Sample records for galactic nuclear region

  1. Finding Distant Galactic HII Regions

    NASA Astrophysics Data System (ADS)

    Anderson, L. D.; Armentrout, W. P.; Johnstone, B. M.; Bania, T. M.; Balser, Dana S.; Wenger, Trey V.; Cunningham, V.

    2015-12-01

    The WISE Catalog of Galactic H ii Regions contains ˜2000 H ii region candidates lacking ionized gas spectroscopic observations. All candidates have the characteristic H ii region mid-infrared morphology of WISE 12 μ {{m}} emission surrounding 22 μ {{m}} emission, and additionally have detected radio continuum emission. We here report Green Bank Telescope hydrogen radio recombination line and radio continuum detections in the X-band (9 GHz; 3 cm) of 302 WISE H ii region candidates (out of 324 targets observed) in the zone 225^\\circ ≥slant {\\ell }≥slant -20^\\circ , | {\\text{}}b| ≤slant 6^\\circ . Here we extend the sky coverage of our H ii region Discovery Survey, which now contains nearly 800 H ii regions distributed across the entire northern sky. We provide LSR velocities for the 302 detections and kinematic distances for 131 of these. Of the 302 new detections, 5 have ({\\ell },{\\text{}}b,v) coordinates consistent with the Outer Scutum-Centaurus Arm (OSC), the most distant molecular spiral arm of the Milky Way. Due to the Galactic warp, these nebulae are found at Galactic latitudes >1° in the first Galactic quadrant, and therefore were missed in previous surveys of the Galactic plane. One additional region has a longitude and velocity consistent with the OSC but lies at a negative Galactic latitude (G039.183-01.422 -54.9 {km} {{{s}}}-1). With Heliocentric distances >22 kpc and Galactocentric distances >16 kpc, the OSC H ii regions are the most distant known in the Galaxy. We detect an additional three H ii regions near {\\ell }≃ 150^\\circ whose LSR velocities place them at Galactocentric radii >19 kpc. If their distances are correct, these nebulae may represent the limit to Galactic massive star formation.

  2. Trajectories of Cepheid variable stars in the Galactic nuclear bulge

    NASA Astrophysics Data System (ADS)

    Matsunaga, Noriyuki

    2012-06-01

    The central region of our Galaxy provides us with a good opportunity to study the evolution of galactic nuclei and bulges because we can observe various phenomena in detail at the proximity of 8 kpc. There is a hierarchical alignment of stellar systems with different sizes; from the extended bulge, the nuclear bulge, down to the compact cluster around the central supermassive blackhole. The nuclear bulge contains stars as young as a few Myr, and even hosts the ongoing star formation. These are in contrast to the more extended bulge which are dominated by old stars, 10Gyr. It is considered that the star formation in the nuclear bulge is caused by fresh gas provided from the inner disk. In this picture, the nuclear bulge plays an important role as the interface between the gas supplier, the inner disk, and the galactic nucleus. Kinematics of young stars in the nuclear bulge is important to discuss the star forming process and the gas circulation in the Galactic Center. We here propose spectroscopic observations of Cepheid variable stars, 25 Myr, which we recently discovered in the nuclear bulge. The spectra taken in this proposal will allow timely estimates of the systemic velocities of the variable stars.

  3. Molecular diagnostics of Galactic star-formation regions

    NASA Astrophysics Data System (ADS)

    Loenen, Edo; Baan, Willem; Spaans, Marco

    2007-10-01

    We propose a sensitive spectral survey of Galactic star-formation regions. Using the broadband correlator at two different frequencies, we expect to detect the (1-0) transition of CO, CN, HNC, HCN, HCO+, and HCO and various of their isotopes lines, as well as the (12-11) and (10-9) transitions of HC3N. The purpose of these observations is to create a consistent (public) database of molecular emission from galactic star-formation regions. The data will be interpreted using extensive physical and chemical modeling of the whole ensemble of lines, in order to get an accurate description of the molecular environment of these regions. In particular, this diagnostic approach will describe the optical depths, the densities, and the radiation fields in the medium and will allow the establishment of dominant temperature gradients. These observations are part of a program to study molecular emission on all scales, going from individual Galactic star-formation regions, through resolved nearby galaxies, to unresolved extra-galactic emission.

  4. A Green Bank Telescope Survey of Large Galactic H II Regions

    NASA Astrophysics Data System (ADS)

    Anderson, L. D.; Armentrout, W. P.; Luisi, Matteo; Bania, T. M.; Balser, Dana S.; Wenger, Trey V.

    2018-02-01

    As part of our ongoing H II Region Discovery Survey (HRDS), we report the Green Bank Telescope detection of 148 new angularly large Galactic H II regions in radio recombination line (RRL) emission. Our targets are located at a declination of δ > -45^\\circ , which corresponds to 266^\\circ > {\\ell }> -20^\\circ at b=0^\\circ . All sources were selected from the Wide-field Infrared Survey Explorer Catalog of Galactic H II Regions, and have infrared angular diameters ≥slant 260\\prime\\prime . The Galactic distribution of these “large” H II regions is similar to that of the previously known sample of Galactic H II regions. The large H II region RRL line width and peak line intensity distributions are skewed toward lower values, compared with that of previous HRDS surveys. We discover seven sources with extremely narrow RRLs < 10 {km} {{{s}}}-1. If half the line width is due to turbulence, these seven sources have thermal plasma temperatures < 1100 {{K}}. These temperatures are lower than any measured for Galactic H II regions, and the narrow-line components may arise instead from partially ionized zones in the H II region photodissociation regions. We discover G039.515+00.511, one of the most luminous H II regions in the Galaxy. We also detect the RRL emission from three H II regions with diameters > 100 {pc}, making them some of the physically largest known H II regions in the Galaxy. This survey completes the HRDS H II region census in the Northern sky, where we have discovered 887 H II regions and more than doubled the size of the previously known census of Galactic H II regions.

  5. The prototype nuclear Compton telescope: Observations of the Galactic Anticenter region

    NASA Astrophysics Data System (ADS)

    Bowen, Jason Dione

    Observations of the Galactic Anticenter region and atmospheric 511 keV positron annihilation emission have been performed with a prototype of the Nuclear Compton Telescope (NCT) during a high altitude balloon flight on June 1, 2005 from Ft. Sumner, NM. NCT is a balloon-borne soft gamma-ray (0.2 MeV to 10 MeV) germanium Compton telescope (GCT) designed to study astrophysical sources of nuclear line emission and polarization through spectroscopy and imaging. A prototype instrument was successfully launched from Ft. Sumner, NM on June 1, 2005. The NCT prototype consists of two 3D position-sensitive high purity germanium strip detectors (GeDs). The compact design and new technologies allow NCT to achieve high efficiencies with excellent spectral resolution and background reduction. The GeDs are custom 15 mm thick cross-strip detectors each with an active area of 54 cm 2 and are enclosed in an aluminum cryostat capable of supporting up to 12 detectors. Here is presented a detailed study of approximately 8 hours of background measurements made from 890 g/cm 2 (1265 m ) to an average float altitude of 3.0 g/cm 2 (40 km ), with particular emphasis on float observations. A total of 6 hr 9 min of observation time was acquired at float, while the duration of the ascent portion of the flight included in this study was 2 hr. The expected contributions to the background are discussed, especially in light of detailed Monte Carlo simulations modeling the entire flight and incorporating complete depth dependent environmental inputs, including 4 cosmic components (protons, photons, electrons, and positrons) and 8 atmospheric components (photons, atmospheric 511 keV emission, neutrons, protons, electrons, positrons, and muons). The results of these investigations include the component makeup of the total background as a function of atmospheric depth, and the contribution of delayed emission due to neutron and proton activation of passive materials. At 1 MeV photons emitted following

  6. HI Clouds Near the Galactic Center: Possible Tracers of the Nuclear Wind

    NASA Astrophysics Data System (ADS)

    Lockman, Felix J.; McClure-Griffiths, Naomi; DiTeodoro, Enrico

    2017-01-01

    We have used the Green Bank Telescope to discover more than one hundred neutral hydrogen clouds that appear to be embedded in the Fermi Bubble -- the Milky Way’s nuclear wind. With the other members of this population that were previously found with the Australia Telescope Compact Array, we now have a sample of about 200 such clouds. They are identified by their peculiar velocities. The cloud kinematics show no trace of Galactic rotation or association with the Galactic bar. Near longitude zero the clouds can have values of VLSR = +-200 km/s. No clouds have been detected with |VLSR| > 350 km/s. The clouds are concentrated toward the Galactic plane, but some are still found to |b|=10 degrees, or z > 1 kpc at the Galactic Center, where the current surveys end. These clouds are important tracers of conditions in the nuclear wind of the Milky Way.

  7. The Galactic HII Region Luminosity Function at Infrared and Radio Wavelengths

    NASA Astrophysics Data System (ADS)

    Mascoop, Joshua; Anderson, Loren; Sandor Makai, Zoltan; Armentrout, William Paul

    2018-01-01

    HII regions are the clearest indicators of ongoing high-mass star formation. The HII region luminosity function (LF) therefore probes present global star formation properties, and its shape has been related to HII region properties and galaxy Hubble types. Most HII region LF studies to date have been conducted in external galaxies; due to observational difficulties, there have been relatively few studies of the Milky Way HII region LF. Using ~600 HII regions from the WISE Catalog of Galactic HII Regions, we examine the Galactic LF in the first quadrant. Our high-resolution view of Galactic star formation regions allows us to separate nearby sources, and our sample is complete for all HII regions ionized by single O9.5 stars.We analyze the Galactic LF at six infrared wavelengths - where the emission is due to dust - and also at 20 cm, where the emission is from ionized gas. All LFs have a similar shape, showing that infrared LFs can be used in place of ionized gas tracers. All LFs can be described by a single power law with an index of approximately -2, in agreement with previous studes. We find no compelling evidence of a break or "knee" in the LF. Moreover, we see no significant variation in the form of the LF as a function of heliocentric distance, HII region size, or Galactocentric radius.

  8. ASTE Surveys of Galactic Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Kohno, Kotaro

    2008-05-01

    We report some recent highlights on the observational studies of Galactic star formation based on surveys using the Atacama Submillimeter Telescope Experiment (ASTE), a new 10 m telescope in the Atacama desert in northern Chile (Kohno et al., 2008, ApSS, 313, 279). The highlights will include (1) a large scale CO(3-2) imaging survey of the Galactic Center, unveiling the presence of numerous compact high velocity clouds with high CO(3-2)/CO(1-0) ratios as a "fossil” of the recent burst of star formation in the Galactic Center region (Oka et al., 2007, PASJ, 59, 15; Nagai et al., 2007, PASJ, 59, 25; Tanaka et al., 2007, PASJ, 59, 323), (2) a large scale CO(3-2) imaging survey of the Sgr arm and inter-am regions, revealing the distinct difference on the morphology and physical property of molecular gas between the arm and inter-arm regions for the first time (Sawada, Koda, et al., in prep.), and (3) a wide area 1.1 mm imaging survey of Southern low mass star-forming regions such as Chamaeleon and Lupus molecular clouds using the bolometer camera AzTEC (Wilson et al., 2008, MNRAS, in press) mounted on ASTE, yielding detections of starless cores with a very low mass detection limist down to 0.1 solar masses (Hiramatsu, Tsukagoshi, Kawabe et al., in prep.). Related topics on the massive star-forming regions in very nearby galaxies such as LMC (Minamidani et al., 2008, ApJS, in press) and M 33 (Tosaki et al., 2007, ApJ, 664, L27; Onodera et al., in prep.; Komugi et al., in prep.) will also be reviewed.

  9. Probing the Galactic Structure of the Milky Way with H II Regions

    NASA Astrophysics Data System (ADS)

    Red, Wesley Alexander; Wenger, Trey V.; Balser, Dana; Anderson, Loren; Bania, Thomas

    2018-01-01

    Mapping the structure of the Milky Way is challenging since we reside within the Galactic disk and distances are difficult to determine. Elemental abundances provide important constraints on theories of the formation and evolution of the Milky Way. HII regions are the brightest objects in the Galaxy at radio wavelengths and are detected across the entire Galactic disk. We use the Jansky Very Large Array (VLA) to observe the radio recombination line (RRL) and continuum emission of 120 Galactic HII regions located across the Galactic disk. In thermal equilibrium, metal abundances are expected to set the nebular electron temperature with high abundances producing low temperatures. We derive the metallicity of HII regions using an empirical relation between an HII region's radio recombination line-to-continuum ratio and nebular metallicity. Here we focus on a subset of 20 HII regions from our sample that have been well studied with the Green Bank Telescope (GBT) to test our data reduction pipeline and analysis methods. Our goal is to expand this study to the Southern skies with the Australia Telescope Compact Array and create a metallicity map of the entire Galactic disk.

  10. Searches for point sources in the Galactic Center region

    NASA Astrophysics Data System (ADS)

    di Mauro, Mattia; Fermi-LAT Collaboration

    2017-01-01

    Several groups have demonstrated the existence of an excess in the gamma-ray emission around the Galactic Center (GC) with respect to the predictions from a variety of Galactic Interstellar Emission Models (GIEMs) and point source catalogs. The origin of this excess, peaked at a few GeV, is still under debate. A possible interpretation is that it comes from a population of unresolved Millisecond Pulsars (MSPs) in the Galactic bulge. We investigate the detection of point sources in the GC region using new tools which the Fermi-LAT Collaboration is developing in the context of searches for Dark Matter (DM) signals. These new tools perform very fast scans iteratively testing for additional point sources at each of the pixels of the region of interest. We show also how to discriminate between point sources and structural residuals from the GIEM. We apply these methods to the GC region considering different GIEMs and testing the DM and MSPs intepretations for the GC excess. Additionally, we create a list of promising MSP candidates that could represent the brightest sources of a MSP bulge population.

  11. Hydrodynamic Simulations of the Central Molecular Zone with a Realistic Galactic Potential

    NASA Astrophysics Data System (ADS)

    Shin, Jihye; Kim, Sungsoo S.; Baba, Junichi; Saitoh, Takayuki R.; Hwang, Jeong-Sun; Chun, Kyungwon; Hozumi, Shunsuke

    2017-06-01

    We present hydrodynamic simulations of gas clouds inflowing from the disk to a few hundred parsec region of the Milky Way. A gravitational potential is generated to include realistic Galactic structures by using thousands of multipole expansions (MEs) that describe 6.4 million stellar particles of a self-consistent Galaxy simulation. We find that a hybrid ME model, with two different basis sets and a thick-disk correction, accurately reproduces the overall structures of the Milky Way. Through non-axisymmetric Galactic structures of an elongated bar and spiral arms, gas clouds in the disk inflow to the nuclear region and form a central molecular zone-like nuclear ring. We find that the size of the nuclear ring evolves into ˜ 240 {pc} at T˜ 1500 {Myr}, regardless of the initial size. For most simulation runs, the rate of gas inflow to the nuclear region is equilibrated to ˜ 0.02 {M}⊙ {{yr}}-1. The nuclear ring is off-centered, relative to the Galactic center, by the lopsided central mass distribution of the Galaxy model, and thus an asymmetric mass distribution of the nuclear ring arises accordingly. The vertical asymmetry of the Galaxy model also causes the nuclear ring to be tilted along the Galactic plane. During the first ˜100 Myr, the vertical frequency of the gas motion is twice that of the orbital frequency, thus the projected nuclear ring shows a twisted, ∞ -like shape.

  12. Blowing in the Milky Way Wind: Neutral Hydrogen Clouds Tracing the Galactic Nuclear Outflow

    NASA Astrophysics Data System (ADS)

    Di Teodoro, Enrico M.; McClure-Griffiths, N. M.; Lockman, Felix J.; Denbo, Sara R.; Endsley, Ryan; Ford, H. Alyson; Harrington, Kevin

    2018-03-01

    We present the results of a new sensitive survey of neutral hydrogen above and below the Galactic Center with the Green Bank Telescope. The observations extend up to Galactic latitude | b| < 10^\\circ with an effective angular resolution of 9.‧5 and an average rms brightness temperature noise of 40 mK in a 1 {km} {{{s}}}-1 channel. The survey reveals the existence of a population of anomalous high-velocity clouds extending up to heights of about 1.5 kpc from the Galactic plane and showing no signature of Galactic rotation. These clouds have local standard of rest velocities | {V}LSR}| ≲ 360 {km} {{{s}}}-1, and assuming a Galactic Center origin, they have sizes of a few tens of parsec and neutral hydrogen masses spanning 10{--}{10}5 {M}ȯ . Accounting for selection effects, the cloud population is symmetric in longitude, latitude, and V LSR. We model the cloud kinematics in terms of an outflow expanding from the Galactic Center and find the population consistent with being material moving with radial velocity {V}{{w}}≃ 330 {km} {{{s}}}-1 distributed throughout a bicone with opening angle α > 140^\\circ . This simple model implies an outflow luminosity {L}{{w}}> 3× {10}40 erg s‑1 over the past 10 Myr, consistent with star formation feedback in the inner region of the Milky Way, with a cold gas mass-loss rate ≲ 0.1 {{M}ȯ {yr}}-1. These clouds may represent the cold gas component accelerated in the nuclear wind driven by our Galaxy, although some of the derived properties challenge current theoretical models of the entrainment process.

  13. The origin of the mid-infrared nuclear polarization of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Lopez-Rodriguez, E.; Alonso-Herrero, A.; Diaz-Santos, T.; Gonzalez-Martin, O.; Ichikawa, K.; Levenson, N. A.; Martinez-Paredes, M.; Nikutta, R.; Packham, C.; Perlman, E.; Almeida, C. Ramos; Rodriguez-Espinosa, J. M.; Telesco, C. M.

    2018-05-01

    We combine new (NGC 1275, NGC 4151, and NGC 5506) and previously published (Cygnus A, Mrk 231, and NGC 1068) sub-arcsecond resolution mid-infrared (MIR; 8-13 μm) imaging- and spectro-polarimetric observations of six Seyfert galaxies using CanariCam on the 10.4-m Gran Telescopio CANARIAS. These observations reveal a diverse set of physical processes responsible for the nuclear polarization, and permit characterization of the origin of the MIR nuclear polarimetric signature of active galactic nuclei (AGN). For all radio quiet objects, we found that the nuclear polarization is low (<1 per cent), and the degree of polarization is often a few per cent over extended regions of the host galaxy where we have sensitivity to detect such extended emission (i.e., NGC 1068 and NGC 4151). We suggest that the higher degree of polarization previously found in lower resolution data arises only on the larger-than-nuclear scales. Only the radio-loud Cygnus A exhibits significant nuclear polarization (˜11 per cent), attributable to synchrotron emission from the pc-scale jet close to the core. We present polarization models that suggest that the MIR nuclear polarization for highly obscured objects arises from a self-absorbed MIR polarized clumpy torus and/or dichroism from the host galaxy, while for unabsorbed cores, MIR polarization arises from dust scattering in the torus and/or surrounding nuclear dust.

  14. Luminous Infrared Galaxies. III. Multiple Merger, Extended Massive Star Formation, Galactic Wind, and Nuclear Inflow in NGC 3256

    NASA Astrophysics Data System (ADS)

    Lípari, S.; Díaz, R.; Taniguchi, Y.; Terlevich, R.; Dottori, H.; Carranza, G.

    2000-08-01

    ouflow axis (at P.A.~160deg). We analyze in detail the physical conditions in the giant H II regions located in the asymmetric spiral arms, the two main optical nuclei, and the outflow component (using long-slit spectroscopy, plus standard models of photoionization, shocks, and starbursts). We present four detailed emission-line ratios (N II/Hα, S II/Hα, S II/S II), and FWHM (Hα) maps for the central region (30''×30'' rmax~22''~4 kpc), with a spatial resolution of 1". In the central region (r~5-6 kpc) we detected that the nuclear starburst and the extended giant H II regions (in the spiral arms) have very similar properties, i.e., high metallicity and low-ionization spectra, with Teff=35,000 K, solar abundance, a range of Te~6000-7000 K, and Ne~100-1000 cm-3. The nuclear and extended outflow shows properties typical of galactic wind/shocks, associated with the nuclear starburst. We suggest that the interaction between dynamical effects, the galactic wind (outflow), low-energy cosmic rays, and the molecular+ionized gas (probably in the inflow phase) could be the possible mechanism that generate the ``similar extended properties in the massive star formation, at a scale of 5-6 kpc!'' We have also studied the presence of the close merger/interacting systems NGC 3256C (at ~150 kpc, ΔV=-100 km s-1) and the possible association between the NGC 3256 and 3263 groups of galaxies. In conclusion, these results suggest that NGC 3256 is the product of a multiple merger, which generated an extended massive star formation process with an associated galactic wind plus a nuclear inflow. Therefore, NGC 3256 is another example in which the relation between mergers and extreme starburst (and the powerful galactic wind, ``multiple'' Type II supernova explosions) play an important role in the evolution of galaxies (the hypothesis of Rieke et al., Joseph et al., Terlevich et al., Heckman et al., and Lípari et al.). Based on observations obtained at the Hubble Space Telescope (HST; Wide

  15. Galactic bulge preferred over dark matter for the Galactic centre gamma-ray excess

    NASA Astrophysics Data System (ADS)

    Macias, Oscar; Gordon, Chris; Crocker, Roland M.; Coleman, Brendan; Paterson, Dylan; Horiuchi, Shunsaku; Pohl, Martin

    2018-05-01

    An anomalous gamma-ray excess emission has been found in the Fermi Large Area Telescope data1 covering the centre of the Galaxy2,3. Several theories have been proposed for this `Galactic centre excess'. They include self-annihilation of dark-matter particles4, an unresolved population of millisecond pulsars5, an unresolved population of young pulsars6, or a series of burst events7. Here, we report on an analysis that exploits hydrodynamical modelling to register the position of interstellar gas associated with diffuse Galactic gamma-ray emission. We find evidence that the Galactic centre excess gamma rays are statistically better described by the stellar over-density in the Galactic bulge and the nuclear stellar bulge, rather than a spherical excess. Given its non-spherical nature, we argue that the Galactic centre excess is not a dark-matter phenomenon but rather associated with the stellar population of the Galactic bulge and the nuclear bulge.

  16. Gamma-ray and X-ray emission from the Galactic centre: hints on the nuclear star cluster formation history

    NASA Astrophysics Data System (ADS)

    Arca-Sedda, Manuel; Kocsis, Bence; Brandt, Timothy D.

    2018-06-01

    The Milky Way centre exhibits an intense flux in the gamma and X-ray bands, whose origin is partly ascribed to the possible presence of a large population of millisecond pulsars (MSPs) and cataclysmic variables (CVs), respectively. However, the number of sources required to generate such an excess is much larger than what is expected from in situ star formation and evolution, opening a series of questions about the formation history of the Galactic nucleus. In this paper we make use of direct N-body simulations to investigate whether these sources could have been brought to the Galactic centre by a population of star clusters that underwent orbital decay and formed the Galactic nuclear star cluster (NSC). Our results suggest that the gamma ray emission is compatible with a population of MSPs that were mass segregated in their parent clusters, while the X-ray emission is consistent with a population of CVs born via dynamical interactions in dense star clusters. Combining observations with our modelling, we explore how the observed γ ray flux can be related to different NSC formation scenarios. Finally, we show that the high-energy emission coming from the galactic central regions can be used to detect black holes heavier than 105M⊙ in nearby dwarf galaxies.

  17. Introducing CGOLS: The Cholla Galactic Outflow Simulation Suite

    NASA Astrophysics Data System (ADS)

    Schneider, Evan E.; Robertson, Brant E.

    2018-06-01

    We present the Cholla Galactic OutfLow Simulations (CGOLS) suite, a set of extremely high resolution global simulations of isolated disk galaxies designed to clarify the nature of multiphase structure in galactic winds. Using the GPU-based code Cholla, we achieve unprecedented resolution in these simulations, modeling galaxies over a 20 kpc region at a constant resolution of 5 pc. The simulations include a feedback model designed to test the effects of different mass- and energy-loading factors on galactic outflows over kiloparsec scales. In addition to describing the simulation methodology in detail, we also present the results from an adiabatic simulation that tests the frequently adopted analytic galactic wind model of Chevalier & Clegg. Our results indicate that the Chevalier & Clegg model is a good fit to nuclear starburst winds in the nonradiative region of parameter space. Finally, we investigate the role of resolution and convergence in large-scale simulations of multiphase galactic winds. While our largest-scale simulations show convergence of observable features like soft X-ray emission, our tests demonstrate that simulations of this kind with resolutions greater than 10 pc are not yet converged, confirming the need for extreme resolution in order to study the structure of winds and their effects on the circumgalactic medium.

  18. The Optical Gravitational Lensing Experiment. BVI Maps of Dense Stellar Regions. III. The Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Udalski, A.; Szymanski, M.; Kubiak, M.; Pietrzynski, G.; Soszynski, I.; Wozniak, P.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.

    2002-09-01

    We present the VI photometric maps of the Galactic bulge. They contain VI photometry and astrometry of about 30 million stars from 49 fields of 0.225 square degree each in the Galactic center region. The data were collected during the second phase of the OGLE microlensing project. We discuss the accuracy of data and present color-magnitude diagrams of selected fields observed by OGLE in the Galactic bulge. The VI maps of the Galactic bulge are accessible electronically for the astronomical community from the OGLE Internet archive.

  19. A dynamical model for gas flows, star formation and nuclear winds in galactic centres

    NASA Astrophysics Data System (ADS)

    Krumholz, Mark R.; Kruijssen, J. M. Diederik; Crocker, Roland M.

    2017-04-01

    We present a dynamical model for gas transport, star formation and winds in the nuclear regions of galaxies, focusing on the Milky Way's Central Molecular Zone (CMZ). In our model angular momentum and mass are transported by a combination of gravitational and bar-driven acoustic instabilities. In gravitationally unstable regions the gas can form stars, and the resulting feedback drives both turbulence and a wind that ejects mass from the CMZ. We show that the CMZ is in a quasi-steady state where mass deposited at large radii by the bar is transported inwards to a star-forming, ring-shaped region at ˜100 pc from the Galactic Centre, where the shear reaches a minimum. This ring undergoes episodic starbursts, with bursts lasting ˜5-10 Myr occurring at ˜20-40 Myr intervals. During quiescence the gas in the ring is not fully cleared, but is driven out of a self-gravitating state by the momentum injected by expanding supernova remnants. Starbursts also drive a wind off the star-forming ring, with a time-averaged mass flux comparable to the star formation rate. We show that our model agrees well with the observed properties of the CMZ, and places it near a star formation minimum within the evolutionary cycle. We argue that such cycles of bursty star formation and winds should be ubiquitous in the nuclei of barred spiral galaxies, and show that the resulting distribution of galactic nuclei on the Kennicutt-Schmidt relation is in good agreement with that observed in nearby galaxies.

  20. Coded-aperture imaging of the Galactic center region at gamma-ray energies

    NASA Technical Reports Server (NTRS)

    Cook, Walter R.; Grunsfeld, John M.; Heindl, William A.; Palmer, David M.; Prince, Thomas A.

    1991-01-01

    The first coded-aperture images of the Galactic center region at energies above 30 keV have revealed two strong gamma-ray sources. One source has been identified with the X-ray source IE 1740.7 - 2942, located 0.8 deg away from the nucleus. If this source is at the distance of the Galactic center, it is one of the most luminous objects in the galaxy at energies from 35 to 200 keV. The second source is consistent in location with the X-ray source GX 354 + 0 (MXB 1728-34). In addition, gamma-ray flux from the location of GX 1 + 4 was marginally detected at a level consistent with other post-1980 measurements. No significant hard X-ray or gamma-ray flux was detected from the direction of the Galactic nucleus or from the direction of the recently discovered gamma-ray source GRS 1758-258.

  1. Elusive active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Maiolino, R.; Comastri, A.; Gilli, R.; Nagar, N. M.; Bianchi, S.; Böker, T.; Colbert, E.; Krabbe, A.; Marconi, A.; Matt, G.; Salvati, M.

    2003-10-01

    A fraction of active galactic nuclei do not show the classical Seyfert-type signatures in their optical spectra, i.e. they are optically `elusive'. X-ray observations are an optimal tool to identify this class of objects. We combine new Chandra observations with archival X-ray data in order to obtain a first estimate of the fraction of elusive active galactic nuclei (AGN) in local galaxies and to constrain their nature. Our results suggest that elusive AGN have a local density comparable to or even higher than optically classified Seyfert nuclei. Most elusive AGN are heavily absorbed in the X-rays, with gas column densities exceeding 1024 cm-2, suggesting that their peculiar nature is associated with obscuration. It is likely that in elusive AGN the nuclear UV source is completely embedded and the ionizing photons cannot escape, which prevents the formation of a classical narrow-line region. Elusive AGN may contribute significantly to the 30-keV bump of the X-ray background.

  2. Chandra Deep X-ray Observation of a Typical Galactic Plane Region and Near-Infrared Identification

    NASA Technical Reports Server (NTRS)

    Ebisawa, K.; Tsujimoto, M.; Paizis, A.; Hamaguichi, K.; Bamba, A.; Cutri, R.; Kaneda, H.; Maeda, Y.; Sato, G.; Senda, A.

    2004-01-01

    Using the Chandra Advanced CCD Imaging Spectrometer Imaging array (ACIS-I), we have carried out a deep hard X-ray observation of the Galactic plane region at (l,b) approx. (28.5 deg,0.0 deg), where no discrete X-ray source has been reported previously. We have detected 274 new point X-ray sources (4 sigma confidence) as well as strong Galactic diffuse emission within two partidly overlapping ACIS-I fields (approx. 250 sq arcmin in total). The point source sensitivity was approx. 3 x 10(exp -15)ergs/s/sq cm in the hard X-ray band (2-10 keV and approx. 2 x 10(exp -16) ergs/s/sq cm in the soft band (0.5-2 keV). Sum of all the detected point source fluxes account for only approx. 10 % of the total X-ray fluxes in the field of view. In order to explain the total X-ray fluxes by a superposition of fainter point sources, an extremely rapid increase of the source population is required below our sensitivity limit, which is hardly reconciled with any source distribution in the Galactic plane. Therefore, we conclude that X-ray emission from the Galactic plane has truly diffuse origin. Only 26 point sources were detected both in the soft and hard bands, indicating that there are two distinct classes of the X-ray sources distinguished by the spectral hardness ratio. Surface number density of the hard sources is only slightly higher than observed at the high Galactic latitude regions, strongly suggesting that majority of the hard X-ray sources are active galaxies seen through the Galactic plane. Following the Chandra observation, we have performed a near-infrared (NIR) survey with SOFI at ESO/NTT to identify these new X-ray sources. Since the Galactic plane is opaque in NIR, we did not see the background extragalactic sources in NIR. In fact, only 22 % of the hard sources had NIR counterparts which are most likely to be Galactic origin. Composite X-ray energy spectrum of those hard X-ray sources having NIR counterparts exhibits a narrow approx. 6.7 keV iron emission line, which

  3. Galactic plane gamma-radiation

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Fichtel, C. E.; Ogelman, H. B.; Tumer, T.; Ozel, M. E.

    1979-01-01

    Analysis of the SAS 2 data together with the COS B results shows that the distribution of galactic gamma-radiation has several similarities to that of other large-scale tracers of galactic structure. The radiation is primarily confined to a thin disc which exhibits offsets from b = 0 degrees similar to warping at radio frequencies. The principal distinction of the gamma-radiation is a stronger contrast in intensity between the region from 310 to 45 degrees in longitude and the regions away from the center that can be attributed to a variation in cosmic-ray density as a function of position in Galaxy. The diffuse galactic gamma-ray energy spectrum shows no significant variation in direction, and the spectrum seen along the plane is the same as that for the galactic component of the gamma-radiation at high altitudes. The uniformity of the galactic gamma-ray spectrum, the smooth decrease in intensity as a function of altitude, and the absence of any galactic gamma-ray sources at high altitudes indicate a diffuse origin for bulk of the galactic gamma-radiation rather than a collection of localized sources.

  4. X-Ray Emission from the Nuclear Region of Arp 220

    NASA Astrophysics Data System (ADS)

    Paggi, Alessandro; Fabbiano, Giuseppina; Risaliti, Guido; Wang, Junfeng; Karovska, Margarita; Elvis, Martin; Maksym, W. Peter; McDowell, Jonathan; Gallagher, Jay

    2017-05-01

    We present an imaging and spectral analysis of the nuclear region of the ultraluminous infrared galaxy merger of Arp 220, using deep Chandra-ACIS observations summing up to ˜ 300 {{ks}}. Narrowband imaging with subpixel resolution of the innermost nuclear region reveals two distinct Fe-K emitting sources, coincident with the infrared and radio nuclear clusters. These sources are separated by 1‧ (˜380 pc). The X-ray emission is extended and elongated in the eastern (E) nucleus, like the disk emission observed in millimeter radio images, suggesting a starburst dominance in this region. We estimate an Fe-K equivalent width of ≳ 1 {keV} for both sources and observe 2-10 keV luminosities of ˜ 2× {10}40 {{erg}} {{{s}}}-1 (western, W) and ˜ 3× {10}40 {{erg}} {{{s}}}-1 (E). In the 6-7 keV band the emission from these regions is dominated by the 6.7 keV Fe xxv line, suggesting a contribution from collisionally ionized gas. The thermal energy content of this gas is consistent with the kinetic energy injection in the interstellar medium by SNe II. However, nuclear winds from a hidden active galactic nucleus (AGN) (\\upsilon ˜ 2000 {{km}} {{{s}}}-1) cannot be excluded. The 3σ upper limits on the neutral Fe-Kα flux of the nuclear regions correspond to the intrinsic AGN 2-10 keV luminosities of < 1× {10}42 {{erg}} {{{s}}}-1 (W) and < 0.4× {10}42 {{erg}} {{{s}}}-1 (E). For typical AGN spectral energy distributions the bolometric luminosities are < 3× {10}43 {{erg}} {{{s}}}-1 (W) and < 8× {10}43 {{erg}} {{{s}}}-1 (E), and black hole masses of < 1× {10}5 {M}⊙ (W) and < 5× {10}5 {M}⊙ (E) are evaluated for Eddington limited AGNs with a standard 10% efficiency.

  5. A starburst region at the tip of the Galactic bar around l=347-350

    NASA Astrophysics Data System (ADS)

    Marco, Amparo; Negueruela, Ignacio; González-Fernández, Carlos; Maíz-Apellániz, Jesús; Dorda, Ricardo; Clark, J. Simon

    2015-08-01

    In the past few years, several clusters of red supergiants have been discovered in a small region of the Milky Way, close to the base of the Scutum-Crux Arm and the tip of the Long Bar, between l=24º and l=29º. According to the number of observed red supergiants and using population synthesis models, they must contain very large stellar populations to harbour so many RSGs, some of them being candidates to the most massive young clusters in the Galaxy. These massive open clusters are part of a huge structure most likely containing hundreds of red supergiants. These results suggest that the Scutum complex represents a giant star formation region triggered by dynamical excitation by the Galactic bar, whose tip is believed to intersect the Scutum-Crux Arm close to this region. If this scenario is correct, a similar structure would be expected close to the opposite end of the Galactic long bar. We must find in an area between l=347º-350º (these sight lines include the expected location of the far tip of the Galactic bar in the model of González-Fernández et al. (2012)) likely candidates to very massive open clusters.We are carrying out a comprehensive optical and infrared photometric and spectroscopic study of this region containing the open clusters VdBH 222, Teutsch 85 and their surroundings. We have analyzed the population of VdBH 222 and we have found a large population of luminous supergiants and OB stars. The cluster lies behind ~7.5 mag of extinction and has a probable distance of ~ 10 kpc and an age of ~12 Ma. VdBH 222 is a young massive cluster with a likely mass > 20000 Msolar. Now, we are analyzing the population of the open cluster Teutsch 85 and surroundings, finding a numerous population of supergiants.In this work, we will discuss the possible role of the Galactic bar in triggering the formation of starburst clusters.

  6. Low frequency radio synthesis imaging of the galactic center region

    NASA Astrophysics Data System (ADS)

    Nord, Michael Evans

    2005-11-01

    The Very Large Array radio interferometer has been equipped with new receivers to allow observations at 330 and 74 MHz, frequencies much lower than were previously possible with this instrument. Though the VLA dishes are not optimal for working at these frequencies, the system is successful and regular observations are now taken at these frequencies. However, new data analysis techniques are required to work at these frequencies. The technique of self- calibration, used to remove small atmospheric effects at higher frequencies, has been adapted to compensate for ionospheric turbulence in much the same way that adaptive optics is used in the optical regime. Faceted imaging techniques are required to compensate for the noncoplanar image distortion that affects the system due to the wide fields of view at these frequencies (~2.3° at 330 MHz and ~11° at 74 MHz). Furthermore, radio frequency interference is a much larger problem at these frequencies than in higher frequencies and novel approaches to its mitigation are required. These new techniques and new system are allowing for imaging of the radio sky at sensitivities and resolutions orders of magnitude higher than were possible with the low frequency systems of decades past. In this work I discuss the advancements in low frequency data techniques required to make high resolution, high sensitivity, large field of view measurements with the new Very Large Array low frequency system and then detail the results of turning this new system and techniques on the center of our Milky Way Galaxy. At 330 MHz I image the Galactic center region with roughly 10 inches resolution and 1.6 mJy beam -1 sensitivity. New Galactic center nonthermal filaments, new pulsar candidates, and the lowest frequency detection to date of the radio source associated with our Galaxy's central massive black hole result. At 74 MHz I image a region of the sky roughly 40° x 6° with, ~10 feet resolution. I use the high opacity of H II regions at 74

  7. Global Infrared–Radio Spectral Energy Distributions of Galactic Massive Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Povich, Matthew Samuel; Binder, Breanna Arlene

    2018-01-01

    We present a multiwavelength study of 30 Galactic massive star-forming regions. We fit multicomponent dust, blackbody, and power-law continuum models to 3.6 µm through 10 mm spectral energy distributions obtained from Spitzer, MSX, IRAS, Herschel, and Planck archival survey data. Averaged across our sample, ~20% of Lyman continuum photons emitted by massive stars are absorbed by dust before contributing to the ionization of H II regions, while ~50% of the stellar bolometric luminosity is absorbed and reprocessed by dust in the H II regions and surrounding photodissociation regions. The most luminous, infrared-bright regions that fully sample the upper stellar initial mass function (ionizing photon rates NC ≥ 1050 s–1 and total infrared luminosity LTIR ≥ 106.8 L⊙) have higher percentages of absorbed Lyman continuum photons (~40%) and dust-reprocessed starlight (~80%). The monochromatic 70-µm luminosity L70 is linearly correlated with LTIR, and on average L70/LTIR = 50%, in good agreement with extragalactic studies. Calibrated against the known massive stellar content in our sampled H II regions, we find that star formation rates based on L70 are in reasonably good agreement with extragalactic calibrations, when corrected for the smaller physical sizes of the Galactic regions. We caution that absorption of Lyman continuum photons prior to contributing to the observed ionizing photon rate may reduce the attenuation-corrected Hα emission, systematically biasing extragalactic calibrations toward lower star formation rates when applied to spatially-resolved studies of obscured star formation.This work was supported by the National Science Foundation under award CAREER-1454333.

  8. Galactic gamma-ray observations and galactic structure

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1975-01-01

    Recent observations of gamma-rays originating in the galactic disk together with radio observations, support an emerging picture of the overall structure of our galaxy with higher interstellar gas densities and star formation rates in a region which corresponds to that of the inner arms. The emerging picture is one where molecular clouds make up the dominant constituent of the interstellar gas in the inner galaxy and play a key role in accounting for the gamma-rays and phenomena associated with the production of young stars and other population 1 objects. In this picture, cosmic rays are associated with supernovae and are primarily of galactic origin. These newly observed phenomena can be understood as consequences of the density wave theories of spiral structure. Based on these new developments, the suggestion is made that a new galactic population class, Population O, be added to the standard Populations 1 and 2 in order to recognize important differences in dynamics and distribution between diffuse galactic H1 and interstellar molecular clouds.

  9. Infrared Spectroscopy of Star Formation in Galactic and Extragalactic Regions

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.; Hasan, Hashima (Technical Monitor)

    2002-01-01

    This report details work done in a project involving spectroscopic studies, including data analysis and modeling, of star-formation regions using an ensemble of archival space-based data including some from the Infrared Space Observatory's Long Wavelength Spectrometer and Short Wavelength Spectrometer, and other spectroscopic databases. We will include four kinds of regions: (1) disks around more evolved objects; (2) young, low or high mass pre-main sequence stars in star-formation regions; (3) star formation in external, bright IR (infrared) galaxies; and (4) the galactic center. During this period, work proceeded fully on track and on time. Details on workshops and conferences attended and research results are presented. A preprint article entitled 'The Far Infrared Lines of OH as Molecular Cloud Diagnostics' is included as an appendix.

  10. Probing the formation history of the nuclear star cluster at the Galactic Centre with millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Abbate, F.; Mastrobuono-Battisti, A.; Colpi, M.; Possenti, A.; Sippel, A. C.; Dotti, M.

    2018-01-01

    The origin of the nuclear star cluster in the centre of our Galaxy is still unknown. One possibility is that it formed after the disruption of stellar clusters that spiralled into the Galactic Centre due to dynamical friction. We trace the formation of the nuclear star cluster around the central black hole, using state-of-the-art N-body simulations, and follow the dynamics of the neutron stars born in the clusters. We then estimate the number of millisecond pulsars (MSPs) that are released in the nuclear star cluster during its formation. The assembly and tidal dismemberment of globular clusters lead to a population of MSPs distributed over a radius of about 20 pc, with a peak near 3 pc. No clustering is found on the subparsec scale. We simulate the detectability of this population with future radio telescopes like the MeerKAT radio telescope and SKA1, and find that about an order of 10 MSPs can be observed over this large volume, with a paucity of MSPs within the central parsec. This helps discriminating this scenario from the in situ formation model for the nuclear star cluster that would predict an overabundance of MSPs closer to the black hole. We then discuss the potential contribution of our MSP population to the gamma-ray excess at the Galactic Centre.

  11. Gamma ray constraints on the Galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, Donald D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1991-01-01

    We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission.

  12. Gamma ray constraints on the galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, D. D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1992-01-01

    Monte Carlo simulations of the expected gamma-ray signatures of galactic supernovae of all types are performed in order to estimate the significance of the lack of a gamma-ray signal due to supernovae occurring during the last millenium. Using recent estimates of nuclear yields, we determine galactic supernova rates consistent with the historic supernova record and the gamma-ray limits. Another objective of these calculations of galactic supernova histories is their application to surveys of diffuse galactic gamma-ray line emission.

  13. How Space Radiation Risk from Galactic Cosmic Rays at the International Space Station Relates to Nuclear Cross Sections

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei; Adams, J. H., Jr.

    2005-01-01

    Space radiation risk to astronauts is a major obstacle for long term human space explorations. Space radiation transport codes have thus been developed to evaluate radiation effects at the International Space Station (ISS) and in missions to the Moon or Mars. We study how nuclear fragmentation processes in such radiation transport affect predictions on the radiation risk from galactic cosmic rays. Taking into account effects of the geomagnetic field on the cosmic ray spectra, we investigate the effects of fragmentation cross sections at different energies on the radiation risk (represented by dose-equivalent) from galactic cosmic rays behind typical spacecraft materials. These results tell us how the radiation risk at the ISS is related to nuclear cross sections at different energies, and consequently how to most efficiently reduce the physical uncertainty in our predictions on the radiation risk at the ISS.

  14. Distribution of cosmic gamma rays in the galactic anticenter region as observed by SAS-2

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Fichtel, C. E.; Hartman, R. C.; Thompson, D. J.; Ozel, M. E.; Tumer, T.; Bignami, G. F.; Ogelman, H.

    1975-01-01

    The high energy (above 35 MeV) gamma ray telescope flown on the second Small Astronomy Satellite has collected over one thousand gamma rays from the direction of the galactic anticenter. In addition to the diffuse galactic emission the distribution indicates a strong pulsed contribution from the Crab nebula with the same period and phase as the NP0532 pulsar. There also seems to be an excess in the direction of (gal. long. ? 195 deg; gal. lat ? +5 deg) where there is a region containing old supernova remnants. Search for gamma ray pulsations from other pulsars in the region do not show any statistically significant signal. The general intensity distribution of the gamma rays away from the plane appear to be similar to nonthermal radio emission brightness contours.

  15. Very-high energy observations of the galactic center region by VERITAS in 2010-2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer, A.; Beilicke, M.; Buckley, J. H.

    2014-08-01

    The Galactic center is an interesting region for high-energy (0.1-100 GeV) and very-high-energy (E > 100 GeV) γ-ray observations. Potential sources of GeV/TeV γ-ray emission have been suggested, e.g., the accretion of matter onto the supermassive black hole, cosmic rays from a nearby supernova remnant (e.g., Sgr A East), particle acceleration in a plerion, or the annihilation of dark matter particles. The Galactic center has been detected by EGRET and by Fermi/LAT in the MeV/GeV energy band. At TeV energies, the Galactic center was detected with moderate significance by the CANGAROO and Whipple 10 m telescopes and with high significancemore » by H.E.S.S., MAGIC, and VERITAS. We present the results from three years of VERITAS observations conducted at large zenith angles resulting in a detection of the Galactic center on the level of 18 standard deviations at energies above ∼2.5 TeV. The energy spectrum is derived and is found to be compatible with hadronic, leptonic, and hybrid emission models discussed in the literature. Future, more detailed measurements of the high-energy cutoff and better constraints on the high-energy flux variability will help to refine and/or disentangle the individual models.« less

  16. Hard X-ray observations of the region from the galactic center to Centaurus

    NASA Technical Reports Server (NTRS)

    Guo, D. D.; Webber, W. R.; Damle, S. V.

    1974-01-01

    A balloon flight from Parana, Argentina, was conducted to observe emissions from discrete or extended sources in the southern sky. The sources observed include GX 304-1, Nor X-2, GX 340+0, GX 354-5, a possibly composite source near the galactic center, and the nova-like source (2U1543-47) in the Lupus-Norma region which has been reported previously only in satellite observations. Data concerning the possibility of line emission near 0.5 MeV from different regions of the southern sky are also presented.

  17. The annihilation of galactic positrons

    NASA Technical Reports Server (NTRS)

    Bussard, R.; Rematy, R.

    1978-01-01

    The probabilities of various channels of galactic positron annihilation were evaluated and the spectrum of the resulting radiation was calculated. The narrow width (FWHM less than 3.2 keV) of the 0.511 MeV line observed from the galactic center implies that a large fraction of positrons should annihilate in a medium of temperature less than 100,000 K and ionization fraction greater than 0.05. HII regions at the galactic center could be possible sites of annihilation.

  18. Nuclear Radio Jet from a Low-luminosity Active Galactic Nucleus in NGC 4258

    NASA Astrophysics Data System (ADS)

    Doi, Akihiro; Kohno, Kotaro; Nakanishi, Kouichiro; Kameno, Seiji; Inoue, Makoto; Hada, Kazuhiro; Sorai, Kazuo

    2013-03-01

    The nearby low-luminosity active galactic nucleus (LLAGN) NGC 4258 has a weak radio continuum component at the galactic center. We investigate its radio spectral properties on the basis of our new observations using the Nobeyama Millimeter Array at 100 GHz and archival data from the Very Large Array at 1.7-43 GHz and the James Clerk Maxwell telescope at 347 GHz. The NGC 4258 nuclear component exhibits (1) an intra-month variable and complicated spectral feature at 5-22 GHz and (2) a slightly inverted spectrum at 5-100 GHz (α ~ 0.3; F νvpropνα) in time-averaged flux densities, which are also apparent in the closest LLAGN M81. These similarities between NGC 4258 and M81 in radio spectral natures in addition to previously known core shift in their AU-scale jet structures produce evidence that the same mechanism drives their nuclei. We interpret the observed spectral property as the superposition of emission spectra originating at different locations with frequency-dependent opacity along the nuclear jet. Quantitative differences between NGC 4258 and M81 in terms of jet/counter jet ratio, radio loudness, and degree of core shift can be consistently understood by fairly relativistic speeds (Γ >~ 3) of jets and their quite different inclinations. The picture established from the two closest LLAGNs is useful for understanding the physical origin of unresolved and flat/inverted spectrum radio cores that are prevalently found in LLAGNs, including Sgr A*, with starved supermassive black holes in the present-day universe.

  19. DISCOVERY OF RR LYRAE STARS IN THE NUCLEAR BULGE OF THE MILKY WAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minniti, Dante; Ramos, Rodrigo Contreras; Zoccali, Manuela

    Galactic nuclei, such as that of the Milky Way, are extreme regions with high stellar densities, and in most cases, the hosts of a supermassive black hole. One of the scenarios proposed for the formation of the Galactic nucleus is merging of primordial globular clusters. An implication of this model is that this region should host stars that are characteristically found in old Milky Way globular clusters. RR Lyrae stars are primary distance indicators, well known representatives of old and metal-poor stellar populations, and therefore are regularly found in globular clusters. Here we report the discovery of a dozen RRmore » Lyrae type ab stars in the vicinity of the Galactic center, i.e., in the so-called nuclear stellar bulge of the Milky Way. This discovery provides the first direct observational evidence that the Galactic nuclear stellar bulge contains ancient stars (>10 Gyr old). Based on this we conclude that merging globular clusters likely contributed to the build-up of the high stellar density in the nuclear stellar bulge of the Milky Way.« less

  20. Spectrum and variation of gamma-ray emission from the galactic center region

    NASA Technical Reports Server (NTRS)

    Riegler, G. R.; Ling, J. C.; Mahoney, W. A.; Wheaton, W. A.; Jacobson, A. S.

    1982-01-01

    Continuum emission at 60-300 keV from the galactic center region was observed to decrease in intensity by 45 percent and to show a spectrum steepening between fall 1979 and spring 1980. At the same time 511 keV positron annihilation radiation decreased by a comparable fraction. No variations over shorter time scales were detected. The observations are consistent with a model where positrons and hard X-rays are produced in an electromagnetic cascade near a massive black hole.

  1. The age of the Galactic disk - Inflow, chemical evolution, astration, and radioactivity

    NASA Technical Reports Server (NTRS)

    Clayton, Donald D.

    1989-01-01

    Theoretical models of Galactic evolution and observational data on the age of the Galaxy are compared, with a focus on recent results. Topics addressed include the infall of material and its effects on the age-metallicity relation, the distribution of metallicity, the present gas fraction and metallicity, and the age spectrum of interstellar nuclei; the chemical evolution of the solar neighborhood; the key results of nuclear cosmochronology; and astration effects on Galactic age. It is found that both nuclear cosmochronology and detailed stellar and Galactic evolution models tend to support an age of 12-16 Gyr.

  2. Multiphase environment of compact galactic nuclei: the role of the nuclear star cluster

    NASA Astrophysics Data System (ADS)

    Różańska, A.; Kunneriath, D.; Czerny, B.; Adhikari, T. P.; Karas, V.

    2017-01-01

    We study the conditions for the onset of thermal instability in the innermost regions of compact galactic nuclei, where the properties of the interstellar environment are governed by the interplay of quasi-spherical accretion on to a supermassive black hole (SMBH) and the heating/cooling processes of gas in a dense nuclear star cluster (NSC). Stellar winds are the source of material for radiatively inefficient (quasi-spherical, non-magnetized) inflow/outflow on to the central SMBH, where a stagnation point develops within the Bondi-type accretion. We study the local thermal equilibrium to determine the parameter space that allows cold and hot phases in mutual contact to co-exist. We include the effects of mechanical heating by stellar winds and radiative cooling/heating by the ambient field of the dense star cluster. We consider two examples: the NSC in the Milky Way central region (including the gaseous mini-spiral of Sgr A*), and the ultracompact dwarf galaxy M60-UCD1. We find that the two systems behave in different ways because they are placed in different areas of parameter space in the instability diagram: gas temperature versus dynamical ionization parameter. In the case of Sgr A*, stellar heating prevents the spontaneous formation of cold clouds. The plasma from stellar winds joins the hot X-ray emitting phase and forms an outflow. In M60-UCD1, our model predicts spontaneous formation of cold clouds in the inner part of the galaxy. These cold clouds may survive since the cooling time-scale is shorter than the inflow/outflow time-scale.

  3. Unusual Metals in Galactic Center Stars

    NASA Astrophysics Data System (ADS)

    Hensley, Kerry

    2018-03-01

    Far from the galactic suburbs where the Sun resides, a cluster of stars in the nucleus of the Milky Way orbits a supermassive black hole. Can chemical abundance measurements help us understand the formation history of the galactic center nuclear star cluster?Studying Stellar PopulationsMetallicity distributions for stars in the inner two degrees of the Milky Way (blue) and the central parsec (orange). [Do et al. 2018]While many galaxies host nuclear star clusters, most are too distant for us to study in detail; only in the Milky Way can we resolve individual stars within one parsec of a supermassive black hole. The nucleus of our galaxy is an exotic and dangerous place, and its not yet clear how these stars came to be where they are were they siphoned off from other parts of the galaxy, or did they form in place, in an environment rocked by tidal forces?Studying the chemical abundances of stars provides a way to separate distinct stellar populations and discern when and where these stars formed. Previous studies using medium-resolution spectroscopy have revealed that many stars within the central parsec of our galaxy have very high metallicities possibly higher than any other region of the Milky Way. Can high-resolution spectroscopy tell us more about this unusual population of stars?Spectral Lines on DisplayTuan Do (University of California, Los Angeles, Galactic Center Group) and collaborators performed high-resolution spectroscopic observations of two late-type giant starslocated half a parsec from the Milky Ways supermassive black hole.Comparison of the observed spectra of the two galactic center stars (black) with synthetic spectra with low (blue) and high (orange) [Sc/Fe] values. Click to enlarge. [Do et al. 2018]In order to constrain the metallicities of these stars, Do and collaborators compared the observed spectra to a grid of synthetic spectra and used a spectral synthesis technique to determine the abundances of individual elements. They found that

  4. Magnetic activity in the Galactic Centre region - fast downflows along rising magnetic loops

    NASA Astrophysics Data System (ADS)

    Kakiuchi, Kensuke; Suzuki, Takeru K.; Fukui, Yasuo; Torii, Kazufumi; Enokiya, Rei; Machida, Mami; Matsumoto, Ryoji

    2018-06-01

    We studied roles of the magnetic field on the gas dynamics in the Galactic bulge by a three-dimensional global magnetohydrodynamical simulation data, particularly focusing on vertical flows that are ubiquitously excited by magnetic activity. In local regions where the magnetic field is stronger, it is frequently seen that fast downflows slide along inclined magnetic field lines that are associated with buoyantly rising magnetic loops. The vertical velocity of these downflows reaches ˜100 km s-1 near the footpoint of the loops by the gravitational acceleration towards the Galactic plane. The two footpoints of rising magnetic loops are generally located at different radial locations and the field lines are deformed by the differential rotation. The angular momentum is transported along the field lines, and the radial force balance breaks down. As a result, a fast downflow is often observed only at the one footpoint located at the inner radial position. The fast downflow compresses the gas to form a dense region near the footpoint, which will be important in star formation afterwards. Furthermore, the horizontal components of the velocity are also fast near the footpoint because the downflow is accelerated along the magnetic sliding slope. As a result, the high-velocity flow creates various characteristic features in a simulated position-velocity diagram, depending on the viewing angle.

  5. Examining Sites of Recent Star Formation in the Galactic Center: A Closer Look at the Arched Filaments and H HII Regions

    NASA Astrophysics Data System (ADS)

    Hankins, Matthew; Herter, Terry; Lau, Ryan; Morris, Mark; Mills, Elisabeth

    2018-01-01

    In this dissertation presentation, we analyze mid-infrared imaging of the Arched Filaments and H HII regions in the Galactic center taken with the Faint Object Infrared Camera for the SOFIA Telescope (FORCAST). Examining these regions are of great interest because they provide insights on star formation in the Galactic center and the interactions massive stars have with the ISM. The Arched Filaments are a collection of molecular cloud ridges which are ionized by the nearby Arches star cluster, and give the appearance of large (~25 pc) arch-like structures. The H HII regions are a collection of HII regions just to the west of the Arches cluster (~5-15 pc). The origin of the stars powering the H HII regions is uncertain, as they may have formed in a nearby molecular cloud or could be ejected members of the Arches cluster. FORCAST observations of these regions were used to study the morphology and heating structure of the HII regions, as well as constrain their luminosities.Color-temperature maps of the Arched Filaments created with the FORCAST data reveals fairly uniform dust temperatures (~70-100 K) across the length filaments. The temperature uniformity of the clouds can be explained if they are heated by the Arches cluster but are located at a larger distance from the cluster than they appear. The density of the Arched Filaments clouds was estimated from the FORCAST data and was found to be below the threshold for tidal shearing, indicating that that the clouds will be destroyed by the strong tidal field near the Galactic center. To the west of the Arched Filaments, there is an interesting collection of HII regions, referred to as the H HII regions. These regions are likely heated by massive O/B type stars, and the morphology of the dust emission associated with these objects indicate a mixture of potential in situ formation mechanisms and interlopers. Interestingly, FORCAST imaging of the H HII regions also reveal several compact sources, which may be young

  6. Detection of sulfur in the galactic center

    NASA Technical Reports Server (NTRS)

    Herter, T.; Briotta, D. A., Jr.; Gull, G. E.; Shure, M. A.; Houck, J. R.

    1983-01-01

    A strong detection at the S III forbidden 18.71 micron line is reported for the galactic center region, Sgr A West. A line flux of 1.7 + or - 0.2 x 10 to the -17th W/sq cm is found for a 20 inch beam size measurement centered on IRS 1. A preliminary analysis indicates that the S III abundance relative to hydrogen is consistent with the cosmic abundance of sulfur, 0.000016, if a filling factor of unity within the known clumps is assumed. However, the sulfur abundance in the galactic center may be as much as a factor of 3 overabundant if a filling factor of 0.03 is adopted, a value found to hold for some galactic H II regions.

  7. Anisotropy and corotation of galactic cosmic rays.

    PubMed

    Amenomori, M; Ayabe, S; Bi, X J; Chen, D; Cui, S W; Danzengluobu; Ding, L K; Ding, X H; Feng, C F; Feng, Zhaoyang; Feng, Z Y; Gao, X Y; Geng, Q X; Guo, H W; He, H H; He, M; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Huang, Q; Jia, H Y; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren; Le, G M; Li, A F; Li, J Y; Lou, Y-Q; Lu, H; Lu, S L; Meng, X R; Mizutani, K; Mu, J; Munakata, K; Nagai, A; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Onuma, H; Ouchi, T; Ozawa, S; Ren, J R; Saito, T; Saito, T Y; Sakata, M; Sako, T K; Sasaki, T; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, B; Wang, H; Wang, X; Wang, Y G; Wu, H R; Xue, L; Yamamoto, Y; Yan, C T; Yang, X C; Yasue, S; Ye, Z H; Yu, G C; Yuan, A F; Yuda, T; Zhang, H M; Zhang, J L; Zhang, N J; Zhang, X Y; Zhang, Y; Zhang, Yi; Zhaxisangzhu; Zhou, X X

    2006-10-20

    The intensity of Galactic cosmic rays is nearly isotropic because of the influence of magnetic fields in the Milky Way. Here, we present two-dimensional high-precision anisotropy measurement for energies from a few to several hundred teraelectronvolts (TeV), using the large data sample of the Tibet Air Shower Arrays. Besides revealing finer details of the known anisotropies, a new component of Galactic cosmic ray anisotropy in sidereal time is uncovered around the Cygnus region direction. For cosmic-ray energies up to a few hundred TeV, all components of anisotropies fade away, showing a corotation of Galactic cosmic rays with the local Galactic magnetic environment. These results have broad implications for a comprehensive understanding of cosmic rays, supernovae, magnetic fields, and heliospheric and Galactic dynamic environments.

  8. Investigating the uniformity of the excess gamma rays towards the galactic center region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horiuchi, Shunsaku; Kaplinghat, Manoj; Kwa, Anna, E-mail: horiuchi@vt.edu, E-mail: mkapling@uci.edu, E-mail: akwa@uci.edu

    2016-11-01

    We perform a composite likelihood analysis of subdivided regions within the central 26° × 20° of the Milky Way, with the aim of characterizing the spectrum of the gamma-ray galactic center excess in regions of varying galactocentric distance. Outside of the innermost few degrees, we find that the radial profile of the excess is background-model dependent and poorly constrained. The spectrum of the excess emission is observed to extend upwards of 10 GeV outside ∼5° in radius, but cuts off steeply between 10–20 GeV only in the innermost few degrees. If interpreted as a real feature of the excess, thismore » radial variation in the spectrum has important implications for both astrophysical and dark matter interpretations of the galactic center excess. Single-component dark matter annihilation models face challenges in reproducing this variation; on the other hand, a population of unresolved millisecond pulsars contributing both prompt and secondary inverse Compton emission may be able to explain the spectrum as well as its spatial dependency. We show that the expected differences in the photon-count distributions of a smooth dark matter annihilation signal and an unresolved point source population are an order of magnitude smaller than the fluctuations in residuals after fitting the data, which implies that mismodeling is an important systematic effect in point source analyses aimed at resolving the gamma-ray excess.« less

  9. 74 MHz nonthermal emission from molecular clouds: evidence for a cosmic ray dominated region at the galactic center.

    PubMed

    Yusef-Zadeh, F; Wardle, M; Lis, D; Viti, S; Brogan, C; Chambers, E; Pound, M; Rickert, M

    2013-10-03

    We present 74 MHz radio continuum observations of the Galactic center region. These measurements show nonthermal radio emission arising from molecular clouds that is unaffected by free–free absorption along the line of sight. We focus on one cloud, G0.13-0.13, representative of the population of molecular clouds that are spatially correlated with steep spectrum (α(327MHz)(74MHz) = 1.3 ± 0.3) nonthermal emission from the Galactic center region. This cloud lies adjacent to the nonthermal radio filaments of the Arc near l 0.2° and is a strong source of 74 MHz continuum, SiO (2-1), and Fe I Kα 6.4 keV line emission. This three-way correlation provides the most compelling evidence yet that relativistic electrons, here traced by 74 MHz emission, are physically associated with the G0.13-0.13 molecular cloud and that low-energy cosmic ray electrons are responsible for the Fe I Kα line emission. The high cosmic ray ionization rate 10(–1)3 s(–1) H(–1) is responsible for heating the molecular gas to high temperatures and allows the disturbed gas to maintain a high-velocity dispersion. Large velocity gradient (LVG) modeling of multitransition SiO observations of this cloud implies H2 densities 10(4–5) cm(–3) and high temperatures. The lower limit to the temperature of G0.13-0.13 is 100 K, whereas the upper limit is as high as 1000 K. Lastly, we used a time-dependent chemical model in which cosmic rays drive the chemistry of the gas to investigate for molecular line diagnostics of cosmic ray heating. When the cloud reaches chemical equilibrium, the abundance ratios of HCN/HNC and N2H+/HCO+ are consistent with measured values. In addition, significant abundance of SiO is predicted in the cosmic ray dominated region of the Galactic center. We discuss different possibilities to account for the origin of widespread SiO emission detected from Galactic center molecular clouds.

  10. The galactic gamma-ray distribution: Implications for galactic structure and the radial cosmic ray gradient

    NASA Technical Reports Server (NTRS)

    Harding, A. K.; Stecker, F. W.

    1984-01-01

    The radial distribution of gamma ray emissivity in the Galaxy was derived from flux longitude profiles, using both the final SAS-2 results and the recently corrected COS-B results and analyzing the northern and southern galactic regions separately. The recent CO surveys of the Southern Hemisphere, were used in conjunction with the Northern Hemisphere data, to derive the radial distribution of cosmic rays on both sides of the galactic plane. In addition to the 5 kpc ring, there is evidence from the radial asymmetry for spiral features which are consistent with those derived from the distribution of bright HII regions. Positive evidence was also found for a strong increase in the cosmic ray flux in the inner Galaxy, particularly in the 5 kpc region in both halves of the plane.

  11. Galactic Supernova Remnant Candidates Discovered by THOR

    NASA Astrophysics Data System (ADS)

    Anderson, Loren; Wang, Yuan; Bihr, Simon; Rugel, Michael; Beuther, Henrik; THOR Team

    2018-01-01

    There is a considerable deficiency in the number of known supernova remnants (SNRs) in the Galaxy compared to that expected. Searches for extended low-surface brightness radio sources may find new Galactic SNRs, but confusion with the much larger population of HII regions makes identifying such features challenging. SNRs can, however, be separated from HII regions using their significantly lower mid-infrared (MIR) to radio continuum intensity ratios. We use the combination of high-resolution 1-2 GHz continuum data from The HI, OH, Recombination line survey of the Milky Way (THOR) and lower-resolution VLA 1.4 GHz Galactic Plane Survey (VGPS) continuum data, together with MIR data from the Spitzer GLIMPSE, Spitzer MIPSGAL, and WISE surveys to identify SNR candidates. To ensure that the candidates are not being confused with HII regions, we exclude radio continuum sources from the WISE Catalog of Galactic HII Regions, which contains all known and candidate H II regions in the Galaxy. We locate 76 new Galactic SNR candidates in the THOR and VGPS combined survey area of 67.4deg>l>17.5deg, |b|<1.25deg and measure the radio flux density for 52 previously-known SNRs. The candidate SNRs have a similar spatial distribution to the known SNRs, although we note a large number of new candidates near l=30deg, the tangent point of the Scutum spiral arm. The candidates are on average smaller in angle compared to the known regions, 6.4'+/-4.7' versus 11.0'+/-7.8', and have lower integrated flux densities. If the 76 candidates are confirmed as true SNRs, for example using radio polarization measurements or by deriving radio spectral indices, this would more than double the number of known Galactic SNRs in the survey area. This large increase would still, however, leave a discrepancy between the known and expected SNR populations of about a factor of two.

  12. Evolution of the Oort Cloud under Galactic Perturbations

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Kokubo, E.; Mukai, T.

    2005-08-01

    The Oort cloud is a spherical comet reservoir surrounding the solar system. There is general agreement that the Oort cloud comets are the residual planetesimals of planet formation. The standard scenario of the Oort cloud formation consists of two dynamical stages: (1) giant planets raise the aphelia of planetesimals to the outer region of the solar system and (2) the galactic tide, passing stars, and giant molecular clouds pull up their perihelia out of the planetary region and randomize their inclinations. Here we show the orbital evolution of planetesimals due to the galactic tide. Planetesimals with large aphelion distances change their perihelion distances toward the outside of the planetary region by the galactic tide and become members of the Oort cloud. We consider only the vertical component of the galactic tide because it is dominant compared to other components. Then, under such an axi-symmetric assumption, some planetesimals may show the librations around ω (argument of perihelion)=π /2 or 3π /2 (the Kozai mechanism). The alternate increases of eccentricity and inclination of the Kozai mechanism are effective to form the Oort cloud. Using the secular perturbation theory, we can understand the motion of the planetesimals analytically. We applied the Kozai mechanism to the galactic tide and found that the galactic tide raise perihelia and randomize inclinations of planetesimals with semimajor axes larger than ˜ 103 AU in 5Gyr. We take into account time evolution of the local galactic density, which is thought to be denser in the early stage of the sun than the current one. This work was supported by the 21st Century COE Program Origin and Evolution of Planetary Systems of the Ministry of Education, Culture, Sports, Science, and Technology, Japan, and JSPS Research Fellowship for Young Scientists.

  13. Detection of sulphur in the galactic center

    NASA Technical Reports Server (NTRS)

    Herter, T.; Briotta, D. A., Jr.; Gull, G. E.; Shure, M. A.; Houck, J. R.

    1983-01-01

    A strong detection at the (SIII) 18.71 micron line is reported for the Galactic Center region, Sgr A West. A line flux of 1.7 + or - 0.2x10 to the -17th power W cm(-2) is found for a 20-arc second beam-size measurement centered on IRS 1. A preliminary analysis indicates that the SIII abundance relative to hydrogen is consistent with the cosmic abundance of sulfur, 1.6x10 to the -5th power, if a filling factor of unity within the known clumps is assumed. However, the sulfur abundance in the Galactic Center may be as much as a factor of 3 overabundant if a filling factor of 0.03 is adopted, a value found to hold for some galactic HII regions.

  14. A discussion of the H-alpha filamentary nebulae and galactic structure in the Cygnus region

    NASA Technical Reports Server (NTRS)

    Matthews, T. A.; Simonson, S. C., III

    1971-01-01

    From observation of the galactic structure in Cygnus, the system of filamentary nebulae was found to lie at a distance of roughly 1.5 kpc, in the same region as about half the thermal radio sources in Cygnus X, the supernova remnant near gamma Cygni, and the association Cygnus OB2, in the direction of which the X-ray source Cygnus XR-3 is observed. The source of excitation was probably the pulse of radiation from a supernova explosion, as proposed in the case of Gum nebula. However continuing excitation by early stars in the region of Cygnus X cannot be excluded.

  15. Evaluating Galactic Cosmic Ray Environment Models Using RaD-X Flight Data

    NASA Technical Reports Server (NTRS)

    Norman, R. B.; Mertens, C. J.; Slaba, T. C.

    2016-01-01

    Galactic cosmic rays enter Earth's atmosphere after interacting with the geomagnetic field. The primary galactic cosmic rays spectrum is fundamentally changed as it interacts with Earth's atmosphere through nuclear and atomic interactions. At points deeper in the atmosphere, such as at airline altitudes, the radiation environment is a combination of the primary galactic cosmic rays and the secondary particles produced through nuclear interactions. The RaD-X balloon experiment measured the atmospheric radiation environment above 20 km during 2 days in September 2015. These experimental measurements were used to validate and quantify uncertainty in physics-based models used to calculate exposure levels for commercial aviation. In this paper, the Badhwar-O'Neill 2014, the International Organization for Standardization 15390, and the German Aerospace Company galactic cosmic ray environment models are used as input into the same radiation transport code to predict and compare dosimetric quantities to RaD-X measurements. In general, the various model results match the measured tissue equivalent dose well, with results generated by the German Aerospace Center galactic cosmic ray environment model providing the best comparison. For dose equivalent and dose measured in silicon, however, the models were compared less favorably to the measurements.

  16. Galactic supernova remnant candidates discovered by THOR

    NASA Astrophysics Data System (ADS)

    Anderson, L. D.; Wang, Y.; Bihr, S.; Rugel, M.; Beuther, H.; Bigiel, F.; Churchwell, E.; Glover, S. C. O.; Goodman, A. A.; Henning, Th.; Heyer, M.; Klessen, R. S.; Linz, H.; Longmore, S. N.; Menten, K. M.; Ott, J.; Roy, N.; Soler, J. D.; Stil, J. M.; Urquhart, J. S.

    2017-09-01

    Context. There is a considerable deficiency in the number of known supernova remnants (SNRs) in the Galaxy compared to that expected. This deficiency is thought to be caused by a lack of sensitive radio continuum data. Searches for extended low-surface brightness radio sources may find new Galactic SNRs, but confusion with the much larger population of H II regions makes identifying such features challenging. SNRs can, however, be separated from H II regions using their significantly lower mid-infrared (MIR) to radio continuum intensity ratios. Aims: Our goal is to find missing SNR candidates in the Galactic disk by locating extended radio continuum sources that lack MIR counterparts. Methods: We use the combination of high-resolution 1-2 GHz continuum data from The HI, OH, Recombination line survey of the Milky Way (THOR) and lower-resolution VLA 1.4 GHz Galactic Plane Survey (VGPS) continuum data, together with MIR data from the Spitzer GLIMPSE, Spitzer MIPSGAL, and WISE surveys to identify SNR candidates. To ensure that the candidates are not being confused with H II regions, we exclude radio continuum sources from the WISE Catalog of Galactic H II Regions, which contains all known and candidate H II regions in the Galaxy. Results: We locate 76 new Galactic SNR candidates in the THOR and VGPS combined survey area of 67.4° > ℓ > 17.5°, | b | ≤ 1.25° and measure the radio flux density for 52 previously-known SNRs. The candidate SNRs have a similar spatial distribution to the known SNRs, although we note a large number of new candidates near ℓ ≃ 30°, the tangent point of the Scutum spiral arm. The candidates are on average smaller in angle compared to the known regions, 6.4' ± 4.7' versus 11.0' ± 7.8', and have lower integrated flux densities. Conclusions: The THOR survey shows that sensitive radio continuum data can discover a large number of SNR candidates, and that these candidates can be efficiently identified using the combination of radio and

  17. The Structure of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Kriss, Gerard A.

    1997-01-01

    We are continuing our systematic investigation of the nuclear structure of nearby active galactic nuclei (AGN). Upon completion, our study will characterize hypothetical constructs such as narrow-line clouds, obscuring tori, nuclear gas disks. and central black holes with physical measurements for a complete sample of nearby AGN. The major scientific goals of our program are: (1) the morphology of the NLR; (2) the physical conditions and dynamics of individual clouds in the NLR; (3) the structure and physical conditions of the warm reflecting gas; (4) the structure of the obscuring torus; (5) the population and morphology of nuclear disks/tori in AGN; (6) the physical conditions in nuclear disks; and (7) the masses of central black holes in AGN. We will use the Hubble Space Telescope (HST) to obtain high-resolution images and spatially resolved spectra. Far-UV spectroscopy of emission and absorption in the nuclear regions using HST/FOS and the Hopkins Ultraviolet Telescope (HUT) will help establish physical conditions in the absorbing and emitting gas. By correlating the dynamics and physical conditions of the gas with the morphology revealed through our imaging program, we will be able to examine mechanisms for fueling the central engine and transporting angular momentum. The kinematics of the nuclear gas disks may enable us to measure the mass of the central black hole. Contemporaneous X-ray observations using ASCA will further constrain the ionization structure of any absorbing material. Monitoring of variability in the UV and X-ray absorption will be used to determine the location of the absorbing gas, possibly in the outflowing warm reflecting gas, or the broad-line region, or the atmosphere of the obscuring torus. Supporting ground-based observations in the optical, near-IR, imaging polarimetry, and the radio will complete our picture of the nuclear structures. With a comprehensive survey of these characteristics in a complete sample of nearby AGN, our

  18. The Chandra Source Catalog 2.0: the Galactic center region

    NASA Astrophysics Data System (ADS)

    Civano, Francesca Maria; Allen, Christopher E.; Anderson, Craig S.; Budynkiewicz, Jamie A.; Burke, Douglas; Chen, Judy C.; D'Abrusco, Raffaele; Doe, Stephen M.; Evans, Ian N.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Laurino, Omar; Lee, Nicholas P.; Martínez-Galarza, Juan Rafael; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nguyen, Dan T.; Nichols, Joy S.; Nowak, Michael A.; Paxson, Charles; Plummer, David A.; Primini, Francis Anthony; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Tibbetts, Michael; Van Stone, David W.; Zografou, Panagoula

    2018-01-01

    The second release of the Chandra Source Catalog (CSC 2.0) comprises all the 10,382 ACIS and HRC-I imaging observations taken by Chandra and released publicly through the end of 2014. Among these, 534 single observations surrounding the Galactic center are included, covering a total area of ~19deg2 and a total exposure time of ~9 Ms.The single 534 observations were merged into 379 stacks (overlapping observations with aim-points within 60") to increase the flux limit for source detection purposes.Thanks to the combination of the point source detection algorithm with the maximum likelihood technique used to asses the source significance, ~21,000 detections are listed in the CSC 2.0 for this field only, 80% of which are unique sources. The central region of this field around the SgrA* location has the deepest exposure of 2.2 Ms and the highest source density with ~5000 sources. In this poster, we present details about this region including source distribution and density, coverage, exposure.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the ChandraX-ray Center.

  19. A High Resolution View of Galactic Centers: Arp 220 and M31

    NASA Astrophysics Data System (ADS)

    Lockhart, Kelly E.

    The centers of galaxy are small in size and yet incredibly complex. They play host to supermassive black holes and nuclear star clusters (NSCs) and are subject to large gas inows, nuclear starbursts, and active galactic nuclear (AGN) activity. They can also be the launching site for large-scale galactic outows. However, though these systems are quite important to galactic evolution, observations are quite difficult due to their small size. Using high spatial resolution narrowband imaging with HST/WFC3 of Arp 220, a latestage galaxy merger, I discover an ionized gas bubble feature ( r = 600 pc) just off the nucleus. The bubble is aligned with both the western nucleus and with the large-scale galactic outflow. Using energetics arguments, I link the bubble with a young, obscured AGN or with an intense nuclear starburst. Given its alignment along the large-scale outflow axis, I argue that the bubble presents evidence for a link between the galactic center and the large-scale outflow. I also present new observations of the NSC in M31, the closest large spiral galaxy to our own. Using the OSIRIS near-infrared integral field spectrograph (IFS) on Keck, I map the kinematics of the old stellar population in the eccentric disk of the NSC. I compare the observations to models to derive a precession speed of the disk of 0+/-5 km s-1 pc-1 , and hence confirm that winds from the old stellar population may be the source of gas needed to form the young stellar population in the NSC. Studies of galactic centers are dependent on high spatial resolution observations. In particular, IFSs are ideal instruments for these studies as they provide two-dimensional spectroscopy of the field of view, enabling 2D kinematic studies. I report on work to characterize and improve the data reduction pipeline of the OSIRIS IFS, and discuss implications for future generations of IFS instrumentation.

  20. Starburst clusters in the Galactic center

    NASA Astrophysics Data System (ADS)

    Habibi, Maryam

    2014-09-01

    The central region of the Galaxy is the most active site of star formation in the Milky Way, where massive stars have formed very recently and are still forming today. The rich population of massive stars in the Galactic center provide a unique opportunity to study massive stars in their birth environment and probe their initial mass function, which is the spectrum of stellar masses at their birth. The Arches cluster is the youngest among the three massive clusters in the Galactic center, providing a collection of high-mass stars and a very dense core which makes this cluster an excellent site to address questions about massive star formation, the stellar mass function and the dynamical evolution of massive clusters in the Galactic center. In this thesis, I perform an observational study of the Arches cluster using K_{s}-band imaging obtained with NAOS/CONICA at the VLT combined with Subaru/Cisco J-band data to gain a full understanding of the cluster mass distribution out to its tidal radius for the first time. Since the light from the Galactic center reaches us through the Galactic disc, the extinction correction is crucial when studying this region. I use a Bayesian method to construct a realistic extinction map of the cluster. It is shown in this study that the determination of the mass of the most massive star in the Arches cluster, which had been used in previous studies to establish an upper mass limit for the star formation process in the Milky Way, strongly depends on the assumed slope of the extinction law. Assuming the two regimes of widely used infrared extinction laws, I show that the difference can reach up to 30% for individually derived stellar masses and Δ A_{Ks}˜ 1 magnitude in acquired K_{s}-band extinction, while the present-day mass function slope changes by ˜ 0.17 dex. The present-day mass function slope derived assuming the more recent extinction law, which suggests a steeper wavelength dependence for the infrared extinction law, reveals

  1. SOFIA/FORCAST Observations of the Arched Filamentary Region in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Hankins, Matthew; Lau, Ryan M.; Morris, Mark; Herter, Terry L.

