanoparticles. Essential elements of the glycan V3 supersite, embodied by as few as 3 N-linked glycans and ∼25 Env residues, can be segregated

  3. Tyrosine-sulfated V2 peptides inhibit HIV-1 infection via coreceptor mimicry.

    PubMed

    Cimbro, Raffaello; Peterson, Francis C; Liu, Qingbo; Guzzo, Christina; Zhang, Peng; Miao, Huiyi; Van Ryk, Donald; Ambroggio, Xavier; Hurt, Darrell E; De Gioia, Luca; Volkman, Brian F; Dolan, Michael A; Lusso, Paolo

    2016-08-01

    Tyrosine sulfation is a post-translational modification that facilitates protein-protein interaction. Two sulfated tyrosines (Tys173 and Tys177) were recently identified within the second variable (V2) loop of the major HIV-1 envelope glycoprotein, gp120, and shown to contribute to stabilizing the intramolecular interaction between V2 and the third variable (V3) loop. Here, we report that tyrosine-sulfated peptides derived from V2 act as structural and functional mimics of the CCR5 N-terminus and potently block HIV-1 infection. Nuclear magnetic and surface plasmon resonance analyses indicate that a tyrosine-sulfated V2 peptide (pV2α-Tys) adopts a CCR5-like helical conformation and directly interacts with gp120 in a CD4-dependent fashion, competing with a CCR5 N-terminal peptide. Sulfated V2 mimics, but not their non-sulfated counterparts, inhibit HIV-1 entry and fusion by preventing coreceptor utilization, with the highly conserved C-terminal sulfotyrosine, Tys177, playing a dominant role. Unlike CCR5 N-terminal peptides, V2 mimics inhibit a broad range of HIV-1 strains irrespective of their coreceptor tropism, highlighting the overall structural conservation of the coreceptor-binding site in gp120. These results document the use of receptor mimicry by a retrovirus to occlude a key neutralization target site and provide leads for the design of therapeutic strategies against HIV-1. PMID:27389109

  4. Cross-subtype detection of HIV-1 using reverse transcription and recombinase polymerase amplification.

    PubMed

    Lillis, Lorraine; Lehman, Dara A; Siverson, Joshua B; Weis, Julie; Cantera, Jason; Parker, Mathew; Piepenburg, Olaf; Overbaugh, Julie; Boyle, David S

    2016-04-01

    A low complexity diagnostic test that rapidly and reliably detects HIV infection in infants at the point of care could facilitate early treatment, improving outcomes. However, many infant HIV diagnostics can only be performed in laboratory settings. Recombinase polymerase amplification (RPA) is an isothermal amplification technology that can rapidly amplify proviral DNA from multiple subtypes of HIV-1 in under twenty minutes without complex equipment. In this study we added reverse transcription (RT) to RPA to allow detection of both HIV-1 RNA and DNA. We show that this RT-RPA HIV-1 assay has a limit of detection of 10-30 copies of an exact sequence matched DNA or RNA, respectively. In addition, at 100 copies of RNA or DNA, the assay detected 171 of 175 (97.7%) sequence variants that represent all the major subtypes and recombinant forms of HIV-1 Groups M and O. This data suggests that the application of RT-RPA for the combined detection of HIV-1 viral RNA and proviral DNA may prove a highly sensitive tool for rapid and accurate diagnosis of infant HIV. PMID:26821087

  5. APOBEC3G impairs the multimerization of the HIV-1 Vif protein in living cells.

    PubMed

    Batisse, Julien; Guerrero, Santiago Xavier; Bernacchi, Serena; Richert, Ludovic; Godet, Julien; Goldschmidt, Valérie; Mély, Yves; Marquet, Roland; de Rocquigny, Hugues; Paillart, Jean-Christophe

