Sample records for galaxies sdss galaxies

  1. Galaxy-galaxy and galaxy-cluster lensing with the SDSS and FIRST surveys

    NASA Astrophysics Data System (ADS)

    Demetroullas, C.; Brown, M. L.

    2018-01-01

    We perform a galaxy-galaxy lensing study by correlating the shapes of ∼2.7 × 105 galaxies selected from the VLA FIRST (Faint Images of the Radio Sky at Twenty centimetres) radio survey with the positions of ∼38.5 million Sloan Digital Sky Survey (SDSS) galaxies, ∼132 000 Brightest Cluster Galaxies (BCGs) and ∼78 000 SDSS galaxies that are also detected in the VLA FIRST survey. The measurements are conducted on angular scales θ ≲ 1200 arcsec. On scales θ ≲ 200 arcsec, we find that the measurements are corrupted by residual systematic effects associated with the instrumental beam of the VLA data. Using simulations, we show that we can successfully apply a correction for these effects. Using the three lens samples (the SDSS DR10 sample, the BCG sample and the SDSS-FIRST matched object sample), we measure a tangential shear signal that is inconsistent with 0 at the 10.2σ, 3.8σ and 9σ levels, respectively. Fitting an NFW model to the detected signals, we find that the ensemble mass profile of the BCG sample agrees with the values in the literature. However, the mass profiles of the SDSS DR10 and the SDSS-FIRST matched object samples are found to be shallower and steeper than results in the literature, respectively. The best-fitting Virial masses for the SDSS DR10, BCG and SDSS-FIRST matched samples, derived using an NFW model and allowing for a varying concentration factor, are M_{200}^SDSS-DR10 = (1.2 ± 0.4) × 10^{12} M_{⊙}, M_{200}^BCG = (1.4 ± 1.3) × 10^{13} M_{⊙} and M_{200}^SDSS-FIRST =8.0 ± 4.2 × 10^{13} M_{⊙}, respectively. These results are in good agreement (within ∼2σ) with values in the literature. Our findings suggest that for galaxies to be bright both in the radio and in the optical, they must be embedded in very dense environment on scales R ≲ 1 Mpc.

  2. Galaxy Morphology Revealed By SDSS: Blue Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Ann, Hong Bae

    The Sloan Digital Sky Survey (SDSS) reveals many new features of galaxy morphologies. Among others, the discovery of blue elliptical galaxies provides some insights into the formation and evolution of galaxies. There seems to be two types of blue elliptical galaxies. One type shows globally blue colors suggesting star formations over the entire galaxy whereas the other type shows blue core that indicates enhanced star formation in the nuclear regions. The former seems to be currently forming galaxies, while the latter is thought to be in transition stage from the blue cloud to the red sequence due to AGN feedback.

  3. Galaxy Groups in HST/COS-SDSS Fields

    NASA Astrophysics Data System (ADS)

    Conway, Matthew; Hamill, Colin; Apala, Elizabeth; Scott, Jennifer

    2018-01-01

    We extend the results of a study of the sightlines of 45 low redshift quasars (0.06 < z < 0.85) observed by HST/COS that lie within the footprint of the Sloan Digital Sky Survey. We have used photometric data from the SDSS DR12, along with the known absorption characteristics of the intergalactic medium and circumgalactic medium, to identify the most probable galaxy matches to absorbers in the spectroscopic dataset. Here, we use an existing catalog of galaxy group candidates in the SDSS DR8 to identify galaxy groups within our HST/COS-SDSS fields that may show line of sight absorption due to an intergroup medium. To identify galaxy group candidates that lie within the impact parameter of our quasar fields (< 3 degrees), we calculate the angular separation between the quasar coordinates and the galaxy group centroid coordinates. We investigate differences in galaxy and absorber properties among the galaxy-absorber pairs likely arising in groups and those likely associated with individual field galaxies.

  4. Photometric properties of galaxies in the SDSS

    NASA Astrophysics Data System (ADS)

    Hogg, D. W.; Blanton, M.; SDSS Collaboration

    2001-12-01

    We analyze the number density distribution of galaxy properties in a sample of 8x 104 galaxies from the Sloan Digital Sky Survey, in the redshift range 0.02galaxy's 5-band SDSS photometry has been k-corrected to a common rest-frame photometric system. A number-density contribution 1/V {max} has been calculated for each galaxy. The photometry is of excellent quality; every galaxy has CCD imaging with signal-to-noise for the flux well above 100. The distribution of galaxies in the (six-dimensional) space spanned by four colors, central surface-brightness, and radial concentration is described and analyzed, with the following results: \\textsl{(1)} The galaxies occupy only a small part of the six-dimensional space. \\textsl{(2)} The distribution of galaxy number density in the space is a strong function of intrinsic galaxy luminosity. \\textsl{(3)} Elliptical (or early type) and spiral (or late type) galaxies are clearly separated in the space. The ratio of early-type to late-type galaxy contributions to the luminosity density of the Universe is computed, as a function of wavelength. At 1 {μm }, early-type galaxies dominate the luminosity density. \\textsl{(4)} Outliers in color tend to be lower surface-brightness galaxies. Funding for the SDSS has been provided by the Alfred P. Sloan Foundation, the SDSS member institutions, NASA, NSF, DOE, the Japanese Monbukagakusho, and the Max Planck Society. This research has been supported by the NYU Faculty of Arts and Sciences.

  5. Aperture-free star formation rate of SDSS star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Duarte Puertas, S.; Vilchez, J. M.; Iglesias-Páramo, J.; Kehrig, C.; Pérez-Montero, E.; Rosales-Ortega, F. F.

    2017-03-01

    Large area surveys with a high number of galaxies observed have undoubtedly marked a milestone in the understanding of several properties of galaxies, such as star-formation history, morphology, and metallicity. However, in many cases, these surveys provide fluxes from fixed small apertures (e.g. fibre), which cover a scant fraction of the galaxy, compelling us to use aperture corrections to study the global properties of galaxies. In this work, we derive the current total star formation rate (SFR) of Sloan Digital Sky Survey (SDSS) star-forming galaxies, using an empirically based aperture correction of the measured Hα flux for the first time, thus minimising the uncertainties associated with reduced apertures. All the Hα fluxes have been extinction-corrected using the Hα/ Hβ ratio free from aperture effects. The total SFR for 210 000 SDSS star-forming galaxies has been derived applying pure empirical Hα and Hα/ Hβ aperture corrections based on the Calar Alto Legacy Integral Field Area (CALIFA) survey. We find that, on average, the aperture-corrected SFR is 0.65 dex higher than the SDSS fibre-based SFR. The relation between the SFR and stellar mass for SDSS star-forming galaxies (SFR-M⋆) has been obtained, together with its dependence on extinction and Hα equivalent width. We compare our results with those obtained in previous works and examine the behaviour of the derived SFR in six redshift bins, over the redshift range 0.005 ≤ z ≤ 0.22. The SFR-M⋆ sequence derived here is in agreement with selected observational studies based on integral field spectroscopy of individual galaxies as well as with the predictions of recent theoretical models of disc galaxies. A table of the aperture-corrected fluxes and SFR for 210 000 SDSS star-forming galaxies and related relevant data is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A71 Warning, no authors

  6. Spectrophotometric Properties of E+A Galaxies in SDSS-IV MaNGA

    NASA Astrophysics Data System (ADS)

    Marinelli, Mariarosa; Dudley, Raymond; Edwards, Kay; Gonzalez, Andrea; Johnson, Amalya; Kerrison, Nicole; Melchert, Nancy; Ojanen, Winonah; Weaver, Olivia; Liu, Charles; SDSS-IV MaNGA

    2018-01-01

    Quenched post-starburst galaxies, or E+A galaxies, represent a unique and informative phase in the evolution of galaxies. We used a qualitative rubric-based methodology, informed by the literature, to manually select galaxies from the SDSS-IV IFU survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) using the single-fiber spectra from the Sloan Digital Sky Survey Data Release 8. Of the 2,812 galaxies observed so far in MaNGA, we found 39 galaxies meeting our criteria for E+A classification. Spectral energy distributions of these 39 galaxies from the far-UV to the mid-infrared demonstrate a heterogeneity in our sample emerging in the infrared, indicating many distinct paths to visually similar optical spectra. We used SDSS-IV MaNGA Pipe3D data products to analyze stellar population ages, and found that 34 galaxies exhibited stellar populations that were older at 1 effective radius than at the center of the galaxy. Given that our sample was manually chosen based on E+A markers in the single-fiber spectra aimed at the center of each galaxy, our E+A galaxies may have only experienced their significant starbursts in the central region, with a disk of quenched or quenching material further outward. This work was supported by grants AST-1460860 from the National Science Foundation and SDSS FAST/SSP-483 from the Alfred P. Sloan Foundation to the CUNY College of Staten Island.

  7. E+A Galaxy Properties and Post-Starburst Galaxy Evolution Data through SDSS-IV MaNGA and Illustris: A Co-Analysis

    NASA Astrophysics Data System (ADS)

    Ojanen, Winonah; Dudley, Raymond; Edwards, Kay; Gonzalez, Andrea; Johnson, Amalya; Kerrison, Nicole; Marinelli, Mariarosa; Melchert, Nancy; Liu, Charles; Sloan Collaboration, SDSS-IV MaNGA

    2018-01-01

    E+A galaxies (Elliptical + A-type stars) are post-starburst galaxies that have experienced a sudden quenching phase. Using previous research methods, 39 candidates out of 2,812 galaxies observed, or 1.4%, were selected from the SDSS-IV MaNGA survey. We then identified morphological characteristics of the 39 galaxies including stellar kinematics, Gini coefficient, gas density and distribution and stellar ages. To study the origin of how E+A galaxies evolved to their present state, galaxy simulation data from the Illustris simulation was utilized to identify similar quenched post-starburst candidates. Seven post-starburst candidates were identified through star formation rate histories of Illustris simulated galaxies. The evolution of these galaxies is studied from 0 to 13.8 billion years ago to identify what caused the starburst and quenching of the Illustris candidates. Similar morphological characteristics of Illustris post-starburst candidates are pulled from before, during, and post-starburst and compared to the same morphological characteristics of the E+A galaxies from SDSS-IV MaNGA. The characteristics and properties of the Illustris galaxies are used to identify the possible evolutionary histories of the observed E+A galaxies. This work was supported by grants AST-1460860 from the National Science Foundation and SDSS FAST/SSP-483 from the Alfred P. Sloan Foundation to the CUNY College of Staten Island.

  8. A Comparison of Galaxy Bulge+Disk Decomposition Between Pan-STARRS and SDSS

    NASA Astrophysics Data System (ADS)

    Lokken, Martine Elena; McPartland, Conor; Sanders, David B.

    2018-01-01

    Measurements of the size and shape of bulges in galaxies provide key constraints for models of galaxy evolution. A comprehensive catalog of bulge measurements for Sloan Digital Sky Survey (SDSS) DR7 galaxies is currently available to the public. However, the Pan-STARRS1 (PS1) 3π survey now covers the same region with ~1-2 mag deeper photometry, a ~10-30% smaller PSF, and additional coverage in y-band. To test how much improvement in galaxy parameter measurements (e.g. bulge + disk) can be achieved using the new PS1 data, we make use of ultra-deep imaging data from the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP). We fit bulge+disk models to images of 372 bright (mi < 18.5) galaxies detected in all three surveys. Comparison of galaxy parameters derived from SDSS and PS1 images with those measured from HSC-SSP images shows a tighter correlation between PS1 and SSP measurements for both bulge and disk parameters. Bulge parameters, such as bulge-to-total fraction and bulge radius, show the strongest improvement. However, measurements of all parameters degrade for galaxies with total r-band magnitude below the SDSS spectroscopic limit, mr = 17.7. We plan to use the PS1 3π survey data to produce an updated catalog of bulge+disk decomposition measurements for the entire SDSS DR7 spectroscopic galaxy sample.

  9. SDSS (g--r) colors of isolated galaxies

    NASA Astrophysics Data System (ADS)

    Fernández Lorenzo, M.; Sulentic, J.; Verdes-Montenegro, L.; Ruiz, J. E.; Sabater, J.; Sánchez-Expósito, S.

    2013-05-01

    Several processes can affect a galaxy over its lifetime. If effects of interaction with companions are minimized, it is possible to focus on secular evolutionary processes. We present a study of the SDSS (g--r) colors of isolated galaxies in the AMIGA project (Analysis of the interstellar Medium of Isolated GAlaxies; http://www.amiga.iaa.es). Assuming that color is an indicator of the star formation history, this work better records the signature of passive star formation via pure secular evolution. We focused on median values for the main morphological subtypes found in the AMIGA sample (66% Sb--Sc and 14% E/S0) and compared them with equivalent measures of galaxies in denser environments. The main results of this study include: 1) a tendency for AMIGA spiral galaxies to be redder than similar type galaxies in close pairs, but 2) no clear difference when we compare with galaxies in other (e.g. group) environments; 3) a Gaussian distribution of the (g--r) color of isolated galaxies, as might be expected in the case of pure secular evolution; and 4) a smaller median absolute deviation in colors for isolated galaxies compared to both wide and close pairs.

  10. The Galaxy Color-Magnitude Diagram in the Local Universe from GALEX and SDSS Data

    NASA Astrophysics Data System (ADS)

    Wyder, T. K.; GALEX Science Team

    2005-12-01

    We present the relative density of galaxies in the local universe as a function of their r-band absolute magnitudes and ultraviolet minus r-band colors. The Sloan Digital Sky Survey (SDSS) main galaxy sample selected in the r-band was matched with a sample of galaxies from the Galaxy Evolution Explorer (GALEX) Medium Imaging Survey in both the far-UV (FUV) and near-UV (NUV) bands. Simlar to previous optical studies, the distribution of galaxies in (FUV-r) and (NUV-r) is bimodal with well-defined blue and red sequences. We compare the distribution of galaxies in these colors with both the D4000 index measured from the SDSS spectra as well as the SDSS (u-r) color.

  11. The dark side of galaxy colour: evidence from new SDSS measurements of galaxy clustering and lensing

    NASA Astrophysics Data System (ADS)

    Hearin, Andrew P.; Watson, Douglas F.; Becker, Matthew R.; Reyes, Reinabelle; Berlind, Andreas A.; Zentner, Andrew R.

    2014-10-01

    The age-matching model has recently been shown to predict correctly the luminosity L and g - r colour of galaxies residing within dark matter haloes. The central tenet of the model is intuitive: older haloes tend to host galaxies with older stellar populations. In this paper, we demonstrate that age matching also correctly predicts the g - r colour trends exhibited in a wide variety of statistics of the galaxy distribution for stellar mass M* threshold samples. In particular, we present new Sloan Digital Sky Survey (SDSS) measurements of galaxy clustering and the galaxy-galaxy lensing signal ΔΣ as a function of M* and g - r colour, and show that age matching exhibits remarkable agreement with these and other statistics of low-redshift galaxies. In so doing, we also demonstrate good agreement between the galaxy-galaxy lensing observed by SDSS and the ΔΣ signal predicted by abundance matching, a new success of this model. We describe how age matching is a specific example of a larger class of conditional abundance matching models (CAM), a theoretical framework we introduce here for the first time. CAM provides a general formalism to study correlations at fixed mass between any galaxy property and any halo property. The striking success of our simple implementation of CAM suggests that this technique has the potential to describe the same set of data as alternative models, but with a dramatic reduction in the required number of parameters. CAM achieves this reduction by exploiting the capability of contemporary N-body simulations to determine dark matter halo properties other than mass alone, which distinguishes our model from conventional approaches to the galaxy-halo connection.

  12. Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering with the SDSS DR7

    NASA Astrophysics Data System (ADS)

    Mandelbaum, Rachel; Slosar, Anže; Baldauf, Tobias; Seljak, Uroš; Hirata, Christopher M.; Nakajima, Reiko; Reyes, Reinabelle; Smith, Robert E.

    2013-06-01

    Recent studies have shown that the cross-correlation coefficient between galaxies and dark matter is very close to unity on scales outside a few virial radii of galaxy haloes, independent of the details of how galaxies populate dark matter haloes. This finding makes it possible to determine the dark matter clustering from measurements of galaxy-galaxy weak lensing and galaxy clustering. We present new cosmological parameter constraints based on large-scale measurements of spectroscopic galaxy samples from the Sloan Digital Sky Survey (SDSS) data release 7. We generalize the approach of Baldauf et al. to remove small-scale information (below 2 and 4 h-1 Mpc for lensing and clustering measurements, respectively), where the cross-correlation coefficient differs from unity. We derive constraints for three galaxy samples covering 7131 deg2, containing 69 150, 62 150 and 35 088 galaxies with mean redshifts of 0.11, 0.28 and 0.40. We clearly detect scale-dependent galaxy bias for the more luminous galaxy samples, at a level consistent with theoretical expectations. When we vary both σ8 and Ωm (and marginalize over non-linear galaxy bias) in a flat Λ cold dark matter model, the best-constrained quantity is σ8(Ωm/0.25)0.57 = 0.80 ± 0.05 (1σ, stat. + sys.), where statistical and systematic errors (photometric redshift and shear calibration) have comparable contributions, and we have fixed ns = 0.96 and h = 0.7. These strong constraints on the matter clustering suggest that this method is competitive with cosmic shear in current data, while having very complementary and in some ways less serious systematics. We therefore expect that this method will play a prominent role in future weak lensing surveys. When we combine these data with Wilkinson Microwave Anisotropy Probe 7-year (WMAP7) cosmic microwave background (CMB) data, constraints on σ8, Ωm, H0, wde and ∑mν become 30-80 per cent tighter than with CMB data alone, since our data break several parameter

  13. VizieR Online Data Catalog: Luminosity and redshift of galaxies from WISE/SDSS (Toba+, 2014)

    NASA Astrophysics Data System (ADS)

    Toba, Y.; Oyabu, S.; Matsuhara, H.; Malkan, M. A.; Gandhi, P.; Nakagawa, T.; Isobe, N.; Shirahata, M.; Oi, N.; Ohyama, Y.; Takita, S.; Yamauchi, C.; Yano, K.

    2017-07-01

    We selected 12 and 22 um flux-limited galaxies based on the WISE (Cat. II/311) and SDSS (Cat. II/294) catalogs, and these galaxies were then classified into five types according to their optical spectroscopic information in the SDSS catalog. For spectroscopically classified galaxies, we constructed the luminosity functions using the 1/Vmax method, considering the detection limit of the WISE and SDSS catalogs. (1 data file).

  14. Galaxy And Mass Assembly (GAMA): detection of low-surface-brightness galaxies from SDSS data

    NASA Astrophysics Data System (ADS)

    Williams, Richard P.; Baldry, I. K.; Kelvin, L. S.; James, P. A.; Driver, S. P.; Prescott, M.; Brough, S.; Brown, M. J. I.; Davies, L. J. M.; Holwerda, B. W.; Liske, J.; Norberg, P.; Moffett, A. J.; Wright, A. H.

    2016-12-01

    We report on a search for new low-surface-brightness galaxies (LSBGs) using Sloan Digital Sky Survey (SDSS) data within the Galaxy And Mass Assembly (GAMA) equatorial fields. The search method consisted of masking objects detected with SDSS PHOTO, combining gri images weighted to maximize the expected signal-to-noise ratio, and smoothing the images. The processed images were then run through a detection algorithm that finds all pixels above a set threshold and groups them based on their proximity to one another. The list of detections was cleaned of contaminants such as diffraction spikes and the faint wings of masked objects. From these, selecting potentially the brightest in terms of total flux, a list of 343 LSBGs was produced having been confirmed using VISTA Kilo-degree Infrared Galaxy Survey (VIKING) imaging. The photometry of this sample was refined using the deeper VIKING Z band as the aperture-defining band. Measuring their g - I and J - K colours shows that most are consistent with being at redshifts less than 0.2. The photometry is carried out using an AUTO aperture for each detection giving surface brightnesses of μr ≳ 25 mag arcsec-2 and magnitudes of r > 19.8 mag. None of these galaxies are bright enough to be within the GAMA main survey limit but could be part of future deeper surveys to measure the low-mass end of the galaxy stellar mass function.

  15. The Very Small Scale Clustering of SDSS-II and SDSS-III Galaxies

    NASA Astrophysics Data System (ADS)

    Piscionere, Jennifer

    2015-01-01

    We measure the angular clustering of galaxies from the Sloan Digital Sky Survey Data Release 7 in order to probe the spatial distribution of satellite galaxies within their dark matter halos. Specifically, we measure the angular correlation function on very small scales (7 - 320‧‧) in a range of luminosity threshold samples (absolute r-band magnitudes of -18 up to -21) that are constructed from the subset of SDSS that has been spectroscopically observed more than once (the so-called plate overlap region). We choose to measure angular clustering in this reduced survey footprint in order to minimize the effects of fiber collision incompleteness, which are otherwise substantial on these small scales. We model our clustering measurements using a fully numerical halo model that populates dark matter halos in N-body simulations to create realistic mock galaxy catalogs. The model has free parameters that specify both the number and spatial distribution of galaxies within their host halos. We adopt a flexible density profile for the spatial distribution of satellite galaxies that is similar to the dark matter Navarro-Frenk-White (NFW) profile, except that the inner slope is allowed to vary. We find that the angular clustering of our most luminous samples (Mr < -20 and -21) suggests that luminous satellite galaxies have substantially steeper inner density profiles than NFW. Lower luminosity samples are less constraining, however, and are consistent with satellite galaxies having shallow density profiles. Our results confirm the findings of Watson et al. (2012) while using different clustering measurements and modeling methodology. With the new SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS; Dawson et al., 2013), we can measure how the same class of galaxy evolves over time. The BOSS CMASS sample is of roughly constant stellar mass and number density out to z ˜ 0.6. The clustering of these samples appears to evolve very little with redshift, and each of the

  16. Galaxy Zoo: finding offset discs and bars in SDSS galaxies★

    NASA Astrophysics Data System (ADS)

    Kruk, Sandor J.; Lintott, Chris J.; Simmons, Brooke D.; Bamford, Steven P.; Cardamone, Carolin N.; Fortson, Lucy; Hart, Ross E.; Häußler, Boris; Masters, Karen L.; Nichol, Robert C.; Schawinski, Kevin; Smethurst, Rebecca J.

    2017-08-01

    We use multiwavelength Sloan Digital Sky Survey (SDSS) images and Galaxy Zoo morphologies to identify a sample of ˜270 late-type galaxies with an off-centre bar. We measure offsets in the range 0.2-2.5 kpc between the photometric centres of the stellar disc and stellar bar. The measured offsets correlate with global asymmetries of the galaxies, with those with largest offsets showing higher lopsidedness. These findings are in good agreement with predictions from simulations of dwarf-dwarf tidal interactions producing off-centre bars. We find that the majority of galaxies with off-centre bars are of Magellanic type, with a median mass of 109.6 M⊙, and 91 per cent of them having M⋆ < 3 × 1010 M⊙, the characteristic mass at which galaxies start having higher central concentrations attributed to the presence of bulges. We conduct a search for companions to test the hypothesis of tidal interactions, but find that a similar fraction of galaxies with offset bars have companions within 100 kpc as galaxies with centred bars. Although this may be due to the incompleteness of the SDSS spectroscopic survey at the faint end, alternative scenarios that give rise to offset bars such as interactions with dark companions or the effect of lopsided halo potentials should be considered. Future observations are needed to confirm possible low-mass companion candidates and to determine the shape of the dark matter halo, in order to find the explanation for the off-centre bars in these galaxies.

  17. VizieR Online Data Catalog: Clusters of galaxies in SDSS-III (Wen+, 2012)

    NASA Astrophysics Data System (ADS)

    Wen, Z. L.; Han, J. L.; Liu, F. S.

    2012-06-01

    Wen et al. (2009, Cat. J/ApJS/183/197) identified 39668 galaxy clusters from the SDSS DR6 by the discrimination of member galaxies of clusters using photometric redshifts of galaxies. Wen & Han (2011ApJ...734...68W) improved the method and successfully identified the high-redshift clusters from the deep fields of the Canada-France-Hawaii Telescope (CFHT) Wide survey, the CHFT Deep survey, the Cosmic Evolution Survey, and the Spitzer Wide-area InfraRed Extragalactic survey. Here, we follow and improve the algorithm to identify clusters from SDSS-III (SDSS Data Release 8; Aihara et al. 2011ApJS..193...29A, see Cat. II/306). (1 data file).

  18. VizieR Online Data Catalog: Compact early-type galaxies in SDSS (Saulder+, 2015)

    NASA Astrophysics Data System (ADS)

    Saulder, C.; van den Bosch, R. C. E.; Mieske, S.

    2015-11-01

    As the baseline sample of our search for b19 analogues, we made broad use of the Sloan Digital Sky Surveys (SDSS) and especially of its tenth (Ahn et al., 2014ApJS..211...17A) and seventh (Abazajian et al., 2009ApJS..182..543A) data releases (DR10 and DR7). Furthermore, we used GalaxyZoo (Lintott et al., 2008MNRAS.389.1179L, 2011, Cat. J/MNRAS/410/166) for our galaxy classifications, the refits of SDSS DR7 using Sersic profiles done by Simard et al. (2011, Cat. J/ApJS/196/11), and the stellar masses from Mendel et al. (2014, Cat. J/ApJS/210/3), which is itself based on the previous work of Simard et al. (2011, Cat. J/ApJS/196/11). For comparison, we also used the list of 63 compact massive galaxies from Taylor et al. (2010, Cat. J/ApJ/720/723), which is based on SDSS DR7 as well as a list of 29 compact massive galaxies from Trujillo et al. (2009ApJ...692L.118T), which is based on the NYU Value-Added Galaxy Catalog (Blanton et al., 2005AJ....129.2562B) and covers a sub-sample of SDSS. (9 data files).

  19. Physical properties of galaxies: towards a consistent comparison between hydrodynamical simulations and SDSS

    NASA Astrophysics Data System (ADS)

    Guidi, Giovanni; Scannapieco, Cecilia; Walcher, Jakob; Gallazzi, Anna

    2016-10-01

    We study the effects of applying observational techniques to derive the properties of simulated galaxies, with the aim of making an unbiased comparison between observations and simulations. For our study, we used 15 galaxies simulated in a cosmological context using three different feedback and chemical enrichment models, and compared their z = 0 properties with data from the Sloan Digital Sky Survey (SDSS). We show that the physical properties obtained directly from the simulations without post-processing can be very different from those obtained mimicking observational techniques. In order to provide simulators a way to reliably compare their galaxies with SDSS data, for each physical property that we studied - colours, magnitudes, gas and stellar metallicities, mean stellar ages and star formation rates - we give scaling relations that can be easily applied to the values extracted from the simulations; these scalings have in general a high correlation, except for the gas oxygen metallicities. Our simulated galaxies are photometrically similar to galaxies in the blue sequence/green valley, but in general they appear older, passive and with lower metal content compared to most of the spirals in SDSS. As a careful assessment of the agreement/disagreement with observations is the primary test of the baryonic physics implemented in hydrodynamical codes, our study shows that considering the observational biases in the derivation of the galaxies' properties is of fundamental importance to decide on the failure/success of a galaxy formation model.

  20. Redshift evolution of the dynamical properties of massive galaxies from SDSS-III/BOSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beifiori, Alessandra; Saglia, Roberto P.; Bender, Ralf

    2014-07-10

    We study the redshift evolution of the dynamical properties of ∼180, 000 massive galaxies from SDSS-III/BOSS combined with a local early-type galaxy sample from SDSS-II in the redshift range 0.1 ≤ z ≤ 0.6. The typical stellar mass of this sample is M{sub *} ∼2 × 10{sup 11} M{sub ☉}. We analyze the evolution of the galaxy parameters effective radius, stellar velocity dispersion, and the dynamical to stellar mass ratio with redshift. As the effective radii of BOSS galaxies at these redshifts are not well resolved in the Sloan Digital Sky Survey (SDSS) imaging we calibrate the SDSS size measurementsmore » with Hubble Space Telescope/COSMOS photometry for a sub-sample of galaxies. We further apply a correction for progenitor bias to build a sample which consists of a coeval, passively evolving population. Systematic errors due to size correction and the calculation of dynamical mass are assessed through Monte Carlo simulations. At fixed stellar or dynamical mass, we find moderate evolution in galaxy size and stellar velocity dispersion, in agreement with previous studies. We show that this results in a decrease of the dynamical to stellar mass ratio with redshift at >2σ significance. By combining our sample with high-redshift literature data, we find that this evolution of the dynamical to stellar mass ratio continues beyond z ∼ 0.7 up to z > 2 as M{sub dyn}/M{sub *} ∼(1 + z){sup –0.30±0.12}, further strengthening the evidence for an increase of M{sub dyn}/M{sub *} with cosmic time. This result is in line with recent predictions from galaxy formation simulations based on minor merger driven mass growth, in which the dark matter fraction within the half-light radius increases with cosmic time.« less

  1. VizieR Online Data Catalog: Morphologies of z<0.01 SDSS-DR7 galaxies (Ann+, 2015)

    NASA Astrophysics Data System (ADS)

    Ann, H. B.; Seo, M.; Ha, D. K.

    2015-05-01

    This paper presents a catalog of the morphological types of galaxies whose redshifts are less than z=0.01. The morphological types are determined by a visual inspection of the color images provided by SDSS DR7 (II/294). The majority of galaxies in the present sample come from the KIAS-VAGC (Choi et al. 2010JKAS...43..191C) which is based on the spectroscopic target galaxies of the SDSS DR7 complemented by the bright galaxies with known redshifts from various catalogs. (1 data file).

  2. Spectral Analysis, Synthesis, & Energy Distributions of Nearby E+A Galaxies Using SDSS-IV MaNGA

    NASA Astrophysics Data System (ADS)

    Weaver, Olivia A.; Anderson, Miguel Ricardo; Wally, Muhammad; James, Olivia; Falcone, Julia; Liu, Allen; Wallack, Nicole; Liu, Charles; SDSS Collaboration

    2017-01-01

    Utilizing data from the Mapping Nearby Galaxies at APO (MaNGA) Survey (MaNGA Product Launch-4, or MPL-4), of the latest generation of the Sloan Digital Sky Survey (SDSS-IV), we identified nine post-starburst (E+A) systems that lie within the Green Valley transition zone. We identify the E+A galaxies by their SDSS single fiber spectrum and u-r color, then confirmed their classification as post-starburst by coding/plotting methods and spectral synthesis codes (FIREFLY and PIPE3D), as well as with their Spectral Energy Distributions (SEDs) from 0.15 µm to 22 µm, using GALEX, SDSS, 2MASS, and WISE data. We produced maps of gaussian-fitted fluxes, equivalent widths, stellar velocities, metallicities and age. We also produced spectral line ratio diagrams to classify regions of stellar populations of the galaxies. We found that our sample of E+As retain their post-starburst properties across the entire galaxy, not just at their center. We detected matching a trend line in the ultraviolet and optical bands, consistent with the expected SEDs for an E+A galaxy, and also through the J, H and Ks bands, except for one object. We classified one of the nine galaxies as a luminous infrared galaxy, unusual for a post-starburst object. Our group seeks to further study stellar population properties, spectral energy distributions and quenching properties in E+A galaxies, and investigate their role in galaxy evolution as a whole. This work was supported by the Alfred P. Sloan Foundation via the SDSS-IV Faculty and Student Team (FAST) initiative, ARC Agreement #SSP483 to the CUNY College of Staten Island. This work was also supported by grants to The American Museum of Natural History, and the CUNY College of Staten Island through from National Science Foundation.

  3. Galaxy pairs in the SDSS - XIII. The connection between enhanced star formation and molecular gas properties in galaxy mergers

    NASA Astrophysics Data System (ADS)

    Violino, Giulio; Ellison, Sara L.; Sargent, Mark; Coppin, Kristen E. K.; Scudder, Jillian M.; Mendel, Trevor J.; Saintonge, Amelie

    2018-05-01

    We investigate the connection between star formation and molecular gas properties in galaxy mergers at low redshift (z ≤ 0.06). The study we present is based on IRAM 30-m CO(1-0) observations of 11 galaxies with a close companion selected from the Sloan Digital Sky Survey (SDSS). The pairs have mass ratios ≤4, projected separations rp ≤ 30 kpc and velocity separations ΔV ≤ 300 km s-1, and have been selected to exhibit enhanced specific star formation rates (sSFRs). We calculate molecular gas (H2) masses, assigning to each galaxy a physically motivated conversion factor αCO, and we derive molecular gas fractions and depletion times. We compare these quantities with those of isolated galaxies from the extended CO Legacy Data base for the GALEX Arecibo SDSS Survey sample (xCOLDGASS; Saintonge et al.) with gas quantities computed in an identical way. Ours is the first study which directly compares the gas properties of galaxy pairs and those of a control sample of normal galaxies with rigorous control procedures and for which SFR and H2 masses have been estimated using the same method. We find that the galaxy pairs have shorter depletion times and an average molecular gas fraction enhancement of 0.4 dex compared to the mass matched control sample drawn from xCOLDGASS. However, the gas masses (and fractions) in galaxy pairs and their depletion times are consistent with those of non-mergers whose SFRs are similarly elevated. We conclude that both external interactions and internal processes may lead to molecular gas enhancement and decreased depletion times.

  4. H I OBSERVATIONS OF THE Ca II ABSORBING GALAXIES Mrk 1456 AND SDSS J211701.26-002633.7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherinka, B.; Schulte-Ladbeck, R. E.; Rosenberg, J. L.

    2009-12-15

    In an effort to study Damped Ly{alpha} (DLA) galaxies at low redshift, we have been using the Sloan Digital Sky Survey (SDSS) to identify galaxies projected onto quasi-stellar object (QSO) sight lines and to characterize their optical properties. For low-redshift galaxies, the H I 21 cm emission line can be used as an alternate tool for identifying possible DLA galaxies, since H I-emitting galaxies typically exhibit H I columns that are larger than the classical DLA limit. Here, we report on follow-up H I 21 cm emission-line observations of two DLA candidates that are both low-redshift spiral galaxies, Mrk 1456more » and SDSS J211701.26-002633.7. The observations were made using the Green Bank Telescope (GBT) and Arecibo telescope, respectively. Analysis of their H I properties reveal the galaxies to be about one and two M*{sub HI} galaxies, respectively, and to have average H I mass, gas richness, and gas-mass fraction for their morphological types. We consider Mrk 1456 and SDSS J211701.26-002633.7 to be candidate DLA systems based upon the strength of the Ca II absorption lines they cause in their QSO's spectra, and impact parameters to the QSO that are smaller than the stellar disk. Compared to the small numbers of other H I detected DLA and candidate DLA galaxies, Mrk 1456 and SDSS J211701.26-002633.7 have high H I masses. Mrk 1456 and SDSS J211701.26-002633.7 have also been found to lie in galaxy groups that are high in H I gas mass compared to the group containing SBS 1543+593, the only DLA galaxy previously known to be situated in a galaxy group. When compared with the expected properties of low-z DLAs from an H I-detected sample of galaxies, Mrk 1456 and SDSS J211701.26-002633.7 fall within the ranges for impact parameter and M{sub B} ; and the H I mass distribution for the H I-detected DLAs agrees with that of the expected H I mass distribution for low-z DLAs. Our observations support galaxy-evolution models in which high-mass galaxies make up an

  5. Dependence of the clustering properties of galaxies on stellar velocity dispersion in the Main galaxy sample of SDSS DR10

    NASA Astrophysics Data System (ADS)

    Deng, Xin-Fa; Song, Jun; Chen, Yi-Qing; Jiang, Peng; Ding, Ying-Ping

    2014-08-01

    Using two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 10 (SDSS DR10), we investigate the dependence of the clustering properties of galaxies on stellar velocity dispersion by cluster analysis. It is found that in the luminous volume-limited Main galaxy sample, except at r=1.2, richer and larger systems can be more easily formed in the large stellar velocity dispersion subsample, while in the faint volume-limited Main galaxy sample, at r≥0.9, an opposite trend is observed. According to statistical analyses of the multiplicity functions, we conclude in two volume-limited Main galaxy samples: small stellar velocity dispersion galaxies preferentially form isolated galaxies, close pairs and small group, while large stellar velocity dispersion galaxies preferentially inhabit the dense groups and clusters. However, we note the difference between two volume-limited Main galaxy samples: in the faint volume-limited Main galaxy sample, at r≥0.9, the small stellar velocity dispersion subsample has a higher proportion of galaxies in superclusters ( n≥200) than the large stellar velocity dispersion subsample.

  6. The AMIGA sample of isolated galaxies. XII. Revision of the isolation degree for AMIGA galaxies using the SDSS

    NASA Astrophysics Data System (ADS)

    Argudo-Fernández, M.; Verley, S.; Bergond, G.; Sulentic, J.; Sabater, J.; Fernández Lorenzo, M.; Leon, S.; Espada, D.; Verdes-Montenegro, L.; Santander-Vela, J. D.; Ruiz, J. E.; Sánchez-Expósito, S.

    2013-12-01

    Context. To understand the evolution of galaxies, it is necessary to have a reference sample where the effect of the environment is minimized and quantified. In the framework of the AMIGA project (Analysis of the interstellar Medium of Isolated GAlaxies), we present a revision of the environment for galaxies in the Catalogue of Isolated Galaxies (CIG, Karachentseva 1973, Astrof. Issledovaniia Byu. Spec. Ast. Obs., 8, 3) using the ninth data release of the Sloan Digital Sky Survey (SDSS-DR9). Aims: The aims of this study are to refine the photometric-based AMIGA sample of isolated galaxies and to provide an improvement of the quantification of the isolation degree with respect to previous works, using both photometry and spectroscopy. Methods: We developed an automatic method to search for neighbours within a projected area of 1 Mpc radius centred on each primary galaxy to revise the CIG isolation criteria introduced by Karachentseva (1973). The local number density at the fifth nearest neighbour and the tidal strength affecting the CIG galaxy were estimated to quantify the isolation degree. Results: Of the 636 CIG galaxies considered in the photometric study, 426 galaxies fulfil the CIG isolation criteria within 1 Mpc, taking into account projected neighbours. Of the 411 CIG galaxies considered in the spectroscopic study, 347 galaxies fulfil the CIG isolation criteria when a criterion about redshift difference is added. The available redshifts allow us to reject background neighbours and thus improve the photometric assessment. On average, galaxies in the AMIGA sample show lower values in the local number density and the tidal strength parameters than galaxies in denser environments such as pairs, triplets, compact groups, and clusters. Conclusions: For the first time, the environment and the isolation degree of AMIGA galaxies are quantified using digital data. The use of the SDSS database permits one to identify fainter and smaller-size satellites than in previous

  7. Anomaly detection for machine learning redshifts applied to SDSS galaxies

    NASA Astrophysics Data System (ADS)

    Hoyle, Ben; Rau, Markus Michael; Paech, Kerstin; Bonnett, Christopher; Seitz, Stella; Weller, Jochen

    2015-10-01

    We present an analysis of anomaly detection for machine learning redshift estimation. Anomaly detection allows the removal of poor training examples, which can adversely influence redshift estimates. Anomalous training examples may be photometric galaxies with incorrect spectroscopic redshifts, or galaxies with one or more poorly measured photometric quantity. We select 2.5 million `clean' SDSS DR12 galaxies with reliable spectroscopic redshifts, and 6730 `anomalous' galaxies with spectroscopic redshift measurements which are flagged as unreliable. We contaminate the clean base galaxy sample with galaxies with unreliable redshifts and attempt to recover the contaminating galaxies using the Elliptical Envelope technique. We then train four machine learning architectures for redshift analysis on both the contaminated sample and on the preprocessed `anomaly-removed' sample and measure redshift statistics on a clean validation sample generated without any preprocessing. We find an improvement on all measured statistics of up to 80 per cent when training on the anomaly removed sample as compared with training on the contaminated sample for each of the machine learning routines explored. We further describe a method to estimate the contamination fraction of a base data sample.

  8. Polar ring galaxies in the Galaxy Zoo

    NASA Astrophysics Data System (ADS)

    Finkelman, Ido; Funes, José G.; Brosch, Noah

    2012-05-01

    We report observations of 16 candidate polar-ring galaxies (PRGs) identified by the Galaxy Zoo project in the Sloan Digital Sky Survey (SDSS) data base. Deep images of five galaxies are available in the SDSS Stripe82 data base, while to reach similar depth we observed the remaining galaxies with the 1.8-m Vatican Advanced Technology Telescope. We derive integrated magnitudes and u-r colours for the host and ring components and show continuum-subtracted Hα+[N II] images for seven objects. We present a basic morphological and environmental analysis of the galaxies and discuss their properties in comparison with other types of early-type galaxies. Follow-up photometric and spectroscopic observations will allow a kinematic confirmation of the nature of these systems and a more detailed analysis of their stellar populations.

  9. Galaxy–Galaxy Weak-lensing Measurements from SDSS. I. Image Processing and Lensing Signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Wentao; Yang, Xiaohu; Zhang, Jun

    We present our image processing pipeline that corrects the systematics introduced by the point-spread function (PSF). Using this pipeline, we processed Sloan Digital Sky Survey (SDSS) DR7 imaging data in r band and generated a galaxy catalog containing the shape information. Based on our shape measurements of the galaxy images from SDSS DR7, we extract the galaxy–galaxy (GG) lensing signals around foreground spectroscopic galaxies binned in different luminosities and stellar masses. We estimated the systematics, e.g., selection bias, PSF reconstruction bias, PSF dilution bias, shear responsivity bias, and noise rectification bias, which in total is between −9.1% and 20.8% atmore » 2 σ levels. The overall GG lensing signals we measured are in good agreement with Mandelbaum et al. The reduced χ {sup 2} between the two measurements in different luminosity bins are from 0.43 to 0.83. Larger reduced χ {sup 2} from 0.60 to 1.87 are seen for different stellar mass bins, which is mainly caused by the different stellar mass estimator. The results in this paper with higher signal-to-noise ratio are due to the larger survey area than SDSS DR4, confirming that more luminous/massive galaxies bear stronger GG lensing signals. We divide the foreground galaxies into red/blue and star-forming/quenched subsamples and measure their GG lensing signals. We find that, at a specific stellar mass/luminosity, the red/quenched galaxies have stronger GG lensing signals than their counterparts, especially at large radii. These GG lensing signals can be used to probe the galaxy–halo mass relations and their environmental dependences in the halo occupation or conditional luminosity function framework.« less

  10. Frankenstein Galaxy

    NASA Image and Video Library

    2016-07-11

    The galaxy UGC 1382 has been revealed to be far larger and stranger than previously thought. Astronomers relied on a combination of ground-based and space telescopes to uncover the true nature of this "Frankenstein galaxy." The composite image shows the same galaxy as viewed with different instruments. The component images are also available. In the image at left, UGC 1382 appears to be a simple elliptical galaxy, based on optical data from the Sloan Digital Sky Survey (SDSS). But spiral arms emerged when astronomers incorporated ultraviolet data from the Galaxy Evolution Explorer (GALEX) and deep optical data from SDSS, as seen in the middle image. Combining that with a view of low-density hydrogen gas (shown in green), detected at radio wavelengths by the Very Large Array, scientists discovered that UGC 1382 is a giant, and one of the largest isolated galaxies known. GALEX in particular was able detect very faint features because it operated from space, which is necessary for UV observations because ultraviolet light is absorbed by the Earth's atmosphere. Astronomers also used Stripe 82 of SDSS, a small region of sky where SDSS imaged the sky 80 times longer than the original standard SDSS survey. This enabled optical detection of much fainter features as well. http://photojournal.jpl.nasa.gov/catalog/PIA20695

  11. The Halo Boundary of Galaxy Clusters in the SDSS

    NASA Astrophysics Data System (ADS)

    Baxter, Eric; Chang, Chihway; Jain, Bhuvnesh; Adhikari, Susmita; Dalal, Neal; Kravtsov, Andrey; More, Surhud; Rozo, Eduardo; Rykoff, Eli; Sheth, Ravi K.

    2017-05-01

    Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the “infalling” regime outside the halo to the “collapsed” regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxy colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a “splashback”-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. With upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.

  12. Galaxy bachelors, couples, spouses: Star formation in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Barger, Kathleen; Richstein, Hannah; SDSS-IV/MaNGA

    2017-01-01

    We investigate the star formation activity in three galaxy systems in different stages of interaction to determine how the environment of galaxies affects their star forming ability and potential. These systems include an isolated galaxy, a pair of interacting galaxies, and a pair of merging galaxies. All of the target galaxies in these systems have similar stellar masses and similar radii and are at similar redshifts. We trace the star formation activity over the past 1-2 Gyr using spatially and kinematically resolved H-alpha emission, H-alpha equivalent width, and 4000-Angstrom break maps. This work is based on data from the fourth-generation Sloan Digital Sky Survey (SDSS-IV)/Mapping Nearby Galaxies at Apache Point Observatory (MaNGA), and is part of the Project No.0285 in SDSS-IV.

  13. SDSS-II SUPERNOVA SURVEY: AN ANALYSIS OF THE LARGEST SAMPLE OF TYPE IA SUPERNOVAE AND CORRELATIONS WITH HOST-GALAXY SPECTRAL PROPERTIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Rachel C.; Gupta, Ravi R.; Sako, Masao

    2016-04-20

    Using the largest single-survey sample of Type Ia supernovae (SNe Ia) to date, we study the relationship between properties of SNe Ia and those of their host galaxies, focusing primarily on correlations with Hubble residuals (HRs). Our sample consists of 345 photometrically classified or spectroscopically confirmed SNe Ia discovered as part of the SDSS-II Supernova Survey (SDSS-SNS). This analysis utilizes host-galaxy spectroscopy obtained during the SDSS-I/II spectroscopic survey and from an ancillary program on the SDSS-III Baryon Oscillation Spectroscopic Survey that obtained spectra for nearly all host galaxies of SDSS-II SN candidates. In addition, we use photometric host-galaxy properties frommore » the SDSS-SNS data release such as host stellar mass and star formation rate. We confirm the well-known relation between HR and host-galaxy mass and find a 3.6 σ significance of a nonzero linear slope. We also recover correlations between HR and host-galaxy gas-phase metallicity and specific star formation rate as they are reported in the literature. With our large data set, we examine correlations between HR and multiple host-galaxy properties simultaneously and find no evidence of a significant correlation. We also independently analyze our spectroscopically confirmed and photometrically classified SNe Ia and comment on the significance of similar combined data sets for future surveys.« less

  14. The halo boundary of galaxy clusters in the SDSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Eric; Chang, Chihway; Jain, Bhuvnesh

    Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the "infalling" regime outside the halo to the "collapsed" regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxymore » colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a "splashback"-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. As a result, with upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.« less

  15. The Halo Boundary of Galaxy Clusters in the SDSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Eric; Jain, Bhuvnesh; Sheth, Ravi K.

    Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the “infalling” regime outside the halo to the “collapsed” regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxymore » colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a “splashback”-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. With upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.« less

  16. The halo boundary of galaxy clusters in the SDSS

    DOE PAGES

    Baxter, Eric; Chang, Chihway; Jain, Bhuvnesh; ...

    2017-05-18

    Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the "infalling" regime outside the halo to the "collapsed" regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxymore » colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a "splashback"-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. As a result, with upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.« less

  17. Alignment of galaxies relative to their local environment in SDSS-DR8

    NASA Astrophysics Data System (ADS)

    Hirv, A.; Pelt, J.; Saar, E.; Tago, E.; Tamm, A.; Tempel, E.; Einasto, M.

    2017-03-01

    Aims: We study the alignment of galaxies relative to their local environment in SDSS-DR8 and, using these data, we discuss evolution scenarios for different types of galaxies. Methods: We defined a vector field of the direction of anisotropy of the local environment of galaxies. We summed the unit direction vectors of all close neighbours of a given galaxy in a particular way to estimate this field. We found the alignment angles between the spin axes of disc galaxies, or the minor axes of elliptical galaxies, and the direction of anisotropy. The distributions of cosines of these angles are compared to the random distributions to analyse the alignment of galaxies. Results: Sab galaxies show perpendicular alignment relative to the direction of anisotropy in a sparse environment, for single galaxies and galaxies of low luminosity. Most of the parallel alignment of Scd galaxies comes from dense regions, from 2...3 member groups and from galaxies with low luminosity. The perpendicular alignment of S0 galaxies does not depend strongly on environmental density nor luminosity; it is detected for single and 2...3 member group galaxies, and for main galaxies of 4...10 member groups. The perpendicular alignment of elliptical galaxies is clearly detected for single galaxies and for members of ≤10 member groups; the alignment increases with environmental density and luminosity. Conclusions: We confirm the existence of fossil tidally induced alignment of Sab galaxies at low z. The alignment of Scd galaxies can be explained via the infall of matter to filaments. S0 galaxies may have encountered relatively massive mergers along the direction of anisotropy. Major mergers along this direction can explain the alignment of elliptical galaxies. Less massive, but repeated mergers are possibly responsible for the formation of elliptical galaxies in sparser areas and for less luminous elliptical galaxies.

  18. Photometric redshift requirements for lens galaxies in galaxy-galaxy lensing analyses

    NASA Astrophysics Data System (ADS)

    Nakajima, R.; Mandelbaum, R.; Seljak, U.; Cohn, J. D.; Reyes, R.; Cool, R.

    2012-03-01

    Weak gravitational lensing is a valuable probe of galaxy formation and cosmology. Here we quantify the effects of using photometric redshifts (photo-z) in galaxy-galaxy lensing, for both sources and lenses, both for the immediate goal of using galaxies with photo-z as lenses in the Sloan Digital Sky Survey (SDSS) and as a demonstration of methodology for large, upcoming weak lensing surveys that will by necessity be dominated by lens samples with photo-z. We calculate the bias in the lensing mass calibration as well as consequences for absolute magnitude (i.e. k-corrections) and stellar mass estimates for a large sample of SDSS Data Release 8 (DR8) galaxies. The redshifts are obtained with the template-based photo-z code ZEBRA on the SDSS DR8 ugriz photometry. We assemble and characterize the calibration samples (˜9000 spectroscopic redshifts from four surveys) to obtain photometric redshift errors and lensing biases corresponding to our full SDSS DR8 lens and source catalogues. Our tests of the calibration sample also highlight the impact of observing conditions in the imaging survey when the spectroscopic calibration covers a small fraction of its footprint; atypical imaging conditions in calibration fields can lead to incorrect conclusions regarding the photo-z of the full survey. For the SDSS DR8 catalogue, we find σΔz/(1+z)= 0.096 and 0.113 for the lens and source catalogues, with flux limits of r= 21 and 21.8, respectively. The photo-z bias and scatter is a function of photo-z and template types, which we exploit to apply photo-z quality cuts. By using photo-z rather than spectroscopy for lenses, dim blue galaxies and L* galaxies up to z˜ 0.4 can be used as lenses, thus expanding into unexplored areas of parameter space. We also explore the systematic uncertainty in the lensing signal calibration when using source photo-z, and both lens and source photo-z; given the size of existing training samples, we can constrain the lensing signal calibration (and

  19. SDSS IV MaNGA - Properties of AGN Host Galaxies

    NASA Astrophysics Data System (ADS)

    Sánchez, S. F.; Avila-Reese, V.; Hernandez-Toledo, H.; Cortes-Suárez, E.; Rodríguez-Puebla, A.; Ibarra-Medel, H.; Cano-Díaz, M.; Barrera-Ballesteros, J. K.; Negrete, C. A.; Calette, A. R.; de Lorenzo-Cáceres, A.; Ortega-Minakata, R. A.; Aquino, E.; Valenzuela, O.; Clemente, J. C.; Storchi-Bergmann, T.; Riffel, R.; Schimoia, J.; Riffel, R. A.; Rembold, S. B.; Brownstein, J. R.; Pan, K.; Yates, R.; Mallmann, N.; Bitsakis, T.

    2018-04-01

    We present the characterization of the main properties of a sample of 98 AGN host galaxies, both type-II and type-I, in comparison with those of ≍2700 non-active galaxies observed by the MaNGA survey. We found that AGN hosts are morphologically early-type or early-spirals. AGN hosts are, on average, more massive, more compact, more centrally peaked and more pressure-supported systems. They are located in the intermediate/transition region between starforming and non-star-forming galaxies (i.e., the so-called green valley). We consider that they are in the process of halting/quenching the star formation. The analysis of the radial distributions of different properties shows that the quenching happens from inside-out involving both a decrease of the effciency of the star formation and a deficit of molecular gas. The data-products of the current analysis are distributed as a Value Added Catalog within the SDSS-DR14.

  20. VizieR Online Data Catalog: Tully-Fisher relation for SDSS galaxies (Reyes+, 2011)

    NASA Astrophysics Data System (ADS)

    Reyes, R.; Mandelbaum, R.; Gunn, J. E.; Pizagno, J.; Lackner, C. N.

    2012-05-01

    In this paper, we derive scaling relations between photometric observable quantities and disc galaxy rotation velocity Vrot or Tully-Fisher relations (TFRs). Our methodology is dictated by our purpose of obtaining purely photometric, minimal-scatter estimators of Vrot applicable to large galaxy samples from imaging surveys. To achieve this goal, we have constructed a sample of 189 disc galaxies at redshifts z<0.1 with long-slit Hα spectroscopy from Pizagno et al. (2007, Cat. J/AJ/134/945) and new observations. By construction, this sample is a fair subsample of a large, well-defined parent disc sample of ~170000 galaxies selected from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7). (4 data files).

  1. Flying across Galaxy Clusters with Google Earth: additional imagery from SDSS co-added data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Jiangang; Annis, James; /Fermilab

    2010-10-01

    Galaxy clusters are spectacular. We provide a Google Earth compatible imagery for the deep co-added images from the Sloan Digital Sky Survey and make it a tool for examing galaxy clusters. Google Earth (in sky mode) provides a highly interactive environment for visualizing the sky. By encoding the galaxy cluster information into a kml/kmz file, one can use Google Earth as a tool for examining galaxy clusters and fly across them freely. However, the resolution of the images provided by Google Earth is not very high. This is partially because the major imagery google earth used is from Sloan Digitalmore » Sky Survey (SDSS) (SDSS collaboration 2000) and the resolutions have been reduced to speed up the web transferring. To have higher resolution images, you need to add your own images in a way that Google Earth can understand. The SDSS co-added data are the co-addition of {approx}100 scans of images from SDSS stripe 82 (Annis et al. 2010). It provides the deepest images based on SDSS and reach as deep as about redshift 1.0. Based on the co-added images, we created color images in a way as described by Lupton et al. (2004) and convert the color images to Google Earth compatible images using wcs2kml (Brewer et al. 2007). The images are stored at a public server at Fermi National Accelerator Laboratory and can be accessed by the public. To view those images in Google Earth, you need to download a kmz file, which contains the links to the color images, and then open the kmz file with your Google Earth. To meet different needs for resolutions, we provide three kmz files corresponding to low, medium and high resolution images. We recommend the high resolution one as long as you have a broadband Internet connection, though you should choose to download any of them, depending on your own needs and Internet speed. After you open the downloaded kmz file with Google Earth (in sky mode), it takes about 5 minutes (depending on your Internet connection and the resolution of

  2. Investigating the Environmental Properties of Galaxies in the SDSS-MaNGA Survey

    NASA Astrophysics Data System (ADS)

    Spindler, Ashley

    2018-05-01

    This thesis presents a study of galaxy evolution in the local universe. I study how environments shape the structures of galaxies, and how internal and external processes affect star formation. I perform four investigations of galaxy properties: a study of the relations between size, mass and velocity dispersion of 124,524 galaxies from SDSS DR7; I estimate star formation rates using Hα and Dn4000 for galaxies in the MaNGA survey; a study of the spatial distribution of star formation in 1494 MaNGA galaxies; and finally, a study of 215 barred and 402 unbarred galaxies, to investigate how bars affect star formation. I find that environment plays a key role in the evolution of galaxies, both structurally and in terms of their star formation. Using core velocity dispersion to study the effects of minor mergers and tidal/ram pressure stripping, I find that central galaxies are up to 30% larger and more massive than satellites. I suggest that minor mergers play a crucial role in the increase in size and mass of centrals. In addition, I find that satellites have a uniform radial suppression of star formation, compared to centrals, which may be due to the strangulation of their cold gas supplies. I study the internal processes that affect star formation and find that specific star formation rate is suppressed at all radii for high mass galaxies. Massive galaxies are more likely to have suppressed star formation in their cores, which I determined is caused by a combination of morphological quenching and AGN feedback. Finally, I study the role of galaxy bars in regulating the circumnuclear and disk star formation in late-type galaxies. I find that barred galaxies have lower star formation in their disks than unbarred galaxies, and that they are more likely to have enhanced star formation in their cores.

  3. SDSS-II Supernova survey. An analysis of the largest sample of type IA supernovae and correlations with host-galaxy spectral properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Rachel C.; D’Andrea, Chris B.; Gupta, Ravi R.

    2016-04-20

    Using the largest single-survey sample of Type Ia supernovae (SNe Ia) to date, we study the relationship between properties of SNe Ia and those of their host galaxies, focusing primarily on correlations with Hubble residuals (HR). Our sample consists of 345 photometrically-classified or spectroscopicallyconfirmed SNe Ia discovered as part of the SDSS-II Supernova Survey (SDSS-SNS). This analysis utilizes host-galaxy spectroscopy obtained during the SDSS-I/II spectroscopic survey and from an ancillary program on the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) that obtained spectra for nearly all host galaxies of SDSS-II SN candidates. In addition, we use photometric hostgalaxy properties from themore » SDSS-SNS data release (Sako et al. 2014) such as host stellar mass and star-formation rate. We confirm the well-known relation between HR and host-galaxy mass and find a 3.6σ significance of a non-zero linear slope. We also recover correlations between HR and hostgalaxy gas-phase metallicity and specific star-formation rate as they are reported in the literature. With our large dataset, we examine correlations between HR and multiple host-galaxy properties simultaneously and find no evidence of a significant correlation. We also independently analyze our spectroscopically-confirmed and photometrically-classified SNe Ia and comment on the significance of similar combined datasets for future surveys.« less

  4. SDSS-IV MaNGA: stellar population gradients as a function of galaxy environment

    NASA Astrophysics Data System (ADS)

    Goddard, D.; Thomas, D.; Maraston, C.; Westfall, K.; Etherington, J.; Riffel, R.; Mallmann, N. D.; Zheng, Z.; Argudo-Fernández, M.; Bershady, M.; Bundy, K.; Drory, N.; Law, D.; Yan, R.; Wake, D.; Weijmans, A.; Bizyaev, D.; Brownstein, J.; Lane, R. R.; Maiolino, R.; Masters, K.; Merrifield, M.; Nitschelm, C.; Pan, K.; Roman-Lopes, A.; Storchi-Bergmann, T.

    2017-02-01

    We study the internal radial gradients of stellar population properties within 1.5 Re and analyse the impact of galaxy environment. We use a representative sample of 721 galaxies with masses ranging between 109 M⊙ and 1011.5 M⊙ from the SDSS-IV survey MaNGA. We split this sample by morphology into early-type and late-type galaxies. Using the full spectral fitting code FIREFLY, we derive the light and mass-weighted stellar population properties, age and metallicity, and calculate the gradients of these properties. We use three independent methods to quantify galaxy environment, namely the Nth nearest neighbour, the tidal strength parameter Q and distinguish between central and satellite galaxies. In our analysis, we find that early-type galaxies generally exhibit shallow light-weighted age gradients in agreement with the literature and mass-weighted median age gradients tend to be slightly positive. Late-type galaxies, instead, have negative light-weighted age gradients. We detect negative metallicity gradients in both early- and late-type galaxies that correlate with galaxy mass, with the gradients being steeper and the correlation with mass being stronger in late-types. We find, however, that stellar population gradients, for both morphological classifications, have no significant correlation with galaxy environment for all three characterizations of environment. Our results suggest that galaxy mass is the main driver of stellar population gradients in both early and late-type galaxies, and any environmental dependence, if present at all, must be very subtle.

  5. The Stellar Kinematics of E+A Galaxies in SDSS IV-MaNGA

    NASA Astrophysics Data System (ADS)

    Johnson, Amalya; Dudley, Raymond; Edwards, Kay; Gonzalez, Andrea; Kerrison, Nicole; Marinelli, Mariarosa; Melchert, Nancy; Ojanen, Winonah; Liu, Charles; SDSS-IV MaNGA

    2018-01-01

    E+A galaxies, hypothesized to be “transition” galaxies between the blue cloud and the red sequence, are valuable sources for studying the evolution of galaxies. Using data from the Sloan Digital Sky Survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, a large scale integral field spectroscopic survey of nearby galaxies from 3600 to 10300 Å, we identifed galaxies that exhibitted E+A characteristics within their optical spectra. We analyzed the 2,812 galaxies thus far observed by MaNGA to identify those that showed evidence of a starburst about 1 billion years ago, followed by cessation of star formation and quenching of the galaxy. Through this process we identifed 39 E+A galaxies by directly looking at the optical spectra and ensuring they exhibited the necessary properties of an E+A spectra, including a strong break at the 4000 Å mark, little to no Hα emission and absorption through the Balmer series, and a blue slope of the continuum past ~5000 Å as the flux decreases. We analyzed the stellar kinematics of these galaxies to determine whether or not they were fast or slow rotators, a proposed indicator of a major merger in their recent past. Using Voronoi binned graphs from the MaNGA Marvin database, we measured their stellar rotation curves in order to more clearly show the range of velocities within the galaxies. Among our 39 E+A candidates, all but two exhibited significant, orderly rotation across the galaxy, and 29 out of 39 of our galaxies show rotation faster than 30 km/s. With the caveat that our selection process was biased toward galaxies with orderly rotation, this prevalence of rotation challenges the belief that all E+A galaxies are created from major mergers. This work was supported by grants AST-1460860 from the National Science Foundation and SDSS FAST/SSP-483 from the Alfred P. Sloan Foundation to the CUNY College of Staten Island.

  6. A Study of E+A Galaxies Through SDSS-MaNGA Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wally, Muhammad; Weaver, Olivia A.; Anderson, Miguel Ricardo; Liu, Allen; Falcone, Julia; Wallack, Nicole Lisa; James, Olivia; Liu, Charles

    2017-01-01

    We outline the selection process and analysis of sixteen E+A galaxies observed by the Mapping Nearby Galaxies at the Apache Point Observatory (MaNGA) survey as a part of the fourth generation of the Sloan Digital Sky Survey (SDSS-IV). We present their Integral field spectroscopy and analyze their spatial distribution of stellar ages, metallicities and other stellar population properties. We can potentially study the variation in these properties as a function of redshift. This work was supported by the Alfred P. Sloan Foundation via the SDSS-IV Faculty and Student Team (FAST) initiative, ARC Agreement #SSP483 to the CUNY College of Staten Island. This work was also supported by grants to The American Museum of Natural History, and the CUNY College of Staten Island through The National Science Foundation.

  7. The catalog of edge-on disk galaxies from SDSS. I. The catalog and the structural parameters of stellar disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bizyaev, D. V.; Kautsch, S. J.; Mosenkov, A. V.

    We present a catalog of true edge-on disk galaxies automatically selected from the Seventh Data Release of the Sloan Digital Sky Survey (SDSS). A visual inspection of the g, r, and i images of about 15,000 galaxies allowed us to split the initial sample of edge-on galaxy candidates into 4768 (31.8% of the initial sample) genuine edge-on galaxies, 8350 (55.7%) non-edge-on galaxies, and 1865 (12.5%) edge-on galaxies not suitable for simple automatic analysis because these objects either show signs of interaction and warps, or nearby bright stars project on it. We added more candidate galaxies from RFGC, EFIGI, RC3, andmore » Galaxy Zoo catalogs found in the SDSS footprints. Our final sample consists of 5747 genuine edge-on galaxies. We estimate the structural parameters of the stellar disks (the stellar disk thickness, radial scale length, and central surface brightness) in the galaxies by analyzing photometric profiles in each of the g, r, and i images. We also perform simplified three-dimensional modeling of the light distribution in the stellar disks of edge-on galaxies from our sample. Our large sample is intended to be used for studying scaling relations in the stellar disks and bulges and for estimating parameters of the thick disks in different types of galaxies via the image stacking. In this paper, we present the sample selection procedure and general description of the sample.« less

  8. Panchromatic properties of 99000 galaxies detected by SDSS, and (some by) ROSAT, GALEX, 2MASS, IRAS, GB6, FIRST, NVSS and WENSS surveys

    NASA Astrophysics Data System (ADS)

    Obrić, M.; Ivezić, Ž.; Best, P. N.; Lupton, R. H.; Tremonti, C.; Brinchmann, J.; Agüeros, M. A.; Knapp, G. R.; Gunn, J. E.; Rockosi, C. M.; Schlegel, D.; Finkbeiner, D.; Gaćeša, M.; Smolčić, V.; Anderson, S. F.; Voges, W.; Jurić, M.; Siverd, R. J.; Steinhardt, W.; Jagoda, A. S.; Blanton, M. R.; Schneider, D. P.

    2006-08-01

    We discuss the panchromatic properties of 99088 galaxies selected from the Sloan Digital Sky Survey (SDSS) Data Release 1 `main' spectroscopic sample (a flux-limited sample for 1360deg2). These galaxies are positionally matched to sources detected by ROSAT, Galaxy Evolution Explorer (GALEX), two-Micron All-Sky Survey (2MASS), Infrared Astronomical Satellite (IRAS), Green Bank GB6 survey (GB6), Faint Images of the Radio Sky at Twenty-centimetres (FIRST), NRAO VLA Sky Survey (NVSS) and Westerbork Northern Sky Survey (WENSS). The matching fraction varies from <1 per cent for ROSAT and GB6 to ~40 per cent for GALEX and 2MASS. In addition to its size, the advantages of this sample are well-controlled selection effects, faint flux limits and the wealth of measured parameters, including accurate X-ray to radio photometry, angular sizes and optical spectra. We find strong correlations between the detection fraction at other wavelengths and optical properties such as flux, colours and emission-line strengths. For example, ~2/3 of SDSS `main' galaxies classified as active galactic nucleus (AGN) using emission-line strengths are detected by 2MASS, while the corresponding fraction for star-forming galaxies (SFs) is only ~1/10. Similarly, over 90 per cent of galaxies detected by IRAS display strong emission lines in their optical spectra, compared to ~50 per cent for the whole SDSS sample. Using GALEX, SDSS and 2MASS data, we construct the ultraviolet-infrared (UV-IR) broad-band spectral energy distributions for various types of galaxies, and find that they form a nearly one-parameter family. For example, the SDSS u- and r-band data, supplemented with redshift, can be used to `predict' K-band magnitudes measured by 2MASS with an rms scatter of only 0.2mag. When a dust content estimate determined from SDSS spectra with the aid of models is also utilized, this scatter decreases to 0.1mag and can be fully accounted for by measurement uncertainties. We demonstrate that this

  9. The SDSS-IV extended baryon oscillation spectroscopic survey: Luminous red galaxy target selection

    DOE PAGES

    Prakash, Abhishek; Licquia, Timothy C.; Newman, Jeffrey A.; ...

    2016-06-08

    Here, we describe the algorithm used to select the luminous red galaxy (LRG) sample for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV) using photometric data from both the SDSS and the Wide-field Infrared Survey Explorer. LRG targets are required to meet a set of color selection criteria and have z-band and i-band MODEL magnitudes z < 19.95 and 19.9 < i < 21.8, respectively. Our algorithm selects roughly 50 LRG targets per square degree, the great majority of which lie in the redshift range 0.6 < z < 1.0 (median redshift 0.71).more » We also demonstrate that our methods are highly effective at eliminating stellar contamination and lower-redshift galaxies. We perform a number of tests using spectroscopic data from SDSS-III/BOSS ancillary programs to determine the redshift reliability of our target selection and its ability to meet the science requirements of eBOSS. The SDSS spectra are of high enough signal-to-noise ratio that at least ~89% of the target sample yields secure redshift measurements. Finally, we present tests of the uniformity and homogeneity of the sample, demonstrating that it should be clean enough for studies of the large-scale structure of the universe at higher redshifts than SDSS-III/BOSS LRGs reached.« less

  10. THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: LUMINOUS RED GALAXY TARGET SELECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakash, Abhishek; Licquia, Timothy C.; Newman, Jeffrey A.

    2016-06-01

    We describe the algorithm used to select the luminous red galaxy (LRG) sample for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV) using photometric data from both the SDSS and the Wide-field Infrared Survey Explorer . LRG targets are required to meet a set of color selection criteria and have z -band and i -band MODEL magnitudes z < 19.95 and 19.9 < i < 21.8, respectively. Our algorithm selects roughly 50 LRG targets per square degree, the great majority of which lie in the redshift range 0.6 < z < 1.0 (medianmore » redshift 0.71). We demonstrate that our methods are highly effective at eliminating stellar contamination and lower-redshift galaxies. We perform a number of tests using spectroscopic data from SDSS-III/BOSS ancillary programs to determine the redshift reliability of our target selection and its ability to meet the science requirements of eBOSS. The SDSS spectra are of high enough signal-to-noise ratio that at least ∼89% of the target sample yields secure redshift measurements. We also present tests of the uniformity and homogeneity of the sample, demonstrating that it should be clean enough for studies of the large-scale structure of the universe at higher redshifts than SDSS-III/BOSS LRGs reached.« less

  11. Demography of SDSS Early-type Galaxies from the Perspective of Radial Color Gradients

    NASA Astrophysics Data System (ADS)

    Suh, Hyewon; Jeong, H.; Oh, K.; Yi, S. K.; Ferreras, I.; Schawinski, K.

    2010-01-01

    We have investigated the radial g-r color gradients of early-type galaxies in the Sloan Digital Sky Survey (SDSS) DR6 in the redshift range 0.00 < z < 0.06. The majority of massive early-type galaxies show a negative color gradient (centers being redder). On the other hand, roughly 30 percent of the galaxies in this sample show positive color gradients (centers being bluer). These positive-gradient galaxies often show strong Hβ absorption line strengths and/or emission line ratios that are consistent with containing young stellar populations. Combining the optical data with Galaxy Evolution Explorer (GALEX) UV photometry, we find that all positive-gradient galaxies show blue UV-optical colors. This implies that the residual star formation in early-type galaxies is centrally concentrated. These positive-gradient galaxies tend to live in lower density regions. They are also a bit more likely to have a late-type companion galaxy, hinting at a possible role of interactions with a gas-rich companion. A simplistic population analysis shows that these positive color gradients are visible only for half a billion years after a star burst. Moreover, the positive-gradient galaxies occupy different regions in the fundamental planes from the outnumbering negative-gradient galaxies. However, the positions of the positive-gradient galaxies on the fundamental planes cannot be attributed to any reasonable amount of recent star formation alone but require substantially lower velocity dispersions to begin with. Our results based on the optical data are consistent with the residual star formation interpretation which was based on the GALEX UV data. A low-level residual star formation seems continuing in most of the less-massive early-type galaxies in their centers.

  12. SDSS-IV MaNGA: Spatially resolved star formation histories in galaxies as a function of galaxy mass and type

    NASA Astrophysics Data System (ADS)

    Goddard, D.; Thomas, D.; Maraston, C.; Westfall, K.; Etherington, J.; Riffel, R.; Mallmann, N. D.; Zheng, Z.; Argudo-Fernández, M.; Lian, J.; Bershady, M.; Bundy, K.; Drory, N.; Law, D.; Yan, R.; Wake, D.; Weijmans, A.; Bizyaev, D.; Brownstein, J.; Lane, R. R.; Maiolino, R.; Masters, K.; Merrifield, M.; Nitschelm, C.; Pan, K.; Roman-Lopes, A.; Storchi-Bergmann, T.; Schneider, D. P.

    2017-04-01

    We study the internal gradients of stellar population properties within 1.5 Re for a representative sample of 721 galaxies, with stellar masses ranging between 109 M⊙ and 1011.5 M⊙ from the SDSS-IV MaNGA Integral-Field-Unit survey. Through the use of our full spectral fitting code firefly, we derive light- and mass-weighted stellar population properties and their radial gradients, as well as full star formation and metal enrichment histories. We also quantify the impact that different stellar population models and full spectral fitting routines have on the derived stellar population properties and the radial gradient measurements. In our analysis, we find that age gradients tend to be shallow for both early-type and late-type galaxies. Mass-weighted age gradients of early-types arepositive (˜0.09 dex/Re) pointing to 'outside-in' progression of star formation, while late-type galaxies have negative light-weighted age gradients (˜-0.11 dex/Re), suggesting an 'inside-out' formation of discs. We detect negative metallicity gradients in both early- and late-type galaxies, but these are significantly steeper in late-types, suggesting that the radial dependence of chemical enrichment processes and the effect of gas inflow and metal transport are far more pronounced in discs. Metallicity gradients of both morphological classes correlate with galaxy mass, with negative metallicity gradients becoming steeper with increasing galaxy mass. The correlation with mass is stronger for late-type galaxies, with a slope of d(∇[Z/H])/d(log M) ˜ -0.2 ± 0.05 , compared to d(∇[Z/H])/d(log M) ˜ -0.05 ± 0.05 for early-types. This result suggests that the merger history plays a relatively small role in shaping metallicity gradients of galaxies.

  13. SDSS-IV MaNGA: evidence of the importance of AGN feedback in low-mass galaxies

    NASA Astrophysics Data System (ADS)

    Penny, Samantha J.; Masters, Karen L.; Smethurst, Rebecca; Nichol, Robert C.; Krawczyk, Coleman M.; Bizyaev, Dmitry; Greene, Olivia; Liu, Charles; Marinelli, Mariarosa; Rembold, Sandro B.; Riffel, Rogemar A.; Ilha, Gabriele da Silva; Wylezalek, Dominika; Andrews, Brett H.; Bundy, Kevin; Drory, Niv; Oravetz, Daniel; Pan, Kaike

    2018-05-01

    We present new evidence for AGN feedback in a subset of 69 quenched low-mass galaxies (M⋆ ≲ 5 × 109 M⊙, Mr > -19) selected from the first 2 yr of the Sloan Digital Sky Survey-IV Mapping Nearby Galaxies at APO (SDSS-IV MaNGA) survey. The majority (85 per cent) of these quenched galaxies appear to reside in a group environment. We find six galaxies in our sample that appear to have an active AGN that is preventing on-going star formation; this is the first time such a feedback mechanism has been observed in this mass range. Interestingly, five of these six galaxies have an ionized gas component that is kinematically offset from their stellar component, suggesting the gas is either recently accreted or outflowing. We hypothesize these six galaxies are low-mass equivalents to the `red geysers' observed in more massive galaxies. Of the other 63 galaxies in the sample, we find 8 do appear for have some low level, residual star formation, or emission from hot, evolved stars. The remaining galaxies in our sample have no detectable ionized gas emission throughout their structures, consistent with them being quenched. This work shows the potential for understanding the detailed physical properties of dwarf galaxies through spatially resolved spectroscopy.

  14. Finding SDSS Galaxy Clusters in 4-dimensional Color Space Using the False Discovery Rate

    NASA Astrophysics Data System (ADS)

    Nichol, R. C.; Miller, C. J.; Reichart, D.; Wasserman, L.; Genovese, C.; SDSS Collaboration

    2000-12-01

    We describe a recently developed statistical technique that provides a meaningful cut-off in probability-based decision making. We are concerned with multiple testing, where each test produces a well-defined probability (or p-value). By well-known, we mean that the null hypothesis used to determine the p-value is fully understood and appropriate. The method is entitled False Discovery Rate (FDR) and its largest advantage over other measures is that it allows one to specify a maximal amount of acceptable error. As an example of this tool, we apply FDR to a four-dimensional clustering algorithm using SDSS data. For each galaxy (or test galaxy), we count the number of neighbors that fit within one standard deviation of a four dimensional Gaussian centered on that test galaxy. The mean and standard deviation of that Gaussian are determined from the colors and errors of the test galaxy. We then take that same Gaussian and place it on a random selection of n galaxies and make a similar count. In the limit of large n, we expect the median count around these random galaxies to represent a typical field galaxy. For every test galaxy we determine the probability (or p-value) that it is a field galaxy based on these counts. A low p-value implies that the test galaxy is in a cluster environment. Once we have a p-value for every galaxy, we use FDR to determine at what level we should make our probability cut-off. Once this cut-off is made, we have a final sample of galaxies that are cluster-like galaxies. Using FDR, we also know the maximum amount of field contamination in our cluster galaxy sample. We present our preliminary galaxy clustering results using these methods.

  15. The Data Reduction Pipeline for The SDSS-IV Manga IFU Galaxy Survey

    DOE PAGES

    Law, David R.; Cherinka, Brian; Yan, Renbin; ...