    2016-06-01

    Abstract: We present 19.7, 25.2, 31.5, and 37.1 μm maps of the Thermal Arched Filament region in the Galactic Center taken with the Faint Object Infrared Camera for the SOFIA Telescope (FORCAST) with an angular resolution of 3.2-3.8". We calculate the integrated infrared luminosity of the Arched Filaments and show that they are consistent with being heated by the nearby Arches cluster. Additionally, using our observations, we infer dust temperatures (75 - 90 K) across the Arched Filaments which are remarkably consistent over large spatial scales (˜ 25 pc). We discuss the possible geometric effects needed to recreate this temperature structure. Additionally, we compare the observed morphology of the Arches in the FORCAST maps with the Paschen-α emission in the region to study what fraction of the infrared emission may be coming from dust in the HII region versus the PDR beneath it. Finally, we use Spitzer/IRAC 8 μm data to look for spatial variations in PAH abundance in the rich UV environment of the young (~2-4 Myr) and massive Arches cluster.

  2. Orbital Evolution of Planetesimals by the Galactic Tide

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Kokubo, E.; Mukai, T.

    2005-05-01

    The Oort cloud is a spherical comet reservoir surrounding the solar system. There is general agreement that the Oort cloud comets are the residual planetesimals of planet formation. The standard scenario of the Oort cloud formation consists of two dynamical stages: (1) giant planets raise the aphelia of planetesimals to the outer region of the solar system and (2) the galactic tide, passing stars, and giant molecular clouds pull up their perihelia out of the planetary region. Here we show the orbital evolution of planetesimals by the galactic tide. Planetesimals with large aphelion distances change their perihelion distances toward the outside of the planetary region by the galactic tide and become members of the Oort cloud. The effect of the galactic tide on the planetesimals with semimajor axes of ˜ 104AU is about 10-3 of the solar gravity. The timescale of the orbital evolution is ˜ 108 years. We consider only the vertical component of the galactic tide. Under the axisymmetric potential, some planetesimals may show the librations around ω (argument of perihelion)=π /2 and 3π /2 (the Kozai mechanism). The alternate increases of eccentricity and inclination of the Kozai mechanism are effective to form the Oort cloud. The secular perturbation theory demonstrates the Kozai mechanism and we can understand the motion of the planetesimals analytically. We apply the Kozai mechanism to the galactic tide and discuss the property of the Oort cloud formed by the Kozai mechanizm. This work was supported by the 21st Century COE Program Origin and Evolution of Planetary Systems of the Ministry of Education, Culture, Sports, Science, and Technology, Japan, and JSPS Research Fellowship for Young Scientists.

  3. Massive stellar content of some Galactic supershells

    NASA Astrophysics Data System (ADS)

    Kaltcheva, Nadejda; Golev, Valeri

    2015-08-01

    The giant Galactic H II regions provide a unique opportunity to study the OB-star influence on the surrounding interstellar matter. In this contribution, several multi-wavelength surveys (Wisconsin H-α Mapper Northern Sky Survey, Southern H-α Sky Survey Atlas, MSX Mid-IR Galactic Plane Survey, WISE All-Sky Data Release, CO survey of the Milky Way, and the Southern Galactic Plane HI Survey) are combined with available intermediate-band uvbyβ photometry to attempt a precise spatial correlation between the OB-stars and the neutral and ionized material. Our study is focused on the H I supershell GSH 305+01-24 in Centaurus, the Car OB2 supershell, the Cygnus star-forming complex and the GSH 224-01+24 shell toward the GMN 39/Seagull nebula region. We refine the massive stellar content of these star-forming fields and study the energetics of its interaction with the shells’ material.

  4. Induced starburst and nuclear activity: Faith, facts, and theory

    NASA Technical Reports Server (NTRS)

    Shlosman, Isaac

    1990-01-01

    The problem of the origin of starburst and nuclear (nonstellar) activity in galaxies is reviewed. A physical understanding of the mechanism(s) that induce both types of activity requires one to address the following issues: (1) what is the source of fuel that powers starbursts and active galactic nuclei; and (2) how is it channeled towards the central regions of host galaxies? As a possible clue, the author examines the role of non-axisymmetric perturbations of galactic disks and analyzes their potential triggers. Global gravitational instabilities in the gas on scales approx. 100 pc appear to be crucial for fueling the active galactic nuclei.

  5. VVV Survey Microlensing Events in the Galactic Center Region

    NASA Astrophysics Data System (ADS)

    Navarro, María Gabriela; Minniti, Dante; Contreras Ramos, Rodrigo

    2017-12-01

    We search for microlensing events in the highly reddened areas surrounding the Galactic center using the near-IR observations with the VISTA Variables in the Vía Láctea Survey (VVV). We report the discovery of 182 new microlensing events, based on observations acquired between 2010 and 2015. We present the color-magnitude diagrams of the microlensing sources for the VVV tiles b332, b333, and b334, which were independently analyzed, and show good qualitative agreement among themselves. We detect an excess of microlensing events in the central tile b333 in comparison with the other two tiles, suggesting that the microlensing optical depth keeps rising all the way to the Galactic center. We derive the Einstein radius crossing time for all of the observed events. The observed event timescales range from t E = 5 to 200 days. The resulting timescale distribution shows a mean timescale of < {t}{{E}}> =30.91 days for the complete sample (N = 182 events), and < {t}{{E}}> =29.93 days if restricted only for the red clump (RC) giant sources (N = 96 RC events). There are 20 long timescale events ({t}{{E}}≥slant 100 days) that suggest the presence of massive lenses (black holes) or disk-disk event. This work demonstrates that the VVV Survey is a powerful tool to detect intermediate/long timescale microlensing events in highly reddened areas, and it enables a number of future applications, from analyzing individual events to computing the statistics for the inner Galactic mass and kinematic distributions, in aid of future ground- and space-based experiments.

  6. PREFACE: Astronomy at High Angular Resolution 2011: The central kiloparsec in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Iserlohe, Christof; Karas, Vladimir; Krips, Melanie; Eckart, Andreas; Britzen, Silke; Fischer, Sebastian

    2012-07-01

    We are pleased to present the proceedings from the Astronomy at High Angular Resolution 2011: The central kiloparsec in galactic nuclei conference. The conference took place in the Physikzentrum of the Deutsche Physikalische Gesellschaft (DPG), Bad Honnef, Germany, from 28 August to 2 September 2011. It was the second conference of this kind, following the Astronomy at High Angular Resolution conference held in Bad Honnef, three years earlier in 2008. The main objective of the conference was to frame the discussion of the broad range of physical processes that occur in the central 100pc of galactic nuclei. In most cases, this domain is difficult to probe through observations. This is mainly because of the lack of angular resolution, the brightness of the central engine and possible obscurations through dust and gas, which play together in the central regions of host galaxies of galactic nuclei within a broad range of activity. The presence of large amounts of molecular and atomic (both neutral and ionized) gas, dust and central engines with outflows and jets implies that the conditions for star formation in these regions are very special, and probably different from those in the disks of host galaxies. Numerous presentations covering a broad range of topics, both theoretical and experimental, those related to research on Active Galactic Nuclei and on a wide range of observed wavelengths were submitted to the Scientific Organizing Committee. Presentations have been grouped into six sessions: The nuclei of active galaxies The Galactic Center The immediate environment of Super Massive Black Holes The physics of nuclear jets and the interaction of the interstellar medium The central 100pc of the nuclear environment Star formation in that region The editors thank all participants of the AHAR 2011 conference for their enthusiasm and their numerous and vivid contributions to this conference. We would especially like to thank John Hugh Seiradakis from the Aristotle

  7. Infrared Spectroscopy of Star Formation in Galactic and Extragalactic Regions

    NASA Technical Reports Server (NTRS)

    Frogel, Jay (Technical Monitor); Smith, Howard A.

    2004-01-01

    In this program we proposed to perform a series of spectroscopic studies, including data analysis and modeling, of star formation regions using an ensemble of archival space-based data from the Infrared Space Observatory's Long Wavelength Spectrometer and Short Wavelength Spectrometer, and to take advantage of other spectroscopic databases including the first results from SIRTF. Our empha- sis has been on star formation in external, bright IR galaxies, but other areas of research have in- cluded young, low or high mass pre-main sequence stars in star formation regions, and the galactic center. The OH lines in the far infrared were proposed as one key focus of this inquiry because the Principal Investigator (H. Smith) had a full set of OH IR lines from IS0 observations. It was planned that during the proposed 2-1/2 year timeframe of the proposal other data (including perhaps from SIRTF) would become available, and we intended to be responsive to these and other such spec- troscopic data sets. Three papers are included:The Infrared Lines of OH: Diagnostics of Molecular Cloud Conditions in Infrared Bright Galaxies; The Far-Infrared Spectrum of Arp 220; andThe Far-Infrared Emission Line and Continuum Spectrum of the Seyfert Galaxy NGC 1068.

  8. A NEW PERSPECTIVE OF THE RADIO BRIGHT ZONE AT THE GALACTIC CENTER: FEEDBACK FROM NUCLEAR ACTIVITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jun-Hui; Morris, Mark R.; Goss, W. M., E-mail: jzhao@cfa.harvard.edu

    2016-02-01

    New observations of Sgr A have been carried out with the Jansky VLA in the B and C arrays using the broadband (2 GHz) continuum mode at 5.5 GHz. The field of view covers the central 13′ (30 pc) region of the radio-bright zone at the Galactic center. Using the multi-scale and multi-frequency-synthesis (MS-MFS) algorithms in CASA, we have imaged Sgr A with a resolution of 1″, achieving an rms noise of 8 μJy beam{sup −1}, and a dynamic range of 100,000:1. Both previously known and newly identified radio features in this region are revealed, including numerous filamentary sources. The radiomore » continuum image is compared with Chandra X-ray images, with a CN emission-line image obtained with the Submillimeter Array and with detailed Paschen-α images obtained with Hubble Space Telescope/NICMOS. We discuss several prominent features in the radio image. The “Sgr A west Wings” extend 2′ (5 pc) from the NW and SE tips of the Sgr A west H ii region (the “Mini-spiral”) to positions located 2.9 and 2.4 arcmin to the northwest and southeast of Sgr A*, respectively. The NW wing, along with several other prominent features, including the previously identified “NW Streamers,” form an elongated radio lobe (NW lobe), oriented nearly perpendicular to the Galactic plane. This radio lobe, with a size of 6.′3 × 3.′2 (14.4 pc × 7.3 pc), has a known X-ray counterpart. In the outer region of the NW lobe, a row of three thermally emitting rings is observed. A field containing numerous amorphous radio blobs extends for a distance of ∼2 arcmin beyond the tip of the SE wing; these newly recognized features coincide with the SE X-ray lobe. Most of the amorphous radio blobs in the NW and SE lobes have Paschen-α counterparts. We propose that they have been produced by shock interaction of ambient gas concentrations with a collimated nuclear wind or an outflow that originated from within the circumnuclear disk (CND). We also discuss the possibility that the

  9. A New Perspective of the Radio Bright Zone at The Galactic Center: Feedback from Nuclear Activities

    NASA Astrophysics Data System (ADS)

    Zhao, Jun-Hui; Morris, Mark R.; Goss, W. M.

    2016-02-01

    New observations of Sgr A have been carried out with the Jansky VLA in the B and C arrays using the broadband (2 GHz) continuum mode at 5.5 GHz. The field of view covers the central 13‧ (30 pc) region of the radio-bright zone at the Galactic center. Using the multi-scale and multi-frequency-synthesis (MS-MFS) algorithms in CASA, we have imaged Sgr A with a resolution of 1″, achieving an rms noise of 8 μJy beam-1, and a dynamic range of 100,000:1. Both previously known and newly identified radio features in this region are revealed, including numerous filamentary sources. The radio continuum image is compared with Chandra X-ray images, with a CN emission-line image obtained with the Submillimeter Array and with detailed Paschen-α images obtained with Hubble Space Telescope/NICMOS. We discuss several prominent features in the radio image. The “Sgr A west Wings” extend 2‧ (5 pc) from the NW and SE tips of the Sgr A west H II region (the “Mini-spiral”) to positions located 2.9 and 2.4 arcmin to the northwest and southeast of Sgr A*, respectively. The NW wing, along with several other prominent features, including the previously identified “NW Streamers,” form an elongated radio lobe (NW lobe), oriented nearly perpendicular to the Galactic plane. This radio lobe, with a size of 6.‧3 × 3.‧2 (14.4 pc × 7.3 pc), has a known X-ray counterpart. In the outer region of the NW lobe, a row of three thermally emitting rings is observed. A field containing numerous amorphous radio blobs extends for a distance of ˜2 arcmin beyond the tip of the SE wing; these newly recognized features coincide with the SE X-ray lobe. Most of the amorphous radio blobs in the NW and SE lobes have Paschen-α counterparts. We propose that they have been produced by shock interaction of ambient gas concentrations with a collimated nuclear wind or an outflow that originated from within the circumnuclear disk (CND). We also discuss the possibility that the ionized wind or

  10. IRAS and the Boston University Arecibo Galactic H I Survey: A catalog of cloud properties

    NASA Technical Reports Server (NTRS)

    Bania, Thomas M.

    1992-01-01

    The Infrared Astronomy Satellite (IRAS) Galactic Plane Surface Brightness Images were used to identify infrared emission associated with cool, diffuse H I clouds detected by the Boston University-Arecibo Galactic H I Survey. These clouds are associated with galactic star clusters, H II regions, and molecular clouds. Using emission-absorption experiments toward galactic H II regions, we determined the H I properties of cool H I clouds seen in absorption against the thermal continuum, including their kinematic distances. Correlations were then made between IRAS sources and these H II regions, thus some of the spatial confusion associated with the IRAS fields near the galactic plane was resolved since the distances to these sources was known. Because we can also correlate the BU-Arecibo clouds with existing CO surveys, these results will allow us to determine the intrinsic properties of the gas (neutral and ionized atomic as well as molecular) and dust for interstellar clouds in the inner galaxy. For the IRAS-identified H II region sample, we have established the far infrared (FIR) luminosities and galactic distribution of these sources.

  11. X-ray emission from galaxies - The distribution of low-luminosity X-ray sources in the Galactic Centre region

    NASA Astrophysics Data System (ADS)

    Heard, Victoria; Warwick, Robert

    2012-09-01

    We report a study of the extended X-ray emission observed in the Galactic Centre (GC) region based on archival XMM-Newton data. The GC diffuse emission can be decomposed into three distinct components: the emission from low-luminosity point sources; the fluorescence of (and reflection from) dense molecular material; and soft (kT ~1 keV), diffuse thermal plasma emission most likely energised by supernova explosions. Here, we examine the emission due to unresolved point sources. We show that this source component accounts for the bulk of the 6.7-keV and 6.9-keV line emission. We fit the surface brightness distribution evident in these lines with an empirical 2-d model, which we then compare with a prediction derived from a 3-d mass model for the old stellar population in the GC region. We find that the X-ray surface brightness declines more rapidly with angular offset from Sgr A* than the mass-model prediction. One interpretation is that the X-ray luminosity per solar mass characterising the GC source population is increasing towards the GC. Alternatively, some refinement of the mass-distribution within the nuclear stellar disc may be required. The unresolved X-ray source population is most likely dominated by magnetic CVs. We use the X-ray observations to set constraints on the number density of such sources in the GC region. Our analysis does not support the premise that the GC is pervaded by very hot (~ 7.5 keV) thermal plasma, which is truly diffuse in nature.

  12. Energy spectrum of medium energy gamma-rays from the galactic center region. [experimental design

    NASA Technical Reports Server (NTRS)

    Palmeira, R. A. R.; Ramanujarao, K.; Dutra, S. L. G.; Bertsch, D. L.; Kniffen, D. A.; Morris, D. J.

    1978-01-01

    A balloon-borne magnetic core digitized spark chamber with two assemblies of spark-chambers above and below the scintillation counters was used to measure the medium energy gamma ray flux from the galactic center region. Gamma ray calculations are based on the multiple scattering of the pair electrons in 15 aluminum plates interleaved in the spark chamber modules. Counting rates determined during ascent and at ceiling indicate the presence of diffuse component in this energy range. Preliminary results give an integral flux between 15 and 70 MeV compared to the differential points in other results.

  13. Resonance Trapping in the Galactic Disc and Halo and its Relation with Moving Groups

    NASA Astrophysics Data System (ADS)

    Pichardo, Barbara; Moreno, Edmundo; william, schuster B.

    2015-08-01

    With the use of a detailed Milky Way nonaxisymmetric potential, observationally and dynamically constrained, the eects of the bar and the spiral arms in the Galaxy are studied in the disc and in the stellar halo. Especially the trapping of stars in the disk and Galactic halo by resonances on the Galactic plane created by the Galactic bar has been analysed in detail. To this purpose, a new method is presented to delineate the trapping regions using empirical diagrams of some orbital properties obtained in the Galactic potential. In these diagrams we plot in the inertial Galactic frame a characteristic orbital energy versus a characteristic orbital angular momentum, or versus the orbital Jacobi constant in the reference frame of the bar, when this is the only nonaxisymmetric component in the Galactic potential. With these diagrams some trapping regions are obtained in the disc and halo using a sample of disc stars and halo stars in the solar neighborhood. We compute several families of periodic orbits on the Galactic plane, some associated with this resonant trapping. In particular, we nd that the trapping eect of these resonances on the Galactic plane can extend some kpc from this plane, trapping stars in the Galactic halo. The purpose of our analysis is to investigate if the trapping regions contain some known moving groups in our Galaxy. We have applied our method to the Kapteyn group, a moving group in the halo, and we have found that this group appears not to be associated with a particular resonance on the Galactic plane.

  14. HESS observations of the galactic center region and their possible dark matter interpretation.

    PubMed

    Aharonian, F; Akhperjanian, A G; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Breitling, F; Brown, A M; Bühler, R; Büsching, I; Carrigan, S; Chadwick, P M; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Ataï, A; Drury, L O'C; Dubus, G; Egberts, K; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Ferrero, E; Fiasson, A; Fontaine, G; Funk, Seb; Funk, S; Gallant, Y A; Giebels, B; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; Jacholkowska, A; de Jager, O C; Khélifi, B; Komin, Nu; Konopelko, A; Kosack, K; Latham, I J; Le Gallou, R; Lemière, A; Lemoine-Goumard, M; Lohse, T; Martin, J M; Martineau-Huynh, O; Marcowith, A; Masterson, C; McComb, T J L; de Naurois, M; Nedbal, D; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Rayner, S M; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schwanke, U; Sol, H; Spangler, D; Spanier, F; Steenkamp, R; Stegmann, C; Superina, G; Tavernet, J-P; Terrier, R; Théoret, C G; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Vincent, P; Völk, H J; Wagner, S J; Ward, M

    2006-12-01

    The detection of gamma rays from the source HESS J1745-290 in the Galactic Center (GC) region with the High Energy Spectroscopic System (HESS) array of Cherenkov telescopes in 2004 is presented. After subtraction of the diffuse gamma-ray emission from the GC ridge, the source is compatible with a point source with spatial extent less than 1.2;{'}(stat) (95% C.L.). The measured energy spectrum above 160 GeV is compatible with a power law with photon index of 2.25+/-0.04(stat)+/-0.10(syst) and no significant flux variation is detected. It is finally found that the bulk of the very high energy emission must have non-dark-matter origin.

  15. The Bolocam Galactic Plane Survey

    NASA Technical Reports Server (NTRS)

    Glenn, Jason; Aguirre, James; Bally, John; Battersby, Cara; Bradley, Eric Todd; Cyganowski, Claudia; Dowell, Darren; Drosback, Meredith; Dunham, Miranda K.; Evans, Neal J., II; hide

    2009-01-01

    The Bolocam Galactic Plane Survey (BGPS) is a 1.1 millimeter continuum survey of the northern Galactic Plane made with Bolocam and the Caltech Submillimeter Observatory. The coverage totals 170 square degrees, comprised of a contiguous range from -10.5 deg is less than or equal to 90.5 deg, 0.5 deg is less than or equal to b is less than or equal to 0.5 deg, with extended coverage in b in selected regions, and four targeted regions in the outer Galaxy, including: IC1396, toward the Perseus arm at l is approximately 111 deg, W3/4/5, and Gem OB1. Depths of the maps range from 30 to 60 mJy beam (sup 1). Approximately 8,400 sources were detected and the maps and source catalog have been made publicly available. Millimeter-wave thermal dust emission reveals dense regions within molecular clouds, thus the BGPS serves as a database for studies of the dense interstellar medium and star formation within the Milky Way.

  16. Observations of medium energy gamma ray emission from the galactic center region

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Bertsch, D. L.; Morris, D. J.; Palmeira, R. A. R.; Rao, K. R.

    1978-01-01

    Measurements of the gamma-ray emission in the medium energy range between 15 and 100 MeV, obtained during two ballon flights from Brazil are presented. The importance of this energy region in determining whether pi deg - decay of electron bremsstrahlung is the most likely dominant source mechanism is discussed along with the implications of such observations. Specifically, the data from this experiment suggest that emission from the galactic plane is similar to theoretical spectrum calculations including both sources mechanisms, but with the bremsstrahlung component enhanced by a factor of about 2. A spectral distribution of gamma-rays produced in the residual atmosphere above the instrument is also presented and compared with other data. A rather smooth spectral variation from high to low energies is found for the atmospheric spectrum.

  17. Molecular Gas Feeding the Circumnuclear Disk of the Galactic Center

    NASA Astrophysics Data System (ADS)

    Hsieh, Pei-Ying; Koch, Patrick M.; Ho, Paul T. P.; Kim, Woong-Tae; Tang, Ya-Wen; Wang, Hsiang-Hsu; Yen, Hsi-Wei; Hwang, Chorng-Yuan

    2017-09-01

    The interaction between a supermassive black hole (SMBH) and the surrounding material is of primary importance in modern astrophysics. The detection of the molecular 2 pc circumnuclear disk (CND) immediately around the Milky Way SMBH, SgrA*, provides a unique opportunity to study SMBH accretion at subparsec scales. Our new wide-field CS(J = 2 - 1) map toward the Galactic center (GC) reveals multiple dense molecular streamers that originated from the ambient clouds 20 pc further out, and that are connected to the central 2 pc of the CND. These dense gas streamers appear to carry gas directly toward the nuclear region and might be captured by the central potential. Our phase-plot analysis indicates that these streamers show a signature of rotation and inward radial motion with progressively higher velocities as the gas approaches the CND and finally ends up corotating with the CND. Our results might suggest a possible mechanism of gas feeding the CND from 20 pc around 2 pc in the GC. In this paper, we discuss the morphology and the kinematics of these streamers. As the nearest observable Galactic nucleus, this feeding process may have implications for understanding the processes in extragalactic nuclei.

  18. The population of planetary nebulae near the Galactic Centre: chemical abundances

    NASA Astrophysics Data System (ADS)

    Mollá, M.; Cavichia, O.; Costa, R. D. D.; Maciel, W. J.

    2017-10-01

    In this work, we report physical parameters and abundances derived for a sample of 15 high extinction planetary nebulae located in the inner 2° of the Galactic bulge, based on low dispersion spectroscopy secured at the SOAR telescope using the Goodman spectrograph. The new data allow us to extend our database including older, weaker objects that are at the faint end of the planetary nebulae luminosity function. The data provide chemical compositions for PNe located in this region of the bulge to explore the chemical enrichment history of the central region of the Galactic bulge. The results show that the abundances of our sample are skewed to higher metallicities than previous data in the outer regions of the bulge. This can indicate a faster chemical enrichment taking place at the Galactic centre.

  19. The distribution of cosmic rays in the galaxy and their dynamics as deduced from recent gamma ray observations. [noting maximum in toroidal region between 4 and 5 kpc from galactic center

    NASA Technical Reports Server (NTRS)

    Puget, J. L.; Stecker, F. W.

    1974-01-01

    Data from SAS-2 on the galactic gamma ray line flux as a function of longitude is examined. It is shown that the gamma ray emissivity varies with galactocentric distance and is about an order of magnitude higher than the local value in a toroidal region between 4 and 5 kpc from the galactic center. This enhancement is accounted for in part by first-order Fermi acceleration, compression, and trapping of cosmic rays consistent with present ideas of galactic dynamics and galactic structure theory. Calculations indicate that cosmic rays in the 4 to 5 kpc region are trapped and accelerated over a mean time of the order of a few million years or about 2 to 4 times the assumed trapping time in the solar region of the galaxy on the assumption that only an increased cosmic ray flux is responsible for the observed emission. Cosmic ray nucleons, cosmic ray electrons, and ionized hydrogen gas were found to have a strikingly similar distribution in the galaxy according to both the observational data and the theoretical model discussed.

  20. Relativistic Dark Matter at the Galactic Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amin, Mustafa A.; /Stanford U., Phys. Dept. /KIPAC, Menlo Park; Wizansky, Tommer

    2007-11-16

    In a large region of the supersymmetry parameter space, the annihilation cross section for neutralino dark matter is strongly dependent on the relative velocity of the incoming particles. We explore the consequences of this velocity dependence in the context of indirect detection of dark matter from the galactic center. We find that the increase in the annihilation cross section at high velocities leads to a flattening of the halo density profile near the galactic center and an enhancement of the annihilation signal.

  1. Distribution of Si II in the Galactic center

    NASA Technical Reports Server (NTRS)

    Graf, P.; Herter, T.; Gull, G. E.; Houck, J. R.

    1988-01-01

    A map of the Galactic center region in the forbidden Si II 34.8-micron line is presented. The line emission arises from within the photodissociation region (PDR) associated with the neutral gas ring surrounding an ionized gas core confined within 2 pc of the Galactic center. Si II is a useful probe of the inner regions of the ring since it is always optically thin. The Si II data, when analyzed in conjunction with O I, C II, and molecular measurements, outlines the transition region between the PDR and the surrounding molecular cloud. The Si II emission is found to extend beyond that of the O II into the neutral gas ring. Although the interpretation is not unique, the data are consistent with a constant gas-phase abundance of silicon within the inner part of the PDR while the gaseous silicon is depleted by molecule formation in the transition region.

  2. Feedback by AGN Jets and Wide-angle Winds on a Galactic Scale

    NASA Astrophysics Data System (ADS)

    Dugan, Zachary; Gaibler, Volker; Silk, Joseph

    2017-07-01

    To investigate the differences in mechanical feedback from radio-loud and radio-quiet active galactic nuclei on the host galaxy, we perform 3D AMR hydrodynamic simulations of wide-angle, radio-quiet winds with different inclinations on a single, massive, gas-rich disk galaxy at a redshift of 2-3. We compare our results to hydrodynamic simulations of the same galaxy but with a jet. The jet has an inclination of 0° (perpendicular to the galactic plane), and the winds have inclinations of 0°, 45°, and 90°. We analyze the impact on the host’s gas, star formation, and circumgalactic medium. We find that jet feedback is energy-driven and wind feedback is momentum-driven. In all the simulations, the jet or wind creates a cavity mostly devoid of dense gas in the nuclear region where star formation is then quenched, but we find strong positive feedback in all the simulations at radii greater than 3 kpc. All four simulations have similar SFRs and stellar velocities with large radial and vertical components. However, the wind at an inclination of 90° creates the highest density regions through ram pressure and generates the highest rates of star formation due to its ongoing strong interaction with the dense gas of the galactic plane. With increased wind inclination, we find greater asymmetry in gas distribution and resulting star formation. Our model generates an expanding ring of triggered star formation with typical velocities of the order of 1/3 of the circular velocity, superimposed on the older stellar population. This should result in a potentially detectable blue asymmetry in stellar absorption features at kiloparsec scales.

  3. Light ion components of the galactic cosmic rays: Nuclear interactions and transport theory

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Shinn, J. L.; Badhwar, G. D.; Dubey, R. R.

    1996-01-01

    Light nuclei are present in the primary galactic cosmic rays (GCR) and are produced in thick targets due to projectile or target fragmentation from both nucleon and heavy induced reactions. In the primary GCR, He-4 is the most abundant nucleus after H-1. However, there are also a substantial fluxes of H-2 and He-3. In this paper we describe theoretical models based on quantum multiple scattering theory for the description of light ion nuclear interactions. The energy dependence of the light ion fragmentation cross section is considered with comparisons of inclusive yields and secondary momentum distributions to experiments described. We also analyze the importance of a fast component of lights ions from proton and neutron induced target fragementation. These theoretical models have been incorporated into the cosmic ray transport code HZETRN and will be used to analyze the role of shielding materials in modulating the production and the energy spectrum of light ions.

  4. Agriculture Impacts of Regional Nuclear Conflict

    NASA Astrophysics Data System (ADS)

    Xia, Lili; Robock, Alan; Mills, Michael; Toon, Owen Brian

    2013-04-01

    One of the major consequences of nuclear war would be climate change due to massive smoke injection into the atmosphere. Smoke from burning cities can be lofted into the stratosphere where it will have an e-folding lifetime more than 5 years. The climate changes include significant cooling, reduction of solar radiation, and reduction of precipitation. Each of these changes can affect agricultural productivity. To investigate the response from a regional nuclear war between India and Pakistan, we used the Decision Support System for Agrotechnology Transfer agricultural simulation model. We first evaluated the model by forcing it with daily weather data and management practices in China and the USA for rice, maize, wheat, and soybeans. Then we perturbed observed weather data using monthly climate anomalies for a 10-year period due to a simulated 5 Tg soot injection that could result from a regional nuclear war between India and Pakistan, using a total of 100 15 kt atomic bombs, much less than 1% of the current global nuclear arsenal. We computed anomalies using the NASA Goddard Institute for Space Studies ModelE and NCAR's Whole Atmosphere Community Climate Model (WACCM). We perturbed each year of the observations with anomalies from each year of the 10-year nuclear war simulations. We found that different regions respond differently to a regional nuclear war; southern regions show slight increases of crop yields while in northern regions crop yields drop significantly. Sensitivity tests show that temperature changes due to nuclear war are more important than precipitation and solar radiation changes in affecting crop yields in the regions we studied. In total, crop production in China and the USA would decrease 15-50% averaged over the 10 years using both models' output. Simulations forced by ModelE output show smaller impacts than simulations forced by WACCM output at the end of the 10 year period because of the different temperature responses in the two models.

  5. Observations of medium-energy gamma-ray emission from the galactic center region

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Bertsch, D. L.; Morris, D. J.; Palmeira, R. A. R.; Rao, K. R.

    1978-01-01

    Measurements of the gamma-ray emission in the medium-energy range between 15 and 100 MeV, obtained during two balloon flights from Brazil, are presented. The importance of this energy region in determining whether neutral-pion decay or electron bremsstrahlung is the most likely dominant source mechanism is discussed, along with the implications of such observations. Specifically, the data from this experiment suggest that emission from the galactic plane is similar to the theoretical spectrum calculated by Fichtel et al. (1976), including both source mechanisms but with the bremsstrahlung component enhanced by a factor of about 2. A spectral distribution of gamma-rays produced in the residual atmosphere above the instrument is also presented and compared with other data. A rather smooth spectral variation from high to low energies is found for the atmospheric spectrum.

  6. Characterizing the W40 Cluster Region with the UKIDSS Galactic Plane Survey

    NASA Astrophysics Data System (ADS)

    Yu, Ka Chun; Shuping, Ralph

    2018-01-01

    W40 is a region of thermal radio continuum emission in the Aquila Rift, and is one of only a few high-mass star forming regions within 1 kpc of the Sun. We use the Galactic Plane Survey from the UKIDDS Data Release 10 in JHK to study the stellar population in a 30' x 30' field centered on the W40 star-forming region. With imaging deeper than previous surveys (down to a depth of K=18), we identify ~1500 stars with K-band excess that are likely young stars with protostellar disks (Class II-III), more than has been found in previous surveys of this region. We use the NIR photometry of ~50,000 stars to create a high resolution 0.5' optical extinction map, which is used in conjunction with nearby control fields to assess contamination by background sources. Like in previous studies, we find an embedded cluster of reddened sources centered on the handful of late-O/early-B type stars at the center of W40. We fit their spatial distribution using a 2D gaussian profile with $\\sigma$ ~ 1' (0.37 pc at a distance of 440 pc), and a central stellar density of 510 stars/pc^2. After removing foreground stars, we identify 217 total stars within $3\\sigma$ of the cluster center, of which ~100 have K-band excess indicative of Class II-III YSOs, consistent with previous work. We discuss possible background contamination as well as the spatial distribution of young stars throughout the region.

  7. ISOTOPIC RATIOS OF {sup 18}O/{sup 17}O IN THE GALACTIC CENTRAL REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J. S.; Sun, L. L.; Riquelme, D.

    The {sup 18}O/{sup 17}O isotopic ratio of oxygen is a crucial measure of the secular enrichment of the interstellar medium by ejecta from high-mass versus intermediate-mass stars. So far, however, there is a lack of data, particularly from the Galactic center (GC) region. Therefore, we have mapped typical molecular clouds in this region in the J = 1–0 lines of C{sup 18}O and C{sup 17}O with the Delingha 13.7 m telescope (DLH). Complementary pointed observations toward selected positions throughout the GC region were obtained with the IRAM 30 m and Mopra 22 m telescopes. C{sup 18}O/C{sup 17}O abundance ratios reflectingmore » the {sup 18}O/{sup 17}O isotope ratios were obtained from integrated intensity ratios of C{sup 18}O and C{sup 17}O. For the first time, C{sup 18}O/C{sup 17}O abundance ratios are determined for Sgr C (V ∼ −58 km s{sup −1}), Sgr D (V ∼ 80 km s{sup −1}), and the 1.°3 complex (V ∼ 80 km s{sup −1}). Through our mapping observations, abundance ratios are also obtained for Sgr A (∼0 and ∼50 km s{sup −1} component) and Sgr B2 (∼60 km s{sup −1}), which are consistent with the results from previous single-point observations. Our frequency-corrected abundance ratios of the GC clouds range from 2.58 ± 0.07 (Sgr D, V ∼ 80 km s{sup −1}, DLH) to 3.54 ± 0.12 (Sgr A, ∼50 km s{sup −1}). In addition, strong narrow components (line width less than 5 km s{sup −1}) from the foreground clouds are detected toward Sgr D (−18 km s{sup −1}), the 1.°3 complex (−18 km s{sup −1}), and M+5.3−0.3 (22 km s{sup −1}), with a larger abundance ratio around 4.0. Our results show a clear trend of lower C{sup 18}O/C{sup 17}O abundance ratios toward the GC region relative to molecular clouds in the Galactic disk. Furthermore, even inside the GC region, ratios appear not to be uniform. The low GC values are consistent with an inside-out formation scenario for our Galaxy.« less

  8. Acceleration of petaelectronvolt protons in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    HESS Collaboration; Abramowski, A.; Aharonian, F.; Benkhali, F. Ait; Akhperjanian, A. G.; Angüner, E. O.; Backes, M.; Balzer, A.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Carr, J.; Casanova, S.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; Dewilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Häffner, S.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lefaucheur, J.; Lefranc, V.; Lemiére, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Lui, R.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niemiec, J.; Oakes, L.; Odaka, H.; Öttl, S.; Ohm, S.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Arribas, M. Paz; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seyffert, A. S.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Valerius, K.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Żywucka, N.

    2016-03-01

    Galactic cosmic rays reach energies of at least a few petaelectronvolts (of the order of 1015 electronvolts). This implies that our Galaxy contains petaelectronvolt accelerators (‘PeVatrons’), but all proposed models of Galactic cosmic-ray accelerators encounter difficulties at exactly these energies. Dozens of Galactic accelerators capable of accelerating particles to energies of tens of teraelectronvolts (of the order of 1013 electronvolts) were inferred from recent γ-ray observations. However, none of the currently known accelerators—not even the handful of shell-type supernova remnants commonly believed to supply most Galactic cosmic rays—has shown the characteristic tracers of petaelectronvolt particles, namely, power-law spectra of γ-rays extending without a cut-off or a spectral break to tens of teraelectronvolts. Here we report deep γ-ray observations with arcminute angular resolution of the region surrounding the Galactic Centre, which show the expected tracer of the presence of petaelectronvolt protons within the central 10 parsecs of the Galaxy. We propose that the supermassive black hole Sagittarius A* is linked to this PeVatron. Sagittarius A* went through active phases in the past, as demonstrated by X-ray outburstsand an outflow from the Galactic Centre. Although its current rate of particle acceleration is not sufficient to provide a substantial contribution to Galactic cosmic rays, Sagittarius A* could have plausibly been more active over the last 106-107 years, and therefore should be considered as a viable alternative to supernova remnants as a source of petaelectronvolt Galactic cosmic rays.

  9. Imprints to the terrestrial environment at galactic arm crossings of the solar system

    NASA Astrophysics Data System (ADS)

    Fahr, H. J.; Fichtner, H.; Scherer, K.; Stawicki, O.

    At its itinerary through our milky way galaxy the solar system moves through highly variable interstellar environments. Due to its orbital revolution around the galactic center, the solar system also crosses periodically the spiral arms of our galactic plane and thereby expe riences pronounced enviromental changes. Gas densities, magnetic fields and galactic cosmic ray intensities are substantially higher there compared to interarm conditions. Here we present theoretical calculations describing the SN-averaged galactic cosmic ray spectrum for regions inside and outside of galactic arms which then allow to predict how periodic passages of the solar system through galactic arms should be reflected by enhanced particle irradiations of the earth`s atmosphere and by correlated terrestrial Be-10 production rates.

  10. The Fossil Nuclear Outflow in the Central 30 pc of the Galactic Center

    NASA Astrophysics Data System (ADS)

    Hsieh, Pei-Ying; Ho, Paul T. P.; Hwang, Chorng-Yuan; Shimajiri, Yoshito; Matsushita, Satoki; Koch, Patrick M.; Iono, Daisuke

    2016-11-01

    We report a new 1 pc (30″) resolution CS(J=2-1) line map of the central 30 pc of the Galactic center (GC), made with the Nobeyama 45 m telescope. We revisit our previous study of an extraplanar feature called the polar arc (PA), which is a molecular cloud located above SgrA*, with a velocity gradient perpendicular to the galactic plane. We find that the PA can be traced back to the galactic disk. This provides clues to the launching point of the PA, roughly 6 × 106 years ago. Implications of the dynamical timescale of the PA might be related to the Galactic center lobe at parsec scale. Our results suggest that, in the central 30 pc of the GC, the feedback from past explosions could alter the orbital path of molecular gas down to the central tenth of a parsec. In the follow-up work of our new CS(J=2-1) map, we also find that, near systemic velocity, the molecular gas shows an extraplanar hourglass-shaped feature (HG-feature) with a size of ˜13 pc. The latitude-velocity diagrams show that the eastern edge of the HG-feature is associated with an expanding bubble B1, ˜7 pc away from SgrA*. The dynamical timescale of this bubble is ˜3 × 105 years. This bubble is interacting with the 50 km s-1 cloud. Part of the molecular gas from the 50 km s-1 cloud was swept away by the bubble to b=-0\\buildrel{\\circ}\\over{.} 2. The western edge of the HG-feature seems to be molecular gas entrained from the 20 km s-1 cloud toward the north of the galactic disk. Our results suggest a fossil explosion in the central 30 pc of the GC, a few 105 years ago.

  11. VizieR Online Data Catalog: G5 and later stars in a North Galactic Pole region (Upgren 1962)

    NASA Astrophysics Data System (ADS)

    Upgren, A. R., Jr.

    2015-11-01

    The catalog is an objective-prism survey of late-type stars in a region of 396 square degrees surrounding the north galactic pole. The objective-prism spectra employed have a dispersion of 58 nm/mm at H-γ and extend into the ultraviolet region. The catalog contains the magnitudes and spectral classes of 4027 stars of class G5 and later, complete to a limiting photographic magnitude of 13.0. The spectral classification of the stars is based on the Yerkes system. The catalog includes the serial numbers of the stars corresponding to the numbers on the identification charts in Upgren (1984), BD and HD numbers, B magnitudes, spectral classes, and letters designating the subregion and identification chart on which each star is located. This survey was undertaken to determine the space densities at varying distances from the galactic plane. Accurate separation of the surveyed stars of G5 and later into giants and dwarfs was achieved through the use of the UV region as well as conventional methods of classification. The resulting catalog of 4027 stars is probably complete over the region to a limiting photographic magnitude of 13.0. The region covered by the survey is the same as that discussed by Slettebak and Stock (1959) and is in the approximate range RA 11:30 to 13:00, Declination +25 to +50 (B1950.0). The catalog includes all M and Carbon stars previously published by Upgren (1960). For a discussion of the classification criteria, the combining of multiple classifications (each spectral image was classified twice), the determination of magnitudes, and additional details about the catalog, the source reference should be consulted. Corrections, accurate positions, more identifications, and remarks have been added in Nov. 2015 by B. Skiff in the file "positions.dat"; see the "History" section below for details. (3 data files).

  12. The Galactic interstellar medium: foregrounds and star formation

    NASA Astrophysics Data System (ADS)

    Miville-Deschênes, Marc-Antoine

    2018-05-01

    This review presents briefly two aspects of Galactic interstellar medium science that seem relevant for studying EoR. First, we give some statistical properties of the Galactic foreground emission in the diffuse regions of the sky. The properties of the emission observed in projection on the plane of the sky are then related to how matter is organised along the line of sight. The diffuse atomic gas is multi-phase, with dense filamentary structures occupying only about 1% of the volume but contributing to about 50% of the emission. The second part of the review presents aspect of structure formation in the Galactic interstellar medium that could be relevant for the subgrid physics used to model the formation of the first stars.

  13. Feedback by AGN Jets and Wide-angle Winds on a Galactic Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dugan, Zachary; Silk, Joseph; Gaibler, Volker

    To investigate the differences in mechanical feedback from radio-loud and radio-quiet active galactic nuclei on the host galaxy, we perform 3D AMR hydrodynamic simulations of wide-angle, radio-quiet winds with different inclinations on a single, massive, gas-rich disk galaxy at a redshift of 2–3. We compare our results to hydrodynamic simulations of the same galaxy but with a jet. The jet has an inclination of 0° (perpendicular to the galactic plane), and the winds have inclinations of 0°, 45°, and 90°. We analyze the impact on the host’s gas, star formation, and circumgalactic medium. We find that jet feedback is energy-drivenmore » and wind feedback is momentum-driven. In all the simulations, the jet or wind creates a cavity mostly devoid of dense gas in the nuclear region where star formation is then quenched, but we find strong positive feedback in all the simulations at radii greater than 3 kpc. All four simulations have similar SFRs and stellar velocities with large radial and vertical components. However, the wind at an inclination of 90° creates the highest density regions through ram pressure and generates the highest rates of star formation due to its ongoing strong interaction with the dense gas of the galactic plane. With increased wind inclination, we find greater asymmetry in gas distribution and resulting star formation. Our model generates an expanding ring of triggered star formation with typical velocities of the order of 1/3 of the circular velocity, superimposed on the older stellar population. This should result in a potentially detectable blue asymmetry in stellar absorption features at kiloparsec scales.« less

  14. Molecular Gas Feeding the Circumnuclear Disk of the Galactic Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Pei-Ying; Koch, Patrick M.; Ho, Paul T. P.

    The interaction between a supermassive black hole (SMBH) and the surrounding material is of primary importance in modern astrophysics. The detection of the molecular 2 pc circumnuclear disk (CND) immediately around the Milky Way SMBH, SgrA*, provides a unique opportunity to study SMBH accretion at subparsec scales. Our new wide-field CS( J = 2 − 1) map toward the Galactic center (GC) reveals multiple dense molecular streamers that originated from the ambient clouds 20 pc further out, and that are connected to the central 2 pc of the CND. These dense gas streamers appear to carry gas directly toward themore » nuclear region and might be captured by the central potential. Our phase-plot analysis indicates that these streamers show a signature of rotation and inward radial motion with progressively higher velocities as the gas approaches the CND and finally ends up corotating with the CND. Our results might suggest a possible mechanism of gas feeding the CND from 20 pc around 2 pc in the GC. In this paper, we discuss the morphology and the kinematics of these streamers. As the nearest observable Galactic nucleus, this feeding process may have implications for understanding the processes in extragalactic nuclei.« less

  15. THE COMPLEX NORTH TRANSITION REGION OF CENTAURUS A: A GALACTIC WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neff, Susan G.; Eilek, Jean A.; Owen, Frazer N., E-mail: susan.g.neff@nasa.gov

    2015-04-01

    We present deep GALEX images of NGC 5128, the parent galaxy of Centaurus A. We detect a striking “weather ribbon” of far-UV (FUV) and Hα emission which extends more than 35 kpc northeast of the galaxy. This ribbon is associated with a knotty ridge of radio/X-ray emission and is an extension of the previously known string of optical emission-line filaments. Many phenomena in the region are too short-lived to have survived transit out from the inner galaxy; something must be driving them locally. We also detect FUV emission from the galaxy’s central dust lane. Combining this with previous radio andmore » far-IR measurements, we infer an active starburst in the central galaxy which is currently forming stars at ∼2 M{sub ☉} yr{sup −1}, and has been doing so for 50–100 Myr. If the wind from this starburst is enhanced by energy and mass driven out from the active galactic nucleus, the powerful augmented wind can be the driver needed for the northern weather system. We argue that both the diverse weather system, and the enhanced radio emission in the same region, result from the wind’s encounter with cool gas left by one of the recent merger/encounter events in the history of NGC 5128.« less

  16. NuSTAR results from the Galactic Center - diffuse emission

    NASA Astrophysics Data System (ADS)

    Hailey, Charles

    2016-03-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) was launched in June 2012. It carried the first true, hard X-ray (>~10 keV-79 keV) focusing telescopes into orbit. Its twin telescopes provide 10 times better angular resolution and 100 times better sensitivity than previously obtainable in the hard X-ray band. Consequently NuSTAR is able to resolve faint diffuse structures whose hard X-rays offer insight into some of the most energetic processes in the Galactic Center. One of the surprising discoveries that NuSTAR made in the Galactic Center is the central hard X-ray emission (CHXE). The CHXE is a diffuse emission detected from ~10 keV to beyond 50 keV in X-ray energy, and extending spatially over a region ~8 parsecs x ~4 parsecs in and out of the plane of the galaxy respectively, and centered on the supermassive black hole Sgr A*. The CHXE was speculated to be due to a large population of unresolved black hole X-ray binaries, millisecond pulsars (MSP), a class of highly magnetized white dwarf binaries called intermediate polars, or to particle outflows from Sgr A*. The presence of an unexpectedly large population of MSP in the Galactic Center would be particularly interesting, since MSP emitting at higher energies and over a much larger region have been posited to be the origin of the gamma-ray emission that is also ascribed to dark matter annihilation in the galaxy. In addition, the connection of the CHXE to the ~9000 unidentified X-ray sources in the central the the ~100 pc detected by the Chandra Observatory, to the soft X-ray emission detected by the Chandra and XMM/Newton observatories in the Galactic Center, and to the hard X-ray emission detected by both the RXTE and INTEGRAL observatories in the Galactic Ridge, is unclear. I review these results and present recent NuSTAR observations that potentially resolve the origin of the CHXE and point to a unified origin for all these X-ray emissions. Two other noteworthy classes of diffuse structures in the

  17. STABILITY OF GAS CLOUDS IN GALACTIC NUCLEI: AN EXTENDED VIRIAL THEOREM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xian; Cuadra, Jorge; Amaro-Seoane, Pau, E-mail: xchen@astro.puc.cl, E-mail: jcuadra@astro.puc.cl, E-mail: Pau.Amaro-Seoane@aei.mpg.de

    2016-03-10

    Cold gas entering the central 1–10{sup 2} pc of a galaxy fragments and condenses into clouds. The stability of the clouds determines whether they will be turned into stars or can be delivered to the central supermassive black hole (SMBH) to turn on an active galactic nucleus (AGN). The conventional criteria to assess the stability of these clouds, such as the Jeans criterion and Roche (or tidal) limit, are insufficient here, because they assume the dominance of self-gravity in binding a cloud, and neglect external agents, such as pressure and tidal forces, which are common in galactic nuclei. We formulatemore » a new scheme for judging this stability. We first revisit the conventional Virial theorem, taking into account an external pressure, to identify the correct range of masses that lead to stable clouds. We then extend the theorem to further include an external tidal field, which is equally crucial for the stability in the region of our interest—in dense star clusters, around SMBHs. We apply our extended Virial theorem to find new solutions to controversial problems, namely, the stability of the gas clumps in AGN tori, the circum-nuclear disk in the Galactic Center, and the central molecular zone of the Milky Way. The masses we derive for these structures are orders of magnitude smaller than the commonly used Virial masses (equivalent to the Jeans mass). Moreover, we prove that these clumps are stable, contrary to what one would naively deduce from the Roche (tidal) limit.« less

  18. THE OFF-CENTERED SEYFERT-LIKE COMPACT EMISSION IN THE NUCLEAR REGION OF NGC 3621

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menezes, R. B.; Steiner, J. E.; Silva, Patricia da, E-mail: robertobm@astro.iag.usp.br

    2016-02-01

    We analyze an optical data cube of the nuclear region of NGC 3621, taken with the integral field unit of the Gemini Multi-object Spectrograph. We found that the previously detected central line emission in this galaxy actually comes from a blob, located at a projected distance of 2.″14 ± 0.″08 (70.1 ± 2.6 pc) from the stellar nucleus. Only diffuse emission was detected in the rest of the field of view, with a deficit of emission at the position of the stellar nucleus. Diagnostic diagram analysis reveals that the off-centered emitting blob has a Seyfert 2 spectrum. We propose that the line-emitting blob maymore » be a “fossil” emission-line region or a light “echo” from an active galactic nucleus (AGN), which was significantly brighter in the past. Our estimates indicate that the bolometric luminosity of the AGN must have decreased by a factor of ∼13–500 during the past ∼230 yr. A second scenario to explain the morphology of the line-emitting areas in the nuclear region of NGC 3621 involves no decrease of the AGN bolometric luminosity and establishes that the AGN is highly obscured toward the observer but not toward the line-emitting blob. The third scenario proposed here assumes that the off-centered line-emitting blob is a recoiling supermassive black hole, after the coalescence of two black holes. Finally, an additional hypothesis is that the central X-ray source is not an AGN, but an X-ray binary. This idea is consistent with all the scenarios we proposed.« less

  19. The Formation of Galactic Bulges

    NASA Astrophysics Data System (ADS)

    Carollo, C. Marcella; Ferguson, Henry C.; Wyse, Rosemary F. G.

    2000-03-01

    Part I. Introduction: What are galactic bulges?; Part II. The Epoch of Bulge Formation: Origin of bulges; Deep sub-mm surveys: High-z ULIRGs and the formation of spheroids; Ages and metallicities for stars in the galactic bulge; Integrated stellar populations of bulges: First results; HST-NICMOS observations of galactic bulges: Ages and dust; Inside-out bulge formation and the origin of the Hubble sequence; Part III. The Timescales of Bulge Formation: Constraints on the bulge formation timescale from stellar populations; Bulge building with mergers and winds; Role of winds, starbursts, and activity in bulge formation; Dynamical timescales of bulge formation; Part IV. Physical Processes in Bulge Formation: the role of bars for secular bulge formation; Bars and boxy/peanut-shaped bulges: an observational point of view; Boxy- and peanut-shaped bulges; A new class of bulges; The role of secondary bars in bulge formation; Radial transport of molecular gas to the nuclei of spiral galaxies; Dynamical evolution of bulge shapes; Two-component stellar systems: Phase-space constraints; Central NGC 2146 - a firehose-type bending instability?; Bulge formation: the role of the multi-phase ISM; Global evolution of a self-gravitating multi-phase ISM in the central kpc region of galaxies; Part V. Bulge Phenomenology: Bulge-disk decomposition of spiral galaxies in the near-infrared; The triaxial bulge of NGC 1371; The bulge-disk orthogonal decoupling in galaxies: NGC 4698 and NGC 4672; The kinematics and the origin of the ionized gas in NGC 4036; Optically thin thermal plasma in the galactic bulge; X-ray properties of bulges; The host galaxies of radio-loud AGN; The centers of radio-loud early-type galaxies with HST; Central UV spikes in two galactic spheroids; Conference summary: where do we stand?

  20. Detection of Another Molecular Bubble in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Tsujimoto, Shiho; Oka, Tomoharu; Takekawa, Shunya; Yamada, Masaya; Tokuyama, Sekito; Iwata, Yuhei; Roll, Justin A.

    2018-04-01

    The l=-1\\buildrel{\\circ}\\over{.} 2 region in the Galactic center has a high CO J = 3–2/J = 1–0 intensity ratio and extremely broad velocity width. This paper reports the detection of five expanding shells in the l=-1\\buildrel{\\circ}\\over{.} 2 region based on the CO J = 1–0, 13CO J = 1–0, CO J = 3–2, and SiO J = 8–7 line data sets obtained with the Nobeyama Radio Observatory 45 m telescope and James Clerk Maxwell Telescope. The kinetic energy and expansion time of the expanding shells are estimated to be {10}48.3{--50.8} erg and {10}4.7{--5.0} yr, respectively. The origin of these expanding shells is discussed. The total kinetic energy of 1051 erg and the typical expansion time of ∼105 yr correspond to multiple supernova explosions at a rate of 10‑5–10‑4 yr‑1. This indicates that the l=-1\\buildrel{\\circ}\\over{.} 2 region may be a molecular bubble associated with an embedded massive star cluster, although the absence of an infrared counterpart makes this interpretation somewhat controversial. The expansion time of the shells increases as the Galactic longitude decreases, suggesting that the massive star cluster is moving from Galactic west to east with respect to the interacting molecular gas. We propose a model wherein the cluster is moving along the innermost x 1 orbit and the interacting gas collides with it from the Galactic eastern side.

  1. X-ray variability and the inner region in active galactic nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, P.; Mangalam, A., E-mail: prashanth@iiap.res.in, E-mail: mangalam@iiap.res.in

    2014-08-20

    We present theoretical models of X-ray variability attributable to orbital signatures from an accretion disk including emission region size, quasi-periodic oscillations (QPOs), and its quality factor Q, and the emergence of a break frequency in the power spectral density shape. We find a fractional variability amplitude of F{sub var}∝M{sub ∙}{sup −0.4}. We conduct a time series analysis on X-ray light curves (0.3-10 keV) of a sample of active galactic nuclei (AGNs). A statistically significant bend frequency is inferred in 9 of 58 light curves (16%) from 3 AGNs for which the break timescale is consistent with the reported BH spinmore » but not with the reported BH mass. Upper limits of 2.85 × 10{sup 7} M {sub ☉} in NGC 4051, 8.02 × 10{sup 7} M {sub ☉} in MRK 766, and 4.68 × 10{sup 7} M {sub ☉} in MCG-6-30-15 are inferred for maximally spinning BHs. For REJ 1034+396 where a QPO at 3733 s was reported, we obtain an emission region size of (6-6.5) M and a BH spin of a ≲ 0.08. The relativistic inner region of a thin disk, dominated by radiation pressure and electron scattering, is likely to host the orbital features as the simulated Q ranges from 6.3 × 10{sup –2} to 4.25 × 10{sup 6}, containing the observed Q. The derived value of Q ∼ 32 for REJ 1034+396 therefore suggests that the AGN hosts a thin disk.« less

  2. Analysis Of Ultra Compact Ionized Hydrogen Regions Within The Northern Half Of The Galactic Disk

    NASA Astrophysics Data System (ADS)

    Bruce, John

    2011-01-01

    From a catalog of 199 candidate ultra compact (UC) HII regions 123 sources included in the the intersection of the GLIMPSE (8 μm),Cornish (6 cm), and Bolocam ( 1.1 mm) galactic plane surveys (BGPS) were analyzed. The sources were sorted based on 6 cm morphology and coincidence with 8 μm bubbles. The 1.1 mm flux attributes were measured and calculations were performed to determine the ionized hydrogen contributions to the 1.1 mm flux. The category averages and frequencies were obtained as well. Significant differences in HII percentages were present among the morphology groups but ranged widely, without apparent distinction, between the bubble forming and triggered source categories.

  3. SMM detection of diffuse Galactic 511 keV annihilation radiation

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Kinzer, R. L.; Kurfess, J. D.; Messina, D. C.; Purcell, W. R.

    1988-01-01

    Observations of the 511 keV annihilation line from the vicinity of the Galactic center from October to February for 1980/1981, 1981/1982, 1982/1983, 1984/1985, and 1985/1986 are presented. The measurements were made with the gamma-ray spectrometer on the SMM. The design of the instrument and some of its properties used in the analysis are described, and the methods used for accumulating, fitting, and analyzing the data are outlined. It is shown how the Galactic 511 keV line was separated from the intense and variable background observed in orbit. The SMM observations are compared with previous measurements of annihilation radiation from the Galactic center region, and the astrophysical implications are discussed. It is argued that most of the measurements made to date suggest the presence of an extended Galactic source of annihilation radiation.

  4. An analysis of infrared emission spectra from the regions near the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Contini, Marcella

    2009-11-01

    We present consistent modelling of line and continuum infrared (IR) spectra in the region close to the Galactic Centre. The models account for the coupled effect of shocks and photoionization from an external source. The results show that the shock velocities range between ~65 and 80kms-1 and the pre-shock densities between 1cm-3 in the interstellar medium (ISM) to 200cm-3 in the filamentary structures. The pre-shock magnetic field increases from 5 × 10-6G in the surrounding ISM to ~8 × 10-5G in the arched filaments. The stellar temperatures are ~38000K in the Quintuplet cluster and ~27000K in the Arches Cluster. The ionization parameter is relatively low (<0.01) with the highest values near the clusters, reaching a maximum >0.01 near the Arches Cluster. Depletion from the gaseous phase of Si is found throughout the whole observed region, indicating the presence of silicate dust. Grains including iron are concentrated throughout the arched filaments. The modelling of the continuum spectral energy distribution in the IR range indicates that a component of dust at temperatures of ~100-200K is present in the central region of the Galaxy. Radio emission appears to be thermal bremsstrahlung in the E2-W1 filaments crossing strip; however, a synchrotron component is not excluded. More data are necessary to resolve these questions.

  5. Herschel observations of the Galactic H II region RCW 79

    NASA Astrophysics Data System (ADS)

    Liu, Hong-Li; Figueira, Miguel; Zavagno, Annie; Hill, Tracey; Schneider, Nicola; Men'shchikov, Alexander; Russeil, Delphine; Motte, Frédérique; Tigé, Jérémy; Deharveng, Lise; Anderson, Loren D.; Li, Jin-Zeng; Wu, Yuefang; Yuan, Jing-Hua; Huang, Maohai

    2017-06-01

    Context. Triggered star formation around H II regions could be an important process. The Galactic H II region RCW 79 is a prototypical object for triggered high-mass star formation. Aims: We aim to obtain a census of the young stellar population observed at the edges of the H II region and to determine the properties of the young sources in order to characterize the star formation processes that take place at the edges of this ionized region. Methods: We take advantage of Herschel data from the surveys HOBYS, "Evolution of Interstellar Dust", and Hi-Gal to extract compact sources. We use the algorithm getsources. We complement the Herschel data with archival 2MASS, Spitzer, and WISE data to determine the physical parameters of the sources (e.g., envelope mass, dust temperature, and luminosity) by fitting the spectral energy distribution. Results: We created the dust temperature and column density maps along with the column density probability distribution function (PDF) for the entire RCW 79 region. We obtained a sample of 50 compact sources in this region, 96% of which are situated in the ionization-compressed layer of cold and dense gas that is characterized by the column density PDF with a double-peaked lognormal distribution. The 50 sources have sizes of 0.1-0.4 pc with a typical value of 0.2 pc, temperatures of 11-26 K, envelope masses of 6-760 M⊙, densities of 0.1-44 × 105 cm-3, and luminosities of 19-12 712 L⊙. The sources are classified into 16 class 0, 19 intermediate, and 15 class I objects. Their distribution follows the evolutionary tracks in the diagram of bolometric luminosity versus envelope mass (Lbol-Menv) well. A mass threshold of 140 M⊙, determined from the Lbol-Menv diagram, yields 12 candidate massive dense cores that may form high-mass stars. The core formation efficiency (CFE) for the 8 massive condensations shows an increasing trend of the CFE with density. This suggests that the denser the condensation, the higher the fraction of its

  6. VizieR Online Data Catalog: OGLE II. VI photometry of Galactic Bulge (Udalski+, 2002)

    NASA Astrophysics Data System (ADS)

    Udalski, A.; Szymanski, M.; Kubiak, M.; Pietrzynski, G.; Soszynski, I.; Wozniak, P.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.

    2003-09-01

    We present the VI photometric maps of the Galactic bulge. They contain VI photometry and astrometry of about 30 million stars from 49 fields of 0.225 square degree each in the Galactic center region. The data were collected during the second phase of the OGLE microlensing project. We discuss the accuracy of data and present color-magnitude diagrams of selected fields observed by OGLE in the Galactic bulge. The VI maps of the Galactic bulge are accessible electronically for the astronomical community from the OGLE Internet archive (2 data files).

  7. Searching for dark clouds in the outer galactic plane. I. A statistical approach for identifying extended red(dened) regions in 2MASS

    NASA Astrophysics Data System (ADS)

    Frieswijk, W. W. F.; Shipman, R. F.

    2010-06-01

    Context. Most of what is known about clustered star formation to date comes from well studied star forming regions located relatively nearby, such as Rho-Ophiuchus, Serpens and Perseus. However, the recent discovery of infrared dark clouds may give new insights in our understanding of this dominant mode of star formation in the Galaxy. Though the exact role of infrared dark clouds in the formation process is still somewhat unclear, they seem to provide useful laboratories to study the very early stages of clustered star formation. Infrared dark clouds have been identified predominantly toward the bright inner parts of the galactic plane. The low background emission makes it more difficult to identify similar objects in mid-infrared absorption in the outer parts. This is unfortunate, because the outer Galaxy represents the only nearby region where we can study effects of different (external) conditions on the star formation process. Aims: The aim of this paper is to identify extended red regions in the outer galactic plane based on reddening of stars in the near-infrared. We argue that these regions appear reddened mainly due to extinction caused by molecular clouds and young stellar objects. The work presented here is used as a basis for identifying star forming regions and in particular the very early stages. An accompanying paper describes the cross-identification of the identified regions with existing data, uncovering more on the nature of the reddening. Methods: We use the Mann-Whitney U-test, in combination with a friends-of-friends algorithm, to identify extended reddened regions in the 2MASS all-sky JHK survey. We process the data on a regular grid using two different resolutions, 60´´ and 90´´. The two resolutions have been chosen because the stellar surface density varies between the crowded spiral arm regions and the sparsely populated galactic anti-center region. Results: We identify 1320 extended red regions at the higher resolution and 1589 in the

  8. Observations of a high-excitation transition of SO in galactic H II regions

    NASA Astrophysics Data System (ADS)

    Watt, G. D.; Millar, T. J.; White, G. J.; Harten, R. H.

    1986-02-01

    High-excitation observations of the 56-45 transition of SO at 251 GHz have been made. The central four arcminutes of the Orion-KL region have been mapped and a survey of 6 other galactic sources has been performed. Detailed chemical kinetic models have been utilised to investigate the chemistry of sulphur in view of recent estimates of sulphur depletion and the possibility of a gas phase carbon to oxygen ratio greater than 1. The authors find a link between the SO/SO2 and C/O ratios and that their data are consistent with the high C I abundance detected in the Orion ridge component. In the plateau source the enhanced abundances of SO and SO2 may be caused by a molecular outflow from an oxygen-rich star. In addition a previously undetected methanol line and an unidentified line appear in the Orion data.

  9. Consequences of hot gas in the broad line region of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Mushotzky, R.

    1985-01-01

    Models for hot gas in the broad line region of active galactic nuclei are discussed. The results of the two phase equilibrium models for confinement of broad line clouds by Compton heated gas are used to show that high luminosity quasars are expected to show Fe XXVI L alpha line absorption which will be observed with spectrometers such as those planned for the future X-ray spectroscopy experiments. Two phase equilibrium models also predict that the gas in the broad line clouds and the confining medium may be Compton thick. It is shown that the combined effects of Comptonization and photoabsorption can suppress both the broad emission lines and X-rays in the Einstein and HEAO-1 energy bands. The observed properties of such Compton thick active galaxies are expected to be similar to those of Seyfert 2 nuclei. The implications for polarization and variability are also discussed.

  10. Star Formation Activity in the Galactic H II Region Sh2-297

    NASA Astrophysics Data System (ADS)

    Mallick, K. K.; Ojha, D. K.; Samal, M. R.; Pandey, A. K.; Bhatt, B. C.; Ghosh, S. K.; Dewangan, L. K.; Tamura, M.

    2012-11-01

    We present a multiwavelength study of the Galactic H II region Sh2-297, located in the Canis Major OB1 complex. Optical spectroscopic observations are used to constrain the spectral type of ionizing star HD 53623 as B0V. The classical nature of this H II region is affirmed by the low values of electron density and emission measure, which are calculated to be 756 cm-3 and 9.15 × 105 cm-6 pc using the radio continuum observations at 610 and 1280 MHz, and Very Large Array archival data at 1420 MHz. To understand local star formation, we identified the young stellar object (YSO) candidates in a region of area ~7farcm5 × 7farcm5 centered on Sh2-297 using grism slitless spectroscopy (to identify the Hα emission line stars), and near infrared (NIR) observations. NIR YSO candidates are further classified into various evolutionary stages using color-color and color-magnitude (CM) diagrams, giving 50 red sources (H - K > 0.6) and 26 Class II-like sources. The mass and age range of the YSOs are estimated to be ~0.1-2 M ⊙ and 0.5-2 Myr using optical (V/V-I) and NIR (J/J-H) CM diagrams. The mean age of the YSOs is found to be ~1 Myr, which is of the order of dynamical age of 1.07 Myr of the H II region. Using the estimated range of visual extinction (1.1-25 mag) from literature and NIR data for the region, spectral energy distribution models have been implemented for selected YSOs which show masses and ages to be consistent with estimated values. The spatial distribution of YSOs shows an evolutionary sequence, suggesting triggered star formation in the region. The star formation seems to have propagated from the ionizing star toward the cold dark cloud LDN1657A located west of Sh2-297.

  11. STAR FORMATION ACTIVITY IN THE GALACTIC H II REGION Sh2-297

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallick, K. K.; Ojha, D. K.; Dewangan, L. K.

    We present a multiwavelength study of the Galactic H II region Sh2-297, located in the Canis Major OB1 complex. Optical spectroscopic observations are used to constrain the spectral type of ionizing star HD 53623 as B0V. The classical nature of this H II region is affirmed by the low values of electron density and emission measure, which are calculated to be 756 cm{sup -3} and 9.15 Multiplication-Sign 10{sup 5} cm{sup -6} pc using the radio continuum observations at 610 and 1280 MHz, and Very Large Array archival data at 1420 MHz. To understand local star formation, we identified the youngmore » stellar object (YSO) candidates in a region of area {approx}7.'5 Multiplication-Sign 7.'5 centered on Sh2-297 using grism slitless spectroscopy (to identify the H{alpha} emission line stars), and near infrared (NIR) observations. NIR YSO candidates are further classified into various evolutionary stages using color-color and color-magnitude (CM) diagrams, giving 50 red sources (H - K > 0.6) and 26 Class II-like sources. The mass and age range of the YSOs are estimated to be {approx}0.1-2 M {sub Sun} and 0.5-2 Myr using optical (V/V-I) and NIR (J/J-H) CM diagrams. The mean age of the YSOs is found to be {approx}1 Myr, which is of the order of dynamical age of 1.07 Myr of the H II region. Using the estimated range of visual extinction (1.1-25 mag) from literature and NIR data for the region, spectral energy distribution models have been implemented for selected YSOs which show masses and ages to be consistent with estimated values. The spatial distribution of YSOs shows an evolutionary sequence, suggesting triggered star formation in the region. The star formation seems to have propagated from the ionizing star toward the cold dark cloud LDN1657A located west of Sh2-297.« less

  12. Galaxy interactions and the stimulation of nuclear activity

    NASA Technical Reports Server (NTRS)

    Heckman, Timothy M.

    1990-01-01

    The author discusses the idea that interactions between galaxies can lead to enhanced galactic activity. He discusses whether, apart from the observational evidence, there is a strong theoretical or heuristic motivation for investigating galaxy interactions as stimulators of nuclear activity in galaxies. Galactic interactions as mechanisms for triggering nuclear starbursts are covered.

  13. The planetary nebulae population in the nuclear regions of M31: the SAURON view

    NASA Astrophysics Data System (ADS)

    Pastorello, Nicola; Sarzi, Marc; Cappellari, Michele; Emsellem, Eric; Mamon, Gary A.; Bacon, Roland; Davies, Roger L.; de Zeeuw, P. Tim

    2013-04-01

    The study of extragalactic planetary nebulae (PNe) in the optical regions of galaxies, where the properties of their stellar population can be best characterized, is a promising ground to better understand the late evolution of stars across different galactic environments. Following a first study of the central regions of M32 that illustrated the power of integral field spectroscopy (IFS) in detecting and measuring the [O III] λ5007 emission of PNe against a strong stellar background, we turn to the very nuclear PN population of M31, within ˜80 pc of its centre. We show that PNe can also be found in the presence of emission from diffuse gas, as commonly observed in early-type galaxies and in the bulge of spirals, and further illustrate the excellent sensitivity of IFS in detecting extragalactic PNe through a comparison with narrow-band images obtained with the Hubble Space Telescope. Contrary to the case of the central regions of M32, the nuclear PNe population of M31 is only marginally consistent with the generally adopted form of the PNe luminosity function (PNLF). In particular, this is due to a lack of PNe with absolute magnitude M5007 brighter than -3, which would only result from a rather unfortunate draw from such a model PNLF. The nuclear stellar population of M31 is quite different from that of the central regions of M32, which is characterized in particular by a larger metallicity and a remarkable ultraviolet (UV) upturn. We suggest that the observed lack of bright PNe in the nuclear regions of M31 is due to a horizontal-branch population that is more tilted towards less massive and hotter He-burning stars, so that its progeny consists mostly of UV-bright stars that fail to climb back up the asymptotic giant branch (AGB) and only a few, if any, bright PNe powered by central post-AGB stars. These results are also consistent with recent reports on a dearth of bright post-AGB stars towards the nucleus of M31, and lend further support to the idea that the

  14. The Galactic Centre Mini-Spiral with CARMA

    NASA Technical Reports Server (NTRS)

    Kunneriath, D.; Eckart, A.; Vogel, S. N.; Teuben, P.; Muzic, K.; Schodel. R.; Garcia-Marin, M.; Moultaka, J.; Staguhn, J.; Straubmeier, C.; hide

    2012-01-01

    The Galactic centre mini-spiral region is a mixture of gas and dust with temperatures ranging from a few hundred K to 10(exp 4) K. We report results from 1.3 and 3mm radio interferometric observations of this region with CARMA, and present a spectral index map of this region. We find a range of emission mechanisms in the region, including the inverted synchrotron spectrum of Sgr A*, free-free emission from the mini-spiral arms, and a possible dust emission contribution indicated by a positive spectral index.

  15. Stellar populations in the Carina region. The Galactic plane at l = 291°

    NASA Astrophysics Data System (ADS)

    Molina-Lera, J. A.; Baume, G.; Gamen, R.; Costa, E.; Carraro, G.

    2016-08-01

    Context. Previous studies of the Carina region have revealed its complexity and richness as well as a significant number of early-type stars. However, in many cases, these studies only concentrated on the central region (Trumpler 14/16) or were not homogeneous. This latter aspect, in particular, is crucial because very different ages and distances for key clusters have been claimed in recent years. Aims: The aim of this work is to study in detail an area of the Galactic plane in Carina, eastward η Carina. We analyze the properties of different stellar populations and focus on a sample of open clusters and their population of young stellar objects and highly reddened early stars. We also studied the stellar mass distribution in these clusters and the possible scenario of their formation. Finally, we outline the Galactic spiral structure in this direction. Methods: We obtained deep and homogeneous photometric data (UBVIKC) for six young open clusters: NGC 3752, Trumpler 18, NGC 3590, Hogg 10, 11, and 12, located in Carina at l ~ 291°, and their adjacent stellar fields, which we complemented with spectroscopic observations of a few selected targets. We also culled additional information from the literature, which includes stellar spectral classifications and near-infrared photometry from 2MASS. We finally developed a numerical code that allowed us to perform a homogeneous and systematic analysis of the data. Our results provide more reliable estimates of distances, color excesses, masses, and ages of the stellar populations in this direction. Results: We estimate the basic parameters of the studied clusters and find that they identify two overdensities of young stellar populations located at about 1.8 kpc and 2.8 kpc, with EB - V ~ 0.1 - 0.6. We find evidence of pre-main-sequence populations inside them, with an apparent coeval stellar formation in the most conspicuous clusters. We also discuss apparent age and distance gradients in the direction NW-SE. We study the

  16. Relaxation near Supermassive Black Holes Driven by Nuclear Spiral Arms: Anisotropic Hypervelocity Stars, S-stars, and Tidal Disruption Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamers, Adrian S.; Perets, Hagai B., E-mail: hamers@ias.edu

    Nuclear spiral arms are small-scale transient spiral structures found in the centers of galaxies. Similarly to their galactic-scale counterparts, nuclear spiral arms can perturb the orbits of stars. In the case of the Galactic center (GC), these perturbations can affect the orbits of stars and binaries in a region extending to several hundred parsecs around the supermassive black hole (SMBH), causing diffusion in orbital energy and angular momentum. This diffusion process can drive stars and binaries to close approaches with the SMBH, disrupting single stars in tidal disruption events (TDEs), or disrupting binaries, leaving a star tightly bound to themore » SMBH and an unbound star escaping the galaxy, i.e., a hypervelocity star (HVS). Here, we consider diffusion by nuclear spiral arms in galactic nuclei, specifically the Milky Way GC. We determine nuclear-spiral-arm-driven diffusion rates using test-particle integrations and compute disruption rates. Our TDE rates are up to 20% higher compared to relaxation by single stars. For binaries, the enhancement is up to a factor of ∼100, and our rates are comparable to the observed numbers of HVSs and S-stars. Our scenario is complementary to relaxation driven by massive perturbers. In addition, our rates depend on the inclination of the binary with respect to the Galactic plane. Therefore, our scenario provides a novel potential source for the observed anisotropic distribution of HVSs. Nuclear spiral arms may also be important for accelerating the coalescence of binary SMBHs and for supplying nuclear star clusters with stars and gas.« less

  17. Evidence for accreted component in the Galactic discs

    NASA Astrophysics Data System (ADS)

    Xing, Q. F.; Zhao, G.

    2018-06-01

    We analyse the distribution of [Mg/Fe] abundance in the Galactic discs with F- and G-type dwarf stars selected from the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) archive. The sample stars are assigned into different stellar populations by using kinematic criteria. Our analysis reveals the chemical inhomogeneities in the Galactic thick disc. A few of metal-poor stars in the thick disc exhibit relatively low [Mg/Fe] abundance in respect to the standard thick-disc sample. The orbital eccentricities and maximum Galactocentric radii of low-α metal-poor stars are apparently greater than that of high-α thick-disc stars. The orbital parameters and chemical components of low-α stars in the thick disc suggest that they may have been formed in regions with low star formation rate that were located at large distances from the Galactic centre, such as infalling dwarf spheroidal galaxies.

  18. The Second Galactic Center Black Hole? A Possible Detection of Ionized Gas Orbiting around an IMBH Embedded in the Galactic Center IRS13E Complex

    NASA Astrophysics Data System (ADS)

    Tsuboi, Masato; Kitamura, Yoshimi; Tsutsumi, Takahiro; Uehara, Kenta; Miyoshi, Makoto; Miyawaki, Ryosuke; Miyazaki, Atsushi

    2017-11-01

    The Galactic Center is the nuclear region of the nearest spiral galaxy, the Milky Way, and contains the supermassive black hole with M˜ 4× {10}6 {M}⊙ , Sagittarius A* (Sgr A*). One of the basic questions about the Galactic Center is whether or not Sgr A* is the only “massive” black hole in the region. The IRS13E complex is a very intriguing infrared (IR) object that contains a large dark mass comparable to the mass of an intermediate mass black hole (IMBH) from the proper motions of the main member stars. However, the existence of the IMBH remains controversial. There are some objections to accepting the existence of the IMBH. In this study, we detected ionized gas with a very large velocity width ({{Δ }}{v}{FWZI}˜ 650 km s-1) and a very compact size (r˜ 400 au) in the complex using the Atacama Large Millimeter/submillimeter Array (ALMA). We also found an extended component connecting with the compact ionized gas. The properties suggest that this is an ionized gas flow on the Keplerian orbit with high eccentricity. The enclosed mass is estimated to be {10}4 {M}⊙ by the analysis of the orbit. The mass does not conflict with the upper limit mass of the IMBH around Sgr A*, which is derived by the long-term astrometry with the Very Long Baseline Array (VLBA). In addition, the object probably has an X-ray counterpart. Consequently, a very fascinating possibility is that the detected ionized gas is rotating around an IMBH embedded in the IRS13E complex.

  19. Stellar Population and Star Formation History of the Distant Galactic H II Regions NGC 2282 and Sh2-149

    NASA Astrophysics Data System (ADS)

    Dutta, S.; Mondal, S.; Jose, J.; Das, R. K.

    2017-06-01

    We present here the recent results on two distant Galactic H II regions, namely NGC 2282 and Sh2-149, obtained with multiwavelength observations. Our optical spectroscopic analysis of the bright sources have been used to identify the massive members, and to derive the fundamental parameters such as age and distance of these regions. Using IR color-color criteria and Hα-emission properties, we have identified and classified the candidate young stellar objects (YSOs) in these regions. The 12CO(1-0) continuum maps along with the K-band extinction maps, and spatial distribution of YSOs are used to investigate the structure and morphology of the molecular cloud associated with these H II regions. Overall analysis of these regions suggests that the star formation occurs at the locations of the denser gas, and we also find possible evidences of the induced star formation due to the feedback from massive stars to its surrounding molecular medium.

  20. Orbits of Selected Globular Clusters in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Pérez-Villegas, A.; Rossi, L.; Ortolani, S.; Casotto, S.; Barbuy, B.; Bica, E.

    2018-05-01

    We present orbit analysis for a sample of eight inner bulge globular clusters, together with one reference halo object. We used proper motion values derived from long time base CCD data. Orbits are integrated in both an axisymmetric model and a model including the Galactic bar potential. The inclusion of the bar proved to be essential for the description of the dynamical behaviour of the clusters. We use the Monte Carlo scheme to construct the initial conditions for each cluster, taking into account the uncertainties in the kinematical data and distances. The sample clusters show typically maximum height to the Galactic plane below 1.5 kpc, and develop rather eccentric orbits. Seven of the bulge sample clusters share the orbital properties of the bar/bulge, having perigalactic and apogalatic distances, and maximum vertical excursion from the Galactic plane inside the bar region. NGC 6540 instead shows a completely different orbital behaviour, having a dynamical signature of the thick disc. Both prograde and prograde-retrograde orbits with respect to the direction of the Galactic rotation were revealed, which might characterise a chaotic behaviour.