    2013-06-01

    The HIV-1 viral infectivity factor (Vif) is a small basic protein essential for viral fitness and pathogenicity. Vif allows productive infection in nonpermissive cells, including most natural HIV-1 target cells, by counteracting the cellular cytosine deaminases APOBEC3G (apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G [A3G]) and A3F. Vif is also associated with the viral assembly complex and packaged into viral particles through interactions with the viral genomic RNA and the nucleocapsid domain of Pr55(Gag). Recently, we showed that oligomerization of Vif into high-molecular-mass complexes induces Vif folding and influences its binding to high-affinity RNA binding sites present in the HIV genomic RNA. To get further insight into the role of Vif multimerization in viral assembly and A3G repression, we used fluorescence lifetime imaging microscopy (FLIM)- and fluorescence resonance energy transfer (FRET)-based assays to investigate Vif-Vif interactions in living cells. By using two N-terminally tagged Vif proteins, we show that Vif-Vif interactions occur in living cells. This oligomerization is strongly reduced when the putative Vif multimerization domain ((161)PPLP(164)) is mutated, indicating that this domain is crucial, but that regions outside this motif also participate in Vif oligomerization. When coexpressed together with Pr55(Gag), Vif is largely relocated to the cell membrane, where Vif oligomerization also occurs. Interestingly, wild-type A3G strongly interferes with Vif multimerization, contrary to an A3G mutant that does not bind to Vif. These findings confirm that Vif oligomerization occurs in living cells partly through its C-terminal motif and suggest that A3G may target and perturb the Vif oligomerization state to limit its functions in the cell. PMID:23576497

  6. APOBEC3G Impairs the Multimerization of the HIV-1 Vif Protein in Living Cells

    PubMed Central

    Batisse, Julien; Guerrero, Santiago Xavier; Bernacchi, Serena; Richert, Ludovic; Godet, Julien; Goldschmidt, Valérie; Mély, Yves; Marquet, Roland; de Rocquigny, Hugues

    2013-01-01

    The HIV-1 viral infectivity factor (Vif) is a small basic protein essential for viral fitness and pathogenicity. Vif allows productive infection in nonpermissive cells, including most natural HIV-1 target cells, by counteracting the cellular cytosine deaminases APOBEC3G (apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G [A3G]) and A3F. Vif is also associated with the viral assembly complex and packaged into viral particles through interactions with the viral genomic RNA and the nucleocapsid domain of Pr55Gag. Recently, we showed that oligomerization of Vif into high-molecular-mass complexes induces Vif folding and influences its binding to high-affinity RNA binding sites present in the HIV genomic RNA. To get further insight into the role of Vif multimerization in viral assembly and A3G repression, we used fluorescence lifetime imaging microscopy (FLIM)- and fluorescence resonance energy transfer (FRET)-based assays to investigate Vif-Vif interactions in living cells. By using two N-terminally tagged Vif proteins, we show that Vif-Vif interactions occur in living cells. This oligomerization is strongly reduced when the putative Vif multimerization domain (161PPLP164) is mutated, indicating that this domain is crucial, but that regions outside this motif also participate in Vif oligomerization. When coexpressed together with Pr55Gag, Vif is largely relocated to the cell membrane, where Vif oligomerization also occurs. Interestingly, wild-type A3G strongly interferes with Vif multimerization, contrary to an A3G mutant that does not bind to Vif. These findings confirm that Vif oligomerization occurs in living cells partly through its C-terminal motif and suggest that A3G may target and perturb the Vif oligomerization state to limit its functions in the cell. PMID:23576497

  7. Dynamic Nuclear Polarization Enhanced MAS NMR Spectroscopy for Structural Analysis of HIV-1 Protein Assemblies.

    PubMed

    Gupta, Rupal; Lu, Manman; Hou, Guangjin; Caporini, Marc A; Rosay, Melanie; Maas, Werner; Struppe, Jochem; Suiter, Christopher; Ahn, Jinwoo; Byeon, In-Ja L; Franks, W Trent; Orwick-Rydmark, Marcella; Bertarello, Andrea; Oschkinat, Hartmut; Lesage, Anne; Pintacuda, Guido; Gronenborn, Angela M; Polenova, Tatyana