    2016-09-12

    Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) is an optical fiber-bundle integral-field unit (IFU) spectroscopic survey that is one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV). With a spectral coverage of 3622-10354 A and an average footprint of ~500 arcsec 2 per IFU the scientific data products derived from MaNGA will permit exploration of the internal structure of a statistically large sample of 10,000 low-redshift galaxies in unprecedented detail. Comprising 174 individually pluggable science and calibration IFUs with a near-constant data stream, MaNGA is expected to obtain ~100 million raw-frame spectra and ~10 millionmore » reduced galaxy spectra over the six-year lifetime of the survey. In this contribution, we describe the MaNGA Data Reduction Pipeline algorithms and centralized metadata framework that produce sky-subtracted spectrophotometrically calibrated spectra and rectified three-dimensional data cubes that combine individual dithered observations. For the 1390 galaxy data cubes released in Summer 2016 as part of SDSS-IV Data Release 13, we demonstrate that the MaNGA data have nearly Poisson-limited sky subtraction shortward of ~8500 A and reach a typical 10σ limiting continuum surface brightness μ = 23.5 AB arcsec -2 in a five-arcsecond-diameter aperture in the g-band. The wavelength calibration of the MaNGA data is accurate to 5 km s -1 rms, with a median spatial resolution of 2.54 arcsec FWHM (1.8 kpc at the median redshift of 0.037) and a median spectral resolution of σ = 72 km s -1.« less

  16. SDSS-IV MaNGA: the spectroscopic discovery of strongly lensed galaxies

    NASA Astrophysics Data System (ADS)

    Talbot, Michael S.; Brownstein, Joel R.; Bolton, Adam S.; Bundy, Kevin; Andrews, Brett H.; Cherinka, Brian; Collett, Thomas E.; More, Anupreeta; More, Surhud; Sonnenfeld, Alessandro; Vegetti, Simona; Wake, David A.; Weijmans, Anne-Marie; Westfall, Kyle B.

    2018-06-01

    We present a catalogue of 38 spectroscopically detected strong galaxy-galaxy gravitational lens candidates identified in the Sloan Digital Sky Survey IV (SDSS-IV). We were able to simulate narrow-band images for eight of them demonstrating evidence of multiple images. Two of our systems are compound lens candidates, each with two background source-planes. One of these compound systems shows clear lensing features in the narrow-band image. Our sample is based on 2812 galaxies observed by the Mapping Nearby Galaxies at APO (MaNGA) integral field unit (IFU). This Spectroscopic Identification of Lensing Objects (SILO) survey extends the methodology of the Sloan Lens ACS Survey (SLACS) and BOSS Emission-Line Survey (BELLS) to lower redshift and multiple IFU spectra. We searched ˜1.5 million spectra, of which 3065 contained multiple high signal-to-noise ratio background emission-lines or a resolved [O II] doublet, that are included in this catalogue. Upon manual inspection, we discovered regions with multiple spectra containing background emission-lines at the same redshift, providing evidence of a common source-plane geometry which was not possible in previous SLACS and BELLS discovery programs. We estimate more than half of our candidates have an Einstein radius ≳ 1.7 arcsec, which is significantly greater than seen in SLACS and BELLS. These larger Einstein radii produce more extended images of the background galaxy increasing the probability that a background emission-line will enter one of the IFU spectroscopic fibres, making detection more likely.

  17. Superluminous Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Ogle, Patrick M.; Lanz, Lauranne; Nader, Cyril; Helou, George

    2016-02-01

    We report the discovery of spiral galaxies that are as optically luminous as elliptical brightest cluster galaxies, with r-band monochromatic luminosity Lr = 8-14L* (4.3-7.5 × 1044 erg s-1). These super spiral galaxies are also giant and massive, with diameter D = 57-134 kpc and stellar mass Mstars = 0.3-3.4 × 1011M⊙. We find 53 super spirals out of a complete sample of 1616 SDSS galaxies with redshift z < 0.3 and Lr > 8L*. The closest example is found at z = 0.089. We use existing photometry to estimate their stellar masses and star formation rates (SFRs). The SDSS and Wide-field Infrared Survey Explorer colors are consistent with normal star-forming spirals on the blue sequence. However, the extreme masses and rapid SFRs of 5-65 M⊙ yr-1 place super spirals in a sparsely populated region of parameter space, above the star-forming main sequence of disk galaxies. Super spirals occupy a diverse range of environments, from isolation to cluster centers. We find four super spiral galaxy systems that are late-stage major mergers—a possible clue to their formation. We suggest that super spirals are a remnant population of unquenched, massive disk galaxies. They may eventually become massive lenticular galaxies after they are cut off from their gas supply and their disks fade.

  18. GALAXIES IN FILAMENTS HAVE MORE SATELLITES: THE INFLUENCE OF THE COSMIC WEB ON THE SATELLITE LUMINOSITY FUNCTION IN THE SDSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Quan; Libeskind, N. I.; Tempel, E., E-mail: qguo@aip.de

    We investigate whether the satellite luminosity function (LF) of primary galaxies identified in the Sloan Digital Sky Survey (SDSS) depends on whether the host galaxy is in a filament or not. Isolated primary galaxies are identified in the SDSS spectroscopic sample, and potential satellites (that are up to four magnitudes fainter than their hosts) are searched for in the much deeper photometric sample. Filaments are constructed from the galaxy distribution by the Bisous process. Isolated primary galaxies are divided into two subsamples: those in filaments and those not in filaments. We examine the stacked mean satellite LF of both themore » filament and nonfilament samples and find that, on average, the satellite LF of galaxies in filaments is significantly higher than those of galaxies not in filaments. The filamentary environment can increase the abundance of the brightest satellites (M {sub sat.} < M {sub prim.} + 2.0) by a factor of ∼2 compared with nonfilament isolated galaxies. This result is independent of the primary galaxy magnitude, although the satellite LF of galaxies in the faintest magnitude bin is too noisy to determine if such a dependence exists. Because our filaments are extracted from a spectroscopic flux-limited sample, we consider the possibility that the difference in satellite LF is due to a redshift, color, or environmental bias, finding these to be insufficient to explain our result. The dependence of the satellite LF on the cosmic web suggests that the filamentary environment may have a strong effect on the efficiency of galaxy formation.« less

  19. Galaxies in Filaments have More Satellites: The Influence of the Cosmic Web on the Satellite Luminosity Function in the SDSS

    NASA Astrophysics Data System (ADS)

    Guo, Quan; Tempel, E.; Libeskind, N. I.

    2015-02-01

    We investigate whether the satellite luminosity function (LF) of primary galaxies identified in the Sloan Digital Sky Survey (SDSS) depends on whether the host galaxy is in a filament or not. Isolated primary galaxies are identified in the SDSS spectroscopic sample, and potential satellites (that are up to four magnitudes fainter than their hosts) are searched for in the much deeper photometric sample. Filaments are constructed from the galaxy distribution by the Bisous process. Isolated primary galaxies are divided into two subsamples: those in filaments and those not in filaments. We examine the stacked mean satellite LF of both the filament and nonfilament samples and find that, on average, the satellite LF of galaxies in filaments is significantly higher than those of galaxies not in filaments. The filamentary environment can increase the abundance of the brightest satellites (M sat. < M prim. + 2.0) by a factor of ~2 compared with nonfilament isolated galaxies. This result is independent of the primary galaxy magnitude, although the satellite LF of galaxies in the faintest magnitude bin is too noisy to determine if such a dependence exists. Because our filaments are extracted from a spectroscopic flux-limited sample, we consider the possibility that the difference in satellite LF is due to a redshift, color, or environmental bias, finding these to be insufficient to explain our result. The dependence of the satellite LF on the cosmic web suggests that the filamentary environment may have a strong effect on the efficiency of galaxy formation.

  20. VizieR Online Data Catalog: A cosmic void catalog of SDSS DR12 BOSS galaxies (Mao+, 2017)

    NASA Astrophysics Data System (ADS)

    Mao, Q.; Berlind, A. A.; Scherrer, R. J.; Neyrinck, M. C.; Scoccimarro, R.; Tinker, J. L.; McBride, C. K.; Schneider, D. P.; Pan, K.; Bizyaev, D.; Malanushenko, E.; Malanushenko, V.

    2017-08-01

    We present a cosmic void catalog using the large-scale structure galaxy catalog from the Baryon Oscillation Spectroscopic Survey (BOSS). This galaxy catalog is part of the Sloan Digital Sky Survey (SDSS) Data Release 12 and is the final catalog of SDSS-III. We take into account the survey boundaries, masks, and angular and radial selection functions, and apply the ZOBOV (Neyrinck 2008MNRAS.386.2101N) void finding algorithm to the Galaxy catalog. We identify a total of 10643 voids. After making quality cuts to ensure that the voids represent real underdense regions, we obtain 1228 voids with effective radii spanning the range 20-100h-1Mpc and with central densities that are, on average, 30% of the mean sample density. We release versions of the catalogs both with and without quality cuts. We discuss the basic statistics of voids, such as their size and redshift distributions, and measure the radial density profile of the voids via a stacking technique. In addition, we construct mock void catalogs from 1000 mock galaxy catalogs, and find that the properties of BOSS voids are in good agreement with those in the mock catalogs. We compare the stellar mass distribution of galaxies living inside and outside of the voids, and find no large difference. These BOSS and mock void catalogs are useful for a number of cosmological and galaxy environment studies. (1 data file).

  1. VizieR Online Data Catalog: Compact groups of galaxies in SDSS DR7 (Mendel+, 2011)

    NASA Astrophysics Data System (ADS)

    Mendel, J. T.; Ellison, S. L.; Simard, L.; Patton, D. R.; McConnachie, A. W.

    2012-07-01

    In Paper III (Cat. J/MNRAS/395/255) we describe the photometric selection of CGs from the SDSS Data Release 6 (Adelman-McCarthy et al., 2008, Cat. II/282/), which included imaging of the entire SDSS-II Legacy Survey area. Since that paper, SDSS Data Release 7 (DR7; Abazajian et al., 2009ApJS..182..543A) has provided an additional ~1200deg2 of spectroscopic data, completing spectroscopic observations of the SDSS-II Legacy Survey footprint. In what follows we use galaxy catalogues drawn from SDSS DR7 and, where available, supplement the CG samples in Paper III with updated spectroscopic information. (2 data files).

  2. The Data Reduction Pipeline for the SDSS-IV MaNGA IFU Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Law, David R.; Cherinka, Brian; Yan, Renbin; Andrews, Brett H.; Bershady, Matthew A.; Bizyaev, Dmitry; Blanc, Guillermo A.; Blanton, Michael R.; Bolton, Adam S.; Brownstein, Joel R.; Bundy, Kevin; Chen, Yanmei; Drory, Niv; D'Souza, Richard; Fu, Hai; Jones, Amy; Kauffmann, Guinevere; MacDonald, Nicholas; Masters, Karen L.; Newman, Jeffrey A.; Parejko, John K.; Sánchez-Gallego, José R.; Sánchez, Sebastian F.; Schlegel, David J.; Thomas, Daniel; Wake, David A.; Weijmans, Anne-Marie; Westfall, Kyle B.; Zhang, Kai

    2016-10-01

    Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) is an optical fiber-bundle integral-field unit (IFU) spectroscopic survey that is one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV). With a spectral coverage of 3622-10354 Å and an average footprint of ˜500 arcsec2 per IFU the scientific data products derived from MaNGA will permit exploration of the internal structure of a statistically large sample of 10,000 low-redshift galaxies in unprecedented detail. Comprising 174 individually pluggable science and calibration IFUs with a near-constant data stream, MaNGA is expected to obtain ˜100 million raw-frame spectra and ˜10 million reduced galaxy spectra over the six-year lifetime of the survey. In this contribution, we describe the MaNGA Data Reduction Pipeline algorithms and centralized metadata framework that produce sky-subtracted spectrophotometrically calibrated spectra and rectified three-dimensional data cubes that combine individual dithered observations. For the 1390 galaxy data cubes released in Summer 2016 as part of SDSS-IV Data Release 13, we demonstrate that the MaNGA data have nearly Poisson-limited sky subtraction shortward of ˜8500 Å and reach a typical 10σ limiting continuum surface brightness μ = 23.5 AB arcsec-2 in a five-arcsecond-diameter aperture in the g-band. The wavelength calibration of the MaNGA data is accurate to 5 km s-1 rms, with a median spatial resolution of 2.54 arcsec FWHM (1.8 kpc at the median redshift of 0.037) and a median spectral resolution of σ = 72 km s-1.

  3. SDSS-IV MaNGA: faint quenched galaxies - I. Sample selection and evidence for environmental quenching

    NASA Astrophysics Data System (ADS)

    Penny, Samantha J.; Masters, Karen L.; Weijmans, Anne-Marie; Westfall, Kyle B.; Bershady, Matthew A.; Bundy, Kevin; Drory, Niv; Falcón-Barroso, Jesús; Law, David; Nichol, Robert C.; Thomas, Daniel; Bizyaev, Dmitry; Brownstein, Joel R.; Freischlad, Gordon; Gaulme, Patrick; Grabowski, Katie; Kinemuchi, Karen; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Daniel; Roman-Lopes, Alexandre; Pan, Kaike; Simmons, Audrey; Wake, David A.

    2016-11-01

    Using kinematic maps from the Sloan Digital Sky Survey (SDSS) Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, we reveal that the majority of low-mass quenched galaxies exhibit coherent rotation in their stellar kinematics. Our sample includes all 39 quenched low-mass galaxies observed in the first year of MaNGA. The galaxies are selected with Mr > -19.1, stellar masses 109 M⊙ < M* < 5 × 109 M⊙, EWHα < 2 Å, and all have red colours (u - r) > 1.9. They lie on the size-magnitude and σ-luminosity relations for previously studied dwarf galaxies. Just six (15 ± 5.7 per cent) are found to have rotation speeds ve, rot < 15 km s-1 at ˜1 Re, and may be dominated by pressure support at all radii. Two galaxies in our sample have kinematically distinct cores in their stellar component, likely the result of accretion. Six contain ionized gas despite not hosting ongoing star formation, and this gas is typically kinematically misaligned from their stellar component. This is the first large-scale Integral Field Unit (IFU) study of low-mass galaxies selected without bias against low-density environments. Nevertheless, we find the majority of these galaxies are within ˜1.5 Mpc of a bright neighbour (MK < -23; or M* > 5 × 1010 M⊙), supporting the hypothesis that galaxy-galaxy or galaxy-group interactions quench star formation in low-mass galaxies. The local bright galaxy density for our sample is ρproj = 8.2 ± 2.0 Mpc-2, compared to ρproj = 2.1 ± 0.4 Mpc-2 for a star-forming comparison sample, confirming that the quenched low-mass galaxies are preferentially found in higher density environments.

  4. Predicting Galaxy Star Formation Rates via the Co-evolution of Galaxies and Halos

    DOE PAGES

    Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; ...

    2014-03-06

    In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy is determined by its dark matter halo formation history, and as such, that more quiescent galaxies reside in older halos. This simple model has been remarkably successful at predicting color-based galaxy statistics at low redshift as measured in the Sloan Digital Sky Survey (SDSS). To further test this method with observations, we present new SDSS measurements of the galaxy two-point correlation function and galaxy-galaxy lensing as a function of stellar mass and SFR, separated into quenched and star forming galaxy samples. Wemore » find that our age matching model is in excellent agreement with these new measurements. We also employ a galaxy group finder and show that our model is able to predict: (1) the relative SFRs of central and satellite galaxies, (2) the SFR-dependence of the radial distribution of satellite galaxy populations within galaxy groups, rich groups, and clusters and their surrounding larger scale environments, and (3) the interesting feature that the satellite quenched fraction as a function of projected radial distance from the central galaxy exhibits an approx r -.15 slope, independent of environment. The accurate prediction for the spatial distribution of satellites is intriguing given the fact that we do not explicitly model satellite-specific processes after infall, and that in our model the virial radius does not mark a special transition region in the evolution of a satellite, contrary to most galaxy evolution models. The success of the model suggests that present-day galaxy SFR is strongly correlated with halo mass assembly history.« less

  5. High-redshift Luminous Red Galaxies clustering analysis in SDSS Stripe82

    NASA Astrophysics Data System (ADS)

    Nikoloudakis, N.

    2012-01-01

    We have measured the clustering of Luminous Red Galaxies in Stripe 82 using the angular correlation function. We have selected 130000 LRGs via colour cuts in R-I:I-K with the K band data coming from UKIDSS LAS. We have used the cross-correlation technique of Newman (2008) to establish the redshift distribution of the LRGs as a function of colour cut, cross-correlating the LRGs with SDSS QSOs, DEEP2 and VVDS galaxies. We also used the AUS LRG redshift survey to establish the n(z) at z<1. We then compare the w(theta) results to the results of Sawangwit et al (2010) from 3 samples of SDSS LRGs at lower redshift to measure the dependence of clustering on redshift and LRG luminosity. We have compared the results for luminosity-matched LRG samples with simple evolutionary models, such as those expected from long-lived, passive models for LRGs and for the HOD models of Wake et al (2009) and find that the long-lived model may be a poorer fit than at lower redshifts. We find some evidence for evolution in the LRG correlation function slope in that the 2-halo term appears to flatten in slope at z>1. We present arguments that this is not caused by systematics.

  6. Groups of two galaxies in SDSS: implications of colours on star formation quenching time-scales

    NASA Astrophysics Data System (ADS)

    Trinh, Christopher Q.; Barton, Elizabeth J.; Bullock, James S.; Cooper, Michael C.; Zentner, Andrew R.; Wechsler, Risa H.

    2013-11-01

    We have devised a method to select galaxies that are isolated in their dark matter halo (N = 1 systems) and galaxies that reside in a group of exactly two (N = 2 systems). Our N = 2 systems are widely separated (up to ˜200 h-1 kpc), where close galaxy-galaxy interactions are not dominant. We apply our selection criteria to two volume-limited samples of galaxies from Sloan Digital Sky Survey Data Release 6 (SDSS DR6) with Mr - 5 log10 h ≤ -19 and -20 to study the effects of the environment of very sparse groups on galaxy colour. For satellite galaxies in a group of two, we find a red excess attributed to star formation quenching of 0.15 ± 0.01 and 0.14 ± 0.01 for the -19 and -20 samples, respectively, relative to isolated galaxies of the same stellar mass. Assuming N = 1 systems are the progenitors of N = 2 systems, an immediate-rapid star formation quenching scenario is inconsistent with these observations. A delayed-then-rapid star formation quenching scenario with a delay time of 3.3 and 3.7 Gyr for the -19 and -20 samples, respectively, yields a red excess prediction in agreement with the observations. The observations also reveal that central galaxies in a group of two have a slight blue excess of 0.06 ± 0.02 and 0.02 ± 0.01 for the -19 and -20 samples, respectively, relative to N = 1 populations of the same stellar mass. Our results demonstrate that even the environment of very sparse groups of luminous galaxies influence galaxy evolution and in-depth studies of these simple systems are an essential step towards understanding galaxy evolution in general.

  7. Percolation galaxy groups and clusters in the sdss redshift survey: identification, catalogs, and the multiplicity function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlind, Andreas A.; Frieman, Joshua A.; Weinberg, David H.

    2006-01-01

    We identify galaxy groups and clusters in volume-limited samples of the SDSS redshift survey, using a redshift-space friends-of-friends algorithm. We optimize the friends-of-friends linking lengths to recover galaxy systems that occupy the same dark matter halos, using a set of mock catalogs created by populating halos of N-body simulations with galaxies. Extensive tests with these mock catalogs show that no combination of perpendicular and line-of-sight linking lengths is able to yield groups and clusters that simultaneously recover the true halo multiplicity function, projected size distribution, and velocity dispersion. We adopt a linking length combination that yields, for galaxy groups withmore » ten or more members: a group multiplicity function that is unbiased with respect to the true halo multiplicity function; an unbiased median relation between the multiplicities of groups and their associated halos; a spurious group fraction of less than {approx}1%; a halo completeness of more than {approx}97%; the correct projected size distribution as a function of multiplicity; and a velocity dispersion distribution that is {approx}20% too low at all multiplicities. These results hold over a range of mock catalogs that use different input recipes of populating halos with galaxies. We apply our group-finding algorithm to the SDSS data and obtain three group and cluster catalogs for three volume-limited samples that cover 3495.1 square degrees on the sky. We correct for incompleteness caused by fiber collisions and survey edges, and obtain measurements of the group multiplicity function, with errors calculated from realistic mock catalogs. These multiplicity function measurements provide a key constraint on the relation between galaxy populations and dark matter halos.« less

  8. THE DATA REDUCTION PIPELINE FOR THE SDSS-IV MaNGA IFU GALAXY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, David R.; Cherinka, Brian; Yan, Renbin

    2016-10-01

    Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) is an optical fiber-bundle integral-field unit (IFU) spectroscopic survey that is one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV). With a spectral coverage of 3622–10354 Å and an average footprint of ∼500 arcsec{sup 2} per IFU the scientific data products derived from MaNGA will permit exploration of the internal structure of a statistically large sample of 10,000 low-redshift galaxies in unprecedented detail. Comprising 174 individually pluggable science and calibration IFUs with a near-constant data stream, MaNGA is expected to obtain ∼100 million raw-frame spectra and ∼10 millionmore » reduced galaxy spectra over the six-year lifetime of the survey. In this contribution, we describe the MaNGA Data Reduction Pipeline algorithms and centralized metadata framework that produce sky-subtracted spectrophotometrically calibrated spectra and rectified three-dimensional data cubes that combine individual dithered observations. For the 1390 galaxy data cubes released in Summer 2016 as part of SDSS-IV Data Release 13, we demonstrate that the MaNGA data have nearly Poisson-limited sky subtraction shortward of ∼8500 Å and reach a typical 10 σ limiting continuum surface brightness μ  = 23.5 AB arcsec{sup −2} in a five-arcsecond-diameter aperture in the g -band. The wavelength calibration of the MaNGA data is accurate to 5 km s{sup −1} rms, with a median spatial resolution of 2.54 arcsec FWHM (1.8 kpc at the median redshift of 0.037) and a median spectral resolution of σ  = 72 km s{sup −1}.« less

  9. SDSS-IV MaNGA: a distinct mass distribution explored in slow-rotating early-type galaxies

    NASA Astrophysics Data System (ADS)

    Rong, Yu; Li, Hongyu; Wang, Jie; Gao, Liang; Li, Ran; Ge, Junqiang; Jing, Yingjie; Pan, Jun; Fernández-Trincado, J. G.; Valenzuela, Octavio; Ortíz, Erik Aquino

    2018-06-01

    We study the radial acceleration relation (RAR) for early-type galaxies (ETGs) in the SDSS MaNGA MPL5 data set. The complete ETG sample show a slightly offset RAR from the relation reported by McGaugh et al. (2016) at the low-acceleration end; we find that the deviation is due to the fact that the slow rotators show a systematically higher acceleration relation than the McGaugh's RAR, while the fast rotators show a consistent acceleration relation to McGaugh's RAR. There is a 1σ significant difference between the acceleration relations of the fast and slow rotators, suggesting that the acceleration relation correlates with the galactic spins, and that the slow rotators may have a different mass distribution compared with fast rotators and late-type galaxies. We suspect that the acceleration relation deviation of slow rotators may be attributed to more galaxy merger events, which would disrupt the original spins and correlated distributions of baryons and dark matter orbits in galaxies.

  10. Blueberry Galaxies: The Lowest Mass Young Starbursts

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Malhotra, Sangeeta; Rhoads, James E.; Wang, Junxian

    2017-09-01

    Searching for extreme emission line galaxies allows us to find low-mass metal-poor galaxies that are good analogs of high redshift Lyα emitting galaxies. These low-mass extreme emission line galaxies are also potential Lyman-continuum leakers. Finding them at very low redshifts (z≲ 0.05) allows us to be sensitive to even lower stellar masses and metallicities. We report on a sample of extreme emission line galaxies at z≲ 0.05 (blueberry galaxies). We selected them from SDSS broadband images on the basis of their broadband colors and studied their properties with MMT spectroscopy. From the entire SDSS DR12 photometric catalog, we found 51 photometric candidates. We spectroscopically confirm 40 as blueberry galaxies. (An additional seven candidates are contaminants, and four remain without spectra.) These blueberries are dwarf starburst galaxies with very small sizes (<1 kpc) and very high ionization ([O III]/[O II] ˜ 10-60). They also have some of the lowest stellar masses ({log}(M/{M}⊙ )˜ 6.5{--}7.5) and lowest metallicities (7.1< 12+{log}({{O}}/{{H}})< 7.8) of starburst galaxies. Thus, they are small counterparts to green pea galaxies and high redshift Lyα emitting galaxies.

  11. Low-redshift quasars in the SDSS Stripe 82: associated companion galaxies and signature of star formation

    NASA Astrophysics Data System (ADS)

    Bettoni, D.; Falomo, R.; Kotilainen, J. K.; Karhunen, K.

    2017-04-01

    We obtained optical spectroscopy of close (<80 kpc) companion objects of a sample of 12 low-redshift quasars (z < 0.3) selected from the SDSS Stripe82 area and that are in the subsample of 52 QSOs for which both multicolour host galaxies properties and galaxy environment were recently investigated in detail. We found that for 8 out of 12 sources the companion galaxy is associated with the QSO having a difference of radial velocity that is less than 400 km s-1. Many of these associated companions exhibit [OII] λ3727 Å emission lines suggestive of episodes of (recent) star formation possibly induced by past interactions. The star formation rate of the companion galaxies as derived from [O II] line luminosity is, however, modest, with a median value of 1.0 ± 0.8 M⊙ yr-1, and the emission lines are barely consistent with expectation from gas ionization by the QSO. The role of the QSO for inducing star formation in close companion galaxies appears meager. For three objects we also detect the starlight spectrum of the QSO host galaxy, which is characterized by absorption lines of old stellar population and [O II] emission line.

  12. Optical-to-virial velocity ratios of local disc galaxies from combined kinematics and galaxy-galaxy lensing

    NASA Astrophysics Data System (ADS)

    Reyes, R.; Mandelbaum, R.; Gunn, J. E.; Nakajima, R.; Seljak, U.; Hirata, C. M.

    2012-10-01

    In this paper, we measure the optical-to-virial velocity ratios Vopt/V200c of disc galaxies in the Sloan Digital Sky Survey (SDSS) at a mean redshift of = 0.07 and with stellar masses 109 < M* < 1011 M⊙. Vopt/V200c, the ratio of the circular velocity measured at the optical radius of the disc (˜10 kpc) to that at the virial radius of the dark matter halo (˜150 kpc), is a powerful observational constraint on disc galaxy formation. It links galaxies to their dark matter haloes dynamically and constrains the total mass profile of disc galaxies over an order of magnitude in length scale. For this measurement, we combine Vopt derived from the Tully-Fisher relation (TFR) from Reyes et al. with V200c derived from halo masses measured with galaxy-galaxy lensing. In anticipation of this combination, we use similarly selected galaxy samples for both the TFR and lensing analysis. For three M* bins with lensing-weighted mean stellar masses of 0.6, 2.7 and 6.5 × 1010 M⊙, we find halo-to-stellar mass ratios M200c/M* = 41, 23 and 26, with 1σ statistical uncertainties of around 0.1 dex, and Vopt/V200c = 1.27 ± 0.08, 1.39 ± 0.06 and 1.27 ± 0.08 (1σ), respectively. Our results suggest that the dark matter and baryonic contributions to the mass within the optical radius are comparable, if the dark matter halo profile has not been significantly modified by baryons. The results obtained in this work will serve as inputs to and constraints on disc galaxy formation models, which will be explored in future work. Finally, we note that this paper presents a new and improved galaxy shape catalogue for weak lensing that covers the full SDSS Data Release 7 footprint.

  13. ELUCID. V. Lighting Dark Matter Halos with Galaxies

    NASA Astrophysics Data System (ADS)

    Yang, Xiaohu; Zhang, Youcai; Wang, Huiyuan; Liu, Chengze; Lu, Tianhuan; Li, Shijie; Shi, Feng; Jing, Y. P.; Mo, H. J.; van den Bosch, Frank C.; Kang, Xi; Cui, Weiguang; Guo, Hong; Li, Guoliang; Lim, S. H.; Lu, Yi; Luo, Wentao; Wei, Chengliang; Yang, Lei

    2018-06-01

    In a recent study, using the distribution of galaxies in the north galactic pole of the SDSS DR7 region enclosed in a 500 {h}-1 {Mpc} box, we carried out our ELUCID simulation (ELUCID III). Here, we light the dark matter halos and subhalos in the reconstructed region in the simulation with galaxies in the SDSS observations using a novel neighborhood abundance matching method. Before we make use of the galaxy–subhalo connections established in the ELUCID simulation to evaluate galaxy formation models, we set out to explore the reliability of such a link. For this purpose, we focus on the following few aspects of galaxies: (1) the central–subhalo luminosity and mass relations, (2) the satellite fraction of galaxies, (3) the conditional luminosity function (CLF) and conditional stellar mass function (CSMF) of galaxies, and (4) the cross-correlation functions between galaxies and dark matter particles, most of which are measured separately for all, red, and blue galaxy populations. We find that our neighborhood abundance matching method accurately reproduces the central–subhalo relations, satellite fraction, and the CLFs, CSMFs, and biases of galaxies. These features ensure that galaxy–subhalo connections thus established will be very useful in constraining galaxy formation processes. We provide some suggestions for the three levels of using the galaxy–subhalo pairs for galaxy formation constraints. The galaxy–subhalo links and the subhalo merger trees in the SDSS DR7 region extracted from our ELUCID simulation are available upon request.

  14. Galaxy Zoo: Comparing the visual morphology of synthetic galaxies from the Illustris simulation with those in the real Universe.

    NASA Astrophysics Data System (ADS)

    Dickinson, Hugh; Lintott, Chris; Scarlata, Claudia; Fortson, Lucy; Bamford, Steven; Cardamone, Carolin; Keel, William C.; Kruk, Sandor; Masters, Karen; Simmons, Brooke D.; Vogelsberger, Mark; Torrey, Paul; Snyder, Gregory; Galaxy Zoo Science Team

    2018-01-01

    We present a comparision between the Illustris simulations and classifications from Galaxy Zoo, aiming to test the ability of modern large-scale cosmological simulations to accurately reproduce the local galaxy population. This comparison is enabled by the increasingly high spatial and temporal resolution obtained by such surveys.Using classifications that were accumulated via the Galaxy Zoo citizen science interface, we compare the visual morphologies for simulated images of Illustris galaxies with a compatible sample of images drawn from the Sloan Digital Sky Survey (SDSS) Legacy Survey.For simulated galaxies with stellar masses less than 1011 M⊙, significant differences are identified, which are most likely due to the limited resolution of the simulation, but could be revealing real differences in the dynamical evolution of populations of galaxies in the real and model universes. Above 1011 M⊙, Illustris galaxy morphologies correspond better with those of their SDSS counterparts, although even in this mass range the simulation appears to underproduce obviously disk-like galaxies. Morphologies of Illustris galaxies less massive than 1011 M⊙ should be treated with care.

  15. Properties of CGM-Absorbing Galaxies

    NASA Astrophysics Data System (ADS)

    Hamill, Colin; Conway, Matthew; Apala, Elizabeth; Scott, Jennifer

    2018-01-01

    We extend the results of a study of the sightlines of 45 low-redshift quasars (0.06 < z < 0.85) observed by HST/COS that lie within the Sloan Digital Sky Survey. We have used photometric data from the SDSS DR12, along with the known absorption characteristics of the intergalactic medium and circumgalactic medium, to identify the most probable galaxy matches to absorbers in the spectroscopic dataset. Here, we use photometric data and measured galaxy parameters from SDSS DR12 to examine the distributions of galaxy properties such as virial radius, morphology, and position angle among those that match to absorbers within a specific range of impact parameters. We compare those distributions to galaxies within the same impact parameter range that are not matched to any absorber in the HST/COS spectrum in order to investigate global properties of the circumgalactic medium.

  16. VLT adaptive optics search for luminous substructures in the lens galaxy towards SDSS J0924+0219

    NASA Astrophysics Data System (ADS)

    Faure, C.; Sluse, D.; Cantale, N.; Tewes, M.; Courbin, F.; Durrer, P.; Meylan, G.

    2011-12-01

    The anomalous flux ratios between quasar images are suspected of being caused by substructures in lens galaxies. We present new deep and high-resolution H and Ks imaging of the strongly lensed quasar SDSS J0924+0219 obtained using the ESO VLT with adaptive optics and the laser guide star system. SDSS J0924+0219 is particularly interesting because the observed flux ratio between the quasar images vastly disagree with the predictions from smooth mass models. With our adaptive optics observations we find a luminous object, Object L, located ~0.3'' to the north of the lens galaxy, but we show that it cannot be responsible for the anomalous flux ratios. Object L as well as a luminous extension of the lens galaxy to the south are seen in the archival HST/ACS image in the F814W filter. This suggests that Object L is part of a bar in the lens galaxy, as also supported by the presence of a significant disk component in the light profile of the lens galaxy. Finally, we find no evidence of any other luminous substructure that may explain the quasar images flux ratios. However, owing to the persistence of the flux ratio anomaly over time (~7 years), a combination of microlensing and millilensing is the favorite explanation for the observations. Based on observations obtained with the ESO VLT at Paranal observatory (Prog ID 084.A-0762(A); PI: Meylan). Also based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with the CASTLES (Cfa-Arizona Space Telescope LEns Survey) survey (ID: 9744, PI: C. S. Kochanek).

  17. Galaxy Zoo: Morphological Classification of Galaxy Images from the Illustris  Simulation

    NASA Astrophysics Data System (ADS)

    Dickinson, Hugh; Fortson, Lucy; Lintott, Chris; Scarlata, Claudia; Willett, Kyle; Bamford, Steven; Beck, Melanie; Cardamone, Carolin; Galloway, Melanie; Simmons, Brooke; Keel, William; Kruk, Sandor; Masters, Karen; Vogelsberger, Mark; Torrey, Paul; Snyder, Gregory F.

    2018-02-01

    Modern large-scale cosmological simulations model the universe with increasing sophistication and at higher spatial and temporal resolutions. These ongoing enhancements permit increasingly detailed comparisons between the simulation outputs and real observational data. Recent projects such as Illustris are capable of producing simulated images that are designed to be comparable to those obtained from local surveys. This paper tests the degree to which Illustris achieves this goal across a diverse population of galaxies using visual morphologies derived from Galaxy Zoo citizen scientists. Morphological classifications provided by these volunteers for simulated galaxies are compared with similar data for a compatible sample of images drawn from the Sloan Digital Sky Survey (SDSS) Legacy Survey. This paper investigates how simple morphological characterization by human volunteers asked to distinguish smooth from featured systems differs between simulated and real galaxy images. Significant differences are identified, which are most likely due to the limited resolution of the simulation, but which could be revealing real differences in the dynamical evolution of populations of galaxies in the real and model universes. Specifically, for stellar masses {M}\\star ≲ {10}11 {M}ȯ , a substantially larger proportion of Illustris galaxies that exhibit disk-like morphology or visible substructure, relative to their SDSS counterparts. Toward higher masses, the visual morphologies for simulated and observed galaxies converge and exhibit similar distributions. The stellar mass threshold indicated by this divergent behavior confirms recent works using parametric measures of morphology from Illustris simulated images. When {M}\\star ≳ {10}11 {M}ȯ , the Illustris data set contains substantially fewer galaxies that classifiers regard as unambiguously featured. In combination, these results suggest that comparison between the detailed properties of observed and simulated galaxies

  18. SDSS-IV eBOSS emission-line galaxy pilot survey

    DOE PAGES

    Comparat, J.; Delubac, T.; Jouvel, S.; ...

    2016-08-09

    The Sloan Digital Sky Survey IV extended Baryonic Oscillation Spectroscopic Survey (SDSS-IV/eBOSS) will observe 195,000 emission-line galaxies (ELGs) to measure the Baryonic Acoustic Oscillation standard ruler (BAO) at redshift 0.9. To test different ELG selection algorithms, 9,000 spectra were observed with the SDSS spectrograph as a pilot survey based on data from several imaging surveys. First, using visual inspection and redshift quality flags, we show that the automated spectroscopic redshifts assigned by the pipeline meet the quality requirements for a reliable BAO measurement. We also show the correlations between sky emission, signal-to-noise ratio in the emission lines, and redshift error.more » Then we provide a detailed description of each target selection algorithm we tested and compare them with the requirements of the eBOSS experiment. As a result, we provide reliable redshift distributions for the different target selection schemes we tested. Lastly, we determine an target selection algorithms that is best suited to be applied on DECam photometry because they fulfill the eBOSS survey efficiency requirements.« less

  19. A relationship of polycyclic aromatic hydrocarbon features with galaxy merger in star-forming galaxies at z < 0.2

    NASA Astrophysics Data System (ADS)

    Murata, Katsuhiro L.; Yamada, Rika; Oyabu, Shinki; Kaneda, Hidehiro; Ishihara, Daisuke; Yamagishi, Mitsuyoshi; Kokusho, Takuma; Takeuchi, Tsutomu T.

    2017-11-01

    Using the AKARI, Wide-field Infrared Survey Explorer (WISE), Infrared Astronomical Satellite (IRAS), Sloan Digital Sky Survey (SDSS) and Hubble Space Telescope (HST) data, we investigated the relation of polycyclic aromatic hydrocarbon (PAH) mass (MPAH), very small grain mass (MVSG), big grain mass (MBG) and stellar mass (Mstar) with galaxy merger for 55 star-forming galaxies at redshift z < 0.2. Using the SDSS image at z < 0.1 and the HST image at z > 0.1, we divided the galaxies into merger galaxies and non-merger galaxies with the morphological parameter asymmetry A, and quantified merging stages of galaxies based on the morphological indicators, the second-order momentum of the brightest 20 per cent region M20 and the Gini coefficient. We find that MPAH/MBG of merger galaxies tend to be lower than that of non-merger galaxies and there are no systematic differences of MVSG/MBG and MBG/Mstar between merger galaxies and non-merger galaxies. We find that galaxies with very low MPAH/MBG seem to be merger galaxies at late stages. These results suggest that PAHs are partly destroyed at late stages of merging processes. Furthermore, we investigated MPAH/MBG variations in radiation field intensity strength G0 and the emission line ratio of [O I] λ 6300/Hα that is a shock tracer for merger galaxies and find that MPAH/MBG decreases with increasing both G0 and [O I]/Hα. PAH destruction is likely to be caused by two processes: strong radiation fields and large-scale shocks during merging processes of galaxies.

  20. Isolated Galaxies and Isolated Satellite Systems

    NASA Astrophysics Data System (ADS)

    Ann, H. B.; Park, C.; Choi, Y. Y.

    2010-10-01

    We search for isolated galaxies using a volume-limited sample of galaxies with 0.02 < z < 0.04742 from SDSS DR7 supplemented by bright galaxies. We devise a diagnostic tool to select isolated galaxies in different environments using the projected separation (rp) normalized by the virial radius of the nearest neighbor (rvir,nei) and the local background density. We find that the isolation condition of rp > rvir,nei and ρ < ρbar well segregates the CIG galaxies. We confirm the morphology conformity between the host and their satellites, which suggests the importance to galaxy evolution of hydrodynamic interactions among galaxies within their virial radii.

  1. GALAXY ZOO MORPHOLOGY AND PHOTOMETRIC REDSHIFTS IN THE SLOAN DIGITAL SKY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Way, M. J.

    It has recently been demonstrated that one can accurately derive galaxy morphology from particular primary and secondary isophotal shape estimates in the Sloan Digital Sky Survey (SDSS) imaging catalog. This was accomplished by applying Machine Learning techniques to the Galaxy Zoo morphology catalog. Using the broad bandpass photometry of the SDSS in combination with precise knowledge of galaxy morphology should help in estimating more accurate photometric redshifts for galaxies. Using the Galaxy Zoo separation for spirals and ellipticals in combination with SDSS photometry we attempt to calculate photometric redshifts. In the best case we find that the root-mean-square error formore » luminous red galaxies classified as ellipticals is as low as 0.0118. Given these promising results we believe better photometric redshift estimates for all galaxies in the SDSS ({approx}350 million) will be feasible if researchers can also leverage their derived morphologies via Machine Learning. These initial results look to be promising for those interested in estimating weak lensing, baryonic acoustic oscillation, and other fields dependent upon accurate photometric redshifts.« less

  2. Spectral fitting of SDSS passive galaxies with α-enhanced single stellar populations

    NASA Astrophysics Data System (ADS)

    Gomes, Jean Michel; Coelho, Paula

    2012-08-01

    The power of population synthesis as a mean to estimate the star-formation and chemical histories of galaxies has been well established in the last decade. The major developments were due to a huge avalanche of methods, codes and high-quality galaxy data sets, such as the 2dF, 6dF and SDSS surveys. Semi-empirical spectral synthesis allows for the decomposition of a galaxy spectrum in terms of linear combinations of base elements, i.e. Single Stellar Populations (SSPs) of different ages and metallicities, which are computed from evolutionary synthesis codes (BPASS, GALEV, GALAXEV, MILES, PÉGASE, etc. . .), containing distinct ingredients like: stellar library, evolutionary tracks, metallicities and Initial Mass Function. In general, they have solar-scaled relative abundances, but this is about to change with the unfolding of new α-enhanced SSP models (Coelho et al. 2007). However, passive galaxies have some spectral features corresponding to ``enhanced-ratios'' ([E/Fe]), like O, Ne, Si, S, Mg, Na, C and N over Fe that are not well modeled using solar-scaled SSPs (Trager et al. 2000), leading to residuals between observed and modeled spectra, which also correlate with the velocity dispersion (σ*) and stellar mass (M *): Massive galaxies exhibit a larger [E/Fe] discrepancy than less massive ones. This result can be interpreted as a signature of distinct previous star-formation efficiencies in passive galaxies, leading to distinctive ratios of type Ia and II SNe. We have applied the starlight spectral synthesis code (Cid Fernandes et al. 2005) to a sample of ~ 1000 passive galaxies from the SDSS DR7 with a S/N at the continuum >= 20 to investigate possible enhancements in the derived [E/Fe] ratios. Three sets of SSPs based on Coelho et al. (2007) theoretical models and Walcher et al. (2009) prescriptions were computed for [α/Fe]=0.0, [α/Fe]=0.2 and [α/Fe]=0.4. Our aim is to determine: (1) the quality of the fits, (2) the mean stellar age and metallicity

  3. Mapping Nearby Galaxies at APO: The MaNGA IFU Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Law, David R.; MaNGA Team

    2014-01-01

    MaNGA is a new survey that will begin in August 2014 as part of SDSS-IV with the aim of obtaining integral-field spectroscopy for an unprecedented sample of 10,000 nearby galaxies. MaNGA's key goals are to understand the "life cycle" of present day galaxies from imprinted clues of their birth and assembly, through their ongoing growth via star formation and merging, to their death from quenching at late times. To achieve these goals, MaNGA will channel the impressive capabilities of the SDSS-III BOSS spectrographs in a fundamentally new direction by marshaling the unique power of 2D spectroscopy. MaNGA will deploy 17 pluggable Integral Field Units (IFUs) made by grouping fibers into hexagonal bundles ranging from 19 to 127 fibers each. The spectra obtained by MaNGA will cover the wavelength range 3600-10,000 Angstroms (with a velocity resolution of ~ 60 km/s) and will characterize the internal composition and the dynamical state of a sample of 10,000 galaxies with stellar masses greater than 10^9 Msun and an average redshift of z ~ 0.03. Such IFU observations enable a leap forward because they provide an added dimension to the information available for each galaxy. MaNGA will provide two-dimensional maps of stellar velocity and velocity dispersion, mean stellar age and star formation history, stellar metallicity, element abundance ratio, stellar mass surface density, ionized gas velocity, ionized gas metallicity, star formation rate, and dust extinction for a statistically powerful sample. This legacy dataset will address urgent questions in our understanding of galaxy formation, including 1) The formation history of galaxy subcomponents, including the disk, bulge, and dark matter halo, 2) The nature of present-day galaxy growth via merging and gas accretion, and 3) The processes responsible for terminating star formation in galaxies. Finally, MaNGA will also play a vital role in the coming era of advanced IFU instrumentation, serving as the low-z anchor for

  4. The Alignment effect of brightest cluster galaxies in the SDSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, R. S. J.; Annis, J.; Strauss, M. A.

    2001-10-01

    One of the most vital observational clues for unraveling the origin of Brightest Cluster Galaxies (BCG) is the observed alignment of the BCGs with their host cluster and its surroundings. We have examined the BCG-cluster alignment effect, using clusters of galaxies detected from the Sloan Digital Sky Survey (SDSS). We find that the BCGs are preferentially aligned with the principal axis of their hosts, to a much higher redshift (z >~ 0.3) than probed by previous studies (z <~ 0.1). The alignment effect strongly depends on the magnitude difference of the BCG and the second and third brightest cluster members:more » we find a strong alignment effect for the dominant BCGs, while less dominant BCGs do not show any departure from random alignment with respect to the cluster. We therefore claim that the alignment process originates from the same process that makes the BCG grow dominant, be it direct mergers in the early stage of cluster formation, or a later process that resembles the galactic cannibalism scenario. We do not find strong evidence for (or against) redshift evolution between 0« less

  5. OVERVIEW OF THE SDSS-IV MaNGA SURVEY: MAPPING NEARBY GALAXIES AT APACHE POINT OBSERVATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bundy, Kevin; Bershady, Matthew A.; Wake, David A.

    2015-01-01

    We present an overview of a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV) that began on 2014 July 1. MaNGA will investigate the internal kinematic structure and composition of gas and stars in an unprecedented sample of 10,000 nearby galaxies. We summarize essential characteristics of the instrument and survey design in the context of MaNGA's key science goals and present prototype observations to demonstrate MaNGA's scientific potential. MaNGA employs dithered observations with 17 fiber-bundle integral field units that vary inmore » diameter from 12'' (19 fibers) to 32'' (127 fibers). Two dual-channel spectrographs provide simultaneous wavelength coverage over 3600-10300 Å at R ∼ 2000. With a typical integration time of 3 hr, MaNGA reaches a target r-band signal-to-noise ratio of 4-8 (Å{sup –1} per 2'' fiber) at 23 AB mag arcsec{sup –2}, which is typical for the outskirts of MaNGA galaxies. Targets are selected with M {sub *} ≳ 10{sup 9} M {sub ☉} using SDSS-I redshifts and i-band luminosity to achieve uniform radial coverage in terms of the effective radius, an approximately flat distribution in stellar mass, and a sample spanning a wide range of environments. Analysis of our prototype observations demonstrates MaNGA's ability to probe gas ionization, shed light on recent star formation and quenching, enable dynamical modeling, decompose constituent components, and map the composition of stellar populations. MaNGA's spatially resolved spectra will enable an unprecedented study of the astrophysics of nearby galaxies in the coming 6 yr.« less

  6. The large-scale three-point correlation function of the SDSS BOSS DR12 CMASS galaxies

    NASA Astrophysics Data System (ADS)

    Slepian, Zachary; Eisenstein, Daniel J.; Beutler, Florian; Chuang, Chia-Hsun; Cuesta, Antonio J.; Ge, Jian; Gil-Marín, Héctor; Ho, Shirley; Kitaura, Francisco-Shu; McBride, Cameron K.; Nichol, Robert C.; Percival, Will J.; Rodríguez-Torres, Sergio; Ross, Ashley J.; Scoccimarro, Román; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana

    2017-06-01

    We report a measurement of the large-scale three-point correlation function of galaxies using the largest data set for this purpose to date, 777 202 luminous red galaxies in the Sloan Digital Sky Survey Baryon Acoustic Oscillation Spectroscopic Survey (SDSS BOSS) DR12 CMASS sample. This work exploits the novel algorithm of Slepian & Eisenstein to compute the multipole moments of the 3PCF in O(N^2) time, with N the number of galaxies. Leading-order perturbation theory models the data well in a compressed basis where one triangle side is integrated out. We also present an accurate and computationally efficient means of estimating the covariance matrix. With these techniques, the redshift-space linear and non-linear bias are measured, with 2.6 per cent precision on the former if σ8 is fixed. The data also indicate a 2.8σ preference for the BAO, confirming the presence of BAO in the three-point function.

  7. Looking Wider and Further: The Evolution of Galaxies Inside Galaxy Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuanyuan

    2016-01-01

    Galaxy clusters are rare objects in the universe, but on-going wide field optical surveys are identifying many thousands of them to redshift 1.0 and beyond. Using early data from the Dark Energy Survey (DES) and publicly released data from the Sloan Digital Sky Survey (SDSS), this dissertation explores the evolution of cluster galaxies in the redshift range from 0 to 1.0. As it is common for deep wide field sky surveys like DES to struggle with galaxy detection efficiency at cluster core, the first component of this dissertation describes an efficient package that helps resolving the issue. The second partmore » focuses on the formation of cluster galaxies. The study quantifies the growth of cluster bright central galaxies (BCGs), and argues for the importance of merging and intra-cluster light production during BCG evolution. An analysis of cluster red sequence galaxy luminosity function is also performed, demonstrating that the abundance of these galaxies is mildly dependent on cluster mass and redshift. The last component of the dissertation characterizes the properties of galaxy filaments to help understanding cluster environments« less

  8. Galaxy And Mass Assembly (GAMA): the connection between metals, specific SFR and H I gas in galaxies: the Z-SSFR relation

    NASA Astrophysics Data System (ADS)

    Lara-López, M. A.; Hopkins, A. M.; López-Sánchez, A. R.; Brough, S.; Colless, M.; Bland-Hawthorn, J.; Driver, S.; Foster, C.; Liske, J.; Loveday, J.; Robotham, A. S. G.; Sharp, R. G.; Steele, O.; Taylor, E. N.

    2013-06-01

    We study the interplay between gas phase metallicity (Z), specific star formation rate (SSFR) and neutral hydrogen gas (H I) for galaxies of different stellar masses. Our study uses spectroscopic data from Galaxy and Mass Assembly and Sloan Digital Sky Survey (SDSS) star-forming galaxies, as well as H I detection from the Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA) and Galex Arecibo SDSS Survey (GASS) public catalogues. We present a model based on the Z-SSFR relation that shows that at a given stellar mass, depending on the amount of gas, galaxies will follow opposite behaviours. Low-mass galaxies with a large amount of gas will show high SSFR and low metallicities, while low-mass galaxies with small amounts of gas will show lower SSFR and high metallicities. In contrast, massive galaxies with a large amount of gas will show moderate SSFR and high metallicities, while massive galaxies with small amounts of gas will show low SSFR and low metallicities. Using ALFALFA and GASS counterparts, we find that the amount of gas is related to those drastic differences in Z and SSFR for galaxies of a similar stellar mass.

  9. The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory

    NASA Astrophysics Data System (ADS)

    Albareti, Franco D.; Allende Prieto, Carlos; Almeida, Andres; Anders, Friedrich; Anderson, Scott; Andrews, Brett H.; Aragón-Salamanca, Alfonso; Argudo-Fernández, Maria; Armengaud, Eric; Aubourg, Eric; Avila-Reese, Vladimir; Badenes, Carles; Bailey, Stephen; Barbuy, Beatriz; Barger, Kat; Barrera-Ballesteros, Jorge; Bartosz, Curtis; Basu, Sarbani; Bates, Dominic; Battaglia, Giuseppina; Baumgarten, Falk; Baur, Julien; Bautista, Julian; Beers, Timothy C.; Belfiore, Francesco; Bershady, Matthew; Bertran de Lis, Sara; Bird, Jonathan C.; Bizyaev, Dmitry; Blanc, Guillermo A.; Blanton, Michael; Blomqvist, Michael; Bolton, Adam S.; Borissova, J.; Bovy, Jo; Nielsen Brandt, William; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Burtin, Etienne; Busca, Nicolás G.; Orlando Camacho Chavez, Hugo; Cano Díaz, M.; Cappellari, Michele; Carrera, Ricardo; Chen, Yanping; Cherinka, Brian; Cheung, Edmond; Chiappini, Cristina; Chojnowski, Drew; Chuang, Chia-Hsun; Chung, Haeun; Cirolini, Rafael Fernando; Clerc, Nicolas; Cohen, Roger E.; Comerford, Julia M.; Comparat, Johan; Correa do Nascimento, Janaina; Cousinou, Marie-Claude; Covey, Kevin; Crane, Jeffrey D.; Croft, Rupert; Cunha, Katia; Darling, Jeremy; Davidson, James W., Jr.; Dawson, Kyle; Da Costa, Luiz; Da Silva Ilha, Gabriele; Deconto Machado, Alice; Delubac, Timothée; De Lee, Nathan; De la Macorra, Axel; De la Torre, Sylvain; Diamond-Stanic, Aleksandar M.; Donor, John; Downes, Juan Jose; Drory, Niv; Du, Cheng; Du Mas des Bourboux, Hélion; Dwelly, Tom; Ebelke, Garrett; Eigenbrot, Arthur; Eisenstein, Daniel J.; Elsworth, Yvonne P.; Emsellem, Eric; Eracleous, Michael; Escoffier, Stephanie; Evans, Michael L.; Falcón-Barroso, Jesús; Fan, Xiaohui; Favole, Ginevra; Fernandez-Alvar, Emma; Fernandez-Trincado, J. G.; Feuillet, Diane; Fleming, Scott W.; Font-Ribera, Andreu; Freischlad, Gordon; Frinchaboy, Peter; Fu, Hai; Gao, Yang; Garcia, Rafael A.; Garcia-Dias, R.; Garcia-Hernández, D. A.; Garcia Pérez, Ana E.; Gaulme, Patrick; Ge, Junqiang; Geisler, Douglas; Gillespie, Bruce; Gil Marin, Hector; Girardi, Léo; Goddard, Daniel; Gomez Maqueo Chew, Yilen; Gonzalez-Perez, Violeta; Grabowski, Kathleen; Green, Paul; Grier, Catherine J.; Grier, Thomas; Guo, Hong; Guy, Julien; Hagen, Alex; Hall, Matt; Harding, Paul; Harley, R. E.; Hasselquist, Sten; Hawley, Suzanne; Hayes, Christian R.; Hearty, Fred; Hekker, Saskia; Hernandez Toledo, Hector; Ho, Shirley; Hogg, David W.; Holley-Bockelmann, Kelly; Holtzman, Jon A.; Holzer, Parker H.; Hu, Jian; Huber, Daniel; Hutchinson, Timothy Alan; Hwang, Ho Seong; Ibarra-Medel, Héctor J.; Ivans, Inese I.; Ivory, KeShawn; Jaehnig, Kurt; Jensen, Trey W.; Johnson, Jennifer A.; Jones, Amy; Jullo, Eric; Kallinger, T.; Kinemuchi, Karen; Kirkby, David; Klaene, Mark; Kneib, Jean-Paul; Kollmeier, Juna A.; Lacerna, Ivan; Lane, Richard R.; Lang, Dustin; Laurent, Pierre; Law, David R.; Leauthaud, Alexie; Le Goff, Jean-Marc; Li, Chen; Li, Cheng; Li, Niu; Li, Ran; Liang, Fu-Heng; Liang, Yu; Lima, Marcos; Lin, Lihwai; Lin, Lin; Lin, Yen-Ting; Liu, Chao; Long, Dan; Lucatello, Sara; MacDonald, Nicholas; MacLeod, Chelsea L.; Mackereth, J. Ted; Mahadevan, Suvrath; Geimba Maia, Marcio Antonio; Maiolino, Roberto; Majewski, Steven R.; Malanushenko, Olena; Malanushenko, Viktor; Dullius Mallmann, Nícolas; Manchado, Arturo; Maraston, Claudia; Marques-Chaves, Rui; Martinez Valpuesta, Inma; Masters, Karen L.; Mathur, Savita; McGreer, Ian D.; Merloni, Andrea; Merrifield, Michael R.; Meszáros, Szabolcs; Meza, Andres; Miglio, Andrea; Minchev, Ivan; Molaverdikhani, Karan; Montero-Dorta, Antonio D.; Mosser, Benoit; Muna, Demitri; Myers, Adam; Nair, Preethi; Nandra, Kirpal; Ness, Melissa; Newman, Jeffrey A.; Nichol, Robert C.; Nidever, David L.; Nitschelm, Christian; O’Connell, Julia; Oravetz, Audrey; Oravetz, Daniel J.; Pace, Zachary; Padilla, Nelson; Palanque-Delabrouille, Nathalie; Pan, Kaike; Parejko, John; Paris, Isabelle; Park, Changbom; Peacock, John A.; Peirani, Sebastien; Pellejero-Ibanez, Marcos; Penny, Samantha; Percival, Will J.; Percival, Jeffrey W.; Perez-Fournon, Ismael; Petitjean, Patrick; Pieri, Matthew; Pinsonneault, Marc H.; Pisani, Alice; Prada, Francisco; Prakash, Abhishek; Price-Jones, Natalie; Raddick, M. Jordan; Rahman, Mubdi; Raichoor, Anand; Barboza Rembold, Sandro; Reyna, A. M.; Rich, James; Richstein, Hannah; Ridl, Jethro; Riffel, Rogemar A.; Riffel, Rogério; Rix, Hans-Walter; Robin, Annie C.; Rockosi, Constance M.; Rodríguez-Torres, Sergio; Rodrigues, Thaíse S.; Roe, Natalie; Lopes, A. Roman; Román-Zúñiga, Carlos; Ross, Ashley J.; Rossi, Graziano; Ruan, John; Ruggeri, Rossana; Runnoe, Jessie C.; Salazar-Albornoz, Salvador; Salvato, Mara; Sanchez, Sebastian F.; Sanchez, Ariel G.; Sanchez-Gallego, José R.; Santiago, Basílio Xavier; Schiavon, Ricardo; Schimoia, Jaderson S.; Schlafly, Eddie; Schlegel, David J.; Schneider, Donald P.; Schönrich, Ralph; Schultheis, Mathias; Schwope, Axel; Seo, Hee-Jong; Serenelli, Aldo; Sesar, Branimir; Shao, Zhengyi; Shetrone, Matthew; Shull, Michael; Silva Aguirre, Victor; Skrutskie, M. F.; Slosar, Anže; Smith, Michael; Smith, Verne V.; Sobeck, Jennifer; Somers, Garrett; Souto, Diogo; Stark, David V.; Stassun, Keivan G.; Steinmetz, Matthias; Stello, Dennis; Storchi Bergmann, Thaisa; Strauss, Michael A.; Streblyanska, Alina; Stringfellow, Guy S.; Suarez, Genaro; Sun, Jing; Taghizadeh-Popp, Manuchehr; Tang, Baitian; Tao, Charling; Tayar, Jamie; Tembe, Mita; Thomas, Daniel; Tinker, Jeremy; Tojeiro, Rita; Tremonti, Christy; Troup, Nicholas; Trump, Jonathan R.; Unda-Sanzana, Eduardo; Valenzuela, O.; Van den Bosch, Remco; Vargas-Magaña, Mariana; Vazquez, Jose Alberto; Villanova, Sandro; Vivek, M.; Vogt, Nicole; Wake, David; Walterbos, Rene; Wang, Yuting; Wang, Enci; Weaver, Benjamin Alan; Weijmans, Anne-Marie; Weinberg, David H.; Westfall, Kyle B.; Whelan, David G.; Wilcots, Eric; Wild, Vivienne; Williams, Rob A.; Wilson, John; Wood-Vasey, W. M.; Wylezalek, Dominika; Xiao, Ting; Yan, Renbin; Yang, Meng; Ybarra, Jason E.; Yeche, Christophe; Yuan, Fang-Ting; Zakamska, Nadia; Zamora, Olga; Zasowski, Gail; Zhang, Kai; Zhao, Cheng; Zhao, Gong-Bo; Zheng, Zheng; Zheng, Zheng; Zhou, Zhi-Min; Zhu, Guangtun; Zinn, Joel C.; Zou, Hu

    2017-12-01

    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) began observations in 2014 July. It pursues three core programs: the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2), Mapping Nearby Galaxies at APO (MaNGA), and the Extended Baryon Oscillation Spectroscopic Survey (eBOSS). As well as its core program, eBOSS contains two major subprograms: the Time Domain Spectroscopic Survey (TDSS) and the SPectroscopic IDentification of ERosita Sources (SPIDERS). This paper describes the first data release from SDSS-IV, Data Release 13 (DR13). DR13 makes publicly available the first 1390 spatially resolved integral field unit observations of nearby galaxies from MaNGA. It includes new observations from eBOSS, completing the Sloan Extended QUasar, Emission-line galaxy, Luminous red galaxy Survey (SEQUELS), which also targeted variability-selected objects and X-ray-selected objects. DR13 includes new reductions of the SDSS-III BOSS data, improving the spectrophotometric calibration and redshift classification, and new reductions of the SDSS-III APOGEE-1 data, improving stellar parameters for dwarf stars and cooler stars. DR13 provides more robust and precise photometric calibrations. Value-added target catalogs relevant for eBOSS, TDSS, and SPIDERS and an updated red-clump catalog for APOGEE are also available. This paper describes the location and format of the data and provides references to important technical papers. The SDSS web site, http://www.sdss.org, provides links to the data, tutorials, examples of data access, and extensive documentation of the reduction and analysis procedures. DR13 is the first of a scheduled set that will contain new data and analyses from the planned ∼6 yr operations of SDSS-IV.

  10. SDSS J211852.96-073227.5: a new γ-ray flaring narrow-line Seyfert 1 galaxy

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Yuan, Weimin; Yao, Su; Li, Ye; Zhang, Jin; Zhou, Hongyan; Komossa, S.; Liu, He-Yang; Jin, Chichuan

    2018-07-01

    We report on the identification of a new γ-ray-emitting narrow-line Seyfert 1 (NLS1) galaxy, SDSS J211852.96-073227.5 (hereinafter J2118-0732). The galaxy, at a redshift of 0.26, is associated with a radio source of flat/inverted spectrum at high radio frequencies. The analysis of its optical spectrum obtained in the Sloan Digital Sky Survey (SDSS) revealed a small linewidth of the broad component of the Hβ line (full width at half-maximum = 1585 km s-1), making it a radio-loud NLS1 galaxy - an intriguing class of active galactic nuclei with exceptional multiwavelength properties. A new γ-ray source centred at J2118-0732 was sporadically detected during 2009-2013 in form of flares by the Fermi-LAT. Our XMM-Newton observations revealed a flat X-ray spectrum described by a simple power law, and a flux variation by a factor of ˜2.5 in five months. The source also shows intraday variability in the infrared band. Its broad-band spectral energy distribution can be modelled by emission from a simple one-zone leptonic jet model, and the flux drop from infrared to X-rays in five months can be explained by changes of the jet parameters, though the exact values may be subject to relatively large uncertainties. With the NLS1-blazar composite nucleus, the clear detection of the host galaxy, and the synchronous variations in the multiwavelength fluxes, J2118-0732 provides a new perspective on the formation and evolution of relativistic jets under the regime of relatively small black hole masses and high accretion rates.

  11. Nuclear starburst activity induced by elongated bulges in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Eunbin; Kim, Sungsoo S.; Choi, Yun-Young; Lee, Gwang-Ho; de Grijs, Richard; Lee, Myung Gyoon; Hwang, Ho Seong

    2018-06-01

    We study the effects of bulge elongation on the star formation activity in the centres of spiral galaxies using the data from the Sloan Digital Sky Survey Data Release 7. We construct a volume-limited sample of face-on spiral galaxies with Mr < -19.5 mag at 0.02 ≤z< 0.055 by excluding barred galaxies, where the aperture of the SDSS spectroscopic fibre covers the bulges of the galaxies. We adopt the ellipticity of bulges measured by Simard et al. (2011) who performed two-dimensional bulge+disc decompositions using the SDSS images of galaxies, and identify nuclear starbursts using the fibre specific star formation rates derived from the SDSS spectra. We find a statistically significant correlation between bulge elongation and nuclear starbursts in the sense that the fraction of nuclear starbursts increases with bulge elongation. This correlation is more prominent for fainter and redder galaxies, which exhibit higher ratios of elongated bulges. We find no significant environmental dependence of the correlation between bulge elongation and nuclear starbursts. These results suggest that non-axisymmetric bulges can efficiently feed the gas into the centre of galaxies to trigger nuclear starburst activity.

  12. Properties of galaxies around the most massive SMBHs

    NASA Astrophysics Data System (ADS)

    Shirasaki, Yuji; Komiya, Yutaka; Ohishi, Masatoshi; Mizumoto, Yoshihiko

    2015-08-01

    We present result of the clustering analysis performed between AGNs and galaxies. AGN samples with redshift 0.1 - 1.0 were extracted from AGN properties catalogs which contain virial mass estimates of SMBHs. Galaxy samples were extracted from SDSS DR8 catalog and UKIDSS DR9 LAS catalog. The catalogs of SDSS and UKIDSS were merged and used to estimate the IR-opt color and IR magnitude in the rest frame by SED fitting. As we had no redshift information on the galaxy samples, stacking method was applied. We investigated the BH mass dependence of cross correlation length, red galaxy fraction at their environment, and luminosity function of galaxies. We found that the cross correlation length increase above M_BH >= 10^{8.2} Msol, and red galaxies dominate the environment of AGNs with M_BH >= 10^{9} Msol. This result indicates that the most massive SMBHs are mainly fueled by accretion of hot halo gas.

  13. Properties of galaxies around the most massive SMBHs

    NASA Astrophysics Data System (ADS)

    Shirasaki, Yuji; Komiya, Yutaka; Ohishi, Masatoshi; Mizumoto, Yoshihiko

    We present result of the clustering analysis performed between AGNs and galaxies. AGN samples with redshift 0.1-1.0 were extracted from AGN properties catalogs which contain virial mass estimates of SMBHs. Galaxy samples were extracted from SDSS DR8 catalog and UKIDSS DR9 LAS catalog. The catalogs of SDSS and UKIDSS were merged and used to estimate the IR-opt color and IR magnitude in the rest frame by SED fitting. As we had no redshift information on the galaxy samples, stacking method was applied. We investigated the BH mass dependence of cross correlation length, red galaxy fraction at their environment, and luminosity function of galaxies. We found that the cross correlation length increase above M BH >= 108.2 M ⊙, and red galaxies dominate the environment of AGNs with M BH >= 109 M ⊙. This result indicates that the most massive SMBHs are mainly fueled by accretion of hot halo gas.

  14. Galaxy Zoo: Major Galaxy Mergers Are Not a Significant Quenching Pathway

    NASA Astrophysics Data System (ADS)

    Weigel, Anna K.; Schawinski, Kevin; Caplar, Neven; Carpineti, Alfredo; Hart, Ross E.; Kaviraj, Sugata; Keel, William C.; Kruk, Sandor J.; Lintott, Chris J.; Nichol, Robert C.; Simmons, Brooke D.; Smethurst, Rebecca J.

    2017-08-01

    We use stellar mass functions to study the properties and the significance of quenching through major galaxy mergers. In addition to SDSS DR7 and Galaxy Zoo 1 data, we use samples of visually selected major galaxy mergers and post-merger galaxies. We determine the stellar mass functions of the stages that we would expect major-merger-quenched galaxies to pass through on their way from the blue cloud to the red sequence: (1) major merger, (2) post-merger, (3) blue early type, (4) green early type, and (5) red early type. Based on their similar mass function shapes, we conclude that major mergers are likely to form an evolutionary sequence from star formation to quiescence via quenching. Relative to all blue galaxies, the major-merger fraction increases as a function of stellar mass. Major-merger quenching is inconsistent with the mass and environment quenching model. At z˜ 0, major-merger-quenched galaxies are unlikely to constitute the majority of galaxies that transition through the green valley. Furthermore, between z˜ 0-0.5, major-merger-quenched galaxies account for 1%-5% of all quenched galaxies at a given stellar mass. Major galaxy mergers are therefore not a significant quenching pathway, neither at z˜ 0 nor within the last 5 Gyr. The majority of red galaxies must have been quenched through an alternative quenching mechanism that causes a slow blue to red evolution. .

  15. VizieR Online Data Catalog: Galaxy Zoo 2: new classification (Hart+, 2016)

    NASA Astrophysics Data System (ADS)

    Hart, R. E.; Bamford, S. P.; Willett, K. W.; Masters, K. L.; Cardamone, C.; Lintott, C. J.; Mackay, R. J.; Nichol, R. C.; Rosslowe, C. K.; Simmons, B. D.; Smethurst, R. J.

    2017-11-01

    We make use of morphological information from the public data release of Galaxy Zoo 2. The galaxies classified by GZ2 were taken from the SDSS Data Release 7 (DR7; Abazajian et al. 2009ApJS..182..543A). The SDSS main galaxy sample is an r-band selected sample of galaxies in the legacy imaging area targeted for spectroscopic follow-up (Strauss et al., 2002AJ....124.1810S) The GZ2 sample contains essentially all well-resolved galaxies in DR7 down to a limiting absolute magnitude of mr<=17, supplemented by additional sets of galaxies in Stripe 82 for which deeper, co-added imaging exists (see W13 (Willett et al., 2013MNRAS.435.2835W, Cat. J/MNRAS/435/2835) for details). In this paper, we only consider galaxies with mr<=17 that were classified in normal-depth SDSS imaging and which have DR7 spectroscopic redshifts. We refer to this as our full sample, containing 228201 galaxies, to which the debiasing procedure described in Section 3.3 is applied. (1 data file).

  16. Distant clusters of galaxies in the 2XMM/SDSS footprint: follow-up observations with the LBT

    NASA Astrophysics Data System (ADS)

    Rabitz, A.; Lamer, G.; Schwope, A.; Takey, A.

    2017-11-01

    Context. Galaxy clusters at high redshift are important to test cosmological models and models for the growth of structure. They are difficult to find in wide-angle optical surveys, however, leaving dedicated follow-up of X-ray selected candidates as one promising identification route. Aims: We aim to increase the number of galaxy clusters beyond the SDSS-limit, z 0.75. Methods: We compiled a list of extended X-ray sources from the 2XMMp catalogue within the footprint of the Sloan Digital Sky Survey. Fields without optical counterpart were selected for further investigation. Deep optical imaging and follow-up spectroscopy were obtained with the Large Binocular Telescope, Arizona (LBT), of those candidates not known to the literature. Results: From initially 19 candidates, selected by visually screening X-ray images of 478 XMM-Newton observations and the corresponding SDSS images, 6 clusters were found in the literature. Imaging data through r,z filters were obtained for the remaining candidates, and 7 were chosen for multi-object (MOS) spectroscopy. Spectroscopic redshifts, optical magnitudes, and X-ray parameters (flux, temperature, and luminosity) are presented for the clusters with spectroscopic redshifts. The distant clusters studied here constitute one additional redshift bin for studies of the LX-T relation, which does not seem to evolve from high to low redshifts. Conclusions: The selection method of distant galaxy clusters presented here was highly successful. It is based solely on archival optical (SDSS) and X-ray (XMM-Newton) data. Out of 19 selected candidates, 6 of the 7 candidates selected for spectroscopic follow-up were verified as distant clusters, a further candidate is most likely a group of galaxies at z 1.21. Out of the remaining 12 candidates, 6 were known previously as galaxy clusters, one object is a likely X-ray emission from an AGN radio jet, and for 5 we see no clear evidence for them to be high-redshift galaxy clusters. Based on

  17. Do galaxy global relationships emerge from local ones? The SDSS IV MaNGA surface mass density-metallicity relation

    NASA Astrophysics Data System (ADS)

    Barrera-Ballesteros, Jorge K.; Heckman, Timothy M.; Zhu, Guangtun B.; Zakamska, Nadia L.; Sánchez, Sebastian F.; Law, David; Wake, David; Green, Jenny E.; Bizyaev, Dmitry; Oravetz, Daniel; Simmons, Audrey; Malanushenko, Elena; Pan, Kaike; Roman Lopes, Alexandre; Lane, Richard R.

    2016-12-01

    We present the stellar surface mass density versus gas metallicity (Σ*-Z) relation for more than 500 000 spatially resolved star-forming resolution elements (spaxels) from a sample of 653 disc galaxies included in the SDSS IV MaNGA survey. We find a tight relation between these local properties, with higher metallicities as the surface density increases. This relation extends over three orders of magnitude in the surface mass density and a factor of 4 in metallicity. We show that this local relationship can simultaneously reproduce two well-known properties of disc galaxies: their global mass-metallicity relationship and their radial metallicity gradients. We also find that the Σ*-Z relation is largely independent of the galaxy's total stellar mass and specific star formation rate (sSFR), except at low stellar mass and high sSFR. These results suggest that in the present-day universe local properties play a key role in determining the gas-phase metallicity in typical disc galaxies.

  18. A Catalog of Photometric Redshift and the Distribution of Broad Galaxy Morphologies

    NASA Astrophysics Data System (ADS)

    Paul, Nicholas; Virag, Nicholas; Shamir, Lior

    2018-06-01

    We created a catalog of photometric redshift of ~3,000,000 SDSS galaxies annotated by their broad morphology. The photometric redshift was optimized by testing and comparing several pattern recognition algorithms and variable selection strategies, trained and tested on a subset of the galaxies in the catalog that had spectra. The galaxies in the catalog have i magnitude brighter than 18 and Petrosian radius greater than 5.5''. The majority of these objects are not included in previous SDSS photometric redshift catalogs such as the photoz table of SDSS DR12. Analysis of the catalog shows that the number of galaxies in the catalog that are visually spiral increases until redshift of ~0.085, where it peaks and starts to decrease. It also shows that the number of spiral galaxies compared to elliptical galaxies drops as the redshift increases. The catalog is publicly available at https://figshare.com/articles/Morphology_and_photometric_redshift_catalog/4833593

  19. SDSS IV MaNGA - sSFR profiles and the slow quenching of discs in green valley galaxies

    NASA Astrophysics Data System (ADS)

    Belfiore, Francesco; Maiolino, Roberto; Bundy, Kevin; Masters, Karen; Bershady, Matthew; Oyarzún, Grecco; Lin, Lihwai; Cano-Diaz, Mariana; Wake, David; Spindler, Ashley; Thomas, Daniel; Brownstein, Joel R.; Drory, Niv; Yan, Renbin

    2018-03-01

    We study radial profiles in Hα equivalent width and specific star formation rate (sSFR) derived from spatially-resolved SDSS-IV MaNGA spectroscopy to gain insight on the physical mechanisms that suppress star formation and determine a galaxy's location in the SFR-M_\\star diagram. Even within the star-forming `main sequence', the measured sSFR decreases with stellar mass, both in an integrated and spatially-resolved sense. Flat sSFR radial profiles are observed for log(M_\\star / M_⊙ ) < 10.5, while star-forming galaxies of higher mass show a significant decrease in sSFR in the central regions, a likely consequence of both larger bulges and an inside-out growth history. Our primary focus is the green valley, constituted by galaxies lying below the star formation main sequence, but not fully passive. In the green valley we find sSFR profiles that are suppressed with respect to star-forming galaxies of the same mass at all galactocentric distances out to 2 effective radii. The responsible quenching mechanism therefore appears to affect the entire galaxy, not simply an expanding central region. The majority of green valley galaxies of log(M_\\star / M_⊙ ) > 10.0 are classified spectroscopically as central low-ionisation emission-line regions (cLIERs). Despite displaying a higher central stellar mass concentration, the sSFR suppression observed in cLIER galaxies is not simply due to the larger mass of the bulge. Drawing a comparison sample of star forming galaxies with the same M_\\star and Σ _{1 kpc} (the mass surface density within 1 kpc), we show that a high Σ _{1 kpc} is not a sufficient condition for determining central quiescence.

  20. SDSS IV MaNGA - sSFR profiles and the slow quenching of discs in green valley galaxies

    NASA Astrophysics Data System (ADS)

    Belfiore, Francesco; Maiolino, Roberto; Bundy, Kevin; Masters, Karen; Bershady, Matthew; Oyarzún, Grecco A.; Lin, Lihwai; Cano-Diaz, Mariana; Wake, David; Spindler, Ashley; Thomas, Daniel; Brownstein, Joel R.; Drory, Niv; Yan, Renbin

    2018-07-01

    We study radial profiles in H α equivalent width and specific star formation rate (sSFR) derived from spatially resolved SDSS-IV MaNGA spectroscopy to gain insight on the physical mechanisms that suppress star formation and determine a galaxy's location in the SFR-M⋆ diagram. Even within the star-forming `main sequence', the measured sSFR decreases with stellar mass, in both an integrated and spatially resolved sense. Flat sSFR radial profiles are observed for log(M⋆/M⊙) < 10.5, while star-forming galaxies of higher mass show a significant decrease in sSFR in the central regions, a likely consequence of both larger bulges and an inside-out growth history. Our primary focus is the green valley, constituted by galaxies lying below the star formation main sequence, but not fully passive. In the green valley we find sSFR profiles that are suppressed with respect to star-forming galaxies of the same mass at all galactocentric distances out to 2 effective radii. The responsible quenching mechanism therefore appears to affect the entire galaxy, not simply an expanding central region. The majority of green valley galaxies of log(M⋆/M⊙) > 10.0 are classified spectroscopically as central low-ionization emission-line regions (cLIERs). Despite displaying a higher central stellar mass concentration, the sSFR suppression observed in cLIER galaxies is not simply due to the larger mass of the bulge. Drawing a comparison sample of star-forming galaxies with the same M⋆ and Σ _{1 kpc} (the mass surface density within 1 kpc), we show that a high Σ _{1 kpc} is not a sufficient condition for determining central quiescence.