  1. The Galactic Magnetic Field as Viewed from the VLA

    NASA Astrophysics Data System (ADS)

    van Eck, Cameron; Brown, Jo-Anne

    2009-05-01

    Interstellar magnetic fields play critical roles in many astrophysical processes. Yet despite their importance, our knowledge about magnetic fields in our Galaxy remains limited. For the field within the Milky Way much of what we do know comes from radio astronomy, through observations of polarization and Faraday rotation measures (RMs) of extragalactic sources and pulsars. A high angular density of RM measurements in several critical areas of the Galaxy is needed to clarify the Galactic magnetic field structure. Understanding the overall structure of the magnetic field will subsequently help us determine the origin and evolution of the field. In an effort to determine the overall structure of the field, Sun et al. (2008) produced 3 models of the Galactic magnetic field based on RM measurements available at the time. These models made distinct predictions for RMs in a region of the inner Galaxy at low Galactic latitude. Using observations made with the Very Large Array (VLA), we have determined RMs for sources in this critical region. In this talk we will present the results of our study and show how the RMs strongly support the ASS+RING model.

  2. Detecting dark matter with imploding pulsars in the galactic center.

    PubMed

    Bramante, Joseph; Linden, Tim

    2014-11-07

    The paucity of old millisecond pulsars observed at the galactic center of the Milky Way could be the result of dark matter accumulating in and destroying neutron stars. In regions of high dark matter density, dark matter clumped in a pulsar can exceed the Schwarzschild limit and collapse into a natal black hole which destroys the pulsar. We examine what dark matter models are consistent with this hypothesis and find regions of parameter space where dark matter accumulation can significantly degrade the neutron star population within the galactic center while remaining consistent with observations of old millisecond pulsars in globular clusters and near the solar position. We identify what dark matter couplings and masses might cause a young pulsar at the galactic center to unexpectedly extinguish. Finally, we find that pulsar collapse age scales inversely with the dark matter density and linearly with the dark matter velocity dispersion. This implies that maximum pulsar age is spatially dependent on position within the dark matter halo of the Milky Way. In turn, this pulsar age spatial dependence will be dark matter model dependent.

  3. FERMI BUBBLES AND BUBBLE-LIKE EMISSION FROM THE GALACTIC PLANE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Boer, Wim; Weber, Markus, E-mail: wim.de.boer@kit.edu, E-mail: markus.weber2@kit.edu

    2014-10-10

    The diffuse gamma-ray sky revealed ''bubbles'' of emission above and below the Galactic plane, symmetric around the center of the Milky Way, with a height of 10 kpc in both directions. At present, there is no convincing explanation for the origin. To understand the role of the Galactic center, one has to study the bubble spectrum inside the disk, a region that has been excluded from previous analyses because of the large foreground. From a novel template fit, which allows a simultaneous determination of the signal and foreground in any direction, we find that bubble-like emission is not only found inmore » the halo, but in the Galactic plane as well, with a width in latitude coinciding with the molecular clouds. The longitude distribution has a width corresponding to the Galactic bar with an additional contribution from the Scutum-Centaurus arm. The energy spectrum of the bubbles coincides with the predicted contribution from CRs trapped in sources (SCRs). Also, the energetics fits well. Hence, we conclude that the bubble-like emission has a hadronic origin that arises from SCRs, and the bubbles in the halo arise from hadronic interactions in advected gas. Evidence for advection is provided by the ROSAT X-rays of hot gas in the bubble region.« less

  4. Galactic Winds

    NASA Astrophysics Data System (ADS)

    Veilleux, Sylvain

    Galactic winds have become arguably one of the hottest topics in extragalactic astronomy. This enthusiasm for galactic winds is due in part to the detection of winds in many, if not most, high-redshift galaxies. Galactic winds have also been invoked by theorists to (1) suppress the number of visible dwarf galaxies and avoid the "cooling catastrophe" at high redshift that results in the overproduction of massive luminous galaxies, (2) remove material with low specific angular momentum early on and help enlarge gas disks in CDM + baryons simulations, (3) reduce the dark mass concentrations in galaxies, (4) explain the mass-metallicity relation of galaxies from selective loss of metal-enriched gas from smaller galaxies, (5) enrich and "preheat" the ICM, (6) enrich the IGM without disturbing the Lyαforest significantly, and (7) inhibit cooling flows in galaxy clusters with active cD galaxies. The present paper highlights a few key aspects of galactic winds taken from a recent ARAA review by Veilleux, Cecil, &Bland-Hawthorn (2005; herafter VCBH). Readers interested in a more detailed discussion of this topic are encouraged to refer to the original ARAA article.

  5. Dynamics of the CMZ - Giant Magnetic Loops Connection in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Langer, William

    2012-10-01

    Understanding the mass transfer and dynamics among the Galactic Center, the disk, and the halo of the Milky Way is fundamental to the study of the evolution of galaxies and star formation. Several giant molecular loops (GML), detected in CO maps of the Galactic Center, are likely the result of the magnetic Parker instability. We have new evidence of a possible dynamical connection between these loops and the Central Molecular Zone (CMZ) from a sparse [CII] sampling from our Herschel Open Time Key Project GOT C+. The CMZ-GML region is dynamically active and is likely to have a significant ionized component. However, we have no information on the distribution and dynamics of the ionized gas. The fine-structure lines of [NII] are key probes of the warm ionized medium (WIM) and along with the [CII] can isolate the different ionization components. We have a Herschel OT2 Priority 1 program to map the GML and the CMZ-GML connection in [CII] in more detail. However, we did not propose needed [NII] observations due to an incomplete analysis of our limited GOT C+ data at the time. Here we propose to observe with the SOFIA/GREAT instrument, [NII] in the CMZ-GML interface region using the L1b band, and serendipitously CO (16-15) using band L2. With this data, combined with our Herschel HIFI [CII], Mopra 12CO (1-0) and 13CO (1-0), and HI, we will characterize these important ISM components and their motions in these Galactic Center features. These observations of the nearest such regions of galactic center activity, also have bearing on the dynamics of other galactic nuclei.

  6. On the Scatter in the Radius-Luminosity Relationship for Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Kilerci Eser, E.; Vestergaard, M.; Peterson, B. M.; Denney, K. D.; Bentz, M. C.

    2015-03-01

    We investigate and quantify the observed scatter in the empirical relationship between the broad line region size R and the luminosity of the active galactic nucleus, in order to better understand its origin. This study is motivated by the indispensable role of this relationship in the mass estimation of cosmologically distant black holes, but may also be relevant to the recently proposed application of this relationship for measuring cosmic distances. We study six nearby reverberation-mapped active galactic nuclei (AGNs) for which simultaneous UV and optical monitoring data exist. We also examine the long-term optical luminosity variations of the Seyfert 1 galaxy NGC 5548 and employ Monte Carlo simulations to study the effects of the intrinsic variability of individual objects on the scatter in the global relationship for a sample of ~40 AGNs. We find the scatter in this relationship has a correctable dependence on color. For individual AGNs, the size of the Hβ emitting region has a steeper dependence on the nuclear optical luminosity than on the UV luminosity, which can introduce a scatter of ~0.08 dex into the global relationship, due the nonlinear relationship between the variations in the ionizing continuum and those in the optical continuum. Also, our analysis highlights the importance of understanding and minimizing the scatter in the relationship traced by the intrinsic variability of individual AGNs since it propagates directly into the global relationship. We find that using the UV luminosity as a substitute for the ionizing luminosity can reduce a sizable fraction of the current observed scatter of ~0.13 dex.

  7. Exploring the 13CO/C18O abundance ratio towards Galactic young stellar objects and HII regions

    NASA Astrophysics Data System (ADS)

    Areal, M. B.; Paron, S.; Celis Peña, M.; Ortega, M. E.

    2018-05-01

    Aims: Determining molecular abundance ratios is important not only for the study of Galactic chemistry, but also because they are useful to estimate physical parameters in a large variety of interstellar medium environments. One of the most important molecules for tracing the molecular gas in the interstellar medium is CO, and the 13CO/C18O abundance ratio is usually used to estimate molecular masses and densities of regions with moderate to high densities. Nowadays isotope ratios are in general indirectly derived from elemental abundances ratios. We present the first 13CO/C18O abundance ratio study performed from CO isotope observations towards a large sample of Galactic sources of different natures at different locations. Methods: To study the 13CO/C18O abundance ratio, we used 12CO J = 3 - 2 data obtained from the CO High-Resolution Survey, 13CO and C18O J = 3 - 2 data from the 13CO/C18O (J = 3 - 2) Heterodyne Inner Milky Way Plane Survey, and some complementary data extracted from the James Clerk Maxwell Telescope database. We analyzed a sample of 198 sources composed of young stellar objects (YSOs), and HII and diffuse HII regions as catalogued in the Red MSX Source Survey in 27.°5 ≤ l ≤ 46.°5 and |b|0.°5. Results: Most of the analyzed sources are located in the galactocentric distance range 4.0-6.5 kpc. We found that YSOs have, on average, lower 13CO/C18O abundance ratios than HII and diffuse HII regions. Taking into account that the gas associated with YSOs should be less affected by the radiation than in the case of the others sources, selective far-UV photodissociation of C18O is confirmed. The 13CO/C18O abundance ratios obtained in this work are systematically lower than those predicted from the known elemental abundance relations. These results will be useful in future studies of molecular gas related to YSOs and HII regions based on the observation of these isotopes.

  8. OUTFLOW AND METALLICITY IN THE BROAD-LINE REGION OF LOW-REDSHIFT ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Jaejin; Woo, Jong-Hak; Nagao, Tohru

    2017-01-20

    Outflows in active galactic nuclei (AGNs) are crucial to understand in investigating the co-evolution of supermassive black holes (SMBHs) and their host galaxies since outflows may play an important role as an AGN feedback mechanism. Based on archival UV spectra obtained with the Hubble Space Telescope and IUE , we investigate outflows in the broad-line region (BLR) in low-redshift AGNs ( z < 0.4) through detailed analysis of the velocity profile of the C iv emission line. We find a dependence of the outflow strength on the Eddington ratio and the BLR metallicity in our low-redshift AGN sample, which ismore » consistent with earlier results obtained for high-redshift quasars. These results suggest that BLR outflows, gas accretion onto SMBHs, and past star formation activity in host galaxies are physically related in low-redshift AGNs as in powerful high-redshift quasars.« less

  9. High-resolution spectrum of the Galactic center

    NASA Technical Reports Server (NTRS)

    Mahoney, W. A.; Ling, J. C.; Wheaton, W. A.

    1993-01-01

    Recent observations of the Galactic center region indicate the presence of a narrow gamma-ray line feature at 170 keV, and theoretical speculations suggest it may result from Compton backscattering of the 511 keV annihilation radiation. The high-resolution gamma-ray spectrometer on HEAO 3 observed the Galactic center in the fall of 1979 and in the spring of 1980. In view of the recent developments, the HEAO data were re-examined to search for this new feature and to look for possible correlations with the 511 keV line emisison. No evidence for such Compton backscattered radiation was found and the derived upper limits for emission in a line feature near 170 keV were well below previously reported fluxes, indicating possible time variability.

  10. The diffuse galactic gamma radiation: The Compton contribution and component separation by energy interval and galactic coordinates

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Fichtel, C.

    1981-01-01

    The radiation to be expected from cosmic ray interactions with matter and photons was examined. Particular emphasis is placed on the Compton emission. Both the photon density in and near the visible region and that in the region are deduced from the estimates of the emission functions throughout the Galaxy. The blackbody radiation is also included in the estimate of the total Compton emission. The result suggests that the gamma ray Compton radiation from cosmic ray ineractions with galactic visible and infrared photons is substantially larger than previously believed.

  11. Consequences of Regional Scale Nuclear Conflicts and Acts of Individual Nuclear Terrorism

    NASA Astrophysics Data System (ADS)

    Toon, O. B.; Turco, R. P.; Robock, A.; Bardeen, C.; Oman, L.; Stenchikov, G. L.

    2006-12-01

    The number of nuclear warheads in the world has fallen by about a factor of three since its peak in 1986. However, the potential exists for numerous regional nuclear arms races, and for a significant expansion in the number of nuclear weapons states. Eight countries are known to have nuclear weapons, 2 are constructing them, and an additional 32 nations already have the fissile material needed to build weapons if they so desire. Population and economic activity worldwide are congregated to an increasing extent in "megacities", which are ideal targets for nuclear weapons. We find that low yield weapons, which new nuclear powers are likely to construct, can produce 100 times as many fatalities and 100 times as much smoke from fires per kt yield as high-yield weapons, if they are targeted at city centers. A single low-yield nuclear detonation in an urban center could lead to more fatalities, in some cases by orders of magnitude, than have occurred in major historical conflicts. A regional war between the smallest current nuclear states involving 100 15-kt explosions (less than 0.1% of the explosive yield of the current global nuclear arsenal) could produce direct fatalities comparable to all of those worldwide in World War II (WW-II), or to those once estimated for a "counterforce" nuclear war between the superpowers. Portions of megacities attacked with nuclear devices or exposed to fallout of long-lived isotopes, through armed conflict or terrorism, would likely be abandoned indefinitely, with severe national and international implications. Smoke from urban firestorms in a regional war might induce significant climatic and ozone anomalies on global scales. While there are many uncertainties in the issues we discuss here, the major uncertainties are the type and scale of conflict that might occur. Each of these potential hazards deserves careful analysis by governments worldwide advised by a broad section of the world scientific community, as well as widespread

  12. A Complete Census of the ~7000 Milky Way HII Regions

    NASA Astrophysics Data System (ADS)

    Armentrout, William Paul; Anderson, Loren Dean; Wenger, Trey; Bania, Thomas; Balser, Dana; Dame, Thomas; Dickey, John M.; Dawson, Joanne; Jordan, Christopher H.; McClure-Griffiths, Naomi M.; Andersen, Morten

    2018-01-01

    HII regions are the archetypical tracers of high-mass star formation. Because of their high luminosities, they can be seen across the entire Galactic disk from mid-infrared to radio wavelengths. A uniformly sensitive survey of Galactic HII regions would allow us to constrain the properties of Galactic structure and star formation. We have cataloged over 8000 HII regions and candidates in the WISE Catalog of Galactic HII Regions (astro.phys.wvu.edu/wise), but only 2000 of these are confirmed HII regions to date.To bring us closer to a complete census of high-mass star formation regions in the Milky Way, we have several ongoing observational campaigns. These efforts include (1) Green Bank Telescope radio recombination line (RRL) observations as part of the HII Region Discovery Survey (HRDS); (2) Australia Telescope Compact Array observations of southern HII region candidates in the Southern HII Region Discovery Survey (SHRDS); (3) Green Bank and Gemini North Telescope observations of star formation regions thought to reside at the edge of the star forming disk in the Outer Scutum-Centaurus Arm (OSC); and (4) Very Large Array continuum observations of the faintest HII region candidates in the second and third Galactic quadrants.Together, these observations will detect the RRL emission from all Galactic HII regions with peak cm-wavelength flux densities > 60mJy, establish the outer edge of Galactic high-mass star formation, and determine the number of HII regions in the Galaxy. The HRDS and SHRDS surveys have more than doubled the known population of Galactic HII regions. We use the OSC observations to determine the properties of high-mass star formation in the extreme outer Galaxy and our VLA observations to determine how many of our faint candidates are indeed HII regions. We combine the completeness limits we obtain through these HII region surveys with an HII region population synthesis model to estimate the total number of Galactic HII regions. From this, we

  13. The Dusty Galactic Center as Seen by SCUBA-2

    NASA Astrophysics Data System (ADS)

    Parsons, H.; Dempsey, J. T.; Thomas, H. S.; Berry, D.; Currie, M. J.; Friberg, P.; Wouterloot, J. G. A.; Chrysostomou, A.; Graves, S.; Tilanus, R. P. J.; Bell, G. S.; Rawlings, M. G.

    2018-02-01

    We present new JCMT SCUBA-2 observations of the Galactic Center region from 355^\\circ < l< 5^\\circ and b< +/- 1^\\circ , covering 10 × 2 square degrees along the Galactic Plane to a depth of 43 mJy beam‑1 at 850 μm and 360 mJy beam‑1 at 450 μm. We describe the mapping strategy and reduction method used. We present 12CO(3-2) observations of selected regions in the field. We derive the molecular-line conversion factors (mJy beam‑1 per K km s‑1) at 850 and 450 μm, which are then used to obtain the amount of contamination in the continuum maps due to 12CO(3-2) emission in the 850 μm band. Toward the fields where the CO contamination has been accounted for, we present an 850 μm CO-corrected compact source catalog. Finally, we look for possible physical trends in the CO contamination with respect to column density, mass, and concentration. No trends were seen in the data despite the recognition of three contributors to CO contamination: opacity, shocks, and temperature, which would be expected to relate to physical conditions. These SCUBA-2 Galactic Center data and catalog are available via https://doi.org/10.11570/17.0009.

  14. A Green Bank Telescope 21cm survey of HI clouds in the Milky Way's nuclear wind

    NASA Astrophysics Data System (ADS)

    Denbo, Sara; Endsley, Ryan; Lockman, Felix J.; Ford, Alyson

    2015-01-01

    Feedback processes such as large-scale galactic winds are thought to be responsible for distributing enriched gas throughout a galaxy and even into the IGM. Such winds have been found in many galaxies with active star formation near their center, and the Fermi bubbles provide evidence for such a nuclear wind in our own Milky Way. A recent 21 cm HI survey by the Australia Telescope Compact Array discovered a population of compact, isolated clouds surrounding the Galactic Center that may be entrained in the Fermi bubble wind. We present data from a survey of 21cm HI over an extended region around the Galactic Center using the Green Bank Telescope. These observations provide more strict constraints on neutral clouds in the Fermi bubble wind, and a more robust description of the parameters of HI clouds (i.e., mass, column density, and lifetime) near the Galactic Center.

  15. An Infrared Survey of the Diffuse Emission within 5 deg of the Galactic Plane.

    DTIC Science & Technology

    1980-06-05

    t O ±60. Over the region of 100 to 3 0 oi longitude along the galactic equator, this emission can be fit by 500( K black -body emission with a dilution...from the AFGL catalog, which they classify as stars. The assumed background is, therefore, composed of black -body radiators with a characteristic...SUPPLEMENTARY NOTES 19 KEY WORDS (c-nIIl, ,l IY ,I. AIIId-1, hI MI’< A III-15SI, Infra red Diffuse emission Galactic structure 1111 regions yI 40

  16. The Observed Galactic Annihilation Line: Possible Signature of Accreting Small Mass Black Holes in the Galactic Center

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Chardonnet, Pascal

    2006-01-01

    Various balloon and satellite observatories have revealed what appears to be an extended source of 0.511 MeV annihilation radiation with flux of approx. 10(exp -3) photons/sq cm/s centered on the Galactic Center. Positrons from radioactive products of stellar explosions can account for a significant fraction of the emission. We discuss an additional source for this emission: namely e(+)e(-) pairs produced when X-rays generated from the approx. 2.6 x 10(exp 6) solar mass Galactic Center Black Hole interact with approx. 10 MeV temperature blackbody emission from 10(exp 17) g black holes within 10(exp 14-l5) cm of the center. The number of such Small Mass Black Holes (SMMBHs) can account for the production of the 10(exp 42) e(+)/s that produces the observed annihilation in the inner Galaxy when transport effects are taken into account. We consider the possibility for confirming the presence of these SMMBHs in the Galactic Center region with future generations of gamma-ray instruments if a blackbody like emission of approx. 10 MeV temperature would be detected by them. Small Mass Black Hole can be a potential candidate for dark (invisible) matter hal

  17. ISOLATED WOLF-RAYET STARS AND O SUPERGIANTS IN THE GALACTIC CENTER REGION IDENTIFIED VIA PASCHEN-{alpha} EXCESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauerhan, J. C.; Stolovy, S. R.; Cotera, A.

    We report the discovery of 19 hot, evolved, massive stars near the Galactic center region (GCR). These objects were selected for spectroscopy owing to their detection as strong sources of Paschen-{alpha} (P{alpha}) emission-line excess, following a narrowband imaging survey of the central 0.{sup 0}65 x 0.{sup 0}25 (l, b) around Sgr A* with the Hubble Space Telescope. Discoveries include six carbon-type (WC) and five nitrogen-type (WN) Wolf-Rayet stars, six O supergiants, and two B supergiants. Two of the O supergiants have X-ray counterparts having properties consistent with solitary O stars and colliding-wind binaries. The infrared photometry of 17 stars ismore » consistent with the Galactic center distance, but 2 of them are located in the foreground. Several WC stars exhibit a relatively large infrared excess, which is possibly thermal emission from hot dust. Most of the stars appear scattered throughout the GCR, with no relation to the three known massive young clusters; several others lie near the Arches and Quintuplet clusters and may have originated within one of these systems. The results of this work bring the total sample of Wolf-Rayet (WR) stars in the GCR to 88. All sources of strong P{alpha} excess have been identified in the area surveyed with HST, which implies that the sample of WN stars in this region is near completion, and is dominated by late (WNL) types. The current WC sample, although probably not complete, is almost exclusively dominated by late (WCL) types. The observed WR subtype distribution in the GCR is a reflection of the intrinsic rarity of early subtypes (WNE and WCE) in the inner Galaxy, an effect that is driven by metallicity.« less

  18. The Galactic Distribution of Massive Star Formation from the Red MSX Source Survey

    NASA Astrophysics Data System (ADS)

    Figura, Charles C.; Urquhart, J. S.

    2013-01-01

    Massive stars inject enormous amounts of energy into their environments in the form of UV radiation and molecular outflows, creating HII regions and enriching local chemistry. These effects provide feedback mechanisms that aid in regulating star formation in the region, and may trigger the formation of subsequent generations of stars. Understanding the mechanics of massive star formation presents an important key to understanding this process and its role in shaping the dynamics of galactic structure. The Red MSX Source (RMS) survey is a multi-wavelength investigation of ~1200 massive young stellar objects (MYSO) and ultra-compact HII (UCHII) regions identified from a sample of colour-selected sources from the Midcourse Space Experiment (MSX) point source catalog and Two Micron All Sky Survey. We present a study of over 900 MYSO and UCHII regions investigated by the RMS survey. We review the methods used to determine distances, and investigate the radial galactocentric distribution of these sources in context with the observed structure of the galaxy. The distribution of MYSO and UCHII regions is found to be spatially correlated with the spiral arms and galactic bar. We examine the radial distribution of MYSOs and UCHII regions and find variations in the star formation rate between the inner and outer Galaxy and discuss the implications for star formation throughout the galactic disc.

  19. North Galactic Plane Structure with IPHAS Be Stars.

    NASA Astrophysics Data System (ADS)

    Gkouvelis, L.; Fabregat, J.; IPHAS Consortium

    2016-11-01

    Our goal is to investigate the spiral structure of the Northern Galactic plane using as tracers the classical Be stars detected by INT Photometric Hα Survey (IPHAS). IPHAS scans the 29oregion in the r, i and Hα bands. Spectroscopic follow up has been done for the bright Hα emitters. We have developed an automatic procedure for spectral analysis, based on the BCD spectrophotometric system. In this paper we present a cataloque of 1135 Classical Be stars, for which we have determined spectral types, astrophysical parameters and distances. From these results we make a first attempt to map the structure of the Galactic disk in the anticenter direction.

  20. The Southern HII Region Discovery Survey

    NASA Astrophysics Data System (ADS)

    Wenger, Trey; Miller Dickey, John; Jordan, Christopher; Bania, Thomas M.; Balser, Dana S.; Dawson, Joanne; Anderson, Loren D.; Armentrout, William P.; McClure-Griffiths, Naomi

    2016-01-01

    HII regions are zones of ionized gas surrounding recently formed high-mass (OB-type) stars. They are among the brightest objects in the sky at radio wavelengths. HII regions provide a useful tool in constraining the Galactic morphological structure, chemical structure, and star formation rate. We describe the Southern HII Region Discovery Survey (SHRDS), an Australia Telescope Compact Array (ATCA) survey that discovered ~80 new HII regions (so far) in the Galactic longitude range 230 degrees to 360 degrees. This project is an extension of the Green Bank Telescope HII Region Discovery Survey (GBT HRDS), Arecibo HRDS, and GBT Widefield Infrared Survey Explorer (WISE) HRDS, which together discovered ~800 new HII regions in the Galactic longitude range -20 degrees to 270 degrees. Similar to those surveys, candidate HII regions were chosen from 20 micron emission (from WISE) coincident with 10 micron (WISE) and 20 cm (SGPS) emission. By using the ATCA to detect radio continuum and radio recombination line emission from a subset of these candidates, we have added to the population of known Galactic HII regions.

  1. GLOBAL SIMULATIONS OF GALACTIC WINDS INCLUDING COSMIC-RAY STREAMING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruszkowski, Mateusz; Yang, H.-Y. Karen; Zweibel, Ellen, E-mail: mateuszr@umich.edu, E-mail: hsyang@astro.umd.edu, E-mail: zweibel@astro.wisc.edu

    2017-01-10

    Galactic outflows play an important role in galactic evolution. Despite their importance, a detailed understanding of the physical mechanisms responsible for the driving of these winds is lacking. In an effort to gain more insight into the nature of these flows, we perform global three-dimensional magnetohydrodynamical simulations of an isolated Milky Way-size starburst galaxy. We focus on the dynamical role of cosmic rays (CRs) injected by supernovae, and specifically on the impact of the streaming and anisotropic diffusion of CRs along the magnetic fields. We find that these microphysical effects can have a significant effect on the wind launching andmore » mass loading factors, depending on the details of the plasma physics. Due to the CR streaming instability, CRs propagating in the interstellar medium scatter on self-excited Alfvén waves and couple to the gas. When the wave growth due to the streaming instability is inhibited by some damping process, such as turbulent damping, the coupling of CRs to the gas is weaker and their effective propagation speed faster than the Alfvén speed. Alternatively, CRs could scatter from “extrinsic turbulence” that is driven by another mechanism. We demonstrate that the presence of moderately super-Alfvénic CR streaming enhances the efficiency of galactic wind driving. Cosmic rays stream away from denser regions near the galactic disk along partially ordered magnetic fields and in the process accelerate more tenuous gas away from the galaxy. For CR acceleration efficiencies broadly consistent with the observational constraints, CRs reduce the galactic star formation rates and significantly aid in launching galactic winds.« less

  2. Galactic Bulge Giants: Probing Stellar and Galactic Evolution. 1. Catalogue of Spitzer IRAC and MIPS Sources (PREPRINT)

    NASA Technical Reports Server (NTRS)

    Uttenthaler, Stefan; Stute, Matthias; Sahai, Raghvendra; Blommaert, Joris A.; Schultheis, Mathias; Kraemer, Kathleen E.; Groenewegen, Martin A.; Price, Stephan D.

    2010-01-01

    Aims. We aim at measuring mass-loss rates and the luminosities of a statistically large sample of Galactic bulge stars at several galactocentric radii. The sensitivity of previous infrared surveys of the bulge has been rather limited, thus fundamental questions for late stellar evolution, such as the stage at which substantial mass-loss begins on the red giant branch and its dependence on fundamental stellar properties, remain unanswered. We aim at providing evidence and answers to these questions. Methods. To this end, we observed seven 15 15 arcmin2 fields in the nuclear bulge and its vicinity with unprecedented sensitivity using the IRAC and MIPS imaging instruments on-board the Spitzer Space Telescope. In each of the fields, tens of thousands of point sources were detected. Results. In the first paper based on this data set, we present the observations, data reduction, the final catalogue of sources, and a detailed comparison to previous mid-IR surveys of the Galactic bulge, as well as to theoretical isochrones. We find in general good agreement with other surveys and the isochrones, supporting the high quality of our catalogue.

  3. Infrared Spectroscopy of Star Formation in Galactic and Extragalactic Regions

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.; Hasan, Hashima (Technical Monitor)

    2003-01-01

    In this program we proposed to perform a series of spectroscopic studies, including data analysis and modeling, of star formation regions using an ensemble of archival space-based data from the Infrared Space Observatory's Long Wavelength Spectrometer and Short Wavelength Spectrometer, and to take advantage of other spectroscopic databases including the first results from SIRTF. Our emphasis has been on star formation in external, bright IR galaxies, but other areas of research have included young, low or high mass pre-main sequence stars in star formation regions, and the galactic center. The OH lines in the far infrared were proposed as one key focus of this inquiry, because the Principal Investigator (H. Smith) had a full set of OH IR lines from IS0 observations. It was planned that during the proposed 2-1/2 year timeframe of the proposal other data (including perhaps from SIRTF) would become available, and we intended to be responsive to these and other such spectroscopic data sets. The program has the following goals: 1) Refine the data analysis of IS0 observations to obtain deeper and better SNR results on selected sources. The IS0 data itself underwent pipeline 10 reductions in early 2001, and the more 'hands-on data reduction packages' have been released. The IS0 Fabry-Perot database is particularly sensitive to noise and can have slight calibration errors, and improvements are anticipated. We plan to build on these deep analysis tools and contribute to their development. Model the atomic and molecular line shapes, in particular the OH lines, using revised montecarlo techniques developed by the Submillimeter Wave Astronomy Satellite (SWAS) team at the Center for Astrophysics. 2) 3) Use newly acquired space-based SIRTF or SOFIA spectroscopic data as they become available, and contribute to these observing programs as appropriate. 4) Attend scientific meetings and workshops. 5) E&PO activities, especially as related to infrared astrophysics and

  4. The Southern HII Region Discovery Survey: The Bright Catalog

    NASA Astrophysics Data System (ADS)

    Wenger, Trey V.; Dickey, John M.; Jordan, Christopher H.; Balser, Dana; Armentrout, William Paul; Anderson, Loren; Bania, Thomas; Dawson, Joanne; McClure-Griffiths, Naomi M.; Shea, Jeanine

    2018-01-01

    HII regions, the zones of ionized gas surrounding recently formed high-mass stars, are the archetypical tracers of Galactic structure. The census of Galactic HII regions in the Southern sky is vastly incomplete due to a lack of sensitive radio recombination line (RRL) surveys. The Southern HII Region Discovery Survey (SHRDS) is a 900-hour Australia Telescope Compact Array cm-wavelength RRL and continuum emission survey of hundreds of third and fourth quadrant Galactic HII region candidates. These candidates are identified in the Widefield Infrared Survey Explorer (WISE) Catalog of Galactic HII Regions based on coincident 10 micron (WISE) and 20 cm (Southern Galactic Plane Survey) emission. The SHRDS is an extension of HII Region Discovery Surveys in the Northern sky with the Green Bank Telescope and Arecibo Telescope which discovered ~800 new HII regions. In the first 500 hours of the SHRDS, we targeted the 249 brightest HII region candidates and 33 previously known HII regions. We discuss the data reduction, analysis, and preliminary results from this first stage of the survey.

  5. Star trapping and metallicity enrichment in quasars and active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Artymowicz, Pawel; Lin, D. N. C.; Wampler, E. J.

    1993-01-01

    Recent observational evidence suggests that the metallicity in quasars within a wide range of redshifts, in particular in gas flowing out of the nuclear regions, may be approximately redshift-independent and comparable with or larger than solar. It is plausible that the nuclear metallicity can be internally generated and maintained at approximately time-stationary values in quasars. We identify and estimate efficiency of a mechanism for rapid metallicity enrichment of quasar nuclear gas (in general, in active galactic nuclei) based on star-gas interactions and equivalent to an unusual mode of massive star formation. The mechanism involves capture of low-mass stars from the host galaxy's nucleus by the assemblages of clouds or by accretion disks orbiting the central massive objects (e.g., black holes). Trapping of stars within gaseous disks/clouds occurs through resonant density and bending wave excitation, as well as by hydrodynamical drag. The time scale for trapping stars with total mass equal to that of disk fragment/cloud is of order Hubble time and is remarkably model-independent. Our results show that the described mechanism can produce features suggested by observations, for example, the (super) solar gas metallicity in the nucleus. Thus the observed metallicities in high-redshift quasars do not necessarily imply that global star formation and efficient chemical changes have occurred in their host galaxies at very early cosmological epochs.

  6. Deep echelle spectrophotometry of S 311, a Galactic HII region located outside the solar circle

    NASA Astrophysics Data System (ADS)

    García-Rojas, J.; Esteban, C.; Peimbert, A.; Peimbert, M.; Rodríguez, M.; Ruiz, M. T.

    2005-09-01

    We present echelle spectrophotometry of the Galactic HII region S 311. The data have been taken with the Very Large Telescope Ultraviolet-Visual Echelle Spectrograph in the 3100-10400 Årange. We have measured the intensities of 263 emission lines; 178 are permitted lines of H0, D0 (deuterium), He0, C0, C+, N0, N+, O0, O+, S+, Si0, Si+, Ar0 and Fe0; some of them are produced by recombination and others mainly by fluorescence. Physical conditions have been derived using different continuum- and line-intensity ratios. We have derived He+, C++ and O++ ionic abundances from pure recombination lines as well as abundances from collisionally excited lines for a large number of ions of different elements. We have obtained consistent estimations of t2 applying different methods. We have found that the temperature fluctuations paradigm is consistent with the Te(HeI) versus Te(HI) relation for HII regions, in contrast with what has been found for planetary nebulae. We report the detection of deuterium Balmer lines up to Dδ in the blue wings of the hydrogen lines, whose excitation mechanism seems to be continuum fluorescence.

  7. Active galactic nuclei

    PubMed Central

    Fabian, Andrew C.

    1999-01-01

    Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated. PMID:10220363

  8. Monitoring the Galactic - Search for Hard X-Ray Transients

    NASA Astrophysics Data System (ADS)

    Marshall, Francis

    Hard X-ray transients with fluxs from ~1 to ~30 mCrab are a common feature of the galactic plane with apparent concentrations in specific regions of the plane. Concentrations in the Scutum and Carina fields probably indicate an enhancement of Be X-ray binaries along the tangent direction of two spiral arms. The frequency of outbursts suggest that at any one time 1 or 2 transients are active in the Scutum field alone. We propose weekly scans of the galactic plane to understand this population of sources. The scans will also monitor about 50 already known sources with better spectral information than available with the ASM.

  9. An Electron-positron Jet Model for the Galactic Center

    NASA Technical Reports Server (NTRS)

    Burns, M. L.

    1983-01-01

    High energy observations of the galactic center on the subparsec scale seem to be consistent with electron-positron production in the form of relativistic jets. These jets could be produced by an approximately 1,000,000 solar mass black hole dynamo transportating pairs away from the massive core. An electromagnetic cascade shower would develop first from ambient soft protons and then nonlinearly; the shower using itself as a scattering medium. This is suited to producing, cooling and transporting pairs to the observed annihilation region. It is possible the center of our galaxy is a miniature version of more powerful active galactic nuclei that exhibit jet activity.

  10. An electron-positron jet model for the Galactic center

    NASA Technical Reports Server (NTRS)

    Burns, M. L.

    1983-01-01

    High energy observations of the galactic center on the subparsec scale seem to be consistent with electron-positron production in the form of relativistic jets. These jets could be produced by an approximately 1,000,000 solar mass black hole dynamo transporting pairs away from the massive core. An electomagnetic cascade shower would develop first from ambient soft protons and then nonlinearly, the shower using itself as a scattering medium. This is suited to producing, cooling and transporting pairs to the observed annihilation region. It is possible the center of our galaxy is a miniature version of more powerful active galactic nuclei that exhibit jet activity.

  11. An electron-positron jet model for the Galactic center

    NASA Astrophysics Data System (ADS)

    Burns, M. L.

    1983-07-01

    High energy observations of the galactic center on the subparsec scale seem to be consistent with electron-positron production in the form of relativistic jets. These jets could be produced by an approximately 1,000,000 solar mass black hole dynamo transporting pairs away from the massive core. An electomagnetic cascade shower would develop first from ambient soft protons and then nonlinearly, the shower using itself as a scattering medium. This is suited to producing, cooling and transporting pairs to the observed annihilation region. It is possible the center of our galaxy is a miniature version of more powerful active galactic nuclei that exhibit jet activity.

  12. An electron-positron jet model for the galactic center

    NASA Astrophysics Data System (ADS)

    Burns, M. L.

    1983-03-01

    High energy observations of the galactic center on the subparsec scale seem to be consistent with electron-positron production in the form of relativistic jets. These jets could be produced by an approximately 1,000,000 solar mass black hole dynamo transportating pairs away from the massive core. An electromagnetic cascade shower would develop first from ambient soft protons and then nonlinearly; the shower using itself as a scattering medium. This is suited to producing, cooling and transporting pairs to the observed annihilation region. It is possible the center of our galaxy is a miniature version of more powerful active galactic nuclei that exhibit jet activity.

  13. HIREGS observations of the Galactic center and Galactic plane: Separation of the diffuse Galactic hard X-ray continuum from the point source spectra

    NASA Technical Reports Server (NTRS)

    Boggs, S. E.; Lin, R. P.; Coburn, W.; Feffer, P.; Pelling, R. M.; Schroeder, P.; Slassi-Sennou, S.

    1997-01-01

    The balloon-borne high resolution gamma ray and X-ray germanium spectrometer (HIREGS) was used to observe the Galactic center and two positions along the Galactic plane from Antarctica in January 1995. For its flight, the collimators were configured to measure the Galactic diffuse hard X-ray continuum between 20 and 200 keV by directly measuring the point source contributions to the wide field of view flux for subtraction. The hard X-ray spectra of GX 1+4 and GRO J1655-40 were measured with the diffuse continuum subtracted off. The analysis technique for source separation is discussed and the preliminary separated spectra for these point sources and the Galactic diffuse emission are presented.

  14. ON THE SCATTER IN THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilerci Eser, E.; Vestergaard, M.; Peterson, B. M.

    2015-03-01

    We investigate and quantify the observed scatter in the empirical relationship between the broad line region size R and the luminosity of the active galactic nucleus, in order to better understand its origin. This study is motivated by the indispensable role of this relationship in the mass estimation of cosmologically distant black holes, but may also be relevant to the recently proposed application of this relationship for measuring cosmic distances. We study six nearby reverberation-mapped active galactic nuclei (AGNs) for which simultaneous UV and optical monitoring data exist. We also examine the long-term optical luminosity variations of the Seyfert 1more » galaxy NGC 5548 and employ Monte Carlo simulations to study the effects of the intrinsic variability of individual objects on the scatter in the global relationship for a sample of ∼40 AGNs. We find the scatter in this relationship has a correctable dependence on color. For individual AGNs, the size of the Hβ emitting region has a steeper dependence on the nuclear optical luminosity than on the UV luminosity, which can introduce a scatter of ∼0.08 dex into the global relationship, due the nonlinear relationship between the variations in the ionizing continuum and those in the optical continuum. Also, our analysis highlights the importance of understanding and minimizing the scatter in the relationship traced by the intrinsic variability of individual AGNs since it propagates directly into the global relationship. We find that using the UV luminosity as a substitute for the ionizing luminosity can reduce a sizable fraction of the current observed scatter of ∼0.13 dex.« less

  15. Star-disc interaction in galactic nuclei: formation of a central stellar disc

    NASA Astrophysics Data System (ADS)

    Panamarev, Taras; Shukirgaliyev, Bekdaulet; Meiron, Yohai; Berczik, Peter; Just, Andreas; Spurzem, Rainer; Omarov, Chingis; Vilkoviskij, Emmanuil

    2018-05-01

    We perform high-resolution direct N-body simulations to study the effect of an accretion disc on stellar dynamics in an active galactic nucleus (AGN). We show that the interaction of the nuclear stellar cluster (NSC) with the gaseous accretion disc (AD) leads to formation of a stellar disc in the central part of the NSC. The accretion of stars from the stellar disc on to the super-massive black hole is balanced by the capture of stars from the NSC into the stellar disc, yielding a stationary density profile. We derive the migration time through the AD to be 3 per cent of the half-mass relaxation time of the NSC. The mass and size of the stellar disc are 0.7 per cent of the mass and 5 per cent of the influence radius of the super-massive black hole. An AD lifetime shorter than the migration time would result in a less massive nuclear stellar disc. The detection of such a stellar disc could point to past activity of the hosting galactic nucleus.

  16. VERA observations of the Galactic star-forming regions ON1 and ON2N

    NASA Astrophysics Data System (ADS)

    Nagayama, Takumi

    2013-02-01

    We carried out astrometric observations with VERA of H2O masers in ON1 and ON2N. The measured distances to ON1 and ON2N are 2.47 +/- 0.11 and 3.83 +/- 0.13 kpc, respectively. We found that ON1 and ON2N are located near the tangent point and the Solar circle, respectively. We derive an angular velocity of the Galactic rotation at the Sun's position (i.e. the ratio of the Galactic constants) of 28 +/- 2 km s-1 kpc-1 using the measured distances and three-dimensional velocity components of the two sources. This value is consistent with recent estimates obtained using Very Long Baseline Interferometry but different from the IAU-recommended value of 25.9 km s-1 kpc-1.

  17. SPI measurements of Galactic 26Al

    NASA Astrophysics Data System (ADS)

    Diehl, R.; Knödlseder, J.; Lichti, G. G.; Kretschmer, K.; Schanne, S.; Schönfelder, V.; Strong, A. W.; von Kienlin, A.; Weidenspointner, G.; Winkler, C.; Wunderer, C.

    2003-11-01

    The precision measurement of the 1809 keV gamma-ray line from Galactic 26Al is one of the goals of the SPI spectrometer on INTEGRAL with its Ge detector camera. We aim for determination of the detailed shape of this gamma-ray line, and its variation for different source regions along the plane of the Galaxy. Data from the first part of the core program observations of the first mission year have been inspected. A clear detection of the 26Al line at =~ 5-7 sigma significance demonstrates that SPI will deepen 26Al studies. The line intensity is consistent with expectations from previous experiments, and the line appears narrower than the 5.4 keV FWHM reported by GRIS, more consistent with RHESSI's recent value. Only preliminary statements can be made at this time, however, due to the multi-component background underlying the signal at =~ 40 times higher intensity than the signal from Galactic 26Al.

  18. Determining inclinations of active galactic nuclei via their narrow-line region kinematics

    NASA Astrophysics Data System (ADS)

    Fischer, Travis Cody

    Active Galactic Nuclei (AGN) are axisymmetric systems to first order; their observed properties are likely strong functions of inclination with respect to our line of sight. However, except for a few special cases, the specific inclinations of individual AGN are unknown. We have developed a promising technique for determining the inclinations of nearby AGN by mapping the kinematics of their narrow-line regions (NLRs), which are easily resolved with Hubble Space Telescope (HST) [O III] imaging and long-slit spectra from the Space Telescope Imaging Spectrograph (STIS). Our studies indicate that NLR kinematics dominated by radial outflow can be fit with simple biconical outflow models that can be used to determine the inclination of the bicone axis, and hence the obscuring torus, with respect to our line of sight. We present NLR analysis of 53 Seyfert galaxies and resultant inclinations from models of 17 individual AGN with clear signatures of biconical outflow. From these AGN, which we can for the first time assess the effect of inclination on other observable properties in radio-quiet AGN, including the discovery of a distinct correlation between AGN inclination and X-ray column density. INDEX WORDS: AGN, Seyfert galaxies, NLR, Outflows, Kinematics, Bicones, Unified Model Graduation.

  19. Galactic gamma-ray sources, SNOBs, and giant H2 regions

    NASA Technical Reports Server (NTRS)

    Montmerle, T.

    1985-01-01

    Progress towards understanding the nature of the COS-B galactic gamma-ray sources was made by two recent developments. The developments are: (1) the existence of extensive wide-latitude CO surveys, from the Northern Hemisphere, and from the Southern Hemisphere which give more precise information on molecular cloud population of the Perseus, Sagittarius, and Carina spiral arms; (2) the study of the time variability of gamma-ray sources in gamma-rays but also at other wavelengths, leading to the discovery of four new variable sources in addition to the already known Crab and Vela pulsars. Three classes of gamma-ray sources are found; invariable sources, active sources, and passive sources.

  20. Finding evolved stars in the inner Galactic disk with Gaia

    NASA Astrophysics Data System (ADS)

    Quiroga-Nuñez, L. H.; van Langevelde, H. J.; Pihlström, Y. M.; Sjouwerman, L. O.; Brown, A. G. A.

    2018-04-01

    The Bulge Asymmetries and Dynamical Evolution (BAaDE) survey will provide positions and line-of-sight velocities of ~20, 000 evolved, maser bearing stars in the Galactic plane. Although this Galactic region is affected by optical extinction, BAaDE targets may have Gaia cross-matches, eventually providing additional stellar information. In an initial attempt to cross-match BAaDE targets with Gaia, we have found more than 5,000 candidates. Of these, we may expect half to show SiO emission, which will allow us to obtain velocity information. The cross-match is being refined to avoid false positives using different criteria based on distance analysis, flux variability, and color assessment in the mid- and near-IR. Once the cross-matches can be confirmed, we will have a unique sample to characterize the stellar population of evolved stars in the Galactic bulge, which can be considered fossils of the Milky Way formation.

  1. Intermittent behavior of galactic dynamo activities

    NASA Technical Reports Server (NTRS)

    Ko, C. M.; Parker, E. N.

    1989-01-01

    Recent observations by Beck and Golla of far-infrared and radio continuum emission from nearby spiral galaxies suggest that the galactic magnetic field strength is connected to the current star formation rate. The role of star formation on the generation of large-scale galactic magnetic field is studied in this paper. Using a simple galactic model, it is shown how the galactic dynamo depends strongly on the turbulent velocity of the interstellar medium. When the star formation efficiency is high, the ISM is churned which in turn amplifies the galactic magnetic field. Between active star formation epochs, the magnetic field is in dormant state and decays at a negligible rate. If density waves trigger star formation, then they also turn on the otherwise dormant dynamo.

  2. Search for EeV protons of galactic origin

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashi, M.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kishigami, S.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lubsandorzhiev, B.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Onogi, R.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Saito, K.; Saito, Y.; Sakaki, N.; Sakurai, N.; Scott, L. M.; Sekino, K.; Shah, P. D.; Shibata, T.; Shibata, F.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takahashi, Y.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, M.; Tanaka, K.; Tanaka, H.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tirone, A. H.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2017-01-01

    Cosmic rays in the energy range 1018.0-1018.5 eV are thought to have a light, probably protonic, composition. To study their origin one can search for anisotropy in their arrival directions. Extragalactic cosmic rays should be isotropic, but galactic cosmic rays of this type should be seen mostly along the galactic plane, and there should be a shortage of events coming from directions near the galactic anticenter. This is due to the fact that, under the influence of the galactic magnetic field, the transition from ballistic to diffusive behavior is well advanced, and this qualitative picture persists over the whole energy range. Guided by models of the galactic magnetic field that indicate that the enhancement along the galactic plane should have a standard deviation of about 20° in galactic latitude, and the deficit in the galactic anticenter direction should have a standard deviation of about 50° in galactic longitude, we use the data of the Telescope Array surface detector in 1018.0 to 1018.5 eV energy range to search for these effects. The data are isotropic. Neither an enhancement along the galactic plane nor a deficit in the galactic anticenter direction is found. Using these data we place an upper limit on the fraction of EeV cosmic rays of galactic origin at 1.3% at 95% confidence level.

  3. THE DIFFERENCES IN THE TORUS GEOMETRY BETWEEN HIDDEN AND NON-HIDDEN BROAD LINE ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichikawa, Kohei; Ueda, Yoshihiro; Packham, Christopher

    2015-04-20

    We present results from the fitting of infrared (IR) spectral energy distributions of 21 active galactic nuclei (AGNs) with clumpy torus models. We compiled high spatial resolution (∼0.3–0.7 arcsec) mid-IR (MIR) N-band spectroscopy, Q-band imaging, and nuclear near- and MIR photometry from the literature. Combining these nuclear near- and MIR observations, far-IR photometry, and clumpy torus models enables us to put constraints on the torus properties and geometry. We divide the sample into three types according to the broad line region (BLR) properties: type-1s, type-2s with scattered or hidden broad line region (HBLR) previously observed, and type-2s without any publishedmore » HBLR signature (NHBLR). Comparing the torus model parameters gives us the first quantitative torus geometrical view for each subgroup. We find that NHBLR AGNs have smaller torus opening angles and larger covering factors than HBLR AGNs. This suggests that the chance to observe scattered (polarized) flux from the BLR in NHBLR could be reduced by the dual effects of (a) less scattering medium due to the reduced scattering volume given the small torus opening angle and (b) the increased torus obscuration between the observer and the scattering region. These effects give a reasonable explanation for the lack of observed HBLR in some type-2 AGNs.« less

  4. Voyager 1 observes low-energy galactic cosmic rays in a region depleted of heliospheric ions.

    PubMed

    Stone, E C; Cummings, A C; McDonald, F B; Heikkila, B C; Lal, N; Webber, W R

    2013-07-12

    On 25 August 2012, Voyager 1 was at 122 astronomical units when the steady intensity of low-energy ions it had observed for the previous 6 years suddenly dropped for a third time and soon completely disappeared as the ions streamed away into interstellar space. Although the magnetic field observations indicate that Voyager 1 remained inside the heliosphere, the intensity of cosmic ray nuclei from outside the heliosphere abruptly increased. We report the spectra of galactic cosmic rays down to ~3 × 10(6) electron volts per nucleon, revealing H and He energy spectra with broad peaks from 10 × 10(6) to 40 × 10(6) electron volts per nucleon and an increasing galactic cosmic-ray electron intensity down to ~10 × 10(6) electron volts.

  5. Habitable Evaporated Cores and the Occurrence of Panspermia Near the Galactic Center

    NASA Astrophysics Data System (ADS)

    Chen, Howard; Forbes, John C.; Loeb, Abraham

    2018-03-01

    Black holes growing via the accretion of gas emit radiation that can photoevaporate the atmospheres of nearby planets. Here, we couple planetary structural evolution models of sub-Neptune-mass planets to the growth of the Milky Way’s central supermassive black hole, Sgr A*, and investigate how planetary evolution is influenced by quasar activity. We find that, out to ∼20 pc from Sgr A*, the XUV flux emitted during its quasar phase can remove several percent of a planet’s H/He envelope by mass; in many cases, this removal results in bare rocky cores, many of which are situated in the habitable zones of G-type stars. Near the Galactic Center, the erosion of sub-Neptune-sized planets may be one of the most prevalent channels by which terrestrial super-Earths are created. As such, the planet population demographics may be quite different close to Sgr A* than in the galactic outskirts. The high stellar densities in this region (about seven orders of magnitude greater than the solar neighborhood) imply that the distance between neighboring rocky worlds is short (500–5000 au). The proximity between potentially habitable terrestrial planets may enable the onset of widespread interstellar panspermia near the nuclei of our galaxy. More generally, we predict these phenomena to be ubiquitous for planets in nuclear star clusters and ultra-compact dwarfs. Globular clusters, on the other hand, are less affected by the central black holes.

  6. Interstellar Scattering Towards the Galactic Center as Probed by OH/IR Stars

    NASA Technical Reports Server (NTRS)

    Vanlangevelde, Huib Jan; Frail, Dale A.; Cordes, James M.; Diamond, Philip J.

    1992-01-01

    Angular broadening measurements are reported of 20 OH/IR stars near the galactic center. This class of sources is known to have bright, intrinsically compact (less than or equal to 20 mas) maser components within their circumstellar shells. VLBA antennas and the VLA were used to perform a MKII spectral line VLBI experiment. The rapid drop in correlated flux with increasing baseline, especially for sources closest to the galactic center, is attributed to interstellar scattering. Angular diameters were measured for 13 of our sources. Lower limits were obtained for the remaining seven. With the data, together with additional data taken from the literature, the distribution was determined of interstellar scattering toward the galactic center. A region was found of pronounced scattering nearly centered on SgrA*. Two interpretations are considered for the enhanced scattering. One hypothesis is that the scattering is due to a clump of enhanced turbulence, such as those that lie along lines of sight to other known objects, that has no physical relationship to the galactic center. The other model considers the location of the enhanced scattering to arise in the galactic center itself. The physical implications of the models yield information on the nature of interstellar scattering.

  7. Nuclear planetology: understanding habitable planets as Galactic bulge stellar remnants (black dwarfs) in a Hertzsprung-Russell (HR) diagram

    NASA Astrophysics Data System (ADS)

    Roller, Goetz

    2016-04-01

    model constraining the evolution of a rocky planet like Earth or Mercury from a stellar precursor of the oldest population to a Fe-C BLD, shifting through different spectral classes in a HR diagram after massive decompression and tremendous energy losses. In the light of WD/BLD cosmochronology [1], solar system bodies like Earth, Mercury and Moon are regarded as captured interlopers from the Galactic bulge, Earth and Moon possibly representing remnants of an old binary system. Such a preliminary scenario is supported by similar ages obtained from WD's for the Galactic halo [1] and, independently, by means of 187Re-232Th-238U nuclear geochronometry [2, 4, 5], together with recent observations extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way [6]. This might be further elucidated in the near future by Th/U cosmochronometry based upon a nuclear production ratio Th/U = 0.96 [5] and additionally by means of a newly developed nucleogeochronometric age dating method for stellar spectroscopy, which will be presented in a forthcoming paper. The model shall stimulate geochemical data interpretation from a different perspective to constrain the (thermal) evolution of a habitable planet as to its geo-, bio-, hydro- and atmosphere. [1] Fontaine et al. (2001), Public. Astron. Soc. of the Pacific 113, 409-435. [2] Roller (2015), Abstract T34B-0407, AGU Spring Meeting 2015. [3] Arevalo et al. (2010), Chem. Geol. 271, 70-85. [4] Roller (2015), Geophys. Res. Abstr. 17, EGU2015-2399. [5] Roller (2015), 78th Annu. Meeting Met. Soc., Abstract #5041. [6] Howes et al. (2015), Nature 527, 484-487.

  8. Spatially Offset Active Galactic Nuclei. II. Triggering in Galaxy Mergers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrows, R. Scott; Comerford, Julia M.; Greene, Jenny E.

    Galaxy mergers are likely to play a role in triggering active galactic nuclei (AGNs), but the conditions under which this process occurs are poorly understood. In Paper I, we constructed a sample of spatially offset X-ray AGNs that represent galaxy mergers hosting a single AGN. In this paper, we use our offset AGN sample to constrain the parameters that affect AGN observability in galaxy mergers. We also construct dual-AGN samples with similar selection properties for comparison. We find that the offset AGN fraction shows no evidence for a dependence on AGN luminosity, while the dual-AGN fractions show stronger evidence formore » a positive dependence, suggesting that the merger events forming dual AGNs are more efficient at instigating accretion onto supermassive black holes than those forming offset AGNs. We also find that the offset and dual-AGN fractions both have a negative dependence on nuclear separation and are similar in value at small physical scales. This dependence may become stronger when restricted to high AGN luminosities, although a larger sample is needed for confirmation. These results indicate that the probability of AGN triggering increases at later merger stages. This study is the first to systematically probe down to nuclear separations of <1 kpc (∼0.8 kpc) and is consistent with predictions from simulations that AGN observability peaks in this regime. We also find that the offset AGNs are not preferentially obscured compared to the parent AGN sample, suggesting that our selection may be targeting galaxy mergers with relatively dust-free nuclear regions.« less

  9. Spatially Offset Active Galactic Nuclei. II. Triggering in Galaxy Mergers

    NASA Astrophysics Data System (ADS)

    Barrows, R. Scott; Comerford, Julia M.; Greene, Jenny E.; Pooley, David

    2017-04-01

    Galaxy mergers are likely to play a role in triggering active galactic nuclei (AGNs), but the conditions under which this process occurs are poorly understood. In Paper I, we constructed a sample of spatially offset X-ray AGNs that represent galaxy mergers hosting a single AGN. In this paper, we use our offset AGN sample to constrain the parameters that affect AGN observability in galaxy mergers. We also construct dual-AGN samples with similar selection properties for comparison. We find that the offset AGN fraction shows no evidence for a dependence on AGN luminosity, while the dual-AGN fractions show stronger evidence for a positive dependence, suggesting that the merger events forming dual AGNs are more efficient at instigating accretion onto supermassive black holes than those forming offset AGNs. We also find that the offset and dual-AGN fractions both have a negative dependence on nuclear separation and are similar in value at small physical scales. This dependence may become stronger when restricted to high AGN luminosities, although a larger sample is needed for confirmation. These results indicate that the probability of AGN triggering increases at later merger stages. This study is the first to systematically probe down to nuclear separations of <1 kpc (˜0.8 kpc) and is consistent with predictions from simulations that AGN observability peaks in this regime. We also find that the offset AGNs are not preferentially obscured compared to the parent AGN sample, suggesting that our selection may be targeting galaxy mergers with relatively dust-free nuclear regions.

  10. The 2-79 keV X-ray Spectrum of the Circinus Galaxy with NuSTAR, XMM-Newton and Chandra: a Fully Compton-Thick Active Galactic Nucleus

    DOE PAGES

    Arevalo, P.; Bauer, F. E.; Puccetti, S.; ...

    2014-07-30

    Here, the Circinus galaxy is one of the closest obscured active galactic nuclei (AGNs), making it an ideal target for detailed study. Combining archival Chandra and XMM-Newton data with new NuSTAR observations, we model the 2-79 keV spectrum to constrain the primary AGN continuum and to derive physical parameters for the obscuring material. Chandra's high angular resolution allows a separation of nuclear and off-nuclear galactic emission. In the off-nuclear diffuse emission, we find signatures of strong cold reflection, including high equivalent-width neutral Fe lines. This Compton-scattered off-nuclear emission amounts to 18% of the nuclear flux in the Fe line region,more » but becomes comparable to the nuclear emission above 30 keV. The new analysis no longer supports a prominent transmitted AGN component in the observed band. We find that the nuclear spectrum is consistent with Compton scattering by an optically thick torus, where the intrinsic spectrum is a power law of photon index Γ = 2.2-2.4, the torus has an equatorial column density of N H = (6-10) × 10 24 cm –2, and the intrinsic AGN 2-10 keV luminosity is (2.3-5.1) × 10 42 erg s –1. These values place Circinus along the same relations as unobscured AGNs in accretion rate versus Γ and L X versus L IR phase space. NuSTAR's high sensitivity and low background allow us to study the short timescale variability of Circinus at X-ray energies above 10 keV for the first time. Here, the lack of detected variability favors a Compton-thick absorber, in line with the spectral fitting results.« less

  11. A 6.7 GHz Methanol Maser Survey at High Galactic Latitudes

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Chen, Xi; Shen, Zhi-Qiang; Li, Xiao-Qiong; Wang, Jun-Zhi; Jiang, Dong-Rong; Li, Juan; Dong, Jian; Wu, Ya-Jun; Qiao, Hai-Hua; Ren, Zhiyuan

    2017-09-01

    We performed a systematic 6.7 GHz Class II methanol maser survey using the Shanghai Tianma Radio Telescope toward targets selected from the all-sky Wide-Field Infrared Survey Explorer (WISE) point catalog. In this paper, we report the results from the survey of those at high Galactic latitudes, I.e., | b| > 2°. Of 1473 selected WISE point sources at high latitude, 17 point positions that were actually associated with 12 sources were detected with maser emission, reflecting the rarity (1%-2%) of methanol masers in the region away from the Galactic plane. Out of the 12 sources, 3 are detected for the first time. The spectral energy distribution at infrared bands shows that these new detected masers occur in the massive star-forming regions. Compared to previous detections, the methanol maser changes significantly in both spectral profiles and flux densities. The infrared WISE images show that almost all of these masers are located in the positions of the bright WISE point sources. Compared to the methanol masers at the Galactic plane, these high-latitude methanol masers provide good tracers for investigating the physics and kinematics around massive young stellar objects, because they are believed to be less affected by the surrounding cluster environment.

  12. The Impact Of Galactic Environment On Star Formation

    NASA Astrophysics Data System (ADS)

    Kreckel, Kathryn

    2016-09-01

    While spiral arms are the most prominent sites for star formation in disk galaxies, interarm star formation contributes significantly to the overall star formation budget. However, it is still an open question if the star formation proceeds differently in the arm and inter-arm environment. We use deep VLT/MUSE optical IFU spectroscopy to resolve and fully characterize the physical properties of 428 interarm and arm HII regions in the nearby grand design spiral galaxy NGC 628. Unlike molecular clouds (the fuel for star formation) which exhibit a clear dependence on galactic environment, we find that most HII region properties (luminosity, size, metallicity, ionization parameter) are independent of environment. One clear exception is the diffuse ionized gas (DIG) contribution to the arm and interarm flux (traced via the temperature sensitive [SII]/Halpha line ratio inside and outside of the HII region boundaries). We find a systematically higher DIG background within HII regions, particularly on the spiral arms. Correcting for this DIG contamination can result in significant (70%) changes to the star formation rate measured. We also show preliminary results comparing well@corrected star formation rates from our MUSE HII regions to ALMA CO(2-1) molecular gas observations at matched 1"=35pc resolution, tracing the Kennicutt-Schmidt star formation law at the scales relevant to the physics of star formation. We estimate the timescales relevant for GMC evolution using distance from the spiral arm as a proxy for age, and test whether star formation feedback or galactic@scale dynamical processes dominate GMC disruption.

  13. The impact of galactic environment on star formation

    NASA Astrophysics Data System (ADS)

    Kreckel, Kathryn; Blanc, Guillermo A.; Schinnerer, Eva; Groves, Brent; Adamo, Angela; Hughes, Annie; Meidt, Sharon; SFNG Collaboration

    2017-01-01

    While spiral arms are the most prominent sites for star formation in disk galaxies, interarm star formation contributes significantly to the overall star formation budget. However, it is still an open question if the star formation proceeds differently in the arm and inter-arm environment. We use deep VLT/MUSE optical IFU spectroscopy to resolve and fully characterize the physical properties of 428 interarm and arm HII regions in the nearby grand design spiral galaxy NGC 628. Unlike molecular clouds (the fuel for star formation) which exhibit a clear dependence on galactic environment, we find that most HII region properties (luminosity, size, metallicity, ionization parameter) are independent of environment. One clear exception is the diffuse ionized gas (DIG) contribution to the arm and interarm flux (traced via the temperature sensitive [SII]/Halpha line ratio inside and outside of the HII region boundaries). We find a systematically higher DIG background within HII regions, particularly on the spiral arms. Correcting for this DIG contamination can result in significant (70%) changes to the star formation rate measured. We also show preliminary results comparing well-corrected star formation rates from our MUSE HII regions to ALMA CO(2-1) molecular gas observations at matched 1"=50pc resolution, tracing the Kennicutt-Schmidt star formation law at the scales relevant to the physics of star formation. We estimate the timescales relevant for GMC evolution using distance from the spiral arm as a proxy for age, and test whether star formation feedback or galactic-scale dynamical processes dominate GMC disruption.

  14. MOLECULAR GAS DISK STRUCTURES AROUND ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wada, Keiichi; Papadopoulos, Padeli P.; Spaans, Marco

    We present new high-resolution numerical simulations of the interstellar medium (ISM) in a central R {<=} 32 parsecs region around a supermassive black hole (1.3 x 10{sup 7} M{sub sun}) at a galactic center. Three-dimensional hydrodynamic modeling of the ISM (Wada and Norman 2002) with the nuclear starburst now includes tracking of the formation of molecular hydrogen (H{sub 2}) out of the neutral hydrogen phase as a function of the evolving ambient ISM conditions with a finer spatial resolution (0.125 pc). In a quasi-equilibrium state, mass fraction of H{sub 2} is about 0.4 (total H{sub 2} mass is {approx_equal}1.5 xmore » 10{sup 6} M{sub sun}) of the total gas mass for the uniform far ultra-violet (FUV) with G {sub 0} = 10 in Habing unit. As shown in the previous model, the gas forms an inhomogeneous disk, whose scale height becomes larger in the outer region. H{sub 2} forms a thin nuclear disk in the inner {approx_equal}5 pc, which is surrounded by molecular clouds swelled up toward h {approx}< 10 pc. The velocity field of the disk is highly turbulent in the torus region, whose velocity dispersion is {approx_equal}20 km s{sup -1} on average. Average supernova (SN) rate of {approx_equal}5 x 10{sup -5} yr{sup -1} is large enough to energize these structures. Gas column densities toward the nucleus larger than 10{sup 22} cm{sup -2} are observed if the viewing angle is smaller than {theta} {sub v} {approx_equal} 50 deg. from the edge-on. However, the column densities are distributed over almost two orders of magnitude around the average for any given viewing angle due to the clumpy nature of the torus. For a stronger FUV (G {sub 0} = 100), the total H{sub 2} mass in an equilibrium is only slightly smaller ({approx_equal}0.35), a testimony to the strong self-shielding nature of H{sub 2}, and the molecular gas is somewhat more concentrated in a midplane. Other properties of the ISM are not very sensitive either to the FUV intensity or the SN rate. Finally, the

  15. Dynamical Processes Near the Super Massive Black Hole at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Antonini, Fabio

    2011-01-01

    Observations of the stellar environment near the Galactic center provide the strongest empirical evidence for the existence of massive black holes in the Universe. Theoretical models of the Milky Way nuclear star cluster fail to explain numerous properties of such environment, including the presence of very young stars close to the super massive black hole (SMBH) and the more recent discovery of a parsec-scale core in the central distribution of the bright late-type (old) stars. In this thesis we present a theoretical study of dynamical processes near the Galactic center, strongly related to these issues. Using different numerical techniques we explore the close environment of a SMBH as catalyst for stellar collisions and mergers. We study binary stars that remain bound for several revolutions around the SMBH, finding that in the case of highly inclined binaries the Kozai resonance can lead to large periodic oscillations in the internal binary eccentricity and inclination. Collisions and mergers of the binary elements are found to increase significantly for multiple orbits around the SMBH. In collisions involving a low-mass and a high-mass star, the merger product acquires a high core hydrogen abundance from the smaller star, effectively resetting the nuclear evolution clock to a younger age. This process could serve as an important source of young stars at the Galactic center. We then show that a core in the old stars can be naturally explained in a scenario in which the Milky Way nuclear star cluster (NSC) is formed via repeated inspiral of globular clusters into the Galactic center. We present results from a set of N -body simulations of this process, which show that the fundamental properties of the NSC, including its mass, outer density profile and velocity structure, are also reproduced. Chandrasekhar's dynamical friction formula predicts no frictional force on a test body in a low-density core, regardless of its density, due to the absence of stars moving

  16. Cloud-cloud collision in the Galactic center 50 km s-1 molecular cloud

    NASA Astrophysics Data System (ADS)

    Tsuboi, Masato; Miyazaki, Atsushi; Uehara, Kenta

    2015-12-01

    We performed a search of star-forming sites influenced by external factors, such as SNRs, H II regions, and cloud-cloud collisions (CCCs), to understand the star-forming activity in the Galactic center region using the NRO Galactic Center Survey in SiO v = 0, J = 2-1, H13CO+J = 1-0, and CS J = 1-0 emission lines obtained with the Nobeyama 45 m telescope. We found a half-shell-like feature (HSF) with a high integrated line intensity ratio of ∫TB(SiO v = 0, J = 2-1)dv/∫TB(H13CO+J = 1-0)dv ˜ 6-8 in the 50 km s-1 molecular cloud; the HSF is a most conspicuous molecular cloud in the region and harbors an active star-forming site where several compact H II regions can be seen. The high ratio in the HSF indicates that the cloud contains huge shocked molecular gas. The HSF can be also seen as a half-shell feature in the position-velocity diagram. A hypothesis explaining the chemical and kinetic properties of the HSF is that the feature originates from a CCC. We analyzed the CS J = 1-0 emission line data obtained with the Nobeyama Millimeter Array to reveal the relation between the HSF and the molecular cloud cores in the cloud. We made a cumulative core mass function (CMF) of the molecular cloud cores within the HSF. The CMF in the CCC region is not truncated at least up to ˜2500 M⊙, although the CMF of the non-CCC region reaches the upper limit of ˜1500 M⊙. Most massive molecular cores with Mgas > 750 M⊙ are located only around the ridge of the HSF and adjoin the compact H II region. These may be a sign of massive star formation induced by CCCs in the Galactic center region.

  17. Climatic Effects of Regional Nuclear War

    NASA Technical Reports Server (NTRS)

    Oman, Luke D.

    2011-01-01

    We use a modern climate model and new estimates of smoke generated by fires in contemporary cities to calculate the response of the climate system to a regional nuclear war between emerging third world nuclear powers using 100 Hiroshima-size bombs (less than 0.03% of the explosive yield of the current global nuclear arsenal) on cities in the subtropics. We find significant cooling and reductions of precipitation lasting years, which would impact the global food supply. The climate changes are large and longlasting because the fuel loadings in modern cities are quite high and the subtropical solar insolation heats the resulting smoke cloud and lofts it into the high stratosphere, where removal mechanisms are slow. While the climate changes are less dramatic than found in previous "nuclear winter" simulations of a massive nuclear exchange between the superpowers, because less smoke is emitted, the changes seem to be more persistent because of improvements in representing aerosol processes and microphysical/dynamical interactions, including radiative heating effects, in newer global climate system models. The assumptions and calculations that go into these conclusions will be described.

  18. Relativistic neutrons in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sikora, Marek; Begelman, Mitchell C.; Rudak, Bronislaw

    1989-01-01

    The acceleration of protons to relativistic energies in active galactic nuclei leads to the creation of relativistic neutrons which escape from the central engine. The neutrons decay at distances of up to 1-100 pc, depositing their energies and momenta in situ. Energy deposition by decaying neutrons may inhibit spherical accretion and drive a wind, which could be responsible for the velocity fields in emission-line regions and the outflow of broad absorption line systems. Enhanced pressure in the neutron decay region may also help to confine emission line clouds. A fraction of the relativistic proton energy is radiated in gamma-rays with energies which may be as large as about 100,000 GeV.

  19. Echo Mapping of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; Horne, K.

    2004-01-01

    Echo mapping makes use of the intrinsic variability of the continuum source in active galactic nuclei to map out the distribution and kinematics of line-emitting gas from its light travel time-delayed response to continuum changes. Echo mapping experiments have yielded sizes for the broad line-emitting region in about three dozen AGNs. The dynamics of the line-emitting gas seem to be dominated by the gravity of the central black hole, enabling measurement of the black-hole masses in AGNs. We discuss requirements for future echo-mapping experiments that will yield the high quality velocity-delay maps of the broad-line region that are needed to determine its physical nature.

  20. Quiescent Giant Molecular Cloud Cores in the Galactic Center

    NASA Technical Reports Server (NTRS)

    Lis, D. C.; Serabyn, E.; Zylka, R.; Li, Y.

    2000-01-01

    We have used the Long Wavelength Spectrometer (LWS) aboard the Infrared Space Observatory (ISO) to map the far-infrared continuum emission (45-175 micrometer) toward several massive Giant Molecular Cloud (GMC) cores located near the Galactic center. The observed far-infrared and submillimeter spectral energy distributions imply low temperatures (approx. 15 - 22 K) for the bulk of the dust in all the sources, consistent with external heating by the diffuse ISRF and suggest that these GMCs do not harbor high- mass star-formation sites, in spite of their large molecular mass. Observations of FIR atomic fine structure lines of C(sub II) and O(sub I) indicate an ISRF enhancement of approx. 10(exp 3) in the region. Through continuum radiative transfer modeling we show that this radiation field strength is in agreement with the observed FIR and submillimeter spectral energy distributions, assuming primarily external heating of the dust with only limited internal luminosity (approx. 2 x 10(exp 5) solar luminosity). Spectroscopic observations of millimeter-wave transitions of H2CO, CS, and C-34S carried out with the Caltech Submillimeter Observatory (CSO) and the Institut de Radio Astronomie Millimetrique (IRAM) 30-meter telescope indicate a gas temperature of approx. 80 K, significantly higher than the dust temperatures, and density of approx. 1 x 10(exp 5)/cc in GCM0.25 + 0.01, the brightest submillimeter source in the region. We suggest that shocks caused by cloud collisions in the turbulent interstellar medium in the Galactic center region are responsible for heating the molecular gas. This conclusion is supported by the presence of wide-spread emission from molecules such as SiO, SO, and CH3OH, which are considered good shock tracers. We also suggest that the GMCs studied here are representative of the "typical", pre-starforming cloud population in the Galactic center.

  1. Global Famine after a Regional Nuclear War

    NASA Astrophysics Data System (ADS)

    Robock, A.; Xia, L.; Mills, M. J.; Stenke, A.; Helfand, I.

    2014-12-01

    A regional nuclear war between India and Pakistan, using 100 15-kt atomic bombs, could inject 5 Tg of soot into the upper troposphere from fires started in urban and industrial areas. Simulations by three different general circulation models, GISS ModelE, WACCM, and SOCOL, all agree that global surface temperature would decrease by 1 to 2°C for 5 to 10 years, and have major impacts on precipitation and solar radiation reaching Earth's surface. Local summer climate changes over land would be larger. Using the DSSAT crop simulation model forced by these three global climate model simulations, we investigate the impacts on agricultural production in China, the largest grain producer in the world. In the first year after the regional nuclear war, a cooler, drier, and darker environment would reduce annual rice production by 23 Mt (24%), maize production by 41 Mt (23%), and wheat production by 23 Mt (50%). This reduction of food availability would continue, with gradually decreasing amplitude, for more than a decade. Results from simulations in other major grain producing regions produce similar results. Thus a nuclear war using much less than 1% of the current global arsenal could produce a global food crisis and put a billion people at risk of famine.

  2. The Propagation of Cosmic Rays from the Galactic Wind Termination Shock: Back to the Galaxy?

    NASA Astrophysics Data System (ADS)

    Merten, Lukas; Bustard, Chad; Zweibel, Ellen G.; Becker Tjus, Julia

    2018-05-01

    Although several theories exist for the origin of cosmic rays (CRs) in the region between the spectral “knee” and “ankle,” this problem is still unsolved. A variety of observations suggest that the transition from Galactic to extragalactic sources occurs in this energy range. In this work, we examine whether a Galactic wind that eventually forms a termination shock far outside the Galactic plane can contribute as a possible source to the observed flux in the region of interest. Previous work by Bustard et al. estimated that particles can be accelerated to energies above the “knee” up to R max = 1016 eV for parameters drawn from a model of a Milky Way wind. A remaining question is whether the accelerated CRs can propagate back into the Galaxy. To answer this crucial question, we simulate the propagation of the CRs using the low-energy extension of the CRPropa framework, based on the solution of the transport equation via stochastic differential equations. The setup includes all relevant processes, including three-dimensional anisotropic spatial diffusion, advection, and corresponding adiabatic cooling. We find that, assuming realistic parameters for the shock evolution, a possible Galactic termination shock can contribute significantly to the energy budget in the “knee” region and above. We estimate the resulting produced neutrino fluxes and find them to be below measurements from IceCube and limits by KM3NeT.

  3. Diffuse Galactic Continuum Gamma Rays. A Model Compatible with EGRET Data and Cosmic-ray Measurements

    NASA Technical Reports Server (NTRS)

    Strong, Andrew W.; Moskalenko, Igor V.; Reimer, Olaf

    2004-01-01

    We present a study of the compatibility of some current models of the diffuse Galactic continuum gamma-rays with EGRET data. A set of regions sampling the whole sky is chosen to provide a comprehensive range of tests. The range of EGRET data used is extended to 100 GeV. The models are computed with our GALPROP cosmic-ray propagation and gamma-ray production code. We confirm that the "conventional model" based on the locally observed electron and nucleon spectra is inadequate, for all sky regions. A conventional model plus hard sources in the inner Galaxy is also inadequate, since this cannot explain the GeV excess away from the Galactic plane. Models with a hard electron injection spectrum are inconsistent with the local spectrum even considering the expected fluctuations; they are also inconsistent with the EGRET data above 10 GeV. We present a new model which fits the spectrum in all sky regions adequately. Secondary antiproton data were used to fix the Galactic average proton spectrum, while the electron spectrum is adjusted using the spectrum of diffuse emission it- self. The derived electron and proton spectra are compatible with those measured locally considering fluctuations due to energy losses, propagation, or possibly de- tails of Galactic structure. This model requires a much less dramatic variation in the electron spectrum than models with a hard electron injection spectrum, and moreover it fits the y-ray spectrum better and to the highest EGRET energies. It gives a good representation of the latitude distribution of the y-ray emission from the plane to the poles, and of the longitude distribution. We show that secondary positrons and electrons make an essential contribution to Galactic diffuse y-ray emission.

  4. Recent Advances in Resonance Region Nuclear Data Measurements and Analyses for Supporting Nuclear Energy Applications

    NASA Astrophysics Data System (ADS)

    Dunn, Michael

    2008-10-01

    For over 30 years, the Oak Ridge National Laboratory (ORNL) has performed research and development to provide more accurate nuclear cross-section data in the resonance region. The ORNL Nuclear Data (ND) Program consists of four complementary areas of research: (1) cross-section measurements at the Oak Ridge Electron Linear Accelerator; (2) resonance analysis methods development with the SAMMY R-matrix analysis software; (3) cross-section evaluation development; and (4) cross-section processing methods development with the AMPX software system. The ND Program is tightly coupled with nuclear fuel cycle analyses and radiation transport methods development efforts at ORNL. Thus, nuclear data work is performed in concert with nuclear science and technology needs and requirements. Recent advances in each component of the ORNL ND Program have led to improvements in resonance region measurements, R-matrix analyses, cross-section evaluations, and processing capabilities that directly support radiation transport research and development. Of particular importance are the improvements in cross-section covariance data evaluation and processing capabilities. The benefit of these advances to nuclear science and technology research and development will be discussed during the symposium on Nuclear Physics Research Connections to Nuclear Energy.

  5. An Alternative Explanation of the Varying Boron-to-carbon Ratio in Galactic Cosmic Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichler, David

    2017-06-10

    It is suggested that the decline with energy of the boron-to-carbon abundance ratio in Galactic cosmic rays is due, in part, to a correlation between the maximum energy attainable by shock acceleration in a given region of the Galactic disk and the grammage traversed before escape. In this case the energy dependence of the escape rate from the Galaxy may be less than previously thought and the spectrum of antiprotons becomes easier to understand.

  6. Super Star Clusters and H II Regions in Nuclear Rings

    NASA Astrophysics Data System (ADS)

    Filippenko, Alex

    1996-07-01

    We propose to obtain WFPC2 optical broad-band {F547M and F814W} and narrow-band Halpha+ionN2 {F658N} images of nuclear starburst rings in four nearby galaxies for which we already have ultraviolet {F220W} FOC data. Nuclear rings {or ``hot- spot'' regions} in barred spirals are some of the nearest and least obscured starburst regions, and HST images of nuclear rings in several galaxies show that the rings contain large populations of super star clusters similar to those recently discovered in other types of starburst systems. These compact clusters, many having luminosities exceeding that of the R136 cluster in 30 Doradus, represent a violent mode of star formation distinct from that seen in ordinary disk ionH2 regions, and the nuclear rings present us with an opportunity to study large numbers of these extreme clusters in relatively unobscured starburst environments. It has been suggested that super star clusters are present-day versions of young globular clusters. To evaluate this hypothesis, it is important to understand the physical properties and stellar contents of the clusters, but previous HST studies of nuclear ring galaxies have only used single-filter observations. Together with our UV data, new WFPC2 images will enable us to determine the H II region and cluster luminosity functions within nuclear rings, measure cluster radii, derive age and mass estimates for the clusters by comparison with evolutionary synthesis models, and study the structure and evolution of nuclear rings.