    2016-01-21

    Mature infectious HIV-1 virions contain conical capsids composed of CA protein, generated by the proteolytic cleavage cascade of the Gag polyprotein, termed maturation. The mechanism of capsid core formation through the maturation process remains poorly understood. We present DNP-enhanced MAS NMR studies of tubular assemblies of CA and Gag CA-SP1 maturation intermediate and report 20-64-fold sensitivity enhancements due to DNP at 14.1 T. These sensitivity enhancements enabled direct observation of spacer peptide 1 (SP1) resonances in CA-SP1 by dipolar-based correlation experiments, unequivocally indicating that the SP1 peptide is unstructured in assembled CA-SP1 at cryogenic temperatures, corroborating our earlier results. Furthermore, the dependence of DNP enhancements and spectral resolution on magnetic field strength (9.4-18.8 T) and temperature (109-180 K) was investigated. Our results suggest that DNP-based measurements could potentially provide residue-specific dynamics information by allowing for the extraction of the temperature dependence of the anisotropic tensorial or relaxation parameters. With DNP, we were able to detect multiple well-resolved isoleucine side-chain conformers; unique intermolecular correlations across two CA molecules; and functionally relevant conformationally disordered states such as the 14-residue SP1 peptide, none of which are visible at ambient temperatures. The detection of isolated conformers and intermolecular correlations can provide crucial constraints for structure determination of these assemblies. Overall, our results establish DNP-based MAS NMR spectroscopy as an excellent tool for the characterization of HIV-1 assemblies. PMID:26709853

  8. Microplate-Based Assay for Identifying Small Molecules That Bind a Specific Intersubunit Interface within the Assembled HIV-1 Capsid

    PubMed Central

    Halambage, Upul D.; Wong, Jason P.; Melancon, Bruce J.; Lindsley, Craig W.

    2015-01-01

    Despite the availability of >30 effective drugs for managing HIV-1 infection, no current therapy is curative, and long-term management is challenging owing to the emergence and spread of drug-resistant mutants. Identification of drugs against novel HIV-1 targets would expand the current treatment options and help to control resistance. The highly conserved HIV-1 capsid protein represents an attractive target because of its multiple roles in replication of the virus. However, the low antiviral potencies of the reported HIV-1 capsid–targeting inhibitors render them unattractive for therapeutic development. To facilitate the identification of more-potent HIV-1 capsid inhibitors, we developed a scintillation proximity assay to screen for small molecules that target a biologically active and specific intersubunit interface in the HIV-1 capsid. The assay, which is based on competitive displacement of a known capsid-binding small-molecule inhibitor, exhibited a signal-to-noise ratio of >9 and a Z factor of >0.8. In a pilot screen of a chemical library containing 2,400 druglike compounds, we obtained a hit rate of 1.8%. This assay has properties that are suitable for screening large compound libraries to identify novel HIV-1 capsid ligands with antiviral activity. PMID:26077250

  9. Microplate-based assay for identifying small molecules that bind a specific intersubunit interface within the assembled HIV-1 capsid.

    PubMed

    Halambage, Upul D; Wong, Jason P; Melancon, Bruce J; Lindsley, Craig W; Aiken, Christopher

    2015-09-01

    Despite the availability of >30 effective drugs for managing HIV-1 infection, no current therapy is curative, and long-term management is challenging owing to the emergence and spread of drug-resistant mutants. Identification of drugs against novel HIV-1 targets would expand the current treatment options and help to control resistance. The highly conserved HIV-1 capsid protein represents an attractive target because of its multiple roles in replication of the virus. However, the low antiviral potencies of the reported HIV-1 capsid-targeting inhibitors render them unattractive for therapeutic development. To facilitate the identification of more-potent HIV-1 capsid inhibitors, we developed a scintillation proximity assay to screen for small molecules that target a biologically active and specific intersubunit interface in the HIV-1 capsid. The assay, which is based on competitive displacement of a known capsid-binding small-molecule inhibitor, exhibited a signal-to-noise ratio of >9 and a Z factor of >0.8. In a pilot screen of a chemical library containing 2,400 druglike compounds, we obtained a hit rate of 1.8%. This assay has properties that are suitable for screening large compound libraries to identify novel HIV-1 capsid ligands with antiviral activity. PMID:26077250

  10. The strength of the HIV-1 3' splice sites affects Rev function

    PubMed Central

    Kammler, Susanne; Otte, Marianne; Hauber, Ilona; Kjems, Jørgen; Hauber, Joachim; Schaal, Heiner