  1. Star formation history of the galaxy merger Mrk848 with SDSS-IV MaNGA

    NASA Astrophysics Data System (ADS)

    Yuan, Fang-Ting; Shen, Shiyin; Hao, Lei; Fernandez, Maria Argudo

    2017-03-01

    With the 3D data of SDSS-IV MaNGA (Bundy et al. 2015) spectra and multi-wavelength SED modeling, we expect to have a better understanding of the distribution of dust, gas and star formation of galaxy mergers. For a case study of the merging galaxy Mrk848, we use both UV-to-IR broadband SED and the MaNGA integral field spectroscopy to obtain its star formation histories at the tail and core regions. From the SED fitting and full spectral fitting, we find that the star formation in the tail regions are affected by the interaction earlier than the core regions. The core regions show apparently two times of star formation and a strong burst within 500Myr, indicating the recent star formation is triggered by the interaction. The star formation histories derived from these two methods are basically consistent.

  2. Examining Gaseous Behavior of Galaxies and their Environments

    NASA Astrophysics Data System (ADS)

    Ivory, KeShawn; Barger, Kathleen

    2017-01-01

    The development of galaxies hinges upon the behavior of the gas within and around them, as this is paramount to understanding the regulation of star formation. To investigate these processes, we analyzed data from the MaNGA survey for two galaxies with nearby background quasars for which Hubble Space Telescope data exists. We plotted and analyzed spectra for various elemental transitions, especially [N II] , [O III], and H-alpha, to gain information about gas properties such as temperature, ionization fraction, and star formation. We also plotted velocity fields based upon the gas motions as determined through Doppler shift. One of the galaxies displayed signs of heavy star formation and the other displayed signs of Active Galactic Nucleus activity. The stellar and gaseous velocity fields of the AGN galaxy were very disparate which suggests some sort of interaction with another galaxy in the galaxy’s past. The properties of the gas in these galaxies could potentially teach us more about the evolutionary path of the Milky Way, which forms stars itself while interacting heavily with other galaxies. This work base on data from the forth-generation Sloan Digital Sky Survey (SDSS-IV)/Mapping Nearby Galaxies at Apache Point Observatory (MaNGA), and is part of the Project No.0034 in SDSS-IV.

  3. Robust covariance estimation of galaxy-galaxy weak lensing: validation and limitation of jackknife covariance

    NASA Astrophysics Data System (ADS)

    Shirasaki, Masato; Takada, Masahiro; Miyatake, Hironao; Takahashi, Ryuichi; Hamana, Takashi; Nishimichi, Takahiro; Murata, Ryoma

    2017-09-01

    We develop a method to simulate galaxy-galaxy weak lensing by utilizing all-sky, light-cone simulations and their inherent halo catalogues. Using the mock catalogue to study the error covariance matrix of galaxy-galaxy weak lensing, we compare the full covariance with the 'jackknife' (JK) covariance, the method often used in the literature that estimates the covariance from the resamples of the data itself. We show that there exists the variation of JK covariance over realizations of mock lensing measurements, while the average JK covariance over mocks can give a reasonably accurate estimation of the true covariance up to separations comparable with the size of JK subregion. The scatter in JK covariances is found to be ∼10 per cent after we subtract the lensing measurement around random points. However, the JK method tends to underestimate the covariance at the larger separations, more increasingly for a survey with a higher number density of source galaxies. We apply our method to the Sloan Digital Sky Survey (SDSS) data, and show that the 48 mock SDSS catalogues nicely reproduce the signals and the JK covariance measured from the real data. We then argue that the use of the accurate covariance, compared to the JK covariance, allows us to use the lensing signals at large scales beyond a size of the JK subregion, which contains cleaner cosmological information in the linear regime.

  4. Galaxies in the Illustris simulation as seen by the Sloan Digital Sky Survey - II. Size-luminosity relations and the deficit of bulge-dominated galaxies in Illustris at low mass

    NASA Astrophysics Data System (ADS)

    Bottrell, Connor; Torrey, Paul; Simard, Luc; Ellison, Sara L.

    2017-05-01

    The interpretive power of the newest generation of large-volume hydrodynamical simulations of galaxy formation rests upon their ability to reproduce the observed properties of galaxies. In this second paper in a series, we employ bulge+disc decompositions of realistic dust-free galaxy images from the Illustris simulation in a consistent comparison with galaxies from the Sloan Digital Sky Survey (SDSS). Examining the size-luminosity relations of each sample, we find that galaxies in Illustris are roughly twice as large and 0.7 mag brighter on average than galaxies in the SDSS. The trend of increasing slope and decreasing normalization of size-luminosity as a function of bulge fraction is qualitatively similar to observations. However, the size-luminosity relations of Illustris galaxies are quantitatively distinguished by higher normalizations and smaller slopes than for real galaxies. We show that this result is linked to a significant deficit of bulge-dominated galaxies in Illustris relative to the SDSS at stellar masses log M_{\\star }/M_{⊙}≲ 11. We investigate this deficit by comparing bulge fraction estimates derived from photometry and internal kinematics. We show that photometric bulge fractions are systematically lower than the kinematic fractions at low masses, but with increasingly good agreement as the stellar mass increases.

  5. Galaxy evolution in extreme environments: Molecular gas content star formation and AGN in isolated void galaxies

    NASA Astrophysics Data System (ADS)

    Das, Mousumi; Iono, Daisuke; Saito, Toshiki; Subramanian, Smitha

    Since the early redshift surveys of the large scale structure of our universe, it has become clear that galaxies cluster along walls, sheet and filaments leaving large, empty regions called voids between them. Although voids represent the most under dense parts of our universe, they do contain a sparse but significant population of isolated galaxies that are generally low luminosity, late type disk galaxies. Recent studies show that most void galaxies have ongoing star formation and are in an early stage of evolution. We present radio, optical studies of the molecular gas content and star formation in a sample of void galaxies. Using SDSS data, we find that AGN are rare in these systems and are found only in the Bootes void; their black hole masses and radio properties are similar to bright spirals galaxies. Our studies suggest that close galaxy interactions and gas accretion are the main drivers of galaxy evolution in these systems despite their location in the underdense environment of the voids.

  6. SDSS IV MaNGA: Dependence of Global and Spatially Resolved SFR–M ∗ Relations on Galaxy Properties

    NASA Astrophysics Data System (ADS)

    Pan, Hsi-An; Lin, Lihwai; Hsieh, Bau-Ching; Sánchez, Sebastián F.; Ibarra-Medel, Héctor; Boquien, Médéric; Lacerna, Ivan; Argudo-Fernández, Maria; Bizyaev, Dmitry; Cano-Díaz, Mariana; Drory, Niv; Gao, Yang; Masters, Karen; Pan, Kaike; Tabor, Martha; Tissera, Patricia; Xiao, Ting

    2018-02-01

    The galaxy integrated Hα star formation rate–stellar mass relation, or SFR(global)–M *(global) relation, is crucial for understanding star formation history and evolution of galaxies. However, many studies have dealt with SFR using unresolved measurements, which makes it difficult to separate out the contamination from other ionizing sources, such as active galactic nuclei and evolved stars. Using the integral field spectroscopic observations from SDSS-IV MaNGA, we spatially disentangle the contribution from different Hα powering sources for ∼1000 galaxies. We find that, when including regions dominated by all ionizing sources in galaxies, the spatially resolved relation between Hα surface density (ΣHα (all)) and stellar mass surface density (Σ*(all)) progressively turns over at the high Σ*(all) end for increasing M *(global) and/or bulge dominance (bulge-to-total light ratio, B/T). This in turn leads to the flattening of the integrated Hα(global)–M *(global) relation in the literature. By contrast, there is no noticeable flattening in both integrated Hα(H II)–M *(H II) and spatially resolved ΣHα (H II)–Σ*(H II) relations when only regions where star formation dominates the ionization are considered. In other words, the flattening can be attributed to the increasing regions powered by non-star-formation sources, which generally have lower ionizing ability than star formation. An analysis of the fractional contribution of non-star-formation sources to total Hα luminosity of a galaxy suggests a decreasing role of star formation as an ionizing source toward high-mass, high-B/T galaxies and bulge regions. This result indicates that the appearance of the galaxy integrated SFR–M * relation critically depends on their global properties (M *(global) and B/T) and relative abundances of various ionizing sources within the galaxies.

  7. Identifying Nearby Galaxy Outliers Using Neutral Hydrogen Scaling Relations

    NASA Astrophysics Data System (ADS)

    Mohammed, Steven; Schiminovich, D.

    2013-01-01

    Galaxies appear to be divided into two distinct families: blue, star-forming, gas-rich, spiral galaxies and red, gas-deficient, elliptical galaxies. However, the transition between these two families is not well understood. A galaxy's gas content could be a good indicator of processes that affect this transition. We assembled a catalog of physical properties for 535 nearby massive galaxies (redshifts 0.025 < z < 0.05; stellar masses M* > 108 solar masses) from various existing surveys to examine their neutral hydrogen (HI) gas content. We obtained HI data (e.g., HI masses and HI radii) from several surveys; other properties (e.g., stellar masses, light radii and star formation rates) were derived from the Sloan Digital Sky Survey (SDSS) and the Galaxy Evolution Explorer (GALEX). Our goal is to identify any outliers from scaling relations derived from galaxies in the GALEX Arecibo SDSS Survey (GASS) in hope that these outliers can provide us with insight into processes relevant to the blue-to-red-galaxy transition. Results indicate that our heterogeneous selection yields a sample that shows similar scaling relations as the GASS galaxies. For example, the atomic HI gas fraction (MHI/M*) decreases strongly as both stellar mass and stellar mass surface density increase. Here, we show recent work that investigates the HI distribution maps of our galaxies to identify environmental effects that might cause outliers to exist.

  8. The Jet-driven Outflow in the Radio Galaxy SDSS J1517+3353: Implications for Double-peaked Narrow-line Active Galactic Nucleus

    NASA Astrophysics Data System (ADS)

    Rosario, D. J.; Shields, G. A.; Taylor, G. B.; Salviander, S.; Smith, K. L.

    2010-06-01

    We report on the study of an intriguing active galaxy that was selected as a potential multiple supermassive black hole merger in the early-type host SDSS J151709.20+335324.7 (z = 0.135) from a complete search for double-peaked [O III] lines from the SDSS spectroscopic quasi-stellar object (QSO) database. Ground-based SDSS imaging reveals two blue structures on either side of the photometric center of the host galaxy, separated from each other by about 5.7 kpc. From a combination of SDSS fiber and Keck/HIRES long-slit spectroscopy, it is demonstrated that, in addition to these two features, a third distinct structure surrounds the nucleus of the host galaxy. All three structures exhibit highly ionized line emission with line ratios characteristic of Seyfert II active galactic nuclei. The analysis of spatially resolved emission-line profiles from the HIRES spectrum reveal three distinct kinematic subcomponents, one at rest and the other two moving at -350 km s-1 and 500 km s-1 with respect to the systemic velocity of the host galaxy. A comparison of imaging and spectral data confirm a strong association between the kinematic components and the spatial knots, which implies a highly disturbed and complex active region in this object. A comparative analysis of the broadband positions, colors, kinematics, and spectral properties of the knots in this system lead to two plausible explanations: (1) a multiple active galactic nucleus (AGN) produced due to a massive dry merger, or (2) a very powerful radio jet-driven outflow. Subsequent VLA radio imaging reveals a clear jet aligned with the emission-line gas, confirming the latter explanation. We use the broadband radio measurements to examine the impact of the jet on the interstellar medium of the host galaxy, and find that the energy in the radio lobes can heat a significant fraction of the gas to the virial temperature. Finally, we discuss tests that may help future surveys distinguish between jet-driven kinematics and

  9. Discovery of Dramatic Optical Variability in SDSS J1100+4421: A Peculiar Radio-loud Narrow-line Seyfert 1 Galaxy?

    NASA Astrophysics Data System (ADS)

    Tanaka, Masaomi; Morokuma, Tomoki; Itoh, Ryosuke; Akitaya, Hiroshi; Tominaga, Nozomu; Saito, Yoshihiko; Stawarz, Łukasz; Tanaka, Yasuyuki T.; Gandhi, Poshak; Ali, Gamal; Aoki, Tsutomu; Contreras, Carlos; Doi, Mamoru; Essam, Ahmad; Hamed, Gamal; Hsiao, Eric Y.; Iwata, Ikuru; Kawabata, Koji S.; Kawai, Nobuyuki; Kikuchi, Yuki; Kobayashi, Naoto; Kuroda, Daisuke; Maehara, Hiroyuki; Matsumoto, Emiko; Mazzali, Paolo A.; Minezaki, Takeo; Mito, Hiroyuki; Miyata, Takashi; Miyazaki, Satoshi; Mori, Kensho; Moritani, Yuki; Morokuma-Matsui, Kana; Morrell, Nidia; Nagao, Tohru; Nakada, Yoshikazu; Nakata, Fumiaki; Noma, Chinami; Ohsuga, Ken; Okada, Norio; Phillips, Mark M.; Pian, Elena; Richmond, Michael W.; Sahu, Devendra; Sako, Shigeyuki; Sarugaku, Yuki; Shibata, Takumi; Soyano, Takao; Stritzinger, Maximilian D.; Tachibana, Yutaro; Taddia, Francesco; Takaki, Katsutoshi; Takey, Ali; Tarusawa, Ken'ichi; Ui, Takahiro; Ukita, Nobuharu; Urata, Yuji; Walker, Emma S.; Yoshii, Taketoshi

    2014-10-01

    We present our discovery of dramatic variability in SDSS J1100+4421 by the high-cadence transient survey Kiso Supernova Survey. The source brightened in the optical by at least a factor of three within about half a day. Spectroscopic observations suggest that this object is likely a narrow-line Seyfert 1 galaxy (NLS1) at z = 0.840, however, with unusually strong narrow emission lines. The estimated black hole mass of ~107 M ⊙ implies bolometric nuclear luminosity close to the Eddington limit. SDSS J1100+4421 is also extremely radio-loud, with a radio loudness parameter of R ~= 4 × 102-3 × 103, which implies the presence of relativistic jets. Rapid and large-amplitude optical variability of the target, reminiscent of that found in a few radio- and γ-ray-loud NLS1s, is therefore produced most likely in a blazar-like core. The 1.4 GHz radio image of the source shows an extended structure with a linear size of about 100 kpc. If SDSS J1100+4421 is a genuine NLS1, as suggested here, this radio structure would then be the largest ever discovered in this type of active galaxies.

  10. Internal kinematics of disk galaxies in the local universe

    NASA Astrophysics Data System (ADS)

    Catinella, Barbara

    2005-11-01

    This dissertation makes use of a homogeneous sample of several thousand normal, non-interacting, spiral galaxies, for which I-band photometry and optical and/ or radio spectroscopy are available, to investigate the average kinematic properties of disk systems at low redshifts ( z [Special characters omitted.] 0.1). New long-slit Ha rotation curves (RCs) for 402 galaxies, which were incorporated into the larger sample, are presented in this work. The main goals of this thesis are: (a) The definition of a set of average, or template , RCs in bins covering a wide range of galaxy luminosity. The template relations represent an accurate description of the average circular velocity field of local spiral galaxies, and are intended to be a standard reference for more distant samples and to constrain theoretical models of galactic disks. (b) The characterization of the systematics associated with different velocity width measurement techniques, and the derivation of a robust measure of rotational velocity to be used for applications of the Tully-Fisher (TF) distance method. A direct cross-calibration of the optical and radio widths has been obtained. (c) The assessment of the impact of the limitations on optical line widths extracted from fixed apertures, such as those being collected for ~10 6 galaxies by the on-going Sloan Digital Sky Survey (SDSS). Since the SDSS fiber technique generally does not sample the full extent of a galaxy RC, the observed line widths yield rotational width measurements that depend on the redshifts of the objects, on the physical sizes of their line-emitting regions, and on the intrinsic shapes of their RCs. Numerical simulations of these biases have been carried out for galaxies with realistic circular velocity fields (described by the template RCs) in the redshift range covered by the SDSS spectroscopic sample. Statistical corrections to be applied to the aperture line widths as a function of galaxy redshift and luminosity have been derived

  11. Statistical analysis of ALFALFA galaxies: Insights in galaxy formation & near-field cosmology

    NASA Astrophysics Data System (ADS)

    Papastergis, Emmanouil

    2013-03-01

    Sky Survey (SDSS), to measure the number density of galaxies as a function of their "baryonic" mass (stars + atomic gas). In the context of a ΛCDM cosmological model, the measured distribution reveals that low-mass halos are heavily "baryon depleted", i.e. their baryonic-to-dark mass ratio is much lower than the cosmological value. These baryon deficits are usually attributed to stellar feedback (e.g. supernova-driven gas outflows), but the efficiency implied by our measurement is extremely high. Whether such efficient feedback can be accommodated in a consistent picture of galaxy formation is an open question, and remains one of the principle scientific drivers for hydrodynamic simulations of galaxy formation. Lastly, we measure the clustering properties of HI-selected samples, through the two-point correlation function of ALFALFA galaxies. We find no compelling evidence for a dependence of clustering on HI mass, suggesting that the relationship between galactic gas mass and host halo mass is not tight. We furthermore find that HI galaxies cluster more weakly than optically selected ones, when no color selection is applied. However, SDSS galaxies with blue colors have very similar clustering characteristics with ALFALFA galaxies, both in real as well as in redshift space. On the other hand, HI galaxies cluster much more weakly than optical galaxies with red colors, and in fact "avoid" being located within ≈3 Mpc from the latter. By considering the clustering properties of ΛCDM halos, we confirm our previous intuition for an MHI-Mh relation with large scatter, and find that spin parameter may be a key halo property related to the gas content of present-day galaxies.

  12. MaNGA: Mapping Nearby Galaxies at Apache Point Observatory

    NASA Astrophysics Data System (ADS)

    Weijmans, A.-M.; MaNGA Team

    2016-10-01

    MaNGA (Mapping Nearby Galaxies at APO) is a galaxy integral-field spectroscopic survey within the fourth generation Sloan Digital Sky Survey (SDSS-IV). It will be mapping the composition and kinematics of gas and stars in 10,000 nearby galaxies, using 17 differently sized fiber bundles. MaNGA's goal is to provide new insights in galaxy formation and evolution, and to deliver a local benchmark for current and future high-redshift studies.

  13. Bayesian analysis of the dynamic cosmic web in the SDSS galaxy survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leclercq, Florent; Wandelt, Benjamin; Jasche, Jens, E-mail: florent.leclercq@polytechnique.org, E-mail: jasche@iap.fr, E-mail: wandelt@iap.fr

    Recent application of the Bayesian algorithm \\textsc(borg) to the Sloan Digital Sky Survey (SDSS) main sample galaxies resulted in the physical inference of the formation history of the observed large-scale structure from its origin to the present epoch. In this work, we use these inferences as inputs for a detailed probabilistic cosmic web-type analysis. To do so, we generate a large set of data-constrained realizations of the large-scale structure using a fast, fully non-linear gravitational model. We then perform a dynamic classification of the cosmic web into four distinct components (voids, sheets, filaments, and clusters) on the basis of themore » tidal field. Our inference framework automatically and self-consistently propagates typical observational uncertainties to web-type classification. As a result, this study produces accurate cosmographic classification of large-scale structure elements in the SDSS volume. By also providing the history of these structure maps, the approach allows an analysis of the origin and growth of the early traces of the cosmic web present in the initial density field and of the evolution of global quantities such as the volume and mass filling fractions of different structures. For the problem of web-type classification, the results described in this work constitute the first connection between theory and observations at non-linear scales including a physical model of structure formation and the demonstrated capability of uncertainty quantification. A connection between cosmology and information theory using real data also naturally emerges from our probabilistic approach. Our results constitute quantitative chrono-cosmography of the complex web-like patterns underlying the observed galaxy distribution.« less

  14. The Lopsidedness of Satellite Galaxy Systems in ΛCDM Simulations

    NASA Astrophysics Data System (ADS)

    Pawlowski, Marcel S.; Ibata, Rodrigo A.; Bullock, James S.

    2017-12-01

    The spatial distribution of satellite galaxies around pairs of galaxies in the Sloan Digital Sky Survey (SDSS) have been found to bulge significantly toward the respective partner. Highly anisotropic, planar distributions of satellite galaxies are in conflict with expectations derived from cosmological simulations. Does the lopsided distribution of satellite systems around host galaxy pairs constitute a similar challenge to the standard model of cosmology? We investigate whether such satellite distributions are present around stacked pairs of hosts extracted from the ΛCDM simulations Millennium-I, Millennium-II, Exploring the Local Volume in Simulations, and Illustris-1. By utilizing this set of simulations covering different volumes, resolutions, and physics, we implicitly test whether a lopsided signal exists for different ranges of satellite galaxy masses, and whether the inclusion of hydrodynamical effects produces significantly different results. All simulations display a lopsidedness similar to the observed situation. The signal is highly significant for simulations containing a sufficient number of hosts and resolved satellite galaxies (up to 5 σ for Millennium-II). We find a projected signal that is up to twice as strong as that reported for the SDSS systems for certain opening angles (∼16% more satellites in the direction between the pair than expected for uniform distributions). Considering that the SDSS signal is a lower limit owing to likely back- and foreground contamination, the ΛCDM simulations appear to be consistent with this particular empirical property of galaxy pairs.

  15. The cluster galaxy circular velocity function

    NASA Astrophysics Data System (ADS)

    Desai, V.; Dalcanton, J. J.; Mayer, L.; Reed, D.; Quinn, T.; Governato, F.

    2004-06-01

    We present galaxy circular velocity functions (GCVFs) for 34 low-redshift (z<~ 0.15) clusters identified in the Sloan Digital Sky Survey (SDSS), for 15 clusters drawn from dark matter simulations of hierarchical structure growth in a ΛCDM cosmology, and for ~22 000 SDSS field galaxies. We find that the simulations successfully reproduce the shape, amplitude and scatter in the observed distribution of cluster galaxy circular velocities. The power-law slope of the observed cluster GCVF is ~-2.4, independent of cluster velocity dispersion. The average slope of the simulated GCVFs is somewhat steeper, although formally consistent given the errors. We find that the effects of baryons on galaxy rotation curves is to flatten the simulated cluster GCVF into better agreement with observations. The cumulative GCVFs of the simulated clusters are very similar across a wide range of cluster masses, provided individual subhalo circular velocities are scaled by the circular velocities of the parent cluster. The scatter is consistent with that measured in the cumulative, scaled observed cluster GCVF. Finally, the observed field GCVF deviates significantly from a power law, being flatter than the cluster GCVF at circular velocities less than 200 km s-1.

  16. SDSS-III Baryon Oscillation Spectroscopic Survey data release 12: Galaxy target selection and large-scale structure catalogues

    DOE PAGES

    Reid, Beth; Ho, Shirley; Padmanabhan, Nikhil; ...

    2015-11-17

    The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey (SDSS) III project, has provided the largest survey of galaxy redshifts available to date, in terms of both the number of galaxy redshifts measured by a single survey, and the effective cosmological volume covered. Key to analysing the clustering of these data to provide cosmological measurements is understanding the detailed properties of this sample. Potential issues include variations in the target catalogue caused by changes either in the targeting algorithm or properties of the data used, the pattern of spectroscopic observations, the spatial distribution of targets formore » which redshifts were not obtained, and variations in the target sky density due to observational systematics. We document here the target selection algorithms used to create the galaxy samples that comprise BOSS. We also present the algorithms used to create large-scale structure catalogues for the final Data Release (DR12) samples and the associated random catalogues that quantify the survey mask. The algorithms are an evolution of those used by the BOSS team to construct catalogues from earlier data, and have been designed to accurately quantify the galaxy sample. Furthermore, the code used, designated mksample, is released with this paper.« less

  17. The influence of galaxy environment on the stellar initial mass function of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Rosani, Giulio; Pasquali, Anna; La Barbera, Francesco; Ferreras, Ignacio; Vazdekis, Alexandre

    2018-06-01

    In this paper, we investigate whether the stellar initial mass function (IMF) of early-type galaxies depends on their host environment. To this purpose, we have selected a sample of early-type galaxies from the SPIDER catalogue, characterized their environment through the group catalogue of Wang et al., and used their optical Sloan Digital Sky Survey (SDSS) spectra to constrain the IMF slope, through the analysis of IMF-sensitive spectral indices. To reach a high enough signal-to-noise ratio, we have stacked spectra in velocity dispersion (σ0) bins, on top of separating the sample by galaxy hierarchy and host halo mass, as proxies for galaxy environment. In order to constrain the IMF, we have compared observed line strengths and predictions of MIUSCAT/EMILES synthetic stellar population models, with varying age, metallicity, and `bimodal' (low-mass tapered) IMF slope (Γ _b). Consistent with previous studies, we find that Γ _b increases with σ0, becoming bottom-heavy (i.e. an excess of low-mass stars with respect to the Milky Way like IMF) at high σ0. We find that this result is robust against the set of isochrones used in the stellar population models, as well as the way the effect of elemental abundance ratios is taken into account. We thus conclude that it is possible to use currently state-of-the-art stellar population models and intermediate resolution spectra to consistently probe IMF variations. For the first time, we show that there is no dependence of Γb on environment or galaxy hierarchy, as measured within the 3 arcsec SDSS fibre, thus leaving the IMF as an intrinsic galaxy property, possibly set already at high redshift.

  18. Test of Gravity on Large Scales with Weak Gravitational Lensing and Clustering Measurements of SDSS Luminous Red Galaxies

    NASA Astrophysics Data System (ADS)

    Reyes, Reinabelle; Mandelbaum, R.; Seljak, U.; Gunn, J.; Lombriser, L.

    2009-01-01

    We perform a test of gravity on large scales (5-50 Mpc/h) using 70,000 luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS) DR7 with redshifts 0.16galaxy peculiar velocities, and galaxy clustering-- that can discriminate between different theories of gravity and is largely independent of galaxy bias and sigma_8. In particular, E_G is sensitive to the relation between the spatial and temporal scalar perturbations in the space-time metric. While these two potentials are equivalent in concordance cosmology (GR+LCDM) in the absence of anisotropic stress, they are not equivalent in alternative theories of gravity in general, so that different models make different predictions for E_G. We find E_G=0.37±0.05 averaged over scales 5galaxy surveys such as LSST, for which a very high signal-to-noise measurement will be possible.

  19. Detailed Quantitative Classifications of Galaxy Morphology

    NASA Astrophysics Data System (ADS)

    Nair, Preethi

    2018-01-01

    Understanding the physical processes responsible for the growth of galaxies is one of the key challenges in extragalactic astronomy. The assembly history of a galaxy is imprinted in a galaxy’s detailed morphology. The bulge-to-total ratio of galaxies, the presence or absence of bars, rings, spiral arms, tidal tails etc, all have implications for the past merger, star formation, and feedback history of a galaxy. However, current quantitative galaxy classification schemes are only useful for broad binning. They cannot classify or exploit the wide variety of galaxy structures seen in nature. Therefore, comparisons of observations with theoretical predictions of secular structure formation have only been conducted on small samples of visually classified galaxies. However large samples are needed to disentangle the complex physical processes of galaxy formation. With the advent of large surveys, like the Sloan Digital Sky Survey (SDSS) and the upcoming Large Synoptic Survey Telescope (LSST) and WFIRST, the problem of statistics will be resolved. However, the need for a robust quantitative classification scheme will still remain. Here I will present early results on promising machine learning algorithms that are providing detailed classifications, identifying bars, rings, multi-armed spiral galaxies, and Hubble type.

  20. Study of GRBs Hosts Galaxies Vicinity Properties

    NASA Astrophysics Data System (ADS)

    Bernal, S.; Vasquez, N.; Hoyle, F.

    2017-07-01

    The study of GRBs host galaxies and its vicinity could provide constrains on the progenitor and an opportunity to use these violent explosions to characterize the nature of the highredshift universe. Studies of GRB host galaxies reveal a population of starforming galaxies with great diversity, spanning a wide range of masses, star formation rate, and redshifts. In order to study the galactic ambient of GRBs we used the S. Savaglio catalog from 2015 where 245 GRBs are listed with RA-Dec position and z. We choose 22 GRBs Hosts galaxies from Savaglio catalog and SDSS DR12, with z range 0galaxies, in a local vicinity of 10 h-1 Mpc radius to determine some photometric and population characteristics. We calculate the volumetric density populatation of glalaxies around the GRB Hosts within a volume of an sphere whit radius of 10 h-1 Mpc and find a low density compared with a typical group of galaxies. In order to know the galaxies stellar formation state, in regions where GRBs are formed, we made an analysis of color index using SDSS data of μ [λ 3543], r[λ 6231] and calculate the indexes μ-r. We find a value μ-r=2.63, it means that the galactic ambient of GRBs Host regions are statistically redder than void and wall regions on a indirect way (Voids:μ-r=2.043; Walls:μ-r=2.162). Futhermore, we used a inverse concentration index analysis, ICI=R50/R90 and find that galaxies in GRBs Hosts vicinity are also of slightly early type than void and wall galaxies. With this work we provide characteristics on the regions for future works related with highredsift universe that using the GRBs.

  1. Cosmological baryonic and matter densities from 600000 SDSS luminous red galaxies with photometric redshifts

    NASA Astrophysics Data System (ADS)

    Blake, Chris; Collister, Adrian; Bridle, Sarah; Lahav, Ofer

    2007-02-01

    We analyse MegaZ-LRG, a photometric-redshift catalogue of luminous red galaxies (LRGs) based on the imaging data of the Sloan Digital Sky Survey (SDSS) 4th Data Release. MegaZ-LRG, presented in a companion paper, contains >106 photometric redshifts derived with ANNZ, an artificial neural network method, constrained by a spectroscopic subsample of ~13000 galaxies obtained by the 2dF-SDSS LRG and Quasar (2SLAQ) survey. The catalogue spans the redshift range 0.4 < z < 0.7 with an rms redshift error σz ~ 0.03(1 + z), covering 5914 deg2 to map out a total cosmic volume 2.5h-3Gpc3. In this study we use the most reliable 600000 photometric redshifts to measure the large-scale structure using two methods: (1) a spherical harmonic analysis in redshift slices, and (2) a direct re-construction of the spatial clustering pattern using Fourier techniques. We present the first cosmological parameter fits to galaxy angular power spectra from a photometric-redshift survey. Combining the redshift slices with appropriate covariances, we determine best-fitting values for the matter density Ωm and baryon density Ωb of Ωmh = 0.195 +/- 0.023 and Ωb/Ωm = 0.16 +/- 0.036 (with the Hubble parameter h = 0.75 and scalar index of primordial fluctuations nscalar = 1 held fixed). These results are in agreement with and independent of the latest studies of the cosmic microwave background radiation, and their precision is comparable to analyses of contemporary spectroscopic-redshift surveys. We perform an extensive series of tests which conclude that our power spectrum measurements are robust against potential systematic photometric errors in the catalogue. We conclude that photometric-redshift surveys are competitive with spectroscopic surveys for measuring cosmological parameters in the simplest `vanilla' models. Future deep imaging surveys have great potential for further improvement, provided that systematic errors can be controlled.

  2. Mining the Galaxy Zoo Database: Machine Learning Applications

    NASA Astrophysics Data System (ADS)

    Borne, Kirk D.; Wallin, J.; Vedachalam, A.; Baehr, S.; Lintott, C.; Darg, D.; Smith, A.; Fortson, L.

    2010-01-01

    The new Zooniverse initiative is addressing the data flood in the sciences through a transformative partnership between professional scientists, volunteer citizen scientists, and machines. As part of this project, we are exploring the application of machine learning techniques to data mining problems associated with the large and growing database of volunteer science results gathered by the Galaxy Zoo citizen science project. We will describe the basic challenge, some machine learning approaches, and early results. One of the motivators for this study is the acquisition (through the Galaxy Zoo results database) of approximately 100 million classification labels for roughly one million galaxies, yielding a tremendously large and rich set of training examples for improving automated galaxy morphological classification algorithms. In our first case study, the goal is to learn which morphological and photometric features in the Sloan Digital Sky Survey (SDSS) database correlate most strongly with user-selected galaxy morphological class. As a corollary to this study, we are also aiming to identify which galaxy parameters in the SDSS database correspond to galaxies that have been the most difficult to classify (based upon large dispersion in their volunter-provided classifications). Our second case study will focus on similar data mining analyses and machine leaning algorithms applied to the Galaxy Zoo catalog of merging and interacting galaxies. The outcomes of this project will have applications in future large sky surveys, such as the LSST (Large Synoptic Survey Telescope) project, which will generate a catalog of 20 billion galaxies and will produce an additional astronomical alert database of approximately 100 thousand events each night for 10 years -- the capabilities and algorithms that we are exploring will assist in the rapid characterization and classification of such massive data streams. This research has been supported in part through NSF award #0941610.

  3. Automatic Approach to Morphological Classification of Galaxies With Analysis of Galaxy Populations in Clusters

    NASA Astrophysics Data System (ADS)

    Sultanova, Madina; Barkhouse, Wayne; Rude, Cody

    2018-01-01

    The classification of galaxies based on their morphology is a field in astrophysics that aims to understand galaxy formation and evolution based on their physical differences. Whether structural differences are due to internal factors or a result of local environment, the dominate mechanism that determines galaxy type needs to be robustly quantified in order to have a thorough grasp of the origin of the different types of galaxies. The main subject of my Ph.D. dissertation is to explore the use of computers to automatically classify and analyze large numbers of galaxies according to their morphology, and to analyze sub-samples of galaxies selected by type to understand galaxy formation in various environments. I have developed a computer code to classify galaxies by measuring five parameters from their images in FITS format. The code was trained and tested using visually classified SDSS galaxies from Galaxy Zoo and the EFIGI data set. I apply my morphology software to numerous galaxies from diverse data sets. Among the data analyzed are the 15 Abell galaxy clusters (0.03 < z < 0.184) from Rude et al. 2017 (in preparation), which were observed by the Canada-France-Hawaii Telescope. Additionally, I studied 57 galaxy clusters from Barkhouse et al. (2007), 77 clusters from the WINGS survey (Fasano et al. 2006), and the six Hubble Space Telescope (HST) Frontier Field galaxy clusters. The high resolution of HST allows me to compare distant clusters with those nearby to look for evolutionary changes in the galaxy cluster population. I use the results from the software to examine the properties (e.g. luminosity functions, radial dependencies, star formation rates) of selected galaxies. Due to the large amount of data that will be available from wide-area surveys in the future, the use of computer software to classify and analyze the morphology of galaxies will be extremely important in terms of efficiency. This research aims to contribute to the solution of this problem.

  4. Galaxy pairs in the Sloan Digital Sky Survey - VII. The merger-luminous infrared galaxy connection

    NASA Astrophysics Data System (ADS)

    Ellison, Sara L.; Mendel, J. Trevor; Scudder, Jillian M.; Patton, David R.; Palmer, Michael J. D.

    2013-04-01

    We use a sample of 9397 low-redshift (z ≤ 0.1) galaxies with a close companion to investigate the connection between mergers and luminous infrared (IR) galaxies (LIRGs). The pairs are selected from the Sloan Digital Sky Survey (SDSS) and have projected separations rp ≤ 80 h{^{- 1}_{70}} kpc, relative velocities ΔV ≤ 300 km s-1 and stellar mass ratios within a factor of 1:10. A control sample consisting of four galaxies per pair galaxy is constructed by simultaneously matching in stellar mass, redshift and environment to galaxies with no close companion. The IR luminosities (LIR) of galaxies in the pair and control samples are determined from the SDSS - Infrared Astronomical Satellite (IRAS) matched catalogue of Hwang et al. Over the redshift range of our pairs sample, the IRAS matches are complete to LIRG luminosities (LIR ≥ 1011 L⊙), allowing us to investigate the connection between mergers and luminous IR galaxies. We find a trend for increasing LIRG fraction towards smaller pair separations, peaking at a factor of ˜5-10 above the median control fraction at the smallest separations (rp < 20 h{^{- 1}_{70}} kpc), but remaining elevated by a factor ˜2-3 even out to 80 h{^{- 1}_{70}} kpc (the widest separations in our sample). LIRG pairs predominantly have high star formation rates (SFRs), high extinction and are found in relatively low-density environments, relative to the full pairs sample. We also find that LIRGs are most likely to be found in high-mass galaxies which have an approximately equal-mass companion. We confirm the results of previous studies that both the active galactic nucleus (AGN) fraction and merger fraction increase strongly as a function of IR luminosity. About 7 per cent of LIRGs are associated with major mergers, as defined within the criteria and mass completion of our sample. Finally, we quantify an SFR offset (ΔSFR) as the enhancement (or decrement) relative to star-forming galaxies of the same mass and redshift. We

  5. The SAMI Galaxy Survey: instrument specification and target selection

    NASA Astrophysics Data System (ADS)

    Bryant, J. J.; Owers, M. S.; Robotham, A. S. G.; Croom, S. M.; Driver, S. P.; Drinkwater, M. J.; Lorente, N. P. F.; Cortese, L.; Scott, N.; Colless, M.; Schaefer, A.; Taylor, E. N.; Konstantopoulos, I. S.; Allen, J. T.; Baldry, I.; Barnes, L.; Bauer, A. E.; Bland-Hawthorn, J.; Bloom, J. V.; Brooks, A. M.; Brough, S.; Cecil, G.; Couch, W.; Croton, D.; Davies, R.; Ellis, S.; Fogarty, L. M. R.; Foster, C.; Glazebrook, K.; Goodwin, M.; Green, A.; Gunawardhana, M. L.; Hampton, E.; Ho, I.-T.; Hopkins, A. M.; Kewley, L.; Lawrence, J. S.; Leon-Saval, S. G.; Leslie, S.; McElroy, R.; Lewis, G.; Liske, J.; López-Sánchez, Á. R.; Mahajan, S.; Medling, A. M.; Metcalfe, N.; Meyer, M.; Mould, J.; Obreschkow, D.; O'Toole, S.; Pracy, M.; Richards, S. N.; Shanks, T.; Sharp, R.; Sweet, S. M.; Thomas, A. D.; Tonini, C.; Walcher, C. J.

    2015-03-01

    The SAMI Galaxy Survey will observe 3400 galaxies with the Sydney-AAO Multi-object Integral-field spectrograph (SAMI) on the Anglo-Australian Telescope in a 3-yr survey which began in 2013. We present the throughput of the SAMI system, the science basis and specifications for the target selection, the survey observation plan and the combined properties of the selected galaxies. The survey includes four volume-limited galaxy samples based on cuts in a proxy for stellar mass, along with low-stellar-mass dwarf galaxies all selected from the Galaxy And Mass Assembly (GAMA) survey. The GAMA regions were selected because of the vast array of ancillary data available, including ultraviolet through to radio bands. These fields are on the celestial equator at 9, 12 and 14.5 h, and cover a total of 144 deg2 (in GAMA-I). Higher density environments are also included with the addition of eight clusters. The clusters have spectroscopy from 2-degree Field Galaxy Redshift Survey (2dFGRS) and Sloan Digital Sky Survey (SDSS) and photometry in regions covered by the SDSS and/or VLT Survey Telescope/ATLAS. The aim is to cover a broad range in stellar mass and environment, and therefore the primary survey targets cover redshifts 0.004 < z < 0.095, magnitudes rpet < 19.4, stellar masses 107-1012 M⊙, and environments from isolated field galaxies through groups to clusters of ˜1015 M⊙.

  6. FR II radio galaxies in the Sloan Digital Sky Survey: observational facts

    NASA Astrophysics Data System (ADS)

    Kozieł-Wierzbowska, D.; Stasińska, G.

    2011-08-01

    Starting from the Cambridge Catalogues of radio sources, we have created a sample of 401 Fanaroff-Riley type II (FR II) radio sources that have counterparts in the main galaxy sample of the seventh Data release of the Sloan Digital Sky Survey (SDSS) and analyse their radio and optical properties. We find that the luminosity in the Hα line - which we argue gives a better measure of the total emission-line flux than the widely used luminosity in [O III]- is strongly correlated with the radio luminosity P1.4 GHz. We show that the absence of emission lines in about one third of our sample is likely due to a detection threshold and not to a lack of optical activity. We also find a very strong correlation between the values of LHα and P1.4 GHz when scaled by ‘MBH’, an estimate of the black hole mass. We find that the properties of FR II galaxies are mainly driven by the Eddington parameter LHα/‘MBH’ or, equivalently, P1.4 GHz/‘MBH’. Radio galaxies with hotspots are found among the ones with the highest values of P1.4 GHz/‘MBH’. Compared to classical active galactic nuclei (AGN) hosts in the main galaxy sample of the SDSS, our FR II galaxies show a larger proportion of objects with very hard ionizing radiation field and large ionization parameter. A few objects are, on the contrary, ionized by a softer radiation field. Two of them have double-peaked emission lines and deserve more attention. We find that the black hole masses and stellar masses in FR II galaxies are very closely related: ‘MBH’∝M1.13* with very little scatter. A comparison sample of line-less galaxies in the SDSS follows exactly the same relation, although the masses are, on average, smaller. This suggests that the FR II radio phenomenon occurs in normal elliptical galaxies, preferentially in the most massive ones. Although most FR II galaxies are old, some contain traces of young stellar populations. Such young populations are not seen in normal line-less galaxies, suggesting that

  7. Galaxy Zoo: secular evolution of barred galaxies from structural decomposition of multiband images

    NASA Astrophysics Data System (ADS)

    Kruk, Sandor J.; Lintott, Chris J.; Bamford, Steven P.; Masters, Karen L.; Simmons, Brooke D.; Häußler, Boris; Cardamone, Carolin N.; Hart, Ross E.; Kelvin, Lee; Schawinski, Kevin; Smethurst, Rebecca J.; Vika, Marina

    2018-02-01

    We present the results of two-component (disc+bar) and three-component (disc+bar+bulge) multiwavelength 2D photometric decompositions of barred galaxies in five Sloan Digital Sky Survey (SDSS) bands (ugriz). This sample of ∼3500 nearby (z < 0.06) galaxies with strong bars selected from the Galaxy Zoo citizen science project is the largest sample of barred galaxies to be studied using photometric decompositions that include a bar component. With detailed structural analysis, we obtain physical quantities such as the bar- and bulge-to-total luminosity ratios, effective radii, Sérsic indices and colours of the individual components. We observe a clear difference in the colours of the components, the discs being bluer than the bars and bulges. An overwhelming fraction of bulge components have Sérsic indices consistent with being pseudo-bulges. By comparing the barred galaxies with a mass-matched and volume-limited sample of unbarred galaxies, we examine the connection between the presence of a large-scale galactic bar and the properties of discs and bulges. We find that the discs of unbarred galaxies are significantly bluer compared to the discs of barred galaxies, while there is no significant difference in the colours of the bulges. We find possible evidence of secular evolution via bars that leads to the build-up of pseudo-bulges and to the quenching of star formation in the discs. We identify a subsample of unbarred galaxies with an inner lens/oval and find that their properties are similar to barred galaxies, consistent with an evolutionary scenario in which bars dissolve into lenses. This scenario deserves further investigation through both theoretical and observational work.

  8. The Intrinsic Eddington Ratio Distribution of Active Galactic Nuclei in Young Galaxies from SDSS

    NASA Astrophysics Data System (ADS)

    Jones, Mackenzie L.; Hickox, Ryan C.; Black, Christine; Hainline, Kevin Nicholas; DiPompeo, Michael A.

    2016-04-01

    An important question in extragalactic astronomy concerns the distribution of black hole accretion rates, i.e. the Eddington ratio distribution, of active galactic nuclei (AGN). Specifically, it is matter of debate whether AGN follow a broad distribution in accretion rates, or if the distribution is more strongly peaked at characteristic Eddington ratios. Using a sample of galaxies from SDSS DR7, we test whether an intrinsic Eddington ratio distribution that takes the form of a broad Schechter function is in fact consistent with previous work that suggests instead that young galaxies in optical surveys have a more strongly peaked lognormal Eddington ratio distribution. Furthermore, we present an improved method for extracting the AGN distribution using BPT diagnostics that allows us to probe over one order of magnitude lower in Eddington ratio, counteracting the effects of dilution by star formation. We conclude that the intrinsic Eddington ratio distribution of optically selected AGN is consistent with a power law with an exponential cutoff, as is observed in the X-rays. This work was supported in part by a NASA Jenkins Fellowship.

  9. “Direct” Gas-phase Metallicity in Local Analogs of High-redshift Galaxies: Empirical Metallicity Calibrations for High-redshift Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Bian, Fuyan; Kewley, Lisa J.; Dopita, Michael A.

    2018-06-01

    We study the direct gas-phase oxygen abundance using the well-detected auroral line [O III]λ4363 in the stacked spectra of a sample of local analogs of high-redshift galaxies. These local analogs share the same location as z ∼ 2 star-forming galaxies on the [O III]λ5007/Hβ versus [N II]λ6584/Hα Baldwin–Phillips–Terlevich diagram. This type of analog has the same ionized interstellar medium (ISM) properties as high-redshift galaxies. We establish empirical metallicity calibrations between the direct gas-phase oxygen abundances (7.8< 12+{log}({{O}}/{{H}})< 8.4) and the N2 (log([N II]λ6584/Hα))/O3N2 (log(([O III]λ5007/Hβ)/([N II]λ6584/Hα))) indices in our local analogs. We find significant systematic offsets between the metallicity calibrations for our local analogs of high-redshift galaxies and those derived from the local H II regions and a sample of local reference galaxies selected from the Sloan Digital Sky Survey (SDSS). The N2 and O3N2 metallicities will be underestimated by 0.05–0.1 dex relative to our calibration, if one simply applies the local metallicity calibration in previous studies to high-redshift galaxies. Local metallicity calibrations also cause discrepancies of metallicity measurements in high-redshift galaxies using the N2 and O3N2 indicators. In contrast, our new calibrations produce consistent metallicities between these two indicators. We also derive metallicity calibrations for R23 (log(([O III]λλ4959,5007+[O II]λλ3726,3729)/Hβ)), O32(log([O III]λλ4959,5007/[O II]λλ3726,3729)), {log}([O III]λ5007/Hβ), and log([Ne III]λ3869/[O II]λ3727) indices in our local analogs, which show significant offset compared to those in the SDSS reference galaxies. By comparing with MAPPINGS photoionization models, the different empirical metallicity calibration relations in the local analogs and the SDSS reference galaxies can be shown to be primarily due to the change of ionized ISM conditions. Assuming that temperature structure

  10. SDSS-IV MaNGA: stellar angular momentum of about 2300 galaxies: unveiling the bimodality of massive galaxy properties

    NASA Astrophysics Data System (ADS)

    Graham, Mark T.; Cappellari, Michele; Li, Hongyu; Mao, Shude; Bershady, Matthew A.; Bizyaev, Dmitry; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Drory, Niv; Law, David R.; Pan, Kaike; Thomas, Daniel; Wake, David A.; Weijmans, Anne-Marie; Westfall, Kyle B.; Yan, Renbin

    2018-07-01

    We measure λ _{R_e}, a proxy for galaxy specific stellar angular momentum within one effective radius, and the ellipticity, ɛ, for about 2300 galaxies of all morphological types observed with integral field spectroscopy as part of the Mapping Nearby Galaxies at Apache Point Observatory survey, the largest such sample to date. We use the (λ _{R_e}, ɛ ) diagram to separate early-type galaxies into fast and slow rotators. We also visually classify each galaxy according to its optical morphology and two-dimensional stellar velocity field. Comparing these classifications to quantitative λ _{R_e} measurements reveals tight relationships between angular momentum and galaxy structure. In order to account for atmospheric seeing, we use realistic models of galaxy kinematics to derive a general approximate analytic correction for λ _{R_e}. Thanks to the size of the sample and the large number of massive galaxies, we unambiguously detect a clear bimodality in the (λ _{R_e}, ɛ ) diagram which may result from fundamental differences in galaxy assembly history. There is a sharp secondary density peak inside the region of the diagram with low λ _{R_e} and ɛ < 0.4, previously suggested as the definition for slow rotators. Most of these galaxies are visually classified as non-regular rotators and have high velocity dispersion. The intrinsic bimodality must be stronger, as it tends to be smoothed by noise and inclination. The large sample of slow rotators allows us for the first time to unveil a secondary peak at ±90° in their distribution of the misalignments between the photometric and kinematic position angles. We confirm that genuine slow rotators start appearing above M ≥ 2 × 1011 M⊙ where a significant number of high-mass fast rotators also exist.

  11. Structural analysis of star-forming blue early-type galaxies. Merger-driven star formation in elliptical galaxies

    NASA Astrophysics Data System (ADS)

    George, Koshy

    2017-02-01

    Context. Star-forming blue early-type galaxies at low redshift can give insight to the stellar mass growth of L⋆ elliptical galaxies in the local Universe. Aims: We wish to understand the reason for star formation in these otherwise passively evolving red and dead stellar systems. The fuel for star formation can be acquired through recent accretion events such as mergers or flyby. The signatures of such events should be evident from a structural analysis of the galaxy image. Methods: We carried out structural analysis on SDSS r-band imaging data of 55 star-forming blue elliptical galaxies, derived the structural parameters, analysed the residuals from best-fit to surface brightness distribution, and constructed the galaxy scaling relations. Results: We found that star-forming blue early-type galaxies are bulge-dominated systems with axial ratio >0.5 and surface brightness profiles fitted by Sérsic profiles with index (n) mostly >2. Twenty-three galaxies are found to have n< 2; these could be hosting a disc component. The residual images of the 32 galaxy surface brightness profile fits show structural features indicative of recent interactions. The star-forming blue elliptical galaxies follow the Kormendy relation and show the characteristics of normal elliptical galaxies as far as structural analysis is concerned. There is a general trend for high-luminosity galaxies to display interaction signatures and high star formation rates. Conclusions: The star-forming population of blue early-type galaxies at low redshifts could be normal ellipticals that might have undergone a recent gas-rich minor merger event. The star formation in these galaxies will shut down once the recently acquired fuel is consumed, following which the galaxy will evolve to a normal early-type galaxy.

  12. The Smallest Galaxies in the Universe: Investigating the Origins of Ultra-faint Galaxies

    NASA Astrophysics Data System (ADS)

    Qi, Yuewen; Graus, Andrew; Bullock, James

    2018-01-01

    One outstanding question in cosmology is, what are the smallest galaxies that can form? The answer to this question can tell us much about galaxy formation, and even of the properties of dark matter itself. A candidate for the smallest galaxies that can form are the ultrafaint galaxies. The star formation of ultrafaints appears to have been shut off during the epoch of reionization, when radiation from the first stars ionized all the free hydrogen in the universe. This would imply ultrafaints should exist everywhere in the universe. However, we can only observe ultrafaints as satellites of the Milky Way, due to their low brightness. This will change with the next generation of telescopes such as the Large Synoptic Survey Telescope (LSST). The focus of this work is to predict the number of ultrafaints that should be seen with future surveys. To that end, we use the ELVIS suite, which contains 14 dark matter only simulations of Local Group like systems containing a Milky Way and Andromeda-like galaxy and the substructure out to around 1 Mpc of the barycenter. We mock observe the simulations in order to mimic current surveys such as the Sloan Digital Sky Survey (SDSS), and the Dark Energy Survey (DES), and use the population of galaxies found by those surveys to project the population of dwarf galaxies out beyond the virial radius of either galaxy. This number will depend sensitively on the formation mechanism of ultrafaint dwarfs, and comparisons of future surveys to this work could help rule out certain formation scenarios.

  13. Halo models of HI selected galaxies

    NASA Astrophysics Data System (ADS)

    Paul, Niladri; Choudhury, Tirthankar Roy; Paranjape, Aseem

    2018-06-01

    Modelling the distribution of neutral hydrogen (HI) in dark matter halos is important for studying galaxy evolution in the cosmological context. We use a novel approach to infer the HI-dark matter connection at the massive end (m_H{I} > 10^{9.8} M_{⊙}) from radio HI emission surveys, using optical properties of low-redshift galaxies as an intermediary. In particular, we use a previously calibrated optical HOD describing the luminosity- and colour-dependent clustering of SDSS galaxies and describe the HI content using a statistical scaling relation between the optical properties and HI mass. This allows us to compute the abundance and clustering properties of HI-selected galaxies and compare with data from the ALFALFA survey. We apply an MCMC-based statistical analysis to constrain the free parameters related to the scaling relation. The resulting best-fit scaling relation identifies massive HI galaxies primarily with optically faint blue centrals, consistent with expectations from galaxy formation models. We compare the Hi-stellar mass relation predicted by our model with independent observations from matched Hi-optical galaxy samples, finding reasonable agreement. As a further application, we make some preliminary forecasts for future observations of HI and optical galaxies in the expected overlap volume of SKA and Euclid/LSST.

  14. Galaxy Number Counts from the Sloan Digital Sky Survey Commissioning Data

    NASA Astrophysics Data System (ADS)

    Yasuda, Naoki; Fukugita, Masataka; Narayanan, Vijay K.; Lupton, Robert H.; Strateva, Iskra; Strauss, Michael A.; Ivezić, Željko; Kim, Rita S. J.; Hogg, David W.; Weinberg, David H.; Shimasaku, Kazuhiro; Loveday, Jon; Annis, James; Bahcall, Neta A.; Blanton, Michael; Brinkmann, Jon; Brunner, Robert J.; Connolly, Andrew J.; Csabai, István; Doi, Mamoru; Hamabe, Masaru; Ichikawa, Shin-Ichi; Ichikawa, Takashi; Johnston, David E.; Knapp, G. R.; Kunszt, Peter Z.; Lamb, D. Q.; McKay, Timothy A.; Munn, Jeffrey A.; Nichol, Robert C.; Okamura, Sadanori; Schneider, Donald P.; Szokoly, Gyula P.; Vogeley, Michael S.; Watanabe, Masaru; York, Donald G.

    2001-09-01

    We present bright galaxy number counts in five broad bands (u', g', r', i', z') from imaging data taken during the commissioning phase of the Sloan Digital Sky Survey (SDSS). The counts are derived from two independent stripes of imaging scans along the celestial equator, one each toward the northern and the southern Galactic cap, covering about 230 and 210 deg2, respectively. A careful study is made to verify the reliability of the photometric catalog. For galaxies brighter than r*=16, the catalog produced by automated software is examined against eye inspection of all objects. Statistically meaningful results on the galaxy counts are obtained in the magnitude range 12<=r*<=21, using a sample of 900,000 galaxies. The counts from the two stripes differ by about 30% at magnitudes brighter than r*=15.5, consistent with a local 2 σ fluctuation due to large-scale structure in the galaxy distribution. The shape of the number counts-magnitude relation brighter than r*=16 is well characterized by N~100.6m, the relation expected for a homogeneous galaxy distribution in a ``Euclidean'' universe. In the magnitude range 16galaxy counts from both stripes agree very well and follow the prediction of the no-evolution model, although the data do not exclude a small amount of evolution. We use empirically determined color transformations to derive the galaxy number counts in the B and I814 bands. We compute the luminosity density of the universe at zero redshift in the five SDSS bands and in the B band. We find LB=2.4+/-0.4×108 Lsolar h Mpc-3, for a reasonably wide range of parameters of the Schechter luminosity function in the B band. Based on observations obtained with the Sloan Digital Sky Survey. Information available at http://www.sdss.org.

  15. The Intrinsic Properties of SDSS Galaxies: Taking off the Rose Tinted Glasses

    NASA Astrophysics Data System (ADS)

    Maller, Ariyed; Berlind, A.; Blanton, M.; Hogg, D.

    2006-12-01

    It is well known that most galaxies contain dust. Dust reddens galaxies and does so as an increasing function of the galaxies observed inclination. Therefore when one looks at the properties of observed galaxies, such as the luminosity function, the correlation function or the color magnitude-diagram, one gets a distorted view of the properties of galaxies. This effect can be corrected for in a large galaxy sample such as the Sloan Digital Sky Survey. The procedure is to identify inclination dependence in an observed galaxy property, color being the most obvious choice, and then to solve for the function of inclination that will remove this observed dependence. In this way we can determine the intrinsic properties of galaxies, properties that are independent of their inclination. The distribution of these intrinsic properties give us an undistorted view into the nature of galaxies and are thus more useful for determining evolutionary effects and comparing to theoretical models.

  16. A high-resolution atlas of composite Sloan Digital Sky Survey galaxy spectra

    NASA Astrophysics Data System (ADS)

    Dobos, László; Csabai, István.; Yip, Ching-Wa; Budavári, Tamás.; Wild, Vivienne; Szalay, Alexander S.

    2012-02-01

    In this work we present an atlas of composite spectra of galaxies based on the data of the Sloan Digital Sky Survey Data Release 7 (SDSS DR7). Galaxies are classified by colour, nuclear activity and star formation activity to calculate average spectra of high signal-to-noise ratio (S/N) and resolution (? at Δλ= 1 Å), using an algorithm that is robust against outliers. Besides composite spectra, we also compute the first five principal components of the distributions in each galaxy class to characterize the nature of variations of individual spectra around the averages. The continua of the composite spectra are fitted with BC03 stellar population synthesis models to extend the wavelength coverage beyond the coverage of the SDSS spectrographs. Common derived parameters of the composites are also calculated: integrated colours in the most popular filter systems, line-strength measurements and continuum absorption indices (including Lick indices). These derived parameters are compared with the distributions of parameters of individual galaxies, and it is shown on many examples that the composites of the atlas cover much of the parameter space spanned by SDSS galaxies. By co-adding thousands of spectra, a total integration time of several months can be reached, which results in extremely low noise composites. The variations in redshift not only allow for extending the spectral coverage bluewards to the original wavelength limit of the SDSS spectrographs, but also make higher spectral resolution achievable. The composite spectrum atlas is available online at .

  17. Spectral properties of the narrow-line region in Seyfert galaxies selected from the SDSS-DR7

    NASA Astrophysics Data System (ADS)

    Vaona, L.; Ciroi, S.; Di Mille, F.; Cracco, V.; La Mura, G.; Rafanelli, P.

    2012-12-01

    Although the properties of the narrow-line region (NLR) of active galactic nuclei (AGN) have been deeply studied by many authors in the past three decades, many questions are still open. The main goal of this work is to explore the NLR of Seyfert galaxies by collecting a large statistical spectroscopic sample of Seyfert 2 and Intermediate-type Seyfert galaxies having a high signal-to-noise ratio in order to take advantage of a high number of emission lines to be accurately measured. 2153 Seyfert 2 and 521 Intermediate-type Seyfert spectra were selected from Sloan Digital Sky Survey Data Release 7 (SDSS-DR7) with a diagnostic diagram based on the oxygen emission-line ratios. All the emission lines, broad components included, were measured by means of a self-developed code, after the subtraction of the stellar component. Physical parameters, such as internal reddening, ionization parameter, temperature, density, gas and stellar velocity dispersion were determined for each object. Furthermore, we estimated mass and radius of the NLR, kinetic energy of the ionized gas and black hole accretion rate. From the emission-line analysis and the estimated physical properties, it appears that the NLR is similar in Seyfert 2 and Intermediate-Seyfert galaxies. The only differences, lower extinction, gas kinematics in general not dominated by the host galaxy gravitational potential and higher percentage of [O III]λ5007 blue asymmetries in Intermediate-Seyfert, can be ascribed to an effect of inclination of our line of sight with respect to the torus axis.

  18. Do satellite galaxies trace matter in galaxy clusters?

    NASA Astrophysics Data System (ADS)

    Wang, Chunxiang; Li, Ran; Gao, Liang; Shan, Huanyuan; Kneib, Jean-Paul; Wang, Wenting; Chen, Gang; Makler, Martin; Pereira, Maria E. S.; Wang, Lin; Maia, Marcio A. G.; Erben, Thomas

    2018-04-01

    The spatial distribution of satellite galaxies encodes rich information of the structure and assembly history of galaxy clusters. In this paper, we select a red-sequence Matched-filter Probabilistic Percolation cluster sample in SDSS Stripe 82 region with 0.1 ≤ z ≤ 0.33, 20 < λ < 100, and Pcen > 0.7. Using the high-quality weak lensing data from CS82 Survey, we constrain the mass profile of this sample. Then we compare directly the mass density profile with the satellite number density profile. We find that the total mass and number density profiles have the same shape, both well fitted by an NFW profile. The scale radii agree with each other within a 1σ error (r_s,gal=0.34_{-0.03}^{+0.04} Mpc versus r_s=0.37_{-0.10}^{+0.15} Mpc).

  19. The Effect of Halo Mass on the H I Content of Galaxies in Groups and Clusters

    NASA Astrophysics Data System (ADS)

    Yoon, Ilsang; Rosenberg, Jessica L.

    2015-10-01

    We combine data from the Sloan Digital Sky Survey (SDSS) and the Arecibo Legacy Fast ALFA Survey (ALFALFA) to study the cold atomic gas content of galaxies in groups and clusters in the local universe. A careful cross-matching of galaxies in the SDSS, ALFALFA, and SDSS group catalogs provides a sample of group galaxies with stellar masses {10}8.4{M}⊙ ≤slant {M}*≤slant {10}10.6{M}⊙ and group halo masses {10}12.5{h}-1{M}⊙ ≤slant {M}h≤slant {10}15.0{h}-1{M}⊙ . Controlling our sample in stellar mass and redshift, we find no significant radial variation in the galaxy H i gas-to-stellar mass ratio for the halo mass range in our sample. However, the fraction of galaxies detected in ALFALFA declines steadily toward the centers of groups, with the effect being most prominent in the most massive halos. In the outskirts of massive halos a hint of a depressed detection fraction for low-mass galaxies suggests pre-processing that decreases the H i in these galaxies before they fall into massive clusters. We interpret the decline in the ALFALFA detection of galaxies in the context of a threshold halo mass for ram pressure stripping for a given galaxy stellar mass. The lack of an observable decrease in the galaxy H i gas-to-stellar mass ratio with the position of galaxies within groups and clusters highlights the difficulty of detecting the impact of environment on the galaxy H i content in a shallow H i survey.

  20. Gradient pattern analysis applied to galaxy morphology

    NASA Astrophysics Data System (ADS)

    Rosa, R. R.; de Carvalho, R. R.; Sautter, R. A.; Barchi, P. H.; Stalder, D. H.; Moura, T. C.; Rembold, S. B.; Morell, D. R. F.; Ferreira, N. C.

    2018-06-01

    Gradient pattern analysis (GPA) is a well-established technique for measuring gradient bilateral asymmetries of a square numerical lattice. This paper introduces an improved version of GPA designed for galaxy morphometry. We show the performance of the new method on a selected sample of 54 896 objects from the SDSS-DR7 in common with Galaxy Zoo 1 catalogue. The results suggest that the second gradient moment, G2, has the potential to dramatically improve over more conventional morphometric parameters. It separates early- from late-type galaxies better (˜ 90 per cent) than the CAS system (C˜ 79 per cent, A˜ 50 per cent, S˜ 43 per cent) and a benchmark test shows that it is applicable to hundreds of thousands of galaxies using typical processing systems.

  1. Gradient Pattern Analysis Applied to Galaxy Morphology

    NASA Astrophysics Data System (ADS)

    Rosa, R. R.; de Carvalho, R. R.; Sautter, R. A.; Barchi, P. H.; Stalder, D. H.; Moura, T. C.; Rembold, S. B.; Morell, D. R. F.; Ferreira, N. C.

    2018-04-01

    Gradient pattern analysis (GPA) is a well-established technique for measuring gradient bilateral asymmetries of a square numerical lattice. This paper introduces an improved version of GPA designed for galaxy morphometry. We show the performance of the new method on a selected sample of 54,896 objects from the SDSS-DR7 in common with Galaxy Zoo 1 catalog. The results suggest that the second gradient moment, G2, has the potential to dramatically improve over more conventional morphometric parameters. It separates early from late type galaxies better (˜90%) than the CAS system (C ˜ 79%, A ˜ 50%, S ˜ 43%) and a benchmark test shows that it is applicable to hundreds of thousands of galaxies using typical processing systems.

  2. Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data

    NASA Astrophysics Data System (ADS)

    Strateva, Iskra; Ivezić, Željko; Knapp, Gillian R.; Narayanan, Vijay K.; Strauss, Michael A.; Gunn, James E.; Lupton, Robert H.; Schlegel, David; Bahcall, Neta A.; Brinkmann, Jon; Brunner, Robert J.; Budavári, Tamás; Csabai, István; Castander, Francisco Javier; Doi, Mamoru; Fukugita, Masataka; Győry, Zsuzsanna; Hamabe, Masaru; Hennessy, Greg; Ichikawa, Takashi; Kunszt, Peter Z.; Lamb, Don Q.; McKay, Timothy A.; Okamura, Sadanori; Racusin, Judith; Sekiguchi, Maki; Schneider, Donald P.; Shimasaku, Kazuhiro; York, Donald

    2001-10-01

    We study the optical colors of 147,920 galaxies brighter than g*=21, observed in five bands by the Sloan Digital Sky Survey (SDSS) over ~100 deg2 of high Galactic latitude sky along the celestial equator. The distribution of galaxies in the g*-r* versus u*-g* color-color diagram is strongly bimodal, with an optimal color separator of u*-r*=2.22. We use visual morphology and spectral classification of subsamples of 287 and 500 galaxies, respectively, to show that the two peaks correspond roughly to early- (E, S0, and Sa) and late-type (Sb, Sc, and Irr) galaxies, as expected from their different stellar populations. We also find that the colors of galaxies are correlated with their radial profiles, as measured by the concentration index and by the likelihoods of exponential and de Vaucouleurs' profile fits. While it is well known that late-type galaxies are bluer than early-type galaxies, this is the first detection of a local minimum in their color distribution. In all SDSS bands, the counts versus apparent magnitude relations for the two color types are significantly different and demonstrate that the fraction of blue galaxies increases toward the faint end.

  3. SDSS-IV MaNGA: Stellar angular momentum of about 2300 galaxies: unveiling the bimodality of massive galaxy properties

    NASA Astrophysics Data System (ADS)

    Graham, Mark T.; Cappellari, Michele; Li, Hongyu; Mao, Shude; Bershady, Matthew; Bizyaev, Dmitry; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Drory, Niv; Law, David R.; Pan, Kaike; Thomas, Daniel; Wake, David A.; Weijmans, Anne-Marie; Westfall, Kyle B.; Yan, Renbin

    2018-03-01

    We measure λ _{R_e}, a proxy for galaxy specific stellar angular momentum within one effective radius, and the ellipticity, ɛ, for about 2300 galaxies of all morphological types observed with integral field spectroscopy as part of the MaNGA survey, the largest such sample to date. We use the (λ _{R_e}, ɛ ) diagram to separate early-type galaxies into fast and slow rotators. We also visually classify each galaxy according to its optical morphology and two-dimensional stellar velocity field. Comparing these classifications to quantitative λ _{R_e} measurements reveals tight relationships between angular momentum and galaxy structure. In order to account for atmospheric seeing, we use realistic models of galaxy kinematics to derive a general approximate analytic correction for λ _{R_e}. Thanks to the size of the sample and the large number of massive galaxies, we unambiguously detect a clear bimodality in the (λ _{R_e}, ɛ ) diagram which may result from fundamental differences in galaxy assembly history. There is a sharp secondary density peak inside the region of the diagram with low λ _{R_e} and ɛ < 0.4, previously suggested as the definition for slow rotators. Most of these galaxies are visually classified as non-regular rotators and have high velocity dispersion. The intrinsic bimodality must be stronger, as it tends to be smoothed by noise and inclination. The large sample of slow rotators allows us for the first time to unveil a secondary peak at ±90○ in their distribution of the misalignments between the photometric and kinematic position angles. We confirm that genuine slow rotators start appearing above M ≥ 2 × 1011M⊙ where a significant number of high-mass fast rotators also exist.

  4. Gas, Stars, and Star Formation in Alfalfa Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    Huang, Shan; Haynes, Martha P.; Giovanelli, Riccardo; Brinchmann, Jarle; Stierwalt, Sabrina; Neff, Susan G.

    2012-01-01

    We examine the global properties of the stellar and Hi components of 229 low H i mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H i masses <10(sup 7.7) solar mass and Hi line widths <80 kilometers per second. Sloan Digital Sky Survey (SDSS) data are combined with photometric properties derived from Galaxy Evolution Explorer to derive stellar masses (M*) and star formation rates (SFRs) by fitting their UV-optical spectral energy distributions (SEDs). In optical images, many of the ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M* obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M* approximately less than10(exp 8)M(sub 0) is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper Hi mass limit yields the selection of a sample with lower gas fractions for their M* than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H i depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that Hi disks are more extended than stellar ones.

  5. GAS, STARS, AND STAR FORMATION IN ALFALFA DWARF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Shan; Haynes, Martha P.; Giovanelli, Riccardo

    2012-06-15

    We examine the global properties of the stellar and H I components of 229 low H I mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H I masses <10{sup 7.7} M{sub Sun} and H I line widths <80 km s{sup -1}. Sloan Digital Sky Survey (SDSS) data are combined with photometric properties derived from Galaxy Evolution Explorer to derive stellar masses (M{sub *}) and star formation rates (SFRs) by fitting their UV-optical spectral energy distributions (SEDs). In optical images, many of the ALFALFA dwarfs are faint and of low surface brightness; onlymore » 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M{sub *} obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M{sub *} {approx}< 10{sup 8} M{sub Sun} is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper H I mass limit yields the selection of a sample with lower gas fractions for their M{sub *} than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H I depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that H I disks are more extended than stellar ones.« less

  6. Detecting effects of filaments on galaxy properties in the Sloan Digital Sky Survey III

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Chi; Ho, Shirley; Mandelbaum, Rachel; Bahcall, Neta A.; Brownstein, Joel R.; Freeman, Peter E.; Genovese, Christopher R.; Schneider, Donald P.; Wasserman, Larry

    2017-04-01

    We study the effects of filaments on galaxy properties in the Sloan Digital Sky Survey (SDSS) Data Release 12 using filaments from the 'Cosmic Web Reconstruction' catalogue, a publicly available filament catalogue for SDSS. Since filaments are tracers of medium- to high-density regions, we expect that galaxy properties associated with the environment are dependent on the distance to the nearest filament. Our analysis demonstrates that a red galaxy or a high-mass galaxy tends to reside closer to filaments than a blue or low-mass galaxy. After adjusting the effect from stellar mass, on average, early-forming galaxies or large galaxies have a shorter distance to filaments than late-forming galaxies or small galaxies. For the main galaxy sample, all signals are very significant (>6σ). For the LOWZ and CMASS sample, the stellar mass and size are significant (>2σ). The filament effects we observe persist until z = 0.7 (the edge of the CMASS sample). Comparing our results to those using the galaxy distances from redMaPPer galaxy clusters as a reference, we find a similar result between filaments and clusters. Moreover, we find that the effect of clusters on the stellar mass of nearby galaxies depends on the galaxy's filamentary environment. Our findings illustrate the strong correlation of galaxy properties with proximity to density ridges, strongly supporting the claim that density ridges are good tracers of filaments.

  7. THE AROMATIC FEATURES IN VERY FAINT DWARF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Ronin; Hogg, David W.; Moustakas, John

    2011-04-01

    We present optical and mid-infrared photometry of a statistically complete sample of 29 dwarf galaxies (M{sub r} > - 15 mag) selected from the Sloan Digital Sky Survey (SDSS) spectroscopic sample and observed in the mid-infrared with Spitzer IRAC. This sample contains nearby (redshift {approx}<0.005) galaxies 3 mag fainter than previously studied samples. We compare our sample with other star-forming galaxies that have been observed with both IRAC and SDSS. We examine the relationship of the infrared color, [3.6]-[7.8], sensitive to polycyclic aromatic hydrocarbon (PAH) abundance and also hot dust and stellar continuum, with star formation rates (SFRs), oxygen abundances,more » and radiation hardness, all estimated by optical emission lines. Consistent with studies of more luminous dwarfs, we find that these dwarf galaxies show much redder [3.6]-[7.8] color than luminous galaxies with similar specific SFRs. Unlike luminous galaxies, we find that these dwarf galaxies show no significant dependence at all of the [3.6]-[7.8] color on SFR, oxygen abundance, or radiation hardness, despite the fact that the sample spans a significant range in all of these quantities. When the dwarfs in our sample are compared with more luminous dwarfs, we find that the [3.6]-[7.8] color, potentially tracing the PAH emission, depends on oxygen abundance and radiation hardness. However, these two parameters are correlated with one another as well; we break this degeneracy by looking at the PAH-oxygen abundance relation at a fixed radiation hardness and the PAH-hardness relation at a fixed oxygen abundance. This test shows that the [3.6]-[7.8] color in dwarf galaxies appears to depend more directly on oxygen abundance based on the data currently available.« less

  8. The Shape of Extremely Metal-Poor Galaxies

    NASA Astrophysics Data System (ADS)

    Putko, Joseph; Sánchez Almeida, Jorge; Muñoz-Tuñón, Casiana; Elmegreen, Bruce; Elmegreen, Debra

    2018-01-01

    This work is the first study on the 3D shape of starbursting extremely metal-poor galaxies (XMPs; a galaxy is said to be an XMP if its ionized gas-phase metallicity is less than 1/10 the solar value). A few hundred XMPs have been identified in the local universe primarily through mining the spectroscopic catalog of the Sloan Digital Sky Survey (SDSS), and follow-up observations have shown that metallicity drops significantly at the starburst (compared to the quiescent component of the galaxy). As the timescale for gas mixing is short, the metal-poor gas triggering the starburst must have been accreted recently. This is strong observational evidence for the cold flow accretion predicted by cosmological models of galaxy formation, and, in this respect, XMPs seem to be the best local analogs of the very first galaxies.The ellipsoidal shape of a class of galaxies can be inferred from the observed axial ratio (q) distribution (q = minor axis/major axis) of a large sample of randomly-oriented galaxies. Fitting ellipses to 200 XMPs using r-band SDSS images, we observe that the axial ratio distribution falls off at q < ~0.4 and q > ~0.8, and we determine that these falloffs are not due to biases in the data. The falloff at low axial ratio indicates that the XMPs are thick for their size, and the falloff at high axial ratio suggests the vast majority of XMPs are triaxial. We also observe that smaller XMPs are thicker in proportion to their size, and it is expected that for decreasing galaxy size the ratio of random to rotational motions increases, which correlates with increasing relative thickness. The XMPs are low-redshift dwarf galaxies dominated by dark matter, and our results are compatible with simulations that have shown dark matter halos to be triaxial, with triaxial stellar distributions for low-mass galaxies and with triaxiality increasing over time. We will offer precise constraints on the 3D shape of XMPs via Bayesian analysis of our observed axial ratio

  9. Ionized Gas Outflows in Infrared-bright Dust-obscured Galaxies Selected with WISE and SDSS

    NASA Astrophysics Data System (ADS)

    Toba, Yoshiki; Bae, Hyun-Jin; Nagao, Tohru; Woo, Jong-Hak; Wang, Wei-Hao; Wagner, Alexander Y.; Sun, Ai-Lei; Chang, Yu-Yen

    2017-12-01

    We present the ionized gas properties of infrared (IR)-bright dust-obscured galaxies (DOGs) that show an extreme optical/IR color, {(i-[22])}{AB}> 7.0, selected with the Sloan Digital Sky Survey (SDSS) and Wide-field Infrared Survey Explorer (WISE). For 36 IR-bright DOGs that show [O III]λ5007 emission in the SDSS spectra, we performed a detailed spectral analysis to investigate their ionized gas properties. In particular, we measured the velocity offset (the velocity with respect to the systemic velocity measured from the stellar absorption lines) and the velocity dispersion of the [O III] line. We found that the derived velocity offset and dispersion of most IR-bright DOGs are larger than those of Seyfert 2 galaxies (Sy2s) at z< 0.3, meaning that the IR-bright DOGs show relatively strong outflows compared to Sy2s. This can be explained by the difference in IR luminosity contributed from active galactic nuclei, {L}{IR} (AGN), because we found that (i) {L}{IR} (AGN) correlates with the velocity offset and dispersion of [O III] and (ii) our IR-bright DOG sample has larger {L}{IR} (AGN) than Sy2s. Nevertheless, the fact that about 75% IR-bright DOGs have a large (>300 km s-1) velocity dispersion, which is a larger fraction compared to other AGN populations, suggests that IR-bright DOGs are good laboratories to investigate AGN feedback. The velocity offset and dispersion of [O III] and [Ne III]λ3869 are larger than those of [O II]λ3727, which indicates that the highly ionized gas tends to show stronger outflows.

