Science.gov

Sample records for galaxies hosting x-ray-selected

  1. HOST GALAXY PROPERTIES OF THE SWIFT BAT ULTRA HARD X-RAY SELECTED ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-10-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) active galactic nucleus (AGN) with host galaxy optical data to date, with 185 nearby (z < 0.05), moderate luminosity AGNs from the Swift BAT sample. The BAT AGN host galaxies have intermediate optical colors (u - r and g - r) that are bluer than a comparison sample of inactive galaxies and optically selected AGNs from the Sloan Digital Sky Survey (SDSS) which are chosen to have the same stellar mass. Based on morphological classifications from the RC3 and the Galaxy Zoo, the bluer colors of BAT AGNs are mainly due to a higher fraction of mergers and massive spirals than in the comparison samples. BAT AGNs in massive galaxies (log M{sub *} >10.5) have a 5-10 times higher rate of spiral morphologies than in SDSS AGNs or inactive galaxies. We also see enhanced far-infrared emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGNs are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGNs have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] {lambda}5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGNs in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as a whole. In agreement with the unified model of AGNs, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGNs suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  2. Host Galaxy Properties of the Swift BAT Ultra Hard X-Ray Selected AGN

    NASA Technical Reports Server (NTRS)

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-01-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) AGN with host galaxy optical data to date, with 185 nearby (z<0.05), moderate luminosity AGN from the Swift Burst Alert Telescope (BAT) sample. The BAT AGN host galaxies have intermediate optical colors (u -- r and g -- r) that are bluer than a comparison sample of inactive galaxies and optically selected AGN from the Sloan Digital Sky Survey (SDSS) which are chosen to have the same stellar mass. Based on morphological classifications from the RC3 and the Galaxy Zoo, the bluer colors of BAT AGN are mainly due to a higher fraction of mergers and massive spirals than in the comparison samples. BAT AGN in massive galaxies (log Stellar Mass >10.5) have a 5 to 10 times higher rate of spiral morphologies than in SDSS AGN or inactive galaxies. We also see enhanced far-IR emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGN are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGN have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] Lambda 5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGN in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as whole. In agreement with the Unified Model of AGN, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGN suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  3. The environment of x ray selected BL Lacs: Host galaxies and galaxy clustering

    NASA Technical Reports Server (NTRS)

    Wurtz, Ron; Stocke, John T.; Ellingson, Erica; Yee, Howard K. C.

    1993-01-01

    Using the Canada-France-Hawaii Telescope, we have imaged a complete, flux-limited sample of Einstein Medium Sensitivity Survey BL Lacertae objects in order to study the properties of BL Lac host galaxies and to use quantitative methods to determine the richness of their galaxy cluster environments.

  4. Host galaxy colour gradients and accretion disc obscuration in AEGIS z ~ 1 X-ray-selected active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Pierce, C. M.; Lotz, J. M.; Salim, S.; Laird, E. S.; Coil, A. L.; Bundy, K.; Willmer, C. N. A.; Rosario, D. J. V.; Primack, J. R.; Faber, S. M.

    2010-10-01

    We describe the effect of active galactic nucleus (AGN) light on host galaxy optical and UV-optical colours, as determined from X-ray-selected AGN host galaxies at z ~ 1, and compare the AGN host galaxy colours to those of a control sample matched to the AGN sample in both redshift and stellar mass. We identify as X-ray-selected AGNs 8.7+4-3 per cent of the red-sequence control galaxies, 9.8 +/- 3 per cent of the blue-cloud control galaxies and 14.7+4-3 per cent of the green-valley control galaxies. The nuclear colours of AGN hosts are generally bluer than their outer colours, while the control galaxies exhibit redder nuclei. AGNs in blue-cloud host galaxies experience less X-ray obscuration, while AGNs in red-sequence hosts have more, which is the reverse of what is expected from general considerations of the interstellar medium. Outer and integrated colours of AGN hosts generally agree with the control galaxies, regardless of X-ray obscuration, but the nuclear colours of unobscured AGNs are typically much bluer, especially for X-ray luminous objects. Visible point sources are seen in many of these, indicating that the nuclear colours have been contaminated by AGN light and that obscuration of the X-ray radiation and visible light are therefore highly correlated. Red AGN hosts are typically slightly bluer than red-sequence control galaxies, which suggests that their stellar populations are slightly younger. We compare these colour data to current models of AGN formation. The unexpected trend of less X-ray obscuration in blue-cloud galaxies and more in red-sequence galaxies is problematic for all AGN feedback models, in which gas and dust is thought to be removed as star formation shuts down. A second class of models involving radiative instabilities in hot gas is more promising for red-sequence AGNs but predicts a larger number of point sources in red-sequence AGNs than is observed. Regardless, it appears that multiple AGN models are necessary to explain the

  5. The host galaxies of X-ray selected AGN: feeding and feedback

    NASA Astrophysics Data System (ADS)

    Merloni, A.; Bongiorno, A.

    2014-07-01

    Using the rich multi-band photometry in the COSMOS field we explore the host galaxy properties of a large, complete, sample of X-ray and spectroscopically selected AGN. Based on a two-components fit to their Spectral Energy Distribution, we derive rest-frame magnitudes, colors, stellar masses and star formation rates up to z˜3, and we study the connection between these host galaxy properties, accretion luminosity and obscuration in galactic nuclei across more than 2/3 of the age of the Universe. Although AGN activity and star formation appear to have a common triggering mechanism, we do not find any strong evidence signaling the influence of luminous AGN on the global properties of their host galaxies. Conversely, we found that the central black hole activity have profound effects on the surrounding matter on scales comparable to the gravitational sphere of influence of the black hole. We discuss the implication of our findings for the nature of the long sough-after 'Quasar mode' feedback from AGN.

  6. Host Galaxy Properties of BAT Hard X-ray Selected AGN

    NASA Astrophysics Data System (ADS)

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa

    2010-07-01

    Surveys of AGN taken in the optical, UV, and soft X-rays miss an important population of obscured AGN only visible in the hard X-rays and mid-IR wavelengths. The SWIFT BAT survey in the hard X-ray range (14-195 keV) has provided a uniquely unbiased sample of 246 AGN unaffected by galactic or circumnuclear absorption [1]. Most of the sources in the survey are bright, Seyfert like AGN's with median redshift of 0.03. Of the AGN, 43% are obscured, type II AGN. We obtained 17 nights of imaging of 90 host galaxies of these AGN in 2008 at the Kitt Peak 2.1 m telescope in the SDSS ugriz filters. For the broad line sources we subtracted the AGN contribution using GALFIT. By comparing our sample of AGN to inactive galaxies in the SDSS, we find that AGN are found in the most massive galaxies and are bluer in color than inactive galaxies of comparable stellar mass. We also find a correlation between the point source optical light and hard X-ray luminosity.

  7. Host Galaxy Properties of BAT Hard X-ray Selected AGN

    SciTech Connect

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa

    2010-07-15

    Surveys of AGN taken in the optical, UV, and soft X-rays miss an important population of obscured AGN only visible in the hard X-rays and mid-IR wavelengths. The SWIFT BAT survey in the hard X-ray range (14-195 keV) has provided a uniquely unbiased sample of 246 AGN unaffected by galactic or circumnuclear absorption [1]. Most of the sources in the survey are bright, Seyfert like AGN's with median redshift of 0.03. Of the AGN, 43% are obscured, type II AGN. We obtained 17 nights of imaging of 90 host galaxies of these AGN in 2008 at the Kitt Peak 2.1 m telescope in the SDSS ugriz filters. For the broad line sources we subtracted the AGN contribution using GALFIT. By comparing our sample of AGN to inactive galaxies in the SDSS, we find that AGN are found in the most massive galaxies and are bluer in color than inactive galaxies of comparable stellar mass. We also find a correlation between the point source optical light and hard X-ray luminosity.

  8. X-RAY SELECTED AGN HOST GALAXIES ARE SIMILAR TO INACTIVE GALAXIES OUT TO z = 3: RESULTS FROM CANDELS/CDF-S

    SciTech Connect

    Rosario, D. J.; Wuyts, S.; Nandra, K.; Mozena, M.; Faber, S. M.; Koo, D. C.; Koekemoer, A.; Ferguson, H.; Grogin, N.; McGrath, E.; Hathi, N. P.; Dekel, A.; Donley, J.; Dunlop, J. S.; Giavalisco, M.; Guo, Y.; Kocevski, D. D.; Laird, E.; Rangel, C.; Newman, J.; and others

    2013-01-20

    We use multi-band spatially resolved photometry from the Cosmic Assembly Near-IR Deep Legacy Survey in the 4 Ms Chandra Deep Field-South to explore the nuclear and extended colors, color gradients, and stellar populations of the host galaxies of X-ray selected active galactic nuclei (AGNs) out to z = 3. Based on a study of their central light, we develop X-ray based criteria to exclude objects with strong AGN contamination. We use stellar masses from the FIREWORKS database to understand and account for stellar mass selection effects and carefully study, for the first time, the resolved host galaxy properties of AGNs at z {approx} 2 in their rest-frame optical light without substantial nuclear contamination. AGN hosts span a sizable range of stellar masses, colors, and color gradients at these redshifts. Their colors, color gradients, and stellar population properties are very similar to inactive galaxies of the same stellar mass. At z {approx} 1, we find a slightly narrower range in host colors compared to inactive galaxies, as well as hints of more recent star formation. These differences are weaker or non-existent among AGN hosts at z {approx} 2. We discuss the importance of AGN-driven feedback in the quenching of galaxies at z {approx}> 1 and speculate on possible evolution in the relationship between black hole accretion and the host galaxy toward high redshifts.

  9. The host galaxies of X-ray selected active galactic nuclei to z = 2.5: Structure, star formation, and their relationships from CANDELS and Herschel/PACS

    NASA Astrophysics Data System (ADS)

    Rosario, D. J.; McIntosh, D. H.; van der Wel, A.; Kartaltepe, J.; Lang, P.; Santini, P.; Wuyts, S.; Lutz, D.; Rafelski, M.; Villforth, C.; Alexander, D. M.; Bauer, F. E.; Bell, E. F.; Berta, S.; Brandt, W. N.; Conselice, C. J.; Dekel, A.; Faber, S. M.; Ferguson, H. C.; Genzel, R.; Grogin, N. A.; Kocevski, D. D.; Koekemoer, A. M.; Koo, D. C.; Lotz, J. M.; Magnelli, B.; Maiolino, R.; Mozena, M.; Mullaney, J. R.; Papovich, C. J.; Popesso, P.; Tacconi, L. J.; Trump, J. R.; Avadhuta, S.; Bassett, R.; Bell, A.; Bernyk, M.; Bournaud, F.; Cassata, P.; Cheung, E.; Croton, D.; Donley, J.; DeGroot, L.; Guedes, J.; Hathi, N.; Herrington, J.; Hilton, M.; Lai, K.; Lani, C.; Martig, M.; McGrath, E.; Mutch, S.; Mortlock, A.; McPartland, C.; O'Leary, E.; Peth, M.; Pillepich, A.; Poole, G.; Snyder, D.; Straughn, A.; Telford, O.; Tonini, C.; Wandro, P.

    2015-01-01

    We study the relationship between the structure and star formation rate (SFR) of X-ray selected low and moderate luminosity active galactic nuclei (AGNs) in the two Chandra Deep Fields, using Hubble Space Telescope imaging from the Cosmic Assembly Near Infrared Extragalactic Legacy Survey (CANDELS) and deep far-infrared maps from the PEP+GOODS-Herschel survey. We derive detailed distributions of structural parameters and FIR luminosities from carefully constructed control samples of galaxies, which we then compare to those of the AGNs. At z ~ 1, AGNs show slightly diskier light profiles than massive inactive (non-AGN) galaxies, as well as modestly higher levels of gross galaxy disturbance (as measured by visual signatures of interactions and clumpy structure). In contrast, at z ~ 2, AGNs show similar levels of galaxy disturbance as inactive galaxies, but display a red central light enhancement, which may arise from a more pronounced bulge in AGN hosts or extinguished nuclear light. We undertake a number of tests of both these alternatives, but our results do not strongly favor one interpretation over the other. The mean SFR and its distribution among AGNs and inactive galaxies are similar at z> 1.5. At z< 1, however, clear and significant enhancements are seen in the SFRs of AGNs with bulge-dominated light profiles. These trends suggest an evolution in the relation between nuclear activity and host properties with redshift, towards a minor role for mergers and interactions at z> 1.5. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices are available in electronic form at http://www.aanda.org

  10. RADIO STACKING REVEALS EVIDENCE FOR STAR FORMATION IN THE HOST GALAXIES OF X-RAY-SELECTED ACTIVE GALACTIC NUCLEI AT z < 1

    SciTech Connect

    Pierce, C. M.; Ballantyne, D. R.; Ivison, R. J.

    2011-11-20

    Nuclear starbursts may contribute to the obscuration of active galactic nuclei (AGNs). The predicted star formation rates (SFRs) are modest, and, for the obscured AGNs that form the X-ray background at z < 1, the associated faint radio emission lies just beyond the sensitivity limits of the deepest surveys. Here, we search for this level of star formation by studying a sample of 359 X-ray-selected AGNs at z < 1 from the Cosmic Evolution Survey field that are not detected by current radio surveys. The AGNs are separated into bins based on redshift, X-ray luminosity, obscuration, and mid-infrared characteristics. An estimate of the AGN contribution to the radio flux density is subtracted from each radio image, and the images are then stacked to uncover any residual faint radio flux density. All of the bins containing 24 {mu}m detected AGNs are detected with a signal-to-noise >3{sigma} in the stacked radio images. In contrast, AGNs not detected at 24 {mu}m are not detected in the resulting stacked radio images. This result provides strong evidence that the stacked radio signals are likely associated with star formation. The estimated SFRs derived from the radio stacks range from 3 M{sub Sun} yr{sup -1} to 29 M{sub Sun} yr{sup -1}. Although it is not possible to associate the radio emission with a specific region of the host galaxies, these results are consistent with the predictions of nuclear starburst disks in AGN host galaxies.

  11. The Host Galaxies of X-Ray Selected Active Galactic Nuclei to z - 2.5: Structure, Star-Formation and Their Relationships from CANDELS and Herschel/Pacs

    NASA Technical Reports Server (NTRS)

    Rosario, D.J.; McIntosh, D. H.; van der Wel, A.; Kartaltepe, J.; Lang, P.; Santini, P.; Wuyts, S.; Lutz, D.; Rafelski, M.; Villforth, C.; Alexander, D. M.; Bauer, F. E.; Bell, E. F.; Berta, S.; Brandt, W. N.; Conselice, C. J.; Dekel, A.; Faber, S. M.; Ferguson, H. C.; Genzel, R.; Grogin, N. A.; Kocevski, D. D.; Koekemoer, A. M.; Koo, D. C.; Straughn, A.

    2014-01-01

    We study the relationship between the structure and star-formation rate (SFR) of X-ray selected low and moderate luminosity active galactic nuclei (AGNs) in the two Chandra Deep Fields, using Hubble Space Telescope imaging from the Cosmic Assembly Near Infrared Extragalactic Legacy Survey (CANDELS) and deep far-infrared maps from the PEP+GOODS-Herschel survey. We derive detailed distributions of structural parameters and FIR luminosities from carefully constructed control samples of galaxies, which we then compare to those of the AGNs. At z is approximately 1, AGNs show slightly diskier light profiles than massive inactive (non-AGN) galaxies, as well as modestly higher levels of gross galaxy disturbance (as measured by visual signatures of interactions and clumpy structure). In contrast, at z 2, AGNs show similar levels of galaxy disturbance as inactive galaxies, but display a red central light enhancement, which may arise due to a more pronounced bulge in AGN hosts or due to extinguished nuclear light. We undertake a number of tests of both these alternatives, but our results do not strongly favour one interpretation over the other. The mean SFR and its distribution among AGNs and inactive galaxies are similar at z greater than 1.5. At z less than 1, however, clear and significant enhancements are seen in the SFRs of AGNs with bulge-dominated light profiles. These trends suggest an evolution in the relation between nuclear activity and host properties with redshift towards a minor role for mergers and interactions at z greater than 15

  12. Higher prevalence of X-ray selected AGN in intermediate-age galaxies up to z ˜ 1

    NASA Astrophysics Data System (ADS)

    Hernán-Caballero, Antonio; Alonso-Herrero, Almudena; Pérez-González, Pablo G.; Barro, Guillermo; Aird, James; Ferreras, Ignacio; Cava, Antonio; Cardiel, Nicolás; Esquej, Pilar; Gallego, Jesús; Nandra, Kirpal; Rodríguez-Zaurín, Javier

    2014-10-01

    We analyse the stellar populations in the host galaxies of 53 X-ray selected optically dull active galactic nuclei (AGN) at 0.34 < z < 1.07 with ultradeep (mAB = 26.5, 3σ) optical medium-band (R ˜ 50) photometry from the Survey for High-z Absorption Red and Dead Sources (SHARDS). The spectral resolution of SHARDS allows us to consistently measure the strength of the 4000 Å break, Dn(4000), a reliable age indicator for stellar populations. We confirm that most X-ray selected moderate-luminosity AGN (LX < 1044 erg s-1) are hosted by massive galaxies (typically M* >1010.5 M⊙) and that the observed fraction of galaxies hosting an AGN increases with the stellar mass. A careful selection of random control samples of inactive galaxies allows us to remove the stellar mass and redshift dependences of the AGN fraction to explore trends with several stellar age indicators. We find no significant differences in the distribution of the rest-frame U - V colour for AGN hosts and inactive galaxies, in agreement with previous results. However, we find significantly shallower 4000 Å breaks in AGN hosts, indicative of younger stellar populations. With the help of a model-independent determination of the extinction, we obtain extinction-corrected U - V colours and light-weighted average stellar ages. We find that AGN hosts have younger stellar populations and higher extinction compared to inactive galaxies with the same stellar mass and at the same redshift. We find a highly significant excess of AGN hosts with Dn(4000) ˜ 1.4 and light-weighted average stellar ages of 300-500 Myr, as well as a deficit of AGN in intrinsic red galaxies. We interpret failure in recognizing these trends in previous studies as a consequence of the balancing effect in observed colours of the age-extinction degeneracy.

  13. Radio observations of a hard X-ray selected sample of active galaxies

    NASA Technical Reports Server (NTRS)

    Unger, S. W.; Lawrence, A.; Wilson, A. S.; Elvis, M.; Wright, A. E.

    1987-01-01

    Radio observations of a hard X-ray selected sample of active galaxies obtained with the VLA and Parkes radio telescopes are discussed, and the ratio of the radio to X-ray flux density is used to determine the degree of radio-loudness of the galaxies. A continuous distribution of the degree of radio loudness is found amongst the sample galaxies, and no evidence for distinct radio-quiet and radio-loud populations is noted. The X-ray and radio luminosity is shown to be nonlinearly correlated, with the radio-loud objects all having high X-ray luminosity.

  14. A comparative study of radio halo occurrence in SZ and X-ray selected galaxy cluster samples

    NASA Astrophysics Data System (ADS)

    Sommer, Martin W.; Basu, Kaustuv

    2014-01-01

    We aim at an unbiased census of the radio halo population in galaxy clusters and test whether current low number counts of radio haloes have arisen from selection biases. We construct near-complete samples based on X-ray and Sunyaev-Zel'dovich (SZ) effect cluster catalogues and search for diffuse, extended (Mpc-scale) emission near the cluster centres by analysing data from the National Radio Astronomy Observatory Very Large Array Sky Survey. We remove compact sources using a matched filtering algorithm and model the diffuse emission using two independent methods. The relation between radio halo power at 1.4 GHz and mass observables is modelled using a power law, allowing for a `dropout' population of clusters hosting no radio halo emission. An extensive suite of simulations is used to check for biases in our methods. Our findings suggest that the fraction of targets hosting radio haloes may have to be revised upwards for clusters selected using the SZ effect: while approximately 60 per cent of the X-ray selected targets are found to contain no extended radio emission, in agreement with previous findings, the corresponding fraction in the SZ selected samples is roughly 20 per cent. We propose a simple explanation for this selection difference based on the distinct time evolution of the SZ and X-ray observables during cluster mergers, and a bias towards relaxed, cool-core clusters in the X-ray selection.

  15. a Snapshot Survey of X-Ray Selected Central Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Edge, Alastair

    1999-07-01

    Central cluster galaxies are the most massive stellar systems known and have been used as standard candles for many decades. Only recently have central cluster galaxies been recognised to exhibit a wide variety of small scale {<100 pc} features that can only be reliably detected with HST resolution. The most intriguing of these are dust lanes which have been detected in many central cluster galaxies. Dust is not expected to survive long in the hostile cluster environment unless shielded by the ISM of a disk galaxy or very dense clouds of cold gas. WFPC2 snapshot images of a representative subset of the central cluster galaxies from an X-ray selected cluster sample would provide important constraints on the formation and evolution of dust in cluster cores that cannot be obtained from ground-based observations. In addition, these images will allow the AGN component, the frequency of multiple nuclei, and the amount of massive-star formation in central cluster galaxies to be ass es sed. The proposed HST observatio ns would also provide high-resolution images of previously unresolved gravitational arcs in the most massive clusters in our sample resulting in constraints on the shape of the gravitational potential of these systems. This project will complement our extensive multi-frequency work on this sample that includes optical spectroscopy and photometry, VLA and X-ray images for the majority of the 210 targets.

  16. OCCUPATION OF X-RAY-SELECTED GALAXY GROUPS BY X-RAY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Allevato, V.; Finoguenov, A.; Hasinger, G.; Cappelluti, N.; Miyaji, T.; Salvato, M.; Brusa, M.; Zamorani, G.; Gilli, R.; George, M. R.; Tanaka, M.; Silverman, J.; Civano, F.; Elvis, M.; Shankar, F.

    2012-10-10

    We present the first direct measurement of the mean halo occupation distribution (HOD) of X-ray-selected active galactic nuclei (AGNs) in the COSMOS field at z {<=} 1, based on the association of 41 XMM and 17 C-COSMOS AGNs with member galaxies of 189 X-ray-detected galaxy groups from XMM-Newton and Chandra data. We model the mean AGN occupation in the halo mass range log M{sub 200} [M{sub Sun }] = 13-14.5 with a rolling-off power law with the best-fit index {alpha} = 0.06(- 0.22; 0.36) and normalization parameter f{sub a} 0.05(0.04; 0.06). We find the mean HOD of AGNs among central galaxies to be modeled by a softened step function at log M{sub h} > log M{sub min} = 12.75(12.10, 12.95) M{sub Sun} while for the satellite AGN HOD we find a preference for an increasing AGN fraction with M{sub h} , suggesting that the average number of AGNs in satellite galaxies grows slower ({alpha}{sub s} < 0.6) than the linear proportion ({alpha}{sub s} = 1) observed for the satellite HOD of samples of galaxies. We present an estimate of the projected autocorrelation function (ACF) of galaxy groups over the range of r{sub p} = 0.1-40 h {sup -1} Mpc at (z) = 0.5. We use the large-scale clustering signal to verify the agreement between the group bias estimated by using the observed galaxy groups ACF and the value derived from the group mass estimates. We perform a measurement of the projected AGN-galaxy-group cross-correlation function, excluding from the analysis AGNs that are within galaxy groups and we model the two-halo term of the clustering signal with the mean AGN HOD based on our results.

  17. STRUCTURE AND MORPHOLOGY OF X-RAY-SELECTED ACTIVE GALACTIC NUCLEUS HOSTS AT 1 < z < 3 IN THE CANDELS-COSMOS FIELD

    SciTech Connect

    Fan, Lulu; Chen, Yang; Li, Jinrong; Lv, Xuanyi; Kong, Xu; Fang, Guanwen; Knudsen, Kirsten K.

    2014-03-20

    We analyze morphologies of the host galaxies of 35 X-ray-selected active galactic nuclei (AGNs) at z ∼ 2 in the Cosmic Evolution Survey field using Hubble Space Telescope/WFC3 imaging taken from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. We build a control sample of 350 galaxies in total by selecting 10 non-active galaxies drawn from the same field with a similar stellar mass and redshift for each AGN host. By performing two-dimensional fitting with GALFIT on the surface brightness profile, we find that the distribution of the Sérsic index (n) of AGN hosts does not show a statistical difference from that of the control sample. We measure the nonparametric morphological parameters (the asymmetry index A, the Gini coefficient G, the concentration index C, and the M {sub 20} index) based on point-source-subtracted images. All the distributions of these morphological parameters of AGN hosts are consistent with those of the control sample. We finally investigate the fraction of distorted morphologies in both samples by visual classification. Only ∼15% of the AGN hosts have highly distorted morphologies, possibly due to a major merger or interaction. We find there is no significant difference in the distortion fractions between the AGN host sample and control sample. We conclude that the morphologies of X-ray-selected AGN hosts are similar to those of non-active galaxies and most AGN activity is not triggered by a major merger.

  18. X-ray selected galaxy clusters in the Pan-STARRS Medium Deep Survey

    NASA Astrophysics Data System (ADS)

    Ebeling, H.; Edge, A. C.; Burgett, W. S.; Chambers, K. C.; Hodapp, K. W.; Huber, M. E.; Kaiser, N.; Price, P. A.; Tonry, J. L.

    2013-06-01

    We present the results of a pilot study for the extended Massive Cluster Survey (eMACS), a comprehensive search for distant, X-ray luminous galaxy clusters at z > 0.5. Our pilot study applies the eMACS concept to the 71 deg2 area extended by the 10 fields of the Pan-STARRS1 (PS1) Medium Deep Survey (MDS). Candidate clusters are identified by visual inspection of PS1 images in the g, r, i and z bands in a 5 × 5 arcmin2 region around X-ray sources detected in the ROSAT All-Sky Survey (RASS). To test and optimize the eMACS X-ray selection criteria, our pilot study uses the largest possible RASS data base, i.e. all RASS sources listed in the Bright and Faint Source Catalogues (BSC and FSC) that fall within the MDS footprint. We apply no additional constraints regarding X-ray flux, spectral hardness ratio or photon statistics and lower the redshift threshold to z > 0.3 to extend the probed luminosity range to poorer systems. Scrutiny of PS1/MDS images for 41 BSC and 200 FSC sources combined with dedicated spectroscopic follow-up observations results in a sample of 11 clusters with estimated or spectroscopic redshifts of z > 0.3. In order to assess and quantify the degree of point source contamination of the observed RASS fluxes, we examine archival Chandra data obtained in targeted and serendipitous observations of six of the 11 clusters found. As expected, the diffuse emission from all six systems is contaminated by point sources to some degree, and for half of them active galactic nucleus emission dominates. X-ray follow-up observations will thus be crucial in order to establish robust cluster luminosities for eMACS clusters. Although the small number of distant X-ray luminous clusters in the MDS does not allow us to make firm predictions for the over 20 000 deg2 of extragalactic sky covered by eMACS, the identification of two extremely promising eMACS cluster candidates at z ≳ 0.6 (both yet to be observed with Chandra) in such a small solid angle is encouraging

  19. Spectral properties of X-ray selected narrow emission line galaxies

    NASA Astrophysics Data System (ADS)

    Romero-Colmenero, E.

    1998-03-01

    This thesis reports a study of the X-ray and optical properties of two samples of X-ray selected Narrow Emission Line Galaxies (NELGs), and their comparison with the properties of broad line Active Galactic Nuclei (AGN). One sample (18 NELGs) is drawn from the ROSAT International X-ray Optical Survey (RIXOS), the other (19 NELGs and 33 AGN) from the ROSAT UK Deep Survey. ROSAT multi-channel X-ray spectra have been extracted and fitted with power-law, bremsstrahlung and black body models for the brighter RIXOS sources. In most cases, power-law and bremsstrahlung models provide the best results. The average spectral energy index, alpha, of the RIXOS NELGs is 0.96 +/- 0.07, similar to that of AGN (alpha~1). For the fainter RIXOS NELGs, as well as for all the UK Deep Survey sources, counts in three spectral bands have been extracted and fitted with a power-law model, assuming the Galactic value for N_H. The brighter RIXOS sources demonstrated that the results obtained by these two different extraction and fitting procedures provide consistent results. Two average X-ray spectra, one for the NELGs and another for the AGN, were created from the UK Deep Survey sources. The power-law slope of the average NELG is alpha = 0.45 +/- 0.09, whilst that of the AGN is alpha = 0.96 +/- 0.03. ROSAT X-ray surveys have shown that the fractional surface density of NELGs increases with respect to AGN at faint fluxes (<= 2e-15 ergs cm-2 s-1), thus suggesting that NELGs are important contributors to the residual soft (<2 keV) X-ray background (XRB). Moreover, the spectral slope of this background (alpha~0.4, 1-10 keV) is harder than that of AGN (alpha~1), which are known to contribute most of the XRB at higher flux levels. The work presented in this thesis shows unequivocally for the first time that the integrated spectrum of the faintest NELGs (alpha~0.4) is consistent with that of the soft X-ray background, finally reconciling it with the properties of the sources that are thought to

  20. Spectral properties of x-ray selected narrow emission line galaxies

    NASA Astrophysics Data System (ADS)

    Romero Colmenero, Encarnacion

    This thesis reports a study of the X-ray and optical properties of two samples of X-ray selected Narrow Emission Line Galaxies (NELGs), and their comparison with the properties of broad line Active Galactic Nuclei (AGN). One sample (18 NELGs) is drawn from the ROSAT International X-ray Optical Survey (RIXOS), the other (19 NELGs and 33 AGN) from the ROSAT UK Deep Survey. ROSAT multi-channel X-ray spectra have been extracted and fitted with power-law, bremsstrahlung and black body models for the brighter RIXOS sources. In most cases, power-law and bremsstrahlung models provide the best results. The average spectral energy index, alpha, of the RIXOS NELGs is 0.96 +/- 0.07, similar to that of AGN (alpha ~ 1). For the fainter RIXOS NELGs, as well as for all the UK Deep Survey sources, counts in three spectral bands have been extracted and fitted with a power-law model, assuming the Galactic value for NH. The brighter RIXOS sources demonstrated that the results obtained by these two different extraction and fitting procedures provide consistent results. Two average X-ray spectra, one for the NELGs and another for the AGN, were created from the UK Deep Survey sources. The power-law spectral slope of the average NELG is S = 0.45 +/- 0.09, whilst that of the AGN is S = 0.96 +/- 0.03. ROSAT X-ray surveys have shown that the fractional surface density of NELGs increases with respect to AGN at faint fluxes (< 2 x 10-15erg cm-2 s -1), thus suggesting that NELGs are important contributors to the residual soft (< 2 keV) X-ray background (XRB). Moreover, the spectral slope of this background (S ~ 0.4, 1-10 keV) is harder than that of AGN (S ~ 1), which are known to contribute most of the XRB at higher flux levels. The work presented in this thesis shows unequivocally for the first time that the integrated spectrum of the faintest NELGs (alpha ~ 0.4) is consistent with that of the soft X-ray background, finally reconciling it with the properties of the sources that are thought to

  1. The active galactic nucleus population in X-ray-selected galaxy groups at 0.5 < Z < 1.1

    SciTech Connect

    Oh, Semyeong; Woo, Jong-Hak; Matsuoka, Kenta; Mulchaey, John S.; Finoguenov, Alexis; Tanaka, Masayuki; Cooper, Michael C.; Ziparo, Felicia; Bauer, Franz E.

    2014-07-20

    We use Chandra data to study the incidence and properties of active galactic nuclei (AGNs) in 16 intermediate redshift (0.5 < z < 1.1) X-ray-selected galaxy groups in the Chandra Deep Field-South. We measure an AGN fraction of f(L{sub X,H}>10{sup 42};M{sub R}<−20)=8.0{sub −2.3}{sup +3.0}% at z-bar ∼0.74, approximately a factor of two higher than the AGN fraction found for rich clusters at comparable redshift. This extends the trend found at low redshift for groups to have higher AGN fractions than clusters. Our estimate of the AGN fraction is also more than a factor of three higher than that of low redshift X-ray-selected groups. Using optical spectra from various surveys, we also constrain the properties of emission-line selected AGNs in these groups. In contrast to the large population of X-ray AGNs (N(L{sub X,{sub H}} > 10{sup 41} erg s{sup –1}) = 25), we find only four emission-line AGNs, three of which are also X-ray bright. Furthermore, most of the X-ray AGNs in our groups are optically dull (i.e., lack strong emission-lines), similar to those found in low redshift X-ray groups and clusters of galaxies. This contrasts with the AGN population found in low redshift optically selected groups which are dominated by emission-line AGNs. The differences between the optically and X-ray-selected AGNs populations in groups are consistent with a scenario where most AGNs in the densest environments are currently in a low accretion state.

  2. The Active Galactic Nucleus Population in X-Ray-selected Galaxy Groups at 0.5 < z < 1.1

    NASA Astrophysics Data System (ADS)

    Oh, Semyeong; Mulchaey, John S.; Woo, Jong-Hak; Finoguenov, Alexis; Tanaka, Masayuki; Cooper, Michael C.; Ziparo, Felicia; Bauer, Franz E.; Matsuoka, Kenta

    2014-07-01

    We use Chandra data to study the incidence and properties of active galactic nuclei (AGNs) in 16 intermediate redshift (0.5 < z < 1.1) X-ray-selected galaxy groups in the Chandra Deep Field-South. We measure an AGN fraction of f(LX,H \\gt 1042;MR < {-20}) = 8.0-2.3+3.0% at \\bar{z} ˜ 0.74, approximately a factor of two higher than the AGN fraction found for rich clusters at comparable redshift. This extends the trend found at low redshift for groups to have higher AGN fractions than clusters. Our estimate of the AGN fraction is also more than a factor of three higher than that of low redshift X-ray-selected groups. Using optical spectra from various surveys, we also constrain the properties of emission-line selected AGNs in these groups. In contrast to the large population of X-ray AGNs (N(L X, H > 1041 erg s-1) = 25), we find only four emission-line AGNs, three of which are also X-ray bright. Furthermore, most of the X-ray AGNs in our groups are optically dull (i.e., lack strong emission-lines), similar to those found in low redshift X-ray groups and clusters of galaxies. This contrasts with the AGN population found in low redshift optically selected groups which are dominated by emission-line AGNs. The differences between the optically and X-ray-selected AGNs populations in groups are consistent with a scenario where most AGNs in the densest environments are currently in a low accretion state.

  3. A red envelope around a dominant elliptical galaxy in an X-ray selected poor cluster

    NASA Technical Reports Server (NTRS)

    Maccagni, D.; Garilli, B.; Gioia, I. M.; Maccacaro, T.; Vettolani, G.

    1988-01-01

    A photometric and spectroscopic study of the optical counterpart of the X-ray source 1E 1111.9-3754 has revealed a poor cluster of galaxies dominated by a very luminous giant elliptical. Three-color surface photometry of this galaxy shows that the elliptical body is surrounded by a large envelope with colors redder than the galaxy. The formation of this system in a high velocity dispersion poor cluster is briefly discussed.

  4. Galaxies in x-ray selected clusters and groups in Dark Energy Survey data. I. Stellar mass growth of bright central galaxies since z ~ 1.2

    DOE PAGESBeta

    Zhang, Y.; Miller, C.; McKay, T.; Rooney, P.; Evrard, A. E.; Romer, A. K.; R. Perfecto; Song, J.; Desai, S.; Mohr, J.; et al

    2016-01-14

    Here, using the science verification data of the Dark Energy Survey for a new sample of 106 X-ray selected clusters and groups, we study the stellar mass growth of bright central galaxies (BCGs) since redshift z ~ 1.2. Compared with the expectation in a semi-analytical model applied to the Millennium Simulation, the observed BCGs become under-massive/under-luminous with decreasing redshift.

  5. An unusual red envelope galaxy in an X-ray selected cluster.

    NASA Astrophysics Data System (ADS)

    Gioia, I. M.; Garilli, B.; Maccacaro, T.; Maccagni, D.; Vettolani, G.; Wolter, A.

    In the process of identifying X-ray sources from the Einstein Observatory Extended Medium Sensitivity Survey, the authors have observed the field of 1E 1111.9-3754. A photometric and spectroscopic study of the optical counterpart of the X-ray source 1E 1111.9-3754 has revealed a poor cluster of galaxies dominated by a very luminous giant elliptical. The galaxy sits at the bottom of the potential well described by the X-ray emitting gas. The presence of such a bright and large galaxy in this cluster can be explained by invoking cannibalism and stripping in this specific environment which may be at the origin of the large, red envelope detected in the Gunn i and r filters. The authors have given the name GREG (Giant Red Envelope Galaxy) to the brightest cluster member of 1E 1111.9-3754. A Hubble constant of 50 km s-1Mpc-1 and q0 = 0 have been used, implying a scale of 3.17 kpc arcsec-1 at GREG's redshift.

  6. X-Ray-selected Galaxy Groups in Boötes

    NASA Astrophysics Data System (ADS)

    Vajgel, Bruna; Jones, Christine; Lopes, Paulo A. A.; Forman, William R.; Murray, Stephen S.; Goulding, Andrew; Andrade-Santos, Felipe

    2014-10-01

    We present the X-ray and optical properties of the galaxy groups selected in the Chandra X-Boötes survey. We used follow-up Chandra observations to better define the group sample and their X-ray properties. Group redshifts were measured from the AGN and Galaxy Evolution Survey spectroscopic data. We used photometric data from the NOAO Deep Wide Field Survey to estimate the group richness (N gals) and the optical luminosity (L opt). Our final sample comprises 32 systems at z < 1.75 with 14 below z = 0.35. For these 14 systems, we estimate velocity dispersions (σ gr ) and perform a virial analysis to obtain the radii (R 200 and R 500) and total masses (M 200 and M 500) for groups with at least 5 galaxy members. We use the Chandra X-ray observations to derive the X-ray luminosity (LX ). We examine the performance of the group properties σgr, L opt, and LX , as proxies for the group mass. Understanding how well these observables measure the total mass is important to estimate how precisely the cluster/group mass function is determined. Exploring the scaling relations built with the X-Boötes sample and comparing these with samples from the literature, we find a break in the LX -M 500 relation at approximately M 500 = 5 × 1013 M ⊙ (for M 500 > 5 × 1013 M ⊙, M500 \\propto L_X0.61+/- 0.02, while for M 500 <= 5 × 1013 M ⊙, M500 \\propto L_X0.44+/- 0.05). Thus, the mass-luminosity relation for galaxy groups cannot be described by the same power law as galaxy clusters. A possible explanation for this break is the dynamical friction, tidal interactions, and projection effects that reduce the velocity dispersion values of the galaxy groups. By extending the cluster luminosity function to the group regime, we predict the number of groups that new X-ray surveys, particularly eROSITA, will detect. Based on our cluster/group luminosity function estimates, eROSITA will identify ~1800 groups (LX = 1041-1043 erg s-1) within a distance of 200 Mpc. Since groups lie in large

  7. X-ray-selected galaxy groups in Boötes

    SciTech Connect

    Vajgel, Bruna; Lopes, Paulo A. A.; Jones, Christine; Forman, William R.; Murray, Stephen S.; Goulding, Andrew; Andrade-Santos, Felipe

    2014-10-10

    We present the X-ray and optical properties of the galaxy groups selected in the Chandra X-Boötes survey. We used follow-up Chandra observations to better define the group sample and their X-ray properties. Group redshifts were measured from the AGN and Galaxy Evolution Survey spectroscopic data. We used photometric data from the NOAO Deep Wide Field Survey to estimate the group richness (N {sub gals}) and the optical luminosity (L {sub opt}). Our final sample comprises 32 systems at z < 1.75 with 14 below z = 0.35. For these 14 systems, we estimate velocity dispersions (σ {sub gr}) and perform a virial analysis to obtain the radii (R {sub 200} and R {sub 500}) and total masses (M {sub 200} and M {sub 500}) for groups with at least 5 galaxy members. We use the Chandra X-ray observations to derive the X-ray luminosity (L{sub X} ). We examine the performance of the group properties σ{sub gr}, L {sub opt}, and L{sub X} , as proxies for the group mass. Understanding how well these observables measure the total mass is important to estimate how precisely the cluster/group mass function is determined. Exploring the scaling relations built with the X-Boötes sample and comparing these with samples from the literature, we find a break in the L{sub X} -M {sub 500} relation at approximately M {sub 500} = 5 × 10{sup 13} M {sub ☉} (for M {sub 500} > 5 × 10{sup 13} M {sub ☉}, M{sub 500}∝L{sub X}{sup 0.61±0.02}, while for M {sub 500} ≤ 5 × 10{sup 13} M {sub ☉}, M{sub 500}∝L{sub X}{sup 0.44±0.05}). Thus, the mass-luminosity relation for galaxy groups cannot be described by the same power law as galaxy clusters. A possible explanation for this break is the dynamical friction, tidal interactions, and projection effects that reduce the velocity dispersion values of the galaxy groups. By extending the cluster luminosity function to the group regime, we predict the number of groups that new X-ray surveys, particularly eROSITA, will detect. Based on our cluster

  8. BLOX: the Bonn lensing, optical, and X-ray selected galaxy clusters. I. Cluster catalog construction

    NASA Astrophysics Data System (ADS)

    Dietrich, J. P.; Erben, T.; Lamer, G.; Schneider, P.; Schwope, A.; Hartlap, J.; Maturi, M.

    2007-08-01

    The mass function of galaxy clusters is an important cosmological probe. Differences in the selection method could potentially lead to biases when determining the mass function. From the optical and X-ray data of the XMM-Newton Follow-Up Survey, we obtained a sample of galaxy cluster candidates using weak gravitational lensing, the optical Postman matched filter method, and a search for extended X-ray sources. We developed our weak-lensing search criteria by testing the performance of the aperture mass statistic on realistic ray-tracing simulations matching our survey parameters and by comparing two filter functions. We find that the dominant noise source for our survey is shape noise at almost all significance levels and that spurious cluster detections due to projections of large-scale structures are negligible, except possibly for highly significantly detected peaks. Our full cluster catalog has 155 cluster candidates, 116 found with the Postman matched filter, 59 extended X-ray sources, and 31 shear selected potential clusters. Most of these cluster candidates were not previously known. The present catalog will be a solid foundation for studying possible selection effects in either method. Based on observations carried out at the European Southern Observatory, La Silla, Chile under program Nos. 170.A-0789, 70.A-0529, 71.A-0110, 072.A-0061, 073.A-0050. The cluster catalogs are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg/cgi-bin/qcat?J/A+A/470/821

  9. Comparing Cool Cores in the Planck SZ Selected Samples of Clusters of Galaxies with Cool Cores in X-ray Selected Cluster Samples

    NASA Astrophysics Data System (ADS)

    Jones, Christine; Santos, Felipe A.; Forman, William R.; Kraft, Ralph P.; Lovisari, Lorenzo; Arnaud, Monique; Mazzotta, Pasquale; Van Weeren, Reinout J.; Churazov, Eugene; Ferrari, Chiara; Borgani, Stefano; Chandra-Planck Collaboration

    2016-06-01

    The Planck mission provided a representative sample of clusters of galaxies over the entire sky. With completed Chandra observations of 165 Planck ESZ and cosmology sample clusters at z<0.35, we can now characterize each cluster in terms of its X-ray luminosity, gas temperature, gas mass, total mass, gas entropy, gas central cooling time, presence of active AGN, gas cavities, radio emission, and cluster morphology. In this presentation we compare the percentages of cool core and non-cool core clusters in the Planck-selected clusters with the percentages in X-ray selected cluster samples. We find a significantly smaller percentage of cool core clusters in the Planck sample than in X-ray selected cluster samples. We will discuss the primary reasons for this smaller percentage of cool-core clusters in the Planck-selected cluster sample than in X-ray-selected samples.

  10. X-ray selected quasars and Seyfert galaxies - Cosmological evolution, luminosity function, and contribution to the X-ray background

    NASA Technical Reports Server (NTRS)

    Maccacaro, T.; Gioia, I. M.; Stocke, J. T.

    1984-01-01

    The cosmological evolution and the X-ray luminosity function of quasars and Seyfert galaxies (active galactic nuclei /AGNs/) are derived and discussed. The sample used consists of 56 objects extracted from the expanded Einstein Observatory Medium Sensitivity Survey, and it is exclusively defined by its X-ray properties. The distribution in space of X-ray selected AGNs is confirmed to be strongly nonuniform; the amount of cosmological evolution required by the data is in agreement with a previous determination based on a smaller sample of objects. The X-ray luminosity function (XLF) is derived. The high-luminosity part of the XLF is satisfactorily described by a power law of slope gamma approximately 3.6. A significant flattening is observed at low luminosities. The simultaneous determination of the cosmological evolution and of the X-ray luminosity function of AGNs is then used to estimate the contribution to the extragalactic diffuse X-ray background. Using the best fit values for the evolution of AGNs and for their volume density, it is found that they contribute approximately 80 percent of the 2 keV diffuse X-ray background. Uncertainties in this estimate are still rather large; however, it seems difficult to reconcile the data with a contribution much less than 50 percent.

  11. RADIO GALAXY FEEDBACK IN X-RAY-SELECTED GROUPS FROM COSMOS: THE EFFECT ON THE INTRACLUSTER MEDIUM

    SciTech Connect

    Giodini, S.; Finoguenov, A.; Boehringer, H.; Pierini, D.; Smolcic, V.; Massey, R.; BIrzan, L.; Zamorani, G.; Oklopcic, A.; Pratt, G. W.; Koekemoer, A. M.; Salvato, M.; Sanders, D. B.; Kartaltepe, J. S.; Thompson, D.

    2010-05-01

    We quantify the importance of the mechanical energy released by radio galaxies inside galaxy groups. We use scaling relations to estimate the mechanical energy released by 16 radio-active galactic nuclei located inside X-ray-detected galaxy groups in the COSMOS field. By comparing this energy output to the host groups' gravitational binding energy, we find that radio galaxies produce sufficient energy to unbind a significant fraction of the intragroup medium. This unbinding effect is negligible in massive galaxy clusters with deeper potential wells. Our results correctly reproduce the breaking of self-similarity observed in the scaling relation between entropy and temperature for galaxy groups.

  12. SPIDERS: the spectroscopic follow-up of X-ray selected clusters of galaxies in SDSS-IV

    NASA Astrophysics Data System (ADS)

    Clerc, N.; Merloni, A.; Zhang, Y.-Y.; Finoguenov, A.; Dwelly, T.; Nandra, K.; Collins, C.; Dawson, K.; Kneib, J.-P.; Rozo, E.; Rykoff, E.; Sadibekova, T.; Brownstein, J.; Lin, Y.-T.; Ridl, J.; Salvato, M.; Schwope, A.; Steinmetz, M.; Seo, H.-J.; Tinker, J.