    2006-01-01

    Background The HIV-1 Rev protein is a key component in the early to late switch in HIV-1 splicing from early intronless (e.g. tat, rev) to late intron-containing Rev-dependent (e.g. gag, vif, env) transcripts. Previous results suggested that cis-acting sequences and inefficient 5' and 3' splice sites are a prerequisite for Rev function. However, we and other groups have shown that two of the HIV-1 5' splice sites, D1 and D4, are efficiently used in vitro and in vivo. Here, we focus on the efficiency of the HIV-1 3' splice sites taking into consideration to what extent their intrinsic efficiencies are modulated by their downstream cis-acting exonic sequences. Furthermore, we delineate their role in RNA stabilization and Rev function. Results In the presence of an efficient upstream 5' splice site the integrity of the 3' splice site is not essential for Rev function whereas an efficient 3' splice site impairs Rev function. The detrimental effect of a strong 3' splice site on the amount of Rev-dependent intron-containing HIV-1 glycoprotein coding (env) mRNA is not compensatable by weakening the strength of the upstream 5' splice site. Swapping the HIV-1 3' splice sites in an RRE-containing minigene, we found a 3' splice site usage which was variably dependent on the presence of the usual downstream exonic sequence. The most evident activation of 3' splice site usage by its usual downstream exonic sequence was observed for 3' splice site A1 which was turned from an intrinsic very weak 3' splice site into the most active 3' splice site, even abolishing Rev activity. Performing pull-down experiments with nuclear extracts of HeLa cells we identified a novel ASF/SF2-dependent exonic splicing enhancer (ESE) within HIV-1 exon 2 consisting of a heptameric sequence motif occurring twice (M1 and M2) within this short non-coding leader exon. Single point mutation of M1 within an infectious molecular clone is detrimental for HIV-1 exon 2 recognition without affecting Rev

  11. Human Blood-Circulating Basophils Capture HIV-1 and Mediate Viral trans-Infection of CD4+ T Cells

    PubMed Central

    Jiang, Ai-Ping; Jiang, Jin-Feng; Guo, Ming-Gao; Jin, Yong-Mei; Li, Yu-Ye

    2015-01-01

    as the C-type lectins, etc., facilitates viral capture and transfer. Intriguingly, the frequency of basophils in patients with different levels of CD4+ T counts remains fairly stable during the course of disease. Our results provide novel insights into the roles of granulocytes, particularly basophils, in HIV-1 dissemination. We suggest that strategies designed to prevent basophil-mediated viral capture and transfer may be a new direction for the development of anti-HIV therapy. PMID:26018157

  12. Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication

    SciTech Connect

    Di Nunzio, Francesca; Fricke, Thomas; Miccio, Annarita; Valle-Casuso, Jose Carlos; Perez, Patricio; Souque, Philippe; Rizzi, Ermanno; Severgnini, Marco; Mavilio, Fulvio; Charneau, Pierre; Diaz-Griffero, Felipe

    2013-05-25

    The early steps of HIV-1 replication involve the entry of HIV-1 into the nucleus, which is characterized by viral interactions with nuclear pore components. HIV-1 developed an evolutionary strategy to usurp the nuclear pore machinery and chromatin in order to integrate and efficiently express viral genes. In the current work, we studied the role of nucleoporins 153 and 98 (Nup153 and Nup98) in infection of human Jurkat lymphocytes by HIV-1. We showed that Nup153-depleted cells exhibited a defect in nuclear import, while depletion of Nup 98 caused a slight defect in HIV integration. To explore the biochemical viral determinants for the requirement of Nup153 and Nup98 during HIV-1 infection, we tested the ability of these nucleoporins to interact with HIV-1 cores. Our findings showed that both nucleoporins bind HIV-1 cores suggesting that this interaction is important for HIV-1 nuclear import and/or integration. Distribution analysis of integration sites in Nup153-depleted cells revealed a reduced tendency of HIV-1 to integrate in intragenic sites, which in part could account for the large infectivity defect observed in Nup153-depleted cells. Our work strongly supports a role for Nup153 in HIV-1 nuclear import and integration. - Highlights: ► We studied the role of Nup98 and Nup153 in HIV-1 infection. ► Nup98 binds the HIV-1 core and is involved in HIV-1 integration. ► Nup153 binds the HIV-1 core and is involved in HIV-1 nuclear import. ► Depletion of Nup153 decreased the integration of HIV-1 in transcriptionally active sites.