  10. A catalog of galaxy morphology and photometric redshift

    NASA Astrophysics Data System (ADS)

    Paul, Nicholas; Shamir, Lior

    2018-01-01

    Morphology carries important information about the physical characteristics of a galaxy. Here we used machine learning to produce a catalog of ~3,000,000 SDSS galaxies classified by their broad morphology into spiral and elliptical galaxies. Comparison of the catalog to Galaxy Zooshows that the catalog contains a subset of 1.7*10^6 galaxies classified with the same level of consistency as the debiased “superclean” sub-sample. In addition to the morphology, we also computed the photometric redshifts of the galaxies. Several pattern recognition algorithms and variable selection strategies were tested, and the best accuracy of mean absolute error of ~0.0062 was achieved by using random forest with a combination of manually and automatically selected variables. The catalog shows that for redshift lower than 0.085 galaxies that visually look spiral become more prevalent as the redshift gets higher. For redshift greater than 0.085 galaxies thatvisually look elliptical become more prevalent. The catalog as well as the source code used to produce it is publicly available athttps://figshare.com/articles/Morphology_and_photometric_redshift_catalog/4833593 .

  11. Galaxy clusters in the SDSS Stripe 82 based on photometric redshifts

    DOE PAGES

    Durret, F.; Adami, C.; Bertin, E.; ...

    2015-06-10

    Based on a recent photometric redshift galaxy catalogue, we have searched for galaxy clusters in the Stripe ~82 region of the Sloan Digital Sky Survey by applying the Adami & MAzure Cluster FInder (AMACFI). Extensive tests were made to fine-tune the AMACFI parameters and make the cluster detection as reliable as possible. The same method was applied to the Millennium simulation to estimate our detection efficiency and the approximate masses of the detected clusters. Considering all the cluster galaxies (i.e. within a 1 Mpc radius of the cluster to which they belong and with a photoz differing by less thanmore » 0.05 from that of the cluster), we stacked clusters in various redshift bins to derive colour-magnitude diagrams and galaxy luminosity functions (GLFs). For each galaxy with absolute magnitude brighter than -19.0 in the r band, we computed the disk and spheroid components by applying SExtractor, and by stacking clusters we determined how the disk-to-spheroid flux ratio varies with cluster redshift and mass. We also detected 3663 clusters in the redshift range 0.1513 and a few 10 14 solar masses. Furthermore, by stacking the cluster galaxies in various redshift bins, we find a clear red sequence in the (g'-r') versus r' colour-magnitude diagrams, and the GLFs are typical of clusters, though with a possible contamination from field galaxies. The morphological analysis of the cluster galaxies shows that the fraction of late-type to early-type galaxies shows an increase with redshift (particularly in high mass clusters) and a decrease with detection level, i.e. cluster mass. From the properties of the cluster galaxies, the majority of the candidate clusters detected here seem to be real clusters with typical cluster properties.« less

  12. Galaxy clusters in the SDSS Stripe 82 based on photometric redshifts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durret, F.; Adami, C.; Bertin, E.

    Based on a recent photometric redshift galaxy catalogue, we have searched for galaxy clusters in the Stripe ~82 region of the Sloan Digital Sky Survey by applying the Adami & MAzure Cluster FInder (AMACFI). Extensive tests were made to fine-tune the AMACFI parameters and make the cluster detection as reliable as possible. The same method was applied to the Millennium simulation to estimate our detection efficiency and the approximate masses of the detected clusters. Considering all the cluster galaxies (i.e. within a 1 Mpc radius of the cluster to which they belong and with a photoz differing by less thanmore » 0.05 from that of the cluster), we stacked clusters in various redshift bins to derive colour-magnitude diagrams and galaxy luminosity functions (GLFs). For each galaxy with absolute magnitude brighter than -19.0 in the r band, we computed the disk and spheroid components by applying SExtractor, and by stacking clusters we determined how the disk-to-spheroid flux ratio varies with cluster redshift and mass. We also detected 3663 clusters in the redshift range 0.1513 and a few 10 14 solar masses. Furthermore, by stacking the cluster galaxies in various redshift bins, we find a clear red sequence in the (g'-r') versus r' colour-magnitude diagrams, and the GLFs are typical of clusters, though with a possible contamination from field galaxies. The morphological analysis of the cluster galaxies shows that the fraction of late-type to early-type galaxies shows an increase with redshift (particularly in high mass clusters) and a decrease with detection level, i.e. cluster mass. From the properties of the cluster galaxies, the majority of the candidate clusters detected here seem to be real clusters with typical cluster properties.« less

  13. Detection of bars in galaxies using a deep convolutional neural network

    NASA Astrophysics Data System (ADS)

    Abraham, Sheelu; Aniyan, A. K.; Kembhavi, Ajit K.; Philip, N. S.; Vaghmare, Kaustubh

    2018-06-01

    We present an automated method for the detection of bar structure in optical images of galaxies using a deep convolutional neural network that is easy to use and provides good accuracy. In our study, we use a sample of 9346 galaxies in the redshift range of 0.009-0.2 from the Sloan Digital Sky Survey (SDSS), which has 3864 barred galaxies, the rest being unbarred. We reach a top precision of 94 per cent in identifying bars in galaxies using the trained network. This accuracy matches the accuracy reached by human experts on the same data without additional information about the images. Since deep convolutional neural networks can be scaled to handle large volumes of data, the method is expected to have great relevance in an era where astronomy data is rapidly increasing in terms of volume, variety, volatility, and velocity along with other V's that characterize big data. With the trained model, we have constructed a catalogue of barred galaxies from SDSS and made it available online.

  14. Structural properties of faint low surface brightness galaxies

    NASA Astrophysics Data System (ADS)

    Pahwa, Isha; Saha, Kanak

    2018-05-01

    We study the structural properties of Low Surface Brightness galaxies (LSB) using a sample of 263 galaxies observed by the Green Bank Telescope (Schneider et al. 1992). We perform 2D decompositions of these galaxies in the SDSS g, r and i bands using the GALFIT software. Our decomposition reveals that about 60% of these galaxies are bulgeless i.e., their light distributions are well modelled by pure exponential disks. The rest of the galaxies were fitted with two components: a Sersic bulge and an exponential disk. Most of these galaxies have bulge-to-total (B/T) ratio less than 0.1. However, of these 104 galaxies, 20% have B/T > 0.1 i.e., hosting significant bulge component and they are more prominent amongst the fainter LSBs. According to g - r colour criteria, most of the LSB galaxies in our sample are blue, with only 7 classified as red LSBs. About 15% of the LSB galaxies (including both blue and red) in our sample host stellar bars. The incidence of bars is more prominent in relatively massive blue LSB galaxies with very high gas fraction. These findings may provide important clues to the formation and evolution of LSB galaxies - in particular on the bar/bulge formation in faint LSB disks.

  15. A large sample of Kohonen selected E+A (post-starburst) galaxies from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Meusinger, H.; Brünecke, J.; Schalldach, P.; in der Au, A.

    2017-01-01

    Context. The galaxy population in the contemporary Universe is characterised by a clear bimodality, blue galaxies with significant ongoing star formation and red galaxies with only a little. The migration between the blue and the red cloud of galaxies is an issue of active research. Post starburst (PSB) galaxies are thought to be observed in the short-lived transition phase. Aims: We aim to create a large sample of local PSB galaxies from the Sloan Digital Sky Survey (SDSS) to study their characteristic properties, particularly morphological features indicative of gravitational distortions and indications for active galactic nuclei (AGNs). Another aim is to present a tool set for an efficient search in a large database of SDSS spectra based on Kohonen self-organising maps (SOMs). Methods: We computed a huge Kohonen SOM for ∼106 spectra from SDSS data release 7. The SOM is made fully available, in combination with an interactive user interface, for the astronomical community. We selected a large sample of PSB galaxies taking advantage of the clustering behaviour of the SOM. The morphologies of both PSB galaxies and randomly selected galaxies from a comparison sample in SDSS Stripe 82 (S82) were inspected on deep co-added SDSS images to search for indications of gravitational distortions. We used the Portsmouth galaxy property computations to study the evolutionary stage of the PSB galaxies and archival multi-wavelength data to search for hidden AGNs. Results: We compiled a catalogue of 2665 PSB galaxies with redshifts z < 0.4, among them 74 galaxies in S82 with EW(Hδ) > 3 Å and z < 0.25. In the colour-mass diagram, the PSB sample is clearly concentrated towards the region between the red and the blue cloud, in agreement with the idea that PSB galaxies represent the transitioning phase between actively and passively evolving galaxies. The relative frequency of distorted PSB galaxies is at least 57% for EW(Hδ) > 5 Å, significantly higher than in the comparison

  16. Correlating The Star Formation Histories Of MaNGA Galaxies With Their Past AGN Activity

    NASA Astrophysics Data System (ADS)

    Gonzalez Ortiz, Andrea

    2017-01-01

    We investigate active galactic nuclei (AGN) as a primary mechanism affecting star formation in MaNGA galaxies. Using the Pipe3D code, we modeled the stellar population from MaNGA spectra and derived the star formation histories of 53 AGN host galaxies. We seek to compare the star formation histories of the host galaxies of AGN with the ages of their radio lobes to better understand the role of AGN feedback in the star formation histories of MaNGA galaxies. MaNGA (Mapping Nearby Galaxies at APO) is one of the three core programs in the fourth generation Sloan Digital Sky Survey(SDSS). MaNGA will investigate the internal kinematics of nearly 10,000 local galaxies through dithered observations using fiber integral field units (IFUs) that vary in diameter from 12" (19 fibers) to 32" (127 fibers). In this poster, we present initial results on the star formation histories of MaNGA AGN host galaxies. This work was supported by the SDSS Research Experience for Undergraduates program, which is funded by a grant from Sloan Foundation to the Astrophysical Research Consortium.

  17. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: combining correlated Gaussian posterior distributions

    DOE PAGES

    Sánchez, Ariel G.; Grieb, Jan Niklas; Salazar-Albornoz, Salvador; ...

    2016-09-30

    The cosmological information contained in anisotropic galaxy clustering measurements can often be compressed into a small number of parameters whose posterior distribution is well described by a Gaussian. Here, we present a general methodology to combine these estimates into a single set of consensus constraints that encode the total information of the individual measurements, taking into account the full covariance between the different methods. We also illustrate this technique by applying it to combine the results obtained from different clustering analyses, including measurements of the signature of baryon acoustic oscillations and redshift-space distortions, based on a set of mock cataloguesmore » of the final SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Our results show that the region of the parameter space allowed by the consensus constraints is smaller than that of the individual methods, highlighting the importance of performing multiple analyses on galaxy surveys even when the measurements are highly correlated. Our paper is part of a set that analyses the final galaxy clustering data set from BOSS. The methodology presented here is used in Alam et al. to produce the final cosmological constraints from BOSS.« less

  18. Joint constraints on galaxy bias and σ{sub 8} through the N-pdf of the galaxy number density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnalte-Mur, Pablo; Martínez, Vicent J.; Vielva, Patricio

    We present a full description of the N-probability density function of the galaxy number density fluctuations. This N-pdf is given in terms, on the one hand, of the cold dark matter correlations and, on the other hand, of the galaxy bias parameter. The method relies on the assumption commonly adopted that the dark matter density fluctuations follow a local non-linear transformation of the initial energy density perturbations. The N-pdf of the galaxy number density fluctuations allows for an optimal estimation of the bias parameter (e.g., via maximum-likelihood estimation, or Bayesian inference if there exists any a priori information on themore » bias parameter), and of those parameters defining the dark matter correlations, in particular its amplitude (σ{sub 8}). It also provides the proper framework to perform model selection between two competitive hypotheses. The parameters estimation capabilities of the N-pdf are proved by SDSS-like simulations (both, ideal log-normal simulations and mocks obtained from Las Damas simulations), showing that our estimator is unbiased. We apply our formalism to the 7th release of the SDSS main sample (for a volume-limited subset with absolute magnitudes M{sub r} ≤ −20). We obtain b-circumflex  = 1.193 ± 0.074 and σ-bar{sub 8} = 0.862 ± 0.080, for galaxy number density fluctuations in cells of the size of 30h{sup −1}Mpc. Different model selection criteria show that galaxy biasing is clearly favoured.« less

  19. Study of the Lynx-Cancer void galaxies. - V. The extremely isolated galaxy UGC 4722

    NASA Astrophysics Data System (ADS)

    Chengalur, J. N.; Pustilnik, S. A.; Makarov, D. I.; Perepelitsyna, Y. A.; Safonova, E. S.; Karachentsev, I. D.

    2015-04-01

    We present a detailed study of the extremely isolated Sdm galaxy UGC 4722 (MB = -17.4) located in the nearby Lynx-Cancer void. UGC 4722 is a member of the Catalogue of Isolated Galaxies, and has also been identified as one of the most isolated galaxies in the Local Supercluster. Optical images of the galaxy however show that it has a peculiar morphology with an elongated ˜14 kpc-long plume. New observations with the Russian 6-m telescope (BTA) and the Giant Metrewave Radio Telescope (GMRT) of the ionized and neutral gas in UGC 4722 reveal the second component responsible for the disturbed morphology of the system. This is a small, almost completely destroyed, very gas-rich dwarf (MB = -15.2, M(H I)/LB ˜ 4.3) We estimate the oxygen abundance for both galaxies to be 12 + log (O/H) ˜ 7.5-7.6 which is two to three times lower than what is expected from the luminosity-metallicity relation for similar galaxies in denser environments. The ugr colours of the plume derived from Sloan Digital Sky Survey (SDSS) images are consistent with a simple stellar population with a post starburst age of 0.45-0.5 Gyr. This system hence appears to be the first known case of a minor merger with a prominent tidal feature consisting of a young stellar population.

  20. Host Galaxy Properties of the Swift BAT Ultra Hard X-Ray Selected AGN

    NASA Technical Reports Server (NTRS)

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-01-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) AGN with host galaxy optical data to date, with 185 nearby (z<0.05), moderate luminosity AGN from the Swift Burst Alert Telescope (BAT) sample. The BAT AGN host galaxies have intermediate optical colors (u -- r and g -- r) that are bluer than a comparison sample of inactive galaxies and optically selected AGN from the Sloan Digital Sky Survey (SDSS) which are chosen to have the same stellar mass. Based on morphological classifications from the RC3 and the Galaxy Zoo, the bluer colors of BAT AGN are mainly due to a higher fraction of mergers and massive spirals than in the comparison samples. BAT AGN in massive galaxies (log Stellar Mass >10.5) have a 5 to 10 times higher rate of spiral morphologies than in SDSS AGN or inactive galaxies. We also see enhanced far-IR emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGN are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGN have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] Lambda 5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGN in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as whole. In agreement with the Unified Model of AGN, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGN suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  1. Morpho-z: improving photometric redshifts with galaxy morphology

    NASA Astrophysics Data System (ADS)

    Soo, John Y. H.; Moraes, Bruno; Joachimi, Benjamin; Hartley, William; Lahav, Ofer; Charbonnier, Aldée; Makler, Martín; Pereira, Maria E. S.; Comparat, Johan; Erben, Thomas; Leauthaud, Alexie; Shan, Huanyuan; Van Waerbeke, Ludovic

    2018-04-01

    We conduct a comprehensive study of the effects of incorporating galaxy morphology information in photometric redshift estimation. Using machine learning methods, we assess the changes in the scatter and outlier fraction of photometric redshifts when galaxy size, ellipticity, Sérsic index, and surface brightness are included in training on galaxy samples from the SDSS and the CFHT Stripe-82 Survey (CS82). We show that by adding galaxy morphological parameters to full ugriz photometry, only mild improvements are obtained, while the gains are substantial in cases where fewer passbands are available. For instance, the combination of grz photometry and morphological parameters almost fully recovers the metrics of 5-band photometric redshifts. We demonstrate that with morphology it is possible to determine useful redshift distribution N(z) of galaxy samples without any colour information. We also find that the inclusion of quasar redshifts and associated object sizes in training improves the quality of photometric redshift catalogues, compensating for the lack of a good star-galaxy separator. We further show that morphological information can mitigate biases and scatter due to bad photometry. As an application, we derive both point estimates and posterior distributions of redshifts for the official CS82 catalogue, training on morphology and SDSS Stripe-82 ugriz bands when available. Our redshifts yield a 68th percentile error of 0.058(1 + z), and a outlier fraction of 5.2 per cent. We further include a deep extension trained on morphology and single i-band CS82 photometry.

  2. SDSS IV MaNGA: Deep observations of extra-planar, diffuse ionized gas around late-type galaxies from stacked IFU spectra

    NASA Astrophysics Data System (ADS)

    Jones, A.; Kauffmann, G.; D'Souza, R.; Bizyaev, D.; Law, D.; Haffner, L.; Bahé, Y.; Andrews, B.; Bershady, M.; Brownstein, J.; Bundy, K.; Cherinka, B.; Diamond-Stanic, A.; Drory, N.; Riffel, R. A.; Sánchez, S. F.; Thomas, D.; Wake, D.; Yan, R.; Zhang, K.

    2017-03-01

    We have conducted a study of extra-planar diffuse ionized gas using the first year data from the MaNGA IFU survey. We have stacked spectra from 49 edge-on, late-type galaxies as a function of distance from the midplane of the galaxy. With this technique we can detect the bright emission lines Hα, Hβ, [O II]λλ3726, 3729, [O III]λ5007, [N II]λλ6549, 6584, and [S II]λλ6717, 6731 out to about 4 kpc above the midplane. With 16 galaxies we can extend this analysis out to about 9 kpc, I.e. a distance of 2Re, vertically from the midplane. In the halo, the surface brightnesses of the [O II] and Hα emission lines are comparable, unlike in the disk where Hα dominates. When we split the sample by specific star-formation rate, concentration index, and stellar mass, each subsample's emission line surface brightness profiles and ratios differ, indicating that extra-planar gas properties can vary. The emission line surface brightnesses of the gas around high specific star-formation rate galaxies are higher at all distances, and the line ratios are closer to ratios characteristic of H II regions compared with low specific star-formation rate galaxies. The less concentrated and lower stellar mass samples exhibit line ratios that are more like H II regions at larger distances than their more concentrated and higher stellar mass counterparts. The largest difference between different subsamples occurs when the galaxies are split by stellar mass. We additionally infer that gas far from the midplane in more massive galaxies has the highest temperatures and steepest radial temperature gradients based on their [N II]/Hα and [O II]/Hα ratios between the disk and the halo. SDSS IV.

  3. SDSS J211852.96-073227.5: a new γ-ray flaring narrow-line Seyfert 1 galaxy

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Yuan, Weimin; Yao, Su; Li, Ye; Zhang, Jin; Zhou, Hongyan; Komossa, S.; Liu, He-Yang; Jin, Chichuan

    2018-04-01

    We report on the identification of a new γ-ray-emitting narrow-line Seyfert 1 (NLS1) galaxy, SDSS J211852.96-073227.5 (hereafter J2118-0732). The galaxy, at a redshift of 0.26, is associated with a radio source of flat/inverted spectrum at high radio frequencies. The analysis of its optical spectrum obtained in the Sloan Digital Sky Survey revealed a small linewidth of the broad component of the Hβ line (FWHM = 1585 km s-1), making it a radio-loud NLS1 galaxy - an intriguing class of active galactic nuclei with exceptional multi-wavelength properties. A new γ-ray source centred at J2118-0732 was sporadically detected during 2009-2013 in form of flares by the Fermi-LAT. Our XMM-Newton observations revealed a flat X-ray spectrum described by a simple power law, and a flux variation by a factor of ˜2.5 in 5 months. The source also shows intraday variability in the infrared band. Its broad-band spectral energy distribution can be modelled by emission from a simple one-zone leptonic jet model, and the flux drop from infrared to X-rays in five months can be explained by changes of the jet parameters, though the exact values may be subject to relatively large uncertainties. With the NLS1-blazar composite nucleus, the clear detection of the host galaxy and the synchronous variations in the multi-wavelength fluxes, J2118-0732 provides a new perspective on the formation and evolution of relativistic jets under the regime of relatively small black hole masses and high accretion rates.

  4. Beyond the fibre: resolved properties of Sloan Digital Sky Survey galaxies

    NASA Astrophysics Data System (ADS)

    Gerssen, J.; Wilman, D. J.; Christensen, L.

    2012-02-01

    We have used the Visible Multi-Object Spectrograph (VIMOS) integral field spectrograph to map the emission-line properties in a sample of 24 star-forming galaxies selected from the Sloan Digital Sky Survey (SDSS) data base. In this paper we present and describe the sample, and explore some basic properties of SDSS galaxies with resolved emission-line fields. We fit the Hα+[N II] emission lines in each spectrum to derive maps of continuum, Hα flux, velocity and velocity dispersion. The Hα, Hβ, [N II] and [O III] emission lines are also fit in summed spectra for circular annuli of increasing radius. A simple mass model is used to estimate dynamical mass within 10 kpc, which compared to estimates of stellar mass shows that between 10 and 100 per cent of total mass is in stars. We present plots showing the radial behaviour of equivalent width (EW)[Hα], u-i colour and emission-line ratios. Although EW[Hα] and u-i colour trace current or recent star formation, the radial profiles are often quite different. Whilst line ratios do vary with annular radius, radial gradients in galaxies with central line ratios typical of active galactic nucleus (AGN) or low-ionization nuclear emission-line regions are mild, with a hard component of ionization required out to large radii. We use our VIMOS maps to quantify the fraction of Hα emission contained within the SDSS fibre, taking the ratio of total Hα flux to that of a simulated SDSS fibre. A comparison of the flux ratios to colour-based SDSS extrapolations shows a 175 per cent dispersion in the ratio of estimated to actual corrections in normal star-forming galaxies, with larger errors in galaxies containing AGN. We find a strong correlation between indicators of nuclear activity: galaxies with AGN-like line ratios and/or radio emission frequently show enhanced dispersion peaks in their cores, requiring non-thermal sources of heating. Altogether, about half of the galaxies in our sample show no evidence for nuclear activity

  5. SDSS IV MaNGA: Discovery of an Hα Blob Associated with a Dry Galaxy Pair—Ejected Gas or a “Dark” Galaxy Candidate?

    NASA Astrophysics Data System (ADS)

    Lin, Lihwai; Lin, Jing-Hua; Hsu, Chin-Hao; Fu, Hai; Huang, Song; Sánchez, Sebastián F.; Gwyn, Stephen; Gelfand, Joseph D.; Cheung, Edmond; Masters, Karen; Peirani, Sébastien; Rujopakarn, Wiphu; Stark, David V.; Belfiore, Francesco; Bothwell, M. S.; Bundy, Kevin; Hagen, Alex; Hao, Lei; Huang, Shan; Law, David; Li, Cheng; Lintott, Chris; Maiolino, Roberto; Roman-Lopes, Alexandre; Wang, Wei-Hao; Xiao, Ting; Yuan, Fangting; Bizyaev, Dmitry; Malanushenko, Elena; Drory, Niv; Fernández-Trincado, J. G.; Pace, Zach; Pan, Kaike; Thomas, Daniel

    2017-03-01

    We report the discovery of a mysterious giant Hα blob that is ˜8 kpc away from the main MaNGA target 1-24145, one component of a dry galaxy merger, and has been identified in the first-year SDSS-IV MaNGA data. The size of the Hα blob is ˜3-4 kpc in radius, and the Hα distribution is centrally concentrated. However, there is no optical continuum counterpart in the deep broadband images reaching ˜26.9 mag arcsec-2 in surface brightness. We estimate that the masses of the ionized and cold gases are 3.3× {10}5 {M}⊙ and < 1.3× {10}9 {M}⊙ , respectively. The emission-line ratios indicate that the Hα blob is photoionized by a combination of massive young stars and AGNs. Furthermore, the ionization line ratio decreases from MaNGA 1-24145 to the Hα blob, suggesting that the primary ionizing source may come from MaNGA 1-24145, likely a low-activity AGN. Possible explanations for this Hα blob include the AGN outflow, the gas remnant being tidally or ram-pressure stripped from MaNGA 1-24145, or an extremely low surface brightness galaxy. However, the stripping scenario is less favored according to galaxy merger simulations and the morphology of the Hα blob. With the current data, we cannot distinguish whether this Hα blob is ejected gas due to a past AGN outburst, or a special category of “ultra-diffuse galaxy” interacting with MaNGA 1-24145 that further induces the gas inflow to fuel the AGN in MaNGA 1-24145.

  6. Ganalyzer: A tool for automatic galaxy image analysis

    NASA Astrophysics Data System (ADS)

    Shamir, Lior

    2011-05-01

    Ganalyzer is a model-based tool that automatically analyzes and classifies galaxy images. Ganalyzer works by separating the galaxy pixels from the background pixels, finding the center and radius of the galaxy, generating the radial intensity plot, and then computing the slopes of the peaks detected in the radial intensity plot to measure the spirality of the galaxy and determine its morphological class. Unlike algorithms that are based on machine learning, Ganalyzer is based on measuring the spirality of the galaxy, a task that is difficult to perform manually, and in many cases can provide a more accurate analysis compared to manual observation. Ganalyzer is simple to use, and can be easily embedded into other image analysis applications. Another advantage is its speed, which allows it to analyze ~10,000,000 galaxy images in five days using a standard modern desktop computer. These capabilities can make Ganalyzer a useful tool in analyzing large datasets of galaxy images collected by autonomous sky surveys such as SDSS, LSST or DES.

  7. The Most Massive Galaxies and Black Holes Allowed by ΛCDM

    NASA Astrophysics Data System (ADS)

    Behroozi, Peter; Silk, Joseph

    2018-04-01

    Given a galaxy's stellar mass, its host halo mass has a lower limit from the cosmic baryon fraction and known baryonic physics. At z > 4, galaxy stellar mass functions place lower limits on halo number densities that approach expected ΛCDM halo mass functions. High-redshift galaxy stellar mass functions can thus place interesting limits on number densities of massive haloes, which are otherwise very difficult to measure. Although halo mass functions at z < 8 are consistent with observed galaxy stellar masses if galaxy baryonic conversion efficiencies increase with redshift, JWST and WFIRST will more than double the redshift range over which useful constraints are available. We calculate maximum galaxy stellar masses as a function of redshift given expected halo number densities from ΛCDM. We apply similar arguments to black holes. If their virial mass estimates are accurate, number density constraints alone suggest that the quasars SDSS J1044-0125 and SDSS J010013.02+280225.8 likely have black hole mass — stellar mass ratios higher than the median z = 0 relation, confirming the expectation from Lauer bias. Finally, we present a public code to evaluate the probability of an apparently ΛCDM-inconsistent high-mass halo being detected given the combined effects of multiple surveys and observational errors.

  8. Exploring Galaxy Formation and Evolution via Structural Decomposition

    NASA Astrophysics Data System (ADS)

    Kelvin, Lee; Driver, Simon; Robotham, Aaron; Hill, David; Cameron, Ewan

    2010-06-01

    The Galaxy And Mass Assembly (GAMA) structural decomposition pipeline (GAMA-SIGMA Structural Investigation of Galaxies via Model Analysis) will provide multi-component information for a sample of ~12,000 galaxies across 9 bands ranging from near-UV to near-IR. This will allow the relationship between structural properties and broadband, optical-to-near-IR, spectral energy distributions of bulge, bar, and disk components to be explored, revealing clues as to the history of baryonic mass assembly within a hierarchical clustering framework. Data is initially taken from the SDSS & UKIDSS-LAS surveys to test the robustness of our automated decomposition pipeline. This will eventually be replaced with the forthcoming higher-resolution VST & VISTA surveys data, expanding the sample to ~30,000 galaxies.

  9. MULTIDARK-GALAXIES: data release and first results

    NASA Astrophysics Data System (ADS)

    Knebe, Alexander; Stoppacher, Doris; Prada, Francisco; Behrens, Christoph; Benson, Andrew; Cora, Sofia A.; Croton, Darren J.; Padilla, Nelson D.; Ruiz, Andrés N.; Sinha, Manodeep; Stevens, Adam R. H.; Vega-Martínez, Cristian A.; Behroozi, Peter; Gonzalez-Perez, Violeta; Gottlöber, Stefan; Klypin, Anatoly A.; Yepes, Gustavo; Enke, Harry; Libeskind, Noam I.; Riebe, Kristin; Steinmetz, Matthias

    2018-03-01

    We present the public release of the MULTIDARK-GALAXIES: three distinct galaxy catalogues derived from one of the Planck cosmology MULTIDARK simulations (i.e. MDPL2, with a volume of (1 h-1 Gpc)3 and mass resolution of 1.5 × 109 h-1 M⊙) by applying the semi-analytic models GALACTICUS, SAG, and SAGE to it. We compare the three models and their conformity with observational data for a selection of fundamental properties of galaxies like stellar mass function, star formation rate, cold gas fractions, and metallicities - noting that they sometimes perform differently reflecting model designs and calibrations. We have further selected galaxy subsamples of the catalogues by number densities in stellar mass, cold gas mass, and star formation rate in order to study the clustering statistics of galaxies. We show that despite different treatment of orphan galaxies, i.e. galaxies that lost their dark-matter host halo due to the finite-mass resolution of the N-body simulation or tidal stripping, the clustering signal is comparable, and reproduces the observations in all three models - in particular when selecting samples based upon stellar mass. Our catalogues provide a powerful tool to study galaxy formation within a volume comparable to those probed by ongoing and future photometric and redshift surveys. All model data consisting of a range of galaxy properties - including broad-band SDSS magnitudes - are publicly available.

  10. THE NUCLEAR ACTIVITIES OF NEARBY S0 GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Meng-Yuan; Gu, Qiu-Sheng; Chen, Yan-Mei

    2016-11-01

    We present a study of nuclear activities in nearby S0 galaxies. After cross-matching the Sloan Digital Sky Survey Data Release 7 with the Third Reference Catalog of Bright Galaxies (RC3) and visually checking the SDSS images, we derive a sample of 583 S0 galaxies with the central spectrophotometric information. In order to separate nebular emission lines from the underlying stellar contribution, we fit the stellar population model to the SDSS spectra of these S0 galaxies. According to the BPT diagram, we find that 8% of S0 galaxies show central star-forming activity, while the fractions of Seyfert, Composite, and low-ionization nuclearmore » emission-line regions (LINERs) are 2%, 8%, and 21.4%, respectively. We also find that star-forming S0s have the lowest stellar masses, over one magnitude lower than the others, and that the active S0s are mainly located in the sparse environment, while the normal S0s are located in the dense environment, which might suggest that the environment plays an important role in quenching star formation and/or AGN activity in S0 galaxies. By performing bulge-disk decomposition of 45 star-forming S0s in g - and r -bands with the 2D fitting software Galfit, as well as exploiting the catalog of 2D photometric decompositions of Meert et al., we find that the bulges of approximately one-third of star-forming S0 galaxies (16/45) are bluer than their disks, while for other types of S0s the bulge and disk components show similar color distributions. Besides, the Sérsic index of most star-forming S0s bulges is less than two, while for normal S0s, it is between two and six.« less

  11. Galaxy clustering dependence on the [O II] emission line luminosity in the local Universe

    NASA Astrophysics Data System (ADS)

    Favole, Ginevra; Rodríguez-Torres, Sergio A.; Comparat, Johan; Prada, Francisco; Guo, Hong; Klypin, Anatoly; Montero-Dorta, Antonio D.

    2017-11-01

    We study the galaxy clustering dependence on the [O II] emission line luminosity in the SDSS DR7 Main galaxy sample at mean redshift z ∼ 0.1. We select volume-limited samples of galaxies with different [O II] luminosity thresholds and measure their projected, monopole and quadrupole two-point correlation functions. We model these observations using the 1 h-1 Gpc MultiDark-Planck cosmological simulation and generate light cones with the SUrvey GenerAtoR algorithm. To interpret our results, we adopt a modified (Sub)Halo Abundance Matching scheme, accounting for the stellar mass incompleteness of the emission line galaxies. The satellite fraction constitutes an extra parameter in this model and allows to optimize the clustering fit on both small and intermediate scales (i.e. rp ≲ 30 h-1 Mpc), with no need of any velocity bias correction. We find that, in the local Universe, the [O II] luminosity correlates with all the clustering statistics explored and with the galaxy bias. This latter quantity correlates more strongly with the SDSS r-band magnitude than [O II] luminosity. In conclusion, we propose a straightforward method to produce reliable clustering models, entirely built on the simulation products, which provides robust predictions of the typical ELG host halo masses and satellite fraction values. The SDSS galaxy data, MultiDark mock catalogues and clustering results are made publicly available.

  12. PHOTOMETRIC PROPERTIES AND LUMINOSITY FUNCTION OF NEARBY MASSIVE EARLY-TYPE GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Y. Q.; Xia, X. Y.; Hao, C. N.

    We perform photometric analyses of a bright early-type galaxy sample with 2949 galaxies (M{sub r} < -22.5 mag) in the redshift range of 0.05-0.15, drawn from the Sloan Digital Sky Survey (SDSS) DR7 with morphological classification from Galaxy Zoo 1. We measure the Petrosian and isophotal magnitudes, as well as the corresponding half-light radius for each galaxy. We find that for the brightest galaxies (M{sub r} < -23 mag), our Petrosian magnitudes and isophotal magnitudes to 25 mag arcsec{sup -2} and 1% of the sky brightness are on average 0.16 mag, 0.20 mag, and 0.26 mag brighter than the SDSSmore » Petrosian values, respectively. In the first case, the underestimations are caused by overestimations in the sky background by the SDSS PHOTO algorithm, while the latter two are also due to deeper photometry. Similarly, the typical half-light radii (r{sub 50}) measured by the SDSS algorithm are smaller than our measurements. As a result, the bright end of the r-band luminosity function is found to decline more slowly than previous works. Our measured luminosity densities at the bright end are more than one order of magnitude higher than those of Blanton et al., and the stellar mass densities at M{sub *} {approx} 5 Multiplication-Sign 10{sup 11} M{sub Sun} and M{sub *} {approx} 10{sup 12} M{sub Sun} are a few tenths and a factor of a few higher than those of Bernardi et al. These results may significantly alleviate the tension in the assembly of massive galaxies between observations and predictions of the hierarchical structure formation model.« less

  13. The SDSS u-band Galaxy Survey: Luminosity functions and evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldry, Ivan K.; Glazebrook, K.; Budavari, T.

    2005-01-01

    We construct and analyze a u-band selected galaxy sample from the SDSS Southern Survey, which covers 275 deg{sup 2}. The sample includes 43223 galaxies with spectroscopic redshifts in the range 0.005 < z < 0.3 and with 14.5 < u < 20.5. The S/N in the u-band Petrosian aperture is improved by coadding multiple epochs of imaging data and by including sky-subtraction corrections. Luminosity functions for the near-UV {sup 0.1}u band ({lambda} {approx} 322 {+-} 26 nm) are determined in redshift slices of width 0.02, which show a highly significant evolution in M* of -0.8 {+-} 0.1 mag between zmore » = 0 and 0.3; with M* - 5 log h{sub 70} = -18.84 {+-} 0.05 (AB mag), log {phi}* = -2.06 {+-} 0.03 (h{sub 70}{sup 3} Mpc{sup -3}) and log {rho}{sub L} = 19.11 {+-} 0.02 (h{sub 70} W Hz{sup -1}Mpc{sup -3}) at z = 0.1. The faint-end slope determined for z < 0.06 is given by {alpha} = -1.05 {+-} 0.08. This is in agreement with recent determinations from GALEX at shorter wavelengths. Comparing our z < 0.3 luminosity density measurements with 0.2 < z < 1.2 from COMBO-17, we find that the 280-nm density evolves as {rho}{sub L} {proportional_to} (1+z){sup {beta}} with {beta} = 2.1 {+-} 0.2; and find no evidence for any change in slope over this redshift range. By comparing with other measurements of cosmic star formation history, we estimate that the effective dust attenuation at 280 nm has increased by 0.8 {+-} 0.3 mag between z = 0 and 1.« less

  14. Integrating Human and Machine Intelligence in Galaxy Morphology Classification Tasks

    NASA Astrophysics Data System (ADS)

    Beck, Melanie Renee

    The large flood of data flowing from observatories presents significant challenges to astronomy and cosmology--challenges that will only be magnified by projects currently under development. Growth in both volume and velocity of astrophysics data is accelerating: whereas the Sloan Digital Sky Survey (SDSS) has produced 60 terabytes of data in the last decade, the upcoming Large Synoptic Survey Telescope (LSST) plans to register 30 terabytes per night starting in the year 2020. Additionally, the Euclid Mission will acquire imaging for 5 x 107 resolvable galaxies. The field of galaxy evolution faces a particularly challenging future as complete understanding often cannot be reached without analysis of detailed morphological galaxy features. Historically, morphological analysis has relied on visual classification by astronomers, accessing the human brains capacity for advanced pattern recognition. However, this accurate but inefficient method falters when confronted with many thousands (or millions) of images. In the SDSS era, efforts to automate morphological classifications of galaxies (e.g., Conselice et al., 2000; Lotz et al., 2004) are reasonably successful and can distinguish between elliptical and disk-dominated galaxies with accuracies of 80%. While this is statistically very useful, a key problem with these methods is that they often cannot say which 80% of their samples are accurate. Furthermore, when confronted with the more complex task of identifying key substructure within galaxies, automated classification algorithms begin to fail. The Galaxy Zoo project uses a highly innovative approach to solving the scalability problem of visual classification. Displaying images of SDSS galaxies to volunteers via a simple and engaging web interface, www.galaxyzoo.org asks people to classify images by eye. Within the first year hundreds of thousands of members of the general public had classified each of the 1 million SDSS galaxies an average of 40 times. Galaxy Zoo

  15. Dynamically Close Pairs of Galaxies Selected in the NIR

    NASA Astrophysics Data System (ADS)

    Keenan, Ryan C.; Foucaud, Sebastien; De Propris, Roberto; Lin, Jing-Hua

    2013-07-01

    Studies of dynamically close pairs of galaxies can serve as a powerful probe of the galaxy merger rate and its evolution. Here we present a large sample of dynamically close pairs of galaxies selected in the K-band from the UKIDSS LAS. These data span ~ 175 deg2 on the sky in the 2dFGRS equatorial region (10 h < RA < 14h). Combining the 2dFGRS redshifts with those from the SDSS, our K-band selected catalog is > 90% spectroscopically complete at K AB < 16.4. In this study, we focus on quantifying the relative contributions of wet, dry, and mixed mergers to the stellar mass buildup of galaxies over the past 1-2 Gyr.

  16. SPIDERS: the spectroscopic follow-up of X-ray selected clusters of galaxies in SDSS-IV

    NASA Astrophysics Data System (ADS)

    Clerc, N.; Merloni, A.; Zhang, Y.-Y.; Finoguenov, A.; Dwelly, T.; Nandra, K.; Collins, C.; Dawson, K.; Kneib, J.-P.; Rozo, E.; Rykoff, E.; Sadibekova, T.; Brownstein, J.; Lin, Y.-T.; Ridl, J.; Salvato, M.; Schwope, A.; Steinmetz, M.; Seo, H.-J.; Tinker, J.

    2016-12-01

    SPIDERS (The SPectroscopic IDentification of eROSITA Sources) is a programme dedicated to the homogeneous and complete spectroscopic follow-up of X-ray active galactic nuclei and galaxy clusters over a large area (˜7500 deg2) of the extragalactic sky. SPIDERS is part of the Sloan Digital Sky Survey (SDSS)-IV project, together with the Extended Baryon Oscillation Spectroscopic Survey and the Time-Domain Spectroscopic Survey. This paper describes the largest project within SPIDERS before the launch of eROSITA: an optical spectroscopic survey of X-ray-selected, massive (˜1014-1015 M⊙) galaxy clusters discovered in ROSAT and XMM-Newton imaging. The immediate aim is to determine precise (Δz ˜ 0.001) redshifts for 4000-5000 of these systems out to z ˜ 0.6. The scientific goal of the program is precision cosmology, using clusters as probes of large-scale structure in the expanding Universe. We present the cluster samples, target selection algorithms and observation strategies. We demonstrate the efficiency of selecting targets using a combination of SDSS imaging data, a robust red-sequence finder and a dedicated prioritization scheme. We describe a set of algorithms and work-flow developed to collate spectra and assign cluster membership, and to deliver catalogues of spectroscopically confirmed clusters. We discuss the relevance of line-of-sight velocity dispersion estimators for the richer systems. We illustrate our techniques by constructing a catalogue of 230 spectroscopically validated clusters (0.031 < z < 0.658), found in pilot observations. We discuss two potential science applications of the SPIDERS sample: the study of the X-ray luminosity-velocity dispersion (LX-σ) relation and the building of stacked phase-space diagrams.

  17. MORFOMETRYKA—A NEW WAY OF ESTABLISHING MORPHOLOGICAL CLASSIFICATION OF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrari, F.; Carvalho, R. R. de; Trevisan, M., E-mail: fabricio@ferrari.pro.br

    We present an extended morphometric system to automatically classify galaxies from astronomical images. The new system includes the original and modified versions of the CASGM coefficients (Concentration C{sub 1}, Asymmetry A{sub 3}, and Smoothness S{sub 3}), and the new parameters entropy, H, and spirality σ{sub ψ}. The new parameters A{sub 3}, S{sub 3}, and H are better to discriminate galaxy classes than A{sub 1}, S{sub 1}, and G, respectively. The new parameter σ{sub ψ} captures the amount of non-radial pattern on the image and is almost linearly dependent on T-type. Using a sample of spiral and elliptical galaxies from themore » Galaxy Zoo project as a training set, we employed the Linear Discriminant Analysis (LDA) technique to classify EFIGI (Baillard et al. 4458 galaxies), Nair and Abraham (14,123 galaxies), and SDSS Legacy (779,235 galaxies) samples. The cross-validation test shows that we can achieve an accuracy of more than 90% with our classification scheme. Therefore, we are able to define a plane in the morphometric parameter space that separates the elliptical and spiral classes with a mismatch between classes smaller than 10%. We use the distance to this plane as a morphometric index (M{sub i}) and we show that it follows the human based T-type index very closely. We calculate morphometric index M{sub i} for ∼780k galaxies from SDSS Legacy Survey–DR7. We discuss how M{sub i} correlates with stellar population parameters obtained using the spectra available from SDSS–DR7.« less

  18. Interactions of galaxies outside clusters and massive groups

    NASA Astrophysics Data System (ADS)

    Yadav, Jaswant K.; Chen, Xuelei

    2018-06-01

    We investigate the dependence of physical properties of galaxies on small- and large-scale density environment. The galaxy population consists of mainly passively evolving galaxies in comparatively low-density regions of Sloan Digital Sky Survey (SDSS). We adopt (i) local density, ρ _{20}, derived using adaptive smoothing kernel, (ii) projected distance, r_p, to the nearest neighbor galaxy and (iii) the morphology of the nearest neighbor galaxy as various definitions of environment parameters of every galaxy in our sample. In order to detect long-range interaction effects, we group galaxy interactions into four cases depending on morphology of the target and neighbor galaxies. This study builds upon an earlier study by Park and Choi (2009) by including improved definitions of target and neighbor galaxies, thus enabling us to better understand the effect of "the nearest neighbor" interaction on the galaxy. We report that the impact of interaction on galaxy properties is detectable at least up to the pair separation corresponding to the virial radius of (the neighbor) galaxies. This turns out to be mostly between 210 and 360 h^{-1}kpc for galaxies included in our study. We report that early type fraction for isolated galaxies with r_p > r_{vir,nei} is almost ignorant of the background density and has a very weak density dependence for closed pairs. Star formation activity of a galaxy is found to be crucially dependent on neighbor galaxy morphology. We find star formation activity parameters and structure parameters of galaxies to be independent of the large-scale background density. We also exhibit that changing the absolute magnitude of the neighbor galaxies does not affect significantly the star formation activity of those target galaxies whose morphology and luminosities are fixed.

  19. Mass and Environment as Drivers of Galaxy Evolution in SDSS and zCOSMOS and the Origin of the Schechter Function

    NASA Astrophysics Data System (ADS)

    Peng, Ying-jie; Lilly, Simon J.; Kovač, Katarina; Bolzonella, Micol; Pozzetti, Lucia; Renzini, Alvio; Zamorani, Gianni; Ilbert, Olivier; Knobel, Christian; Iovino, Angela; Maier, Christian; Cucciati, Olga; Tasca, Lidia; Carollo, C. Marcella; Silverman, John; Kampczyk, Pawel; de Ravel, Loic; Sanders, David; Scoville, Nicholas; Contini, Thierry; Mainieri, Vincenzo; Scodeggio, Marco; Kneib, Jean-Paul; Le Fèvre, Olivier; Bardelli, Sandro; Bongiorno, Angela; Caputi, Karina; Coppa, Graziano; de la Torre, Sylvain; Franzetti, Paolo; Garilli, Bianca; Lamareille, Fabrice; Le Borgne, Jean-Francois; Le Brun, Vincent; Mignoli, Marco; Perez Montero, Enrique; Pello, Roser; Ricciardelli, Elena; Tanaka, Masayuki; Tresse, Laurence; Vergani, Daniela; Welikala, Niraj; Zucca, Elena; Oesch, Pascal; Abbas, Ummi; Barnes, Luke; Bordoloi, Rongmon; Bottini, Dario; Cappi, Alberto; Cassata, Paolo; Cimatti, Andrea; Fumana, Marco; Hasinger, Gunther; Koekemoer, Anton; Leauthaud, Alexei; Maccagni, Dario; Marinoni, Christian; McCracken, Henry; Memeo, Pierdomenico; Meneux, Baptiste; Nair, Preethi; Porciani, Cristiano; Presotto, Valentina; Scaramella, Roberto

    2010-09-01

    We explore the simple inter-relationships between mass, star formation rate, and environment in the SDSS, zCOSMOS, and other deep surveys. We take a purely empirical approach in identifying those features of galaxy evolution that are demanded by the data and then explore the analytic consequences of these. We show that the differential effects of mass and environment are completely separable to z ~ 1, leading to the idea of two distinct processes of "mass quenching" and "environment quenching." The effect of environment quenching, at fixed over-density, evidently does not change with epoch to z ~ 1 in zCOSMOS, suggesting that the environment quenching occurs as large-scale structure develops in the universe, probably through the cessation of star formation in 30%-70% of satellite galaxies. In contrast, mass quenching appears to be a more dynamic process, governed by a quenching rate. We show that the observed constancy of the Schechter M* and αs for star-forming galaxies demands that the quenching of galaxies around and above M* must follow a rate that is statistically proportional to their star formation rates (or closely mimic such a dependence). We then postulate that this simple mass-quenching law in fact holds over a much broader range of stellar mass (2 dex) and cosmic time. We show that the combination of these two quenching processes, plus some additional quenching due to merging naturally produces (1) a quasi-static single Schechter mass function for star-forming galaxies with an exponential cutoff at a value M* that is set uniquely by the constant of proportionality between the star formation and mass quenching rates and (2) a double Schechter function for passive galaxies with two components. The dominant component (at high masses) is produced by mass quenching and has exactly the same M* as the star-forming galaxies but a faint end slope that differs by Δαs ~ 1. The other component is produced by environment effects and has the same M* and αs as the

  20. Chemical enrichment in isolated barred spiral galaxies.

    NASA Astrophysics Data System (ADS)

    Martel, Hugo; Carles, Christian; Robichaud, Fidéle; Ellison, Sara L.; Williamson, David J.

    2018-04-01

    To investigate the role of bars in the chemical evolution of isolated disc galaxies, we performed a series of 39 gas dynamical simulations of isolated barred and unbarred galaxies with various masses, initial gas fractions, and AGN feedback models. The presence of a bar drives a substantial amount of gas toward the central region of the galaxy. In the most massive galaxies, this results in a violent starburst, followed by a drop in star formation resulting from gas exhaustion. The time delay between Type Ia and Type II supernovae explosions means that barred galaxies experience a rapid increase in [O/H] in the central region, and a much more gradual increase in [Fe/H]. In unbarred galaxies, star formation proceeds at a slow and steady rate, and oxygen and iron are produced at steady rates which are similar except for a time offset. Comparing the abundance ratios in barred and unbarred galaxies with the same central stellar mass M*, we find in barred galaxies an enhancement of 0.07 dex in [O/H], 0.05 dex in [Fe/H], and 0.05 dex in [O/Fe]. The [O/H] enhancement is in excellent agreement with observations from the SDSS. The initial gas fraction has very little effect on the abundance ratios in barred and unbarred galaxies, unless the galaxies experience a starburst. We considered AGN-host galaxies located near the bottom of the AGN regime, M* ≳ 3 × 1010M⊙, where AGN feedback dominates over supernovae feedback. We found that the impact of AGN feedback on the central abundances is marginal.

  1. VizieR Online Data Catalog: Barred & unbarred galaxies N, O abundance ratio (Florido+, 2015)

    NASA Astrophysics Data System (ADS)

    Florido, E.; Zurita, A.; Perez, I.; Perez-Montero, E.; Coelho, P. R. T.; Gadotti, D. A.

    2015-11-01

    The tables contain nebular emission line fluxes for the central region of 251 barred and 324 unbarred galaxies. The sample contains all spiral face-on galaxies (axial ratio b/a>=0.9) in the SDSS DR-2, with stellar masses larger than 1010 the solar mass, redshift 0.02SDSS spectra greater or equal than 10 (in g-band). See Sect. 2 of the paper and Coelho & Gadotti (2011ApJ...743L..13C) for further details about the galaxy sample. (2 data files).

  2. Color-size Relations of Disc Galaxies with Similar Stellar Masses

    NASA Astrophysics Data System (ADS)

    Fu, W.; Chang, R. X.; Shen, S. Y.; Zhang, B.

    2011-01-01

    To investigate the correlations between colors and sizes of disc galaxies with similar stellar masses, a sample of 7959 local face-on disc galaxies is collected from the main galaxy sample of the Seventh Data Release of Sloan Digital Sky Survey (SDSS DR7). Our results show that, under the condition that the stellar masses of disc galaxies are similar, the relation between u-r and size is weak, while g-r, r-i and r-z colors decrease with disk size. This means that the color-size relations of disc galaxies with similar stellar masses do exist, i.e., the more extended disc galaxies with similar stellar masses tend to have bluer colors. An artificial sample is constructed to confirm that this correlation is not driven by the color-stellar mass relations and size-stellar mass relation of disc galaxies. Our results suggest that the mass distribution of disk galaxies may have an important influence on their stellar formation history, i.e., the galaxies with more extended mass distribution evolve more slowly.

  3. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: modelling the clustering and halo occupation distribution of BOSS CMASS galaxies in the Final Data Release

    NASA Astrophysics Data System (ADS)

    Rodríguez-Torres, Sergio A.; Chuang, Chia-Hsun; Prada, Francisco; Guo, Hong; Klypin, Anatoly; Behroozi, Peter; Hahn, Chang Hoon; Comparat, Johan; Yepes, Gustavo; Montero-Dorta, Antonio D.; Brownstein, Joel R.; Maraston, Claudia; McBride, Cameron K.; Tinker, Jeremy; Gottlöber, Stefan; Favole, Ginevra; Shu, Yiping; Kitaura, Francisco-Shu; Bolton, Adam; Scoccimarro, Román; Samushia, Lado; Schlegel, David; Schneider, Donald P.; Thomas, Daniel

    2016-08-01

    We present a study of the clustering and halo occupation distribution of Baryon Oscillation Spectroscopic Survey (BOSS) CMASS galaxies in the redshift range 0.43 < z < 0.7 drawn from the Final SDSS-III Data Release. We compare the BOSS results with the predictions of a halo abundance matching (HAM) clustering model that assigns galaxies to dark matter haloes selected from the large BigMultiDark N-body simulation of a flat Λ cold dark matter Planck cosmology. We compare the observational data with the simulated ones on a light cone constructed from 20 subsequent outputs of the simulation. Observational effects such as incompleteness, geometry, veto masks and fibre collisions are included in the model, which reproduces within 1σ errors the observed monopole of the two-point correlation function at all relevant scales: from the smallest scales, 0.5 h-1 Mpc, up to scales beyond the baryon acoustic oscillation feature. This model also agrees remarkably well with the BOSS galaxy power spectrum (up to k ˜ 1 h Mpc-1), and the three-point correlation function. The quadrupole of the correlation function presents some tensions with observations. We discuss possible causes that can explain this disagreement, including target selection effects. Overall, the standard HAM model describes remarkably well the clustering statistics of the CMASS sample. We compare the stellar-to-halo mass relation for the CMASS sample measured using weak lensing in the Canada-France-Hawaii Telescope Stripe 82 Survey with the prediction of our clustering model, and find a good agreement within 1σ. The BigMD-BOSS light cone including properties of BOSS galaxies and halo properties is made publicly available.

  4. A Search for Low Surface Brightness Galaxies in the Ultraviolet with GALEX

    NASA Astrophysics Data System (ADS)

    Wyder, Ted K.; GALEX Science Team

    2006-12-01

    Low surface brightness (LSB) galaxies have traditionally been difficult to detect at visible wavelengths due to their low contrast with the night sky and their low numbers per deg2. We describe a new search for LSB galaxies using UV images from the Galaxy Evolution Explorer (GALEX) satellite. The images are from the GALEX Medium Imaging Survey targeting mainly areas of the sky within the Sloan Digital Sky Survey (SDSS) footprint. Due to the UV sky background at high Galactic latitudes reaching levels of only approximately 28 mag arcsec-2 as well as the relatively large sky coverage from GALEX, we can potentially search for LSB galaxies that would be difficult to detect optically.After first convolving the images with a suitable kernel, we select a diameter limited set of objects which we then inspect manually in order to remove image artifacts and other spurious detections. Red galaxies that have high optical surface brightness can be identified using either the ratio of far-UV to near-UV flux or via comparison to SDSS images. We quantify our selection limits using a set of artificial galaxy tests. Our goal is to find blue, ultra-LSB galaxies that would be virtually undetectable in large optical imaging surveys. GALEX is a NASA Small Explorer, launched in April 2003. We gratefully acknowledge NASA's support for construction, operation, and science analysis for the GALEX mission.

  5. Galaxy groups in the low-redshift Universe

    NASA Astrophysics Data System (ADS)

    Lim, S. H.; Mo, H. J.; Lu, Yi; Wang, Huiyuan; Yang, Xiaohu

    2017-09-01

    We apply a halo-based group finder to four large redshift surveys, the 2MRS (Two Micron All-Sky Redshift Survey), 6dFGS (Six-degree Field Galaxy Survey), SDSS (Sloan Digital Sky Survey) and 2dFGRS (Two-degree Field Galaxy Redshift Survey), to construct group catalogues in the low-redshift Universe. The group finder is based on that of Yang et al. but with an improved halo mass assignment so that it can be applied uniformly to various redshift surveys of galaxies. Halo masses are assigned to groups according to proxies based on the stellar mass/luminosity of member galaxies. The performances of the group finder in grouping galaxies according to common haloes and in halo mass assignments are tested using realistic mock samples constructed from hydrodynamical simulations and empirical models of galaxy occupation in dark matter haloes. Our group finder finds ∼94 per cent of the correct true member galaxies for 90-95 per cent of the groups in the mock samples; the halo masses assigned by the group finder are un-biased with respect to the true halo masses, and have a typical uncertainty of ∼0.2 dex. The properties of group catalogues constructed from the observational samples are described and compared with other similar catalogues in the literature.

  6. Chandra-SDSS Normal and Star-Forming Galaxies. I. X-Ray Source Properties of Galaxies Detected by the Chandra X-Ray Observatory in SDSS DR2

    NASA Astrophysics Data System (ADS)

    Hornschemeier, A. E.; Heckman, T. M.; Ptak, A. F.; Tremonti, C. A.; Colbert, E. J. M.

    2005-01-01

    We have cross-correlated X-ray catalogs derived from archival Chandra X-Ray Observatory ACIS observations with a Sloan Digital Sky Survey Data Release 2 (DR2) galaxy catalog to form a sample of 42 serendipitously X-ray-detected galaxies over the redshift interval 0.03galaxies and those in the deepest X-ray surveys. Our chief purpose is to compare optical spectroscopic diagnostics of activity (both star formation and accretion) with X-ray properties of galaxies. Our work supports a normalization value of the X-ray-star formation rate correlation consistent with the lower values published in the literature. The difference is in the allocation of X-ray emission to high-mass X-ray binaries relative to other components, such as hot gas, low-mass X-ray binaries, and/or active galactic nuclei (AGNs). We are able to quantify a few pitfalls in the use of lower resolution, lower signal-to-noise ratio optical spectroscopy to identify X-ray sources (as has necessarily been employed for many X-ray surveys). Notably, we find a few AGNs that likely would have been misidentified as non-AGN sources in higher redshift studies. However, we do not find any X-ray-hard, highly X-ray-luminous galaxies lacking optical spectroscopic diagnostics of AGN activity. Such sources are members of the ``X-ray-bright, optically normal galaxy'' (XBONG) class of AGNs.

  7. The most complete photometric analysis of 548 CALIFA galaxies

    NASA Astrophysics Data System (ADS)

    Gilhuly, Colleen

    We present an extensive photometric catalog for 548 CALIFA galaxies observed as of the summer of 2015. CALIFA is currently lacking photometry matching the scale and diversity of its spectroscopy; this work is intended to meet all photometric needs for CALIFA galaxies while also identifying best photometric practices for upcoming integral field spectroscopy surveys such as SAMI and MaNGA. This catalog comprises gri surface brightness profiles derived from Sloan Digital Sky Survey (SDSS) imaging, a variety of non-parametric quantities extracted from these pro files, and parametric models fitted to the i-band pro files (1D) and original galaxy images (2D). To compliment our photometric analysis, we contrast the relative performance of our 1D and 2D modelling approaches. The ability of each measurement to characterize the global properties of galaxies is quantitatively assessed, in the context of constructing the tightest scaling relations. Where possible, we compare our photometry with existing photometrically or spectroscopically obtained measurements from the literature. Close agreement is found with Walcher et al. (2014), the current source of basic photometry and classifications of CALIFA galaxies, while comparisons with spectroscopically derived quantities reveals the effect of CALIFA's limited field of view compared to broadband imaging surveys such as the SDSS. The colour-magnitude diagram, star formation main sequence, and Tully-Fisher relation of CALIFA galaxies are studied, to give a small example of the investigations possible with this rich catalog. We conclude with a discussion of points of concern for ongoing integral field spectroscopy surveys and directions for future expansion and exploitation of this work.

  8. LINER galaxy properties and the local environment

    NASA Astrophysics Data System (ADS)

    Coldwell, Georgina V.; Alonso, Sol; Duplancic, Fernanda; Mesa, Valeria

    2018-05-01

    We analyse the properties of a sample of 5560 low-ionization nuclear emission-line region (LINER) galaxies selected from SDSS-DR12 at low red shift, for a complete range of local density environments. The host LINER galaxies were studied and compared with a well-defined control sample of 5553 non-LINER galaxies matched in red shift, luminosity, morphology and local density. By studying the distributions of galaxy colours and the stellar age population, we find that LINERs are redder and older than the control sample over a wide range of densities. In addition, LINERs are older than the control sample, at a given galaxy colour, indicating that some external process could have accelerated the evolution of the stellar population. The analysis of the host properties shows that the control sample exhibits a strong relation between colours, ages and the local density, while more than 90 per cent of the LINERs are redder and older than the mean values, independently of the neighbourhood density. Furthermore, a detailed study in three local density ranges shows that, while control sample galaxies are redder and older as a function of stellar mass and density, LINER galaxies mismatch the known morphology-density relation of galaxies without low-ionization features. The results support the contribution of hot and old stars to the low-ionization emission although the contribution of nuclear activity is not discarded.

  9. The most massive galaxies and black holes allowed by ΛCDM

    NASA Astrophysics Data System (ADS)

    Behroozi, Peter; Silk, Joseph

    2018-07-01

    Given a galaxy's stellar mass, its host halo mass has a lower limit from the cosmic baryon fraction and known baryonic physics. At z> 4, galaxy stellar mass functions place lower limits on halo number densities that approach expected Lambda Cold Dark Matter halo mass functions. High-redshift galaxy stellar mass functions can thus place interesting limits on number densities of massive haloes, which are otherwise very difficult to measure. Although halo mass functions at z < 8 are consistent with observed galaxy stellar masses if galaxy baryonic conversion efficiencies increase with redshift, JWST(James Webb Space Telescope) and WFIRST(Wide-Field InfraRed Survey Telescope) will more than double the redshift range over which useful constraints are available. We calculate maximum galaxy stellar masses as a function of redshift given expected halo number densities from ΛCDM. We apply similar arguments to black holes. If their virial mass estimates are accurate, number density constraints alone suggest that the quasars SDSS J1044-0125 and SDSS J010013.02+280225.8 likely have black hole mass to stellar mass ratios higher than the median z = 0 relation, confirming the expectation from Lauer bias. Finally, we present a public code to evaluate the probability of an apparently ΛCDM-inconsistent high-mass halo being detected given the combined effects of multiple surveys and observational errors.

  10. A new catalogue of polar-ring galaxies selected from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Moiseev, Alexei V.; Smirnova, Ksenia I.; Smirnova, Aleksandrina A.; Reshetnikov, Vladimir P.

    2011-11-01

    Galaxies with polar rings (PRGs) are a unique class of extragalactic objects. Using these, we can investigate a wide range of problems, linked to the formation and evolution of galaxies, and we can study the properties of their dark haloes. The progress that has been made in the study of PRGs has been constrained by the small number of known objects of this type. The Polar Ring Catalogue (PRC) by Whitmore et al. and their photographic atlas of PRGs and related objects includes 157 galaxies. At present, there are only about two dozen kinematically confirmed galaxies in this PRG class, mostly from the PRC. We present a new catalogue of PRGs, supplementing the PRC and significantly increasing the number of known candidate PRGs. The catalogue is based on the results of the original Galaxy Zoo project. Within this project, volunteers performed visual classifications of nearly a million galaxies from the Sloan Digital Sky Survey (SDSS). Based on the preliminary classifications of the Galaxy Zoo, we viewed more than 40 000 images of the SDSS and selected 275 galaxies to include in our catalogue. Our SDSS-based Polar Ring Catalogue (SPRC) contains 70 galaxies that we have classified as 'the best candidates'. Among these, we expect to have a very high proportion of true PRGs, and 115 good PRG candidates. There are 53 galaxies classified as PRG-related objects (mostly galaxies with strongly warped discs, and mergers). In addition, we have identified 37 galaxies that have their presumed polar rings strongly inclined to the line of sight (seen almost face-on). The SPRC objects are, on average, fainter and are located further away than the galaxies from the PRC, although our catalogue does include dozens of new nearby candidate PRGs. The SPRC significantly increases the number of genuine PRG candidates. It might serve as a good basis for both a further detailed study of individual galaxies and a statistical analysis of PRGs as a separate class of objects. We have performed

  11. The Cosmic Skidmark: witnessing galaxy transformation at z = 0.19

    NASA Astrophysics Data System (ADS)

    Murphy, David N. A.

    2015-02-01

    We present an early-look analysis of the ``Cosmic Skidmark''. Discovered following visual inspection of the Geach, Murphy & Bower (2011) SDSS Stripe 82 cluster catalogue generated by ORCA (an automated cluster algorithm searching for red-sequences; Murphy, Geach & Bower 2012), this z = 0.19 1.4L* galaxy appears to have been caught in the rare act of transformation while accreting onto an estimated 1013-1014 h -1 M⊙-mass galaxy group. SDSS spectroscopy reveals clear signatures of star formation whilst deep optical imaging reveals a pronounced 50 kpc cometary tail. Pending completion of our ALMA Cycle 2 and IFU observations, we show here preliminary analysis of this target.

  12. VizieR Online Data Catalog: Galaxy properties in clusters. II. (Muriel+, 2014)

    NASA Astrophysics Data System (ADS)

    Muriel, H.; Coenda, V.

    2014-06-01

    In paper I (Coenda & Muriel, 2009A&A...504..347C, Cat. J/A+A/504/347), we selected an X-ray sample of 49 clusters of galaxies from Popesso et al. (2004A&A...423..449P, Cat. J/A+A/423/449, hereafter P04) in the redshift range 0.05Galaxies in these clusters were identified using the Main Galaxy Sample (MGS; Strauss et al. 2002AJ....124.1810S) of the Fifth Data Release (DR5; Adelman-McCarthy et al. 2007ApJS..172..634A, Cat. II/276) of SDSS, which includes spectroscopic redshifts down to a Petrosian magnitude r=17.77. In this paper, we expand the X-ray cluster sample using the cross-correlation between NORAS and SDSS. We identify a subsample from Bohringer et al. (2000ApJS..129..435B, Cat. J/ApJS/129/435, hereafter B00), which we labelled C-B00-I, using the MGS of the Seventh Data Release (DR7; Abazajian et al. 2009ApJS..182..543A) of SDSS. This subsample comprises 55 galaxy clusters in the redshift range 0.05

  13. Ganalyzer: A Tool for Automatic Galaxy Image Analysis

    NASA Astrophysics Data System (ADS)

    Shamir, Lior

    2011-08-01

    We describe Ganalyzer, a model-based tool that can automatically analyze and classify galaxy images. Ganalyzer works by separating the galaxy pixels from the background pixels, finding the center and radius of the galaxy, generating the radial intensity plot, and then computing the slopes of the peaks detected in the radial intensity plot to measure the spirality of the galaxy and determine its morphological class. Unlike algorithms that are based on machine learning, Ganalyzer is based on measuring the spirality of the galaxy, a task that is difficult to perform manually, and in many cases can provide a more accurate analysis compared to manual observation. Ganalyzer is simple to use, and can be easily embedded into other image analysis applications. Another advantage is its speed, which allows it to analyze ~10,000,000 galaxy images in five days using a standard modern desktop computer. These capabilities can make Ganalyzer a useful tool in analyzing large data sets of galaxy images collected by autonomous sky surveys such as SDSS, LSST, or DES. The software is available for free download at http://vfacstaff.ltu.edu/lshamir/downloads/ganalyzer, and the data used in the experiment are available at http://vfacstaff.ltu.edu/lshamir/downloads/ganalyzer/GalaxyImages.zip.

  14. CALIFA: a diameter-selected sample for an integral field spectroscopy galaxy survey

    NASA Astrophysics Data System (ADS)

    Walcher, C. J.; Wisotzki, L.; Bekeraité, S.; Husemann, B.; Iglesias-Páramo, J.; Backsmann, N.; Barrera Ballesteros, J.; Catalán-Torrecilla, C.; Cortijo, C.; del Olmo, A.; Garcia Lorenzo, B.; Falcón-Barroso, J.; Jilkova, L.; Kalinova, V.; Mast, D.; Marino, R. A.; Méndez-Abreu, J.; Pasquali, A.; Sánchez, S. F.; Trager, S.; Zibetti, S.; Aguerri, J. A. L.; Alves, J.; Bland-Hawthorn, J.; Boselli, A.; Castillo Morales, A.; Cid Fernandes, R.; Flores, H.; Galbany, L.; Gallazzi, A.; García-Benito, R.; Gil de Paz, A.; González-Delgado, R. M.; Jahnke, K.; Jungwiert, B.; Kehrig, C.; Lyubenova, M.; Márquez Perez, I.; Masegosa, J.; Monreal Ibero, A.; Pérez, E.; Quirrenbach, A.; Rosales-Ortega, F. F.; Roth, M. M.; Sanchez-Blazquez, P.; Spekkens, K.; Tundo, E.; van de Ven, G.; Verheijen, M. A. W.; Vilchez, J. V.; Ziegler, B.

    2014-09-01

    We describe and discuss the selection procedure and statistical properties of the galaxy sample used by the Calar Alto Legacy Integral Field Area (CALIFA) survey, a public legacy survey of 600 galaxies using integral field spectroscopy. The CALIFA "mother sample" was selected from the Sloan Digital Sky Survey (SDSS) DR7 photometric catalogue to include all galaxies with an r-band isophotal major axis between 45'' and 79.2'' and with a redshift 0.005 < z < 0.03. The mother sample contains 939 objects, 600 of which will be observed in the course of the CALIFA survey. The selection of targets for observations is based solely on visibility and thus keeps the statistical properties of the mother sample. By comparison with a large set of SDSS galaxies, we find that the CALIFA sample is representative of galaxies over a luminosity range of -19 > Mr > -23.1 and over a stellar mass range between 109.7 and 1011.4 M⊙. In particular, within these ranges, the diameter selection does not lead to any significant bias against - or in favour of - intrinsically large or small galaxies. Only below luminosities of Mr = -19 (or stellar masses <109.7 M⊙) is there a prevalence of galaxies with larger isophotal sizes, especially of nearly edge-on late-type galaxies, but such galaxies form <10% of the full sample. We estimate volume-corrected distribution functions in luminosities and sizes and show that these are statistically fully compatible with estimates from the full SDSS when accounting for large-scale structure. For full characterization of the sample, we also present a number of value-added quantities determined for the galaxies in the CALIFA sample. These include consistent multi-band photometry based on growth curve analyses; stellar masses; distances and quantities derived from these; morphological classifications; and an overview of available multi-wavelength photometric measurements. We also explore different ways of characterizing the environments of CALIFA galaxies

  15. HOST GALAXY PROPERTIES OF THE SWIFT BAT ULTRA HARD X-RAY SELECTED ACTIVE GALACTIC NUCLEUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) active galactic nucleus (AGN) with host galaxy optical data to date, with 185 nearby (z < 0.05), moderate luminosity AGNs from the Swift BAT sample. The BAT AGN host galaxies have intermediate optical colors (u - r and g - r) that are bluer than a comparison sample of inactive galaxies and optically selected AGNs from the Sloan Digital Sky Survey (SDSS) which are chosen to have the same stellar mass. Based on morphological classifications from the RC3 and the Galaxy Zoo, the bluer colors of BATmore » AGNs are mainly due to a higher fraction of mergers and massive spirals than in the comparison samples. BAT AGNs in massive galaxies (log M{sub *} >10.5) have a 5-10 times higher rate of spiral morphologies than in SDSS AGNs or inactive galaxies. We also see enhanced far-infrared emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGNs are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGNs have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] {lambda}5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGNs in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as a whole. In agreement with the unified model of AGNs, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGNs suggest that host galaxy morphology is related to the activation and fueling of local AGN.« less

  16. Chemical enrichment in isolated barred spiral galaxies

    NASA Astrophysics Data System (ADS)

    Martel, Hugo; Carles, Christian; Robichaud, Fidèle; Ellison, Sara L.; Williamson, David J.

    2018-07-01

    To investigate the role of bars in the chemical evolution of isolated disc galaxies, we performed a series of 39 gas dynamical simulations of isolated barred and unbarred galaxies with various masses, initial gas fractions, and active galactic nucleus (AGN) feedback models. The presence of a bar drives a substantial amount of gas towards the central region of the galaxy. In the most massive galaxies, this results in a violent starburst, followed by a drop in star formation resulting from gas exhaustion. The time delay between Type Ia and Type II supernovae explosions means that barred galaxies experience a rapid increase in [O/H] in the central region, and a much more gradual increase in [Fe/H]. In unbarred galaxies, star formation proceeds at a slow and steady rate, and oxygen and iron are produced at steady rates which are similar except for a time offset. Comparing the abundance ratios in barred and unbarred galaxies with the same central stellar mass M*, we find in barred galaxies an enhancement of 0.07 dex in [O/H], 0.05 dex in [Fe/H], and 0.05 dex in [O/Fe]. The [O/H] enhancement is in excellent agreement with observations from the SDSS. The initial gas fraction has very little effect on the abundance ratios in barred and unbarred galaxies, unless the galaxies experience a starburst. We considered AGN-host galaxies located near the bottom of the AGN regime, M* ≳ 3 × 1010M⊙, where AGN feedback dominates over supernovae feedback. We found that the impact of AGN feedback on the central abundances is marginal.

  17. ON THE STAR FORMATION PROPERTIES OF VOID GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moorman, Crystal M.; Moreno, Jackeline; White, Amanda

    2016-11-10

    We measure the star formation properties of two large samples of galaxies from the SDSS in large-scale cosmic voids on timescales of 10 and 100 Myr, using H α emission line strengths and GALEX FUV fluxes, respectively. The first sample consists of 109,818 optically selected galaxies. We find that void galaxies in this sample have higher specific star formation rates (SSFRs; star formation rates per unit stellar mass) than similar stellar mass galaxies in denser regions. The second sample is a subset of the optically selected sample containing 8070 galaxies with reliable H i detections from ALFALFA. For the fullmore » H i detected sample, SSFRs do not vary systematically with large-scale environment. However, investigating only the H i detected dwarf galaxies reveals a trend toward higher SSFRs in voids. Furthermore, we estimate the star formation rate per unit H i mass (known as the star formation efficiency; SFE) of a galaxy, as a function of environment. For the overall H i detected population, we notice no environmental dependence. Limiting the sample to dwarf galaxies still does not reveal a statistically significant difference between SFEs in voids versus walls. These results suggest that void environments, on average, provide a nurturing environment for dwarf galaxy evolution allowing for higher specific star formation rates while forming stars with similar efficiencies to those in walls.« less

  18. Star Formation in low mass galaxies

    NASA Astrophysics Data System (ADS)

    Mehta, Vihang

    2018-01-01

    extremely low masses (105-107 M⊙). They are much fainter equivalents of the "green pea" galaxies found in SDSS. These objects are followed up with HectoSpec on the MMT to confirm their redshift as well as study their star formation properties in detail.

  19. The Sloan Lens ACS Survey. I. A Large Spectroscopically Selected Sample of Massive Early-Type Lens Galaxies

    NASA Technical Reports Server (NTRS)

    Bolton, Adam S.; Burles, Scott; Koopmans, Leon V. E.; Treu, Tommaso; Moustakas, Leonidas A.

    2006-01-01

    The Sloan Lens ACS (SLACS) Survey is an efficient Hubble Space Telescope (HST) Snapshot imaging survey for new galaxy-scale strong gravitational lenses. The targeted lens candidates are selected spectroscopically from the Sloan Digital Sky Survey (SDSS) database of galaxy spectra for having multiple nebular emission lines at a redshift significantly higher than that of the SDSS target galaxy. The SLACS survey is optimized to detect bright early-type lens galaxies with faint lensed sources in order to increase the sample of known gravitational lenses suitable for detailed lensing, photometric, and dynamical modeling. In this paper, the first in a series on the current results of our HST Cycle 13 imaging survey, we present a catalog of 19 newly discovered gravitational lenses, along with nine other observed candidate systems that are either possible lenses, nonlenses, or nondetections. The survey efficiency is thus >=68%. We also present Gemini 8 m and Magellan 6.5 m integral-field spectroscopic data for nine of the SLACS targets, which further support the lensing interpretation. A new method for the effective subtraction of foreground galaxy images to reveal faint background features is presented. We show that the SLACS lens galaxies have colors and ellipticities typical of the spectroscopic parent sample from which they are drawn (SDSS luminous red galaxies and quiescent MAIN sample galaxies), but are somewhat brighter and more centrally concentrated. Several explanations for the latter bias are suggested. The SLACS survey provides the first statistically significant and homogeneously selected sample of bright early-type lens galaxies, furnishing a powerful probe of the structure of early-type galaxies within the half-light radius. The high confirmation rate of lenses in the SLACS survey suggests consideration of spectroscopic lens discovery as an explicit science goal of future spectroscopic galaxy surveys.

  20. SPIDERS: the spectroscopic follow-up of X-ray-selected clusters of galaxies in SDSS-IV

    DOE PAGES

    Clerc, N.; Merloni, A.; Zhang, Y. -Y.; ...