  7. Constraints on the outer radius of the broad emission line region of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Landt, Hermine; Ward, Martin J.; Elvis, Martin; Karovska, Margarita

    2014-03-01

    Here we present observational evidence that the broad emission line region (BELR) of active galactic nuclei (AGN) generally has an outer boundary. This was already clear for sources with an obvious transition between the broad and narrow components of their emission lines. We show that the narrow component of the higher-order Paschen lines is absent in all sources, revealing a broad emission line profile with a broad, flat top. This indicates that the BELR is kinematically separate from the narrow emission line region. We use the virial theorem to estimate the BELR outer radius from the flat top width of the unblended profiles of the strongest Paschen lines, Paα and Paβ, and find that it scales with the ionizing continuum luminosity roughly as expected from photoionization theory. The value of the incident continuum photon flux resulting from this relationship corresponds to that required for dust sublimation. A flat-topped broad emission line profile is produced by both a spherical gas distribution in orbital motion and an accretion disc wind if the ratio between the BELR outer and inner radius is assumed to be less than ˜100-200. On the other hand, a pure Keplerian disc can be largely excluded, since for most orientations and radial extents of the disc the emission line profile is double-horned.

  8. Observing the Next Galactic Supernova

    NASA Astrophysics Data System (ADS)

    Adams, Scott M.; Kochanek, C. S.; Beacom, John F.; Vagins, Mark R.; Stanek, K. Z.

    2013-12-01

    No supernova (SN) in the Milky Way has been observed since the invention of the optical telescope, instruments for other wavelengths, neutrino detectors, or gravitational wave observatories. It would be a tragedy to miss the opportunity to fully characterize the next one. To aid preparations for its observations, we model the distance, extinction, and magnitude probability distributions of a successful Galactic core-collapse supernova (ccSN), its shock breakout radiation, and its massive star progenitor. We find, at very high probability (sime 100%), that the next Galactic SN will easily be detectable in the near-IR and that near-IR photometry of the progenitor star very likely (sime 92%) already exists in the Two Micron All Sky Survey. Most ccSNe (98%) will be easily observed in the optical, but a significant fraction (43%) will lack observations of the progenitor due to a combination of survey sensitivity and confusion. If neutrino detection experiments can quickly disseminate a likely position (~3°), we show that a modestly priced IR camera system can probably detect the shock breakout radiation pulse even in daytime (64% for the cheapest design). Neutrino experiments should seriously consider adding such systems, both for their scientific return and as an added and internal layer of protection against false triggers. We find that shock breakouts from failed ccSNe of red supergiants may be more observable than those of successful SNe due to their lower radiation temperatures. We review the process by which neutrinos from a Galactic ccSN would be detected and announced. We provide new information on the EGADS system and its potential for providing instant neutrino alerts. We also discuss the distance, extinction, and magnitude probability distributions for the next Galactic Type Ia supernova (SN Ia). Based on our modeled observability, we find a Galactic ccSN rate of 3.2^{+7.3}_{-2.6} per century and a Galactic SN Ia rate of 1.4^{+1.4}_{-0.8} per century for a

  9. The stellar content of the nuclear regions of Sc galaxies

    NASA Technical Reports Server (NTRS)

    Turnrose, B. E.

    1976-01-01

    Stellar-population syntheses based on absolute spectral energy distributions over the wavelength range from 3300 to 10,400 A are used to determine the stellar content of the nuclear regions of seven nearby Sc galaxies (NGC 628, 1073, 1084, 1637, 2903, 4321, and 5194). A linear-programming procedure is employed to construct models of the overall stellar populations whose spectra closely match those of the seven galaxies. Absolute measurements of the emission-line spectra of the nuclear regions are also provided. It is found that: (1) intrinsic reddening is probably present in each nuclear region; (2) the upper main sequence is substantially populated in most of the models; (3) the lower main sequence contributes insignificantly to the luminosity in all optimal solutions; (4) substantial contributions are made by evolved M stars at long wavelengths in all the models; (5) the model photometric M/L ratios are low, of the order of unity; and (6) the O-B stars arising naturally in the population models are just sufficient to provide the observed nuclear ionization in all the galaxies except NGC 5194, which may be collisionally ionized. The properties of the nuclear regions are shown to be consistent with the existence of a common initial mass function for star formation and a variety of time dependences for the star-formation process. A possibly significant correlation is noted between nuclear stellar content and overall dynamical properties in four of the galaxies.

  10. X-Ray Processing of ChaMPlane Fields: Methods and Initial Results for Selected Anti-Galactic Center Fields

    NASA Astrophysics Data System (ADS)

    Hong, JaeSub; van den Berg, Maureen; Schlegel, Eric M.; Grindlay, Jonathan E.; Koenig, Xavier; Laycock, Silas; Zhao, Ping

    2005-12-01

    We describe the X-ray analysis procedure of the ongoing Chandra Multiwavelength Plane (ChaMPlane) Survey and report the initial results from the analysis of 15 selected anti-Galactic center observations (90degGalactic sources but also of general use: optimum photometry in crowded fields using advanced techniques for overlapping sources, rigorous astrometry and 95% error circles for combining X-ray images or matching to optical/IR images, and application of quantile analysis for spectral analysis of faint sources. We apply these techniques to 15 anti-Galactic center observations (of 14 distinct fields), in which we have detected 921 X-ray point sources. We present logN-logS distributions and quantile analysis to show that in the hard band (2-8 keV) active galactic nuclei dominate the sources. Complete analysis of all ChaMPlane anti-Galactic center fields will be given in a subsequent paper, followed by papers on sources in the Galactic center and bulge regions.

  11. Open star clusters and Galactic structure

    NASA Astrophysics Data System (ADS)

    Joshi, Yogesh C.

    2018-04-01

    In order to understand the Galactic structure, we perform a statistical analysis of the distribution of various cluster parameters based on an almost complete sample of Galactic open clusters yet available. The geometrical and physical characteristics of a large number of open clusters given in the MWSC catalogue are used to study the spatial distribution of clusters in the Galaxy and determine the scale height, solar offset, local mass density and distribution of reddening material in the solar neighbourhood. We also explored the mass-radius and mass-age relations in the Galactic open star clusters. We find that the estimated parameters of the Galactic disk are largely influenced by the choice of cluster sample.

  12. Evidence for a physical linkage between galactic cosmic rays and regional climate time series

    USGS Publications Warehouse

    Perry, C.A.

    2007-01-01

    The effects of solar variability on regional climate time series were examined using a sequence of physical connections between total solar irradiance (TSI) modulated by galactic cosmic rays (GCRs), and ocean and atmospheric patterns that affect precipitation and streamflow. The solar energy reaching the Earth's surface and its oceans is thought to be controlled through an interaction between TSI and GCRs, which are theorized to ionize the atmosphere and increase cloud formation and its resultant albedo. High (low) GCR flux may promote cloudiness (clear skies) and higher (lower) albedo at the same time that TSI is lowest (highest) in the solar cycle which in turn creates cooler (warmer) ocean temperature anomalies. These anomalies have been shown to affect atmospheric flow patterns and ultimately affect precipitation over the Midwestern United States. This investigation identified a relation among TSI and geomagnetic index aa (GI-AA), and streamflow in the Mississippi River Basin for the period 1878-2004. The GI-AA was used as a proxy for GCRs. The lag time between the solar signal and streamflow in the Mississippi River at St. Louis, Missouri is approximately 34 years. The current drought (1999-2007) in the Mississippi River Basin appears to be caused by a period of lower solar activity that occurred between 1963 and 1977. There appears to be a solar "fingerprint" that can be detected in climatic time series in other regions of the world, with each series having a unique lag time between the solar signal and the hydroclimatic response. A progression of increasing lag times can be spatially linked to the ocean conveyor belt, which may transport the solar signal over a time span of several decades. The lag times for any one region vary slightly and may be linked to the fluctuations in the velocity of the ocean conveyor belt.

  13. THE NuSTAR Hard X-Ray Survey of the Norma Arm Region

    NASA Technical Reports Server (NTRS)

    Fornasini, Francesca M.; Tomsick, John A.; Hong, Jaesub; Gotthelf, Eric V.; Bauer, Franz; Rahoui, Farid; Stern, Daniel K.; Bodaghee, Arash; Chiu, Jeng-Lun; Clavel, Maïca; hide

    2017-01-01

    We present a catalog of hard X-ray sources in a square-degree region surveyed by the Nuclear Spectroscopic Telescope Array (NuSTAR) in the direction of the Norma spiral arm. This survey has a total exposure time of 1.7 Ms, and the typical and maximum exposure depths are 50 ks and 1 Ms, respectively. In the area of deepest coverage, sensitivity limits of 5 x 10(exp -14) and 4 x 10(exp -14) ergs/s/sq cm in the 3-10 and 10-20 keV bands, respectively, are reached. Twenty-eight sources are firmly detected, and 10 are detected with low significance; 8 of the 38 sources are expected to be active galactic nuclei. The three brightest sources were previously identified as a low-mass X-ray binary, high-mass X-ray binary, and pulsar wind nebula. Based on their X-ray properties and multiwavelength counterparts, we identify the likely nature of the other sources as two colliding wind binaries, three pulsar wind nebulae, a black hole binary, and a plurality of cataclysmic variables (CVs). The CV candidates in the Norma region have plasma temperatures of approx. 10-20 keV, consistent with the Galactic ridge X-ray emission spectrum but lower than the temperatures of CVs near the Galactic center. This temperature difference may indicate that the Norma region has a lower fraction of intermediate polars relative to other types of CVs compared to the Galactic center. The NuSTAR logN-logS distribution in the 10-20keV band is consistent with the distribution measured by Chandra at 2-10 keV if the average source spectrum is assumed to be a thermal model with kT approx. =15 keV, as observed for the CV candidates.

  14. DHIGLS: DRAO H I Intermediate Galactic Latitude Survey

    NASA Astrophysics Data System (ADS)

    Blagrave, K.; Martin, P. G.; Joncas, G.; Kothes, R.; Stil, J. M.; Miville-Deschênes, M. A.; Lockman, Felix J.; Taylor, A. R.

    2017-01-01

    Observations of Galactic H I gas for seven targeted regions at intermediate Galactic latitude are presented at 1\\prime angular resolution using data from the DRAO Synthesis Telescope (ST) and the Green Bank Telescope (GBT). The DHIGLS data are the most extensive arcminute-resolution measurements of the diffuse atomic interstellar medium beyond those in the Galactic plane. The acquisition, reduction, calibration, and mosaicking of the DRAO ST data and the cross calibration and incorporation of the short-spacing information from the GBT are described. The high quality of the resulting DHIGLS products enables a variety of new studies in directions of low Galactic column density. We analyze the angular power spectra of maps of the integrated H I emission (column density) from the data cubes for several distinct velocity ranges. In fitting power-spectrum models based on a power law, but including the effects of the synthesized beam and noise at high spatial frequencies, we find exponents ranging from -2.5 to -3.0. Power spectra of maps of the centroid velocity for these components give similar results. These exponents are interpreted as being representative of the three-dimensional density and velocity fields of the atomic gas, respectively. We find evidence for dramatic changes in the H I structures in channel maps over even small changes in velocity. This narrow line emission has counterparts in absorption spectra against bright background radio sources, quantifying that the gas is cold and dense and can be identified as the cold neutral medium phase. Fully reduced DHIGLS H I data cubes and other data products are available at www.cita.utoronto.ca/DHIGLS.

  15. Millimeter Wavelength Observations of Galactic Sources with the Mobile Anisotropy Telescope (MAT)

    NASA Astrophysics Data System (ADS)

    Cruz, K. L.; Caldwell, R.; Devlin, M. J.; Dorwart, W. B.; Herbig, T.; Miller, A. D.; Nolta, M. R.; Page, L. A.; Puchalla, J. L.; Torbet, E.; Tran, H. T.

    1999-12-01

    The Mobile Anisotropy Telescope (MAT) has completed two observing seasons (1997 and 1998) in Chile from the Cerro Toco site. Although the primary goal of MAT was to measure anisotropy in the Cosmic Microwave Background (CMB) radiation, the chosen observation scheme also allowed daily viewing of the Galactic Plane. We present filtered maps at 30, 40 and 144 GHz of a region of the Galactic Plane which contains several millimeter-bright regions including the Carinae nebula and IRAS 11097-6102. We report the best fit brightness temperatures as well as the total flux densities in the MAT beams (0.9, 0.6 and 0.2 degrees FWHM) . The data are calibrated with respect to Jupiter whose flux is known to better than 8% in all frequency bands. This work was funded by the National Science Foundation and the Packard Foundation.

  16. Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, volume 73

    NASA Technical Reports Server (NTRS)

    Haas, Michael R. (Editor); Davidson, Jacqueline A. (Editor); Erickson, Edwin F. (Editor)

    1995-01-01

    This symposium was organized to review the science related to NASA's Airborne Astronomy Program on the occasion of the twentieth anniversary of the Kuiper Airborne Observatory (KAO). The theme selected, 'The Galactic Ecosystem: From Gas to Stars to Dust,' was considered to capture the underlying commonality of much of the research discussed. The 8 sessions were as follows: The Interstellar Medium; The Life Cycle of the ISM in Other Galaxies; Star and Planetary System Formation; Our Planetary System: The Solar System; The Enrichment of the Interstellar Medium; The Galactic Center: A Unique Region of the Galactic Ecosystem; Instrumentation for Airborne Astronomy; KAO History and Education; and Missions and the Future of Infrared Astronomy.

  17. Galactic cosmic ray composition

    NASA Technical Reports Server (NTRS)

    Meyer, J. P.

    1986-01-01

    An assessment is given of the galactic cosmic ray source (GCRS) elemental composition and its correlation with first ionization potential. The isotopic composition of heavy nuclei; spallation cross sections; energy spectra of primary nuclei; electrons; positrons; local galactic reference abundances; comparison of solar energetic particles and solar coronal compositions; the hydrogen; lead; nitrogen; helium; and germanium deficiency problems; and the excess of elements are among the topics covered.

  18. Star formation activity in the southern Galactic H II region G351.63-1.25

    NASA Astrophysics Data System (ADS)

    Vig, S.; Ghosh, S. K.; Ojha, D. K.; Verma, R. P.; Tamura, M.

    2014-06-01

    The southern Galactic high-mass star-forming region, G351.63-1.25, is an H II region-molecular cloud complex with a luminosity of ˜2.0 × 105 L⊙, located at a distance of 2.4 kpc from the Sun. In this paper, we focus on the investigation of the associated H II region, embedded cluster and the interstellar medium in the vicinity of G351.63-1.25. We address the identification of exciting source(s) as well as the census of the stellar populations, in an attempt to unfold star formation activity in this region. The ionized gas distribution has been mapped using the Giant Metrewave Radio Telescope, India, at three frequencies: 1280, 610 and 325 MHz. The H II region shows an elongated morphology and the 1280 MHz map comprises six resolved high-density regions encompassed by diffuse emission spanning 1.4 × 1.0 pc2. Based on the measurements of flux densities at multiple radio frequencies, the brightest ultracompact core has electron temperature Te˜7647 {±} 153 K and emission measure, EM˜2.0 {±} 0.8×107 cm-6 pc. The zero-age main-sequence spectral type of the brightest radio core is O7.5. We have carried out near-infrared observations in the JHKs bands using the SIRIUS camera on the 1.4 m Infrared Survey Facility telescope. The near-infrared images reveal the presence of a cluster embedded in nebulous fan-shaped emission. The log-normal slope of the K-band luminosity function of the embedded cluster is found to be ˜0.27 ± 0.03, and the fraction of the near-infrared excess stars is estimated to be 43 per cent. These indicate that the age of the cluster is consistent with ˜1 Myr. Other available data of this region show that the warm (mid-infrared) and cold (millimetre) dust emission peak at different locations indicating progressive stages of star formation process. The champagne flow model from a flat, thin molecular cloud is used to explain the morphology of radio emission with respect to the millimetre cloud and infrared brightness.

  19. The H.E.S.S. Galactic plane survey

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Benkhali, F. Ait; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carrigan, S.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Colafrancesco, S.; Condon, B.; Conrad, J.; Davids, I. D.; Decock, J.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Emery, G.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; Gaté, F.; Giavitto, G.; Giebels, B.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Malyshev, D.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Safi-Harb, S.; Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schandri, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Shiningayamwe, K.; Simoni, R.; Sol, H.; Spanier, F.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zorn, J.; Żywucka, N.

    2018-04-01

    We present the results of the most comprehensive survey of the Galactic plane in very high-energy (VHE) γ-rays, including a public release of Galactic sky maps, a catalog of VHE sources, and the discovery of 16 new sources of VHE γ-rays. The High Energy Spectroscopic System (H.E.S.S.) Galactic plane survey (HGPS) was a decade-long observation program carried out by the H.E.S.S. I array of Cherenkov telescopes in Namibia from 2004 to 2013. The observations amount to nearly 2700 h of quality-selected data, covering the Galactic plane at longitudes from ℓ = 250° to 65° and latitudes |b|≤ 3°. In addition to the unprecedented spatial coverage, the HGPS also features a relatively high angular resolution (0.08° ≈ 5 arcmin mean point spread function 68% containment radius), sensitivity (≲1.5% Crab flux for point-like sources), and energy range (0.2-100 TeV). We constructed a catalog of VHE γ-ray sources from the HGPS data set with a systematic procedure for both source detection and characterization of morphology and spectrum. We present this likelihood-based method in detail, including the introduction of a model component to account for unresolved, large-scale emission along the Galactic plane. In total, the resulting HGPS catalog contains 78 VHE sources, of which 14 are not reanalyzed here, for example, due to their complex morphology, namely shell-like sources and the Galactic center region. Where possible, we provide a firm identification of the VHE source or plausible associations with sources in other astronomical catalogs. We also studied the characteristics of the VHE sources with source parameter distributions. 16 new sources were previously unknown or unpublished, and we individually discuss their identifications or possible associations. We firmly identified 31 sources as pulsar wind nebulae (PWNe), supernova remnants (SNRs), composite SNRs, or gamma-ray binaries. Among the 47 sources not yet identified, most of them (36) have possible

  20. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2009-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The existing models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  1. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2010-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The exising models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  2. Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.

    The diffuse galactic {gamma}-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess {gamma}-ray emission {ge}1 GeV relative to diffuse galactic {gamma}-ray emission models consistent with directly measured CR spectra (the so-called 'EGRET GeV excess'). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse {gamma}-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10{sup o}more » {le} |b| {le} 20{sup o}. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic {gamma}-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.« less

  3. Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-12-16

    We report that the diffuse galactic γ-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess γ-ray emission ≳1 GeV relative to diffuse galactic γ-ray emission models consistent with directly measured CR spectra (the so-called “EGRET GeV excess”). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse γ -ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV andmore » galactic latitudes 10° ≤ | b | ≤ 20°. Finally, the LAT spectrum for this region of the sky is well reproduced by a diffuse galactic γ-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.« less

  4. Fermi large area telescope measurements of the diffuse gamma-ray emission at intermediate galactic latitudes.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Anderson, B; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Dereli, H; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Di Bernardo, G; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gaggero, D; Gargano, F; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sellerholm, A; Sgrò, C; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stecker, F W; Striani, E; Strickman, M S; Strong, A W; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-12-18

    The diffuse galactic gamma-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess gamma-ray emission greater, > or approximately equal to 1 GeV relative to diffuse galactic gamma-ray emission models consistent with directly measured CR spectra (the so-called "EGRET GeV excess"). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse gamma-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10 degrees < or = |b| < or = 20 degrees. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic gamma-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.

  5. Trends in radiopharmaceutical dispensing in a regional nuclear pharmacy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basmadjian, G.P.; Johnston, J.; Barker, K.

    1982-11-01

    Dispensing trends for radiopharmaceuticals at a regional nuclear pharmacy over a 51-month period were studied. dispensing records of a regional nuclear pharmacy were analyzed with a forecasting procedure that uses univariate time data to produce time trends and autoregressive models. The overall number of prescriptions increased from 3500 to 5500 per quarter. Radiopharmaceuticals used in nuclear cardiology studies increased from less than 0.1% to 17.5% of total prescriptions dispensed, while radiopharmaceuticals used for brain imaging showed a steady decline from 29% to 11% of total prescriptions dispensed. The demand for other radiopharmaceuticals increased in areas such as renal studies, bonemore » studies, lung studies, liver-function studies, and /sup 67/Ga tumor-uptake studies, and declined slightly for static liver studies. Changes in dispensing trends for radiopharmaceuticals will continue as the practice of nuclear medicine concentrates more on functional studies and as newer imaging techniques become used for other purposes.« less

  6. Black-hole model of galactic nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, C.A.; ter Haar, D.

    1973-04-01

    It is shown that the observed large infrared emission from some galactic nuclei finds a natural explanation, if one takes plasma turbulence into account in Lynden-Bell and Rees' blackhole model of galactic nuclei. (auth)

  7. Rice University observations of the galactic center

    NASA Technical Reports Server (NTRS)

    Meegan, C. A.

    1978-01-01

    The most sensitive of the four balloon fight observations of the galactic center made by Rice University was conducted in 1974 from Rio Cuarto, Argentina at a float altitude of 4 mbar. The count rate spectrum of the observed background and the energy spectrum of the galactic center region are discussed. The detector used consists of a 6 inch Nal(T 1ambda) central detector collimated to approximately 15 deg FWHM by a Nal(T lamdba) anticoincidence shield. The shield in at least two interaction mean free paths thick at all gamma ray energies. The instrumental resolution is approximately 11% FWHM at 662 keV. Pulses from the central detector are analyzed by two 256 channel PHA's covering the energy range approximately 20 keV to approximately 12 MeV. The detector is equatorially mounted and pointed by command from the ground. Observations are made by measuring source and background alternately for 10 minute periods. Background is measured by rotating the detector 180 deg about the azimuthal axis.

  8. Cosmic Ray Acceleration from Multiple Galactic Wind Shocks

    NASA Astrophysics Data System (ADS)

    Cotter, Cory; Bustard, Chad; Zweibel, Ellen

    2018-01-01

    Cosmic rays still have an unknown origin. Many mechanisms have been suggested for their acceleration including quasars, pulsars, magnetars, supernovae, supernova remnants, and galactic termination shocks. The source of acceleration may be a mixture of these and a different mixture in different energy regimes. Using numerical simulations, we investigate multiple shocks in galactic winds as potential cosmic rays sources. By having shocks closer to the parent galaxy, more particles may diffuse back to the disk instead of being blown out in the wind, as found in Bustard, Zweibel, and Cotter (2017, ApJ) and also Merten, Bustard, Zweibel, and Tjus (to be submitted to ApJ). Specifically, this flux of cosmic rays could contribute to the unexplained "shin" region between the well-known "knee" and "ankle" of the cosmic ray spectrum. We would like to acknowledge support from the National Science Foundation (NSF) Graduate Research Fellowship Program under grant No. DGE-125625 and NSF grant No. AST-1616037.

  9. Diffuse X-ray sky in the Galactic center

    NASA Astrophysics Data System (ADS)

    Koyama, Katsuji

    2018-01-01

    The Galactic diffuse X-ray emission (GDXE) in the Milky Way Galaxy is spatially and spectrally decomposed into the Galactic center X-ray emission (GCXE), the Galactic ridge X-ray emission (GRXE), and the Galactic bulge X-ray emission (GBXE). The X-ray spectra of the GDXE are characterized by the strong K-shell lines of the highly ionized atoms, and the brightest lines are the K-shell transition (principal quantum number transition of n = 2 → 1) of neutral iron (Fe I-Kα), He-like iron (Fe XXV-Heα), and He-like sulfur (S XV-Heα). Accordingly, the GDXE is composed of a high-temperature plasma of ˜7 keV (HTP) and a low-temperature plasma of ˜1 keV, which emit the Fe XXV-Heα and S XV-Heα lines, respectively. The Fe I-Kα line is emitted from nearly neutral irons, and hence the third component of the GDXE is a cool gas (CG). The Fe I-Kα distribution in the GCXE region is clumpy (Fe I-Kα clump), associated with giant molecular cloud (MC) complexes (Sagittarius A, B, C, D, and E) in the central molecular zone. The origin of the Fe I-Kα clumps is the fluorescence and Thomson scattering from the MCs irradiated by past big flares of the supermassive black hole Sagittarius A*. The scale heights and equivalent widths of the Fe I-Kα, Fe XXV-Heα, and Fe XXVI-Lyα (n = 2 → 1 transition of H-like iron) lines are different among the GCXE, GBXE, and GRXE. Therefore, their structures and origins are separately examined. This paper gives an overview of the research history and the present understandings of the GDXE, while in particular focusing on the origin of the HTP and CG in the GCXE.

  10. Time-dependent modulation of galactic cosmic rays by merged interaction regions

    NASA Technical Reports Server (NTRS)

    Perko, J. S.

    1993-01-01

    Models that solve the one-dimensional, solar modulation equation have reproduced the 11-year galactic cosmic ray using functional representations of global merged interaction regions (MIRs). This study extends those results to the solution of the modulation equation with explicit time dependence. The magnetometers on Voyagers 1 and 2 provide local magnetic field intensities at regular intervals, from which one calculates the ratio of the field intensity to the average local field. These ratios in turn are inverted to form diffusion coefficients. Strung together in radius and time, these coefficents then fall and rise with the strength of the interplanetary magnetic field, becoming representations of MIRs. These diffusion coefficients, calculated locally, propagate unchanged from approx. 10 AU to the outer boundary (120 AU). Inside 10 AU, all parameters, including the diffusion coefficient are assumed constant in time and space. The model reproduces the time-intensity profiles of Voyager 2 and Pioneer 10. Radial gradient data from 1982-1990 between Pioneer 10 and Voyager 2 are about the same magnitude as those calculated in the model. It is also shows agreement in rough magnitude with the radial gradient between Pioneer 10 and 1 AU. When coupled with enhanced, time-dependent solar wind speed at the probe's high latitude, as measured by independent observers, the model also follows Voyager 1's time-intensity profile reasonably well, providing a natural source the model also follows Voyager 1's time-intensity profile reasonably well, providing a natural source for the observed negative latitudinal gradients. The model exhibits the 11-year cyclical cosmic ray intensity behavior at all radii, including 1 AU, not just at the location of the spacecraft where the magnetic fields are measured. In addition, the model's point of cosmic ray maximum correctly travels at the solar wind speed, illustrating the well-known propagation of modulation. Finally, at least in the inner

  11. Galactic politics

    NASA Image and Video Library

    2015-12-07

    Only rarely does an astronomical object have a political association. However, the spiral galaxy NGC 7252 acquired exactly that when it was given an unusual nickname. In December 1953, the US President Dwight D. Eisenhower gave a speech advocating the use of nuclear power for peaceful purposes. This  “Atoms for Peace” speech was significant for the scientific community, as it brought nuclear research into the public domain, and NGC 7252, which has a superficial resemblance to an atomic nucleus surrounded by the loops of electronic orbits, was dubbed the Atoms for Peace galaxy in honour of this. These loops are well visible in a wider field of view image. This nickname is quite ironic, as the galaxy’s past was anything but peaceful. Its peculiar appearance is the result of a collision between two galaxies that took place about a billion years ago, which ripped both galaxies apart. The loop-like outer structures, likely made up of dust and stars flung outwards by the crash, but recalling orbiting electrons in an atom, are partly responsible for the galaxy’s nickname. This NASA/ESA Hubble Space Telescope image shows the inner parts of the galaxy, revealing a pinwheel-shaped disc that is rotating in a direction opposite to the rest of the galaxy. This disc resembles a spiral galaxy like our own galaxy, the Milky Way, but is only about 10 000 light-years across — about a tenth of the size of the Milky Way. It is believed that this whirling structure is a remnant of the galactic collision. It will most likely have vanished in a few billion years’ time, when NGC 7252 will have completed its merging process.

  12. Gamma-ray evidence for a stellar-mass black hole near the Galactic center

    NASA Technical Reports Server (NTRS)

    Ramaty, Reuven; Lingenfelter, Richard E.

    1989-01-01

    An analysis of the time variability of the observed 511-keV line emission from the direction of the Galactic center and the correlation of its variations in the continuum emission above 511 keV from the same direction suggest the existence of a compact object at or near the Galactic center. A possible mechanism of the observed positron annihilation is consistent with a compact interaction region of the order of 10 to the 8th cm. A black hole of several hundred solar masses is favored as a candidate for this compact object; arguments in support of this suggestion are presented.

  13. The Ties that Bind? Galactic Magnetic Fields and Ram Pressure Stripping

    NASA Astrophysics Data System (ADS)

    Tonnesen, Stephanie; Stone, James

    2014-11-01

    One process affecting gas-rich cluster galaxies is ram pressure stripping (RPS), i.e., the removal of galactic gas through direct interaction with the intracluster medium (ICM). Galactic magnetic fields may have an important impact on the stripping rate and tail structure. We run the first magnetohydrodynamic (MHD) simulations of RPS that include a galactic magnetic field, using 159 pc resolution throughout our entire domain in order to resolve mixing throughout the tail. We find very little difference in the total amount of gas removed from the unmagnetized and magnetized galaxies, although a magnetic field with a radial component will initially accelerate stripped gas more quickly. In general, we find that magnetic fields in the disk lead to slower velocities in the stripped gas near the disk and faster velocities farther from the disk. We also find that magnetic fields in the galactic gas lead to larger unmixed structures in the tail. Finally, we discuss whether ram pressure stripped tails can magnetize the ICM. We find that the total magnetic energy density grows as the tail lengthens, likely through turbulence. There are μG-strength fields in the tail in all of our MHD runs, which survive to at least 100 kpc from the disk (the edge of our simulated region), indicating that the area-filling factor of magnetized tails in a cluster could be large.

  14. The ties that bind? Galactic magnetic fields and ram pressure stripping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonnesen, Stephanie; Stone, James, E-mail: stonnes@astro.princeton.edu, E-mail: jstone@astro.princeton.edu

    One process affecting gas-rich cluster galaxies is ram pressure stripping (RPS), i.e., the removal of galactic gas through direct interaction with the intracluster medium (ICM). Galactic magnetic fields may have an important impact on the stripping rate and tail structure. We run the first magnetohydrodynamic (MHD) simulations of RPS that include a galactic magnetic field, using 159 pc resolution throughout our entire domain in order to resolve mixing throughout the tail. We find very little difference in the total amount of gas removed from the unmagnetized and magnetized galaxies, although a magnetic field with a radial component will initially acceleratemore » stripped gas more quickly. In general, we find that magnetic fields in the disk lead to slower velocities in the stripped gas near the disk and faster velocities farther from the disk. We also find that magnetic fields in the galactic gas lead to larger unmixed structures in the tail. Finally, we discuss whether ram pressure stripped tails can magnetize the ICM. We find that the total magnetic energy density grows as the tail lengthens, likely through turbulence. There are μG-strength fields in the tail in all of our MHD runs, which survive to at least 100 kpc from the disk (the edge of our simulated region), indicating that the area-filling factor of magnetized tails in a cluster could be large.« less

  15. Effects of Nuclear Cross Sections at Different Energies on Space Radiation Exposure from Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Li, Zi-Wei; Adams, James H., Jr.

    2007-01-01

    Space radiation from galactic cosmic rays (GCR) is a major hazard to space crews, especially in long duration human space explorations. For this reason, they will be protected by radiation shielding that fragments the GCR heavy ions. Here we investigate how sensitive the crew's radiation exposure is to nuclear fragmentation cross sections at different energies. We find that in deep space cross sections between about 0.2 and 1.2 GeV/u have the strongest effect on dose equivalent behind shielding in solar minimum GCR environments, and cross sections between about 0.6 and 1.7 GeV/u are the most important at solar maximum'. On the other hand, at the location of the International Space Station, cross sections at_higher -energies, between about 0.6 and 1.7 GeV /u at solar minimum and between about 1.7 and 3.4 GeV/u'at,solar maximum, are the most important This is. due-to the average geomagnetic cutoff for the ISS orbit. We also show the effect of uncertainties in the fragmentation cross sections on the elemental energy spectra behind shielding. These results help to focus the studies of fragmentation cross sections on the proper energy range in order to improve our predictions of crew exposures.

  16. The origin of the diffuse galactic IR/submm emission: Revisited after IRAS

    NASA Technical Reports Server (NTRS)

    Cox, P.; Mezger, P. G.

    1987-01-01

    Balloon observations are compared with Infrared Astronomy Satellite observations. There was good agreement for the longitudinal profiles. However, the dust emission observed by IRAS, contrary to the balloon observations which show dust emission only within the absolute value of b is equal to or less than 3 degrees, extends all the way to the galactic pole. The model fits were repeated using more recent parameters for the distribution of interstellar matter in the galactic disk and central region. The IR luminosities are derived for the revised galactic distance scale of solar radius - 8.5 Kpc. A total IR luminosity of 1.2 E10 solar luminosity is obtained, which is about one third of the estimated stellar luminosity of the Galaxy. The dust emission spectrum lambdaI(sub lambda) attains it maximum at 100 microns. A secondary maximum in the dust emission spectrum occurs at 10 microns, which contains 15% of the total IR luminosity of the Galaxy. The galactic dust emission spectrum was compared with the dust emission spectra of external IRAS galaxies. The warm dust luminosity relates to the present OB star formation rate, while flux densities observed at longer submm wavelengths are dominated by cold dust emission and thus can be used to estimate gas masses.

  17. Planck 2015 results. XXV. Diffuse low-frequency Galactic foregrounds

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Orlando, E.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Peel, M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Strong, A. W.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vidal, M.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We discuss the Galactic foreground emission between 20 and 100 GHz based on observations by Planck and WMAP. The total intensity in this part of the spectrum is dominated by free-free and spinning dust emission, whereas the polarized intensity is dominated by synchrotron emission. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with radio recombination line templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude Hα emission with our free-free map shows residuals that correlate with dust optical depth, consistent with a fraction (≈30%) of Hα having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak (in Iν) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for the spinning dust component near many prominent H II regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photo-dissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys, particularly at 5-20 GHz, will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck and WMAP data to make the highest signal-to-noise ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high-latitude polarized emission is

  18. Planck 2015 results: XXV. Diffuse low-frequency Galactic foregrounds

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; ...

    2016-09-20

    In this paper, we discuss the Galactic foreground emission between 20 and 100 GHz based on observations by Planck and WMAP. The total intensity in this part of the spectrum is dominated by free-free and spinning dust emission, whereas the polarized intensity is dominated by synchrotron emission. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with radio recombination line templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude Hα emission with our free-free map shows residuals that correlate with dust optical depth, consistent withmore » a fraction (≈30%) of Hα having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak (in I ν) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for the spinning dust component near many prominent H ii regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photo-dissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys, particularly at 5–20 GHz, will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck and WMAP data to make the highest signal-to-noise ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high

  19. Planck 2015 results: XXV. Diffuse low-frequency Galactic foregrounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.

    In this paper, we discuss the Galactic foreground emission between 20 and 100 GHz based on observations by Planck and WMAP. The total intensity in this part of the spectrum is dominated by free-free and spinning dust emission, whereas the polarized intensity is dominated by synchrotron emission. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with radio recombination line templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude Hα emission with our free-free map shows residuals that correlate with dust optical depth, consistent withmore » a fraction (≈30%) of Hα having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak (in I ν) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for the spinning dust component near many prominent H ii regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photo-dissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys, particularly at 5–20 GHz, will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck and WMAP data to make the highest signal-to-noise ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high

  20. Investigating The Nuclear Activity Of Barred Spirals: The case of NGC 1672

    NASA Astrophysics Data System (ADS)

    Jenkins, Leigh; Brandt, N.; Colbert, E.; Levan, A.; Roberts, T.; Ward, M.; Zezas, A.

    2008-03-01

    We present new results from Chandra and XMM-Newton X-ray observations of the nearby barred spiral galaxy NGC1672. It shows dramatic nuclear and extra-nuclear star formation activity, including starburst regions located either end of its prominent bar. Using new X-ray imaging and spectral information, together with supporting multiwavelength data, we show for the first time that NGC1672 possesses a faint, hard, central X-ray source surrounded by a circumnuclear starburst ring that dominates the X-ray emission in the region, presumably triggered and sustained by gas and dust driven inwards along the galactic bar. The faint central source may represent low-level AGN activity, or alternatively emission associated with star-formation in the nucleus. More generally, we present some preliminary results on a Chandra archival search for low-luminosity AGN activity in barred galaxies.

  1. Exposure to galactic cosmic radiation and solar energetic particles.

    PubMed

    O'Sullivan, D

    2007-01-01

    Several investigations of the radiation field at aircraft altitudes have been undertaken during solar cycle 23 which occurred in the period 1993-2003. The radiation field is produced by the passage of galactic cosmic rays and their nuclear reaction products as well as solar energetic particles through the Earth's atmosphere. Galactic cosmic rays reach a maximum intensity when the sun is least active and are at minimum intensity during solar maximum period. During solar maximum an increased number of coronal mass ejections and solar flares produce high energy solar particles which can also penetrate down to aircraft altitudes. It is found that the very complicated field resulting from these processes varies with altitude, latitude and stage of solar cycle. By employing several active and passive detectors, the whole range of radiation types and energies were encompassed. In-flight data was obtained with the co-operation of many airlines and NASA. The EURADOS Aircraft Crew in-flight data base was used for comparison with the predictions of various computer codes. A brief outline of some recent studies of exposure to radiation in Earth orbit will conclude this contribution.

  2. Galactic Spiral Shocks with Thermal Instability in Vertically Stratified Galactic Disks

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Goo; Kim, Woong-Tae; Ostriker, Eve C.

    2010-09-01

    Galactic spiral shocks are dominant morphological features and believed to be responsible for substructure formation within spiral arms in disk galaxies. They can also contribute a substantial amount of kinetic energy to the interstellar gas by tapping the (differential) rotational motion. We use numerical hydrodynamic simulations to investigate dynamics and structure of spiral shocks with thermal instability (TI) in vertically stratified galactic disks, focusing on environmental conditions (of heating and the galactic potential) similar to the Solar neighborhood. We initially consider an isothermal disk in vertical hydrostatic equilibrium and let it evolve subject to interstellar cooling and heating as well as a stellar spiral potential. Due to TI, a disk with surface density Σ0 >= 6.7 M sun pc-2 rapidly turns to a thin dense slab near the midplane sandwiched between layers of rarefied gas. The imposed spiral potential leads to a vertically curved shock that exhibits strong flapping motions in the plane perpendicular to the arm. The overall flow structure at saturation is comprised of the arm, postshock expansion zone, and interarm regions that occupy typically 10%, 20%, and 70% of the arm-to-arm distance, in which the gas resides for 15%, 30%, and 55% of the arm-to-arm crossing time, respectively. The flows are characterized by transitions from rarefied to dense phases at the shock and from dense to rarefied phases in the postshock expansion zone, although gas with too-large postshock-density does not undergo this return phase transition, instead forming dense condensations. If self-gravity is omitted, the shock flapping drives random motions in the gas, but only up to ~2-3 km s-1 in the in-plane direction and less than 2 km s-1 in the vertical direction. Time-averaged shock profiles show that the spiral arms in stratified disks are broader and less dense compared to those in unstratified models, and that the vertical density distribution is overall consistent

  3. Tidal stripping stellar substructures around four metal-poor globular clusters in the galactic bulge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chun, Sang-Hyun; Kang, Minhee; Jung, DooSeok

    2015-01-01

    We investigate the spatial density configuration of stars around four metal-poor globular clusters (NGC 6266, NGC 6626, NGC 6642, and NGC 6723) in the Galactic bulge region using wide-field deep J, H, and K imaging data obtained with the Wide Field Camera near-infrared array on the United Kingdom Infrared Telescope. A statistical weighted filtering algorithm for the stars on the color–magnitude diagram is applied in order to sort cluster member candidates from the field star contamination. In two-dimensional isodensity contour maps of the clusters, we find that all four of the globular clusters exhibit strong evidence of tidally stripped stellarmore » features beyond the tidal radius in the form of tidal tails or small density lobes/chunks. The orientations of the extended stellar substructures are likely to be associated with the effect of dynamic interaction with the Galaxy and the cluster's space motion. The observed radial density profiles of the four globular clusters also describe the extended substructures; they depart from theoretical King and Wilson models and have an overdensity feature with a break in the slope of the profile at the outer region of clusters. The observed results could imply that four globular clusters in the Galactic bulge region have experienced strong environmental effects such as tidal forces or bulge/disk shocks of the Galaxy during the dynamical evolution of globular clusters. These observational results provide further details which add to our understanding of the evolution of clusters in the Galactic bulge region as well as the formation of the Galaxy.« less

  4. General properties of HII regions in galaxies

    NASA Technical Reports Server (NTRS)

    Smirnov, M. A.; Komberg, B. V.

    1979-01-01

    The structure, electron density, and dimensions of HII regions in galaxies are discussed. These parameters are correlated to the chemical composition gradient along the galactic radius, the dimensions of the three largest HII regions in the galaxy, and the amount of hydrogen in the galaxy, as well as the mass, dimensions, and total optical luminosity of the galaxy. The relationships of HII regions to star formation and galactic nucleus activity are discussed and the kinematic properties of the SB and Sab galaxies are related to the size of HII regions.

  5. A Three Dimensional Picture of Galactic Center Mass Flows From Kiloparsec to Subparsec Scales

    NASA Astrophysics Data System (ADS)

    Mills, Elisabeth A.

    2018-06-01

    The centers of galaxies host extreme and energetic phenomena, from the amassing of incredibly dense reservoirs of gas to nuclear starbursts producing tens to hundreds of solar masses per year to accreting supermassive black holes launching jets. All of these are found on compact scales from hundreds of parsecs to less than a microparsec. The nearest laboratory for examining these processes is the center of our own Milky Way Galaxy. Although the black hole is not currently active and the star formation rate is relatively low, it is still our best opportunity for detailed insight into the processes that regulate the growth of the central supermassive black hole. By providing access to mid and far infrared wavelengths, SOFIA plays a unique role in connecting large and small scales in the Galactic center and studying the cycling of gas through this region. In this talk I will highlight several key open questions and outline the role that SOFIA continues to play in answering them.

  6. Fine structure of Galactic foreground ISM towards high-redshift AGN - utilizing Herschel PACS and SPIRE data

    NASA Astrophysics Data System (ADS)

    Perger, K.; Pinter, S.; Frey, S.; Tóth, L. V.

    2018-05-01

    One of the most certain ways to determine star formation rate in galaxies is based on far infrared (FIR) measurements. To decide the origin of the observed FIR emission, subtracting the Galactic foreground is a crucial step. We utilized Herschel photometric data to determine the hydrogen column densities in three galactic latitude regions, at b = 27°, 50° and -80°. We applied a pixel-by-pixel fit to the spectral energy distribution (SED) for the images aquired from parallel PACS-SPIRE observations in all three sky areas. We determined the column densities with resolutions 45'' and 6', and compared the results with values estimated from the IRAS dust maps. Column densities at 27° and 50° galactic latitudes determined from the Herschel data are in a good agreement with the literature values. However, at the highest galactic latitude we found that the column densities from the Herschel data exceed those derived from the IRAS dust map.

  7. New Classical Cepheids in the Inner Part of the Northern Galactic Disk, and Their Kinematics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanioka, Satoshi; Matsunaga, Noriyuki; Fukue, Kei

    2017-06-20

    The characteristics of the inner Galaxy remain obscured by significant dust extinction, hence infrared surveys are useful for finding young Cepheids whose distances and ages can be accurately determined. A near-infrared photometric and spectroscopic survey was carried out and three classical Cepheids were unveiled in the inner disk, around 20° and 30° in Galactic longitude. The targets feature small Galactocentric distances, 3–5 kpc, and their velocities are important, as they may be under the environmental influence of the Galactic bar. While one of the Cepheids has a radial velocity consistent with the Galactic rotation, the other two are moving significantlymore » slower. We also compare their kinematics with that of high-mass star-forming regions with measured parallactic distances.« less

  8. Systematics of nuclear deformation in large regions

    NASA Astrophysics Data System (ADS)

    Zhao, Y. M.; Arima, A.; Casten, R. F.

    2001-06-01

    In this paper we present the systematics of nuclear deformation for even-even, even-odd, odd-even, and doubly odd nuclei in four regions: the 50region, the 66region, the 66region, and the 82region. Compact trajectories are obtained using the P=NpNn/(Np+Nn) factor. It is found that there are no apparent shifts in the trajectories between the even-even nuclei previously studied with the P factor, and the other classes of nuclei included here. This may suggest that the pairing interaction strength of even-even nuclei is very close to that in their odd A and doubly odd neighbors. Strong anomalies around the Z~80 region are highlighted.

  9. Gas inflow patterns and nuclear rings in barred galaxies

    NASA Astrophysics Data System (ADS)

    Shen, Juntai; Li, Zhi

    2017-06-01

    Nuclear rings, dust lanes, and nuclear spirals are common structures in the inner region of barred galaxies, with their shapes and properties linked to the physical parameters of the galaxies. We use high-resolution hydrodynamical simulations to study gas inflow patterns in barred galaxies, with special attention on the nuclear rings. The location and thickness of nuclear ringsare tightly correlated with galactic properties, such as the bar pattern speed and bulge central density, within certain ranges. We identify the backbone of nuclear rings with a major orbital family of bars. The rings form exactly at the radius where the residual angular momentum of inflowing gas balances the centrifugal force. We propose a new simple method to predict the bar pattern speed for barred galaxies possessing a nuclear ring, without actually doing simulations. We apply this method to some real galaxies and find that our predicted bar pattern speed compare reasonably well with other estimates. Our study may have important implications for using nuclear ringsto measure the parameters of real barred galaxies with detailed gas kinematics. We have also extended current hydrodynamical simulations to model gas features in the Milky Way.

  10. The Southern HII Region Discovery Survey: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Shea, Jeanine; Wenger, Trey; Balser, Dana S.; Anderson, Loren D.; Armentrout, William P.; Bania, Thomas M.; Dawson, Joanne; Miller Dickey, John; Jordan, Christopher; McClure-Griffiths, Naomi M.

    2017-01-01

    HII regions are some of the brightest sources at radio frequencies in the Milky Way and are the sites of massive O and B-type star formation. They have relatively short (< 10 Myr) lifetimes compared to other Galactic objects and therefore reveal information about spiral structure and the chemical evolution of the Galaxy. The HII Region Discovery Surveys (HRDS) discovered about 800 new HII regions in the Galactic longitude range -20 degrees to 270 degrees using primarily the Green Bank Telescope. Candidate HII regions were selected from mid-infrared emission coincident with radio continuum emission, and confirmed as HII regions by the detection of radio recombination lines. Here we discuss the Southern HII Region Discovery Survey (SHRDS), a continuation of the HRDS using the Australia Telescope Compact Array over the Galactic longitude range 230 to 360 degrees. We have reduced and analyzed a small sub-set of the SHRDS sources and discuss preliminary results, including kinematic distances and metallicities.

  11. The Apache Point Observatory Galactic Evolution Experiment (APOGEE) and its successor, APOGEE-2

    NASA Astrophysics Data System (ADS)

    Majewski, S. R.; APOGEE Team; APOGEE-2 Team

    2016-09-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) of Sloan Digital Sky Survey III (SDSS-III) has produced a large catalog of high resolution ({R = 22 500}), high quality (S/N > 100), infrared (H-band) spectra for stars throughout all stellar populations of the Milky Way, including in regions veiled by significant dust opacity. APOGEE's half million spectra collected on > 163 000 unique stars, with time series information via repeat visits to each star, are being applied to numerous problems in stellar populations, Galactic astronomy, and stellar astrophysics. From among the early results of the APOGEE project - which span from measurements of Galactic dynamics, to multi-element chemical maps of the disk and bulge, new views of the interstellar medium, explorations of stellar companions, the chemistry of star clusters, and the discovery of rare stellar species - I highlight a few results that demonstrate APOGEE's unique ability to sample and characterize the Galactic disk and bulge. Plans are now under way for an even more ambitious successor to APOGEE: the six-year, dual-hemisphere APOGEE-2 project. Both phases of APOGEE feature a strong focus on targets having asteroseismological measurements from either Kepler or {CoRoT}, from which it is possible to derive relatively precise stellar ages. The combined APOGEE and APOGEE-2 databases of stellar chemistry, dynamics and ages constitute an unusually comprehensive, systematic and homogeneous resource for constraining models of Galactic evolution.

  12. ARCADE 2 Observations of Galactic Radio Emission

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Fixsen, D. J.; Levin, S. M.; Limon, M.; Lubin, P. M.; Mirel, P.; Seiffert, M.; Singal, J.; Villela, T.; Wollack, E.; hide

    2010-01-01

    We use absolutely calibrated data from the Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE 2) flight in July 2006 to model Galactic emission at frequencies 3, 8, and 10 GHz. The spatial structure in the data is consistent with a superposition of free-free and synchrotron emission. Emission with spatial morphology traced by the Haslam 408 MHz survey has spectral index beta_synch = -2.5 +/- 0.1, with free-free emission contributing 0.10 +/- 0.01 of the total Galactic plane emission in the lowest ARCADE 2 band at 3.15 GHz. We estimate the total Galactic emission toward the polar caps using either a simple plane-parallel model with csc|b| dependence or a model of high-latitude radio emission traced by the COBE/FIRAS map of CII emission. Both methods are consistent with a single power-law over the frequency range 22 MHz to 10 GHz, with total Galactic emission towards the north polar cap T_Gal = 0.498 +/- 0.028 K and spectral index beta = -2.55 +/- 0.03 at reference frequency 0.31 GHz. The well calibrated ARCADE 2 maps provide a new test for spinning dust emission, based on the integrated intensity of emission from the Galactic plane instead of cross-correlations with the thermal dust spatial morphology. The Galactic plane intensity measured by ARCADE 2 is fainter than predicted by models without spinning dust, and is consistent with spinning dust contributing 0.4 +/- 0.1 of the Galactic plane emission at 23 GHz.

  13. Clustering of Local Group Distances: Publication Bias or Correlated Measurements? V. Galactic Rotation Constants

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Bono, Giuseppe

    2017-10-01

    As part of an extensive data mining effort, we have compiled a database of 162 Galactic rotation speed measurements at R 0 (the solar Galactocentric distance), {{{\\Theta }}}0. Published between 1927 and 2017 June, this represents the most comprehensive set of {{{\\Theta }}}0 values since the 1985 meta-analysis that led to the last revision of the International Astronomical Union’s recommended Galactic rotation constants. Although we do not find any compelling evidence for the presence of “publication bias” in recent decades, we find clear differences among the {{{\\Theta }}}0 values and the {{{\\Theta }}}0/{R}0 ratios resulting from the use of different tracer populations. Specifically, young tracers (including OB and supergiant stars, masers, Cepheid variables, H II regions, and young open clusters), as well as kinematic measurements of Sgr A* near the Galactic Center, imply a significantly larger Galactic rotation speed at the solar circle and a higher {{{\\Theta }}}0/{R}0 ratio (i.e., {{{\\Theta }}}0=247+/- 3 km s‑1 and {{{\\Theta }}}0/{R}0=29.81+/- 0.32 km s‑1 kpc‑1 statistical uncertainties only) than any of the tracers dominating the Galaxy’s mass budget (i.e., field stars and the H I/CO distributions). Using the latter to be most representative of the bulk of the Galaxy’s matter distribution, we arrive at an updated set of Galactic rotation constants,

  14. The K2 Galactic Archaeology Program Data Release. I. Asteroseismic Results from Campaign 1

    NASA Astrophysics Data System (ADS)

    Stello, Dennis; Zinn, Joel; Elsworth, Yvonne; Garcia, Rafael A.; Kallinger, Thomas; Mathur, Savita; Mosser, Benoit; Sharma, Sanjib; Chaplin, William J.; Davies, Guy; Huber, Daniel; Jones, Caitlin D.; Miglio, Andrea; Silva Aguirre, Victor

    2017-01-01

    NASA's K2 mission is observing tens of thousands of stars along the ecliptic, providing data suitable for large-scale asteroseismic analyses to inform galactic archaeology studies. Its first campaign covered a field near the north Galactic cap, a region never covered before by large asteroseismic-ensemble investigations, and was therefore of particular interest for exploring this part of our Galaxy. Here we report the asteroseismic analysis of all stars selected by the K2 Galactic Archaeology Program during the mission's “north Galactic cap” campaign 1. Our consolidated analysis uses six independent methods to measure the global seismic properties, in particular the large frequency separation and the frequency of maximum power. From the full target sample of 8630 stars we find about 1200 oscillating red giants, a number comparable with estimates from galactic synthesis modeling. Thus, as a valuable by-product we find roughly 7500 stars to be dwarfs, which provide a sample well suited for galactic exoplanet occurrence studies because they originate from our simple and easily reproducible selection function. In addition, to facilitate the full potential of the data set for galactic archaeology, we assess the detection completeness of our sample of oscillating red giants. We find that the sample is at least nearly complete for stars with 40 ≲ {ν }\\max /μHz ≲ 270 and {ν }\\max ,{detect}< 2.6× {10}6\\cdot {2}-{\\text{Kp}} μHz. There is a detection bias against helium core burning stars with {ν }\\max ˜ 30 μHz, affecting the number of measurements of {{Δ }}ν and possibly also {ν }\\max . Although we can detect oscillations down to {\\text{Kp}} = 15, our campaign 1 sample lacks enough faint giants to assess the detection completeness for stars fainter than {\\text{Kp}} ˜ 14.5.

  15. On the evidence for axionlike particles from active galactic nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pettinari, Guido Walter; Crittenden, Robert

    2010-10-15

    Burrage, Davis, and Shaw recently suggested exploiting the correlations between high and low energy luminosities of astrophysical objects to probe possible mixing between photons and axionlike particles (ALP) in magnetic field regions. They also presented evidence for the existence of ALP's by analyzing the optical/UV and x-ray monochromatic luminosities of active galactic nuclei. We extend their work by using the monochromatic luminosities of 320 unobscured active galactic nuclei from the Sloan Digital Sky Survey/Xmm-Newton Quasar Survey which allows the exploration of 18 different combinations of optical/UV and x-ray monochromatic luminosities. However, we do not find compelling evidence for the existencemore » of ALPs. Moreover, it appears that the signal reported by Burrage et al. is more likely due to x-ray absorption rather than to photon-ALP oscillation.« less

  16. The physics of galactic winds driven by active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Faucher-Giguère, Claude-André; Quataert, Eliot

    2012-09-01

    Active galactic nuclei (AGN) drive fast winds in the interstellar medium of their host galaxies. It is commonly assumed that the high ambient densities and intense radiation fields in galactic nuclei imply short cooling times, thus making the outflows momentum conserving. We show that cooling of high-velocity shocked winds in AGN is in fact inefficient in a wide range of circumstances, including conditions relevant to ultraluminous infrared galaxies (ULIRGs), resulting in energy-conserving outflows. We further show that fast energy-conserving outflows can tolerate a large amount of mixing with cooler gas before radiative losses become important. For winds with initial velocity vin ≳ 10 000 km s-1, as observed in ultraviolet and X-ray absorption, the shocked wind develops a two-temperature structure. While most of the thermal pressure support is provided by the protons, the cooling processes operate directly only on the electrons. This significantly slows down inverse Compton cooling, while free-free cooling is negligible. Slower winds with vin ˜ 1000 km s-1, such as may be driven by radiation pressure on dust, can also experience energy-conserving phases but under more restrictive conditions. During the energy-conserving phase, the momentum flux of an outflow is boosted by a factor ˜vin/2vs by work done by the hot post-shock gas, where vs is the velocity of the swept-up material. Energy-conserving outflows driven by fast AGN winds (vin ˜ 0.1c) may therefore explain the momentum fluxes Ṗ≫LAGN/c of galaxy-scale outflows recently measured in luminous quasars and ULIRGs. Shocked wind bubbles expanding normal to galactic discs may also explain the large-scale bipolar structures observed in some systems, including around the Galactic Centre, and can produce significant radio, X-ray and γ-ray emission. The analytic solutions presented here will inform implementations of AGN feedback in numerical simulations, which typically do not include all the important

  17. Origin of X-Ray and Gamma-Ray Emission from the Galactic Central Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chernyshov, D. O.; Dogiel, V. A.; Cheng, K.-S.

    We study a possible connection between different non-thermal emissions from the inner few parsecs of the Galaxy. We analyze the origin of the gamma-ray source 2FGL J1745.6−2858 (or 3FGL J1745.6−2859c) in the Galactic Center (GC) and the diffuse hard X-ray component recently found by the Nuclear Spectroscopic Telescope Array , as well as the radio emission and processes of hydrogen ionization from this area. We assume that a source in the GC injected energetic particles with power-law spectrum into the surrounding medium in the past or continues to inject until now. The energetic particles may be protons, electrons, or amore » combination of both. These particles diffuse to the surrounding medium and interact with gas, magnetic field, and background photons to produce non-thermal emissions. We study the spectral and spatial features of the hard X-ray emission and gamma-ray emission by the particles from the central source. Our goal is to examine whether the hard X-ray and gamma-ray emissions have a common origin. Our estimations show that, in the case of pure hadronic models, the expected flux of hard X-ray emission is too low. Despite the fact that protons can produce a non-zero contribution in gamma-ray emission, it is unlikely that they and their secondary electrons can make a significant contribution in hard X-ray flux. In the case of pure leptonic models, it is possible to reproduce both X-ray and gamma-ray emissions for both transient and continuous supply models. However, in the case of the continuous supply model, the ionization rate of molecular hydrogen may significantly exceed the observed value.« less

  18. Hot stars in young massive clusters: Mapping the current Galactic metallicity

    NASA Astrophysics Data System (ADS)

    de la Fuente, Diego; Najarro, Francisco; Davies, Ben; Trombley, Christine; Figer, Donald F.; Herrero, Artemio

    2013-06-01

    Young Massive Clusters (YMCs) with ages < 6 Myr are ideal tools for mapping the current chemical abundances in the Galactic disk for several reasons. First of all, the locations of these clusters can be known through spectrophotometric distances. Secondly, their young ages guarantee that these objects present the same chemical composition than the surrounding environment where they are recently born. Finally, the YMCs host very massive stars whose extreme luminosities allow to accomplish detailed spectroscopic analyses even in the most distant regions of the Milky Way. Our group has carried out ISAAC/VLT spectroscopic observations of hot massive stars belonging to several YMCs in different locations around the Galactic disk. As a result, high signal-to-noise, near-infrared spectra of dozens of blue massive stars (including many OB supergiants, Wolf-Rayet stars and a B hypergiant) have been obtained. These data are fully reduced, and NLTE spherical atmosphere modeling is in process. Several line diagnostics will be combined in order to calculate metal abundances accurately for each cluster. The diverse locations of the clusters will allow us to draw a two-dimensional chemical map of the Galactic disk for the first time. The study of the radial and azimuthal variations of elemental abundances will be crucial for understanding the chemical evolution of the Milky Way. Particularly, the ratio between Fe-peak and alpha elements will constitute a powerful tool to investigate the past stellar populations that originated the current Galactic chemistry.

  19. Ice Mapping Observations in Galactic Star-Forming Regions: the AKARI Legacy

    NASA Astrophysics Data System (ADS)

    Fraser, Helen Jane; Suutarinnen, Aleksi; Noble, Jennifer

    2015-08-01

    It is becoming increasingly clear that explaining the small-scale distribution of many gas-phase molecules relies on our interpretation of the complex inter-connectivity between gas- and solid-phase interstellar chemistries. Inputs to proto-stellar astrochemical models are required that exploit ice compositions reflecting the historical physical conditions in pre-stellar environments when the ices first formed. Such data are required to translate the near-universe picture of ice-composition to our understanding of the role of extra-galactic ices in star-formation at higher redshifts.Here we present the first attempts at multi-object ice detections, and the subsequent ice column density mapping. The AKARI space telescope was uniquely capable of observing all the ice features between 2 and 5 microns, thereby detecting H2O, CO and CO2 ices concurrently, through their stretching vibrational features. Our group has successfully extracted an unprecedented volume of ice spectra from AKARI, including sources with not more than 2 mJy flux at 3 microns, showing:(a) H2O CO and CO2 ices on 30 lines of sight towards pre-stellar and star-forming cores, which when combined with laboratory experiments indicate how the chemistries of these three ices are interlinked (Noble et al (2013)),(b) ice maps showing the spatial distribution of water ice across 12 pre-stellar cores, in different molecular clouds (Suutarinnen et al (2015)), and the distribution of ice components within these cores on 1000 AU scales (Noble et al (2015)),(c) over 200 new detections of water ice, mostly on lines of sight towards background sources (> 145), indicating that water ice column density has a minimum value as a function of Av, but on a cloud-by-cloud basis typically correlates with Av, and dust emissivity at 250 microns (Suutarinnen et al (2015)),(d) the first detections of HDO ice towards background stars (Fraser et al (2015)).We discuss whether these results support the picture of a generic chemical

  20. OT2_tvelusam_4: Probing Galactic Spiral Arm Tangencies with [CII

    NASA Astrophysics Data System (ADS)

    Velusamy, T.

    2011-09-01

    We propose to use the unique viewing geometry of the Galactic spiral arm tangents , which provide an ideal environment for studying the effects of density waves on spiral structure. We propose a well-sampled map of the[C II] 1.9 THz line emission along a 15-degree longitude region across the Norma-3kpc arm tangential, which includes the edge of the Perseus Arm. The COBE-FIRAS instrument observed the strongest [C II] and [N II] emission along these spiral arm tangencies.. The Herschel Open Time Key Project Galactic Observations of Terahertz C+ (GOT C+), also detects the strongest [CII] emission near these spiral arm tangential directions in its sparsely sampled HIFI survey of [CII] in the Galactic plane survey. The [C II] 158-micron line is the strongest infrared line emitted by the ISM and is an excellent tracer and probe of both the diffuse gases in the cold neutral medium (CNM) and the warm ionized medium (WIM). Furthermore, as demonstrated in the GOTC+ results, [C II] is an efficient tracer of the dark H2 gas in the ISM that is not traced by CO or HI observations. Thus, taking advantage of the long path lengths through the spiral arm across the tangencies, we can use the [C II] emission to trace and characterize the diffuse atomic and ionized gas as well as the diffuse H2 molecular gas in cloud transitions from HI to H2 and C+ to C and CO, throughout the ISM. The main goal of our proposal is to use the well sampled (at arcmin scale) [C II] to study these gas components of the ISM in the spiral-arm, and inter-arm regions, to constrain models of the spiral structure and to understand the influence of spiral density waves on the Galactic gas and the dynamical interaction between the different components. The proposed HIFI observations will consist of OTF 15 degree longitude scans and one 2-degree latitude scan sampled every 40arcsec across the Norma- 3kpc Perseus Spiral tangency.

  1. Strongly Magnetized Accretion Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell

    Accretion disks likely provide the conduit for fueling active galactic nuclei (AGN), linking the black hole's immediate surroundings to the host galaxy's nuclear star cluster, and possibly beyond. Yet detailed AGN disk models fail to explain several of the most basic observational features of AGN: How do the outer regions of the disk avoid stalling as a result of wholesale gravitational fragmentation? What regulates the amount of star formation that is inferred to accompany accretion in some AGN? Why is the broad emission line region a ubiquitous feature of luminous AGN? What processes create and maintain the so-called "dusty torus"? Analytic work suggests that vertical pressure support of the disk primarily by a toroidal magnetic field, rather than by gas or radiation pressure, can readily resolve these problems. And recent numerical simulations have indicated that such a strong toroidal field is the inevitable consequence of the magnetorotational instability (MRI) when a disk accumulates a modest amount of net magnetic flux, thus providing a sound theoretical basis for strongly magnetized disks. We propose an analytic and computational study of such disks in the AGN context, focusing on: (1) The basic physical properties of strongly magnetized AGN disks. We will focus on the competition between field generation and buoyancy, improving on previous work by considering realistic equations of state, dissipative processes and radiative losses. We will use global simulations to test the limiting magnetic fields that can be produced by MRIdriven accretion disk dynamos and explore the driving mechanisms of disk winds and the resulting levels of mass, angular momentum and energy loss. (2) Gravitational fragmentation and star formation in strongly magnetized disks. We will determine how a strong field reduces and regulates gravitational fragmentation, by both lowering the disk density and creating a stratified structure in which star formation near the equator can co

  2. THE BOLOCAM GALACTIC PLANE SURVEY. VIII. A MID-INFRARED KINEMATIC DISTANCE DISCRIMINATION METHOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellsworth-Bowers, Timothy P.; Glenn, Jason; Battersby, Cara

    2013-06-10

    We present a new distance estimation method for dust-continuum-identified molecular cloud clumps. Recent (sub-)millimeter Galactic plane surveys have cataloged tens of thousands of these objects, plausible precursors to stellar clusters, but detailed study of their physical properties requires robust distance determinations. We derive Bayesian distance probability density functions (DPDFs) for 770 objects from the Bolocam Galactic Plane Survey in the Galactic longitude range 7. Degree-Sign 5 {<=} l {<=} 65 Degree-Sign . The DPDF formalism is based on kinematic distances, and uses any number of external data sets to place prior distance probabilities to resolve the kinematic distance ambiguity (KDA)more » for objects in the inner Galaxy. We present here priors related to the mid-infrared absorption of dust in dense molecular regions and the distribution of molecular gas in the Galactic disk. By assuming a numerical model of Galactic mid-infrared emission and simple radiative transfer, we match the morphology of (sub-)millimeter thermal dust emission with mid-infrared absorption to compute a prior DPDF for distance discrimination. Selecting objects first from (sub-)millimeter source catalogs avoids a bias towards the darkest infrared dark clouds (IRDCs) and extends the range of heliocentric distance probed by mid-infrared extinction and includes lower-contrast sources. We derive well-constrained KDA resolutions for 618 molecular cloud clumps, with approximately 15% placed at or beyond the tangent distance. Objects with mid-infrared contrast sufficient to be cataloged as IRDCs are generally placed at the near kinematic distance. Distance comparisons with Galactic Ring Survey KDA resolutions yield a 92% agreement. A face-on view of the Milky Way using resolved distances reveals sections of the Sagittarius and Scutum-Centaurus Arms. This KDA-resolution method for large catalogs of sources through the combination of (sub-)millimeter and mid-infrared observations of

  3. Regional Seminars to Address Current Nuclear Export Control Issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Killinger, Mark H.

    2002-07-01

    The control of nuclear-related exports, a critical component of the nonproliferation regime, is facing several opportunities and challenges. As countries sign and ratify the International Atomic Energy Agency's (IAEA) safeguards Additional Protocol (AP), they will begin to report far more export information, including exports of a list of items similar to the Nuclear Supplier Group's Trigger List that existed when the AP was developed in the mid-1990s. This positive development contrasts with challenges such as globalization, transshipments, and tracking of end-uses. Pacific Northwest National Laboratory is proposing that the US Department of Energy (DOE) develop regional seminars that address thesemore » types of issues related to export/import controls. The DOE seminars would be designed to supplement regional seminars sponsored by the IAEA and member states on topics related to the Additional Protocol (referred to as "IAEA seminars"). The topic of nuclear export/import controls is not thoroughly addressed in the IAEA seminars. The proposed DOE seminars would therefore have two objectives: familiarizing countries with the export/import provisions of the Additional Protocol, and addressing challenges such as those noted above. The seminars would be directed particularly at countries that have not ratified the AP, and at regions where export-related problems are particularly prevalent. The intent is to encourage governments to implement more effective nuclear export control systems that meet the challenges of the 21st century.« less

  4. Origin of Enigmatic Galactic-center Filaments Revealed

    NASA Astrophysics Data System (ADS)

    2004-06-01

    Twenty years ago, astronomers discovered a number of enigmatic radio-emitting filaments concentrated near the center of the Milky Way Galaxy. These features initially defied explanation, but a new study of radio images of the Galactic center may point to their possible source. By combining data from the National Science Foundation's Very Large Array (VLA) and Robert C. Byrd Green Bank Telescope (GBT) astronomer Farhad Yusef-Zadeh of Northwestern University has found evidence that at least some of the filaments spring from the concentrated star-formation regions that populate the Galactic center. Galatic Center Combined VLA and GBT image (green) of the Galactic center, with red inset of GBT data only (red). Bright region on right is location of supermassive black hole. Linear filaments are visible above this area. CREDIT: NRAO/AUI/NSF Yusef-Zadeh, et.al. (Click on Image for Larger Version) Yusef-Zadeh presented his findings at the Denver, Colorado, meeting of the American Astronomical Society. William Cotton of the National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia, and William Hewitt of Northwestern University also contributed to this research. "Astronomers have long puzzled over the cause of these striking features," said Yusef-Zadeh, "and the turbulent nature of the Galactic center has made detailed analysis difficult. With new multi-wavelength radio images of the Galactic center, however, we can finally see a link between areas of starburst activity and these long-linear filaments." The filaments, which range from 10 to 100 light-years in length and are perhaps little more than 1 to 3 light-years across, occur only in a very narrow area, within approximately two degrees of the Galactic center (which translates to approximately 900 light-years across). Early theories about the origin of these filaments suggested that they were somehow related to the Milky Way’s own magnetic field. This was due to the fact that the first filaments detected

  5. 10 CFR Appendix D to Part 20 - United States Nuclear Regulatory Commission Regional Offices

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false United States Nuclear Regulatory Commission Regional Offices D Appendix D to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. D Appendix D to Part 20—United States Nuclear Regulatory Commission Regional Offices...

  6. 10 CFR Appendix D to Part 20 - United States Nuclear Regulatory Commission Regional Offices

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false United States Nuclear Regulatory Commission Regional Offices D Appendix D to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. D Appendix D to Part 20—United States Nuclear Regulatory Commission Regional Offices...

  7. 10 CFR Appendix D to Part 20 - United States Nuclear Regulatory Commission Regional Offices

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false United States Nuclear Regulatory Commission Regional Offices D Appendix D to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. D Appendix D to Part 20—United States Nuclear Regulatory Commission Regional Offices...

  8. 10 CFR Appendix D to Part 20 - United States Nuclear Regulatory Commission Regional Offices

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false United States Nuclear Regulatory Commission Regional Offices D Appendix D to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. D Appendix D to Part 20—United States Nuclear Regulatory Commission Regional Offices...

  9. 10 CFR Appendix D to Part 20 - United States Nuclear Regulatory Commission Regional Offices

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false United States Nuclear Regulatory Commission Regional Offices D Appendix D to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. D Appendix D to Part 20—United States Nuclear Regulatory Commission Regional Offices...

  10. GRIS observations of Al-26 gamma-ray line emission from two points in the Galactic plane

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Barthelmy, S. D.; Gehrels, N.; Tueller, J.; Leventhal, M.

    1991-01-01

    Both of the Gamma-Ray Imaging Spectrometer (GRIS) experiment's two observations of the Galactic center region, at l = zero and 335 deg respectively, detected Al-26 gamma-ray line emission. While these observations are consistent with the assumed high-energy gamma-ray distribution, they are consistent with other distributions as well. The data suggest that the Al-26 emission is distributed over Galactic longitude rather than being confined to a point source. The GRIS data also indicate that the 1809 keV line is broadened.

  11. Atmospheric effects and societal consequences of regional scale nuclear conflicts and acts of individual nuclear terrorism

    NASA Astrophysics Data System (ADS)

    Toon, O. B.; Turco, R. P.; Robock, A.; Bardeen, C.; Oman, L.; Stenchikov, G. L.

    2007-04-01

    We assess the potential damage and smoke production associated with the detonation of small nuclear weapons in modern megacities. While the number of nuclear warheads in the world has fallen by about a factor of three since its peak in 1986, the number of nuclear weapons states is increasing and the potential exists for numerous regional nuclear arms races. Eight countries are known to have nuclear weapons, 2 are constructing them, and an additional 32 nations already have the fissile material needed to build substantial arsenals of low-yield (Hiroshima-sized) explosives. Population and economic activity worldwide are congregated to an increasing extent in megacities, which might be targeted in a nuclear conflict. We find that low yield weapons, which new nuclear powers are likely to construct, can produce 100 times as many fatalities and 100 times as much smoke from fires per kt yield as previously estimated in analyses for full scale nuclear wars using high-yield weapons, if the small weapons are targeted at city centers. A single "small" nuclear detonation in an urban center could lead to more fatalities, in some cases by orders of magnitude, than have occurred in the major historical conflicts of many countries. We analyze the likely outcome of a regional nuclear exchange involving 100 15-kt explosions (less than 0.1% of the explosive yield of the current global nuclear arsenal). We find that such an exchange could produce direct fatalities comparable to all of those worldwide in World War II, or to those once estimated for a "counterforce" nuclear war between the superpowers. Megacities exposed to atmospheric fallout of long-lived radionuclides would likely be abandoned indefinitely, with severe national and international implications. Our analysis shows that smoke from urban firestorms in a regional war would rise into the upper troposphere due to pyro-convection. Robock et al. (2007) show that the smoke would subsequently rise deep into the stratosphere due

  12. The NuSTAR Hard X-Ray Survey of the Norma Arm Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fornasini, Francesca M.; Tomsick, John A.; Chiu, Jeng-Lun

    2017-04-01

    We present a catalog of hard X-ray sources in a square-degree region surveyed by the Nuclear Spectroscopic Telescope Array ( NuSTAR ) in the direction of the Norma spiral arm. This survey has a total exposure time of 1.7 Ms, and the typical and maximum exposure depths are 50 ks and 1 Ms, respectively. In the area of deepest coverage, sensitivity limits of 5 × 10{sup −14} and 4 × 10{sup −14} erg s{sup −1} cm{sup −2} in the 3–10 and 10–20 keV bands, respectively, are reached. Twenty-eight sources are firmly detected, and 10 are detected with low significance; 8 of the 38 sources are expected tomore » be active galactic nuclei. The three brightest sources were previously identified as a low-mass X-ray binary, high-mass X-ray binary, and pulsar wind nebula. Based on their X-ray properties and multiwavelength counterparts, we identify the likely nature of the other sources as two colliding wind binaries, three pulsar wind nebulae, a black hole binary, and a plurality of cataclysmic variables (CVs). The CV candidates in the Norma region have plasma temperatures of ≈10–20 keV, consistent with the Galactic ridge X-ray emission spectrum but lower than the temperatures of CVs near the Galactic center. This temperature difference may indicate that the Norma region has a lower fraction of intermediate polars relative to other types of CVs compared to the Galactic center. The NuSTAR log N –log S distribution in the 10–20 keV band is consistent with the distribution measured by Chandra at 2–10 keV if the average source spectrum is assumed to be a thermal model with kT  ≈ 15 keV, as observed for the CV candidates.« less

  13. Galactic Train Wrecks

    NASA Image and Video Library

    2011-05-25

    This montage combines observations from NASA Spitzer Space Telescope and NASA Galaxy Evolution Explorer GALEX spacecraft showing three examples of colliding galaxies from a new photo atlas of galactic train wrecks.

  14. Galactic Winds and the Role Played by Massive Stars

    NASA Astrophysics Data System (ADS)

    Heckman, Timothy M.; Thompson, Todd A.

    Galactic winds from star-forming galaxies play at key role in the evolution of galaxies and the intergalactic medium. They transport metals out of galaxies, chemically enriching the intergalactic medium and modifying the chemical evolution of galaxies. They affect the surrounding interstellar and circumgalactic media, thereby influencing the growth of galaxies though gas accretion and star formation. In this contribution we first summarize the physical mechanisms by which the momentum and energy output from a population of massive stars and associated supernovae can drive galactic winds. We use the prototypical example of M 82 to illustrate the multiphase nature of galactic winds. We then describe how the basic properties of galactic winds are derived from the data, and summarize how the properties of galactic winds vary systematically with the properties of the galaxies that launch them. We conclude with a brief discussion of the broad implications of galactic winds.

  15. The galactic contribution to IceCube's astrophysical neutrino flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denton, Peter B.; Marfatia, Danny; Weiler, Thomas J., E-mail: peterbd1@gmail.com, E-mail: dmarf8@hawaii.edu, E-mail: tom.weiler@vanderbilt.edu

    2017-08-01

    High energy neutrinos have been detected by IceCube, but their origin remains a mystery. Determining the sources of this flux is a crucial first step towards multi-messenger studies. In this work we systematically compare two classes of sources with the data: galactic and extragalactic. We assume that the neutrino sources are distributed according to a class of Galactic models. We build a likelihood function on an event by event basis including energy, event topology, absorption, and direction information. We present the probability that each high energy event with deposited energy E {sub dep}>60 TeV in the HESE sample is Galactic,more » extragalactic, or background. For Galactic models considered the Galactic fraction of the astrophysical flux has a best fit value of 1.3% and is <9.5% at 90% CL. A zero Galactic flux is allowed at <1σ.« less

  16. WISEGAL. WISE for the Galactic Plane

    NASA Astrophysics Data System (ADS)

    Noriega-Crespo, Alberto

    There is truly a community effort to study on a global scale the properties of the Milky Way, like its structure, its star formation and interstellar medium, and to use this knowledge to create accurate templates to understand the properties of extragalactic systems. A testimony of this effort are the multi-wavelength surveys of the Galactic Plane that have been recently carried out or are underway from both the ground (e.g. IPHAS, ATLASGAL, JCMT Galactic Plane Survey) or space (GLIMPSE, MIPSGAL, HiGAL). Adding to this wealth of data is the recent release of approximately 57 percent of the whole sky by the Wide-field Infrared Survey Explorer (WISE) team of their high angular resolution and sensitive mid-IR (3.4, 4.6, 12 and 22 micron) images and point source catalogs, encompassing nearly three quarters of the Galactic Plane, including the less studied regions of the Outer Galaxy. The WISE Atlas Images are spectacular, but to take full advantage of them, they need to be transformed from their default Data Number (DN) units into absolute surface brightness calibrated units. Furthermore, to mitigate the contamination effect of the point sources on the extended/diffuse emission, we will remove them and create residual images. This processing will enable a wide range of science projects using the Atlas Images, where measuring the spectral energy distribution of the extended emission is crucial. In this project we propose to transform the W3 (12 micron) and W4 (22 micron) images of the Galactic Plane, in particular of the Outer Galaxy where WISE provides an unique data set, into a background-calibrated, point-source subtracted images using IRIS (DIRBE IRAS Calibrated data). This transformation will allow us to carry out research projects on Massive star formation, the properties of dust in the diffuse ISM, the three dimensional distribution of the dust emission in the Galaxy and the mid/far infrared properties of Supernova Remnants, among others, and to perform a

  17. Global dynamics and diffusion in triaxial galactic models

    NASA Astrophysics Data System (ADS)

    Papaphilippou, Y.

    We apply the Frequency Map Analysis method to the 3--dimensional logarithmic galactic potential in order to clarify the dynamical behaviour of triaxial power--law galactic models. All the fine dynamical details are displayed in the complete frequency map, a direct representation of the system's Arnol'd web. The influence of resonant lines and the extent of the chaotic zones are directly associated with the physical space of the system. Some new results related with the diffusion of galactic orbits are also discussed. This approach reveals many unknown dynamical features of triaxial galactic potentials and provides strong indications that chaos should be an innate characteristic of triaxial configurations.