    2016-09-01

    SPIDERS (The SPectroscopic IDentification of eROSITA Sources) is a program dedicated to the homogeneous and complete spectroscopic follow-up of X-ray AGN and galaxy clusters over a large area (˜7500 deg2) of the extragalactic sky. SPIDERS is part of the SDSS-IV project, together with the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) and the Time-Domain Spectroscopic Survey (TDSS). This paper describes the largest project within SPIDERS before the launch of eROSITA: an optical spectroscopic survey of X-ray selected, massive (˜1014 to 1015~M⊙) galaxy clusters discovered in ROSAT and XMM-Newton imaging. The immediate aim is to determine precise (Δz ˜ 0.001) redshifts for 4,000-5,000 of these systems out to z ˜ 0.6. The scientific goal of the program is precision cosmology, using clusters as probes of large-scale structure in the expanding Universe. We present the cluster samples, target selection algorithms and observation strategies. We demonstrate the efficiency of selecting targets using a combination of SDSS imaging data, a robust red-sequence finder and a dedicated prioritization scheme. We describe a set of algorithms and work-flow developed to collate spectra and assign cluster membership, and to deliver catalogues of spectroscopically confirmed clusters. We discuss the relevance of line-of-sight velocity dispersion estimators for the richer systems. We illustrate our techniques by constructing a catalogue of 230 spectroscopically validated clusters (0.031 < z < 0.658), found in pilot observations. We discuss two potential science applications of the SPIDERS sample: the study of the X-ray luminosity-velocity dispersion (LX - σ) relation and the building of stacked phase-space diagrams.

  13. SEARCH FOR GAMMA-RAY EMISSION FROM X-RAY-SELECTED SEYFERT GALAXIES WITH FERMI-LAT

    SciTech Connect

    Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Ballet, J.; Bastieri, D.; Buson, S.; Bonamente, E.; Brigida, M.; Bruel, P.; and others

    2012-03-10

    We report on a systematic investigation of the {gamma}-ray properties of 120 hard X-ray-selected Seyfert galaxies classified as 'radio-quiet' objects, utilizing the three-year accumulation of Fermi Large Area Telescope (LAT) data. Our sample of Seyfert galaxies is selected using the Swift Burst Alert Telescope 58 month catalog, restricting the analysis to the bright sources with average hard X-ray fluxes F{sub 14-195keV} {>=} 2.5 Multiplication-Sign 10{sup -11} erg cm{sup -2} s{sup -1} at high Galactic latitudes (|b| > 10 Degree-Sign ). In order to remove 'radio-loud' objects from the sample, we use the 'hard X-ray radio loudness parameter', R{sub rX}, defined as the ratio of the total 1.4 GHz radio to 14-195 keV hard X-ray energy fluxes. Among 120 X-ray bright Seyfert galaxies with R{sub rX} <10{sup -4}, we did not find a statistically significant {gamma}-ray excess (TS > 25) positionally coincident with any target Seyferts, with possible exceptions of ESO 323-G077 and NGC 6814. The mean value of the 95% confidence level {gamma}-ray upper limit for the integrated photon flux above 100 MeV from the analyzed Seyferts is {approx_equal} 4 Multiplication-Sign 10{sup -9} photons cm{sup -2} s{sup -1} , and the upper limits derived for several objects reach {approx_equal} 1 Multiplication-Sign 10{sup -9} photons cm{sup -2} s{sup -1} . Our results indicate that no prominent {gamma}-ray emission component related to active galactic nucleus activity is present in the spectra of Seyferts around GeV energies. The Fermi-LAT upper limits derived for our sample probe the ratio of {gamma}-ray to X-ray luminosities L{sub {gamma}}/L{sub X} < 0.1, and even <0.01 in some cases. The obtained results impose novel constraints on the models for high-energy radiation of 'radio-quiet' Seyfert galaxies.

  14. Narrow-line X-Ray-selected Galaxies in the Chandra-COSMOS Field. II. Optically Elusive X-Ray AGNs

    NASA Astrophysics Data System (ADS)

    Pons, E.; Elvis, M.; Civano, F.; Watson, M. G.

    2016-06-01

    In the Chandra-COSMOS (C-COSMOS) survey, we have looked for X-ray-selected active galactic nuclei (AGNs), which are not detected as such in the optical, the so-called elusive AGNs. A previous study based on XMM-Newton and Sloan Digital Sky Survey observations has found a sample of 31 X-ray AGNs optically misclassified as star-forming (SF) galaxies at z\\lt 0.4, including 17 elusive Sy2s. Using Chandra observations provides a sample of fainter X-ray sources and so, for a given X-ray luminosity, extends to higher redshifts. To study the elusive Sy2s in the C-COSMOS field, we have removed the NLS1s that contaminate the narrow-line sample. Surprisingly, the contribution of NLS1s is much lower in the C-COSMOS sample (less than 10% of the optically misclassified X-ray AGNs) than in Pons & Watson. The optical misclassification of the X-ray AGNs ({L}{{X}}\\gt {10}42 {erg} {{{s}}}-1) can be explained by the intrinsic weakness of these AGNs, in addition to, in some cases, optical dilution by the host galaxies. Interestingly, we found the fraction of elusive Sy2s (narrow emission-line objects) optically misclassified as SF galaxies up to z∼ 1.4 to be 10% ± 3% to 17% ± 4%, compared to the 6% ± 1.5% of the Pons & Watson work (up to z∼ 0.4). This result seems to indicate an evolution with redshift of the number of elusive Sy2s.

  15. The mean star formation rate of X-ray selected active galaxies and its evolution from z ~ 2.5: results from PEP-Herschel

    NASA Astrophysics Data System (ADS)

    Rosario, D. J.; Santini, P.; Lutz, D.; Shao, L.; Maiolino, R.; Alexander, D. M.; Altieri, B.; Andreani, P.; Aussel, H.; Bauer, F. E.; Berta, S.; Bongiovanni, A.; Brandt, W. N.; Brusa, M.; Cepa, J.; Cimatti, A.; Cox, T. J.; Daddi, E.; Elbaz, D.; Fontana, A.; Förster Schreiber, N. M.; Genzel, R.; Grazian, A.; Le Floch, E.; Magnelli, B.; Mainieri, V.; Netzer, H.; Nordon, R.; Pérez Garcia, I.; Poglitsch, A.; Popesso, P.; Pozzi, F.; Riguccini, L.; Rodighiero, G.; Salvato, M.; Sanchez-Portal, M.; Sturm, E.; Tacconi, L. J.; Valtchanov, I.; Wuyts, S.

    2012-09-01

    We study relationships between star-formation rate (SFR) and the accretion luminosity and nuclear obscuration of X-ray selected active galactic nuclei (AGNs) using a combination of deep far-infrared (FIR) and X-ray data in three key extragalactic survey fields (GOODS-South, GOODS-North and COSMOS), as part of the PACS Evolutionary Probe (PEP) program. The use of three fields with differing areas and depths enables us to explore trends between the global FIR luminosity of the AGN hosts and the luminosity of the active nucleus across 4.5 orders of magnitude in AGN luminosity (LAGN) and spanning redshifts from the Local Universe to z = 2.5. Using imaging from the Herschel/PACS instrument in 2-3 bands, we combine FIR detections and stacks of undetected objects to arrive at mean fluxes for subsamples in bins of redshift and X-ray luminosity. We constrain the importance of AGN-heated dust emission in the FIR and confirm that the majority of the FIR emission of AGNs is produced by cold dust heated by star-formation in their host galaxies. We uncover characteristic trends between the mean FIR luminosity (L60) and accretion luminosity of AGNs, which depend both on LAGN and redshift. At low AGN luminosities, accretion and SFR are uncorrelated at all redshifts, consistent with a scenario where most low-luminosity AGNs are primarily fueled by secular processes in their host galaxies. At high AGN luminosities, a significant correlation is observed between L60 and LAGN, but only among AGNs at low and moderate redshifts (z < 1). We interpret this observation as a sign of the increasing importance of major-mergers in driving both the growth of super-massive black holes (SMBHs) and global star-formation in their hosts at high AGN luminosities. We also find evidence that the enhancement of SFR in luminous AGNs weakens or disappears at high redshifts (z > 1) suggesting that the role of mergers is less important at these epochs. At all redshifts, we find essentially no relationship

  16. Spectral clustering for optical confirmation and redshift estimation of X-ray selected galaxy cluster candidates in the SDSS Stripe 82

    NASA Astrophysics Data System (ADS)

    Mahmoud, E.; Takey, A.; Shoukry, A.

    2016-07-01

    We develop a galaxy cluster finding algorithm based on spectral clustering technique to identify optical counterparts and estimate optical redshifts for X-ray selected cluster candidates. As an application, we run our algorithm on a sample of X-ray cluster candidates selected from the third XMM-Newton serendipitous source catalog (3XMM-DR5) that are located in the Stripe 82 of the Sloan Digital Sky Survey (SDSS). Our method works on galaxies described in the color-magnitude feature space. We begin by examining 45 galaxy clusters with published spectroscopic redshifts in the range of 0.1-0.8 with a median of 0.36. As a result, we are able to identify their optical counterparts and estimate their photometric redshifts, which have a typical accuracy of 0.025 and agree with the published ones. Then, we investigate another 40 X-ray cluster candidates (from the same cluster survey) with no redshift information in the literature and found that 12 candidates are considered as galaxy clusters in the redshift range from 0.29 to 0.76 with a median of 0.57. These systems are newly discovered clusters in X-rays and optical data. Among them 7 clusters have spectroscopic redshifts for at least one member galaxy.

  17. The EMSS catalog of X-ray-selected clusters of galaxies. 1: An atlas of CCD images of 41 distant clusters

    NASA Technical Reports Server (NTRS)

    Gioia, I. M.; Luppino, G. A.

    1994-01-01

    An atlas of deep, wide-field R-band charge coupled device (CCD) images of a complete sample of distant, X-ray-selected clusters of galaxies is presented. These clusters are the 41 most distant (z is greater than or equal to 0.15) and most X-ray-luminous (L(sub x) is greater than or equal to 2 x 10(exp 44) ergs/s) clusters in the Einstein Observatory Extended Medium Sensitivity Survey (EMSS) catalog that are observable from Mauna Kea (delta is greater than -40 deg). The sample spans a redshift range of 0.15 is less than or equal to z is less than or equal to 0.81 and includes at least two and possibly as many as six rich clusters with z is greater than 0.5. For the most part, the data are of superior quality, with a median seeing of 0.8 sec full width half-maximum (FWHM) and coverage of at least 1 Mpc x 1 Mpc in the cluster frame (H(sub 0) = 50; q(sub 0) = 1/2). In addition, we update the available optical, X-ray, and radio data on the entire EMSS sample of 104 clusters. We outline the cluster selection criteria in detail and emphasize that X-ray-selected cluster samples may prove to be more useful for cosmological studies than optically selected samples. The EMSS cluster sample in particular can be exploited for diverse cosmological investigations, as demonstrated by the detection of evolution in the X-ray luminosity function previously reported, and more recently by the discovery of a large number of gravitationally lensed images in these clusters.

  18. VizieR Online Data Catalog: PS1 MDS X-ray selected galaxy clusters (Ebeling+, 2013)

    NASA Astrophysics Data System (ADS)

    Ebeling, H.; Edge, A. C.; Burgett, W. S.; Chambers, K. C.; Hodapp, K. W.; Huber, M. E.; Kaiser, N.; Price, P. A.; Tonry, J. L.

    2014-11-01

    Our strategy for the identification of galaxy clusters at z>0.5 from these data sets is brute force: we select all X-ray sources listed in the RASS BSC and FSC that fall within our study area, and then examine PS1 images in the gP1, rP1, iP1 and zP1 bands in a 5x5arcmin2 region around the X-ray source position. Candidate clusters at intermediate to high redshift (z>~0.3) are readily identifiable as pronounced overdensities of faint, red galaxies. In order to prevent seemingly blank fields from erroneously being classified as potentially very distant clusters, we also query NASA Extragalactic Database (NED) for known celestial objects within 2-arcmin radius of the respective X-ray source, a process that eliminates large numbers of active galactic nuclei (AGN) and quasi-stellar objects (QSOs). (1 data file).

  19. Narrow-line X-Ray-selected Galaxies in the Chandra-COSMOS Field. I. Optical Spectroscopic Catalog

    NASA Astrophysics Data System (ADS)

    Pons, E.; Elvis, M.; Civano, F.; Watson, M. G.

    2016-04-01

    The COSMOS survey is a large and deep survey with multiwavelength observations of sources from X-rays to the UV, allowing an extensive study of their properties. The central 0.9 deg2 of the COSMOS field have been observed by Chandra with a sensitivity up to 1.9 × 10‑16 erg cm‑2 s‑1 in the full (0.5–10 keV) band. Photometric and spectroscopic identification of the Chandra-COSMOS (C-COSMOS) sources is available from several catalogs and campaigns. Despite the fact that the C-COSMOS galaxies have a reliable spectroscopic redshift in addition to a spectroscopic classification, the emission-line properties of this sample have not yet been measured. We present here the creation of an emission-line catalog of 453 narrow-line sources from the C-COSMOS spectroscopic sample. We have performed spectral fitting for the more common lines in galaxies ([O ii] λ3727, [Ne iii] λ3869, Hβ, [O iii] λλ4959, 5007, Hα, and [N ii] λλ6548, 6584). These data provide an optical classification for 151 (i.e., 33%) of the C-COSMOS narrow-line galaxies based on emission-line diagnostic diagrams.

  20. A Complete X-ray Selected Sample of Galaxy Clusters from the ROSAT North Ecliptic Pole Survey

    NASA Astrophysics Data System (ADS)

    Mullis, C. R.; Henry, J. P.; Gioia, I. M.

    1997-12-01

    We are using the ROSAT All-Sky Survey observations around the North Ecliptic Pole to construct a complete and unbiased sample of galaxy clusters in order to understand the nature of cluster evolution and determine implications for large scale structure models. Our database is unique in that it is both deep and contiguous. Here we give an update on the survey's progress and discuss a few particularly exciting results. Via optical follow-up, we have secured identifications for nearly 80% of the 465 X-ray sources in the survey area. The cluster sample now consists of 50 objects with redshifts approaching unity. Evidence for large scale structure exists at both low and high redshifts in the NEP survey. A low-z spike in the redshift distribution for NEP clusters is consistent with a previously known supercluster at 0.088. At the other extreme, we recently discovered a very distant cluster at z=0.813 which resembles a filament of galaxies. Such a massive, un-virialized cluster at high-z may be the vision quest of cosmic-web proponents. For this potential protocluster, we present a velocity dispersion analysis of its member galaxies from Keck II observations and a temperature measurement from ASCA data. We construct the cluster X-ray luminosity function at high redshifts, incorporating a rigorous treatment of our survey selection function, and compare it to previous work.

  1. Stellar mass to halo mass scaling relation for X-ray-selected low-mass galaxy clusters and groups out to redshift z ≈ 1

    NASA Astrophysics Data System (ADS)

    Chiu, I.; Saro, A.; Mohr, J.; Desai, S.; Bocquet, S.; Capasso, R.; Gangkofner, C.; Gupta, N.; Liu, J.

    2016-05-01

    We present the stellar mass-halo mass scaling relation for 46 X-ray-selected low-mass clusters or groups detected in the XMM-Newton-Blanco Cosmology Survey (XMM-BCS) survey with masses 2 × 1013 M⊙ ≲ M500 ≲ 2.5 × 1014 M⊙ (median mass 8 × 1013 M⊙) at redshift 0.1 ≤ z ≤ 1.02 (median redshift 0.47). The cluster binding masses M500 are inferred from the measured X-ray luminosities LX, while the stellar masses M⋆ of the galaxy populations are estimated using near-infrared (NIR) imaging from the South Pole Telescope Deep Field survey and optical imaging from the BCS survey. With the measured LX and stellar mass M⋆, we determine the best-fitting stellar mass-halo mass relation, accounting for selection effects, measurement uncertainties and the intrinsic scatter in the scaling relation. The resulting mass trend is M_{star }∝ M_{500}^{0.69± 0.15}, the intrinsic (lognormal) scatter is σ _{ln M_{star }|M_{500}}=0.36^{+0.07}_{-0.06}, and there is no significant redshift trend M⋆ ∝ (1 + z)-0.04 ± 0.47, although the uncertainties are still large. We also examine M⋆ within a fixed projected radius of 0.5 Mpc, showing that it provides a cluster binding mass proxy with intrinsic scatter of ≈93 per cent (1σ in M500). We compare our M⋆ = M⋆(M500, z) scaling relation from the XMM-BCS clusters with samples of massive, Sunyaev-Zel'dovich Effect selected clusters (M500 ≈ 6 × 1014 M⊙) and low-mass NIR-selected clusters (M500 ≈ 1014 M⊙) at redshift 0.6 ≲ z ≲ 1.3. After correcting for the known mass measurement systematics in the compared samples, we find that the scaling relation is in good agreement with the high-redshift samples, suggesting that for both groups and clusters the stellar content of the galaxy populations within R500 depends strongly on mass but only weakly on redshift out to z ≈ 1.

  2. A Multi-Wavelength Photometric Census of AGN and Star Formation Activity in the Brightest Cluster Galaxies of X-ray Selected Clusters

    NASA Astrophysics Data System (ADS)

    Green, T. S.; Edge, A. C.; Stott, J. P.; Ebeling, H.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Metcalfe, N.; Kaiser, N.; Wainscoat, R. J.; Waters, C.

    2016-06-01

    Despite their reputation as being "red and dead", the unique environment inhabited by Brightest Cluster Galaxies (BCGs) can often lead to a self-regulated feedback cycle between radiatively cooling intracluster gas and star formation and AGN activity in the BCG. However the prevalence of "active" BCGs, and details of the feedback involved, are still uncertain. We have performed an optical, UV and Mid-IR photometric analysis of the BCGs in 981 clusters at 0.03 < z < 0.5, selected from the ROSAT All Sky Survey. Using Pan-STARRS PS1 3π, GALEX and WISE survey data we look for BCGs with photometric colours which deviate from that of the bulk population of passive BCGs - indicative of AGN and/or star formation activity within the BCG. We find that whilst the majority of BCGs are consistent with being passive, at least 14% of our BCGs show a significant colour offset from passivity in at least one colour index. And, where available, supplementary spectroscopy reveals the majority of these particular BCGs show strong optical emission lines. On comparing BCG "activity" with the X-ray luminosity of the host cluster, we find that BCGs showing a colour offset are preferentially found in the more X-ray luminous clusters, indicative of the connection between BCG "activity" and the intracluster medium.

  3. A multiwavelength photometric census of AGN and star formation activity in the brightest cluster galaxies of X-ray selected clusters

    NASA Astrophysics Data System (ADS)

    Green, T. S.; Edge, A. C.; Stott, J. P.; Ebeling, H.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Metcalfe, N.; Kaiser, N.; Wainscoat, R. J.; Waters, C.

    2016-09-01

    Despite their reputation as being `red and dead', the unique environment inhabited by brightest cluster galaxies (BCGs) can often lead to a self-regulated feedback cycle between radiatively cooling intracluster gas and star formation and active galactic nucleus (AGN) activity in the BCG. However the prevalence of `active' BCGs, and details of the feedback involved, are still uncertain. We have performed an optical, UV and mid-IR photometric analysis of the BCGs in 981 clusters at 0.03 < z < 0.5, selected from the ROSAT All Sky Survey. Using Pan-STARRS PS1 3π, GALEX and WISE survey data we look for BCGs with photometric colours which deviate from that of the bulk population of passive BCGs - indicative of AGN and/or star formation activity within the BCG. We find that whilst the majority of BCGs are consistent with being passive, at least 14 per cent of our BCGs show a significant colour offset from passivity in at least one colour index. And, where available, supplementary spectroscopy reveals the majority of these particular BCGs show strong optical emission lines. On comparing BCG `activity' with the X-ray luminosity of the host cluster, we find that BCGs showing a colour offset are preferentially found in the more X-ray luminous clusters, indicative of the connection between BCG `activity' and the intracluster medium.

  4. The XMM-BCS galaxy cluster survey: I. The X-ray selected cluster catalog from the initial 6 deg$^2$

    SciTech Connect

    Suhada, R.; Song, J.; Bohringer, H.; Mohr, J.J.; Chon, G.; Finoguenov, A.; Fassbender, R.; Desai, S.; Armstrong, R.; Zenteno, A.; Barkhouse, W.A.; /North Dakota U. /Paris, Inst. Astrophys.

    2011-11-01

    The XMM-Newton - Blanco Cosmology Survey project (XMM-BCS) is a coordinated X-ray, optical and mid-infrared cluster survey in a field also covered by Sunyaev-Zel dovich effect (SZE) surveys by the South Pole Telescope and the Atacama Cosmology Telescope. The aim of the project is to study the cluster population in a 14 deg{sup 2} field (center: {alpha} {approx} 23:29:18.4, {delta} {approx} -54:40:33.6). The uniform multi-wavelength coverage will also allow us for the first time to comprehensively compare the selection function of the different cluster detection approaches in a single test field and perform a cross-calibration of cluster scaling relations. In this work, we present a catalog of 46 X-ray selected clusters from the initial 6 deg{sup 2} survey core.We describe the XMM-BCS source detection pipeline and derive physical properties of the clusters. We provide photometric redshift estimates derived from the BCS imaging data and spectroscopic redshift measurements for a low redshift subset of the clusters. The photometric redshift estimates are found to be unbiased and in good agreement with the spectroscopic values. Our multi-wavelength approach gives us a comprehensive look at the cluster and group population up to redshifts z {approx} 1. The median redshift of the sample is 0.47 and the median mass M{sub 500} {approx} 1 x 10{sup 14} M{sub {circle_dot}} ({approx} 2 keV). From the sample, we derive the cluster log N - log S using an approximation to the survey selection function and find it in good agreement with previous studies. We compare optical mass estimates from the Southern Cosmology Survey available for part of our cluster sample with our estimates derived from the X-ray luminosity. Weak lensing masses available for a subset of the cluster sample are in agreement with our estimates. Optical masses based on cluster richness and total optical luminosity are found to be significantly higher than the X-ray values. The present results illustrate the

  5. Analysis of Sunyaev-Zel'dovich effect mass-observable relations using South Pole Telescope observations of an X-ray selected sample of low-mass galaxy clusters and groups

    SciTech Connect

    Liu, J.; Mohr, J.; Saro, A.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Foley, R. J.; Gangkofner, D.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Hennig, C.; Hlavacek-Larrondo, J.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Jones, C.; Keisler, R.; Lee, A. T.; Leitch, E. M.; Lueker, M.; Luong-Van, D.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L.; Murray, S. S.; Padin, S.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruel, J.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Spieler, H. G.; Stalder, B.; Staniszewski, Z.; Stark, A. A.; Story, K.;  uhada, R.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zahn, O.; Zenteno, A.

    2015-02-25

    We use microwave observations from the South Pole Telescope (SPT) to examine the Sunyaev–Zel'dovich effect (SZE) signatures of a sample of 46 X-ray selected groups and clusters drawn from ~6 deg2 of the XMM–Newton Blanco Cosmology Survey. These systems extend to redshift z = 1.02 and probe the SZE signal to the lowest X-ray luminosities (≥1042 erg s-1) yet; these sample characteristics make this analysis complementary to previous studies. We develop an analysis tool, using X-ray luminosity as a mass proxy, to extract selection-bias-corrected constraints on the SZE significance and Y_500 mass relations. The former is in good agreement with an extrapolation of the relation obtained from high-mass clusters. However, the latter, at low masses, while in good agreement with the extrapolation from the high-mass SPT clusters, is in tension at 2.8σ with the Planck constraints, indicating the low-mass systems exhibit lower SZE signatures in the SPT data. We also present an analysis of potential sources of contamination. For the radio galaxy point source population, we find 18 of our systems have 843 MHz Sydney University Molonglo Sky Survey sources within 2 arcmin of the X-ray centre, and three of these are also detected at significance >4 by SPT. Of these three, two are associated with the group brightest cluster galaxies, and the third is likely an unassociated quasar candidate. We examine the impact of these point sources on our SZE scaling relation analyses and find no evidence of biases. We also examine the impact of dusty galaxies using constraints from the 220 GHz data. The stacked sample provides 2.8σ significant evidence of dusty galaxy flux, which would correspond to an average underestimate of the SPT Y_500 signal that is (17 ± 9)per cent in this sample of low-mass systems. Finally, we explore the impact of future data from SPTpol and XMM-XXL, showing that it will lead to a factor of 4 to 5 tighter constraints on

  6. Analysis of Sunyaev-Zel'dovich effect mass-observable relations using South Pole Telescope observations of an X-ray selected sample of low-mass galaxy clusters and groups

    NASA Astrophysics Data System (ADS)

    Liu, J.; Mohr, J.; Saro, A.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Foley, R. J.; Gangkofner, D.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Hennig, C.; Hlavacek-Larrondo, J.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Jones, C.; Keisler, R.; Lee, A. T.; Leitch, E. M.; Lueker, M.; Luong-Van, D.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L.; Murray, S. S.; Padin, S.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruel, J.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Spieler, H. G.; Stalder, B.; Staniszewski, Z.; Stark, A. A.; Story, K.; Šuhada, R.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zahn, O.; Zenteno, A.

    2015-04-01

    We use microwave observations from the South Pole Telescope (SPT) to examine the Sunyaev-Zel'dovich effect (SZE) signatures of a sample of 46 X-ray selected groups and clusters drawn from ˜6 deg2 of the XMM-Newton Blanco Cosmology Survey. These systems extend to redshift z = 1.02 and probe the SZE signal to the lowest X-ray luminosities (≥1042 erg s-1) yet; these sample characteristics make this analysis complementary to previous studies. We develop an analysis tool, using X-ray luminosity as a mass proxy, to extract selection-bias-corrected constraints on the SZE significance and Y500 mass relations. The former is in good agreement with an extrapolation of the relation obtained from high-mass clusters. However, the latter, at low masses, while in good agreement with the extrapolation from the high-mass SPT clusters, is in tension at 2.8σ with the Planck constraints, indicating the low-mass systems exhibit lower SZE signatures in the SPT data. We also present an analysis of potential sources of contamination. For the radio galaxy point source population, we find 18 of our systems have 843 MHz Sydney University Molonglo Sky Survey sources within 2 arcmin of the X-ray centre, and three of these are also detected at significance >4 by SPT. Of these three, two are associated with the group brightest cluster galaxies, and the third is likely an unassociated quasar candidate. We examine the impact of these point sources on our SZE scaling relation analyses and find no evidence of biases. We also examine the impact of dusty galaxies using constraints from the 220 GHz data. The stacked sample provides 2.8σ significant evidence of dusty galaxy flux, which would correspond to an average underestimate of the SPT Y500 signal that is (17 ± 9) per cent in this sample of low-mass systems. Finally, we explore the impact of future data from SPTpol and XMM-XXL, showing that it will lead to a factor of 4 to 5 tighter constraints on these SZE mass-observable relations.

  7. X-ray selected AGN in a Merging Cluster Environment

    NASA Astrophysics Data System (ADS)

    Norman, Dara; Coldwell, Georgina; Soechting, Ilona

    2010-08-01

    Although a general understanding of the overall AGN population is being addressed by optical large area surveys, a complete picture of cluster AGN is hampered by survey biases and a lack of information about AGN environments where we can trace cluster interactions. Optically selected AGN are under-represented in cluster environments due to color selection criteria insensitive to red and dusty sources. X-ray selection of AGN can overcome this bias. Hierarchical simulations suggest the gravitational processes which govern the evolution of clusters also have a role in AGN triggering, and AGN feedback is critically important to galaxy evolution. Confirmation of models requires comparisons not just of the cluster galaxy population, but also of the distributions of AGN in clusters especially forming clusters, which are not fully identified in surveys. Weak lensing cluster selection can overcome this bias. We propose to obtain GMOS-S spectra for a sample of 23 X-ray selected , optically faint (20 with R>20.3) AGN cluster candidates in an X-ray cluster discovered by its weak lensing shear signal. This cluster is unique in the large number of 1) X-ray AGN candidates identified in its environment and 2) X-ray sub-clusters identified. We require redshift data to identify AGN cluster members.

  8. A Sub-Arcsecond Mid-Infrared Survey of X-Ray-Selected AGN

    NASA Astrophysics Data System (ADS)

    Levenson, N. A.; Alonso-Herrero, A.; Packham, Chris; Los Piratas AGN Science Team

    2015-08-01

    Detailed studies of local active galactic nuclei (AGN) following X-ray selection yields significant measurements of the physical properties of the AGN and their host galaxies. In turn, the complete analysis of the nearby cases at high spatial resolution---to distinguish multiple physical components---and high signal-to-noise ratio informs broader surveys of more distant examples where such observations are not possible. We apply these methods in the Los Piratas survey, which emphasizes new observations at mid-infrared wavelengths obtained using CanariCam on the 10.4m Gran Telescopio Canarias. We measure intrinsic bolometric luminosity of the roughly 100 AGN in the sample using X-rays, ensuring a span of luminosity over a range of activity level (from low-ionization nuclei through Seyfert galaxies and quasars), optical type, and radio loudness. The mid-infrared observations at resolution of ~0.3arcsec correspond to typical spatial scales of 60 pc for the low-luminosity AGN and Seyferts and 400 pc for other types. We isolate the AGN emission that is reprocessed by dust in the central regions, which we model in a clumpy distribution. We distinguish this emission from the stellar contributions on larger scales. Across types, the AGN-heated dust emission is overall well-correlated with the X-ray flux, but stellar contributions can be significant on larger scales, especially at moderate AGN luminosity.

  9. A spectroscopic survey of X-ray-selected AGNs in the northern XMM-XXL field

    NASA Astrophysics Data System (ADS)

    Menzel, M.-L.; Merloni, A.; Georgakakis, A.; Salvato, M.; Aubourg, E.; Brandt, W. N.; Brusa, M.; Buchner, J.; Dwelly, T.; Nandra, K.; Pâris, I.; Petitjean, P.; Schwope, A.

    2016-03-01

    This paper presents a survey of X-ray-selected active galactic nuclei (AGNs) with optical spectroscopic follow-up in a ˜ 18 deg2 area of the equatorial XMM-XXL north field. A sample of 8445 point-like X-ray sources detected by XMM-Newton above a limiting flux of F_{0.5-10 keV} > 10^{-15} erg cm^{-2} s^{-1} was matched to optical (Sloan Digital Sky Survey, SDSS) and infrared (IR; WISE) counterparts. We followed up 3042 sources brighter than r = 22.5 mag with the SDSS Baryon Oscillation Spectroscopic Survey (BOSS) spectrograph. The spectra yielded a reliable redshift measurement for 2578 AGNs in the redshift range z = 0.02-5.0, with 0.5-2 keV luminosities ranging from 1039-1046 erg s- 1. This is currently the largest published spectroscopic sample of X-ray-selected AGNs in a contiguous area. The BOSS spectra of AGN candidates show a distribution of optical line widths which is clearly bimodal, allowing an efficient separation between broad- and narrow-emission line AGNs. The former dominate our sample (70 per cent) due to the relatively bright X-ray flux limit and the optical BOSS magnitude limit. We classify the narrow-emission line objects (22 per cent of the full sample) using standard optical emission line diagnostics: the majority have line ratios indicating the dominant source of ionization is the AGN. A small number (8 per cent of the full sample) exhibit the typical narrow line ratios of star-forming galaxies, or only have absorption lines in their spectra. We term the latter two classes `elusive' AGN, which would not be easy to identify correctly without their X-ray emission. We also compare X-ray (XMM-Newton), optical colour (SDSS) and and IR (WISE) AGN selections in this field. X-ray observations reveal, by far, the largest number of AGN. The overlap between the selections, which is a strong function of the imaging depth in a given band, is also remarkably small. We show using spectral stacking that a large fraction of the X-ray AGNs would not be

  10. RX J1759.4+6638: An x-ray selected quasars at a redshift of 4.320

    NASA Technical Reports Server (NTRS)

    Henry, J. P.; Gioia, I. M.; Boehringer, H.; Bower, R. G.; Briel, U. G.; Hasinger, G. H.; Aragon-Salamanca, A.; Castander, F. J.; Ellis, R. S.; Huchra, J. P.

    1994-01-01

    We report the discovery of an x-ray selected Quasi-Stellar Objects (QSO) at a redshift of 4.320 +/- 0.005. This is the most distant x-ray selected object known, and it is the eighth most distant QSO known. The properties of this QSO are very similar to other QSOs at redshifts greater than 4. The x-ray discovery of this object, and that of high redshift clusters of galaxies, shows that present x-ray surveys are reaching depths competitive with other methods.

  11. Optical variability of X-ray-selected QSOs

    NASA Astrophysics Data System (ADS)

    Pica, Andrew J.; Webb, James R.; Smith, Alex G.; Leacock, Robert J.; Bitran, Mauricio

    1987-08-01

    Photometric data for ten X-ray-selected quasistellar objects have been obtained from archival records of the Rosemary Hill Observatory. Reliable magnitudes were obtained for seven of the ten sources and six displayed optical variations significant at the 95 percent confidence level or greater. One source appeared to exhibit optically violent behavior. Light curves and photographic magnitudes are presented and discussed.

  12. Optical variability of X-ray-selected QSOs

    SciTech Connect

    Pica, A.J.; Webb, J.R.; Smith, A.G.; Leacock, R.J.; Bitran, M.

    1987-08-01

    Photometric data for ten X-ray-selected quasistellar objects have been obtained from archival records of the Rosemary Hill Observatory. Reliable magnitudes were obtained for seven of the ten sources and six displayed optical variations significant at the 95 percent confidence level or greater. One source appeared to exhibit optically violent behavior. Light curves and photographic magnitudes are presented and discussed. 22 references.

  13. Supernovae in paired host galaxies

    NASA Astrophysics Data System (ADS)

    Nazaryan, T. A.; Petrosian, A. R.; Hakobyan, A. A.; Adibekyan, V. Zh.; Kunth, D.; Mamon, G. A.; Turatto, M.; Aramyan, L. S.

    2014-12-01

    We investigate the influence of close neighbor galaxies on the properties of supernovae (SNe) and their host galaxies using 56 SNe located in pairs of galaxies with different levels of star formation (SF) and nuclear activity. The mean distance of type II SNe from nuclei of hosts is greater by about a factor of 2 than that of type Ibc SNe. For the first time it is shown that SNe Ibc are located in pairs with significantly smaller difference of radial velocities between components than pairs containing SNe Ia and II. We consider this as a result of higher star formation rate (SFR) of these closer systems of galaxies. SN types are not correlated with the luminosity ratio of host and neighbor galaxies in pairs. The orientation of SNe with respect to the preferred direction toward neighbor galaxy is found to be isotropic and independent of kinematical properties of the galaxy pair.

  14. The bulge-disc decomposition of AGN host galaxies

    NASA Astrophysics Data System (ADS)

    Bruce, V. A.; Dunlop, J. S.; Mortlock, A.; Kocevski, D. D.; McGrath, E. J.; Rosario, D. J.

    2016-05-01

    We present the results from a study of the morphologies of moderate luminosity X-ray-selected active galactic nuclei (AGN) host galaxies in comparison to a carefully mass-matched control sample at 0.5 < z < 3 in the CANDELS GOODS-S field. We apply a multiwavelength morphological decomposition analysis to these two samples and report on the differences between the morphologies as fitted from single Sérsic and multiple Sérsic models, and models which include an additional nuclear point-source component. Thus, we are able to compare the widely adopted single Sérsic fits from previous studies to the results from a full morphological decomposition, and address the issue of how biased the inferred properties of AGN hosts are by a potential nuclear contribution from the AGN itself. We find that the AGN hosts are indistinguishable from the general galaxy population except that beyond z ≃ 1.5 they have significantly higher bulge fractions. Even including nuclear sources in our modelling, the probability of this result arising by chance is ˜1 × 10-5, alleviating concerns that previous, purely single Sérsic, analyses of AGN hosts could have been spuriously biased towards higher bulge fractions. This data set also allows us to further probe the physical nature of these point-source components; we find no strong correlation between the point-source component and AGN activity. Our analysis of the bulge and disc fractions of these AGN hosts in comparison to a mass-matched control sample reveals a similar morphological evolutionary track for both the active and non-active populations, providing further evidence in favour of a model where AGN activity is triggered by secular processes.

  15. A spectral energy distribution analysis of AGN host galaxies in the Chandra-COSMOS Legacy Survey

    NASA Astrophysics Data System (ADS)

    Suh, Hyewon; Civano, Francesca M.; Hasinger, Guenther; Elvis, Martin; Marchesi, Stefano

    2015-01-01

    We present the host galaxy properties of a large sample of ~ 4000 X-ray selected Active Galactic Nuclei (AGN) in the Chandra COSMOS Legacy Survey to investigate the connection between BH accretion and host galaxy. The COSMOS Legacy survey reaching X-ray fluxes of 2x10-16 (cgs) in the 0.5-2 keV band, bridges the gap between large area shallow surveys and pencil beamed one. Making use of the existing multi-wavelength photometric data available for 96.6% of the sources, COSMOS Legacy survey provides a uniquely large sample to derive host galaxy properties for both obscured and unobscured sources. We perform a multi-component modeling from far-infrared (500 μm) when available to UV (1500 Å) using a 3-component fitting (nuclear hot dust, galaxy and starburst components) for obscured AGN and a 4-component fitting (nuclear hot dust, AGN big blue bump, galaxy, and starburst components) for unobscured AGN. Galaxy templates are from the stellar population synthesis models of Bruzual & Charlot (2003), nuclear hot dust templates are taken from Silva et al. (2004), and AGN big blue bump templates are from Richards et al. (2006). We use the column density information measured in the X-ray to constrain the AGN in the infrared band when available. Through detailed analysis of the broad-band spectral energy distribution, we derive the stellar masses and the star formation rates of the host galaxy as well as the nuclear and galaxy contribution at each frequency. We study the dependence of host galaxy properties on redshifts, luminosities, and black hole masses to infer the growth history of galaxies and black holes and we compare with a sample of inactive galaxies.

  16. A multi-wavelength survey of AGN in massive clusters: AGN distribution and host galaxy properties

    NASA Astrophysics Data System (ADS)

    Klesman, Alison J.; Sarajedini, Vicki L.

    2014-07-01

    We investigate the effect of environment on the presence and fuelling of active galactic nuclei (AGN) by identifying galaxies hosting AGN in massive galaxy clusters and the fields around them. We have identified AGN candidates via optical variability (178), X-ray emission (74), and mid-IR SEDs (64) in multi-wavelength surveys covering regions centred on 12 galaxy clusters at redshifts 0.5 < z < 0.9. In this paper, we present the radial distribution of AGN in clusters to examine how local environment affects the presence of an AGN and its host galaxy. While distributions vary from cluster to cluster, we find that the radial distribution of AGN generally differs from that of normal galaxies. X-ray-selected AGN candidates appear to be more centrally concentrated than normal galaxies in the inner 20 per cent of the virial radius, while becoming less centrally concentrated in the outer regions. Mid-IR-selected AGN are less centrally concentrated overall. Optical variables have a similar distribution to normal galaxies in the inner regions, then become somewhat less centrally concentrated farther from the cluster centre. The host galaxies of AGN reveal a different colour distribution than normal galaxies, with many AGN hosts displaying galaxy colours in the `green valley' between the red sequence and blue star-forming normal galaxies. This result is similar to those found in field galaxy studies. The colour distribution of AGN hosts is more pronounced in disturbed clusters where minor mergers, galaxy harassment, and interactions with cluster substructure may continue to prompt star formation in the hosts. Among normal galaxies, we find that galaxy colours become generally bluer with increasing cluster radius, as is expected. However, we find no relationship between host galaxy colour and cluster radius among AGN hosts, which may indicate that processes related to the accreting supermassive black hole have a greater impact on the star-forming properties of the host galaxy

  17. AGN and their host galaxies

    NASA Astrophysics Data System (ADS)

    Steinborn, L. K.; Dolag, K.; Hirschmann, M.; Remus, R.-S.; Teklu, A. F.

    2016-06-01

    Large scale cosmological hydrodynamic simulations are an important tool to study the co-evolution between black holes (BHs) and their host galaxies. However, in order to model the accretion onto BHs and AGN feedback we need sub-grid models which contain several free parameters. The choice of these parameters has a significant impact on the properties of the BHs and their host galaxies. Therefore, we improve the accretion model and the AGN feedback model based on both theory and observations to eliminate most free parameters. In that way, the slope of the observed relation between BH mass and stellar mass is reproduced self-consistently. We performed a few extremely large simulation runs as part of the Magneticum Pathfinder simulation set, combining a high resolution with very large cosmological volumes, enabling us to study for example dual AGN, the role of galaxy mergers and AGN clustering properties.

  18. Spectroscopic observations of X-ray selected late type stars

    NASA Technical Reports Server (NTRS)

    Takalo, L. O.

    1988-01-01

    A spectroscopic survey of nine X-ray selected late type stars was conducted. These stars are serendipitously discovered EINSTEIN X-ray sources, selected from two large x-ray surveys: the Columbia Astrophysical Laboratory survey (five stars) and the CFA Medium Sensitivity survey (four stars). Four of the Columbia survey stars were found to be short period binaries. The fifth was found to be an active single G dwarf. None of the Medium Sensitivity survey stars were found to be either binaries or active stars. Activity was measured by comparing the H-alpha and the CaII infrared triplet (8498, 8542) lines in these stars to the lines in inactive stars of similar spectral type. A correlation was found between the excess H-alpha lime emission and V sin(i) and between the excess H-alpha line emission and X-ray luminosity. No correlation was found between the infrared line emission and any other measured quantity.

  19. Black hole growth and starburst activity at z = 0.6-4 in the Chandra Deep Field South. Host galaxies properties of obscured AGN

    NASA Astrophysics Data System (ADS)

    Brusa, M.; Fiore, F.; Santini, P.; Grazian, A.; Comastri, A.; Zamorani, G.; Hasinger, G.; Merloni, A.; Civano, F.; Fontana, A.; Mainieri, V.

    2009-12-01

    Aims: The co-evolution of host galaxies and the active black holes which reside in their centre is one of the most important topics in modern observational cosmology. Here we present a study of the properties of obscured active galactic nuclei (AGN) detected in the CDFS 1 Ms observation and their host galaxies. Methods: We limited the analysis to the MUSIC area, for which deep K-band observations obtained with ISAAC@VLT are available, ensuring accurate identifications of the counterparts of the X-ray sources as well as reliable determination of photometric redshifts and galaxy parameters, such as stellar masses and star formation rates. In particular, we: 1) refined the X-ray/infrared/optical association of 179 sources in the MUSIC area detected in the Chandra observation; 2) studied the host galaxies observed and rest frame colors and properties. Results: We found that X-ray selected (LX ⪆ 1042 erg s-1) AGN show Spitzer colors consistent with both AGN and starburst dominated infrared continuum; the latter would not have been selected as AGN from infrared diagnostics. The host galaxies of X-ray selected obscured AGN are all massive (Mast > 1010 M_⊙) and, in 50% of the cases, are also actively forming stars (1/SSFR < tHubble) in dusty environments. The median L/LEdd value of the active nucleus is between 2% and 10% depending on the assumed MBH/Mast ratio. Finally, we found that the X-ray selected AGN fraction increases with the stellar mass up to a value of 30% at z > 1 and Mast > 3 × 1011 M_⊙, a fraction significantly higher than in the local Universe for AGN of similar luminosities. Tables [see full textsee full textsee full text] and [see full textsee full textsee full text] are only available in electronic form at http://www.aanda.org

  20. AGN host galaxy mass function in COSMOS. Is AGN feedback responsible for the mass-quenching of galaxies?

    NASA Astrophysics Data System (ADS)

    Bongiorno, A.; Schulze, A.; Merloni, A.; Zamorani, G.; Ilbert, O.; La Franca, F.; Peng, Y.; Piconcelli, E.; Mainieri, V.; Silverman, J. D.; Brusa, M.; Fiore, F.; Salvato, M.; Scoville, N.

    2016-04-01

    We investigate the role of supermassive black holes in the global context of galaxy evolution by measuring the host galaxy stellar mass function (HGMF) and the specific accretion rate, that is, λSAR, the distribution function (SARDF), up to z ~ 2.5 with ~1000 X-ray selected AGN from XMM-COSMOS. Using a maximum likelihood approach, we jointly fit the stellar mass function and specific accretion rate distribution function, with the X-ray luminosity function as an additional constraint. Our best-fit model characterizes the SARDF as a double power-law with mass-dependent but redshift-independent break, whose low λSAR slope flattens with increasing redshift while the normalization increases. This implies that for a given stellar mass, higher λSAR objects have a peak in their space density at earlier epoch than the lower λSAR objects, following and mimicking the well-known AGN cosmic downsizing as observed in the AGN luminosity function. The mass function of active galaxies is described by a Schechter function with an almost constant M∗⋆ and a low-mass slope α that flattens with redshift. Compared to the stellar mass function, we find that the HGMF has a similar shape and that up to log (M⋆/M⊙) ~ 11.5, the ratio of AGN host galaxies to star-forming galaxies is basically constant (~10%). Finally, the comparison of the AGN HGMF for different luminosity and specific accretion rate subclasses with a previously published phenomenological model prediction for the "transient" population, which are galaxies in the process of being mass-quenched, reveals that low-luminosity AGN do not appear to be able to contribute significantly to the quenching and that at least at high masses, that is, M⋆ > 1010.7 M⊙, feedback from luminous AGN (log Lbol ≳ 46 [erg/s]) may be responsible for the quenching of star formation in the host galaxy.

  1. CATALOG AND STATISTICAL STUDY OF X-RAY SELECTED BL LACERTAE OBJECTS

    SciTech Connect

    Kapanadze, Bidzina Z.

    2013-02-01

    This paper presents a catalog of 312 X-ray selected BL Lacerate objects (XBLs), optically identified through the end of 2011. It contains the names from different surveys, equatorial coordinates, redshifts, multifrequency flux values, and luminosities for each source. In addition, the different characteristics of XBLs are statistically investigated (redshift, radio/optical/X-ray luminosities, central black hole (BH) mass, synchrotron peak frequency, broadband spectral indices, optical flux variability). Their values are collected through an extensive bibliographic and database search or calculated by us. The redshifts range from 0.031 to 0.702 with a maximum of the distribution at z = 0.223. The 1.4 GHz luminosities of XBLs log {nu}L{sub {nu}} {approx} 39-42 erg s{sup -1} while optical V and X-ray 0.1-2.4 keV bands show log {nu}L{sub {nu}} {approx} 43-46 erg s{sup -1}. The XBL hosts are elliptical galaxies with effective radii r{sub eff} = 3.2625.40 kpc and ellipticities, in = 0.040.52. Their R-band absolute magnitudes M{sub R} range from -21.11 mag to -24.86 mag with a mean value of -22.83 mag. The V - R indices of the hosts span from 0.61 to 1.52 and reveal a fourth-degree polynomial relationship with z that enables us to evaluate the redshifts of five sources whose V - R indices were determined from the observations but whose irredshifts values are either not found or not confirmed. The XBL nuclei show a wider range of 7.31 mag for M{sub R} with the highest luminosity corresponding to M{sub R} = -27.24 mag. The masses of central BHs are found in the interval log M{sub BH} = 7.39-9.30 solar masses (with distribution maximum at log M{sub BH}/M{sub Sun} = 8.30). The synchrotron peak frequencies are spread over the range log {nu}{sub peak} = 14.56-19.18 Hz with a peak of the distribution at log {nu}{sub peak} = 16.60 Hz. The broadband radio-to-optical ({alpha}{sub ro}), optical-to-X-ray ({alpha}{sub ox}), and radio-to-X-ray ({alpha}{sub rx}) spectral indices are

  2. Discovery of low-redshift X-ray selected quasars - New clues to the QSO phenomenon

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Forman, W. R.; Steiner, J. E.; Canizares, C. R.; Mcclintock, J. E.