    2016-09-05

    SPIDERS (The SPectroscopic IDentification of ERosita Sources) is a programme dedicated to the homogeneous and complete spectroscopic follow-up of X-ray active galactic nuclei and galaxy clusters over a large area (~7500 deg 2) of the extragalactic sky. SPIDERS is part of the Sloan Digital Sky Survey (SDSS)-IV project, together with the Extended Baryon Oscillation Spectroscopic Survey and the Time-Domain Spectroscopic Survey. This study describes the largest project within SPIDERS before the launch of eROSITA: an optical spectroscopic survey of X-ray-selected, massive (~10 14–10 15 M⊙) galaxy clusters discovered in ROSAT and XMM–Newton imaging. The immediate aim is to determine precisemore » (Δz ~ 0.001) redshifts for 4000–5000 of these systems out to z ~ 0.6. The scientific goal of the program is precision cosmology, using clusters as probes of large-scale structure in the expanding Universe. We present the cluster samples, target selection algorithms and observation strategies. We demonstrate the efficiency of selecting targets using a combination of SDSS imaging data, a robust red-sequence finder and a dedicated prioritization scheme. We describe a set of algorithms and work-flow developed to collate spectra and assign cluster membership, and to deliver catalogues of spectroscopically confirmed clusters. We discuss the relevance of line-of-sight velocity dispersion estimators for the richer systems. We illustrate our techniques by constructing a catalogue of 230 spectroscopically validated clusters (0.031 < z < 0.658), found in pilot observations. Finally, we discuss two potential science applications of the SPIDERS sample: the study of the X-ray luminosity-velocity dispersion (LX–σ) relation and the building of stacked phase-space diagrams.« less

  1. Galaxy Classifications with Deep Learning

    NASA Astrophysics Data System (ADS)

    Lukic, Vesna; Brüggen, Marcus

    2017-06-01

    Machine learning techniques have proven to be increasingly useful in astronomical applications over the last few years, for example in object classification, estimating redshifts and data mining. One example of object classification is classifying galaxy morphology. This is a tedious task to do manually, especially as the datasets become larger with surveys that have a broader and deeper search-space. The Kaggle Galaxy Zoo competition presented the challenge of writing an algorithm to find the probability that a galaxy belongs in a particular class, based on SDSS optical spectroscopy data. The use of convolutional neural networks (convnets), proved to be a popular solution to the problem, as they have also produced unprecedented classification accuracies in other image databases such as the database of handwritten digits (MNIST †) and large database of images (CIFAR ‡). We experiment with the convnets that comprised the winning solution, but using broad classifications. The effect of changing the number of layers is explored, as well as using a different activation function, to help in developing an intuition of how the networks function and to see how they can be applied to radio galaxy images.

  2. Deep Galex Observations of the Coma Cluster: Source Catalog and Galaxy Counts

    NASA Technical Reports Server (NTRS)

    Hammer, D.; Hornschemeier, A. E.; Mobasher, B.; Miller, N.; Smith, R.; Arnouts, S.; Milliard, B.; Jenkins, L.

    2010-01-01

    We present a source catalog from deep 26 ks GALEX observations of the Coma cluster in the far-UV (FUV; 1530 Angstroms) and near-UV (NUV; 2310 Angstroms) wavebands. The observed field is centered 0.9 deg. (1.6 Mpc) south-west of the Coma core, and has full optical photometric coverage by SDSS and spectroscopic coverage to r-21. The catalog consists of 9700 galaxies with GALEX and SDSS photometry, including 242 spectroscopically-confirmed Coma member galaxies that range from giant spirals and elliptical galaxies to dwarf irregular and early-type galaxies. The full multi-wavelength catalog (cluster plus background galaxies) is 80% complete to NUV=23 and FUV=23.5, and has a limiting depth at NUV=24.5 and FUV=25.0 which corresponds to a star formation rate of 10(exp -3) solar mass yr(sup -1) at the distance of Coma. The GALEX images presented here are very deep and include detections of many resolved cluster members superposed on a dense field of unresolved background galaxies. This required a two-fold approach to generating a source catalog: we used a Bayesian deblending algorithm to measure faint and compact sources (using SDSS coordinates as a position prior), and used the GALEX pipeline catalog for bright and/or extended objects. We performed simulations to assess the importance of systematic effects (e.g. object blends, source confusion, Eddington Bias) that influence source detection and photometry when using both methods. The Bayesian deblending method roughly doubles the number of source detections and provides reliable photometry to a few magnitudes deeper than the GALEX pipeline catalog. This method is also free from source confusion over the UV magnitude range studied here: conversely, we estimate that the GALEX pipeline catalogs are confusion limited at NUV approximately 23 and FUV approximately 24. We have measured the total UV galaxy counts using our catalog and report a 50% excess of counts across FUV=22-23.5 and NUV=21.5-23 relative to previous GALEX

  3. Cold Gas in Quenched Dwarf Galaxies using HI-MaNGA

    NASA Astrophysics Data System (ADS)

    Bonilla, Alaina

    2017-01-01

    MaNGA (Mapping of Nearby Galaxies at Apache Point Observatory) is a 6-year Sloan Digital Sky Survey fourth generation (SDSS-IV) project that will obtain integral field spectroscopy of a catalogue of 10,000 nearby galaxies. In this study, we explore the properties of the passive dwarf galaxy sample presented in Penny et al. 2016, making use of MaNGA IFU (Integral Field Unit) data to plot gas emission, stellar velocity, and flux maps. In addition, HI-MaNGA, a legacy radio-survey of MaNGA, collects single dish HI data retrieved from the GBT (Green Bank Telescope), which we use to study the the 21cm emission lines present in HI detections. Studying the HI content of passive dwarves will help us reveal the processes that are preventing star formation, such as possible AGN feedback. This work was supported by the SDSS Research Experience for Undergraduates program, which is funded by a grant from the Sloan Foundation to the Astrophysical Research Consortium.

  4. Mass and Environment as Drivers of Galaxy Evolution: Simplicity and its Consequences

    NASA Astrophysics Data System (ADS)

    Peng, Yingjie

    2012-01-01

    The galaxy population appears to be composed of infinitely complex different types and properties at first sight, however, when large samples of galaxies are studied, it appears that the vast majority of galaxies just follow simple scaling relations and similar evolutional modes while the outliers represent some minority. The underlying simplicities of the interrelationships among stellar mass, star formation rate and environment are seen in SDSS and zCOSMOS. We demonstrate that the differential effects of mass and environment are completely separable to z 1, indicating that two distinct physical processes are operating, namely the "mass quenching" and "environment quenching". These two simple quenching processes, plus some additional quenching due to merging, then naturally produce the Schechter form of the galaxy stellar mass functions and make quantitative predictions for the inter-relationships between the Schechter parameters of star-forming and passive galaxies in different environments. All of these detailed quantitative relationships are indeed seen, to very high precision, in SDSS, lending strong support to our simple empirically-based model. The model also offers qualitative explanations for the "anti-hierarchical" age-mass relation and the alpha-enrichment patterns for passive galaxies and makes some other testable predictions such as the mass function of the population of transitory objects that are in the process of being quenched, the galaxy major- and minor-merger rates, the galaxy stellar mass assembly history, star formation history and etc. Although still purely phenomenological, the model makes clear what the evolutionary characteristics of the relevant physical processes must in fact be.

  5. VizieR Online Data Catalog: SAMI Galaxy Survey: EDR (Allen+, 2015)

    NASA Astrophysics Data System (ADS)

    Allen, J. T.; Croom, S. M.; Konstantopoulos, I. S.; Bryant, J. J.; Sharp, R.; Cecil, G. N.; Fogarty, L. M. R.; Foster, C.; Green, A. W.; Ho, I.-T.; Owers, M. S.; Schaefer, A. L.; Scott, N.; Bauer, A. E.; Baldry, I.; Barnes, L. A.; Bland-Hawthorn, J.; Bloom, J. V.; Brough, S.; Colless, M.; Cortese, L.; Couch, W. J.; Drinkwater, M. J.; Driver, S. P.; Goodwin, M.; Gunawardhana, M. L. P.; Hampton, E. J.; Hopkins, A. M.; Kewley, L. J.; Lawrence, J. S.; Leon-Saval, S. G.; Liske, J.; Lopez-Sanchez, A. R.; Lorente, N. P. F.; McElroy, R.; Medling, A. M.; Mould, J.; Norberg, P.; Parker, Q. A.; Power, C.; Pracy, M. B.; Richards, S. N.; Robotham, A. S. G.; Sweet, S. M.; Taylor, E. N.; Thomas, A. D.; Tonini, C.; Walcher, C. J.

    2015-06-01

    The targets for the SAMI Galaxy Survey are drawn from the GAMA survey G09, G12 and G15 fields, as well as a set of eight galaxy clusters that extend the survey to higher environmental densities. All candidates have known redshifts from GAMA, SDSS or dedicated 2dF observations, allowing us to create a tiered set of volume-limited samples. Full details of the target selection are presented in Bryant et al. (2015MNRAS.447.2857B). The 107 galaxies that form the SAMI Galaxy Survey EDR are those contained in nine fields in the GAMA regions that were observed in 2013 March and April. (2 data files).

  6. The evolutionary sequence of post-starburst galaxies

    NASA Astrophysics Data System (ADS)

    Wilkinson, C. L.; Pimbblet, K. A.; Stott, J. P.

    2017-12-01

    There are multiple ways in which to select post-starburst galaxies in the literature. In this work, we present a study into how two well-used selection techniques have consequences on observable post-starburst galaxy parameters, such as colour, morphology and environment, and how this affects interpretations of their role in the galaxy duty cycle. We identify a master sample of H δ strong (EWH δ > 3Å) post-starburst galaxies from the value-added catalogue in the seventh data release of the Sloan Digital Sky Survey (SDSS DR7) over a redshift range 0.01 < z < 0.1. From this sample we select two E+A subsets, both having a very little [O II] emission (EW_[O II] > -2.5 Å) but one having an additional cut on EWHα (>-3 Å). We examine the differences in observables and AGN fractions to see what effect the H α cut has on the properties of post-starburst galaxies and what these differing samples can tell us about the duty cycle of post-starburst galaxies. We find that H δ strong galaxies peak in the 'blue cloud', E+As in the 'green valley' and pure E+As in the 'red sequence'. We also find that pure E+As have a more early-type morphology and a higher fraction in denser environments compared with the H δ strong and E+A galaxies. These results suggest that there is an evolutionary sequence in the post-starburst phase from blue discy galaxies with residual star formation to passive red early-types.

  7. The dependence of bar frequency on galaxy mass, colour, and gas content - and angular resolution - in the local universe

    NASA Astrophysics Data System (ADS)

    Erwin, Peter

    2018-03-01

    I use distance- and mass-limited subsamples of the Spitzer Survey of Stellar Structure in Galaxies (S4G) to investigate how the presence of bars in spiral galaxies depends on mass, colour, and gas content and whether large, Sloan Digital Sky Survey (SDSS)-based investigations of bar frequencies agree with local data. Bar frequency reaches a maximum of fbar ≈ 0.70 at M⋆ ˜ 109.7M⊙, declining to both lower and higher masses. It is roughly constant over a wide range of colours (g - r ≈ 0.1-0.8) and atomic gas fractions (log (M_{H I}/ M_{\\star }) ≈ -2.5 to 1). Bars are thus as common in blue, gas-rich galaxies are they are in red, gas-poor galaxies. This is in sharp contrast to many SDSS-based studies of z ˜ 0.01-0.1 galaxies, which report fbar increasing strongly to higher masses (from M⋆ ˜ 1010 to 1011M⊙), redder colours, and lower gas fractions. The contradiction can be explained if SDSS-based studies preferentially miss bars in, and underestimate the bar fraction for, lower mass (bluer, gas-rich) galaxies due to poor spatial resolution and the correlation between bar size and stellar mass. Simulations of SDSS-style observations using the S4G galaxies as a parent sample, and assuming that bars below a threshold angular size of twice the point spread function full width at half-maximum cannot be identified, successfully reproduce typical SDSS fbar trends for stellar mass and gas mass ratio. Similar considerations may affect high-redshift studies, especially if bars grow in length over cosmic time; simulations suggest that high-redshift bar fractions may thus be systematically underestimated.

  8. Star Formation at z = 2.481 in the Lensed Galaxy SDSS J1110 = 6459. I. Lens Modeling and Source Reconstruction

    NASA Astrophysics Data System (ADS)

    Johnson, Traci L.; Sharon, Keren; Gladders, Michael D.; Rigby, Jane R.; Bayliss, Matthew B.; Wuyts, Eva; Whitaker, Katherine E.; Florian, Michael; Murray, Katherine T.

    2017-07-01

    Using the combined resolving power of the Hubble Space Telescope and gravitational lensing, we resolve star-forming structures in a z˜ 2.5 galaxy on scales much smaller than the usual kiloparsec diffraction limit of HST. SGAS J111020.0+645950.8 is a clumpy, star-forming galaxy lensed by the galaxy cluster SDSS J1110+6459 at z=0.659, with a total magnification ˜ 30× across the entire arc. We use a hybrid parametric/non-parametric strong lensing mass model to compute the deflection and magnification of this giant arc, reconstruct the light distribution of the lensed galaxy in the source plane, and resolve the star formation into two dozen clumps. We develop a forward-modeling technique to model each clump in the source plane. We ray-trace the model to the image plane, convolve with the instrumental point-spread function (PSF), and compare with the GALFIT model of the clumps in the image plane, which decomposes clump structure from more extended emission. This technique has the advantage, over ray-tracing, of accounting for the asymmetric lensing shear of the galaxy in the image plane and the instrument PSF. At this resolution, we can begin to study star formation on a clump-by-clump basis, toward the goal of understanding feedback mechanisms and the buildup of exponential disks at high redshift. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program # 13003.

  9. The gas-phase metallicities of star-forming galaxies in aperture-matched SDSS samples follow potential rather than mass or average surface density

    NASA Astrophysics Data System (ADS)

    D'Eugenio, Francesco; Colless, Matthew; Groves, Brent; Bian, Fuyan; Barone, Tania M.

    2018-05-01

    We present a comparative study of the relation between the aperture-based gas-phase metallicity and three structural parameters of star-forming galaxies: mass (M ≡ M*), average potential (Φ ≡ M*/Re) and average surface mass density (Σ ≡ M_*/R_e^2; where Re is the effective radius). We use a volume-limited sample drawn from the publicly available SDSS DR7, and base our analysis on aperture-matched sampling by selecting sets of galaxies where the SDSS fibre probes a fixed fraction of Re. We find that between 0.5 and 1.5 Re, the gas-phase metallicity correlates more tightly with Φ than with either {M} or Σ, in that for all aperture-matched samples, the potential-metallicity relation has (i) less scatter, (ii) higher Spearman rank correlation coefficient and (iii) less residual trend with Re than either the mass-metallicity relation and the average surface density-metallicity relation. Our result is broadly consistent with the current models of gas enrichment and metal loss. However, a more natural explanation for our findings is a local relation between the gas-phase metallicity and escape velocity.

  10. The Structure and Kinematics of Little Blue Spheroid Galaxies

    NASA Astrophysics Data System (ADS)

    Moffett, Amanda J.; Phillipps, Steven; Robotham, Aaron; Driver, Simon; Bremer, Malcolm; GAMA survey team, SAMI survey team

    2018-01-01

    A population of blue, morphologically early-type galaxies, dubbed "Little Blue Spheroids" (LBSs), has been identified as a significant contributor to the low redshift galaxy population in the GAMA survey. Using deep, high-resolution optical imaging from KiDS and the new Bayesian, two-dimensional galaxy profile modelling code PROFIT, we examine the detailed structural characteristics of LBSs, including low surface brightness components not detected in previous SDSS imaging. We find that these LBS galaxies combine features typical of early-type and late-type populations, with structural properties similar to other low-mass early types and star formation rates similar to low-mass late types. We further consider the environments and SAMI-derived IFU kinematics of LBSs in order to investigate the conditions of their formation and the current state of their dynamical evolution.

  11. Tidal Disruption Events Prefer Unusual Host Galaxies

    NASA Astrophysics Data System (ADS)

    Arcavi, Iair; French, K. Decker; Zabludoff, Ann I.

    2016-06-01

    A star passing close to a supermassive black hole (SMBH) can be torn apart in a Tidal Disruption Events (TDE). TDEs that are accompanied by observable flares are now being discovered in transient surveys and are revealing the presence and the properties of otherwise-quiescent SMBHs. Recently, it was discovered that TDEs show a strong preference for rare post-starburst galaxies, (i.e. galaxies that have undergone intense star formation but are no longer forming stars today). We quantify this preference and find that TDEs are approximately 30-200 times more likely to occur in post-starburst hosts (compared to the general SDSS galaxy population), with the enhancement factor depending on the star formation history of the galaxy. This surprising host-galaxy preference connects the until-now disparate TDE subclasses of UV/optical-dominated TDEs and X-ray-dominated TDEs, and serves as the basis for TDE-targeted transient surveys. Post-starburst galaxies may be post-mergers, with binary SMBH systems that are still spiraling in. Such systems could enhance the TDE rate, but it is not yet clear if models can quantitatively reproduce the observed enhancement. Alternative explanations for enhanced TDE rate in post-starbursts include non-spherical post-merger central potentials and enhanced rates of giant stars.

  12. Improving galaxy morphologies for SDSS with Deep Learning

    NASA Astrophysics Data System (ADS)

    Domínguez Sánchez, H.; Huertas-Company, M.; Bernardi, M.; Tuccillo, D.; Fischer, J. L.

    2018-05-01

    We present a morphological catalogue for ˜670 000 galaxies in the Sloan Digital Sky Survey in two flavours: T-type, related to the Hubble sequence, and Galaxy Zoo 2 (GZ2 hereafter) classification scheme. By combining accurate existing visual classification catalogues with machine learning, we provide the largest and most accurate morphological catalogue up to date. The classifications are obtained with Deep Learning algorithms using Convolutional Neural Networks (CNNs). We use two visual classification catalogues, GZ2 and Nair & Abraham (2010), for training CNNs with colour images in order to obtain T-types and a series of GZ2 type questions (disc/features, edge-on galaxies, bar signature, bulge prominence, roundness, and mergers). We also provide an additional probability enabling a separation between pure elliptical (E) from S0, where the T-type model is not so efficient. For the T-type, our results show smaller offset and scatter than previous models trained with support vector machines. For the GZ2 type questions, our models have large accuracy (>97 per cent), precision and recall values (>90 per cent), when applied to a test sample with the same characteristics as the one used for training. The catalogue is publicly released with the paper.

  13. Galaxy Zoo: star formation versus spiral arm number

    NASA Astrophysics Data System (ADS)

    Hart, Ross E.; Bamford, Steven P.; Casteels, Kevin R. V.; Kruk, Sandor J.; Lintott, Chris J.; Masters, Karen L.

    2017-06-01

    Spiral arms are common features in low-redshift disc galaxies, and are prominent sites of star formation and dust obscuration. However, spiral structure can take many forms: from galaxies displaying two strong 'grand design' arms to those with many 'flocculent' arms. We investigate how these different arm types are related to a galaxy's star formation and gas properties by making use of visual spiral arm number measurements from Galaxy Zoo 2. We combine ultraviolet and mid-infrared (MIR) photometry from GALEX and WISE to measure the rates and relative fractions of obscured and unobscured star formation in a sample of low-redshift SDSS spirals. Total star formation rate has little dependence on spiral arm multiplicity, but two-armed spirals convert their gas to stars more efficiently. We find significant differences in the fraction of obscured star formation: an additional ˜10 per cent of star formation in two-armed galaxies is identified via MIR dust emission, compared to that in many-armed galaxies. The latter are also significantly offset below the IRX-β relation for low-redshift star-forming galaxies. We present several explanations for these differences versus arm number: variations in the spatial distribution, sizes or clearing time-scales of star-forming regions (I.e. molecular clouds), or contrasting recent star formation histories.

  14. THE CLUSTERING OF ALFALFA GALAXIES: DEPENDENCE ON H I MASS, RELATIONSHIP WITH OPTICAL SAMPLES, AND CLUES OF HOST HALO PROPERTIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papastergis, Emmanouil; Giovanelli, Riccardo; Haynes, Martha P.

    We use a sample of ≈6000 galaxies detected by the Arecibo Legacy Fast ALFA (ALFALFA) 21 cm survey to measure the clustering properties of H I-selected galaxies. We find no convincing evidence for a dependence of clustering on galactic atomic hydrogen (H I) mass, over the range M{sub H{sub I}} ≈ 10{sup 8.5}-10{sup 10.5} M{sub ☉}. We show that previously reported results of weaker clustering for low H I mass galaxies are probably due to finite-volume effects. In addition, we compare the clustering of ALFALFA galaxies with optically selected samples drawn from the Sloan Digital Sky Survey (SDSS). We findmore » that H I-selected galaxies cluster more weakly than even relatively optically faint galaxies, when no color selection is applied. Conversely, when SDSS galaxies are split based on their color, we find that the correlation function of blue optical galaxies is practically indistinguishable from that of H I-selected galaxies. At the same time, SDSS galaxies with red colors are found to cluster significantly more than H I-selected galaxies, a fact that is evident in both the projected as well as the full two-dimensional correlation function. A cross-correlation analysis further reveals that gas-rich galaxies 'avoid' being located within ≈3 Mpc of optical galaxies with red colors. Next, we consider the clustering properties of halo samples selected from the Bolshoi ΛCDM simulation. A comparison with the clustering of ALFALFA galaxies suggests that galactic H I mass is not tightly related to host halo mass and that a sizable fraction of subhalos do not host H I galaxies. Lastly, we find that we can recover fairly well the correlation function of H I galaxies by just excluding halos with low spin parameter. This finding lends support to the hypothesis that halo spin plays a key role in determining the gas content of galaxies.« less

  15. The Angular Correlation Function of Galaxies from Early Sloan Digital Sky Survey Data

    NASA Astrophysics Data System (ADS)

    Connolly, Andrew J.; Scranton, Ryan; Johnston, David; Dodelson, Scott; Eisenstein, Daniel J.; Frieman, Joshua A.; Gunn, James E.; Hui, Lam; Jain, Bhuvnesh; Kent, Stephen; Loveday, Jon; Nichol, Robert C.; O'Connell, Liam; Postman, Marc; Scoccimarro, Roman; Sheth, Ravi K.; Stebbins, Albert; Strauss, Michael A.; Szalay, Alexander S.; Szapudi, István; Tegmark, Max; Vogeley, Michael S.; Zehavi, Idit; Annis, James; Bahcall, Neta; Brinkmann, J.; Csabai, István; Doi, Mamoru; Fukugita, Masataka; Hennessy, G. S.; Hindsley, Robert; Ichikawa, Takashi; Ivezić, Željko; Kim, Rita S. J.; Knapp, Gillian R.; Kunszt, Peter; Lamb, D. Q.; Lee, Brian C.; Lupton, Robert H.; McKay, Timothy A.; Munn, Jeff; Peoples, John; Pier, Jeff; Rockosi, Constance; Schlegel, David; Stoughton, Christopher; Tucker, Douglas L.; Yanny, Brian; York, Donald G.

    2002-11-01

    The Sloan Digital Sky Survey is one of the first multicolor photometric and spectroscopic surveys designed to measure the statistical properties of galaxies within the local universe. In this paper we present some of the initial results on the angular two-point correlation function measured from the early SDSS galaxy data. The form of the correlation function, over the magnitude interval 18galaxy surveys. On scales between 1' and 1° the correlation function is well described by a power law with an exponent of ~-0.7. The amplitude of the correlation function, within this angular interval, decreases with fainter magnitudes in good agreement with analysis from existing galaxy surveys. There is a characteristic break in the correlation function on scales of approximately 1°-2°. On small scales, θ<1', the SDSS correlation function does not appear to be consistent with the power-law form fitted to the 1'<θ<0.5d data. With a data set that is less than 2% of the full SDSS survey area, we have obtained high-precision measurements of the power-law angular correlation function on angular scales 1'<θ<1deg, which are robust to systematic uncertainties. Because of the limited area and the highly correlated nature of the error covariance matrix, these initial results do not yet provide a definitive characterization of departures from the power-law form at smaller and larger angles. In the near future, however, the area of the SDSS imaging survey will be sufficient to allow detailed analysis of the small- and large-scale regimes, measurements of higher order correlations, and studies of angular clustering as a function of redshift and galaxy type.

  16. Galaxy-galaxy lensing estimators and their covariance properties

    NASA Astrophysics Data System (ADS)

    Singh, Sukhdeep; Mandelbaum, Rachel; Seljak, Uroš; Slosar, Anže; Vazquez Gonzalez, Jose

    2017-11-01

    We study the covariance properties of real space correlation function estimators - primarily galaxy-shear correlations, or galaxy-galaxy lensing - using SDSS data for both shear catalogues and lenses (specifically the BOSS LOWZ sample). Using mock catalogues of lenses and sources, we disentangle the various contributions to the covariance matrix and compare them with a simple analytical model. We show that not subtracting the lensing measurement around random points from the measurement around the lens sample is equivalent to performing the measurement using the lens density field instead of the lens overdensity field. While the measurement using the lens density field is unbiased (in the absence of systematics), its error is significantly larger due to an additional term in the covariance. Therefore, this subtraction should be performed regardless of its beneficial effects on systematics. Comparing the error estimates from data and mocks for estimators that involve the overdensity, we find that the errors are dominated by the shape noise and lens clustering, which empirically estimated covariances (jackknife and standard deviation across mocks) that are consistent with theoretical estimates, and that both the connected parts of the four-point function and the supersample covariance can be neglected for the current levels of noise. While the trade-off between different terms in the covariance depends on the survey configuration (area, source number density), the diagnostics that we use in this work should be useful for future works to test their empirically determined covariances.

  17. Multi-Wavelength Photometric Identification of Quenching Galaxies in ZFOURGE

    NASA Astrophysics Data System (ADS)

    Forrest, Ben; Tran, Kim-Vy; ZFOURGE Collaboration

    2018-01-01

    In the new millennium, multi-wavelength photometric surveys of thousands of galaxies, such as SDSS, CANDELS, NMBS, and ZFOURGE have become the standard for analyzing large populations.With ongoing surveys such as DES, and upcoming programs with LSST and JWST, finding ways to leverage large amounts of data will continue to be an area of important research.Many diagnostics have been used to classify these galaxies, most notably the rest-frame UVJ color-color diagram, which splits galaxies into star-forming and quiescent populations.With the plethora of data probing wavelengths outside of the optical however, we can do better.In this talk I present a scheme for classifying galaxies with using composite SEDs that clearly reveals rare populations such as extreme emission line galaxies and post-starburst galaxies.We use a sample of ~8000 galaxies from ZFOURGE which have SNR_Ks>20, observations from 0.3-8 microns, and are at 1galaxies which have SFRs below the main sequence and morphologies between those of typical star-forming and quiescent galaxies, indicating they are not the quenched spirals and star-forming disks that occupy much of the so-called 'green valley.'This is suggestive of a quenching pathway that more closely traces the evolution of the quiescent population than the post-starburst (E+A) pathway.

  18. Halo histories versus galaxy properties at z = 0 II: large-scale galactic conformity

    NASA Astrophysics Data System (ADS)

    Tinker, Jeremy L.; Hahn, ChangHoon; Mao, Yao-Yuan; Wetzel, Andrew R.; Conroy, Charlie

    2018-06-01

    Using group catalogues from the Sloan Digital Sky Survey (SDSS) Data Release 7, we measure galactic conformity in the local universe. We measure the quenched fraction of neighbour galaxies around isolated primary galaxies, dividing the isolated sample into star-forming and quiescent objects. We restrict our measurements to scales >1 Mpc to probe the correlations between halo formation histories. Over the stellar mass range 109.7 ≤ M*/M⊙ ≤ 1010.9, we find minimal evidence for conformity. We further compare these data to predictions of the halo age-matching model, in which the oldest galaxies are associated with the oldest haloes. For models with strong correlations between halo and stellar age, the conformity is too large to be consistent with the data. Weaker implementations of the age-matching model would not produce a detectable signal in SDSS data. We reproduce the results of Kauffmann et al., in which the star formation rates of neighbour galaxies are reduced around primary galaxies when the primaries are low star formers. However, we find this result is mainly driven by contamination in the isolation criterion; when removing the small fraction of satellite galaxies in the sample, the conformity signal largely goes away. Lastly, we show that small conformity signals, i.e. 2-5 per cent differences in the quenched fractions of neighbour galaxies, can be produced by mechanisms other than halo assembly bias. For example, if passive galaxies occupy more massive haloes than star-forming galaxies of the same stellar mass, a conformity signal that is consistent with recent measurements from PRIMUS (Berti et al.) can be produced.

  19. Characterizing the population of active galactic nuclei in dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Baldassare, Vivienne F.; Reines, Amy E.; Gallo, Elena; Greene, Jenny E.

    2017-01-01

    Clues to super-massive black hole (BH) formation and growth reside in the population and properties of BHs in local dwarf galaxies. The masses of BHs in these systems are our best observational constraint on the masses of the first BH "seeds" at high redshift. Moreover, present-day dwarf galaxies are unlikely to have undergone major mergers, making them a relatively pristine testbed for studying triggers of BH accretion. However, in order to find BHs in dwarf galaxies outside the Local Group, it is necessary to search for signatures of accretion, i.e., active galactic nuclei (AGN). Until recently, only a handful of dwarf galaxies were known to contain AGN. However, large surveys such as the SDSS have led to the production of samples of over a hundred dwarf galaxies with AGN signatures (see e.g., Reines et al. 2013). My dissertation work has involved in-depth, multi-wavelength follow-up of nearby (z<0.055) dwarf galaxies with optical spectroscopic AGN signatures in SDSS.I analyzed high resolution spectra of dwarf galaxies with narrow-line AGN, which led to the discovery of a 50,000 MSun BH in the nucleus of RGG 118 - the smallest BH yet reported in a galaxy nucleus (Baldassare et al. 2015). I also used multi-epoch optical spectroscopy to study the nature of broad H-alpha emission in dwarf galaxies. A characteristic signature of dense gas orbiting around a BH, broad emission can also be produced by transient stellar processes. I showed that broad H-alpha in star-forming dwarf galaxies fades over a baseline of 5-10 years, and is likely produced by e.g., a Type II SN as opposed to an AGN. However, broad emission in dwarf galaxies with AGN/composite narrow lines is persistent and consistent across observations, suggesting an AGN origin (Baldassare et al. 2016). Finally, I analyzed X-ray and UV observations of dwarf galaxies with broad and narrow-line AGN signatures. All targets had nuclear X-ray detections at levels significantly higher than expected from X-ray binaries

  20. The Splashback Feature around DES Galaxy Clusters: Galaxy Density and Weak Lensing Profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chihway; et al.

    Splashback refers to the process of matter that is accreting onto a dark matter halo reaching its first orbital apocenter and turning around in its orbit. The cluster-centric radius at which this process occurs, r_sp, defines a halo boundary that is connected to the dynamics of the cluster, in contrast with other common halo boundary definitions such as R_200. A rapid decline in the matter density profile of the halo is expected near r_sp. We measure the galaxy number density and weak lensing mass profiles around RedMapper galaxy clusters in the first year Dark Energy Survey (DES) data. For amore » cluster sample with mean mass ~2.5 x 10^14 solar masses, we find strong evidence of a splashback-like steepening of the galaxy density profile and measure r_sp=1.16 +/- 0.08 Mpc/h, consistent with earlier SDSS measurements of More et al. (2016) and Baxter et al. (2017). Moreover, our weak lensing measurement demonstrates for the first time the existence of a splashback-like steepening of the matter profile of galaxy clusters. We measure r_sp=1.28 +/- 0.18 Mpc/h from the weak lensing data, in good agreement with our galaxy density measurements. Applying our analysis to different cluster and galaxy samples, we find that consistent with LambdaCDM simulations, r_sp scales with R_200m and does not evolve with redshift over the redshift range of 0.3--0.6. We also find that potential systematic effects associated with the RedMapper algorithm may impact the location of r_sp, in particular the choice of scale used to estimate cluster richness. We discuss progress needed to understand the systematic uncertainties and fully exploit forthcoming data from DES and future surveys, emphasizing the importance of more realistic mock catalogs and independent cluster samples.« less

  1. Galaxy triplets in Sloan Digital Sky Survey Data Release 7 - I. Catalogue

    NASA Astrophysics Data System (ADS)

    O'Mill, Ana Laura; Duplancic, Fernanda; García Lambas, Diego; Valotto, Carlos; Sodré, Laerte

    2012-04-01

    We present a new catalogue of galaxy triplets derived from the Sloan Digital Sky Survey (SDSS) Data Release 7. The identification of systems was performed considering galaxies brighter than Mr=-20.5 and imposing constraints over the projected distances, radial velocity differences of neighbouring galaxies and isolation. To improve the identification of triplets, we employed a data pixelization scheme, which allows us to handle large amounts of data as in the SDSS photometric survey. Using spectroscopic and photometric data in the redshift range 0.01 ≤z≤ 0.40, we obtain 5901 triplet candidates. We have used a mock catalogue to analyse the completeness and contamination of our methods. The results show a high level of completeness (˜80 per cent) and low contamination (˜5 per cent). By using photometric and spectroscopic data, we have also addressed the effects of fibre collisions in the spectroscopic sample. We have defined an isolation criterion considering the distance of the triplet brightest galaxy to the closest neighbour cluster, to describe a global environment, as well as the galaxies within a fixed aperture, around the triplet brightest galaxy, to measure the local environment. The final catalogue comprises 1092 isolated triplets of galaxies in the redshift range 0.01 ≤z≤ 0.40. Our results show that photometric redshifts provide very useful information, allowing us to complete the sample of nearby systems whose detection is affected by fibre collisions, as well as extending the detection of triplets to large distances, where spectroscopic redshifts are not available.

  2. Effects of the environment on galaxies in the Catalogue of Isolated Galaxies: physical satellites and large scale structure

    NASA Astrophysics Data System (ADS)

    Argudo-Fernández, M.; Verley, S.; Bergond, G.; Sulentic, J.; Sabater, J.; Fernández Lorenzo, M.; Espada, D.; Leon, S.; Sánchez-Expósito, S.; Santander-Vela, J. D.; Verdes-Montenegro, L.

    2014-04-01

    Context. We present a study of the 3D environment for a sample of 386 galaxies in the Catalogue of Isolated Galaxies (CIG, Karachentseva 1973) using the Ninth Data Release of the Sloan Digital Sky Survey (SDSS-DR9). Aims: We aim to identify and quantify the effects of the satellite distribution around a sample of galaxies in the CIG, as well as the effects of the large-scale structure (LSS). Methods: To recover the physically bound galaxies we first focused on the satellites that are within the escape speed of each CIG galaxy. We also propose a more conservative method using the stacked Gaussian distribution of the velocity difference of the neighbours. The tidal strengths affecting the primary galaxy were estimated to quantify the effects of the local and LSS environments. We also defined the projected number density parameter at the fifth nearest neighbour to characterise the LSS around the CIG galaxies. Results: Out of the 386 CIG galaxies considered in this study, at least 340 (88% of the sample) have no physically linked satellite. Following the more conservative Gaussian distribution of physical satellites around the CIG galaxies leads to upper limits. Out of the 386 CIG galaxies, 327 (85% of the sample) have no physical companion within a projected distance of 0.3 Mpc. The CIG galaxies are distributed following the LSS of the local Universe, although presenting a large heterogeneity in their degree of connection with it. When present around a CIG galaxy, the effect of physically bound galaxies largely dominates (typically by more than 90%) the tidal strengths generated by the LSS. Conclusions: The CIG samples a variety of environments, from galaxies with physical satellites to galaxies without neighbours within 3 Mpc. A clear segregation appears between early-type CIG galaxies with companions and isolated late-type CIG galaxies. Isolated galaxies are in general bluer, with probably younger stellar populations and very high star formation compared with older

  3. Blue diffuse dwarf galaxies: a clearer picture

    NASA Astrophysics Data System (ADS)

    James, Bethan L.; Koposov, Sergey E.; Stark, Daniel P.; Belokurov, Vasily; Pettini, Max; Olszewski, Edward W.; McQuinn, Kristen B. W.

    2017-03-01

    The search for chemically unevolved galaxies remains prevalent in the nearby Universe, mostly because these systems provide excellent proxies for exploring in detail the physics of high-z systems. The most promising candidates are extremely metal-poor galaxies (XMPs), I.e. galaxies with <1/10 solar metallicity. However, due to the bright emission-line-based search criteria traditionally used to find XMPs, we may not be sampling the full XMP population. In 2014, we reoriented this search using only morphological properties and uncovered a population of ˜150 'blue diffuse dwarf (BDD) galaxies', and published a sub-sample of 12 BDD spectra. Here, we present optical spectroscopic observations of a larger sample of 51 BDDs, along with their Sloan Digital Sky Survey (SDSS) photometric properties. With our improved statistics, we use direct-method abundances to confirm that BDDs are chemically unevolved (7.43 < 12 + log(O/H) < 8.01), with ˜20 per cent of our sample classified as being XMP galaxies, and find that they are actively forming stars at rates of ˜1-33 × 10-2 M⊙ yr-1 in H II regions randomly embedded in a blue, low-surface-brightness continuum. Stellar masses are calculated from population synthesis models and estimated to be in the range log (M*/M⊙) ≃ 5-9. Unlike other low-metallicity star-forming galaxies, BDDs are in agreement with the mass-metallicity relation at low masses, suggesting that they are not accreting large amounts of pristine gas relative to their stellar mass. BDD galaxies appear to be a population of actively star-forming dwarf irregular (dIrr) galaxies which fall within the class of low-surface-brightness dIrr galaxies. Their ongoing star formation and irregular morphology make them excellent analogues for galaxies in the early Universe.

  4. The thirteenth data release of the Sloan Digital Sky Survey: First spectroscopic data from the SDSS-IV survey mapping nearby galaxies at Apache Point Observatory

    DOE PAGES

    Franco D. Albareti

    2017-12-08

    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) began observations in July 2014. It pursues three core programs: APOGEE-2, MaNGA, and eBOSS. In addition, eBOSS contains two major subprograms: TDSS and SPIDERS. This paper describes the first data release from SDSS-IV, Data Release 13 (DR13), which contains new data, reanalysis of existing data sets and, like all SDSS data releases, is inclusive of previously released data. DR13 makes publicly available 1390 spatially resolved integral field unit observations of nearby galaxies from MaNGA, the first data released from this survey. It includes new observations from eBOSS, completing SEQUELS. Inmore » addition to targeting galaxies and quasars, SEQUELS also targeted variability-selected objects from TDSS and X-ray selected objects from SPIDERS. DR13 includes new reductions of the SDSS-III BOSS data, improving the spectrophotometric calibration and redshift classification. DR13 releases new reductions of the APOGEE-1 data from SDSS-III, with abundances of elements not previously included and improved stellar parameters for dwarf stars and cooler stars. For the SDSS imaging data, DR13 provides new, more robust and precise photometric calibrations. Several value-added catalogs are being released in tandem with DR13, in particular target catalogs relevant for eBOSS, TDSS, and SPIDERS, and an updated red-clump catalog for APOGEE. This paper describes the location and format of the data now publicly available, as well as providing references to the important technical papers that describe the targeting, observing, and data reduction. In conclusion, the SDSS website, this http URL, provides links to the data, tutorials and examples of data access, and extensive documentation of the reduction and analysis procedures. DR13 is the first of a scheduled set that will contain new data and analyses from the planned ~6-year operations of SDSS-IV.« less

  5. The thirteenth data release of the Sloan Digital Sky Survey: First spectroscopic data from the SDSS-IV survey mapping nearby galaxies at Apache Point Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco D. Albareti

    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) began observations in July 2014. It pursues three core programs: APOGEE-2, MaNGA, and eBOSS. In addition, eBOSS contains two major subprograms: TDSS and SPIDERS. This paper describes the first data release from SDSS-IV, Data Release 13 (DR13), which contains new data, reanalysis of existing data sets and, like all SDSS data releases, is inclusive of previously released data. DR13 makes publicly available 1390 spatially resolved integral field unit observations of nearby galaxies from MaNGA, the first data released from this survey. It includes new observations from eBOSS, completing SEQUELS. Inmore » addition to targeting galaxies and quasars, SEQUELS also targeted variability-selected objects from TDSS and X-ray selected objects from SPIDERS. DR13 includes new reductions of the SDSS-III BOSS data, improving the spectrophotometric calibration and redshift classification. DR13 releases new reductions of the APOGEE-1 data from SDSS-III, with abundances of elements not previously included and improved stellar parameters for dwarf stars and cooler stars. For the SDSS imaging data, DR13 provides new, more robust and precise photometric calibrations. Several value-added catalogs are being released in tandem with DR13, in particular target catalogs relevant for eBOSS, TDSS, and SPIDERS, and an updated red-clump catalog for APOGEE. This paper describes the location and format of the data now publicly available, as well as providing references to the important technical papers that describe the targeting, observing, and data reduction. In conclusion, the SDSS website, this http URL, provides links to the data, tutorials and examples of data access, and extensive documentation of the reduction and analysis procedures. DR13 is the first of a scheduled set that will contain new data and analyses from the planned ~6-year operations of SDSS-IV.« less

  6. Properties of Narrow line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Rakshit, Suvendu; Stalin, Chelliah Subramonian; Chand, Hum; Zhang, Xue-Guang

    2018-04-01

    Narrow line Seyfert 1 (NLSy1) galaxies constitute a class of active galactic nuclei characterized by the full width at half maximum (FWHM) of the Hα broad emission line <2000 km s-1 and the flux ratio of [O III] to Hα <3. Their properties are not well understood since only a few NLSy1 galaxies were known earlier. We have studied various properties of NLSy1 galaxies using an enlarged sample and compared them with the conventional broad-line Seyfert 1 (BLSy1) galaxies. Both the sample of sources have z˜ 0.8 and their optical spectra from SDSS-DR12 that are used to derive various physical parameters have a median signal to noise (S/N) ratio >10 pixel-1. A strong correlation between the Hα and Hα emission lines is found both in the FWHM and flux. The nuclear continuum luminosity is found to be strongly correlated with the luminosity of Hα, Hα and [O III] emission lines. The black hole mass in NLSy1 galaxies is lower compared to their broad line counterparts. Compared to BLSy1 galaxies, NLSy1 galaxies have a stronger FeII emission and a higher Eddington ratio that place them in the extreme upper right corner of the R4570 - λEdd diagram. The distribution of the radio-loudness parameter (R) in NLSy1 galaxies drops rapidly at R>10 compared to the BLSy1 galaxies that have powerful radio jets. The soft X-ray photon index in NLSy1 galaxies is on average higher (2.9 ± 0.9) than BLSy1 galaxies (2.4 ± 0.8). It is anti-correlated with the Hα width but correlated with the FeII strength. NLSy1 galaxies on average have a lower amplitude of optical variability compared to their broad lines counterparts. These results suggest Eddington ratio as the main parameter that drives optical variability in these sources.

  7. J0811+4730: the most metal-poor star-forming dwarf galaxy known

    NASA Astrophysics Data System (ADS)

    Izotov, Y. I.; Thuan, T. X.; Guseva, N. G.; Liss, S. E.

    2018-01-01

    We report the discovery of the most metal-poor dwarf star-forming galaxy (SFG) known to date, J0811+4730. This galaxy, at a redshift z = 0.04444, has a Sloan Digital Sky Survey (SDSS) g-band absolute magnitude Mg = -15.41 mag. It was selected by inspecting the spectroscopic data base in the Data Release 13 (DR13) of the SDSS. Large Binocular Telescope/Multi-Object Double spectrograph (LBT/MODS) spectroscopic observations reveal its oxygen abundance to be 12 + log O/H = 6.98 ± 0.02, the lowest ever observed for an SFG. J0811+4730 strongly deviates from the main sequence defined by SFGs in the emission line diagnostic diagrams and the metallicity-luminosity diagram. These differences are caused mainly by the extremely low oxygen abundance in J0811+4730, which is ∼10 times lower than that in main-sequence SFGs with similar luminosities. By fitting the spectral energy distributions of the SDSS and LBT spectra, we derive a stellar mass of M⋆ = 106.24-106.29 M⊙, and we find that a considerable fraction of the galaxy stellar mass was formed during the most recent burst of star formation.

  8. Why do Galaxies Stop Forming Stars? New Evidence for the Role of AGN-feedback in Driving Galaxy Bimodality

    NASA Astrophysics Data System (ADS)

    Bluck, Asa; Teimoorinia, Hossen; Ellison, Sara L.; Mendel, Trevor

    2018-01-01

    One of the most striking features of the population of local galaxies is that the distributions of several key galaxy properties are highly bimodal (e.g. color and star formation rate). In general, high mass galaxies in dense environments, with bulge-dominated morphologies and pressure supported kinematics are more frequently passive (non-star forming) than lower mass galaxies in low density environments, with disc-dominated morphologies and rotationally supported kinematics. Understanding which, if any, of these correlations is causally related to the ‘quenching’ of star formation in galaxies remains an active and hotly debated area of investigation in modern astrophysics.Theoretically, a wealth of physical processes have been evoked to account for central galaxy quenching, including halo mass quenching from virial shocks, feedback from active galactic nuclei (AGN; in either the quasar or radio mode), stabilizing torques from central mass concentrations, feedback from supernovae, or even magnetic fields interacting with the hot gas halo.I will present strong new statistical evidence which suggests that the quenched fraction of local central galaxies is primarily related to their central kinematics (Bluck et al. 2016; 2017 in prep.). I will show that this is broadly consistent with quenching from AGN feedback, through a detailed comparison with a semi-analytic model and a cosmological hydrodynamical simulation.Using a sample of over half a million local galaxies from the SDSS DR7, we go on to develop a number of sophisticated techniques, including machine learning with artificial neural networks, to rank the importance of galaxy properties to quenching (Teimoorinia, Bluck & Ellison 2016). We find that properties closely correlated with the central supermassive black hole are highly favoured statistically to predict whether a galaxy will be star forming or not. Perhaps surprisingly, stellar mass and halo mass have no impact on star formation activity in central

  9. Photometric Selection of a Massive Galaxy Catalog with z ≥ 0.55

    NASA Astrophysics Data System (ADS)

    Núñez, Carolina; Spergel, David N.; Ho, Shirley

    2017-02-01

    We present the development of a photometrically selected massive galaxy catalog, targeting Luminous Red Galaxies (LRGs) and massive blue galaxies at redshifts of z≥slant 0.55. Massive galaxy candidates are selected using infrared/optical color-color cuts, with optical data from the Sloan Digital Sky Survey (SDSS) and infrared data from “unWISE” forced photometry derived from the Wide-field Infrared Survey Explorer (WISE). The selection method is based on previously developed techniques to select LRGs with z> 0.5, and is optimized using receiver operating characteristic curves. The catalog contains 16,191,145 objects, selected over the full SDSS DR10 footprint. The redshift distribution of the resulting catalog is estimated using spectroscopic redshifts from the DEEP2 Galaxy Redshift Survey and photometric redshifts from COSMOS. Restframe U - B colors from DEEP2 are used to estimate LRG selection efficiency. Using DEEP2, the resulting catalog has an average redshift of z = 0.65, with a standard deviation of σ =2.0, and an average restframe of U-B=1.0, with a standard deviation of σ =0.27. Using COSMOS, the resulting catalog has an average redshift of z = 0.60, with a standard deviation of σ =1.8. We estimate 34 % of the catalog to be blue galaxies with z≥slant 0.55. An estimated 9.6 % of selected objects are blue sources with redshift z< 0.55. Stellar contamination is estimated to be 1.8%.

  10. Galaxy Zoo: constraining the origin of spiral arms

    NASA Astrophysics Data System (ADS)

    Hart, Ross E.; Bamford, Steven P.; Keel, William C.; Kruk, Sandor J.; Masters, Karen L.; Simmons, Brooke D.; Smethurst, Rebecca J.

    2018-07-01

    Since the discovery that the majority of low-redshift galaxies exhibit some level of spiral structure, a number of theories have been proposed as to why these patterns exist. A popular explanation is a process known as swing amplification, yet there is no observational evidence to prove that such a mechanism is at play. By using a number of measured properties of galaxies, and scaling relations where there are no direct measurements, we model samples of SDSS and S4G spiral galaxies in terms of their relative halo, bulge, and disc mass and size. Using these models, we test predictions of swing amplification theory with respect to directly measured spiral arm numbers from Galaxy Zoo 2. We find that neither a universal cored nor cuspy inner dark matter profile can correctly predict observed numbers of arms in galaxies. However, by invoking a halo contraction/expansion model, a clear bimodality in the spiral galaxy population emerges. Approximately 40 per cent of unbarred spiral galaxies at z ≲ 0.1 and M* ≳ 1010 M⊙ have spiral arms that can be modelled by swing amplification. This population display a significant correlation between predicted and observed spiral arm numbers, evidence that they are swing amplified modes. The remainder are dominated by two-arm systems for which the model predicts significantly higher arm numbers. These are likely driven by tidal interactions or other mechanisms.

  11. Galaxy Zoo: constraining the origin of spiral arms

    NASA Astrophysics Data System (ADS)

    Hart, Ross E.; Bamford, Steven P.; Keel, William C.; Kruk, Sandor J.; Masters, Karen L.; Simmons, Brooke D.; Smethurst, Rebecca J.

    2018-05-01

    Since the discovery that the majority of low-redshift galaxies exhibit some level of spiral structure, a number of theories have been proposed as to why these patterns exist. A popular explanation is a process known as swing amplification, yet there is no observational evidence to prove that such a mechanism is at play. By using a number of measured properties of galaxies, and scaling relations where there are no direct measurements, we model samples of SDSS and S4G spiral galaxies in terms of their relative halo, bulge and disc mass and size. Using these models, we test predictions of swing amplification theory with respect to directly measured spiral arm numbers from Galaxy Zoo 2. We find that neither a universal cored or cuspy inner dark matter profile can correctly predict observed numbers of arms in galaxies. However, by invoking a halo contraction/expansion model, a clear bimodality in the spiral galaxy population emerges. Approximately 40 per cent of unbarred spiral galaxies at z ≲ 0.1 and M* ≳ 1010M⊙ have spiral arms that can be modelled by swing amplification. This population display a significant correlation between predicted and observed spiral arm numbers, evidence that they are swing amplified modes. The remainder are dominated by two-arm systems for which the model predicts significantly higher arm numbers. These are likely driven by tidal interactions or other mechanisms.

  12. SDSS-IV MaNGA: Galaxy Pair Fraction and Correlated Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Fu, Hai; Steffen, Joshua L.; Gross, Arran C.; Dai, Y. Sophia; Isbell, Jacob W.; Lin, Lihwai; Wake, David; Xue, Rui; Bizyaev, Dmitry; Pan, Kaike

    2018-04-01

    We have identified 105 galaxy pairs at z ∼ 0.04 with the MaNGA integral-field spectroscopic data. The pairs have projected separations between 1 and 30 kpc, and are selected to have radial velocity offsets less than 600 km s‑1 and stellar mass ratio between 0.1 and 1. The pair fraction increases with both the physical size of the integral-field unit and the stellar mass, consistent with theoretical expectations. We provide the best-fit analytical function of the pair fraction and find that ∼3% of M* galaxies are in close pairs. For both isolated galaxies and paired galaxies, active galactic nuclei (AGNs) are selected using emission-line ratios and Hα equivalent widths measured inside apertures at a fixed physical size. We find AGNs in ∼24% of the paired galaxies and binary AGNs in ∼13% of the pairs. To account for the selection biases in both the pair sample and the MaNGA sample, we compare the AGN comoving volume densities with those expected from the mass- and redshift-dependent AGN fractions. We find a strong (∼5×) excess of binary AGNs over random pairing and a mild (∼20%) deficit of single AGNs. The binary AGN excess increases from ∼2× to ∼6× as the projected separation decreases from 10–30 to 1–10 kpc. Our results indicate that the pairing of galaxies preserves the AGN duty cycle in individual galaxies but increases the population of binary AGNs through correlated activities. We suggest tidally induced galactic-scale shocks and AGN cross-ionization as two plausible channels to produce low-luminosity narrow-line-selected binary AGNs.

  13. THE EVOLUTION OF POST-STARBURST GALAXIES FROM z  ∼ 1 TO THE PRESENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pattarakijwanich, Petchara; Strauss, Michael A.; Ho, Shirley

    Post-starburst galaxies are in the transitional stage between blue, star-forming galaxies and red, quiescent galaxies and therefore hold important clues for our understanding of galaxy evolution. In this paper, we systematically searched for and identified a large sample of post-starburst galaxies from the spectroscopic data set of the Sloan Digital Sky Survey (SDSS) Data Release 9. In total, we found more than 6000 objects with redshifts between z  ∼ 0.05 and z  ∼ 1.3, making this the largest sample of post-starburst galaxies in the literature. We calculated the luminosity function of the post-starburst galaxies using two uniformly selected subsamples: the SDSS mainmore » galaxy sample and the Baryon Oscillation Spectroscopic Survey CMASS sample. The luminosity functions are reasonably fit by half-Gaussian functions. The peak magnitudes shift as a function of redshift from M  ∼ −23.5 at z  ∼ 0.8 to M  ∼ −20.3 at z  ∼ 0.1. This is consistent with the downsizing trend, whereby more massive galaxies form earlier than low-mass galaxies. We compared the mass of the post-starburst stellar population found in our sample to the decline of the global star formation rate and found that only a small amount (∼1%) of all star formation quenching in the redshift range z  = 0.2–0.7 results in post-starburst galaxies in the luminosity range our sample is sensitive to. Therefore, luminous post-starburst galaxies are not the place where most of the decline in the star formation rate of the universe is happening.« less

  14. VizieR Online Data Catalog: SPOGS. I. SDSS Shocked POststarburst Galaxy cand. (Alatalo+, 2016)

    NASA Astrophysics Data System (ADS)

    Alatalo, K.; Cales, S. L.; Rich, J. A.; Appleton, P. N.; Kewley, L. J.; Lacy, M.; Lanz, L.; Medling, A. M.; Nyland, K.

    2016-07-01

    There are many mechanisms by which galaxies can transform from blue, star-forming spirals, to red, quiescent early-type galaxies, but our current census of them does not form a complete picture. Recent observations of nearby case studies have identified a population of galaxies that quench "quietly". Traditional poststarburst searches seem to catch galaxies only after they have quenched and transformed, and thus miss any objects with additional ionization mechanisms exciting the remaining gas. The Shocked POststarburst Galaxy Survey (SPOGS) aims to identify transforming galaxies, in which the nebular lines are excited via shocks instead of through star formation processes. Utilizing the Oh-Sarzi-Schawinski-Yi (OSSY, 2011ApJS..195...13O) measurements on the Sloan Digital Sky Survey Data Release 7 catalog, we applied Balmer absorption and shock boundary criteria to identify 1067 SPOG candidates (SPOGs*) within z=0.2. SPOGs* represent 0.2% of the OSSY sample galaxies that exceed the continuum signal-to-noise cut (and 0.7% of the emission line galaxy sample). SPOGs* colors suggest that they are in an earlier phase of transition than OSSY galaxies that meet an "E+A" selection. SPOGs* have a 13% 1.4GHz detection rate from the Faint Images of the Radio Sky at Twenty Centimeters Survey, higher than most other subsamples, and comparable only to low-ionization nuclear emission line region hosts, suggestive of the presence of active galactic nuclei (AGNs). SPOGs* also have stronger Na i D absorption than predicted from the stellar population, suggestive of cool gas being driven out in galactic winds. It appears that SPOGs* represent an earlier phase in galaxy transformation than traditionally selected poststarburst galaxies, and that a large proportion of SPOGs* also have properties consistent with disruption of their interstellar media, a key component to galaxy transformation. It is likely that many of the known pathways to transformation undergo a SPOG phase. Studying this

  15. AM 2217-490: A polar ring galaxy under construction

    NASA Astrophysics Data System (ADS)

    Freitas-Lemes, P.; Rodrigues, I.; Faúndez-Abans, M.; Dors, O.

    2014-10-01

    This work is part of a series of case studies of Polar Ring Galaxies (PRGs) (see also Posters GAL-1: 163, GAL-2: 178). A PRG is formed by an early type host galaxy (e.g. lenticular or elliptical), surrounded by a ring of gas and stars orbiting approximately at the polar plane of the host galaxy. AM2217-490 is an interesting case of PRG in formation, with a still asymmetrical ring that surrounds the host galaxy. Apparently, this bluish structure (characteristic of the rings of PRGs), is not yet in equilibrium with the host galaxy. This study is based on spectra on the range 6250-7250 Å obtained with the CTIO 1.5 m telescope - Chile. From them, we measure a heliocentric radial velocity of 9152± 18 km/s. The value of the ionization parameter (log U = -3.5) is similar to that in interacting galaxies (Freitas-Lemes et al. 2013, submitted to MNRAS; and Krabbe et al. 2013, MNRAS Accepted), and lower than that of isolated ones. The electron density shows little variation along the major axis of the host galaxy, and a mean value typical of interacting galaxies. Diagnostic diagrams show that the nuclear region harbors an AGN, following a trend among polar ring galaxies. The low-resolution images of the SDSS show no tails or bridges connecting the galaxy to other objects, however, in a radius of 5 arcmin there are three other galaxies with similar speeds, featuring a group. A plausible hypothesis is that one of these galaxies may have interacted with AM2217-490, donating material to form the ring.

  16. STELLAR, GAS, AND DARK MATTER CONTENT OF BARRED GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cervantes Sodi, Bernardo, E-mail: b.cervantes@crya.unam.mx

    We select a sample of galaxies from the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7) where galaxies are classified, through visual inspection, as hosting strong bars, weak bars, or as unbarred galaxies, and make use of H i mass and kinematic information from the Arecibo Legacy Fast ALFA survey catalog, to study the stellar, atomic gas, and dark matter content of barred disk galaxies. We find, in agreement with previous studies, that the bar fraction increases with increasing stellar mass. A similar trend is found with total baryonic mass, although the dependence is not as strong as with stellarmore » mass, due to the contribution of gas. The bar fraction shows a decrease with increasing gas mass fraction. This anticorrelation between the likelihood of a galaxy hosting a bar with the gas richness of the galaxy results from the inhibiting effect the gas has in the formation of bars. We also find that for massive galaxies with stellar masses larger than 10{sup 10} M {sub ⊙}, at fixed stellar mass, the bar fraction decreases with increasing global halo mass (i.e., halo mass measured up to a radius of the order of the H i disk extent).« less

  17. Galaxy Evolution Insights from Spectral Modeling of Large Data Sets from the Sloan Digital Sky Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoversten, Erik A.

    This thesis centers on the use of spectral modeling techniques on data from the Sloan Digital Sky Survey (SDSS) to gain new insights into current questions in galaxy evolution. The SDSS provides a large, uniform, high quality data set which can be exploited in a number of ways. One avenue pursued here is to use the large sample size to measure precisely the mean properties of galaxies of increasingly narrow parameter ranges. The other route taken is to look for rare objects which open up for exploration new areas in galaxy parameter space. The crux of this thesis is revisitingmore » the classical Kennicutt method for inferring the stellar initial mass function (IMF) from the integrated light properties of galaxies. A large data set (~ 10 5 galaxies) from the SDSS DR4 is combined with more in-depth modeling and quantitative statistical analysis to search for systematic IMF variations as a function of galaxy luminosity. Galaxy Hα equivalent widths are compared to a broadband color index to constrain the IMF. It is found that for the sample as a whole the best fitting IMF power law slope above 0.5 M ⊙ is Γ = 1.5 ± 0.1 with the error dominated by systematics. Galaxies brighter than around M r,0.1 = -20 (including galaxies like the Milky Way which has M r,0.1 ~ -21) are well fit by a universal Γ ~ 1.4 IMF, similar to the classical Salpeter slope, and smooth, exponential star formation histories (SFH). Fainter galaxies prefer steeper IMFs and the quality of the fits reveal that for these galaxies a universal IMF with smooth SFHs is actually a poor assumption. Related projects are also pursued. A targeted photometric search is conducted for strongly lensed Lyman break galaxies (LBG) similar to MS1512-cB58. The evolution of the photometric selection technique is described as are the results of spectroscopic follow-up of the best targets. The serendipitous discovery of two interesting blue compact dwarf galaxies is reported. These galaxies were identified by their

  18. ON THE OXYGEN AND NITROGEN CHEMICAL ABUNDANCES AND THE EVOLUTION OF THE 'GREEN PEA' GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amorin, Ricardo O.; Perez-Montero, Enrique; Vilchez, J. M., E-mail: amorin@iaa.e, E-mail: epm@iaa.e, E-mail: jvm@iaa.e

    2010-06-01

    We have investigated the oxygen and nitrogen chemical abundances in extremely compact star-forming galaxies (SFGs) with redshifts between {approx}0.11 and 0.35, popularly referred to as 'green peas'. Direct and strong-line methods sensitive to the N/O ratio applied to their Sloan Digital Sky Survey (SDSS) spectra reveal that these systems are genuine metal-poor galaxies, with mean oxygen abundances {approx}20% solar. At a given metallicity these galaxies display systematically large N/O ratios compared to normal galaxies, which can explain the strong difference between our metallicities measurements and previous ones. While their N/O ratios follow the relation with stellar mass of local SFGsmore » in the SDSS, we find that the mass-metallicity relation of the 'green peas' is offset {approx_gt}0.3 dex to lower metallicities. We argue that recent interaction-induced inflow of gas, possibly coupled with a selective metal-rich gas loss, driven by supernova winds, may explain our findings and the known galaxy properties, namely high specific star formation rates, extreme compactness, and disturbed optical morphologies. The 'green pea' galaxy properties seem to be uncommon in the nearby universe, suggesting a short and extreme stage of their evolution. Therefore, these galaxies may allow us to study in great detail many processes, such as starburst activity and chemical enrichment, under physical conditions approaching those in galaxies at higher redshifts.« less

  19. Three-Dimensional View of Ionized Gas Conditions in Galaxies

    NASA Astrophysics Data System (ADS)

    Juneau, Stephanie; NOAO Data Lab

    2018-06-01

    We present a 3D version of common emission line diagnostic diagrams used to identify the source of ionization in galaxies, and highlight interesting features in this new 3D space, which are associated with global galaxy properties. Namely, we combine the BPT and Mass-Excitation (MEx) diagrams, and apply it to a set of >300,000 galaxies from the SDSS survey. Among other features, we show that the usual “branch” of star-forming galaxies becomes a curved surface in the new 3D space. Understanding the underlying reasons can shed light on the nearby galaxy population but also aid our interpretation of high-redshift surveys, which indicate a strong evolution of emission line ratios. Despite efforts to explain the origin of this strong evolution, a consensus has not yet been reached. Yet, the implications are crucial to our understanding of galaxy growth across cosmic time, and in particular to assess how star forming regions differed at earlier times (gas properties? stellar properties? a combination?). We perform this analysis within the framework of the NOAO Data Lab (datalab.noao.edu) jointly with public visualization tools. The final workflow will be released publicly.

  20. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. III. Redshift of the lensing galaxy in eight gravitationally lensed quasars

    NASA Astrophysics Data System (ADS)

    Eigenbrod, A.; Courbin, F.; Meylan, G.; Vuissoz, C.; Magain, P.

    2006-06-01

    Aims.We measure the redshift of the lensing galaxy in eight gravitationally lensed quasars in view of determining the Hubble parameter H0 from the time delay method. Methods.Deep VLT/FORS1 spectra of lensed quasars are spatially deconvolved in order to separate the spectrum of the lensing galaxies from the glare of the much brighter quasar images. A new observing strategy is devised. It involves observations in Multi-Object-Spectroscopy (MOS) which allows the simultaneous observation of the target and of several PSF and flux calibration stars. The advantage of this method over traditional long-slit observations is a much more reliable extraction and flux calibration of the spectra. Results.For the first time we measure the redshift of the lensing galaxy in three multiply-imaged quasars: SDSS J1138+0314 (z_lens = 0.445), SDSS J1226-0006 (z_lens = 0.517), SDSS J1335+0118 (z_lens = 0.440), and we give a tentative estimate of the redshift of the lensing galaxy in Q 1355-2257 (z_lens = 0.701). We confirm four previously measured redshifts: HE 0047-1756 (z_lens = 0.407), HE 0230-2130 (z_lens = 0.523), HE 0435-1223 (z_lens = 0.454) and WFI J2033-4723 (z_lens = 0.661). In addition, we determine the redshift of the second lensing galaxy in HE 0230-2130 (z_lens = 0.526). The spectra of all lens galaxies are typical for early-type galaxies, except for the second lensing galaxy in HE 0230-2130 which displays prominent [OII] emission.

  1. Galaxy And Mass Assembly (GAMA): a deeper view of the mass, metallicity and SFR relationships

    NASA Astrophysics Data System (ADS)

    Lara-López, M. A.; Hopkins, A. M.; López-Sánchez, A. R.; Brough, S.; Gunawardhana, M. L. P.; Colless, M.; Robotham, A. S. G.; Bauer, A. E.; Bland-Hawthorn, J.; Cluver, M.; Driver, S.; Foster, C.; Kelvin, L. S.; Liske, J.; Loveday, J.; Owers, M. S.; Ponman, T. J.; Sharp, R. G.; Steele, O.; Taylor, E. N.; Thomas, D.

    2013-09-01

    A full appreciation of the role played by gas metallicity (Z), star formation rate (SFR) and stellar mass (M*) is fundamental to understanding how galaxies form and evolve. The connections between these three parameters at different redshifts significantly affect galaxy evolution, and thus provide important constraints for galaxy evolution models. Using data from the Sloan Digital Sky Survey-Data Release 7 (SDSS-DR7) and the Galaxy and Mass Assembly (GAMA) surveys, we study the relationships and dependences between SFR, Z and M*, as well as the Fundamental Plane for star-forming galaxies. We combine both surveys using volume-limited samples up to a redshift of z ≈ 0.36. The GAMA and SDSS surveys complement each other when analysing the relationships between SFR, M* and Z. We present evidence for SFR and metallicity evolution to z ˜ 0.2. We study the dependences between SFR, M*, Z and specific SFR (SSFR) on the M*-Z, M*-SFR, M*-SSFR, Z-SFR and Z-SSFR relations, finding strong correlations between all. Based on those dependences, we propose a simple model that allows us to explain the different behaviour observed between low- and high-mass galaxies. Finally, our analysis allows us to confirm the existence of a Fundamental Plane, for which M* = f(Z, SFR) in star-forming galaxies.

  2. The Weak Lensing Masses of Filaments between Luminous Red Galaxies

    NASA Astrophysics Data System (ADS)

    Epps, Seth D.; Hudson, Michael J.

    2017-07-01

    In the standard model of non-linear structure formation, a cosmic web of dark-matter-dominated filaments connects dark matter haloes. In this paper, we stack the weak lensing signal of an ensemble of filaments between groups and clusters of galaxies. Specifically, we detect the weak lensing signal, using CFHTLenS galaxy ellipticities, from stacked filaments between Sloan Digital Sky Survey (SDSS)-III/Baryon Oscillation Spectroscopic Survey luminous red galaxies (LRGs). As a control, we compare the physical LRG pairs with projected LRG pairs that are more widely separated in redshift space. We detect the excess filament mass density in the projected pairs at the 5σ level, finding a mass of (1.6 ± 0.3) × 1013 M⊙ for a stacked filament region 7.1 h-1 Mpc long and 2.5 h-1 Mpc wide. This filament signal is compared with a model based on the three-point galaxy-galaxy-convergence correlation function, as developed in Clampitt et al., yielding reasonable agreement.

  3. Spitzer IRS Observations of Low-Mass Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Thornton, Carol E.; Barth, A. J.; Ho, L. C.; Greene, J. E.

    2010-01-01

    We present results from Spitzer IRS observations of a sample of 41 Seyfert galaxies with estimated black hole masses below 106 solar masses, including objects from the SDSS-selected samples of Seyfert 1 galaxies from Greene & Ho (2004) and Seyfert 2 galaxies from Barth et al. (2008), as well as NGC 4395 and POX 52. We use the IDL code PAHFIT (Smith et al. 2007) to derive measurements of continuum shapes and narrow emission line and PAH luminosities from the low-resolution spectra in order to examine the dust emission properties of these objects and investigate the relationship between Type 1 and Type 2 AGNs at low luminosities and low masses, to search for evidence of star formation, and to use emission-line diagnostics to constrain physical conditions within the narrow-line regions.

  4. Separate Ways: The Mass-Metallicity Relation Does Not Strongly Correlate with Star Formation Rate in SDSS-IV MaNGA Galaxies

    NASA Astrophysics Data System (ADS)

    Barrera-Ballesteros, J. K.; Sánchez, S. F.; Heckman, T.; Blanc, G. A.; The MaNGA Team

    2017-07-01

    We present the integrated stellar mass-metallicity relation (MZR) for more than 1700 galaxies included in the integral field area SDSS-IV MaNGA survey. The spatially resolved data allow us to determine the metallicity at the same physical scale (effective radius, R eff) using a heterogeneous set of 10 abundance calibrators. In addition to scale factors, the shape of the MZR is similar for all calibrators, consistent with those reported previously using single-fiber and integral field spectroscopy. We compare the residuals of this relation against the star formation rate (SFR) and specific SFR (sSFR). We do not find a strong secondary relation of the MZR with either SFR or sSFR for any of the calibrators, in contrast with previous single-fiber spectroscopic studies. Our results agree with a scenario in which metal enrichment happens at local scales, with global outflows playing a secondary role in shaping the chemistry of galaxies and cold-gas inflows regulating the stellar formation.

  5. Relativistic effects on galaxy redshift samples due to target selection

    NASA Astrophysics Data System (ADS)

    Alam, Shadab; Croft, Rupert A. C.; Ho, Shirley; Zhu, Hongyu; Giusarma, Elena

    2017-10-01

    In a galaxy redshift survey, the objects to be targeted for spectra are selected from a photometrically observed sample. The observed magnitudes and colours of galaxies in this parent sample will be affected by their peculiar velocities, through relativistic Doppler and relativistic beaming effects. In this paper, we compute the resulting expected changes in galaxy photometry. The magnitudes of the relativistic effects are a function of redshift, stellar mass, galaxy velocity and velocity direction. We focus on the CMASS sample from the Sloan Digital Sky Survey (SDSS) and Baryon Oscillation Spectroscopic Survey (BOSS), which is selected on the basis of colour and magnitude. We find that 0.10 per cent of the sample (∼585 galaxies) has been scattered into the targeted region of colour-magnitude space by relativistic effects, and conversely 0.09 per cent of the sample (∼532 galaxies) has been scattered out. Observational consequences of these effects include an asymmetry in clustering statistics, which we explore in a companion paper. Here, we compute a set of weights that can be used to remove the effect of modulations introduced into the density field inferred from a galaxy sample. We conclude by investigating the possible effects of these relativistic modulation on large-scale clustering of the galaxy sample.

  6. Stellar Initial Mass Function: Trends With Galaxy Mass And Radius

    NASA Astrophysics Data System (ADS)

    Parikh, Taniya

    2017-06-01

    There is currently no consensus about the exact shape and, in particular, the universality of the stellar initial mass function (IMF). For massive galaxies, it has been found that near-infrared (NIR) absorption features, which are sensitive to the ratio of dwarf to giant stars, deviate from a Milky Way-like IMF; their modelling seems to require a larger fraction of low mass stars. There are now increasing results looking at whether the IMF varies not only with galaxy mass, but also radially within galaxies. The SDSS-IV/MaNGA integral-field survey will provide spatially resolved spectroscopy for 10,000 galaxies at R 2000 from 360-1000nm. Spectra of early-type galaxies were stacked to achieve high S/N which is particularly important for features in the NIR. Trends with galaxy radius and mass were compared to stellar population models for a range of absorption features in order to separate degeneracies due to changes in stellar population parameters, such as age, metallicity and element abundances, with potential changes in the IMF. Results for 611 galaxies show that we do not require an IMF steeper than Kroupa as a function of galaxy mass or radius based on the NaI index. The Wing-Ford band hints towards a steeper IMF at large radii however we do not have reliable measurements for the most massive galaxies.

  7. GASS 3505: the prototype of H I-excess, passive galaxies

    NASA Astrophysics Data System (ADS)

    Geréb, K.; Catinella, B.; Cortese, L.; Bekki, K.; Moran, S. M.; Schiminovich, D.

    2016-10-01

    We present our multiwavelength analysis of a prototype H I-excess galaxy, GASS 3505, selected based on having a large gas content (M_{H I} = 10^{9.9} M⊙) compared to its little associated star formation activity (˜0.1 M⊙ yr-1) in the GALEX Arecibo SDSS Survey (GASS). Very Large Array observations show that the H I in GASS 3505 is distributed in a regularly rotating, extended (˜50 kpc radius) gas ring. In the SDSS optical image GASS 3505 appears as a bulge-dominated galaxy, however deep optical imaging reveals low surface brightness (≳25 mag arcsec-2) stellar emission around the central bulge. Direct evidence for accretion is detected in form of an extended (˜60 kpc) stellar stream, showing that GASS 3505 has experienced a minor merger in the recent past. We investigate the possibility that the H I ring in GASS 3505 was accreted in such a merger event using N-body and smoothed particle hydrodynamic simulations. The best model that reproduces the general properties (I.e. gas distribution and kinematics, stellar morphology) of the galaxy involves a merger between the central bulge and a gas-rich (M⋆ = 109 M⊙ and M_{H I}/M⋆ = 10) disc galaxy. However, small discrepancies in the observed and modelled properties could suggest that other sources of gas have to be involved in the build-up of the gas reservoir. This work is the first step towards a larger program to investigate the physical mechanisms that drive the large scatter in the gas scaling relations of nearby galaxies.

  8. Constraining the Merging History of Massive Galaxies Since Redshift 3 Using Close Pairs. I. Major Pairs from Candels and the SDSS

    NASA Astrophysics Data System (ADS)

    Mantha, Kameswara Bharadwaj; McIntosh, Daniel H.; Brennan, Ryan; Cook, Joshua; Kodra, Dritan; Newman, Jeffrey; Somerville, Rachel S.; Barro, Guillermo; Behroozi, Peter; Conselice, Christopher; Dekel, Avishai; Faber, Sandra M.; Closson Ferguson, Henry; Finkelstein, Steven L.; Fontana, Adriano; Galametz, Audrey; Perez-Gonzalez, Pablo; Grogin, Norman A.; Guo, Yicheng; Hathi, Nimish P.; Hopkins, Philip F.; Kartaltepe, Jeyhan S.; Kocevski, Dale; Koekemoer, Anton M.; Koo, David C.; Lee, Seong-Kook; Lotz, Jennifer M.; Lucas, Ray A.; Nayyeri, Hooshang; Peth, Michael; Pforr, Janine; Primack, Joel R.; Santini, Paola; Simmons, Brooke D.; Stefanon, Mauro; Straughn, Amber; Snyder, Gregory F.; Wuyts, Stijn

    2017-01-01

    Major galaxy-galaxy merging can play an important role in the history of massive galaxies (stellar masses > 2E10 Msun) over cosmic time. An important way to measure the impact of major merging is to study close pairs of galaxies stellar mass or flux ratios between 1 and 4. We improve on the best recent efforts by probing merging of lower mass galaxies, anchoring evolutionary trends from five Hubble Space Telescope Legacy fields in the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS) to the nearby universe using Sloan Digital Sky Survey (SDSS) to measure the fraction of massive galaxies in such pairs during six epochs spanning 01.5. This implies that major merging may not be as important at high redshifts as previously thought, merger timescales may not be fully understood, or we may be missing evidence of mergers at z~2-3 owing to CANDELS selections effects. Next, we will analyze pair fractions and merging timescales within realistic mocks of CANDELS from state of the art Semi-Analytic Model (SAM) to better understand and calibrate our empirical results.

  9. Dark Matter Searches in the Gamma-ray Extragalactic Background via Cross-correlations with Galaxy Catalogs

    NASA Astrophysics Data System (ADS)

    Cuoco, Alessandro; Xia, Jun-Qing; Regis, Marco; Branchini, Enzo; Fornengo, Nicolao; Viel, Matteo

    2015-12-01

    We compare the measured angular cross-correlation between the Fermi-Large Area Telescope γ-ray sky and catalogs of extragalactic objects with the expected signal induced by weakly interacting massive particle (WIMP) dark matter (DM). We include a detailed description of the contribution of astrophysical γ-ray emitters such as blazars, misaligned active galactic nucleus (AGN), and star-forming galaxies, and perform a global fit to the measured cross-correlation. Five catalogs are considered: Sloan Digital Sky Survey (SDSS)-DR6 quasars, Two Micron All Sky Survey galaxies, NRAO VLA Sky Survey radio galaxies, SDSS-DR8 Luminous Red Galaxies, and the SDSS-DR8 main galaxy sample. To model the cross-correlation signal, we use the halo occupation distribution formalism to estimate the number of galaxies of a given catalog in DM halos and their spatial correlation properties. We discuss uncertainties in the predicted cross-correlation signal arising from the DM clustering and WIMP microscopic properties, which set the DM γ-ray emission. The use of different catalogs probing objects at different redshifts significantly reduces, though not completely, the degeneracy among the different γ-ray components. We find that the presence of a significant WIMP DM signal is allowed by the data but not significantly preferred by the fit, although this is mainly due to a degeneracy with the misaligned AGN component. With modest substructure boost, the sensitivity of this method excludes thermal annihilation cross sections at 95% level for WIMP masses up to few tens of GeV. Constraining the low-redshift properties of astrophysical populations with future data will further improve the sensitivity to DM.