  13. HIV-1 Protease, Reverse Transcriptase, and Integrase Variation

    PubMed Central

    Sankaran, Kris; Varghese, Vici; Winters, Mark A.; Hurt, Christopher B.; Eron, Joseph J.; Parkin, Neil; Holmes, Susan P.; Holodniy, Mark; Shafer, Robert W.

    2016-01-01

    ABSTRACT HIV-1 protease (PR), reverse transcriptase (RT), and integrase (IN) variability presents a challenge to laboratories performing genotypic resistance testing. This challenge will grow with increased sequencing of samples enriched for proviral DNA such as dried blood spots and increased use of next-generation sequencing (NGS) to detect low-abundance HIV-1 variants. We analyzed PR and RT sequences from >100,000 individuals and IN sequences from >10,000 individuals to characterize variation at each amino acid position, identify mutations indicating APOBEC-mediated G-to-A editing, and identify mutations resulting from selective drug pressure. Forty-seven percent of PR, 37% of RT, and 34% of IN positions had one or more amino acid variants with a prevalence of ≥1%. Seventy percent of PR, 60% of RT, and 60% of IN positions had one or more variants with a prevalence of ≥0.1%. Overall 201 PR, 636 RT, and 346 IN variants had a prevalence of ≥0.1%. The median intersubtype prevalence ratios were 2.9-, 2.1-, and 1.9-fold for these PR, RT, and IN variants, respectively. Only 5.0% of PR, 3.7% of RT, and 2.0% of IN variants had a median intersubtype prevalence ratio of ≥10-fold. Variants at lower prevalences were more likely to differ biochemically and to be part of an electrophoretic mixture compared to high-prevalence variants. There were 209 mutations indicative of APOBEC-mediated G-to-A editing and 326 mutations nonpolymorphic treatment selected. Identification of viruses with a high number of APOBEC-associated mutations will facilitate the quality control of dried blood spot sequencing. Identifying sequences with a high proportion of rare mutations will facilitate the quality control of NGS. IMPORTANCE Most antiretroviral drugs target three HIV-1 proteins: PR, RT, and IN. These proteins are highly variable: many different amino acids can be present at the same position in viruses from different individuals. Some of the amino acid variants cause drug

  14. Enhanced HIV-1 neutralization by antibody heteroligation

    PubMed Central

    Mouquet, Hugo; Warncke, Malte; Scheid, Johannes F.; Seaman, Michael S.; Nussenzweig, Michel C.

    2012-01-01

    Passive transfer of broadly neutralizing human antibodies against HIV-1 protects macaques against infection. However, HIV-1 uses several strategies to escape antibody neutralization, including mutation of the gp160 viral surface spike, a glycan shield to block antibody access to the spike, and expression of a limited number of viral surface spikes, which interferes with bivalent antibody binding. The latter is thought to decrease antibody apparent affinity or avidity, thereby interfering with neutralizing activity. To test the idea that increasing apparent affinity might enhance neutralizing activity, we engineered bispecific anti–HIV-1 antibodies (BiAbs) that can bind bivalently by virtue of one scFv arm that binds to gp120 and a second arm to the gp41 subunit of gp160. The individual arms of the BiAbs preserved the binding specificities of the original anti-HIV IgG antibodies and together bound simultaneously to gp120 and gp41. Heterotypic bivalent binding enhanced neutralization compared with the parental antibodies. We conclude that antibody recognition and viral neutralization of HIV can be improved by heteroligation. PMID:22219363

  15. Extensive Genetic Diversity of HIV-1 in Incident and Prevalent Infections among Malaysian Blood Donors: Multiple Introductions of HIV-1 Genotypes from Highly Prevalent Countries