  18. The Planck Catalogue of Galactic Cold Clumps : PGCC

    NASA Astrophysics Data System (ADS)

    Montier, L.

    The Planck satellite has provided an unprecedented view of the submm sky, allowing us to search for the dust emission of Galactic cold sources. Combining Planck-HFI all-sky maps in the high frequency channels with the IRAS map at 100um, we built the Planck catalogue of Galactic Cold Clumps (PGCC, Planck 2015 results. XXVIII), counting 13188 sources distributed over the whole sky, and following mainly the Galactic structures at low and intermediate latitudes. This is the first all-sky catalogue of Galactic cold sources obtained with a single instrument at this resolution and sensitivity, which opens a new window on star-formation processes in our Galaxy.

  19. Herschel Galactic plane survey of ionized gas traced by [NII

    NASA Astrophysics Data System (ADS)

    Yildiz, Umut; Goldsmith, Paul; Pineda, Jorge; Langer, William

    2015-01-01

    Far infrared and sub-/millimeter atomic & ionic fine structure and molecular rotational lines are powerful tracers of star formation on both Galactic and extragalactic scales. Although CO lines trace cool to moderately warm molecular gas, ionized carbon [CII] produces the strongest lines, which arise from almost all reasonably warm (T>50 K) parts of the ISM. However, [CII] alone cannot distinguish highly ionized gas from weakly ionized gas. [NII] plays a significant role in star formation as it is produced only in ionized regions; in [HII] regions as well as diffuse ionized gas. The ionization potential of nitrogen (14.5 eV) is greater than that of hydrogen (13.6 eV), therefore the ionized nitrogen [NII] lines reflect the effects of massive stars, with possible enhancement from X-ray and shock heating from the surroundings. Two far-infrared 122 um and 205 um [NII] fine structure spectral lines are targeted via Photodetector Array Camera and Spectrometer (PACS) onboard Herschel Space Observatory. The sample consists of 149 line-of-sight (LOS) positions in the Galactic plane. These positions overlap with the [CII] 158 um observations obtained with the GOT C+ survey. With a reasonable assumption that the emission from both 122 um and 205 um lines originate in the same gas; [NII] 122/205 um line ratio indicates the a good measure of the electron density of each of the LOS positions. [NII] detections are mainly toward the Galactic center direction and the [NII] electron densities are found between 7-50 cm^-3, which is enhanced WIM (Warm Ionized Medium). WIM densities are expected to be much lower (~1 cm-3), therefore non-detections toward the opposite side of the Galactic Center shows abundant of this gas. The pixel to pixel variation of the emission within a single Herschel pointing is relatively small, which is interpreted as the [NII] emission comes from an extended gas. It is important to quantify what fraction of [CII] emission arises in the ionized gas. Thus, with

  20. Pitch angle of galactic spiral arms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michikoshi, Shugo; Kokubo, Eiichiro, E-mail: michiko@mail.doshisha.ac.jp, E-mail: kokubo@th.nao.ac.jp

    2014-06-01

    One of the key parameters that characterizes spiral arms in disk galaxies is a pitch angle that measures the inclination of a spiral arm to the direction of galactic rotation. The pitch angle differs from galaxy to galaxy, which suggests that the rotation law of galactic disks determines it. In order to investigate the relation between the pitch angle of spiral arms and the shear rate of galactic differential rotation, we perform local N-body simulations of pure stellar disks. We find that the pitch angle increases with the epicycle frequency and decreases with the shear rate and obtain the fittingmore » formula. This dependence is explained by the swing amplification mechanism.« less

  1. The distances of the Galactic Novae

    NASA Astrophysics Data System (ADS)

    Ozdonmez, Aykut; Guver, Tolga; Cabrera-Lavers, Antonio; Ak, Tansel

    2016-07-01

    Using location of the RC stars on the CMDs obtained from the UKIDSS, VISTA and 2MASS photometry, we have derived the reddening-distance relations towards each Galactic nova for which at least one independent reddening measurement exists. We were able to determine the distances of 72 Galactic novae and set lower limits on the distances of 45 systems. The reddening curves of the systems are presented. These curves can be also used to estimate reddening or the distance of any source, whose location is close to the position of the nova in our sample. The distance measurement method in our study can be easily applicable to any source, especially for ones that concentrated along the Galactic plane.

  2. Milky Way Tomography with K and M Dwarf Stars: The Vertical Structure of the Galactic Disk

    NASA Astrophysics Data System (ADS)

    Ferguson, Deborah; Gardner, Susan; Yanny, Brian

    2017-07-01

    We use the number density distributions of K and M dwarf stars with vertical height from the Galactic disk, determined using observations from the Sloan Digital Sky Survey, to probe the structure of the Milky Way disk across the survey’s footprint. Using photometric parallax as a distance estimator we analyze a sample of several million disk stars in matching footprints above and below the Galactic plane, and we determine the location and extent of vertical asymmetries in the number counts in a variety of thin- and thick-disk subsamples in regions of some 200 square degrees within 2 kpc in vertical distance from the Galactic disk. These disk asymmetries present wave-like features as previously observed on other scales and at other distances from the Sun. We additionally explore the scale height of the disk and the implied offset of the Sun from the Galactic plane at different locations, noting that the scale height of the disk can differ significantly when measured using stars only above or only below the plane. Moreover, we compare the shape of the number density distribution in the north for different latitude ranges with a fixed range in longitude and find the shape to be sensitive to the selected latitude window. We explain why this may be indicative of a change in stellar populations in the latitude regions compared, possibly allowing access to the systematic metallicity difference between thin- and thick-disk populations through photometry.

  3. Milky Way Tomography with K and M Dwarf Stars: The Vertical Structure of the Galactic Disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson, Deborah; Gardner, Susan; Yanny, Brian

    2017-07-10

    We use the number density distributions of K and M dwarf stars with vertical height from the Galactic disk, determined using observations from the Sloan Digital Sky Survey, to probe the structure of the Milky Way disk across the survey’s footprint. Using photometric parallax as a distance estimator we analyze a sample of several million disk stars in matching footprints above and below the Galactic plane, and we determine the location and extent of vertical asymmetries in the number counts in a variety of thin- and thick-disk subsamples in regions of some 200 square degrees within 2 kpc in verticalmore » distance from the Galactic disk. These disk asymmetries present wave-like features as previously observed on other scales and at other distances from the Sun. We additionally explore the scale height of the disk and the implied offset of the Sun from the Galactic plane at different locations, noting that the scale height of the disk can differ significantly when measured using stars only above or only below the plane. Moreover, we compare the shape of the number density distribution in the north for different latitude ranges with a fixed range in longitude and find the shape to be sensitive to the selected latitude window. We explain why this may be indicative of a change in stellar populations in the latitude regions compared, possibly allowing access to the systematic metallicity difference between thin- and thick-disk populations through photometry.« less

  4. Milky Way tomography with K and M dwarf stars: The vertical structure of the galactic disk

    DOE PAGES

    Ferguson, Deborah; Gardner, Susan; Yanny, Brian

    2017-06-02

    Here, we use the number density distributions of K and M dwarf stars with vertical height from the Galactic disk, determined using observations from the Sloan Digital Sky Survey (SDSS), to probe the structure of the Milky Way disk across the survey's footprint. Using photometric parallax as a distance estimator we analyze a sample of several million disk stars in matching footprints above and below the Galactic plane, and we determine the location and extent of vertical asymmetries in the number counts in a variety of thin and thick disk subsamples in regions of some 200 square degrees within 2more » kpc in vertical distance from the Galactic disk. These disk asymmetries present wave-like features as previously observed on other scales and distances from the Sun. We additionally explore the scale height of the disk and the implied offset of the Sun from the Galactic plane at different locations, noting that the scale height of the disk can differ significantly when measured using stars only above or only below the plane. Moreover, we compare the shape of the number density distribution in the north for different latitude ranges with a fixed range in longitude and find the shape to be sensitive to the selected latitude window. We explain why this may be indicative of a change in stellar populations in the compared latitude regions, possibly allowing access to the systematic metallicity difference between thin and thick disk populations through photometry.« less

  5. Searching for fossil fragments of the Galactic bulge formation process

    NASA Astrophysics Data System (ADS)

    Ferraro, Francesco

    2017-08-01

    We have discovered that the stellar system Terzan5 (Ter5) in the Galactic bulge harbors stellar populations with very different IRON content (delta[Fe/H] 1 dex, Ferraro+09, Nature 462, 483) and AGES (12 Gyr and 4.5 Gyr for the sub-solar and super-solar metallicity populations, respectively, Ferraro+16, ApJ,828,75). This evidence demonstrates that Ter5 is not a globular cluster, and identifies it as (1) a site in the Galactic bulge where recent star formation occurred, and (2) the remnant of a massive system able to retain the iron-enriched gas ejected by violent supernova explosions. The striking chemical similarity between Ter5 and the bulge opens the fascinating possibility that we discovered the fossil remnant of a pristine massive structure that could have contributed to the Galactic bulge assembly.Prompted by this finding, here we propose to secure deep HST optical observations for the bulge stellar system Liller1, that shows a similar complexity as Ter5, with evidence of two stellar populations with different iron content. The immediate goal is to properly explore the main sequence turnoff region of the system for unveiling possible splits due to stellar populations of different ages. As demonstrated by our experience with Ter5, the requested HST observations, in combination with the K-band diffraction limited images that we already secured with GeMS-Gemini, are essential to achieve this goal.The project will allow us to establish if other fossil remnants of the bulge formation epoch do exist, thus probing that the merging of pre-evolved massive structures has been an important channel for the formation of the Galactic bulge.

  6. South Galactic Cap u-band Sky Survey (SCUSS): Data Release

    NASA Astrophysics Data System (ADS)

    Zou, Hu; Zhou, Xu; Jiang, Zhaoji; Peng, Xiyan; Fan, Dongwei; Fan, Xiaohui; Fan, Zhou; He, Boliang; Jing, Yipeng; Lesser, Michael; Li, Cheng; Ma, Jun; Nie, Jundan; Shen, Shiyin; Wang, Jiali; Wu, Zhenyu; Zhang, Tianmeng; Zhou, Zhimin

    2016-02-01

    The South Galactic Cap u-band Sky Survey (SCUSS) is a deep u-band imaging survey in the south Galactic cap using the 2.3 m Bok telescope. The survey observations were completed at the end of 2013, covering an area of about 5000 square degrees. We release the data in the region with an area of about 4000 deg2 that is mostly covered by the Sloan digital sky survey. The data products contain calibrated single-epoch images, stacked images, photometric catalogs, and a catalog of star proper motions derived by Peng et al. The median seeing and magnitude limit (5σ) are about 2.″0 and 23.2 mag, respectively. There are about 8 million objects having measurements of absolute proper motions. All the data and related documentations can be accessed through the SCUSS data release website http://batc.bao.ac.cn/Uband/data.html.

  7. Anomalous Transport of High Energy Cosmic Rays in Galactic Superbubbles

    NASA Technical Reports Server (NTRS)

    Barghouty, Nasser F.

    2014-01-01

    High-energy cosmic rays may exhibit anomalous transport as they traverse and are accelerated by a collection of supernovae explosions in a galactic superbubble. Signatures of this anomalous transport can show up in the particles' evolution and their spectra. In a continuous-time-random- walk (CTRW) model assuming standard diffusive shock acceleration theory (DSA) for each shock encounter, and where the superbubble (an OB stars association) is idealized as a heterogeneous region of particle sources and sinks, acceleration and transport in the superbubble can be shown to be sub-diffusive. While the sub-diffusive transport can be attributed to the stochastic nature of the acceleration time according to DSA theory, the spectral break appears to be an artifact of transport in a finite medium. These CTRW simulations point to a new and intriguing phenomenon associated with the statistical nature of collective acceleration of high energy cosmic rays in galactic superbubbles.

  8. The Planck Catalogue of Galactic Cold Clumps : Looking at the early stages of star-formation

    NASA Astrophysics Data System (ADS)

    Montier, Ludovic

    2015-08-01

    The Planck satellite has provided an unprecedented view of the submm sky, allowing us to search for the dust emission of Galactic cold sources. Combining Planck-HFI all-sky maps in the high frequency channels with the IRAS map at 100um, we built the Planck catalogue of Galactic Cold Clumps (PGCC, Planck 2015 results XXVIII 2015), counting 13188 sources distributed over the whole sky, and following mainly the Galactic structures at low and intermediate latitudes. This is the first all-sky catalogue of Galactic cold sources obtained with a single instrument at this resolution and sensitivity, which opens a new window on star-formation processes in our Galaxy.I will briefly describe the colour detection method used to extract the Galactic cold sources, i.e., the Cold Core Colour Detection Tool (CoCoCoDeT, Montier et al. 2010), and its application to the Planck data. I will discuss the statistical distribution of the properties of the PGCC sources (in terms of dust temperature, distance, mass, density and luminosity), which illustrates that the PGCC catalogue spans a large variety of environments and objects, from molecular clouds to cold cores, and covers various stages of evolution. The Planck catalogue is a very powerful tool to study the formation and the evolution of prestellar objects and star-forming regions.I will finally present an overview of the Herschel Key Program Galactic Cold Cores (PI. M.Juvela), which allowed us to follow-up about 350 Planck Galactic Cold Clumps, in various stages of evolution and environments. With this program, the nature and the composition of the 5' Planck sources have been revealed at a sub-arcmin resolution, showing very different configurations, such as starless cold cores or multiple Young Stellar objects still embedded in their cold envelope.

  9. Chemical Cartography. I. A Carbonicity Map of the Galactic Halo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Young Sun; Kim, Young Kwang; Beers, Timothy C.

    We present the first map of carbonicity, [C/Fe], for the halo system of the Milky Way, based on a sample of over 100,000 main-sequence turnoff stars with available spectroscopy from the Sloan Digital Sky Survey. This map, which explores distances up to 15 kpc from the Sun, reveals clear evidence for the dual nature of the Galactic halo, based on the spatial distribution of stellar carbonicity. The metallicity distribution functions of stars in the inner- and outer-halo regions of the carbonicity map reproduce those previously argued to arise from contributions of the inner- and outer-halo populations, with peaks at [Fe/H]more » = −1.5 and −2.2, respectively. From consideration of the absolute carbon abundances for our sample, A (C), we also confirm that the carbon-enhanced metal-poor (CEMP) stars in the outer-halo region exhibit a higher frequency of CEMP-no stars (those with no overabundances of heavy neutron-capture elements) than of CEMP- s stars (those with strong overabundances of elements associated with the s -process), whereas the stars in the inner-halo region exhibit a higher frequency of CEMP- s stars. We argue that the contrast in the behavior of the CEMP-no and CEMP- s fractions in these regions arises from differences in the mass distributions of the mini-halos from which the stars of the inner- and outer-halo populations formed, which gives rise in turn to the observed dichotomy of the Galactic halo.« less

  10. On the Deduction of Galactic Abundances with Evolutionary Neural Networks

    NASA Astrophysics Data System (ADS)

    Taylor, M.; Diaz, A. I.

    2007-12-01

    A growing number of indicators are now being used with some confidence to measure the metallicity(Z) of photoionisation regions in planetary nebulae, galactic HII regions(GHIIRs), extra-galactic HII regions(EGHIIRs) and HII galaxies(HIIGs). However, a universal indicator valid also at high metallicities has yet to be found. Here, we report on a new artificial intelligence-based approach to determine metallicity indicators that shows promise for the provision of improved empirical fits. The method hinges on the application of an evolutionary neural network to observational emission line data. The network's DNA, encoded in its architecture, weights and neuron transfer functions, is evolved using a genetic algorithm. Furthermore, selection, operating on a set of 10 distinct neuron transfer functions, means that the empirical relation encoded in the network solution architecture is in functional rather than numerical form. Thus the network solutions provide an equation for the metallicity in terms of line ratios without a priori assumptions. Tapping into the mathematical power offered by this approach, we applied the network to detailed observations of both nebula and auroral emission lines from 0.33μ m-1μ m for a sample of 96 HII-type regions and we were able to obtain an empirical relation between Z and S_{23} with a dispersion of only 0.16 dex. We show how the method can be used to identify new diagnostics as well as the nonlinear relationship supposed to exist between the metallicity Z, ionisation parameter U and effective (or equivalent) temperature T*.

  11. New insights on the origin of the High Velocity Peaks in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Fernández-Trincado, J. G.; Robin, A. C.; Moreno, E.; Pérez-Villegas, A.; Pichardo, B.

    2017-12-01

    We provide new insight on the origin of the cold high-V_{los} peaks (˜200 kms^{-1}) in the Milky Way bulge discovered in the APOGEE commissioning data (Nidever et al. 2012). Here we show that such kinematic behaviour present in the field regions towards the Galactic bulge is not likely associated with orbits that build the boxy/peanut (B/P) bulge. To this purpose, a new set of test particle simulations of a kinematically cold stellar disk evolved in a 3D steady-state barred Milky Way galactic potential, has been analysed in detail. Especially bar particles trapped into the bar are identified through the orbital Jacobi energy E_{J}, which allows us to identify the building blocks of the B/P feature and investigate their kinematic properties. Finally, we present preliminary results showing that the high-V_{los} features observed towards the Milky Way bulge are a natural consequence of a large-scale midplane particle structure, which is unlikely associated with the Galactic bar.

  12. "Signal" search for intelligence in the galactic nucleus with the array of the Lowlands.

    PubMed

    Shostak, G S; Tarter, J

    1985-01-01

    In August, 1981, the Westerbork Synthesis Radio Telescope was used for 4 h to search for narrowband pulsing radio beacons in the direction of the Galactic Center. By using both the spatial discrimination and temporal stability available to an interferometric measurement, weak intermittent signals can be detected even in the face of the strong, naturally caused radiation from this region. A radio beacon within our bandwidth, centered on the 21 cm neutral hydrogen line, would be recognizable if it had a repetition period between 40 sec and 1/2 h. The rms sensitivity to point sources was approximately 50 mJy/cycle, and the detection limit was 500 mJy/cycle. The limit degrades for pulse widths < 0.02s. No repetitive signals were found. For a swept, narrow-band radio beacon constrained to the Galactic Disk (beamwidth = 0.02 rad), our detection limit corresponds to a transmitter power of 10(11) MW at the Galactic Center.

  13. The Galactic Club or Galactic Cliques? Exploring the limits of interstellar hegemony and the Zoo Hypothesis

    NASA Astrophysics Data System (ADS)

    Forgan, Duncan H.

    2017-10-01

    The Zoo solution to Fermi's Paradox proposes that extraterrestrial intelligences (ETIs) have agreed to not contact the Earth. The strength of this solution depends on the ability for ETIs to come to agreement, and establish/police treaties as part of a so-called `Galactic Club'. These activities are principally limited by the causal connectivity of a civilization to its neighbours at its inception, i.e. whether it comes to prominence being aware of other ETIs and any treaties or agreements in place. If even one civilization is not causally connected to the other members of a treaty, then they are free to operate beyond it and contact the Earth if wished, which makes the Zoo solution `soft'. We should therefore consider how likely this scenario is, as this will give us a sense of the Zoo solution's softness, or general validity. We implement a simple toy model of ETIs arising in a Galactic Habitable Zone, and calculate the properties of the groups of culturally connected civilizations established therein. We show that for most choices of civilization parameters, the number of culturally connected groups is >1, meaning that the Galaxy is composed of multiple Galactic Cliques rather than a single Galactic Club. We find in our models for a single Galactic Club to establish interstellar hegemony, the number of civilizations must be relatively large, the mean civilization lifetime must be several millions of years, and the inter-arrival time between civilizations must be a few million years or less.

  14. Pulsar distances and the galactic distribution of free electrons

    NASA Technical Reports Server (NTRS)

    Taylor, J. H.; Cordes, J. M.

    1993-01-01

    The present quantitative model for Galactic free electron distribution abandons the assumption of axisymmetry and explicitly incorporates spiral arms; their shapes and locations are derived from existing radio and optical observations of H II regions. The Gum Nebula's dispersion-measure contributions are also explicitly modeled. Adjustable quantities are calibrated by reference to three different types of data. The new model is estimated to furnish distance estimates to known pulsars that are accurate to about 25 percent.

  15. Simultaneous Analysis of Recurrent Jovian Electron Increases and Galactic Cosmic Ray Decreases

    NASA Astrophysics Data System (ADS)

    Kühl, P.; Dresing, N.; Dunzlaff, P.; Fichtner, H.; Gieseler, J.; Gomez-Herrero, R.; Heber, B.; Klassen, A.; Kleimann, J.; Kopp, A.; Potgieter, M. S.; Scherer, K.; Strauss, D. R.

    2012-12-01

    Since the early 1970's the magnetosphere of Jupiter is known to be a strong source of relativistic electrons. These Jovian electrons are released quasi-continuously from the magnetosphere. Due to Jupiter's favorable orbit, they offer a unique opportunity for studies of the transport of energetic particles in the heliosphere, in which the Jovian magnetosphere acts as a source of "quit time" electron increase. Of central importance for the propagation of Jovian electrons is the solar wind flow and the structure of the embedded heliospheric magnetic field. The solar wind defines the transport environment for the particles as soon as they have left the Jovian magnetosphere. They enter the solar wind flow close to the ecliptic plane and are immediately subject to the processes of spatial diffusion, convection, and adiabatic deceleration in the expanding solar wind plasma. On the time-scale of a solar rotation, especially during the rising and declining phases of the solar cycle the variability is caused mainly by corotating interaction regions. Due to the changing propagation conditions in the intermediate heliosphere, corotating interaction regions, however, can cause recurrent galactic cosmic ray modulation. A detailed analysis of recurrent Jovian electron events and galactic cosmic ray decreases measured by SOHO EPHIN is presented here, clearly showing a change of phase between both phenomena during a year. This phase shift has been analyzed by calculating the correlation coefficient between the galactic component and the Jovian electrons. Furthermore, the data can be ordered such that the 27-day Jovian electron variation vanishes in the sector which does not connect the Earth with Jupiter using observed solar wind speeds.; Electron intensity dependent on the longitudinal angle between SOHO and Jupiter. Jovian electron increases can only be observed in regions, which are magnetically connected to Jupiter via observed solar wind speeds.

  16. Galactic Sources Detected in the NuSTAR Serendipitous Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomsick, John A.; Clavel, Maïca; Chiu, Jeng-Lun

    The Nuclear Spectroscopic Telescope Array (NuSTAR) provides an improvement in sensitivity at energies above 10 keV by two orders of magnitude over non-focusing satellites, making it possible to probe deeper into the Galaxy and universe. Lansbury and collaborators recently completed a catalog of 497 sources serendipitously detected in the 3–24 keV band using 13 deg{sup 2} of NuSTAR coverage. Here, we report on an optical and X-ray study of 16 Galactic sources in the catalog. We identify 8 of them as stars (but some or all could have binary companions), and use information from Gaia to report distances and X-ray luminositiesmore » for 3 of them. There are 4 CVs or CV candidates, and we argue that NuSTAR J233426–2343.9 is a relatively strong CV candidate based partly on an X-ray spectrum from XMM-Newton . NuSTAR J092418–3142.2, which is the brightest serendipitous source in the Lansbury catalog, and NuSTAR J073959–3147.8 are low-mass X-ray binary candidates, but it is also possible that these 2 sources are CVs. One of the sources is a known high-mass X-ray binary (HMXB), and NuSTAR J105008–5958.8 is a new HMXB candidate that has strong Balmer emission lines in its optical spectrum and a hard X-ray spectrum. We discuss the implications of finding these HMXBs for the surface density (log N –log S ) and luminosity function of Galactic HMXBs. We conclude that with the large fraction of unclassified sources in the Galactic plane detected by NuSTAR in the 8–24 keV band, there could be a significant population of low-luminosity HMXBs.« less

  17. Sky distribution of artificial sources in the galactic belt of advanced cosmic life.

    PubMed

    Heidmann, J

    1994-12-01

    In line with the concept of the galactic belt of advanced life, we evaluate the sky distribution of detectable artificial sources, using a simple astrophysical model. The best region to search is the median band of the Milky Way in the Vulpecula-Cygnus region, together with a narrower one in Carina. Although this work was done in view of a proposal to send a SETI probe at a gravitational focus of the Sun, we recommend these sky regions particularly for the searches of the sky survey type.

  18. An Extremely Low Mid-infrared Extinction Law toward the Galactic Center and 4% Distance Precision to 55 Classical Cepheids

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodian; Wang, Shu; Deng, Licai; de Grijs, Richard

    2018-06-01

    Distances and extinction values are usually degenerate. To refine the distance to the general Galactic Center region, a carefully determined extinction law (taking into account the prevailing systematic errors) is urgently needed. We collected data for 55 classical Cepheids projected toward the Galactic Center region to derive the near- to mid-infrared extinction law using three different approaches. The relative extinction values obtained are {A}J/{A}{K{{s}}}=3.005,{A}H/{A}{K{{s}}}=1.717, {A}[3.6]/{A}{K{{s}}}=0.478,{A}[4.5]/{A}{K{{s}}}=0.341, {A}[5.8]/{A}{K{{s}}}=0.234,{A}[8.0]/{A}{K{{s}}} =0.321,{A}W1/{A}{K{{s}}}=0.506, and {A}W2/{A}{K{{s}}}=0.340. We also calculated the corresponding systematic errors. Compared with previous work, we report an extremely low and steep mid-infrared extinction law. Using a seven-passband “optimal distance” method, we improve the mean distance precision to our sample of 55 Cepheids to 4%. Based on four confirmed Galactic Center Cepheids, a solar Galactocentric distance of R 0 = 8.10 ± 0.19 ± 0.22 kpc is determined, featuring an uncertainty that is close to the limiting distance accuracy (2.8%) for Galactic Center Cepheids.

  19. Galactic Haze seen by Planck and Galactic Bubbles seen by Fermi

    NASA Image and Video Library

    2012-02-13

    This all-sky image shows the distribution of the galactic haze seen by ESA Planck mission at microwave frequencies superimposed over the high-energy sky, as seen by NASA Fermi Gamma-ray Space Telescope.

  20. Galactic bulge population II Cepheids in the VVV survey: period-luminosity relations and a distance to the Galactic centre

    NASA Astrophysics Data System (ADS)

    Bhardwaj, A.; Rejkuba, M.; Minniti, D.; Surot, F.; Valenti, E.; Zoccali, M.; Gonzalez, O. A.; Romaniello, M.; Kanbur, S. M.; Singh, H. P.

    2017-09-01

    Context. Multiple stellar populations of different ages and metallicities reside in the Galactic bulge that trace its structure and provide clues to its formation and evolution. Aims: We present the near-infrared observations of population II Cepheids in the Galactic bulge from VISTA Variables in the Vía Láctea (VVV) survey. The JHKs photometry together with optical data from Optical Gravitational Lensing Experiment (OGLE) survey provide an independent estimate of the distance to the Galactic centre. The old, metal-poor and low-mass population II Cepheids are also investigated as useful tracers for the structure of the Galactic bulge. Methods: We identify 340 population II Cepheids in the VVV survey Galactic bulge catalogue based on their match with the OGLE-III Catalogue. The single-epoch JH and multi-epoch Ks observations complement the accurate periods and optical (VI) mean-magnitudes from OGLE. The sample consisting of BL Herculis and W Virginis subtypes is used to derive period-luminosity relations after correcting mean-magnitudes for the extinction. Our Ks-band period-luminosity relation, Ks = -2.189(0.056) [log (P)-1] + 11.187(0.032), is consistent with published work for BL Herculis and W Virginis variables in the Large Magellanic Cloud. Results: We present a combined OGLE-III and VVV catalogue with periods, classification, mean magnitudes, and extinction for 264 Galactic bulge population II Cepheids that have good-quality Ks-band light curves. The absolute magnitudes for population II Cepheids and RR Lyraes calibrated using Gaia and Hubble Space Telescope parallaxes, together with calibrated magnitudes for Large Magellanic Cloud population II Cepheids, are used to obtain a distance to the Galactic centre, R0 = 8.34 ± 0.03(stat.) ± 0.41(syst.), which changes by with different extinction laws. While noting the limitation of small number statistics, we find that the present sample of population II Cepheids in the Galactic bulge shows a nearly spheroidal

  1. Necessity of dark matter in modified Newtonian dynamics within galactic scales.

    PubMed

    Ferreras, Ignacio; Sakellariadou, Mairi; Yusaf, Muhammad Furqaan

    2008-01-25

    To test modified Newtonian dynamics (MOND) on galactic scales, we study six strong gravitational lensing early-type galaxies from the CASTLES sample. Comparing the total mass (from lensing) with the stellar mass content (from a comparison of photometry and stellar population synthesis), we conclude that strong gravitational lensing on galactic scales requires a significant amount of dark matter, even within MOND. On such scales a 2 eV neutrino cannot explain the excess of matter in contrast with recent claims to explain the lensing data of the bullet cluster. The presence of dark matter is detected in regions with a higher acceleration than the characteristic MOND scale of approximately 10(-10) m/s(2). This is a serious challenge to MOND unless lensing is qualitatively different [possibly to be developed within a covariant, such as Tensor-Vector-Scalar (TeVeS), theory].

  2. Sturm und Drang: The turbulent, magnetic tempest in the Galactic center

    NASA Astrophysics Data System (ADS)

    Lacki, Brian C.

    2014-05-01

    The Galactic center central molecular zone (GCCMZ) bears similarities with extragalactic starburst regions, including a high supernova (SN) rate density. As in other starbursts like M82, the frequent SNe can heat the ISM until it is filled with a hot (˜ 4 × 107 K) superwind. Furthermore, the random forcing from SNe stirs up the wind, powering Mach 1 turbulence. I argue that a turbulent dynamo explains the strong magnetic fields in starbursts, and I predict an average B ˜70 μG in the GCCMZ. I demonstrate how the SN driving of the ISM leads to equipartition between various pressure components in the ISM. The SN-heated wind escapes the center, but I show that it may be stopped in the Galactic halo. I propose that the Fermi bubbles are the wind's termination shock.

  3. Unveiling the past of the Galactic nucleus with X-ray echoes

    NASA Astrophysics Data System (ADS)

    Chuard, D.; Terrier, R.; Goldwurm, A.; Clavel, M.; Soldi, S.; Morris, M. R.; Ponti, G.; Walls, M.; Chernyakova, M.

    2017-12-01

    Giant molecular clouds populating the central molecular zone have a high enough column density to reflect X-rays coming from strong compact sources in their neighbourhood, including possible powerful outbursts from the Galactic supermassive black hole SgrA. From observations of the molecular complex Sgr C made with the X-ray observatories XMM and Chandra between 2000 and 2014, we confirm this reflection scenario, even though the region hosts several objects (including two PWN candidates) that may be responsible for intense cosmic-ray production. By comparing data to Monte Carlo simulated reflection spectra, we are able to put the best constraints to date on the line-of-sight positions of the main bright clumps of the molecular complex. Ultimately, extending this approach by the inclusion of other molecular complexes allows us to partially reconstruct the past lightcurve of the Galactic supermassive black hole.

  4. Identification of a Population of X-Ray-Emitting Massive Stars in the Galactic Plane

    DTIC Science & Technology

    2011-02-01

    The Advanced Satellite for Cosmology and Astrophysics (ASCA) surveyed the inner region of the Galactic plane, detecting 163 X-ray sources with...exhibit this profile. Given the current data this is all very speculative. We defer any definitive conclusions about the weak spectral features or

  5. the role of shock waves in modulation of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Gall, R.; Thomas, B. T.; Durand, H.

    1985-01-01

    The understanding of modulation of the galactic cosmic rays has considerably progressed by the exploration by space probes of major heliospheric structures, such as the Corotating Interaction Regions, the neutral sheet, and the compression regions of intense heliospheric magnetic fields. Also relevant in this context were the detections in the outer heliosphere of long lasting Forbush type decreases of cosmic ray intensity. The results of recent theoretical studies on the changes in intensity and energy, at different location from the Sun, induced by the passage of shocks across the heliosphere are presented. In this version of the research, the simplest cases of modulation of uGV and 2GV particles by single or several shocks during periods of positive and negative solar field polarity are reviewed. The results of the theoretical aspects of the search is reported. The comparison of the theoretical predictions with space probe data allows conclusions to be drawn on the role of shocks on the modulation on both the 11 and 22 year galactic cosmic ray cycles in the outer heliosphere and on the plausibility of the models and parameters used.

  6. Giant molecular filaments in the Milky Way. II. The fourth Galactic quadrant

    NASA Astrophysics Data System (ADS)

    Abreu-Vicente, J.; Ragan, S.; Kainulainen, J.; Henning, Th.; Beuther, H.; Johnston, K.

    2016-05-01

    Context. Filamentary structures are common morphological features of the cold, molecular interstellar medium (ISM). Recent studies have discovered massive, hundred-parsec-scale filaments that may be connected to the large-scale, Galactic spiral arm structure. Addressing the nature of these giant molecular filaments (GMFs) requires a census of their occurrence and properties. Aims: We perform a systematic search of GMFs in the fourth Galactic quadrant and determine their basic physical properties. Methods: We identify GMFs based on their dust extinction signatures in the near- and mid-infrared and the velocity structure probed by 13CO line emission. We use the 13CO line emission and ATLASGAL dust emission data to estimate the total and dense gas masses of the GMFs. We combine our sample with an earlier sample from literature and study the Galactic environment of the GMFs. Results: We identify nine GMFs in the fourth Galactic quadrant: six in the Centaurus spiral arm and three in inter-arm regions. Combining this sample with an earlier study using the same identification criteria in the first Galactic quadrant results in 16 GMFs, nine of which are located within spiral arms. The GMFs have sizes of 80-160 pc and 13CO-derived masses between 5-90 × 104M⊙. Their dense gas mass fractions are between 1.5-37%, which is higher in the GMFs connected to spiral arms. We also compare the different GMF-identification methods and find that emission and extinction-based techniques overlap only partially, thereby highlighting the need to use both to achieve a complete census. Table A.2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A131

  7. Atmospheric effects and societal consequences of regional scale nuclear conflicts and acts of individual nuclear terrorism

    NASA Astrophysics Data System (ADS)

    Toon, O. B.; Turco, R. P.; Robock, A.; Bardeen, C.; Oman, L.; Stenchikov, G. L.

    2006-11-01

    We assess the potential damage and smoke production associated with the detonation of small nuclear weapons in modern megacities. While the number of nuclear warheads in the world has fallen by about a factor of three since its peak in 1986, the number of nuclear weapons states is increasing and the potential exists for numerous regional nuclear arms races. Eight countries are known to have nuclear weapons, 2 are constructing them, and an additional 32 nations already have the fissile material needed to build substantial arsenals of low-yield (Hiroshima-sized) explosives. Population and economic activity worldwide are congregated to an increasing extent in megacities, which might be targeted in a nuclear conflict. Our analysis shows that, per kiloton of yield, low yield weapons can produce 100 times as many fatalities and 100 times as much smoke from fires as high-yield weapons, if they are targeted at city centers. A single "small'' nuclear detonation in an urban center could lead to more fatalities, in some cases by orders of magnitude, than have occurred in the major historical conflicts of many countries. We analyze the likely outcome of a regional nuclear exchange involving 100 15-kt explosions (less than 0.1% of the explosive yield of the current global nuclear arsenal). We find that such an exchange could produce direct fatalities comparable to all of those worldwide in World War II, or to those once estimated for a "counterforce'' nuclear war between the superpowers. Megacities exposed to atmospheric fallout of long-lived radionuclides would likely be abandoned indefinitely, with severe national and international implications. Our analysis shows that smoke from urban firestorms in a regional war would rise into the upper troposphere due to pyro-convection. Robock et al. (2006) show that the smoke would subsequently rise deep into the stratosphere due to atmospheric heating, and then might induce significant climatic anomalies on global scales.We also

  8. Footpoints of the giant molecular loops in the Galactic center region

    NASA Astrophysics Data System (ADS)

    Riquelme, D.; Amo-Baladrón, M. A.; Martín-Pintado, J.; Mauersberger, R.; Martín, S.; Burton, M.; Cunningham, M.; Jones, P. A.; Menten, K. M.; Bronfman, L.; Güsten, R.

    2018-05-01

    Aims: We aim to reveal the morphology, chemical composition, kinematics, and to establish the main processes prevalent in the gas at the footpoints of the giant molecular loops (GMLs) in the Galactic center region. Methods: Using the 22-m Mopra telescope, we mapped the M-3.8+0.9 molecular cloud, placed at the footpoints of a GML, in 3-mm range molecular lines. To derive the molecular hydrogen column density, we also observed the 13CO(2 - 1) line at 1 mm using the 12-m APEX telescope. From the 3 mm observations 12 molecular species were detected, namely HCO+, HCN, H13CN, HNC, SiO, CS, CH3OH, N2H+, SO, HNCO, OCS, and HC3N. Results: Maps revealing the morphology and kinematics of the M-3.8+0.9 molecular cloud in different molecules are presented. We identify six main molecular complexes. We derive fractional abundances in 11 selected positions of the different molecules assuming local thermodynamical equilibrium. Conclusions: Most of the fractional abundances derived for the M-3.8+0.9 molecular cloud are very similar over the whole cloud. However, the fractional abundances of some molecules show significant difference with respect to those measured in the central molecular zone (CMZ). The abundances of the shock tracer SiO are very similar between the GMLs and the CMZ. The methanol emission is the most abundant species in the GMLs. This indicates that the gas is likely affected by moderate 30 km s-1 or even high velocity (50 km s-1) shocks, consistent with the line profile observed toward one of the studied position. The origin of the shocks is likely related to the flow of the gas throughout the GMLs towards the footpoints. OPRA and APEX final data cubes (FITS) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A42

  9. ASCA Observation of an "X-Ray Shadow" in the Galactic Plane

    NASA Technical Reports Server (NTRS)

    Park, Sangwook; Ebisawa, Ken

    2001-01-01

    The diffuse X-ray background (DXB) emission near the Galactic plane (l,b approximately 25.6 degrees, 0.78 degrees) has been observed with ASCA (Advanced Satellite for Cosmology and Astrophysics). The observed region is toward a Galactic molecular cloud which was recently reported to cast a deep X-ray shadow in the 0.5 - 2.0 keV band DXB. The selection of this particular region is intended to provide a constraint on the spatial distribution of the DXB emission along the line of sight: i.e., the molecular cloud is optically thick at <2 keV and so the bulk of the observed soft X-rays must originate in the foreground of the cloud, which is at approximately 3 kpc from the Sun. In the 0.8 - 9.0 keV band, the observed spectrum is primarily from multiple components of thermal plasmas. We here report a detection of soft X-ray (0.5 - 2 keV) emission from an approximately 10(exp 7) K thermal plasma. Comparisons with the ROSAT (Roentgen Satellite) data suggest that this soft X-ray emission is absorbed by N(sub H) = 1 - 3 x 10(exp 21) cm(exp -2), which implies a path-length through the soft X-ray emitting regions of approximately less than 1 kpc from the Sun.

  10. Star formation around active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Keel, William C.

    1987-01-01

    Active galactic nuclei (Seyfert nuclei and their relatives) and intense star formation can both deliver substantial amounts of energy to the vicinity of a galactic nucleus. Many luminous nuclei have energetics dominated by one of these mechanisms, but detailed observations show that some have a mixture. Seeing both phenomena at once raises several interesting questions: (1) Is this a general property of some kinds of nuclei? How many AGNs have surround starbursts, and vice versa? (2) As in 1, how many undiscovered AGNs or starbursts are hidden by a more luminous instance of the other? (3) Does one cause the other, and by what means, or do both reflect common influences such as potential well shape or level of gas flow? (4) Can surrounding star formation tell us anything about the central active nuclei, such as lifetimes, kinetic energy output, or mechanical disturbance of the ISM? These are important points in the understanding of activity and star formation in galactic nuclei. Unfortunately, the observational ways of addressing them are as yet not well formulated. Some preliminary studies are reported, aimed at clarifying the issues involved in study of the relationships between stellar and nonstellar excitement in galactic nuclei.

  11. The extended stellar substructures of four metal-poor globular clusters in the galactic bulge

    NASA Astrophysics Data System (ADS)

    Chun, Sang-Hyun; Sohn, Young-Jong

    2015-08-01

    We investigated stellar spatial density distribution around four metal-poor globular clusters (NGC 6266, NGC 6626, NGC 6642 and NGC 6723) in order to find extended stellar substructures. Wide-field deep J, H, and K imaging data were taken using the WFCAM near-infrared array on United Kingdom Infrared Telescope (UKIRT). The contamination of field stars around clusters was minimised by applying a statistical weighted filtering algorithm for the stars on the color-magnitude diagram. In two-dimensional isodensity contour map, we find that all four of the globular clusters shows tidal stripping stellar features in the form of tidal tails (NGC 6266 and NGC 6723) or small density lobes/chunk (NGC 6642 and NGC 6723). The stellar substructures extend toward the Galactic centre or anticancer, and the proper motion direction of the clusters. The radial density profiles of the clusters also depart from theoretical King and Wilson models and show overdensity feature with a break in a slope of profile at the outer region of clusters. The observed results indicate that four globular clusters in the Galactic bulge have experienced strong tidal force or bulge/disk shock effect of the Galaxy. These observational results provide us further constraints to understand the evolution of clusters in the Galactic bulge region as well as the formation of the Galaxy.

  12. Dust & Abundances of Metal-Poor Planetary Nebulae in the Galactic Anti-Center

    NASA Astrophysics Data System (ADS)

    Pagomenos, George J. S.; Bernard-Salas, Jeronimo; Sloan, G. C.

    2017-10-01

    Much of the new dust in the local ISM is produced in the last phases of stellar evolution of low- and intermediate-mass stars on the Asymptotic Giant Branch (AGB). Despite its importance, our knowledge of how dust properties depend on metallicity is limited. Studies of planetary nebulae in irregular galaxies in the Local Group (mostly focused on the LMC and SMC) have revealed a diverse spectral zoo and shown that low metallicity favours carbon-rich dust production by AGB stars. However, at ~1/3 and ~1/5 times the solar metallicity respectively, they provide two snapshots of dust composition at low metallicity, emphasising the need to investigate a region with a range of metallicity values. With its abundance gradient, the Milky Way fits this criterion and provides a good opportunity to observe the dust composition over a large metallicity range. In particular the Galactic anti-center, which is largely unexplored beyond galactocentric distances of 10 kpc, allows us to study the AGB dust a priori assumed to be metal-poor as well as exploring the extent of the Galactic abundance gradient. We analyse a Spitzer spectroscopic sample of 23 planetary nebulae towards the anti-center in order to understand how the metallicity gradient extends beyond 10 kpc from the Galactic center and to observe the dust composition in this region of our Galaxy. We find that the abundance gradients of Ne, S and Ar continue to distances of around 20 kpc (albeit with a large scatter) and the dust emission shows a carbon-rich chemistry similar to that in the Magellanic Clouds.

  13. Gamma-ray and Neutrino Fluxes from Heavy Dark Matter in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Gammaldi, V.; Cembranos, J. A. R.; de la Cruz-Dombriz, A.; Lineros, R. A.; Maroto, A. L.

    We present a study of the Galactic Center region as a possible source of both secondary gamma-ray and neutrino fluxes from annihilating dark matter. We have studied the gamma-ray flux observed by the High Energy Stereoscopic System (HESS) from the J1745-290 Galactic Center source. The data are well fitted as annihilating dark matter in combination with an astrophysical background. The analysis was performed by means of simulated gamma spectra produced by Monte Carlo event generators packages. We analyze the differences in the spectra obtained by the various Monte Carlo codes developed so far in particle physics. We show that, within some uncertainty, the HESS data can be fitted as a signal from a heavy dark matter density distribution peaked at the Galactic Center, with a power-law for the background with a spectral index which is compatible with the Fermi-Large Area Telescope (LAT) data from the same region. If this kind of dark matter distribution generates the gamma-ray flux observed by HESS, we also expect to observe a neutrino flux. We show prospective results for the observation of secondary neutrinos with the Astronomy with a Neutrino Telescope and Abyss environmental RESearch project (ANTARES), Ice Cube Neutrino Observatory (Ice Cube) and the Cubic Kilometer Neutrino Telescope (KM3NeT). Prospects solely depend on the device resolution angle when its effective area and the minimum energy threshold are fixed.

  14. Parameters of Six Selected Galactic Potential Models

    NASA Astrophysics Data System (ADS)

    Bajkova, Anisa; Bobylev, Vadim

    2017-11-01

    This paper is devoted to the refinement of the parameters of the six three-component (bulge, disk, halo) axisymmetric Galactic gravitational potential models on the basis of modern data on circular velocities of Galactic objects located at distances up to 200 kpc from the Galactic center. In all models the bulge and disk are described by the Miyamoto-Nagai expressions. To describe the halo, the models of Allen-Santillán (I), Wilkinson-Evans (II), Navarro- Frenk-White (III), Binney (IV), Plummer (V), and Hernquist (VI) are used. The sought-for parameters of potential models are determined by fitting the model rotation curves to the measured velocities, taking into account restrictions on the local dynamical matter density p⊙ - 0.1M⊙ pc-3 and the vertical force |Kz=1.1|/2πG = 77M⊙ pc-2. A comparative analysis of the refined potential models is made and for each of the models the estimates of a number of the Galactic characteristics are presented.

  15. OT2_wlanger_7: Dynamics of Giant Magnetic Gas Loops and Their Connection to the CMZ in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Langer, W.

    2011-09-01

    Understanding the mass transfer and dynamics among the Galactic Center, the disk, and the halo of the Milky Way is fundamental to the study of the evolution of galaxies and star formation. Recently several giant loops of molecular gas (GML) have been found in the Galactic Center from CO maps, which are likely the result of the magnetic Parker instability. There is new evidence of a possible connection between these loops and the Central Molecular Zone as shown in a sparse [CII] sampling made by the Herschel Key Project GOT C+. Here we propose to map various features of the GMLs and the interface region in [CII] with HIFI. We will also map the foot points of the loop, which are thought to be highly shocked regions, in the ortho 110-101 line of water, which is a known shock tracer. With this data we will characterize different ISM components and their flow among these Galactic Center features.

  16. Directed search for continuous gravitational waves from the Galactic center

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M., Jr.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Deleeuw, E.; Deléglise, S.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jaranowski, P.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kucharczyk, C.; Kudla, S.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levine, B.; Lewis, J. B.; Lhuillier, V.; Li, T. G. F.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Liu, F.; Liu, H.; Liu, Y.; Liu, Z.; Lloyd, D.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Mokler, F.; Moraru, D.; Moreno, G.; Morgado, N.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R.; Necula, V.; Neri, I.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; Ortega Larcher, W.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Peiris, P.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pindor, B.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Poeld, J.; Poggiani, R.; Poole, V.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Roever, C.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Soden, K.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vlcek, B.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vrinceanu, D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Wan, Y.; Wang, J.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wibowo, S.; Wiesner, K.; Wilkinson, C.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.

    2013-11-01

    We present the results of a directed search for continuous gravitational waves from unknown, isolated neutron stars in the Galactic center region, performed on two years of data from LIGO’s fifth science run from two LIGO detectors. The search uses a semicoherent approach, analyzing coherently 630 segments, each spanning 11.5 hours, and then incoherently combining the results of the single segments. It covers gravitational wave frequencies in a range from 78 to 496 Hz and a frequency-dependent range of first-order spindown values down to -7.86×10-8Hz/s at the highest frequency. No gravitational waves were detected. The 90% confidence upper limits on the gravitational wave amplitude of sources at the Galactic center are ˜3.35×10-25 for frequencies near 150 Hz. These upper limits are the most constraining to date for a large-parameter-space search for continuous gravitational wave signals.

  17. Physical properties of high-mass star-forming clumps in different evolutionary stages from the Bolocam Galactic Plane Survey

    NASA Astrophysics Data System (ADS)

    Svoboda, Brian; Shirley, Yancy; Rosolowsky, Erik; Dunham, Miranda; Ellsworth-Bowers, Timothy; Ginsburg, Adam

    2013-07-01

    High mass stars play a key role in the physical and chemical evolution of the interstellar medium, yet the evolutionary sequence for high mass star forming regions is poorly understood. Recent Galactic plane surveys are providing the first systematic view of high-mass star-forming regions in all evolutionary phases across the Milky Way. We present observations of the 22.23 GHz H2O maser transition J(Ka,Kc) = 6(1,6)→5(2,3) transition toward 1398 clumps identified in the Bolocam Galactic Plane Survey using the 100m Green Bank Telescope (GBT). We detect 392 H2O masers, 279 (71%) newly discovered. We show that H2O masers can identify the presence of protostars which were not previously identified by Spitzer/MSX Galactic plane IR surveys: 25% of IR-dark clumps have an H2O maser. We compare the physical properties of the clumps in the Bolocam Galactic Plane Survey (BGPS) with observations of diagnostics of star formation activity: 8 and 24 um YSO candidates, H2O and CH3OH masers, shocked H2, EGOs, and UCHII regions. We identify a sub-sample of 400 clumps with no star formation indicators representing the largest and most robust sample of pre-protocluster candidates from an unbiased survey to date. The different evolutionary stages show strong separations in HCO+ linewidth and integrated intensity, surface mass density, and kinetic temperature. Monte Carlo techniques are applied to distance probability distribution functions (DPDFs) in order to marginalize over the kinematic distance ambiguity and calculate the distribution of derived quantities for clumps in different evolutionary stages. Surface area and dust mass show weak separations above > 2 pc^2 and > 3x10^3 solar masses. An observed breakdown occurs in the size-linewidth relationship with no differentiation by evolutionary stage. Future work includes adding evolutionary indicators (MIPSGAL, HiGal, MMB) and expanding DPDF priors (HI self-absorption, Galactic structure) for more well-resolved KDAs.

  18. Particle Acceleration in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    1997-01-01

    The high efficiency of energy generation inferred from radio observations of quasars and X-ray observations of Seyfert active galactic nuclei (AGNs) is apparently achieved only by the gravitational conversion of the rest mass energy of accreting matter onto supermassive black holes. Evidence for the acceleration of particles to high energies by a central engine is also inferred from observations of apparent superluminal motion in flat spectrum, core-dominated radio sources. This phenomenon is widely attributed to the ejection of relativistic bulk plasma from the nuclei of active galaxies, and accounts for the existence of large scale radio jets and lobes at large distances from the central regions of radio galaxies. Reports of radio jets and superluminal motion from galactic black hole candidate X-ray sources indicate that similar processes are operating in these sources. Observations of luminous, rapidly variable high-energy radiation from active galactic nuclei (AGNs) with the Compton Gamma Ray Observatory show directly that particles are accelerated to high energies in a compact environment. The mechanisms which transform the gravitational potential energy of the infalling matter into nonthermal particle energy in galactic black hole candidates and AGNs are not conclusively identified, although several have been proposed. These include direct acceleration by static electric fields (resulting from, for example, magnetic reconnection), shock acceleration, and energy extraction from the rotational energy of Kerr black holes. The dominant acceleration mechanism(s) operating in the black hole environment can only be determined, of course, by a comparison of model predictions with observations. The purpose of the work proposed for this grant was to investigate stochastic particle acceleration through resonant interactions with plasma waves that populate the magnetosphere surrounding an accreting black hole. Stochastic acceleration has been successfully applied to the

  19. Imaging Galactic Dark Matter with High-Energy Cosmic Neutrinos

    NASA Astrophysics Data System (ADS)

    Argüelles, Carlos A.; Kheirandish, Ali; Vincent, Aaron C.

    2017-11-01

    We show that the high-energy cosmic neutrinos seen by the IceCube Neutrino Observatory can be used to probe interactions between neutrinos and the dark sector that cannot be reached by current cosmological methods. The origin of the observed neutrinos is still unknown, and their arrival directions are compatible with an isotropic distribution. This observation, together with dedicated studies of Galactic plane correlations, suggests a predominantly extragalactic origin. Interactions between this isotropic extragalactic flux and the dense dark matter (DM) bulge of the Milky Way would thus lead to an observable imprint on the distribution, which would be seen by IceCube as (i) slightly suppressed fluxes at energies below a PeV and (ii) a deficit of events in the direction of the Galactic center. We perform an extended unbinned likelihood analysis using the four-year high-energy starting event data set to constrain the strength of DM-neutrino interactions for two model classes. We find that, in spite of low statistics, IceCube can probe regions of the parameter space inaccessible to current cosmological methods.

  20. Imaging Galactic Dark Matter with High-Energy Cosmic Neutrinos.

    PubMed

    Argüelles, Carlos A; Kheirandish, Ali; Vincent, Aaron C

    2017-11-17

    We show that the high-energy cosmic neutrinos seen by the IceCube Neutrino Observatory can be used to probe interactions between neutrinos and the dark sector that cannot be reached by current cosmological methods. The origin of the observed neutrinos is still unknown, and their arrival directions are compatible with an isotropic distribution. This observation, together with dedicated studies of Galactic plane correlations, suggests a predominantly extragalactic origin. Interactions between this isotropic extragalactic flux and the dense dark matter (DM) bulge of the Milky Way would thus lead to an observable imprint on the distribution, which would be seen by IceCube as (i) slightly suppressed fluxes at energies below a PeV and (ii) a deficit of events in the direction of the Galactic center. We perform an extended unbinned likelihood analysis using the four-year high-energy starting event data set to constrain the strength of DM-neutrino interactions for two model classes. We find that, in spite of low statistics, IceCube can probe regions of the parameter space inaccessible to current cosmological methods.

  1. Dielectronic Recombination In Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Lukic, D. V.; Schnell, M.; Savin, D. W.; Altun, Z.; Badnell, N.; Brandau, C.; Schmidt, E. W.; Mueller, A.; Schippers, S.; Sprenger, F.; hide

    2006-01-01

    XMM-Newton and Chandra observations of active galactic nuclei (AGN) show rich spectra of X-ray absorption lines. These observations have detected a broad unresolved transition array (UTA) between approx. 15-17 A. This is attributed to inner-shell photoexcitation of M-shell iron ions. Modeling these UTA features is currently limited by uncertainties in the low-temperature dielectronic recombination (DR) data for M-shell iron. In order to resolve this issue, and to provide reliable iron M-shell DR data for plasma modeling, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. Currently, laboratory measurements of low temperature DR can only be performed at storage rings. We use the DR data obtained at TSR, to calculate rate coefficients for plasma modeling and to benchmark theoretical DR calculations. Here we report our recent experimental results for DR of Fe XIV forming Fe XIII.

  2. Galaxy gas as obscurer - II. Separating the galaxy-scale and nuclear obscurers of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Buchner, Johannes; Bauer, Franz E.

    2017-03-01

    The 'torus' obscurer of active galactic nuclei (AGN) is poorly understood in terms of its density, sub-structure and physical mechanisms. Large X-ray surveys provide model boundary constraints, for both Compton-thin and Compton-thick levels of obscuration, as obscured fractions are mean covering factors fcov. However, a major remaining uncertainty is host-galaxy obscuration. In Paper I, we discovered a relation of {NH} ∝ M_{star }^{1/3} for the obscuration of galaxy-scale gas. Here, we apply this observational relation to the AGN population, and find that galaxy-scale gas is responsible for a luminosity-independent fraction of Compton-thin AGN, but does not produce Compton-thick columns. With the host-galaxy obscuration understood, we present a model of the remaining nuclear obscurer, which is consistent with a range of observations. Our radiation-lifted torus model consists of a Compton-thick component (fcov ∼ 35 per cent) and a Compton-thin component (fcov ∼ 40 per cent), which depends on both black hole mass and luminosity. This provides a useful summary of observational constraints for torus modellers who attempt to reproduce this behaviour. It can also be employed as a sub-grid recipe in cosmological simulations that do not resolve the torus. We also investigate host-galaxy X-ray obscuration inside cosmological, hydrodynamic simulations (Evolution and Assembly of Galaxies and their Environment; Illustris). The obscuration from ray-traced galaxy gas can agree with observations, but is highly sensitive to the chosen feedback assumptions.

  3. OGLE-III Microlensing Events and the Structure of the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Wyrzykowski, Łukasz; Rynkiewicz, Alicja E.; Skowron, Jan; Kozłowski, Szymon; Udalski, Andrzej; Szymański, Michał K.; Kubiak, Marcin; Soszyński, Igor; Pietrzyński, Grzegorz; Poleski, Radosław; Pietrukowicz, Paweł; Pawlak, Michał

    2015-01-01

    We present and study the largest and most comprehensive catalog of microlensing events ever constructed. The sample of standard microlensing events comprises 3718 unique events from 2001-2009 with 1409 events that had not been detected before in real-time by the Early Warning System of the Optical Gravitational Lensing Experiment. The search pipeline uses machine learning algorithms to help find rare phenomena among 150 million objects and to derive the detection efficiency. Applications of the catalog can be numerous, from analyzing individual events to large statistical studies of the Galactic mass, kinematics distributions, and planetary abundances. We derive maps of the mean Einstein ring crossing time of events spanning 31 deg2 toward the Galactic center and compare the observed distributions with the most recent models. We find good agreement within the observed region and we see the signature of the tilt of the bar in the microlensing data. However, the asymmetry of the mean timescales seems to rise more steeply than predicted, indicating either a somewhat different orientation of the bar or a larger bar width. The map of events with sources in the Galactic bulge shows a dependence of the mean timescale on the Galactic latitude, signaling an increasing contribution from disk lenses closer to the plane relative to the height of the disk. Our data present a perfect set for comparing and enhancing new models of the central parts of the Milky Way and creating a three-dimensional picture of the Galaxy. Based on observations obtained with the 1.3 m Warsaw telescope at the Las Campanas Observatory of the Carnegie Institution for Science.

  4. Galactic-scale civilization

    NASA Technical Reports Server (NTRS)

    Kuiper, T. B. H.

    1980-01-01

    Evolutionary arguments are presented in favor of the existence of civilization on a galactic scale. Patterns of physical, chemical, biological, social and cultural evolution leading to increasing levels of complexity are pointed out and explained thermodynamically in terms of the maximization of free energy dissipation in the environment of the organized system. The possibility of the evolution of a global and then a galactic human civilization is considered, and probabilities that the galaxy is presently in its colonization state and that life could have evolved to its present state on earth are discussed. Fermi's paradox of the absence of extraterrestrials in light of the probability of their existence is noted, and a variety of possible explanations is indicated. Finally, it is argued that although mankind may be the first occurrence of intelligence in the galaxy, it is unjustified to presume that this is so.

  5. Microlensing optical depth towards the Galactic Bulge using bright sources from OGLE-II

    NASA Astrophysics Data System (ADS)

    Sumi, T.; Woźniak, P.; Udalski, A.; Szymański, M.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Zebruń, K.; Szewczyk, O.; Wyrzykowski, L.

    2004-12-01

    We present a measurement of the microlensing optical depth towards the Galactic Bulge by using bright stars as sources from the central 20 OGLE-II Galactic bulge fields covering a range of 0o Region in the Colour Magnitude Diagram, where an extinction corrected I-band magnitude is brighter than about 15.5 mag. We find that a half of their source stars which are actually lensed are fainter blended stars. By using the 32 candidates whose actually lensed source stars are still in Extended RCG Region, we estimate the preliminary optical depth τ ˜ 2± 0.4 × 10-6 at (l,b)=(1.16, -2.75) for events with timescales 1< tE <200 days. This value is smaller than previous results with all sources but consistent with previous results with RCG sources and recent theoretical predictions.

  6. A high spectral resolution map of the nuclear emitting regions of NGC 7582

    NASA Astrophysics Data System (ADS)

    Braito, Valentina; Reeves, J. N.; Bianchi, S.; Nardini, E.; Piconcelli, E.

    2017-04-01

    We present the results of the spatial and spectral analysis of the deep ( 200 ks) Chandra HETG observation of the changing look AGN NGC 7582. During this long Chandra observation, NGC 7582 was in a highly obscured state. Therefore, we also consider a short ( 24 ks) Suzaku observation, which caught NGC 7582 in a Compton thick state. This allows us to determine the underlying continuum model and the amount of absorption [NH = (1.2 ± 0.2) × 1024 cm-2]. A wealth of emission lines (from Mg, Si, S, and Fe) are detected in the Chandra data, which allows us to map the structure of the circumnuclear emitters. The high resolution spectrum reveals that the soft X-ray emission originates in a hybrid gas, which is ionized in part by the strong circumnuclear star-forming activity and in part by the central AGN. The high resolution images confirm that the emitting region is highly inhomogeneous and extends up to a few hundred pc from the nuclear source. The X-ray images are more extended in the lower energy lines (Ne and Mg) than in the higher energy lines (Si, Fe); the former are dominated by the collisionally ionized gas from the starburst and the latter by the photoionized AGN emission. This is supported by the analysis of the He-like triplets in the grating spectra. We deduce that a low density (ne 0.3-1 cm-3) photoionized gas is responsible for the strong forbidden components, which is likely to originate from extended AGN narrow line region gas at distances of 200-300 pc from the black hole. We also detect an absorption feature at 6.7 keV that is consistent with the rest frame energy of the resonance absorption line from Fe xxv (Elab = 6.7 keV), which traces the presence of a sub-parsec scale ionized circumnuclear absorber. The emerging picture is in agreement with our new view of the circumnuclear gas in AGN, where the medium is clumpy and stratified in both density and ionization. These absorbers and emitters are located on different scales, from the sub-pc broad line

  7. Heating of H II regions with application to the Galactic center

    NASA Technical Reports Server (NTRS)

    Maloney, Philip R.; Hollenbach, David J.; Townes, Charles H.

    1992-01-01

    The heating and thermal equilibrium of photoionized gas is reviewed. Photon-heating mechanisms (UV photoionization heating, grain photoelectric heating, and X-ray heating) either fail to provide the required heating rates or else require that the ionization state of the gas is very high. Specific application to the Galactic center observations show that the total heating power required to maintain the gas at the derived temperatures, using the observed emission measure in the bar and the temperature distribution derived from the radio recombination lines, is about 7 x 10 exp 6 solar luminosities, comparable to the bolometric luminosity of the central source as measured by the FIR flux from grains. Thus, the cooling emission from this hot gas, if LTE-derived temperatures are correct, would supply a major fraction of the bolometric and ionizing luminosity inferred from the ionized gas in the central 1 pc cavity and the dust and neutral gas in the surrounding torus.

  8. Maser hunting in the galactic plane

    NASA Astrophysics Data System (ADS)

    Quinn, Lyshia Jane

    The process of massive star formation greatly influences its surroundings through their outflows, vast UV output and shocks from their supernova death. They form at great distances from the Earth, enshrouded by dust and gas and have relatively short lifetimes. Astrophysical masers which form in these environments may act as locators of the star forming regions. The aim of this thesis is to study massive star formation using masers to probe these regions. The three main masers used in this thesis are the Class I and Class II methanol masers and the 6035 MHz ex-OH maser. The methanol masers are divided into two groups, Class I and Class II, based on their distance from a central source. The Class I masers are separated 1-2 pc from a central source, the central source is the star forming region. The Class II masers are associated close to a star forming source. They are often associated with a 6035 MHz ex-OH maser. The 6035 MHz ex-OH masers are less common than the 6668 MHz Class I methanol masers. They are often found at sites of the 6668 MHz Class I masers and 1665/7 MHz OH masers. This thesis presents two maser surveys, the Methanol Multibeam (MMB) survey and the Class I survey. The MMB survey is currently surveying the entire Galactic Plane for the 6668 MHz Class II methanol maser and the 6035 MHz ex-OH maser. Over 60% of the survey in the Southern hemisphere is now complete using the Parkes telescope. Over 900 6668 MHz Class I methanol masers and 110 6035 MHz ex-OH masers have been detected, with all of these masers pinpoint the location of newly forming high mass stars. Follow up observations to determine the precise locations of the 6668 MHz methanol and 6035 MHz ex-OH masers are currently underway. The first ever unbiased Class I survey has observed 1 sq degree of the Galactic Plane for the 44 GHz Class I methanol masers using the Mopra telescope in Australia. The 44 GHz Class II methanol masers are hypothesised to be associated with ! the outflows of high

  9. Benchmark solutions for the galactic heavy-ion transport equations with energy and spatial coupling

    NASA Technical Reports Server (NTRS)

    Ganapol, Barry D.; Townsend, Lawrence W.; Lamkin, Stanley L.; Wilson, John W.

    1991-01-01

    Nontrivial benchmark solutions are developed for the galactic heavy ion transport equations in the straightahead approximation with energy and spatial coupling. Analytical representations of the ion fluxes are obtained for a variety of sources with the assumption that the nuclear interaction parameters are energy independent. The method utilizes an analytical LaPlace transform inversion to yield a closed form representation that is computationally efficient. The flux profiles are then used to predict ion dose profiles, which are important for shield design studies.

  10. Polarization of the diffuse galactic light.

    NASA Technical Reports Server (NTRS)

    Sparrow, J. G.; Ney, E. P.

    1972-01-01

    Polarization measurements made from the satellite OSO-5 show that the polarized intensity in the direction of the Scutum arm of the Galaxy is different in intensity and direction of the polarization from that observed due to the zodiacal light. The observations are consistent with polarized diffuse galactic light superposed on the zodiacal light. The results are interpreted in terms of a model in which the galactic starlight is scattered by interstellar dust.

  11. The case for inflow of the broad-line region of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Gaskell, C. Martin; Goosmann, René W.

    2016-02-01

    The high-ionization lines of the broad-line region (BLR) of thermal active galactic nuclei (AGNs) show blueshifts of a few hundred km/s to several thousand km/sec with respect to the low-ionization lines. This has long been thought to be due to the high-ionization lines of the BLR arising in a wind of which the far side of the outflow is blocked from our view by the accretion disc. Evidence for and against the disc-wind model is discussed. The biggest problem for the model is that velocity-resolved reverberation mapping repeatedly fails to show the expected kinematic signature of outflow of the BLR. The disc-wind model also cannot readily reproduce the red side of the line profiles of high-ionization lines. The rapidly falling density in an outflow makes it difficult to obtain high equivalent widths. We point out a number of major problems with associating the BLR with the outflows producing broad absorption lines. An explanation which avoids all these problems and satisfies the constraints of both the line profiles and velocity-resolved reverberation-mapping is a model in which the blueshifting is due to scattering off material spiraling inwards with an inflow velocity of half the velocity of the blueshifting. We discuss how recent reverberation mapping results are consistent with the scattering-plus-inflow model but do not support a disc-wind model. We propose that the anti-correlation of the apparent redshifting of Hβ with the blueshifting of C iv is a consequence of contamination of the red wings of Hβ by the broad wings of [O iii].

  12. The Galactic Magnetic Field and its lensing of Ultrahigh Energy and Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Farrar, Glennys

    2015-08-01

    It has long been recognized that magnetic fields play an important role in many astrophysical environments, but the magnetic field strength and structure has only been quantitatively determined for relatively few systems beyond our solar system.Our understanding of the Galactic magnetic field (GMF) has improved tremendously in recent years. The Jansson-Farrar (2012) (JF12) GMF model is the most realistic and comprehensive model available. It was constrained by fitting all-sky Faraday Rotation Measures of ~40k extragalactic sources, simultaneously with WMAP polarized (Q,U) and total synchrotron emission maps - together providing a total of more than 10,000 independent datapoints, each with measured astrophysical variance. In addition to disk and toroidal halo components, a previously overlooked coherent poloidal halo field proves to be necessary to account for the RM, Q and U data. Moreover a “striated” random component is needed in addition to a fully random component, in both disk and halo.The talk will give a concise review of the JF12 model and its derivation, with emphasis on which features of the GMF are well or poorly established. I will show that the data unambiguously demand a large scale coherent component to the halo field which is a diverging-spiral centered on the Galactic center, with field lines running from Southern to Northern hemispheres. The puzzles posed by the large scale coherent halo and disk magnetic fields, and their possible origins, will be discussed.Having a good model of the Galactic magnetic field is crucial for determining the sources of UHECRs, for modeling the transport of Galactic CRs (the halo field provides a heretofore-overlooked escape route for by diffusion along its field lines), and for calculating the background to dark matter and CMB-cosmology studies. I will present new results on the lensing effect of the GMF on UHECRs, which produces multiple images and dramatic magnification and demagnification that varies with

  13. Dynamics of Nuclear Regions of Galaxies

    NASA Technical Reports Server (NTRS)

    Miller, Richard H.

    1996-01-01

    Current research carried out with the help of the ASEE-NASA Summer Faculty Program, at NASA-Ames, is concentrated on the dynamics of nuclear regions of galaxies. From a dynamical point of view a galaxy is a collection of around 10(sup 11) stars like our Sun, each of which moves in the summed gravitational field of all the remaining stars. Thus galaxy dynamics becomes a self-consistent n-body problem with forces given by Newtonian gravitation. Strong nonlinearity in the gravitational force and the inherent nonlinearity of self-consistent problems both argue for a numerical approach. The technique of numerical experiments consis of constructing an environment in the computer that is as close as possible to the physical conditions in a real galaxy and then carrying out experiments much like laboratory experiments in physics or engineering, in this environment. Computationally, an experiment is an initial value problem, and a good deal of thought and effort goes into the design of the starting conditions that serve as initial values. Experiments are run at Ames because all the 'equipment' is in place-the programs, the necessary computational power, and good facilities for post-run analysis. Our goal for this research program is to study the nuclear regions in detail and this means replacing most of the galaxy by a suitable boundary condition to allow the full capability of numerical experiments to be brought to bear on a small region perhaps 1/1000 of the linear dimensions of an entire galaxy. This is an extremely delicate numerical problem, one in which some small feature overlook, can easily lead to a collapse or blow-up of the entire system. All particles attract each other in gravitational problems, and the 1/r(sup 2) force is: (1) nonlinear; (2) strong at short range; (3) long-range, and (4) unscreened at any distance.

  14. The Galactic Nova Rate Revisited

    NASA Astrophysics Data System (ADS)

    Shafter, A. W.

    2017-01-01

    Despite its fundamental importance, a reliable estimate of the Galactic nova rate has remained elusive. Here, the overall Galactic nova rate is estimated by extrapolating the observed rate for novae reaching m≤slant 2 to include the entire Galaxy using a two component disk plus bulge model for the distribution of stars in the Milky Way. The present analysis improves on previous work by considering important corrections for incompleteness in the observed rate of bright novae and by employing a Monte Carlo analysis to better estimate the uncertainty in the derived nova rates. Several models are considered to account for differences in the assumed properties of bulge and disk nova populations and in the absolute magnitude distribution. The simplest models, which assume uniform properties between bulge and disk novae, predict Galactic nova rates of ˜50 to in excess of 100 per year, depending on the assumed incompleteness at bright magnitudes. Models where the disk novae are assumed to be more luminous than bulge novae are explored, and predict nova rates up to 30% lower, in the range of ˜35 to ˜75 per year. An average of the most plausible models yields a rate of {50}-23+31 yr-1, which is arguably the best estimate currently available for the nova rate in the Galaxy. Virtually all models produce rates that represent significant increases over recent estimates, and bring the Galactic nova rate into better agreement with that expected based on comparison with the latest results from extragalactic surveys.

  15. Self-shadowing effects of slim accretion disks in active galactic nuclei: the diverse appearance of the broad-line region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian-Min; Qiu, Jie; Du, Pu

    2014-12-10

    Supermassive black holes in active galactic nuclei (AGNs) undergo a wide range of accretion rates, which lead to diversity of appearance. We consider the effects of anisotropic radiation from accretion disks on the broad-line region (BLR) from the Shakura-Sunyaev regime to slim disks with super-Eddington accretion rates. The geometrically thick funnel of the inner region of slim disks produces strong self-shadowing effects that lead to very strong anisotropy of the radiation field. We demonstrate that the degree of anisotropy of the radiation fields grows with increasing accretion rate. As a result of this anisotropy, BLR clouds receive different spectral energymore » distributions depending on their location relative to the disk, resulting in the diverse observational appearance of the BLR. We show that the self-shadowing of the inner parts of the disk naturally produces two dynamically distinct regions of the BLR, depending on accretion rate. These two regions manifest themselves as kinematically distinct components of the broad Hβ line profile with different line widths and fluxes, which jointly account for the Lorentzian profile generally observed in narrow-line Seyfert 1 galaxies. In the time domain, these two components are expected to reverberate with different time lags with respect to the varying ionizing continuum, depending on the accretion rate and the viewing angle of the observer. The diverse appearance of the BLR due to the anisotropic ionizing energy source can be tested by reverberation mapping of Hβ and other broad emission lines (e.g., Fe II), providing a new tool to diagnose the structure and dynamics of the BLR. Other observational consequences of our model are also explored.« less

  16. Flares from Galactic Centre pulsars: a new class of X-ray transients?

    NASA Astrophysics Data System (ADS)

    Giannios, Dimitrios; Lorimer, Duncan R.

    2016-06-01

    Despite intensive searches, the only pulsar within 0.1 pc of the central black hole in our Galaxy, Sgr A*, is a radio-loud magnetar. Since magnetars are rare among the Galactic neutron star population, and a large number of massive stars are already known in this region, the Galactic Centre (GC) should harbour a large number of neutron stars. Population syntheses suggest several thousand neutron stars may be present in the GC. Many of these could be highly energetic millisecond pulsars which are also proposed to be responsible for the GC gamma-ray excess. We propose that the presence of a neutron star within 0.03 pc from Sgr A* can be revealed by the shock interactions with the disc around the central black hole. As we demonstrate, these interactions result in observable transient non-thermal X-ray and gamma-ray emission over time-scales of months, provided that the spin-down luminosity of the neutron star is Lsd ˜ 1035 erg s-1. Current limits on the population of normal and millisecond pulsars in the GC region suggest that a number of such pulsars are present with such luminosities.

  17. The Fermi Galactic Center GeV Excess and Implications for Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Buehler, R.; Ajello, M.

    2017-05-01

    The region around the Galactic Center (GC) is now well established to be brighter at energies of a few GeV than what is expected from conventional models of diffuse gamma-ray emission and catalogs of known gamma-ray sources. We study the GeV excess using 6.5 yr of data from the Fermi Large Area Telescope. We characterize the uncertainty of the GC excess spectrum and morphology due to uncertainties in cosmic-ray source distributions and propagation, uncertainties in the distribution of interstellar gas in the Milky Way, and uncertainties due to a potential contribution from the Fermi bubbles. We also evaluate uncertainties inmore » the excess properties due to resolved point sources of gamma rays. The GC is of particular interest, as it would be expected to have the brightest signal from annihilation of weakly interacting massive dark matter (DM) particles. However, control regions along the Galactic plane, where a DM signal is not expected, show excesses of similar amplitude relative to the local background. Based on the magnitude of the systematic uncertainties, we conservatively report upper limits for the annihilation cross-section as a function of particle mass and annihilation channel.« less

  18. Galactic Surveys in the Gaia Era

    NASA Astrophysics Data System (ADS)

    Wyse, Rosemary F. G.

    2018-04-01

    The final astrometric data from the Gaia mission will transform our view of the stellar content of the Galaxy, particularly when complemented with spectroscopic surveys providing stellar parameters, line-of-sight kinematics and elemental abundances. Analyses with Gaia DR1 are already demonstrating the insight gained and the promise of what is to come with future Gaia releases. I present a brief overview of results and puzzles from recent Galactic Archaeology surveys for context, focusing on the Galactic discs.

  19. THE CENTRAL MOLECULAR GAS STRUCTURE IN LINERS WITH LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI: EVIDENCE FOR GRADUAL DISAPPEARANCE OF THE TORUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller-Sanchez, F.; Prieto, M. A.; Mezcua, M.

    2013-01-20

    We present observations of the molecular gas in the nuclear environment of three prototypical low-luminosity active galactic nuclei (LLAGNs), based on VLT/SINFONI AO-assisted integral-field spectroscopy of H{sub 2} 1-0 S(1) emission at angular resolutions of {approx}0.''17. On scales of 50-150 pc, the spatial distribution and kinematics of the molecular gas are consistent with a rotating thin disk, where the ratio of rotation (V) to dispersion ({sigma}) exceeds unity. However, in the central 50 pc, the observations reveal a geometrically and optically thick structure of molecular gas (V/{sigma} < 1 and N{sub H} > 10{sup 23} cm{sup -2}) that is likelymore » to be associated with the outer extent of any smaller scale obscuring structure. In contrast to Seyfert galaxies, the molecular gas in LLAGNs has a V/{sigma} < 1 over an area that is {approx}9 times smaller and column densities that are on average {approx}3 times smaller. We interpret these results as evidence for a gradual disappearance of the nuclear obscuring structure. While a disk wind may not be able to maintain a thick rotating structure at these luminosities, inflow of material into the nuclear region could provide sufficient energy to sustain it. In this context, LLAGNs may represent the final phase of accretion in current theories of torus evolution. While the inflow rate is considerable during the Seyfert phase, it is slowly decreasing, and the collisional disk is gradually transitioning to become geometrically thin. Furthermore, the nuclear region of these LLAGNs is dominated by intermediate-age/old stellar populations (with little or no ongoing star formation), consistent with a late stage of evolution.« less

  20. A New Database of Digitized Regional Seismic Waveforms from Nuclear Explosions in Eurasia

    NASA Astrophysics Data System (ADS)

    Sokolova, I. N.; Richards, P. G.; Kim, W. Y.; Mikhailova, N. N.

    2014-12-01

    Seismology is an observational science. Hence, the effort to understand details of seismic signals from underground nuclear explosions requires analysis of waveforms recorded from past nuclear explosions. Of principal interest, are regional signals from explosions too small to be reliably identified via teleseismic recording. But the great majority of stations operated today, even those in networks for nuclear explosion monitoring, have never recorded explosion signals at regional distances, because most stations were installed long after the period when most underground nuclear explosions were conducted; and the few nuclear explosions since the early 1990s were mostly recorded only at teleseismic distances. We have therefore gathered thousands of nuclear explosion regional seismograms from more than 200 analog stations operated in the former Soviet Union. Most of them lie in a region stretching approximately 6000 km East-West and 2000 km North-South and including much of Central Asia. We have digitized them and created a modern digital database, including significant metadata. Much of this work has been done in Kazakhstan. Most of the explosions were underground, but several were conducted in the atmosphere. This presentation will characterize the content and overall quality of the new database for signals from nuclear explosions in Eurasia, which were conducted across substantial ranges of yield and shot-point depth, and under a great variety of different geological conditions. This work complements a 20-year collaborative effort which made the original digital recordings of the Borovoye Geophysical Observatory, Kazakhstan, openly available in a modern format (see http://www.ldeo.columbia.edu/res/pi/Monitoring/Data/). For purposes of characterizing explosive sources, it would be of assistance to have seismogram archives from explosions conducted in all regions including the Pacific, North Africa, and the United States (including the Aleutians). Openly available

  1. Search for dark matter from the Galactic halo with the IceCube Neutrino Telescope

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brown, A. M.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; de Clercq, C.; Demirörs, L.; Denger, T.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schoenwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Stür, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.

    2011-07-01

    Self-annihilating or decaying dark matter in the Galactic halo might produce high energy neutrinos detectable with neutrino telescopes. We have conducted a search for such a signal using 276 days of data from the IceCube 22-string configuration detector acquired during 2007 and 2008. The effect of halo model choice in the extracted limit is reduced by performing a search that considers the outer halo region and not the Galactic Center. We constrain any large-scale neutrino anisotropy and are able to set a limit on the dark matter self-annihilation cross section of ⟨σAv⟩≃10-22cm3s-1 for weakly interacting massive particle masses above 1 TeV, assuming a monochromatic neutrino line spectrum.