  10. How Galaxies Acquire their Gas: A Map of Multiphase Accretion and Feedback in Gaseous Galaxy Halos

    NASA Astrophysics Data System (ADS)

    Tumlinson, Jason

    2009-07-01

    We propose to address two of the biggest open questions in galaxy formation - how galaxies acquire their gas and how they return it to the IGM - with a concentrated COS survey of diffuse multiphase gas in the halos of SDSS galaxies at z = 0.15 - 0.35. Our chief science goal is to establish a basic set of observational facts about the physical state, metallicity, and kinematics of halo gas, including the sky covering fraction of hot and cold material, the metallicity of infall and outflow, and correlations with galaxy stellar mass, type, and color - all as a function of impact parameter from 10 - 150 kpc. Theory suggests that the bimodality of galaxy colors, the shape of the luminosity function, and the mass-metallicity relation are all influenced at a fundamental level by accretion and feedback, yet these gas processes are poorly understood and cannot be predicted robustly from first principles. We lack even a basic observational assessment of the multiphase gaseous content of galaxy halos on 100 kpc scales, and we do not know how these processes vary with galaxy properties. This ignorance is presently one of the key impediments to understanding galaxy formation in general. We propose to use the high-resolution gratings G130M and G160M on the Cosmic Origins Spectrograph to obtain sensitive column density measurements of a comprehensive suite of multiphase ions in the spectra of 43 z < 1 QSOs lying behind 43 galaxies selected from the Sloan Digital Sky Survey. In aggregate, these sightlines will constitute a statistically sound map of the physical state and metallicity of gaseous halos, and subsets of the data with cuts on galaxy mass, color, and SFR will seek out predicted variations of gas properties with galaxy properties. Our interpretation of these data will be aided by state-of-the-art hydrodynamic simulations of accretion and feedback, in turn providing information to refine and test such models. We will also use Keck, MMT, and Magellan {as needed} to obtain

  11. SDSS-IV MaNGA: properties of galaxies with kinematically decoupled stellar and gaseous components

    NASA Astrophysics Data System (ADS)

    Jin, Yifei; Chen, Yanmei; Shi, Yong; Tremonti, C. A.; Bershady, M. A.; Merrifield, M.; Emsellem, E.; Fu, Hai; Wake, D.; Bundy, K.; Lin, Lihwai; Argudo-Fernandez, M.; Huang, Song; Stark, D. V.; Storchi-Bergmann, T.; Bizyaev, D.; Brownstein, J.; Chisholm, J.; Guo, Qi; Hao, Lei; Hu, Jian; Li, Cheng; Li, Ran; Masters, K. L.; Malanushenko, E.; Pan, Kaike; Riffel, R. A.; Roman-Lopes, A.; Simmons, A.; Thomas, D.; Wang, Lan; Westfall, K.; Yan, Renbin

    2016-11-01

    We study the properties of 66 galaxies with kinematically misaligned gas and stars from MaNGA survey. The fraction of kinematically misaligned galaxies varies with galaxy physical parameters, I.e. M*, SFR and sSFR. According to their sSFR, we further classify these 66 galaxies into three categories, 10 star-forming, 26 `Green Valley' and 30 quiescent ones. The properties of different types of kinematically misaligned galaxies are different in that the star-forming ones have positive gradient in Dn4000 and higher gas-phase metallicity, while the green valley/quiescent ones have negative Dn4000 gradients and lower gas-phase metallicity on average. There is evidence that all types of the kinematically misaligned galaxies tend to live in more isolated environment. Based on all these observational results, we propose a scenario for the formation of star-forming galaxies with kinematically misaligned gas and stars - the progenitor accretes misaligned gas from a gas-rich dwarf or cosmic web, the cancellation of angular momentum from gas-gas collisions between the pre-existing gas and the accreted gas largely accelerates gas inflow, leading to fast centrally concentrated star formation. The higher metallicity is due to enrichment from this star formation. For the kinematically misaligned green valley and quiescent galaxies, they might be formed through gas-poor progenitors accreting kinematically misaligned gas from satellites which are smaller in mass.

  12. Galaxies in the act of quenching star formation

    NASA Astrophysics Data System (ADS)

    Quai, Salvatore; Pozzetti, Lucia; Citro, Annalisa; Moresco, Michele; Cimatti, Andrea

    2018-04-01

    Detecting galaxies when their star-formation is being quenched is crucial to understand the mechanisms driving their evolution. We identify for the first time a sample of quenching galaxies selected just after the interruption of their star formation by exploiting the [O III] λ5007/Hα ratio and searching for galaxies with undetected [O III]. Using a sample of ˜174000 star-forming galaxies extracted from the SDSS-DR8 at 0.04 ≤ z < 0.21,we identify the ˜300 quenching galaxy best candidates with low [O III]/Hα, out of ˜26 000 galaxies without [O III] emission. They have masses between 10^{9.7} and 10^{10.8} M_{⊙},consistently with the corresponding growth of the quiescent population at these redshifts. Their main properties (i.e. star-formation rate, colours and metallicities) are comparable to those of the star-forming population, coherently with the hypothesis of recent quenching, but preferably reside in higher-density environments.Most candidates have morphologies similar to star-forming galaxies, suggesting that no morphological transformation has occurred yet. From a survival analysis we find a low fraction of candidates (˜ 0.58% of the star-forming population), leading to a short quenching timescale of tQ ˜ 50 Myr and an e-folding time for the quenching history of τQ ˜ 90 Myr, and their upper limits of tQ < 0.76 Gyr and τQ <1.5 Gyr, assuming as quenching galaxies 50% of objects without [O III] (˜7.5%).Our results are compatible with a 'rapid' quenching scenario of satellites galaxies due to the final phase of strangulation or ram-pressure stripping. This approach represents a robust alternative to methods used so far to select quenched galaxies (e.g. colours, specific star-formation rate, or post-starburst spectra).

  13. VizieR Online Data Catalog: Luminous persistent sources in nearby galaxies search (Ofek, 2017)

    NASA Astrophysics Data System (ADS)

    Ofek, E. O.

    2018-04-01

    I compiled a catalog of nearby galaxies within 108Mpc. The catalog is based on combining the HyperLEDA galaxies (Paturel+ 2003, VII/238 ; Makarov+ 2014A&A...570A..13M) with the NASA Extragalactic Database (NED) redshifts, and the Sloan Digital Sky Survey (SDSS; York+ 2000AJ....120.1579Y ; see V/147) galaxies with known redshifts. Both catalogs are restricted to the FIRST radio survey footprint (Becker+ 1995ApJ...450..559B ; see VIII/92). (1 data file).

  14. VizieR Online Data Catalog: Optically red galaxies in H-ATLAS/GAMA (Dariush+, 2016)

    NASA Astrophysics Data System (ADS)

    Dariush, A.; Dib, S.; Hony, S.; Smith, D. J. B.; Zhukovska, S.; Dunne, L.; Eales, S.; Andrae, E.; Baes, M.; Baldry, I.; Bauer, A.; Bland-Hawthorn, J.; Brough, S.; Bourne, N.; Cava, A.; Clements, D.; Cluver, M.; Cooray, A.; de Zotti, G.; Driver, S.; Grootes, M. W.; Hopkins, A. M.; Hopwood, R.; Kaviraj, S.; Kelvin, L.; Lara-Lopez, M. A.; Liske, J.; Loveday, J.; Maddox, S.; Madore, B.; Michalowski, M. J.; Pearson, C.; Popescu, C.; Robotham, A.; Rowlands, K.; Seibert, M.; Shabani, F.; Smith, M. W. L.; Taylor, E. N.; Tuffs, R.; Valiante, E.; Virdee, J. S.

    2016-09-01

    We use data from the H-ATLAS phase 1 version 3.0 internal release which contains the IDs of >5σ SPIRE detections at 250um. We define two sub-samples of red and blue galaxies based on NUV-r colours. The morphology of all 117 red galaxies were examined from their SDSS r-band images, following independent visual inspection by three team members. Galaxies were classified into three categories of elliptical (E), spiral (S) and uncertain (U). (2 data files).

  15. MODELING THE ANOMALY OF SURFACE NUMBER DENSITIES OF GALAXIES ON THE GALACTIC EXTINCTION MAP DUE TO THEIR FIR EMISSION CONTAMINATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashiwagi, Toshiya; Suto, Yasushi; Taruya, Atsushi

    The most widely used Galactic extinction map is constructed assuming that the observed far-infrared (FIR) fluxes come entirely from Galactic dust. According to the earlier suggestion by Yahata et al., we consider how FIR emission of galaxies affects the SFD map. We first compute the surface number density of Sloan Digital Sky Survey (SDSS) DR7 galaxies as a function of the r-band extinction, A {sub r,} {sub SFD}. We confirm that the surface densities of those galaxies positively correlate with A {sub r,} {sub SFD} for A {sub r,} {sub SFD} < 0.1, as first discovered by Yahata et al.more » for SDSS DR4 galaxies. Next we construct an analytical model to compute the surface density of galaxies, taking into account the contamination of their FIR emission. We adopt a log-normal probability distribution for the ratio of 100 μm and r-band luminosities of each galaxy, y ≡ (νL){sub 100} {sub μm}/(νL) {sub r}. Then we search for the mean and rms values of y that fit the observed anomaly, using the analytical model. The required values to reproduce the anomaly are roughly consistent with those measured from the stacking analysis of SDSS galaxies. Due to the limitation of our statistical modeling, we are not yet able to remove the FIR contamination of galaxies from the extinction map. Nevertheless, the agreement with the model prediction suggests that the FIR emission of galaxies is mainly responsible for the observed anomaly. Whereas the corresponding systematic error in the Galactic extinction map is 0.1-1 mmag, it is directly correlated with galaxy clustering and thus needs to be carefully examined in precision cosmology.« less

  16. Understanding the nature of luminous red galaxies (LRGs): connecting LRGs to central and satellite subhaloes

    NASA Astrophysics Data System (ADS)

    Masaki, Shogo; Hikage, Chiaki; Takada, Masahiro; Spergel, David N.; Sugiyama, Naoshi

    2013-08-01

    We develop a novel abundance matching method to construct a mock catalogue of luminous red galaxies (LRGs) in the Sloan Digital Sky Survey (SDSS), using catalogues of haloes and subhaloes in N-body simulations for a Λ-dominated cold dark matter model. Motivated by observations suggesting that LRGs are passively evolving, massive early-type galaxies with a typical age ≳5 Gyr, we assume that simulated haloes at z = 2 (z2-halo) are progenitors for LRG-host subhaloes observed today, and we label the most tightly bound particles in each progenitor z2-halo as LRG `stars'. We then identify the subhaloes containing these stars to z = 0.3 (SDSS redshift) in descending order of the masses of z2-haloes until the comoving number density of the matched subhaloes becomes comparable to the measured number density of SDSS LRGs, bar{n}_LRG=10^{-4} h^3 Mpc^{-3}. Once the above prescription is determined, our only free parameter is the number density of haloes identified at z = 2 and this parameter is fixed to match the observed number density at z = 0.3. By tracing subsequent merging and assembly histories of each progenitor z2-halo, we can directly compute, from the mock catalogue, the distributions of central and satellite LRGs and their internal motions in each host halo at z = 0.3. While the SDSS LRGs are galaxies selected by the magnitude and colour cuts from the SDSS images and are not necessarily a stellar-mass-selected sample, our mock catalogue reproduces a host of SDSS measurements: the halo occupation distribution for central and satellite LRGs, the projected autocorrelation function of LRGs, the cross-correlation of LRGs with shapes of background galaxies (LRG-galaxy weak lensing) and the non-linear redshift-space distortion effect, the Finger-of-God effect, in the angle-averaged redshift-space power spectrum. The mock catalogue generated based on our method can be used for removing or calibrating systematic errors in the cosmological interpretation of LRG clustering

  17. Spectroscopic aperture biases in inside-out evolving early-type galaxies from CALIFA

    NASA Astrophysics Data System (ADS)

    Gomes, J. M.; Papaderos, P.; Vílchez, J. M.; Kehrig, C.; Iglesias-Páramo, J.; Breda, I.; Lehnert, M. D.; Sánchez, S. F.; Ziegler, B.; Dos Reis, S. N.; Bland-Hawthorn, J.; Galbany, L.; Bomans, D. J.; Rosales-Ortega, F. F.; Walcher, C. J.; García-Benito, R.; Márquez, I.; Del Olmo, A.; Mollá, M.; Marino, R. A.; Catalán-Torrecilla, C.; González Delgado, R. M.; López-Sánchez, Á. R.; Califa Collaboration

    2016-02-01

    Integral field spectroscopy (IFS) studies based on CALIFA survey data have recently revealed ongoing low-level star formation (SF) in the periphery of a small fraction (~10%) of local early-type galaxies (ETGs), witnessing a still ongoing inside-out galaxy growth process. A distinctive property of the nebular component in these ETGs, classified I+, is a structure with two radial zones, the inner of which displays LINER emission with a Hα equivalent width EW(Hα) ≃ 1 Å, the outer (3 Å galaxy periphery leads to a strong aperture (or, correspondingly, redshift) bias in spectroscopic single-fiber studies of type I+ ETGs: at low redshift (z ≲ 0.45), SDSS spectroscopy is restricted to the inner (SF-devoid LINER) zone, which causes the galaxies to be erroneously classified as "retired", that is, systems entirely lacking SF, and whose faint nebular emissionis solely powered by the post-AGB stellar component. The SDSS aperture progressively encompasses the outer SF zone only at higher z, at which the galaxies are unambiguously classified as "composite SF/LINER". We also empirically demonstrate that the principal effect of a decreasing spectroscopic aperture on the classification of I+ ETGs through standard [Nii]/Hα vs. [Oiii]/Hβ emission-line (BPT) ratios consists of a monotonic shift upward and to the right precisely along the upper right wing of the "seagull" distribution on the BPT plane, that is, along the pathway connecting composite SF/Hii galaxies with AGN/LINERs. Motivated by these observational insights, we also investigate theoretically observational biases in aperture-limited studies of inside-out growing galaxies as a function of z. To this end, we devise a simple 1D model that involves an outward-propagating exponentially decreasing SF process since z ~ 10 and reproduces the radial extent and two-zone EW

  18. Photometric Properties of Face-on Isolated Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Bahr, Alexander; Epstein, P.; Durbala, A.

    2011-05-01

    We want to quantify the relative role of nature versus nurture in defining the observed properties of galaxies. In simpler terms we would like to disentangle the ``genetic'’ and the environmental influences in shaping the morphology of galaxies. In order to do that one needs to firstly define a zero-order baseline, i.e., a sample of galaxies that have been minimally perturbed by neighbors in the last few billion years of their existence. Such a sample has been produced and refined in different stages in the context of the AMIGA international project (www.iaa.es/AMIGA.html). The recent catalogue ``The All-Sky Catalog of Isolated Galaxies Selected from 2MASS'’ (Karachentseva, V. E. et al. 2010) allows us to complete and enrich the initial sample constructed within AMIGA with new objects, thus enhancing the statistical relevance of our study. Our focus is to define a subset of isolated disk spiral galaxies. We constrain the sample selection by: 1) orientation, restricting to almost face-on galaxies and 2) availability of good photometric images in SDSS. The goal is to ``dissect'’ (decompose) these galaxies in major components (disk, bulge, bars, etc.) and to study the properties of the components in a statistical context. Having a reasonable representation of all morphological types, we aim to test the bimodality of bulges and bars. We present a progress report of our work.

  19. Cosmological constraints from a combination of galaxy clustering and lensing - III. Application to SDSS data

    NASA Astrophysics Data System (ADS)

    Cacciato, Marcello; van den Bosch, Frank C.; More, Surhud; Mo, Houjun; Yang, Xiaohu

    2013-04-01

    We simultaneously constrain cosmology and galaxy bias using measurements of galaxy abundances, galaxy clustering and galaxy-galaxy lensing taken from the Sloan Digital Sky Survey. We use the conditional luminosity function (which describes the halo occupation statistics as a function of galaxy luminosity) combined with the halo model (which describes the non-linear matter field in terms of its halo building blocks) to describe the galaxy-dark matter connection. We explicitly account for residual redshift-space distortions in the projected galaxy-galaxy correlation functions, and marginalize over uncertainties in the scale dependence of the halo bias and the detailed structure of dark matter haloes. Under the assumption of a spatially flat, vanilla Λ cold dark matter (ΛCDM) cosmology, we focus on constraining the matter density, Ωm, and the normalization of the matter power spectrum, σ8, and we adopt 7-year Wilkinson Microwave Anisotropy Probe (WMAP7) priors for the spectral index, n, the Hubble parameter, h, and the baryon density, Ωb. We obtain that Ωm = 0.278+ 0.023- 0.026 and σ8 = 0.763+ 0.064- 0.049 (95 per cent CL). These results are robust to uncertainties in the radial number density distribution of satellite galaxies, while allowing for non-Poisson satellite occupation distributions results in a slightly lower value for σ8 (0.744+ 0.056- 0.047). These constraints are in excellent agreement (at the 1σ level) with the cosmic microwave background constraints from WMAP. This demonstrates that the use of a realistic and accurate model for galaxy bias, down to the smallest non-linear scales currently observed in galaxy surveys, leads to results perfectly consistent with the vanilla ΛCDM cosmology.

  20. Wobbling The Galactic Disk with Bombardment of Satellite Galaxies

    NASA Astrophysics Data System (ADS)

    D'Onghia, Elena

    We propose to assess the effect of impacts of large visible satellite galaxies on a disk, as well as the relevance of the continuing bombardment of the Galactic disk by dark matter clumps as predicted by the current cosmological framework that can wobble the disk, heating it and eventually exciting ragged spiral structures. In particular, we make detailed predictions for observable features such as spiral arms, rings and their associated stars in galactic disks and relate them to the physical processes that drive their formation and evolution in our Milky Way galaxy and nearby spirals. To do this, we will combine analytic methods and numerical simulations that allow us to calculate observables, which we will compare to present and forthcoming observations. Our methodology utilizes a combination of state of the art hydrodynamic simulations of galaxy evolution and multi- wavelength radiative transfer simulations. Our primary goals are: (1) To identify the physical processes that are responsible for spiral structure formation observed in our Milky Way and nearby disk galaxies, from the flocculent to grand- designed spiral galaxies and to provide observable signatures to be compared with data on nearby galaxies combining maps of 24 micron emission (Spitzer) and cold gas, CO (Heracles) and HI (THINGS). (2) To explore different morphologies of spiral galaxies: from the multi-armed galaxies to the Milky Way sized galaxies with few arms. (3) For a Milky Way disk we will assess the effect of impacts of substructures passing through the disk to origin the asymmetry in the number density of stars recently discovered from SDSS and SEGUE data and confirmed from RAVE data. We will also investigate the disk heating in the vertical plane due to the formation of vertical oscillations that are produced by the impact and migration of stars in the disk as consequence of the heating as compared to the classical stellar migration mechanism. (4) We will measure the spiral pattern speed

  1. Environmental impacts on dust temperature of star-forming galaxies in the local Universe

    NASA Astrophysics Data System (ADS)

    Matsuki, Yasuhiro; Koyama, Yusei; Nakagawa, Takao; Takita, Satoshi

    2017-04-01

    We present infrared views of the environmental effects on the dust properties in star-forming (SF) galaxies at z ˜ 0, using the AKARI Far-Infrared Surveyor all-sky map and the large spectroscopic galaxy sample from Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7). We restrict the sample to those within the redshift range of 0.05 < z < 0.07 and the stellar mass range of 9.2 < log 10(M*/M⊙). We select SF galaxies based on their Hα equivalent width (EWHα > 4 Å) and emission line flux ratios. We perform far-infrared (FIR) stacking analyses by splitting the SDSS SF galaxy sample according to their stellar mass, specific star formation rate (SSFRSDSS), and environment. We derive total infrared luminosity (LIR) for each subsample using the average flux densities at WIDE-S (90 μm) and WIDE-L (140 μm) bands, and then compute infrared (IR)-based SFR (SFRIR) from LIR. We find a mild decrease of IR-based SSFR (SSFRIR) amongst SF galaxies with increasing local density (˜0.1-dex level at maximum), which suggests that environmental effects do not instantly shut down the SF activity in galaxies. We also derive average dust temperature (Tdust) using the flux densities at 90 and 140 μm bands. We confirm a strong positive correlation between Tdust and SSFRIR, consistent with recent studies. The most important finding of this study is that we find a marginal trend that Tdust increases with increasing environmental galaxy density. Although the environmental trend is much milder than the SSFR-Tdust correlation, our results suggest that the environmental density may affect the dust temperature in SF galaxies, and that the physical mechanism which is responsible for this phenomenon is not necessarily specific to cluster environments because the environmental dependence of Tdust holds down to relatively low-density environments.

  2. On the Formation of Elliptical Galaxies via Mergers in Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Taranu, Dan; Dubinski, John; Yee, Howard K. C.

    2015-01-01

    Giant elliptical galaxies have long been thought to form through gas-rich "major" mergers of two roughly equal-mass spiral galaxies. However, elliptical galaxies are often found at the centers of groups, and so are likely to have undergone several significant mergers. We test the hypothesis that ellipticals form through multiple, mainly minor and dry mergers in groups, using a novel sample of hundreds of N-body simulations of mergers in groups of three to twenty-five spiral galaxies.Realistic mock observations of the simulated central merger remnants show that they have comparable surface brightness profiles to observed ellipticals from SDSS and ATLAS3D - so long as the progenitor spirals begin with concentrated bulges. The remnants follow tight size-luminosity and velocity dispersion-luminosity relations (<0.12 dex scatter), with similar slopes as observed. Stochastic merging can produce tight scaling relations if the merging galaxies follow tight scaling relations themselves. However, the remnants are too large and have too low dispersions at fixed luminosity. Some remnants show substantial (v/σ > 0.1) rotational support, but most are slow rotators with v/σ << 0.5.Ellipticals also follow a tight "fundamental plane" scaling relation between size R, mean surface brightness μ and velocity dispersion σ: R ∝ σaμb, with small (<0.06 dex) scatter and significantly different coefficients from the expected scaling (a "tilt"). The remnants lie on a similar fundamental plane, with even smaller scatter (0.02 dex), as well as a tilt in the correct sense - albeit weaker than observed. This tilt is mainly driven by variable dark matter fractions within Reff, such that massive merger remnants have larger central dark matter fractions than their lower-mass counterparts.These results suggest that massive ellipticals can originate from multiple, mainly minor and dry mergers. However, significant gas dissipation may be needed to produce lower-mass, rapidly

  3. The infrared luminosity function of AKARI 90 μm galaxies in the local Universe

    NASA Astrophysics Data System (ADS)

    Kilerci Eser, Ece; Goto, Tomotsugu

    2018-03-01

    Local infrared (IR) luminosity functions (LFs) are necessary benchmarks for high-redshift IR galaxy evolution studies. Any accurate IR LF evolution studies require accordingly accurate local IR LFs. We present IR galaxy LFs at redshifts of z ≤ 0.3 from AKARI space telescope, which performed an all-sky survey in six IR bands (9, 18, 65, 90, 140, and 160 μm) with 10 times better sensitivity than its precursor Infrared Astronomical Satellite. Availability of 160 μm filter is critically important in accurately measuring total IR luminosity of galaxies, covering across the peak of the dust emission. By combining data from Wide-field Infrared Survey Explorer (WISE), Sloan Digital Sky Survey (SDSS) Data Release 13 (DR 13), six-degree Field Galaxy Survey and the 2MASS Redshift Survey, we created a sample of 15 638 local IR galaxies with spectroscopic redshifts, factor of 7 larger compared to previously studied AKARI-SDSS sample. After carefully correcting for volume effects in both IR and optical, the obtained IR LFs agree well with previous studies, but comes with much smaller errors. Measured local IR luminosity density is ΩIR = 1.19 ± 0.05 × 108L⊙ Mpc-3. The contributions from luminous IR galaxies and ultraluminous IR galaxies to ΩIR are very small, 9.3 per cent and 0.9 per cent, respectively. There exists no future all-sky survey in far-IR wavelengths in the foreseeable future. The IR LFs obtained in this work will therefore remain an important benchmark for high-redshift studies for decades.

  4. Analytic halo approach to the bispectrum of galaxies in redshift space

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuhiro; Nan, Yue; Hikage, Chiaki

    2017-02-01

    We present an analytic formula for the galaxy bispectrum in redshift space on the basis of the halo approach description with the halo occupation distribution of central galaxies and satellite galaxies. This work is an extension of a previous work on the galaxy power spectrum, which illuminated the significant contribution of satellite galaxies to the higher multipole spectrum through the nonlinear redshift space distortions of their random motions. Behaviors of the multipoles of the bispectrum are compared with results of numerical simulations assuming a halo occupation distribution of the low-redshift (LOWZ) sample of the Sloan Digital Sky Survey (SDSS) III baryon oscillation spectroscopic survey (BOSS) survey. Also presented are analytic approximate formulas for the multipoles of the bispectrum, which is useful to understanding their characteristic properties. We demonstrate that the Fingers of God effect is quite important for the higher multipoles of the bispectrum in redshift space, depending on the halo occupation distribution parameters.

  5. VizieR Online Data Catalog: Coma clusters and filaments galaxies FIR survey (Fuller+, 2016)

    NASA Astrophysics Data System (ADS)

    Fuller, C.; Davies, J. I.; Smith, M. W. L.; Valiante, E.; Eales, S.; Bourne, N.; Dunne, L.; Dye, S.; Furlanetto, C.; Ibar, E.; Ivison, R.; Maddox, S.; Sansom, A.; Michalowski, M. J.; Davis, T.

    2017-05-01

    We have undertaken a Herschel FIR survey of the Coma cluster and the galaxy filament it resides within. Our survey covers an area of ~150 deg2 observed in five bands at 100, 160, 250, 350 and 500um. We have used the SDSS spectroscopic survey to define an area and redshift selected sample of 744 Coma cluster galaxies - the CCC. For comparison, we also define in a similar way a sample of 951 galaxies in the connecting filament - the CFC. (2 data files).

  6. High-redshift Post-starburst Galaxies from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Pattarakijwanich, Petchara

    Post-starburst galaxies are a rare class of galaxy that show the spectral signature of recent, but not ongoing, star-formation activity, and are thought to have their star formation suddenly quenched within the one billion years preceding the observations. In other words, these are galaxies in the transitional stage between blue, star-forming galaxies and red, quiescent galaxies, and therefore hold important information regarding our understanding of galaxy evolution. This class of objects can be used to study the mechanisms responsible for star-formation quenching, which is an important unsettled question in galaxy evolution. In this thesis, we study this class of galaxies through a number of different approaches. First of all, we systematically selected a large, statistical sample of post-starburst galaxies from the spectroscopic dataset of the Sloan Digital Sky Survey (SDSS). This sample contains 13219 objects in total, with redshifts ranging from local universe to z ˜ 1.3 and median redshift zmedian = 0.59. This is currently the largest sample of post-starburst galaxies available in the literature. Using this sample, we calculated the luminosity functions for a number of redshift bins. A rapid downsizing redshift evolution of the luminosity function is observed, whereby the number density of post-starburst galaxies at fixed luminosity is larger at higher redshift. From the luminosity functions, we calculated the amount of star-formation quenching accounted for in post-starburst galaxies, and compared to the amount required by the global decline of star-formation rate of the universe. We found that only a small fraction (˜ 0.2%) of all star-formation quenching in the universe goes through the post-starburst galaxy channel, at least for the luminous sources in our sample. We also searched the SDSS spectroscopic database the post-starburst quasars, which are an even more special class of objects that show both a post-starburst stellar population and AGN activity

  7. Green Peas emit X-rays: Extreme Star Formation in Early Universe Analog Galaxies

    NASA Astrophysics Data System (ADS)

    Brorby, Matthew; Kaaret, Philip

    2017-01-01

    Luminous compact galaxies (LCGs), Lyman Alpha Emitters (LAEs), and Lyman Break Analog galaxies (LBAs) are all used as proxies for star-forming galaxies in the early Universe (z ≥ 6). The X-ray emission from such galaxies has been found to be elevated compared to other star-forming galaxies in our local Universe. It has been suggested that this may be due to the lower metallicity seen in these proxies to high-redshift galaxies and the elevated X-ray emission may affect the heating and Reionization evolution of the early Universe. Our previous studies have suggested the existence of an LX-SFR-metallicity plane for all star-forming galaxies. We present these results in the context of our newest Joint Chandra/HST study containing the first X-ray detection of the Green Pea galaxies, a population of compact starburst galaxies discovered by volunteers in the Galaxy Zoo Project (Cardamone+2009). The galaxies were given the name Green Peas due to their compact size and green appearance in the gri composite images from SDSS. The green color is caused by a strong [OIII]λ5007Å emission line, an indicator of recent star formation. We observed a few of the most promising candidates with joint Chandra/HST observation and discuss our findings here.

  8. GAME: GAlaxy Machine learning for Emission lines

    NASA Astrophysics Data System (ADS)

    Ucci, G.; Ferrara, A.; Pallottini, A.; Gallerani, S.

    2018-06-01

    We present an updated, optimized version of GAME (GAlaxy Machine learning for Emission lines), a code designed to infer key interstellar medium physical properties from emission line intensities of ultraviolet /optical/far-infrared galaxy spectra. The improvements concern (a) an enlarged spectral library including Pop III stars, (b) the inclusion of spectral noise in the training procedure, and (c) an accurate evaluation of uncertainties. We extensively validate the optimized code and compare its performance against empirical methods and other available emission line codes (PYQZ and HII-CHI-MISTRY) on a sample of 62 SDSS stacked galaxy spectra and 75 observed HII regions. Very good agreement is found for metallicity. However, ionization parameters derived by GAME tend to be higher. We show that this is due to the use of too limited libraries in the other codes. The main advantages of GAME are the simultaneous use of all the measured spectral lines and the extremely short computational times. We finally discuss the code potential and limitations.

  9. An extensive photometric catalogue of CALIFA galaxies

    NASA Astrophysics Data System (ADS)

    Gilhuly, Colleen; Courteau, Stéphane

    2018-06-01

    We present an extensive compendium of photometrically determined structural properties for all Calar Alto Legacy Integral Field spectroscopy Area (CALIFA) galaxies in the third data release (DR3). We exploit Sloan Digital Sky Survey (SDSS) images in order to extract one-dimensional (1D) gri surface brightness profiles for all CALIFA DR3 galaxies. We also derive a variety of non-parametric quantities and parametric models fitted to 1D i-band profiles. The galaxy images are decomposed using the 2D bulge-disc decomposition programs IMFIT and GALFIT. The relative performance and merit of our 1D and 2D modelling approaches are assessed. Where possible, we compare and augment our photometry with existing measurements from the literature. Close agreement is generally found with the studies of Walcher et al. and Méndez-Abreu et al., though some significant differences exist. Various structural metrics are also highlighted on account of their tight dispersion against an independent variable, such as the circular velocity.

  10. Coma cluster ultradiffuse galaxies are not standard radio galaxies

    NASA Astrophysics Data System (ADS)

    Struble, Mitchell F.

    2018-02-01

    Matching members in the Coma cluster catalogue of ultradiffuse galaxies (UDGs) from SUBARU imaging with a very deep radio continuum survey source catalogue of the cluster using the Karl G. Jansky Very Large Array (VLA) within a rectangular region of ∼1.19 deg2 centred on the cluster core reveals matches consistent with random. An overlapping set of 470 UDGs and 696 VLA radio sources in this rectangular area finds 33 matches within a separation of 25 arcsec; dividing the sample into bins with separations bounded by 5, 10, 20 and 25 arcsec finds 1, 4, 17 and 11 matches. An analytical model estimate, based on the Poisson probability distribution, of the number of randomly expected matches within these same separation bounds is 1.7, 4.9, 19.4 and 14.2, each, respectively, consistent with the 95 per cent Poisson confidence intervals of the observed values. Dividing the data into five clustercentric annuli of 0.1° and into the four separation bins, finds the same result. This random match of UDGs with VLA sources implies that UDGs are not radio galaxies by the standard definition. Those VLA sources having integrated flux >1 mJy at 1.4 GHz in Miller, Hornschemeier and Mobasher without SDSS galaxy matches are consistent with the known surface density of background radio sources. We briefly explore the possibility that some unresolved VLA sources near UDGs could be young, compact, bright, supernova remnants of Type Ia events, possibly in the intracluster volume.

  11. Internal Kinematics of Groups of Galaxies in the Sloan Digital Sky Survey Data Release 7

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Jing, Y. P.; Mao, Shude; Han, Jiaxin; Peng, Qiuying; Yang, Xiaohu; Mo, H. J.; van den Bosch, Frank

    2012-10-01

    We present measurements of the velocity dispersion profile (VDP) for galaxy groups in the final data release of the Sloan Digital Sky Survey (SDSS). For groups of given mass, we estimate the redshift-space cross-correlation function (CCF) with respect to a reference galaxy sample, ξ(s)(rp , π), the projected CCF, wp (rp ), and the real-space CCF, ξcg(r). The VDP is then extracted from the redshift distortion in ξ(s)(rp , π), by comparing ξ(s)(rp , π) with ξcg(r). We find that the velocity dispersion (VD) within virial radius (R 200) shows a roughly flat profile, with a slight increase at radii below ~0.3R 200 for high-mass systems. The average VD within the virial radius, σ v , is a strongly increasing function of central galaxy mass. We apply the same methodology to N-body simulations with the concordance Λ cold dark matter cosmology but different values of the density fluctuation parameter σ8, and we compare the results to the SDSS results. We show that the σ v - M * relation from the data provides stringent constraints on both σ8 and σ ms , the dispersion in log M * of central galaxies at fixed halo mass. Our best-fitting model suggests σ8 = 0.86 ± 0.03 and σ ms = 0.16 ± 0.03. The slightly higher value of σ8 compared to the WMAP7 result might be due to a smaller matter density parameter assumed in our simulations. Our VD measurements also provide a direct measure of the dark matter halo mass for central galaxies of different luminosities and masses, in good agreement with the results obtained by Mandelbaum et al. from stacking the gravitational lensing signals of the SDSS galaxies.

  12. SDSS-IV MaNGA: constraints on the conditions for star formation in galaxy discs

    NASA Astrophysics Data System (ADS)

    Stark, David V.; Bundy, Kevin A.; Orr, Matthew E.; Hopkins, Philip F.; Westfall, Kyle; Bershady, Matthew; Li, Cheng; Bizyaev, Dmitry; Masters, Karen L.; Weijmans, Anne-Marie; Lacerna, Ivan; Thomas, Daniel; Drory, Niv; Yan, Renbin; Zhang, Kai

    2018-02-01

    Regions of disc galaxies with widespread star formation tend to be both gravitationally unstable and self-shielded against ionizing radiation, whereas extended outer discs with little or no star formation tend to be stable and unshielded on average. We explore what drives the transition between these two regimes, specifically whether discs first meet the conditions for self-shielding (parametrized by dust optical depth, τ) or gravitational instability (parametrized by a modified version of Toomre's instability parameters, Qthermal, which quantifies the stability of a gas disc that is thermally supported at T = 104 K). We first introduce a new metric formed by the product of these quantities, Qthermalτ, which indicates whether the conditions for disc instability or self-shielding are easier to meet in a given region of a galaxy, and we discuss how Qthermalτ can be constrained even in the absence of direct gas information. We then analyse a sample of 13 galaxies with resolved gas measurements and find that on average galaxies will reach the threshold for disc instabilities (Qthermal < 1) before reaching the threshold for self-shielding (τ > 1). Using integral field spectroscopic observations of a sample of 236 galaxies from the Mapping Nearby Galaxies at APO (MaNGA) survey, we find that the value of Qthermalτ in star-forming discs is consistent with similar behaviour. These results support a scenario where disc fragmentation and collapse occurs before self-shielding, suggesting that gravitational instabilities are the primary condition for widespread star formation in galaxy discs. Our results support similar conclusions based on recent galaxy simulations.

  13. Clustering in the SDSS Redshift Survey

    NASA Astrophysics Data System (ADS)

    Zehavi, I.; Blanton, M. R.; Frieman, J. A.; Weinberg, D. H.; SDSS Collaboration

    2002-05-01

    We present measurements of clustering in the Sloan Digital Sky Survey (SDSS) galaxy redshift survey. Our current sample consists of roughly 80,000 galaxies with redshifts in the range 0.02 < z < 0.2, covering about 1200 square degrees. We measure the clustering in redshift space and in real space. The two-dimensional correlation function ξ (rp,π ) shows clear signatures of redshift distortions, both the small-scale ``fingers-of-God'' effect and the large-scale compression. The inferred real-space correlation function is well described by a power law. The SDSS is especially suitable for investigating the dependence of clustering on galaxy properties, due to the wealth of information in the photometric survey. We focus on the dependence of clustering on color and on luminosity.

  14. Constraints on early-type galaxy structure from spectroscopically selected gravitational lenses

    NASA Astrophysics Data System (ADS)

    Bolton, Adam Stallard

    2005-11-01

    This thesis describes all aspects of a unique spectroscopic survey for strong galaxy-galaxy gravitational lenses: motivation, candidate selection, ground- based spectroscopic follow-up, Hubble Space Telescope imaging, data analysis, and results on the radial density profile of the lens galaxies. The lens candidates are selected from within the spectroscopic database of the Sloan Digital Sky Survey (SDSS) based on the appearance of two significantly different redshifts along the same line of sight, and lenses are confirmed within the candidate sample by follow-up imaging and spectroscopy. The sample of [approximate]20 early-type lenses presented in this thesis represents the largest single strong-lens galaxy sample discovered and published to date. These lenses probe the mass of the lens galaxies on scales roughly equal to one-half effective radius. We find a dynamical normalization between isothermal lens-model velocity dispersions and aperture-corrected SDSS stellar velocity dispersions of f = s lens /s stars = 0.95 +/- 0.03. By combining lens-model Einstein radii and de Vaucouleurs effective radii with stellar velocity dispersions through the Jeans equation, we find that the logarithmic slope [Special characters omitted.] of the density profile in our lens galaxies (r 0 ( [Special characters omitted.] ) is on average slightly steeper than isothermal ([Special characters omitted.] = 2) with a modest intrinsic scatter. Parameterizing the intrinsic distribution in [Special characters omitted.] as Gaussian, we find a maximum-likelihood mean of [Special characters omitted. ] and standard deviation of s[Special characters omitted.] = [Special characters omitted.] (68% confidence, for isotropic velocity-dispersion models). Our results rule out a single universal logarithmic density slope at >99.995% confidence. The success of this spectroscopic lens survey suggests that similar projects should be considered as an explicit science goal of future redshift surveys. (Copies

  15. THE RELATION BETWEEN GALAXY MORPHOLOGY AND ENVIRONMENT IN THE LOCAL UNIVERSE: AN RC3-SDSS PICTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilman, David J.; Erwin, Peter

    2012-02-20

    We present results of an analysis of the local (z {approx} 0) morphology-environment relation for 911 bright (M{sub B} < -19) galaxies, based on matching classical RC3 morphologies with the Sloan Digital Sky Survey based group catalog of Yang et al., which includes halo mass estimates. This allows us to study how the relative fractions of spirals, lenticulars, and ellipticals depend on halo mass over a range of 10{sup 11.7}-10{sup 14.8} h{sup -1} M{sub Sun }, from isolated single-galaxy halos to massive groups and low-mass clusters. We pay particular attention to how morphology relates to central versus satellite status (wheremore » 'central' galaxies are the most massive within their halo). The fraction of galaxies which are elliptical is a strong function of stellar mass; it is also a strong function of halo mass, but only for central galaxies. We interpret this as evidence for a scenario where elliptical galaxies are always formed, probably via mergers, as central galaxies within their halos, with satellite ellipticals being previously central galaxies accreted onto a larger halo. The overall fraction of galaxies which are S0 increases strongly with halo mass, from {approx}10% to {approx}70%. Here, too, we find striking differences between the central and satellite populations. 20% {+-} 2% of central galaxies with stellar masses M{sub *} > 10{sup 10.5} M{sub Sun} are S0 regardless of halo mass, but satellite S0 galaxies are only found in massive (>10{sup 13} h{sup -1} M{sub Sun }) halos, where they are 69% {+-} 4% of the M{sub *} > 10{sup 10.5} M{sub Sun} satellite population. This suggests two channels for forming S0 galaxies: one which operates for central galaxies and another which transforms lower-mass (M{sub *} {approx}< 10{sup 11} M{sub Sun }) accreted spirals into satellite S0 galaxies in massive halos. Analysis of finer morphological structure (bars and rings in disk galaxies) shows some trends with stellar mass, but none with halo mass; this is

  16. Clustering of galaxies around AGNs in the HSC Wide survey

    NASA Astrophysics Data System (ADS)

    Shirasaki, Yuji; Akiyama, Masayuki; Nagao, Tohru; Toba, Yoshiki; He, Wanqiu; Ohishi, Masatoshi; Mizumoto, Yoshihiko; Miyazaki, Satoshi; Nishizawa, Atsushi J.; Usuda, Tomonori

    2018-01-01

    We have measured the clustering of galaxies around active galactic nuclei (AGNs) for which single-epoch virial masses of the super-massive black hole (SMBH) are available to investigate the relation between the large-scale environment of AGNs and the evolution of SMBHs. The AGN samples used in this work were derived from the Sloan Digital Sky Survey (SDSS) observations and the galaxy samples were from the 240 deg2 S15b data of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). The investigated redshift range is 0.6-3.0, and the masses of the SMBHs lie in the range 107.5-1010 M⊙. The absolute magnitude of the galaxy samples reaches to Mλ310 ˜ -18 at rest-frame wavelength 310 nm for the low-redshift end of the samples. More than 70% of the galaxies in the analysis are blue. We found a significant dependence of the cross-correlation length on redshift, which primarily reflects the brightness-dependence of the galaxy clustering. At the lowest redshifts the cross-correlation length increases from 7 h-1 Mpc around Mλ310 = -19 mag to >10 h-1 Mpc beyond Mλ310 = -20 mag. No significant dependence of the cross-correlation length on BH mass was found for whole galaxy samples dominated by blue galaxies, while there was an indication of BH mass dependence in the cross-correlation with red galaxies. These results provides a picture of the environment of AGNs studied in this paper being enriched with blue star-forming galaxies, and a fraction of the galaxies are evolving into red galaxies along with the evolution of SMBHs in that system.

  17. Low-Surface-Brightness Galaxies: Hidden Galaxies Revealed

    NASA Astrophysics Data System (ADS)

    Bothun, G.; Impey, C.; McGaugh, S.

    1997-07-01

    In twenty years, low surface brightness (LSB) galaxies have evolved from being an idiosyncratic notion to being one of the major baryonic repositories in the Universe. The story of their discovery and the characterization of their properties is told here. Their recovery from the noise of the night sky background is a strong testament to the severity of surface brightness selection effects. LSB galaxies have a number of remarkable properties which distinguish them from the more familiar Hubble Sequence of spirals. The two most important are 1) they evolve at a significantly slower rate and may well experience star formation outside of the molecular cloud environment, 2) they are embedded in dark matter halos which are of lower density and more extended than the halos around high surface brightness (HSB) disk galaxies. Compared to HSB disks, LSB disks are strongly dark matter dominated at all radii and show a systematic increase in $M/L$ with decreasing central surface brightness. In addition, the recognition that large numbers of LSB galaxies actually exist has changed the form of the galaxy luminosity function and has clearly increased the space density of galaxies at z =0. Recent CCD surveys have uncovered a population of red LSB disks that may be related to the excess of faint blue galaxies detected at moderate redshifts. LSB galaxies offer us a new window into galaxy evolution and formation which is every bit as important as those processes which have produced easy to detect galaxies. Indeed, the apparent youth of some LSB galaxies suggest that galaxy formation is a greatly extended process. While the discovery of LSB galaxies have lead to new insights, it remains unwise to presume that we now have a representative sample which encompasses all galaxy types and forms. (SECTION: Invited Review Paper)

  18. Separate Ways: The Mass–Metallicity Relation Does Not Strongly Correlate with Star Formation Rate in SDSS-IV MaNGA Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrera-Ballesteros, J. K.; Heckman, T.; Sánchez, S. F.

    We present the integrated stellar mass–metallicity relation (MZR) for more than 1700 galaxies included in the integral field area SDSS-IV MaNGA survey. The spatially resolved data allow us to determine the metallicity at the same physical scale (effective radius, R {sub eff}) using a heterogeneous set of 10 abundance calibrators. In addition to scale factors, the shape of the MZR is similar for all calibrators, consistent with those reported previously using single-fiber and integral field spectroscopy. We compare the residuals of this relation against the star formation rate (SFR) and specific SFR (sSFR). We do not find a strong secondarymore » relation of the MZR with either SFR or sSFR for any of the calibrators, in contrast with previous single-fiber spectroscopic studies. Our results agree with a scenario in which metal enrichment happens at local scales, with global outflows playing a secondary role in shaping the chemistry of galaxies and cold-gas inflows regulating the stellar formation.« less

  19. Cosmological Constraints from Galaxy Clustering and the Mass-to-number Ratio of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Tinker, Jeremy L.; Sheldon, Erin S.; Wechsler, Risa H.; Becker, Matthew R.; Rozo, Eduardo; Zu, Ying; Weinberg, David H.; Zehavi, Idit; Blanton, Michael R.; Busha, Michael T.; Koester, Benjamin P.

    2012-01-01

    We place constraints on the average density (Ω m ) and clustering amplitude (σ8) of matter using a combination of two measurements from the Sloan Digital Sky Survey: the galaxy two-point correlation function, wp (rp ), and the mass-to-galaxy-number ratio within galaxy clusters, M/N, analogous to cluster M/L ratios. Our wp (rp ) measurements are obtained from DR7 while the sample of clusters is the maxBCG sample, with cluster masses derived from weak gravitational lensing. We construct nonlinear galaxy bias models using the Halo Occupation Distribution (HOD) to fit both wp (rp ) and M/N for different cosmological parameters. HOD models that match the same two-point clustering predict different numbers of galaxies in massive halos when Ω m or σ8 is varied, thereby breaking the degeneracy between cosmology and bias. We demonstrate that this technique yields constraints that are consistent and competitive with current results from cluster abundance studies, without the use of abundance information. Using wp (rp ) and M/N alone, we find Ω0.5 m σ8 = 0.465 ± 0.026, with individual constraints of Ω m = 0.29 ± 0.03 and σ8 = 0.85 ± 0.06. Combined with current cosmic microwave background data, these constraints are Ω m = 0.290 ± 0.016 and σ8 = 0.826 ± 0.020. All errors are 1σ. The systematic uncertainties that the M/N technique are most sensitive to are the amplitude of the bias function of dark matter halos and the possibility of redshift evolution between the SDSS Main sample and the maxBCG cluster sample. Our derived constraints are insensitive to the current level of uncertainties in the halo mass function and in the mass-richness relation of clusters and its scatter, making the M/N technique complementary to cluster abundances as a method for constraining cosmology with future galaxy surveys.

  20. SDSS IV MaNGA: the global and local stellar mass assemby histories of galaxies

    NASA Astrophysics Data System (ADS)

    Ibarra-Medel, Héctor J.; Sánchez, Sebastián F.; Avila-Reese, Vladimir; Hernández-Toledo, Héctor M.; González, J. Jesús; Drory, Niv; Bundy, Kevin; Bizyaev, Dmitry; Cano-Díaz, Mariana; Malanushenko, Elena; Pan, Kaike; Roman-Lopes, Alexandre; Thomas, Daniel

    2016-12-01

    Using the fossil record method implemented through Pipe3D, we reconstruct the global and radial stellar mass growth histories (MGHs) of a large sample of galaxies, ranging from dwarf to giant objects, from the Mapping Nearby Galaxies at the Apache Point Observatory (MaNGA) survey. We confirm that the main driver of the global MGHs is mass, with more massive galaxies assembling earlier (downsizing), though for a given mass, the global MGHs segregate by colour, specific star formation rate and morphological type. From the inferred radial mean MGHs, we find that at fractions of assembled mass larger than ˜80 per cent, the innermost regions formed stars, on average, in the inside-out mode. At earlier epochs, when the age estimation of the method becomes poor, the MGHs seem to be spatially homogeneous or even in the outside-in mode, especially for the red/quiescent/early-type galaxies. The innermost MGHs are, in general, less scattered around the mean than the outermost MGHs. For dwarf and low-mass galaxies, we do not find evidence of an outside-in formation mode; instead, their radial MGHs are very diverse most of the time, with periods of outside-in and inside-out modes (or strong radial migration), suggesting this is an episodic star formation history. Blue/star-forming/late-type galaxies present, on average, a significantly more pronounced inside-out formation mode than red/quiescent/early-type galaxies, independently of mass. We discuss our results in the light of the processes of galaxy formation, quenching and radial migration. We also discuss the uncertainties and biases of the fossil record method and how these could affect our results.

  1. SDSS-IV MaNGA: Uncovering the Angular Momentum Content of Central and Satellite Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Greene, J. E.; Leauthaud, A.; Emsellem, E.; Ge, J.; Aragón-Salamanca, A.; Greco, J.; Lin, Y.-T.; Mao, S.; Masters, K.; Merrifield, M.; More, S.; Okabe, N.; Schneider, D. P.; Thomas, D.; Wake, D. A.; Pan, K.; Bizyaev, D.; Oravetz, D.; Simmons, A.; Yan, R.; van den Bosch, F.

    2018-01-01

    We study 379 central and 159 satellite early-type galaxies with two-dimensional kinematics from the integral-field survey Mapping Nearby Galaxies at APO (MaNGA) to determine how their angular momentum content depends on stellar and halo mass. Using the Yang et al. group catalog, we identify central and satellite galaxies in groups with halo masses in the range {10}12.5 {h}-1 {M}ȯ < {M}200b< {10}15 {h}-1 {M}ȯ . As in previous work, we see a sharp dependence on stellar mass, in the sense that ∼70% of galaxies with stellar mass {M}* > {10}11 {h}-2 {M}ȯ tend to have very little rotation, while nearly all galaxies at lower mass show some net rotation. The ∼30% of high-mass galaxies that have significant rotation do not stand out in other galaxy properties, except for a higher incidence of ionized gas emission. Our data are consistent with recent simulation results suggesting that major merging and gas accretion have more impact on the rotational support of lower-mass galaxies. When carefully matching the stellar mass distributions, we find no residual differences in angular momentum content between satellite and central galaxies at the 20% level. Similarly, at fixed mass, galaxies have consistent rotation properties across a wide range of halo mass. However, we find that errors in classification of central and satellite galaxies with group finders systematically lower differences between satellite and central galaxies at a level that is comparable to current measurement uncertainties. To improve constraints, the impact of group-finding methods will have to be forward-modeled via mock catalogs.

  2. Galaxy bias from galaxy-galaxy lensing in the DES Science Verification Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prat, J.; et al.

    We present a measurement of galaxy-galaxy lensing around a magnitude-limited (more » $$i_{AB} < 22.5$$) sample of galaxies selected from the Dark Energy Survey Science Verification (DES-SV) data. We split these lenses into three photometric-redshift bins from 0.2 to 0.8, and determine the product of the galaxy bias $b$ and cross-correlation coefficient between the galaxy and dark matter overdensity fields $r$ in each bin, using scales above 4 Mpc/$h$ comoving, where we find the linear bias model to be valid given our current uncertainties. We compare our galaxy bias results from galaxy-galaxy lensing with those obtained from galaxy clustering (Crocce et al. 2016) and CMB lensing (Giannantonio et al. 2016) for the same sample of galaxies, and find our measurements to be in good agreement with those in Crocce et al. (2016), while, in the lowest redshift bin ($$z\\sim0.3$$), they show some tension with the findings in Giannantonio et al. (2016). Our results are found to be rather insensitive to a large range of systematic effects. We measure $$b\\cdot r$$ to be $$0.87\\pm 0.11$$, $$1.12 \\pm 0.16$$ and $$1.24\\pm 0.23$$, respectively for the three redshift bins of width $$\\Delta z = 0.2$$ in the range $0.2« less

  3. X-Ray properties of Post-Merger Spheroidal Galaxies: The Missing Link in Understanding the Merger-AGN connection

    NASA Astrophysics Data System (ADS)

    Nair, Preethi

    2017-09-01

    We propose to characterize the AGN properties of post-merger spheroidal galaxies, a well-defined, significant post starburst phase in merging galaxies. These galaxies probe the "coalesced" late stage of mergers lying between ULIRGs and quenched elliptical galaxies. They are characterized by shells and tidal tails with lifetimes (0.5 - 1 Gyr) similar to those of low luminosity AGN. The AGN detection fraction for 12 serendipitous Chandra sources is 83%. These `shell' galaxies may represent a key time step in major mergers which has previously been unexplored. We propose to image a well selected sample of 12 shells drawn from SDSS to investigate this missing chapter in mergers.

  4. VizieR Online Data Catalog: GV galaxies UV-optical radial color profiles (Pan+, 2014)

    NASA Astrophysics Data System (ADS)

    Pan, Z.; Li, J.; Lin, W.; Wang, J.; Kong, X.

    2017-04-01

    Our parent sample is drawn from Schawinski et al. (2014MNRAS.440..889S), which contains ~46000 galaxies at the redshift range of z = [0.02, 0.05]. This sample is magnitude completed to Mz, Petro = -19.5 AB mag and with Galaxy Zoo (Lintott 2008MNRAS.389.1179L; 2011, J/MNRAS/410/166) visual morphological classifications (http://data.galaxyzoo.org/). The stellar masses are derived by fitting the five SDSS photometric bands to a library of 6.8x106 models of star formation histories generated from Maraston et al. (1998MNRAS.300..872M; 2005MNRAS.362..799M) stellar models. We follow the process of Schawinski et al. (2014MNRAS.440..889S) to select GV galaxies. First, the galaxies are k-corrected to z = 0 using the KCORRECT code of Blanton & Roweis (2007AJ....133..734B) with the SDSS five broadband photometry. Then, the magnitudes are corrected for dust reddening using estimates of internal extinction from the stellar continuum fits by Oh et al. (2011ApJS..195...13O), applying the Cardelli et al. (1989ApJ...345..245C) law. (2 data files).

  5. Supermassive blackhole growth and the supernovae history in high-z early-type galaxies

    NASA Astrophysics Data System (ADS)

    Rocca-Volmerange, Brigitte

    2015-08-01

    A large variety of feedback models, supported by many galaxy surveys, tentatively relate AGN to star formation by stimulation or quenching. However any accretion process from variable AGNs has never been observed to be turned on or off by star formation. We propose to follow the supernovae explosions through the star formation laws of early-type galaxies with the help of the galaxy evolution model Pégase.3. Applied to the continuous Spectral Energy Distribution, including Herschel data of two z=3.8 radio galaxies (4C41.17 and TN J2007-1316), the comparison with Supermassive BlackHole masses from SDSS opens a new interpretation of the AGN-starburst relation without any need of feedback (Rocca-Volmerange et al, 2015, 2013)

  6. Selections from 2017: Mapping the Universe with SDSS-IV

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    Editors note:In these last two weeks of 2017, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume in January.Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant UniversePublished June2017Main takeaway:The incredibly prolific Sloan Digital Sky Survey has provided photometric observations of around 500 million objects and spectra for more than 3 million objects. The survey has now entered its fourth iteration, SDSS-IV, with the first public data release made in June 2016. A publication led by Michael Blanton (New York University) describes the facilities used for SDSS-IV, its science goals, and itsthree coreprograms.Why its interesting:Since data collection began in 2000, SDSS has been one of the premier surveysproviding imaging and spectroscopy for objects in both the near and distant universe.SDSS has measured spectra not only for the stars in our own Milky Way, but also for galaxies that lie more than 7 billion light-years distant making itan extremelyuseful and powerful tool for mapping our universe.What SDSS-IV is looking for:SDSS image of an example MaNGA target galaxy (left), with some of the many things we can learn about it shown in the right and bottom panels: stellar velocity dispersion, stellar mean velocity, stellar population age, metallicity, etc. [Blanton et al. 2017]SDSS-IV containsthree core programs:Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2)provides high-resolution near-infrared spectra of hundreds of thousands of Milky-Way stars with the goal ofimproving our understanding of the history of the Milky Way and of stellar astrophysics.Mapping Nearby Galaxies at Apache Point Observatory (MaNGA)obtains spatially resolved spectra for thousands of nearby galaxiesto better understand the evolutionary histories of galaxies and what regulates their star formation

  7. A Uniformly Selected Sample of Low-mass Black Holes in Seyfert 1 Galaxies. II. The SDSS DR7 Sample

    NASA Astrophysics Data System (ADS)

    Liu, He-Yang; Yuan, Weimin; Dong, Xiao-Bo; Zhou, Hongyan; Liu, Wen-Juan

    2018-04-01

    A new sample of 204 low-mass black holes (LMBHs) in active galactic nuclei (AGNs) is presented with black hole masses in the range of (1–20) × 105 M ⊙. The AGNs are selected through a systematic search among galaxies in the Seventh Data Release (DR7) of the Sloan Digital Sky Survey (SDSS), and careful analyses of their optical spectra and precise measurement of spectral parameters. Combining them with our previous sample selected from SDSS DR4 makes it the largest LMBH sample so far, totaling over 500 objects. Some of the statistical properties of the combined LMBH AGN sample are briefly discussed in the context of exploring the low-mass end of the AGN population. Their X-ray luminosities follow the extension of the previously known correlation with the [O III] luminosity. The effective optical-to-X-ray spectral indices α OX, albeit with a large scatter, are broadly consistent with the extension of the relation with the near-UV luminosity L 2500 Å. Interestingly, a correlation of α OX with black hole mass is also found, with α OX being statistically flatter (stronger X-ray relative to optical) for lower black hole masses. Only 26 objects, mostly radio loud, were detected in radio at 20 cm in the FIRST survey, giving a radio-loud fraction of 4%. The host galaxies of LMBHs have stellar masses in the range of 108.8–1012.4 M ⊙ and optical colors typical of Sbc spirals. They are dominated by young stellar populations that seem to have undergone continuous star formation history.

  8. Using XMM-OM UV Data to Study Cluster Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Miller, Neal A.; O'Steen, R.

    2010-01-01

    The XMM-Newton satellite includes an Optical Monitor (XMM-OM) for the simultaneous observation of its X-ray targets at UV and optical wavelengths. On account of XMM's excellent characteristics for the observation of the hot intracluster medium, a large number of galaxy clusters have been observed by XMM and there is consequently a large and virtually unused database of XMM-OM UV data for galaxies in the cores of these clusters. We have begun a program to capitalize on such data, and describe here our efforts on a subsample of ten nearby clusters having XMM-OM, GALEX, and SDSS data. We present our methods for photometry and calibration of the XMM-OM UV data, and briefly present some applications including galaxy color magnitude diagrams (and identification of the red sequence, blue cloud, and green valley) and SED fitting (and galaxy stellar masses and star formation histories). Support for this work is provided by NASA Award Number NNX09AC76G.

  9. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  10. THE ARECIBO LEGACY FAST ALFA SURVEY: THE GALAXY POPULATION DETECTED BY ALFALFA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Shan; Haynes, Martha P.; Giovanelli, Riccardo

    Making use of H I 21 cm line measurements from the ALFALFA survey ({alpha}.40) and photometry from the Sloan Digital Sky Survey (SDSS) and Galaxy Evolution Explorer (GALEX), we investigate the global scaling relations and fundamental planes linking stars and gas for a sample of 9417 common galaxies: the {alpha}.40-SDSS-GALEX sample. In addition to their H I properties derived from the ALFALFA data set, stellar masses (M{sub *}) and star formation rates (SFRs) are derived from fitting the UV-optical spectral energy distributions. 96% of the {alpha}.40-SDSS-GALEX galaxies belong to the blue cloud, with the average gas fraction f{sub HI} {identical_to}more » M{sub HI}/M{sub *} {approx} 1.5. A transition in star formation (SF) properties is found whereby below M{sub *} {approx} 10{sup 9.5} M{sub Sun }, the slope of the star-forming sequence changes, the dispersion in the specific star formation rate (SSFR) distribution increases, and the star formation efficiency (SFE) mildly increases with M{sub *}. The evolutionary track in the SSFR-M{sub *} diagram, as well as that in the color-magnitude diagram, is linked to the H I content; below this transition mass, the SF is regulated strongly by the H I. Comparison of H I and optically selected samples over the same restricted volume shows that the H I-selected population is less evolved and has overall higher SFR and SSFR at a given stellar mass, but lower SFE and extinction, suggesting either that a bottleneck exists in the H I-to-H{sub 2} conversion or that the process of SF in the very H I-dominated galaxies obeys an unusual, low-efficiency SF law. A trend is found that, for a given stellar mass, high gas fraction galaxies reside preferentially in dark matter halos with high spin parameters. Because it represents a full census of H I-bearing galaxies at z {approx} 0, the scaling relations and fundamental planes derived for the ALFALFA population can be used to assess the H I detection rate by future blind H I surveys and

  11. Galaxy And Mass Assembly (GAMA): colour- and luminosity-dependent clustering from calibrated photometric redshifts

    NASA Astrophysics Data System (ADS)

    Christodoulou, L.; Eminian, C.; Loveday, J.; Norberg, P.; Baldry, I. K.; Hurley, P. D.; Driver, S. P.; Bamford, S. P.; Hopkins, A. M.; Liske, J.; Peacock, J. A.; Bland-Hawthorn, J.; Brough, S.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Frenk, C. S.; Gunawardhana, M.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Robotham, A. S. G.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Thomas, D.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.

    2012-09-01

    We measure the two-point angular correlation function of a sample of 4289 223 galaxies with r < 19.4 mag from the Sloan Digital Sky Survey (SDSS) as a function of photometric redshift, absolute magnitude and colour down to Mr - 5 log h = -14 mag. Photometric redshifts are estimated from ugriz model magnitudes and two Petrosian radii using the artificial neural network package ANNz, taking advantage of the Galaxy And Mass Assembly (GAMA) spectroscopic sample as our training set. These photometric redshifts are then used to determine absolute magnitudes and colours. For all our samples, we estimate the underlying redshift and absolute magnitude distributions using Monte Carlo resampling. These redshift distributions are used in Limber's equation to obtain spatial correlation function parameters from power-law fits to the angular correlation function. We confirm an increase in clustering strength for sub-L* red galaxies compared with ˜L* red galaxies at small scales in all redshift bins, whereas for the blue population the correlation length is almost independent of luminosity for ˜L* galaxies and fainter. A linear relation between relative bias and log luminosity is found to hold down to luminosities L ˜ 0.03L*. We find that the redshift dependence of the bias of the L* population can be described by the passive evolution model of Tegmark & Peebles. A visual inspection of a random sample from our r < 19.4 sample of SDSS galaxies reveals that about 10 per cent are spurious, with a higher contamination rate towards very faint absolute magnitudes due to over-deblended nearby galaxies. We correct for this contamination in our clustering analysis.

  12. Towards a library of synthetic galaxy spectra and preliminary results of classification and parametrization of unresolved galaxies for Gaia. II

    NASA Astrophysics Data System (ADS)

    Tsalmantza, P.; Kontizas, M.; Rocca-Volmerange, B.; Bailer-Jones, C. A. L.; Kontizas, E.; Bellas-Velidis, I.; Livanou, E.; Korakitis, R.; Dapergolas, A.; Vallenari, A.; Fioc, M.

    2009-09-01

    Aims: This paper is the second in a series, implementing a classification system for Gaia observations of unresolved galaxies. Our goals are to determine spectral classes and estimate intrinsic astrophysical parameters via synthetic templates. Here we describe (1) a new extended library of synthetic galaxy spectra; (2) its comparison with various observations; and (3) first results of classification and parametrization experiments using simulated Gaia spectrophotometry of this library. Methods: Using the PÉGASE.2 code, based on galaxy evolution models that take account of metallicity evolution, extinction correction, and emission lines (with stellar spectra based on the BaSeL library), we improved our first library and extended it to cover the domain of most of the SDSS catalogue. Our classification and regression models were support vector machines (SVMs). Results: We produce an extended library of 28 885 synthetic galaxy spectra at zero redshift covering four general Hubble types of galaxies, over the wavelength range between 250 and 1050 nm at a sampling of 1 nm or less. The library is also produced for 4 random values of redshift in the range of 0-0.2. It is computed on a random grid of four key astrophysical parameters (infall timescale and 3 parameters defining the SFR) and, depending on the galaxy type, on two values of the age of the galaxy. The synthetic library was compared and found to be in good agreement with various observations. The first results from the SVM classifiers and parametrizers are promising, indicating that Hubble types can be reliably predicted and several parameters estimated with low bias and variance.

  13. Exploring the Nature of Galaxies with Abundance Gradient Anomalies in the SDSS-IV/MaNGA Survey

    NASA Astrophysics Data System (ADS)

    Keith, Celeste; Tremonti, Christy; Pace, Zach; Schaefer, Adam

    2018-01-01

    Disk galaxies are known to have radial oxygen abundance gradients with their centers being more chemically enriched than their outskirts. The steepness of the abundance gradient has recently been shown to correlate with galaxy stellar mass, on average. However, individual galaxies sometimes show pronounced deviations from the expected trends, such as flatter or steeper slopes than expected for their mass, abrupt changes in slope, or azimuthal asymmetries. Here we report on a systematic search for galaxies with abundance gradient anomalies using 2-D spectroscopy from the Sloan Digital Sky Survey IV MaNGA. We construct nebular oxygen and nitrogen abundance maps for 300 moderately inclined non-interacting disk galaxies and use visual inspection to identify the most interesting cases. We use this training set to develop an automated pipeline to flag galaxies with abundance anomalies from the larger MaNGA dataset for visual inspection. We combine the metallicity maps with kinematic data and measurements of the galaxies' local environments to better understand the processes that shape the radial abundance gradients of disk galaxies.

  14. Galaxy properties in clusters. II. Backsplash galaxies

    NASA Astrophysics Data System (ADS)

    Muriel, H.; Coenda, V.

    2014-04-01

    Aims: We explore the properties of galaxies on the outskirts of clusters and their dependence on recent dynamical history in order to understand the real impact that the cluster core has on the evolution of galaxies. Methods: We analyse the properties of more than 1000 galaxies brighter than M0.1r = - 19.6 on the outskirts of 90 clusters (1 < r/rvir < 2) in the redshift range 0.05 < z < 0.10. Using the line of sight velocity of galaxies relative to the cluster's mean, we selected low and high velocity subsamples. Theoretical predictions indicate that a significant fraction of the first subsample should be backsplash galaxies, that is, objects that have already orbited near the cluster centre. A significant proportion of the sample of high relative velocity (HV) galaxies seems to be composed of infalling objects. Results: Our results suggest that, at fixed stellar mass, late-type galaxies in the low-velocity (LV) sample are systematically older, redder, and have formed fewer stars during the last 3 Gyrs than galaxies in the HV sample. This result is consistent with models that assume that the central regions of clusters are effective in quenching the star formation by means of processes such as ram pressure stripping or strangulation. At fixed stellar mass, LV galaxies show some evidence of having higher surface brightness and smaller size than HV galaxies. These results are consistent with the scenario where galaxies that have orbited the central regions of clusters are more likely to suffer tidal effects, producing loss of mass as well as a re-distribution of matter towards more compact configurations. Finally, we found a higher fraction of ET galaxies in the LV sample, supporting the idea that the central region of clusters of galaxies may contribute to the transformation of morphological types towards earlier types.

  15. Only marginal alignment of disc galaxies

    NASA Astrophysics Data System (ADS)

    Andrae, René; Jahnke, Knud

    2011-12-01

    Testing theories of angular-momentum acquisition of rotationally supported disc galaxies is the key to understanding the formation of this type of galaxies. The tidal-torque theory aims to explain this acquisition process in a cosmological framework and predicts positive autocorrelations of angular-momentum orientation and spiral-arm handedness, i.e. alignment of disc galaxies, on short distance scales of 1 Mpc h-1. This disc alignment can also cause systematic effects in weak-lensing measurements. Previous observations claimed discovering these correlations but are overly optimistic in the reported level of statistical significance of the detections. Errors in redshift, ellipticity and morphological classifications were not taken into account, although they have a significant impact. We explain how to rigorously propagate all the important errors through the estimation process. Analysing disc galaxies in the Sloan Digital Sky Survey (SDSS) data base, we find that positive autocorrelations of spiral-arm handedness and angular-momentum orientations on distance scales of 1 Mpc h-1 are plausible but not statistically significant. Current data appear not good enough to constrain parameters of theory. This result agrees with a simple hypothesis test in the Local Group, where we also find no evidence for disc alignment. Moreover, we demonstrate that ellipticity estimates based on second moments are strongly biased by galactic bulges even for Scd galaxies, thereby corrupting correlation estimates and overestimating the impact of disc alignment on weak-lensing studies. Finally, we discuss the potential of future sky surveys. We argue that photometric redshifts have too large errors, i.e. PanSTARRS and LSST cannot be used. Conversely, the EUCLID project will not cover the relevant redshift regime. We also discuss the potentials and problems of front-edge classifications of galaxy discs in order to improve the autocorrelation estimates of angular-momentum orientation.

  16. A new 3-D View of Ionized Gas Conditions in Galaxies

    NASA Astrophysics Data System (ADS)

    Juneau, Stephanie

    2018-01-01

    We present a 3D version of common emission line diagnostic diagrams used to identify the source of ionization in galaxies, and highlight interesting features in this new 3D space, which are associated with global galaxy properties. Namely, we combine the BPT and Mass-Excitation (MEx) diagrams, and apply it to a set of >300,000 galaxies from the SDSS survey. Among other features, we show that the usual “branch” of star-forming galaxies becomes a curved surface in the new 3D space. Understanding the underlying reasons can shed light on the nearby galaxy population but also aid our interpretation of high-redshift surveys, which indicate a strong evolution of emission line ratios. Despite efforts to explain the origin of this strong evolution, a consensus has not yet been reached. Yet, the implications are crucial to our understanding of galaxy growth across cosmic time, and in particular to assess how star forming regions differed at earlier times (gas properties? stellar properties? a combination?). We perform this analysis within the framework of the NOAO Data Lab (datalab.noao.edu) jointly with public visualization tools. The final workflow will be released publicly.

  17. Galaxies Collide to Create Hot, Huge Galaxy

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This image of a pair of colliding galaxies called NGC 6240 shows them in a rare, short-lived phase of their evolution just before they merge into a single, larger galaxy. The prolonged, violent collision has drastically altered the appearance of both galaxies and created huge amounts of heat turning NGC 6240 into an 'infrared luminous' active galaxy.

    A rich variety of active galaxies, with different shapes, luminosities and radiation profiles exist. These galaxies may be related astronomers have suspected that they may represent an evolutionary sequence. By catching different galaxies in different stages of merging, a story emerges as one type of active galaxy changes into another. NGC 6240 provides an important 'missing link' in this process.

    This image was created from combined data from the infrared array camera of NASA's Spitzer Space Telescope at 3.6 and 8.0 microns (red) and visible light from NASA's Hubble Space Telescope (green and blue).

  18. Herschel-ATLAS/GAMA: SDSS cross-correlation induced by weak lensing

    NASA Astrophysics Data System (ADS)

    González-Nuevo, J.; Lapi, A.; Negrello, M.; Danese, L.; De Zotti, G.; Amber, S.; Baes, M.; Bland-Hawthorn, J.; Bourne, N.; Brough, S.; Bussmann, R. S.; Cai, Z.-Y.; Cooray, A.; Driver, S. P.; Dunne, L.; Dye, S.; Eales, S.; Ibar, E.; Ivison, R.; Liske, J.; Loveday, J.; Maddox, S.; Michałowski, M. J.; Robotham, A. S. G.; Scott, D.; Smith, M. W. L.; Valiante, E.; Xia, J.-Q.

    2014-08-01

    We report a highly significant (>10σ) spatial correlation between galaxies with S350 μm ≥ 30 mJy detected in the equatorial fields of the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) with estimated redshifts ≳ 1.5, and Sloan Digital Sky Survey (SDSS) or Galaxy And Mass Assembly (GAMA) galaxies at 0.2 ≤ z ≤ 0.6. The significance of the cross-correlation is much higher than those reported so far for samples with non-overlapping redshift distributions selected in other wavebands. Extensive, realistic simulations of clustered sub-mm galaxies amplified by foreground structures confirm that the cross-correlation can be explained by weak gravitational lensing (μ < 2). The simulations also show that the measured amplitude and range of angular scales of the signal are larger than can be accounted for by galaxy-galaxy weak lensing. However, for scales ≲ 2 arcmin, the signal can be reproduced if SDSS/GAMA galaxies act as signposts of galaxy groups/clusters with halo masses in the range 1013.2-1014.5 M⊙. The signal detected on larger scales appears to reflect the clustering of such haloes.

  19. Dwarf spheroidal galaxies: Keystones of galaxy evolution

    NASA Technical Reports Server (NTRS)

    Gallagher, John S., III; Wyse, Rosemary F. G.

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  20. Metallicities of z ~2 Galaxies From the 3D-HST Survey

    NASA Astrophysics Data System (ADS)

    Hernandez, Betsy; Momcheva, Ivelina; 3D-HST team

    2018-01-01

    The metal content of the gas in galaxies as a function of cosmic time is a measure of the exchange of gas between the galaxy and its environment. Understanding its evolution is central to understanding the physical processes that govern the efficiency and timing of star formation in galaxies. Our sample consists of 127 galaxies from the 3D-HST survey with individually detected spectral lines at z~2. We perform a comparison of line ratios that serve as proxies for the ionization parameter and oxygen abundance (O32 and R23 respectively) between the 3D-HST sample and SDSS galaxies at z~0. We examine the mass-metallicity relation of the 3D-HST sample, deriving the metallicity using O32 and R23, based on the Kobulnicky & Kewley models. Results from the O32 versus R23 comparison in the 3D-HST sample yield a similar distribution to recent high redshift samples. The mass-metallicity (MZ) relation shows the majority of 3D-HST metallicity values fall within previous MZ relation results.

  1. Galaxy bias from galaxy-galaxy lensing in the DES science verification data

    NASA Astrophysics Data System (ADS)

    Prat, J.; Sánchez, C.; Miquel, R.; Kwan, J.; Blazek, J.; Bonnett, C.; Amara, A.; Bridle, S. L.; Clampitt, J.; Crocce, M.; Fosalba, P.; Gaztanaga, E.; Giannantonio, T.; Hartley, W. G.; Jarvis, M.; MacCrann, N.; Percival, W. J.; Ross, A. J.; Sheldon, E.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Nord, B.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.

    2018-01-01

    We present a measurement of galaxy-galaxy lensing around a magnitude-limited (iAB < 22.5) sample of galaxies from the dark energy survey science verification (DES-SV) data. We split these lenses into three photometric-redshift bins from 0.2 to 0.8, and determine the product of the galaxy bias b and cross-correlation coefficient between the galaxy and dark matter overdensity fields r in each bin, using scales above 4 h-1 Mpc comoving, where we find the linear bias model to be valid given our current uncertainties. We compare our galaxy bias results from galaxy-galaxy lensing with those obtained from galaxy clustering and CMB lensing for the same sample of galaxies, and find our measurements to be in good agreement with those in Crocce et al., while, in the lowest redshift bin (z ∼ 0.3), they show some tension with the findings in Giannantonio et al. We measure b · r to be 0.87 ± 0.11, 1.12 ± 0.16 and 1.24 ± 0.23, respectively, for the three redshift bins of width Δz = 0.2 in the range 0.2 < z < 0.8, defined with the photometric-redshift algorithm BPZ. Using a different code to split the lens sample, TPZ, leads to changes in the measured biases at the 10-20 per cent level, but it does not alter the main conclusion of this work: when comparing with Crocce et al. we do not find strong evidence for a cross-correlation parameter significantly below one in this galaxy sample, except possibly at the lowest redshift bin (z ∼ 0.3), where we find r = 0.71 ± 0.11 when using TPZ, and 0.83 ± 0.12 with BPZ.