    1980-01-01

    The identification of six X-ray sources discovered by the Einstein Observatory with X-ray quasars is reported, and the properties of these X-ray selected quasars are discussed. The four high-latitude fields of 1 sq deg each in which the Einstein imaging proportional counter detected serendipitous X-ray sources at intermediate exposures of 10,000 sec were observed by 4-m and 1.5-m telescopes, and optical sources with uv excesses and emission line spectra typical of many low-redshift quasars and Seyfert 1 galaxies were found within the 1-arcsec error boxes of the X-ray sources. All six quasars identified were found to be radio quiet, with low redshift and relatively faint optical magnitudes, and to be similar in space density, colors and magnitude versus redshift relation to an optically selected sample at the same mean magnitude. X-ray luminosity was found to be well correlated with both continuum and broad-line emission luminosities for the known radio-quiet quasars and Seyfert 1 galaxies, and it was observed that the five objects with the lowest redshifts have very similar X-ray/optical luminosity ratios despite tenfold variations in X-ray luminosity. It is concluded that photoionization by a continuum extending to X-ray energies is the dominant excitation mechanism in radio-quiet quasars.

  3. Black Hole Growth and Host Galaxy Co-Evolution Over 8 Billion Years of Cosmic Time

    NASA Astrophysics Data System (ADS)

    Simmons, Brooke D.

    Although much progress has been made in the investigation of the co-evolution of black holes and galaxies, the nature of AGN accretion triggers and AGN-host feedback remain open questions. Using samples of hard X-ray selected, moderate-luminosity AGN and their host galaxies from 0.25 < z < 2.67 in the GOODS deep multi-wavelength survey fields, this thesis assesses the growth rates and histories of these black holes, and uses their host galaxy morphologies and colors to test the applicability of established quasar-triggering models to lower-powered AGN. The analysis includes simulations of over 50,000 AGN+host galaxy images to assess the reliability of AGN-host decomposition, as well as a new technique to separate the spectral energy distribution of an obscured AGN from its dominant host galaxy. Moderate-luminosity AGN span a range of growth rates but are typically in a phase of slow growth (with ≈ 80% of the sample growing at less than 10% of the Eddington limit) with relatively high black hole masses (≈ 75% of the sample has MBH > 5 × 107 M⊙ , implying that they must have been growing at higher rates in the past in order to grow to the masses we observe. Additionally, a significant fraction of the host galaxies of moderate-luminosity AGN are disk-dominated: at the highest redshifts of the sample more than half of the host galaxies have at least 80% of their optical light from a disk. A further one-quarter to one-third of the sample (depending on redshift) has a significant disk contribution, with a stronger, but likely not dominant, bulge. Because major mergers both form bulges and destroy disks, this result indicates that models requiring major mergers to trigger the growth of black holes do not describe the majority of AGN. The range of both black hole growth rates and host galaxy colors and morphologies in the sample imply that secular processes are important to the growth of moderate-luminosity AGN, which collectively comprise a substantial fraction of

  4. Integral field spectroscopy of QSO host galaxies

    NASA Astrophysics Data System (ADS)

    Jahnke, K.; Wisotzki, L.; Sánchez, S. F.; Christensen, L.; Becker, T.; Kelz, A.; Roth, M. M.

    2004-02-01

    We describe a project to study the state of the ISM in ˜20 low redshift (z<0.3) QSO host galaxies observed with the PMAS integral field spectrograph. We describe the development of the method to access the stellar and gas components of the spectrum without the strong nuclear emission, in order to access the host galaxy properties in the central region. It shows that integral field spectroscopy promises to be very efficient in studying the gas distribution and its velocity field, and also the spatially resolved stellar population in the host galaxies of luminous AGN.

  5. X-ray selected stars in HRC and BHRC catalogues

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Paronyan, G. M.

    2014-12-01

    A joint HRC/BHRC Catalogue has been created based on merging of Hamburg ROSAT Catalogue (HRC) and Byurakan Hamburg ROSAT Catalogue (BHRC). Both have been made by optical identifications of X-ray sources based on low-dispersion spectra of the Hamburg Quasar Survey (HQS) using ROSAT Catalogues. As a result, the largest sample of 8132 (5341+2791) optically identified X-ray sources was created having count rate (CR) of photons ≤ 0.04 ct/s in the area with galactic latitudes |b|≤ 20° and declinations d≤ 0°.There are 4253 AGN, 492 galaxies, 1800 stars and 1587 unknown objects in the sample. All stars have been found in GSC 2.3.2, as well as most of them are in GALEX, USNO-B1.0, 2MASS and WISE catalogues. In addition, 1429 are in SDSS DR9 and 204 have SDSS spectra. For these stars we have carried out spectral classification and along with the bright stars, many new cataclysmic variables (CV), white dwarfs (WD) and late-type stars (K-M and C) have been revealed. For all stars, statistical studies of their multiwavelength properties have been made. An attempt to find a connection between the radiation fluxes in different bands for different types of sources, and identify their characteristics was made as well.

  6. Tidal Disruption Events Prefer Unusual Host Galaxies

    NASA Astrophysics Data System (ADS)

    French, K. Decker; Arcavi, Iair; Zabludoff, Ann

    2016-02-01

    Tidal Disruption Events (TDEs) are transient events observed when a star passes close enough to a supermassive black hole to be tidally destroyed. Many TDE candidates have been discovered in host galaxies whose spectra have weak or no line emission yet strong Balmer line absorption, indicating a period of intense star formation that has recently ended. As such, TDE host galaxies fall into the rare class of quiescent Balmer-strong galaxies. Here, we quantify the fraction of galaxies in the Sloan Digital Sky Survey (SDSS) with spectral properties like those of TDE hosts, determining the extent to which TDEs are over-represented in such galaxies. Galaxies whose spectra have Balmer absorption {{H}}{δ }{{A}} - σ(H{δ }{{A}}) > 4 Å (where σ(H{δ }{{A}}) is the error in the Lick {{H}}{δ }{{A}} index) and Hα emission equivalent width (EW) < 3 Å have had a strong starburst in the last ˜Gyr. They represent 0.2% of the local galaxy population, yet host 3 of 8 (37.5%) optical/UV-selected TDE candidates. A broader cut, {{H}}{δ }{{A}}\\quad \\gt 1.31 Å and Hα EW < 3 Å, nets only 2.3% of SDSS galaxies, but 6 of 8 (75%) optical/UV TDE hosts. Thus, quiescent Balmer-strong galaxies are over-represented among the TDE hosts by a factor of 33-190. The high-energy-selected TDE Swift J1644 also lies in a galaxy with strong Balmer lines and weak Hα emission, implying a \\gt 80× enhancement in such hosts and providing an observational link between the γ/X-ray-bright and optical/UV-bright TDE classes.

  7. LATE-TIME RADIO EMISSION FROM X-RAY-SELECTED TIDAL DISRUPTION EVENTS

    SciTech Connect

    Bower, Geoffrey C.; Cenko, S. Bradley; Silverman, Jeffrey M.; Bloom, Joshua S.; Metzger, Brian D.

    2013-02-15

    We present new observations with the Karl G. Jansky Very Large Array of seven X-ray-selected tidal disruption events (TDEs). The radio observations were carried out between 9 and 22 years after the initial X-ray discovery, and thus probe the late-time formation of relativistic jets and jet interactions with the interstellar medium in these systems. We detect a compact radio source in the nucleus of the galaxy IC 3599 and a compact radio source that is a possible counterpart to RX J1420.4+5334. We find no radio counterparts for five other sources with flux density upper limits between 51 and 200 {mu}Jy (3{sigma}). If the detections truly represent late radio emission associated with a TDE, then our results suggest that a fraction, {approx}> 10%, of X-ray-detected TDEs are accompanied by relativistic jets. We explore several models for producing late radio emission, including interaction of the jet with gas in the circumnuclear environment (blast wave model), and emission from the core of the jet itself. Upper limits on the radio flux density from archival observations suggest that the jet formation may have been delayed for years after the TDE, possibly triggered by the accretion rate dropping below a critical threshold of {approx}10{sup -2}-10{sup -3} M-dot {sub Edd}. The non-detections are also consistent with this scenario; deeper radio observations can determine whether relativistic jets are present in these systems. The emission from RX J1420.4+5334 is also consistent with the predictions of the blast wave model; however, the radio emission from IC 3599 is substantially underluminous, and its spectral slope is too flat, relative to the blast wave model expectations. Future radio monitoring of IC 3599 and RX J1420.4+5334 will help to better constrain the nature of the jets in these systems.

  8. HST WFC3/IR Observations of Active Galactic Nucleus Host Galaxies at z ~ 2: Supermassive Black Holes Grow in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Schawinski, Kevin; Treister, Ezequiel; Urry, C. Megan; Cardamone, Carolin N.; Simmons, Brooke; Yi, Sukyoung K.

    2011-02-01

    We present the rest-frame optical morphologies of active galactic nucleus (AGN) host galaxies at 1.5 < z < 3, using near-infrared imaging from the Hubble Space Telescope Wide Field Camera 3, the first such study of AGN host galaxies at these redshifts. The AGNs are X-ray-selected from the Chandra Deep Field South and have typical luminosities of 1042 erg s-1host galaxies of these AGNs have low Sérsic indices indicative of disk-dominated light profiles, suggesting that secular processes govern a significant fraction of the cosmic growth of black holes. That is, many black holes in the present-day universe grew much of their mass in disk-dominated galaxies and not in early-type galaxies or major mergers. The properties of the AGN host galaxies are furthermore indistinguishable from their parent galaxy population and we find no strong evolution in either effective radii or morphological mix between z ~ 2 and z ~ 0.05. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Institute. STScI is operated by the association of Universities for Research in Astronomy, Inc., under the NASA contract NAS 5-26555.

  9. The Luminosity Function of QSO Host Galaxies

    NASA Technical Reports Server (NTRS)

    Hamilton, Timothy S.; Casertano, Stefano; Turnshek, David A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present some results from our HST archival image study of 71 QSO host galaxies. The objects are selected to have z less than or equal to 0.46 and total absolute magnitude M(sub v) less than or equal to -23 in our adopted cosmology (H(sub 0) = 50 kilometers per second Mpc(sup-1), q(sub 0) = 0.5, lambda = 0)). The aim of this initial study is to investigate the composition of the sample with respect to host morphology and radio loudness, as well as derive the QSO host galaxy luminosity function. We have analyzed available WFPC2 images in R or I band (U in one case), using a uniform set of procedures. The host galaxies span a narrow range of luminosities and are exceptionally bright, much more so than normal galaxies, usually L greater than L*(sub v). The QSOs are almost equally divided among three subclasses: radio-loud QSOs with elliptical hosts, radio-quiet QSOs with elliptical hosts, and radio-quiet QSOs with spiral hosts. Radio-loud QSOs with spiral hosts are extremely rare. Using a weighting procedure, we derive the combined luminosity function of QSO host galaxies. We find that the luminosity function of QSO hosts differs in shape from that of normal galaxies but that they coincide at the highest luminosities. The ratio of the number of quasar hosts to the number of normal galaxies at a luminosity L*(sub v) is R = (Lv/11.48L*(sub v))(sup 2.46), where L*(sub v) corresponds to M*(sub v)= -22.35, and a QSO is defined to be an object with total nuclear plus host light M(sub v) less than or equal to -23. This ratio can be interpreted as the probability that a galaxy with luminosity L(sub V) will host a QSO at redshift z approximately equal to 0.26.

  10. A Complete Sample of Supernova Host Galaxies

    NASA Astrophysics Data System (ADS)

    Quimby, Robert

    2011-01-01

    Traditionally, supernova surveys have drawn their samples by monitoring pre-selected lists of host galaxies. More recently, some surveys have made efforts to ignore host properties when selecting candidates, but because of limited resources they must usually add additional selection criteria, such as the color or light curve shape of the transient, in order to select the best targets for a specific study. Since 2004, we have conducted a search for supernovae that is designed to select targets irrespective of their host environment, and we have spectroscopic classifications for all of the new transients detected. Here we report on the host galaxies of first 72 supernovae detected by ROTSE-IIIb as part of the Texas Supernova Search and the ROTSE Supernova Verification Project. The supernova sample includes everything from perfectly normal Type Ia and Type II, to spectroscopically peculiar events, to several of the most luminous supernovae ever found. We compare multi-band photometry and spectroscopy of the host galaxy sample to the larger galaxy population. We cannot securely identify host galaxies brighter than -10 mag absolute for four of our discoveries, which suggests that these may be hostless, "tramp supernovae."

  11. The Swift GRB Host Galaxy Legacy Survey

    NASA Astrophysics Data System (ADS)

    Perley, Daniel A.

    2015-01-01

    I introduce the Swift Host Galaxy Legacy Survey (SHOALS), a comprehensive multiwavelength program to characterize the demographics of the GRB host population across its entire redshift range. Using unbiased selection criteria we have designated a subset of 130 Swift gamma-ray bursts which are now being targeted with intensive observational follow-up. Deep Spitzer imaging of every field has already been obtained and analyzed, with major programs ongoing at Keck, GTC, and Gemini to obtain complementary optical/NIR photometry to enable full SED modeling and derivation of fundamental physical parameters such as mass, extinction, and star-formation rate. Using these data I will present an unbiased measurement of the GRB host-galaxy luminosity and mass functions and their evolution with redshift between z=0 and z=5, compare GRB hosts to other star-forming galaxy populations, and discuss implications for the nature of the GRB progenitor and the ability of GRBs to probe cosmic star-formation.

  12. Supernovae without host galaxies?. Hypervelocity stars in foreign galaxies

    NASA Astrophysics Data System (ADS)

    Zinn, P.-C.; Grunden, P.; Bomans, D. J.

    2011-12-01

    Context. Harvesting the SAI supernova catalog, the most complete list of supernovae (SNe) currently available, we search for SNe that apparently do not occur within a distinct host galaxy but lie a great distance (several arcmin) apart from the host galaxy given in the catalog or even show no sign of an identifiable galaxy in their direct vicinity. Aims: We attempt to distinguish between two possible explanations of this host-lessness of a fraction of reported SNe, namely (i) that a host galaxy is too faint (of too low surface brightness) to be detected within the limits of currently available surveys (presumably a low surface brightness galaxy) or (ii) the progenitor of the SN is a hypervelocity star (HVS) that exploded kiloparsecs away from its host galaxy. Methods: We use deep imaging to test the first explanation. If no galaxy is identified within our detection limit of ~27 mag arcsec-2, which is the central surface brightness of the faintest known LSB galaxy so far, we discard this explanation and propose that the SN, after several other checks, had a hypervelocity star progenitor. We focus on observations for which this is the case and give lower limits to the actual space velocities of the progenitors, making them the first hypervelocity stars known in galaxies other than our own Milky Way. Results: Analyzing a selected subsample of five host-less SNe, we find one, SN 2006bx in UGC 5434, is a possible hypervelocity progenitor category with a high probability, exhibiting a projected velocity of ~800 km s-1. SN 1969L in NGC 1058 is most likely an example of a very extended star-forming disk visible only in the far-UV, but not in the optical wavebands. Therefore, this SN is clearly due to in situ star formation. This mechanism may also apply to two other SNe that we investigated (SN 1970L and SN 1997C), but this cannot be determined with certainty. Another SN, SN 2005 nc which is associated with a gamma-ray burst (GRB 050525), is a special case that is not

  13. The clustering amplitude of X-ray-selected AGN at z ˜ 0.8: evidence for a negative dependence on accretion luminosity

    NASA Astrophysics Data System (ADS)

    Mountrichas, G.; Georgakakis, A.; Menzel, M.-L.; Fanidakis, N.; Merloni, A.; Liu, Z.; Salvato, M.; Nandra, K.

    2016-04-01

    The northern tile of the wide-area and shallow XMM-XXL X-ray survey field is used to estimate the average dark matter halo mass of relatively luminous X-ray-selected active galactic nucleus (AGN) [log {L}_X (2-10 keV)= 43.6^{+0.4}_{-0.4} erg s^{-1}] in the redshift interval z = 0.5-1.2. Spectroscopic follow-up observations of X-ray sources in the XMM-XXL field by the Sloan telescope are combined with the VIMOS Public Extragalactic Redshift Survey spectroscopic galaxy survey to determine the cross-correlation signal between X-ray-selected AGN (total of 318) and galaxies (about 20 000). We model the large scales (2-25 Mpc) of the correlation function to infer a mean dark matter halo mass of log M / (M_{{⊙}} h^{-1}) = 12.50 ^{+0.22} _{-0.30} for the X-ray-selected AGN sample. This measurement is about 0.5 dex lower compared to estimates in the literature of the mean dark matter halo masses of moderate-luminosity X-ray AGN [LX(2-10 keV) ≈ 1042-1043 erg s- 1] at similar redshifts. Our analysis also links the mean clustering properties of moderate-luminosity AGN with those of powerful ultraviolet/optically selected QSOs, which are typically found in haloes with masses few times 1012 M⊙. There is therefore evidence for a negative luminosity dependence of the AGN clustering. This is consistent with suggestions that AGN have a broad dark matter halo mass distribution with a high mass tail that becomes subdominant at high accretion luminosities. We further show that our results are in qualitative agreement with semi-analytic models of galaxy and AGN evolution, which attribute the wide range of dark matter halo masses among the AGN population to different triggering mechanisms and/or black hole fuelling modes.

  14. Decreased specific star formation rates in AGN host galaxies

    NASA Astrophysics Data System (ADS)

    Shimizu, T. Taro; Mushotzky, Richard F.; Meléndez, Marcio; Koss, Michael; Rosario, David J.

    2015-09-01

    We investigate the location of an ultra-hard X-ray selected sample of active galactic nuclei (AGN) from the Swift Burst Alert Telescope (BAT) catalogue with respect to the main sequence (MS) of star-forming galaxies using Herschel-based measurements of the star formation rate (SFR) and M*'s from Sloan Digital Sky Survey photometry where the AGN contribution has been carefully removed. We construct the MS with galaxies from the Herschel Reference Survey and Herschel Stripe 82 Survey using the exact same methods to measure the SFR and M* as the Swift/BAT AGN. We find that a large fraction of the Swift/BAT AGN lie below the MS indicating decreased specific SFR (sSFR) compared to non-AGN galaxies. The Swift/BAT AGN are then compared to a high-mass galaxy sample (CO Legacy Database for GALEX Arecibo SDSS Survey, COLD GASS), where we find a similarity between the AGN in COLD GASS and the Swift/BAT AGN. Both samples of AGN lie firmly between star-forming galaxies on the MS and quiescent galaxies far below the MS. However, we find no relationship between the X-ray luminosity and distance from the MS. While the morphological distribution of the BAT AGN is more similar to star-forming galaxies, the sSFR of each morphology is more similar to the COLD GASS AGN. The merger fraction in the BAT AGN is much higher than the COLD GASS AGN and star-forming galaxies and is related to distance from the MS. These results support a model in which bright AGN tend to be in high-mass star-forming galaxies in the process of quenching which eventually starves the supermassive black hole itself.

  15. Tidal Disruption Events Prefer Unusual Host Galaxies

    NASA Astrophysics Data System (ADS)

    Arcavi, Iair; French, K. Decker; Zabludoff, Ann I.

    2016-06-01

    A star passing close to a supermassive black hole (SMBH) can be torn apart in a Tidal Disruption Events (TDE). TDEs that are accompanied by observable flares are now being discovered in transient surveys and are revealing the presence and the properties of otherwise-quiescent SMBHs. Recently, it was discovered that TDEs show a strong preference for rare post-starburst galaxies, (i.e. galaxies that have undergone intense star formation but are no longer forming stars today). We quantify this preference and find that TDEs are approximately 30-200 times more likely to occur in post-starburst hosts (compared to the general SDSS galaxy population), with the enhancement factor depending on the star formation history of the galaxy. This surprising host-galaxy preference connects the until-now disparate TDE subclasses of UV/optical-dominated TDEs and X-ray-dominated TDEs, and serves as the basis for TDE-targeted transient surveys. Post-starburst galaxies may be post-mergers, with binary SMBH systems that are still spiraling in. Such systems could enhance the TDE rate, but it is not yet clear if models can quantitatively reproduce the observed enhancement. Alternative explanations for enhanced TDE rate in post-starbursts include non-spherical post-merger central potentials and enhanced rates of giant stars.

  16. Studies of an x ray selected sample of cataclysmic variables. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Silber, Andrew D.

    1986-01-01

    Just prior to the thesis research, an all-sky survey in hard x rays with the HEAO-1 satellite and further observations in the optical resulted in a catalog of about 700 x-ray sources with known optical counterparts. This sample includes 43 cataclysmic variables, which are binaries consisting of a detached white-dwarf and a Roche lobe filling companion star. This thesis consists of studies of the x-ray selected sample of catalcysmic variables.

  17. HOST GALAXIES AS GAMMA-RAY BURST DISTANCE INDICATORS

    SciTech Connect

    D. BAND; ET AL

    2001-01-01

    We calculate the distributions of the total burst energy, the peak luminosity and the X-ray afterglow energy using burst observations and distances to the associated host galaxies. To expand the sample, we include redshift estimates for host galaxies without spectroscopic redshifts. The methodology requires a model of the host galaxy population; we find that in the best model the burst rate is proportional to the host galaxy luminosity at the time of the burst.

  18. Enhanced star formation rates in AGN hosts with respect to inactive galaxies from PEP-Herschel observations

    NASA Astrophysics Data System (ADS)

    Santini, P.; Rosario, D. J.; Shao, L.; Lutz, D.; Maiolino, R.; Alexander, D. M.; Altieri, B.; Andreani, P.; Aussel, H.; Bauer, F. E.; Berta, S.; Bongiovanni, A.; Brandt, W. N.; Brusa, M.; Cepa, J.; Cimatti, A.; Daddi, E.; Elbaz, D.; Fontana, A.; Förster Schreiber, N. M.; Genzel, R.; Grazian, A.; Le Floc'h, E.; Magnelli, B.; Mainieri, V.; Nordon, R.; Pérez Garcia, A. M.; Poglitsch, A.; Popesso, P.; Pozzi, F.; Riguccini, L.; Rodighiero, G.; Salvato, M.; Sanchez-Portal, M.; Sturm, E.; Tacconi, L. J.; Valtchanov, I.; Wuyts, S.

    2012-04-01

    We compare the average star formation (SF) activity in X-ray selected AGN hosts with a mass-matched control sample of inactive galaxies, including both star forming and quiescent sources, in the 0.5 < z < 2.5 redshift range. Recent observations carried out by PACS, the 60-210 μm photometric camera on board the Herschel Space Observatory, in GOODS-S, GOODS-N and COSMOS allow us to obtain an unbiased estimate of the far-IR luminosity, and hence of the SF properties, of the two samples. Accurate AGN host stellar mass estimates are obtained by decomposing their total emission into the stellar and the nuclear components. We report evidence of a higher average SF activity in AGN hosts with respect to the control sample of inactive galaxies. The level of SF enhancement is modest (~0.26 dex at ~3σ confidence level) at low X-ray luminosities (LX ≲ 1043.5 erg s-1) and more pronounced (0.56 dex at > 10σ confidence level) in the hosts of luminous AGNs. However, when comparing to star forming galaxies only, AGN hosts are found broadly consistent with the locus of their "main sequence". We investigate the relative far-IR luminosity distributions of active and inactive galaxies, and find a higher fraction of PACS detected, hence normal and highly star forming systems among AGN hosts. Although different interpretations are possible, we explain our findings as a consequence of a twofold AGN growth path: faint AGNs evolve through secular processes, with instantaneous AGNaccretion not tightly linked to the current total SF in the host galaxy, while the luminous AGNs co-evolve with their hosts through periods of enhanced AGN activity and star formation, possibly through major mergers. While an increased SF activity with respect to inactive galaxies of similar mass is expected in the latter, we interpret the modest SF offsets measured in low-LX AGN hosts as either a) generated by non-synchronous accretion and SF histories in a merger scenario or b) due to possible connections

  19. The Swift GRB Host Galaxy Legacy Survey

    NASA Astrophysics Data System (ADS)

    Perley, Daniel

    2015-08-01

    I will describe the Swift Host Galaxy Legacy Survey (SHOALS), a comprehensive multiwavelength program to characterize the demographics of the GRB host population and its redshift evolution from z=0 to z=7. Using unbiased selection criteria we have designated a subset of 119 Swift gamma-ray bursts which are now being targeted with intensive observational follow-up. Deep Spitzer imaging of every field has already been obtained and analyzed, with major programs ongoing at Keck, GTC, Gemini, VLT, and Magellan to obtain complementary optical/NIR photometry and spectroscopy to enable full SED modeling and derivation of fundamental physical parameters such as mass, extinction, and star-formation rate. Using these data I will present an unbiased measurement of the GRB host-galaxy luminosity and mass distributions and their evolution with redshift, compare GRB hosts to other star-forming galaxy populations, and discuss implications for the nature of the GRB progenitor and the ability of GRBs to serve as tools for measuring and studying cosmic star-formation in the distant universe.

  20. Hα Imaging of Nearby Seyfert Host Galaxies

    NASA Astrophysics Data System (ADS)

    Theios, Rachel L.; Malkan, Matthew A.; Ross, Nathaniel R.

    2016-05-01

    We used narrowband (Δλ = 70 Å) interference filters with the CCD imaging camera on the Nickel 1.0 m telescope at Lick Observatory to observe 31 nearby (z < 0.03) Seyfert galaxies in the 12 μm active galaxy sample. We obtained pure emission-line images of each galaxy, which reach down to a flux limit of 7.3 × 10‑15 erg cm‑2 s‑1 arcsec‑2, and corrected these images for [N ii] emission and extinction. We separated the Hα emission line of the “nucleus” (central 100–1000 pc) from that of the host galaxy. The extended Hα emission is expected to be powered by newly formed hot stars, and indeed correlates well with other indicators of current star formation rates (SFRs) in these galaxies: extended 7.7 μm polycyclic aromatic hydrocarbon, total far-infrared, and radio luminosity. Relative to what would be expected from recent star formation, there is a 0.8 dex excess of radio emission in our Seyfert galaxies. The Hα luminosity we measured in the centers of our galaxies is dominated by the active galactic nucleus (AGN), and is linearly correlated with the hard X-ray luminosity. There is, however, an upward offset of 1 dex in this correlation for the Seyfert 1s, because their nuclear Hα emission includes a strong additional contribution from the broad-line region. We found a correlation between SFR and AGN luminosity. In spite of selection effects, we concluded that the absence of bright Seyfert nuclei in galaxies with low SFRs is real, albeit only weakly significant. Finally, we used our measured spatial distributions of Hα emission to determine what these Seyfert galaxies would look like when observed through fixed apertures (e.g., a spectroscopic fiber) at high redshifts. We found that although all of these Seyfert galaxies would be detectable emission-line galaxies at any redshift, most of them would appear to be dominated by (>67%) their H ii region emission. Only the most luminous AGNs (log(L Hα /erg s‑1) > 41.5) would still be identified as

  1. Hα Imaging of Nearby Seyfert Host Galaxies

    NASA Astrophysics Data System (ADS)

    Theios, Rachel L.; Malkan, Matthew A.; Ross, Nathaniel R.

    2016-05-01

    We used narrowband (Δλ = 70 Å) interference filters with the CCD imaging camera on the Nickel 1.0 m telescope at Lick Observatory to observe 31 nearby (z < 0.03) Seyfert galaxies in the 12 μm active galaxy sample. We obtained pure emission-line images of each galaxy, which reach down to a flux limit of 7.3 × 10‑15 erg cm‑2 s‑1 arcsec‑2, and corrected these images for [N ii] emission and extinction. We separated the Hα emission line of the “nucleus” (central 100–1000 pc) from that of the host galaxy. The extended Hα emission is expected to be powered by newly formed hot stars, and indeed correlates well with other indicators of current star formation rates (SFRs) in these galaxies: extended 7.7 μm polycyclic aromatic hydrocarbon, total far-infrared, and radio luminosity. Relative to what would be expected from recent star formation, there is a 0.8 dex excess of radio emission in our Seyfert galaxies. The Hα luminosity we measured in the centers of our galaxies is dominated by the active galactic nucleus (AGN), and is linearly correlated with the hard X-ray luminosity. There is, however, an upward offset of 1 dex in this correlation for the Seyfert 1s, because their nuclear Hα emission includes a strong additional contribution from the broad-line region. We found a correlation between SFR and AGN luminosity. In spite of selection effects, we concluded that the absence of bright Seyfert nuclei in galaxies with low SFRs is real, albeit only weakly significant. Finally, we used our measured spatial distributions of Hα emission to determine what these Seyfert galaxies would look like when observed through fixed apertures (e.g., a spectroscopic fiber) at high redshifts. We found that although all of these Seyfert galaxies would be detectable emission-line galaxies at any redshift, most of them would appear to be dominated by (>67%) their H ii region emission. Only the most luminous AGNs (log(L Hα /erg s‑1) > 41.5) would still be identified as

  2. Observations of High-Redshift X-Ray Selected Clusters with the Sunyaev-Zel'dovich Array

    NASA Technical Reports Server (NTRS)

    Muchovej, Stephen; Carlstrom, John E.; Cartwright, John; Greer, Christopher; Hawkins, David; Hennessey, Ryan; Joy, Marshall; Lamb, James; Leitch, Erik M.; Loh, Michael; Miller, Amber D.; Mroczkowski, Tony; Pryke, Clem; Reddall, Ben; Runyan, Marcus; Sharp, Matthew; Woody, David

    2006-01-01

    We report measurements of the Sunyaev-Zel'dovich (SZ) effect in three high redshift (0.89 less than or equal to z less than or equal to 1.03), X-ray selected galaxy clusters. The observations were obtained at 30 GHz during the commissioning period of a new, eight-element interferometer - the Sunyaev-Zel'dovich Array (SZA) - built for dedicated SZ effect observations. The SZA observations are sensitive to angular scales larger than those subtended by the virial radii of the clusters. Assuming isothermality and hydrostatic equilibrium for the intracluster medium, and gas-mass fractions consistent with those for clusters at moderate redshift, we calculate electron temperatures, gas masses, and total cluster masses from the SZ data. The SZ-derived masses, integrated approximately to the virial radii, are 1.9 (sup +0.5)(sub -0.4) x 10(exp 14) solar mass for Cl J1415.1+3612, 3.4 (sup +0.6)(sub -0.5) x 10(exp 14) solar mass for Cl J1429.0+4241 and 7.2 (sup +1.3)(sub -0.9) x 10(exp 14) solar mass for Cl J1226.9+3332. The SZ-derived quantities are in good agreement with the cluster properties derived from X-ray measurements.

  3. Observations of High-Redshift X-Ray Selected Clusters with the Sunyaev-Zel'dovich Array

    NASA Technical Reports Server (NTRS)

    Muchovej, Stephen; Carlstrom, John E.; Cartwright, John; Greer, Christopher; Hawkins, David; Hennessy, Ryan; Joy, Marshall; Lamb, James W.; Leitch, Erik M.; Loh, Michael; Miller, Amber D.; Mroczkowski, Tony; Pryke, Clem; Reddall, Ben; Runyan, Marcus; Sharp, Matthew; Woody, David

    2006-01-01

    We report measurements of the Sunyaev-Zel'dovich (SZ) effect in three highredshift (0.89 less than or equal to z less than or equal to 1.03), X-ray selected galaxy clusters. The observations were obtained at 30 GHz during the commissioning period of a new, eight-element interferometer - the Sunyaev-Zel dovich Array (SZA) - built for dedicated SZ effect observations. The SZA observations are sensitive to angular scales larger than those subtended by the virial radii of the clusters. Assuming isothermality and hydrostatic equilibrium for the intracluster medium, and gas-mass fractions consistent with those for clusters at moderate redshift, we calculate electron temperatures, gas masses, and total cluster masses from the SZ data. The SZ-derived masses, integrated approximately to the virial radii, are 1.9(sup +0.5)(sub -0.4) x 10(sup 14) solar mass for ClJ1415.1+3612, 3.4 (sup +0.6)(sup -0.5) x 10(sup 14) solar mass for ClJ1429.0+4241 and 7.2(sup +1.3)(sub -0.9) x 10(sup 14) solar mass for ClJ1226.9+3332. The SZ-derived quantities are in good agreement with the cluster properties derived from X-ray measurements.

  4. Spectral decomposition of broad-line agns and host galaxies

    SciTech Connect

    Vanden Berk, Daniel E.; Shen, Jiajian; Yip, Ching-Wa; Schneider, Donald P.; Connolly, Andrew J.; Burton, Ross E.; Jester, Sebastian; Hall, Patrick B.; Szalay, Alex S.; Brinkmann, John; /Apache Point Observ.

    2005-09-01

    Using an eigenspectrum decomposition technique, we separate the host galaxy from the broad line active galactic nucleus (AGN) in a set of 4666 spectra from the Sloan Digital Sky Survey (SDSS), from redshifts near zero up to about 0.75. The decomposition technique uses separate sets of galaxy and quasar eigenspectra to efficiently and reliably separate the AGN and host spectroscopic components. The technique accurately reproduces the host galaxy spectrum, its contributing fraction, and its classification. We show how the accuracy of the decomposition depends upon S/N, host galaxy fraction, and the galaxy class. Based on the eigencoefficients, the sample of SDSS broad-line AGN host galaxies spans a wide range of spectral types, but the distribution differs significantly from inactive galaxies. In particular, post-starburst activity appears to be much more common among AGN host galaxies. The luminosities of the hosts are much higher than expected for normal early-type galaxies, and their colors become increasingly bluer than early-type galaxies with increasing host luminosity. Most of the AGNs with detected hosts are emitting at between 1% and 10% of their estimated Eddington luminosities, but the sensitivity of the technique usually does not extend to the Eddington limit. There are mild correlations among the AGN and host galaxy eigencoefficients, possibly indicating a link between recent star formation and the onset of AGN activity. The catalog of spectral reconstruction parameters is available as an electronic table.

  5. Classification and environmental properties of X-ray selected point-like sources in the XMM-LSS field

    NASA Astrophysics Data System (ADS)

    Melnyk, O.; Plionis, M.; Elyiv, A.; Salvato, M.; Chiappetti, L.; Clerc, N.; Gandhi, P.; Pierre, M.; Sadibekova, T.; Pospieszalska-Surdej, A.; Surdej, J.

    2013-09-01

    Context. The XMM-Large Scale Structure survey, covering an area of 11.1 sq. deg., contains more than 6000 X-ray point-like sources detected with the XMM-Newton to a flux of 3 × 10-15 erg s-1 cm-2 in the [0.5-2] keV band. The vast majority of these sources have optical (CFHTLS), infrared (SWIRE IRAC and MIPS), near-infrared (UKIDSS), and/or ultraviolet (GALEX) counterparts. Aims: We wish to investigate the environmental properties of the different types of the XMM-LSS X-ray sources by defining their environment using the i'-band CFHTLS W1 catalog of optical galaxies to a magnitude limit of 23.5 mag. Methods: We have classified 4435 X-ray selected sources on the basis of their spectra, SEDs, and X-ray luminosity, and estimated their photometric redshifts, which have a 4-11 band photometry with an accuracy of σ△z/(1+zsp) = 0.076 with 22.6% outliers for i' < 26 mag. We estimated the local overdensities of 777 X-ray sources that have spectro-z or photo-z calculated by using more than seven bands (accuracy of σ△z/(1+zsp) = 0.061 with 13.8% outliers) within the volume-limited region defined by 0.1 ≤ z ≤ 0.85 and -23.5 < Mi' < -20. Results: Although X-ray sources may be found in variety of environments, a high fraction (≳55-60%), as verified by comparing with the random expectations, reside in overdense regions. The galaxy overdensities within which X-ray sources reside show a positive recent redshift evolution (at least for the range studied; z ≲ 0.85). We also find that X-ray selected galaxies, when compared to AGN, inhabit significantly higher galaxy overdensities, although their spatial extent appear to be smaller than that of AGN. Hard AGN (HR ≥ -0.2) are located in more overdense regions than soft AGN (HR < -0.2), which is clearly seen in both redshift ranges, although it appears to be stronger in the higher redshift range (0.55 < z < 0.85). Furthermore, the galaxy overdensities (with δ ≳ 1.5) within which soft AGN are embedded appear to evolve

  6. The Largest X-ray Selected Sample of z > 3 AGNs: C-COSMOS + ChaMPS

    NASA Astrophysics Data System (ADS)

    Kalfountzou, Eleni; Civano, F. M.; Elvis, M.; Trichas, M.

    2014-01-01

    There is strong evidence that powerful active galactic nuclei (AGNs) are important to the evolution of galaxies. AGN evolution at high redshifts, before the density peak, illuminates the role of AGN in the formation and co-evolution of galaxies and their central supermassive black holes (SMBHs) when rapid SMBH growth took place. Optical surveys (e.g. Glikman et al. 2011; Ikeda et al. 2011) are severely biased against obscuration. In contrast, X-ray surveys detect obscured AGNs up to Compton Thick and are now sensitive enough to sample the bulk of the z > 3 AGN population. The few X-ray studies to date suggest a significant decline at z > 3 (e.g. Brusa et al. 2009; Civano et al. 2011; Vito et al; 2012), but the shape of this decline is still uncertain due to the limited sample size, especially at z > 4. To overcome these limits, we combined the two largest samples of z > 3 X-ray selected AGN with spectroscopic redshifts: the Chandra Multi-wavelength Project (ChaMP) survey (Trichas et al. 2012), and the C-COSMOS survey (Civano et al. 2011). The total of 159 z > 3 AGNs almost doubles the sample size and, most importantly, triples the sample at z > 4, where the uncertainties have been greatest. Our sample includes ~35 sources in the low luminosity range [LX < 1044 erg/s] which gives a first determination of their density evolution. Our sample also contains a both obscured and unobscured AGNs, and their separate evolution has been determined.

  7. 4U1722 + 11 - The discovery of an X-ray selected BL Lac object

    NASA Technical Reports Server (NTRS)

    Griffiths, R. E.; Wilson, A. S.; Ward, M. J.; Tapia, S.; Ulvestad, J. S.

    1989-01-01

    The Uhuru X-ray source 4U1722 + 11 was observed using the microchannel-plate detector (High Resolution Imager) on the Einstein Observatory, and its coordinates measured to a precision of about 5 arcsec. A 16th-magnitude stellar object within the error circle was observed spectroscopically at CTIO, and at the AAT, and found to have a featureless continuum. Subsequent radio observations at the VLA have established that the object is a radio source at the level of 60 mJy, and optical polarization measurements have determined that the source exhibits variable polarization at the level of 10 percent. On the basis of these observations, it is concluded that 4U1722 + 11 is a member of the class of objects known as X-ray selected blazars of BL Lac objects.

  8. The cosmological evolution and luminosity function of X-ray selected active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Maccacaro, T.; Gioia, I. M.; Avni, Y.; Giommi, P.; Griffiths, R. E.; Liebert, J.; Stocke, J.; Danziger, J.

    1983-01-01

    The cosmological evolution and the X-ray luminosity function of X-ray selected active galactic nuclei (AGNs) are derived and discussed. The sample used consists of 31 AGNs extracted from a fully identified sample of X-ray sources from the Einstein Observatory Medium Sensitivity Survey and is therefore exclusively defined by its X-ray properties. The distribution in space is found to be strongly nonuniform. The amount of cosmological evolution required by the X-ray data is derived in the framework of pure luminosity evolution and is found to be smaller than the amount determined from optically selected samples. The X-ray luminosity function is derived. It can be satisfactorily represented by a single power law only over a limited range of absolute luminosities. Evidence that the luminosity function flattens at low luminosity or steepens at high luminosity, or both, is presented and discussed.

  9. Radio Galaxy Zoo: host galaxies and radio morphologies derived from visual inspection

    NASA Astrophysics Data System (ADS)

    Banfield, J. K.; Wong, O. I.; Willett, K. W.; Norris, R. P.; Rudnick, L.; Shabala, S. S.; Simmons, B. D.; Snyder, C.; Garon, A.; Seymour, N.; Middelberg, E.; Andernach, H.; Lintott, C. J.; Jacob, K.; Kapińska, A. D.; Mao, M. Y.; Masters, K. L.; Jarvis, M. J.; Schawinski, K.; Paget, E.; Simpson, R.; Klöckner, H.-R.; Bamford, S.; Burchell, T.; Chow, K. E.; Cotter, G.; Fortson, L.; Heywood, I.; Jones, T. W.; Kaviraj, S.; López-Sánchez, Á. R.; Maksym, W. P.; Polsterer, K.; Borden, K.; Hollow, R. P.; Whyte, L.

    2015-11-01

    We present results from the first 12 months of operation of Radio Galaxy Zoo, which upon completion will enable visual inspection of over 170 000 radio sources to determine the host galaxy of the radio emission and the radio morphology. Radio Galaxy Zoo uses 1.4 GHz radio images from both the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) and the Australia Telescope Large Area Survey (ATLAS) in combination with mid-infrared images at 3.4 μm from the Wide-field Infrared Survey Explorer (WISE) and at 3.6 μm from the Spitzer Space Telescope. We present the early analysis of the WISE mid-infrared colours of the host galaxies. For images in which there is >75 per cent consensus among the Radio Galaxy Zoo cross-identifications, the project participants are as effective as the science experts at identifying the host galaxies. The majority of the identified host galaxies reside in the mid-infrared colour space dominated by elliptical galaxies, quasi-stellar objects and luminous infrared radio galaxies. We also find a distinct population of Radio Galaxy Zoo host galaxies residing in a redder mid-infrared colour space consisting of star-forming galaxies and/or dust-enhanced non-star-forming galaxies consistent with a scenario of merger-driven active galactic nuclei (AGN) formation. The completion of the full Radio Galaxy Zoo project will measure the relative populations of these hosts as a function of radio morphology and power while providing an avenue for the identification of rare and extreme radio structures. Currently, we are investigating candidates for radio galaxies with extreme morphologies, such as giant radio galaxies, late-type host galaxies with extended radio emission and hybrid morphology radio sources.

  10. Comparing the host galaxies of different type supernovae

    NASA Astrophysics Data System (ADS)

    Liang, Yanchun; Shao, Xu; Dennefeld, Michel; Chen, Xiaoyan; Zhou, Li; Hammer, Francois

    2015-08-01

    We examine and compare the properties of host galaxies of 902 supernovae, including both SNe Ia and Core-collapse supernovae (SNe II and SNe Ibc), selected by cross-matching the Asiago Supernova Catalog with the SDSS DR7 main-galaxy sample. Then, a main working sample consisting 213 galaxies are further selected by requiring the light fraction > 15% covered by the fiber spectral observations. This criterion of light fraction minimizes the aperture effect on the analysis of properties of SN host galaxies. Since 135 among the 213 galaxies appear on the Baldwin-Phillips-Terlevich (BPT) diagram, we then could compare the host properties of different types of SNe on the basis of their BPT diagnosis, i.e. star-forming (SF) galaxies, AGNs, and then the rest 78 “Absorption” galaxies. A comparative sample composed by the remaining 689 galaxies are analyzed simultaneously for comparisons, then the obvious aperture effect on the properties of SN host galaxies are shown. The parameters Dn(4000), HδA, stellar masses, SFRs, specific SFRs and relations of stellar mass with metallicity of SN host galaxies are analyzed in the work.

  11. Galaxy Zoo: Evidence for rapid, recent quenching within a population of AGN host galaxies

    NASA Astrophysics Data System (ADS)

    Smethurst, R. J.; Lintott, C. J.; Simmons, B. D.; Schawinski, K.; Bamford, S. P.; Cardamone, C. N.; Kruk, S. J.; Masters, K. L.; Urry, C. M.; Willett, K. W.; Wong, O. I.

    2016-09-01

    We present a population study of the star formation history of 1244 Type 2 AGN host galaxies, compared to 6107 inactive galaxies. A Bayesian method is used to determine individual galaxy star formation histories, which are then collated to visualise the distribution for quenching and quenched galaxies within each population. We find evidence for some of the Type 2 AGN host galaxies having undergone a rapid drop in their star formation rate within the last 2 Gyr. AGN feedback is therefore important at least for this population of galaxies. This result is not seen for the quenching and quenched inactive galaxies whose star formation histories are dominated by the effects of downsizing at earlier epochs, a secondary effect for the AGN host galaxies. We show that histories of rapid quenching cannot account fully for the quenching of all the star formation in a galaxy's lifetime across the population of quenched AGN host galaxies, and that histories of slower quenching, attributed to secular (non-violent) evolution, are also key in their evolution. This is in agreement with recent results showing both merger-driven and non-merger processes are contributing to the co-evolution of galaxies and supermassive black holes. The availability of gas in the reservoirs of a galaxy, and its ability to be replenished, appear to be the key drivers behind this co-evolution.

  12. THE CHANDRA MULTI-WAVELENGTH PROJECT: OPTICAL SPECTROSCOPY AND THE BROADBAND SPECTRAL ENERGY DISTRIBUTIONS OF X-RAY-SELECTED AGNs

    SciTech Connect

    Trichas, Markos; Green, Paul J.; Aldcroft, Tom; Kim, Dong-Woo; Mossman, Amy; Silverman, John D.; Barkhouse, Wayne; Cameron, Robert A.; Constantin, Anca; Ellison, Sara L.; Foltz, Craig; Haggard, Daryl; Jannuzi, Buell T.; Marshall, Herman L.; Perez, Laura M.; Romero-Colmenero, Encarni; Ruiz, Angel; Smith, Malcolm G.; and others

    2012-06-01

    activity. We have tested the hypothesis that there should be a strong connection between X-ray obscuration and star formation but we do not find any association between X-ray column density and star formation rate both in the general population or the star-forming X-ray Seyferts. Our large compilation also allows us to report here the identification of 81 X-ray Bright Optically inactive Galaxies, 78 z > 3 X-ray sources, and eight Type-2 QSO candidates. Also, we have identified the highest redshift (z = 5.4135) X-ray-selected QSO with optical spectroscopy.