  2. Star formation inside a galactic outflow.

    PubMed

    Maiolino, R; Russell, H R; Fabian, A C; Carniani, S; Gallagher, R; Cazzoli, S; Arribas, S; Belfiore, F; Bellocchi, E; Colina, L; Cresci, G; Ishibashi, W; Marconi, A; Mannucci, F; Oliva, E; Sturm, E

    2017-04-13

    Recent observations have revealed massive galactic molecular outflows that may have the physical conditions (high gas densities) required to form stars. Indeed, several recent models predict that such massive outflows may ignite star formation within the outflow itself. This star-formation mode, in which stars form with high radial velocities, could contribute to the morphological evolution of galaxies, to the evolution in size and velocity dispersion of the spheroidal component of galaxies, and would contribute to the population of high-velocity stars, which could even escape the galaxy. Such star formation could provide in situ chemical enrichment of the circumgalactic and intergalactic medium (through supernova explosions of young stars on large orbits), and some models also predict it to contribute substantially to the star-formation rate observed in distant galaxies. Although there exists observational evidence for star formation triggered by outflows or jets into their host galaxy, as a consequence of gas compression, evidence for star formation occurring within galactic outflows is still missing. Here we report spectroscopic observations that unambiguously reveal star formation occurring in a galactic outflow at a redshift of 0.0448. The inferred star-formation rate in the outflow is larger than 15 solar masses per year. Star formation may also be occurring in other galactic outflows, but may have been missed by previous observations owing to the lack of adequate diagnostics.

  3. Polycyclic Aromatic Hydrocarbon Emission Toward the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Shannon, M. J.; Peeters, E.; Cami, J.; Blommaert, J. A. D. L.

    2018-03-01

    We examine polycyclic aromatic hydrocarbon (PAH), dust, and atomic/molecular emission toward the Galactic bulge using Spitzer Space Telescope observations of four fields: C32, C35, OGLE, and NGC 6522. These fields are approximately centered on (l, b) = (0.°0, 1.°0), (0.°0, ‑1.°0), (0.°4, ‑2.°4), and (1.°0, ‑3.°8), respectively. Far-infrared photometric observations complement the Spitzer/IRS spectroscopic data and are used to construct spectral energy distributions. We find that the dust and PAH emission are exceptionally similar between C32 and C35 overall, in part explained due to their locations—they reside on or near boundaries of a 7 Myr old Galactic outflow event and are partly shock-heated. Within the C32 and C35 fields, we identify a region of elevated Hα emission that is coincident with elevated fine-structure and [O IV] line emission and weak PAH feature strengths. We are likely tracing a transition zone of the outflow into the nascent environment. PAH abundances in these fields are slightly depressed relative to typical ISM values. In the OGLE and NGC 6522 fields, we observe weak features on a continuum dominated by zodiacal dust. SED fitting indicates that thermal dust grains in C32 and C35 have temperatures comparable to those of diffuse, high-latitude cirrus clouds. Little variability is detected in the PAH properties between C32 and C35, indicating that a stable population of PAHs dominates the overall spectral appearance. In fact, their PAH features are exceptionally similar to that of the M82 superwind, emphasizing that we are probing a local Galactic wind environment.

  4. Evaluating galactic habitability using high-resolution cosmological simulations of galaxy formation

    NASA Astrophysics Data System (ADS)

    Forgan, Duncan; Dayal, Pratika; Cockell, Charles; Libeskind, Noam

    2017-01-01

    We present the first model that couples high-resolution simulations of the formation of local group galaxies with calculations of the galactic habitable zone (GHZ), a region of space which has sufficient metallicity to form terrestrial planets without being subject to hazardous radiation. These simulations allow us to make substantial progress in mapping out the asymmetric three-dimensional GHZ and its time evolution for the Milky Way (MW) and Triangulum (M33) galaxies, as opposed to works that generally assume an azimuthally symmetric GHZ. Applying typical habitability metrics to MW and M33, we find that while a large number of habitable planets exist as close as a few kiloparsecs from the galactic centre, the probability of individual planetary systems being habitable rises as one approaches the edge of the stellar disc. Tidal streams and satellite galaxies also appear to be fertile grounds for habitable planet formation. In short, we find that both galaxies arrive at similar GHZs by different evolutionary paths, as measured by the first and third quartiles of surviving biospheres. For the MW, this interquartile range begins as a narrow band at large radii, expanding to encompass much of the Galaxy at intermediate times before settling at a range of 2-13 kpc. In the case of M33, the opposite behaviour occurs - the initial and final interquartile ranges are quite similar, showing gradual evolution. This suggests that Galaxy assembly history strongly influences the time evolution of the GHZ, which will affect the relative time lag between biospheres in different galactic locations. We end by noting the caveats involved in such studies and demonstrate that high-resolution cosmological simulations will play a vital role in understanding habitability on galactic scales, provided that these simulations accurately resolve chemical evolution.

  5. 3D spectroscopy of merger Seyfert galaxy Mrk 334: nuclear starburst, superwind and the circumnuclear cavern

    NASA Astrophysics Data System (ADS)

    Smirnova, Aleksandrina; Moiseev, Alexei

    2010-01-01

    We are presenting new results on kinematics and structure of the Mrk 334 Seyfert galaxy. Panoramic (3D) spectroscopy is performed at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences using the integral-field Multi-Pupil Fiber Spectrograph (MPFS) and scanning Fabry-Pérot interferometer. The deep images have revealed that Mrk 334 is observed during the final stage of its merging with a massive companion. A possible mass ratio ranges from 1/5 to 1/3. The merger has triggered mass redistribution in the disc resulting in an intensification of nuclear activity and in a burst of star formation in the inner region of the galaxy. The circumnuclear starburst is so intense that its contribution to the gas ionization exceeds that contribution of the active galactic nuclei (AGN). We interpret the nuclear gas outflow with velocities of ~200kms-1 as a galactic superwind that accompanies the violent star formation. This suggestion is consistent with the asymmetric X-ray brightness distribution in Mrk 334. The trajectory of the fragments of the disrupted satellite in the vicinity of the main galaxy nucleus can be traced. In the galaxy disc, a cavern is found that is filled with a low-density ionized gas. We consider this region to be the place where the remnants of the companion have recently penetrated through the gaseous disc of the main galaxy.

  6. Decadal reduction of Chinese agriculture after a regional nuclear war

    NASA Astrophysics Data System (ADS)

    Xia, Lili; Robock, Alan; Mills, Michael; Stenke, Andrea; Helfand, Ira

    2015-02-01

    A regional nuclear war between India and Pakistan could decrease global surface temperature by 1°C-2°C for 5-10 years and have major impacts on precipitation and solar radiation reaching Earth's surface. Using a crop simulation model forced by three global climate model simulations, we investigate the impacts on agricultural production in China, the largest grain producer in the world. In the first year after the regional nuclear war, a cooler, drier, and darker environment would reduce annual rice production by 30 megaton (Mt) (29%), maize production by 36 Mt (20%), and wheat production by 23 Mt (53%). With different agriculture management—no irrigation, auto irrigation, 200 kg/ha nitrogen fertilizer, and 10 days delayed planting date—simulated national crop production reduces 16%-26% for rice, 9%-20% for maize, and 32%-43% for wheat during 5 years after the nuclear war event. This reduction of food availability would continue, with gradually decreasing amplitude, for more than a decade. Assuming these impacts are indicative of those in other major grain producers, a nuclear war using much less than 1% of the current global arsenal could produce a global food crisis and put a billion people at risk of famine.

  7. Milky Way scattering properties and intrinsic sizes of active galactic nuclei cores probed by very long baseline interferometry surveys of compact extragalactic radio sources

    NASA Astrophysics Data System (ADS)

    Pushkarev, A. B.; Kovalev, Y. Y.

    2015-10-01

    We have measured the angular sizes of radio cores of active galactic nuclei (AGNs) and analysed their sky distributions and frequency dependences to study synchrotron opacity in AGN jets and the strength of angular broadening in the interstellar medium. We have used archival very long baseline interferometry (VLBI) data of more than 3000 compact extragalactic radio sources observed at frequencies, ν, from 2 to 43 GHz to measure the observed angular size of VLBI cores. We have found a significant increase in the angular sizes of the extragalactic sources seen through the Galactic plane (|b| ≲ 10°) at 2, 5 and 8 GHz, about one-third of which show significant scattering. These sources are mainly detected in directions to the Galactic bar, the Cygnus region and a region with galactic longitudes 220° ≲ l ≲ 260° (the Fitzgerald window). The strength of interstellar scattering of the AGNs is found to correlate with the Galactic Hα intensity, free-electron density and Galactic rotation measure. The dependence of scattering strengths on source redshift is insignificant, suggesting that the dominant scattering screens are located in our Galaxy. The observed angular size of Sgr A* is found to be the largest among thousands of AGNs observed over the sky; we discuss possible reasons for this strange result. Excluding extragalactic radio sources with significant scattering, we find that the angular size of opaque cores in AGNs scales typically as ν-1, confirming predictions of a conical synchrotron jet model with equipartition.

  8. Galactic Neighborhood and Laboratory Astrophysics

    NASA Astrophysics Data System (ADS)

    Wang, Q. D.

    2011-05-01

    The galactic neighborhood, extending from the Milky Way to redshifts of about 0.1, is our unique local laboratory for detailed study of galaxies and their interplay with the environment. Such study provides a foundation of knowledge for interpreting observations of more distant galaxies and their environment. The Astro 2010 Science Frontier Galactic Neighborhood Panel identified four key sci- entific questions: 1) What are the flows of matter and energy in the circumgalac- tic medium? 2) What controls the mass-energy-chemical cycles within galaxies? 3) What is the fossil record of galaxy assembly from first stars to present? 4) What are the connections between dark and luminous matter? These questions, essential to the understanding of galaxies as interconnected complexes, can be addressed most effectively and/or uniquely in the galactic neighborhood. The panel also highlighted the discovery potential of time-domain astronomy and astrometry with powerful new techniques and facilities to greatly advance our understanding of the precise connections among stars, galaxies, and newly dis- covered transient events. The relevant needs for laboratory astrophysics will be emphasized, especially in the context of supporting NASA missions.

  9. Active Galactic Nucleus

    NASA Image and Video Library

    2017-09-14

    SCI2017_0007: Artist illustration of the thick ring of dust that can obscure the energetic processes that occur near the supermassive black hole of an active galactic nuclei. The SOFIA studies suggest that the dust distribution is about 30 percent smaller than previously thought. Credit: NASA/SOFIA/Lynette Cook

  10. Failed Radiatively Accelerated Dusty Outflow Model of the Broad Line Region in Active Galactic Nuclei. I. Analytical Solution

    NASA Astrophysics Data System (ADS)

    Czerny, B.; Li, Yan-Rong; Hryniewicz, K.; Panda, S.; Wildy, C.; Sniegowska, M.; Wang, J.-M.; Sredzinska, J.; Karas, V.

    2017-09-01

    The physical origin of the broad line region in active galactic nuclei is still unclear despite many years of observational studies. The reason is that the region is unresolved, and the reverberation mapping results imply a complex velocity field. We adopt a theory-motivated approach to identify the principal mechanism responsible for this complex phenomenon. We consider the possibility that the role of dust is essential. We assume that the local radiation pressure acting on the dust in the accretion disk atmosphere launches the outflow of material, but higher above the disk the irradiation from the central parts causes dust evaporation and a subsequent fallback. This failed radiatively accelerated dusty outflow is expected to represent the material forming low ionization lines. In this paper we formulate simple analytical equations to describe the cloud motion, including the evaporation phase. The model is fully described just by the basic parameters of black hole mass, accretion rate, black hole spin, and viewing angle. We study how the spectral line generic profiles correspond to this dynamic. We show that the virial factor calculated from our model strongly depends on the black hole mass in the case of enhanced dust opacity, and thus it then correlates with the line width. This could explain why the virial factor measured in galaxies with pseudobulges differs from that obtained from objects with classical bulges, although the trend predicted by the current version of the model is opposite to the observed trend.

  11. A RAPIDLY EVOLVING REGION IN THE GALACTIC CENTER: WHY S-STARS THERMALIZE AND MORE MASSIVE STARS ARE MISSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xian; Amaro-Seoane, Pau, E-mail: Xian.Chen@aei.mpg.de, E-mail: Pau.Amaro-Seoane@aei.mpg.de

    2014-05-10

    The existence of ''S-stars'' within a distance of 1'' from Sgr A* contradicts our understanding of star formation, due to Sgr A* 's forbiddingly violent environment. A suggested possibility is that they form far away and were brought in by some fast dynamical process, since they are young. Nonetheless, all conjectured mechanisms either fail to reproduce their eccentricities—without violating their young age—or cannot explain the problem of {sup i}nverse mass segregation{sup :} the fact that lighter stars (the S-stars) are closer to Sgr A* and more massive ones, Wolf-Rayet (WR) and O-stars, are farther out. In this Letter we proposemore » that the mechanism responsible for both the distribution of the eccentricities and the paucity of massive stars is the Kozai-Lidov-like resonance induced by a sub-parsec disk recently discovered in the Galactic center. Considering that the disk probably extended to a smaller radius in the past, we show that in as short as (a few) 10{sup 6} yr, the stars populating the innermost 1'' region would redistribute in angular-momentum space and recover the observed ''super-thermal'' distribution. Meanwhile, WR and O-stars in the same region intermittently attain ample eccentricities that will lead to their tidal disruptions by the central massive black hole. Our results provide new evidences that Sgr A* was powered several millions years ago by an accretion disk as well as by tidal stellar disruptions.« less

  12. VizieR Online Data Catalog: Galactic bulge eclipsing & ellipsoidal binaries (Soszynski+, 2016)

    NASA Astrophysics Data System (ADS)

    Soszynski, I.; Pawlak, M.; Pietrukowicz, P.; Udalski, A.; Szymanski, M. K.; Wyrzykowski, L.; Ulaczyk, K.; Poleski, R.; Kozlowski, S.; Skowron, D. M.; Skowron, J.; Mroz, P.; Hamanowicz, A.

    2018-04-01

    Our collection of binary systems in the Galactic bulge is based on the photometric data collected by the OGLE survey between 1997 and 2015 at Las Campanas Observatory, Chile, with the 1.3-m Warsaw Telescope. The observatory is operated by the Carnegie Institution for Science. In 1997-2000, during the OGLE-II stage, about 30 million stars in the area of 11 square degrees in the central parts of the Milky Way were constantly monitored. In 2001, with the beginning of the OGLE-III survey, the sky coverage was extended to nearly 69 square degrees and the number of monitored stars increased to 200 million. Finally, from 2010 until today the OGLE-IV project regularly observes about 400 million stars in 182 square degrees of the densest regions of the Galactic bulge. Our search for eclipsing variables was based primarily on the OGLE-IV data. (4 data files).

  13. The structure and content of the galaxy and galactic gamma rays. [conferences

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Stecker, F. W.

    1976-01-01

    Papers are presented dealing with galactic structure drawing on all branches of galactic astronomy with emphasis on the implications of the new gamma ray observations. Topics discussed include: (1) results from the COS-B gamma ray satellite; (2) results from SAS-2 on gamma ray pulsar, Cygnus X-3, and maps of the galactic diffuse flux; (3) recent data from CO surveys of the galaxy; (4) high resolution radio surveys of external galaxies; (5) results on the galactic distribution of pulsars; and (6) theoretical work on galactic gamma ray emission.

  14. Climatic Consequences and Agricultural Impact of Regional Nuclear Conflict

    NASA Astrophysics Data System (ADS)

    Robock, Alan; Mills, Michael; Toon, Owen Brian; Xia, Lili

    2013-04-01

    A nuclear war between India and Pakistan, with each country using 50 Hiroshima-sized atom bombs as airbursts on urban areas, would inject smoke from the resulting fires into the stratosphere. This could produce climate change unprecedented in recorded human history and global-scale ozone depletion, with enhanced ultraviolet (UV) radiation reaching the surface. Simulations with the NCAR Whole Atmosphere Community Climate Model (WACCM), run at higher vertical and horizontal resolution than a previous simulation with the NASA Goddard Institute for Space Studies ModelE, and incorporating ozone chemistry for the first time, show a longer stratospheric residence time for smoke and hence a longer-lasting climate response, with global average surface air temperatures still 1.1 K below normal and global average precipitation 4% below normal after a decade. The erythemal dose from the enhanced UV radiation would greatly increase, in spite of enhanced absorption by the remaining smoke, with the UV index more than 3 units higher in the summer midlatitudes, even after a decade. Scenarios of changes in temperature, precipitation, and downward shortwave radiation from the ModelE and WACCM simulations, applied to the Decision Support System for Agrotechnology Transfer crop model for winter wheat, rice, soybeans, and maize by perturbing observed time series with anomalies from the regional nuclear war simulations, produce decreases of 10-50% in yield averaged over a decade, with larger decreases in the first several years, over several regions in the midlatitudes of the Northern Hemisphere. The impact of the nuclear war simulated here, using much less than 1% of the global nuclear arsenal, would be devastating to world agricultural production and trade, possibly sentencing a billion people now living marginal existences to starvation. The continued environmental threat of the use of even a small number of nuclear weapons must be considered in nuclear policy deliberations in Russia

  15. Galactic cold cores. V. Dust opacity

    NASA Astrophysics Data System (ADS)

    Juvela, M.; Ristorcelli, I.; Marshall, D. J.; Montillaud, J.; Pelkonen, V.-M.; Ysard, N.; McGehee, P.; Paladini, R.; Pagani, L.; Malinen, J.; Rivera-Ingraham, A.; Lefèvre, C.; Tóth, L. V.; Montier, L. A.; Bernard, J.-P.; Martin, P.

    2015-12-01

    Context. The project Galactic Cold Cores has carried out Herschel photometric observations of interstellar clouds where the Planck satellite survey has located cold and compact clumps. The sources represent different stages of cloud evolution from starless clumps to protostellar cores and are located in different Galactic environments. Aims: We examine this sample of 116 Herschel fields to estimate the submillimetre dust opacity and to search for variations that might be attributed to the evolutionary stage of the sources or to environmental factors, including the location within the Galaxy. Methods: The submillimetre dust opacity was derived from Herschel data, and near-infrared observations of the reddening of background stars are converted into near-infrared optical depth. We investigated the systematic errors affecting these parameters and used modelling to correct for the expected biases. The ratio of 250 μm and J band opacities is correlated with the Galactic location and the star formation activity. We searched for local variations in the ratio τ(250 μm)/τ(J) using the correlation plots and opacity ratio maps. Results: We find a median ratio of τ(250 μm) /τ(J) = (1.6 ± 0.2) × 10-3, which is more than three times the mean value reported for the diffuse medium. Assuming an opacity spectral index β = 1.8 instead of β = 2.0, the value would be lower by ~ 30%. No significant systematic variation is detected with Galactocentric distance or with Galactic height. Examination of the τ(250 μm) /τ(J) maps reveals six fields with clear indications of a local increase of submillimetre opacity of up to τ(250 μm) /τ(J) ~ 4 × 10-3 towards the densest clumps. These are all nearby fields with spatially resolved clumps of high column density. Conclusions: We interpret the increase in the far-infrared opacity as a sign of grain growth in the densest and coldest regions of interstellar clouds. Planck (http://www.esa.int/Planck) is a project of the European

  16. Effects of interplanetary magnetic clouds, interaction regions, and high-speed streams on the transient modulation of galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Singh, Y. P.; Badruddin

    2007-02-01

    Interplanetary manifestations of coronal mass ejections (CMEs) with specific plasma and field properties, called ``interplanetary magnetic clouds,'' have been observed in the heliosphere since the mid-1960s. Depending on their associated features, a set of observed magnetic clouds identified at 1 AU were grouped in four different classes using data over 4 decades: (1) interplanetary magnetic clouds moving with the ambient solar wind (MC structure), (2) magnetic clouds moving faster than the ambient solar wind and forming a shock/sheath structure of compressed plasma and field ahead of it (SMC structure), (3) magnetic clouds ``pushed'' by the high-speed streams from behind, forming an interaction region between the two (MIH structure), and (4) shock-associated magnetic clouds followed by high-speed streams (SMH structure). This classification into different groups led us to study the role, effect, and the relative importance of (1) closed field magnetic cloud structure with low field variance, (2) interplanetary shock and magnetically turbulent sheath region, (3) interaction region with large field variance, and (4) the high-speed solar wind stream coming from the open field regions, in modulating the galactic cosmic rays (GCRs). MC structures are responsible for transient decrease with fast recovery. SMC structures are responsible for fast decrease and slow recovery, MIH structures produce depression with slow decrease and slow recovery, and SMH structures are responsible for fast decrease with very slow recovery. Simultaneous variations of GCR intensity, solar plasma velocity, interplanetary magnetic field strength, and its variance led us to study the relative effectiveness of different structures as well as interplanetary plasma/field parameters. Possible role of the magnetic field, its topology, field turbulence, and the high-speed streams in influencing the amplitude and time profile of resulting decreases in GCR intensity have also been discussed.

  17. MODELING THE GAMMA-RAY EMISSION IN THE GALACTIC CENTER WITH A FADING COSMIC-RAY ACCELERATOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ruo-Yu; Wang, Xiang-Yu; Prosekin, Anton

    2016-12-20

    Recent HESS observations of the ∼200 pc scale diffuse gamma-ray emission from the central molecular zone (CMZ) suggest the presence of a PeV cosmic-ray accelerator (PeVatron) located in the inner 10 pc region of the Galactic center. Interestingly, the gamma-ray spectrum of the point-like source (HESS J1745-290) in the Galactic center shows a cutoff at ∼10 TeV, implying a cutoff around 100 TeV in the cosmic-ray proton spectrum. Here we propose that the gamma-ray emission from the inner and the outer regions may be explained self-consistently by run-away protons from a single yet fading accelerator. In this model, gamma-rays frommore » the CMZ region are produced by protons injected in the past, while gamma-rays from the inner region are produced by protons injected more recently. We suggest that the blast wave formed in a tidal disruption event (TDE) caused by the supermassive black hole (Sgr A*) could serve as such a fading accelerator. With typical parameters of the TDE blast wave, gamma-ray spectra of both the CMZ region and HESS J1745-290 can be reproduced simultaneously. Meanwhile, we find that the cosmic-ray energy density profile in the CMZ region may also be reproduced in the fading accelerator model when appropriate combinations of the particle injection history and the diffusion coefficient of cosmic rays are adopted.« less

  18. Radioactivity in the galactic plane

    NASA Technical Reports Server (NTRS)

    Walraven, G. D.; Haymes, R. C.

    1976-01-01

    The paper reports the detection of a large concentration of interstellar radioactivity during balloon-altitude measurements of gamma-ray energy spectra in the band between 0.02 and 12.27 MeV from galactic and extragalactic sources. Enhanced counting rates were observed in three directions towards the plane of the Galaxy; a power-law energy spectrum is computed for one of these directions (designated B 10). A large statistical deviation from the power law in a 1.0-FWHM interval centered near 1.16 MeV is discussed, and the existence of a nuclear gamma-ray line at 1.15 MeV in B 10 is postulated. It is suggested that Ca-44, which emits gamma radiation at 1.156 MeV following the decay of radioactive Sc-44, is a likely candidate for this line, noting that Sc-44 arises from Ti-44 according to explosive models of supernova nucleosynthesis. The 1.16-MeV line flux inferred from the present data is shown to equal the predicted flux for a supernova at a distance of approximately 3 kpc and an age not exceeding about 100 years.

  19. The Profile of the Galactic Halo from Pan-STARRS1 3π RR Lyrae

    NASA Astrophysics Data System (ADS)

    Hernitschek, Nina; Cohen, Judith G.; Rix, Hans-Walter; Sesar, Branimir; Martin, Nicolas F.; Magnier, Eugene; Wainscoat, Richard; Kaiser, Nick; Tonry, John L.; Kudritzki, Rolf-Peter; Hodapp, Klaus; Chambers, Ken; Flewelling, Heather; Burgett, William

    2018-05-01

    We characterize the spatial density of the Pan-STARRS1 (PS1) sample of Rrab stars to study the properties of the old Galactic stellar halo. This sample, containing 44,403 sources, spans galactocentric radii of 0.55 kpc ≤ R gc ≤ 141 kpc with a distance precision of 3% and thus is able to trace the halo out to larger distances than most previous studies. After excising stars that are attributed to dense regions such as stellar streams, the Galactic disk and bulge, and halo globular clusters, the sample contains ∼11,000 sources within 20 kpc ≤ R gc ≤ 131 kpc. We then apply forward modeling using Galactic halo profile models with a sample selection function. Specifically, we use ellipsoidal stellar density models ρ(l, b, R gc) with a constant and a radius-dependent halo flattening q(R gc). Assuming constant flattening q, the distribution of the sources is reasonably well fit by a single power law with n={4.40}-0.04+0.05 and q={0.918}-0.014+0.016 and comparably well fit by an Einasto profile with n={9.53}-0.28+0.27, an effective radius r eff = 1.07 ± 0.10 kpc, and a halo flattening of q = 0.923 ± 0.007. If we allow for a radius-dependent flattening q(R gc), we find evidence for a distinct flattening of q ∼ 0.8 of the inner halo at ∼25 kpc. Additionally, we find that the south Galactic hemisphere is more flattened than the north Galactic hemisphere. The results of our work are largely consistent with many earlier results (e.g., Watkins et al.; Iorio et al.). We find that the stellar halo, as traced in RR Lyrae stars, exhibits a substantial number of further significant over- and underdensities, even after masking all known overdensities.

  20. Diffuse Galactic gamma rays from shock-accelerated cosmic rays.

    PubMed

    Dermer, Charles D

    2012-08-31

    A shock-accelerated particle flux is proportional to p(-s), where p is the particle momentum, follows from simple theoretical considerations of cosmic-ray acceleration at nonrelativistic shocks followed by rigidity-dependent escape into the Galactic halo. A flux of shock-accelerated cosmic-ray protons with s≈2.8 provides an adequate fit to the Fermi Large Area Telescope γ-ray emission spectra of high-latitude and molecular cloud gas when uncertainties in nuclear production models are considered. A break in the spectrum of cosmic-ray protons claimed by Neronov, Semikoz, and Taylor [Phys. Rev. Lett. 108, 051105 (2012)] when fitting the γ-ray spectra of high-latitude molecular clouds is a consequence of using a cosmic-ray proton flux described by a power law in kinetic energy.

  1. Galactic Abundance Patterns via Peimbert Types I & II Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Milingo, J. B.; Barnes, K. L.; Kwitter, K. B.; Souza, S. P.; Henry, R. B. C.; Skinner, J. N.

    2005-12-01

    Planetary Nebulae (PNe) are well known fonts of information about both stellar evolution and galactic chemical evolution. Abundance patterns in PNe are used to note signatures and constraints of nuclear processing, and as tracers of the distribution of metals throughout galaxies. In this poster abundance gradients and heavy element ratios are presented based upon newly acquired spectrophotometry of a sample of Galactic Peimbert Type I PNe. This new data set is extracted from spectra that extend from λ 3600 - 9600Å allowing the use of [S III] features at λ 9069 and 9532Å. Since a significant portion of S in PNe resides in S+2 and higher ionization stages, including these features improves the extrapolation from observed ion abundances to total element abundance. An alternate metallicity tracer, Sulfur is precluded from enhancement and depletion across the range of PNe progenitor masses. Its stability in intermediate mass stars makes it a useful tool to probe the natal conditions as well as the evolution of PNe progenitors. This is a continuation of our Type II PNe work, the impetus being to compile a relatively large set of line strengths and abundances with internally consistent observation, reduction, calibration, and abundance determination, minimizing systematic affects that come from compiling various data sets. This research is supported by the AAS Small Research Grants program, the Franklin & Marshall Committee on Grants, and NSF grant AST-0307118.

  2. Toward a descriptive model of galactic cosmic rays in the heliosphere

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Cummings, A. C.; Adams, James H., Jr.; Evenson, Paul; Fillius, W.; Jokipii, J. R.; Mckibben, R. B.; Robinson, Paul A., Jr.

    1988-01-01

    Researchers review the elements that enter into phenomenological models of the composition, energy spectra, and the spatial and temporal variations of galactic cosmic rays, including the so-called anomalous cosmic ray component. Starting from an existing model, designed to describe the behavior of cosmic rays in the near-Earth environment, researchers suggest possible updates and improvements to this model, and then propose a quantitative approach for extending such a model into other regions of the heliosphere.

  3. A magnetic torsional wave near the Galactic Centre traced by a 'double helix' nebula.

    PubMed

    Morris, Mark; Uchida, Keven; Do, Tuan

    2006-03-16

    The magnetic field in the central few hundred parsecs of the Milky Way has a dipolar geometry and is substantially stronger than elsewhere in the Galaxy, with estimates ranging up to a milligauss (refs 1-6). Characterization of the magnetic field at the Galactic Centre is important because it can affect the orbits of molecular clouds by exerting a drag on them, inhibit star formation, and could guide a wind of hot gas or cosmic rays away from the central region. Here we report observations of an infrared nebula having the morphology of an intertwined double helix about 100 parsecs from the Galaxy's dynamical centre, with its axis oriented perpendicular to the Galactic plane. The observed segment is about 25 parsecs in length, and contains about 1.25 full turns of each of the two continuous, helically wound strands. We interpret this feature as a torsional Alfvén wave propagating vertically away from the Galactic disk, driven by rotation of the magnetized circumnuclear gas disk. The direct connection between the circumnuclear disk and the double helix is ambiguous, but the images show a possible meandering channel that warrants further investigation.

  4. FERMI BUBBLE γ-RAYS AS A RESULT OF DIFFUSIVE INJECTION OF GALACTIC COSMIC RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thoudam, Satyendra, E-mail: s.thoudam@astro.ru.nl

    2013-11-20

    Recently, the Fermi Space Telescope discovered two large γ-ray emission regions, the so-called Fermi bubbles, that extend up to ∼50° above and below the Galactic center (GC). The γ-ray emission from the bubbles is found to follow a hard spectrum with no significant spatial variation in intensity and spectral shape. The origin of the emission is still not clearly understood. Suggested explanations include the injection of cosmic-ray (CR) nuclei from the GC by high-speed Galactic winds, electron acceleration by multiple shocks, and stochastic electron acceleration inside the bubbles. In this Letter, it is proposed that the γ-rays may be themore » result of diffusive injection of Galactic CR protons during their propagation through the Galaxy. Considering that the bubbles are slowly expanding, and CRs undergo much slower diffusion inside the bubbles than in the average Galaxy and at the same time suffer losses due to adiabatic expansion and inelastic collisions with the bubble plasma, this model can explain the observed intensity profile, the emission spectrum and the measured luminosity without invoking any additional particle production processes, unlike other existing models.« less

  5. Photoionization of the diffuse interstellar medium and galactic halo by OB associtations

    NASA Technical Reports Server (NTRS)

    Dove, James B.; Shull, J. Michael

    1994-01-01

    Assuming smoothly varying H I distributions in te Galactic disk, we have calculated the geometry of diffuse II regions due to OB associations in the Galactic plane. Near the solar circle, OB associations with a Lyman continuum (Lyc) photon luminosity Psi(sub Lyc) = 3.3 x 10(exp 7) cm(exp -2) s(exp -1), produce H II regions that are density bounded in the vertical direction (H II chimneys) allowing Lyc to escape the gaseous disk and penetrate into the Galactic halo. We provide analytic formulae for the Lyc escape fraction as functions of S(sub 0) O-star catalog of Garmany and a new Lyc stellar stellar Lyc stellar flux calibration, we find a production rate of Lyc photons by OB associations within 2.5 kpc of Psi(sub Lyc) = 3.3 x 10(exp 7) cm(exp -2) s(exp -1). Integrating the fraction of Lyc photons that escape the disk over our adopted luminosity function of OB associations, we estimate that approximately 7% of the ionizing photons, or Phi(sub Lyc) = 2.3 x 10(exp 6) cm(exp -2) s(exp -1), escape each side of the H I disk layer and penetrate the diffuse ionized medium ('Reynolds layer'). This flux is sufficient to explain the potoionization of this, although we have not constructed a model for the observed H-alpha emission and pulsar dispersion measures that is fully consistent with the absorption rate of Lyc in the H II layer. Since our quiescent model does not account for the effects of dynamic chimneys and superbubbles, which should enhance Lyc escape, we conclude the O stars are the probable source of ionizing radiation for the Reynolds layer. For a random distribution of OB associations throughout the disk, the Lyc flux is nearly uniform for heights Z is greater than approximately 0.8 kpc above the midplane.

  6. Harmonizing the MSSM with the Galactic Center excess

    NASA Astrophysics Data System (ADS)

    Butter, Anja; Murgia, Simona; Plehn, Tilman; Tait, Tim M. P.

    2017-08-01

    The minimal supersymmetric setup offers a comprehensive framework to interpret the Fermi-LAT Galactic Center excess. Taking into account experimental, theoretical, and astrophysical uncertainties we can identify valid parameter regions linked to different annihilation channels. They extend to dark matter masses above 250 GeV. There exists a very mild tension between the observed relic density and the annihilation rate in the center of our Galaxy for specific channels. The strongest additional constraints come from the new generation of direct detection experiments, ruling out much of the light and intermediate dark matter mass regime and giving preference to heavier dark matter annihilating into a pair of top quarks.

  7. THE Fe II EMISSION IN ACTIVE GALACTIC NUCLEI: EXCITATION MECHANISMS AND LOCATION OF THE EMITTING REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinello, M.; Rodríguez-Ardila, A.; Garcia-Rissmann, A.

    2016-04-01

    We present a study of Fe ii emission in the near-infrared region (NIR) for 25 active galactic nuclei (AGNs) to obtain information about the excitation mechanisms that power it and the location where it is formed. We employ an NIR Fe ii template derived in the literature and find that it successfully reproduces the observed Fe ii spectrum. The Fe ii bump at 9200 Å detected in all objects studied confirms that Lyα fluorescence is always present in AGNs. The correlation found between the flux of the 9200 Å bump, the 1 μm lines, and the optical Fe ii implies that Lyα fluorescencemore » plays an important role in Fe ii production. We determined that at least 18% of the optical Fe ii is due to this process, while collisional excitation dominates the production of the observed Fe ii. The line profiles of Fe ii λ10502, O i λ11287, Ca ii λ8664, and Paβ were compared to gather information about the most likely location where they are emitted. We found that Fe ii, O i and Ca ii have similar widths and are, on average, 30% narrower than Paβ. Assuming that the clouds emitting the lines are virialized, we show that the Fe ii is emitted in a region twice as far from the central source than Paβ. The distance, though, strongly varies: from 8.5 light-days for NGC 4051 to 198.2 light-days for Mrk 509. Our results reinforce the importance of the Fe ii in the NIR to constrain critical parameters that drive its physics and the underlying AGN kinematics, as well as more accurate models aimed at reproducing this complex emission.« less

  8. NuSTAR Hard X-Ray Survey of the Galactic Center Region. II. X-Ray Point Sources

    NASA Technical Reports Server (NTRS)

    Hong, Jaesub; Mori, Kaya; Hailey, Charles J.; Nynka, Melania; Zhang, Shou; Gotthelf, Eric; Fornasini, Francesca M.; Krivonos, Roman; Bauer, Franz; Perez, Kerstin; hide

    2016-01-01

    We present the first survey results of hard X-ray point sources in the Galactic Center (GC) region by NuSTAR. We have discovered 70 hard (3-79 keV) X-ray point sources in a 0.6 deg(sup 2) region around Sgr?A* with a total exposure of 1.7 Ms, and 7 sources in the Sgr B2 field with 300 ks. We identify clear Chandra counterparts for 58 NuSTAR sources and assign candidate counterparts for the remaining 19. The NuSTAR survey reaches X-ray luminosities of approx. 4× and approx. 8 ×10(exp 32) erg/s at the GC (8 kpc) in the 3-10 and 10-40 keV bands, respectively. The source list includes three persistent luminous X-ray binaries (XBs) and the likely run-away pulsar called the Cannonball. New source-detection significance maps reveal a cluster of hard (>10 keV) X-ray sources near the Sgr A diffuse complex with no clear soft X-ray counterparts. The severe extinction observed in the Chandra spectra indicates that all the NuSTAR sources are in the central bulge or are of extragalactic origin. Spectral analysis of relatively bright NuSTAR sources suggests that magnetic cataclysmic variables constitute a large fraction (>40%-60%). Both spectral analysis and logN-logS distributions of the NuSTAR sources indicate that the X-ray spectra of the NuSTAR sources should have kT > 20 keV on average for a single temperature thermal plasma model or an average photon index of Lambda = 1.5-2 for a power-law model. These findings suggest that the GC X-ray source population may contain a larger fraction of XBs with high plasma temperatures than the field population.

  9. REGIONAL BINNING FOR CONTINUED STORAGE OF SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. Lee Poe, Jr

    1998-10-01

    In the Continued Storage Analysis Report (CSAR) (Reference 1), DOE decided to analyze the environmental consequences of continuing to store the commercial spent nuclear fuel (SNF) at 72 commercial nuclear power sites and DOE-owned spent nuclear fuel and high-level waste at five Department of Energy sites by region rather than by individual site. This analysis assumes that three commercial facilities pairs--Salem and Hope Creek, Fitzpatrick and Nine-Mile Point, and Dresden and Moms--share common storage due to their proximity to each other. The five regions selected for this analysis are shown on Figure 1. Regions 1, 2, and 3 are themore » same as those used by the Nuclear Regulatory Commission in their regulatory oversight of commercial power reactors. NRC Region 4 was subdivided into two regions to more appropriately define the two different climates that exist in NRC Region 4. A single hypothetical site in each region was assumed to store all the SNF and HLW in that region. Such a site does not exist and has no geographic location but is a mathematical construct for analytical purposes. To ensure that the calculated results for the regional analyses reflect appropriate inventory, facility and material degradation, and radionuclide transport, the waste inventories, engineered barriers, and environmental conditions for the hypothetical sites were developed from data for each of the existing sites within the given region. Weighting criteria to account for the amount and types of SNF and HLW at each site were used in the development of the environmental data for the regional site, such that the results of the analyses for the hypothetical site were representative of the sum of the results of each actual site if they had been modeled independently. This report defines the actual site data used in development of this hypothetical site, shows how the individual site data was weighted to develop the regional site, and provides the weighted data used in the CSAR

  10. The gamma ray continuum spectrum from the galactic center disk and point sources

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Tueller, Jack

    1992-01-01

    A light curve of gamma-ray continuum emission from point sources in the galactic center region is generated from balloon and satellite observations made over the past 25 years. The emphasis is on the wide field-of-view instruments which measure the combined flux from all sources within approximately 20 degrees of the center. These data have not been previously used for point-source analyses because of the unknown contribution from diffuse disk emission. In this study, the galactic disk component is estimated from observations made by the Gamma Ray Imaging Spectrometer (GRIS) instrument in Oct. 1988. Surprisingly, there are several times during the past 25 years when all gamma-ray sources (at 100 keV) within about 20 degrees of the galactic center are turned off or are in low emission states. This implies that the sources are all variable and few in number. The continuum gamma-ray emission below approximately 150 keV from the black hole candidate 1E1740.7-2942 is seen to turn off in May 1989 on a time scale of less than two weeks, significantly shorter than ever seen before. With the continuum below 150 keV turned off, the spectral shape derived from the HEXAGONE observation on 22 May 1989 is very peculiar with a peak near 200 keV. This source was probably in its normal state for more than half of all observations since the mid-1960's. There are only two observations (in 1977 and 1979) for which the sum flux from the point sources in the region significantly exceeds that from 1E1740.7-2942 in its normal state.

  11. Star formation induced by cloud-cloud collisions and galactic giant molecular cloud evolution

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masato I. N.; Kobayashi, Hiroshi; Inutsuka, Shu-ichiro; Fukui, Yasuo

    2018-05-01

    Recent millimeter/submillimeter observations towards nearby galaxies have started to map the whole disk and to identify giant molecular clouds (GMCs) even in the regions between galactic spiral structures. Observed variations of GMC mass functions in different galactic environments indicates that massive GMCs preferentially reside along galactic spiral structures whereas inter-arm regions have many small GMCs. Based on the phase transition dynamics from magnetized warm neutral medium to molecular clouds, Kobayashi et al. (2017, ApJ, 836, 175) proposes a semi-analytical evolutionary description for GMC mass functions including a cloud-cloud collision (CCC) process. Their results show that CCC is less dominant in shaping the mass function of GMCs than the accretion of dense H I gas driven by the propagation of supersonic shock waves. However, their formulation does not take into account the possible enhancement of star formation by CCC. Millimeter/submillimeter observations within the Milky Way indicate the importance of CCC in the formation of star clusters and massive stars. In this article, we reformulate the time-evolution equation largely modified from Kobayashi et al. (2017, ApJ, 836, 175) so that we additionally compute star formation subsequently taking place in CCC clouds. Our results suggest that, although CCC events between smaller clouds are more frequent than the ones between massive GMCs, CCC-driven star formation is mostly driven by massive GMCs ≳ 10^{5.5} M_{⊙} (where M⊙ is the solar mass). The resultant cumulative CCC-driven star formation may amount to a few 10 percent of the total star formation in the Milky Way and nearby galaxies.

  12. Evolutionary Description of Giant Molecular Cloud Mass Functions on Galactic Disks

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masato I. N.; Inutsuka, Shu-ichiro; Kobayashi, Hiroshi; Hasegawa, Kenji

    2017-02-01

    Recent radio observations show that giant molecular cloud (GMC) mass functions noticeably vary across galactic disks. High-resolution magnetohydrodynamics simulations show that multiple episodes of compression are required for creating a molecular cloud in the magnetized interstellar medium. In this article, we formulate the evolution equation for the GMC mass function to reproduce the observed profiles, for which multiple compressions are driven by a network of expanding shells due to H II regions and supernova remnants. We introduce the cloud-cloud collision (CCC) terms in the evolution equation in contrast to previous work (Inutsuka et al.). The computed time evolution suggests that the GMC mass function slope is governed by the ratio of GMC formation timescale to its dispersal timescale, and that the CCC effect is limited only in the massive end of the mass function. In addition, we identify a gas resurrection channel that allows the gas dispersed by massive stars to regenerate GMC populations or to accrete onto pre-existing GMCs. Our results show that almost all of the dispersed gas contributes to the mass growth of pre-existing GMCs in arm regions whereas less than 60% contributes in inter-arm regions. Our results also predict that GMC mass functions have a single power-law exponent in the mass range <105.5 {M}⊙ (where {M}⊙ represents the solar mass), which is well characterized by GMC self-growth and dispersal timescales. Measurement of the GMC mass function slope provides a powerful method to constrain those GMC timescales and the gas resurrecting factor in various environments across galactic disks.

  13. On the Physical Environment in the Galactic Nuclei. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Beall, J. H.

    1979-01-01

    Galactic nuclei and quasars emit radiation over the entire electromagnetic spectrum. This suggests that concurrent observations over a wide frequency range may provide useful information in determining appropriate models for the physical environment in which the radiation is produced. In conjunction with observations by the high energy spectrometer on OSO-8, four sources have been studied in this manner; the nucleus of the elliptical galaxy, Centaurus A (NGG 5128); the quasar, 30273; the Seyfert galaxy, NGC 4151 and the nucleus of the Milky Way (GCX). Concurrent observations are used to construct the composite spectra (from radio to X-ray) for Cen A and NGC 4151 while the composite spectra of 30273 and GCX are derived from the OSO-8 data and from other observers. A skymap technique used to analyze observations of the galactic center region yielded data consistent with a significant, hard X-ray source at the radio and infrared position of the nucleus of the Milky Way. A theoretical analysis of the temporal variability of the Cen A data is undertaken and its implications discussed. Similarities between the composite spectra of the observed sources suggest that radio-bright and radio-quiet quasars may represent the emission from galactic nuclei with elliptical and Seyfert-like morphologies, respectively.

  14. Star formation towards the Galactic H II region RCW 120. Herschel observations of compact sources

    NASA Astrophysics Data System (ADS)

    Figueira, M.; Zavagno, A.; Deharveng, L.; Russeil, D.; Anderson, L. D.; Men'shchikov, A.; Schneider, N.; Hill, T.; Motte, F.; Mège, P.; LeLeu, G.; Roussel, H.; Bernard, J.-P.; Traficante, A.; Paradis, D.; Tigé, J.; André, P.; Bontemps, S.; Abergel, A.

    2017-04-01

    Context. The expansion of H II regions can trigger the formation of stars. An overdensity of young stellar objects is observed at the edges of H II regions but the mechanisms that give rise to this phenomenon are not clearly identified. Moreover, it is difficult to establish a causal link between H II -region expansion and the star formation observed at the edges of these regions. A clear age gradient observed in the spatial distribution of young sources in the surrounding might be a strong argument in favor of triggering. Aims: We aim to characterize the star formation observed at the edges of H II regions by studying the properties of young stars that form there. We aim to detect young sources, derive their properties and their evolution stage in order to discuss the possible causal link between the first-generation massive stars that form the H II region and the young sources observed at their edges. Methods: We have observed the Galactic H II region RCW 120 with Herschel PACS and SPIRE photometers at 70, 100, 160, 250, 350 and 500 μm. We produced temperature and H2 column density maps and use the getsources algorithm to detect compact sources and measure their fluxes at Herschel wavelengths. We have complemented these fluxes with existing infrared data. Fitting their spectral energy distributions with a modified blackbody model, we derived their envelope dust temperature and envelope mass. We computed their bolometric luminosities and discuss their evolutionary stages. Results: The overall temperatures of the region (without background subtraction) range from 15 K to 24 K. The warmest regions are observed towards the ionized gas. The coldest regions are observed outside the ionized gas and follow the emission of the cold material previously detected at 870 μm and 1.3 mm. The H2 column density map reveals the distribution of the cold medium to be organized in filaments and highly structured. Column densities range from 7 × 1021 cm-2 up to 9 × 1023 cm-2

  15. A and F stars as probes of outer Galactic disc kinematics

    NASA Astrophysics Data System (ADS)

    Harris, A.; Drew, J. E.; Farnhill, H. J.; Monguió, M.; Gebran, M.; Wright, N. J.; Drake, J. J.; Sale, S. E.

    2018-04-01

    Previous studies of the rotation law in the outer Galactic disc have mainly used gas tracers or clump giants. Here, we explore A and F stars as alternatives: these provide a much denser sampling in the outer disc than gas tracers and have experienced significantly less velocity scattering than older clump giants. This first investigation confirms the suitability of A stars in this role. Our work is based on spectroscopy of ˜1300 photometrically selected stars in the red calcium-triplet region, chosen to mitigate against the effects of interstellar extinction. The stars are located in two low Galactic latitude sightlines, at longitudes ℓ = 118°, sampling strong Galactic rotation shear, and ℓ = 178°, near the anticentre. With the use of Markov Chain Monte Carlo parameter fitting, stellar parameters and radial velocities are measured, and distances computed. The obtained trend of radial velocity with distance is inconsistent with existing flat or slowly rising rotation laws from gas tracers (Brand & Blitz 1993; Reid et al. 2014). Instead, our results fit in with those obtained by Huang et al. (2016) from disc clump giants that favoured rising circular speeds. An alternative interpretation in terms of spiral arm perturbation is not straight forward. We assess the role that undetected binaries in the sample and distance error may have in introducing bias, and show that the former is a minor factor. The random errors in our trend of circular velocity are within ±5 km s-1.

  16. The Fermi Galactic Center GeV excess and implications for dark matter

    DOE PAGES

    Ackermann, M.; Ajello, M.; Albert, A.; ...

    2017-05-04

    Here, the region around the Galactic Center (GC) is now well established to be brighter at energies of a few GeV than what is expected from conventional models of diffuse gamma-ray emission and catalogs of known gamma-ray sources. We study the GeV excess using 6.5 yr of data from the Fermi Large Area Telescope. We characterize the uncertainty of the GC excess spectrum and morphology due to uncertainties in cosmic-ray source distributions and propagation, uncertainties in the distribution of interstellar gas in the Milky Way, and uncertainties due to a potential contribution from the Fermi bubbles. We also evaluate uncertaintiesmore » in the excess properties due to resolved point sources of gamma rays. The GC is of particular interest, as it would be expected to have the brightest signal from annihilation of weakly interacting massive dark matter (DM) particles. However, control regions along the Galactic plane, where a DM signal is not expected, show excesses of similar amplitude relative to the local background. Furthermore, based on the magnitude of the systematic uncertainties, we conservatively report upper limits for the annihilation cross-section as a function of particle mass and annihilation channel.« less

  17. THE SUBARCSECOND MID-INFRARED VIEW OF LOCAL ACTIVE GALACTIC NUCLEI. III. POLAR DUST EMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asmus, D.; Hönig, S. F.; Gandhi, P., E-mail: dasmus@eso.org

    2016-05-10

    Recent mid-infrared (MIR) interferometric observations have shown that in a few active galactic nuclei (AGNs) the bulk of the infrared emission originates from the polar region above the putative torus, where only a little dust should be present. Here, we investigate whether such strong polar dust emission is common in AGNs. Out of 149 Seyferts in the MIR atlas of local AGNs, 21 show extended MIR emission on single-dish images. In 18 objects, the extended MIR emission aligns with the position angle (PA) of the system axis, established by [O iii], radio, polarization, and maser-based PA measurements. The relative amountmore » of resolved MIR emission is at least 40% and scales with the [O iv] fluxes, implying a strong connection between the extended continuum and [O iv] emitters. These results together with the radio-quiet nature of the Seyferts support the scenario that the bulk of MIR emission is emitted by dust in the polar region and not by the torus, which would demand a new paradigm for the infrared emission structure in AGNs. The current low detection rate of polar dust in the AGNs of the MIR atlas is explained by the lack of sufficient high-quality MIR data and the requirements on the orientation, strength of narrow-line region, and distance of the AGNs. The James Webb Space Telescope will enable much deeper nuclear MIR studies with comparable angular resolution, allowing us to resolve the polar emission and surroundings in most of the nearby AGNs.« less

  18. Probing the Extreme Environment of the Galactic Center with Observations from SOFIA/FORCAST

    NASA Astrophysics Data System (ADS)

    Lau, Ryan M.; Herter, Terry L.; Morris, Mark; Adams, Joseph D; Becklin, Eric E.

    2014-06-01

    In this thesis we present a study of the inner 40 pc of the Galactic center addressing the dense, dusty torus around Sgr A*, dust production around massive stars, and massive star formation. Observations of warm dust emission from the Galactic center were performed using the Faint Object Infrared Camera for the SOFIA Telescope (FORCAST). A dense, molecular torus referred to as the Circumnuclear Disk (CND) orbits Sgr A* with an inner radius of ~1.4 pc and extending to ~7 pc. The inner edge of the CND, which we refer to as the Circumnuclear Ring (CNR), exhibits features of a classic HII region and appears consistent with the prevailing paradigm in which the dust is heated by the Central cluster of hot, young stars. We do not detect any star formation occurring in the CNR; however, we reveal the presence of density “clumps” along the inner edge of the CNR. These clumps are not dense enough to be stable against tidal shear from Sgr A* and will be sheared out before completing a full orbit 10^5 yrs). Three Luminous Blue Variables (LBVs) are located in and near the Quintuplet Cluster 40 pc in projection from Sgr A*: qF362, the Pistol star, G0.120-0.048 (LBV3). FORCAST observation reveal the asymmetric, compressed shell of hot dust surrounding the Pistol Star and provide the first detection of the thermal emission from the symmetric, hot dust envelope surrounding LBV3. However, no detection of hot dust associated with qF362 is made. We argue that the Pistol star and LBV3 are identical “twins” that exhibit contrasting nebulae due to the external influence of their different environments. G-0.02-0.07, a complex consisting of three compact HII regions and one ultracompact HII region, is located at the edge of a molecular cloud 6 pc in projection to the east of Sgr A* and contains the most recent episode of star formation in the Galactic center. We probe the dust morphology, energetics, and composition of the regions to study the star forming conditions of a molecular

  19. JASMINE: constructor of the dynamical structure of the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Gouda, N.; Kobayashi, Y.; Yamada, Y.; Yano, T.; Tsujimoto, T.; Suganuma, M.; Niwa, Y.; Yamauchi, M.

    2008-07-01

    We introduce a Japanese space astrometry project which is called JASMINE. JASMINE (Japan Astrometry Satellite Mission for INfrared Exploration) will measure distances and tangential motions of stars in the Galactic bulge with yet unprecedented precision. JASMINE will operate in z-band whose central wavelength is 0.9 micron. It will measure parallaxes, positions with accuracy of about 10 micro-arcsec and proper motions with accuracy of about 10 micro- arcsec/year for the stars brighter than z=14 mag. The number of stars observed by JASMINE with high accuracy of parallaxes in the Galactic bulge is much larger than that observed in other space astrometry projects operating in optical bands. With the completely new “map of the Galactic bulge” including motions of bulge stars, we expect that many new exciting scientific results will be obtained in studies of the Galactic bulge. One of them is the construction of the dynamical structure of the Galactic bulge. Kinematics and distance data given by JASMINE are the closest approach to a view of the exact dynamical structure of the Galactic bulge. Presently, JASMINE is in a development phase, with a target launch date around 2016. We comment on the outline of JASMINE mission, scientific targets and a preliminary design of JASMINE in this paper.

  20. How supernovae launch galactic winds?

    NASA Astrophysics Data System (ADS)

    Fielding, Drummond; Quataert, Eliot; Martizzi, Davide; Faucher-Giguère, Claude-André

    2017-09-01

    We use idealized three-dimensional hydrodynamic simulations of global galactic discs to study the launching of galactic winds by supernovae (SNe). The simulations resolve the cooling radii of the majority of supernova remnants (SNRs) and thus self-consistently capture how SNe drive galactic winds. We find that SNe launch highly supersonic winds with properties that agree reasonably well with expectations from analytic models. The energy loading (η _E= \\dot{E}_wind/ \\dot{E}_SN) of the winds in our simulations are well converged with spatial resolution while the wind mass loading (η _M= \\dot{M}_wind/\\dot{M}_\\star) decreases with resolution at the resolutions we achieve. We present a simple analytic model based on the concept that SNRs with cooling radii greater than the local scaleheight break out of the disc and power the wind. This model successfully explains the dependence (or lack thereof) of ηE (and by extension ηM) on the gas surface density, star formation efficiency, disc radius and the clustering of SNe. The winds our simulations are weaker than expected in reality, likely due to the fact that we seed SNe preferentially at density peaks. Clustering SNe in time and space substantially increases the wind power.

  1. The large-scale effect of environment on galactic conformity

    NASA Astrophysics Data System (ADS)

    Sun, Shuangpeng; Guo, Qi; Wang, Lan; Lacey, Cedric G.; Wang, Jie; Gao, Liang; Pan, Jun

    2018-07-01

    We use a volume-limited galaxy sample from the Sloan Digital Sky Survey Data Release 7 to explore the dependence of galactic conformity on the large-scale environment, measured on ˜4 Mpc scales. We find that the star formation activity of neighbour galaxies depends more strongly on the environment than on the activity of their primary galaxies. In underdense regions most neighbour galaxies tend to be active, while in overdense regions neighbour galaxies are mostly passive, regardless of the activity of their primary galaxies. At a given stellar mass, passive primary galaxies reside in higher density regions than active primary galaxies, leading to the apparently strong conformity signal. The dependence of the activity of neighbour galaxies on environment can be explained by the corresponding dependence of the fraction of satellite galaxies. Similar results are found for galaxies in a semi-analytical model, suggesting that no new physics is required to explain the observed large-scale conformity.

  2. New detections of embedded clusters in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Camargo, D.; Bica, E.; Bonatto, C.

    2016-09-01

    Context. Until recently it was thought that high Galactic latitude clouds were a non-star-forming ensemble. However, in a previous study we reported the discovery of two embedded clusters (ECs) far away from the Galactic plane (~ 5 kpc). In our recent star cluster catalogue we provided additional high and intermediate latitude cluster candidates. Aims: This work aims to clarify whether our previous detection of star clusters far away from the disc represents just an episodic event or whether star cluster formation is currently a systematic phenomenon in the Galactic halo. We analyse the nature of four clusters found in our recent catalogue and report the discovery of three new ECs each with an unusually high latitude and distance from the Galactic disc midplane. Methods: The analysis is based on 2MASS and WISE colour-magnitude diagrams (CMDs), and stellar radial density profiles (RDPs). The CMDs are built by applying a field-star decontamination procedure, which uncovers the cluster's intrinsic CMD morphology. Results: All of these clusters are younger than 5 Myr. The high-latitude ECs C 932, C 934, and C 939 appear to be related to a cloud complex about 5 kpc below the Galactic disc, under the Local arm. The other clusters are above the disc, C 1074 and C 1100 with a vertical distance of ~3 kpc, C 1099 with ~ 2 kpc, and C 1101 with ~1.8 kpc. Conclusions: According to the derived parameters ECs located below and above the disc occur, which gives evidence of widespread star cluster formation throughout the Galactic halo. This study therefore represents a paradigm shift, by demonstrating that a sterile halo must now be understood as a host for ongoing star formation. The origin and fate of these ECs remain open. There are two possibilities for their origin, Galactic fountains or infall. The discovery of ECs far from the disc suggests that the Galactic halo is more actively forming stars than previously thought. Furthermore, since most ECs do not survive the infant

  3. The Highest Resolution Chandra View of Photoionization and Jet-Cloud Interaction in the Nuclear Region of NGC 4151

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Fabbiano, G.; Karovska, M.; Elvis, M.; Risaliti, G.; Zezas, A.; Mundell, C. G.

    2009-10-01

    We report high resolution imaging of the nucleus of the Seyfert 1 galaxy NGC 4151 obtained with a 50 ks Chandra High Resolution Camera (HRC) observation. The HRC image resolves the emission on spatial scales of 0farcs5, ~30 pc, showing an extended X-ray morphology overall consistent with the narrow-line region (NLR) seen in optical line emission. Removal of the bright point-like nuclear source and image deconvolution techniques both reveal X-ray enhancements that closely match the substructures seen in the Hubble Space Telescope [O III] image and prominent knots in the radio jet. We find that most of the NLR clouds in NGC 4151 have [O III]/soft X-ray ratio ~10, despite the distance of the clouds from the nucleus. This ratio is consistent with the values observed in NLRs of some Seyfert 2 galaxies, which indicates a uniform ionization parameter even at large radii and a density decreasing as r -2 as expected for a nuclear wind scenario. The [O III]/X-ray ratios at the location of radio knots show an excess of X-ray emission, suggesting shock heating in addition to photoionization. We examine various mechanisms for the X-ray emission and find that, in contrast to jet-related X-ray emission in more powerful active galactic nucleus, the observed jet parameters in NGC 4151 are inconsistent with synchrotron emission, synchrotron self-Compton, inverse Compton of cosmic microwave background photons or galaxy optical light. Instead, our results favor thermal emission from the interaction between radio outflow and NLR gas clouds as the origin for the X-ray emission associated with the jet. This supports previous claims that frequent jet-interstellar medium interaction may explain why jets in Seyfert galaxies appear small, slow, and thermally dominated, distinct from those kpc-scale jets in the radio galaxies.

  4. Measurements of galactic plane gamma ray emission in the energy range from 10 - 80 MeV

    NASA Technical Reports Server (NTRS)

    Bertsch, D. L.; Kniffen, D. A.

    1982-01-01

    A spark chamber gamma ray telescope was developed and flown to observe diffuse gamma ray emission from the central region of the galaxy. The extension of observations down to 10 MeV provides important new data indicating that the galactic diffuse gamma ray spectrum continues as a power law down to about 10 MeV, an observation in good agreement with recent theoretical predictions. Data from other experiments in the range from 100 keV to 10 MeV show a significant departure from the extension of the power-law fit to the medium energy observations reported here, possibly indicating that a different mechanism may be responsible for the emissions below and above a few MeV. The intensity of the spectrum above 10 MeV implies a galactic electron spectrum which is also very intense down to about 10 MeV. Electrons in this energy range cannot be observed in the solar cavity because of solar modulation effects. The galactic gamma ray data are compared with recent theoretical predictions.

  5. The age of the galactic disk

    NASA Technical Reports Server (NTRS)

    Sandage, Allan

    1988-01-01

    The galactic disk is a dissipative structure and must, therefore be younger than the halo if galaxy formation generally proceeds by collapse. Just how much younger the oldest stars in the galactic disk are than the oldest halo stars remains an open question. A fast collapse (on a time scale no longer than the rotation period of the extended protogalaxy) permits an age gap of the order of approximately 10 to the 9th power years. A slow collapse, governed by the cooling rate of the partially pressure supported falling gas that formed into what is now the thick stellar disk, permits a longer age gap, claimed by some to be as long as 6 Gyr. Early methods of age dating the oldest components of the disk contain implicit assumptions concerning the details of the age-metallicity relation for stars in the solar neighborhood. The discovery that this relation for open clusters outside the solar circle is different that in the solar neighborhood (Geisler 1987), complicates the earlier arguments. The oldest stars in the galactic disk are at least as old as NGC 188. The new data by Janes on NGC 6791, shown first at this conference, suggest a disk age of at least 12.5 Gyr, as do data near the main sequence termination point of metal rich, high proper motion stars of low orbital eccentricity. Hence, a case can still be made that the oldest part of the galactic thick disk is similar in age to the halo globular clusters, if their ages are the same as 47 Tuc.

  6. Galactic exploration by directed self-replicating probes, and its implications for the Fermi paradox

    NASA Astrophysics Data System (ADS)

    Barlow, Martin T.

    2013-01-01

    This paper proposes a long-term scheme for robotic exploration of the galaxy, and then considers the implications in terms of the `Fermi paradox' and our search for extraterrestrial intelligence (ETI). We discuss the `Galactic ecology' of civilizations in terms of the parameters T (time between ET civilizations arising) and L, the lifetime of these civilizations. Six different regions are described.

  7. Conversion of gas into stars in the Galactic center

    NASA Astrophysics Data System (ADS)

    Longmore, S. N.

    2014-05-01

    The star formation rate in the central 500 pc of the Milky Way is lower by a factor of > 10 than expected for the substantial amount of dense gas it contains, which challenges current star formation theories. I discuss which physical mechanisms could be causing this observation and put forward a self-consistent cycle of star formation in the Galactic center, in which the plausible star formation inhibitors are combined. Their ubiquity suggests that the perception of a lowered central SFR should be a common phenomenon in other galaxies with direct implications for galactic star formation and also potentially supermassive black hole growth. I then describe a scenario to explain the presence of super star clusters in the Galactic center environment, in which their formation is triggered by gas streams passing close to the minimum of the global Galactic gravitational potential at the location of the central supermassive black hole, Sgr A*. If this triggering mechanism can be verified, we can use the known time interval since closest approach to Sgr A* to study the physics of stellar mass assembly in an extreme environment as a function of absolute time. I outline the first results from detailed numerical simulations testing this scenario. Finally, I describe a study showing that in terms of the baryonic composition, kinematics, and densities, the gas in the Galactic center is indistinguishable from high-redshift clouds and galaxies. As such, the Galactic center clouds may be used as a template to understand the evolution (and possibly the life cycle) of high-redshift clouds and galaxies.

  8. Spectral Energy Distribution Models for Low-Luminosity Active Galactic Nuclei in LINERs

    NASA Technical Reports Server (NTRS)

    Nemmen, Rodrigo S.; Storchi-Bergmann, Thaisa; Eracleous, Michael

    2012-01-01

    Low-luminosity active galactic nuclei (LLAGNs) represent the bulk of the AGN population in the present-day universe and they trace the low-level accreting supermassive black holes. In order to probe the accretion and jet physical properties in LLAGNs as a class, we model the broadband radio to X-rays spectral energy distributions (SEDs) of 21 LLAGNs in low-ionization nuclear emission-line regions (LINERs) with a coupled accretion-jet model. The accretion flow is modeled as an inner ADAF outside of which there is a truncated standard thin disk. We find that the radio emission is severely underpredicted by ADAF models and is explained by the relativistic jet. The origin of the X-ray radiation in most sources can be explained by three distinct scenarios: the X-rays can be dominated by emission from the ADAF, or the jet, or the X-rays can arise from a jet-ADAF combination in which both components contribute to the emission with similar importance. For 3 objects both the jet and ADAF fit equally well the X-ray spectrum and can be the dominant source of X-rays whereas for 11 LLAGNs a jet-dominated model accounts better than the ADAF-dominated model for the data. The individual and average SED models that we computed can be useful for different studies of the nuclear emission of LLAGNs. From the model fits, we estimate important parameters of the central engine powering LLAGNs in LINERs, such as the mass accretion rate and the mass-loss rate in the jet and the jet power - relevant for studies of the kinetic feedback from jets.

  9. Comment on “Characterizing the population of pulsars in the Galactic bulge with the Fermi large area telescope” [arXiv:1705.00009v1

    DOE PAGES

    Bartels, Richard

    2018-04-24

    Here, themore » $$\\textit{Fermi}$$-LAT Collaboration recently presented a new catalog of gamma-ray sources located within the $$40^{\\circ} \\times 40^{\\circ}$$ region around the Galactic Center~(Ajello et al. 2017) -- the Second Fermi Inner Galaxy (2FIG) catalog. Utilizing this catalog, they analyzed models for the spatial distribution and luminosity function of sources with a pulsar-like gamma-ray spectrum. Ajello et al. 2017 v1 also claimed to detect, in addition to a disk-like population of pulsar-like sources, an approximately 7$$\\sigma$$ preference for an additional centrally concentrated population of pulsar-like sources, which they referred to as a "Galactic Bulge" population. Such a population would be of great interest, as it would support a pulsar interpretation of the gamma-ray excess that has long been observed in this region. In an effort to further explore the implications of this new source catalog, we attempted to reproduce the results presented by the $$\\textit{Fermi}$$-LAT Collaboration, but failed to do so. Mimicking as closely as possible the analysis techniques undertaken in Ajello et al. 2017, we instead find that our likelihood analysis favors a very different spatial distribution and luminosity function for these sources. Most notably, our results do not exhibit a strong preference for a "Galactic Bulge" population of pulsars. Furthermore, we find that masking the regions immediately surrounding each of the 2FIG pulsar candidates does $$\\textit{not}$$ significantly impact the spectrum or intensity of the Galactic Center gamma-ray excess. Although these results refute the claim of strong evidence for a centrally concentrated pulsar population presented in Ajello et al. 2017, they neither rule out nor provide support for the possibility that the Galactic Center excess is generated by a population of low-luminosity and currently largely unobserved pulsars.« less

  10. Comment on “Characterizing the population of pulsars in the Galactic bulge with the Fermi large area telescope” [arXiv:1705.00009v1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartels, Richard

    Here, themore » $$\\textit{Fermi}$$-LAT Collaboration recently presented a new catalog of gamma-ray sources located within the $$40^{\\circ} \\times 40^{\\circ}$$ region around the Galactic Center~(Ajello et al. 2017) -- the Second Fermi Inner Galaxy (2FIG) catalog. Utilizing this catalog, they analyzed models for the spatial distribution and luminosity function of sources with a pulsar-like gamma-ray spectrum. Ajello et al. 2017 v1 also claimed to detect, in addition to a disk-like population of pulsar-like sources, an approximately 7$$\\sigma$$ preference for an additional centrally concentrated population of pulsar-like sources, which they referred to as a "Galactic Bulge" population. Such a population would be of great interest, as it would support a pulsar interpretation of the gamma-ray excess that has long been observed in this region. In an effort to further explore the implications of this new source catalog, we attempted to reproduce the results presented by the $$\\textit{Fermi}$$-LAT Collaboration, but failed to do so. Mimicking as closely as possible the analysis techniques undertaken in Ajello et al. 2017, we instead find that our likelihood analysis favors a very different spatial distribution and luminosity function for these sources. Most notably, our results do not exhibit a strong preference for a "Galactic Bulge" population of pulsars. Furthermore, we find that masking the regions immediately surrounding each of the 2FIG pulsar candidates does $$\\textit{not}$$ significantly impact the spectrum or intensity of the Galactic Center gamma-ray excess. Although these results refute the claim of strong evidence for a centrally concentrated pulsar population presented in Ajello et al. 2017, they neither rule out nor provide support for the possibility that the Galactic Center excess is generated by a population of low-luminosity and currently largely unobserved pulsars.« less

  11. Failed Radiatively Accelerated Dusty Outflow Model of the Broad Line Region in Active Galactic Nuclei. I. Analytical Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czerny, B.; Panda, S.; Wildy, C.

    2017-09-10

    The physical origin of the broad line region in active galactic nuclei is still unclear despite many years of observational studies. The reason is that the region is unresolved, and the reverberation mapping results imply a complex velocity field. We adopt a theory-motivated approach to identify the principal mechanism responsible for this complex phenomenon. We consider the possibility that the role of dust is essential. We assume that the local radiation pressure acting on the dust in the accretion disk atmosphere launches the outflow of material, but higher above the disk the irradiation from the central parts causes dust evaporationmore » and a subsequent fallback. This failed radiatively accelerated dusty outflow is expected to represent the material forming low ionization lines. In this paper we formulate simple analytical equations to describe the cloud motion, including the evaporation phase. The model is fully described just by the basic parameters of black hole mass, accretion rate, black hole spin, and viewing angle. We study how the spectral line generic profiles correspond to this dynamic. We show that the virial factor calculated from our model strongly depends on the black hole mass in the case of enhanced dust opacity, and thus it then correlates with the line width. This could explain why the virial factor measured in galaxies with pseudobulges differs from that obtained from objects with classical bulges, although the trend predicted by the current version of the model is opposite to the observed trend.« less

  12. The Baryon Cycle at High Redshifts: Effects of Galactic Winds on Galaxy Evolution in Overdense and Average Regions

    NASA Astrophysics Data System (ADS)

    Sadoun, Raphael; Shlosman, Isaac; Choi, Jun-Hwan; Romano-Díaz, Emilio

    2016-10-01

    We employ high-resolution cosmological zoom-in simulations focusing on a high-sigma peak and an average cosmological field at z ˜ 6-12 in order to investigate the influence of environment and baryonic feedback on galaxy evolution in the reionization epoch. Strong feedback, e.g., galactic winds, caused by elevated star formation rates (SFRs) is expected to play an important role in this evolution. We compare different outflow prescriptions: (I) constant wind velocity (CW), (II) variable wind scaling with galaxy properties (VW), and (III) no outflows (NW). The overdensity leads to accelerated evolution of dark matter and baryonic structures, absent from the “normal” region, and to shallow galaxy stellar mass functions at the low-mass end. Although CW shows little dependence on the environment, the more physically motivated VW model does exhibit this effect. In addition, VW can reproduce the observed specific SFR (sSFR) and the sSFR-stellar mass relation, which CW and NW fail to satisfy simultaneously. Winds also differ substantially in affecting the state of the intergalactic medium (IGM). The difference lies in the volume-filling factor of hot, high-metallicity gas, which is near unity for CW, while such gas remains confined in massive filaments for VW, and locked up in galaxies for NW. Such gas is nearly absent from the normal region. Although all wind models suffer from deficiencies, the VW model seems to be promising in correlating the outflow properties with those of host galaxies. Further constraints on the state of the IGM at high z are needed to separate different wind models.

  13. Visibility of Active Galactic Nuclei in the Illustris Simulation

    NASA Astrophysics Data System (ADS)

    Hutchinson-Smith, Tenley; Kelley, Luke; Moreno, Jorge; Hernquist, Lars; Illustris Collaboration

    2018-01-01

    Active galactic nuclei (AGN) are the very bright, luminous regions surrounding supermassive black holes (SMBH) located at the centers of galaxies. Supermassive black holes are the source of AGN feedback, which occurs once the SMBH reaches a certain critical mass. Almost all large galaxies contain a SMBH, but SMBH binaries are extremely rare. Finding these binary systems are important because it can be a source of gravitational waves if the two SMBH collide. In order to study supermassive black holes, astronomers will often rely on the AGN’s light in order to locate them, but this can be difficult due to the extinction of light caused by the dust and gas surrounding the AGN. My research project focuses on determining the fraction of light we can observe from galactic centers using the Illustris simulation, one of the most advanced cosmological simulations of the universe which was created using a hydrodynamic code and consists of a moving mesh. Measuring the fraction of light observable from galactic centers will help us know what fraction of the time we can observe dual and binary AGN in different galaxies, which would also imply a binary SMBH system. In order to find how much light is being blocked or scattered by the gas and dust surrounding the AGN, we calculated the density of the gas and dust along the lines of sight. I present results including the density of gas along different lines of sight and how it correlates with the image of the galaxy. Future steps include taking an average of the column densities for all the galaxies in Illustris and studying them as a function of galaxy type (before merger, during merger, and post-merger), which will give us information on how this can also affect the AGN luminosity.

  14. A search for dark matter in the Galactic halo with HAWC

    NASA Astrophysics Data System (ADS)

    Abeysekara, A. U.; Albert, A.; Alfaro, R.; Alvarez, C.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Bernal, A.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; De León, C.; De la Fuente, E.; Diaz Hernandez, R.; Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Engel, K.; Enríquez-Rivera, O.; Fiorino, D. W.; Fleischhack, H.; Fraija, N.; García-González, J. A.; Garfias, F.; González Muñoz, A.; González, M. M.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernandez, S.; Hernandez-Almada, A.; Hueyotl-Zahuantitla, F.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Lauer, R. J.; Lee, W. H.; Lennarz, D.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Luis-Raya, G.; Luna-García, R.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez, O.; Martinez-Castellanos, I.; Martínez-Castro, J.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo, R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rodd, N. L.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Safdi, B. R.; Salazar, H.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Vianello, G.; Villaseñor, L.; Weisgarber, T.; Westerhoff, S.; Wisher, I. G.; Wood, J.; Yapici, T.; Yodh, G. B.; Younk, P. W.; Zepeda, A.; Zhou, H.; Álvarez, J. D.

    2018-02-01

    The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field-of-view observatory sensitive to 500 GeV – 100 TeV gamma rays and cosmic rays. With its observations over 2/3 of the sky every day, the HAWC observatory is sensitive to a wide variety of astrophysical sources, including possible gamma rays from dark matter. Dark matter annihilation and decay in the Milky Way Galaxy should produce gamma-ray signals across many degrees on the sky. The HAWC instantaneous field-of-view of 2 sr enables observations of extended regions on the sky, such as those from dark matter in the Galactic halo. Here we show limits on the dark matter annihilation cross-section and decay lifetime from HAWC observations of the Galactic halo with 15 months of data. These are some of the most robust limits on TeV and PeV dark matter, largely insensitive to the dark matter morphology. These limits begin to constrain models in which PeV IceCube neutrinos are explained by dark matter which primarily decays into hadrons.

  15. Electromagnetic dissociation effects in galactic heavy-ion fragmentation

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W.

    1986-01-01

    Methods for calculating cross sections for the breakup of galactic heavy ions by the Coulomb fields of the interacting nuclei are presented. By using the Weizsacker-Williams method of virtual quanta, estimates of electromagnetic dissociation cross sections for a variety of reactions applicable to galactic cosmic ray shielding studies are presented and compared with other predictions and with available experimental data.

  16. Distribution and Kinematics of O VI in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Savage, B. D.; Sembach, K. R.; Wakker, B. P.; Richter, P.; Meade, M.; Jenkins, E. B.; Shull, J. M.; Moos, H. W.; Sonneborn, G.

    2003-05-01

    Far-Ultraviolet Spectroscopic Explorer (FUSE) spectra of 100 extragalactic objects and two distant halo stars are analyzed to obtain measures of O VI λλ1031.93, 1037.62 absorption along paths through the Milky Way thick disk/halo. Strong O VI absorption over the velocity range from -100 to 100 km s-1 reveals a widespread but highly irregular distribution of O VI, implying the existence of substantial amounts of hot gas with T~3×105 K in the Milky Way thick disk/halo. The integrated column density, log[N(O VI) cm-2], ranges from 13.85 to 14.78 with an average value of 14.38 and a standard deviation of 0.18. Large irregularities in the gas distribution are found to be similar over angular scales extending from <1° to 180°, implying a considerable amount of small- and large-scale structure in the absorbing gas. The overall distribution of O VI is not well described by a symmetrical plane-parallel layer of patchy O VI absorption. The simplest departure from such a model that provides a reasonable fit to the observations is a plane-parallel patchy absorbing layer with an average O VI midplane density of n0(O VI)=1.7×10-8 cm-3, a scale height of ~2.3 kpc, and a ~0.25 dex excess of O VI in the northern Galactic polar region. The distribution of O VI over the sky is poorly correlated with other tracers of gas in the halo, including low- and intermediate-velocity H I, Hα emission from the warm ionized gas at ~104 K, and hot X-ray-emitting gas at ~106 K. The O VI has an average velocity dispersion, b~60 km s-1, and standard deviation of 15 km s-1. Thermal broadening alone cannot explain the large observed profile widths. The average O VI absorption velocities toward high-latitude objects (|b|>45deg) range from -46 to 82 km s-1, with a high-latitude sample average of 0 km s-1 and a standard deviation of 21 km s-1. High positive velocity O VI absorbing wings extending from ~100 to ~250 km s-1 observed along 21 lines of sight may be tracing the flow of O VI into the halo

  17. The Effects of the Local Environment on Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Manzer, L. H.; De Robertis, M. M.