  2. Merging Galaxies Create a Binary Quasar

    NASA Astrophysics Data System (ADS)

    2010-02-01

    Astronomers have found the first clear evidence of a binary quasar within a pair of actively merging galaxies. Quasars are the extremely bright centers of galaxies surrounding super-massive black holes, and binary quasars are pairs of quasars bound together by gravity. Binary quasars, like other quasars, are thought to be the product of galaxy mergers. Until now, however, binary quasars have not been seen in galaxies that are unambiguously in the act of merging. But images of a new binary quasar from the Carnegie Institution's Magellan telescope in Chile show two distinct galaxies with "tails" produced by tidal forces from their mutual gravitational attraction. "This is really the first case in which you see two separate galaxies, both with quasars, that are clearly interacting," says Carnegie astronomer John Mulchaey who made observations crucial to understanding the galaxy merger. Most, if not all, large galaxies, such as our galaxy the Milky Way, host super-massive black holes at their centers. Because galaxies regularly interact and merge, astronomers have assumed that binary super-massive black holes have been common in the Universe, especially during its early history. Black holes can only be detected as quasars when they are actively accreting matter, a process that releases vast amounts of energy. A leading theory is that galaxy mergers trigger accretion, creating quasars in both galaxies. Because most such mergers would have happened in the distant past, binary quasars and their associated galaxies are very far away and therefore difficult for most telescopes to resolve. The binary quasar, labeled SDSS J1254+0846, was initially detected by the Sloan Digital Sky Survey, a large scale astronomical survey of galaxies and over 120,000 quasars. Further observations by Paul Green of the Harvard-Smithsonian Center for Astrophysics and colleagues* using NASA's Chandra's X-ray Observatory and telescopes at Kitt Peak National Observatory in Arizona and Palomar

  3. Sloan Digital Sky Survey IV: Mapping the Milky Way, nearby galaxies, and the distant universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanton, Michael R.; Bershady, Matthew A.; Abolfathi, Bela

    Here, we describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (medianmore » $$z\\sim 0.03$$). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between $$z\\sim 0.6$$ and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.« less

  4. Sloan Digital Sky Survey IV: Mapping the Milky Way, nearby galaxies, and the distant universe

    DOE PAGES

    Blanton, Michael R.; Bershady, Matthew A.; Abolfathi, Bela; ...

    2017-06-29

    Here, we describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (medianmore » $$z\\sim 0.03$$). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between $$z\\sim 0.6$$ and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.« less

  5. Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    NASA Astrophysics Data System (ADS)

    Blanton, Michael R.; Bershady, Matthew A.; Abolfathi, Bela; Albareti, Franco D.; Allende Prieto, Carlos; Almeida, Andres; Alonso-García, Javier; Anders, Friedrich; Anderson, Scott F.; Andrews, Brett; Aquino-Ortíz, Erik; Aragón-Salamanca, Alfonso; Argudo-Fernández, Maria; Armengaud, Eric; Aubourg, Eric; Avila-Reese, Vladimir; Badenes, Carles; Bailey, Stephen; Barger, Kathleen A.; Barrera-Ballesteros, Jorge; Bartosz, Curtis; Bates, Dominic; Baumgarten, Falk; Bautista, Julian; Beaton, Rachael; Beers, Timothy C.; Belfiore, Francesco; Bender, Chad F.; Berlind, Andreas A.; Bernardi, Mariangela; Beutler, Florian; Bird, Jonathan C.; Bizyaev, Dmitry; Blanc, Guillermo A.; Blomqvist, Michael; Bolton, Adam S.; Boquien, Médéric; Borissova, Jura; van den Bosch, Remco; Bovy, Jo; Brandt, William N.; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Burgasser, Adam J.; Burtin, Etienne; Busca, Nicolás G.; Cappellari, Michele; Delgado Carigi, Maria Leticia; Carlberg, Joleen K.; Carnero Rosell, Aurelio; Carrera, Ricardo; Chanover, Nancy J.; Cherinka, Brian; Cheung, Edmond; Gómez Maqueo Chew, Yilen; Chiappini, Cristina; Doohyun Choi, Peter; Chojnowski, Drew; Chuang, Chia-Hsun; Chung, Haeun; Cirolini, Rafael Fernando; Clerc, Nicolas; Cohen, Roger E.; Comparat, Johan; da Costa, Luiz; Cousinou, Marie-Claude; Covey, Kevin; Crane, Jeffrey D.; Croft, Rupert A. C.; Cruz-Gonzalez, Irene; Garrido Cuadra, Daniel; Cunha, Katia; Damke, Guillermo J.; Darling, Jeremy; Davies, Roger; Dawson, Kyle; de la Macorra, Axel; Dell'Agli, Flavia; De Lee, Nathan; Delubac, Timothée; Di Mille, Francesco; Diamond-Stanic, Aleks; Cano-Díaz, Mariana; Donor, John; Downes, Juan José; Drory, Niv; du Mas des Bourboux, Hélion; Duckworth, Christopher J.; Dwelly, Tom; Dyer, Jamie; Ebelke, Garrett; Eigenbrot, Arthur D.; Eisenstein, Daniel J.; Emsellem, Eric; Eracleous, Mike; Escoffier, Stephanie; Evans, Michael L.; Fan, Xiaohui; Fernández-Alvar, Emma; Fernandez-Trincado, J. G.; Feuillet, Diane K.; Finoguenov, Alexis; Fleming, Scott W.; Font-Ribera, Andreu; Fredrickson, Alexander; Freischlad, Gordon; Frinchaboy, Peter M.; Fuentes, Carla E.; Galbany, Lluís; Garcia-Dias, R.; García-Hernández, D. A.; Gaulme, Patrick; Geisler, Doug; Gelfand, Joseph D.; Gil-Marín, Héctor; Gillespie, Bruce A.; Goddard, Daniel; Gonzalez-Perez, Violeta; Grabowski, Kathleen; Green, Paul J.; Grier, Catherine J.; Gunn, James E.; Guo, Hong; Guy, Julien; Hagen, Alex; Hahn, ChangHoon; Hall, Matthew; Harding, Paul; Hasselquist, Sten; Hawley, Suzanne L.; Hearty, Fred; Gonzalez Hernández, Jonay I.; Ho, Shirley; Hogg, David W.; Holley-Bockelmann, Kelly; Holtzman, Jon A.; Holzer, Parker H.; Huehnerhoff, Joseph; Hutchinson, Timothy A.; Hwang, Ho Seong; Ibarra-Medel, Héctor J.; da Silva Ilha, Gabriele; Ivans, Inese I.; Ivory, KeShawn; Jackson, Kelly; Jensen, Trey W.; Johnson, Jennifer A.; Jones, Amy; Jönsson, Henrik; Jullo, Eric; Kamble, Vikrant; Kinemuchi, Karen; Kirkby, David; Kitaura, Francisco-Shu; Klaene, Mark; Knapp, Gillian R.; Kneib, Jean-Paul; Kollmeier, Juna A.; Lacerna, Ivan; Lane, Richard R.; Lang, Dustin; Law, David R.; Lazarz, Daniel; Lee, Youngbae; Le Goff, Jean-Marc; Liang, Fu-Heng; Li, Cheng; Li, Hongyu; Lian, Jianhui; Lima, Marcos; Lin, Lihwai; Lin, Yen-Ting; Bertran de Lis, Sara; Liu, Chao; de Icaza Lizaola, Miguel Angel C.; Long, Dan; Lucatello, Sara; Lundgren, Britt; MacDonald, Nicholas K.; Deconto Machado, Alice; MacLeod, Chelsea L.; Mahadevan, Suvrath; Geimba Maia, Marcio Antonio; Maiolino, Roberto; Majewski, Steven R.; Malanushenko, Elena; Malanushenko, Viktor; Manchado, Arturo; Mao, Shude; Maraston, Claudia; Marques-Chaves, Rui; Masseron, Thomas; Masters, Karen L.; McBride, Cameron K.; McDermid, Richard M.; McGrath, Brianne; McGreer, Ian D.; Medina Peña, Nicolás; Melendez, Matthew; Merloni, Andrea; Merrifield, Michael R.; Meszaros, Szabolcs; Meza, Andres; Minchev, Ivan; Minniti, Dante; Miyaji, Takamitsu; More, Surhud; Mulchaey, John; Müller-Sánchez, Francisco; Muna, Demitri; Munoz, Ricardo R.; Myers, Adam D.; Nair, Preethi; Nandra, Kirpal; Correa do Nascimento, Janaina; Negrete, Alenka; Ness, Melissa; Newman, Jeffrey A.; Nichol, Robert C.; Nidever, David L.; Nitschelm, Christian; Ntelis, Pierros; O'Connell, Julia E.; Oelkers, Ryan J.; Oravetz, Audrey; Oravetz, Daniel; Pace, Zach; Padilla, Nelson; Palanque-Delabrouille, Nathalie; Alonso Palicio, Pedro; Pan, Kaike; Parejko, John K.; Parikh, Taniya; Pâris, Isabelle; Park, Changbom; Patten, Alim Y.; Peirani, Sebastien; Pellejero-Ibanez, Marcos; Penny, Samantha; Percival, Will J.; Perez-Fournon, Ismael; Petitjean, Patrick; Pieri, Matthew M.; Pinsonneault, Marc; Pisani, Alice; Poleski, Radosław; Prada, Francisco; Prakash, Abhishek; Queiroz, Anna Bárbara de Andrade; Raddick, M. Jordan; Raichoor, Anand; Barboza Rembold, Sandro; Richstein, Hannah; Riffel, Rogemar A.; Riffel, Rogério; Rix, Hans-Walter; Robin, Annie C.; Rockosi, Constance M.; Rodríguez-Torres, Sergio; Roman-Lopes, A.; Román-Zúñiga, Carlos; Rosado, Margarita; Ross, Ashley J.; Rossi, Graziano; Ruan, John; Ruggeri, Rossana; Rykoff, Eli S.; Salazar-Albornoz, Salvador; Salvato, Mara; Sánchez, Ariel G.; Aguado, D. S.; Sánchez-Gallego, José R.; Santana, Felipe A.; Santiago, Basílio Xavier; Sayres, Conor; Schiavon, Ricardo P.; da Silva Schimoia, Jaderson; Schlafly, Edward F.; Schlegel, David J.; Schneider, Donald P.; Schultheis, Mathias; Schuster, William J.; Schwope, Axel; Seo, Hee-Jong; Shao, Zhengyi; Shen, Shiyin; Shetrone, Matthew; Shull, Michael; Simon, Joshua D.; Skinner, Danielle; Skrutskie, M. F.; Slosar, Anže; Smith, Verne V.; Sobeck, Jennifer S.; Sobreira, Flavia; Somers, Garrett; Souto, Diogo; Stark, David V.; Stassun, Keivan; Stauffer, Fritz; Steinmetz, Matthias; Storchi-Bergmann, Thaisa; Streblyanska, Alina; Stringfellow, Guy S.; Suárez, Genaro; Sun, Jing; Suzuki, Nao; Szigeti, Laszlo; Taghizadeh-Popp, Manuchehr; Tang, Baitian; Tao, Charling; Tayar, Jamie; Tembe, Mita; Teske, Johanna; Thakar, Aniruddha R.; Thomas, Daniel; Thompson, Benjamin A.; Tinker, Jeremy L.; Tissera, Patricia; Tojeiro, Rita; Hernandez Toledo, Hector; de la Torre, Sylvain; Tremonti, Christy; Troup, Nicholas W.; Valenzuela, Octavio; Martinez Valpuesta, Inma; Vargas-González, Jaime; Vargas-Magaña, Mariana; Vazquez, Jose Alberto; Villanova, Sandro; Vivek, M.; Vogt, Nicole; Wake, David; Walterbos, Rene; Wang, Yuting; Weaver, Benjamin Alan; Weijmans, Anne-Marie; Weinberg, David H.; Westfall, Kyle B.; Whelan, David G.; Wild, Vivienne; Wilson, John; Wood-Vasey, W. M.; Wylezalek, Dominika; Xiao, Ting; Yan, Renbin; Yang, Meng; Ybarra, Jason E.; Yèche, Christophe; Zakamska, Nadia; Zamora, Olga; Zarrouk, Pauline; Zasowski, Gail; Zhang, Kai; Zhao, Gong-Bo; Zheng, Zheng; Zheng, Zheng; Zhou, Xu; Zhou, Zhi-Min; Zhu, Guangtun B.; Zoccali, Manuela; Zou, Hu

    2017-07-01

    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z˜ 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z˜ 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.

  6. PROFIT: Bayesian profile fitting of galaxy images

    NASA Astrophysics Data System (ADS)

    Robotham, A. S. G.; Taranu, D. S.; Tobar, R.; Moffett, A.; Driver, S. P.

    2017-04-01

    We present PROFIT, a new code for Bayesian two-dimensional photometric galaxy profile modelling. PROFIT consists of a low-level C++ library (libprofit), accessible via a command-line interface and documented API, along with high-level R (PROFIT) and PYTHON (PyProFit) interfaces (available at github.com/ICRAR/libprofit, github.com/ICRAR/ProFit, and github.com/ICRAR/pyprofit, respectively). R PROFIT is also available pre-built from CRAN; however, this version will be slightly behind the latest GitHub version. libprofit offers fast and accurate two-dimensional integration for a useful number of profiles, including Sérsic, Core-Sérsic, broken-exponential, Ferrer, Moffat, empirical King, point-source, and sky, with a simple mechanism for adding new profiles. We show detailed comparisons between libprofit and GALFIT. libprofit is both faster and more accurate than GALFIT at integrating the ubiquitous Sérsic profile for the most common values of the Sérsic index n (0.5 < n < 8). The high-level fitting code PROFIT is tested on a sample of galaxies with both SDSS and deeper KiDS imaging. We find good agreement in the fit parameters, with larger scatter in best-fitting parameters from fitting images from different sources (SDSS versus KiDS) than from using different codes (PROFIT versus GALFIT). A large suite of Monte Carlo-simulated images are used to assess prospects for automated bulge-disc decomposition with PROFIT on SDSS, KiDS, and future LSST imaging. We find that the biggest increases in fit quality come from moving from SDSS- to KiDS-quality data, with less significant gains moving from KiDS to LSST.

  7. Host Galaxy Morphologies Of Hard X-ray Selected AGN From The Swift BAT Survey

    NASA Astrophysics Data System (ADS)

    Koss, Michael; Mushotzky, R.; Veilleux, S.

    2009-01-01

    Surveys of AGN taken in the optical, UV, and soft X-rays miss an important population of obscured AGN only visible in the hard X-rays and mid-IR wavelengths. The SWIFT BAT survey in the hard X-ray range (14-195 keV) has provided a uniquely unbiased sample of 258 AGN unaffected by galactic or circumnuclear absorption. Optical imaging of this unbiased sample provides a new opportunity to understand how the environments of the host galaxies are linked to AGN. For these host galaxies, only a fraction, 29%, have high quality optical images, predominately from the SDSS. In addition, about 33% show peculiar morphologies and interaction. In 2008, we observed 110 of these targets at Kitt Peak with the 2.1m in the SDSS bands over 17 nights. Using these observations and SDSS data we review the relationships between color, morphology, merger activity, star formation, and AGN luminosity.

  8. THE GAS PHASE MASS METALLICITY RELATION FOR DWARF GALAXIES: DEPENDENCE ON STAR FORMATION RATE AND HI GAS MASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimmy; Tran, Kim-Vy; Saintonge, Amélie

    Using a sample of dwarf galaxies observed using the VIMOS IFU on the Very Large Telescope, we investigate the mass–metallicity relation (MZR) as a function of star formation rate (FMR{sub SFR}) as well as HI-gas mass (FMR{sub HI}). We combine our IFU data with a subsample of galaxies from the ALFALFA HI survey crossmatched to the Sloan Digital Sky Survey (SDSS) to study the FMR{sub SFR} and FMR{sub HI} across the stellar mass range 10{sup 6.6}–10{sup 8.8} M{sub ⊙}, with metallicities as low as 12 + log(O/H) = 7.67. We find the 1σ mean scatter in the MZR to bemore » 0.05 dex. The 1σ mean scatter in the FMR{sub SFR} (0.02 dex) is significantly lower than that of the MZR. The FMR{sub SFR} is not consistent between the IFU observed galaxies and the ALFALFA/SDSS galaxies for SFRs lower than 10{sup −2.4} M{sub ⊙} yr{sup −1}, however, this could be the result of limitations of our measurements in that regime. The lowest mean scatter (0.01 dex) is found in the FMR{sub HI}. We also find that the FMR{sub HI} is consistent between the IFU observed dwarf galaxies and the ALFALFA/SDSS crossmatched sample. We introduce the fundamental metallicity luminosity counterpart to the FMR, again characterized in terms of SFR (FML{sub SFR}) and HI-gas mass (FML{sub HI}). We find that the FML{sub HI} relation is consistent between the IFU observed dwarf galaxy sample and the larger ALFALFA/SDSS sample. However, the 1σ scatter for the FML{sub HI} relation is not improved over the FMR{sub HI} scenario. This leads us to conclude that the FMR{sub HI} is the best candidate for a physically motivated fundamental metallicity relation.« less

  9. Accurate Modeling of Galaxy Clustering on Small Scales: Testing the Standard ΛCDM + Halo Model

    NASA Astrophysics Data System (ADS)

    Sinha, Manodeep; Berlind, Andreas A.; McBride, Cameron; Scoccimarro, Roman

    2015-01-01

    The large-scale distribution of galaxies can be explained fairly simply by assuming (i) a cosmological model, which determines the dark matter halo distribution, and (ii) a simple connection between galaxies and the halos they inhabit. This conceptually simple framework, called the halo model, has been remarkably successful at reproducing the clustering of galaxies on all scales, as observed in various galaxy redshift surveys. However, none of these previous studies have carefully modeled the systematics and thus truly tested the halo model in a statistically rigorous sense. We present a new accurate and fully numerical halo model framework and test it against clustering measurements from two luminosity samples of galaxies drawn from the SDSS DR7. We show that the simple ΛCDM cosmology + halo model is not able to simultaneously reproduce the galaxy projected correlation function and the group multiplicity function. In particular, the more luminous sample shows significant tension with theory. We discuss the implications of our findings and how this work paves the way for constraining galaxy formation by accurate simultaneous modeling of multiple galaxy clustering statistics.

  10. The last 6 Gyr of dark matter assembly in massive galaxies from the Kilo Degree Survey

    NASA Astrophysics Data System (ADS)

    Tortora, C.; Napolitano, N. R.; Roy, N.; Radovich, M.; Getman, F.; Koopmans, L. V. E.; Verdoes Kleijn, G. A.; Kuijken, K. H.

    2018-01-01

    We study the dark matter (DM) assembly in the central regions of massive early-type galaxies up to z ∼ 0.65. We use a sample of ∼3800 massive (log M⋆/M⊙ > 11.2) galaxies with photometry and structural parameters from 156 deg2 of the Kilo Degree Survey (KiDS), and spectroscopic redshifts and velocity dispersions from Sloan Digital Sky Survey (SDSS). We obtain central total-to-stellar mass ratios, Mdyn/M⋆, and DM fractions, by determining dynamical masses, Mdyn, from Jeans modelling of SDSS aperture velocity dispersions and stellar masses, M⋆, from KiDS galaxy colours. We first show how the central DM fraction correlates with structural parameters, mass and density proxies, and demonstrate that most of the local correlations are still observed up to z ∼ 0.65; at fixed M⋆, local galaxies have larger DM fraction, on average, than their counterparts at larger redshift. We also interpret these trends with a non-universal initial mass function (IMF), finding a strong evolution with redshift, which contrast independent observations and is at odds with the effect of galaxy mergers. For a fixed IMF, the galaxy assembly can be explained, realistically, by mass and size accretion, which can be physically achieved by a series of minor mergers. We reproduce both the Re-M⋆ and Mdyn/M⋆-M⋆ evolution with stellar and dark mass changing at a different rate. This result suggests that the main progenitor galaxy is merging with less massive systems, characterized by a smaller Mdyn/M⋆, consistently with results from halo abundance matching.

  11. Modelling galaxy clustering: halo occupation distribution versus subhalo matching.

    PubMed

    Guo, Hong; Zheng, Zheng; Behroozi, Peter S; Zehavi, Idit; Chuang, Chia-Hsun; Comparat, Johan; Favole, Ginevra; Gottloeber, Stefan; Klypin, Anatoly; Prada, Francisco; Rodríguez-Torres, Sergio A; Weinberg, David H; Yepes, Gustavo

    2016-07-01

    We model the luminosity-dependent projected and redshift-space two-point correlation functions (2PCFs) of the Sloan Digital Sky Survey (SDSS) Data Release 7 Main galaxy sample, using the halo occupation distribution (HOD) model and the subhalo abundance matching (SHAM) model and its extension. All the models are built on the same high-resolution N -body simulations. We find that the HOD model generally provides the best performance in reproducing the clustering measurements in both projected and redshift spaces. The SHAM model with the same halo-galaxy relation for central and satellite galaxies (or distinct haloes and subhaloes), when including scatters, has a best-fitting χ 2 /dof around 2-3. We therefore extend the SHAM model to the subhalo clustering and abundance matching (SCAM) by allowing the central and satellite galaxies to have different galaxy-halo relations. We infer the corresponding halo/subhalo parameters by jointly fitting the galaxy 2PCFs and abundances and consider subhaloes selected based on three properties, the mass M acc at the time of accretion, the maximum circular velocity V acc at the time of accretion, and the peak maximum circular velocity V peak over the history of the subhaloes. The three subhalo models work well for luminous galaxy samples (with luminosity above L * ). For low-luminosity samples, the V acc model stands out in reproducing the data, with the V peak model slightly worse, while the M acc model fails to fit the data. We discuss the implications of the modelling results.

  12. VizieR Online Data Catalog: Metallicity of MPA-JHU SDSS-DR7 dwarf galaxies (Douglass+, 2017)

    NASA Astrophysics Data System (ADS)

    Douglass, K. A.; Vogeley, M. S.

    2017-07-01

    We study how the cosmic environment affects galaxy evolution in the universe by comparing the metallicities of dwarf galaxies in voids with dwarf galaxies in more dense regions. Ratios of the fluxes of emission lines, particularly those of the forbidden [OIII] and [SII] transitions, provide estimates of a region's electron temperature and number density. From these two quantities and the emission line fluxes [OII]λ3727, [OIII]λ4363, and [OIII]λλ4959,5007, we estimate the abundance of oxygen with the direct Te method. We estimate the metallicity of 42 blue, star-forming void dwarf galaxies and 89 blue, star-forming dwarf galaxies in more dense regions using spectroscopic observations from the Sloan Digital Sky Survey Data Release 7, as reprocessed in the MPA-JHU value-added catalog. We find very little difference between the two sets of galaxies, indicating little influence from the large-scale environment on their chemical evolution. Of particular interest are a number of extremely metal-poor dwarf galaxies that are less prevalent in voids than in the denser regions. (1 data file).

  13. Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Martin, D. Christopher; Gonçalves, Thiago S.; Darvish, Behnam; Seibert, Mark; Schiminovich, David

    2017-06-01

    We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observed colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.

  14. GALEX studies on UV properties of Nearby Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Rhee, J.; Rich, R. M.; Sohn, Y.-J.; Lee, Y.-W.; Gil de Paz, A.; Deharveng, J.-M.; Donas, J.; Boselli, A.; Rey, S.-C.; Yi, S. K.; GALEX Team

    2005-12-01

    We present the results of surface photometry on the far-UV (FUV) and near-UV (NUV) images of 23 nearby elliptical galaxies and spiral bulges taken from the GALEX (Galaxy Evolution Explorer). Surface brightness profiles of most galaxies are consistent with de Vaucouleurs' r1/4 law except for some cases more consistent with exponential profiles. We analyze the radial profiles of UV color, (FUV - NUV), and Mg2 line index to investigate a correlation between the gradients of UV color and metal abundance for early-type galaxies. UV color gradients are calculated by applying least square fitting to UV color profile up to effective radius, while Mg2 line strength gradients are compiled for 12 galaxies from previous works. For the 12 early-type galaxies, we find that UV color profiles have a trend to become bluer inward and there is a weak correlation between the gradients of UV color and Mg2 line strength in the sense that galaxies with larger UV color gradients tend to have stronger metal abundance gradients. We also explore the properties of the GALEX-measured ultraviolet rising flux in 96 nearby elliptical galaxies, as a function Lick Mg2 index and velocity dispersion. We include 36 galaxies in the Virgo cluster from the sample of Boselli et al (2005). We find no correlation between the Mg2 index, and log σ and FUV-r. This confirms the findings of Rich et al (2005) for a sample of GALEX/SDSS quiescent early-type galaxies. This is true both for the integrated light, and for nuclear colors. We find a weak correlation between Mg2 and FUV-NUV. We gratefully acknowledge NASA's support for construction, operation, and science analysis for the GALEX mission, developed in cooperation with the Centre National d'Etudes Spatiales of France and the Korean Ministry of Science and Technology.

  15. Dark Galaxies and Lost Baryons (IAU S244)

    NASA Astrophysics Data System (ADS)

    Davies, Jonathan I.; Disney, Michael J.

    2008-05-01

    Preface; Conference prelims; The HI that barked in the night M. J. Disney; The detection of dark galaxies in blind HI surveys J. I. Davies; Red haloes of galaxies - reservoirs of baryonic dark matter? E. Zackrisson, N. Bergvall, C. Flynn, G. Ostlin, G. Micheva and B. Baldwell; Constraints on dark and visible mass in galaxies from strong gravitational lensing S. Dye and S. Warren; Lost baryons at low redshift S. Mathur, F. Nicastro and R. Williams; Observed properties of dark matter on small spatial scales R. Wyse and G. Gilmore; The mass distribution in spiral galaxies P. Salucci; Connecting lost baryons and dark galaxies via QSO absorption lines T. Tripp; ALFALFA: HI cosmology in the local universe R. Giovanelli; The ALFALFA search for (almost) dark galaxies across the HI mass function M. Haynes; HI clouds detected towards Virgo with the Arecibo Legacy Fast ALFA Survey B. Kent; Cosmic variance in the HI mass function S. Schneider; The Arecibo Galaxy Environments Survey - potential for finding dark galaxies and results so far R. Minchin et al.; Free-floating HI clouds in the M81 group E. Brinks, F. Walter and E. Skillman; Where are the stars in dark galaxies J. Rosenberg, J. Salzer and J. Cannon; The halo by halo missing baryon problem S. McGaugh; The local void is really empty R. Tully; Voids in the local volume: a limit on appearance of a galaxy in a dark matter halo A. Tikhonov and A. Klypin; Dim baryons in the cosmic web C. Impey; A census of baryons in galaxy clusters and groups A. Gonzalez, D. Zaritsky and A. Zabludo; Statistical properties of the intercluster light from SDSS image stacking S. Zibetti; QSO strong gravitational lensing and the detection of dark halos A. Maccio; Strong gravitational lensing: bright galaxies and lost dark-matter L. Koopmans; Mapping the distribution of luminous and dark matter in strong lensing galaxies I. Ferreras, P. Saha, L. Williams and S. Burles; Tidal debris posing as dark galaxies P. Duc, F. Bournaud and E. Brinks

  16. Understanding Galaxy Cluster MKW10

    NASA Astrophysics Data System (ADS)

    Sanders, Tim; Henry, Swain; Coble, Kimberly A.; Rosenberg, Jessica L.; Koopmann, Rebecca A.

    2015-01-01

    As part of the Undergraduate ALFALFA Team (UAT), we are studying the galaxy cluster MKW 10 (RA = 175.454, Dec = 10.306, z ~ 0.02), a poor cluster with a compact core in which tidal interactions have occurred. This cluster has been observed in HI and Hα. We used SDSS and NED to search for optical counterparts. By comparing data at multiple wavelengths, we hope to understand the structure, environment, and star formation history of this cluster. Following the techniques of others involved in the groups project and using the program TOPCAT to manipulate the data, we explored both the spatial and velocity distributions to determine cluster membership. We have determined that this cluster consists of 11 galaxies, mostly spiral in shape. Chicago State University is new the UAT and we began our work after taking part in the winter workshop at Arecibo.This work was supported by: Undergraduate ALFALFA Team NSF Grant AST-1211005 and the Illinois Space Grant Consortium.

  17. Hosts and environments of low luminosity active galaxies in the local universe: The care and feeding of weak AGN

    NASA Astrophysics Data System (ADS)

    Parejko, John Kenneth

    The observed relationship between the mass of a galaxy's supermassive black hole and the galaxy's bulge mass suggests a relationship between the growth of the galaxy and the growth of its central black hole. When these black holes grow, they release phenomenal amounts of energy into their surroundings, possibly disrupting further growth of the galaxy. The feeding (inflowing matter) and feedback (outflowing energy) of a galaxy's central black hole may be intimately related to the properties of the host's environment, on scales many orders of magnitude beyond the black hole's gravitational influence. While feeding, a massive black hole reveals itself as an Active Galactic Nucleus (AGN), but only a few percent of all galaxies show evidence of an AGN. This thesis focuses on this question: What distinguishes galaxies that are currently hosting actively accreting black holes from those that are not? We use the vast data set provided by the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) to study the environments of a well defined sample of AGN hosts. To reduce contamination by galaxies that do not harbor actively accreting black holes, we define a clear, unambiguous sample of local AGN. Using this sample, we search for AGN in merging galaxies and measure the 2-point cross-correlation function of AGN and all galaxies to estimate the environments of AGN hosts compared to non-AGN hosts. We also describe trends in different subsamples of AGN, including luminosity and classification sub-type. Finally, we show how these techniques may be applied to future data sets such as forthcoming SDSS III data and X-ray data from the eROSITA satellite.

  18. Galaxy Zoo: the interplay of quenching mechanisms in the group environment★

    NASA Astrophysics Data System (ADS)

    Smethurst, R. J.; Lintott, C. J.; Bamford, S. P.; Hart, R. E.; Kruk, S. J.; Masters, K. L.; Nichol, R. C.; Simmons, B. D.

    2017-08-01

    Does the environment of a galaxy directly influence the quenching history of a galaxy? Here, we investigate the detailed morphological structures and star formation histories of a sample of SDSS group galaxies with both classifications from Galaxy Zoo 2 and near ultra-violet (NUV) detections in GALEX. We use the optical and NUV colours to infer the quenching time and rate describing a simple exponentially declining star formation history for each galaxy, along with a control sample of field galaxies. We find that the time since quenching and the rate of quenching do not correlate with the relative velocity of a satellite but are correlated with the group potential. This quenching occurs within an average quenching time-scale of ˜ 2.5 Gyr from star forming to complete quiescence, during an average infall time (from ˜10R200 to 0.01R200) of ˜ 2.6 Gyr. Our results suggest that the environment does play a direct role in galaxy quenching through quenching mechanisms that are correlated with the group potential, such as harassment, interactions or starvation. Environmental quenching mechanisms that are correlated with satellite velocity, such as ram-pressure stripping, are not the main cause of quenching in the group environment. We find that no single mechanism dominates over another, except in the most extreme environments or masses. Instead, an interplay of mergers, mass and morphological quenching and environment-driven quenching mechanisms dependent on the group potential drive galaxy evolution in groups.

  19. Effects of secular evolution on the star formation history of galaxies

    NASA Astrophysics Data System (ADS)

    Lorenzo, M. Fernández; Sulentic, J.; Verdes-Montenegro, L.; Argudo-Fernández, M.; Ruiz, J. E.; Sabater, J.; Sánchez-Expósito, S.

    2015-03-01

    We report the study performed as part of the AMIGA (Analysis of the interstellar Medium of Isolated GAlaxies; http://www.amiga.iaa.es) project, focused on the SDSS (g-r) colors of the sample. Assuming that color is an indicator of star formation history, this work better records the signature of passive star formation via pure secular evolution. Median values for each morphological type in AMIGA were compared with equivalent measures for galaxies in denser environments. We found a tendency for AMIGA spiral galaxies to be redder than galaxies in close pairs, but no clear difference when we compare with galaxies in other (e.g. group) environments. The (g-r) color of isolated galaxies presents a Gaussian distribution, as indicative of pure secular evolution, and a smaller median absolute deviation (almost half) compared to both wide and close pairs. This redder color and lower color dispersion of AMIGA spirals compared with close pairs is likely due to a more passive star formation in very isolated galaxies. In Fig. 1, we represent the size versus stellar mass for early and late-type galaxies of our sample, compared with the local relations of Shen et al. (2003). The late-type isolated galaxies are ~1.2 times larger or have less stellar mass than local spirals in other environments. The latter would be in agreement with the passive star formation found in the previous part. We acknowledge Grant AYA2011-30491-C02-01, P08-FQM-4205 and TIC-114.

  20. Gargantuan Super Spiral Galaxies Loom Large in the Cosmos

    NASA Image and Video Library

    2016-03-17

    In archived NASA data, researchers have discovered "super spiral" galaxies that dwarf our own spiral galaxy, the Milky Way, and compete in size and brightness with the largest galaxies in the universe. The unprecedented galaxies have long hidden in plain sight by mimicking the appearance of typical spirals. Three examples of super spirals are presented here in images taken by the Sloan Digital Sky Survey. The super spiral on the left (Figure 1), catalogued as 2MASX J08542169+0449308, contains two galactic nuclei, instead of just the usual one, and thus looks like two eggs frying in a pan. The central image (Figure 2) shows a super spiral designated 2MASX J16014061+2718161, and it also contains the double nuclei. On the right (Figure 3), a huge galaxy with the moniker SDSS J094700.08+254045.7 stands as one of the biggest and brightest super spirals. The mega-galaxy's starry disk and spiral arms stretch about 320,000 light-years across, or more than three times the breadth of the Milky Way. These double nuclei, which are known to result from the recent merger of two galaxies, could offer a vital hint about the potential origin of super spirals. Researchers speculate that a special merger involving two, gas-rich spiral galaxies could see their pooled gases settle down into a new, larger stellar disk -- presto, a super spiral. The super spirals were discovered using the NASA/IPAC Extragalactic Database, or NED, an online repository containing information on over 100 million galaxies. NED brings together a wealth of data from many different projects, including ultraviolet light observations from the Galaxy Evolution Explorer, visible light from Sloan Digital Sky Survey, infrared light from the 2-Micron All-Sky Survey, and links to data from other missions such as NASA's Spitzer Space Telescope and Wide-Field Infrared Survey Explorer, or WISE. http://photojournal.jpl.nasa.gov/catalog/PIA20064

  1. Hubble Sees Spiral Bridge of Young Stars Between Two Ancient Galaxies

    NASA Image and Video Library

    2014-07-11

    NASA's Hubble Space Telescope has photographed the dense galaxy cluster SDSS J1531+3414 in the northern constellation Corona Borealis. Made up primarily of giant elliptical galaxies with a few spirals and irregular galaxies thrown in for good measure, the cluster's powerful gravity warps the image of background galaxies into blue streaks and arcs. At the center of the bull's-eye of blue, gravitationally lensed filaments lies a pair of elliptical galaxies that are also exhibiting some interesting features. A 100,000-light-year-long structure that looks like a string of pearls twisted into a corkscrew shape winds around the cores of the two massive galaxies. The "pearls" are superclusters of blazing, blue-white, newly born stars. These super star clusters are evenly spaced along the chain at separations of 3,000 light-years from one another. Read more: 1.usa.gov/1ztQvL9 Credit: NASA/ESA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Testing the Presence of Multiple Photometric Components in Nearby Early-type Galaxies using SDSS

    NASA Astrophysics Data System (ADS)

    Oh, Semyeong; Greene, Jenny E.; Lackner, Claire N.

    2017-02-01

    We investigate two-dimensional image decomposition of nearby, morphologically selected early-type galaxies (ETGs). We are motivated by recent observational evidence of significant size growth of quiescent galaxies and theoretical development advocating a two-phase formation scenario for ETGs. We find that a significant fraction of nearby ETGs show changes in isophotal shape that require multi-component models. The characteristic sizes of the inner and outer component are ˜3 and ˜15 kpc. The inner component lies on the mass-size relation of ETGs at z ˜ 0.25-0.75, while the outer component tends to be more elliptical and hints at a stochastic buildup process. We find real physical differences between single- and double-component ETGs, with double-component galaxies being younger and more metal-rich. The fraction of double-component ETGs increases with increasing σ and decreases in denser environments. We hypothesize that double-component systems were able to accrete gas and small galaxies until later times, boosting their central densities, building up their outer parts, and lowering their typical central ages. In contrast, the oldest galaxies, perhaps due to residing in richer environments, have no remaining hints of their last accretion episode.

  3. Estimating the HI gas fractions of galaxies in the local Universe

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Li, Cheng; Kauffmann, Guinevere; Zou, Hu; Catinella, Barbara; Shen, Shiyin; Guo, Qi; Chang, Ruixiang

    2009-08-01

    We use a sample of 800 galaxies with HI mass measurements from the HyperLeda catalogue and optical photometry from the fourth data release of the Sloan Digital Sky Survey (SDSS) to calibrate a new photometric estimator of the HI-to-stellar-mass ratio for nearby galaxies. Our estimator, which is motivated by the Kennicutt-Schmidt star formation law, is log10(GHI/S) = -1.73238(g - r) + 0.215182μi - 4.08451, where μi is the i-band surface brightness and g - r is the optical colour estimated from the g- and r-band Petrosian apparent magnitudes. This estimator has a scatter of σ = 0.31 dex in log (GHI/S), compared to σ ~ 0.4 dex for previous estimators that were based on colour alone. We investigate whether the residuals in our estimate of log (GHI/S) depend in a systematic way on a variety of different galaxy properties. We find no effect as a function of stellar mass or 4000 Å break strength, but there is a systematic effect as a function of the concentration index of the light. We then apply our estimator to a sample of 105 emission-line galaxies in the SDSS Data Release 4 (DR4) and derive an estimate of the HI mass function, which is in excellent agreement with recent results from HI blind surveys. Finally, we re-examine the well-known relation between gas-phase metallicity and stellar mass, and ask whether there is a dependence on HI-to-stellar-mass ratio, as predicted by chemical evolution models. We do find that gas-poor galaxies are more metal rich at fixed stellar mass. We compare our results with the semi-analytic models of De Lucia & Blaizot, which include supernova feedback, as well as the cosmological infall of gas.

  4. The Tully-Fisher relation for 25 000 Sloan Digital Sky Survey galaxies as a function of environment

    NASA Astrophysics Data System (ADS)

    Mocz, P.; Green, A.; Malacari, M.; Glazebrook, K.

    2012-09-01

    We construct Tully-Fisher relationships (TFRs) in the u, g, r, i and z bands and stellar mass TFRs for a sample of 25 698 late spiral-type galaxies (with 0.045 < z < 0.085) from the Sloan Digital Sky Survey (SDSS) and study the effects of environment on the relation. We use SDSS-measured Balmer emission line widths, vFWHM, as a proxy for disc circular velocity, vcirc. A priori, it is not clear whether we can construct accurate TFRs given the small 3 arcsec diameter of the fibres used for SDSS spectroscopic measurements. However, we show by modelling the Hα emission profile as observed through a 3 arcsec aperture that for galaxies at appropriate redshifts (z > 0.045) the fibres sample enough of the disc to obtain a linear relationship between vFWHM and vcirc, allowing us to obtain a TFR and to investigate dependence on other variables. We also develop a methodology for distinguishing between astrophysical and sample bias in the fibre TFR trends. We observe the well-known steepening of the TFR in redder bands in our sample. We divide the sample of galaxies into four equal groups using projected neighbour density (Σ) quartiles and find no significant dependence on environment, extending previous work to a wider range of environments and a much larger sample. Having demonstrated that we can construct SDSS-based TFRs is very useful for future TFR studies because of the large sample size available in the SDSS.

  5. A SAMPLE OF SEYFERT-2 GALAXIES WITH ULTRALUMINOUS GALAXY-WIDE NARROW-LINE REGIONS: QUASAR LIGHT ECHOES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schirmer, M.; Diaz, R.; Levenson, N. A.

    2013-01-20

    We report the discovery of Seyfert-2 galaxies in SDSS-DR8 with galaxy-wide, ultraluminous narrow-line regions (NLRs) at redshifts z = 0.2-0.6. With a space density of 4.4 Gpc{sup -3} at z {approx} 0.3, these 'green beans' (GBs) are amongst the rarest objects in the universe. We are witnessing an exceptional and/or short-lived phenomenon in the life cycle of active galactic nuclei (AGNs). The main focus of this paper is on a detailed analysis of the GB prototype galaxy J2240-0927 (z = 0.326). Its NLR extends over 26 Multiplication-Sign 44 kpc and is surrounded by an extended NLR. With a total [Omore » III] {lambda}5008 luminosity of (5.7 {+-} 0.9) Multiplication-Sign 10{sup 43} erg s{sup -1}, this is one of the most luminous NLRs known around any type-2 galaxy. Using VLT/XSHOOTER, we show that the NLR is powered by an AGN, and we derive resolved extinction, density, and ionization maps. Gas kinematics is disturbed on a global scale, and high-velocity outflows are absent or faint. This NLR is unlike any other NLR or extended emission line region known. Spectroscopy with Gemini/GMOS reveals extended, high-luminosity [O III] emission also in other GBs. WISE 24 {mu}m luminosities are 5-50 times lower than predicted by the [O III] fluxes, suggesting that the NLRs reflect earlier, very active quasar states that have strongly subsided in less than a galaxy's light-crossing time. These light echoes, or ionization echoes, are about 100 times more luminous than any other such echo known to date. X-ray data are needed for photoionization modeling and to verify the light echoes.« less

  6. Updated 34-band Photometry for the SINGS/KINGFISH Samples of Nearby Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, D. A.; Turner, J. A.; Cook, D. O.

    2017-03-01

    We present an update to the ultraviolet-to-radio database of global broadband photometry for the 79 nearby galaxies that comprise the union of the KINGFISH (Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel ) and SINGS ( Spitzer Infrared Nearby Galaxies Survey) samples. The 34-band data set presented here includes contributions from observational work carried out with a variety of facilities including GALEX , SDSS, Pan-STARRS1, NOAO , 2MASS, Wide-Field Infrared Survey Explorer , Spitzer , Herschel , Planck , JCMT , and the VLA. Improvements of note include recalibrations of previously published SINGS BVR {sub C} I {submore » C} and KINGFISH far-infrared/submillimeter photometry. Similar to previous results in the literature, an excess of submillimeter emission above model predictions is seen primarily for low-metallicity dwarf or irregular galaxies. This 33-band photometric data set for the combined KINGFISH+SINGS sample serves as an important multiwavelength reference for the variety of galaxies observed at low redshift. A thorough analysis of the observed spectral energy distributions is carried out in a companion paper.« less

  7. SDSS IV MaNGA - metallicity and nitrogen abundance gradients in local galaxies

    NASA Astrophysics Data System (ADS)

    Belfiore, Francesco; Maiolino, Roberto; Tremonti, Christy; Sánchez, Sebastian F.; Bundy, Kevin; Bershady, Matthew; Westfall, Kyle; Lin, Lihwai; Drory, Niv; Boquien, Médéric; Thomas, Daniel; Brinkmann, Jonathan

    2017-07-01

    We study the gas phase metallicity (O/H) and nitrogen abundance gradients traced by star-forming regions in a representative sample of 550 nearby galaxies in the stellar mass range 109-1011.5 M⊙ with resolved spectroscopic data from the Sloan Digital Sky Survey IV Mapping Nearby Galaxies at Apache Point Observatory survey. Using strong-line ratio diagnostics (R23 and O3N2 for metallicity and N2O2 for N/O) and referencing to the effective (half-light) radius (Re), we find that the metallicity gradient steepens with stellar mass, lying roughly flat among galaxies with log (M⋆/M⊙) = 9.0 but exhibiting slopes as steep as -0.14 dex R_e^{-1} at log (M⋆/M⊙) = 10.5 (using R23, but equivalent results are obtained using O3N2). At higher masses, these slopes remain typical in the outer regions of our sample (R > 1.5Re), but a flattening is observed in the central regions (R < 1Re). In the outer regions (R > 2.0Re), we detect a mild flattening of the metallicity gradient in stacked profiles, although with low significance. The N/O ratio gradient provides complementary constraints on the average chemical enrichment history. Unlike the oxygen abundance, the average N/O profiles do not flatten out in the central regions of massive galaxies. The metallicity and N/O profiles both depart significantly from an exponential form, suggesting a disconnect between chemical enrichment and stellar mass surface density on local scales. In the context of inside-out growth of discs, our findings suggest that central regions of massive galaxies today have evolved to an equilibrium metallicity, while the nitrogen abundance continues to increase as a consequence of delayed secondary nucleosynthetic production.

  8. Andromeda Galaxy

    NASA Image and Video Library

    2003-12-10

    This image is from NASA Galaxy Evolution Explorer is an observation of the large galaxy in Andromeda, Messier 31. The Andromeda galaxy is the most massive in the local group of galaxies that includes our Milky Way.

  9. Galaxy and Mass Assembly (GAMA): ugriz galaxy luminosity functions

    NASA Astrophysics Data System (ADS)

    Loveday, J.; Norberg, P.; Baldry, I. K.; Driver, S. P.; Hopkins, A. M.; Peacock, J. A.; Bamford, S. P.; Liske, J.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Frenk, C. S.; Gunawardhana, M.; Hill, D. T.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H. R.; Phillipps, S.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Robotham, A. S. G.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Thomas, D.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.

    2012-02-01

    Galaxy and Mass Assembly (GAMA) is a project to study galaxy formation and evolution, combining imaging data from ultraviolet to radio with spectroscopic data from the AAOmega spectrograph on the Anglo-Australian Telescope. Using data from Phase 1 of GAMA, taken over three observing seasons, and correcting for various minor sources of incompleteness, we calculate galaxy luminosity functions (LFs) and their evolution in the ugriz passbands. At low redshift, z < 0.1, we find that blue galaxies, defined according to a magnitude-dependent but non-evolving colour cut, are reasonably well fitted over a range of more than 10 magnitudes by simple Schechter functions in all bands. Red galaxies, and the combined blue plus red sample, require double power-law Schechter functions to fit a dip in their LF faintwards of the characteristic magnitude M* before a steepening faint end. This upturn is at least partly due to dust-reddened disc galaxies. We measure the evolution of the galaxy LF over the redshift range 0.002 < z < 0.5 both by using a parametric fit and by measuring binned LFs in redshift slices. The characteristic luminosity L* is found to increase with redshift in all bands, with red galaxies showing stronger luminosity evolution than blue galaxies. The comoving number density of blue galaxies increases with redshift, while that of red galaxies decreases, consistent with prevailing movement from blue cloud to red sequence. As well as being more numerous at higher redshift, blue galaxies also dominate the overall luminosity density beyond redshifts z≃ 0.2. At lower redshifts, the luminosity density is dominated by red galaxies in the riz bands, and by blue galaxies in u and g.

  10. Rest-Frame Mid-Infrared Detection of an Extremely Luminous Lyman Break Galaxy with the Spitzer Infrared Spectrograph (IRS)

    NASA Technical Reports Server (NTRS)

    Teplitz, H. I.; Charmandaris, V.; Armus, L.; Appleton, P. N.; Houck, J. R.; Soifer, B. T.; Weedman, D.; Brandl, B. R.; vanCleve, J.; Grillmair, C.; hide

    2004-01-01

    We present the first rest-frame of approximately 4 microns detection of a Lyman break galaxy. The data were obtained using the 16 microns imaging capability of the Spitzer Infrared Spectrograph. The target object, J134026.44+634433.2, is an extremely luminous Lyman break galaxy at z=2.79, first identified in Sloan Digital Sky Survey (SDSS) spectra (as reported by Bentz et al.). The source is strongly detected with a flux of 0.94 +/- 0.02 mJy. Combining Spitzer and SDSS photometry with supporting ground-based J- and K-band data, we show that the spectral energy distribution is consistent with an actively star-forming galaxy. We also detect other objects in the Spitzer field of view, including a very red mid-infrared source. We find no evidence of a strong lens among the mid-infrared sources.

  11. VizieR Online Data Catalog: Broad Hβ emission line in 102 Seyfert galaxies (Runco+, 2016)

    NASA Astrophysics Data System (ADS)

    Runco, J. N.; Cosens, M.; Bennert, V. N.; Scott, B.; Komossa, S.; Malkan, M. A.; Lazarova, M. S.; Auger, M. W.; Treu, T.; Park, D.

    2018-02-01

    A sample of 102 local (0.02=galaxies was selected from the SDSS data release six (DR6) (Adelman-McCarthy et al. 2008, Cat. II/282). SDSS spectra are obtained from a 2.5 m ground-based telescope with a 3" diameter circular optical fiber and an exposure time of 54 s. SDSS spectra cover a wavelength range of 3800-9200 Å with an instrumental resolution of 170 km/s. The 102 objects selected from SDSS were observed again between 2009 January and 2010 March with the Low Resolution Imaging Spectrometer (LRIS) at the Keck 10 m telescope using a 1"x2" wide rectangular longslit aligned with the major axis of the host galaxy (given by SDSS). For eight objects with significantly weaker or apparently absent broad Hβ emission in the Keck spectra, follow-up observations were conducted in 2013 January and March with the 3 m Shane telescope of Lick observatory using the Kast spectrograph and 60 minutes total exposure time per object. The slit was aligned either along the major axis or perpendicular to it. 1D spectra were extracted using a 4 pixel (~3") width centered on the peak flux to mimic the 3" diameter circular fiber of SDSS. (2 data files).

  12. VizieR Online Data Catalog: SDSS-based Polar Ring Catalogue (Moiseev+, 2011)

    NASA Astrophysics Data System (ADS)

    Moiseev, A. V.; Smirnova, K. I.; Smirnova, A. A.; Reshetnikov, V. P.

    2012-06-01

    Galaxies with polar rings (PRGs) are a unique class of extragalactic objects. Using these, we can investigate a wide range of problems, linked to the formation and evolution of galaxies, and we can study the properties of their dark haloes. The progress that has been made in the study of PRGs has been constrained by the small number of known objects of this type. The Polar Ring Catalogue (PRC) by Whitmore et al. (1990AJ....100.1489W) and their photographic atlas of PRGs and related objects includes 157 galaxies. At present, there are only about two dozen kinematically confirmed galaxies in this PRG class, mostly from the PRC. We present a new catalogue of PRGs, supplementing the PRC and significantly increasing the number of known candidate PRGs. The catalogue is based on the results of the original Galaxy Zoo project. Within this project, volunteers performed visual classifications of nearly a million galaxies from the Sloan Digital Sky Survey (SDSS). Based on the preliminary classifications of the Galaxy Zoo, we viewed more than 40000 images of the SDSS and selected 275 galaxies to include in our catalogue. (1 data file).

  13. Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, D. Christopher; Darvish, Behnam; Seibert, Mark

    We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observedmore » colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.« less

  14. The Comparative Observational Study of Timescale of Feedback by Bar Structure in Late-type Galaxies

    NASA Astrophysics Data System (ADS)

    Woong-bae Woong-bae Zee, Galaxy; Yoon, Suk-jin

    2018-01-01

    We investigate star formation activities of ~400 barred and ~1400 unbarred faced-on late-type galaxies from the SDSS DR13. We find that gas-poor and barred galaxies are considerably show enhanced high central star formation activities, while there is no difference among gas-rich barred and unbarred galaxies regardless of their HI gas content. This seems counter-intuitive given that gas contents simply represent the total star formation rate of galaxies and suggests that there is a time delation between the central gas migration/consumption through bar structures and the enhancement of star formation activity at the centre. We analysed the distribution of the stellar population of specific galaxies with MaNGA (Mapping Nearby Galaxies at APO) IFU survey among the total samples. The gas-poor and barred galaxies show the flatter gradient in metallicity and age with respect to the stellar mass than other types of galaxies, in that their centre is more metal-rich and younger. There is an age difference, about 5-6 Gyrs, between centrally star-forming gas-poor barred galaxies and gas-rich galaxies and this value is a plausible candidate of the longevity of bar feedback. The results indicate that the gas migration/mixing driven by bar structure plays a significant role in the evolution of galaxies in a specific of timescale.

  15. Recovering Galaxy Properties Using Gaussian Process SED Fitting

    NASA Astrophysics Data System (ADS)

    Iyer, Kartheik; Awan, Humna

    2018-01-01

    Information about physical quantities like the stellar mass, star formation rates, and ages for distant galaxies is contained in their spectral energy distributions (SEDs), obtained through photometric surveys like SDSS, CANDELS, LSST etc. However, noise in the photometric observations often is a problem, and using naive machine learning methods to estimate physical quantities can result in overfitting the noise, or converging on solutions that lie outside the physical regime of parameter space.We use Gaussian Process regression trained on a sample of SEDs corresponding to galaxies from a Semi-Analytic model (Somerville+15a) to estimate their stellar masses, and compare its performance to a variety of different methods, including simple linear regression, Random Forests, and k-Nearest Neighbours. We find that the Gaussian Process method is robust to noise and predicts not only stellar masses but also their uncertainties. The method is also robust in the cases where the distribution of the training data is not identical to the target data, which can be extremely useful when generalized to more subtle galaxy properties.

  16. SPIN ALIGNMENTS OF SPIRAL GALAXIES WITHIN THE LARGE-SCALE STRUCTURE FROM SDSS DR7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Youcai; Yang, Xiaohu; Luo, Wentao

    Using a sample of spiral galaxies selected from the Sloan Digital Sky Survey Data Release 7 and Galaxy Zoo 2, we investigate the alignment of spin axes of spiral galaxies with their surrounding large-scale structure, which is characterized by the large-scale tidal field reconstructed from the data using galaxy groups above a certain mass threshold. We find that the spin axes only have weak tendencies to be aligned with (or perpendicular to) the intermediate (or minor) axis of the local tidal tensor. The signal is the strongest in a cluster environment where all three eigenvalues of the local tidal tensor aremore » positive. Compared to the alignments between halo spins and the local tidal field obtained in N-body simulations, the above observational results are in best agreement with those for the spins of inner regions of halos, suggesting that the disk material traces the angular momentum of dark matter halos in the inner regions.« less

  17. The effects of assembly bias on the inference of matter clustering from galaxy-galaxy lensing and galaxy clustering

    NASA Astrophysics Data System (ADS)

    McEwen, Joseph E.; Weinberg, David H.

    2018-07-01

    The combination of galaxy-galaxy lensing and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modelling can extend the approach down to non-linear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with the large-scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older haloes affects the cutoff of the mean occupation function ⟨Ncen(Mmin)⟩ for central galaxies, with haloes in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment-dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h-1 Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2 per cent or better. For a sample of red Mr ≤ -20 galaxies, we achieve 2 per cent recovery at r ≳ 2 h-1 Mpc with EDHOD modelling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1 h-1 Mpc, to within the uncertainties set by our finite simulation volume.

  18. The effects of assembly bias on the inference of matter clustering from galaxy-galaxy lensing and galaxy clustering

    NASA Astrophysics Data System (ADS)

    McEwen, Joseph E.; Weinberg, David H.

    2018-04-01

    The combination of galaxy-galaxy lensing (GGL) and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modeling can extend the approach down to nonlinear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with large scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older halos affects the cutoff of the mean occupation function for central galaxies, with halos in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h^{-1} Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2% or better. For a sample of red Mr ≤ -20 galaxies we achieve 2% recovery at r ≳ 2 h^{-1} Mpc with EDHOD modeling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1h-1Mpc, to within the uncertainties set by our finite simulation volume.

  19. Optical spectroscopy and initial mass function of z = 0.4 red galaxies

    NASA Astrophysics Data System (ADS)

    Tang, Baitian; Worthey, Guy

    2017-05-01

    Spectral absorption features can be used to constrain the stellar initial mass function (IMF) in the integrated light of galaxies. Spectral indices used at low redshift are in the far red, and therefore increasingly hard to detect at higher and higher redshifts as they pass out of atmospheric transmission and CCD detector wavelength windows. We employ IMF-sensitive indices at bluer wavelengths. We stack spectra of red, quiescent galaxies around z = 0.4 from the DEEP2 Galaxy Redshift Survey. The z = 0.4 red galaxies have 2 Gyr average ages so that they cannot be passively evolving precursors of nearby galaxies. They are slightly enhanced in C and Na, and slightly depressed in Ti. Split by luminosity, the fainter half appears to be older, a result that should be checked with larger samples in the future. We uncover no evidence for IMF evolution between z = 0.4 and now, but we highlight the importance of sample selection, finding that an SDSS sample culled to select archetypal elliptical galaxies at z ˜ 0 is offset towards a more bottom-heavy IMF. Other samples, including our DEEP2 sample, show an offset towards a more spiral galaxy-like IMF. All samples confirm that the reddest galaxies look bottom-heavy compared with bluer ones. Sample selection also influences age-colour trends: red, luminous galaxies always look old and metal rich, but the bluer ones can be more metal poor, the same abundance or more metal rich, depending on how they are selected.

  20. Galaxy NGC 55

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the nearby edge-on spiral galaxy NGC 55 was taken by Galaxy Evolution Explorer on September 14, 2003, during 2 orbits. This galaxy lies 5.4 million light years from our Milky Way galaxy and is a member of the 'local group' of galaxies that also includes the Andromeda galaxy (M31), the Magellanic clouds, and 40 other galaxies. The spiral disk of NGC 55 is inclined to our line of sight by approximately 80 degrees and so this galaxy looks cigar-shaped. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors, (colored red). The bright blue regions in this image are areas of active star formation detected in the ultraviolet by Galaxy Evolution Explorer. The red stars in this image are foreground stars in our own Milky Way galaxy.

  1. Discovery of a population of bulgeless galaxies with extremely red MID-IR colors: Obscured AGN activity in the low-mass regime?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satyapal, S.; Secrest, N. J.; McAlpine, W.

    2014-04-01

    In contrast to massive, bulge hosting galaxies, very few supermassive black holes (SMBHs) are known in either low-mass or bulgeless galaxies. Such a population could provide clues to the origins of SMBHs and to secular pathways for their growth. Using the all-sky Wide-field Infrared Survey Explorer (WISE ) survey, and bulge-to-disk decompositions from the Sloan Digital Sky Survey (SDSS) Data Release 7, we report the discovery of a population of local (z < 0.3) bulgeless disk galaxies with extremely red mid-infrared colors which are highly suggestive of a dominant active galactic nucleus (AGN), despite having no optical AGN signatures inmore » their SDSS spectra. Using various mid-infrared selection criteria from the literature, there are between 30 and over 300 bulgeless galaxies with possible AGNs. Other known scenarios that can heat the dust to high temperatures do not appear to explain the observed colors of this sample. If these galaxies are confirmed to host AGNs, this study will provide a breakthrough in characterizing the properties of SMBHs in the low bulge mass regime and in understanding their relation with their host galaxies. Mid-infrared selection identifies AGNs that dominate their host galaxy's emission and therefore reveal a different AGN population than that uncovered by optical studies. We find that the fraction of all galaxies identified as candidate AGNs by WISE is highest at lower stellar masses and drops dramatically in higher mass galaxies, in striking contrast to the findings from optical studies.« less

  2. Joint scaling properties of Sunyaev-Zel'dovich and optical richness observables in an optically-selected galaxy cluster sample

    NASA Astrophysics Data System (ADS)

    Greer, Christopher Holland

    Galaxy cluster abundance measurements are an important tool used to study the universe as a whole. The advent of multiple large-area galaxy cluster surveys across multiple ensures that cluster measurements will play a key role in understanding the dark energy currently thought to be accelerating the universe. The main systematic limitation at the moment is the understanding of the observable-mass relation. Recent theoretical work has shown that combining samples of clusters from surveys at different wavelengths can mitigate this systematic limitation. Precise measurements of the scatter in the observable-mass relation can lead to further improvements. We present Combined Array for Research in Millimeter-wave Astronomy (CARMA) observations of the Sunyaev-Zel'dovich (SZ) signal for 28 galaxy clusters selected from the Sloan Digital Sky Survey (SDSS) maxBCG catalog. This cluster sample represents a complete, volume-limited sample of the richest galaxy clusters in the SDSS between redshifts 0.2 ≥ z ≥ 0.3, as measured by the RedMaPPer algorithm being developed for the Dark Energy Survey (DES; Rykoff et al. 2012). We develop a formalism that uses the cluster abundance in tandem with the galaxy richness measurements from SDSS and the SZ signal measurements from CARMA to calibrate the SZ and optical observable-mass relations. We find that the scatter in richness at fixed mass is σlog λ| M = 0.24+0.09-0.07 using SZ signal calculated by integrating a cluster pressure profile to a radius of 1 Mpc at the redshift of the cluster. We also calculate the SZ signal at R500 and find that the choice of scaling relation used to determined R500 has a non-trivial effect on the constraints of the observable-mass relationship. Finally, we investigate the source of disagreement between the positions of the SZ signal and SDSS Brightest Cluster Galaxies (BCGs). Improvements to the richness calculator that account for blue BCGs in the cores of cool-core X-ray clusters, as well as

  3. Luminous Blue Compact Galaxies: Probes of galaxy assembly

    NASA Astrophysics Data System (ADS)

    Newton, Cassidy Louann

    The life cycles of galaxies over cosmic time is yet to be fully understood. How did galaxies evolve from their formative stages to the structures we observe today? This dissertation details the identification and analysis of a sample of Luminous Blue Compact Galaxies (LBCGs), a class of galaxy in the local (z < 0.05) universe exhibiting blue colors, high surface brightness, and high star formation rates. These systems appear to be very similar in their global properties to the early evolutionary phases of most galaxies, however their locality permits detailed investigation over a broad range of the electromagnetic spectrum in contrast to the smaller angular sizes and extreme faintness of distant galaxies. We use a combination of optical, ultraviolet, and infrared data to investigate a sample of LBCGs utilizing space and ground-based data.

  4. TOMOGRAPHY OF THE FERMI-LAT γ-RAY DIFFUSE EXTRAGALACTIC SIGNAL VIA CROSS CORRELATIONS WITH GALAXY CATALOGS

    DOE PAGES

    Xia, Jun-Qing; Cuoco, Alessandro; Branchini, Enzo; ...

    2015-03-24

    Building on our previous cross-correlation analysis (Xia et al. 2011) between the isotropic γ-ray background (IGRB) and different tracers of the large-scale structure of the universe, we update our results using 60 months of data from the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi). For this study, we perform a cross-correlation analysis both in configuration and spherical harmonics space between the IGRB and objects that may trace the astrophysical sources of the IGRB: QSOs in the Sloan Digital Sky Survey (SDSS) DR6, the SDSS DR8 Main Galaxy Sample, luminous red galaxies (LRGs) in the SDSS catalog, infrared-selected galaxies in the Two Micron All Sky Survey (2MASS), and radio galaxies in the NRAO VLA Sky Survey (NVSS). The benefit of correlating the Fermi-LAT signal with catalogs of objects at various redshifts is to provide tomographic information on the IGRB, which is crucial in separating the various contributions and clarifying its origin. The main result is that, unlike in our previous analysis, we now observe a significant (>3.5σ) cross-correlation signal on angular scales smaller than 1° in the NVSS, 2MASS, and QSO cases and, at lower statistical significance (~3.0σ), with SDSS galaxies. The signal is stronger in two energy bands, E > 0.5 GeV and E > 1 GeV, but it is also seen at E > 10 GeV. No cross-correlation signal is detected between Fermi data and the LRGs. These results are robust against the choice of the statistical estimator, estimate of errors, map cleaning procedure, and instrumental effects. Finally, we test the hypothesis that the IGRB observed by Fermi-LAT originates from the summed contributions of three types of unresolved extragalactic sources: BL Lacertae objects (BL Lacs), flat spectrum radio quasars (FSRQs), and star-forming galaxies (SFGs). Finally, we find that a model in which the IGRB is mainly produced by SFGs (more » $$72_{-37}^{+23}$$% with 2σ errors), with BL Lacs and FSRQs giving a

  5. Galaxy NGC 55

    NASA Image and Video Library

    2003-12-10

    This image of the nearby edge-on spiral galaxy NGC 55 was taken by Galaxy Evolution Explorer on September 14, 2003, during 2 orbits. This galaxy lies 5.4 million light years from our Milky Way galaxy and is a member of the "local group" of galaxies that also includes the Andromeda galaxy (M31), the Magellanic clouds, and 40 other galaxies. The spiral disk of NGC 55 is inclined to our line of sight by approximately 80 degrees and so this galaxy looks cigar-shaped. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors, (colored red). The bright blue regions in this image are areas of active star formation detected in the ultraviolet by Galaxy Evolution Explorer. The red stars in this image are foreground stars in our own Milky Way galaxy. http://photojournal.jpl.nasa.gov/catalog/PIA04923

  6. Isolated galaxies, pairs, and groups of galaxies

    NASA Technical Reports Server (NTRS)

    Kuneva, I.; Kalinkov, M.

    1990-01-01

    The authors searched for isolated galaxies, pairs and groups of galaxies in the CfA survey (Huchra et al. 1983). It was assumed that the distances to galaxies are given by R = V/H sub o, where H sub o = 100 km s(exp -1) Mpc(exp -1) and R greater than 6 Mpc. The searching procedure is close to those, applied to find superclusters of galaxies (Kalinkov and Kuneva 1985, 1986). A sphere with fixed radius r (asterisk) is described around each galaxy. The mean spatial density in the sphere is m. Let G (sup 1) be any galaxy and G (sup 2) be its nearest neighbor at a distance R sub 2. If R sub 2 exceeds the 95 percent quintile in the distribution of the distances of the second neighbors, then G (sup 1) is an isolated galaxy. Let the midpoint of G (sup 1) and G (sup 2) be O sub 2 and r sub 2=R sub 2/2. For the volume V sub 2, defined with the radius r sub 2, the density D sub 2 less than k mu, the galaxy G (sup 2) is a single one and the procedure for searching for pairs and groups, beginning with this object is over and we have to pass to another object. Here the authors present the groups - isolated and nonisolated - with n greater than 3, found in the CfA survey in the Northern galactic hemisphere. The parameters used are k = 10 and r (asterisk) = 5 Mpc. Table 1 contains: (1) the group number, (2) the galaxy, nearest to the multiplet center, (3) multiplicity n, (4) the brightest galaxy if it is not listed in (2); (5) and (6) are R.A. and Dec. (1950), (7) - mean distance D in Mpc. Further there are the mean density rho (8) of the multiplet (galaxies Mpc (exp -3), (9) the density rho (asterisk) for r (asterisk) = 5 Mpc and (10) the density rho sub g for the group with its nearest neighbor. The parenthesized digits for densities in the last three columns are powers of ten.

  7. Analysis of the star formation histories of galaxies in different environments: from low to high density

    NASA Astrophysics Data System (ADS)

    Ortega-Minakata, René A.

    2015-11-01

    In this thesis, a value-added cataloge of 403,372 SDSS-DR7 galaxies is presented. This catalogue incorporates information on their stellar populations, including their star formation histories, their dominant emission-line activity type, inferred morphology and a measurement of their environmental density. The sample that formed this catalogue was selected from the SDSS-DR7 (Legacy) spectroscopic catalogue of galaxies in the Northern Galactic Cap, selecting only galaxies with high-quality spectra and redshift determination, and photometric measurements with small errors. Also, galaxies near the edge of the photometric survey footprint were excluded to avoid errors in the determination of their environment. Only galaxies in the 0.03-0.30 redshift range were considered. Starlight fits of the spectra of these galaxies were used to obtain information on their star formation history and stellar mass, velocity dispersion and mean age. From the fit residuals, emission-line fluxes were measured and used to obtain the dominant activity type of these galaxies using the BPT diagnostic diagram. A neighbour search code was written and applied to the catalogue to measure the local environmental density of these galaxies. This code counts the number of neighbours within a fixed search radius and a radial velocity range centered at each galaxy's radial velocity. A projected radius of 1.5 Mpc and a range of ± 2,500 km/s, both centered at the redshift of the target galaxy, were used to search and count all the neighbours of each galaxy in the catalogue. The neighbours were counted from the photometric catalogue of the SDSS-DR7 using photometric redshifts, to avoid incompleteness of the spectroscopic catalogue. The morphology of the galaxies in the catalogue was inferred by inverting previously found relations between subsamples of galaxies with visual morphology classification and their optical colours and concentration of light. The galaxies in the catalogue were matched to six

  8. Anisotropic Galaxy-Galaxy Lensing in the Illustris-1 Simulation

    NASA Astrophysics Data System (ADS)

    Brainerd, Tereasa G.

    2017-06-01

    In Cold Dark Matter universes, the dark matter halos of galaxies are expected to be triaxial, leading to a surface mass density that is not circularly symmetric. In principle, this "flattening" of the dark matter halos of galaxies should be observable as an anisotropy in the weak galaxy-galaxy lensing signal. The degree to which the weak lensing signal is observed to be anisotropic, however, will depend strongly on the degree to which mass (i.e., the dark matter) is aligned with light in the lensing galaxies. That is, the anisotropy will be maximized when the major axis of the projected mass distribution is well aligned with the projected light distribution of the lens galaxies. Observational studies of anisotropic galaxy-galaxy lensing have found an anisotropic weak lensing signal around massive, red galaxies. Detecting the signal around blue, disky galaxies has, however, been more elusive. A possible explanation for this is that mass and light are well aligned within red galaxies and poorly aligned within blue galaxies (an explanation that is supported by studies of the locations of satellites of large, relatively isolated galaxies). Here we compute the weak lensing signal of isolated central galaxies in the Illustris-1 simulation. We compute the anisotropy of the weak lensing signal using two definitions of the geometry: [1] the major axis of the projected dark matter mass distribution and [2] the major axis of the projected stellar mass. On projected scales less than 15% of the virial radius, an anisotropy of order 10% is found for both definitions of the geometry. On larger scales, the anisotropy computed relative to the major axis of the projected light distribution is less than the anisotropy computed relative to the major axis of the projected dark matter. On projected scales of order the virial radius, the anisotropy obtained when using the major axis of the light is an order of magnitude less than the anisotropy obtained when using the major axis of the

  9. Validity of strong lensing statistics for constraints on the galaxy evolution model

    NASA Astrophysics Data System (ADS)

    Matsumoto, Akiko; Futamase, Toshifumi

    2008-02-01

    We examine the usefulness of the strong lensing statistics to constrain the evolution of the number density of lensing galaxies by adopting the values of the cosmological parameters determined by recent Wilkinson Microwave Anisotropy Probe observation. For this purpose, we employ the lens-redshift test proposed by Kochanek and constrain the parameters in two evolution models, simple power-law model characterized by the power-law indexes νn and νv, and the evolution model by Mitchell et al. based on cold dark matter structure formation scenario. We use the well-defined lens sample from the Sloan Digital Sky Survey (SDSS) and this is similarly sized samples used in the previous studies. Furthermore, we adopt the velocity dispersion function of early-type galaxies based on SDSS DR1 and DR5. It turns out that the indexes of power-law model are consistent with the previous studies, thus our results indicate the mild evolution in the number and velocity dispersion of early-type galaxies out to z = 1. However, we found that the values for p and q used by Mitchell et al. are inconsistent with the presently available observational data. More complete sample is necessary to withdraw more realistic determination on these parameters.

  10. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmic flows and cosmic web from luminous red galaxies

    NASA Astrophysics Data System (ADS)

    Ata, Metin; Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Rodríguez-Torres, Sergio; Angulo, Raul E.; Ferraro, Simone; Gil-Marín, Hector; McDonald, Patrick; Hernández Monteagudo, Carlos; Müller, Volker; Yepes, Gustavo; Autefage, Mathieu; Baumgarten, Falk; Beutler, Florian; Brownstein, Joel R.; Burden, Angela; Eisenstein, Daniel J.; Guo, Hong; Ho, Shirley; McBride, Cameron; Neyrinck, Mark; Olmstead, Matthew D.; Padmanabhan, Nikhil; Percival, Will J.; Prada, Francisco; Rossi, Graziano; Sánchez, Ariel G.; Schlegel, David; Schneider, Donald P.; Seo, Hee-Jong; Streblyanska, Alina; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana

    2017-06-01

    We present a Bayesian phase-space reconstruction of the cosmic large-scale matter density and velocity fields from the Sloan Digital Sky Survey-III Baryon Oscillations Spectroscopic Survey Data Release 12 CMASS galaxy clustering catalogue. We rely on a given Λ cold dark matter cosmology, a mesh resolution in the range of 6-10 h-1 Mpc, and a lognormal-Poisson model with a redshift-dependent non-linear bias. The bias parameters are derived from the data and a general renormalized perturbation theory approach. We use combined Gibbs and Hamiltonian sampling, implemented in the argo code, to iteratively reconstruct the dark matter density field and the coherent peculiar velocities of individual galaxies, correcting hereby for coherent redshift space distortions. Our tests relying on accurate N-body-based mock galaxy catalogues show unbiased real space power spectra of the non-linear density field up to k ˜ 0.2 h Mpc-1, and vanishing quadrupoles down to r ˜ 20 h-1 Mpc. We also demonstrate that the non-linear cosmic web can be obtained from the tidal field tensor based on the Gaussian component of the reconstructed density field. We find that the reconstructed velocities have a statistical correlation coefficient compared to the true velocities of each individual light-cone mock galaxy of r ˜ 0.68 including about 10 per cent of satellite galaxies with virial motions (about r = 0.75 without satellites). The power spectra of the velocity divergence agree well with theoretical predictions up to k ˜ 0.2 h Mpc-1. This work will be especially useful to improve, for example, baryon acoustic oscillation reconstructions, kinematic Sunyaev-Zeldovich, integrated Sachs-Wolfe measurements or environmental studies.

  11. A Bayesian Hierarchical Approach to Galaxy-Galaxy Lensing

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Leauthaud, Alexie

    2018-04-01

    We present a Bayesian hierarchical inference formalism to study the relation between the properties of dark matter halos and those of their central galaxies using weak gravitational lensing. Unlike traditional methods, this technique does not resort to stacking the weak lensing signal in bins, and thus allows for a more efficient use of the information content in the data. Our method is particularly useful for constraining scaling relations between two or more galaxy properties and dark matter halo mass, and can also be used to constrain the intrinsic scatter in these scaling relations. We show that, if observational scatter is not properly accounted for, the traditional stacking method can produce biased results when exploring correlations between multiple galaxy properties and halo mass. For example, this bias can affect studies of the joint correlation between galaxy mass, halo mass, and galaxy size, or galaxy colour. In contrast, our method easily and efficiently handles the intrinsic and observational scatter in multiple galaxy properties and halo mass. We test our method on mocks with varying degrees of complexity. We find that we can recover the mean halo mass and concentration, each with a 0.1 dex accuracy, and the intrinsic scatter in halo mass with a 0.05 dex accuracy. In its current version, our method will be most useful for studying the weak lensing signal around central galaxies in groups and clusters, as well as massive galaxies samples with log M* > 11, which have low satellite fractions.

  12. A Bayesian hierarchical approach to galaxy-galaxy lensing

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Leauthaud, Alexie

    2018-07-01

    We present a Bayesian hierarchical inference formalism to study the relation between the properties of dark matter haloes and those of their central galaxies using weak gravitational lensing. Unlike traditional methods, this technique does not resort to stacking the weak lensing signal in bins, and thus allows for a more efficient use of the information content in the data. Our method is particularly useful for constraining scaling relations between two or more galaxy properties and dark matter halo mass, and can also be used to constrain the intrinsic scatter in these scaling relations. We show that, if observational scatter is not properly accounted for, the traditional stacking method can produce biased results when exploring correlations between multiple galaxy properties and halo mass. For example, this bias can affect studies of the joint correlation between galaxy mass, halo mass, and galaxy size, or galaxy colour. In contrast, our method easily and efficiently handles the intrinsic and observational scatter in multiple galaxy properties and halo mass. We test our method on mocks with varying degrees of complexity. We find that we can recover the mean halo mass and concentration, each with a 0.1 dex accuracy, and the intrinsic scatter in halo mass with a 0.05 dex accuracy. In its current version, our method will be most useful for studying the weak lensing signal around central galaxies in groups and clusters, as well as massive galaxies samples with log M* > 11, which have low satellite fractions.

  13. Starburst galaxies

    NASA Technical Reports Server (NTRS)

    Weedman, Daniel W.

    1987-01-01

    The infrared properties of star-forming galaxies, primarily as determined by the Infrared Astronomy Satellite (IRAS), are compared to X-ray, optical, and radio properties. Luminosity functions are reviewed and combined with those derived from optically discovered samples using 487 Markarian galaxies with redshifts and published IRAS 60 micron fluxes, and 1074 such galaxies in the Center for Astrophysics redshift survey. It is found that the majority of infrared galaxies which could be detected are low luminosity sources already known from the optical samples, but non-infrared surveys have found only a very small fraction of the highest luminosity sources. Distributions of infrared to optical fluxes and available spectra indicate that the majority of IRAS-selected galaxies are starburst galaxies. Having a census of starburst galaxies and associated dust allow severl important global calculations. The source counts are predicted as a function of flux limits for both infrared and radio fluxes. These galaxies are found to be important radio sources at faint flux limits. Taking the integrated flux to z = 3 indicates that such galaxies are a significant component of the diffuse X-ray background, and could be the the dominant component depending on the nature of the X-ray spectra and source evolution.