  13. IFU Spectroscopy of 32 SweetSpot Supernova Host Galaxies

    NASA Astrophysics Data System (ADS)

    Ponder, Kara Ann; Wood-Vasey, W. Michael; Allen, Lori; Garnavich, Peter M.; Jha, Saurabh; Kroboth, Jessica Rose; Joyce, Richard R.; Matheson, Thomas; Rest, Armin; Weyant, Anja

    2016-06-01

    SweetSpot is an NOAO Survey program from 2012B-2015A that gathered NIR lightcurves for 114 Type Ia supernovae (SNeIa) located in the Hubble flow. The aims of this survey are to test the standard nature of SNeIa in the NIR, explore their color evolution, study the dust of host galaxies, and provide an anchor for upcoming high redshift NIR surveys. Another primary goal of this survey is to explore relationships between SNeIa observed in the NIR with their host galaxy properties previously done with optical lightcurves.Correlations between the residual brightness of SNeIa with their host galaxy properties have been found in a series of recent papers, but have yet to be studied in the NIR. We study the NIR brightness of SNIa compared to both photometric and spectroscopic properties of the host galaxies. We use SDSS data to explore host galaxy color and mass relations with peak brightness of SNeIa. In order to examine local environment relationships, we obtained optical spectra of 32 host galaxies of NIR SNeIa using the WIYN 3.5-m Bench Spectrograph IFU HexPak. These spectra extend from H-beta through H-alpha and allow us to study the local surface brightness of very recent star formation.We here present preliminary results from these investigations.

  14. Host Galaxies of X-Shaped Extragalactic Radio Sources

    NASA Astrophysics Data System (ADS)

    Springmann, Alessondra; Cheung, C. C.

    2007-05-01

    The majority of radiation from galaxies containing active galactic nuclei (AGNs) is emitted not by the stars composing the galaxy, but from an active source at the galactic center, most likely a supermassive black hole. Of particular interest are radio galaxies, the active galaxies emitting much of their radiation at radio wavelengths. Classical double-lobed radio galaxies are characterized by a single pair of "active" radio lobes. A small subset show an additional pair of lower surface brightness 'wings' of emission, thus forming an overall winged or X-shaped appearance. Two competing mechanisms have been proposed to explain the "winged" morphology. One model posits that these are the remnants left over from a relatively recent merger of a binary supermassive black hole system. Others have argued that they result naturally from strong backflow in a radio jet cocoon expanding into an asymmetric medium. We used available Sloan Digital Sky Survey r-band images of 11 X-shaped sources to measure the host galaxy ellipticities. By analyzing the host galaxy shapes, we trace the surrounding gas distribution. The radio morphologies are compared to the host galaxy parameters to analogize between differing model expectations. This work was funded by the Department of Energy's Student Undergraduate Laboratory Internship Program and the Stanford Linear Accelerator Center.

  15. Galaxies of all Shapes Host Black Holes

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This artist's concept illustrates the two types of spiral galaxies that populate our universe: those with plump middles, or central bulges (upper left), and those lacking the bulge (foreground).

    New observations from NASA's Spitzer Space Telescope provide strong evidence that the slender, bulgeless galaxies can, like their chubbier counterparts, harbor supermassive black holes at their cores. Previously, astronomers thought that a galaxy without a bulge could not have a supermassive black hole. In this illustration, jets shooting away from the black holes are depicted as thin streams.

    The findings are reshaping theories of galaxy formation, suggesting that a galaxy's 'waistline' does not determine whether it will be home to a big black hole.

  16. Deficiency of ''Thin'' Stellar Bars in Seyfert Host Galaxies

    NASA Technical Reports Server (NTRS)

    Shlosman, Isaac; Peletier, Reynier F.; Knapen, Johan

    1999-01-01

    Using all available major samples of Seyfert galaxies and their corresponding control samples of closely matched non-active galaxies, we find that the bar ellipticities (or axial ratios) in Seyfert galaxies are systematically different from those in non-active galaxies. Overall, there is a deficiency of bars with large ellipticities (i.e., 'fat' or 'weak' bars) in Seyferts, compared to non-active galaxies. Accompanied with a large dispersion due to small number statistics, this effect is strictly speaking at the 2 sigma level. To obtain this result, the active galaxy samples of near-infrared surface photometry were matched to those of normal galaxies in type, host galaxy ellipticity, absolute magnitude, and, to some extent, in redshift. We discuss possible theoretical explanations of this phenomenon within the framework of galactic evolution, and, in particular, of radial gas redistribution in barred galaxies. Our conclusions provide further evidence that Seyfert hosts differ systematically from their non-active counterparts on scales of a few kpc.

  17. HOST GALAXIES OF X-SHAPED RADIO SOURCES

    SciTech Connect

    Springmann, A.; Cheung, C.

    2007-01-01

    Most radiation from galaxies containing active galactic nuclei (AGNs) is emitted not by the stars composing the galaxy, but from an active source at the galactic center, most likely a supermassive black hole. Of particular interest are radio galaxies, active galaxies that emit much of their radiation at radio wavelengths. Within each radio galaxy, an AGN powers a pair of collimated jets of relativistic particles, forming a pair of giant lobes at the end of the jets and thus giving a characteristic double-lobed appearance. A particular class of radio galaxies has an “X”-or winged-shaped morphology: in these, two pairs of lobes appear to originate from the galactic center, producing a distinctive X-shape. Two main mechanisms have been proposed to explain the X-shape morphology: one being a realignment of the black hole within the AGN and the second positing that the radio jets are expanding into an asymmetric medium, causing backflow and producing secondary wings. By analyzing radio host galaxy shapes, the distribution of the stellar mass is compared to the differing model expectations regarding the distribution of the surrounding gas and stellar material about the AGN. Results show elliptical host galaxies with an orthogonal offset between the semi-major axis of the host galaxy and the secondary radio wings, which lends support to the hydrodynamical model. However, results also show circular host galaxies with radio wings, making the realignment scenario a more likely model to describe the formation of these X-shaped radio sources.

  18. Radio afterglows and host galaxies of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Li, Long-Biao; Zhang, Zhi-Bin; Huang, Yong-Feng; Wu, Xue-Feng; Kong, Si-Wei; Li, Di; Chang, Heon-Young; Choi, Chul-Sung

    2015-08-01

    Considering the contribution of emission from the host galaxies of gamma-ray bursts (GRBs) to radio afterglows, we investigate the effect of host galaxies on observations statistically. For the three types of event, i.e. low-luminosity, standard and high-luminosity GRBs, it is found that a tight correlation exists between the ratio of the radio flux (RRF) of the host galaxy to the total radio peak emission and the observational frequency. Towards lower frequencies, in particular, the contribution from the host increases significantly. The correlation can be used to obtain a useful estimate for the radio brightness of those host galaxies that only have very limited radio afterglow data. Using this prediction, we reconsidered the theoretical radio afterglow light curves for four kinds of event: high-luminosity, low-luminosity, standard and failed GRBs, taking into account the contribution from host galaxies and aiming to explore the detectability of these events by the Five-hundred-metre Aperture Spherical radio Telescope (FAST). Lying at a typical redshift of z = 1, most of the events can be detected easily by FAST. For the less fierce low-luminosity GRBs, their radio afterglows are not strong enough to exceed the sensitivity limit of FAST at such distances. However, since a large number of low-luminosity bursts actually happen very near to us, it is expected that FAST will still be able to detect many of them.

  19. Identifying the host galaxy of the short GRB 100628A

    NASA Astrophysics Data System (ADS)

    Nicuesa Guelbenzu, A.; Klose, S.; Palazzi, E.; Greiner, J.; Michałowski, M. J.; Kann, D. A.; Hunt, L. K.; Malesani, D.; Rossi, A.; Savaglio, S.; Schulze, S.; Xu, D.; Afonso, P. M. J.; Elliott, J.; Ferrero, P.; Filgas, R.; Hartmann, D. H.; Krühler, T.; Knust, F.; Masetti, N.; Olivares E., F.; Rau, A.; Schady, P.; Schmidl, S.; Tanga, M.; Updike, A. C.; Varela, K.

    2015-11-01

    We report on the results of a comprehensive observing campaign to reveal the host galaxy of the short GRB 100628A. This burst was followed by a faint X-ray afterglow but no optical counterpart was discovered. However, inside the X-ray error circle a potential host galaxy at a redshift of z = 0.102 was soon reported in the literature. If this system is the host, then GRB 100628A was the cosmologically most nearby unambiguous short burst with a measured redshift so far. We used the multi-colour imager GROND at the ESO/La Silla MPG 2.2 m telescope, ESO/VLT spectroscopy, and deep Australia Telescope Compact Array (ATCA) radio-continuum observations together with publicly available Gemini imaging data to study the putative host and the galaxies in the field of GRB 100628A. We confirm that inside the X-ray error circle the most probable host-galaxy candidate is the morphologically disturbed, interacting galaxy system at z = 0.102. The interacting galaxies are connected by a several kpc long tidal stream, which our VLT/FORS2 spectroscopy reveals strong emission lines of [O ii], [O iii], Hα and Hβ, characteristic for the class of extreme emission-line galaxies and indicative of ongoing star formation. The latter leaves open the possibility that the GRB progenitor was a member of a young stellar population. However, we indentify a second host-galaxy candidate slightly outside the X-ray error circle. It is a radio-bright, luminous elliptical galaxy at a redshift z = 0.311. With a K-band luminosity of 2 × 1011L⊙ this galaxy resembles the probable giant elliptical host of the first well-localized short burst, GRB 050509B. If this is the host, then the progenitor of GRB 100628A was a member of an old stellar population. Based on observations collected at the Very Large Telescope of the European Southern Observatory, Paranal, Chile (ESO programme 087.D-0503 and 290.D-5194; PI: A. Nicuesa Guelbenzu; 090.A-0825; PI: D. Malesani), GROND (PI: J. Greiner), and ATCA (Program C

  20. X-Shooter slit observations of GRB host galaxies

    NASA Astrophysics Data System (ADS)

    Piranomonte, Silvia; Vergani, Susanna D.

    Considering that Gamma Ray Bursts (GRB) are supposed to explode in faint star forming galaxies they represent a very powerful way to investigate these kind of galaxies which seemed to be the bulk of galaxies at high redshift and to obtain a better estimate of the star formation density value. Currently observational estimates could underpredict ther real value of cosmic star formation density, because of their inability to observe this population of galaxies. The Italian-French X-shooter GRB host galaxies program which started at the end of 2009 allowed us to collect the spectra of about 30 GRB host galaxies in the 300-2400nm range from a redshift of about z=0.1 to z=2.7. We are using these spectra to retrieve information on the host metallicities, star formation rates and extinctions. In this talk I will show the state of the art of this work and which is the information on GRB hosts that we are collecting from the slit observations.

  1. Host Galaxies of Long-Duration Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Bagley, Megan; Kewley, L. J.; Levesque, E. M.

    2009-01-01

    Long-duration gamma-ray bursts (GRBs) are associated with the deaths of massive, short-lived stars, and thus may be useful in tracking star formation in the universe. However, GRB progenitor models suggest that they might occur only in low-metallicity environments, introducing a bias into star formation studies. Presented here are the high-resolution spectra of two GRB host galaxies, one at z 0.03 and the other at z 0.7. The nearby galaxy, the host of GRB 060218, has a low metallicity, but one that is comparable to local galaxies of similar luminosity. It has little to no extinction and a star formation rate of 2x10-2 M⊙yr-1. The metallicity of the more distant galaxy, the host of GRB 991208, is not well constrained because the Hα and [N II] lines are redshifted into the near infrared and were not observed. It has a star formation rate of 1-9 M⊙yr-1 and, unlike the majority of GRB hosts, is dusty. These two galaxies will eventually be a part of a larger sample of GRB hosts. This work was conducted by a Research Experience for Undergraduates (REU) position at the University of Hawai'i's Institute for Astronomy and funded by the NSF.

  2. CORE-COLLAPSE SUPERNOVAE AND HOST GALAXY STELLAR POPULATIONS

    SciTech Connect

    Kelly, Patrick L.; Kirshner, Robert P.

    2012-11-10

    We have used images and spectra of the Sloan Digital Sky Survey to examine the host galaxies of 519 nearby supernovae (SN). The colors at the sites of the explosions, as well as chemical abundances, and specific star formation rates (SFRs) of the host galaxies provide circumstantial evidence on the origin of each SN type. We examine separately SN II, SN IIn, SN IIb, SN Ib, SN Ic, and SN Ic with broad lines (SN Ic-BL). For host galaxies that have multiple spectroscopic fibers, we select the fiber with host radial offset most similar to that of the SN. Type Ic SN explode at small host offsets, and their hosts have exceptionally strongly star-forming, metal-rich, and dusty stellar populations near their centers. The SN Ic-BL and SN IIb explode in exceptionally blue locations, and, in our sample, we find that the host spectra for SN Ic-BL show lower average oxygen abundances than those for SN Ic. SN IIb host fiber spectra are also more metal-poor than those for SN Ib, although a significant difference exists for only one of two strong-line diagnostics. SN Ic-BL host galaxy emission lines show strong central specific SFRs. In contrast, we find no strong evidence for different environments for SN IIn compared to the sites of SN II. Because our SN sample is constructed from a variety of sources, there is always a risk that sampling methods can produce misleading results. We have separated the SN discovered by targeted surveys from those discovered by galaxy-impartial searches to examine these questions and show that our results do not depend sensitively on the discovery technique.

  3. How SN Ia host-galaxy properties affect cosmological parameters

    NASA Astrophysics Data System (ADS)

    Campbell, H.; Fraser, M.; Gilmore, G.

    2016-04-01

    We present a systematic study of the relationship between Type Ia Supernova (SN Ia) properties, and the characteristics of their host galaxies, using a sample of 581 SNe Ia from the full Sloan Digital Sky Survey II (SDSS-II) SN Survey. We also investigate the effects of this on the cosmological constraints derived from SNe Ia. Compared to previous studies, our sample is larger by a factor of >4, and covers a substantially larger redshift range (up to z ˜ 0.5), which is directly applicable to the volume of cosmological interest. We measure a significant correlation (>5σ) between the host-galaxy stellar-mass and the SN Ia Hubble Residuals (HR). We find a weak correlation (1.4σ) between the host-galaxy metallicity as measured from emission lines in the spectra, and the SN Ia HR. We also find evidence that the slope of the correlation between host-galaxy mass and HR is -0.11 mag/log(Mhost/M⊙) steeper in lower metallicity galaxies. We test the effects on a cosmological analysis using both the derived best-fitting correlations between host parameters and HR, and by allowing an additional free parameter in the fit to account for host properties which we then marginalize over when determining cosmological parameters. We see a shift towards more negative values of the equation-of-state parameter w, along with a shift to lower values of Ωm after applying mass or metallicity corrections. The shift in cosmological parameters with host-galaxy stellar-mass correction is consistent with previous studies. We find a best-fitting cosmology of Ω m =0.266_{-0.016}^{+0.016}, Ω _{Λ }=0.740_{-0.018}^{+0.018} and w=-1.151_{-0.121}^{+0.123} (statistical errors only).

  4. Herschel Dust Measurements of SDSS Supernovae Host Galaxies

    NASA Astrophysics Data System (ADS)

    Trinh, Donald; Cooray, Asantha R.; Nayyeri, Hooshang; Herschel Hermes and h-atlas Collaboration

    2016-01-01

    We use Herschel Spectral and Photometric Imaging Receiver (SPIRE) far-infrared observations of Supernova host galaxies to study the cosmological distant measurement from Hubble diagrams. We investigate the dust content of SN host galaxy from the Sloan Digital Sky Survery (SDSS) using the far-infrared stacks of Herschel in the Equatorial Stripe using , Herschel Multi-Tiered Extragalactic Survey (HELMS), and the Herschel Stripe 82 Survey (HERS). Cosmic dust may contribute to much more obscuring of standard candles than previously thought. Measuring the average flux values of stacks from dim Type-Ia supernovae provides a measure of the dust content of galaxies as a function of deviation of those sources from the Hubble diagram given a standard cosmology. Using the optical to far infrared stacked data of the galaxies we also measure the physical properties of the standard candles as a function of dust content.

  5. Stellar Populations of Quasar Host Galaxies Using WIYN

    NASA Astrophysics Data System (ADS)

    Mosby, Gregory; Moravec, E.; Kotulla, R. C.

    2013-06-01

    We now know that most galaxies have supermassive black holes (SMBH) in their centers, and somewhat unexpectedly, there are relationships—such as the M-sigma relation—between the mass of the central black hole and the velocity dispersion of the host galaxy's stellar spheroid (bulge), even though they lie outside the black hole's influence. Galaxy merger models show reasonable evidence for coevolution of the bulge and black hole since the merging process initiates simultaneous growth of the black hole and galaxy by supplying gas to the nucleus for accretion onto the black hole and triggering bursts of star formation. The merging process truncates the growth of both by removing the gas reservoir via feedback from these processes. But recently, it’s been shown that this relation could arise from central limit-like arguments alone. To really judge connections between SMBH and their host, it’s crucial to study these galaxies at the peak of black hole growth—during the quasar phase. Using 3-d spectroscopy methods, namely Sparsepak, an integral field units (IFU) on WIYN, it is possible to successfully recover information about the host galaxy's integrated star formation history that can be used to check merger-induced galaxy evolution predicted by the models. However, it is critical to have a robust and careful analysis of the stellar population modeling. The research presented in this poster focuses on new results from Sparsepak and preliminary WHIRC H-band light profiles of select quasar host galaxies. The stellar populations are derived using a new statistical method called diffusion k-means, and the WHIRC data are analyzed using a Python code written by Ralf Kotulla.

  6. The SEDs and Host Galaxies of the Dustiest GRB Afterglows

    NASA Technical Reports Server (NTRS)

    Kruhler, T.; Greiner, J.; Schady, P.; Savaglio, S.; Afonso, P. M. J.; Clemens, C.; Elliott, J.; Filgas, R.; Gruber, D.; Kann, D. A.; Klose, S.; Kupcu-Yoldas, A.; McBreen, S.; Olivares, E.; Pierini, D.; Rau, A.; Rossi, A.; Nardini, M.; Nicuesa Guelbenzu, A.; Sudilovsky, V.; Updike, A. C.

    2011-01-01

    The afterglows and host galaxies of long gamma-ray bursts (GRBs) offer unique opportunities to study star-forming galaxies in the high-z Universe, Until recently, however. the information inferred from GRB follow-up observations was mostly limited to optically bright afterglows. biasing all demographic studies against sight-lines that contain large amounts of dust. Aims. Here we present afterglow and host observations for a sample of bursts that are exemplary of previously missed ones because of high visual extinction (A(sub v) (Sup GRB) approx > 1 mag) along the sight-line. This facilitates an investigation of the properties, geometry and location of the absorbing dust of these poorly-explored host galaxies. and a comparison to hosts from optically-selected samples. Methods. This work is based on GROND optical/NIR and Swift/XRT X-ray observations of the afterglows, and multi-color imaging for eight GRB hosts. The afterglow and galaxy spectral energy distributions yield detailed insight into physical properties such as the dust and metal content along the GRB sight-line as well as galaxy-integrated characteristics like the host's stellar mass, luminosity. color-excess and star-formation rate. Results. For the eight afterglows considered in this study we report for the first time the redshift of GRBs 081109 (z = 0.97S7 +/- 0.0005). and the visual extinction towards GRBs 0801109 (A(sub v) (Sup GRB) = 3.4(sup +0.4) (sub -0.3) mag) and l00621A (A(sub v) (Sup GRB) = 3.8 +/- 0.2 mag), which are among the largest ever derived for GRB afterglows. Combined with non-extinguished GRBs. there is a strong anti-correlation between the afterglow's metals-to-dust ratio and visual extinction. The hosts of the dustiest afterglows are diverse in their properties, but on average redder(((R - K)(sub AB)) approximates 1.6 mag), more luminous ( approximates 0.9 L (sup *)) and massive ((log M(sup *) [M(solar]) approximates 9.8) than the hosts of optically-bright events. We hence probe

  7. The Star-Forming Properties of an Ultra-Hard X-ray Selected Sample of AGN

    NASA Astrophysics Data System (ADS)

    Shimizu, Thomas Taro; Mushotzky, Richard; Melendez, Marcio; Koss, Michael

    2015-08-01

    We present results from our Herschel follow-up survey of the Swift/BAT AGN 58 month catalog. Using the PACS and SPIRE instruments, 313 AGN were imaged at 5 far-infrared (FIR) wavelengths (70, 160, 250, 350, and 500 μm) producing the largest and most complete FIR catalog of local AGN. We combine our FIR photometry with archival mid-infrared photometry to form broadband spectral energy distributions (SEDs) that for the first time reach into the sub-millimeter regime. We fit these SEDs with several models to determine the star-forming properties of the host galaxies such as star-formation rate (SFR), IR luminosity, dust temperature, and dust mass and measure their relationship with various AGN properties such as X-ray luminosity, Eddington ratio, black hole mass, and column density. We find a weak dependence of the global SFR on the AGN strength indicating either the AGN has little influence on star formation over the entire galaxy or that the variability of the AGN on short timescales washes away any correlation between star formation and the AGN. Comparing the BAT AGN to a sample of normal star-forming galaxies on the “main sequence”, we find the BAT AGN systematically have decreased levels of specific SFR (sSFR = SFR/stellar mass). This is possibly indirect evidence that the AGN has suppressed star-formation in its host galaxy. Analysis of the FIR images themselves reveals that many of the BAT AGN are compact which leads to increased levels of SFR surface density, high enough for starburst driven winds. Finally, we show the 70 μm luminosity can be heavily contaminated by AGN emission and should not be used as a SFR indicator for AGN host galaxies.

  8. AGN identification and host galaxies properties in the MOSDEF survey

    NASA Astrophysics Data System (ADS)

    Azadi, Mojegan; Coil, Alison L.; MOSDEF team

    2016-06-01

    We present new results on the identification and host galaxy properties of X-ray, IR and optically-selected AGN at 1.4 < z < 3.8, using spectroscopic data from the on-going MOSDEF survey, which is obtaining rest-frame optical spectra of ~1,500 galaxies and AGN using the new Keck/MOSFIRE instrument. We find clear selection effects when identifying AGN at different wavelengths, in that optically-selected AGN are more likely to be found in galaxies with low SFR, while IR AGN are typically found in galaxies with higher SFR. There is also a bias against finding AGN at any wavelength in low mass galaxies. We find that optical AGN selection identifies less powerful AGN that may be obscured at other wavelengths. Combining the AGN we identify at different wavelengths, we find that AGN host galaxies have similar stellar age and dust content as inactive galaxies of the same stellar mass. Finally, we do not find a significant correlation between either SFR or stellar mass and L[OIII], which argues against the presence of strong AGN feedback.

  9. Color indices of core-collapse supernova host galaxies

    NASA Astrophysics Data System (ADS)

    Polyakova, G. D.

    2015-04-01

    Using data from different catalogues, we determined color indices of early type (E, L, and S0/a) core-collapse supernova host galaxies. These color indices were compared with the colors of the galaxies of the same morphological types but in which explosions of such supernovae have not been observed. It is shown that in the blue sequence of the color-magnitude diagram, the compared samples of galaxies differ with probability P = 95% in the relative frequencies of the ( U - B){/Tc 0} and ( U - B){/T 0} color indices in the intervals from to and to . A difference in the relative frequencies with probability P = 99% was also obtained for the ( B - V){/Tc 0} and ( B - V){/T 0} colors in the interval . The calculated average colors of these intervals for the galaxies of both samples allow us to assume a significant proportion of the young population in them. The Kolmogorov-Smirnov test showed that the colors of the core-collapse supernova host galaxies and the early-type galaxies without explosions of such supernovae are similar on average with probability P = 95%, and the galaxies do not differ in stellar population content.

  10. The properties of X-ray selected active galactic nuclei. II - A deeper look at the cosmological evolution

    NASA Technical Reports Server (NTRS)

    Della Ceca, Roberto; Maccacaro, Tommaso; Gioia, Isabella M.; Wolter, Anna; Stocke, John T.

    1992-01-01

    A detailed study of the cosmological properties of X-ray selected AGN is presented. The data are analyzed within the framework of a pure luminosity evolution (PLE) model and the two most population evolutionary forms. Evidence is found for luminosity-dependent luminosity evolution if the evolution function has the exponential form. The simpler PLE model is more acceptable if the data are fitted with a power-law evolution function. Similar results are obtained in the optical domain from an analysis of a sample of optically selected QSOs with z less than 2.2 and B less than 20.

  11. THE EXTREMELY RED HOST GALAXY OF GRB 080207

    SciTech Connect

    Hunt, Leslie; Cresci, Giovanni; Palazzi, Eliana; Rossi, Andrea; Klose, Sylvio; Savaglio, Sandra; Michalowski, Michal; Pian, Elena

    2011-08-01

    We present optical, near-infrared, and Spitzer IRAC and MIPS observations of the host galaxy of the dark Swift gamma-ray burst GRB 080207. The host is faint, with extremely red optical-infrared colors (R - K = 6.3, 24 {mu}m/R-band flux {approx}1000) making it an extremely red object (ERO) and a dust-obscured galaxy (DOG). The spectral energy distribution (SED) shows the clear signature of the 1.6 {mu}m photometric 'bump', typical of evolved stellar populations. We use this bump to establish the photometric redshift z{sub phot} as 2.2{sup +0.2}{sub -0.3}, using a vast library of SED templates, including M 82. The star formation rate (SFR) inferred from the SED fitting is {approx}119 M{sub sun} yr{sup -1}, the stellar mass 3 x 10{sup 11} M{sub sun}, and A{sub V} extinction from 1 to 2 mag. The ERO and DOG nature of the host galaxy of the dark GRB 080207 may be emblematic of a distinct class of dark GRB hosts, with high SFRs, evolved and metal-rich stellar populations, and significant dust extinction within the host galaxy.

  12. Discovery of rare double-lobe radio galaxies hosted in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Singh, Veeresh; Ishwara-Chandra, C. H.; Sievers, Jonathan; Wadadekar, Yogesh; Hilton, Matt; Beelen, Alexandre

    2015-12-01

    Double-lobe radio galaxies in the local Universe have traditionally been found to be hosted in elliptical or lenticular galaxies. We report the discovery of four spiral-host double-lobe radio galaxies (J0836+0532, J1159+5820, J1352+3126, and J1649+2635) that are discovered by cross-matching a large sample of 187 005 spiral galaxies from SDSS DR7 (Sloan Digital Sky Survey Data Release 7) to the full catalogues of FIRST (Faint Images of the Radio Sky at Twenty-cm) and NVSS (NRAO VLA Sky Survey). J0836+0532 is reported for the first time. The host galaxies are forming stars at an average rate of 1.7-10 M⊙ yr-1 and possess supermassive black holes (SMBHs) with masses of a few times 108 M⊙. Their radio morphologies are similar to Fanaroff-Riley type II radio galaxies with total projected linear sizes ranging from 86 to 420 kpc, but their total 1.4-GHz radio luminosities are only in the range 1024-1025 W Hz-1. We propose that the formation of spiral-host double-lobe radio galaxies can be attributed to more than one factor, such as the occurrence of strong interactions, mergers, and the presence of unusually massive SMBHs, such that the spiral structures are not destroyed. Only one of our sources (J1649+2635) is found in a cluster environment, indicating that processes other than accretion through cooling flows e.g. galaxy-galaxy mergers or interactions could be plausible scenarios for triggering radio-loud active galactic nuclei activity in spiral galaxies.

  13. Jet Feedback on the Hosts of Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Lanz, L.; Ogle, P. M.; Alatalo, K.; Appleton, P. N.

    2016-06-01

    Feedback due to active galactic nuclei is one of the key components of the current paradigm of galaxy evolution; however our understanding of the process remains incomplete. Radio galaxies with strong rotational H_2 emission provide an interesting window into the effect of radio jet feedback on their host galaxies, since the large masses of warm (>100 K) H_2 cannot solely be heated by star formation, instead requiring jet-driven ISM turbulence to power the molecular emission. I will discuss the insights multiwavelength (X-ray to submm) observations of 22 H_2 luminous radio galaxies yield on the process of jet feedback in these galaxies and the impact on star formation activity. Specifically, I find that the diffuse X-ray and warm H_2 emission are consistent with both being powered by dissipation of the jet's mechanical energy into the interstellar medium (ISM) and that the resulting turbulence injected into the ISM by this process results in the suppression of star formation activity by a factor of 3--6. The hosts of these galaxies show a wide range of star formation activity and optical and IR colors, indicating a diversity of evolutionary states in which this process may be active.

  14. OPTICAL SPECTRAL PROPERTIES OF SWIFT BURST ALERT TELESCOPE HARD X-RAY-SELECTED ACTIVE GALACTIC NUCLEI SOURCES

    SciTech Connect

    Winter, Lisa M.; Keeney, Brian; Lewis, Karen T.; Koss, Michael; Veilleux, Sylvain; Mushotzky, Richard F.

    2010-02-10

    The Swift Burst Alert Telescope survey of active galactic nuclei (AGNs) is providing an unprecedented view of local AGNs ((z) {approx} 0.03) and their host galaxy properties. In this paper, we present an analysis of the optical spectra of a sample of 64 AGNs from the nine month survey, detected solely based on their 14-195 keV flux. Our analysis includes both archived spectra from the Sloan Digital Sky Survey and our own observations from the 2.1 m Kitt Peak National Observatory telescope. Among our results, we include line ratio classifications utilizing standard emission line diagnostic plots, [O III] 5007 A luminosities, and Hbeta-derived black hole masses. As in our X-ray study, we find the type 2 sources to be less luminous (in [O III] 5007 A and 14-195 keV luminosities) with lower accretion rates than the type 1 sources. We find that the optically classified low-ionization narrow emission line regions, H II/composite galaxies, and ambiguous sources have the lowest luminosities, while both broad-line and narrow-line Seyferts have similar luminosities. From a comparison of the hard X-ray (14-195 keV) and [O III] luminosities, we find that both the observed and extinction-corrected [O III] luminosities are weakly correlated with X-ray luminosity. In a study of the host galaxy properties from both continuum fits and measurements of the stellar absorption indices, we find that the hosts of the narrow-line sources have properties consistent with late-type galaxies.

  15. Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John; Ho, Luis C.

    2013-08-01

    Supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics. The Hubble Space Telescope revolutionized BH research by advancing the subject from its proof-of-concept phase into quantitative studies of BH demographics. Most influential was the discovery of a tight correlation between BH mass [Formula: see text] and the velocity dispersion σ of the bulge component of the host galaxy. Together with similar correlations with bulge luminosity and mass, this led to the widespread belief that BHs and bulges coevolve by regulating each other's growth. Conclusions based on one set of correlations from [Formula: see text] in brightest cluster ellipticals to [Formula: see text] in the smallest galaxies dominated BH work for more than a decade. New results are now replacing this simple story with a richer and more plausible picture in which BHs correlate differently with different galaxy components. A reasonable aim is to use this progress to refine our understanding of BH-galaxy coevolution. BHs with masses of 105-106M⊙ are found in many bulgeless galaxies. Therefore, classical (elliptical-galaxy-like) bulges are not necessary for BH formation. On the other hand, although they live in galaxy disks, BHs do not correlate with galaxy disks. Also, any [Formula: see text] correlations with the properties of disk-grown pseudobulges and dark matter halos are weak enough to imply no close coevolution. The above and other correlations of host-galaxy parameters with each other and with [Formula: see text] suggest that there are four regimes of BH feedback. (1) Local, secular, episodic, and stochastic feeding of small BHs in largely bulgeless galaxies involves too little energy to result in coevolution. (2) Global feeding in major, wet galaxy mergers rapidly grows giant BHs in short-duration, quasar-like events whose energy feedback does affect galaxy evolution. The resulting hosts are classical bulges and coreless

  16. Identifying the host galaxy of gravitational wave signals

    SciTech Connect

    Nuttall, Laura K.; Sutton, Patrick J.

    2010-11-15

    One of the goals of the current LIGO-GEO-Virgo science run is to identify transient gravitational wave (GW) signals in near real time to allow follow-up electromagnetic (EM) observations. An EM counterpart could increase the confidence of the GW detection and provide insight into the nature of the source. Current GW-EM campaigns target potential host galaxies based on overlap with the GW sky error box. We propose a new statistic to identify the most likely host galaxy, ranking galaxies based on their position, distance, and luminosity. We test our statistic with Monte Carlo simulations of GWs produced by coalescing binaries of neutron stars and black holes, one of the most promising sources for ground-based GW detectors. Considering signals accessible to current detectors, we find that when imaging a single galaxy, our statistic correctly identifies the true host {approx}20% to {approx}50% of the time, depending on the masses of the binary components. With five narrow-field images the probability of imaging the true host increases from {approx}50% to {approx}80%. When collectively imaging groups of galaxies using large field-of-view telescopes, the probability improves from {approx}30% to {approx}60% for a single image and from {approx}70% to {approx}90% for five images. For the advanced generation of detectors (circa 2015+), and considering binaries within 100 Mpc (the reach of the galaxy catalogue used), the probability is {approx}40% for one narrow-field image, {approx}75% for five narrow-field images, {approx}65% for one wide-field image, and {approx}95% for five wide-field images, irrespective of binary type.

  17. Host Galaxies of X-Shaped Radio Sources

    SciTech Connect

    Springmann, Alessondra; /Wellesley Coll. /SLAC

    2006-09-27

    The majority of radiation from galaxies containing active galactic nuclei (AGNs) is emitted not by the stars composing the galaxy, but from an active source at the galactic center, most likely a supermassive black hole. Of particular interest are radio galaxies, the active galaxies emitting much of their radiation at radio wavelengths. Within each radio galaxy, an AGN powers a pair of collimated jets of relativistic particles, forming a pair of giant lobes at the end of the jets and thus giving a characteristic double-lobed appearance. A particular class of radio galaxies have an ''X''-shaped morphology: in these, two pairs of lobes appear to originate from the galactic center, producing a distinctive X-shape. Two main mechanisms have been proposed to explain the X-shape morphology: one being through the merger of a binary supermassive black hole system and the second being that the radio jets are expanding into an asymmetric medium. By analyzing radio host galaxy shapes, we probe the distribution of the stellar mass to compare the differing model expectations regarding the distribution of the surrounding gas and stellar material about the AGN.

  18. A Search for Distant Galaxy Cluster Hosting Extreme Central Galaxies

    NASA Astrophysics Data System (ADS)

    Somboonpanyakul, Taweewat

    2016-01-01

    The recent discovery of the "Phoenix cluster" which, at z = 0.6, is the most X-ray luminous clusters known and harbors a massive starburst at its center, begs the question: Why was is not discovered until recently? In fact, the object has been previously detected by several all-sky surveys at a variety of wavelengths, but it is consistently classified as a quasar (QSO) because of the extremely bright central galaxy and a (relative) lack of extended X-ray emission due to its distance. This lead us to question of how many of these Phoenix-like clusters are currently mislabelled in existing all-sky surveys.A unique property of the Phoenix cluster which helps us identify other Phoenix-like objects is that it is bright at multiple wavelength, including X-ray (intracluster medium and central AGN), near-IR (giant central elliptical galaxy), mid-IR (warm dust from starburst and AGN) and radio (radio-loud central AGN). Therefore, we can identify potential Phoenix-like clusters by cross-correlating all-sky surveys from ROSAT (X-ray), 2MASS (near-IR), WISE (mid-IR) and both SUMSS and NVSS (radio). By requiring sources to be bright in all four surveys, we can quickly find (among other sources) a sample of Phoenix-like clusters that can be followed up either by using archival images from SDSS for Northern-hemisphere objects or taking new images from the Magellan telescope for Southern-hemisphere objects. Here, we will present the preliminary result from the project.

  19. GRB host galaxy studies with VLT/X-shooter.

    NASA Astrophysics Data System (ADS)

    Vergani, S. D.

    We present the Italian-French GTO program dedicated to optical-NIR spectroscopy of long gamma-ray bursts (LGRB) host galaxies with VLT/X-shooter. To date most of the spectroscopical studies of GRB hosts are limited to z<1. At the end of the GTO period we will have collected the slit spectra of ˜ 30 GRB hosts: about a half at 0.8 < z < 1.5 and the remaining at z>1.5. Thanks to the unique capability of the X-shooter spectrograph we will be able to determine the properties of these objects (star formation rate, metallicity, extinction...) and compare them to those observed in absorption through the afterglow spectroscopy and to those of the galaxy samples studied in current galaxy surveys. Using the IFU X-shooter setup we will also perform the first IFU survey of GRB hosts, collecting the IFU spectra for a sample of ˜ 15 hosts at z<0.5. Here we will show some example of the studies we are carrying on with some preliminary results. Based on observations made with ESO Telescopes at Paranal Observatory under programmes ID 084.A-0260 (PI: J. Fynbo), 084.A-0631, 085.A-0795 and 086.A-0874 (PIs: S. Piranomonte and H. Flores).

  20. QSO Narrow [OIII] Line Width and Host Galaxy Luminosity

    NASA Astrophysics Data System (ADS)

    Bonning, E. W.; Shields, G. A.; Salviander, S.

    2004-05-01

    Established correlations between galaxy bulge luminosity L, black hole mass MBH, and stellar velocity dispersion sigma in galaxies suggest a close relationship between the growth of supermassive black holes and their host galaxies. Measurements of the MBH - sigma relationship as a function of cosmic time may shed light on the origin of this relationship. One approach is to derive MBH and sigma from the widths of QSO broad and narrow lines, respectively (Shields et al. 2003, ApJ, 583, 124; Nelson 2000, ApJ, 544, L91). We investigate the utility of using the velocity of the narrow line emitting gas as a surrogate for stellar velocity dispersion in QSOs by examining host magnitudes and [OIII] line widths for low redshift QSOs. For our limited range of L, the increase in sigma with L predicted by the Faber-Jackson relation is substantially obscured by scatter. However, sigma([O III]) is consistent in the mean with host galaxy luminosity. EWB is a NASA GSRP fellow. GAS and SS are supported under Texas Advanced Research Program grant 003658-0177-2001 and NSF grant AST-0098594.

  1. On the environments of Type Ia supernovae within host galaxies

    NASA Astrophysics Data System (ADS)

    Anderson, J. P.; James, P. A.; Förster, F.; González-Gaitán, S.; Habergham, S. M.; Hamuy, M.; Lyman, J. D.

    2015-03-01

    We present constraints on Type Ia supernovae (SNe Ia) progenitors through an analysis of the environments found at the explosion sites of 102 events within star-forming host galaxies. Hα and Galaxy Evolution Explorer near-ultraviolet (UV) images are used to trace on-going and recent star formation (SF), while broad-band B, R, J, K imaging is also analysed. Using pixel statistics we find that SNe Ia show the lowest degree of association with Hα emission of all supernova (SN) types. It is also found that they do not trace near-UV emission. As the latter traces SF on time-scales less than 100 Myr, this rules out any extreme `prompt' delay times as the dominant progenitor channel of SNe Ia. SNe Ia best trace the B-band light distribution of their host galaxies. This implies that the population within star-forming galaxies is dominated by relatively young progenitors. Splitting SNe by their (B - V) colours at maximum light, `redder' events show a higher degree of association with H II regions and are found more centrally within hosts. We discuss possible explanations of this result in terms of line-of-sight extinction and progenitor effects. No evidence for correlations between SN stretch and environment properties is observed.

  2. Distributions of Quasar Hosts on the Galaxy Main Sequence Plane

    NASA Astrophysics Data System (ADS)

    Zhang, Zhoujian; Shi, Yong; Rieke, George H.; Xia, Xiaoyang; Wang, Yikang; Sun, Bingqing; Wan, Linfeng

    2016-03-01

    The relation between star formation rates (SFRs) and stellar masses, i.e., the galaxy main sequence, is a useful diagnostic of galaxy evolution. We present the distributions relative to the main sequence of 55 optically selected PG and 12 near-IR-selected Two Micron All Sky Survey (2MASS) quasars at z ≤ 0.5. We estimate the quasar host stellar masses from Hubble Space Telescope or ground-based AO photometry, and the SFRs through the mid-infrared aromatic features and far-IR photometry. We find that PG quasar hosts more or less follow the main sequence defined by normal star-forming galaxies while 2MASS quasar hosts lie systematically above the main sequence. PG and 2MASS quasars with higher nuclear luminosities seem to have higher specific SFRs (sSFRs), although there is a large scatter. No trends are seen between sSFRs and SMBH masses, Eddington ratios, or even morphology types (ellipticals, spirals, and mergers). Our results could be placed in an evolutionary scenario with quasars emerging during the transition from ULIRGs/mergers to ellipticals. However, combined with results at higher redshift, they suggest that quasars can be widely triggered in normal galaxies as long as they contain abundant gas and have ongoing star formation.

  3. The Late Afterglow and Host Galaxy of GRB 990712.

    PubMed

    Hjorth; Holland; Courbin; Dar; Olsen; Scodeggio

    2000-05-10

    We present deep Hubble Space Telescope (HST) imaging, as well as ground-based imaging and spectroscopy, of the optical afterglow associated with the long-duration gamma-ray burst GRB 990712 and its host galaxy. The data were obtained 48-123 days after the burst occurred. The magnitudes of the host (R=21.9, V=22.5) and optical afterglow (R=25.4, V=25.8, 47.7 days after the burst) favor a scenario in which the optical light follows a pure power-law decay with an index of alpha approximately -1.0. We find no evidence for a contribution from a supernova like SN 1998bw. This suggests that either there are multiple classes of long-duration gamma-ray bursts or that the peak luminosity of the supernova was more than 1.5 mag fainter than SN 1998bw. The HST images and EFOSC2 spectra indicate that the gamma-ray burst was located in a bright, extended feature (possibly a star-forming region) 1.4 kpc from the nucleus of a 0.2L*B galaxy at z=0.434, possibly a Seyfert 2 galaxy. The late-time afterglow and host galaxy of GRB 990712 bear some resemblance to those of GRB 970508. PMID:10813669

  4. Optical Properties of Host Galaxies of Extragalactic Nuclear Water Masers

    NASA Astrophysics Data System (ADS)

    Zhu, Guangtun; Zaw, Ingyin; Blanton, Michael R.; Greenhill, Lincoln J.

    2011-12-01

    We study the optical properties of the host galaxies of nuclear 22 GHz (λ = 1.35 cm) water masers. To do so, we cross-match the galaxy sample surveyed for water maser emission (123 detections and 3806 non-detections) with the Sloan Digital Sky Survey (SDSS) low-redshift galaxy sample (z < 0.05). Out of 1636 galaxies with SDSS photometry, we identify 48 detections; out of the 1063 galaxies that also have SDSS spectroscopy, we identify 33 detections. We find that maser detection rate is higher at higher optical luminosity (MB ), larger velocity dispersion (σ), and higher [O III] λ5007 luminosity, with [O III] λ5007 being the dominant factor. These detection rates are essentially the result of the correlations of isotropic maser luminosity with all three of these variables. These correlations are natural if maser strength increases with central black hole mass and the level of active galactic nucleus (AGN) activity. We also find that the detection rate is higher in galaxies with higher extinction. Based on these results, we propose that maser surveys seeking to efficiently find masers should rank AGN targets by extinction-corrected [O III] λ5007 flux when available. This prioritization would improve maser detection efficiency, from an overall ~3% without pre-selection to ~16% for the strongest intrinsic [O III] λ5007 emitters, by a factor of ~5.

  5. Luminosity function and cosmological evolution of X-ray selected quasars

    NASA Technical Reports Server (NTRS)

    Maccacaro, T.; Gioia, I. M.

    1983-01-01

    The preliminary analysis of a complete sample of 55 X-ray sources is presented as part of the Medium Sensitivity Survey of the Einstein Observatory. A pure luminosity evolutionary law is derived in order to determine the uniform distribution of the sources and the rates of evolution for Active Galactic Nuclei (AGNs) observed by X-ray and optical techniques are compared. A nonparametric representation of the luminosity function is fitted to the observational data. On the basis of the reduced data, it is determined that: (1) AGNs evolve cosmologically; (2) less evolution is required to explain the X-ray data than the optical data; (3) the high-luminosity portion of the X-ray luminosity can be described by a power-law with a slope of gamma = 3.6; and (4) the X-ray luminosity function flattens at low luminosities. Some of the implications of the results for conventional theoretical models of the evolution of quasars and Seyfert galaxies are discussed.

  6. Toward An Understanding of Cluster Evolution: A Deep X-Ray Selected Cluster Catalog from ROSAT

    NASA Technical Reports Server (NTRS)

    Jones, Christine; Oliversen, Ronald (Technical Monitor)

    2002-01-01

    In the past year, we have focussed on studying individual clusters found in this sample with Chandra, as well as using Chandra to measure the luminosity-temperature relation for a sample of distant clusters identified through the ROSAT study, and finally we are continuing our study of fossil groups. For the luminosity-temperature study, we compared a sample of nearby clusters with a sample of distant clusters and, for the first time, measured a significant change in the relation as a function of redshift (Vikhlinin et al. in final preparation for submission to Cape). We also used our ROSAT analysis to select and propose for Chandra observations of individual clusters. We are now analyzing the Chandra observations of the distant cluster A520, which appears to have undergone a recent merger. Finally, we have completed the analysis of the fossil groups identified in ROM observations. In the past few months, we have derived X-ray fluxes and luminosities as well as X-ray extents for an initial sample of 89 objects. Based on the X-ray extents and the lack of bright galaxies, we have identified 16 fossil groups. We are comparing their X-ray and optical properties with those of optically rich groups. A paper is being readied for submission (Jones, Forman, and Vikhlinin in preparation).

  7. THE PROPERTIES OF TYPE Ia SUPERNOVA HOST GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY

    SciTech Connect

    Han, Du-Hwan; Park, Myeong-Gu; Park, Changbom; Choi, Yun-Young E-mail: mgp@knu.ac.k E-mail: yychoi@khu.ac.k

    2010-11-20

    We investigate the properties and environments of Type Ia Supernova (SN Ia) host galaxies in the Stripe 82 of the Sloan Digital Sky Survey-II Supernova Survey centered on the celestial equator. Host galaxies are defined as the galaxy nearest to the supernova (SN) in terms of angular distance whose velocity difference from the SN is less than 1000 km s{sup -1}. Eighty seven SN Ia host galaxies are selected from the SDSS Main galaxy sample with the apparent r-band magnitude m{sub r} < 17.77, and compared with the SDSS Main galaxies. The SN Ia rates for early- and late-type galaxies are 0.81 {+-} 0.19 SN (100 yr){sup -1} and 0.99 {+-} 0.21 SN (100 yr){sup -1}, respectively. We find that the host galaxies have a color distribution consistent with that of the Main galaxies, regardless of their morphology. However, host galaxies are on average brighter than the Main galaxies by {approx}0.3 mag over the range of -18.3>M{sub r} > - 21.3. But the brighter ends of their luminosity distributions are similar. The distribution of the distance to the nearest neighbor galaxy shows that SNe Ia are more likely to occur in isolated galaxies without close neighbors. We also find that the SN Ia host galaxies are preferentially located in a region close to massive galaxy clusters compared to the Main galaxies.