    2014-06-01

    There continues to be significant controversy regarding the mechanism(s) responsible for the initiation and maintenance of activity in galactic nuclei. In this paper we will investigate possible environmental triggers of nuclear activity through a statistical analysis of a large sample of galaxy groups. The focus of this paper is to identify active galactic nuclei (AGNs) and other emission-line galaxies in these groups and to compare their frequency with a sample of over 260,000 isolated galaxies from the same catalog. The galaxy groups are taken from the catalog of Yang et al., in which over 20,000 virialized groups of galaxies (2 <= N <= 20) with redshifts between 0.01 and 0.20 are from the Sloan Digital Sky Survey. We first investigate the completeness of our data set and find, though biases are a concern particularly at higher redshift, that our data provide a fair representation of the local universe. After correcting emission-line equivalent widths for extinction and underlying Balmer stellar absorption, we classify galaxies in the sample using traditional emission-line ratios, while incorporating measurement uncertainties. We find a significantly higher fraction of AGNs in groups compared with the isolated sample. Likewise, a significantly higher fraction of absorption-line galaxies are found in groups, while a higher fraction of star-forming galaxies prefer isolated environments. Within grouped environments, AGNs and star-forming galaxies are found more frequently in small- to medium-richness groups, while absorption-line galaxies prefer groups with larger richnesses. Groups containing only emission-line galaxies have smaller virial radii, velocity dispersions, and masses compared with those containing only absorption-line galaxies. Furthermore, the AGN fraction increases with decreasing distance to the group centroid, independent of galaxy morphology. Using properties obtained from Galaxy Zoo, there is an increased fraction of AGNs within merging systems

  18. The effects of the local environment on active galactic nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manzer, L. H.; De Robertis, M. M., E-mail: liannemanzer@gmail.com, E-mail: mmdr@yorku.ca

    There continues to be significant controversy regarding the mechanism(s) responsible for the initiation and maintenance of activity in galactic nuclei. In this paper we will investigate possible environmental triggers of nuclear activity through a statistical analysis of a large sample of galaxy groups. The focus of this paper is to identify active galactic nuclei (AGNs) and other emission-line galaxies in these groups and to compare their frequency with a sample of over 260,000 isolated galaxies from the same catalog. The galaxy groups are taken from the catalog of Yang et al., in which over 20,000 virialized groups of galaxies (2more » ≤ N ≤ 20) with redshifts between 0.01 and 0.20 are from the Sloan Digital Sky Survey. We first investigate the completeness of our data set and find, though biases are a concern particularly at higher redshift, that our data provide a fair representation of the local universe. After correcting emission-line equivalent widths for extinction and underlying Balmer stellar absorption, we classify galaxies in the sample using traditional emission-line ratios, while incorporating measurement uncertainties. We find a significantly higher fraction of AGNs in groups compared with the isolated sample. Likewise, a significantly higher fraction of absorption-line galaxies are found in groups, while a higher fraction of star-forming galaxies prefer isolated environments. Within grouped environments, AGNs and star-forming galaxies are found more frequently in small- to medium-richness groups, while absorption-line galaxies prefer groups with larger richnesses. Groups containing only emission-line galaxies have smaller virial radii, velocity dispersions, and masses compared with those containing only absorption-line galaxies. Furthermore, the AGN fraction increases with decreasing distance to the group centroid, independent of galaxy morphology. Using properties obtained from Galaxy Zoo, there is an increased fraction of AGNs within merging

  19. Figuring Out Gas and Galaxies in Enzo (FOGGIE): Simulating effects of feedback on galactic outflows

    NASA Astrophysics Data System (ADS)

    Morris, Melissa Elizabeth; Corlies, Lauren; Peeples, Molly; Tumlinson, Jason; O'Shea, Brian; Smith, Britton

    2018-01-01

    The circumgalactic medium (CGM) is the region beyond the galactic disk in which gas is accreted through pristine inflows from the intergalactic medium and expelled from the galaxy by stellar feedback in large outflows that can then be recycled back onto the disk. These gas cycles connect the galactic disk with its cosmic environment, making the CGM a vital component of galaxy evolution. However, the CGM is primarily observed in absorption, which can be difficult to interpret. In this study, we use high resolution cosmological hydrodynamic simulations of a Milky Way mass halo evolved with the code Enzo to aid the interpretation of these observations. In our simulations, we vary feedback strength and observe the effect it has on galactic outflows and the evolution of the galaxy’s CGM. We compare the star formation rate of the galaxy with the velocity flux and mass outflow rate as a function of height above the plane of the galaxy in order to measure the strength of the outflows and how far they extend outside of the galaxy.This work was supported by The Space Astronomy Summer Program at STScI and NSF grant AST-1517908.

  20. GASS: the Parkes Galactic all-sky survey. II. Stray-radiation correction and second data release

    NASA Astrophysics Data System (ADS)

    Kalberla, P. M. W.; McClure-Griffiths, N. M.; Pisano, D. J.; Calabretta, M. R.; Ford, H. Alyson; Lockman, F. J.; Staveley-Smith, L.; Kerp, J.; Winkel, B.; Murphy, T.; Newton-McGee, K.

    2010-10-01

    Context. The Parkes Galactic all-sky survey (GASS) is a survey of Galactic atomic hydrogen (H i) emission in the southern sky observed with the Parkes 64-m Radio Telescope. The first data release was published by McClure-Griffiths et al. (2009). Aims: We remove instrumental effects that affect the GASS and present the second data release. Methods: We calculate the stray-radiation by convolving the all-sky response of the Parkes antenna with the brightness temperature distribution from the Leiden/Argentine/Bonn (LAB) all sky 21-cm line survey, with major contributions from the 30-m dish of the Instituto Argentino de Radioastronomía (IAR) in the southern sky. Remaining instrumental baselines are corrected using the LAB data for a first guess of emission-free baseline regions. Radio frequency interference is removed by median filtering. Results: After applying these corrections to the GASS we find an excellent agreement with the Leiden/Argentine/Bonn (LAB) survey. The GASS is the highest spatial resolution, most sensitive, and is currently the most accurate H i survey of the Galactic H i emission in the southern sky. We provide a web interface for generation and download of FITS cubes.

  1. The Einstein objective grating spectrometer survey of galactic binary X-ray sources

    NASA Technical Reports Server (NTRS)

    Vrtilek, S. D.; Mcclintock, J. E.; Seward, F. D.; Kahn, S. M.; Wargelin, B. J.

    1991-01-01

    The results of observations of 22 bright Galactic X-ray point sources are presented, and the most reliable measurements to date of X-ray column densities to these sources are derived. The results are consistent with the idea that some of the objects have a component of column density intrinsic to the source in addition to an interstellar component. The K-edge absorption due to oxygen is clearly detected in 10 of the sources and the Fe L and Ne K edges are detected in a few. The spectra probably reflect emission originating in a collisionally excited region combined with emission from a photoionized region excited directly by the central source.

  2. Optical and near-infrared IFU spectroscopy of the nuclear region of the AGN-starburst galaxy NGC 7582

    NASA Astrophysics Data System (ADS)

    Ricci, T. V.; Steiner, J. E.; May, D.; Garcia-Rissmann, A.; Menezes, R. B.

    2018-02-01

    NGC 7582 is an SB(s)ab galaxy which displays evidences of simultaneous nuclear activity and star formation in its centre. Previous optical observations revealed, besides the H II regions, an ionization cone and a gas disc in its central part. Hubble Space Telescope (HST) images in both optical and infrared bands show the active galactic nuclei (AGNs) and a few compact structures that are possibly associated with young stellar clusters. In order to study in detail both the AGN and evidence for star formation, we analyse optical (Gemini Multi-Object Spectrograph) and near-infrared (Spectrograph for Integral Field Observations in the Near Infrared) archival data cubes. We detected five nebulae with strong He II λ4686 emission in the same region where an outflow is detected in the [O III] λ5007 kinematic map. We interpreted this result as clouds that are exposed to high-energy photons emerging from the AGN throughout the ionization cone. We also detected Wolf-Rayet features which are related to emission of one of the compact clusters seen in the HST image. Broad Hα and Br γ components are detected at the position of the nucleus. [Fe II] λ1.644 μm, H2λ2.122 μm and Br γ flux maps show two blobs, one north and the other south from the nucleus, that seem to be associated with five previously detected mid-infrared sources. Two of the five He II nebulae are partially ionized by photons from starbursts. However, we conclude that the main source of excitation of these blobs is the AGN jet/disc. The jet orientation indicates that the accretion disc is nearly orthogonal to the dusty torus.

  3. Galactic dual population models of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Higdon, J. C.; Lingenfelter, R. E.

    1994-01-01

    We investigate in more detail the properties of two-population models for gamma-ray bursts in the galactic disk and halo. We calculate the gamma-ray burst statistical properties, mean value of (V/V(sub max)), mean value of cos Theta, and mean value of (sin(exp 2) b), as functions of the detection flux threshold for bursts coming from both Galactic disk and massive halo populations. We consider halo models inferred from the observational constraints on the large-scale Galactic structure and we compare the expected values of mean value of (V/V(sub max)), mean value of cos Theta, and mean value of (sin(exp 2) b), with those measured by Burst and Transient Source Experiment (BATSE) and other detectors. We find that the measured values are consistent with solely Galactic populations having a range of halo distributions, mixed with local disk distributions, which can account for as much as approximately 25% of the observed BATSE bursts. M31 does not contribute to these modeled bursts. We also demonstrate, contrary to recent arguments, that the size-frequency distributions of dual population models are quite consistent with the BATSE observations.

  4. Nuclear Masses in the A=80 Region of Nuclei

    NASA Astrophysics Data System (ADS)

    Cuka, N.; Gadala-Maria, A.; Aprahamian, A.

    1996-05-01

    Nucleosynthesis in explosive hydrogen burning at high temperatures above 8x10^8 K is characterized by the rp-process. A recent study^1 of the reaction flow and their associated time scales showed that the reaction path may in fact proceed well beyond the A=80 region of nuclei. An accurate simulation of the nucleosynthesis and energy generation of this process strongly depends on reliable nuclear physics input parameters such as masses, lifetimes, and reaction rates. We have extended the use of the simple P-parametrization^2,3 that had been applied to the characterization of the structure contributions to the nuclear masses in the actinides to include the A=80 region. The results will be presented along with predictions of masses for presently unknown masses of nuclei along the rp-process path. ^1 R. Wallace and S. Woosley, Ap. J. Suppl. 45, 389 (81). ^2 R. F. Casten, D.S. Brenner and P.E. Haustein, Phys. Rev. Lett. 58, 658 (87). ^3 P. Haustein, D.S. Brenner and R.F. Casten, Phys. Rev. C 38, 467 (88).

  5. Large-scale gas dynamical processes affecting the origin and evolution of gaseous galactic halos

    NASA Technical Reports Server (NTRS)

    Shapiro, Paul R.

    1991-01-01

    Observations of galactic halo gas are consistent with an interpretation in terms of the galactic fountain model in which supernova heated gas in the galactic disk escapes into the halo, radiatively cools and forms clouds which fall back to the disk. The results of a new study of several large-scale gas dynamical effects which are expected to occur in such a model for the origin and evolution of galactic halo gas will be summarized, including the following: (1) nonequilibrium absorption line and emission spectrum diagnostics for radiatively cooling halo gas in our own galaxy, as well the implications of such absorption line diagnostics for the origin of quasar absorption lines in galactic halo clouds of high redshift galaxies; (2) numerical MHD simulations and analytical analysis of large-scale explosions ad superbubbles in the galactic disk and halo; (3) numerical MHD simulations of halo cloud formation by thermal instability, with and without magnetic field; and (4) the effect of the galactic fountain on the galactic dynamo.

  6. SAS-2 observations of the diffuse gamma radiation in the galactic latitude interval from 10 to 90 deg in both hemispheres

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Ogelman, H. B.; Ozel, M. E.; Tumer, T.

    1977-01-01

    An analysis of all the second Small Astronomy Satellite (SAS-2) gamma-ray data for galactic latitudes higher than 10 deg in both hemispheres has shown that the intensity varies with galactic latitude, being larger near 10 deg than 90 deg. For energies above 100 MeV the gamma-ray data are consistent with a latitude distribution of the form I(b) = C1 + C2/sin b, with the second term being dominant. This result suggests that the radiation above 100 MeV is coming largely from local regions of the galactic disk. Between 35 and 100 MeV, a similar equation is also a good representation of the data, but here the two terms are comparable. These results indicate that the diffuse radiation above 35 MeV consists of two parts, one with a relatively hard galactic component and the other an isotropic steep spectral component which extrapolates back well to the low-energy (less than 10 MeV) diffuse radiation. The steepness of the diffuse isotropic component places significant constraints on possible theoretical models of this radiation.

  7. The age of the galactic disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandage, A.

    The galactic disk is a dissipative structure and must, therefore be younger than the halo if galaxy formation generally proceeds by collapse. Just how much younger the oldest stars in the galactic disk are than the oldest halo stars remains an open question. A fast collapse (on a time scale no longer than the rotation period of the extended protogalaxy) permits an age gap of the order of approximately 10 to the 9th power years. A slow collapse, governed by the cooling rate of the partially pressure supported falling gas that formed into what is now the thick stellar disk,more » permits a longer age gap, claimed by some to be as long as 6 Gyr. Early methods of age dating the oldest components of the disk contain implicit assumptions concerning the details of the age-metallicity relation for stars in the solar neighborhood. The discovery that this relation for open clusters outside the solar circle is different that in the solar neighborhood (Geisler 1987), complicates the earlier arguments. The oldest stars in the galactic disk are at least as old as NGC 188. The new data by Janes on NGC 6791, shown first at this conference, suggest a disk age of at least 12.5 Gyr, as do data near the main sequence termination point of metal rich, high proper motion stars of low orbital eccentricity. Hence, a case can still be made that the oldest part of the galactic thick disk is similar in age to the halo globular clusters, if their ages are the same as 47 Tuc.« less

  8. Power Spectrum Analysis of Polarized Emission from the Canadian Galactic Plane Survey

    NASA Astrophysics Data System (ADS)

    Stutz, R. A.; Rosolowsky, E. W.; Kothes, R.; Landecker, T. L.

    2014-05-01

    Angular power spectra are calculated and presented for the entirety of the Canadian Galactic Plane Survey polarization data set at 1.4 GHz covering an area of 1060 deg2. The data analyzed are a combination of data from the 100 m Effelsberg Telescope, the 26 m Telescope at the Dominion Radio Astrophysical Observatory, and the Synthesis Telescope at the Dominion Radio Astrophysical Observatory, allowing all scales to be sampled down to arcminute resolution. The resulting power spectra cover multipoles from l ≈ 60 to l ≈ 104 and display both a power-law component at low multipoles and a flattening at high multipoles from point sources. We fit the power spectrum with a model that accounts for these components and instrumental effects. The resulting power-law indices are found to have a mode of 2.3, similar to previous results. However, there are significant regional variations in the index, defying attempts to characterize the emission with a single value. The power-law index is found to increase away from the Galactic plane. A transition from small-scale to large-scale structure is evident at b = 9°, associated with the disk-halo transition in a 15° region around l = 108°. Localized variations in the index are found toward H II regions and supernova remnants, but the interpretation of these variations is inconclusive. The power in the polarized emission is anticorrelated with bright thermal emission (traced by Hα emission) indicating that the thermal emission depolarizes background synchrotron emission.

  9. The Bolocam Galactic Plane Survey: Survey Description and Data Reduction

    NASA Astrophysics Data System (ADS)

    Aguirre, James E.; Ginsburg, Adam G.; Dunham, Miranda K.; Drosback, Meredith M.; Bally, John; Battersby, Cara; Bradley, Eric Todd; Cyganowski, Claudia; Dowell, Darren; Evans, Neal J., II; Glenn, Jason; Harvey, Paul; Rosolowsky, Erik; Stringfellow, Guy S.; Walawender, Josh; Williams, Jonathan P.

    2011-01-01

    We present the Bolocam Galactic Plane Survey (BGPS), a 1.1 mm continuum survey at 33'' effective resolution of 170 deg2 of the Galactic Plane visible from the northern hemisphere. The BGPS is one of the first large area, systematic surveys of the Galactic Plane in the millimeter continuum without pre-selected targets. The survey is contiguous over the range -10.5 <= l <= 90.5, |b| <= 0.5. Toward the Cygnus X spiral arm, the coverage was flared to |b| <= 1.5 for 75.5 <= l <= 87.5. In addition, cross-cuts to |b| <= 1.5 were made at l= 3, 15, 30, and 31. The total area of this section is 133 deg2. With the exception of the increase in latitude, no pre-selection criteria were applied to the coverage in this region. In addition to the contiguous region, four targeted regions in the outer Galaxy were observed: IC1396 (9 deg2, 97.5 <= l <= 100.5, 2.25 <= b <= 5.25), a region toward the Perseus Arm (4 deg2 centered on l = 111, b = 0 near NGC 7538), W3/4/5 (18 deg2, 132.5 <= l <= 138.5), and Gem OB1 (6 deg2, 187.5 <= l <= 193.5). The survey has detected approximately 8400 clumps over the entire area to a limiting non-uniform 1σ noise level in the range 11-53 mJy beam-1 in the inner Galaxy. The BGPS source catalog is presented in a previously published companion paper. This paper details the survey observations and data reduction methods for the images. We discuss in detail the determination of astrometric and flux density calibration uncertainties and compare our results to the literature. Data processing algorithms that separate astronomical signals from time-variable atmospheric fluctuations in the data timestream are presented. These algorithms reproduce the structure of the astronomical sky over a limited range of angular scales and produce artifacts in the vicinity of bright sources. Based on simulations, we find that extended emission on scales larger than about 5farcm9 is nearly completely attenuated (>90%) and the linear scale at which the attenuation reaches 50

  10. REGIONAL SEISMIC CHEMICAL AND NUCLEAR EXPLOSION DISCRIMINATION: WESTERN U.S. EXAMPLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, W R; Taylor, S R; Matzel, E

    2006-07-07

    We continue exploring methodologies to improve regional explosion discrimination using the western U.S. as a natural laboratory. The western U.S. has abundant natural seismicity, historic nuclear explosion data, and widespread mine blasts, making it a good testing ground to study the performance of regional explosion discrimination techniques. We have assembled and measured a large set of these events to systematically explore how to best optimize discrimination performance. Nuclear explosions can be discriminated from a background of earthquakes using regional phase (Pn, Pg, Sn, Lg) amplitude measures such as high frequency P/S ratios. The discrimination performance is improved if the amplitudesmore » can be corrected for source size and path length effects. We show good results are achieved using earthquakes alone to calibrate for these effects with the MDAC technique (Walter and Taylor, 2001). We show significant further improvement is then possible by combining multiple MDAC amplitude ratios using an optimized weighting technique such as Linear Discriminant Analysis (LDA). However this requires data or models for both earthquakes and explosions. In many areas of the world regional distance nuclear explosion data is lacking, but mine blast data is available. Mine explosions are often designed to fracture and/or move rock, giving them different frequency and amplitude behavior than contained chemical shots, which seismically look like nuclear tests. Here we explore discrimination performance differences between explosion types, the possible disparity in the optimization parameters that would be chosen if only chemical explosions were available and the corresponding effect of that disparity on nuclear explosion discrimination. Even after correcting for average path and site effects, regional phase ratios contain a large amount of scatter. This scatter appears to be due to variations in source properties such as depth, focal mechanism, stress drop, in the near

  11. Positron annihilation in the nuclear outflows of the Milky Way

    NASA Astrophysics Data System (ADS)

    Panther, Fiona H.; Crocker, Roland M.; Birnboim, Yuval; Seitenzahl, Ivo R.; Ruiter, Ashley J.

    2018-02-01

    Observations of soft gamma rays emanating from the Milky Way from SPI/INTEGRAL reveal the annihilation of ˜2 × 1043 positrons every second in the Galactic bulge. The origin of these positrons, which annihilate to produce a prominent emission line centred at 511 keV, has remained mysterious since their discovery almost 50 yr ago. A plausible origin for the positrons is in association with the intense star formation ongoing in the Galactic centre. Moreover, there is strong evidence for a nuclear outflow in the Milky Way. We find that advective transport and subsequent annihilation of positrons in such an outflow cannot simultaneously replicate the observed morphology of positron annihilation in the Galactic bulge and satisfy the requirement that 90 per cent of positrons annihilate once the outflow has cooled to 104 K.

  12. Study of galactic halo F(T,TG) wormhole solutions

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Nazir, Kanwal

    In this paper, we investigate static spherically symmetric wormhole solutions with galactic halo region in the background of F(T,TG) gravity. Here, T represents torsion scalar and TG is teleparallel equivalent Gauss-Bonnet term. For this purpose, we consider a diagonal tetrad and two specific F(T,TG) models. We analyze the wormhole structure through shape function graphically for both models. We also investigate the behavior of null/weak energy conditions. Finally, we evaluate the equilibrium condition to check stability of the wormhole solutions. It is concluded that there exists physically viable wormhole solution only for the first model that turns out to be stable.

  13. The molecular complex associated with the Galactic H II region Sh2-90: a possible site of triggered star formation

    NASA Astrophysics Data System (ADS)

    Samal, M. R.; Zavagno, A.; Deharveng, L.; Molinari, S.; Ojha, D. K.; Paradis, D.; Tigé, J.; Pandey, A. K.; Russeil, D.

    2014-06-01

    Aims: We investigate the star formation activity in the molecular complex associated with the Galactic H ii region Sh2-90. Methods: We obtain the distribution of the ionized and cold neutral gas using radio-continuum and Herschel observations. We use near-infrared and Spitzer data to investigate the stellar content of the complex. We discuss the evolutionary status of embedded massive young stellar objects (MYSOs) using their spectral energy distribution. Results: The Sh2-90 region presents a bubble morphology in the mid-infrared. Radio observations suggest it is an evolved H ii region with an electron density ~144 cm-3, emission measure ~ 6.7 × 104 cm-6 pc and an ionized mass ~55 M⊙. From Herschel and CO (J = 3 - 2) observations we found that the H ii region is part of an elongated extended molecular cloud (H2 column density ≥ 3 × 1021 cm-2 and dust temperature 18-27 K) of total mass ≥ 1 × 104 M⊙. We identify the ionizing cluster of Sh2-90, the main exciting star being an O8-O9 V star. Five cold dust clumps, four mid-IR blobs around B stars, and a compact H ii region are found at the edge of the bubble. The velocity information derived from CO data cubes suggest that most of them are associated with the Sh2-90 region. One hundred and twenty-nine low mass (≤3 M⊙) YSOs have been identified, and they are found to be distributed mostly in the regions of high column density. Four candidate Class 0/I MYSOs have been found. We suggest that multi-generation star formation is present in the complex. From evidence of interaction, time scales involved, and evolutionary status of stellar/protostellar sources, we argue that the star formation at the edges of Sh2-90 might have been triggered. However, several young sources in this complex are probably formed by some other processes. Full Table 5 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/566/A122

  14. Research Opportunities on board Virgin Galactic's SpaceShipTwo

    NASA Astrophysics Data System (ADS)

    Attenborough, S.; Pomerantz, W.; Stephens, K.

    2013-09-01

    Virgin Galactic is building the world's first commercial spaceline. Our suborbital spaceflight system, pictured in Figure 1, consists of two vehicles: WhiteKnightTwo (WK2) and SpaceShipTwo (SS2). WhiteKnightTwo is a four-engine, dual-fuselage jet aircraft capable of high-altitude heavy lift missions, including, but not limited to fulfilling its role as a mothership for SpaceShipTwo, an air-launched, suborbital spaceplane capable of routinely reaching an apogee up to 110 kilometers. In conjunction, these two vehicles allow access to space and to regions of the atmosphere ranging from the troposphere to the thermosphere; additionally, they provide extended periods of microgravity in a reliable and affordable way. SpaceShipTwo, with a payload capacity of up to 1,300 lbs. (~600 kg), features payload mounting interfaces that are compatible with standard architectures such as NASA Space Shuttle Middeck Lockers, Cargo Transfer Bags, and server racks, in addition to custom structures. With the standard interface, payloads are allowed access to the large 17 inch diameter cabin windows for external observations. Each dedicated research flight will be accompanied by a Virgin Galactic Flight Test Engineer, providing an opportunity for limited in-flight interaction. In addition, tended payloads - a flight that includes the researcher and his or her payload - are also an option. At a price point that is highly competitive with parabolic aircraft and sounding rockets and significantly cheaper than orbital flights, SpaceShipTwo is a unique platform that can provide frequent and repeatable research opportunities. Suborbital flights on SpaceShipTwo offer researchers several minutes of microgravity time and views of the external environment in the upper atmosphere and in outer space. In addition to serving as an important research platform in and of itself, SpaceShipTwo also offers researchers a means to test, iterate, and calibrate experiments designed for orbital platforms

  15. The HZE radiation problem. [highly-charged energetic galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Schimmerling, Walter

    1990-01-01

    Radiation-exposure limits have yet to be established for missions envisioned in the framework of the Space Exploration Initiative. The radiation threat outside the earth's magnetosphere encompasses protons from solar particle events and the highly charged energetic particles constituting galactic cosmic rays; radiation biology entails careful consideration of the extremely nonuniform patterns of such particles' energy deposition. The ability to project such biological consequences of exposure to energetic particles as carcinogenicity currently involves great uncertainties from: (1) different regions of space; (2) the effects of spacecraft structures; and (3) the dose-effect relationships of single traversals of energetic particles.

  16. A starburst region around l = 347° - 350°

    NASA Astrophysics Data System (ADS)

    Marco, A.; Negueruela, I.; Monguió, M.; González-Fernández, C.; Maíz Apellániz, J.; Dorda, R.; Clark, J. S.

    2017-03-01

    Very recently, a number of obscured massive open clusters have been identified in the Milky Way. A very significant fraction of them lie either close to the base of the Scutum Arm or towards Galactic longitude of 350°. We are studying these clusters and their neighbourhoods, finding very good evidence for a major starburst region close to the near tip of the Galactic Long Bar.

  17. Comment on "Characterizing the population of pulsars in the Galactic bulge with the Fermi large area telescope" [arXiv:1705.00009v1

    NASA Astrophysics Data System (ADS)

    Bartels, Richard; Hooper, Dan; Linden, Tim; Mishra-Sharma, Siddharth; Rodd, Nicholas L.; Safdi, Benjamin R.; Slatyer, Tracy R.

    2018-06-01

    The Fermi-LAT Collaboration recently presented a new catalog of gamma-ray sources located within the 40 ° × 40 ° region around the Galactic Center Ajello et al. (2017) - the Second Fermi Inner Galaxy (2FIG) catalog. Utilizing this catalog, they analyzed models for the spatial distribution and luminosity function of sources with a pulsar-like gamma-ray spectrum. Ajello et al. (2017) v1 also claimed to detect, in addition to a disk-like population of pulsar-like sources, an approximately 7 σ preference for an additional centrally concentrated population of pulsar-like sources, which they referred to as a "Galactic Bulge" population. Such a population would be of great interest, as it would support a pulsar interpretation of the gamma-ray excess that has long been observed in this region. In an effort to further explore the implications of this new source catalog, we attempted to reproduce the results presented by the Fermi-LAT Collaboration, but failed to do so. Mimicking as closely as possible the analysis techniques undertaken in Ajello et al. (2017), we instead find that our likelihood analysis favors a very different spatial distribution and luminosity function for these sources. Most notably, our results do not exhibit a strong preference for a "Galactic Bulge" population of pulsars. Furthermore, we find that masking the regions immediately surrounding each of the 2FIG pulsar candidates does not significantly impact the spectrum or intensity of the Galactic Center gamma-ray excess. Although these results refute the claim of strong evidence for a centrally concentrated pulsar population presented in Ajello et al. (2017), they neither rule out nor provide support for the possibility that the Galactic Center excess is generated by a population of low-luminosity and currently largely unobserved pulsars. In a spirit of maximal openness and transparency, we have made our analysis code available at https://github.com/bsafdi/GCE-2FIG.

  18. Gamma-ray spectroscopy: The diffuse galactic glow

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter H.

    1991-01-01

    The goal of this project is the development of a numerical code that provides statistical models of the sky distribution of gamma-ray lines due to the production of radioactive isotopes by ongoing Galactic nucleosynthesis. We are particularly interested in quasi-steady emission from novae, supernovae, and stellar winds, but continuum radiation and transient sources must also be considered. We have made significant progress during the first half period of this project and expect the timely completion of a code that can be applied to Oriented Scintillation Spectrometer Experiment (OSSE) Galactic plane survey data.

  19. Far-IR spectroscopy of the galactic center: Neutral and ionized gas in the central 10 pc of the galaxy

    NASA Technical Reports Server (NTRS)

    Hollenbach, D. J.; Watson, D. M.; Townes, C. H.; Dinerstein, H. L.; Hollenbach, D.; Lester, D. F.; Werner, M.; Storey, J. W. V.

    1983-01-01

    The 3P1 - 3P2 fine structure line emission from neutral atomic oxygen at 63 microns in the vicinity of the galactic center was mapped. The emission is extended over more than 4' (12 pc) along the galactic plane, centered on the position of Sgr A West. The line center velocities show that the O I gas is rotating around the galactic center with an axis close to that of the general galactic rotation, but there appear also to be noncircular motions. The rotational velocity at R is approximately 1 pc corresponds to a mass within the central pc of about 3 x 10(6) solar mass. Between 1 and 6 pc from the center the mass is approximately proportional to radius. The (O I) line probability arises in a predominantly neutral, atomic region immediately outside of the ionized central parsec of out galaxy. Hydrogen densities in the (O I) emitting region are 10(3) to 10(6) cm(-3) and gas temperatures are or = 100 K. The total integrated luminosity radiated in the line is about 10(5) solar luminosity, and is a substantial contribution to the cooling of the gas. Photoelectric heating or heating by ultraviolet excitation of H2 at high densities (10(5) cm(-3)) are promising mechanisms for heating of the gas, but heating due to dissipation of noncircular motions of the gas may be an alternative possibility. The 3P1 - 3P0 fine structure line of (O III) at 88 microns toward Sgr A West was also detected. The (O III) emission comes from high density ionized gas (n 10(4) cm(-3)), and there is no evidence for a medium density region (n 10(3) cm(-3)), such as the ionized halo in Sgr A West deduced from radio observations. This radio halo may be nonthermal, or may consist of many compact, dense clumps of filaments on the inner edges of neutral condensations at R or = 2 pc.

  20. THE BARYON CYCLE AT HIGH REDSHIFTS: EFFECTS OF GALACTIC WINDS ON GALAXY EVOLUTION IN OVERDENSE AND AVERAGE REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadoun, Raphael; Shlosman, Isaac; Choi, Jun-Hwan

    2016-10-01

    We employ high-resolution cosmological zoom-in simulations focusing on a high-sigma peak and an average cosmological field at z ∼ 6–12 in order to investigate the influence of environment and baryonic feedback on galaxy evolution in the reionization epoch. Strong feedback, e.g., galactic winds, caused by elevated star formation rates (SFRs) is expected to play an important role in this evolution. We compare different outflow prescriptions: (i) constant wind velocity (CW), (ii) variable wind scaling with galaxy properties (VW), and (iii) no outflows (NW). The overdensity leads to accelerated evolution of dark matter and baryonic structures, absent from the “normal” region,more » and to shallow galaxy stellar mass functions at the low-mass end. Although CW shows little dependence on the environment, the more physically motivated VW model does exhibit this effect. In addition, VW can reproduce the observed specific SFR (sSFR) and the sSFR–stellar mass relation, which CW and NW fail to satisfy simultaneously. Winds also differ substantially in affecting the state of the intergalactic medium (IGM). The difference lies in the volume-filling factor of hot, high-metallicity gas, which is near unity for CW, while such gas remains confined in massive filaments for VW, and locked up in galaxies for NW. Such gas is nearly absent from the normal region. Although all wind models suffer from deficiencies, the VW model seems to be promising in correlating the outflow properties with those of host galaxies. Further constraints on the state of the IGM at high z are needed to separate different wind models.« less

  1. A Complete VLA Census of the ~7000 Milky Way HII Regions

    NASA Astrophysics Data System (ADS)

    Armentrout, William Paul; Anderson, Loren; Wenger, Trey V.; Balser, Dana; Bania, Thomas

    2018-01-01

    How many HII regions are in the Milky Way? Even with the success of recent surveys, we still do not have an adequate answer to this fundamental question. HII regions are the archetypical tracers of Galactic high-mass star formation, but population synthesis modeling indicates that their detection throughout the Galaxy is incomplete, biased toward the most luminous and nearby complexes. Using mid-infrared (MIR) data from the WISE satellite, we identified over 8000 HII regions and candidates, all of which share the characteristic morphology of 12 micron emission enveloping a core of 22 micron emission. Of these, nearly 4000 candidates have no detectable radio continuum emission from Galactic plane surveys and therefore their classification is unknown. These “radio quiet” candidates could represent a significant population of faint HII regions which are ionized by B-stars and/or are especially distant, or they might not be HII regions at all.We present here a survey of radio quiet HII regions in the second and third Galactic quadrants with the Very Large Array. This was the first systematic study of radio quiet HII region candidates. Nearly 60% of the 145 sources observed were detected by the VLA at X-band (10 GHz) to sub-mJy sensitivities. Coupled with their MIR morphologies, detection of continuum strongly indicate they are HII regions. If 60% of radio quiet candidates throughout the Galaxy prove to be HII regions, the number of expected HII regions in the Milky Way would more than double. Constraining the total number of HII regions within the Milky Way will feed back into stellar population synthesis modeling, informing both the high-mass tail of the Galactic star formation rate and the role of high-mass stars in the evolution of the ISM. We estimate there are between 6500 and 7000 HII regions in Milky Way created by a star of type B2 or earlier.

  2. Does the Galactic Bulge Have Fewer Planets?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-12-01

    The Milky Ways dense central bulge is a very different environment than the surrounding galactic disk in which we live. Do the differences affect the ability of planets to form in the bulge?Exploring Galactic PlanetsSchematic illustrating how gravitational microlensing by an extrasolar planet works. [NASA]Planet formation is a complex process with many aspects that we dont yet understand. Do environmental properties like host star metallicity, the density of nearby stars, or the intensity of the ambient radiation field affect the ability of planets to form? To answer these questions, we will ultimately need to search for planets around stars in a large variety of different environments in our galaxy.One way to detect recently formed, distant planets is by gravitational microlensing. In this process, light from a distant source star is bent by a lens star that is briefly located between us and the source. As the Earth moves, this momentary alignment causes a blip in the sources light curve that we can detect and planets hosted by the lens star can cause an additional observable bump.Artists impression of the Milky Way galaxy. The central bulge is much denserthan the surroundingdisk. [ESO/NASA/JPL-Caltech/M. Kornmesser/R. Hurt]Relative AbundancesMost source stars reside in the galactic bulge, so microlensing events can probe planetary systems at any distance between the Earth and the galactic bulge. This means that planet detections from microlensing could potentially be used to measure the relative abundances of exoplanets in different parts of our galaxy.A team of scientists led by Matthew Penny, a Sagan postdoctoral fellow at Ohio State University, set out to do just that. The group considered a sample of 31 exoplanetary systems detected by microlensing and asked the following question: are the planet abundances in the galactic bulge and the galactic disk the same?A Paucity of PlanetsTo answer this question, Penny and collaborators derived the expected

  3. A Speeding Binary in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    The recent discovery of a hyper-velocity binary star system in the halo of the Milky Way poses a mystery: how was this system accelerated to its high speed?Accelerating StarsUnlike the uniform motion in the Galactic disk, stars in the Milky Ways halo exhibit a huge diversity of orbits that are usually tilted relative to the disk and have a variety of speeds. One type of halo star, so-called hyper-velocity stars, travel with speeds that can approach the escape velocity of the Galaxy.How do these hyper-velocity stars come about? Assuming they form in the Galactic disk, there are multiple proposed scenarios through which they could be accelerated and injected into the halo, such as:Ejection after a close encounter with the supermassive black hole at the Galactic centerEjection due to a nearby supernova explosionEjection as the result of a dynamical interaction in a dense stellar population.Further observations of hyper-velocity stars are necessary to identify the mechanism responsible for their acceleration.J1211s SurpriseModels of J1211s orbit show it did not originate from the Galactic center (black dot). The solar symbol shows the position of the Sun and the star shows the current position of J1211. The bottom two panels show two depictions(x-y plane and r-z plane) of estimated orbits of J1211 over the past 10 Gyr. [Nmeth et al. 2016]To this end, a team of scientists led by Pter Nmeth (Friedrich Alexander University, Erlangen-Nrnberg) recently studied the candidate halo hyper-velocity star SDSS J121150.27+143716.2. The scientists obtained spectroscopy of J1211 using spectrographs at the Keck Telescope in Hawaii and ESOs Very Large Telescope in Chile. To their surprise, they discovered the signature of a companion in the spectra: J1211 is actually a binary!Nmeth and collaborators found that J1211, located roughly 18,000 light-years away, is moving at a rapid ~570 km/s relative to the galactic rest frame. The binary system consists of a hot (30,600 K) subdwarf and a

  4. SAS-2 observations of the diffuse gamma radiation in the galactic latitude interval 10 deg absolute b or equal to 90 deg

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Oegelman, H. B.; Oezel, M. E.; Tuemer, T.

    1977-01-01

    An analysis of all of the second small astronomy satellite gamma-ray data for galactic latitudes with the absolute value of b 10 deg has shown that the intensity varies with galactic latitude, being larger near 10 deg than 90 deg. For energies above 100 MeV the gamma-ray data are consistent with a latitude distribution of the form I(b) = C sub 1 + C sub 2/sin b, with the second term being dominant. This result suggests that the radiation above 100 MeV is coming largely from local regions of the galactic disk. Between 35 and 100 MeV, a similar equation is also a good representation of the data, but here the two terms are comparable. These results indicate that the diffuse radiation above 35 MeV consists of two parts, one with a relatively hard galactic component and the other an isotropic, steep spectral component which extrapolates back well to the low energy diffuse radiation. The steepness of the diffuse isotropic component places significant constraints on possible theoretical models of this radiation.

  5. Multi-Decadal Global Cooling and Unprecedented Ozone Loss Following a Regional Nuclear Conflict

    NASA Astrophysics Data System (ADS)

    Mills, M. J.; Toon, O. B.; Lee-Taylor, J. M.; Robock, A.

    2014-12-01

    We present the first study of the global impacts of a regional nuclear war with an Earth system model including atmospheric chemistry, ocean dynamics, and interactive sea-ice and land models (Mills et al., 2014). A limited, regional nuclear war between India and Pakistan in which each side detonates 50 15-kt weapons could produce about 5 Tg of black carbon. This would self-loft to the stratosphere, where it would spread globally, producing a sudden drop in surface temperatures and intense heating of the stratosphere. Using the Community Earth System Model with the Whole Atmosphere Community Climate Model (CESM1(WACCM)), we calculate an e-folding time of 8.7 years for stratospheric black carbon, compared to 4-6.5 years for previous studies (figure panel a). Our calculations show that global ozone losses of 20-50% over populated areas, levels unprecedented in human history, would accompany the coldest average surface temperatures in the last 1000 years (figure panel c). We calculate summer enhancements in UV indices of 30-80% over Mid-Latitudes, suggesting widespread damage to human health, agriculture, and terrestrial and aquatic ecosystems. Killing frosts would reduce growing seasons by 10-40 days per year for 5 years. Surface temperatures would be reduced for more than 25 years, due to thermal inertia and albedo effects in the ocean and expanded sea ice. The combined cooling and enhanced UV would put significant pressures on global food supplies and could trigger a global nuclear famine. Knowledge of the impacts of 100 small nuclear weapons should motivate the elimination of the more than 17,000 nuclear weapons that exist today. Mills, M. J., O. B. Toon, J. Lee-Taylor, and A. Robock (2014), Multidecadal global cooling and unprecedented ozone loss following a regional nuclear conflict, Earth's Future, 2(4), 161-176, doi:10.1002/2013EF000205.

  6. Galactic Spiral Shocks with Thermal Instability in Vertically Stratified Disks

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Goo; Kim, W.; Ostriker, E. C.

    2010-01-01

    Galactic spiral shocks are dominant morphological features and believed to be responsible for substructure formation of spiral arms in disk galaxies. They can also provide a large amount of kinetic energy for the interstellar gas by tapping the rotational energy. We use numerical hydrodynamic simulations to investigate dynamics and structure of spiral shocks with thermal instability in vertically stratified galactic disks. We initially consider an isothermal disk in vertical hydrostatic equilibrium and let it evolve under interstellar cooling and heating. Due to cooling and heating, the disk rapidly turns to a dense slab near the midplane surrounded by rarefied gas at high-altitude regions. The imposed stellar spiral potential develops a vertically curved shock that exhibits strong flapping motions along the direction perpendicular to the arm. The flows across the spiral shock are characterized by transitions from rarefied to dense phases at the shock and from dense to rarefied phases at the postshock expansion zone. The shock flapping motions stirs the disk, supplying the gas with random kinetic energy. For a model resembling the galactic disk near the solar neighborhood, the density-weighted vertical velocity dispersions are 2 km/s for the rarefied gas and 1 km/s for the dense gas. The shock compression in this model reduces an amount of the rarefied gas from 29% to 19% by mass. Despite the flapping motions, the time-averaged profiles of surface density are similar to those of the one-dimensional counterparts, and the vertical density distribution is overall consistent with effective hydrostatic equilibrium. When self-gravity is included, the shock compression forms large gravitationally bound condensations with virial ratio of about 2 and typical masses of 0.5 to one million solar masses, comparable to the Jeans mass.

  7. Gamma-rays of 3 to 25 MeV from the galactic anti-center and pulsar NP 0532

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Moon, S. H.; Ryan, J. M.; Zych, A. D.; White, R. S.; Dayton, B.

    1978-01-01

    Gamma-rays of 3 to 25 MeV are reported from the galactic anticenter region and the Crab Pulsar, NP 0532. The observations were carried out from Palestine, Texas, on May 13, 1975. Gamma-rays from the galactic anticenter were observed as the Crab Nebula passed overhead within 10 deg of the zenith. Pulsed gamma-rays from NP 0532 were observed at a 4.4-sigma significance level. The total flux from 3-25 MeV is 0.0049 + or - 0.002 photon/sq cm-sec. The pulsed flux from NP 0532 from 3 to 25 MeV is 0.00043 + or - 0.00026 photon/sq cm-sec. The ratio of the total to the pulsed flux from 3 to 25 MeV is 11 + or - 8.

  8. Telomere-surrounding regions are transcription-permissive 3D nuclear compartments in human cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quina, Ana Sofia; Instituto Gulbenkian de Ciencia, 2781-901 Oeiras; Parreira, Leonor

    2005-07-01

    Positioning of genes relative to nuclear heterochromatic compartments is thought to help regulate their transcriptional activity. Given that human subtelomeric regions are rich in highly expressed genes, we asked whether human telomeres are related to transcription-permissive nuclear compartments. To address this question, we investigated in the nuclei of normal human lymphocytes the spatial relations of two constitutively expressed genes (ACTB and RARA) and three nuclear transcripts (ACTB, IL2RA and TCRB) to telomeres and centromeres, as a function of gene activity and transcription levels. We observed that genes and gene transcripts locate close to telomere clusters and away from chromocenters uponmore » activation of transcription. These findings, together with the observation that SC35 domains, which are enriched in pre-mRNA processing factors, are in close proximity to telomeres, indicate that telomere-neighboring regions are permissive to gene expression in human cells. Therefore, the associations of telomeres observed in the interphase nucleus might contribute, as opposed to chromocenters, for the establishment of transcription-permissive 3D nuclear compartments.« less

  9. HEAO 1 measurements of the galactic ridge

    NASA Technical Reports Server (NTRS)

    Worrall, D. M.; Marshall, F. E.; Boldt, E. A.; Swank, J. H.

    1981-01-01

    The HEAO A2 experiment data was systematically searched for unresolved galactic disc emission. Although there were suggestions of non-uniformities in the emission, the data were consistent with a disc of half-thickness 241 + 22 pc and surface emissivity (2-10 keV) at galactic radius R(kpc) of 2.2 10 to the minus 7th power exp(-R/3.5) erg/sq cm to the (-2)power/s (R 7.8 kpc). giving a luminosity of approximately 4.4 10 to the 37th power erg S to the (-1) power. If the model is extrapolated to radii less than 7.8 kpc, the unresolved disc emission is approximately 1.4 10 to the 38th power erg S to the (-1) power (2-10 keV) i.e., a few percent of the luminosity of the galaxy in resolved sources. the disc emission has a spectrum which is significantly softer than that of the high galactic latitude diffuse X-ray background and it is most probably of discrete source origin.

  10. Galactic civilizations - Population dynamics and interstellar diffusion

    NASA Technical Reports Server (NTRS)

    Newman, W. I.; Sagan, C.

    1981-01-01

    A model is developed of the interstellar diffusion of galactic civilizations which takes into account the population dynamics of such civilizations. The problem is formulated in terms of potential theory, with a family of nonlinear partial differential and difference equations specifying population growth and diffusion for an organism with advantageous genes that undergoes random dispersal while increasing in population locally, and a population at zero population growth. In the case of nonlinear diffusion with growth and saturation, it is found that the colonization wavefront from the nearest independently arisen galactic civilization can have reached the earth only if its lifetime exceeds 2.6 million years, or 20 million years if discretization can be neglected. For zero population growth, the corresponding lifetime is 13 billion years. It is concluded that the earth is uncolonized not because interstellar spacefaring civilizations are rare, but because there are too many worlds to be colonized in the plausible colonization lifetime of nearby civilizations, and that there exist no very old galactic civilizations with a consistent policy of the conquest of inhabited worlds.

  11. Vertical Shear of the Galactic Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Benjamin, Robert A.

    2000-01-01

    The detection of UV absorption, 21 cm, H alpha and other diffuse optical emission lines from gas up to ten kiloparsecs above the plane of the Milky Way and other galaxies provides the first, opportunity to probe the rotational properties of the ionized "atmospheres" of galaxies. This rotation has implications for our understanding of the Galactic gravitational potential, angular momentum transport in the Galactic disk, and the maintenance of a Galactic dynamo. The available evidence indicates that gas rotates nearly cylindrically up to a few kiloparsecs. This is in contrast to the expectation that there should be a significant gradient in rotation speed as a function of height assuming a reasonable mass model for the Galaxy. For example, for a vertical cut at galactocentric radius R = 5 kpc in NGC 891 by Rand, the rotation speed is observed to drop by approximately 30 kilometers per second from z = 1 to 5 kpc and is expected to drop by 80 kilometers per second. Magnetic tension forces may resolve this discrepancy. Other possibilities will be examined in the near future.

  12. THE BOLOCAM GALACTIC PLANE SURVEY. XI. TEMPERATURES AND SUBSTRUCTURE OF GALACTIC CLUMPS BASED ON 350 μM OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merello, Manuel; Evans II, Neal J.; Shirley, Yancy L.

    We present 107 maps of continuum emission at 350 μm from Galactic molecular clumps. Observed sources were mainly selected from the Bolocam Galactic Plane Survey (BGPS) catalog, with three additional maps covering star-forming regions in the outer Galaxy. The higher resolution of the SHARC-II images (8.″5 beam) compared with the 1.1 mm images from BGPS (33″ beam) allowed us to identify a large population of smaller substructures within the clumps. A catalog is presented for the 1386 sources extracted from the 350 μm maps. The color temperature distribution of clumps based on the two wavelengths has a median of 13.3more » K and mean of 16.3 ± 0.4 K, assuming an opacity law index of 1.7. For the structures with good determination of color temperatures, the mean ratio of gas temperature, determined from NH{sub 3} observations, to dust color temperature is 0.88 and the median ratio is 0.76. About half the clumps have more than 2 substructures and 22 clumps have more than 10. The fraction of the mass in dense substructures seen at 350 μm compared to the mass of their parental clump is ∼0.19, and the surface densities of these substructures are, on average, 2.2 times those seen in the clumps identified at 1.1 mm. For a well-characterized sample, 88 structures (31%) exceed a surface density of 0.2 g cm{sup −2}, and 18 (6%) exceed 1.0 g cm{sup −2}, thresholds for massive star formation suggested by theorists.« less

  13. Galactic fly-bys: New source of lithium production

    NASA Astrophysics Data System (ADS)

    Prodanović, Tijana; Bogdanović, Tamara; Urošević, Dejan

    2013-05-01

    Observations of low-metallicity halo stars have revealed a puzzling result: the abundance of Li7 in these stars is at least three times lower than their predicted primordial abundance. It is unclear whether the cause of this disagreement is a lack of understanding of lithium destruction mechanisms in stars or the non-standard physics behind the big bang nucleosynthesis (BBN). Uncertainties related to the destruction of lithium in stars can be circumvented if lithium abundance is measured in the “pristine” gas of the low metallicity systems. The first measurement in one such system, the small magellanic cloud (SMC), was found to be at the level of the pure expected primordial value, but is on the other hand, just barely consistent with the expected galactic abundance for the system at the SMC metallicity, where important lithium quantity was also produced in interactions of galactic cosmic rays and presents an addition to the already present primordial abundance. Because of the importance of the SMC lithium measurement for the resolution of the lithium problem, we here draw attention to the possibility of another post-BBN production channel of lithium, which could present an important addition to the observed SMC lithium abundance. Besides standard galactic cosmic rays, additional post-BBN production of lithium might come from cosmic rays accelerated in galaxy-galaxy interactions. This might be important for a system such is the SMC, which has experienced galaxy harassment in its history. Within a simplified but illustrative framework we demonstrate that large-scale tidal shocks from a few galactic fly-bys can possibly produce lithium in amounts comparable to those expected from the interactions of galactic cosmic-rays produced in supernovae over the entire history of a system. In case of the SMC, we find that only two such fly-bys could possibly account for as much lithium as the standard, galactic cosmic ray production channel. However, adding any a new

  14. Implications of the IRAS data for galactic gamma ray astronomy and EGRET

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    1990-01-01

    Using the results of gamma-ray, millimeter wave and far surveys of the galaxy, logically consistent picture of the large scale distribution of galactic gas and cosmic rays was derived, tied to the overall processes of stellar birth and destruction on a galactic scale. Using the results of the IRAS far-infrared survey of te galaxy, the large scale radial distributions of galactic far-infrared emission independently was obtained for both the Northern and Southern Hemisphere sides of the Galaxy. The dominant feature in these distributions was found to be a broad peak coincident with the 5 kpc molecular gas cloud ring. Evidence was found for spiral arm features. Strong correlations are evident between the large scale galactic distributions of far-infrared emission, gamma-ray emission and total CO emission. There is particularly tight correlation between the distribution of warm molecular clouds and far-infrared emission on a galactic scale. The 5 kpc ring was evident in existing galactic gamma-ray data. The extent to which the more detailed spiral arm features are evident in the more resolved EGRET (Energetic Gamma-Ray Experimental Telescope) data will help to determine more precisely the propagation characteristics of cosmic rays.

  15. A search for dark matter in the Galactic halo with HAWC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abeysekara, A. U.; Albert, A.; Alfaro, R.

    The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field-of-view observatory sensitive to 500 GeV – 100 TeV gamma rays and cosmic rays. With its observations over 2/3 of the sky every day, the HAWC observatory is sensitive to a wide variety of astrophysical sources, including possible gamma rays from dark matter. Dark matter annihilation and decay in the Milky Way Galaxy should produce gamma-ray signals across many degrees on the sky. The HAWC instantaneous field-of-view of 2 sr enables observations of extended regions on the sky, such as those from dark matter in the Galactic halo. Heremore » we show limits on the dark matter annihilation cross-section and decay lifetime from HAWC observations of the Galactic halo with 15 months of data. These are some of the most robust limits on TeV and PeV dark matter, largely insensitive to the dark matter morphology. These limits begin to constrain models in which PeV IceCube neutrinos are explained by dark matter which primarily decays into hadrons.« less

  16. A search for dark matter in the Galactic halo with HAWC

    DOE PAGES

    Abeysekara, A. U.; Albert, A.; Alfaro, R.; ...

    2018-02-23

    The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field-of-view observatory sensitive to 500 GeV – 100 TeV gamma rays and cosmic rays. With its observations over 2/3 of the sky every day, the HAWC observatory is sensitive to a wide variety of astrophysical sources, including possible gamma rays from dark matter. Dark matter annihilation and decay in the Milky Way Galaxy should produce gamma-ray signals across many degrees on the sky. The HAWC instantaneous field-of-view of 2 sr enables observations of extended regions on the sky, such as those from dark matter in the Galactic halo. Heremore » we show limits on the dark matter annihilation cross-section and decay lifetime from HAWC observations of the Galactic halo with 15 months of data. These are some of the most robust limits on TeV and PeV dark matter, largely insensitive to the dark matter morphology. These limits begin to constrain models in which PeV IceCube neutrinos are explained by dark matter which primarily decays into hadrons.« less

  17. Revealing the Galactic Center in the Far-Infrared with SOFIA/FORCAST

    NASA Astrophysics Data System (ADS)

    Lau, Ryan M.; Herter, Terry; Morris, Mark; Li, Zhiyuan; Becklin, Eric; Adams, Joseph; Hankins, Matthew

    2015-08-01

    We present a summary of far-infrared imaging observations of the inner 40 pc of the Galactic center addressing the dense, dusty torus around Sgr A*, massive star formation, and dust production around massive stars and in the Sgr A East supernova remnant. Observations of warm dust emission were performed using the Faint Object Infrared Camera for the SOFIA Telescope (FORCAST). The Circumnuclear Ring (CNR) surrounding and heated by central cluster in the vicinity of Sgr A* shows no internal active star formation but does exhibit significant density “clumps,” a surprising result because tidal shearing should act quickly to smear out structure. G-0.02-0.07, a complex consisting of three compact HII regions and one ultracompact HII region, is site of the most recent confirmed star formation within ~10 pc of the Galactic center. Our observations reveal the dust morphologies and SEDs of the regions to constrain the composition and gas-to-dust mass ratios of the emitting dust and identify heating sources candidates from archival near-IR images. FORCAST observations Luminous Blue Variables (LBVs) located in and near the Quintuplet Cluster reveal the asymmetric, compressed shell of hot dust surrounding the Pistol Star and provide the first detection of the thermal emission from the symmetric, hot dust envelope surrounding G0.120-0.048. These two LBV’s have nebulae with similar quantities of dust (~0.02 M⊙) but exhibit contrasting appearances due to the external influence of their different environments. Finally, the far-infrared observations indicate the presence of ~0.02 M⊙ of warm (~100 K) dust in the hot interior of the ~10,000 yr-old SgrA East supernova remnant indicating the dust has survived the passage of the reverse shock. The results suggest that supernovae may indeed be the dominant dust production mechanism in the dense environment of early Universe galaxies.

  18. SOFIA/FIFI-LS Observations of Galactic PDRs

    NASA Astrophysics Data System (ADS)

    Klein, Randolf; Reedy, Alexander; Colditz, Sebastian; Fadda, Dario; Fischer, Chrisitan; Geis, Norbert; Hönle, Rainer; Iserlohe, Christof; Krabbe, Alfred; Looney, Leslie; Poglitsch, Albrecht; Raab, Walfried; Rebel, Felix; Vacca, William

    2018-01-01

    Photo-dissociation regions or photon-dominated regions (PDRs) are the interfaces between ionized HII-regions and adjacent molecular clouds usually found in massive star-forming regions. As the places where molecular clouds are destroyed by the UV radiation of the forming massive stars, they are the regions where the effects of star formation on the interstellar medium and the energetics and physical properties of the feedback can be best studied.FIFI-LS, SOFIA's far-infrared (FIR) spectrometer, is well suited to observe galactic PDRs and study them in great detail. The bulk of the energy from PDRs is emitted in the wavelength range of FIFI-LS, which ranges from 50 to 200µm. In this wavelength range, there are many strong atomic and ionic fine-structure lines, which can serve as diagnostic tools to trace these species and to determine densities and temperatures of the ionized and neutral medium in PDRs. FIFI-LS's ability to map large bright regions quickly and in two transitions simultaneously allows researchers to analyse the varying conditions in star-forming regions comprehensively.We will show first results of FIFI-LS observations of M42 and M17. M42 with the Orion Bar, a well-known PDR seen edge-on was one of the very first objects observed with FIFI-LS. Subsequently, we have observed M42 in a growing number of transitions. We also have observed the PDR in M17 in several transitions. The PDRs are clearly identified by the complementary spatial extent of the ionized and neutral species. From the ratios of the [OI] (63 and 146µm) and [OIII] (52 and 88µm) line pairs, the [CII] (158µm) line and combinations thereof, physical conditions in the different phases and the transition regions can be derived. We are presenting preliminary results.

  19. The GALAH Survey and Galactic Archaeology in the Next Decade

    NASA Astrophysics Data System (ADS)

    Martell, S. L.

    2016-10-01

    The field of Galactic Archaeology aims to understand the origins and evolution of the stellar populations in the Milky Way, as a way to understand galaxy formation and evolution in general. The GALAH (Galactic Archaeology with HERMES) Survey is an ambitious Australian-led project to explore the Galactic history of star formation, chemical evolution, minor mergers and stellar migration. GALAH is using the HERMES spectrograph, a novel, highly multiplexed, four-channel high-resolution optical spectrograph, to collect high-quality R˜28,000 spectra for one million stars in the Milky Way. From these data we will determine stellar parameters, radial velocities and abundances for up to 29 elements per star, and carry out a thorough chemical tagging study of the nearby Galaxy. There are clear complementarities between GALAH and other ongoing and planned Galactic Archaeology surveys, and also with ancillary stellar data collected by major cosmological surveys. Combined, these data sets will provide a revolutionary view of the structure and history of the Milky Way.

  20. Elemental Abundances of Ultra-Heavy Galactic Cosmic Rays from the SuperTIGER Instrument

    NASA Astrophysics Data System (ADS)

    Murphy, Ryan

    2016-07-01

    The SuperTIGER (Trans-Iron Galactic Element Recorder) experiment was launched on a long-duration balloon flight from Williams Field, Antarctica, on December 8, 2012. The instrument measured the relative elemental abundances of Galactic Cosmic Rays (GCR) for charge (Z) Z>10 with excellent charge resolution, displaying well resolved individual element peaks for 10 ≤ Z ≤ 40. During its record-breaking 55-day flight, SuperTIGER collected ˜4.73 x10^{6} Iron nuclei, ˜8 times as many as detected by its predecessor, TIGER, with charge resolution at iron of 0.17 cu. SuperTIGER measures charge (Z) and energy (E) using a combination of three scintillator and two Cherenkov detectors, and employs a scintillating fiber hodoscope for event trajectory determination. The SuperTIGER data have been analyzed to correct for instrument effects and remove events that underwent nuclear interactions within the instrument. The data include more than 600 events in the charge range 30 < Z ≤ 40. SuperTIGER is the first experiment to resolve elemental abundances of every element in this charge range with high statistics and single-element resolution. The relative abundances of the galactic cosmic ray source have been derived from the measured relative elemental abundances using atmospheric and interstellar propagations. The SuperTIGER measured abundances are generally consistent with previous experimental results from TIGER and ACE-CRIS, with improved statistical precision. The SuperTIGER results confirm the earlier results from TIGER, supporting a model of cosmic-ray origin in OB associations, with preferential acceleration of refractory elements over volatile elements ordered by atomic mass (A). A second SuperTIGER Antarctic flight is planned for December 2017. Details of the instrument, flight, data analysis, and ongoing preparations will be presented.

  1. The Galactic fountain as an origin for the Smith Cloud

    NASA Astrophysics Data System (ADS)

    Marasco, A.; Fraternali, F.

    2017-01-01

    The recent discovery of an enriched metallicity for the Smith high-velocity H I Cloud (SC) lends support to a Galactic origin for this system. We use a dynamical model of the galactic fountain to reproduce the observed properties of the SC. In our model, fountain clouds are ejected from the region of the disc spiral arms and move through the halo interacting with a pre-existing hot corona. We find that a simple model where cold gas outflows vertically from the Perseus spiral arm reproduces the kinematics and the distance of the SC, but is in disagreement with the cloud's cometary morphology, if this is produced by ram-pressure stripping by the ambient gas. To explain the cloud morphology, we explore two scenarios: (I) the outflow is inclined with respect to the vertical direction and (II) the cloud is entrained by a fast wind that escapes an underlying superbubble. Solutions in agreement with all observational constraints can be found for both cases, the former requires outflow angles >40° while the latter requires ≳1000 km s-1 winds. All scenarios predict that the SC is in the ascending phase of its trajectory and has large - but not implausible - energy requirements.

  2. Black holes on FIRE: stellar feedback limits early feeding of galactic nuclei

    NASA Astrophysics Data System (ADS)

    Anglés-Alcázar, Daniel; Faucher-Giguère, Claude-André; Quataert, Eliot; Hopkins, Philip F.; Feldmann, Robert; Torrey, Paul; Wetzel, Andrew; Kereš, Dušan

    2017-11-01

    We introduce massive black holes (BHs) in the Feedback In Realistic Environments (FIRE) project and perform high-resolution cosmological hydrodynamic simulations of quasar-mass haloes [Mhalo(z = 2) ≈ 1012.5 M⊙] down to z = 1. These simulations model stellar feedback by supernovae, stellar winds and radiation, and BH growth using a gravitational torque-based prescription tied to the resolved properties of galactic nuclei. We do not include BH feedback. We show that early BH growth occurs through short (≲1 Myr) accretion episodes that can reach or even exceed the Eddington rate. In this regime, BH growth is limited by bursty stellar feedback continuously evacuating gas from galactic nuclei, and BHs remain undermassive in low-mass galaxies relative to the local MBH-Mbulgerelation. BH growth is more efficient at later times, when the nuclear stellar potential retains a significant gas reservoir, star formation becomes less bursty and galaxies settle into a more ordered state. BHs rapidly converge on to the observed scaling relations when the host reaches Mbulge ∼ 1010 M⊙. We show that resolving the effects of stellar feedback on the gas supply in the inner ∼100 pc of galaxies is necessary to accurately capture the growth of central BHs. Our simulations imply that bursty stellar feedback has important implications for BH-galaxy relations, AGN demographics and time variability, the formation of early quasars and massive BH mergers.

  3. Nuclear stopping and collective flow in CSR/LanZhou energy region

    NASA Astrophysics Data System (ADS)

    Luo, X.-F.; Dong, X.; Shao, M.; Li, C.; Chen, H.-F.; Wu, K.-J.; Xu, H.-S.

    2011-06-01

    Nuclear stopping and collective flow for two pairs of symmetric colliding nuclei: 238U+238U and 129Xe+129Xe, which are proposed to be accelerated on Cooling Storage Ring (CSR), External Target Facility (ETF), LanZhou, China, are studied by a hadronic transport model ART1.0. The incident beam energy of Uranium and Xenon can be delivered up to 520 MeV/nucleon and 900MeV/nucleon, respectively. At this CSR energy region, the hot, dense nuclear matter are thought to be obtained in the lab, which is an idea circumstance to study the nuclear equation of state (EoS). As deformation of the Uranium nuclei, it is predicted that significant large baryon density in the tip-tip U+U collision patterns and the large elliptic flow in body-body collision pattern are both avail to study the nuclear EoS.

  4. From the sun to the Galactic Center: dust, stars and black hole(s)

    NASA Astrophysics Data System (ADS)

    Fritz, Tobias

    2013-07-01

    The centers of galaxies are their own ultimate gravitational sinks. Massive black holes and star clusters as well as gas are especially likely to fall into the centers of galaxies by dynamical friction or dissipation. Many galactic centers harbor supermassive black holes (SMBH) and dense nuclear (star) clusters which possibly arrived there by these processes. Nuclear clusters can be formed in situ from gas, or from smaller star clusters which fall to the center. Since the Milky Way harbors both an SMBH and a nuclear cluster, both can be studied best in the Galactic Center (GC), which is the closest galactic nucleus to us. In Chapter 1, I introduce the different components of the Milky Way, and put these into the context of the GC. I then give an overview of relevant properties (e.g. star content and distribution) of the GC. Afterwards, I report the results of four different studies about the GC. In Chapter 2, I analyze the limitations of astrometry, one of the most useful methods for the study of the GC. Thanks to the high density of stars and its relatively small distance from us it is possible to measure the motions of thousands of stars in the GC with images, separated by few years only. I find two main limitations to this method: (1) for bright stars the not perfectly correctable distortion of the camera limits the accuracy, and (2) for the majority of the fainter stars, the main limitation is crowding from the other stars in the GC. The position uncertainty of faint stars is mainly caused by the seeing halos of bright stars. In the very center faint unresolvable stars are also important for the position uncertainty. In Chapter 3, I evaluate the evidence for an intermediate mass black hole in the small candidate cluster IRS13E within the GC. Intermediate mass black holes (IMBHs) have a mass between the two types of confirmed black hole: the stellar remnants and the supermassive black holes in the centers of galaxies. One possibility for! their formation is the

  5. A composite large-scale CO survey at high galactic latitudes in the second quadrant

    NASA Technical Reports Server (NTRS)

    Heithausen, A.; Stacy, J. G.; De Vries, H. W.; Mebold, U.; Thaddeus, P.

    1993-01-01

    Surveys undertaken in the 2nd quadrant of the Galaxy with the CfA 1.2 m telescope have been combined to produce a map covering about 620 sq deg in the 2.6 mm CO(J = 1 - 0) line at high galactic latitudes. There is CO emission from molecular 'cirrus' clouds in about 13 percent of the region surveyed. The CO clouds are grouped together into three major cloud complexes with 29 individual members. All clouds are associated with infrared emission at 100 micron, although there is no one-to-one correlation between the corresponding intensities. CO emission is detected in all bright and dark Lynds' nebulae cataloged in that region; however not all CO clouds are visible on optical photographs as reflection or absorption features. The clouds are probably local. At an adopted distance of 240 pc cloud sizes range from O.1 to 30 pc and cloud masses from 1 to 1600 solar masses. The molecular cirrus clouds contribute between 0.4 and 0.8 M solar mass/sq pc to the surface density of molecular gas in the galactic plane. Only 26 percent of the 'infrared-excess clouds' in the area surveyed actually show CO and about 2/3 of the clouds detected in CO do not show an infrared excess.

  6. Galactic Tidal Shocks Effects in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Cruz, F.; Aguilar, L.

    2001-07-01

    We present results of a set of N--Body simulations of 105--particle King models in the presence of a realistic Galactic tidal field. Tidal effects over a cluster are dominated by two processes, differentiated by the way they produc e mass loss in the system. The first one is the Roche lobe overflow, which depend s directly on the ratio of cluster to the Roche lobe size. The second process is tidal heating, produced by the time varying part of the Galactic tide, which injects energy directly on the orbits of the stars inside the cluster.

  7. The structure and content of the galaxy and galactic gamma rays

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E. (Editor); Stecker, F. W. (Editor)

    1977-01-01

    Gamma radiation investigations by COS-B and SAS-2 satellite are reported. Data from CO surveys of the galaxy and the galactic distribution of pulsars are analyzed. Theories of galactic gamma ray emission are explored.

  8. Cloud Structure of Galactic OB Cluster-forming Regions from Combining Ground- and Space-based Bolometric Observations

    NASA Astrophysics Data System (ADS)

    Lin, Yuxin; Liu, Hauyu Baobab; Li, Di; Zhang, Zhi-Yu; Ginsburg, Adam; Pineda, Jaime E.; Qian, Lei; Galván-Madrid, Roberto; McLeod, Anna Faye; Rosolowsky, Erik; Dale, James E.; Immer, Katharina; Koch, Eric; Longmore, Steve; Walker, Daniel; Testi, Leonardo

    2016-09-01

    We have developed an iterative procedure to systematically combine the millimeter and submillimeter images of OB cluster-forming molecular clouds, which were taken by ground-based (CSO, JCMT, APEX, and IRAM-30 m) and space telescopes (Herschel and Planck). For the seven luminous (L\\gt {10}6 L ⊙) Galactic OB cluster-forming molecular clouds selected for our analyses, namely W49A, W43-Main, W43-South, W33, G10.6-0.4, G10.2-0.3, and G10.3-0.1, we have performed single-component, modified blackbody fits to each pixel of the combined (sub)millimeter images, and the Herschel PACS and SPIRE images at shorter wavelengths. The ˜10″ resolution dust column density and temperature maps of these sources revealed dramatically different morphologies, indicating very different modes of OB cluster-formation, or parent molecular cloud structures in different evolutionary stages. The molecular clouds W49A, W33, and G10.6-0.4 show centrally concentrated massive molecular clumps that are connected with approximately radially orientated molecular gas filaments. The W43-Main and W43-South molecular cloud complexes, which are located at the intersection of the Galactic near 3 kpc (or Scutum) arm and the Galactic bar, show a widely scattered distribution of dense molecular clumps/cores over the observed ˜10 pc spatial scale. The relatively evolved sources G10.2-0.3 and G10.3-0.1 appear to be affected by stellar feedback, and show a complicated cloud morphology embedded with abundant dense molecular clumps/cores. We find that with the high angular resolution we achieved, our visual classification of cloud morphology can be linked to the systematically derived statistical quantities (I.e., the enclosed mass profile, the column density probability distribution function (N-PDF), the two-point correlation function of column density, and the probability distribution function of clump/core separations). In particular, the massive molecular gas clumps located at the center of G10.6-0.4 and

  9. Protracted storage of CR chondrules in a region of the disk transparent to galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Roth, Antoine S. G.; Metzler, Knut; Baumgartner, Lukas P.; Hofmann, Beda A.; Leya, Ingo

    2017-10-01

    Renazzo-type carbonaceous (CR) chondrites are accretionary breccias that formed last. As such they are ideal samples to study precompaction exposures to cosmic rays. Here, we present noble gas data for 24 chondrules and 3 dark inclusion samples (DIs) from Shişr 033 (CR2). The meteorite was selected based on the absence of implanted solar wind noble gases and an anomalous oxygen isotopic composition of the DIs; the oxygen isotopes match those in CV3 and CO3 chondrites. Our samples contain variable mixtures of galactic cosmic ray (GCR)-produced cosmogenic noble gases and trapped noble gases of presolar origin. Remarkably, all chondrules have cosmogenic 3He and 21Ne concentrations up to 4.3 and 7.1 times higher than the DIs, respectively. We derived an average 3He-21Ne cosmic ray exposure (CRE) age for Shişr 033 of 2.03 ± 0.20 Ma (2 SD) and excesses in cosmogenic 3He and 21Ne in chondrules (relative to the DIs) in the range (in 10-8 cm3STP/g) 3.99-7.76 and 0.94-1.71, respectively. Assuming present-day GCR flux density, the excesses translate into average precompaction 3He-21Ne CRE ages of 3.1-27.3 Ma depending on the exposure geometry. The data can be interpreted assuming a protracted storage of a single chondrule generation prior to the final assembly of the Shişr 033 parent body in a region of the disk transparent to GCRs.

  10. Detecting pulsars in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Rajwade, K. M.; Lorimer, D. R.; Anderson, L. D.

    2017-10-01

    Although high-sensitivity surveys have revealed a number of highly dispersed pulsars in the inner Galaxy, none have so far been found in the Galactic Centre (GC) region, which we define to be within a projected distance of 1 pc from Sgr A*. This null result is surprising given that several independent lines of evidence predict a sizable population of neutron stars in the region. Here, we present a detailed analysis of both the canonical and millisecond pulsar populations in the GC and consider free-free absorption and multipath scattering to be the two main sources of flux density mitigation. We demonstrate that the sensitivity limits of previous surveys are not sufficient to detect GC pulsar population, and investigate the optimum observing frequency for future surveys. Depending on the degree of scattering and free-free absorption in the GC, current surveys constrain the size of the potentially observable population (I.e. those beaming towards us) to be up to 52 canonical pulsars and 10 000 millisecond pulsars. We find that the optimum frequency for future surveys is in the range of 9-13 GHz. We also predict that future deeper surveys with the Square Kilometre array will probe a significant portion of the existing radio pulsar population in the GC.

  11. An observation of the Galactic center hard X-ray source, 1E 1740.7-2942, with the Caltech coded-aperture telescope

    NASA Technical Reports Server (NTRS)

    Heindl, William A.; Cook, Walter R.; Grunsfeld, John M.; Palmer, David M.; Prince, Thomas A.; Schindler, Stephen M.; Stone, Edward C.

    1993-01-01

    The Galactic center region hard X-ray source IE 1740.7-2942 has been observed with the Caltech Gamma-Ray Imaging Payload (GRIP) from Alice Springs, Australia, on 1988 April 12 and on 1989 April 3 and 4. We report here results from the 1989 measurements based on 14 hr of observation of the Galactic center region. The observations showed IE 1740.7-2942 to be in its normal state, having a spectrum between 35 and 200 keV characterized by a power law with an exponent of -2.2 +/- 0.3 and flux at 100 keV of (7.0 +/- 0.7) x 10 exp -5 sq cm s keV. No flux was detected above 200 keV. A search for time variability in the spectrum of IE 1740.7-2942 on one hour time scales showed no evidence for variability.

  12. Dark matter, shared asymmetries, and galactic gamma ray signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonseca, Nayara; Necib, Lina; Thaler, Jesse, E-mail: nayara@if.usp.br, E-mail: lnecib@mit.edu, E-mail: jthaler@mit.edu

    2016-02-01

    We introduce a novel dark matter scenario where the visible sector and the dark sector share a common asymmetry. The two sectors are connected through an unstable mediator with baryon number one, allowing the standard model baryon asymmetry to be shared with dark matter via semi-annihilation. The present-day abundance of dark matter is then set by thermal freeze-out of this semi-annihilation process, yielding an asymmetric version of the WIMP miracle as well as promising signals for indirect detection experiments. As a proof of concept, we find a viable region of parameter space consistent with the observed Fermi excess of GeVmore » gamma rays from the galactic center.« less

  13. Search for dark matter annihilation in the Galactic Center with IceCube-79

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.

    The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, newmore » and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. Here, no neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, Av>, for WIMP masses ranging from 30 GeV up to 10 TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo profiles, reaching down to ≃4•10 –24 cm 3 s –1, and ≃2.6•10 –23 cm 3 s –1 for the ν ν¯ channel, respectively.« less

  14. Search for dark matter annihilation in the Galactic Center with IceCube-79

    DOE PAGES

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; ...

    2015-10-15

    The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, newmore » and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. Here, no neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, Av>, for WIMP masses ranging from 30 GeV up to 10 TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo profiles, reaching down to ≃4•10 –24 cm 3 s –1, and ≃2.6•10 –23 cm 3 s –1 for the ν ν¯ channel, respectively.« less

  15. Black hole binaries in galactic nuclei and gravitational wave sources

    NASA Astrophysics Data System (ADS)

    Hong, Jongsuk; Lee, Hyung Mok

    2015-03-01

    Stellar black hole (BH) binaries are one of the most promising gravitational wave (GW) sources for GW detection by the ground-based detectors. Nuclear star clusters (NCs) located at the centre of galaxies are known to harbour massive black holes (MBHs) and to be bounded by a gravitational potential by other galactic components such as the galactic bulge. Such an environment of NCs provides a favourable conditions for the BH-BH binary formation by the gravitational radiation capture due to the high BH number density and velocity dispersion. We carried out detailed numerical study of the formation of BH binaries in the NCs using a series of N-body simulations for equal-mass cases. There is no mass segregation introduced. We have derived scaling relations of the binary formation rate with the velocity dispersion of the stellar system beyond the radius of influence and made estimates of the rate of formation of BH binaries per unit comoving volume and thus expected detection rate by integrating the binary formation rate over galaxy population within the detection distance of the advanced detectors. We find that the overall formation rates for BH-BH binaries per NC is ˜10-10 yr-1 for the Milky Way-like galaxies and weakly dependent on the mass of MBH as Γ ∝ M_MBH^{3/28}. We estimate the detection rate of 0.02-14 yr-1 for advanced LIGO/Virgo considering several factors such as the dynamical evolution of NCs, the variance of the number density of stars and the mass range of MBH giving uncertainties.

  16. The Southern H ii Region Discovery Survey (SHRDS): Pilot Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, C.; Dickey, John M.; Jordan, C.

    The Southern H ii Region Discovery Survey is a survey of the third and fourth quadrants of the Galactic plane that will detect radio recombination line (RRL) and continuum emission at cm-wavelengths from several hundred H ii region candidates using the Australia Telescope Compact Array. The targets for this survey come from the WISE Catalog of Galactic H ii Regions and were identified based on mid-infrared and radio continuum emission. In this pilot project, two different configurations of the Compact Array Broad Band receiver and spectrometer system were used for short test observations. The pilot surveys detected RRL emission frommore » 36 of 53 H ii region candidates, as well as seven known H ii regions that were included for calibration. These 36 recombination line detections confirm that the candidates are true H ii regions and allow us to estimate their distances.« less

  17. Implications of the IRAS data for galactic gamma-ray astronomy and EGRET

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1990-01-01

    Using the results of gamma-ray, millimeter wave and far infrared surveys of the galaxy, one can derive a logically consistent picture of the large scale distribution of galactic gas and cosmic rays, one tied to the overall processes of stellar birth and destruction on a galactic scale. Using the results of the IRAS far-infrared survey of the galaxy, the large scale radial distribution of galactic far-infrared emission were obtained independently for both the Northern and Southern Hemisphere sides of the Galaxy. It was found that the dominant feature in these distributions to be a broad peak coincident with the 5 kpc molecular gas cloud ring. Also found was evidence of spiral arm features. Strong correlations are evident between the large scale galactic distributions of far infrared emission, gamma-ray emission and total CO emission. There is a particularly tight correlation between the distribution of warm molecular clouds and far-infrared emission on a galactic scale.

  18. Searching for High Proper Motion Sources Towards the Galactic Center using Convolution Neural Networks

    NASA Astrophysics Data System (ADS)

    Giongo Fernandes, Alexandre; Benjamin, Robert A.; Babler, Brian

    2018-01-01

    Two sets of infrared images of the Galactic Center region (|L|< 1 degree and |B| < 0.75 degrees) taken by the Spitzer Space Telescope in IRAC 3.6 micron and 4.5 micron bands are searched for high proper motion objects (> 100 mas/year). The two image sets come from GALCEN observations in 2005 and GLIMPSE proper observations in 2015 with matched observation modes. We use three different methods to search for these objects in extremely crowded fields: (1) comparing matched point source lists, (2) crowd sourcing by several college introductory astronomy classes in the state of Wisconsin (700 volunteers), and (3) convolutional neural networks trained using objects from the previous two methods. Before our search six high proper objects were known, four of which were found by the VVV near-infrared Galactic plane survey. We compare and describe our methods for this search, and present a preliminary catalog of high proper motions objects.

  19. Molecular clouds and galactic spiral structure

    NASA Technical Reports Server (NTRS)

    Dame, T. M.

    1984-01-01

    Galactic CO line emission at 115 GHz was surveyed in order to study the distribution of molecular clouds in the inner galaxy. Comparison of this survey with similar H1 data reveals a detailed correlation with the most intense 21 cm features. To each of the classical 21 cm H1 spiral arms of the inner galaxy there corresponds a CO molecular arm which is generally more clearly defined and of higher contrast. A simple model is devised for the galactic distribution of molecular clouds. The modeling results suggest that molecular clouds are essentially transient objects, existing for 15 to 40 million years after their formation in a spiral arm, and are largely confined to spiral features about 300 pc wide.

  20. Gravitational lensing of active galactic nuclei.

    PubMed Central

    Hewitt, J N

    1995-01-01

    Most of the known cases of strong gravitational lensing involve multiple imaging of an active galactic nucleus. The properties of lensed active galactic nuclei make them promising systems for astrophysical applications of gravitational lensing; in particular, they show structure on scales of milliseconds of arc to tens of seconds of arc, they are variable, and they are polarized. More than 20 cases of strong gravitational lenses are now known, and about half of them are radio sources. High-resolution radio imaging is making possible the development of well-constrained lens models. Variability studies at radio and optical wavelengths are beginning to yield results of astrophysical interest, such as an independent measure of the distance scale and limits on source sizes. PMID:11607613

  1. Gravitational lensing of active galactic nuclei.

    PubMed

    Hewitt, J N

    1995-12-05

    Most of the known cases of strong gravitational lensing involve multiple imaging of an active galactic nucleus. The properties of lensed active galactic nuclei make them promising systems for astrophysical applications of gravitational lensing; in particular, they show structure on scales of milliseconds of arc to tens of seconds of arc, they are variable, and they are polarized. More than 20 cases of strong gravitational lenses are now known, and about half of them are radio sources. High-resolution radio imaging is making possible the development of well-constrained lens models. Variability studies at radio and optical wavelengths are beginning to yield results of astrophysical interest, such as an independent measure of the distance scale and limits on source sizes.