    PubMed Central

    Chow, Wei Zhen; Bon, Abdul Hamid; Keating, Sheila; Anderios, Fread; Halim, Hazwan Abdul; Takebe, Yutaka; Kamarulzaman, Adeeba; Busch, Michael P.; Tee, Kok Keng

    2016-01-01

    Transfusion-transmissible infections including HIV-1 continue to pose major risks for unsafe blood transfusions due to both window phase infections and divergent viruses that may not be detected by donor screening assays. Given the recent emergence of several HIV-1 circulating recombinant forms (CRFs) in high-risk populations in the Southeast Asia region, we investigated the genetic diversity of HIV-1 among the blood donors in Kuala Lumpur, Malaysia. A total of 211 HIV-positive plasma samples detected among 730,188 donations to the National Blood Centre between 2013 and 2014 were provided (90.5% male, median age: 27.0 years old). Recent or long-term infection status at the time of donation was determined using a limiting antigen avidity enzyme immunoassay (LAg-Avidity EIA). HIV-1 gag-pol genes were amplified and sequenced from residual plasma for 149 cases followed by genotype determination using phylogenetic and recombination analyses. Transmitted antiretroviral resistance mutations were not observed among the blood donors, among which 22.7% were classified as recent or incident infections. Major circulating HIV-1 genotypes determined by neighbour-joining phylogenetic inference included CRF01_AE at 40.9% (61/149), CRF33_01B at 21.5% (32/149), and subtype B at 10.1% (15/149). Newly-described CRFs including CRF54_01B circulated at 4.0%, CRF74_01B at 2.0%, and CRF53_01B and CRF48_01B at 0.7% each. Interestingly, unique HIV-1 genotypes including African subtype G (8.7%), CRF45_cpx (1.3%), CRF02_AG (0.7%) and CRF07_BC (0.7%) from China were detected for the first time in the country. A cluster of subtype G sequences formed a distinct founder sub-lineage within the African strains. In addition, 8.7% (13/149) of HIV-infected donors had unique recombinant forms (URFs) including CRF01_AE/B' (4.7%), B'/C (2.7%) and B'/G (1.3%) recombinants. Detailed analysis identified similar recombinant structures with shared parental strains among the B'/C and B'/G URFs, some of which

  16. Extensive Genetic Diversity of HIV-1 in Incident and Prevalent Infections among Malaysian Blood Donors: Multiple Introductions of HIV-1 Genotypes from Highly Prevalent Countries.

    PubMed

    Chow, Wei Zhen; Bon, Abdul Hamid; Keating, Sheila; Anderios, Fread; Halim, Hazwan Abdul; Takebe, Yutaka; Kamarulzaman, Adeeba; Busch, Michael P; Tee, Kok Keng

    2016-01-01

    Transfusion-transmissible infections including HIV-1 continue to pose major risks for unsafe blood transfusions due to both window phase infections and divergent viruses that may not be detected by donor screening assays. Given the recent emergence of several HIV-1 circulating recombinant forms (CRFs) in high-risk populations in the Southeast Asia region, we investigated the genetic diversity of HIV-1 among the blood donors in Kuala Lumpur, Malaysia. A total of 211 HIV-positive plasma samples detected among 730,188 donations to the National Blood Centre between 2013 and 2014 were provided (90.5% male, median age: 27.0 years old). Recent or long-term infection status at the time of donation was determined using a limiting antigen avidity enzyme immunoassay (LAg-Avidity EIA). HIV-1 gag-pol genes were amplified and sequenced from residual plasma for 149 cases followed by genotype determination using phylogenetic and recombination analyses. Transmitted antiretroviral resistance mutations were not observed among the blood donors, among which 22.7% were classified as recent or incident infections. Major circulating HIV-1 genotypes determined by neighbour-joining phylogenetic inference included CRF01_AE at 40.9% (61/149), CRF33_01B at 21.5% (32/149), and subtype B at 10.1% (15/149). Newly-described CRFs including CRF54_01B circulated at 4.0%, CRF74_01B at 2.0%, and CRF53_01B and CRF48_01B at 0.7% each. Interestingly, unique HIV-1 genotypes including African subtype G (8.7%), CRF45_cpx (1.3%), CRF02_AG (0.7%) and CRF07_BC (0.7%) from China were detected for the first time in the country. A cluster of subtype G sequences formed a distinct founder sub-lineage within the African strains. In addition, 8.7% (13/149) of HIV-infected donors had unique recombinant forms (URFs) including CRF01_AE/B' (4.7%), B'/C (2.7%) and B'/G (1.3%) recombinants. Detailed analysis identified similar recombinant structures with shared parental strains among the B'/C and B'/G URFs, some of which