  8. Erratum: A Comparison of Radio Axis with Host Galaxy Plane Axis in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Schmitt, Henrique R.; Kinney, Anne L.; Storchi-Bergmann, Thaisa; Antonucci, Robert

    1997-08-01

    In the paper ``A Comparison of Radio Axis with Host Galaxy Plane Axis in Seyfert Galaxies'' by Henrique R. Schmitt, Anne L. Kinney, Thaisa Storchi-Bergmann, & Robert Antonucci (ApJ, 477, 623 [1997]), there are errors in Table 1 and Figure 6, and there is a reference to a previous work that should be stated. With respect to the latter, the authors compare the position angle of small-scale radio structures in Seyfert galaxies with the position angle of their host galaxy major axis. In their analysis they find a zone of avoidance, where the small-scale radio axis avoids close alignment with the host galaxy minor axis. The authors wish to note that J. S. Ulvestad and A. S. Wilson (ApJ, 285, 439 [1984]) already observed a paucity of radio structures aligned with the host galaxy minor axis in Seyfert 2 galaxies, although on a smaller sample. Ulvestad & Wilson was referenced in their paper as Ulvestad & Wilson (1984b). In Table 1 there were errors in the references listed in the note to the table. A new version of Table 1 with correct references is given here, and the following reference entries should be added to the reference list of the original paper: Mulchaey, J. S., Wilson, A. S., & Tsvetanov, Z. I. 1996, ApJS, 102, 309; Oke, J. B., & Lauer, T. R. 1979, ApJ, 230, 360; Simkin, S. M. 1975, ApJ, 200, 567. Figure 6a was printed twice, once correctly and once incorrectly in place of Figure 6c. The correct version of Figure 6c appears below.

  9. Supernova Host Galaxy Identification: Applications for the Dark Energy Survey and Future Surveys

    NASA Astrophysics Data System (ADS)

    Gupta, Ravi; Kuhlmann, Stephen; Kovacs, Eve; Spinka, Harold; Goldstein, Daniel; Liotine, Camille; Pomian, Katarzyna; Kessler, Richard; D'Andrea, Christopher; Sullivan, Mark; Sako, Masao; Nichol, Robert; Papadopoulos, Andreas; Dark Energy Survey

    2016-01-01

    Host galaxy identification is a crucial step for modern supernova (SN) surveys, which will discover SNe by the thousands. Spectroscopic resources are very limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain redshifts which are then used for photometric classification of SNe. In addition, SN luminosities are known to correlate with host galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. Using both real and simulated galaxy catalog data, including information about galaxy position, shape, orientation, and redshifts, we develop and test methods for matching SNe to their host galaxies. We use an automated algorithm that is run on catalog data and assigns host galaxies to simulated SN positions. We present the results of this algorithm and demonstrate how including a machine learning component, run after the initial matching algorithm, boosts the accuracy of the matching.

  10. Morphology of QSO host galaxies --- a look at the SED

    NASA Astrophysics Data System (ADS)

    Andrei, A.; Coelho, B.; Anton, S.

    2015-08-01

    The Gaia Initial QSO Catalogue presents several characteristics of its 1,248,372 listed objects, among which the optical morphological type. From this a program studies the host galaxies of QSOs present in the SDSS up to its 8th release, based on retrieving a data bank of images in the five ugriz colors for the 105,783 objects spectroscopically found as QSOs. The first scope of this program is to study QSOs for which the isophotes of the host galaxy are not pronounced, so that the centroid determination is not affected for those fundamental grid-points of the Gaia Celestial Reference Frame. Since the target images come from relatively short exposures, we developed an approach to access disturbances of the target PSF relatively to the nearby stars. Here we focus on the first results for absolute magnitude of QSOs combining the SDSS colors and the SED library from Gaia.

  11. SNLS: Constraints on SN Ia progenitors from host galaxies

    NASA Astrophysics Data System (ADS)

    Howell, D. A.; Sullivan, M.; Le Borgne, D.; Hodsman, A.; Astier, P.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R. G.; Conley, A.; Fabbro, S.; Fouchez, D.; Guy, J.; Hook, I. M.; Lafoux, H.; Neill, J. D.; Pain, R.; Palanque-Delabrouille, N.; Perrett, K.; Pritchet, C. J.; Regnault, N.; Rich, J.; Taillet, R.; Baumont, S.; Bronder, T. J.; Filliol, M.; Perlmutter, S.; Tao, C.; SNLS Collaboration

    2005-12-01

    We investigate the single degenerate and double degenerate progenitor scenarios for SNe Ia using Pegase galaxy population synthesis models fit to the SN Ia host galaxy ugriz data from the SNLS. For the single degenerate scenario, we present the results of a Monte Carlo sumulation combining limits on the star formation history of the model hosts and analytic contraints on the allowable primary and secondary mass distributions. Under the assuption that all SNe are from the single degenerate channel, we find that SNe in star forming galaxies have a wide range of secondary masses, with a median of about 5 solar masses. Supernovae from the older galaxy population must come from a narrower distribution of secondary masses, with a median less than two solar masses. When combined with the differing stretch distributions for the two populations, this argues that there is a light curve shape-secondary mass correlation if the single degenerate model is the only route to an SN Ia. However, the single degenerate scenario has difficulty producing the observed SN Ia rate in old populations so the double degenerate scenario may be preferred.

  12. The star formation rates of active galactic nuclei host galaxies

    NASA Astrophysics Data System (ADS)

    Ellison, Sara L.; Teimoorinia, Hossen; Rosario, David J.; Mendel, J. Trevor

    2016-05-01

    Using artificial neural network predictions of total infrared luminosities (LIR), we compare the host galaxy star formation rates (SFRs) of ˜21 000 optically selected active galactic nuclei (AGN), 466 low-excitation radio galaxies (LERGs) and 721 mid-IR-selected AGN. SFR offsets (ΔSFR) relative to a sample of star-forming `main-sequence' galaxies (matched in M⋆, z and local environment) are computed for the AGN hosts. Optically selected AGN exhibit a wide range of ΔSFR, with a distribution skewed to low SFRs and a median ΔSFR = -0.06 dex. The LERGs have SFRs that are shifted to even lower values with a median ΔSFR = -0.5 dex. In contrast, mid-IR-selected AGN have, on average, SFRs enhanced by a factor of ˜1.5. We interpret the different distributions of ΔSFR amongst the different AGN classes in the context of the relative contribution of triggering by galaxy mergers. Whereas the LERGs are predominantly fuelled through low accretion rate secular processes which are not accompanied by enhancements in SFR, mergers, which can simultaneously boost SFRs, most frequently lead to powerful, obscured AGN.

  13. Locating star-forming regions in quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Young, J. E.; Eracleous, M.; Shemmer, O.; Netzer, H.; Gronwall, C.; Lutz, Dieter; Ciardullo, R.; Sturm, Eckhard

    2014-02-01

    We present a study of the morphology and intensity of star formation in the host galaxies of eight Palomar-Green quasars using observations with the Hubble Space Telescope. Our observations are motivated by recent evidence for a close relationship between black hole growth and the stellar mass evolution in its host galaxy. We use narrow-band [O II]λ3727, Hβ, [O III]λ5007 and Paα images, taken with the Wide Field Planetary Camera 2 and NICMOS instruments, to map the morphology of line-emitting regions, and, after extinction corrections, diagnose the excitation mechanism and infer star-formation rates. Significant challenges in this type of work are the separation of the quasar light from the stellar continuum and the quasar-excited gas from the star-forming regions. To this end, we present a novel technique for image decomposition and subtraction of quasar light. Our primary result is the detection of extended line-emitting regions with sizes ranging from 0.5 to 5 kpc and distributed symmetrically around the nucleus, powered primarily by star formation. We determine star-formation rates of the order of a few tens of M⊙ yr-1. The host galaxies of our target quasars have stellar masses of the order of 1011 M⊙ and specific star-formation rates on a par with those of M82 and luminous infrared galaxies. As such they fall at the upper envelope or just above the star-formation mass sequence in the specific star formation versus stellar mass diagram. We see a clear trend of increasing star-formation rate with quasar luminosity, reinforcing the link between the growth of the stellar mass of the host and the black hole mass found by other authors.

  14. Properties of The Brightest Cluster Galaxy and Its Host Cluster

    NASA Astrophysics Data System (ADS)

    Katayama, H.; Hayashida, K.; Takahara, F.

    2001-09-01

    We investigate the relation between the brightest cluster galaxy (BCG) and its host cluster. A BCG is a bright and massive elliptical galaxy in a cluster of galaxies. The luminosity of a BCG is 10 times larger than that of normal field galaxy and the mass of a BCG is about 1013Msolar which corresponds to that of galaxy group. In order to explain the origin of BCGs, the following three models are proposed: (1) star formation from cooling flow. In this model, intracluster gas gradually condenses at the center of the cluster and forms the BCG. (2) ``Galactic cannibalism'' or the accretion of smaller galaxies. In this model, dynamical friction accounts for the formation of the BCG. These two models predict the BCG evolves with the evolution of cluster. (3) Galaxy merging in the early history of the formation of the cluster. In this model, the property of BCGs is determined no later than cluster collapse. In any model, the formation of BCGs is related to the collapse and formation of its host cluster. The relation between the BCG and its host cluster was studied by Edge (1991). Edge (1991) found that the optical luminosity of the BCG is positively correlated with the X-ray luminosity and temperature of its host cluster. Edge (1991) concludes that these correlations indicate that the BCG responds to the overall cluster properties. In order to investigate the other relation between the BCG and its host cluster, we analyzed ROSAT archival data and compared the displacement between the X-ray peak and the BCG with the Z parameter of the fundamental relation found by Fujita and Takahara (1999). It is found that the displacement is larger with decreasing Z. Furthermore, the large Z clusters tend to have a regular X-ray profile, which implies a relaxed system. The fundamental parameter Z depends mainly on the virial density ρvir, and is considered to be related to the formation epoch of the cluster, i.e., large Z clusters are old clusters and small Z clusters are young

  15. REVISITING THE FIRST GALAXIES: THE EFFECTS OF POPULATION III STARS ON THEIR HOST GALAXIES

    SciTech Connect

    Muratov, Alexander L.; Gnedin, Oleg Y.; Zemp, Marcel; Gnedin, Nickolay Y.

    2013-08-01

    We revisit the formation and evolution of the first galaxies using new hydrodynamic cosmological simulations with the adaptive refinement tree code. Our simulations feature a recently developed model for H{sub 2} formation and dissociation, and a star formation recipe that is based on molecular rather than atomic gas. Here, we develop and implement a recipe for the formation of metal-free Population III (Pop III) stars in galaxy-scale simulations that resolve primordial clouds with sufficiently high density. We base our recipe on the results of prior zoom-in simulations that resolved the protostellar collapse in pre-galactic objects. We find the epoch during which Pop III stars dominated the energy and metal budget of the first galaxies to be short-lived. Galaxies that host Pop III stars do not retain dynamical signatures of their thermal and radiative feedback for more than 10{sup 8} years after the lives of the stars end in pair-instability supernovae, even when we consider the maximum reasonable efficiency of the feedback. Though metals ejected by the supernovae can travel well beyond the virial radius of the host galaxy, they typically begin to fall back quickly, and do not enrich a large fraction of the intergalactic medium. Galaxies with a total mass in excess of 3 Multiplication-Sign 10{sup 6} M{sub Sun} re-accrete most of their baryons and transition to metal-enriched Pop II star formation.

  16. Are Some Milky Way Globular Clusters Hosted by Undiscovered Galaxies?

    NASA Astrophysics Data System (ADS)

    Zaritsky, Dennis; Crnojević, Denija; Sand, David J.

    2016-07-01

    The confirmation of a globular cluster (GC) in the recently discovered ultrafaint galaxy Eridanus II (Eri II) motivated us to examine the question posed in the title. After estimating the halo mass of Eri II using a published stellar mass—halo mass relation, the one GC in this galaxy supports extending the relationship between the number of GCs hosted by a galaxy and the galaxy’s total mass about two orders of magnitude in stellar mass below the previous limit. For this empirically determined specific frequency of between 0.06 and 0.39 GCs per 109 M ⊙ of total mass, the surviving Milky Way (MW) subhalos with masses smaller than 1010 M ⊙ could host as many as 5–31 GCs, broadly consistent with the actual population of outer halo MW GCs, although matching the radial distribution in detail remains a challenge. Using a subhalo mass function from published high-resolution numerical simulations and a Poissonian model for populating those halos with the aforementioned empirically constrained frequency, we find that about 90% of these GCs lie in lower-mass subhalos than that of Eri II. From what we know about the stellar mass–halo mass function, the subhalo mass function, and the mass-normalized GC specific frequency, we conclude that some of the MW’s outer halo GCs are likely to be hosted by undetected subhalos with extremely modest stellar populations.

  17. The Host Galaxies of Local PTF Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Sullivan, Mark; Howell, D. Andrew; Nugent, Peter; Hook, Isobel; Maguire, Kate; Blake, Sarah; Pan, Yen-Chen

    2012-02-01

    The discovery of correlations between Type Ia Supernova (SN Ia) peak luminosity and the parameters defining their host galaxy stellar populations has important implications for their use as standardised candles. Using new samples of low-redshift SNe Ia located with the Palomar Transient Factory (PTF), a rolling transient search in the local universe, we propose to continue our campaign to study in detail the host galaxies in which SNe Ia explode. We aim to establish which physical variable (metallicity or age) primarily drives the SN Ia luminosity variations using high signal-to-noise spectroscopy of their environments. These data will also improve the derivation of SN Ia "delay-time" distributions, and place tighter constraints on the nature of their progenitor systems. Evolution in SN Ia properties is now the largest single astrophysical systematic in SN Ia cosmology, with host galaxies playing a critical role in cosmological studies, and detailed study of their environments provides a realistic opportunity to improve their use for studying dark energy. We give a status report on the progress of this program to date, and demonstrate the feasibility of our study using our observations from earlier semesters.

  18. The host galaxies of local PTF Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Sullivan, Mark; Howell, D. Andrew; Hook, Isobel; Pan, Yen-Chen; Nugent, Peter; Maguire, Kate

    2012-08-01

    The discovery of correlations between Type Ia Supernova (SN Ia) peak luminosity and the parameters defining their host galaxy stellar populations has important implications for their use as standardised candles. Using new samples of low-redshift SNe Ia located with the Palomar Transient Factory (PTF), a rolling transient search in the local universe, we finish our campaign to study in detail the host galaxies in which SNe Ia explode. We aim to establish which physical variable (metallicity or age) primarily drives the SN Ia luminosity variations using high signal-to-noise spectroscopy of their environments. These data will also place tighter constraints on the nature of their progenitor systems. Evolution in SN Ia properties is now the largest single astrophysical systematic in SN Ia cosmology, with host galaxies playing a critical role in cosmological studies, and detailed study of their environments provides a realistic opportunity to improve their use for studying dark energy. We give a status report on the progress of this program to date, and demonstrate the feasibility of our study using our observations from earlier semesters.

  19. Supermassive Black Holes and Their Host Spheroids. I. Disassembling Galaxies

    NASA Astrophysics Data System (ADS)

    Savorgnan, G. A. D.; Graham, A. W.

    2016-01-01

    Several recent studies have performed galaxy decompositions to investigate correlations between the black hole mass and various properties of the host spheroid, but they have not converged on the same conclusions. This is because their models for the same galaxy were often significantly different and not consistent with each other in terms of fitted components. Using 3.6 μm Spitzer imagery, which is a superb tracer of the stellar mass (superior to the K band), we have performed state-of-the-art multicomponent decompositions for 66 galaxies with directly measured black hole masses. Our sample is the largest to date and, unlike previous studies, contains a large number (17) of spiral galaxies with low black hole masses. We paid careful attention to the image mosaicking, sky subtraction, and masking of contaminating sources. After a scrupulous inspection of the galaxy photometry (through isophotal analysis and unsharp masking) and—for the first time—2D kinematics, we were able to account for spheroids large-scale, intermediate-scale, and nuclear disks bars rings spiral arms halos extended or unresolved nuclear sources; and partially depleted cores. For each individual galaxy, we compared our best-fit model with previous studies, explained the discrepancies, and identified the optimal decomposition. Moreover, we have independently performed one-dimensional (1D) and two-dimensional (2D) decompositions and concluded that, at least when modeling large, nearby galaxies, 1D techniques have more advantages than 2D techniques. Finally, we developed a prescription to estimate the uncertainties on the 1D best-fit parameters for the 66 spheroids that takes into account systematic errors, unlike popular 2D codes that only consider statistical errors.

  20. The mean star-forming properties of QSO host galaxies

    NASA Astrophysics Data System (ADS)

    Rosario, D. J.; Trakhtenbrot, B.; Lutz, D.; Netzer, H.; Trump, J. R.; Silverman, J. D.; Schramm, M.; Lusso, E.; Berta, S.; Bongiorno, A.; Brusa, M.; Förster-Schreiber, N. M.; Genzel, R.; Lilly, S.; Magnelli, B.; Mainieri, V.; Maiolino, R.; Merloni, A.; Mignoli, M.; Nordon, R.; Popesso, P.; Salvato, M.; Santini, P.; Tacconi, L. J.; Zamorani, G.

    2013-12-01

    Quasi-stellar objects (QSOs) occur in galaxies in which supermassive black holes (SMBHs) are growing substantially through rapid accretion of gas. Many popular models of the co-evolutionary growth of galaxies and black holes predict that QSOs are also sites of substantial recent star formation (SF), mediated by important processes, such as major mergers, which rapidly transform the nature of galaxies. A detailed study of the star-forming properties of QSOs is a critical test of these models. We present a far-infrared Herschel/PACS study of the mean star formation rate (SFR) of a sample of spectroscopically observed QSOs to z ~ 2 from the COSMOS extragalactic survey. This is the largest sample to date of moderately luminous QSOs (with nuclear luminosities that lie around the knee of the luminosity function) studied using uniform, deep far-infrared photometry. We study trends of the mean SFR with redshift, black hole mass, nuclear bolometric luminosity, and specific accretion rate (Eddington ratio). To minimize systematics, we have undertaken a uniform determination of SMBH properties, as well as an analysis of important selection effects of spectroscopic QSO samples that influence the interpretation of SFR trends. We find that the mean SFRs of these QSOs are consistent with those of normal massive star-forming galaxies with a fixed scaling between SMBH and galaxy mass at all redshifts. No strong enhancement in SFR is found even among the most rapidly accreting systems, at odds with several co-evolutionary models. Finally, we consider the qualitative effects on mean SFR trends from different assumptions about the SF properties of QSO hosts and from redshift evolution of the SMBH-galaxy relationship. While currently limited by uncertainties, valuable constraints on AGN-galaxy co-evolution can emerge from our approach.

  1. LINKING SHORT GAMMA-RAY BURSTS AND THEIR HOST GALAXIES

    SciTech Connect

    Rhoads, James E.

    2010-02-01

    The luminosities of short-duration gamma-ray burst (SGRB) host galaxies appear to be anticorrelated with both the isotropic equivalent gamma-ray energy and the gamma-ray luminosity of the explosions, based on a sample of 12 bursts with host galaxy redshifts and photometry. The correlation does depend on the correct identification of the GRB 050509b host, but is otherwise robust. In particular, simple observational selection effects only strengthen the statistical significance of this correlation, from approx95% to approx99%. The correlation may indicate that there are two physically distinct groups of SGRBs. If so, it requires that the more luminous class of explosions be associated with the younger class of progenitors. Alternatively, it could be due to a continuous distribution of burst and host properties, in which case it could be used as a crude SGRB distance indicator. As one possible explanation, we find that the effect of binary neutron star masses on inspiral time and energy reservoir produces a correlation of the appropriate sign, but does not automatically reproduce the correlation slope or the full range of SGRB energy scales. If confirmed by larger samples, this correlation will provide a valuable new constraint on SGRB progenitor models.

  2. The host of GRB 060206: kinematics of a distant galaxy

    NASA Astrophysics Data System (ADS)

    Thöne, C. C.; Wiersema, K.; Ledoux, C.; Starling, R. L. C.; de Ugarte Postigo, A.; Levan, A. J.; Fynbo, J. P. U.; Curran, P. A.; Gorosabel, J.; van der Horst, A. J.; Llorente, A.; Rol, E.; Tanvir, N. R.; Vreeswijk, P. M.; Wijers, R. A. M. J.; Kewley, L. J.

    2008-10-01

    Context: GRB afterglow spectra are sensitive probes of interstellar matter along the line-of-sight in their host galaxies, as well as in intervening galaxies. The rapid fading of GRBs makes it very difficult to obtain spectra of sufficient resolution and S/N to allow for these kinds of studies. Aims: We investigate the state and properties of the interstellar medium in the host of GRB 060206 at z= 4.048 with a detailed study of groundstate and finestructure absorption lines in an early afterglow spectrum. This allows us to derive conclusions on the nature and origin of the absorbing structures and their connection to the host galaxy and/or the GRB. Methods: We used early (starting 1.6 h after the burst) WHT/ISIS optical spectroscopy of the afterglow of the gamma-ray burst GRB 060206 detecting a range of metal absorption lines and their finestructure transitions. Additional information is provided by the afterglow lightcurve. The resolution and wavelength range of the spectra and the bright afterglow have facilitated a detailed study and fitting of the absorption line systems in order to derive column densities. We also used deep imaging to detect the host galaxy and probe the nature of an intervening system at z = 1.48 seen in absorption in the afterglow spectra. Results: We detect four discrete velocity systems in the resonant metal absorption lines, best explained by shells within and/or around the host created by starburst winds. The finestructure lines have no less than three components with strengths decreasing from the redmost components. We therefore suggest that the finestructure lines are best explained as being produced by UV pumping from which follows that the redmost component is the one closest to the burst where N V was detected as well. The host is detected in deep HST imaging with F814WAB = 27.48 ± 0.19 mag and a 3σ upper limit of H = 20.6 mag (Vega) is achieved. A candidate counterpart for the intervening absorption system is detected as well

  3. Fast outflows and star formation quenching in quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Carniani, S.; Marconi, A.; Maiolino, R.; Balmaverde, B.; Brusa, M.; Cano-Díaz, M.; Cicone, C.; Comastri, A.; Cresci, G.; Fiore, F.; Feruglio, C.; La Franca, F.; Mainieri, V.; Mannucci, F.; Nagao, T.; Netzer, H.; Piconcelli, E.; Risaliti, G.; Schneider, R.; Shemmer, O.

    2016-06-01

    Negative feedback from active galactic nuclei (AGN) is considered a key mechanism in shaping galaxy evolution. Fast, extended outflows are frequently detected in the AGN host galaxies at all redshifts and luminosities, both in ionised and molecular gas. However, these outflows are only potentially able to quench star formation, and we are still lacking decisive evidence of negative feedback in action. Here we present observations obtained with the Spectrograph for INtegral Field Observations in the Near Infrared (SINFONI) H- and K-band integral-field of two quasars at z ~ 2.4 that are characterised by fast, extended outflows detected through the [Oiii]λ5007 line. The high signal-to-noise ratio of our observations allows us to identify faint narrow (FWHM< 500 km s-1) and spatially extended components in [Oiii]λ5007 and Hα emission associated with star formation in the host galaxy. This star formation powered emission is spatially anti-correlated with the fast outflows. The ionised outflows therefore appear to be able to suppress star formation in the region where the outflow is expanding. However, the detection of narrow spatially extended Hα emission indicates star formation rates of at least ~50-90 M⊙ yr-1, suggesting either that AGN feedback does not affect the whole galaxy or that many feedback episodes are required before star formation is completely quenched. On the other hand, the narrow Hα emission extending along the edges of the outflow cone may also lead also to a positive feedback interpretation. Our results highlight the possible double role of galaxy-wide outflows in host galaxy evolution. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, P.ID: 086.B-0579(A) and 091.A-0261(A).The reduced data cubes are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A28

  4. DYNAMICS OF LYMAN BREAK GALAXIES AND THEIR HOST HALOS

    SciTech Connect

    Lowenthal, James D.; Koo, David C.; Van Kampen, Eelco E-mail: koo@ucolick.or E-mail: evkampen@eso.or

    2009-09-20

    We present deep two-dimensional spectra of 22 candidate and confirmed Lyman break galaxies (LBGs) at redshifts 2 < z < 4 in the Hubble Deep Field (HDF) obtained at the Keck II telescope. The targets were preferentially selected with spatial extent and/or multiple knot morphologies, and we used slitmasks and individual slits tilted to optimize measurement of any spatially resolved kinematics. Our sample is more than 1 mag fainter and is at higher redshift than the kinematic LBG targets previously studied by others. The median target magnitude was I {sub 814} = 25.3, and total exposure times ranged from 10 to 50 ks. We measure redshifts, some new, ranging from z = 0.2072 to z = 4.056, including two interlopers at z < 1, and resulting in a sample of 14 LBGs with a median redshift z = 2.424. The morphologies and kinematics of the close pairs and multiple knot sources in our sample are generally inconsistent with galaxy formation scenarios postulating that LBGs occur only at the bottom of the potential wells of massive host halos; rather, they support 'collisional starburst' models with significant major merger rates and a broad halo occupation distribution. For 13 LBGs with possible kinematic signatures, we estimate a simple dynamical mass, subject to numerous caveats and uncertainties, of the galaxies and/or their host dark matter halos. Dynamical mass estimates of individual galaxies range from 4 x 10{sup 9} h {sup -1} M{sub sun} to 1.1 x 10{sup 11} h {sup -1} M{sub sun} and mass estimates of halos, based on close LBG pairs, range from <10{sup 10} h {sup -1} to {approx}10{sup 14} h {sup -1} M{sub sun} with a median value 1 x 10{sup 13} M{sub sun}. Comparison with a recent numerical galaxy formation model implies that indeed the pairwise velocities might not reflect true dynamical masses. We compare our dynamical mass estimates directly to stellar masses estimated for the same galaxies from SEDs, and find no evidence for a strong correlation. The diversity of

  5. The Massive Hosts of Radio Galaxies Across Cosmic Time

    NASA Astrophysics Data System (ADS)

    Seymour, Nick; SHzRG Collaboration

    2007-05-01

    We present the results of a comprehensive Spitzer survey of 69 radio galaxies across 1host galaxy stellar emission at rest-frame H-band. Stellar masses derived from rest-frame near-IR data, where AGN and young star contributions are minimized, are significantly more reliable than those derived from rest-frame optical and UV data. We find that the fraction of emitted light at rest-frame H-band from stars is >60% for 75% the high redshift radio galaxies. As expected from unified models of AGN, the stellar fraction of the rest-frame H-band luminosity has no correlation with redshift, radio luminosity, or rest-frame mid-IR (5um) luminosity. Additionally, while the stellar H-band luminosity does not vary with stellar fraction, the total H-band luminosity anti-correlates with the stellar fraction as would be expected if the underlying hosts of these radio galaxies comprise a homogeneous population. The resultant stellar luminosities imply stellar masses of 10^{11-11.5}Msun even at the highest redshifts. Powerful radio galaxies tend to lie in a similar region of mid-IR color-color space as unobscured AGN, despite the stellar contribution to their mid-IR SEDs at shorter-wavelengths. The mid-IR luminosities alone classify most HzRGs as LIRGs or ULIRGs with even higher total-IR luminosities. As expected, these exceptionally high mid-IR luminosities are consistent with an obscured, highly-accreting AGN. Sub-mm observed starformation rates imply very high specific starformation rates, higher than other massive galaxies at these redshift ranges, suggesting we are watching the final formation of massive galaxies and black holes. We also present new evidence that the blackhole accretion rate (from mid-IR luminosity) correlates with radio lobe size and anti

  6. Large Dynamic Range Simulations of Galaxies Hosting Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Levine, Robyn

    2011-08-01

    The co-evolution of supermassive black holes (SMBHs) and their host galaxies is a rich problem, spanning a large-dynamic range and depending on many physical processes. Simulating the transport of gas and angular momentum from super-galactic scales all the way down to the outer edge of the black hole's accretion disk requires sophisticated numerical techniques with extensive treatment of baryonic physics. We use a hydrodynamic adaptive mesh refinement simulation to follow the growth and evolution of a typical disk galaxy hosting an SMBH, in a cosmological context (covering a dynamical range of 10 million!). We have adopted a piecemeal approach, focusing our attention on the gas dynamics in the central few hundred parsecs of the simulated galaxy (with boundary conditions provided by the larger cosmological simulation), and beginning with a simplified picture (no mergers or feedback). In this scenario, we find that the circumnuclear disk remains marginally stable against catastrophic fragmentation, allowing stochastic fueling of gas into the vicinity of the SMBH. I will discuss the successes and the limitations of these simulations, and their future direction.

  7. Metallicity Gradients of Stripped Core-Collapse Supernovae Host Galaxies

    NASA Astrophysics Data System (ADS)

    Fierroz, David F.; Modjaz, M.

    2013-01-01

    We examine a sample of over 30 galaxies that have hosted stripped core-collapse supernovae including SN IIb, SN Ib, SN Ic and SN Ic with broad lines (SN Ic-BL). The supernovae were discovered by both targeted and untargeted surveys including the Katzman Automatic Imaging Telescope (KAIT), the Nearby Supernova Factory (SNF) and the Palomar Transient Factory (PTF). The metallicity of the supernova environment is expected to play an important role during the short lifetimes of the massive stellar progenitors and likely influences the class of the explosion. We obtain spectra to measure metallicity at the nucleus of the galaxy as well as at HII regions going out to radii that include the supernova site. We use three different oxygen-abundance scales to calibrate and compare metallicities across core-collapse classes. By interpolating the metallicity across the host galaxy we construct our own metallicity gradients that can include SN that have no HII regions at their position and remove the selection effect in place by prior studies. This new feature allows us to probe SN environmental metallicities, even at sites that don’t have recent star formation activity.

  8. Chandra X-Ray and Hubble Space Telescope Imaging of Optically Selected Kiloparsec-scale Binary Active Galactic Nuclei. II. Host Galaxy Morphology and AGN Activity

    NASA Astrophysics Data System (ADS)

    Shangguan, Jinyi; Liu, Xin; Ho, Luis C.; Shen, Yue; Peng, Chien Y.; Greene, Jenny E.; Strauss, Michael A.

    2016-05-01

    Binary active galactic nuclei (AGNs) provide clues to how gas-rich mergers trigger and fuel AGNs and how supermassive black hole (SMBH) pairs evolve in a gas-rich environment. While significant effort has been invested in their identification, the detailed properties of binary AGNs and their host galaxies are still poorly constrained. In a companion paper, we examined the nature of ionizing sources in the double nuclei of four kiloparsec-scale binary AGNs with redshifts between 0.1 and 0.2. Here, we present their host galaxy morphology based on F336W (U-band) and F105W (Y-band) images taken by the Wide Field Camera 3 on board the Hubble Space Telescope. Our targets have double-peaked narrow emission lines and were confirmed to host binary AGNs with follow-up observations. We find that kiloparsec-scale binary AGNs occur in galaxy mergers with diverse morphological types. There are three major mergers with intermediate morphologies and a minor merger with a dominant disk component. We estimate the masses of the SMBHs from their host bulge stellar masses and obtain Eddington ratios for each AGN. Compared with a representative control sample drawn at the same redshift and stellar mass, the AGN luminosities and Eddington ratios of our binary AGNs are similar to those of single AGNs. The U ‑ Y color maps indicate that clumpy star-forming regions could significantly affect the X-ray detection of binary AGNs, e.g., the hardness ratio. Considering the weak X-ray emission in AGNs triggered in merger systems, we suggest that samples of X-ray-selected AGNs may be biased against gas-rich mergers. Based, in part, on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program number GO 12363.

  9. Atomic hydrogen properties of active galactic nuclei host galaxies: H I in 16 nuclei of galaxies (NUGA) sources

    SciTech Connect

    Haan, Sebastian; Schinnerer, Eva; Mundell, Carole G.; García-Burillo, Santiago; Combes, Francoise E-mail: schinner@mpia.de E-mail: burillo@oan.es

    2008-01-01

    We present a comprehensive spectroscopic imaging survey of the distribution and kinematics of atomic hydrogen (H I) in 16 nearby spiral galaxies hosting low luminosity active galactic nuclei (AGN), observed with high spectral and spatial resolution (resolution: ∼20'', ∼5 km s{sup –1}) using the NRAO Very Large Array (VLA). The sample contains a range of nuclear types ranging from Seyfert to star-forming nuclei, and was originally selected for the NUclei of GAlaxies project (NUGA)—a spectrally and spatially resolved interferometric survey of gas dynamics in nearby galaxies designed to identify the fueling mechanisms of AGN and the relation to host galaxy evolution. Here we investigate the relationship between the H I properties of these galaxies, their environment, their stellar distribution, and their AGN type. The large-scale H I morphology of each galaxy is classified as ringed, spiral, or centrally concentrated; comparison of the resulting morphological classification with the AGN type reveals that ring structures are significantly more common in low-ionization narrow emission-line regions (LINER) than in Seyfert host galaxies, suggesting a time evolution of the AGN activity together with the redistribution of the neutral gas. Dynamically disturbed H I disks are also more prevalent in LINER host galaxies than in Seyfert host galaxies. While several galaxies are surrounded by companions (some with associated H I emission), there is no correlation between the presence of companions and the AGN type (Seyfert/LINER).

  10. Correlations of the IR Luminosity and Eddington Ratio with a Hard X-ray Selected Sample of AGN

    NASA Technical Reports Server (NTRS)

    Mushotzy, Richard F.; Winter, Lisa M.; McIntosh, Daniel H.; Tueller, Jack

    2008-01-01

    We use the SWIFT Burst Alert Telescope (BAT) sample of hard x-ray selected active galactic nuclei (AGN) with a median redshift of 0.03 and the 2MASS J and K band photometry to examine the correlation of hard x-ray emission to Eddington ratio as well as the relationship of the J and K band nuclear luminosity to the hard x-ray luminosity. The BAT sample is almost unbiased by the effects of obscuration and thus offers the first large unbiased sample for the examination of correlations between different wavelength bands. We find that the near-IR nuclear J and K band luminosity is related to the BAT (14 - 195 keV) luminosity over a factor of 10(exp 3) in luminosity (L(sub IR) approx.equals L(sub BAT)(sup 1.25) and thus is unlikely to be due to dust. We also find that the Eddington ratio is proportional to the x-ray luminosity. This new result should be a strong constraint on models of the formation of the broad band continuum.

  11. Simple Stellar Population Modeling of Quasar Host Galaxies with Diffusion K-Means Test Results

    NASA Astrophysics Data System (ADS)

    Mosby, Gregory; Moravec, E. A.; Tremonti, C. A.; Wolf, M. J.

    2013-01-01

    In the last decade, the correlation of the masses of supermassive black holes (SMBHs) and their host galaxy stellar spheroid velocity dispersions (the M-sigma relation) was greeted as clear evidence for the co-evolution of host galaxies and their SMBHs. However, studies in the last five years have posited that this relation could arise from central-limit properties of hierarchical formation alone. To address the question of whether and how often the SMBHs evolve with their host galaxies, it is necessary to look at galaxies whose SMBHs are actively growing—quasars—and determine the host galaxy properties. The central nuclei of quasar host galaxies complicate this type of study because their high luminosity tends to wash out their host galaxies. But, by using 3-D spectroscopy with the integral field unit (IFU) Sparsepak on the WIYN telescope, we have shown that the quasar light can be mostly isolated to one fiber in order to obtain the spectra of the quasar and the host galaxy concurrently. We can then model simultaneously the scattered quasar light and the stellar populations in the host galaxy fiber using a new simple stellar population (SSP) modeling method called diffusion k-means (DFK). The objectives of the research presented in this poster are to model synthetic quasar host galaxies using a DFK basis and a more traditional basis, compare the accuracy of both modeling methods, and test the affects of various prescriptions for masking the quasar lines in the host galaxy fiber. We present results from our SSP modeling and Markov Chain Monte Carlo (MCMC) results for DFK and traditional modeling schemes using synthetic data. By determining and then using the more robust stellar population modeling method, we can more confidently study quasar host galaxies to answer remaining questions in galaxy evolution. This work was partially supported by a National Science Foundation Graduate Fellowship (NSF Grant DGE-0718123) and through the NSF's REU program (NSF Award

  12. Host galaxies of luminous type II AGN: Winds, shocks, and comparisons to The SAMI Galaxy Survey

    NASA Astrophysics Data System (ADS)

    McElroy, Rebecca; Croom, Scott; Pracy, Michael; SAMI Galaxy Survey Team

    2016-01-01

    We present IFS observations of luminous (log(L[O III]/L⊙) > 8.7) local (z < 0.11) type II AGN, and demonstrate that winds are ubiquitous within this sample and have a direct influence on the ISM of the host galaxies. We use both non-parametric (e.g. line width and asymmetry) and multi-Gaussian fitting to decompose the complex emission profiles close to the AGN. We find line widths containing 80% flux in the range 400 - 1600 km/s with a mean of 790 ± 90 km/s, such high velocities are strongly suggestive that these AGN are driving ionized outflows. Additionally, multi-Gaussian fitting reveals that 14/17 of our targets require 3 separate kinematic components in the ionized gas in their central regions. The broadest components of these fits have FWHM = 530 - 2520 km/s, with a mean value of 920 ± 50 km/s. By simultaneously fitting both the Hβ/[O III] and Hα/[N II] complexes we construct ionization diagnostic diagrams for each component. 13/17 of our galaxies show a significant (> 95 %) correlation between the [N II]/Hα ratio and the velocity dispersion of the gas. Such a correlation is the natural consequence of a contribution to the ionization from shock excitation and we argue that this demonstrates that the outflows from these AGN are directly impacting the surrounding ISM within the galaxies. In addition, we use stellar absorption features to measure kinematics for these AGN host galaxies and those of a control sample selected from the SAMI Galaxy Survey to search for evidence of these luminous AGN being preferentially hosted by disturbed or merging systems.

  13. Herschel Observed Stripe 82 Quasars and Their Host Galaxies: Connections between AGN Activity and host Galaxy Star Formation

    NASA Astrophysics Data System (ADS)

    Dong, X. Y.; Wu, Xue-Bing

    2016-06-01

    In this work, we present a study of 207 quasars selected from the Sloan Digital Sky Survey quasar catalogs and the Herschel Stripe 82 survey. Quasars within this sample are high-luminosity quasars with a mean bolometric luminosity of 1046.4 erg s‑1. The redshift range of this sample is within z < 4, with a mean value of 1.5 ± 0.78. Because we only selected quasars that have been detected in all three Herschel-SPIRE bands, the quasar sample is complete yet highly biased. Based on the multi-wavelength photometric observation data, we conducted a spectral energy distribution (SED) fitting through UV to FIR. Parameters such as active galactic nucleus (AGN) luminosity, far-IR (FIR) luminosity, stellar mass, as well as many other AGN and galaxy properties are deduced from the SED fitting results. The mean star formation rate (SFR) of the sample is 419 M ⊙ yr‑1 and the mean gas mass is ∼1011.3 M ⊙. All of these results point to an IR luminous quasar system. Compared with star formation main sequence (MS) galaxies, at least 80 out of 207 quasars are hosted by starburst galaxies. This supports the statement that luminous AGNs are more likely to be associated with major mergers. The SFR increases with the redshift up to z = 2. It is correlated with the AGN bolometric luminosity, where {L}{{FIR}}\\propto {L}{{Bol}}0.46+/- 0.03. The AGN bolometric luminosity is also correlated with the host galaxy mass and gas mass. Yet the correlation between L FIR and L Bol has higher significant level, implies that the link between AGN accretion and the SFR is more primal. The M BH/M * ratio of our sample is 0.02, higher than the value 0.005 in the local universe. It might indicate an evolutionary trend of the M BH–M * scaling relation.

  14. Erratum: The Late Afterglow and Host Galaxy of GRB 990712

    NASA Astrophysics Data System (ADS)

    Hjorth, J.; Holland, S.; Courbin, F.; Dar, A.; Olsen, L. F.; Scodeggio, M.

    2000-08-01

    In the Letter ``The Late Afterglow and Host Galaxy of GRB 990712'' by J. Hjorth, S. Holland, F. Courbin, A. Dar, L. F. Olsen, & M. Scodeggio (ApJ, 534, L147 [2000]), there was an error in the flux calibration of the spectrum. The y-axis scale of Figure 2 and the fluxes in the last column of Table 1 should be multiplied by a factor of 3.47 to read 2.25, 0.86, 1.61, and 3.79×10-16 ergs s-1 cm-2. The error affects the luminosities and star formation rates (SFRs) presented in the third and fourth paragraphs of § 5 as follows. In the third paragraph, the total SFR based on the continuum flux should be 0.91-1.41 Msolar yr-1 instead of 0.29-0.45 the [O II] luminosity should be L3727=1.5×1041 ergs s-1 instead of 6.3×1040 and the implied [O II] SFR should be 2.12+/-0.60 Msolar yr-1 instead of 0.88+/-0.25. Consequently, the last two sentences of this paragraph are revised to read ``The derived SFR (from the [O II] flux) is about half of the SFR found by Bloom et al. (1999b) for the host of GRB 990123 and 2-3 times that of the host of GRB 970508 (Bloom et al. 1998). The specific SFR per unit luminosity of the GRB 990712 host galaxy is comparable to that of the host galaxies of GRB 990123 and GRB 970508.'' In the fourth paragraph, the total V-band flux in the feature should be 0.405+/-0.004 μJy instead of 0.323+/-0.003 the power-law spectral index should be β=-2.57 instead of -2.93 and the SFR in the feature should be 0.11-0.17 Msolar instead of 0.03-0.05. The main results and conclusions of the original Letter are unaffected by the error. The authors thank P. M. Vreeswijk for bringing this error to their attention.

  15. The host galaxy of a fast radio burst.

    PubMed

    Keane, E F; Johnston, S; Bhandari, S; Barr, E; Bhat, N D R; Burgay, M; Caleb, M; Flynn, C; Jameson, A; Kramer, M; Petroff, E; Possenti, A; van Straten, W; Bailes, M; Burke-Spolaor, S; Eatough, R P; Stappers, B W; Totani, T; Honma, M; Furusawa, H; Hattori, T; Morokuma, T; Niino, Y; Sugai, H; Terai, T; Tominaga, N; Yamasaki, S; Yasuda, N; Allen, R; Cooke, J; Jencson, J; Kasliwal, M M; Kaplan, D L; Tingay, S J; Williams, A; Wayth, R; Chandra, P; Perrodin, D; Berezina, M; Mickaliger, M; Bassa, C

    2016-02-25

    In recent years, millisecond-duration radio signals originating in distant galaxies appear to have been discovered in the so-called fast radio bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity, which, in tandem with a redshift measurement, can be used for fundamental physical investigations. Every fast radio burst has a dispersion measurement, but none before now have had a redshift measurement, because of the difficulty in pinpointing their celestial coordinates. Here we report the discovery of a fast radio burst and the identification of a fading radio transient lasting ~6 days after the event, which we use to identify the host galaxy; we measure the galaxy's redshift to be z = 0.492 ± 0.008. The dispersion measure and redshift, in combination, provide a direct measurement of the cosmic density of ionized baryons in the intergalactic medium of ΩIGM = 4.9 ± 1.3 per cent, in agreement with the expectation from the Wilkinson Microwave Anisotropy Probe, and including all of the so-called 'missing baryons'. The ~6-day radio transient is largely consistent with the radio afterglow of a short γ-ray burst, and its existence and timescale do not support progenitor models such as giant pulses from pulsars, and supernovae. This contrasts with the interpretation of another recently discovered fast radio burst, suggesting that there are at least two classes of bursts. PMID:26911781

  16. Strong bimodality in the host halo mass of central galaxies from galaxy-galaxy lensing

    NASA Astrophysics Data System (ADS)

    Mandelbaum, Rachel; Wang, Wenting; Zu, Ying; White, Simon; Henriques, Bruno; More, Surhud

    2016-04-01

    We use galaxy-galaxy lensing to study the dark matter haloes surrounding a sample of locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey. We measure mean halo mass as a function of the stellar mass and colour of the central galaxy. Mock catalogues constructed from semi-analytic galaxy formation simulations demonstrate that most LBGs are the central objects of their haloes, greatly reducing interpretation uncertainties due to satellite contributions to the lensing signal. Over the full stellar mass range, 10.3 < log [M*/M⊙] < 11.6, we find that passive central galaxies have haloes that are at least twice as massive as those of star-forming objects of the same stellar mass. The significance of this effect exceeds 3σ for log [M*/M⊙] > 10.7. Tests using the mock catalogues and on the data themselves clarify the effects of LBG selection and show that it cannot artificially induce a systematic dependence of halo mass on LBG colour. The bimodality in halo mass at fixed stellar mass is reproduced by the astrophysical model underlying our mock catalogue, but the sign of the effect is inconsistent with recent, nearly parameter-free age-matching models. The sign and magnitude of the effect can, however, be reproduced by halo occupation distribution models with a simple (few-parameter) prescription for type dependence.

  17. The impact of AGN on their host galaxies

    NASA Astrophysics Data System (ADS)

    Harrison, C. M.

    2014-07-01

    In these proceedings I briefly: (1) review the impact (or ``feedback'') that active galactic nuclei (AGN) are predicted to have on their host galaxies and larger scale environment, (2) review the observational evidence for or against these predictions and (3) present new results on ionised outflows in AGN. The observational support for the ``maintenance mode'' of feedback is strong (caveat the details); AGN at the centre of massive halos appear to be regulating the cooling of hot gas, which could in turn control the levels of future star formation (SF) and black hole growth. In contrast, direct observational support for more rapid forms of feedback, which dramatically impact on SF (i.e., the ``quasar mode''), remains elusive. From a systematic study of the spectra of ~24 000 AGN we find that extreme ionised gas kinematics are common, and are most prevalent in radio bright AGN (L 1.4 GHz > 103 W Hz-1). Follow-up IFU observations have shown that these extreme gas kinematics are extended over kilo-parsec scales. However, the co-existence of high-levels of SF, luminous AGN activity and radio jets raises interesting questions on the primary drivers and impact of these outflows. Galaxy-wide, high-mass outflows are being observed in an increasing number of AGN and are a plausible mechanism for the depletion of gas; however, there is still much work to be done to determine the physical processes that drive these outflows and to measure the level of impact that they have on their host galaxies.