  2. Signatures of the Galactic bar on stellar kinematics unveiled by APOGEE

    NASA Astrophysics Data System (ADS)

    Palicio, Pedro A.; Martinez-Valpuesta, Inma; Allende Prieto, Carlos; Dalla Vecchia, Claudio; Zamora, Olga; Zasowski, Gail; Fernandez-Trincado, J. G.; Masters, Karen L.; García-Hernández, D. A.; Roman-Lopes, Alexandre

    2018-07-01

    Bars are common galactic structures in the local universe that play an important role in the secular evolution of galaxies, including the Milky Way. In particular, the velocity distribution of individual stars in our galaxy is useful to shed light on stellar dynamics, and provides information complementary to that inferred from the integrated light of external galaxies. However, since a wide variety of models reproduce the distribution of velocity and the velocity dispersion observed in the Milky Way, we look for signatures of the bar on higher order moments of the line-of-sight velocity (V_{los}) distribution. We use two different numerical simulations - one that has developed a bar and one that remains nearly axisymmetric - to compare them with observations in the latest Apache Point Observatory Galactic Evolution Experiment data release (SDSS DR14). This comparison reveals three interesting structures that support the notion that the Milky Way is a barred galaxy. A high-skewness region found at positive longitudes constrains the orientation angle of the bar, and is incompatible with the orientation of the bar at ℓ = 0° proposed in previous studies. We also analyse the V_{los} distributions in three regions, and introduce the Hellinger distance to quantify the differences among them. Our results show a strong non-Gaussian distribution both in the data and in the barred model, confirming the qualitative conclusions drawn from the velocity maps. In contrast to earlier work, we conclude it is possible to infer the presence of the bar from the kurtosis distribution.

  3. On The Evidence For Large-Scale Galactic Conformity In The Local Universe

    NASA Astrophysics Data System (ADS)

    Sin, Larry P. T.; Lilly, Simon J.; Henriques, Bruno M. B.

    2017-10-01

    We re-examine the observational evidence for large-scale (4 Mpc) galactic conformity in the local Universe, as presented in Kauffmann et al. We show that a number of methodological features of their analysis act to produce a misleadingly high amplitude of the conformity signal. These include a weighting in favour of central galaxies in very high density regions, the likely misclassification of satellite galaxies as centrals in the same high-density regions and the use of medians to characterize bimodal distributions. We show that the large-scale conformity signal in Kauffmann et al. clearly originates from a very small number of central galaxies in the vicinity of just a few very massive clusters, whose effect is strongly amplified by the methodological issues that we have identified. Some of these 'centrals' are likely misclassified satellites, but some may be genuine centrals showing a real conformity effect. Regardless, this analysis suggests that conformity on 4 Mpc scales is best viewed as a relatively short-range effect (at the virial radius) associated with these very large neighbouring haloes, rather than a very long-range effect (at tens of virial radii) associated with the relatively low-mass haloes that host the nominal central galaxies in the analysis. A mock catalogue constructed from a recent semi-analytic model shows very similar conformity effects to the data when analysed in the same way, suggesting that there is no need to introduce new physical processes to explain galactic conformity on 4 Mpc scales.

  4. Mapping photometric metallicities in the Galactic halo using broadband photometry

    NASA Astrophysics Data System (ADS)

    Hebenstreit, Samuel David; Nidever, David L.; Munn, Jeffrey A.; Majewski, Steven R.

    2018-06-01

    An important objective of modern Astrophysics is to trace the history of galaxies and the dynamics of their formations. The outer regions of the Milky Way, including the Galactic halo, could potentially elucidate the evolutionary history of our galaxy. In this study, we make use of extensive DDO51 photometry combined with SDSS broadband photometry to select giant stars reaching to 90 kpc. Photometric metallicities, calibrated by overlapping spectroscopic data (SDSS, APOGEE and LAMOST), and distances are calculated for all giant stars. Using these metallicities and distances, we construct metallicity distribution functions (MDFs) from these stars. We study the MDFs for information pertaining to the accretion history of the Milky Way.

  5. Evaluation of Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Heiblim, Samuel; Malott, Christopher

    2009-01-01

    Models of the galactic cosmic ray spectra have been tested by comparing their predictions to an evaluated database containing more than 380 measured cosmic ray spectra extending from 1960 to the present.

  6. A Detailed Analysis of the Physical Conditions in the Infrared Dark Clouds in the Region IGGC 16/23

    NASA Astrophysics Data System (ADS)

    Scibelli, Samantha; Tolls, Volker

    2017-01-01

    There is an ongoing debate about why the star formation rate is low in the Galactic Center and Galactic Bar region of the Milky Way. Clump 2 is located at a distance of ~400 pc from the Galactic Center in the Galactic Bar region near the edge of the Central Molecular Zone (CMZ). Molecular clouds in this region are too distant to be influenced by the central black hole. However, despite of its location, Clump 2 is comprised of molecular clouds that show the same low star formation rate as those in the Galactic Center. Using Herschel PACS and SPIRE and APEX dust continuum emission data, our measurements indicate that cores in the IGGC 16/23 region have dust masses and densities comparable to those of more typical star-forming molecular clouds in the solar neighborhood. In addition, we analyzed Herschel HIFI high-J 12CO emission line observations supplemented by MOPRA molecular line observations. We find that the IGGC 16/23 region is composed of many smaller cores with different systemic velocities in the same line of sight advocating that additional analysis should be done to provide better constraints on the core sizes and masses to confirm that the core masses are below their virial masses and, thus, are not collapsing.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  7. Galactic Cosmic Rays: From Earth to Sources

    NASA Technical Reports Server (NTRS)

    Brandt, Theresa J.

    2012-01-01

    For nearly 100 years we have known that cosmic rays come from outer space, yet proof of their origin, as well as a comprehensive understanding of their acceleration, remains elusive. Direct detection of high energy (up to 10(exp 15)eV), charged nuclei with experiments such as the balloon-born, antarctic Trans-Iron Galactic Element Recorder (TIGER) have provided insight into these mysteries through measurements of cosmic ray abundances. The abundance of these rare elements with respect to certain intrinsic properties suggests that cosmic rays include a component of massive star ejecta. Supernovae and their remnants (SNe & SNRs), often occurring at the end of a massive star's life or in an environment including massive star material, are one of the most likely candidates for sources accelerating galactic comic ray nuclei up to the requisite high energies. The Fermi Gamma-ray Space Telescope Large Area Detector (Fermi LAT) has improved our understanding of such sources by widening the window of observable energies and thus into potential sources' energetic processes. In combination with multiwavelength observations, we are now better able to constrain particle populations (often hadron-dominated at GeV energies) and environmental conditions, such as the magnetic field strength. The SNR CTB 37A is one such source which could contribute to the observed galactic cosmic rays. By assembling populations of SNRs, we will be able to more definitively define their contribution to the observed galactic cosmic rays, as well as better understand SNRs themselves. Such multimessenger studies will thus illuminate the long-standing cosmic ray mysteries, shedding light on potential sources, acceleration mechanisms, and cosmic ray propagation.

  8. A Herschel [C ii] Galactic plane survey. II. CO-dark H2 in clouds

    NASA Astrophysics Data System (ADS)

    Langer, W. D.; Velusamy, T.; Pineda, J. L.; Willacy, K.; Goldsmith, P. F.

    2014-01-01

    Context. H i and CO large scale surveys of the Milky Way trace the diffuse atomic clouds and the dense shielded regions of molecular hydrogen clouds, respectively. However, until recently, we have not had spectrally resolved C+ surveys in sufficient lines of sight to characterize the ionized and photon dominated components of the interstellar medium, in particular, the H2 gas without CO, referred to as CO-dark H2, in a large sample of interstellar clouds. Aims: We use a sparse Galactic plane survey of the 1.9 THz (158 μm) [C ii] spectral line from the Herschel open time key programme, Galactic Observations of Terahertz C+ (GOT C+), to characterize the H2 gas without CO in a statistically significant sample of interstellar clouds. Methods: We identify individual clouds in the inner Galaxy by fitting the [C ii] and CO isotopologue spectra along each line of sight. We then combine these spectra with those of H i and use them along with excitation models and cloud models of C+ to determine the column densities and fractional mass of CO-dark H2 clouds. Results: We identify1804 narrow velocity [C ii] components corresponding to interstellar clouds in different categories and evolutionary states. About 840 are diffuse molecular clouds with no CO, ~510 are transition clouds containing [C ii] and 12CO, but no 13CO, and the remainder are dense molecular clouds containing 13CO emission. The CO-dark H2 clouds are concentrated between Galactic radii of ~3.5 to 7.5 kpc and the column density of the CO-dark H2 layer varies significantly from cloud to cloud with a global average of 9 × 1020 cm-2. These clouds contain a significant fraction by mass of CO-dark H2, that varies from ~75% for diffuse molecular clouds to ~20% for dense molecular clouds. Conclusions: We find a significant fraction of the warm molecular ISM gas is invisible in H i and CO, but is detected in [C ii]. The fraction of CO-dark H2 is greatest in the diffuse clouds and decreases with increasing total column

  9. New Wolf-Rayet stars in Galactic open clusters - Sher 1 and the giant H II region core Westerlund 2

    NASA Technical Reports Server (NTRS)

    Moffat, Anthony F. J.; Shara, Michael M.; Potter, Michael

    1991-01-01

    Two new Galactic Wolf-Rayet stars were found in open clusters: a WN4 star in the O9 cluster Sher 1 and a WN7 star in the O7 cluster Westerlund 2. This confirms a previous trend, namely that fainter, hotter WN stars tend to be older than brighter, cooler WN stars. This may be a consequence of evolution via extreme mass loss.

  10. Possible dark matter origin of the gamma ray emission from the Galactic Center observed by HESS

    NASA Astrophysics Data System (ADS)

    Cembranos, J. A. R.; Gammaldi, V.; Maroto, A. L.

    2012-11-01

    We show that the gamma ray spectrum observed with the HESS array of Cherenkov telescopes coming from the Galactic Center region and identified with the source HESS J1745-290 is well fitted by the secondary photons coming from dark matter (DM) annihilation over a diffuse power law background. The amount of photons and morphology of the signal localized within a region of few parsecs, require compressed DM profiles as those resulting from baryonic contraction, which offer ˜103 enhancements in the signal over DM alone simulations. The fitted background from HESS data is consistent with recent Fermi-LAT observations of the same region.

  11. VI photometry of the galactic cluster Berkeley 66

    NASA Astrophysics Data System (ADS)

    Guarnieri, M. D.; Carraro, G.

    1997-03-01

    A colour magnitude diagram (CMD) extending to V ~= 19 mag is given for 444 stars in the region of the galactic cluster Berkeley 66. The V and I photometry of a nearby field is also reported. This object appears very faint, highly contaminated by foreground stars and very reddened. The apparent distance modulus (m-M) and the colour excess E_{V-I} are guessed to be 17.5 and 1.1, respectively, with an uncertainty of at least 30%. Adopting these values the comparison of the CMD with theoretical isochrones from the Padova group provides an age around 1.0 Gyr. Based on observations carried out at Pino Torinese Observatory, Torino, Italy. Table 2 is available only in electronic form at the CDS via anonymous ftp 130.79.128.5.

  12. Observing the Super-Massive Black Hole of the Galactic center with Simbol-X .

    NASA Astrophysics Data System (ADS)

    Goldwurm, A.

    The Center of our Galaxy is one of the prime objective of the Simbol-X mission. This region of several square degrees around the dynamical center of the galaxy hosts a large variety of high energy sources and violent phenomena that involve different non-thermal processes contributing to the hard X-ray emission from the region. Here we present in detail the case for the observation of Sgr A*, the super-massive black hole of the galactic nucleus, with Simbol-X, stressing on the presently open questions and on the crucial measurements that will be performed in the hard X-ray domain with this formation-flying hard X-ray focussing telescope expected to flight in the next decade.

  13. First Extended Catalogue of Galactic bubble infrared fluxes from WISE and Herschel surveys

    NASA Astrophysics Data System (ADS)

    Bufano, F.; Leto, P.; Carey, D.; Umana, G.; Buemi, C.; Ingallinera, A.; Bulpitt, A.; Cavallaro, F.; Riggi, S.; Trigilio, C.; Molinari, S.

    2018-01-01

    In this paper, we present the first extended catalogue of far-infrared fluxes of Galactic bubbles. Fluxes were estimated for 1814 bubbles, defined here as the 'golden sample', and were selected from the Milky Way Project First Data Release (Simpson et al.) The golden sample was comprised of bubbles identified within the Wide-field Infrared Survey Explorer (WISE) dataset (using 12- and 22-μm images) and Herschel data (using 70-, 160-, 250-, 350- and 500-μm wavelength images). Flux estimation was achieved initially via classical aperture photometry and then by an alternative image analysis algorithm that used active contours. The accuracy of the two methods was tested by comparing the estimated fluxes for a sample of bubbles, made up of 126 H II regions and 43 planetary nebulae, which were identified by Anderson et al. The results of this paper demonstrate that a good agreement between the two was found. This is by far the largest and most homogeneous catalogue of infrared fluxes measured for Galactic bubbles and it is a step towards the fully automated analysis of astronomical datasets.

  14. Climatic Consequences and Agricultural Impact of Regional Nuclear Conflict

    NASA Astrophysics Data System (ADS)

    Toon, O. B.; Robock, A.; Mills, M. J.; Xia, L.

    2013-05-01

    A nuclear war between India and Pakistan, with each country using 50 Hiroshima-sized atom bombs as airbursts on urban areas, would inject smoke from the resulting fires into the stratosphere.This could produce climate change unprecedented in recorded human history and global-scale ozone depletion, with enhanced ultraviolet (UV) radiation reaching the surface.Simulations with the Whole Atmosphere Community Climate Model (WACCM), run at higher vertical and horizontal resolution than a previous simulation with the NASA Goddard Institute for Space Studies ModelE, and incorporating ozone chemistry for the first time, show a longer stratospheric residence time for smoke and hence a longer-lasting climate response, with global average surface air temperatures still 1.1 K below normal and global average precipitation 4% below normal after a decade.The erythemal dose from the enhanced UV radiation would greatly increase, in spite of enhanced absorption by the remaining smoke, with the UV index more than 3 units higher in the summer midlatitudes, even after a decade. Scenarios of changes in temperature, precipitation, and downward shortwave radiation from the ModelE and WACCM simulations, applied to the Decision Support System for Agrotechnology Transfer crop model for winter wheat, rice, soybeans, and maize by perturbing observed time series with anomalies from the regional nuclear war simulations, produce decreases of 10-50% in yield averaged over a decade, with larger decreases in the first several years, over the midlatitudes of the Northern Hemisphere. The impact of the nuclear war simulated here, using much less than 1% of the global nuclear arsenal, would be devastating to world agricultural production and trade, possibly sentencing a billion people now living marginal existences to starvation.The continued environmental threat of the use of even a small number of nuclear weapons must be considered in nuclear policy deliberations in Russia, the U.S., and the rest of

  15. Limits on soft X-ray flux from distant emission regions

    NASA Technical Reports Server (NTRS)

    Burrows, D. N.; Mccammon, D.; Sanders, W. T.; Kraushaar, W. L.

    1984-01-01

    The all-sky soft X-ray data of McCammon et al. and the new N sub H survey (Stark et al. was used to place limits on the amount of the soft X-ray diffuse background that can originate beyond the neutral gas of the galactic disk. The X-ray data for two regions of the sky near the galactic poles are shown to be uncorrelated with 21 cm column densities. Most of the observed x-ray flux must therefore originate on the near side of the most distant neutral gas. The results from these regions are consistent with X-ray emission from a locally isotropic, unabsorbed source, but require large variations in the emission of the local region over large angular scales.

  16. Very high energy observations of the Galactic Centre: recent results and perspectives with CTA

    NASA Astrophysics Data System (ADS)

    Terrier, Regis

    2016-07-01

    The central 300 pc of our Galaxy are a major laboratory for high energy astrophysics. They harbor the closest supermassive black hole (SMBH) and are the site of a sustained star formation activity. The energy released by the supernovae on the ambient medium must be very strong. Similarly, albeit extremely faint nowadays, the SMBH must have experienced episodes of intense activity in the past which can influence significantly the central regions and beyond, e.g. powering the Fermi bubbles. I review observational results at very high energies from the central region and discuss their implications and the questions they leave open. I discuss the perspectives CTA offers for Galactic Centre astrophysics.

  17. Multidecadal global cooling and unprecedented ozone loss following a regional nuclear conflict

    NASA Astrophysics Data System (ADS)

    Mills, Michael J.; Toon, Owen B.; Lee-Taylor, Julia; Robock, Alan

    2014-04-01

    We present the first study of the global impacts of a regional nuclear war with an Earth system model including atmospheric chemistry, ocean dynamics, and interactive sea ice and land components. A limited, regional nuclear war between India and Pakistan in which each side detonates 50 15 kt weapons could produce about 5 Tg of black carbon (BC). This would self-loft to the stratosphere, where it would spread globally, producing a sudden drop in surface temperatures and intense heating of the stratosphere. Using the Community Earth System Model with the Whole Atmosphere Community Climate Model, we calculate an e-folding time of 8.7 years for stratospheric BC compared to 4-6.5 years for previous studies. Our calculations show that global ozone losses of 20%-50% over populated areas, levels unprecedented in human history, would accompany the coldest average surface temperatures in the last 1000 years. We calculate summer enhancements in UV indices of 30%-80% over midlatitudes, suggesting widespread damage to human health, agriculture, and terrestrial and aquatic ecosystems. Killing frosts would reduce growing seasons by 10-40 days per year for 5 years. Surface temperatures would be reduced for more than 25 years due to thermal inertia and albedo effects in the ocean and expanded sea ice. The combined cooling and enhanced UV would put significant pressures on global food supplies and could trigger a global nuclear famine. Knowledge of the impacts of 100 small nuclear weapons should motivate the elimination of more than 17,000 nuclear weapons that exist today.

  18. Propagation of Galactic cosmic rays: the influence of anisotropic diffusion

    NASA Astrophysics Data System (ADS)

    AL-Zetoun, A.; Achterberg, A.

    2018-06-01

    We consider the anisotropic diffusion of cosmic rays in the large-scale Galactic magnetic field, where diffusion along the field and diffusion across the field proceeds at different rates. To calculate this diffusion, we use stochastic differential equations to describe the cosmic ray propagation, solving these numerically. The Galactic magnetic field is described using the Jansson-Farrar model for the Galactic magnetic field. In this paper, we study the influence of perpendicular diffusion on the residence time of cosmic rays in the Galaxy. This provides an estimate for the influence of anisotropic diffusion on the residence time and the amount of matter (grammage) that a typical cosmic ray traverses during its residence in the Galaxy.

  19. The Galactic O-Star Catalog (GOSC) and the Galactic O-Star Spectroscopic Survey (GOSSS): current status

    NASA Astrophysics Data System (ADS)

    Maíz Apellániz, J.; Alonso Moragón, A.; Ortiz de Zárate Alcarazo, L.; The Gosss Team

    2017-03-01

    We present the updates of the Galactic O-Star Catalog (GOSC) that we have undertaken in the last two years: new spectral types, more objects, additional information, and coordination with CDS. We also present updates for the Galactic O-Star Spectroscopic Survey (GOSSS). A new paper (GOSSS-III) has been published and ˜ 1000 targets have been observed since 2014. Four new setups have been added to our lineup and for two of them we have already obtained over 100 spectra: with OSIRIS at the 10.4 m GTC we are observing northern dim stars and with FRODOspec at the 2.0 m Liverpool Telescope we are observing northern bright stars. Finally, we also make available new versions of MGB, the spectral classification tool associated with the project, and of the GOSSS grid of spectroscopic standards.

  20. A Multi-Wavelength Survey of Intermediate-Mass Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Lundquist, Michael J.; Kobulnicky, Henry A.; Kerton, Charles R.

    2015-01-01

    Current research into Galactic star formation has focused on either massive star-forming regions or nearby low-mass regions. We present results from a survey of Galactic intermediate-mass star-forming regions (IM SFRs). These regions were selected from IRAS colors that specify cool dust and large PAH contribution, suggesting that they produce stars up to but not exceeding about 8 solar masses. Using WISE data we have classified 984 candidate IM SFRs as star-like objects, galaxies, filamentary structures, or blobs/shells based on their mid-infrared morphologies. Focusing on the blobs/shells, we combined follow-up observations of deep near-infrared (NIR) imaging with optical and NIR spectroscopy to study the stellar content, confirming the intermediate-mass nature of these regions. We also gathered CO data from OSO and APEX to study the molecular content and dynamics of these regions. We compare these results to those of high-mass star formation in order to better understand their role in the star-formation paradigm.

  1. A study of ultraviolet absorption lines through the complete Galactic halo by the analysis of HST faint object spectrograph spectra of active Galactic nuclei, 1

    NASA Technical Reports Server (NTRS)

    Burks, Geoffrey S.; Bartko, Frank; Shull, J. Michael; Stocke, John T.; Sachs, Elise R.; Burbidge, E. Margaret; Cohen, Ross D.; Junkkarinen, Vesa T.; Harms, Richard J.; Massa, Derck

    1994-01-01

    The ultraviolet (1150 - 2850 A) spectra of a number of active galactic nuclei (AGNs) observed with the Hubble Space Telescope (HST) Faint Object Spectrograph (FOS) have been used to study the properties of the Galactic halo. The objects that served as probes are 3C 273, PKS 0454-220, Pg 1211+143, CSO 251, Ton 951, and PG 1351+640. The equivalent widths of certain interstellar ions have been measured, with special attention paid to the C IV/C II and Si IV/Si II ratios. These ratios have been intercompared, and the highest values are found in the direction of 3C 273, where C IV/C II = 1.2 and Si IV/Si II greater than 1. These high ratios may be due to a nearby supernova remnant, rather than to ionized gas higher up in the Galactic halo. Our data give some support to the notion that QSO metal-line systems may arise from intervening galaxies which contain high supernova rates, galactic fountains, and turbulent mixing layers.

  2. Molecular clouds in the NGC 6334 and NGC 6357 region: Evidence for a 100 pc-scale cloud-cloud collision triggering the Galactic mini-starbursts

    NASA Astrophysics Data System (ADS)

    Fukui, Yasuo; Kohno, Mikito; Yokoyama, Keiko; Torii, Kazufumi; Hattori, Yusuke; Sano, Hidetoshi; Nishimura, Atsushi; Ohama, Akio; Yamamoto, Hiroaki; Tachihara, Kengo

    2018-03-01

    We carried out new CO (J = 1-0, 2-1, and 3-2) observations with NANTEN2 and ASTE in the region of the twin Galactic mini-starbursts NGC 6334 and NGC 6357. We detected two velocity molecular components of 12 km s-1 velocity separation, which is continuous over 3° along the plane. In NGC 6334 the two components show similar two-peaked intensity distributions toward the young H II regions and are linked by a bridge feature. In NGC 6357 we found spatially complementary distribution between the two velocity components as well as a bridge feature in velocity. Based on these results we hypothesize that the two clouds in the two regions collided with each other in the past few Myr and triggered the formation of the starbursts over ˜ 100 pc. We suggest that the formation of the starbursts happened toward the collisional region of extent ˜ 10 pc with initial high molecular column densities. For NGC 6334 we present a scenario which includes spatial variation of the colliding epoch due to non-uniform cloud separation. The scenario possibly explains the apparent age differences among the young O stars in NGC 6334, which range from 104 yr to 106 yr; the latest collision happened within 105 yr toward the youngest stars in NGC 6334 I(N) and I which exhibit molecular outflows without H II regions. For NGC 6357 the O stars were formed a few Myr ago, and the cloud dispersal by the O stars is significant. We conclude that cloud-cloud collision offers a possible explanation of the mini-starburst over a 100 pc scale.

  3. Molecular clouds in the NGC 6334 and NGC 6357 region; Evidence for a 100-pc-scale cloud-cloud collision triggering the Galactic mini-starbursts

    NASA Astrophysics Data System (ADS)

    Fukui, Yasuo; Kohno, Mikito; Yokoyama, Keiko; Torii, Kazufumi; Hattori, Yusuke; Sano, Hidetoshi; Nishimura, Atsushi; Ohama, Akio; Yamamoto, Hiroaki; Tachihara, Kengo

    2018-03-01

    We carried out new CO (J = 1-0, 2-1, and 3-2) observations with NANTEN2 and ASTE in the region of the twin Galactic mini-starbursts NGC 6334 and NGC 6357. We detected two velocity molecular components of 12 km s-1 velocity separation, which is continuous over 3° along the plane. In NGC 6334 the two components show similar two-peaked intensity distributions toward the young H II regions and are linked by a bridge feature. In NGC 6357 we found spatially complementary distribution between the two velocity components as well as a bridge feature in velocity. Based on these results we hypothesize that the two clouds in the two regions collided with each other in the past few Myr and triggered the formation of the starbursts over ˜ 100 pc. We suggest that the formation of the starbursts happened toward the collisional region of extent ˜ 10 pc with initial high molecular column densities. For NGC 6334 we present a scenario which includes spatial variation of the colliding epoch due to non-uniform cloud separation. The scenario possibly explains the apparent age differences among the young O stars in NGC 6334, which range from 104 yr to 106 yr; the latest collision happened within 105 yr toward the youngest stars in NGC 6334 I(N) and I which exhibit molecular outflows without H II regions. For NGC 6357 the O stars were formed a few Myr ago, and the cloud dispersal by the O stars is significant. We conclude that cloud-cloud collision offers a possible explanation of the mini-starburst over a 100-pc scale.

  4. Molecular clouds in the NGC 6334 and NGC 6357 region: Evidence for a 100 pc-scale cloud-cloud collision triggering the Galactic mini-starbursts

    NASA Astrophysics Data System (ADS)

    Fukui, Yasuo; Kohno, Mikito; Yokoyama, Keiko; Torii, Kazufumi; Hattori, Yusuke; Sano, Hidetoshi; Nishimura, Atsushi; Ohama, Akio; Yamamoto, Hiroaki; Tachihara, Kengo

    2018-05-01

    We carried out new CO (J = 1-0, 2-1, and 3-2) observations with NANTEN2 and ASTE in the region of the twin Galactic mini-starbursts NGC 6334 and NGC 6357. We detected two velocity molecular components of 12 km s-1 velocity separation, which is continuous over 3° along the plane. In NGC 6334 the two components show similar two-peaked intensity distributions toward the young H II regions and are linked by a bridge feature. In NGC 6357 we found spatially complementary distribution between the two velocity components as well as a bridge feature in velocity. Based on these results we hypothesize that the two clouds in the two regions collided with each other in the past few Myr and triggered the formation of the starbursts over ˜ 100 pc. We suggest that the formation of the starbursts happened toward the collisional region of extent ˜ 10 pc with initial high molecular column densities. For NGC 6334 we present a scenario which includes spatial variation of the colliding epoch due to non-uniform cloud separation. The scenario possibly explains the apparent age differences among the young O stars in NGC 6334, which range from 104 yr to 106 yr; the latest collision happened within 105 yr toward the youngest stars in NGC 6334 I(N) and I which exhibit molecular outflows without H II regions. For NGC 6357 the O stars were formed a few Myr ago, and the cloud dispersal by the O stars is significant. We conclude that cloud-cloud collision offers a possible explanation of the mini-starburst over a 100 pc scale.

  5. Understanding r-process Nucleosynthesis through Nuclear Data

    NASA Astrophysics Data System (ADS)

    Surman, Rebecca

    2018-06-01

    The electromagnetic counterpart of the GW170817 neutron star merger provided the first direct evidence of the astrophysical formation of nuclei via rapid neutron capture (r-process) nucleosynthesis. Full understanding of this event from first principles and its role in galactic chemical evolution requires progress in a number of areas. One key area is nuclear physics. A neutron star merger r-process involves thousands of exotic nuclear species, the majority of which have never been studied in the laboratory. Here we will discuss r-process nuclear data needs and how nuclear physics uncertainties influence our interpretation of observed abundance patterns and kilonova signals. We will explore the promise of experimental campaigns at rare isotope beam facilities to reduce these uncertainties, and describe recent efforts to directly connect nuclear data to astrophysical environments via the ‘reverse-engineering’ of unknown nuclear properties from the r-process abundance pattern.

  6. The black hole at the Galactic Center: Observations and models

    NASA Astrophysics Data System (ADS)

    Zakharov, Alexander F.

    One of the most interesting astronomical objects is the Galactic Center. It is a subject of intensive astronomical observations in different spectral bands in recent years. We concentrate our discussion on a theoretical analysis of observational data of bright stars in the IR-band obtained with large telescopes. We also discuss the importance of VLBI observations of bright structures which could characterize the shadow at the Galactic Center. If we adopt general relativity (GR), there are a number of theoretical models for the Galactic Center, such as a cluster of neutron stars, boson stars, neutrino balls, etc. Some of these models were rejected or the range of their parameters is significantly constrained with consequent observations and theoretical analysis. In recent years, a number of alternative theories of gravity have been proposed because there are dark matter (DM) and dark energy (DE) problems. An alternative theory of gravity may be considered as one possible solution for such problems. Some of these theories have black hole solutions, while other theories have no such solutions. There are attempts to describe the Galactic Center with alternative theories of gravity and in this case one can constrain parameters of such theories with observational data for the Galactic Center. In particular, theories of massive gravity are intensively developing and theorists have overcome pathologies presented in the initial versions of these theories. In theories of massive gravity, a graviton is massive in contrast with GR where a graviton is massless. Now these theories are considered as an alternative to GR. For example, the LIGO-Virgo collaboration obtained the graviton mass constraint of about 1.2 × 10‑22 eV in their first publication about the discovery of the first gravitational wave detection event that resulted of the merger of two massive black holes. Surprisingly, one could obtain a consistent and comparable constraint of graviton mass at a level around mg

  7. Reflection features in the Galactic Center and past activity of Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Clavel, Maïca; Terrier, Regis; Goldwurm, Andrea; Morris, Mark; Jin, Chichuan; Ponti, Gabriele; Chuard, Dimitri

    2016-07-01

    X-ray observations carried out over the past two decades have captured an increasing number of reflection features within the molecular clouds located in the inner regions of our Galaxy. The intensity of these structures along with the correlated variations which are detected over the entire central molecular zone are strong evidence that this diffuse emission is created by the past activity of the supermassive black hole at the Galactic center, Sagittarius A*. In particular, within the last centuries, Sgr A* is likely to have experienced several short outbursts during which the black hole was at least a million times brighter than today. However, the precise description of the corresponding past catastrophic events is difficult to assess, mainly because the properties of the reflection features that they create while propagating away from Sgr A* depend on the line-of-sight distance, the geometry, and the size of the reflecting clouds, all of which are poorly known. I will review the different attempts to reconstruct Sgr A*'s past activity from the constraints obtained through the observation of the reflection features in the Galactic center, including the current Chandra monitoring.

  8. OBSERVATION OF TeV GAMMA RAYS FROM THE FERMI BRIGHT GALACTIC SOURCES WITH THE TIBET AIR SHOWER ARRAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amenomori, M.; Bi, X. J.; Ding, L. K.

    2010-01-20

    Using the Tibet-III air shower array, we search for TeV {gamma}-rays from 27 potential Galactic sources in the early list of bright sources obtained by the Fermi Large Area Telescope at energies above 100 MeV. Among them, we observe seven sources instead of the expected 0.61 sources at a significance of 2{sigma} or more excess. The chance probability from Poisson statistics would be estimated to be 3.8 x 10{sup -6}. If the excess distribution observed by the Tibet-III array has a density gradient toward the Galactic plane, the expected number of sources may be enhanced in chance association. Then, themore » chance probability rises slightly, to 1.2 x 10{sup -5}, based on a simple Monte Carlo simulation. These low chance probabilities clearly show that the Fermi bright Galactic sources have statistically significant correlations with TeV {gamma}-ray excesses. We also find that all seven sources are associated with pulsars, and six of them are coincident with sources detected by the Milagro experiment at a significance of 3{sigma} or more at the representative energy of 35 TeV. The significance maps observed by the Tibet-III air shower array around the Fermi sources, which are coincident with the Milagro {>=}3{sigma} sources, are consistent with the Milagro observations. This is the first result of the northern sky survey of the Fermi bright Galactic sources in the TeV region.« less

  9. Search for Hot and Bright Stars for H_3^+ Spectroscopy Near the Galactic Center

    NASA Astrophysics Data System (ADS)

    Oka, Takeshi; Geballe, T. R.

    2009-06-01

    It is becoming increasingly clear that H_3^+ is abnormally abundant near the Galactic center and that it is a powerful probe for studying the gas in that region. To date we have observed a dozen sightlines toward bright and hot stars close to the Galactic plane (within 3 pc) and located in the region from the center to 30 pc east of the center. They are mostly stars belonging to the super-massive Quintuplet Cluster and the Central Cluster, but also include few lying between the two clusters. All sightlines showed H_3^+ with column densities on the order of 4 × 10^{15} cm^{-2} demonstrating the ubiquity of H_3^+, its high volume filling factor, and high ionization rate of H_{2} in the region. We plan to expand the region in which we have probed for H_3^+ by two orders of magnitude in solid angle by covering the whole of the Central Molecular Zone (CMZ), the region with a radius of ˜ 200 pc from the center. For this purpose, the first requirement is to find bright and hot stars suitable for the H_3^+ spectroscopy in this more extended region, in which few if any such stars are known outside of the clusters. We are using the recent GLIMPSE Point Source Catalogue provided by the Spitzer Space Telescope together with 2MASS photometry to identify such stars. Out of the over one million stars in GLIMPSE that are in the sightline to the CMZ, we have selected those few thousand stars with L < 7.5 mag. We then use results of J, K, L photometry to eliminate likely late-type stars, whose complex photospheric spectra would make it difficult to isolate the weak interstellar lines of H_3^+. For the few hundred stars thus chosen, we are obtaining medium resolution (R ˜ 2000) spectroscopy from 1.6 to 2.4 μm. The presence or absence of CO overtone bands (2-0, 3-1, 4-2, ...) near 2.3 microns allow us clearly discriminate the hot stars from late-type stars. So far we have observed 84 candidate hot stars and found a dozen that are usable for H_3^+ spectroscopy. Some of them are

  10. Planck intermediate results. XIV. Dust emission at millimetre wavelengths in the Galactic plane

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giardino, G.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D. L.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peel, M.; Perdereau, O.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Verstraete, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-04-01

    We use Planck HFI data combined with ancillary radio data to study the emissivity index of the interstellar dust emission in the frequency range 100-353 GHz, or 3-0.8 mm, in the Galactic plane. We analyse the region l = 20°-44° and |b| ≤ 4° where the free-free emission can be estimated from radio recombination line data. We fit the spectra at each sky pixel with a modified blackbody model and two opacity spectral indices, βmm and βFIR, below and above 353 GHz, respectively. We find that βmm is smaller than βFIR, and we detect a correlation between this low frequency power-law index and the dust optical depth at 353 GHz, τ353. The opacity spectral index βmm increases from about 1.54 in the more diffuse regions of the Galactic disk, |b| = 3°-4° and τ353 ~ 5 × 10-5, to about 1.66 in the densest regions with an optical depth of more than one order of magnitude higher. We associate this correlation with an evolution of the dust emissivity related to the fraction of molecular gas along the line of sight. This translates into βmm ~ 1.54 for a medium that is mostly atomic and βmm ~ 1.66 when the medium is dominated by molecular gas. We find that both the two-level system model and magnetic dipole emission by ferromagnetic particles can explain the results. These results improve our understanding of the physics of interstellar dust and lead towards a complete model of the dust spectrum of the Milky Way from far-infrared to millimetre wavelengths.

  11. THE NATURE OF ACTIVE GALACTIC NUCLEI WITH VELOCITY OFFSET EMISSION LINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller-Sánchez, F.; Comerford, J.; Stern, D.

    We obtained Keck/OSIRIS near-IR adaptive optics-assisted integral-field spectroscopy to probe the morphology and kinematics of the ionized gas in four velocity-offset active galactic nuclei (AGNs) from the Sloan Digital Sky Survey. These objects possess optical emission lines that are offset in velocity from systemic as measured from stellar absorption features. At a resolution of ∼0.″18, OSIRIS allows us to distinguish which velocity offset emission lines are produced by the motion of an AGN in a dual supermassive black hole system, and which are produced by outflows or other kinematic structures. In three galaxies, J1018+2941, J1055+1520, and J1346+5228, the spectral offsetmore » of the emission lines is caused by AGN-driven outflows. In the remaining galaxy, J1117+6140, a counterrotating nuclear disk is observed that contains the peak of Pa α emission 0.″2 from the center of the galaxy. The most plausible explanation for the origin of this spatially and kinematically offset peak is that it is a region of enhanced Pa α emission located at the intersection zone between the nuclear disk and the bar of the galaxy. In all four objects, the peak of ionized gas emission is not spatially coincident with the center of the galaxy as traced by the peak of the near-IR continuum emission. The peaks of ionized gas emission are spatially offset from the galaxy centers by 0.″1–0.″4 (0.1–0.7 kpc). We find that the velocity offset originates at the location of this peak of emission, and the value of the offset can be directly measured in the velocity maps. The emission-line ratios of these four velocity-offset AGNs can be reproduced only with a mixture of shocks and AGN photoionization. Shocks provide a natural explanation for the origin of the spatially and spectrally offset peaks of ionized gas emission in these galaxies.« less

  12. Dark matter and pulsar model constraints from Galactic center Fermi/LAT γ-ray observations

    NASA Astrophysics Data System (ADS)

    Gordon, Chris; Macias, Oscar

    2014-05-01

    Employing Fermi/LAT γ-ray observations, several independent groups have found excess extended γ-ray emission at the Galactic center (GC). Both, annihilating dark matter (DM) or a population of ~ 103 unresolved millisecond pulsars (MSPs) are regarded as well motivated possible explanations. However, there is significant uncertainties in the diffuse Galactic background at the GC. We have performed a revaluation of these two models for the extended γ-ray source at the GC by accounting for the systematic uncertainties of the Galactic diffuse emission model. We also marginalize over point source and diffuse background parameters in the region of interest. We show that the excess emission is significantly more extended than a point source. We find that the DM (or pulsar population) signal is larger than the systematic errors and therefore proceed to determine the sectors of parameter space that provide an acceptable fit to the data. We found that a population of several thousand MSPs with parameters consistent with the average spectral shape of Fermi/LAT measured MSPs was able to fit the GC excess emission. For DM, we found that a pure τ+τ- annihilation channel is not a good fit to the data. But a mixture of τ+τ- and bb with a <σ v> of order the thermal relic value and a DM mass of around 20 to 60 GeV provides an adequate fit.

  13. Dark matter and pulsar model constraints from Galactic Center Fermi-LAT gamma-ray observations

    NASA Astrophysics Data System (ADS)

    Gordon, Chris; Macías, Oscar

    2013-10-01

    Employing Fermi-LAT gamma-ray observations, several independent groups have found excess extended gamma-ray emission at the Galactic Center (GC). Both annihilating dark matter (DM) or a population of ˜103 unresolved millisecond pulsars (MSPs) are regarded as well-motivated possible explanations. However, there are significant uncertainties in the diffuse galactic background at the GC. We have performed a revaluation of these two models for the extended gamma-ray source at the GC by accounting for the systematic uncertainties of the Galactic diffuse emission model. We also marginalize over point-source and diffuse background parameters in the region of interest. We show that the excess emission is significantly more extended than a point source. We find that the DM (or pulsar-population) signal is larger than the systematic errors and therefore proceed to determine the sectors of parameter space that provide an acceptable fit to the data. We find that a population of 1000-2000 MSPs with parameters consistent with the average spectral shape of Fermi-LAT measured MSPs is able to fit the GC excess emission. For DM, we find that a pure τ+τ- annihilation channel is not a good fit to the data. But a mixture of τ+τ- and bb¯ with a ⟨σv⟩ of order the thermal relic value and a DM mass of around 20 to 60 GeV provides an adequate fit.

  14. What can Fermi LAT observation of the Galactic Centre tell us about its active past?

    NASA Astrophysics Data System (ADS)

    Zaharijas, Gabrijela; Petrović, Jovana; Serpico, Pasquale

    The Fermi-LAT gamma-ray data in the inner Galaxy region show several prominent features possibly related to the past activity of the Milky Way's super massive black hole. At a large, 50 deg scale, the Fermi LAT revealed symmetric hour glass structures with hard energy spectra extending up to 100 GeV (and dubbed `the Fermi bubbles'). More recently and closer to the Galactic centre, at the 10 deg scale, several groups have claimed evidence for excess gamma-ray emission that appears symmetric around the Galactic center and has an energy spectrum peaking at few GeVs. We explore here the possibility that this emission originates in inverse Compton emission from high-energy electrons produced in a short duration, burst-like event injecting 1052 - 1053 erg, roughly 106 yrs ago. Several lines of evidence suggest that a series of `burst like' events happened in the vicinity of our black hole in the past and gamma-ray observations may offer a new view of that scenario.

  15. ON GALACTIC DENSITY MODELING IN THE PRESENCE OF DUST EXTINCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovy, Jo; Rix, Hans-Walter; Schlafly, Edward F.

    Inferences about the spatial density or phase-space structure of stellar populations in the Milky Way require a precise determination of the effective survey volume. The volume observed by surveys such as Gaia or near-infrared spectroscopic surveys, which have good coverage of the Galactic midplane region, is highly complex because of the abundant small-scale structure in the three-dimensional interstellar dust extinction. We introduce a novel framework for analyzing the importance of small-scale structure in the extinction. This formalism demonstrates that the spatially complex effect of extinction on the selection function of a pencil-beam or contiguous sky survey is equivalent to amore » low-pass filtering of the extinction-affected selection function with the smooth density field. We find that the angular resolution of current 3D extinction maps is sufficient for analyzing Gaia sub-samples of millions of stars. However, the current distance resolution is inadequate and needs to be improved by an order of magnitude, especially in the inner Galaxy. We also present a practical and efficient method for properly taking the effect of extinction into account in analyses of Galactic structure through an effective selection function. We illustrate its use with the selection function of red-clump stars in APOGEE using and comparing a variety of current 3D extinction maps.« less

  16. On Galactic Density Modeling in the Presence of Dust Extinction

    NASA Astrophysics Data System (ADS)

    Bovy, Jo; Rix, Hans-Walter; Green, Gregory M.; Schlafly, Edward F.; Finkbeiner, Douglas P.

    2016-02-01

    Inferences about the spatial density or phase-space structure of stellar populations in the Milky Way require a precise determination of the effective survey volume. The volume observed by surveys such as Gaia or near-infrared spectroscopic surveys, which have good coverage of the Galactic midplane region, is highly complex because of the abundant small-scale structure in the three-dimensional interstellar dust extinction. We introduce a novel framework for analyzing the importance of small-scale structure in the extinction. This formalism demonstrates that the spatially complex effect of extinction on the selection function of a pencil-beam or contiguous sky survey is equivalent to a low-pass filtering of the extinction-affected selection function with the smooth density field. We find that the angular resolution of current 3D extinction maps is sufficient for analyzing Gaia sub-samples of millions of stars. However, the current distance resolution is inadequate and needs to be improved by an order of magnitude, especially in the inner Galaxy. We also present a practical and efficient method for properly taking the effect of extinction into account in analyses of Galactic structure through an effective selection function. We illustrate its use with the selection function of red-clump stars in APOGEE using and comparing a variety of current 3D extinction maps.

  17. Galactic Observations of Terahertz C+ (GOT C+): Inner Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Yorke, Harold; Langer, William; Velusamy, T.; Pineda, J. L.; Goldsmith, P. F.; Li, D.

    To understand the lifecycle of the interstellar gas and star formation we need detailed information about the diffuse atomic and diffuse molecular gas cloud properties. The ionized carbon [CII] 1.9 THz fine structure line is an important tracer of the atomic gas in the diffuse regions and the interface regions of atomic gas to molecular clouds. Furthermore, C+ is a major ISM coolant and among the Galaxy's strongest far-IR emission lines, and thus controls the thermal conditions throughout large parts of the Galaxy. Until now our knowledge of interstellar gas has been limited to the diffuse atomic phase traced by HI and to the dense molecular H2 phase traced by CO. However, we are missing an important phase of the ISM, called "dark gas" in which there is no or little, HI, and mostly molecular hydrogen but with insufficient shielding of UV to allow CO to form. C+ emission and absorption lines at 1.9 THz have the potential to trace such cloud transitions and evolution. Galactic Observations of the Terahertz C+ Line (GOT C+) is a Herschel Space Observatory Open Time Key Program to study the diffuse interstellar medium by sampling [CII] 1.9 THz line emission throughout the Galactic disk. We discuss the broader perspective of this survey and the first results of GOT C+ obtained during the Science Demonstration Phase (SDP) and Priority Science Phase (PSP) of HIFI, which focus on approximately 100 lines of sight in the inner galaxy. These observations are being carried out with the Herschel Space Observatory, which is an ESA cornerstone mission, with contributions from NASA. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. JLP is a Caltech-JPL Postdoctoral Associate.

  18. Effects of nuclear cross sections at different energies on the radiation hazard from galactic cosmic rays.

    PubMed

    Lin, Z W; Adams, J H

    2007-03-01

    The radiation hazard for astronauts from galactic cosmic rays (GCR) is a major obstacle to long-duration human space exploration. Space radiation transport codes have been developed to calculate the radiation environment on missions to the Moon, Mars, and beyond. We have studied how uncertainties in fragmentation cross sections at different energies affect the accuracy of predictions from such radiation transport calculations. We find that, in deep space, cross sections at energies between 0.3 and 0.85 GeV/nucleon have the largest effect in solar maximum GCR environments. At the International Space Station, cross sections at higher energies have the largest effect due to the geomagnetic cutoff.

  19. Dust and molecules in extra-galactic planetary nebulae

    NASA Astrophysics Data System (ADS)

    Garcia-Hernandez, Domingo Aníbal

    2015-08-01

    Extra-galactic planetary nebulae (PNe) permit the study of dust and molecules in metallicity environments other than the Galaxy. Their known distances lower the number of free parameters in the observations vs. models comparison, providing strong constraints on the gas-phase and solid-state astrochemistry models. Observations of PNe in the Galaxy and other Local Group galaxies such as the Magellanic Clouds (MC) provide evidence that metallicity affects the production of dust as well as the formation of complex organic molecules and inorganic solid-state compounds in their circumstellar envelopes. In particular, the lower metallicity MC environments seem to be less favorable to dust production and the frequency of carbonaceous dust features and complex fullerene molecules is generally higher with decreasing metallicity. Here, I present an observational review of the dust and molecular content in extra-galactic PNe as compared to their higher metallicity Galactic counterparts. A special attention is given to the level of dust processing and the formation of complex organic molecules (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors) depending on metallicity.

  20. Does electromagnetic radiation accelerate galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1977-01-01

    The 'reactor' theories of Tsytovich and collaborators (1973) of cosmic-ray acceleration by electromagnetic radiation are examined in the context of galactic cosmic rays. It is shown that any isotropic synchrotron or Compton reactors with reasonable astrophysical parameters can yield particles with a maximum relativistic factor of only about 10,000. If they are to produce particles with higher relativistic factors, the losses due to inverse Compton scattering of the electromagnetic radiation in them outweigh the acceleration, and this violates the assumptions of the theory. This is a critical restriction in the context of galactic cosmic rays, which have a power-law spectrum extending up to a relativistic factor of 1 million.

  1. Optical-NIR dust extinction towards Galactic O stars

    NASA Astrophysics Data System (ADS)

    Maíz Apellániz, J.; Barbá, R. H.

    2018-05-01

    Context. O stars are excellent tracers of the intervening ISM because of their high luminosity, blue intrinsic SED, and relatively featureless spectra. We are currently conducting the Galactic O-Star Spectroscopic Survey (GOSSS), which is generating a large sample of O stars with accurate spectral types within several kpc of the Sun. Aims: We aim to obtain a global picture of the properties of dust extinction in the solar neighborhood based on optical-NIR photometry of O stars with accurate spectral types. Methods: We have processed a carefully selected photometric set with the CHORIZOS code to measure the amount [E(4405 - 5495)] and type [R5495] of extinction towards 562 O-type stellar systems. We have tested three different families of extinction laws and analyzed our results with the help of additional archival data. Results: The Maíz Apellániz et al. (2014, A&A, 564, A63) family of extinction laws provides a better description of Galactic dust that either the Cardelli et al. (1989, ApJ, 345, 245) or Fitzpatrick (1999, PASP, 111, 63) families, so it should be preferentially used when analysing samples similar to the one in this paper. In many cases O stars and late-type stars experience similar amounts of extinction at similar distances but some O stars are located close to the molecular clouds left over from their births and have larger extinctions than the average for nearby late-type populations. In qualitative terms, O stars experience a more diverse extinction than late-type stars, as some are affected by the small-grain-size, low-R5495 effect of molecular clouds and others by the large-grain-size, high-R5495 effect of H II regions. Late-type stars experience a narrower range of grain sizes or R5495, as their extinction is predominantly caused by the average, diffuse ISM. We propose that the reason for the existence of large-grain-size, high-R5495 regions in the ISM in the form of H II regions and hot-gas bubbles is the selective destruction of small dust

  2. Nuclear Deformation and Neutron Excess as Competing Effects for Dipole Strength in the Pygmy Region

    NASA Astrophysics Data System (ADS)

    Massarczyk, R.; Schwengner, R.; Dönau, F.; Frauendorf, S.; Anders, M.; Bemmerer, D.; Beyer, R.; Bhatia, C.; Birgersson, E.; Butterling, M.; Elekes, Z.; Ferrari, A.; Gooden, M. E.; Hannaske, R.; Junghans, A. R.; Kempe, M.; Kelley, J. H.; Kögler, T.; Matic, A.; Menzel, M. L.; Müller, S.; Reinhardt, T. P.; Röder, M.; Rusev, G.; Schilling, K. D.; Schmidt, K.; Schramm, G.; Tonchev, A. P.; Tornow, W.; Wagner, A.

    2014-02-01

    The electromagnetic dipole strength below the neutron-separation energy has been studied for the xenon isotopes with mass numbers A =124, 128, 132, and 134 in nuclear resonance fluorescence experiments using the γELBE bremsstrahlung facility at Helmholtz-Zentrum Dresden-Rossendorf and the HIγS facility at Triangle Universities Nuclear Laboratory Durham. The systematic study gained new information about the influence of the neutron excess as well as of nuclear deformation on the strength in the region of the pygmy dipole resonance. The results are compared with those obtained for the chain of molybdenum isotopes and with predictions of a random-phase approximation in a deformed basis. It turned out that the effect of nuclear deformation plays a minor role compared with the one caused by neutron excess. A global parametrization of the strength in terms of neutron and proton numbers allowed us to derive a formula capable of predicting the summed E1 strengths in the pygmy region for a wide mass range of nuclides.

  3. Nuclear deformation and neutron excess as competing effects for dipole strength in the pygmy region.

    PubMed

    Massarczyk, R; Schwengner, R; Dönau, F; Frauendorf, S; Anders, M; Bemmerer, D; Beyer, R; Bhatia, C; Birgersson, E; Butterling, M; Elekes, Z; Ferrari, A; Gooden, M E; Hannaske, R; Junghans, A R; Kempe, M; Kelley, J H; Kögler, T; Matic, A; Menzel, M L; Müller, S; Reinhardt, T P; Röder, M; Rusev, G; Schilling, K D; Schmidt, K; Schramm, G; Tonchev, A P; Tornow, W; Wagner, A

    2014-02-21

    The electromagnetic dipole strength below the neutron-separation energy has been studied for the xenon isotopes with mass numbers A=124, 128, 132, and 134 in nuclear resonance fluorescence experiments using the γELBE bremsstrahlung facility at Helmholtz-Zentrum Dresden-Rossendorf and the HIγS facility at Triangle Universities Nuclear Laboratory Durham. The systematic study gained new information about the influence of the neutron excess as well as of nuclear deformation on the strength in the region of the pygmy dipole resonance. The results are compared with those obtained for the chain of molybdenum isotopes and with predictions of a random-phase approximation in a deformed basis. It turned out that the effect of nuclear deformation plays a minor role compared with the one caused by neutron excess. A global parametrization of the strength in terms of neutron and proton numbers allowed us to derive a formula capable of predicting the summed E1 strengths in the pygmy region for a wide mass range of nuclides.

  4. Chemical Composition of Galactic Disk Stars

    NASA Astrophysics Data System (ADS)

    Mishenina, T. V.; Basak, N. Yu.; Gorbaneva, T. I.; Soubiran, C.; Kovtyukh, V. V.

    Abundances of Na, Al, Ca, in the stars of galactic disks are obtained. The separation of thin and stars on cinematic criterion was made early. The behavior of chemical element abundances with metallicity for studied stars was presented.

  5. New constraints on all flavor Galactic diffuse neutrino emission with the ANTARES telescope

    NASA Astrophysics Data System (ADS)

    Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Belhorma, B.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Cherkaoui El Moursli, R.; Chiarusi, T.; Circella, M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Díaz, A. F.; Deschamps, A.; de Bonis, G.; Distefano, C.; di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.; Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Gracia Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.; Pǎvǎlaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schüssler, F.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; Gaggero, D.; Grasso, D.; ANTARES Collaboration

    2017-09-01

    The flux of very high-energy neutrinos produced in our Galaxy by the interaction of accelerated cosmic rays with the interstellar medium is not yet determined. The characterization of this flux will shed light on Galactic accelerator features, gas distribution morphology and Galactic cosmic ray transport. The central Galactic plane can be the site of an enhanced neutrino production, thus leading to anisotropies in the extraterrestrial neutrino signal as measured by the IceCube Collaboration. The ANTARES neutrino telescope, located in the Mediterranean Sea, offers a favorable view of this part of the sky, thereby allowing for a contribution to the determination of this flux. The expected diffuse Galactic neutrino emission can be obtained, linking a model of generation and propagation of cosmic rays with the morphology of the gas distribution in the Milky Way. In this paper, the so-called "gamma model" introduced recently to explain the high-energy gamma-ray diffuse Galactic emission is assumed as reference. The neutrino flux predicted by the "gamma model" depends on the assumed primary cosmic ray spectrum cutoff. Considering a radially dependent diffusion coefficient, this proposed scenario is able to account for the local cosmic ray measurements, as well as for the Galactic gamma-ray observations. Nine years of ANTARES data are used in this work to search for a possible Galactic contribution according to this scenario. All flavor neutrino interactions are considered. No excess of events is observed, and an upper limit is set on the neutrino flux of 1.1 (1.2) times the prediction of the "gamma model," assuming the primary cosmic ray spectrum cutoff at 5 (50) PeV. This limit excludes the diffuse Galactic neutrino emission as the major cause of the "spectral anomaly" between the two hemispheres measured by IceCube.

  6. Environment of the Gamma-Ray Burst GRB 971214: A Giant H ii Region Surrounded by a Galactic Supershell.

    PubMed

    Ahn

    2000-02-10

    Among a number of gamma-ray bursts whose host galaxies are known, GRB 971214 stands out for its high redshift (z>/=3) and the Lyalpha emission line having a P Cygni-type profile, which is interpreted to be a direct consequence of the expanding supershell. From a profile-fitting analysis, we estimate the expansion velocity of the supershell (vexp=1500 km s-1) and the neutral column density (NHi=1020 cm -2). The redshift z=3.418 of the host galaxy proposed by Kulkarni et al. in 1998 has been revised to be z=3.425 from our profile analysis. The observed Lyalpha profile is fitted well by a Gaussian curve, which yields the Lyalpha luminosity LLyalpha=&parl0;1.8+/-0.8&parr0;x1042 ergs s-1. Assuming that the photon source is a giant H ii region, we deduce the electron number density in the H ii region ne=&parl0;40+/-10&parr0;&parl0;L/LLyalpha&parr0;0.5&parl0;R/100 pc&parr0;-1.5 cm-3, which corresponds to the illumination by about 104 O5 stars. We estimate the star formation rate to be RSF=7+/-3 M middle dot in circle yr-1 with the internal and the Galactic extinction corrected. The theory on the evolution of supernova remnants is used to propose that the supershell is at the adiabatic phase, with its radius R=18E1&solm0;253 pc, its age t=4.7x103E1&solm0;253 yr, and the density of the ambient medium n1=5.4E-1&solm0;253 cm-3, where E53=E&solm0;1053 ergs; we estimate the kinetic energy of the supershell to be Ek=7.3x1052E53 ergs. These values are consistent with the hypothesis that the supershell is the remnant of a gamma-ray burst. We note similarities between supershells found in nearby galaxies and remote primeval galaxies and propose that the gamma-ray burst may have occurred in a giant H ii region whose environment is similar to that in star-forming galaxies.

  7. A polarized fast radio burst at low Galactic latitude

    NASA Astrophysics Data System (ADS)

    Petroff, E.; Burke-Spolaor, S.; Keane, E. F.; McLaughlin, M. A.; Miller, R.; Andreoni, I.; Bailes, M.; Barr, E. D.; Bernard, S. R.; Bhandari, S.; Bhat, N. D. R.; Burgay, M.; Caleb, M.; Champion, D.; Chandra, P.; Cooke, J.; Dhillon, V. S.; Farnes, J. S.; Hardy, L. K.; Jaroenjittichai, P.; Johnston, S.; Kasliwal, M.; Kramer, M.; Littlefair, S. P.; Macquart, J. P.; Mickaliger, M.; Possenti, A.; Pritchard, T.; Ravi, V.; Rest, A.; Rowlinson, A.; Sawangwit, U.; Stappers, B.; Sullivan, M.; Tiburzi, C.; van Straten, W.; ANTARES Collaboration; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; de Bonis, G.; Distefano, C.; di Palma, I.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Grégoire, T.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Pǎvǎlaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Roensch, K.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; van Elewyck, V.; Vivolo, D.; Vizzoca, A.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'c.; Dubus, G.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hadasch, D.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morâ, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; Reyes, R. De Los; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schulz, A.; Schüssler, F.; Schwanke, U.; Schwemmer, S.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Uchiyama, Y.; Walt, D. J. Van Der; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2017-08-01

    We report on the discovery of a new fast radio burst (FRB), FRB 150215, with the Parkes radio telescope on 2015 February 15. The burst was detected in real time with a dispersion measure (DM) of 1105.6 ± 0.8 pc cm-3, a pulse duration of 2.8^{+1.2}_{-0.5} ms, and a measured peak flux density assuming that the burst was at beam centre of 0.7^{+0.2}_{-0.1} Jy. The FRB originated at a Galactic longitude and latitude of 24.66°, 5.28° and 25° away from the Galactic Center. The burst was found to be 43 ± 5 per cent linearly polarized with a rotation measure (RM) in the range -9 < RM < 12 rad m-2 (95 per cent confidence level), consistent with zero. The burst was followed up with 11 telescopes to search for radio, optical, X-ray, γ-ray and neutrino emission. Neither transient nor variable emission was found to be associated with the burst and no repeat pulses have been observed in 17.25 h of observing. The sightline to the burst is close to the Galactic plane and the observed physical properties of FRB 150215 demonstrate the existence of sight lines of anomalously low RM for a given electron column density. The Galactic RM foreground may approach a null value due to magnetic field reversals along the line of sight, a decreased total electron column density from the Milky Way, or some combination of these effects. A lower Galactic DM contribution might explain why this burst was detectable whereas previous searches at low latitude have had lower detection rates than those out of the plane.

  8. The Star Formation Scenario in the Galactic Range from Ophiuchus to Chamaeleon

    NASA Astrophysics Data System (ADS)

    Sartori, Marília J.

    2000-07-01

    The molecular cloud complexes of Chamaeleon, Lupus and Ophiuchus, and the OB sub-groups of stars that form the Scorpius OB2 association are located at galactic longitudes in the interval 290° to 360°, all of them in a distance range from 100 to 200 pc. The distribution of known young stars in this region, both of low and of high mass, suggests that they belong to a single large structure. Moreover, a significant number of pre-main sequence (PMS) stars far from the star-forming clouds have been recently discovered. This scenario suggests that a global analysis of the star formation must be performed, especially of such nearby regions for which a large amount of data can be obtained. In order to test the models that intend to describe the history of star formation in these nearby star-forming regions, we collected information on the distribution of gas and dust and on the related young stellar populations. We mapped the molecular clouds of the complexes located in Chamaeleon, Lupus and Ophiuchus by means of an automatic method for star counting on plates of the Digitized Sky Survey. Another improvement with respect to the traditional star counts method is that we have adopted a relation between the extinction and the number of stars based on the predictions of the Galaxy's model by Ortiz & Lépine (1993, A&A 279, 90). Our maps confirm that there is an extended distribution of dust in the regions between the main clouds. We built a complete list of PMS and early-type stars from the literature, including all the available distance, radial velocity and proper motion data. We completed these data with our own determinations of proper motions of PMS stars, using positions obtained with the Valinhos Meridian Circle (IAG/USP, Brazil), photographic plates and public catalogs (Teixeira et al. 2000, A&A in press). Using these kinematical data and comparing the positions and spatial velocities of PMS stars to those of early-type stars, we verified that the kinematics of the

  9. The Nature of Double-peaked [O III] Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Fu, Hai; Yan, Lin; Myers, Adam D.; Stockton, Alan; Djorgovski, S. G.; Aldering, G.; Rich, Jeffrey A.

    2012-01-01

    Active galactic nuclei (AGNs) with double-peaked [O III] lines are suspected to be sub-kpc or kpc-scale binary AGNs. However, pure gas kinematics can produce the same double-peaked line profile in spatially integrated spectra. Here we combine integral-field spectroscopy and high-resolution imaging of 42 double-peaked [O III] AGNs from the Sloan Digital Sky Survey to investigate the constituents of the population. We find two binary AGNs where the line splitting is driven by the orbital motion of the merging nuclei. Such objects account for only ~2% of the double-peaked AGNs. Almost all (~98%) of the double-peaked AGNs were selected because of gas kinematics; and half of those show spatially resolved narrow-line regions that extend 4-20 kpc from the nuclei. Serendipitously, we find two spectrally unresolved binary AGNs where gas kinematics produced the double-peaked [O III] lines. The relatively frequent serendipitous discoveries indicate that only ~1% of binary AGNs would appear double-peaked in Sloan spectra and 2.2+2.5 -0.8% of all Sloan AGNs are binary AGNs. Therefore, the double-peaked sample does not offer much advantage over any other AGN samples in finding binary AGNs. The binary AGN fraction implies an elevated AGN duty cycle (8+8 -3%), suggesting galaxy interactions enhance nuclear accretion. We illustrate that integral-field spectroscopy is crucial for identifying binary AGNs: several objects previously classified as "binary AGNs" with long-slit spectra are most likely single AGNs with extended narrow-line regions (ENLRs). The formation of ENLRs driven by radiation pressure is also discussed. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  10. Properties of Starless Clumps through Protoclusters from the Bolocam Galactic Plane Survey

    NASA Astrophysics Data System (ADS)

    Svoboda, Brian E.; Shirley, Yancy

    2014-07-01

    High mass stars play a key role in the physical and chemical evolution of the interstellar medium, yet the evolution of physical properties for high-mass star-forming regions remains unclear. We sort a sample of ~4668 molecular cloud clumps from the Bolocam Galactic Plane Survey (BGPS) into different evolutionary stages by combining the BGPS 1.1 mm continuum and observational diagnostics of star-formation activity from a variety of Galactic plane surveys: 70 um compact sources, mid-IR color-selected YSOs, H2O and CH3OH masers, EGOs, and UCHII regions. We apply Monte Carlo techniques to distance probability distribution functions (DPDFs) in order to marginalize over the kinematic distance ambiguity and calculate distributions for derived quantities of clumps in different evolutionary stages. We also present a combined NH3 and H2O maser catalog for ~1590 clumps from the literature and our own GBT 100m observations. We identify a sub-sample of 440 dense clumps with no star-formation indicators, representing the largest and most robust sample of pre-protocluster candidates from a blind survey to date. Distributions of I(HCO+), I(N2H+), dv(HCO+), dv(N2H+), mass surface density, and kinetic temperature show strong progressions when separated by evolutionary stage. No progressions are found in size or dust mass; however, weak progressions are observed in area > 2 pc^2 and dust mass > 3 10^3 Msun. An observed breakdown occurs in the size-linewidth relationship and we find no improvement when sampling by evolutionary stage.

  11. Gamma-ray Monitoring of Active Galactic Nuclei with HAWC

    NASA Astrophysics Data System (ADS)

    Lauer, Robert; HAWC Collaboration

    2016-03-01

    Active Galactic Nuclei (AGN) are extra-galactic sources that can exhibit extreme flux variability over a wide range of wavelengths. TeV gamma rays have been observed from about 60 AGN and can help to diagnose emission models and to study cosmic features like extra-galactic background light or inter-galactic magnetic fields. The High Altitude Water Cherenkov (HAWC) observatory is a new extensive air shower array that can complement the pointed TeV observations of imaging air Cherenkov telescopes. HAWC is optimized for studying gamma rays with energies between 100 GeV and 100 TeV and has an instantaneous field of view of ~2 sr and a duty cycle >95% that allow us to scan 2/3 of the sky every day. By performing an unbiased monitoring of TeV emissions of AGN over most of the northern and part of the southern sky, HAWC can provide crucial information and trigger follow-up observations in collaborations with pointed TeV instruments. Furthermore, HAWC coverage of AGN is complementary to that provided by the Fermi satellite at lower energies. In this contribution, we will present HAWC flux light curves of TeV gamma rays from various sources, notably the bright AGN Markarian 421 and Markarian 501, and highlight recent results from multi-wavelengths and multi-instrument studies.

  12. Galactic cold cores. IV. Cold submillimetre sources: catalogue and statistical analysis

    NASA Astrophysics Data System (ADS)

    Montillaud, J.; Juvela, M.; Rivera-Ingraham, A.; Malinen, J.; Pelkonen, V.-M.; Ristorcelli, I.; Montier, L.; Marshall, D. J.; Marton, G.; Pagani, L.; Toth, L. V.; Zahorecz, S.; Ysard, N.; McGehee, P.; Paladini, R.; Falgarone, E.; Bernard, J.-P.; Motte, F.; Zavagno, A.; Doi, Y.

    2015-12-01

    Context. For the project Galactic cold cores, Herschel photometric observations were carried out as a follow-up of cold regions of interstellar clouds previously identified with the Planck satellite. The aim of the project is to derive the physical properties of the population of cold sources and to study its connection to ongoing and future star formation. Aims: We build a catalogue of cold sources within the clouds in 116 fields observed with the Herschel PACS and SPIRE instruments. We wish to determine the general physical characteristics of the cold sources and to examine the correlations with their host cloud properties. Methods: From Herschel data, we computed colour temperature and column density maps of the fields. We estimated the distance to the target clouds and provide both uncertainties and reliability flags for the distances. The getsources multiwavelength source extraction algorithm was employed to build a catalogue of several thousand cold sources. Mid-infrared data were used, along with colour and position criteria, to separate starless and protostellar sources. We also propose another classification method based on submillimetre temperature profiles. We analysed the statistical distributions of the physical properties of the source samples. Results: We provide a catalogue of ~4000 cold sources within or near star forming clouds, most of which are located either in nearby molecular complexes (≲1 kpc) or in star forming regions of the nearby galactic arms (~2 kpc). About 70% of the sources have a size compatible with an individual core, and 35% of those sources are likely to be gravitationally bound. Significant statistical differences in physical properties are found between starless and protostellar sources, in column density versus dust temperature, mass versus size, and mass versus dust temperature diagrams. The core mass functions are very similar to those previously reported for other regions. On statistical grounds we find that

  13. Identification of critical regions in human SAMHD1 required for nuclear localization and Vpx-mediated degradation.

    PubMed

    Guo, Haoran; Wei, Wei; Wei, Zhenhong; Liu, Xianjun; Evans, Sean L; Yang, Weiming; Wang, Hong; Guo, Ying; Zhao, Ke; Zhou, Jian-Ying; Yu, Xiao-Fang

    2013-01-01

    The sterile alpha motif (SAM) and HD domain-containing protein-1 (SAMHD1) inhibits the infection of resting CD4+ T cells and myeloid cells by human and related simian immunodeficiency viruses (HIV and SIV). Vpx inactivates SAMHD1 by promoting its proteasome-dependent degradation through an interaction with CRL4 (DCAF1) E3 ubiquitin ligase and the C-terminal region of SAMHD1. However, the determinants in SAMHD1 that are required for Vpx-mediated degradation have not been well characterized. SAMHD1 contains a classical nuclear localization signal (NLS), and NLS point mutants are cytoplasmic and resistant to Vpx-mediated degradation. Here, we demonstrate that NLS-mutant SAMHD1 K11A can be rescued by wild-type SAMHD1, restoring its nuclear localization; consequently, SAMHD1 K11A became sensitive to Vpx-mediated degradation in the presence of wild-type SAMHD1. Surprisingly, deletion of N-terminal regions of SAMHD1, including the classical NLS, generated mutant SAMHD1 proteins that were again sensitive to Vpx-mediated degradation. Unlike SAMHD1 K11A, these deletion mutants could be detected in the nucleus. Interestingly, NLS-defective SAMHD1 could still bind to karyopherin-β1 and other nuclear proteins. We also determined that the linker region between the SAM and HD domain and the HD domain itself is important for Vpx-mediated degradation but not Vpx interaction. Thus, SAMHD1 contains an additional nuclear targeting mechanism in addition to the classical NLS. Our data indicate that multiple regions in SAMHD1 are critical for Vpx-mediated nuclear degradation and that association with Vpx is not sufficient for Vpx-mediated degradation of SAMHD1. Since the linker region and HD domain may be involved in SAMHD1 multimerization, our results suggest that SAMHD1 multimerization may be required for Vpx-mediation degradation.

  14. PIPER and Polarized Galactic Foregrounds

    NASA Technical Reports Server (NTRS)

    Chuss, David

    2009-01-01

    In addition to probing inflationary cosmology, PIPER will measure the polarized dust emission from the Galaxy. PIPER will be capable of full (I,0,U,V) measurement over four frequency bands ' These measurements will provide insight into the physics of dust grains and a probe of the Galactic magnetic field on large and intermediate scales.

  15. Special Features of Galactic Dynamics

    NASA Astrophysics Data System (ADS)

    Efthymiopoulos, Christos; Voglis, Nikos; Kalapotharakos, Constantinos

    This is an introductory article to some basic notions and currently open problems of galactic dynamics. The focus is on topics mostly relevant to the so-called `new methods' of celestial mechanics or Hamiltonian dynamics, as applied to the ellipsoidal components of galaxies, i.e., to the elliptical galaxies and to the dark halos and bulges of disk galaxies. Traditional topics such as Jeans theorem, the role of a `third integral' of motion, Nekhoroshev theory, violent relaxation, and the statistical mechanics of collisionless stellar systems are first discussed. The emphasis is on modern extrapolations of these old topics. Recent results from orbital and global dynamical studies of galaxies are then shortly reviewed. The role of various families of orbits in supporting self-consistency, as well as the role of chaos in galaxies, are stressed. A description is then given of the main numerical techniques of integration of the N-body problem in the framework of stellar dynamics and of the results obtained via N-Body experiments. A final topic is the secular evolution and self-organization of galactic systems.

  16. The interplay between star formation and the nuclear environment of our Galaxy: deep X-ray observations of the Galactic centre Arches and Quintuplet clusters

    NASA Astrophysics Data System (ADS)

    Wang, Q. Daniel; Dong, Hui; Lang, Cornelia

    2006-09-01

    The Galactic centre (GC) provides a unique laboratory for a detailed examination of the interplay between massive star formation and the nuclear environment of our Galaxy. Here, we present a 100-ks Chandra Advanced CCD Imaging Spectrometer (ACIS) observation of the Arches and Quintuplet star clusters. We also report on a complementary mapping of the dense molecular gas near the Arches cluster made with the Owens Valley Millimeter Array. We present a catalogue of 244 point-like X-ray sources detected in the observation. Their number-flux relation indicates an overpopulation of relatively bright X-ray sources, which are apparently associated with the clusters. The sources in the core of the Arches and Quintuplet clusters are most likely extreme colliding wind massive star binaries. The diffuse X-ray emission from the core of the Arches cluster has a spectrum showing a 6.7-keV emission line and a surface intensity profile declining steeply with radius, indicating an origin in a cluster wind. In the outer regions near the Arches cluster, the overall diffuse X-ray enhancement demonstrates a bow shock morphology and is prominent in the Fe Kα 6.4-keV line emission with an equivalent width of ~1.4 keV. Much of this enhancement may result from an ongoing collision between the cluster and the adjacent molecular cloud, which have a relative velocity >~120km-1. The older and less-compact Quintuplet cluster contains much weaker X-ray sources and diffuse emission, probably originating from low-mass stellar objects as well as a cluster wind. However, the overall population of these objects, constrained by the observed total diffuse X-ray luminosities, is substantially smaller than expected for both clusters, if they have normal Miller & Scalo initial mass functions. This deficiency of low-mass objects may be a manifestation of the unique star formation environment of the GC, where high-velocity cloud-cloud and cloud-cluster collisions are frequent.

  17. Phosphorus-bearing molecules in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Rivilla, V. M.; Jiménez-Serra, I.; Zeng, S.; Martín, S.; Martín-Pintado, J.; Armijos-Abendaño, J.; Viti, S.; Aladro, R.; Riquelme, D.; Requena-Torres, M.; Quénard, D.; Fontani, F.; Beltrán, M. T.

    2018-03-01

    Phosphorus (P) is one of the essential elements for life due to its central role in biochemical processes. Recent searches have shown that P-bearing molecules (in particular PN and PO) are present in star-forming regions, although their formation routes remain poorly understood. In this letter, we report observations of PN and PO towards seven molecular clouds located in the Galactic Center, which are characterized by different types of chemistry. PN is detected in five out of seven sources, whose chemistry is thought to be shock-dominated. The two sources with PN non-detections correspond to clouds exposed to intense UV/X-rays/cosmic ray (CR) radiation. PO is detected only towards the cloud G+0.693-0.03, with a PO/PN abundance ratio of ˜1.5. We conclude that P-bearing molecules likely form in shocked gas as a result of dust grain sputtering, while are destroyed by intense UV/X-ray/CR radiation.

  18. A three-coordinate system (ecliptic, galactic, ISMF) spectral analysis of heliospheric ENA emissions using CASSINI/INCA measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dialynas, K.; Krimigis, S. M.; Mitchell, D. G.

    2013-11-20

    In the present study, we use all-sky energy-resolved energetic neutral atom (ENA) maps obtained by the Ion and Neutral CAmera (INCA) instrument on board Cassini that correspond to the time period from 2003 to 2009, in four discrete energy passbands (∼5.4 to ∼55 keV), to investigate the geometrical characteristics of the belt (a broad band of emission in the sky). The heliospheric ENA emissions are mapped in three different coordinate systems (ecliptic, Galactic, and interstellar magnetic field (ISMF)), and spectral analyses are performed to further examine the belt's possible energy dependence. Our conclusions are summarized as follows: (1) the highmore » flux ENA belt identified in the energy range of 8-42 keV is moderately well organized in Galactic coordinates, as the ENA minima appear in the vicinity of the north and south Galactic poles; (2) using minimization criteria ( B · R ∼ 0), the deviation of the ENA emissions from the equator is effectively minimized in a rotated frame, which we interpret as ISMF, where its north pole points toward 190° ecliptic longitude and 15° ecliptic latitude; (3) ENA spectra show a power-law form in energy that can be fitted with a single function presenting higher spectral slopes in the belt region and lower outside (3.4 < γ < 4.4); (4) the spectra are almost indistinguishable between the tail and the nose regions, i.e., no noticeable asymmetry is observed; (5) the consistency of the ENA distributions as a function of latitude among the different INCA channels indicates that the morphology of the belt (peak, width, and structure) is nearly energy independent from 8 keV to 30 keV (minor deviations start to appear at >35 keV); and (6) in the low count rate regions, the long-term ENA count rate profiles do not match the measured cosmic ray profiles, indicating that even the minimum ENA emissions detected by INCA are foreground ENAs.« less

  19. Infrared studies of galactic center x-ray sources

    NASA Astrophysics Data System (ADS)

    DeWitt, Curtis

    In this dissertation I use a variety of approaches to discover the nature of a subset of the nearly 10,000 X-ray point sources in the 2° x 0.8° region around the Galactic Center. I produced a JHK s source catalog of the 170 x170 region around Sgr A* an area containing 4339 of these X-ray sources, with the ISPI camera on the CTIO 4-m telescope. I cross-correlated the Chandra and ISPI catalogs to find potential near-infrared (NIR) counterparts to the X-ray sources. The extreme NIR source crowding in the field means that it is not possible to establish the authenticity of the matches with astrometry and photometry alone. I found 2137 IR/X-ray astrometrically matched sources; statistically I calculated that my catalog contains 289+/-13 true matches to soft X-ray sources and 154 +/- 39 matches to hard X-ray sources. However, the fraction of matches to hard sources that are spurious is 90%, compared to 40% for soft source matches, making the hard source NIR matches particularly challenging for spectroscopic follow-up. I statistically investigated the parameter space of matched sources and identified a set of 98 NIR matches to hard X-ray sources with reddenings consistent with the GC distance which have a 45% probability of being true counterparts. I created two additional photometric catalogs of the GC region to investigate the variability of X-ray counterparts over a time baseline of several years. I found 48 variable NIR sources matched to X-ray sources, with 2 spectroscopically confirmed to be true counterparts (1 in previous literature and one in this study). I took spectra of 46 of my best candidates for counterparts to X-ray sources toward the GC, and spectroscopically confirmed 4 sources as the authentic physical counterpart on the basis of emission lines in the H and K band spectra. These sources include a Be high mass X-ray binary located 16 pc in projection away from Sgr A*; a hard X-ray symbiotic binary located 22 pc in projection from Sgr A*; an O

  20. The Crossroads between the Galactic Disk and Interstellar Space, Ablaze in 3/4 keV Light

    NASA Astrophysics Data System (ADS)

    Shelton, Robin L.

    2016-04-01

    The halo is the crossroads between the Galactic disk and intergalactic space. This region is inhabited by hot gas that has risen from the disk, gas heated in situ, and hot material that has fallen in from intergalactic space. Owing to high spectral resolution observations made by by XMM-Newton, Suzaku, and Chandra of the hot plasma's 3/4 keV emission and absorption, increasingly sophisticated and CPU intensive computer modeling, and an awareness that charge exchange can contaminate 3/4 keV observations, we are now better able to understand the hot halo gas than ever before.Spectral analyses indicate that the 3/4 keV emission comes from T ~ 2.2 million Kelvin gas. Although observations suggest that the gas may be convectively unstable and the spectra's temperature is similar to that predicted by recent sophisticated models of the galactic fountain, the observed emission measure is significantly brighter than that predicted by fountain models. This brightness disparity presents us with another type of crossroads: should we continue down the road of adding physics to already sophisticated modeling or should we seek out other sources? In this presentation, I will discuss the galactic fountain crossroads, note the latitudinal and longitudinal distribution of the hot halo gas, provide an update on charge exchange, and explain how shadowing observations have helped to fine tune our understanding of the hot gas.