  17. Suppression of HIV-1 Infectivity by Human Glioma Cells.

    PubMed

    Hoque, Sheikh Ariful; Tanaka, Atsushi; Islam, Salequl; Ahsan, Gias Uddin; Jinno-Oue, Atsushi; Hoshino, Hiroo

    2016-05-01

    HIV-1 infection to the central nervous system (CNS) is very common in AIDS patients. The predominant cell types infected in the brain are monocytes and macrophages, which are surrounded by several HIV-1-resistant cell types, such as astrocytes, oligodendrocytes, neurons, and microvascular cells. The effect of these HIV-1-resistant cells on HIV-1 infection is largely unknown. In this study, we examined the stability of HIV-1 cultured with several human glioblastoma cell lines, for example, NP-2, U87MG, T98G, and A172, to determine whether these HIV-1-resistant brain cells could enhance or suppress HIV-1 infection and thus modulate HIV-1 infection in the CNS. The HIV-1 titer was determined using the MAGIC-5A indicator cell line as well as naturally occurring CD4(+) T cells. We found that the stability of HIV-1 incubated with NP-2 or U87MG cells at 37°C was significantly shorter (half-life, 2.5-4 h) compared to that of HIV-1 incubated with T98G or A172 cells or in culture medium without cells (half-life, 8-18 h). The spent culture media (SCM) of NP-2 and U87MG cells had the ability to suppress both R5- and X4-HIV-1 infection by inhibiting HIV-1 attachment to target cells. This inhibitory effect was eliminated by the treatment of the SCM with chondroitinase ABC but not heparinase, suggesting that the inhibitory factor(s) secreted by NP-2 and U87MG cells was chiefly mediated by chondroitin sulfate (CS) or CS-like moiety. Thus, this study reveals that some but not all glioma cells secrete inhibitory molecules to HIV-1 infection that may contribute in lowering HIV-1 infection in the CNS in vivo. PMID:26650729

  18. Quantification of the Epitope Diversity of HIV-1-Specific Binding Antibodies by Peptide Microarrays for Global HIV-1 Vaccine Development

    PubMed Central

    Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf; Pawlowski, Nikolaus; Knaute, Tobias; Zerweck, Johannes; Korber, Bette T.; Barouch, Dan H.

    2014-01-01

    An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6,564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth of IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research. PMID:25445329

  19. Quantification of the epitope diversity of HIV-1-specific binding antibodies by peptide microarrays for global HIV-1 vaccine development

    SciTech Connect

    Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf; Pawlowski, Nikolaus; Knaute, Tobias; Zerweck, Johannes; Korber, Bette T.; Barouch, Dan H.

    2014-11-14

    An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth of IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research.

  20. Quantification of the epitope diversity of HIV-1-specific binding antibodies by peptide microarrays for global HIV-1 vaccine development

    DOE PAGESBeta

    Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf; Pawlowski, Nikolaus; Knaute, Tobias; Zerweck, Johannes; Korber, Bette T.; Barouch, Dan H.

    2014-11-14

    An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth ofmore » IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research.« less

  1. Kinase Control of Latent HIV-1 Infection: PIM-1 Kinase as a Major Contributor to HIV-1 Reactivation

    PubMed Central

    Duverger, Alexandra; Wolschendorf, Frank; Anderson, Joshua C.; Wagner, Frederic; Bosque, Alberto; Shishido, Takao; Jones, Jennifer; Planelles, Vicente; Willey, Christopher; Cron, Randall Q.