  18. The largest X-ray-selected sample of z>3 AGNs: C-COSMOS and ChaMP

    NASA Astrophysics Data System (ADS)

    Kalfountzou, E.; Civano, F.; Elvis, M.; Trichas, M.; Green, P.

    2014-12-01

    We present results from an analysis of the largest high-redshift (z > 3) X-ray-selected active galactic nucleus (AGN) sample to date, combining the Chandra Cosmological Evolution Survey and Chandra Multi-wavelength Project surveys and doubling the previous samples. The sample comprises 209 X-ray-detected AGNs, over a wide range of rest-frame 2-10 keV luminosities log LX = 43.3-46.0 erg s-1. X-ray hardness rates show that ˜39 per cent of the sources are highly obscured, NH > 1022 cm-2, in agreement with the ˜37 per cent of type-2 AGNs found in our sample based on their optical classification. For ˜26 per cent of objects have mismatched optical and X-ray classifications. Utilizing the 1/Vmax method, we confirm that the comoving space density of all luminosity ranges of AGNs decreases with redshift above z > 3 and up to z ˜ 7. With a significant sample of AGNs (N = 27) at z > 4, it is found that both source number counts in the 0.5-2 keV band and comoving space density are consistent with the expectation of a luminosity-dependent density evolution (LDDE) model at all redshifts, while they exclude the luminosity and density evolution (LADE) model. The measured comoving space density of type-1 and type-2 AGNs shows a constant ratio between the two types at z > 3. Our results for both AGN types at these redshifts are consistent with the expectations of LDDE model.

  19. Eddington Ratio Distribution of X-Ray-selected Broad-line AGNs at 1.0 < z < 2.2

    NASA Astrophysics Data System (ADS)

    Suh, Hyewon; Hasinger, Günther; Steinhardt, Charles; Silverman, John D.; Schramm, Malte

    2015-12-01

    We investigate the Eddington ratio distribution of X-ray-selected broad-line active galactic nuclei (AGNs) in the redshift range 1.0 < z < 2.2, where the number density of AGNs peaks. Combining the optical and Subaru/Fiber Multi Object Spectrograph near-infrared spectroscopy, we estimate black hole masses for broad-line AGNs in the Chandra Deep Field South (CDF-S), Extended Chandra Deep Field South (E-CDF-S), and the XMM-Newton Lockman Hole (XMM-LH) surveys. AGNs with similar black hole masses show a broad range of AGN bolometric luminosities, which are calculated from X-ray luminosities, indicating that the accretion rate of black holes is widely distributed. We find a substantial fraction of massive black holes accreting significantly below the Eddington limit at z ≲ 2, in contrast to what is generally found for luminous AGNs at high redshift. Our analysis of observational selection biases indicates that the “AGN cosmic downsizing” phenomenon can be simply explained by the strong evolution of the comoving number density at the bright end of the AGN luminosity function, together with the corresponding selection effects. However, one might need to consider a correlation between the AGN luminosity and the accretion rate of black holes, in which luminous AGNs have higher Eddington ratios than low-luminosity AGNs, in order to understand the relatively small fraction of low-luminosity AGNs with high accretion rates in this epoch. Therefore, the observed downsizing trend could be interpreted as massive black holes with low accretion rates, which are relatively fainter than less-massive black holes with efficient accretion. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  20. Quasar Host Galaxies/Neptune Rotation/Galaxy Building Blocks/Hubble Deep Field/Saturn Storm

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Computerized animations simulate a quasar erupting in the core of a normal spiral galaxy, the collision of two interacting galaxies, and the evolution of the universe. Hubble Space Telescope (HST) images show six quasars' host galaxies (including spirals, ellipticals, and colliding galaxies) and six clumps of galaxies approximately 11 billion light years away. A false color time lapse movie of Neptune displays the planet's 16-hour rotation, and the evolution of a storm on Saturn is seen though a video of the planet's rotation. A zoom sequence starts with a ground-based image of the constellation Ursa major and ends with the Hubble Deep Field through progressively narrower and deeper views.

  1. Host galaxy spectra and consequences for supernova typing from the SDSS SN survey

    SciTech Connect

    Olmstead, Matthew D.; Brown, Peter J.; Brownstein, Joel R.; Dawson, Kyle S.; Sako, Masao; Gupta, Ravi R.; Bassett, Bruce; Kunz, Martin; Bizyaev, Dmitry; Brinkmann, J.; Brewington, Howard; Ebelke, Garrett L.; Campbell, Heather; D'Andrea, Chris B.; Lampeitl, Hubert; Frieman, Joshua A.; Galbany, Lluís; Garnavich, Peter; Hlozek, Renee; Jha, Saurabh W.; and others

    2014-04-01

    We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey, this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of SN host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future analysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased toward lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.

  2. Soft X-Ray Observations of a Complete Sample of X-Ray--selected BL Lacertae Objects

    NASA Astrophysics Data System (ADS)

    Perlman, Eric S.; Stocke, John T.; Wang, Q. Daniel; Morris, Simon L.

    1996-01-01

    We present the results of ROSAT PSPC observations of the X-ray selected BL Lacertae objects (XBLs) in the complete Einstein Extended Medium Sensitivity Survey (EM MS) sample. None of the objects is resolved in their respective PSPC images, but all are easily detected. All BL Lac objects in this sample are well-fitted by single power laws. Their X-ray spectra exhibit a variety of spectral slopes, with best-fit energy power-law spectral indices between α = 0.5-2.3. The PSPC spectra of this sample are slightly steeper than those typical of flat ratio-spectrum quasars. Because almost all of the individual PSPC spectral indices are equal to or slightly steeper than the overall optical to X-ray spectral indices for these same objects, we infer that BL Lac soft X-ray continua are dominated by steep-spectrum synchrotron radiation from a broad X-ray jet, rather than flat-spectrum inverse Compton radiation linked to the narrower radio/millimeter jet. The softness of the X-ray spectra of these XBLs revives the possibility proposed by Guilbert, Fabian, & McCray (1983) that BL Lac objects are lineless because the circumnuclear gas cannot be heated sufficiently to permit two stable gas phases, the cooler of which would comprise the broad emission-line clouds. Because unified schemes predict that hard self-Compton radiation is beamed only into a small solid angle in BL Lac objects, the steep-spectrum synchrotron tail controls the temperature of the circumnuclear gas at r ≤ 1018 cm and prevents broad-line cloud formation. We use these new ROSAT data to recalculate the X-ray luminosity function and cosmological evolution of the complete EMSS sample by determining accurate K-corrections for the sample and estimating the effects of variability and the possibility of incompleteness in the sample. Our analysis confirms that XBLs are evolving "negatively," opposite in sense to quasars, with Ve/Va = 0.331±0.060. The statistically significant difference between the values for

  3. The Host Galaxies of Nearby, Optically Luminous, AGN

    NASA Astrophysics Data System (ADS)

    Petric, Andreea

    2016-01-01

    Coevolution of galaxies and their central black holes (BH) has been the central theme of much of recent extragalactic astronomical research. Observations of the dynamics of stars and gas in the nuclear regions of nearby galaxies suggest that the majority of spheroidal galaxies in the local Universe contain massive BHs and that the masses of those central BH correlate with the velocity dispersions of the stars in the spheroid and the bulge luminosity. Cold ISM is the basic fuel for star-formation and BH growth so its study is essential to understanding how galaxies evolve.I will present high sensitivity observations taken with the Herschel Space Observatory to measure the cold dust content in a sample of 85 nearby (z <= 0.5) QSOs chosen from the optically luminous broad-line PG QSOs sample (QSO1s) and in a complementary sample of 85 narrow-line QSOs (QSO2s) chosen to match the redshift and optical luminosity distribution of the broad-line targets. The FIR data are combined with NIR and MIR measurements from the Two Micron All Sky Survey and the Wide-Field Infrared Survey Explorer to determine their IR spectral energy distributions which we use to assess and compare the aggregate dust properties of QSO1s and QSO2s. I will also present NIR spectroscopy obtained with Gemini's Near-Infrared Spectrograph of a sub-sample of QSO2s and QSO1s which I use to compare the ratio of cold to warm H2 gas that emits in the NIR in the hosts of QSO1s and QSO2s.Finally I will present a comparison of star-formation in QSO1s and QSO2s. For both QSO1s and QSO2s 3stimates of star-formation rates that are based on the total IR continuum emission correlate with those based on the 11.3 micron PAH feature. However, for the QSO1s, star-formation rates estimated from the FIR continuum are higher than those estimated from the 11.3 micron PAH emission. This result can be attributed to a variety of factors including the possible destruction of the PAHs and that, in some sources, a fraction of the

  4. Host Galaxies of Luminous Quasars: Structural Properties and the Fundamental Plane

    NASA Astrophysics Data System (ADS)

    Wolf, Marsha J.; Sheinis, Andrew I.

    2008-10-01

    We present stellar velocity dispersion measurements in the host galaxies of ten luminous quasars (MV < -23) using the Ca H&K lines in off-nuclear spectra. We combine these data with effective radii and magnitudes from the literature to place the host galaxies on the fundamental plane (FP) where their properties are compared with other types of galaxies. We find that the radio-loud (RL) QSO hosts have similar properties to massive elliptical galaxies, while the radio-quiet (RQ) hosts are more similar to intermediate-mass galaxies. The RL hosts lie at the upper extreme of the FP due to their large velocity dispersions (langσ*rang = 321 km s-1), low surface brightness (langμ e (r)rang = 20.8 mag arcsec-2), and large effective radii (langRe rang = 11.4 kpc), and have langM *rang = 1.5 × 1012 M sun and langM/Lrang = 12.4. In contrast, properties of the RQ hosts are langσ*rang = 241 km s-1, langM *rang = 4.4 × 1011 M sun, and M/L ~ 5.3. The distinction between these galaxies occurs at σ*~ 300 km s-1, Re ~ 6 kpc, and corresponding M * ~ 5.9 ± 3.5 × 1011 M sun. Our data support previous results that Palomar-Green QSOs are related to gas-rich galaxy mergers that form intermediate-mass galaxies, while RL QSOs reside in massive early-type galaxies, most of which also show signs of recent mergers or interactions. Previous authors have drawn these conclusions by using estimates of the black hole mass and inferring host galaxy properties from that, while here we have relied purely on directly measured host galaxy properties.

  5. ALMA SUBMILLIMETER CONTINUUM IMAGING OF THE HOST GALAXIES OF GRB 021004 AND GRB 080607

    SciTech Connect

    Wang, Wei-Hao; Huang, Kui-Yun; Chen, Hsiao-Wen

    2012-12-20

    We report 345 GHz continuum observations of the host galaxies of gamma-ray bursts (GRBs) 021004 and 080607 at z > 2 using the Atacama Large Millimeter/Submillimeter Array (ALMA) in Cycle 0. Of the two bursts, GRB 021004 is one of the few GRBs that originate in a Lyman limit host, while GRB 080607 is classified as a 'dark burst' and its host galaxy is a candidate of dusty star-forming galaxy at z {approx} 3. With an order of magnitude improvement in the sensitivities of the new imaging searches, we detect the host galaxy of GRB 080607 with a flux of S{sub 345} = 0.31 {+-} 0.09 mJy and a corresponding infrared luminosity of L{sub IR} = (2.4-4.5) Multiplication-Sign 10{sup 11} L{sub Sun }. However, the host galaxy of GRB 021004 remains undetected and the ALMA observations allow us to place a 3{sigma} upper limit of L{sub IR} < 3.1 Multiplication-Sign 10{sup 11} L{sub Sun} for the host galaxy. The continuum imaging observations show that the two galaxies are not ultraluminous infrared galaxies, but are at the faintest end of the dusty galaxy population that gives rise to the submillimeter extragalactic background light. The derived star formation rates of the two GRB host galaxies are less than 100 M{sub Sun} yr{sup -1}, which are broadly consistent with optical measurements. The result suggests that the large extinction (A{sub V} {approx} 3) in the afterglow of GRB 080607 is confined along its particularly dusty sight line, and not representative of the global properties of the host galaxy.

  6. On the Host Galaxy of GRB 150101B and the Associated Active Galactic Nucleus

    NASA Astrophysics Data System (ADS)

    Xie, Chen; Fang, Taotao; Wang, Junfeng; Liu, Tong; Jiang, Xiaochuan

    2016-06-01

    We present a multi-wavelength analysis of the host galaxy of short-duration gamma-ray burst (GRB) 150101B. Follow-up optical and X-ray observations suggested that the host galaxy, 2MASX J12320498-1056010, likely harbors low-luminosity active galactic nuclei (AGNs). Our modeling of the spectral energy distribution has confirmed the nature of the AGN, making it the first reported GRB host that contains an AGN. We have also found the host galaxy is a massive elliptical galaxy with stellar population of ∼5.7 Gyr, one of the oldest among the short-duration GRB hosts. Our analysis suggests that the host galaxy can be classified as an X-ray bright, optically normal galaxy, and the central AGN is likely dominated by a radiatively inefficient accretion flow. Our work explores an interesting connection that may exist between GRB and AGN activities of the host galaxy, which can help in understanding the host environment of the GRB events and the roles of AGN feedback.

  7. Early-type Host Galaxies of Type Ia Supernovae. I. Evidence for Downsizing

    NASA Astrophysics Data System (ADS)

    Kang, Yijung; Kim, Young-Lo; Lim, Dongwook; Chung, Chul; Lee, Young-Wook

    2016-03-01

    Type Ia supernova (SN Ia) cosmology provides the most direct evidence for the presence of dark energy. This result is based on the assumption that the lookback time evolution of SN Ia luminosity, after light curve corrections, would be negligible. Recent studies show, however, that the Hubble residual (HR) of SN Ia is correlated with the mass and morphology of host galaxies, implying the possible dependence of SN Ia luminosity on host galaxy properties. In order to investigate this more directly, we have initiated a spectroscopic survey for early-type host galaxies, for which population age and metallicity can be more reliably determined from the absorption lines. In this first paper of the series, we present here the results from high signal-to-noise ratio (≳100 per pixel) spectra for 27 nearby host galaxies in the southern hemisphere. For the first time in host galaxy studies, we find a significant (∼3.9σ) correlation between host galaxy mass (velocity dispersion) and population age, which is consistent with the “downsizing” trend among non-host early-type galaxies. This result is rather insensitive to the choice of population synthesis models. Since we find no correlation with metallicity, our result suggests that stellar population age is mainly responsible for the relation between host mass and HR. If confirmed, this would imply that the luminosity evolution plays a major role in the systematic uncertainties of SN Ia cosmology.

  8. Type Ia Supernova Hubble Residuals and Host-Galaxy Properties

    SciTech Connect

    Nearby Supernova Factory; Kim, A. G.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Bongard, S.; Buton, C.; Canto, A.; Cellier-Holzem, F.; Childress, M.; Chotard, N.; Copin, Y.; Fakhouri, H. K.; Feindt, U.; Fleury, M.; Gangler, E.; Greskovic, P.; Guy, J.; Kowalski, M.; Lombardo, S.; Nordin, J.; Nugent, P.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigault, M.; Runge, K.; Saunders, C.; Scalzo, R.; Smadja, G.; Tao, C.; Thomas, R. C.; Weaver, B. A.

    2014-01-17

    Kim et al. (2013) [K13] introduced a new methodology for determining peak- brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spec- trophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ? 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at ? 1?, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement the Hubble residual step with host mass is 0.045 ? 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch param- eters: Steps at> 2? significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light- curve width and color around peak (similar to the∆m15 and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20 to 30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  9. Type Ia supernova Hubble residuals and host-galaxy properties

    SciTech Connect

    Kim, A. G.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Fleury, M.; Guy, J.; Baltay, C.; Buton, C.; Feindt, U.; Greskovic, P.; Kowalski, M.; Childress, M.; Chotard, N.; Copin, Y.; Gangler, E. [Université de Lyon, F-69622 Lyon; Université de Lyon 1, Villeurbanne; CNRS and others

    2014-03-20

    Kim et al. introduced a new methodology for determining peak-brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spectrophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ± 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at <<1σ, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement of the Hubble residual step with the host mass is 0.045 ± 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch parameters: steps at >2σ significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light-curve width and color around peak (similar to the Δm {sub 15} and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20-30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  10. Type Ia Supernova Hubble Residuals and Host-galaxy Properties

    NASA Astrophysics Data System (ADS)

    Kim, A. G.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Bongard, S.; Buton, C.; Canto, A.; Cellier-Holzem, F.; Childress, M.; Chotard, N.; Copin, Y.; Fakhouri, H. K.; Feindt, U.; Fleury, M.; Gangler, E.; Greskovic, P.; Guy, J.; Kowalski, M.; Lombardo, S.; Nordin, J.; Nugent, P.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigault, M.; Runge, K.; Saunders, C.; Scalzo, R.; Smadja, G.; Tao, C.; Thomas, R. C.; Weaver, B. A.

    2014-03-01

    Kim et al. introduced a new methodology for determining peak-brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spectrophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ± 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at Lt1σ, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement of the Hubble residual step with the host mass is 0.045 ± 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch parameters: steps at >2σ significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light-curve width and color around peak (similar to the Δm 15 and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20-30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  11. The Host Galaxies of High-Luminosity Obscured Quasars at 2.5

    NASA Astrophysics Data System (ADS)

    Ross, Nicholas; Strauss, M. A.; Greene, J. E.; Zakamska, N. L.; Brandt, W. N.; Alexandroff, R.; Liu, G.; Smith, P. S.; The SDSS-III BOSS Quasar Working Group

    2014-01-01

    Active Galactic Nuclei play a key role in the evolution of galaxies. However, very little is known about the host galaxies of the most luminous quasars at redshift 2.5, the epoch when massive black hole growth peaked. The brightness of the quasar itself, which can easily outshine a galaxy by a large factor, makes it very difficult to study emission from extended gas or stars in the host galaxy. However, we have imaged the extended emission from the host galaxies of a unique sample of six optically extinguished (Type II) luminous quasars with 2.5, with the Hubble Space Telescope (Cycle 20, GO 13014) using ACS/F814W to access the rest-frame near-ultraviolet, and WFC3/F160W for the rest-frame optical longward of 4000A. These objects are selected from the spectroscopic database of the SDSS/Baryon Oscillation Spectroscopic Survey to have strong, narrow emission lines and weak continua. With these images, we have quantified the luminosity, morphology, and dynamical state of the host galaxies, and searched for extended scattered light from the obscured central engine. These observations are the first comprehensive study of both host galaxy light and scattered light in high-luminosity quasars at the epoch of maximum black hole growth, and give insights into the relationship between host galaxies and black holes during this important, and yet largely unexplored period.

  12. The Far-IR View of an Ultra-Hard X-ray Selected Sample of AGN

    NASA Astrophysics Data System (ADS)

    Shimizu, Thomas; Melendez, M.; Mushotzky, R.; Barger, A. J.; Cowie, L. L.

    2014-01-01

    We present early results of the Herschel PACS (70 and 160 μm) and SPIRE (250, 350, and 500 μm) survey of 313 low redshift (z < 0.05), ultra-hard X-ray (14-195 keV) selected AGN from the 58 month Swift/BAT catalog. Selection of AGN from ultra-hard X-rays avoids bias from obscuration that are unavoidable at other wavelengths (eg optical, infrared, and radio) providing the most complete sample of AGN to study the connection between nuclear activity and star formation in host galaxies. With the high angular resolution of PACS, we find that ~35% and ~20% of the sources are 'point-like' at 70 and 160 μm respectively with another 20% that have their flux dominated by a point source located at the nucleus. The inferred star formation rates (SFR) of 0.1 - 100 Msun yr-1 using the 70 and 160 μm flux densities and the calibration of Calzettti et al (2010) are consistent with those inferred from Spitzer NeII fluxes, but we find that 11.25 μm PAH data give ~3x lower SFR. Using GALFIT to measure the size of the FIR emitting regions, we determined the SFR density [Msun yr-1 kpc-2] for our sample, finding a significant fraction to exist above the threshold for star formation driven winds (0.1 Msun yr-1 kpc-2, Heckman 2001). Analysis of the SPIRE colors (250/350 and 350/500) also reveals evidence for the presence of nonthermal synchrotron emission from a radio jet significantly affecting the FIR emission at long wavelengths and altering the shape of the spectral energy distribution (SED). We also will present the broad band Herschel 70-500m SEDS for our sample and include archival Spitzer, WISE, FIRST and NVSS data to extend the SED down to near-IR and up to radio wavelengths. The SEDs will be fit using multiple models to attempt to determine the AGN contribution to the FIR (indirect or direct) and ultimately its effect on nuclear star formation.

  13. Comparing the Host Galaxies of Type Ia, Type II, and Type Ibc Supernovae

    NASA Astrophysics Data System (ADS)

    Shao, X.; Liang, Y. C.; Dennefeld, M.; Chen, X. Y.; Zhong, G. H.; Hammer, F.; Deng, L. C.; Flores, H.; Zhang, B.; Shi, W. B.; Zhou, L.

    2014-08-01

    We compare the host galaxies of 902 supernovae (SNe), including SNe Ia, SNe II, and SNe Ibc, which are selected by cross-matching the Asiago Supernova Catalog with the Sloan Digital Sky Survey (SDSS) Data Release 7. We selected an additional 213 galaxies by requiring the light fraction of spectral observations to be >15%, which could represent well the global properties of the galaxies. Among these 213 galaxies, 135 appear on the Baldwin-Phillips-Terlevich diagram, which allows us to compare the hosts in terms of whether they are star-forming (SF) galaxies, active galactic nuclei (AGNs; including composites, LINERs, and Seyfert 2s) or absorption-line galaxies (Absorps; i.e., their related emission lines are weak or non-existent). The diagrams related to the parameters D n (4000), Hδ A , stellar masses, star formation rates (SFRs), and specific SFRs for the SNe hosts show that almost all SNe II and most of the SNe Ibc occur in SF galaxies, which have a wide range of stellar masses and low D n (4000). The SNe Ia hosts as SF galaxies following similar trends. A significant fraction of SNe Ia occurs in AGNs and absorption-line galaxies, which are massive and have high D n (4000). The stellar population analysis from spectral synthesis fitting shows that the hosts of SNe II have a younger stellar population than hosts of SNe Ia. These results are compared with those of the 689 comparison galaxies where the SDSS fiber captures less than 15% of the total light. These comparison galaxies appear biased toward higher 12+log(O/H) (~0.1 dex) at a given stellar mass. Therefore, we believe the aperture effect should be kept in mind when the properties of the hosts for different types of SNe are discussed.

  14. Comparing the host galaxies of type Ia, type II, and type Ibc supernovae

    SciTech Connect

    Shao, X.; Liang, Y. C.; Chen, X. Y.; Zhong, G. H.; Deng, L. C.; Zhang, B.; Shi, W. B.; Zhou, L.; Dennefeld, M.; Hammer, F.; Flores, H. E-mail: ycliang@bao.ac.cn

    2014-08-10

    We compare the host galaxies of 902 supernovae (SNe), including SNe Ia, SNe II, and SNe Ibc, which are selected by cross-matching the Asiago Supernova Catalog with the Sloan Digital Sky Survey (SDSS) Data Release 7. We selected an additional 213 galaxies by requiring the light fraction of spectral observations to be >15%, which could represent well the global properties of the galaxies. Among these 213 galaxies, 135 appear on the Baldwin-Phillips-Terlevich diagram, which allows us to compare the hosts in terms of whether they are star-forming (SF) galaxies, active galactic nuclei (AGNs; including composites, LINERs, and Seyfert 2s) or absorption-line galaxies (Absorps; i.e., their related emission lines are weak or non-existent). The diagrams related to the parameters D{sub n}(4000), Hδ{sub A}, stellar masses, star formation rates (SFRs), and specific SFRs for the SNe hosts show that almost all SNe II and most of the SNe Ibc occur in SF galaxies, which have a wide range of stellar masses and low D{sub n}(4000). The SNe Ia hosts as SF galaxies following similar trends. A significant fraction of SNe Ia occurs in AGNs and absorption-line galaxies, which are massive and have high D{sub n}(4000). The stellar population analysis from spectral synthesis fitting shows that the hosts of SNe II have a younger stellar population than hosts of SNe Ia. These results are compared with those of the 689 comparison galaxies where the SDSS fiber captures less than 15% of the total light. These comparison galaxies appear biased toward higher 12+log(O/H) (∼0.1 dex) at a given stellar mass. Therefore, we believe the aperture effect should be kept in mind when the properties of the hosts for different types of SNe are discussed.

  15. The host galaxy of a fast radio burst

    NASA Astrophysics Data System (ADS)

    Keane, E. F.; Johnston, S.; Bhandari, S.; Barr, E.; Bhat, N. D. R.; Burgay, M.; Caleb, M.; Flynn, C.; Jameson, A.; Kramer, M.; Petroff, E.; Possenti, A.; van Straten, W.; Bailes, M.; Burke-Spolaor, S.; Eatough, R. P.; Stappers, B. W.; Totani, T.; Honma, M.; Furusawa, H.; Hattori, T.; Morokuma, T.; Niino, Y.; Sugai, H.; Terai, T.; Tominaga, N.; Yamasaki, S.; Yasuda, N.; Allen, R.; Cooke, J.; Jencson, J.; Kasliwal, M. M.; Kaplan, D. L.; Tingay, S. J.; Williams, A.; Wayth, R.; Chandra, P.; Perrodin, D.; Berezina, M.; Mickaliger, M.; Bassa, C.

    2016-02-01

    In recent years, millisecond-duration radio signals originating in distant galaxies appear to have been discovered in the so-called fast radio bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity, which, in tandem with a redshift measurement, can be used for fundamental physical investigations. Every fast radio burst has a dispersion measurement, but none before now have had a redshift measurement, because of the difficulty in pinpointing their celestial coordinates. Here we report the discovery of a fast radio burst and the identification of a fading radio transient lasting ~6 days after the event, which we use to identify the host galaxy; we measure the galaxy’s redshift to be z = 0.492 ± 0.008. The dispersion measure and redshift, in combination, provide a direct measurement of the cosmic density of ionized baryons in the intergalactic medium of ΩIGM = 4.9 ± 1.3 per cent, in agreement with the expectation from the Wilkinson Microwave Anisotropy Probe, and including all of the so-called ‘missing baryons’. The ~6-day radio transient is largely consistent with the radio afterglow of a short γ-ray burst, and its existence and timescale do not support progenitor models such as giant pulses from pulsars, and supernovae. This contrasts with the interpretation of another recently discovered fast radio burst, suggesting that there are at least two classes of bursts.

  16. Host Galaxy of the Dark Gamma-Ray Burst GRB 051008

    NASA Astrophysics Data System (ADS)

    Volnova, A. A.; Pozanenko, A. S.; Rumyantsev, V. V.; Biryukov, V. V.; Ibrahimov, M. A.; Sharapov, D. A.; Kann, D. A.; Gorosabel, J.; Castro-Tirado, A. J.; de Ugarte Postigo, A.

    2011-08-01

    We present observations of the dark Gamma-Ray Burst GRB 051008, the burst detected only in gamma- and X-rays but without any optical and radio afterglows. We identified the host galaxy of the burst, it has the R-magnitude of 23m.92+/-0m.07. The photometrical redshift of the galaxy is z = 1.07+/-0.13. We provide arguments in favor of the hypothesis that the galaxy is situated in a cluster. This is one of a few cases of the dark GRB host detection. We present details of observations, intrinsic properties of the host ant its environment.

  17. The Effect of Host Galaxies on Type Ia Supernovae in the SDSS-II Supernova Survey

    SciTech Connect

    Lampeitl, Hubert; Smith, Mathew; Nichol, Robert C.; Bassett, Bruce; Cinabro, David; Dilday, Benjamin; Foley, Ryan J.; Frieman, Joshua A.; Garnavich, Peter M.; Goobar, Ariel; Im, Myungshin; /Seoul Natl. U. /Rutgers U., Piscataway

    2010-05-01

    We present an analysis of the host galaxy dependencies of Type Ia Supernovae (SNe Ia) from the full three year sample of the SDSS-II Supernova Survey. We re-discover, to high significance, the strong correlation between host galaxy type and the width of the observed SN light curve, i.e., fainter, quickly declining SNe Ia favor passive host galaxies, while brighter, slowly declining Ia's favor star-forming galaxies. We also find evidence (at between 2 to 3{sigma}) that SNe Ia are {approx_equal} 0.1 magnitudes brighter in passive host galaxies, than in star-forming hosts, after the SN Ia light curves have been standardized using the light curve shape and color variations: This difference in brightness is present in both the SALT2 and MCLS2k2 light curve fitting methodologies. We see evidence for differences in the SN Ia color relationship between passive and star-forming host galaxies, e.g., for the MLCS2k2 technique, we see that SNe Ia in passive hosts favor a dust law of R{sub V} {approx_equal} 1, while SNe Ia in star-forming hosts require R{sub V} {approx} 2. The significance of these trends depends on the range of SN colors considered. We demonstrate that these effects can be parameterized using the stellar mass of the host galaxy (with a confidence of > 4{sigma}) and including this extra parameter provides a better statistical fit to our data. Our results suggest that future cosmological analyses of SN Ia samples should include host galaxy information.

  18. Modeling The GRB Host Galaxy Mass Distribution: Are GRBs Unbiased Tracers of Star Formation?

    SciTech Connect

    Kocevski, Daniel; West, Andrew A.; Modjaz, Maryam; /UC, Berkeley, Astron. Dept.

    2009-08-03

    We model the mass distribution of long gamma-ray burst (GRB) host galaxies given recent results suggesting that GRBs occur in low metallicity environments. By utilizing measurements of the redshift evolution of the mass-metallicity (M-Z) relationship for galaxies, along with a sharp host metallicity cut-off suggested by Modjaz and collaborators, we estimate an upper limit on the stellar mass of a galaxy that can efficiently produce a GRB as a function of redshift. By employing consistent abundance indicators, we find that sub-solar metallicity cut-offs effectively limit GRBs to low stellar mass spirals and dwarf galaxies at low redshift. At higher redshifts, as the average metallicity of galaxies in the Universe falls, the mass range of galaxies capable of hosting a GRB broadens, with an upper bound approaching the mass of even the largest spiral galaxies. We compare these predicted limits to the growing number of published GRB host masses and find that extremely low metallicity cut-offs of 0.1 to 0.5 Z{sub {circle_dot}} are effectively ruled out by a large number of intermediate mass galaxies at low redshift. A mass function that includes a smooth decrease in the efficiency of producing GRBs in galaxies of metallicity above 12+log(O/H){sub KK04} = 8.7 can, however, accommodate a majority of the measured host galaxy masses. We find that at z {approx} 1, the peak in the observed GRB host mass distribution is inconsistent with the expected peak in the mass of galaxies harboring most of the star formation. This suggests that GRBs are metallicity biased tracers of star formation at low and intermediate redshifts, although our model predicts that this bias should disappear at higher redshifts due to the evolving metallicity content of the universe.

  19. Long-Duration Gamma-Ray Burst Host Galaxies in Emission and Absorption

    NASA Astrophysics Data System (ADS)

    Perley, Daniel A.; Niino, Yuu; Tanvir, Nial R.; Vergani, Susanna D.; Fynbo, Johan P. U.

    2016-03-01

    The galaxy population hosting long-duration GRBs provides a means to constrain the progenitor and an opportunity to use these violent explosions to characterize the nature of the high-redshift universe. Studies of GRB host galaxies in emission reveal a population of star-forming galaxies with great diversity, spanning a wide range of masses, metallicities, and redshifts. However, as a population GRB hosts are significantly less massive and poorer in metals than the hosts of other core-collapse transients, suggesting that GRB production is only efficient at metallicities significantly below Solar. GRBs may also prefer compact galaxies, and dense and/or central regions of galaxies, more than other types of core-collapse explosion. Meanwhile, studies of hosts in absorption against the luminous GRB optical afterglow provide a unique means of unveiling properties of the ISM in even the faintest and most distant galaxies; these observations are helping to constrain the chemical evolution of galaxies and the properties of interstellar dust out to very high redshifts. New ground- and space-based instrumentation, and the accumulation of larger and more carefully-selected samples, are continually enhancing our view of the GRB host population.

  20. A Bayesian approach to multi-messenger astronomy: identification of gravitational-wave host galaxies

    SciTech Connect

    Fan, XiLong; Messenger, Christopher; Heng, Ik Siong

    2014-11-01

    We present a general framework for incorporating astrophysical information into Bayesian parameter estimation techniques used by gravitational wave data analysis to facilitate multi-messenger astronomy. Since the progenitors of transient gravitational wave events, such as compact binary coalescences, are likely to be associated with a host galaxy, improvements to the source sky location estimates through the use of host galaxy information are explored. To demonstrate how host galaxy properties can be included, we simulate a population of compact binary coalescences and show that for ∼8.5% of simulations within 200 Mpc, the top 10 most likely galaxies account for a ∼50% of the total probability of hosting a gravitational wave source. The true gravitational wave source host galaxy is in the top 10 galaxy candidates ∼10% of the time. Furthermore, we show that by including host galaxy information, a better estimate of the inclination angle of a compact binary gravitational wave source can be obtained. We also demonstrate the flexibility of our method by incorporating the use of either the B or K band into our analysis.

  1. HOST GALAXY PROPERTIES AND HUBBLE RESIDUALS OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY

    SciTech Connect

    Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Kim, A. G.; Loken, S.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Chotard, N.; Copin, Y.; Gangler, E. [Universite de Lyon, F-69622, Lyon; Universite de Lyon 1, Villeurbanne; CNRS and others

    2013-06-20

    We examine the relationship between Type Ia supernova (SN Ia) Hubble residuals and the properties of their host galaxies using a sample of 115 SNe Ia from the Nearby Supernova Factory. We use host galaxy stellar masses and specific star formation rates fitted from photometry for all hosts, as well as gas-phase metallicities for a subset of 69 star-forming (non-active galactic nucleus) hosts, to show that the SN Ia Hubble residuals correlate with each of these host properties. With these data we find new evidence for a correlation between SN Ia intrinsic color and host metallicity. When we combine our data with those of other published SN Ia surveys, we find the difference between mean SN Ia brightnesses in low- and high-mass hosts is 0.077 {+-} 0.014 mag. When viewed in narrow (0.2 dex) bins of host stellar mass, the data reveal apparent plateaus of Hubble residuals at high and low host masses with a rapid transition over a short mass range (9.8 {<=} log (M{sub *}/M{sub Sun }) {<=} 10.4). Although metallicity has been a favored interpretation for the origin of the Hubble residual trend with host mass, we illustrate how dust in star-forming galaxies and mean SN Ia progenitor age both evolve along the galaxy mass sequence, thereby presenting equally viable explanations for some or all of the observed SN Ia host bias.

  2. On the Origin of the Mass-Metallicity Relation for GRB Host Galaxies

    SciTech Connect

    Kocevski, Daniel; West, Andrew A.; /Boston U., Dept. Astron.

    2011-06-02

    We investigate the nature of the mass-metallicity (M-Z) relation for long gamma-ray burst (LGRB) host galaxies. Recent studies suggest that the M-Z relation for local LGRB host galaxies may be systematically offset towards lower metallicities relative to the M-Z relation defined by the general star forming galaxy (SDSS) population. The nature of this offset is consistent with suggestions that low metallicity environments may be required to produce high mass progenitors, although the detection of several GRBs in high-mass, high-metallicity galaxies challenges the notion of a strict metallicity cut-off for host galaxies that are capable of producing GRBs. We show that the nature of this reported offset may be explained by a recently proposed anti-correlation between the star formation rate (SFR) and the metallicity of star forming galaxies. If low metallicity galaxies produce more stars than their equally massive, high-metallicity counterparts, then transient events that closely trace the SFR in a galaxy would be more likely to be found in these low metallicity, low mass galaxies. Therefore, the offset between the GRB and SDSS defined M-Z relations may be the result of the different methods used to select their respective galaxy populations, with GRBs being biased towards low metallicity, high SFR, galaxies. We predict that such an offset should not be expected of transient events that do not closely follow the star formation history of their host galaxies, such as short duration GRBs and SN Ia, but should be evident in core collapse SNe found through upcoming untargeted surveys.

  3. The Host Galaxies of Type Ia Supernovae Discovered by the Palomar Transient Factory

    NASA Technical Reports Server (NTRS)

    Pan, Y.-C.; Sullivan, M.; McGuire, K.; Hook, I. M.; Nugent, P. E.; Howell, D. A.; Arcavi, I.; Botyanszki, J.; Cenko, Stephen Bradley; DeRose, J.

    2013-01-01

    We present spectroscopic observations of the host galaxies of 82 low-redshift type Ia supernovae (SNe Ia) discovered by the Palomar Transient Factory (PTF). We determine star-formation rates, gas-phase stellar metallicities, and stellar masses and ages of these objects. As expected, strong correlations between the SN Ia light-curve width (stretch) and the host age mass metallicity are found: fainter, faster-declining events tend to be hosted by older massive metal-rich galaxies. There is some evidence that redder SNe Ia explode in higher metallicity galaxies, but we found no relation between the SN colour and host galaxy extinction based on the Balmer decrement, suggesting that the colour variation of these SNe does not primarily arise from this source. SNe Ia in higher-mass metallicity galaxies also appear brighter after stretch colour corrections than their counterparts in lower mass hosts, and the stronger correlation is with gas-phase metallicity suggesting this may be the more important variable. We also compared the host stellar mass distribution to that in galaxy targeted SN surveys and the high-redshift untargeted Supernova Legacy Survey (SNLS). SNLS has many more low mass galaxies, while the targeted searches have fewer. This can be explained by an evolution in the galaxy stellar mass function, coupled with a SN delay-time distribution proportional to t1. Finally, we found no significant difference in the mass--metallicity relation of our SN Ia hosts compared to field galaxies, suggesting any metallicity effect on the SN Ia rate is small.

  4. Galaxy dynamics in clustered environments

    NASA Astrophysics Data System (ADS)

    Pereira, Maria J. R. R.

    Galaxy orientations have been studied statistically for over 70 years now, but it is only recently that alignments have been found on scales larger than those of close interacting pairs. Large scale alignments between galaxies and their surrounding tidal fields are expected to occur during formation, but what happens when these galaxies fall into larger systems? Can their orientations tell us anything about the accretion process itself? In this dissertation I will focus on the radial alignment of satellite galaxies, in which a satellite's long axis points preferentially toward the center of its host. I present observational evidence for this type of galaxy alignment in the SDSS DR3 using a sample of X-ray selected massive clusters. Then, using results from N-body cosmological simulations, I will argue that this effect is the result of a secular tidal interaction between the galaxies and their host potential. The analysis shows that subhalos are effectively torqued by their host throughout their orbits, so that their major axes tend to be aligned with the gradient of the host potential. The significant discrepancy between the magnitude of the effect as seen in these simulations and that detected in observations motivates the work of the next chapter, where I perform numerical experiments on idealized, high resolution N-body models of elliptical galaxies. These experiments show that the more centrally concentrated luminous components of galaxies take longer to react to the external torque, and, in the particular case of mildly eccentric orbits, their orientations can figure rotate in periodic patterns that are not radially aligned on average. The mechanism is more effective on galaxies that have larger triaxialities, but the overall effect of torquing is to make galaxies rounder, since radially misaligned galaxies tend to become more spherical as they are torqued towards equilibrium. In the last chapter, I briefly discuss the impact of these results for galaxy

  5. Ionised outflows in z ~ 2.4 quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Carniani, S.; Marconi, A.; Maiolino, R.; Balmaverde, B.; Brusa, M.; Cano-Díaz, M.; Cicone, C.; Comastri, A.; Cresci, G.; Fiore, F.; Feruglio, C.; La Franca, F.; Mainieri, V.; Mannucci, F.; Nagao, T.; Netzer, H.; Piconcelli, E.; Risaliti, G.; Schneider, R.; Shemmer, O.

    2015-08-01

    Aims: Outflows driven by active galactic nuclei (AGN) are invoked by galaxy evolutionary models to quench star formation and to explain the origin of the relations observed locally between super-massive black holes and their host galaxies. We here aim to detect extended ionised outflows in luminous quasars, where we expect the highest activity both in star formation and in black-hole accretion. Currently, there are only a few studies based on spatially resolved observations of outflows at high redshift, z > 2. Methods: We analysed a sample of six luminous (L > 1047 erg/s) quasars at z ~ 2.4, observed in H-band using the near-IR integral field spectrometer SINFONI at the VLT. We performed a kinematic analysis of the [Oiii] emission line at λ = 5007 Å. Results: We detect fast, spatially extended outflows in five out of six targets. [Oiii]λ5007 has a complex gas kinematic, with blue-shifted velocities of a few hundreds of km s-1 and line widths up to 1500 km s-1. Using the spectroastrometric method, we infer a size of the ionised outflows of up to ~2 kpc. The properties of the ionised outflows, mass outflow rate, momentum rate, and kinetic power, are correlated with the AGN luminosity. The increase in outflow rate with increasing AGN luminosity is consistent with the idea that a luminous AGN pushes away the surrounding gas through fast outflows that are driven by radiation pressure, which depends on the emitted luminosity. Conclusions: We derive mass outflow rates of about 6-700 M⊙ yr-1 for our sample, which are lower than those observed in molecular outflows. The physical properties of ionised outflows show dependences on AGN luminosity that are similar to those of molecular outflows, but indicate that the mass of ionised gas is lower than that of molecular outflows. Alternatively, this discrepancy between ionised and molecular outflows could be explained with different acceleration mechanisms. Based on Observations collected at the European Organisation for

  6. The host galaxy/AGN connection in nearby early-type galaxies. Is there a miniature radio-galaxy in every "core" galaxy?

    NASA Astrophysics Data System (ADS)

    Balmaverde, B.; Capetti, A.

    2006-02-01

    This is the second of a series of three papers exploring the connection between the multiwavelength properties of AGN in nearby early-type galaxies and the characteristics of their hosts. We selected two samples with 5 GHz VLA radio flux measurements down to 1 mJy, reaching levels of radio luminosity as low as 1036 erg s-1. In Paper I we presented a study of the surface brightness profiles for the 65 objects with available archival HST images out of the 116 radio-detected galaxies. We classified early-type galaxies into "core" and "power-law" galaxies, discriminating on the basis of the slope of their nuclear brightness profiles, following the Nukers scheme. Here we focus on the 29 core galaxies (hereafter CoreG). We used HST and Chandra data to isolate their optical and X-ray nuclear emission. The CoreG invariably host radio-loud nuclei, with an average radio-loudness parameter of Log R = L5 {GHz} / LB ˜ 3.6. The optical and X-ray nuclear luminosities correlate with the radio-core power, smoothly extending the analogous correlations already found for low luminosity radio-galaxies (LLRG) toward even lower power, by a factor of ˜ 1000, covering a combined range of 6 orders of magnitude. This supports the interpretation of a common non-thermal origin of the nuclear emission also for CoreG. The luminosities of the nuclear sources, most likely dominated by jet emission, set firm upper limits, as low as L/L_Edd ˜ 10-9 in both the optical and X-ray band, on any emission from the accretion process. The similarity of CoreG and LLRG when considering the distributions host galaxies luminosities and black hole masses, as well as of the surface brightness profiles, indicates that they are drawn from the same population of early-type galaxies. LLRG represent only the tip of the iceberg associated with (relatively) high activity levels, with CoreG forming the bulk of the population. We do not find any relationship between radio-power and black hole mass. A minimum black hole

  7. Low-redshift quasars in the SDSS Stripe 82. Host galaxy colours and close environment

    NASA Astrophysics Data System (ADS)

    Bettoni, D.; Falomo, R.; Kotilainen, J. K.; Karhunen, K.; Uslenghi, M.

    2015-12-01

    We present a photometrical and morphological multicolour study of the properties of low-redshift (z < 0.3) quasar hosts based on a large and homogeneous data set of quasars derived from the Sloan Digital Sky Survey (DR7). We used quasars that were imaged in the SDSS Stripe82 that is up to 2 mag deeper than standard Sloan images. This sample is part of a larger data set of ˜400 quasars at z < 0.5 for which both the host galaxies and their galaxy environments were studied. For 52 quasars, we undertake a study of the colour of the host galaxies and of their close environments in the u, g, r, i and z bands. We are able to resolve almost all the quasars in the sample in the filters g, r, i and z and also in u for about 50 per cent of the targets. We found that the mean colours of the QSO host galaxy (g - i = 0.82 ± 0.26; r - i = 0.26 ± 0.16 and u - g = 1.32 ± 0.25) are very similar to the values of a sample of inactive galaxies matched in terms of redshift and galaxy luminosity with the quasar sample. There is a suggestion that the most massive QSO hosts have bluer colours. Both quasar hosts and the comparison sample of inactive galaxies have candidates of close (<50 kpc) companion galaxies for ˜30 per cent of the sources with no significant difference between active and inactive galaxies. We do not find significant correlation between the central black hole (BH) mass and the quasar host luminosity that appears to be extra luminous at a given BH mass with respect to the local relation (MBH - Mhost) for inactive galaxies. This confirms previous suggestion that a substantial disc component, not correlated with the BH mass, is present in the galaxies hosting low-z quasars. These results support a scenario where the activation of the nucleus has negligible effects on the global structural and photometrical properties of the hosting galaxies.

  8. The Properties Of The Stellar Nuclei With The Host Galaxy Morphology In The ACSVCS

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-chul

    2012-01-01

    We have revisited the ACS Virgo Cluster Survey (ACSVCS), a Hubble Space Telescope program to obtain ACS/WFC g and z bands imaging for a sample of 100 early-type galaxies in the Virgo Cluster. In this study, we examine 51 nucleated early-type galaxies in the ACSVCS in order to look into the relationship between the photometric and structural properties of stellar nuclei and their host galaxies. We morphologically dissect galaxies into five classes. We note that (1) the stellar nuclei of dwarf early-type galaxies (dS0, dE, and dE,N) are generally fainter and bluer with g > 18.95 and (g-z) < 1.40 compared to some brighter and redder counterparts of the ellipticals (E) and lenticular galaxies (S0), (2) the g-band half-light radii of stellar nuclei of all dwarf early-type galaxies (dS0, dE, and dE,N) are smaller than 20 pc and their average is about 4 pc, and (3) the colors of red stellar nuclei with (g-z) > 1.40 in bright ellipticals and lenticular galaxies are bluer than their host galaxies colors. We also show that most of the unusually RED stellar nuclei with (g-z) > 1.54 in the ACSVCS are the central parts of bright ellipticals and lenticular galaxies.

  9. Globular cluster systems and their host galaxies: comparison of spatial distributions and colors

    SciTech Connect

    Hargis, Jonathan R.; Rhode, Katherine L.

    2014-11-20

    We present a study of the spatial and color distributions of four early-type galaxies and their globular cluster (GC) systems observed as part of our ongoing wide-field imaging survey. We use BVR KPNO 4 m+MOSAIC imaging data to characterize the galaxies' GC populations, perform surface photometry of the galaxies, and compare the projected two-dimensional shape of the host galaxy light to that of the GC population. The GC systems of the ellipticals NGC 4406 and NGC 5813 both show an elliptical distribution consistent with that of the host galaxy light. Our analysis suggests a similar result for the giant elliptical NGC 4472, but a smaller GC candidate sample precludes a definite conclusion. For the S0 galaxy NGC 4594, the GCs have a circular projected distribution, in contrast to the host galaxy light, which is flattened in the inner regions. For NGC 4406 and NGC 5813, we also examine the projected shapes of the metal-poor and metal-rich GC subpopulations and find that both subpopulations have elliptical shapes that are consistent with those of the host galaxy light. Lastly, we use integrated colors and color profiles to compare the stellar populations of the galaxies to their GC systems. For each galaxy, we explore the possibility of color gradients in the individual metal-rich and metal-poor GC subpopulations. We find statistically significant color gradients in both GC subpopulations of NGC 4594 over the inner ∼5 effective radii (∼20 kpc). We compare our results to scenarios for the formation and evolution of giant galaxies and their GC systems.

  10. The abundance of satellites depends strongly on the morphology of the host galaxy

    NASA Astrophysics Data System (ADS)

    Ruiz, Pablo; Trujillo, Ignacio; Mármol-Queraltó, Esther

    2015-12-01

    Using the spectroscopic catalogue of the Sloan Digital Sky Survey Data Release 10, we have explored the abundance of satellites around a sample of 254 massive (1011 < M⋆ < 2 × 1011 M⊙) local (z < 0.025) galaxies. We have divided our sample into four morphological groups (E, S0, Sa, Sb/c). We find that the number of satellites with M⋆ ≳ 109 M⊙ and R < 300 kpc depends drastically on the morphology of the central galaxy. The average number of satellites per galaxy host (NSat/NHost) down to a mass ratio of 1:100 is 4.5 ± 0.3 for E hosts, 2.6 ± 0.2 for S0, 1.5 ± 0.1 for Sa and 1.2 ± 0.2 for Sb/c. The amount of stellar mass enclosed by the satellites around massive E-type galaxies is a factor of 2, 4 and 5 larger than the mass in the satellites of S0, Sa and Sb/c types, respectively. If these satellites would eventually infall into the host galaxies, for all the morphological types, the merger channel will be largely dominated by satellites with a mass ratio satellite-host μ > 0.1. The fact that massive elliptical galaxies have a significant larger number of satellites than massive spirals could point out that elliptical galaxies inhabit heavier dark matter haloes than equally massive galaxies with later morphological types. If this hypothesis is correct, the dark matter haloes of late-type spiral galaxies are a factor of ˜2-3 more efficient on producing galaxies with the same stellar mass than those dark matter haloes of early-type galaxies.

  11. Improving Type Ia Supernova Standard Candle Cosmology Measurements Using Observations of Early-Type Host Galaxies

    NASA Astrophysics Data System (ADS)

    Meyers, Joshua Evan

    Type Ia supernovae (SNe Ia) are the current standard-bearers for dark energy but face several hurdles for their continued success in future large surveys. For example, spectroscopic classification of the myriad SNe soon to be discovered will not be possible, and systematics from uncertainties in dust corrections and the evolution of SN demographics and/or empirical calibrations used to standardize SNe Ia must be studied. Through the identification of low-dust host galaxies and through increased understanding of both the SN - progenitor connections and empirical calibrations, host galaxy information may offer opportunities to improve the cosmological utility of SNe Ia. The first half of this thesis analyzes the sample of SNe Ia discovered by the Hubble Space Telescope (HST) Cluster Supernova Survey augmented with HST-observed SNe Ia in the Great Observatories Origins Deep Survey (GOODS) fields. Correlations between properties of SNe and their host galaxies are examined at high redshift. Using galaxy color and quantitative morphology to determine the red sequence in 25 clusters, a model is developed to distinguish passively evolving early-type galaxies from star-forming galaxies in both clusters and the field. With this approach, 6 early-type cluster member hosts and 11 SN Ia early-type field hosts are identified. For the first time at z > 0.9, the correlation between host galaxy type and the rise and fall time of SN Ia light curves is confirmed. The relatively simple spectral energy distributions of early-type galaxies also enables stellar mass measurements for these hosts. In combination with literature host mass measurements, these measurements are used to show, at z > 0.9, a hint of the correlation between host mass and Hubble residuals reported at lower redshift. By simultaneously fitting cluster galaxy formation histories and dust content to the scatter of the cluster red sequences, it is shown that dust reddening of early-type cluster SN hosts is likely less

  12. The galaxy-dark matter halo connection: which galaxy properties are correlated with the host halo mass?

    NASA Astrophysics Data System (ADS)

    Contreras, S.; Baugh, C. M.; Norberg, P.; Padilla, N.

    2015-09-01

    We demonstrate how the properties of a galaxy depend on the mass of its host dark matter subhalo, using two independent models of galaxy formation. For the cases of stellar mass and black hole mass, the median property value displays a monotonic dependence on subhalo mass. The slope of the relation changes for subhalo masses for which heating by active galactic nuclei becomes important. The median property values are predicted to be remarkably similar for central and satellite galaxies. The two models predict considerable scatter around the median property value, though the size of the scatter is model dependent. There is only modest evolution with redshift in the median galaxy property at a fixed subhalo mass. Properties such as cold gas mass and star formation rate, however, are predicted to have a complex dependence on subhalo mass. In these cases, subhalo mass is not a good indicator of the value of the galaxy property. We illustrate how the predictions in the galaxy property-subhalo mass plane differ from the assumptions made in some empirical models of galaxy clustering by reconstructing the model output using a basic subhalo abundance matching scheme. In its simplest form, abundance matching generally does not reproduce the clustering predicted by the models, typically resulting in an overprediction of the clustering signal. Using the predictions of the galaxy formation model for the correlations between pairs of galaxy properties, the basic abundance matching scheme can be extended to reproduce the model predictions more faithfully for a wider range of galaxy properties. Our results have implications for the analysis of galaxy clustering, particularly for low abundance samples.

  13. Accreting supermassive black holes in the COSMOS field and the connection to their host galaxies

    NASA Astrophysics Data System (ADS)

    Bongiorno, A.; Merloni, A.; Brusa, M.; Magnelli, B.; Salvato, M.; Mignoli, M.; Zamorani, G.; Fiore, F.; Rosario, D.; Mainieri, V.; Hao, H.; Comastri, A.; Vignali, C.; Balestra, I.; Bardelli, S.; Berta, S.; Civano, F.; Kampczyk, P.; Le Floc'h, E.; Lusso, E.; Lutz, D.; Pozzetti, L.; Pozzi, F.; Riguccini, L.; Shankar, F.; Silverman, J.

    2012-12-01

    Using the wide multiband photometry available in the Cosmic Evolution Survey (COSMOS) field, we explore the host galaxy properties of a large sample of active galactic nuclei (AGNs; ˜1700 objects) with Lbol ranging from 1043 to 1047 erg s-1, obtained by combining X-ray and optical spectroscopic selections. Based on a careful study of their spectral energy distributions, which have been parametrized using a two-component (AGN+galaxy) model fit, we have derived dust-corrected rest-frame magnitudes, colours and stellar masses of the obscured and unobscured AGN hosts up to high redshift (z≲3). Moreover, for the sample of obscured AGNs, we have also derived reliable star formation rates (SFRs). We find that AGN hosts span a large range of stellar masses and SFRs. No colour-bimodality is seen at any redshift in the AGN hosts, which are found to be mainly massive, red galaxies. Once we have accounted for the colour-mass degeneracy in well-defined mass-matched samples, we find a residual (marginal) enhancement of the incidence of AGNs in redder galaxies with lower specific SFRs. We argue that this result might emerge because of our ability to properly account for AGN light contamination and dust extinction, compared to surveys with a more limited multiwavelength coverage. However, because these colour shifts are relatively small, systematic effects could still be considered responsible for some of the observed trends. Interestingly, we find that the probability for a galaxy to host a black hole that is growing at any given 'specific accretion rate' (i.e. the ratio of X-ray luminosity to the host stellar mass) is almost independent of the host galaxy mass, while it decreases as a power law with LX/M*. By analysing the normalization of such a probability distribution, we show how the incidence of AGNs increases with redshift as rapidly as (1 + z)4, which closely resembles the overall evolution of the specific SFR of the entire galaxy population. We provide analytical

  14. The XXL Survey. XII. Optical spectroscopy of X-ray-selected clusters and the frequency of AGN in superclusters

    NASA Astrophysics Data System (ADS)

    Koulouridis, E.; Poggianti, B.; Altieri, B.; Valtchanov, I.; Jaffé, Y.; Adami, C.; Elyiv, A.; Melnyk, O.; Fotopoulou, S.; Gastaldello, F.; Horellou, C.; Pierre, M.; Pacaud, F.; Plionis, M.; Sadibekova, T.; Surdej, J.

    2016-06-01

    Context. This article belongs to the first series of XXL publications. It presents multifibre spectroscopic observations of three 0.55 deg2 fields in the XXL Survey, which were selected on the basis of their high density of X-ray-detected clusters. The observations were obtained with the AutoFib2+WYFFOS (AF2) wide-field fibre spectrograph mounted on the 4.2 m William Herschel Telescope. Aims: The paper first describes the scientific rationale, the preparation, the data reduction, and the results of the observations, and then presents a study of active galactic nuclei (AGN) within three superclusters. Methods: To determine the redshift of galaxy clusters and AGN, we assign high priority to a) the brightest cluster galaxies (BCGs), b) the most probable cluster galaxy candidates, and c) the optical counterparts of X-ray point-like sources. We use the outcome of the observations to study the projected (2D) and the spatial (3D) overdensity of AGN in three superclusters. Results: We obtained redshifts for 455 galaxies in total, 56 of which are counterparts of X-ray point-like sources. We were able to determine the redshift of the merging supercluster XLSSC-e, which consists of six individual clusters at z ~ 0.43, and we confirmed the redshift of supercluster XLSSC-d at z ~ 0.3. More importantly, we discovered a new supercluster, XLSSC-f, that comprises three galaxy clusters also at z ~ 0.3. We find a significant 2D overdensity of X-ray point-like sources only around the supercluster XLSSC-f. This result is also supported by the spatial (3D) analysis of XLSSC-f, where we find four AGN with compatible spectroscopic redshifts and possibly one more with compatible photometric redshift. In addition, we find two AGN (3D analysis) at the redshift of XLSSC-e, but no AGN in XLSSC-d. Comparing these findings with the optical galaxy overdensity we conclude that the total number of AGN in the area of the three superclusters significantly exceeds the field expectations. All of the

  15. STAR CLUSTER COMPLEXES AND THE HOST GALAXY IN THREE H II GALAXIES: Mrk 36, UM 408, AND UM 461

    SciTech Connect

    Lagos, P.; Telles, E.; Nigoche-Netro, A.

    2011-11-15

    We present a stellar population study of three H II galaxies (Mrk 36, UM 408, and UM 461) based on the analysis of new ground-based high-resolution near-infrared J, H, and K{sub p} broadband and Br{gamma} narrowband images obtained with Gemini/NIRI. We identify and determine the relative ages and masses of the elementary star clusters and/or star cluster complexes of the starburst regions in each of these galaxies by comparing the colors with evolutionary synthesis models that include the contribution of stellar continuum, nebular continuum, and emission lines. We found that the current star cluster formation efficiency in our sample of low-luminosity H II galaxies is {approx}10%. Therefore, most of the recent star formation is not in massive clusters. Our findings seem to indicate that the star formation mode in our sample of galaxies is clumpy, and that these complexes are formed by a few massive star clusters with masses {approx}>10{sup 4} M{sub Sun }. The age distribution of these star cluster complexes shows that the current burst started recently and likely simultaneously over short timescales in their host galaxies, triggered by some internal mechanism. Finally, the fraction of the total cluster mass with respect to the low surface brightness (or host galaxy) mass, considering our complete range in ages, is less than 1%.

  16. Hubble Residuals of Nearby SN Ia Are Correlated with Host Galaxy Masses

    SciTech Connect

    Kelly, Patrick L.; Hicken, Malcolm; Burke, David L.; Mandel, Kaisey S.; Kirshner, Robert P.; /Harvard-Smithsonian Ctr. Astrophys.

    2010-05-03

    From Sloan Digital Sky Survey u{prime} g{prime} r{prime} i{prime} z{prime} imaging, we estimate the stellar masses of the host galaxies of 70 low redshift SN Ia (0.015 < z < 0.08) from the hosts absolute luminosities and mass-to-light ratios. These nearby SN were discovered largely by searches targeting luminous galaxies, and we find that their host galaxies are substantially more massive than the hosts of SN discovered by the flux-limited Supernova Legacy Survey. Testing four separate light curve fitters, we detect {approx}2.5{sigma} correlations of Hubble residuals with both host galaxy size and stellar mass, such that SN Ia occurring in physically larger, more massive hosts are {approx}10% brighter after light curve correction. The Hubble residual is the deviation of the inferred distance modulus to the SN, calculated from its apparent luminosity and light curve properties, away from the expected value at the SN redshift. Marginalizing over linear trends in Hubble residuals with light curve parameters shows that the correlations cannot be attributed to a light curve-dependent calibration error. Combining 180 higher-redshift ESSENCE, SNLS, and HigherZ SN with 30 nearby SN whose host masses are less than 10{sup 10.8} M{circle_dot} n a cosmology fit yields 1 + w = 0.22{sub -0.108}{sup +0.152}, while a combination where the 30 nearby SN instead have host masses greater than 10{sup 10.8} M{circle_dot} yields 1 + w = ?0.03{sub -0.143}{sup +0.217}. Progenitor metallicity, stellar population age, and dust extinction correlate with galaxy mass and may be responsible for these systematic effects. Host galaxy measurements will yield improved distances to SN Ia.

  17. Massive star-forming host galaxies of quasars on Sloan digital sky survey stripe 82

    SciTech Connect

    Matsuoka, Yoshiki; Strauss, Michael A.; Price, Ted N. III; DiDonato, Matthew S.

    2014-01-10

    The stellar properties of about 800 galaxies hosting optically luminous, unobscured quasars at z < 0.6 are analyzed. Deep co-added Sloan Digital Sky Survey (SDSS) images of the quasars on Stripe 82 are decomposed into nucleus and host galaxy using point spread function and Sérsic models. The systematic errors in the measured galaxy absolute magnitudes and colors are estimated to be less than 0.5 mag and 0.1 mag, respectively, with simulated quasar images. The effect of quasar light scattered by the interstellar medium is also carefully addressed. The measured quasar-to-galaxy ratio in total flux decreases toward longer wavelengths, from ∼8 in the u band to ∼1 in the i and z bands. We find that the SDSS quasars are hosted exclusively by massive galaxies (stellar mass M {sub star} > 10{sup 10} M {sub ☉}), which is consistent with previous results for less luminous narrow-line (obscured) active galactic nuclei (AGNs). The quasar hosts are very blue and almost absent on the red sequence, showing stark contrast to the color-magnitude distribution of normal galaxies. The fact that more powerful AGNs reside in galaxies with higher star-formation efficiency may indicate that negative AGN feedback, if it exists, is not concurrent with the most luminous phase of AGNs. We also find positive correlation between the mass of supermassive black holes (SMBHs; M {sub BH}) and host stellar mass, but the M {sub BH}-M {sub star} relation is offset toward large M {sub BH} or small M {sub star} compared to the local relation. While this could indicate that SMBHs grow earlier than do their host galaxies, such an argument is not conclusive, as the effect may be dominated by observational biases.

  18. Supernovae and their host galaxies - II. The relative frequencies of supernovae types in spirals

    NASA Astrophysics Data System (ADS)

    Hakobyan, A. A.; Nazaryan, T. A.; Adibekyan, V. Zh.; Petrosian, A. R.; Aramyan, L. S.; Kunth, D.; Mamon, G. A.; de Lapparent, V.; Bertin, E.; Gomes, J. M.; Turatto, M.

    2014-11-01

    We present an analysis of the relative frequencies of different supernova (SN) types in spirals with various morphologies and in barred or unbarred galaxies. We use a well-defined and homogeneous sample of spiral host galaxies of 692 SNe from the Sloan Digital Sky Survey in different stages of galaxy-galaxy interaction and activity classes of nucleus. We propose that the underlying mechanisms shaping the number ratios of SNe types can be interpreted within the framework of interaction-induced star formation, in addition to the known relations between morphologies and stellar populations. We find a strong trend in behaviour of the NIa/NCC ratio depending on host morphology, such that early spirals include more Type Ia SNe. The NIbc/NII ratio is higher in a broad bin of early-type hosts. The NIa/NCC ratio is nearly constant when changing from normal, perturbed to interacting galaxies, then declines in merging galaxies, whereas it jumps to the highest value in post-merging/remnant galaxies. In contrast, the NIbc/NII ratio jumps to the highest value in merging galaxies and slightly declines in post-merging/remnant subsample. The interpretation is that the star formation rates and morphologies of galaxies, which are strongly affected in the final stages of interaction, have an impact on the number ratios of SNe types. The NIa/NCC (NIbc/NII) ratio increases (decreases) from star-forming to active galactic nuclei (AGN) classes of galaxies. These variations are consistent with the scenario of an interaction-triggered starburst evolving into AGN during the later stages of interaction, accompanied with the change of star formation and transformation of the galaxy morphology into an earlier type.

  19. The Role AGN Play in the Evolution of Quasars Host Galaxies with Spectral Signatures of Post-Starburst Stellar Polulations

    NASA Astrophysics Data System (ADS)

    Cales, Sabrina; Brotherton, M. S.; Shang, Z.; Bennert, V.; Canalizo, G.; Diamond-Stanic, A. M.

    2014-01-01

    Motivation: Our understanding of the link between galaxies and the active galactic nuclei (AGN) they host is crucial for our understanding of galaxy evolution, a major question for astronomy today. As such, galaxies that harbor both luminous, broad-lined AGN phenomenon and massive, post-starburst stellar populations (post- starburst quasars, PSQs) provide a natural laboratory for those studying AGN, galaxies and galaxy evolution alike. PSQs are predicted to be transitioning galaxies whereby both the AGN and post-starburst phenomenon exist simultaneously. Thus studying these objects can prove invaluable for understanding connections between nuclear activity and host galaxy evolution. Project: We present the latest work on the study of PSQs and their role in mutual black hole and galaxy evolution. In particular we utilize AGN/host galaxy light decomposition analysis of high quality imaging and spectroscopic data (including IFU) to look at PSQ morphology and AGN and post-starburst fundamental physical properties.

  20. A Hubble Space Telescope survey of the host galaxies of Superluminous Supernovae

    NASA Astrophysics Data System (ADS)

    Angus, C. R.; Levan, A. J.; Perley, D. A.; Tanvir, N. R.; Lyman, J. D.; Stanway, E. R.; Fruchter, A. S.

    2016-05-01

    We present Hubble Space Telescope (HST) Wide Field Camera 3 UV and near-IR (nIR) imaging of 21 Superluminous Supernovae (SLSNe) host galaxies, providing a sensitive probe of star formation and stellar mass within the hosts. Comparing the photometric and morphological properties of these host galaxies with those of core-collapse supernovae (CCSNe) and long-duration gamma-ray bursts (LGRBs), we find SLSN hosts are fainter and more compact at both UV and nIR wavelengths, in some cases we barely recover hosts with absolute magnitude around MV ≈ -14. With the addition of ground based optical observations and archival results, we produce spectral energy distribution fits to these hosts, and show that SLSN hosts possess lower stellar mass and star formation rates. This is most pronounced for the hydrogen deficient Type-I SLSN hosts, although Type-II H-rich SLSN host galaxies remain distinct from the bulk of CCSNe, spanning a remarkably broad range of absolute magnitudes, with ˜30 per cent of SLSNe-II arising from galaxies fainter than MnIR ˜ -14. The detection of our faintest SLSN hosts increases the confidence that SLSNe-I hosts are distinct from those of LGRBs in star formation rate and stellar mass, and suggests that apparent similarities in metallicity may be due to the limited fraction of hosts for which emission line metallicity measurements are feasible. The broad range of luminosities of SLSN-II hosts is difficult to describe by metallicity cuts, and does not match the expectations of any reasonable UV-weighted luminosity function, suggesting additional environmental constraints are likely necessary to yield hydrogen rich SLSNe.

  1. A Search for Host Galaxies of 24 Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Ovaldsen, J.-E.; Jaunsen, A. O.; Fynbo, J. P. U.; Hjorth, J.; Thöne, C. C.; Féron, C.; Xu, D.; Selj, J. H.; Teuber, J.

    2007-06-01

    We report the results from observations of 24 gamma-ray burst (GRB) fields from 2005 and 2006 undertaken at the Danish 1.54 m telescope at ESO/La Silla. Photometry and positions for two previously unpublished host galaxy candidates (GRBs 050915 and 051021) are presented, as well as for eight other detected objects that are either known GRB hosts or candidate hosts. The candidates are suitable for spectroscopic follow-up in order to have their redshifts and other physical characteristics determined. In the cases where no likely host candidate is detected inside the refined Swift XRT error circle, we are still able to put interesting and rather deep limits on the host magnitude. On the basis of our detections and upper limits, we have performed simulations that suggest that the host galaxies are drawn from a fainter sample than those in previous (i.e., pre-Swift) studies.

  2. Do Typical Galaxies in Adolescence Already Host Growing Black Holes?

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan

    2012-10-01

    This archival grism proposal achieves a 100-fold gain in high-quality {5+sigma} information for discovering which properties of adolescent {0.7galaxies of typical mass and SFR are linked to AGN activity. We propose to analyze 147 WFC3 G141 and 111 ACS 800L pointings of 2-orbit grism data in the CANDELS fields, for a sample of 3000 galaxies reaching SFR 5 Msun/yr and stellar masses of log{M*/Msun} 9 at z 1.5. We will leverage spatially-resolved line ratios to uniquely distinguish a nuclear AGN from extended low-metallicity or shocked gas. Compared to our 30-galaxy published sample that hints at AGNs in low-mass z 2 galaxies {Trump et al. 2011}, this 3000 galaxy sample enables a 100-fold gain in divisions by galaxy morphology, SFR, and stellar mass to discover which galaxy properties correlate most with rapid SMBH growth. We will stack the deep {0.8-4 Ms} Chandra data available in these fields as an independent check of the grism AGN/SF diagnostics. The unique ancillary data in these fields also include ACS+WFC3 imaging for morphologies, deep multiwavelength data for well-sampled SEDs and stellar masses, and previous optical {and future near-IR} spectroscopy to supplement the G141 coverage. Based on discussions with the GOODS-N and 3D-HST teams, our proposed AGN science does not overlap with their proposed or funded science goals. As a value-added product for the community we will release, via the public Rainbow-CANDELS database server, an atlas of spatial maps of emission lines and line ratios {and associated errors} for the entire sample of 3000 galaxies.

  3. The chosen few: the low-mass haloes that host faint galaxies

    NASA Astrophysics Data System (ADS)

    Sawala, Till; Frenk, Carlos S.; Fattahi, Azadeh; Navarro, Julio F.; Theuns, Tom; Bower, Richard G.; Crain, Robert A.; Furlong, Michelle; Jenkins, Adrian; Schaller, Matthieu; Schaye, Joop

    2016-02-01

    Since reionization prevents star formation in most haloes less massive than 3 × 109 M⊙, dwarf galaxies only populate a fraction of existing dark matter haloes. We use hydrodynamic cosmological simulations of the Local Group to study the discriminating factors for galaxy formation in the early Universe and connect them to the present-day properties of galaxies and haloes. A combination of selection effects related to reionization, and the subsequent evolution of haloes in different environments, introduces strong biases between the population of haloes that host dwarf galaxies, and the total halo population. Haloes that host galaxies formed earlier and are more concentrated. In addition, haloes more affected by tidal stripping are more likely to host a galaxy for a given mass or maximum circular velocity, vmax, today. Consequently, satellite haloes are populated more frequently than field haloes, and satellite haloes of 108-109 M⊙ or vmax of 12-20 km s-1, compatible with stellar kinematics of Local Group dwarf spheroidals, have experienced a greater than average reduction in both mass and vmax after infall. They are on closer, more radial orbits with higher infall velocities and earlier infall times. Together, these effects make dwarf galaxies highly biased tracers of the underlying dark matter distribution.

  4. A statistical study of H i gas in nearby narrow-line AGN-hosting galaxies

    SciTech Connect

    Zhu, Yi-Nan; Wu, Hong E-mail: hwu@bao.ac.cn

    2015-01-01

    As a quenching mechanism, active galactic nucleus (AGN) feedback could suppress on going star formation in host galaxies. On the basis of a sample of galaxies selected from the Arecibo Legacy Fast ALFA (ALFALFA) H i survey, the dependence of the H i mass (M{sub H} {sub i}), stellar mass (M{sub *}), and H i-to-stellar mass ratio (M{sub H} {sub i}/M{sub *}) on various tracers of AGN activity are presented and analyzed in this paper. Almost all the AGN hostings in this sample are gas-rich galaxies, and there is not any evidence to indicate that the AGN activity could increase or decrease either M{sub H} {sub i} or M{sub H} {sub i}/M{sub *}. The position of the cold neutral gas cannot be fixed accurately based only on available H i data, due to the large beam size of ALFALFA survey. In addition, even though AGN hostings are more easily detected by an H i survey compared with absorption line galaxies, these two types of galaxies show similar star formation history. If an AGN hosting would ultimately evolve into an old red galaxy with low cold gas, then when and how the gas has been exhausted must be solved by future hypotheses and observations.

  5. Radio Loudness of AGNs: Host Galaxy Morphology and the Spin Paradigm

    SciTech Connect

    Stawarz, L.; Sikora, M.; Lasota, J.-P.

    2007-10-15

    We investigate how the total radio luminosity of AGN-powered radio sources depends on their accretion luminosity and the central black hole mass. We find that AGNs form two distinct and well separated sequences on the radio-loudness -- Eddington-ratio plane. We argue that these sequences mark the real upper bounds of radio-loudness of two distinct populations of AGNs: those hosted respectively by elliptical and disk galaxies. Both sequences show the same dependence of the radio-loudness on the Eddington ratio (an increase with decreasing Eddington ratio), which suggests that another parameter in addition to the accretion rate must play a role in determining the jet production efficiency in active galactic nuclei, and that this parameter is related to properties of the host galaxy. The revealed host-related radio dichotomy breaks down at high accretion rates where the dominant fraction of luminous quasars hosted by elliptical galaxies is radio quiet. We argue that the huge difference between the radio-loudness reachable by AGNs in disc and elliptical galaxies can be explained by the scenario according to which the spin of a black hole determines the outflows power, and central black holes can reach large spins only in early type galaxies (following major mergers), and not (in a statistical sense) in spiral galaxies.

  6. Do Nuclear Star Clusters and Supermassive Black Holes Follow the Same Host-Galaxy Correlations?

    DOE PAGESBeta

    Erwin, Peter; Gadotti, Dimitri Alexei

    2012-01-01

    Smore » tudies have suggested that there is a strong correlation between the masses of nuclear star clusters (NSCs) and their host galaxies, a correlation which is said to be an extension of the well-known correlations between supermassive black holes (SMBHs) and their host galaxies. But careful analysis of disk galaxies—including 2D bulge/disk/bar decompositions—shows that whileMBHs correlate with the stellar mass of the bulge component of galaxies, the masses of NSCs correlate much better with the total galaxy stellar mass. In addition, the mass ratio M NSC / M ⋆ ,  tot for NSCs in spirals (at least those with Hubble typesc and later) is typically an order of magnitude smaller than the mass ratio M BH / M ⋆ ,  bul ofMBHs. The absence of a universal “central massive object” correlation argues against common formation and growth mechanisms for bothMBHs and NSCs. We also discuss evidence for a break in the NSC-host galaxy correlation, galaxies with Hubble types earlier thanbc appear to host systematically more massive NSCs than do typesc and later.« less

  7. Energy input from quasars regulates the growth and activity of black holes and their host galaxies.

    PubMed

    Di Matteo, Tiziana; Springel, Volker; Hernquist, Lars

    2005-02-10

    In the early Universe, while galaxies were still forming, black holes as massive as a billion solar masses powered quasars. Supermassive black holes are found at the centres of most galaxies today, where their masses are related to the velocity dispersions of stars in their host galaxies and hence to the mass of the central bulge of the galaxy. This suggests a link between the growth of the black holes and their host galaxies, which has indeed been assumed for a number of years. But the origin of the observed relation between black hole mass and stellar velocity dispersion, and its connection with the evolution of galaxies, have remained unclear. Here we report simulations that simultaneously follow star formation and the growth of black holes during galaxy-galaxy collisions. We find that, in addition to generating a burst of star formation, a merger leads to strong inflows that feed gas to the supermassive black hole and thereby power the quasar. The energy released by the quasar expels enough gas to quench both star formation and further black hole growth. This determines the lifetime of the quasar phase (approaching 100 million years) and explains the relationship between the black hole mass and the stellar velocity dispersion. PMID:15703739

  8. Dusting off the star formation history of AGN hosts with SHARDS

    NASA Astrophysics Data System (ADS)

    Hernán-Caballero, Antonio

    2015-03-01

    Recent works show that the restframe colours of X-ray selected AGN host galaxies at z~1 are no different from those of inactive galaxies once stellar mass selection effects are taken into account. However, there is a clear deficit of AGN among quiescent galaxies, and the average star formation rates of AGN hosts are comparable or higher than those of inactive star-forming galaxies. These apparently contradictory findings could be a consequence of higher extinction in star-forming AGN hosts compensating for their younger stellar populations in observed colours. In this talk I will present a new method of extinction correction that breaks the degeneracy with stellar age and metallicity by comparing the restframe U-V colour with measurements of the Dn(4000) index on intermediate band photospectra from SHARDS. I'll show that the distribution of extinction corrected U-V colours and Dn(4000) for AGN hosts at z<1 is significantly different from that of comparison samples of inactive galaxies, with a clear deficit of AGN in intrinsic red galaxies and a higher prevalence among those with intermediate age stellar populations.

  9. Supernovae and their host galaxies - IV. The distribution of supernovae relative to spiral arms

    NASA Astrophysics Data System (ADS)

    Aramyan, L. S.; Hakobyan, A. A.; Petrosian, A. R.; de Lapparent, V.; Bertin, E.; Mamon, G. A.; Kunth, D.; Nazaryan, T. A.; Adibekyan, V.; Turatto, M.

    2016-07-01

    Using a sample of 215 supernovae (SNe), we analyse their positions relative to the spiral arms of their host galaxies, distinguishing grand-design (GD) spirals from non-GD (NGD) galaxies. We find that: (1) in GD galaxies, an offset exists between the positions of Ia and core-collapse (CC) SNe relative to the peaks of arms, while in NGD galaxies the positions show no such shifts; (2) in GD galaxies, the positions of CC SNe relative to the peaks of arms are correlated with the radial distance from the galaxy nucleus. Inside (outside) the corotation radius, CC SNe are found closer to the inner (outer) edge. No such correlation is observed for SNe in NGD galaxies nor for SNe Ia in either galaxy class; (3) in GD galaxies, SNe Ibc occur closer to the leading edges of the arms than do SNe II, while in NGD galaxies they are more concentrated towards the peaks of arms. In both samples of hosts, the distributions of SNe Ia relative to the arms have broader wings. These observations suggest that shocks in spiral arms of GD galaxies trigger star formation in the leading edges of arms affecting the distributions of CC SNe (known to have short-lived progenitors). The closer locations of SNe Ibc versus SNe II relative to the leading edges of the arms supports the belief that SNe Ibc have more massive progenitors. SNe Ia having less massive and older progenitors, have more time to drift away from the leading edge of the spiral arms.

  10. The high angular resolution view of local X-ray selected AGN in the mid-infrared

    NASA Astrophysics Data System (ADS)

    Gandhi, Poshak; Asmus, D.; Hönig, S. F.; Smette, A.; Duschl, W. J.; Matsuta, K.; Ichikawa, K.; Ueda, Y.; Terashima, Y.; Gilli, R.; Comastri, A.; Vignali, C.

    2012-09-01

    Hard X-ray and mid-infrared observations probe the peaks in broadband spectra of active galactic nucle (AGN), sampling the bulk of their accretion energy. But bolometric emission measurements of Seyfert galaxies can be strongly biased by unresolved nuclear stellar emission. Disentangling these components using emission line proxies for the intrinsic AGN power suffers from various uncertainties. Here, we show that fundamental new insights into AGN are enabled by using high angular resolution observations of Seyferts with the largest telescopes currently available. We have imaged the 9 month Swift/BAT selected AGN sample using the VLT, Gemini and Subaru at their diffraction-limit at 12°. Collecting all high angular resolution data yields a large database of 150 AGN of all types with a point-like detected nucleus. This sample serves as a benchmark for studies on unification issues and accurate (unbiased) AGN bolometric corrections. We discuss some key results, including new inferences on the structures of Seyfert nuclei from the enlarged infrared/Xray correlation and show that the MIR to X-ray flux ratio is independent of the Eddington fraction (lEdd) over about 4 orders of magnitude down to lEdd 10^{-4} at least, which appears to be the threshold below which accretion properties change.

  11. INTERMEDIATE-AGE STELLAR POPULATIONS IN CLASSICAL QUASI-STELLAR OBJECT HOST GALAXIES

    SciTech Connect

    Canalizo, Gabriela; Stockton, Alan E-mail: stockton@ifa.hawaii.edu

    2013-08-01

    Although mergers and starbursts are often invoked in the discussion of quasi-stellar object (QSO) activity in the context of galaxy evolution, several studies have questioned their importance or even their presence in QSO host galaxies. Accordingly, we are conducting a study of z {approx} 0.2 QSO host galaxies previously classified as passively evolving elliptical galaxies. We present deep Keck/LRIS spectroscopy of a sample of 15 hosts and model their stellar absorption spectra using stellar synthesis models. The high signal-to-noise ratio of our spectra allows us to break various degeneracies that arise from different combinations of models, varying metallicities, and contamination from QSO light. We find that none of the host spectra can be modeled by purely old stellar populations and that the majority of the hosts (14/15) have a substantial contribution from intermediate-age populations with ages ranging from 0.7 to 2.4 Gyr. An average host spectrum is strikingly well fit by a combination of an old population and a 2.1 (+0.5, -0.7) Gyr population. The morphologies of the host galaxies suggest that these aging starbursts were induced during the early stages of the mergers that resulted in the elliptical-shaped galaxies that we observe. The current active galactic nucleus activity likely corresponds to the late episodes of accretion predicted by numerical simulations, which occur near the end of the mergers, whereas earlier episodes may be more difficult to observe due to obscuration. Our off-axis observations prevent us from detecting any current star formation or young stellar populations that may be present in the central few kiloparsecs.

  12. Imaging the host galaxies of high-redshift radio-quiet QSOs

    NASA Technical Reports Server (NTRS)

    Lowenthal, James D.; Heckman, Timothy M.; Lehnert, Matthew, D.; Elias, J. H.

    1995-01-01

    We present new deep K-band and optical images of four radio-quiet QSOs at z approximately = 1 and six radio-quiet QSOs at z approximately = 2.5, as well as optical images only of six more at z approximately = 2.5. We have examined the images carefully for evidence of extended 'fuzz' from any putative QSO host galaxy. None of the z approximately = 2.5 QSOs shows any extended emission, and only two of the z approximately = 1 QSOs show marginal evidence for extended emission. Our 3 sigma detection limits in the K images, m(sub K) approximately = 21 for an isolated source, would correspond approximately to an unevolved L(sup star) elliptical galaxy at z = 2.5 or 2-3 mag fainter than an L(sup star) elliptical at z = 1, although our limits on host galaxy light are weaker than this due to the difficulty of separating galaxy light from QSO light. We simulate simple models of disk and elliptical host galaxies, and find that the marginal emission around the two z approximately = 1 QSOs can be explained by disks or bulges that are approximately 1-2 mag brighter than an unevolved L(sup star) galaxy in one case and approximately 1.5-2.5 mag brighter than L(sub star) in the other. For two other z approximately = 1 QSOs, we have only upper limits (L approximately = L(sup star)). The hosts of the high-redshift sample must be no brighter than about 3 mag above an unevolved L(sup star) galaxy, and are at least 1 magnitude fainter than the hosts of radio-loud QSOs at the same redshift. If the easily detected K-band light surrounding a previous sample of otherwise similar but radio-loud QSOs is starlight, then it must evolve on timescales of greater than or approximately equal to 10(exp 8) yr (e.g., Chambers & Charlot 1990); therefore our non-detection of host galaxy fuzz around radio-quiet QSOs supports the view that high-redshift radio-quiet and radio-loud QSOs inhabit different host objects, rather than being single types of objects that turn their radio emission on and off over

  13. Supermassive black holes and central star clusters: Connection with the host galaxy kinematics and color

    NASA Astrophysics Data System (ADS)

    Zasov, A. V.; Cherepashchuk, A. M.

    2013-11-01

    The relationship between the masses of the central, supermassive black holes ( M bh) and of the nuclear star clusters ( M nc) of disk galaxies with various parameters galaxies are considered: the rotational velocity at R = 2 kpc V (2), the maximum rotational velocity V max, the indicative dynamical mass M 25, the integrated mass of the stellar population M *, and the integrated color index B-V. The rotational velocities andmasses of the central objects were taken from the literature. Themass M nc correlatesmore closely with the kinematic parameters and the disk mass than M bh, including with the velocity V max, which is closely related to the virial mass of the dark halo. On average, lenticular galaxies are characterized by higher masses M bh compared to other types of galaxies with similar characteristics. The dependence of the blackhole mass on the color index is bimodal: galaxies of the red group (red-sequence) with B-V >0.6-0.7 which are mostly early-type galaxies with weak star formation, differ appreciably from blue galaxies, which have higher values of M nc and M bh. At the dependences we consider between the masses of the central objects and the parameters of the host galaxies (except for the dependence of M bh on the central velocity dispersion), the red-group galaxies have systematically higher M bh values, even when the host-galaxy parameters are similar. In contrast, in the case of nuclear star clusters, the blue and red galaxies form unified sequences. The results agree with scenarios in which most red-group galaxies form as a result of the partial or complete loss of interstellar gas in a stage of high nuclear activity in galaxies whose central black-hole masses exceed 106-107 M ⊙ (depending on the mass of the galaxy itself). The bulk of disk galaxies with M bh > 107 M ⊙ are lenticular galaxies (types S0, E/S0) whose disks are practically devoid of gas.

  14. Supermassive black holes: Coevolution (or not) of black holes and host galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John

    2013-07-01

    Supermassive black holes (BHs) have been found in 75 galaxies by observing spatially resolved dynamics. The Hubble Space Telescope (HST) revolutionized BH work by advancing the subject from its `proof of concept' phase into quantitative studies of BH demographics. Most influential was the discovery of a tight correlation between BH masses M • and the velocity dispersions σ of stars in the host galaxy bulge components at radii where the stars mostly feel each other and not the BH. Together with correlations between M • and bulge luminosity, with the `missing light' that defines galaxy cores, and with numbers of globular clusters, this has led to the conclusion that BHs and bulges coevolve by regulating each other's growth. This simple picture with one set of correlations for all galaxies dominated BH work in the past decade. New results are now replacing the above, simple story with a richer and more plausible picture in which BHs correlate differently with different kinds of galaxy components. BHs with masses of 105-106 M ⊙ live in some bulgeless galaxies. So classical (merger-built) bulges are not necessary equipment for BH formation. On the other hand, while they live in galaxy disks, BHs do not correlate with galaxy disks or with disk-grown pseudobulges. They also have no special correlation with dark matter halos beyond the fact that halo gravity controls galaxy formation. This leads to the suggestion that there are two modes of BH feeding, (1) local, secular and episodic feeding of small BHs in largely bulgeless galaxies that involves too little energy feedback to drive BH-host-galaxy coevolution and (2) global feeding in major galaxy mergers that rapidly grows giant BHs in short-duration events whose energy feedback does affect galaxy formation. After these quasar-like phases, maintenance-mode BH feedback into hot, X-ray-emitting gas continues to have a primarily negative effect in preventing late-time star formation when cold gas or gas-rich galaxies

  15. Molecular gas in the host galaxy of a quasar at redshift z = 6.42.

    PubMed

    Walter, Fabian; Bertoldi, Frank; Carilli, Chris; Cox, Pierre; Lo, K Y; Neri, Roberto; Fan, Xiaohui; Omont, Alain; Strauss, Michael A; Menten, Karl M

    2003-07-24

    Observations of molecular hydrogen in quasar host galaxies at high redshifts provide fundamental constraints on galaxy evolution, because it is out of this molecular gas that stars form. Molecular hydrogen is traced by emission from the carbon monoxide molecule, CO; cold H2 itself is generally not observable. Carbon monoxide has been detected in about ten quasar host galaxies with redshifts z > 2; the record-holder is at z = 4.69 (refs 1-3). Here we report CO emission from the quasar SDSS J114816.64 + 525150.3 (refs 5, 6) at z = 6.42. At that redshift, the Universe was only 1/16 of its present age, and the era of cosmic reionization was just ending. The presence of about 2 x 1010 M\\circ of H2 in an object at this time demonstrates that molecular gas enriched with heavy elements can be generated rapidly in the youngest galaxies. PMID:12879063

  16. Cepheid Variables in the Maser-host Galaxy NGC 4258

    NASA Astrophysics Data System (ADS)

    Hoffmann, Samantha L.; Macri, Lucas M.

    2015-06-01

    We present results of a ground-based survey for Cepheid variables in NGC 4258. This galaxy plays a key role in the Extragalactic Distance Scale due to its very precise and accurate distance determination via very long baseline interferometry observations of water masers. We imaged two fields within this galaxy using the Gemini North telescope and the Gemini Multi-Object Spectrograph, obtaining 16 epochs of data in the Sloan Digital Sky Survey gri bands over 4 yr. We carried out point-spread function photometry and detected 94 Cepheids with periods between 7 and 127 days, as well as an additional 215 variables which may be Cepheids or Population II pulsators. We used the Cepheid sample to test the absolute calibration of theoretical gri Period-Luminosity relations and found good agreement with the maser distance to this galaxy. The expected data products from the Large Synoptic Survey Telescope should enable Cepheid searches out to at least 10 Mpc.

  17. The Black Hole–Bulge Mass Relation in Megamaser Host Galaxies

    NASA Astrophysics Data System (ADS)

    Läsker, Ronald; Greene, Jenny E.; Seth, Anil; van de Ven, Glenn; Braatz, James A.; Henkel, Christian; Lo, K. Y.

    2016-07-01

    We present Hubble Space Telescope (HST) images for nine megamaser disk galaxies with the primary goal of studying photometric BH-galaxy scaling relations. The megamaser disks provide the highest-precision extragalactic BH mass measurements, while our high-resolution HST imaging affords us the opportunity to decompose the complex nuclei of their late-type hosts in detail. Based on the morphologies and shapes of the galaxy nuclei, we argue that most of these galaxies’ central regions contain secularly evolving components (pseudo-bulges), and in many cases we photometrically identify co-existing “classical” bulge components as well. Using these decompositions, we draw the following conclusions. (1) The megamaser BH masses span two orders of magnitude (106–{10}8 {M}ȯ ) while the stellar mass of their spiral host galaxies are all ∼ {10}11 {M}ȯ within a factor of three. (2) The BH masses at a given bulge mass or total stellar mass in the megamaser host spiral galaxies tend to be lower than expected when compared to an extrapolation of the BH-bulge relation based on early-type galaxies. (3) The observed large intrinsic scatter of BH masses in the megamaser host galaxies raises the question of whether scaling relations exist in spiral galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 12185.

  18. The Galaxy Hosts And Large-Scale Environments of Short-Hard Gamma-Ray Bursts

    SciTech Connect

    Prochaska, Jason X.; Bloom, J.S.; Chen, H.-W.; Foley, R.J.; Perley, D.A.; Ramirez-Ruiz, E.; Granot, J.; Lee, W.H.; Pooley, D.; Alatalo, K.; Hurley, K.; Cooper, M.C.; Dupree, A.K.; Gerke, B.F.; Hansen, B.M.S.; Kalirai, J.S.; Newman, J.A.; Rich, R.M.; Richer, H.; Stanford, S.A.; Stern, D.; /Lick Observ. /UC, Berkeley, Astron. Dept. /Chicago U., Astron. Astrophys. Ctr. /Princeton, Inst. Advanced Study /KIPAC, Menlo Park /UNAM, Inst. Astron. /UC, Berkeley, Space Sci. Dept. /Harvard-Smithsonian Ctr. Astrophys. /UC, Berkeley /UCLA /LBL, Berkeley /British Columbia U. /UC, Davis /LLNL, Livermore /Caltech, JPL

    2005-10-07

    The rapid succession of discovery of short-duration hard-spectrum GRBs has led to unprecedented insights into the energetics of the explosion and nature of the progenitors. Yet short of the detection of a smoking gun, like a burst of coincident gravitational radiation or a Li-Paczynski mini-supernova, it is unlikely that a definitive claim can be made for the progenitors. As was the case with long-duration soft-spectrum GRBs, however, the expectation is that a systematic study of the hosts and the locations of short GRBs could begin to yield fundamental clues about their nature. We present the first aggregate study of the host galaxies of short-duration hard-spectrum GRBs. In particular, we present the Gemini-North and Keck discovery spectra of the galaxies that hosted three short GRBs and a moderate-resolution (R {approx} 6000) spectrum of a fourth host. We find that these short-hard GRBs originate in a variety of low-redshift (z < 1) environments that differ substantially from those of long-soft GRBs, both on individual galaxy scales and on galaxy-cluster scales. Specifically, three of the bursts are found to be associated with old and massive galaxies with no current (< 0.1M{sub {circle_dot}} yr{sup -1}) or recent star formation. Two of these galaxies are located within a cluster environment. These observations support an origin from the merger of compact stellar remnants, such as double neutron stars of a neutron star-black hole binary. The fourth event, in contrast, occurred within a dwarf galaxy with a star formation rate exceeding 0.5 M{sub {circle_dot}} yr{sup -1}. Therefore, it appears that like supernovae of Type Ia, the progenitors of short-hard bursts are created in all galaxy types, suggesting a corresponding class with a wide distribution of delay times between formation and explosion.

  19. The Black Hole–Bulge Mass Relation in Megamaser Host Galaxies

    NASA Astrophysics Data System (ADS)

    Läsker, Ronald; Greene, Jenny E.; Seth, Anil; van de Ven, Glenn; Braatz, James A.; Henkel, Christian; Lo, K. Y.