    2014-01-01

    Despite the clinical relevance of latent HIV-1 infection as a block to HIV-1 eradication, the molecular biology of HIV-1 latency remains incompletely understood. We recently demonstrated the presence of a gatekeeper kinase function that controls latent HIV-1 infection. Using kinase array analysis, we here expand on this finding and demonstrate that the kinase activity profile of latently HIV-1-infected T cells is altered relative to that of uninfected T cells. A ranking of altered kinases generated from these kinome profile data predicted PIM-1 kinase as a key switch involved in HIV-1 latency control. Using genetic and pharmacologic perturbation strategies, we demonstrate that PIM-1 activity is indeed required for HIV-1 reactivation in T cell lines and primary CD4 T cells. The presented results thus confirm that kinases are key contributors to HIV-1 latency control. In addition, through mutational studies we link the inhibitory effect of PIM-1 inhibitor IV (PIMi IV) on HIV-1 reactivation to an AP-1 motif in the CD28-responsive element of the HIV-1 long terminal repeat (LTR). The results expand our conceptual understanding of the dynamic interactions of the host cell and the latent HIV-1 integration event and position kinome profiling as a research tool to reveal novel molecular mechanisms that can eventually be targeted to therapeutically trigger HIV-1 reactivation. PMID:24155393

  2. Kinase control of latent HIV-1 infection: PIM-1 kinase as a major contributor to HIV-1 reactivation.

    PubMed

    Duverger, Alexandra; Wolschendorf, Frank; Anderson, Joshua C; Wagner, Frederic; Bosque, Alberto; Shishido, Takao; Jones, Jennifer; Planelles, Vicente; Willey, Christopher; Cron, Randall Q; Kutsch, Olaf

    2014-01-01

    Despite the clinical relevance of latent HIV-1 infection as a block to HIV-1 eradication, the molecular biology of HIV-1 latency remains incompletely understood. We recently demonstrated the presence of a gatekeeper kinase function that controls latent HIV-1 infection. Using kinase array analysis, we here expand on this finding and demonstrate that the kinase activity profile of latently HIV-1-infected T cells is altered relative to that of uninfected T cells. A ranking of altered kinases generated from these kinome profile data predicted PIM-1 kinase as a key switch involved in HIV-1 latency control. Using genetic and pharmacologic perturbation strategies, we demonstrate that PIM-1 activity is indeed required for HIV-1 reactivation in T cell lines and primary CD4 T cells. The presented results thus confirm that kinases are key contributors to HIV-1 latency control. In addition, through mutational studies we link the inhibitory effect of PIM-1 inhibitor IV (PIMi IV) on HIV-1 reactivation to an AP-1 motif in the CD28-responsive element of the HIV-1 long terminal repeat (LTR). The results expand our conceptual understanding of the dynamic interactions of the host cell and the latent HIV-1 integration event and position kinome profiling as a research tool to reveal novel molecular mechanisms that can eventually be targeted to therapeutically trigger HIV-1 reactivation. PMID:24155393

  3. HIV-1 Nef: Taking Control of Protein Trafficking.

    PubMed

    Pereira, Estela A; daSilva, Luis L P

    2016-09-01

    The Nef protein of the human immunodeficiency virus is a crucial determinant of viral pathogenesis and disease progression. Nef is abundantly expressed early in infection and is thought to optimize the cellular environment for viral replication. Nef controls expression levels of various cell surface molecules that play important roles in immunity and virus life cycle, by directly interfering with the itinerary of these proteins within the endocytic and late secretory pathways. To exert these functions, Nef physically interacts with host proteins that regulate protein trafficking. In recent years, considerable progress was made in identifying host-cell-interacting partners for Nef, and the molecular machinery used by Nef to interfere with protein trafficking has started to be unraveled. Here, we briefly review the knowledge gained and discuss new findings regarding the mechanisms by which Nef modifies the intracellular trafficking pathways to prevent antigen presentation, facilitate viral particle release and enhance the infectivity of HIV-1 virions. PMID:27161574

  4. Unprecedented Degree of Human Immunodeficiency Virus Type 1 (HIV-1) Group M Genetic Diversity in the Democratic Republic of Congo Suggests that the HIV-1 Pandemic Originated in Central A