    2016-07-01

    We present Hubble Space Telescope (HST) images for nine megamaser disk galaxies with the primary goal of studying photometric BH-galaxy scaling relations. The megamaser disks provide the highest-precision extragalactic BH mass measurements, while our high-resolution HST imaging affords us the opportunity to decompose the complex nuclei of their late-type hosts in detail. Based on the morphologies and shapes of the galaxy nuclei, we argue that most of these galaxies’ central regions contain secularly evolving components (pseudo-bulges), and in many cases we photometrically identify co-existing “classical” bulge components as well. Using these decompositions, we draw the following conclusions. (1) The megamaser BH masses span two orders of magnitude (106–{10}8 {M}ȯ ) while the stellar mass of their spiral host galaxies are all ˜ {10}11 {M}ȯ within a factor of three. (2) The BH masses at a given bulge mass or total stellar mass in the megamaser host spiral galaxies tend to be lower than expected when compared to an extrapolation of the BH-bulge relation based on early-type galaxies. (3) The observed large intrinsic scatter of BH masses in the megamaser host galaxies raises the question of whether scaling relations exist in spiral galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 12185.

  20. Radio constraints on heavily obscured star formation within dark gamma-ray burst host galaxies

    SciTech Connect

    Perley, D. A.; Perley, R. A.

    2013-12-01

    Highly dust-obscured starbursting galaxies (submillimeter galaxies and their ilk) represent the most extreme sites of star formation in the distant universe and contribute significantly to overall cosmic star formation beyond z > 1.5. Some stars formed in these environments may also explode as gamma-ray bursts (GRBs) and contribute to the population of 'dark' bursts. Here we present Very Large Array wideband radio-continuum observations of 15 heavily dust-obscured Swift GRBs to search for radio synchrotron emission associated with intense star formation in their host galaxies. Most of these targets (11) are not detected. Of the remaining four objects, one detection is marginal, and for two others we cannot yet rule out the contribution of a long-lived radio afterglow. The final detection is secure, but indicates a star formation rate (SFR) roughly consistent with the dust-corrected UV-inferred value. Most galaxies hosting obscured GRBs are therefore not forming stars at extreme rates, and the amount of optical extinction seen along a GRB afterglow sightline does not clearly correlate with the likelihood that the host has a sufficiently high SFR to be radio-detectable. While some submillimeter galaxies do readily produce GRBs, these GRBs are often not heavily obscured—suggesting that the outer (modestly obscured) parts of these galaxies overproduce GRBs and the inner (heavily obscured) parts underproduce GRBs relative to their respective contributions to star formation, hinting at strong chemical or initial mass function gradients within these systems.

  1. Radio Constraints on Heavily Obscured Star Formation within Dark Gamma-Ray Burst Host Galaxies

    NASA Astrophysics Data System (ADS)

    Perley, D. A.; Perley, R. A.

    2013-12-01

    Highly dust-obscured starbursting galaxies (submillimeter galaxies and their ilk) represent the most extreme sites of star formation in the distant universe and contribute significantly to overall cosmic star formation beyond z > 1.5. Some stars formed in these environments may also explode as gamma-ray bursts (GRBs) and contribute to the population of "dark" bursts. Here we present Very Large Array wideband radio-continuum observations of 15 heavily dust-obscured Swift GRBs to search for radio synchrotron emission associated with intense star formation in their host galaxies. Most of these targets (11) are not detected. Of the remaining four objects, one detection is marginal, and for two others we cannot yet rule out the contribution of a long-lived radio afterglow. The final detection is secure, but indicates a star formation rate (SFR) roughly consistent with the dust-corrected UV-inferred value. Most galaxies hosting obscured GRBs are therefore not forming stars at extreme rates, and the amount of optical extinction seen along a GRB afterglow sightline does not clearly correlate with the likelihood that the host has a sufficiently high SFR to be radio-detectable. While some submillimeter galaxies do readily produce GRBs, these GRBs are often not heavily obscured—suggesting that the outer (modestly obscured) parts of these galaxies overproduce GRBs and the inner (heavily obscured) parts underproduce GRBs relative to their respective contributions to star formation, hinting at strong chemical or initial mass function gradients within these systems.

  2. Physical conditions and element abundances in supernova and γ-ray burst host galaxies at different redshifts

    NASA Astrophysics Data System (ADS)

    Contini, M.

    2016-08-01

    We compare the physical parameters and the relative abundances calculated throughout supernova (SN) and γ-ray burst (GRB) host galaxies using a detailed modelling of the spectra. The coupled effect of shocks and radiation from the starburst within the host galaxy is considered. We have found the following. (i) Shock velocities are lower in long-period GRBs (LGRBs) than in SN host galaxies. (ii) O/H relative abundances in SN hosts are scattered within a range 8.0 < 12+log(O/H) < 8.85 but they are close to solar in LGRB hosts. LGRB galaxies hosting Wolf-Rayet stars have He/H = 0.13 in a few objects. (iii) The starburst temperatures within a few SN hosts are relatively high (T* > 105 K). The values of T* in LGRB hosts are ˜3-8 × 104 K. (iv) The Hα absolute flux calculated from the emitting clouds of a few SN hosts at 0.1 < z < 0.3 is sensibly higher than in the other galaxies. Hα increases sharply with the ionization parameter U. The present analysis suggests that the SN-host symbiosis is stronger than for GRBs in terms of activity. The physical and chemical conditions in the GRB host galaxies are similar to those in starburst galaxies within a large redshift range.

  3. The Swift Gamma-Ray Burst Host Galaxy Legacy Survey. I. Sample Selection and Redshift Distribution

    NASA Astrophysics Data System (ADS)

    Perley, D. A.; Krühler, T.; Schulze, S.; de Ugarte Postigo, A.; Hjorth, J.; Berger, E.; Cenko, S. B.; Chary, R.; Cucchiara, A.; Ellis, R.; Fong, W.; Fynbo, J. P. U.; Gorosabel, J.; Greiner, J.; Jakobsson, P.; Kim, S.; Laskar, T.; Levan, A. J.; Michałowski, M. J.; Milvang-Jensen, B.; Tanvir, N. R.; Thöne, C. C.; Wiersema, K.

    2016-01-01

    We introduce the Swift Gamma-Ray Burst Host Galaxy Legacy Survey (“SHOALS”), a multi-observatory high-redshift galaxy survey targeting the largest unbiased sample of long-duration gamma-ray burst (GRB) hosts yet assembled (119 in total). We describe the motivations of the survey and the development of our selection criteria, including an assessment of the impact of various observability metrics on the success rate of afterglow-based redshift measurement. We briefly outline our host galaxy observational program, consisting of deep Spitzer/IRAC imaging of every field supplemented by similarly deep, multicolor optical/near-IR photometry, plus spectroscopy of events without preexisting redshifts. Our optimized selection cuts combined with host galaxy follow-up have so far enabled redshift measurements for 110 targets (92%) and placed upper limits on all but one of the remainder. About 20% of GRBs in the sample are heavily dust obscured, and at most 2% originate from z\\gt 5.5. Using this sample, we estimate the redshift-dependent GRB rate density, showing it to peak at z∼ 2.5 and fall by at least an order of magnitude toward low (z = 0) redshift, while declining more gradually toward high (z∼ 7) redshift. This behavior is consistent with a progenitor whose formation efficiency varies modestly over cosmic history. Our survey will permit the most detailed examination to date of the connection between the GRB host population and general star-forming galaxies, directly measure evolution in the host population over cosmic time and discern its causes, and provide new constraints on the fraction of cosmic star formation occurring in undetectable galaxies at all redshifts.

  4. Radio brightening of FRB 150418 host galaxy candidate

    NASA Astrophysics Data System (ADS)

    Williams, P. K. G.; Berger, E.; Chornock, R.

    2016-02-01

    Keane et al. (2016 Nature 530 453) reported a fading radio transient in the z=0.498 galaxy WISE J071634.59-190039.2 (WISE 0716-19; Williams & Berger, arxiv:1602.08434) that they associated with the fast radio burst FRB 150418.

  5. The galaxy hosts and large-scale environments of short-hard (gamma)-ray bursts

    SciTech Connect

    Prochaska, J X; Bloom, J S; Chen, H; Foley, R J; Perley, D A; Ramirez-Ruiz, E; Granot, J; Lee, W H; Pooley, D; Alatalo, K; Hurley, K; Cooper, M C; Dupree, A K; Gerke, B F; Hansen, B S; Kalirai, J S; Newman, J A; Rich, R M; Richer, H; Stanford, S A; Stern, D; van Breugel, W

    2006-04-07

    The nature of the progenitors of short duration, hard spectrum, gamma-ray bursts (GRBs) has remained a mystery. Even with the recent localizations of four short-hard GRBs, no transient emission has been found at long wavelengths that directly constrains the progenitor nature. Instead, as was the case in studying the different morphological subclasses of supernovae and the progenitors of long-duration GRBs, we suggest that the progenitors of short bursts can be meaningfully constrained by the environment in which the bursts occur. Here we present the discovery spectra of the galaxies that hosted three short-hard GRBs and the spectrum of a fourth host. The results indicate that these environments, both at the galaxy scale and galaxy-cluster scale, differ substantially from those of long-soft GRBs. The spatial offset of three bursts from old and massive galaxy hosts strongly favors an origin from the merger of compact stellar remnants, such as double neutron stars or a neutron-star black hole binary. The star-forming host of another GRB provides confirmation that, like supernovae of Type Ia, the progenitors of short-hard bursts are created in all galaxy types. This indicates a class of progenitors with a wide distribution of delay times between formation and explosion.

  6. Hubble Space Telescope Observations of Short GRB Host Galaxies: Morphologies, Offsets and Local Environments

    NASA Astrophysics Data System (ADS)

    Fong, Wen-fai; Berger, E.; Fox, D.

    2010-01-01

    The morphological properties of short-duration gamma-ray burst (GRB) host galaxies are not well understood. Here, we present optical observations of eight short GRB hosts obtained with ACS and WFPC2 on the Hubble Space Telescope (HST). These observations allow us to characterize the galactic and local environments of short GRBs as a powerful constraint on the nature of their progenitors. Using a variety of techniques, we determine the hosts' morphological properties, measure the physical and host-normalized offsets relative to the galaxy centers, and study the locations of short GRBs relative to their host light distributions. We also compare our results to those for long GRBs. Overall, we find that the majority of short GRB hosts have exponential disk profiles, and are on average twice as large as long GRB hosts. We also find that the distribution of projected physical offsets for short GRBs has a median of 5 kpc, a factor of five larger than the median for long GRBs. However, when normalized by the size of the hosts, the offset distributions for the two populations become nearly identical. Finally, unlike long GRBs which are concentrated in the brightest regions of their hosts, short GRBs are found to uniformly trace their host light distribution. These results are consistent with a progenitor population of NS-NS binaries, but do not rule out other potential progenitor models. This research is supported by Harvard University, the Smithsonian Astrophysical Observatory, and HST - Grant Number GO-10917.01.

  7. Tracing the evolution of active galactic nuclei host galaxies over the last 9 Gyr of cosmic time

    SciTech Connect

    Goulding, A. D.; Forman, W. R.; Jones, C.; Murray, S. S.; Paggi, A.; Ashby, M. L. N.; Huang, J.-S.; Kraft, R.; Willner, S. P.; Hickox, R. C.; Coil, A. L.; Cooper, M. C.; Newman, J. A.; Weiner, B. J.

    2014-03-01

    We present the results of a combined galaxy population analysis for the host galaxies of active galactic nuclei (AGN) identified at 0 < z < 1.4 within the Sloan Digital Sky Survey, Boötes, and DEEP2 surveys. We identified AGN in a uniform and unbiased manner at X-ray, infrared, and radio wavelengths. Supermassive black holes undergoing radiatively efficient accretion (detected as X-ray and/or infrared AGN) appear to be hosted in a separate and distinct galaxy population than AGN undergoing powerful mechanically dominated accretion (radio AGN). Consistent with some previous studies, radiatively efficient AGN appear to be preferentially hosted in modest star-forming galaxies, with little dependence on AGN or galaxy luminosity. AGN exhibiting radio-emitting jets due to mechanically dominated accretion are almost exclusively observed in massive, passive galaxies. Crucially, we now provide strong evidence that the observed host-galaxy trends are independent of redshift. In particular, these different accretion-mode AGN have remained as separate galaxy populations throughout the last 9 Gyr. Furthermore, it appears that galaxies hosting AGN have evolved along the same path as galaxies that are not hosting AGN with little evidence for distinctly separate evolution.

  8. Detection of Three Gamma-ray Burst Host Galaxies at z ˜ 6

    NASA Astrophysics Data System (ADS)

    McGuire, J. T. W.; Tanvir, N. R.; Levan, A. J.; Trenti, M.; Stanway, E. R.; Shull, J. M.; Wiersema, K.; Perley, D. A.; Starling, R. L. C.; Bremer, M.; Stocke, J. T.; Hjorth, J.; Rhoads, J. E.; Curtis-Lake, E.; Schulze, S.; Levesque, E. M.; Robertson, B.; Fynbo, J. P. U.; Ellis, R. S.; Fruchter, A. S.

    2016-07-01

    Long-duration gamma-ray bursts (GRBs) allow us to pinpoint and study star-forming galaxies in the early universe, thanks to their orders of magnitude brighter peak luminosities compared to other astrophysical sources, and their association with the deaths of massive stars. We present Hubble Space Telescope Wide Field Camera 3 detections of three Swift GRB host galaxies lying at redshifts z = 5.913 (GRB 130606A), z = 6.295 (GRB 050904), and z = 6.327 (GRB 140515A) in the F140W (wide-JH band, {λ }{{obs}}˜ 1.4 μ {{m}}) filter. The hosts have magnitudes (corrected for Galactic extinction) of {m}{λ {obs},{AB}}={26.34}-0.16+0.14,{27.56}-0.22+0.18, and {28.30}-0.33+0.25, respectively. In all three cases, the probability of chance coincidence of lower redshift galaxies is ≲ 2 % , indicating that the detected galaxies are most likely the GRB hosts. These are the first detections of high-redshift (z\\gt 5) GRB host galaxies in emission. The galaxies have luminosities in the range 0.1–0.6 {L}z=6* (with {M}1600* =-20.95+/- 0.12) and half-light radii in the range 0.6–0.9 {{kpc}}. Both their half-light radii and luminosities are consistent with existing samples of Lyman-break galaxies at z˜ 6. Spectroscopic analysis of the GRB afterglows indicate low metallicities ([{{M/H}}]≲ -1) and low dust extinction ({A}{{V}}≲ 0.1) along the line of sight. Using stellar population synthesis models, we explore the implications of each galaxy’s luminosity for its possible star-formation history and consider the potential for emission line metallicity determination with the upcoming James Webb Space Telescope.

  9. The Spitzer/Swift Gamma-Ray Burst Host Galaxy Legacy Survey

    NASA Astrophysics Data System (ADS)

    Perley, Daniel; Berger, Edo; Butler, Nathaniel; Cenko, S. Bradley; Chary, Ranga-Ram; Cucchiara, Antonino; Ellis, Richard; Fong, Wen-fai; Fruchter, Andrew; Fynbo, Johan; Gehrels, Neil; Graham, John; Greiner, Jochen; Hjorth, Jens; Hunt, Leslie; Jakobsson, Pall; Kruehler, Thomas; Laskar, Tanmoy; Le Floc'h, Emerich; Levan, Andrew; Levesque, Emily; Littlejohns, Owen; Malesani, Daniele; Michalowski, Michal; Milvang-Jensen, Bo; Prochaska, J. Xavier; Salvaterra, Ruben; Schulze, Steve; Schady, Patricia; Tanvir, Nial; de Ugarte Postigo, Antonio; Vergani, Susanna; Watson, Darach

    2016-08-01

    Long-duration gamma-ray bursts act as beacons to the sites of star-formation in the distant universe. GRBs reveal galaxies too faint and star-forming regions too dusty to characterize in detail using any other method, and provide a powerful independent constraint on the evolution of the cosmic star-formation rate density at high-redshift. However, a full understanding of the GRB phenomenon and its relation to cosmic star-formation requires connecting the observations obtained from GRBs to the properties of the galaxies hosting them. The large majority of GRBs originate at moderate to high redshift (z>1) and Spitzer has proven crucial for understanding the host population, given its unique ability to observe the rest-frame NIR and its unrivaled sensitivity and efficiency. We propose to complete a comprehensive public legacy survey of the Swift GRB host population to build on our earlier successes and push beyond the statistical limits of previous, smaller efforts. Our survey will enable a diverse range of GRB and galaxy science including: (1) to quantitatively and robustly map the connection between GRBs and cosmic star-formation to constrain the GRB progenitor and calibrate GRB rate-based measurements of the high-z cosmic star-formation rate; (2) to constrain the luminosity function of star-forming galaxies at the faint end and at high redshift; (3) to understand how the ISM properties seen in absorption in high-redshift galaxies unveiled by GRBs - metallicity, dust column, dust properties - connect to global properties of the host galaxies such as mass and age. Building on a decade of experience at both observatories, our observations will create an enduring joint Swift-Spitzer legacy sample - providing the definitive resource with which to examine all aspects of the GRB/galaxy connection for years to come and setting the stage for intensive JWST follow-up of the most interesting sources from our sample.

  10. Spectroscopic Properties of Star-Forming Host Galaxies and Type Ia Supernova Hubble Residuals in a Nearly Unbiased Sample

    SciTech Connect

    D'Andrea, Chris B.; et al.

    2011-12-20

    We examine the correlation between supernova host galaxy properties and their residuals on the Hubble diagram. We use supernovae discovered during the Sloan Digital Sky Survey II - Supernova Survey, and focus on objects at a redshift of z < 0.15, where the selection effects of the survey are known to yield a complete Type Ia supernova sample. To minimize the bias in our analysis with respect to measured host-galaxy properties, spectra were obtained for nearly all hosts, spanning a range in magnitude of -23 < M_r < -17. In contrast to previous works that use photometric estimates of host mass as a proxy for global metallicity, we analyze host-galaxy spectra to obtain gas-phase metallicities and star-formation rates from host galaxies with active star formation. From a final sample of ~ 40 emission-line galaxies, we find that light-curve corrected Type Ia supernovae are ~ 0.1 magnitudes brighter in high-metallicity hosts than in low-metallicity hosts. We also find a significant (> 3{\\sigma}) correlation between the Hubble residuals of Type Ia supernovae and the specific star-formation rate of the host galaxy. We comment on the importance of supernova/host-galaxy correlations as a source of systematic bias in future deep supernova surveys.

  11. AGN from HeII: AGN host galaxy properties & demographics

    NASA Astrophysics Data System (ADS)

    Baer, Rudolf E.; Schawinski, Kevin; Weigel, Anna

    2016-01-01

    We present an analysis of HeII emitting objects classified as AGN. In a sample of 81'192 galaxies taken from the seventh data release (DR7) of the Sloan Digital Sky Survey in the redshift interval 0.02 < z < 0.05 and with r < 17 AB mag, the Baldwin, Philips & Terlevitsch 1981 method (BPT) identifies 1029 objects as active galactic nuclei. By applying an analysis using HeII λ 4686 emission lines, based on Shirazi & Binchmann 2012, we have identified an additional 283 active galactic nuclei, which were missed by the BPT method. This represents an increase of over 25 %. The characteristics of the HeII selected AGN are different from the AGN found through the PBT; the colour - mass diagram and the colour histogram both show that HeII selected AGN are bluer. This new selection technique can help inform galaxy black hole coevolution scenarios.

  12. Physical conditions and element abundances in supernova and γ-ray burst host galaxies at different redshifts

    NASA Astrophysics Data System (ADS)

    Contini, M.

    2016-08-01

    We compare the physical parameters and the relative abundances calculated throughout supernova (SN) and gamma-ray burst (GRB) host galaxies by the detailed modelling of the spectra. The results show that : 1) shock velocities are lower in long period GRB (LGRB) than in SN host galaxies. 2) O/H relative abundance in SN hosts are scattered within a range 8.0 <12+log(O/H)<8.85 but they are close to solar in LGRB hosts. N/H are lower than solar for both SN and LGRB. 3) The starburst temperatures within a few SN hosts reach Ts >10^5 K. Ts in LGRB hosts are 3-8 10^4 K. 4) Ha increases with the ionization parameter U. We suggest that SN-host symbiosis is stronger in terms of host galaxy activity than GRB-host in the range of energies related to the near UV - optical - near IR spectra.

  13. Heavily obscured quasar host galaxies at z ∼ 2 are discs, not major mergers

    NASA Astrophysics Data System (ADS)

    Schawinski, Kevin; Simmons, Brooke D.; Urry, C. Megan; Treister, Ezequiel; Glikman, Eilat

    2012-09-01

    We explore the nature of heavily obscured quasar host galaxies at z˜ 2 using deep Hubble Space Telescope Wide Field Camera 3/infrared imaging of 28 dust-obscured galaxies (DOGs) to investigate the role of major mergers in driving black hole growth. The high levels of obscuration of the quasars selected for this study act as a natural coronagraph, blocking the quasar light and allowing a clear view of the underlying host galaxy. The sample of heavily obscured quasars represents a significant fraction of the cosmic mass accretion on supermassive black holes as the quasars have inferred bolometric luminosities around the break of the quasar luminosity function. We find that only a small fraction (4 per cent, at most 11-25 per cent) of the quasar host galaxies are major mergers. Fits to their surface brightness profiles indicate that 90 per cent of the host galaxies are either disc dominated, or have a significant disc. This disc-like host morphology, and the corresponding weakness of bulges, is evidence against major mergers and suggests that secular processes are the predominant driver of massive black hole growth. Finally, we suggest that the coincidence of mergers and active galactic nucleus activity is luminosity dependent, with only the most luminous quasars being triggered mostly by major mergers. a MUSYC catalogue ID, see Cardamone et al. (2010). Objects with X-ray detections are marked with *. b See images shown in Fig. 1. c The ratio of the host luminosity to the point source luminosity, reported only when GALFIT requires an unresolved object to yield a physical fit. This may be due to an AGN point source (in the case of the X-ray-detected DOGs) or an unresolved bulge or central concentration, i.e. a central bulge. d See Fig. 2.

  14. A weak lensing comparability study of galaxy mergers that host AGNs

    NASA Astrophysics Data System (ADS)

    Harvey, D.; Courbin, F.

    2015-07-01

    We compared the total mass density profiles of three different types of galaxies using weak gravitational lensing: (i) 29 galaxies that host quasars at bar{z}˜ 0.32 that are in a post-starburst quasar (PSQ) phase with high star formation indicating recent merger activity, (ii) 22 large elliptical galaxies from the Sloan Lens ACS Survey (SLACS) sample that do not host a quasar at bar{z}˜ 0.23, and (iii) 17 galaxies that host moderately luminous quasars at bar{z}˜ 0.36 powered by disc instabilities, but with no intense star formation. In an initial test we found no evidence for a connection between the merger state of a galaxy and the profile of the halo, with the PSQ profile comparable to that of the other two samples and consistent with the Leauthaud et al. study of moderately luminous quasars in Cosmic Evolution Survey (COSMOS). Given the compatibility of the two quasar samples, we combined these and found no evidence for any connection between black hole activity and the dark matter halo. All three mass profiles remained compatible with isothermality given the present data.

  15. From Enigma to Tool: Gamma-Ray Burst Reveals Secrets of Host Galaxy

    NASA Astrophysics Data System (ADS)

    2001-05-01

    Five years ago, astronomers knew almost nothing about Gamma Ray Bursts. Now, a team of observers using the National Science Foundation's Very Large Array (VLA) radio telescope has used a gamma-ray burst as a powerful tool to unveil the nature of the galaxy in which it occurred, more than 7 billion light-years away. VLA Images of GRB980703 Host Galaxy "We believe that gamma-ray bursts may become one of the best available tools for studying the history of star formation in the universe," said Edo Berger, a graduate student at Caltech. Berger worked with Caltech astronomy professor Shri Kulkarni and Dale Frail, an astronomer at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, to study a gamma-ray burst first seen on July 3, 1998. The astronomers presented their results at the American Astronomical Society's meeting in Pasadena, CA. "For the first time, we've seen the host galaxy of a gamma-ray burst with a radio telescope," Berger said. "Previously, gamma-ray-burst host galaxies have been seen with optical telescopes, but detecting this galaxy with a radio telescope has given us new clues about the nature of the galaxy itself -- clues we couldn't have gotten any other way," he added. For example, based on optical-telescope studies, astronomers estimated that new stars are forming in the host galaxy at the rate of about the mass equivalent of 20 suns per year. However, data from the radio observations show that the actual star-formation rate is 25 times greater -- the mass equivalent of 500 suns per year. "With the VLA, we are seeing the entire region of star formation in this galaxy, including the areas so dusty that visible light can't get out," said Frail. Gamma-ray bursts are the most powerful explosions since the Big Bang. First discovered in 1967 by a satellite launched to monitor compliance with the atmospheric nuclear test ban treaty, gamma-ray bursts remained one of astronomy's premier mysteries for 30 years. For three decades

  16. The metallicity and dust content of a redshift 5 gamma-ray burst host galaxy

    SciTech Connect

    Sparre, M.; Krühler, T.; Fynbo, J. P. U.; Watson, D. J.; De Ugarte Postigo, A.; Hjorth, J.; Malesani, D.; Hartoog, O. E.; Kaper, L.; Wiersema, K.; D'Elia, V.; Afonso, P. M. J.; Covino, S.; Flores, H.; Goldoni, P.; Jakobsson, P.; Klose, S.; Levan, A. J.; and others

    2014-04-20

    Observations of the afterglows of long gamma-ray bursts (GRBs) allow the study of star-forming galaxies across most of cosmic history. Here we present observations of GRB 111008A, from which we can measure metallicity, chemical abundance patterns, dust-to-metals ratio (DTM), and extinction of the GRB host galaxy at z = 5.0. The host absorption system is a damped Lyα absorber with a very large neutral hydrogen column density of log N(H I)/cm{sup −2}=22.30±0.06 and a metallicity of [S/H] = –1.70 ± 0.10. It is the highest-redshift GRB with such a precise metallicity measurement. The presence of fine-structure lines confirms the z = 5.0 system as the GRB host galaxy and makes this the highest redshift where Fe II fine-structure lines have been detected. The afterglow is mildly reddened with A{sub V} = 0.11 ± 0.04 mag, and the host galaxy has a DTM that is consistent with being equal to or lower than typical values in the Local Group.

  17. Correlating Type Ia Supernova Properties with Their Local Environment Using HST Snapshots of Host Galaxies

    NASA Astrophysics Data System (ADS)

    Rose, Benjamin; Garnavich, Peter M.

    2016-01-01

    Type Ia supernovae (SN Ia) are important tools for precision cosmology. But there are still uncertainties about how the host galaxy properties and local environment influence the luminosity, color and Hubble residuals of SN Ia. We investigate these questions by analyzing high angular resolution Hubble Space Telescope (HST) imaging of SDSS-II host galaxies. These are "snapshot" images obtained while the telescope was slewing to new targets, so the total exposure times are less than 30 minutes. ACS images were obtained in F475W and F625W filters, similar to SDSS g and r-bands. In total, we observed 61 host galaxies in Stripe 82 that had SN Ia discovered by the SDSS-II SN Survey. HST's resolution and low background allow for detailed analysis of both the region around the SN Ia and the galaxy as a whole. Co-added SDSS-II images of the hosts are used to supplement the HST data in regions of low surface brightness. From this data set we estimate the fractional pixel rank and photometric color of the SN Ia's location and correlate the local environment variables with SN Ia luminosity, light curve width, color and Hubble residual. We assess the impact of these correlations on the accuracy of SN Ia distance estimates and possible biases in measuring the Hubble constant and dark energy parameters.

  18. ASASSN-16fm: Discovery of A Probable Supernova with no Apparent Host Galaxy

    NASA Astrophysics Data System (ADS)

    Villanueva, S., Jr.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.

    2016-05-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, with no apparent host galaxy.

  19. Kinematics and host-galaxy properties suggest a nuclear origin for calcium-rich supernova progenitors

    NASA Astrophysics Data System (ADS)

    Foley, Ryan J.

    2015-09-01

    Calcium-rich supernovae (Ca-rich SNe) are peculiar low-luminosity SNe Ib with relatively strong Ca spectral lines at ˜2 months after peak brightness. This class also has an extended projected offset distribution, with several members of the class offset from their host galaxies by 30-150 kpc. There is no indication of any stellar population at the SN positions. Using a sample of 13 Ca-rich SNe, we present kinematic evidence that the progenitors of Ca-rich SNe originate near the centres of their host galaxies and are kicked to the locations of the SN explosions. Specifically, SNe with small projected offsets have large line-of-sight velocity shifts as determined by nebular lines, while those with large projected offsets have no significant velocity shifts. Therefore, the velocity shifts must not be primarily the result of the SN explosion. Additionally, nearly every Ca-rich SN is hosted by a galaxy with indications of a recent merger and/or is in a dense environment. We propose a progenitor model which fits all current data: the progenitor system for a Ca-rich SN is a double white dwarf (WD) system where at least one WD has a significant He abundance. This system, through an interaction with a super-massive black hole (SMBH) is ejected from its host galaxy and the binary is hardened, significantly reducing the merger time. After 10-100 Myr (on average), the system explodes with a large physical offset. The rate for such events is significantly enhanced for galaxies which have undergone recent mergers, potentially making Ca-rich SNe new probes of both the galaxy merger rate and (binary) SMBH population.

  20. Magellan LDSS3 emission confirmation of galaxies hosting metal-rich Lyman α absorption systems

    NASA Astrophysics Data System (ADS)

    Straka, Lorrie A.; Johnson, Sean; York, Donald G.; Bowen, David V.; Florian, Michael; Kulkarni, Varsha P.; Lundgren, Britt; Péroux, Celine

    2016-06-01

    Using the Low Dispersion Survey Spectrograph 3 at the Magellan II Clay Telescope, we target candidate absorption host galaxies detected in deep optical imaging (reaching limiting apparent magnitudes of 23.0-26.5 in g, r, i, and z filters) in the fields of three QSOs, each of which shows the presence of high metallicity, high N_{H I} absorption systems in their spectra (Q0826-2230: zabs = 0.9110, Q1323-0021: zabs = 0.7160, Q1436-0051: zabs = 0.7377, 0.9281). We confirm three host galaxies at redshifts 0.7387, 0.7401, and 0.9286 for two of the Lyman α absorption systems (one with two galaxies interacting). For these systems, we are able to determine the star formation rates (SFRs); impact parameters (from previous imaging detections); the velocity shift between the absorption and emission redshifts; and, for one system, also the emission metallicity. Based on previous photometry, we find these galaxies have L > L*. The [O II] SFRs for these galaxies are in the range 11-25 M⊙ yr-1 (uncorrected for dust), while the impact parameters lie in the range 35-54 kpc. Despite the fact that we have confirmed galaxies at 50 kpc from the QSO, no gradient in metallicity is indicated between the absorption metallicity along the QSO line of sight and the emission line metallicity in the galaxies. We confirm the anticorrelation between impact parameter and N_{H I} from the literature. We also report the emission redshift of five other galaxies: three at zem > zQSO, and two (L < L*) at zem < zQSO not corresponding to any known absorption systems.

  1. Far-infrared observations of an unbiased sample of gamma-ray burst host galaxies

    NASA Astrophysics Data System (ADS)

    Kohn, S. A.; Michałowski, M. J.; Bourne, N.; Baes, M.; Fritz, J.; Cooray, A.; De Looze, I.; De Zotti, G.; Dannerbauer, H.; Dunne, L.; Dye, S.; Eales, S.; Furlanetto, C.; Gonzalez-Nuevo, J.; Ibar, E.; Ivison, R. J.; Maddox, S. J.; Scott, D.; Smith, D. J. B.; Smith, M. W. L.; Symeonidis, M.; Valiante, E.

    2015-04-01

    Gamma-ray bursts (GRBs) are the most energetic phenomena in the Universe; believed to result from the collapse and subsequent explosion of massive stars. Even though it has profound consequences for our understanding of their nature and selection biases, little is known about the dust properties of the galaxies hosting GRBs. We present analysis of the far-infrared properties of an unbiased sample of 20 BeppoSAX and Swift GRB host galaxies (at an average redshift of z = 3.1) located in the Herschel Astrophysical Terahertz Large Area Survey, the Herschel Virgo Cluster Survey, the Herschel Fornax Cluster Survey, the Herschel Stripe 82 Survey and the Herschel Multi-tiered Extragalactic Survey, totalling 880 deg2, or ˜3 per cent of the sky in total. Our sample selection is serendipitous, based only on whether the X-ray position of a GRB lies within a large-scale Herschel survey - therefore our sample can be considered completely unbiased. Using deep data at wavelengths of 100-500 μm, we tentatively detected 1 out of 20 GRB hosts located in these fields. We constrain their dust masses and star formation rates (SFRs), and discuss these in the context of recent measurements of submillimetre galaxies and ultraluminous infrared galaxies. The average far-infrared flux of our sample gives an upper limit on SFR of <114 M⊙ yr-1. The detection rate of GRB hosts is consistent with that predicted assuming that GRBs trace the cosmic SFR density in an unbiased way, i.e. that the fraction of GRB hosts with SFR > 500 M⊙ yr-1 is consistent with the contribution of such luminous galaxies to the cosmic star formation density.

  2. Probing dust-obscured star formation in the most massive gamma-ray burst host galaxies

    NASA Astrophysics Data System (ADS)

    Greiner, Jochen; Michałowski, Michał J.; Klose, Sylvio; Hunt, Leslie K.; Gentile, Gianfranco; Kamphuis, Peter; Herrero-Illana, Rubén; Wieringa, Mark; Krühler, Thomas; Schady, Patricia; Elliott, Jonathan; Graham, John F.; Ibar, Eduardo; Knust, Fabian; Nicuesa Guelbenzu, Ana; Palazzi, Eliana; Rossi, Andrea; Savaglio, Sandra

    2016-08-01

    Context. As a result of their relation to massive stars, long-duration gamma-ray bursts (GRBs) allow the pinpointing of star formation in galaxies independent of redshift, dust obscuration, or galaxy mass/size, thus providing a unique tool to investigate star formation history over cosmic time. Aims: About half of the optical afterglows of long-duration GRBs are missed owing to dust extinction and are primarily located in the most massive GRB hosts. It is important to investigate the amount of obscured star formation in these GRB host galaxies to understand this bias. Methods: Radio emission of galaxies correlates with star formation, but does not suffer extinction as do the optical star formation estimators. We selected 11 GRB host galaxies with either large stellar mass or large UV-based and optical-based star formation rates (SFRs) and obtained radio observations of these with the Australia Telescope Compact Array and the Karl Jansky Very Large Array. Results: Despite intentionally selecting GRB hosts with expected high SFRs, we do not find any radio emission related to star formation in any of our targets. Our upper limit for GRB 100621A implies that the earlier reported radio detection was due to afterglow emission. We detect radio emission from the position of GRB 020819B, but argue that it is in large part, if not completely, due to afterglow contamination. Conclusions: Half of our sample has radio-derived SFR limits, which are only a factor 2-3 above the optically measured SFRs. This supports other recent studies that the majority of star formation in GRB hosts is not obscured by dust. Based on observations collected with ATCA under ID C2718, and at VLA under ID 13B-017.

  3. The dark nature of GRB 130528A and its host galaxy

    NASA Astrophysics Data System (ADS)

    Jeong, S.; Castro-Tirado, A. J.; Bremer, M.; Winters, J. M.; Gorosabel, J.; Guziy, S.; Pandey, S. B.; Jelínek, M.; Sánchez-Ramírez, R.; Sokolov, Ilya V.; Orekhova, N. V.; Moskvitin, A. S.; Tello, J. C.; Cunniffe, R.; Lara-Gil, O.; Oates, S. R.; Pérez-Ramírez, D.; Bai, J.; Fan, Y.; Wang, C.; Park, I. H.

    2014-09-01

    Aims: We study the dark nature of GRB 130528A through multi-wavelength observations and conclude that the main reason for the optical darkness is local extinction inside of the host galaxy. Methods: Automatic observations were performed at the Burst Optical Observer and Transient Exploring System (BOOTES)-4/MET robotic telescope. We also triggered target of opportunity (ToO) observations at Observatorio de Sierra Nevada (OSN), IRAM Plateau de Bure Interferometer (PdBI) and Gran Telescopio Canarias (GTC + OSIRIS). The host galaxy photometric observations in optical to near-infrared (nIR) wavelengths were achieved through large ground-based aperture telescopes, such as 10.4 m Gran Telescopio Canarias (GTC), 4.2 m William Herschel Telescope (WHT), 6 m Bolshoi Teleskop Alt-azimutalnyi (BTA) telescope, and 2 m Liverpool Telescope (LT). Based on these observations, spectral energy distributions (SED) for the host galaxy and afterglow were constructed. Results: Thanks to millimetre (mm) observations at PdBI, we confirm the presence of a mm source within the XRT error circle that faded over the course of our observations and identify the host galaxy. However, we do not find any credible optical source within early observations with BOOTES-4/MET and 1.5 m OSN telescopes. Spectroscopic observation of this galaxy by GTC showed a single faint emission line that likely corresponds to [OII] 3727 Å at a redshift of 1.250 ± 0.001, implying a star formation rate (M⊙/yr) > 6.18 M⊙/yr without correcting for dust extinction. The probable line-of-sight extinction towards GRB 130528A is revealed through analysis of the afterglow SED, resulting in a value of A^GRBV≥ 0.9 at the rest frame; this is comparable to extinction levels found among other dark GRBs. The SED of the host galaxy is explained well (χ2/d.o.f. = 0.564) by a luminous (MB = -21.16), low-extinction (AV = 0, rest frame), and aged (2.6 Gyr) stellar population. We can explain this apparent contradiction in global and

  4. A statistical analysis of the broadband 0.1 to 3.5 keV spectral properties of X-ray-selected active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Thompson, R. J.; Cordova, F. A.

    1994-01-01

    We survey the broadband spectral properties of approximately 500 X-ray-selected active galactic nuclei (AGNs) observed with the Einstein Observatory. Included in this survey are the approximately 450 AGNs in the Extended Medium Sensitivity Survey (EMSS) of Gioia et al. (1990) and the approximately 50 AGNs in the Ultrasoft Survey of Cordova et al. (1992). We present a revised version of the latter sample, based on the post publication discovery of a software error in the Einstein Rev-1b processing. We find that the mean spectral index of the AGNs between 0.1 and 0.6 keV is softer, and the distribution of indices wider, than previous estimates based on analyses of the X-ray spectra of optically selected AGNs. A subset of these AGNs exhibit flux variabiulity, some on timescales as short as 0.05 days. A correlation between radio and hard X-ray luminosity is confirmed, but the data do not support a correlation between the radio and soft X-ray luminosities, or between radio loudness and soft X-ray spectral slope. Evidence for physically distinct soft and hard X-ray components is found, along with the possibility of a bias in previous optically selected samples toward selection of AGNs with flatter X-ray spectra.

  5. The structure of host galaxies of radio-loud quasars and possible triggering mechanisms for quasar activity

    NASA Technical Reports Server (NTRS)

    Romanishin, W.; Hintzen, Paul

    1989-01-01

    An image modeling program is used to analyze optical imaging data for a sample of radio-loud quasars with redshifts between 0.2 and 0.7. It is found that the host galaxies of these quasars tend to be more compact than normal ellipticals. The cooling flow cluster elliptical galaxies near these host galaxies are studied. It is suggested that these cooling flow galaxies are also compact due to star formation in their central regions. Two populations of quasars are identified. One, in which activity is triggered by galaxy mergers of interactions has predominately spiral galaxies and are radio quiet. The other, in which activity is triggered by star formation bursts induced by cooling flows, has predominately elliptical hosts and may be radio loud.

  6. The Host Galaxy Properties of Variability Selected AGN in the Pan-STARRS1 Medium Deep Survey

    NASA Astrophysics Data System (ADS)

    Heinis, S.; Gezari, S.; Kumar, S.; Burgett, W. S.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Wainscoat, R. J.; Waters, C.

    2016-07-01

    We study the properties of 975 active galactic nuclei (AGNs) selected by variability in the Pan-STARRS1 Medium deep Survey. Using complementary multi-wavelength data from the ultraviolet to the far-infrared, we use spectral energy distribution fitting to determine the AGN and host properties at z < 1 and compare to a well-matched control sample. We confirm the trend previously observed: that the variability amplitude decreases with AGN luminosity, but we also observe that the slope of this relation steepens with wavelength, resulting in a “redder when brighter” trend at low luminosities. Our results show that AGNs are hosted by more massive hosts than control sample galaxies, while the rest frame dust-corrected NUV ‑ r color distribution of AGN hosts is similar to control galaxies. We find a positive correlation between the AGN luminosity and star formation rate (SFR), independent of redshift. AGN hosts populate the entire range of SFRs within and outside of the Main Sequence of star-forming galaxies. Comparing the distribution of AGN hosts and control galaxies, we show that AGN hosts are less likely to be hosted by quiescent galaxies and more likely to be hosted by Main Sequence or starburst galaxies.

  7. CONSTRAINTS ON OBSCURED STAR FORMATION IN HOST GALAXIES OF GAMMA-RAY BURSTS

    SciTech Connect

    Hatsukade, Bunyo; Ohta, Kouji; Hashimoto, Tetsuya; Nakanishi, Kouichiro; Tamura, Yoichi; Kohno, Kotaro

    2012-04-01

    We present the results of the 16 cm wave band continuum observations of four host galaxies of gamma-ray bursts (GRBs) 990705, 021211, 041006, and 051022 using the Australia Telescope Compact Array. Radio emission was not detected in any of the host galaxies. The 2{sigma} upper limits on star formation rates derived from the radio observations of the host galaxies are 23, 45, 27, and 26 M{sub Sun} yr{sup -1}, respectively, which are less than about 10 times those derived from UV/optical observations, suggesting that they have no significant dust-obscured star formation. GRBs 021211 and 051022 are known as the so-called dark GRBs and our results imply that dark GRBs do not always occur in galaxies enshrouded by dust. Because large dust extinction was not observed in the afterglow of GRB 021211, our result suggests the possibility that the cause of the dark GRB is the intrinsic faintness of the optical afterglow. On the other hand, by considering the high column density observed in the afterglow of GRB 051022, the likely cause of the dark GRB is the dust extinction in the line of sight of the GRB.

  8. Can Supermassive Black Holes Influence the Evolution of their Host Galaxies?

    NASA Astrophysics Data System (ADS)

    Tombesi, Francesco; Veilleux, Sylvain; Reeves, James; Reynolds, Christopher S.

    2016-04-01

    Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. A strong support of this "quasar-mode" feedback came from the recent X-ray observation of a mildly relativistic accretion disk wind in the ultraluminous infrared galaxy IRAS F11119+3257 hosting a luminous quasar at the center. Energetics arguments indicate a connection with a massive, large-scale molecular outflow observed in infrared with Herschel. This seems to be in agreement with theoretical models in which AGN winds drive hot bubbles in the host galaxy medium, thereby providing a link between the SMBH and the gas out of which stars form. This work was the “cover story” of the March 26th 2015 issue of Nature. Revolutionary improvements in this field are expected from ASTRO-H and Athena.

  9. The Host Galaxy and the Extended Emission-Line Region of the Radio Galaxy 3C 79

    NASA Astrophysics Data System (ADS)

    Fu, Hai; Stockton, Alan

    2008-04-01

    We present extensive ground-based spectroscopy and HST imaging of 3C 79, an FR II radio galaxy associated with a luminous extended emission-line region (EELR). Surface brightness modeling of an emission-line-free HST R-band image reveals that the host galaxy is a massive elliptical with a compact companion 0.8'' away and 4 mag fainter. The host galaxy spectrum is best described by an intermediate-age (1.3 Gyr) stellar population (4% by mass), superimposed on a 10 Gyr old population and a power law (αλ = - 1.8); the stellar populations are consistent with supersolar metallicities, with the best fit given by the 2.5 Z⊙ models. We derive a dynamical mass of 4 × 1011 M⊙ within the effective radius from the velocity dispersion. The EELR spectra clearly indicate that the EELR is photoionized by the hidden central engine. Photoionization modeling shows evidence that the gas metallicity in both the EELR and the nuclear narrow-line region is mildly subsolar (0.3-0.7 Z⊙), significantly lower than the supersolar metallicities deduced from typical active galactic nuclei in the Sloan Digital Sky Survey. The more luminous filaments in the EELR exhibit a velocity field consistent with a common disk rotation. Fainter clouds, however, show high approaching velocities that are uncoupled from this apparent disk rotation. The striking similarities between this EELR and the EELRs around steep-spectrum radio-loud quasars provide further evidence for the orientation-dependent unification schemes. The metal-poor gas is almost certainly not native to the massive host galaxy. We suggest that the close companion galaxy could be the tidally stripped bulge of a late-type galaxy that is merging with the host galaxy. The interstellar medium of such a galaxy is probably the source for the low-metallicity gas in 3C 79. Based in part on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative

  10. The Host Galaxies of Fast-Ejecta Core-Collapse Supernovae

    NASA Technical Reports Server (NTRS)

    Kelly, Patrick L.; Filippenko, Alexei V.; Modjaz, Maryam; Kocevski, Daniel

    2014-01-01

    Spectra of broad-lined Type Ic supernovae (SN Ic-BL), the only kind of SN observed at the locations of long-duration gamma-ray bursts (LGRBs), exhibit wide features indicative of high ejecta velocities ((is) approximately 0.1c). We study the host galaxies of a sample of 245 low-redshift (z (is) less than 0.2) core-collapse SN, including 17 SN Ic-BL, discovered by galaxy-untargeted searches, and 15 optically luminous and dust-obscured z (is) less than 1.2 LGRBs. We show that, in comparison with SDSS galaxies having similar stellar masses, the hosts of low-redshift SN Ic- BL and z (is) is less than 1.2 LGRBs have high stellar-mass and star-formation-rate densities. Core-collapse SN having typical ejecta velocities, in contrast, show no preference for such galaxies. Moreover, we find that the hosts of SN Ic-BL, unlike those of SN Ib/Ic and SN II, exhibit high gas velocity dispersions for their stellar masses. The patterns likely reflect variations among star-forming environments, and suggest that LGRBs can be used as probes of conditions in high-redshift galaxies. They may be caused by efficient formation of massive binary progenitors systems in densely star-forming regions, or, less probably, a higher fraction of stars created with the initial masses required for a SN Ic-BL or LGRB. Finally, we show that the preference of SN Ic-BL and LGRBs for galaxies with high stellar-mass and star-formation-rate densities cannot be attributed to a preference for low metal abundances but must reflect the influence of a separate environmental factor.