  14. Andromeda Galaxy

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    This image is a Galaxy Evolution Explorer observation of the large galaxy in Andromeda, Messier 31. The Andromeda galaxy is the most massive in the local group of galaxies that includes our Milky Way. Andromeda is the nearest large galaxy to our own. The image is a mosaic of 10 separate Galaxy Evolution Explorer images taken in September, 2003. The color image (with near ultraviolet shown by red and far ultraviolet shown by blue) shows blue regions of young, hot, high mass stars tracing out the spiral arms where star formation is occurring, and the central orange-white 'bulge' of old, cooler stars formed long ago. The star forming arms of Messier 31 are unusual in being quite circular rather than the usual spiral shape. Several companion galaxies can also be seen. These include Messier 32, a dwarf elliptical galaxy directly below the central bulge and just outside the spiral arms, and Messier 110 (M110), which is above and to the right of the center. M110 has an unusual far ultraviolet bright core in an otherwise 'red,' old star halo. Many other regions of star formation can be seen far outside the main body of the galaxy.

  15. The dwarf galaxy population of nearby galaxy clusters

    NASA Astrophysics Data System (ADS)

    Lisker, Thorsten; Wittmann, Carolin; Pak, Mina; Janz, Joachim; Bialas, Daniel; Peletier, Reynier; Grebel, Eva; Falcon Barroso, Jesus; Toloba, Elisa; Smakced Collaboration, Focus Collaboration

    2015-01-01

    The Fornax, Virgo, Ursa Major and Perseus galaxy clusters all have very different characteristics, in terms of their density, mass, and large-scale environment. We can regard these clusters as laboratories for studying environmental influence on galaxy evolution, using the sensitive low-mass galaxies as probes for external mechanisms. Here we report on recent and ongoing observational studies of the said clusters with imaging and spectroscopy, as well as on the interpretation of present-day cluster galaxy populations with the aid of cosmological simulations.Multicolor imaging data allow us to identify residual star formation in otherwise red early-type dwarf galaxies, which hold clues to the strength of gas stripping processes. Major-axis spectra and 2D kinematical maps provide insight regarding the amount of rotational support and how much dynamical heating a dwarf galaxy may have experienced. To this end, dedicated N-body simulations that follow the evolution of galaxies since early epochs reveal their path through parameter space, and can be compared to observations in order to understand the time-integrated effect of environmental influence.

  16. SDSS-IV MaNGA: Probing the Kinematic Morphology–Density Relation of Early-type Galaxies with MaNGA

    NASA Astrophysics Data System (ADS)

    Greene, J. E.; Leauthaud, A.; Emsellem, E.; Goddard, D.; Ge, J.; Andrews, B. H.; Brinkman, J.; Brownstein, J. R.; Greco, J.; Law, D.; Lin, Y.-T.; Masters, K. L.; Merrifield, M.; More, S.; Okabe, N.; Schneider, D. P.; Thomas, D.; Wake, D. A.; Yan, R.; Drory, N.

    2017-12-01

    The “kinematic” morphology–density relation for early-type galaxies posits that those galaxies with low angular momentum are preferentially found in the highest-density regions of the universe. We use a large sample of galaxy groups with halo masses {10}12.5< {M}{halo}< {10}14.5 {h}-1 {M}ȯ observed with the Mapping Nearby Galaxies at APO (MaNGA) survey to examine whether there is a correlation between local environment and rotational support that is independent of stellar mass. We find no compelling evidence for a relationship between the angular momentum content of early-type galaxies and either local overdensity or radial position within the group at fixed stellar mass.

  17. THE SWIFT AGN AND CLUSTER SURVEY. II. CLUSTER CONFIRMATION WITH SDSS DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, Rhiannon D.; Dai, Xinyu; Kochanek, Christopher S.

    2016-01-15

    We study 203 (of 442) Swift AGN and Cluster Survey extended X-ray sources located in the SDSS DR8 footprint to search for galaxy over-densities in three-dimensional space using SDSS galaxy photometric redshifts and positions near the Swift cluster candidates. We find 104 Swift clusters with a >3σ galaxy over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmation as galaxy clusters. We present a series of cluster properties including the redshift, brightest cluster galaxy (BCG) magnitude, BCG-to-X-ray center offset, optical richness, and X-ray luminosity. We also detect red sequences in ∼85% ofmore » the 104 confirmed clusters. The X-ray luminosity and optical richness for the SDSS confirmed Swift clusters are correlated and follow previously established relations. The distribution of the separations between the X-ray centroids and the most likely BCG is also consistent with expectation. We compare the observed redshift distribution of the sample with a theoretical model, and find that our sample is complete for z ≲ 0.3 and is still 80% complete up to z ≃ 0.4, consistent with the SDSS survey depth. These analysis results suggest that our Swift cluster selection algorithm has yielded a statistically well-defined cluster sample for further study of cluster evolution and cosmology. We also match our SDSS confirmed Swift clusters to existing cluster catalogs, and find 42, 23, and 1 matches in optical, X-ray, and Sunyaev–Zel’dovich catalogs, respectively, and so the majority of these clusters are new detections.« less

  18. A 30 kpc Chain of "Beads on a String" Star Formation between Two Merging Early Type Galaxies in the Core of a Strong-lensing Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    Tremblay, Grant R.; Gladders, Michael D.; Baum, Stefi A.; O'Dea, Christopher P.; Bayliss, Matthew B.; Cooke, Kevin C.; Dahle, Håkon; Davis, Timothy A.; Florian, Michael; Rigby, Jane R.; Sharon, Keren; Soto, Emmaris; Wuyts, Eva

    2014-08-01

    New Hubble Space Telescope ultraviolet and optical imaging of the strong-lensing galaxy cluster SDSS J1531+3414 (z = 0.335) reveals two centrally dominant elliptical galaxies participating in an ongoing major merger. The interaction is at least somewhat rich in cool gas, as the merger is associated with a complex network of 19 massive superclusters of young stars (or small tidal dwarf galaxies) separated by ~1 kpc in projection from one another, combining to an estimated total star formation rate of ~5 M ⊙ yr-1. The resolved young stellar superclusters are threaded by narrow Hα, [O II], and blue excess filaments arranged in a network spanning ~27 kpc across the two merging galaxies. This morphology is strongly reminiscent of the well-known "beads on a string" mode of star formation observed on kiloparsec scales in the arms of spiral galaxies, resonance rings, and in tidal tails between interacting galaxies. Nevertheless, the arrangement of this star formation relative to the nuclei of the two galaxies is difficult to interpret in a dynamical sense, as no known "beads on a string" systems associated with kiloparsec-scale tidal interactions exhibit such lopsided morphology relative to the merger participants. In this Letter, we present the images and follow-up spectroscopy and discuss possible physical interpretations for the unique arrangement of the young stellar clusters. While we suggest that this morphology is likely to be dynamically short-lived, a more quantitative understanding awaits necessary multiwavelength follow-up, including optical integral field spectroscopy, ALMA submillimeter interferometry, and Chandra X-ray imaging.

  19. A class of compact dwarf galaxies from disruptive processes in galaxy clusters.

    PubMed

    Drinkwater, M J; Gregg, M D; Hilker, M; Bekki, K; Couch, W J; Ferguson, H C; Jones, J B; Phillipps, S

    2003-05-29

    Dwarf galaxies have attracted increased attention in recent years, because of their susceptibility to galaxy transformation processes within rich galaxy clusters. Direct evidence for these processes, however, has been difficult to obtain, with a small number of diffuse light trails and intra-cluster stars being the only signs of galaxy disruption. Furthermore, our current knowledge of dwarf galaxy populations may be very incomplete, because traditional galaxy surveys are insensitive to extremely diffuse or compact galaxies. Aware of these concerns, we recently undertook an all-object survey of the Fornax galaxy cluster. This revealed a new population of compact members, overlooked in previous conventional surveys. Here we demonstrate that these 'ultra-compact' dwarf galaxies are structurally and dynamically distinct from both globular star clusters and known types of dwarf galaxy, and thus represent a new class of dwarf galaxy. Our data are consistent with the interpretation that these are the remnant nuclei of disrupted dwarf galaxies, making them an easily observed tracer of galaxy disruption.

  20. Galaxy NGC 247

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the dwarf spiral galaxy NGC 247 was taken by Galaxy Evolution Explorer on October 13, 2003, in a single orbit exposure of 1600 seconds. The region that looks like a 'hole' in the upper part of the galaxy is a location with a deficit of gas and therefore a lower star formation rate and ultraviolet brightness. Optical images of this galaxy show a bright star on the southern edge. This star is faint and red in the Galaxy Evolution Explorer ultraviolet image, revealing that it is a foreground star in our Milky Way galaxy. The string of background galaxies to the North-East (upper left) of NGC 247 is 355 million light years from our Milky Way galaxy whereas NGC 247 is a mere 9 million light years away. The faint blue light that can be seen in the Galaxy Evolution Explorer image of the upper two of these background galaxies may indicate that they are in the process of merging together.

  1. Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Huchtmeier, W. K.; Richter, O. G.; Materne, J.

    1981-09-01

    The large-scale structure of the universe is dominated by clustering. Most galaxies seem to be members of pairs, groups, clusters, and superclusters. To that degree we are able to recognize a hierarchical structure of the universe. Our local group of galaxies (LG) is centred on two large spiral galaxies: the Andromeda nebula and our own galaxy. Three sr:naller galaxies - like M 33 - and at least 23 dwarf galaxies (KraanKorteweg and Tammann, 1979, Astronomische Nachrichten, 300, 181) can be found in the evironment of these two large galaxies. Neighbouring groups have comparable sizes (about 1 Mpc in extent) and comparable numbers of bright members. Small dwarf galaxies cannot at present be observed at great distances.

  2. Galaxy And Mass Assembly (GAMA): the signatures of galaxy interactions as viewed from small scale galaxy clustering

    NASA Astrophysics Data System (ADS)

    Gunawardhana, M. L. P.; Norberg, P.; Zehavi, I.; Farrow, D. J.; Loveday, J.; Hopkins, A. M.; Davies, L. J. M.; Wang, L.; Alpaslan, M.; Bland-Hawthorn, J.; Brough, S.; Holwerda, B. W.; Owers, M. S.; Wright, A. H.

    2018-06-01

    Statistical studies of galaxy-galaxy interactions often utilise net change in physical properties of progenitors as a function of the separation between their nuclei to trace both the strength and the observable timescale of their interaction. In this study, we use two-point auto, cross and mark correlation functions to investigate the extent to which small-scale clustering properties of star forming galaxies can be used to gain physical insight into galaxy-galaxy interactions between galaxies of similar optical brightness and stellar mass. The Hα star formers, drawn from the highly spatially complete Galaxy And Mass Assembly (GAMA) survey, show an increase in clustering on small separations. Moreover, the clustering strength shows a strong dependence on optical brightness and stellar mass, where (1) the clustering amplitude of optically brighter galaxies at a given separation is larger than that of optically fainter systems, (2) the small scale clustering properties (e.g. the strength, the scale at which the signal relative to the fiducial power law plateaus) of star forming galaxies appear to differ as a function of increasing optical brightness of galaxies. According to cross and mark correlation analyses, the former result is largely driven by the increased dust content in optically bright star forming galaxies. The latter could be interpreted as evidence of a correlation between interaction-scale and optical brightness of galaxies, where physical evidence of interactions between optically bright star formers, likely hosted within relatively massive halos, persist over larger separations than those between optically faint star formers.

  3. On the formation mechanisms of compact elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Ferré-Mateu, Anna; Forbes, Duncan A.; Romanowsky, Aaron J.; Janz, Joachim; Dixon, Christopher

    2018-01-01

    In order to investigate the formation mechanisms of the rare compact elliptical (cE) galaxies, we have compiled a sample of 25 cEs with good SDSS spectra, covering a range of stellar masses, sizes and environments. They have been visually classified according to the interaction with their host, representing different evolutionary stages. We have included clearly disrupted galaxies, galaxies that despite not showing signs of interaction are located close to a massive neighbour (thus are good candidates for a stripping process), and cEs with no host nearby. For the latter, tidal stripping is less likely to have happened and instead they could simply represent the very low-mass, faint end of the ellipticals. We study a set of properties (structural parameters, stellar populations, star formation histories and mass ratios) that can be used to discriminate between an intrinsic or stripped origin. We find that one diagnostic tool alone is inconclusive for the majority of objects. However, if we combine all the tools a clear picture emerges. The most plausible origin, as well as the evolutionary stage and progenitor type, can be then determined. Our results favour the stripping mechanism for those galaxies in groups and clusters that have a plausible host nearby, but favours an intrinsic origin for those rare cEs without a plausible host and that are located in looser environments.

  4. Galaxy properties from J-PAS narrow-band photometry

    NASA Astrophysics Data System (ADS)

    Mejía-Narváez, A.; Bruzual, G.; Magris, C. G.; Alcaniz, J. S.; Benítez, N.; Carneiro, S.; Cenarro, A. J.; Cristóbal-Hornillos, D.; Dupke, R.; Ederoclite, A.; Marín-Franch, A.; de Oliveira, C. Mendes; Moles, M.; Sodre, L.; Taylor, K.; Varela, J.; Ramió, H. Vázquez

    2017-11-01

    We study the consistency of the physical properties of galaxies retrieved from spectral energy distribution (SED) fitting as a function of spectral resolution and signal-to-noise ratio (SNR). Using a selection of physically motivated star formation histories, we set up a control sample of mock galaxy spectra representing observations of the local Universe in high-resolution spectroscopy, and in 56 narrow-band and 5 broad-band photometry. We fit the SEDs at these spectral resolutions and compute their corresponding stellar mass, the mass- and luminosity-weighted age and metallicity, and the dust extinction. We study the biases, correlations and degeneracies affecting the retrieved parameters and explore the role of the spectral resolution and the SNR in regulating these degeneracies. We find that narrow-band photometry and spectroscopy yield similar trends in the physical properties derived, the former being considerably more precise. Using a galaxy sample from the Sloan Digital Sky Survey (SDSS), we compare more realistically the results obtained from high-resolution and narrow-band SEDs (synthesized from the same SDSS spectra) following the same spectral fitting procedures. We use results from the literature as a benchmark to our spectroscopic estimates and show that the prior probability distribution functions, commonly adopted in parametric methods, may introduce biases not accounted for in a Bayesian framework. We conclude that narrow-band photometry yields the same trend in the age-metallicity relation in the literature, provided it is affected by the same biases as spectroscopy, albeit the precision achieved with the latter is generally twice as large as with the narrow-band, at SNR values typical of the different kinds of data.

  5. On mass concentrations and magnitude gaps of galaxy systems in the CS82 survey

    NASA Astrophysics Data System (ADS)

    Vitorelli, André Z.; Cypriano, Eduardo S.; Makler, Martín; Pereira, Maria E. S.; Erben, Thomas; Moraes, Bruno

    2018-02-01

    Galaxy systems with large magnitude gaps - defined as the difference in magnitude between the central galaxy and the brightest satellite in the central region, such as fossil groups - are claimed to have earlier formation times. In this study, we measure the mass concentration, as an indicator of the formation epoch, of ensembles of galaxy systems divided by redshift and magnitude gaps in the r band. We use cross-correlation weak-lensing measurements with NFW parametric mass profiles to measure masses and concentrations of these ensembles from a catalogue of systems built from the SDSS Coadd by the redMaPPer algorithm. The lensing shear data come from the CFHT Stripe 82 (CS82) survey, and consists of i-band images of the SDSS Stripe 82 region. We find that the stack made up of systems with larger magnitude gaps has a high probability of being more concentrated, in the lowest redshift slice (0.2 < z < 0.4), both when dividing in quartiles (P = 0.98) and tertiles (P = 0.85). These results lend credibility to the claim that systems with large magnitude gaps tend to have been formed early.

  6. Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites

    NASA Astrophysics Data System (ADS)

    Wheeler, Coral Rose

    We study dwarf satellite galaxy quenching using observations from the Geha et al. (2012) NSA/SDSS catalog together with CDM cosmological simulations to facilitate selection and interpretation. We show that fewer than 30% of dwarfs (M* ˜ 108.5-9.5 Msun ) identified as satellites within massive host halos (M host ˜ 1012.5-14 Msun) are quenched. We conclude that whatever the action triggering environmental quenching of dwarf satellites, the process must be highly inefficient. We investigate a series of simple, one-parameter quenching models in order to understand what is required to explain the low quenched fraction and conclude that either the quenching timescale is very long (> 9.5 Gyr, a "slow starvation" scenario) or that the environmental trigger is not well matched to accretion within the virial volume. We further present FIRE/Gizmo hydrodynamic zoom-in simulations of isolated dark matter halos, two each at the mass of classical dwarf galaxies (Mvir ˜ 1010 Msun) and ultra-faint galaxies (Mvir ˜ 10 9 Msun). The resulting central galaxies lie on an extrapolated abundance matching relation from M* ˜ 106 to 104 Msun without a break. Our dwarfs with M* ˜ 106 Msun each have 1-2 well-resolved satellites with M* = 3 - 200 x 103 Msun. Even our isolated ultra-faint galaxies have star-forming subhalos. We combine our results with the ELVIS simulations to show that targeting the ˜ 50 kpc regions around nearby isolated dwarfs could increase the chances of discovering ultra-faint galaxies by ˜35% compared to random pointings. The well-resolved ultra-faint galaxies in our simulations (M * ˜ 3 - 30 x 103 Msun) form within Mpeak ˜ 0.5 - 3 x 109 Msun halos. Each has a uniformly ancient stellar population (> 10 Gyr) owing to reionization-related quenching. More massive systems, in contrast, all have late-time star formation. Our results suggest that Mhalo ˜ 5 x 109 Msun is a probable dividing line between halos hosting reionization "fossils" and those hosting dwarfs

  7. Increased Prevalence of Bent Lobes for Double-lobed Radio Galaxies in Dense Environments

    NASA Astrophysics Data System (ADS)

    Silverstein, Ezekiel M.; Anderson, Michael E.; Bregman, Joel N.

    2018-01-01

    Double-lobed radio galaxies (DLRGs) often have radio lobes that subtend an angle of less than 180°, and these bent DLRGs have been shown to associate preferentially with galaxy clusters and groups. In this study, we utilize a catalog of DLRGs in SDSS quasars with radio lobes visible in VLA FIRST 20 cm radio data. We cross-match this catalog against three catalogs of galaxies over the redshift range 0< z< 0.70, obtaining 81 tentative matches. We visually examine each match and apply a number of selection criteria, eventually obtaining a sample of 44 securely detected DLRGs, which are paired to a nearby massive galaxy, galaxy group, or galaxy cluster. Most of the DLRGs identified in this manner are not central galaxies in the systems to which they are matched. Using this sample, we quantify the projected density of these matches as a function of projected separation from the central galaxy, finding a very steep decrease in matches as the impact parameter increases (for {{Σ }}\\propto {b}-m we find m={2.5}-0.3+0.4) out to b∼ 2 Mpc. In addition, we show that the fraction of DLRGs with bent lobes also decreases with radius, so that if we exclude DLRGs associated with the central galaxy in the system, the bent fraction is 78% within 1 Mpc and 56% within 2 Mpc, compared to just 29% in the field; these differences are significant at 3.6σ and 2.8σ , respectively. This behavior is consistent with ram pressure being the mechanism that causes the lobes to bend.

  8. An optical catalog of galaxy clusters obtained from an adaptive matched filter finder applied to SDSS DR9 data

    NASA Astrophysics Data System (ADS)

    Banerjee, P.; Szabo, T.; Pierpaoli, E.; Franco, G.; Ortiz, M.; Oramas, A.; Tornello, B.

    2018-01-01

    We present a new galaxy cluster catalog constructed from the Sloan Digital Sky Survey Data Release 9 (SDSS DR9) using an Adaptive Matched Filter (AMF) technique. Our catalog has 46,479 galaxy clusters with richness Λ200 > 20 in the redshift range 0.045 ≤ z < 0.641 in ∼11,500 deg2 of the sky. Angular position, richness, core and virial radii and redshift estimates for these clusters, as well as their error analysis, are provided as part of this catalog. In addition to the main version of the catalog, we also provide an extended version with a lower richness cut, containing 79,368 clusters. This version, in addition to the clusters in the main catalog, also contains those clusters (with richness 10 < Λ200 < 20) which have a one-to-one match in the DR8 catalog developed by Wen et al.(WHL). We obtain probabilities for cluster membership for each galaxy and implement several procedures for the identification and removal of false cluster detections. We cross-correlate the main AMF DR9 catalog with a number of cluster catalogs in different wavebands (Optical, X-ray). We compare our catalog with other SDSS-based ones such as the redMaPPer (26,350 clusters) and the Wen et al. (WHL) (132,684 clusters) in the same area of the sky and in the overlapping redshift range. We match 97% of the richest Abell clusters (Richness group 3), the same as WHL, while redMaPPer matches ∼ 90% of these clusters. Considering AMF DR9 richness bins, redMaPPer does not have one-to-one matches for 70% of our lowest richness clusters (20 < Λ200 < 40), while WHL matches 54% of these missed clusters (not present in redMaPPer). redMaPPer consistently does not possess one-to-one matches for ∼ 20% AMF DR9 clusters with Λ200 > 40, while WHL matches ≥ 70% of these missed clusters on average. For comparisons with X-ray clusters, we match the AMF catalog with BAX, MCXC and a combined catalog from NORAS and REFLEX. We consistently obtain a greater number of one-to-one matches for X-ray clusters

  9. Molecular gas in the host galaxy of a quasar at redshift z = 6.42.

    PubMed

    Walter, Fabian; Bertoldi, Frank; Carilli, Chris; Cox, Pierre; Lo, K Y; Neri, Roberto; Fan, Xiaohui; Omont, Alain; Strauss, Michael A; Menten, Karl M

    2003-07-24

    Observations of molecular hydrogen in quasar host galaxies at high redshifts provide fundamental constraints on galaxy evolution, because it is out of this molecular gas that stars form. Molecular hydrogen is traced by emission from the carbon monoxide molecule, CO; cold H2 itself is generally not observable. Carbon monoxide has been detected in about ten quasar host galaxies with redshifts z > 2; the record-holder is at z = 4.69 (refs 1-3). Here we report CO emission from the quasar SDSS J114816.64 + 525150.3 (refs 5, 6) at z = 6.42. At that redshift, the Universe was only 1/16 of its present age, and the era of cosmic reionization was just ending. The presence of about 2 x 1010 M\\circ of H2 in an object at this time demonstrates that molecular gas enriched with heavy elements can be generated rapidly in the youngest galaxies.

  10. VizieR Online Data Catalog: Black hole masses in megamaser disk galaxies (Greene+, 2016)

    NASA Astrophysics Data System (ADS)

    Greene, J. E.; Seth, A.; Kim, M.; Lasker, R.; Goulding, A.; Gao, F.; Braatz, J. A.; Henkel, C.; Condon, J.; Lo, K. Y.; Zhao, W.

    2016-11-01

    The velocity dispersion (σ*) presented here for megamaser disk galaxies are measured from three data sets. Two galaxies (NGC1320, NGC5495) were observed with the B&C spectrograph on the Dupont telescope at the Las Campanas Observatory. These spectra have an instrumental resolution of σr~120km/s and a wavelength range of 3400-6000Å. Two galaxies (Mrk1029, ESO558-G009) have σ* measurements from the cross-dispersed near-infrared spectrograph Triplespec on the 3.5m telescope at Apache Point. Triplespec has a wavelength range of 0.9-2.4um with a spectral resolution of σr~37km/s. Finally, three galaxies (J0437+2456, NGC5765b, UGC6093) have spectra from the SDSS. They have a spectral resolution of σr~65km/s and cover a range of 3800-9200Å. (1 data file).

  11. Galaxy NGC 247

    NASA Image and Video Library

    2003-12-10

    This image of the dwarf spiral galaxy NGC 247 was taken by Galaxy Evolution Explorer on October 13, 2003, in a single orbit exposure of 1600 seconds. The region that looks like a "hole" in the upper part of the galaxy is a location with a deficit of gas and therefore a lower star formation rate and ultraviolet brightness. Optical images of this galaxy show a bright star on the southern edge. This star is faint and red in the Galaxy Evolution Explorer ultraviolet image, revealing that it is a foreground star in our Milky Way galaxy. The string of background galaxies to the North-East (upper left) of NGC 247 is 355 million light years from our Milky Way galaxy whereas NGC 247 is a mere 9 million light years away. The faint blue light that can be seen in the Galaxy Evolution Explorer image of the upper two of these background galaxies may indicate that they are in the process of merging together. http://photojournal.jpl.nasa.gov/catalog/PIA04922

  12. The Host Galaxies of Fast-Ejecta Core-Collapse Supernovae

    NASA Technical Reports Server (NTRS)

    Kelly, Patrick L.; Filippenko, Alexei V.; Modjaz, Maryam; Kocevski, Daniel

    2014-01-01

    Spectra of broad-lined Type Ic supernovae (SN Ic-BL), the only kind of SN observed at the locations of long-duration gamma-ray bursts (LGRBs), exhibit wide features indicative of high ejecta velocities ((is) approximately 0.1c). We study the host galaxies of a sample of 245 low-redshift (z (is) less than 0.2) core-collapse SN, including 17 SN Ic-BL, discovered by galaxy-untargeted searches, and 15 optically luminous and dust-obscured z (is) less than 1.2 LGRBs. We show that, in comparison with SDSS galaxies having similar stellar masses, the hosts of low-redshift SN Ic- BL and z (is) is less than 1.2 LGRBs have high stellar-mass and star-formation-rate densities. Core-collapse SN having typical ejecta velocities, in contrast, show no preference for such galaxies. Moreover, we find that the hosts of SN Ic-BL, unlike those of SN Ib/Ic and SN II, exhibit high gas velocity dispersions for their stellar masses. The patterns likely reflect variations among star-forming environments, and suggest that LGRBs can be used as probes of conditions in high-redshift galaxies. They may be caused by efficient formation of massive binary progenitors systems in densely star-forming regions, or, less probably, a higher fraction of stars created with the initial masses required for a SN Ic-BL or LGRB. Finally, we show that the preference of SN Ic-BL and LGRBs for galaxies with high stellar-mass and star-formation-rate densities cannot be attributed to a preference for low metal abundances but must reflect the influence of a separate environmental factor.

  13. Active galactic nuclei from He II: a more complete census of AGN in SDSS galaxies yields a new population of low-luminosity AGN in highly star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Bär, Rudolf E.; Weigel, Anna K.; Sartori, Lia F.; Oh, Kyuseok; Koss, Michael; Schawinski, Kevin

    2017-04-01

    In order to perform a more complete census of active galactic nuclei (AGN) in the local Universe, we investigate the use of the He II λ4685 emission line diagnostic diagram by Shirazi & Brinchmann (2012) in addition to the standard methods based on other optical emission lines. The He II-based diagnostics is more sensitive to AGN ionization in the presence of strong star formation than conventional line diagnostics. We survey a magnitude-limited sample of 63 915 galaxies from the Sloan Digital Sky Survey Data Release 7 at 0.02 < z < 0.05 and use both the conventional BPT emission line diagnostic diagrams, as well as the He II diagram to identify AGN. In this sample, 1075 galaxies are selected as AGN using the BPT diagram, while additional 234 galaxies are identified as AGN using the He II diagnostic diagram, representing a 22 per cent increase of AGN in the parent galaxy sample. We explore the host galaxy properties of these new He II-selected AGN candidates and find that they are most common in star-forming galaxies on the blue cloud and on the main sequence where ionization from star formation is most likely to mask AGN emission in the BPT lines. We note in particular a high He II AGN fraction in galaxies above the high-mass end of the main sequence where quenching is expected to occur. We use archival Chandra observations to confirm the AGN nature of candidates selected through He II-based diagnostic. Finally, we discuss how this technique can help inform galaxy/black hole coevolution scenarios.

  14. Galaxy NGC 300

    NASA Image and Video Library

    2003-12-10

    This image of the nearby spiral galaxy NGC 300 was taken by Galaxy Evolution Explorer in a single orbit exposure of 27 minutes on October 10, 2003. NGC 300 lies 7 million light years from our Milky Way galaxy and is one of a group of galaxies in the constellation Sculptor. NGC 300 is often used as a prototype of a spiral galaxy because in optical images it displays flowing spiral arms and a bright central region of older (and thus redder) stars. The Galaxy Evolution Explorer image taken in ultraviolet light shows us that NGC 300 is an efficient star-forming galaxy. The bright blue regions in the Galaxy Evolution Explorer image reveal new stars forming all the way into the nucleus of NGC 300. http://photojournal.jpl.nasa.gov/catalog/PIA04924

  15. Full stellar kinematical profiles of central parts of nearby galaxies

    NASA Astrophysics Data System (ADS)

    Vudragović, A.; Samurović, S.; Jovanović, M.

    2016-09-01

    Context. We present the largest catalog of detailed stellar kinematics of the central parts of nearby galaxies, which includes higher moments of the line-of-sight velocity distribution (LOSVD) function represented by the Gauss-Hermite series. The kinematics is measured on a sample of galaxies selected from the Arecibo Legacy Fast ALFA (Alfalfa) survey using spectroscopy from the Sloan Digital Sky Survey (SDSS DR7). Aims: The SDSS DR7 offers measurements of the LOSVD based on the assumption of a pure Gaussian shape of the broadening function caused by the combination of rotational and random motion of the stars in galaxies. We discuss the consequences of this oversimplification since the velocity dispersion, one of the measured quantities, often serves as the proxy to important modeling parameters such as the black-hole mass and the virial mass of galaxies. Methods: The publicly available pPXF code is used to calculate the full kinematical profile for the sample galaxies including higher moments of their LOSVD. Both observed and synthetic stellar libraries were used and the related template mismatch problem is discussed. Results: For the whole sample of 2180 nearby galaxies reflecting morphological distribution characteristic for the local Universe, we successfully recovered stellar kinematics of their central parts, including higher order moments of the LOSVD function, for signal-to-noise above 50. Conclusions: We show the consequences of the oversimplification of the LOSVD function with Gaussian function on the velocity dispersion for the empirical and the synthetic stellar library. For the empirical stellar library, this approximation leads to an increase in the virial mass of 13% on average, while for the synthetic library the effect is weaker, with an increase of 9% on average. Systematic erroneous estimates of the velocity dispersion comes from the use of the synthetic stellar library instead of the empirical one and is much larger than the value imposed by

  16. Evolution of the early-type galaxy fraction in clusters since z = 0.8

    NASA Astrophysics Data System (ADS)

    Simard, L.; Clowe, D.; Desai, V.; Dalcanton, J. J.; von der Linden, A.; Poggianti, B. M.; White, S. D. M.; Aragón-Salamanca, A.; De Lucia, G.; Halliday, C.; Jablonka, P.; Milvang-Jensen, B.; Saglia, R. P.; Pelló, R.; Rudnick, G. H.; Zaritsky, D.

    2009-12-01

    We study the morphological content of a large sample of high-redshift clusters to determine its dependence on cluster mass and redshift. Quantitative morphologies are based on PSF-convolved, 2D bulge+disk decompositions of cluster and field galaxies on deep Very Large Telescope FORS2 images of eighteen, optically-selected galaxy clusters at 0.45 < z < 0.80 observed as part of the ESO Distant Cluster Survey (“EDisCS”). Morphological content is characterized by the early-type galaxy fraction f_et, and early-type galaxies are objectively selected based on their bulge fraction and image smoothness. This quantitative selection is equivalent to selecting galaxies visually classified as E or S0. Changes in early-type fractions as a function of cluster velocity dispersion, redshift and star-formation activity are studied. A set of 158 clusters extracted from the Sloan Digital Sky Survey is analyzed exactly as the distant EDisCS sample to provide a robust local comparison. We also compare our results to a set of clusters from the Millennium Simulation. Our main results are: (1) the early-type fractions of the SDSS and EDisCS clusters exhibit no clear trend as a function of cluster velocity dispersion. (2) Mid-z EDisCS clusters around σ = 500 km s-1 have f_et ≃ 0.5 whereas high-z EDisCS clusters have f_et ≃ 0.4. This represents a ~25% increase over a time interval of 2 Gyr. (3) There is a marked difference in the morphological content of EDisCS and SDSS clusters. None of the EDisCS clusters have early-type galaxy fractions greater than 0.6 whereas half of the SDSS clusters lie above this value. This difference is seen in clusters of all velocity dispersions. (4) There is a strong and clear correlation between morphology and star formation activity in SDSS and EDisCS clusters in the sense that decreasing fractions of [OII] emitters are tracked by increasing early-type fractions. This correlation holds independent of cluster velocity dispersion and redshift even

  17. The nature of ultra-massive lens galaxies

    NASA Astrophysics Data System (ADS)

    Canameras, Raoul

    2017-08-01

    During the past decade, strong gravitational lensing analyses have contributed tremendously to the characterization of the inner properties of massive early-type galaxies, beyond the local Universe. Here we intend to extend studies of this kind to the most massive lens galaxies known to date, well outside the mass limits investigated by previous lensing surveys. This will allow us to probe the physics of the likely descendants of the most violent episodes of star formation and of the compact massive galaxies at high redshift. We propose WFC3 imaging (F438W and F160W) of four extremely massive early-type lens galaxies at z 0.5, in order to put them into context with the evolutionary trends of ellipticals as a function of mass and redshift. These systems were discovered in the SDSS and show one single main lens galaxy with a stellar mass above 1.5x10^12 Msun and large Einstein radii. Our high-resolution spectroscopic follow-up with VLT/X-shooter provides secure lens and source redshifts, between 0.3 and 0.7 and between 1.5 and 2.5, respectively, and confirm extreme stellar velocity dispersions > 400 km/s for the lenses. The excellent angular resolution of the proposed WFC3 imaging - not achievable from the ground - is the remaining indispensable piece of information to :(1) Resolve the lens structural parameters and obtain robust measurements of their stellar mass distributions,(2) Model the amount and distribution of the lens total masses and measure their M/L ratios and stellar IMF with joint strong lensing and stellar dynamics analyses,(3) Enhance our on-going lens models through the most accurate positions and morphologies of the blue multiply-imaged sources.

  18. The Dragonfly Nearby Galaxies Survey. II. Ultra-Diffuse Galaxies near the Elliptical Galaxy NGC 5485

    NASA Astrophysics Data System (ADS)

    Merritt, Allison; van Dokkum, Pieter; Danieli, Shany; Abraham, Roberto; Zhang, Jielai; Karachentsev, I. D.; Makarova, L. N.

    2016-12-01

    We present the unexpected discovery of four ultra-diffuse galaxies (UDGs) in a group environment. We recently identified seven extremely low surface brightness galaxies in the vicinity of the spiral galaxy M101, using data from the Dragonfly Telephoto Array. The galaxies have effective radii of 10″-38″ and central surface brightnesses of 25.6-27.7 mag arcsec-2 in the g-band. We subsequently obtained follow-up observations with HST to constrain the distances to these galaxies. Four remain persistently unresolved even with the spatial resolution of HST/ACS, which implies distances of D\\gt 17.5 Mpc. We show that the galaxies are most likely associated with a background group at ˜27 Mpc containing the massive ellipticals NGC 5485 and NGC 5473. At this distance, the galaxies have sizes of 2.6-4.9 kpc, and are classified as UDGs, similar to the populations that have been revealed in clusters such as Coma, Virgo, and Fornax, yet even more diffuse. The discovery of four UDGs in a galaxy group demonstrates that the UDG phenomenon is not exclusive to cluster environments. Furthermore, their morphologies seem less regular than those of the cluster populations, which may suggest a different formation mechanism or be indicative of a threshold in surface density below which UDGs are unable to maintain stability.

  19. Mapping the Similarities of Spectra: Global and Locally-biased Approaches to SDSS Galaxies

    NASA Astrophysics Data System (ADS)

    Lawlor, David; Budavári, Tamás; Mahoney, Michael W.

    2016-12-01

    We present a novel approach to studying the diversity of galaxies. It is based on a novel spectral graph technique, that of locally-biased semi-supervised eigenvectors. Our method introduces new coordinates that summarize an entire spectrum, similar to but going well beyond the widely used Principal Component Analysis (PCA). Unlike PCA, however, this technique does not assume that the Euclidean distance between galaxy spectra is a good global measure of similarity. Instead, we relax that condition to only the most similar spectra, and we show that doing so yields more reliable results for many astronomical questions of interest. The global variant of our approach can identify very finely numerous astronomical phenomena of interest. The locally-biased variants of our basic approach enable us to explore subtle trends around a set of chosen objects. The power of the method is demonstrated in the Sloan Digital Sky Survey Main Galaxy Sample, by illustrating that the derived spectral coordinates carry an unprecedented amount of information.

  20. SPIDER - I. Sample and galaxy parameters in the grizYJHK wavebands

    NASA Astrophysics Data System (ADS)

    La Barbera, F.; de Carvalho, R. R.; de La Rosa, I. G.; Lopes, P. A. A.; Kohl-Moreira, J. L.; Capelato, H. V.

    2010-11-01

    This is the first paper of a series presenting the Spheroids Panchromatic Investigation in Different Environmental Regions (SPIDER). The sample of spheroids consists of 5080 bright (Mr < -20) early-type galaxies (ETGs), in the redshift range of 0.05 to 0.095, with optical (griz) photometry and spectroscopy from the Sloan Digital Sky Survey Data Release 6 (SDSS-DR6) and near-infrared (YJHK) photometry from the UKIRT Infrared Deep Sky Survey-Large Area Survey (UKIDSS-LAS) (DR4). We describe how homogeneous photometric parameters (galaxy colours and structural parameters) are derived using grizYJHK wavebands. We find no systematic steepening of the colour-magnitude relation when probing the baseline from g - r to g - K, implying that internal colour gradients drive most of the mass-metallicity relation in ETGs. As far as structural parameters are concerned we find that the mean effective radius of ETGs smoothly decreases, by 30 per cent, from g through K, while no significant dependence on waveband is detected for the axial ratio, Sersic index and a4 parameters. Furthermore, velocity dispersions are remeasured for all the ETGs using STARLIGHT and compared to those obtained by SDSS. The velocity dispersions are rederived using a combination of simple stellar population models as templates, hence accounting for the kinematics of different galaxy stellar components. We compare our (2DPHOT) measurements of total magnitude, effective radius and mean surface brightness with those obtained as part of the SDSS pipeline (PHOTO). Significant differences are found and reported, including comparisons with a third and independent part. A full characterization of the sample completeness in all wavebands is presented, establishing the limits of application of the characteristic parameters presented here for the analysis of the global scaling relations of ETGs.

  1. Galaxies Detected by the Dwingeloo Obscured Galaxies Survey

    NASA Astrophysics Data System (ADS)

    Rivers, A. J.; Henning, P. A.; Kraan-Korteweg, R. C.

    1999-04-01

    The Dwingeloo Obscured Galaxies Survey (DOGS) is a 21-cm blind survey for galaxies hidden in the northern `Zone of Avoidance' (ZOA): the portion of the optical extragalactic sky which is obscured by dust in the Milky Way. Like the Parkes southern hemisphere ZOA survey, the DOGS project is designed to reveal hidden dynamically important nearby galaxies and to help `fill in the blanks' in the local large scale structure. To date, 36 galaxies have been detected by the Dwingeloo survey; 23 of these were previously unknown [no corresponding sources recorded in the NASA Extragalactic Database (NED)]. Among the interesting detections are three nearby galaxies in the vicinity of NGC 6946 and 11 detections in the Supergalactic plane crossing region. VLA follow-up observations have been conducted for several of the DOGS detections.

  2. Early-Type Galaxy Star Formation Histories in Different Environments

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Patrick; Graves, G.

    2014-01-01

    We use very high-S/N stacked spectra of ˜29,000 nearby quiescent early-type galaxies (ETGs) from the Sloan Digital Sky Survey (SDSS) to investigate variations in their star formation histories (SFHs) with environment at fixed position along and perpendicular to the Fundamental Plane (FP). We separate galaxies in the three-dimensional FP space defined by galaxy effective radius Re, central stellar velocity dispersion σ, and surface brightness residual from the FP, ΔIe. We use the SDSS group catalogue of Yang et al. to further separate galaxies into three categories by their “identities” within their respective dark matter halos: central “Brightest Group Galaxies” (BGGs); Satellites; and Isolateds (those which are “most massive” in a dark matter halo with no Satellites). Within each category, we construct high-S/N mean stacked spectra to determine mean singleburst ages, [Fe/H], and [Mg/Fe] based on the stellar population synthesis models of R. Schiavon. This allows us to study variations in the stellar population properties (SPPs) with local group environment at fixed structure (i.e., fixed position in FP-space). We find that the SFHs of quiescent ETGs are almost entirely determined by their structural parameters σ and ΔIe. Any variation with local group environment at fixed structure is only slight: Satellites have the oldest stellar populations, 0.02 dex older than BGGs and 0.04 dex older than Isolateds; BGGs have the highest Fe-enrichments, 0.01 dex higher than Isolateds and 0.02 dex higher than Satellites; there are no differences in Mg-enhancement between BGGs, Isolateds, and Satellites. Our observation that, to zeroth-order, the SFHs of quiescent ETGs are fully captured by their structures places important qualitative constraints on the degree to which late-time evolutionary processes (those which occur after a galaxy’s initial formation and main star-forming lifetime) can alter their SFHs/structures.

  3. Environments of z~0.2 Star Forming Galaxies: Building on the Citizen Science Discovery of the Green Peas

    NASA Astrophysics Data System (ADS)

    Cardamone, Carolin; Cappelluti, Nico; Powell, Meredith; Urry, Meg; Galaxy Zoo Science Team

    2018-01-01

    ‘Green Pea’ galaxies, discovered in the Galaxy Zoo citizen science project, are rare low-mass (M < 1 x 1010 M⊙) galaxies, experiencing an episode of compact, relatively low-metalicity (z ≈ 1/5 z⊙), intense starformation (3-60 M⊙/yr). While their spectra have been investigated in a wide-array of follow-up studies, a detailed study of their environments is missing. Two-point correlation functions have been used to show the environmental dependence of an array of galaxy properties (eg., mass, luminosity, color, star formation, and morphology). In this study, we present a cross-correlation analysis between the Green Peas and the Luminous Red Galaxies throughout the SDSS footprint, and we find that the population of Green Peas at 0.11

  4. N-body simulations of gravitational redshifts and other relativistic distortions of galaxy clustering

    NASA Astrophysics Data System (ADS)

    Zhu, Hongyu; Alam, Shadab; Croft, Rupert A. C.; Ho, Shirley; Giusarma, Elena

    2017-10-01

    Large redshift surveys of galaxies and clusters are providing the first opportunities to search for distortions in the observed pattern of large-scale structure due to such effects as gravitational redshift. We focus on non-linear scales and apply a quasi-Newtonian approach using N-body simulations to predict the small asymmetries in the cross-correlation function of two galaxy different populations. Following recent work by Bonvin et al., Zhao and Peacock and Kaiser on galaxy clusters, we include effects which enter at the same order as gravitational redshift: the transverse Doppler effect, light-cone effects, relativistic beaming, luminosity distance perturbation and wide-angle effects. We find that all these effects cause asymmetries in the cross-correlation functions. Quantifying these asymmetries, we find that the total effect is dominated by the gravitational redshift and luminosity distance perturbation at small and large scales, respectively. By adding additional subresolution modelling of galaxy structure to the large-scale structure information, we find that the signal is significantly increased, indicating that structure on the smallest scales is important and should be included. We report on comparison of our simulation results with measurements from the SDSS/BOSS galaxy redshift survey in a companion paper.

  5. The nuclear activity and central structure of the elliptical galaxy NGC 5322

    NASA Astrophysics Data System (ADS)

    Dullo, Bililign T.; Knapen, Johan H.; Williams, David R. A.; Beswick, Robert J.; Bendo, George; Baldi, Ranieri D.; Argo, Megan; McHardy, Ian M.; Muxlow, Tom; Westcott, J.

    2018-04-01

    We have analysed a new high-resolution e-MERLIN 1.5 GHz radio continuum map together with HST and SDSS imaging of NGC 5322, an elliptical galaxy hosting radio jets, aiming to understand the galaxy's central structure and its connection to the nuclear activity. We decomposed the composite HST + SDSS surface brightness profile of the galaxy into an inner stellar disc, a spheroid, and an outer stellar halo. Past works showed that this embedded disc counter-rotates rapidly with respect to the spheroid. The HST images reveal an edge-on nuclear dust disc across the centre, aligned along the major-axis of the galaxy and nearly perpendicular to the radio jets. After careful masking of this dust disc, we find a central stellar mass deficit Mdef in the spheroid, scoured by SMBH binaries with final mass MBH such that Mdef/MBH ˜ 1.3-3.4. We propose a three-phase formation scenario for NGC 5322, where a few (2-7) `dry' major mergers involving SMBHs built the spheroid with a depleted core. The cannibalism of a gas-rich satellite subsequently creates the faint counter-rotating disc and funnels gaseous material directly on to the AGN, powering the radio core with a brightness temperature of TB, core ˜ 4.5 × 107 K and the low-power radio jets (Pjets ˜ 7.04 × 1020 W Hz-1), which extend ˜1.6 kpc. The outer halo can later grow via minor mergers and the accretion of tidal debris. The low-luminosity AGN/jet-driven feedback may have quenched the late-time nuclear star formation promptly, which could otherwise have replenished the depleted core.

  6. Ultracompact Blue Dwarf Galaxies: Hubble Space Telescope Imaging and Stellar Population Analysis

    NASA Astrophysics Data System (ADS)

    Corbin, Michael R.; Vacca, William D.; Cid Fernandes, Roberto; Hibbard, John E.; Somerville, Rachel S.; Windhorst, Rogier A.

    2006-11-01

    We present deep Hubble Space Telescope (HST) Advanced Camera for Surveys/High Resolution Channel U-, narrow-V-, and I-band images of nine ``ultracompact'' blue dwarf galaxies (UCBDs) selected from the Sloan Digital Sky Survey (SDSS). We define UCBDs as local (z<0.01) star-forming galaxies having angular diameters less than 6" and physical diameters <1 kpc. They are also among the most metal-poor galaxies known, including objects having 12+log(O/H)<7.65, and are found to reside within voids. Both the HST images and the objects' SDSS optical spectra reveal that they are composites of young (~1-10 Myr) populations that dominate their light and older (~10 Gyr) populations that dominate their stellar masses, which we estimate to be ~107-108 Msolar. An intermediate-age (~107-109 yr) population is also indicated in most objects. The objects do not appear to be as dynamically disturbed as the prototype UCBD, POX 186, but the structure of several of them suggests that their current star formation has been triggered by the collisions/mergers of smaller clumps of stars. In one case, HS 0822+3542, the images resolve what may be two small (~100 pc) components that have recently collided, supporting this interpretation. In six of the objects much of the star formation is concentrated in young massive clusters, contributing to their compactness in ground-based images. The evidence that the galaxies consist mainly of ~10 Gyr old stars establishes that they are not protogalaxies, forming their first generation of stars. Their low metallicities are more likely to be the result of the escape of supernova ejecta, rather than youth.

  7. Dark Energy Survey Year 1 Results: Calibration of redMaGiC Redshift Distributions in DES and SDSS from Cross-Correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cawthon, R.; et al.

    We present calibrations of the redshift distributions of redMaGiC galaxies in the Dark Energy Survey Year 1 (DES Y1) and Sloan Digital Sky Survey (SDSS) DR8 data. These results determine the priors of the redshift distribution of redMaGiC galaxies, which were used for galaxy clustering measurements and as lenses for galaxy-galaxy lensing measurements in DES Y1 cosmological analyses. We empirically determine the bias in redMaGiC photometric redshift estimates using angular cross-correlations with Baryon Oscillation Spectroscopic Survey (BOSS) galaxies. For DES, we calibrate a single parameter redshift bias in three photometric redshift bins:more » $$z \\in[0.15,0.3]$$, [0.3,0.45], and [0.45,0.6]. Our best fit results in each bin give photometric redshift biases of $$|\\Delta z|<0.01$$. To further test the redMaGiC algorithm, we apply our calibration procedure to SDSS redMaGiC galaxies, where the statistical precision of the cross-correlation measurement is much higher due to a greater overlap with BOSS galaxies. For SDSS, we also find best fit results of $$|\\Delta z|<0.01$$. We compare our results to other analyses of redMaGiC photometric redshifts.« less

  8. Galaxy-galaxy weak gravitational lensing in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Li, Baojiu; Shirasaki, Masato

    2018-03-01

    We present an analysis of galaxy-galaxy weak gravitational lensing (GGL) in chameleon f(R) gravity - a leading candidate of non-standard gravity models. For the analysis, we have created mock galaxy catalogues based on dark matter haloes from two sets of numerical simulations, using a halo occupation distribution (HOD) prescription which allows a redshift dependence of galaxy number density. To make a fairer comparison between the f(R) and Λ cold dark matter (ΛCDM) models, their HOD parameters are tuned so that the galaxy two-point correlation functions in real space (and therefore the projected two-point correlation functions) match. While the f(R) model predicts an enhancement of the convergence power spectrum by up to ˜ 30 per cent compared to the standard ΛCDM model with the same parameters, the maximum enhancement of GGL is only half as large and less than 5 per cent on separations above ˜1-2 h-1 Mpc, because the latter is a cross-correlation of shear (or matter, which is more strongly affected by modified gravity) and galaxy (which is weakly affected given the good match between galaxy autocorrelations in the two models) fields. We also study the possibility of reconstructing the matter power spectrum by combination of GGL and galaxy clustering in f(R) gravity. We find that the galaxy-matter cross-correlation coefficient remains at unity down to ˜2-3 h-1 Mpc at relevant redshifts even in f(R) gravity, indicating joint analysis of GGL and galaxy clustering can be a powerful probe of matter density fluctuations in chameleon gravity. The scale dependence of the model differences in their predictions of GGL can potentially allows us to break the degeneracy between f(R) gravity and other cosmological parameters such as Ωm and σ8.

  9. Galaxy NGC5474

    NASA Image and Video Library

    2003-07-25

    NASA Galaxy Evolution Explorer took this ultraviolet color image of the galaxy NGC5474 on June 7, 2003. NGC5474 is located 20 million light-years from Earth and is within a group of galaxies dominated by the Messier 101 galaxy. Star formation in this galaxy shows some evidence of a disturbed spiral pattern, which may have been induced by tidal interactions with Messier 101. http://photojournal.jpl.nasa.gov/catalog/PIA04634

  10. Distributions of Gas and Galaxies from Galaxy Clusters to Larger Scales

    NASA Astrophysics Data System (ADS)

    Patej, Anna

    2017-01-01

    We address the distributions of gas and galaxies on three scales: the outskirts of galaxy clusters, the clustering of galaxies on large scales, and the extremes of the galaxy distribution. In the outskirts of galaxy clusters, long-standing analytical models of structure formation and recent simulations predict the existence of density jumps in the gas and dark matter profiles. We use these features to derive models for the gas density profile, obtaining a simple fiducial model that is in agreement with both observations of cluster interiors and simulations of the outskirts. We next consider the galaxy density profiles of clusters; under the assumption that the galaxies in cluster outskirts follow similar collisionless dynamics as the dark matter, their distribution should show a steep jump as well. We examine the profiles of a low-redshift sample of clusters and groups, finding evidence for the jump in some of these clusters. Moving to larger scales where massive galaxies of different types are expected to trace the same large-scale structure, we present a test of this prediction by measuring the clustering of red and blue galaxies at z 0.6, finding low stochasticity between the two populations. These results address a key source of systematic uncertainty - understanding how target populations of galaxies trace large-scale structure - in galaxy redshift surveys. Such surveys use baryon acoustic oscillations (BAO) as a cosmological probe, but are limited by the expense of obtaining sufficiently dense spectroscopy. With the intention of leveraging upcoming deep imaging data, we develop a new method of detecting the BAO in sparse spectroscopic samples via cross-correlation with a dense photometric catalog. This method will permit the extension of BAO measurements to higher redshifts than possible with the existing spectroscopy alone. Lastly, we connect galaxies near and far: the Local Group dwarfs and the high redshift galaxies observed by Hubble and Spitzer. We

  11. Two-dimensional multi-component photometric decomposition of CALIFA galaxies

    NASA Astrophysics Data System (ADS)

    Méndez-Abreu, J.; Ruiz-Lara, T.; Sánchez-Menguiano, L.; de Lorenzo-Cáceres, A.; Costantin, L.; Catalán-Torrecilla, C.; Florido, E.; Aguerri, J. A. L.; Bland-Hawthorn, J.; Corsini, E. M.; Dettmar, R. J.; Galbany, L.; García-Benito, R.; Marino, R. A.; Márquez, I.; Ortega-Minakata, R. A.; Papaderos, P.; Sánchez, S. F.; Sánchez-Blazquez, P.; Spekkens, K.; van de Ven, G.; Wild, V.; Ziegler, B.

    2017-02-01

    We present a two-dimensional multi-component photometric decomposition of 404 galaxies from the Calar Alto Legacy Integral Field Area data release 3 (CALIFA-DR3). They represent all possible galaxies with no clear signs of interaction and not strongly inclined in the final CALIFA data release. Galaxies are modelled in the g, r, and I Sloan Digital Sky Survey (SDSS) images including, when appropriate, a nuclear point source, bulge, bar, and an exponential or broken disc component. We use a human-supervised approach to determine the optimal number of structures to be included in the fit. The dataset, including the photometric parameters of the CALIFA sample, is released together with statistical errors and a visual analysis of the quality of each fit. The analysis of the photometric components reveals a clear segregation of the structural composition of galaxies with stellar mass. At high masses (log (M⋆/M⊙) > 11), the galaxy population is dominated by galaxies modelled with a single Sérsic or a bulge+disc with a bulge-to-total (B/T) luminosity ratio B/T > 0.2. At intermediate masses (9.5 < log (M⋆/M⊙) < 11), galaxies described with bulge+disc but B/T < 0.2 are preponderant, whereas, at the low mass end (log (M⋆/M⊙) < 9.5), the prevailing population is constituted by galaxies modelled with either purediscs or nuclear point sources+discs (I.e., no discernible bulge). We obtain that 57% of the volume corrected sample of disc galaxies in the CALIFA sample host a bar. This bar fraction shows a significant drop with increasing galaxy mass in the range 9.5 < log (M⋆/M⊙) < 11.5. The analyses of the extended multi-component radial profile result in a volume-corrected distribution of 62%, 28%, and 10% for the so-called Type I (pure exponential), Type II (down-bending), and Type III (up-bending) disc profiles, respectively. These fractions are in discordance with previous findings. We argue that the different methodologies used to detect the breaks are the

  12. Enhanced atomic gas fractions in recently merged galaxies: quenching is not a result of post-merger gas exhaustion.

    NASA Astrophysics Data System (ADS)

    Ellison, Sara L.; Catinella, Barbara; Cortese, Luca

    2018-05-01

    We present a detailed assessment of the global atomic hydrogen gas fraction (fgas=log[MHI/M⋆]) in a sample of post-merger galaxies identified in the Sloan Digital Sky Survey (SDSS). Archival H I measurements of 47 targets are combined with new Arecibo observations of a further 51 galaxies. The stellar mass range of the post-merger sample, our observing strategy, detection thresholds and data analysis procedures replicate those of the extended GALEX Arecibo SDSS Survey (xGASS) which can therefore be used as a control sample. Our principal results are: 1) The post-merger sample shows a ˜ 50 per cent higher H I detection fraction compared with xGASS; 2) Accounting for non-detections, the median atomic gas fraction of the post-merger sample is larger than the control sample by 0.3 - 0.6 dex; 3) The median atomic gas fraction enhancement (Δfgas), computed on a galaxy-by-galaxy basis at fixed stellar mass, is 0.51 dex. Our results demonstrate that recently merged galaxies are typically a factor of ˜ 3 more H I rich than control galaxies of the same M⋆. If the control sample is additionally matched in star formation rate, the median H I excess is reduced to Δfgas = 0.2 dex, showing that the enhanced atomic gas fractions in post-mergers are not purely a reflection of changes in star formation activity. We conclude that merger-induced starbursts and outflows do not lead to prompt quenching via exhaustion/expulsion of the galactic gas reservoirs. Instead, we propose that if star formation ceases after a merger, it is more likely due to an enhanced turbulence which renders the galaxy unable to effectively form new stars.

  13. Clustering properties of g -selected galaxies at z ~ 0.8

    DOE PAGES

    Favole, Ginevra; Comparat, Johan; Prada, Francisco; ...

    2016-06-21

    In current and future large redshift surveys, as the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey (SDSS-IV/eBOSS) or the Dark Energy Spectroscopic Instrument (DESI), we will use emission-line galaxies (ELGs) to probe cosmological models by mapping the large-scale structure of the Universe in the redshift range 0.6 < z < 1.7. We explore the halo-galaxy connection, with current data and by measuring three clustering properties of g-selected ELGs as matter tracers in the redshift range 0.6 < z < 1: (i) the redshift-space two-point correlation function using spectroscopic redshifts from the BOSS ELG sample and VIPERS; (ii)more » the angular two-point correlation function on the footprint of the CFHT-LS; (iii) the galaxy-galaxy lensing signal around the ELGs using the CFHTLenS. Furthermore, we interpret these observations by mapping them on to the latest high-resolution MultiDark Planck N-body simulation, using a novel (Sub)Halo-Abundance Matching technique that accounts for the ELG incompleteness. ELGs at z ~ 0.8 live in haloes of (1 ± 0.5) × 10 12 h -1 M⊙ and 22.5 ± 2.5 per cent of them are satellites belonging to a larger halo. The halo occupation distribution of ELGs indicates that we are sampling the galaxies in which stars form in the most efficient way, according to their stellar-to-halo mass ratio.« less

  14. A strong-lensing elliptical galaxy in the MaNGA survey

    NASA Astrophysics Data System (ADS)

    Smith, Russell J.

    2017-01-01

    I report discovery of a new galaxy-scale gravitational lens system, identified using public data from the Mapping Galaxies at Apache Point Observatory (MaNGA) survey, as part of a systematic search for lensed background line emitters. The lens is SDSS J170124.01+372258.0, a giant elliptical galaxy with velocity dispersion σ = 256 km s-1, at a redshift of zl = 0.122. After modelling and subtracting the target galaxy light, the integral-field data cube reveals [O II], [O III] and Hβ emission lines corresponding to a source at zs = 0.791, forming an identifiable ring around the galaxy centre. If the ring is formed by a single lensed source, then the Einstein radius is REin ≈ 2.3 arcsec, projecting to ˜5 kpc at the distance of the lens. The total projected lensing mass is MEin = (3.6 ± 0.6) × 1011 M⊙, and the total J-band mass-to-light ratio is 3.0 ± 0.7 solar units. Plausible estimates of the likely dark matter content could reconcile this with a Milky Way-like initial mass function (IMF), for which M/L ≈ 1.5 is expected, but heavier IMFs are by no means excluded with the present data. An alternative interpretation of the system, with a more complex source plane, is also discussed. The discovery of this system bodes well for future lens searches based on MaNGA and other integral-field spectroscopic surveys.

  15. Galaxy And Mass Assembly (GAMA): the life and times of L★ galaxies

    NASA Astrophysics Data System (ADS)

    Robotham, A. S. G.; Liske, J.; Driver, S. P.; Sansom, A. E.; Baldry, I. K.; Bauer, A. E.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Colless, M.; Christodoulou, L.; Drinkwater, M. J.; Grootes, M. W.; Hopkins, A. M.; Kelvin, L. S.; Norberg, P.; Loveday, J.; Phillipps, S.; Sharp, R.; Taylor, E. N.; Tuffs, R. J.

    2013-05-01

    In this work, we investigate in detail the effects the local environment (groups and pairs) has on galaxies with stellar mass similar to the Milky Way (L* galaxies). A volume limited sample of 6150 galaxies are visually classified to determine the emission features, morphological type and presence of a disc. This large sample allows for the significant characteristics of galaxies to be isolated (e.g. stellar mass and group halo mass), and their codependencies determined. We observe that galaxy-galaxy interactions play the most important role in shaping the evolution within a group halo; the main role of halo mass is in gathering the galaxies together to encourage such interactions. Dominant pair galaxies find their overall star formation enhanced when the pair's mass ratio is close to 1; otherwise, we observe the same galaxies as we would in an unpaired system. The minor galaxy in a pair is greatly affected by its companion galaxy, and while the star-forming fraction is always suppressed relative to equivalent stellar mass unpaired galaxies, it becomes lower still when the mass ratio of a pair system increases. We find that, in general, the close galaxy-galaxy interaction rate drops as a function of halo mass for a given amount of stellar mass. We find evidence of a local peak of interactions for Milky Way stellar mass galaxies in Milky Way halo mass groups. Low-mass haloes, and in particular Local Group mass haloes, are an important environment for understanding the typical evolutionary path of a unit of stellar mass. We find compelling evidence for galaxy conformity in both groups and pairs, where morphological type conformity is dominant in groups, and emission class conformity is dominant in pairs. This suggests that group scale conformity is the result of many galaxy encounters over an extended period of time, while pair conformity is a fairly instantaneous response to a transitory interaction.

  16. Probing galaxy assembly bias with LRG weak lensing observations

    NASA Astrophysics Data System (ADS)

    Niemiec, A.; Jullo, E.; Montero-Dorta, A. D.; Prada, F.; Rodriguez-Torres, S.; Perez, E.; Klypin, A.; Erben, T.; Makler, M.; Moraes, B.; Pereira, M. E. S.; Shan, H.

    2018-06-01

    In Montero-Dorta et al., we show that luminous red galaxies (LRGs) from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) at z ˜ 0.55 can be divided into two groups based on their star formation histories. So-called fast-growing LRGs assemble 80 per cent of their stellar mass at z ˜ 5, whereas slow-growing LRGs reach the same evolutionary state at z ˜ 1.5. We further demonstrate that these two subpopulations present significantly different clustering properties on scales of ˜1-30 Mpc. Here, we measure the mean halo mass of each subsample using the galaxy-galaxy lensing technique, in the ˜ 190°^2 overlap of the LRG catalogue and the CS82 and CFHTLenS shear catalogues. We show that fast- and slow-growing LRGs have similar lensing profiles, which implies that they live in haloes of similar mass: log (M_halo^fast/h^{-1}M_{⊙}) = 12.85^{+0.16}_{-0.26} and log (M_halo^slow/h^{-1}M_{⊙}) =12.92^{+0.16}_{-0.22}. This result, combined with the clustering difference, suggests the existence of galaxy assembly bias, although the effect is too subtle to be definitively proven, given the errors on our current weak-lensing measurement. We show that this can soon be achieved with upcoming surveys like DES.

  17. Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Miller, Christopher J. Miller

    2012-03-01

    There are many examples of clustering in astronomy. Stars in our own galaxy are often seen as being gravitationally bound into tight globular or open clusters. The Solar System's Trojan asteroids cluster at the gravitational Langrangian in front of Jupiter’s orbit. On the largest of scales, we find gravitationally bound clusters of galaxies, the Virgo cluster (in the constellation of Virgo at a distance of ˜50 million light years) being a prime nearby example. The Virgo cluster subtends an angle of nearly 8◦ on the sky and is known to contain over a thousand member galaxies. Galaxy clusters play an important role in our understanding of theUniverse. Clusters exist at peaks in the three-dimensional large-scale matter density field. Their sky (2D) locations are easy to detect in astronomical imaging data and their mean galaxy redshifts (redshift is related to the third spatial dimension: distance) are often better (spectroscopically) and cheaper (photometrically) when compared with the entire galaxy population in large sky surveys. Photometric redshift (z) [Photometric techniques use the broad band filter magnitudes of a galaxy to estimate the redshift. Spectroscopic techniques use the galaxy spectra and emission/absorption line features to measure the redshift] determinations of galaxies within clusters are accurate to better than delta_z = 0.05 [7] and when studied as a cluster population, the central galaxies form a line in color-magnitude space (called the the E/S0 ridgeline and visible in Figure 16.3) that contains galaxies with similar stellar populations [15]. The shape of this E/S0 ridgeline enables astronomers to measure the cluster redshift to within delta_z = 0.01 [23]. The most accurate cluster redshift determinations come from spectroscopy of the member galaxies, where only a fraction of the members need to be spectroscopically observed [25,42] to get an accurate redshift to the whole system. If light traces mass in the Universe, then the locations

  18. Galaxy Zoo and SPARCFIRE: constraints on spiral arm formation mechanisms from spiral arm number and pitch angles

    NASA Astrophysics Data System (ADS)

    Hart, Ross E.; Bamford, Steven P.; Hayes, Wayne B.; Cardamone, Carolin N.; Keel, William C.; Kruk, Sandor J.; Lintott, Chris J.; Masters, Karen L.; Simmons, Brooke D.; Smethurst, Rebecca J.

    2017-12-01

    In this paper, we study the morphological properties of spiral galaxies, including measurements of spiral arm number and pitch angle. Using Galaxy Zoo 2, a stellar mass-complete sample of 6222 SDSS spiral galaxies is selected. We use the machine vision algorithm SPARCFIRE to identify spiral arm features and measure their associated geometries. A support vector machine classifier is employed to identify reliable spiral features, with which we are able to estimate pitch angles for half of our sample. We use these machine measurements to calibrate visual estimates of arm tightness, and hence estimate pitch angles for our entire sample. The properties of spiral arms are compared with respect to various galaxy properties. The star formation properties of galaxies vary significantly with arm number, but not pitch angle. We find that galaxies hosting strong bars have spiral arms substantially (4°-6°) looser than unbarred galaxies. Accounting for this, spiral arms associated with many-armed structures are looser (by 2°) than those in two-armed galaxies. In contrast to this average trend, galaxies with greater bulge-to-total stellar mass ratios display both fewer and looser spiral arms. This effect is primarily driven by the galaxy disc, such that galaxies with more massive discs contain more spiral arms with tighter pitch angles. This implies that galaxy central mass concentration is not the dominant cause of pitch angle and arm number variations between galaxies, which in turn suggests that not all spiral arms are governed by classical density waves or modal theories.

  19. Unravelling Galaxy Components

    NASA Astrophysics Data System (ADS)

    Kennedy, Rebecca

    2017-06-01

    This thesis aims to understand more about the developmental histories of galaxies and their internal components by studying the wavelength dependence of their spatial structure. I use a large sample of low-redshift galaxies with optical–near-IR imaging from the GAMA survey, which have been fitted with Sérsic and Sérsic + exponential functions in nine wavebands simultaneously, using software developed by the MegaMorph project. The first section of this thesis examines how the sizes and radial profiles of galaxies vary with wavelength. To quantify the wavelength dependence of effective radius I use the ratio, R, of measurements in two restframe bands. The dependence of Sérsic index on wavelength, N, is computed correspondingly. I show that accounting for different redshift and luminosity selections partly reconciles variations between several recent studies. Dividing galaxies by visual morphology confirms the behaviour inferred using morphological proxies, although our quantitative measurements allow me to study larger and fainter samples. I then demonstrate that varying dust opacity and disc inclination can account for features of the joint distribution of R and N for late-type galaxies. However, dust does not appear to explain the highest values of R and N. The bulge-disc nature of galaxies must also contribute to the wavelength-dependence of their structure. The second section of this thesis studies radial colour gradients across the galaxy population. I use the multi-wavelength information provided by MegaMorph analysis of galaxy light profiles to calculate intrinsic colour gradients, and divide into six subsamples split by overall Sérsic index (n) and galaxy colour. I find a bimodality in the colour gradients of high- and low-n galaxies in all wavebands which varies with overall galaxy luminosity. Global trends in colour gradients therefore result from combining the contrasting behaviour of a number of different galaxy populations. The ubiquity of strong

  20. A 30 kpc CHAIN OF ''BEADS ON A STRING'' STAR FORMATION BETWEEN TWO MERGING EARLY TYPE GALAXIES IN THE CORE OF A STRONG-LENSING GALAXY CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremblay, Grant R.; Davis, Timothy A.; Gladders, Michael D.

    2014-08-01

    New Hubble Space Telescope ultraviolet and optical imaging of the strong-lensing galaxy cluster SDSS J1531+3414 (z = 0.335) reveals two centrally dominant elliptical galaxies participating in an ongoing major merger. The interaction is at least somewhat rich in cool gas, as the merger is associated with a complex network of 19 massive superclusters of young stars (or small tidal dwarf galaxies) separated by ∼1 kpc in projection from one another, combining to an estimated total star formation rate of ∼5 M {sub ☉} yr{sup –1}. The resolved young stellar superclusters are threaded by narrow Hα, [O II], and blue excess filaments arrangedmore » in a network spanning ∼27 kpc across the two merging galaxies. This morphology is strongly reminiscent of the well-known ''beads on a string'' mode of star formation observed on kiloparsec scales in the arms of spiral galaxies, resonance rings, and in tidal tails between interacting galaxies. Nevertheless, the arrangement of this star formation relative to the nuclei of the two galaxies is difficult to interpret in a dynamical sense, as no known ''beads on a string'' systems associated with kiloparsec-scale tidal interactions exhibit such lopsided morphology relative to the merger participants. In this Letter, we present the images and follow-up spectroscopy and discuss possible physical interpretations for the unique arrangement of the young stellar clusters. While we suggest that this morphology is likely to be dynamically short-lived, a more quantitative understanding awaits necessary multiwavelength follow-up, including optical integral field spectroscopy, ALMA submillimeter interferometry, and Chandra X-ray imaging.« less

  1. Box/peanut and bar structures in edge-on and face-on nearby galaxies in the Sloan Digital Sky Survey - I. Catalogue

    NASA Astrophysics Data System (ADS)

    Yoshino, Akira; Yamauchi, Chisato

    2015-02-01

    We investigate box/peanut and bar structures in image data of edge-on and face-on nearby galaxies taken from the Sloan Digital Sky Survey (SDSS) to present catalogues containing the surface brightness parameters and the morphology classification. About 1700 edge-on galaxies and 2600 face-on galaxies are selected from SDSS DR7 in the g, r and i-bands. The images of each galaxy are fitted with the model of two-dimensional surface brightness of the Sérsic bulge and exponential disk. After removing some irregular data, the box/peanut, bar and other structures are easily distinguished by eye using residual (observed minus model) images. We find 292 box/peanut structures in the 1329 edge-on samples and 630 bar structures in 1890 face-on samples in the i-band, after removing some irregular data. The fraction of box/peanut galaxies is about 22 per cent against the edge-on samples, and that of bar galaxies is about 33 per cent (about 50 per cent if 629 elliptical galaxies are removed) against the face-on samples. Furthermore the strengths of the box/peanuts and bars are evaluated as strong, standard or weak. We find that the strength increases slightly with increasing B/T (bulge-to-total flux ratio), and that the fraction of box/peanuts is generally about a half of that of bars, irrespective of the strength and B/T. Our result supports the idea that a box/peanut is a bar seen edge-on.

  2. wft4galaxy: a workflow testing tool for galaxy.

    PubMed

    Piras, Marco Enrico; Pireddu, Luca; Zanetti, Gianluigi

    2017-12-01

    Workflow managers for scientific analysis provide a high-level programming platform facilitating standardization, automation, collaboration and access to sophisticated computing resources. The Galaxy workflow manager provides a prime example of this type of platform. As compositions of simpler tools, workflows effectively comprise specialized computer programs implementing often very complex analysis procedures. To date, no simple way to automatically test Galaxy workflows and ensure their correctness has appeared in the literature. With wft4galaxy we offer a tool to bring automated testing to Galaxy workflows, making it feasible to bring continuous integration to their development and ensuring that defects are detected promptly. wft4galaxy can be easily installed as a regular Python program or launched directly as a Docker container-the latter reducing installation effort to a minimum. Available at https://github.com/phnmnl/wft4galaxy under the Academic Free License v3.0. marcoenrico.piras@crs4.it. © The Author 2017. Published by Oxford University Press.

  3. Submillimeter Galaxy Number Counts and Magnification by Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Lima, Marcos; Jain, Bhuvnesh; Devlin, Mark; Aguirre, James

    2010-07-01

    We present an analytical model that reproduces measured galaxy number counts from surveys in the wavelength range of 500 μm-2 mm. The model involves a single high-redshift galaxy population with a Schechter luminosity function that has been gravitationally lensed by galaxy clusters in the mass range 1013-1015 M sun. This simple model reproduces both the low-flux and the high-flux end of the number counts reported by the BLAST, SCUBA, AzTEC, and South Pole Telescope (SPT) surveys. In particular, our model accounts for the most luminous galaxies detected by SPT as the result of high magnifications by galaxy clusters (magnification factors of 10-30). This interpretation implies that submillimeter (submm) and millimeter surveys of this population may prove to be a useful addition to ongoing cluster detection surveys. The model also implies that the bulk of submm galaxies detected at wavelengths larger than 500 μm lie at redshifts greater than 2.

  4. Rebuilding Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    2005-01-01

    Major Observing Programme Leads to New Theory of Galaxy Formation Summary Most present-day large galaxies are spirals, presenting a disc surrounding a central bulge. Famous examples are our own Milky Way or the Andromeda Galaxy. When and how did these spiral galaxies form? Why do a great majority of them present a massive central bulge? An international team of astronomers [1] presents new convincing answers to these fundamental questions. For this, they rely on an extensive dataset of observations of galaxies taken with several space- and ground-based telescopes. In particular, they used over a two-year period, several instruments on ESO's Very Large Telescope. Among others, their observations reveal that roughly half of the present-day stars were formed in the period between 8,000 million and 4,000 million years ago, mostly in episodic burst of intense star formation occurring in Luminous Infrared Galaxies. From this and other evidence, the astronomers devised an innovative scenario, dubbed the "spiral rebuilding". They claim that most present-day spiral galaxies are the results of one or several merger events. If confirmed, this new scenario could revolutionise the way astronomers think galaxies formed. PR Photo 02a/05: Luminosity - Oxygen Abundance Relation for Galaxies (VLT) PR Photo 02b/05: The Spiral Rebuilding Scenario A fleet of instruments How and when did galaxies form? How and when did stars form in these island universes? These questions are still posing a considerable challenge to present-day astronomers. Front-line observational results obtained with a fleet of ground- and space-based telescopes by an international team of astronomers [1] provide new insights into these fundamental issues. For this, they embarked on an ambitious long-term study at various wavelengths of 195 galaxies with a redshift [2] greater than 0.4, i.e. located more than 4000 million light-years away. These galaxies were studied using ESO's Very Large Telescope, as well as the

  5. The host galaxy/AGN connection in nearby early-type galaxies. Is there a miniature radio-galaxy in every "core" galaxy?

    NASA Astrophysics Data System (ADS)

    Balmaverde, B.; Capetti, A.

    2006-02-01

    This is the second of a series of three papers exploring the connection between the multiwavelength properties of AGN in nearby early-type galaxies and the characteristics of their hosts. We selected two samples with 5 GHz VLA radio flux measurements down to 1 mJy, reaching levels of radio luminosity as low as 1036 erg s-1. In Paper I we presented a study of the surface brightness profiles for the 65 objects with available archival HST images out of the 116 radio-detected galaxies. We classified early-type galaxies into "core" and "power-law" galaxies, discriminating on the basis of the slope of their nuclear brightness profiles, following the Nukers scheme. Here we focus on the 29 core galaxies (hereafter CoreG). We used HST and Chandra data to isolate their optical and X-ray nuclear emission. The CoreG invariably host radio-loud nuclei, with an average radio-loudness parameter of Log R = L5 {GHz} / LB ˜ 3.6. The optical and X-ray nuclear luminosities correlate with the radio-core power, smoothly extending the analogous correlations already found for low luminosity radio-galaxies (LLRG) toward even lower power, by a factor of ˜ 1000, covering a combined range of 6 orders of magnitude. This supports the interpretation of a common non-thermal origin of the nuclear emission also for CoreG. The luminosities of the nuclear sources, most likely dominated by jet emission, set firm upper limits, as low as L/L_Edd ˜ 10-9 in both the optical and X-ray band, on any emission from the accretion process. The similarity of CoreG and LLRG when considering the distributions host galaxies luminosities and black hole masses, as well as of the surface brightness profiles, indicates that they are drawn from the same population of early-type galaxies. LLRG represent only the tip of the iceberg associated with (relatively) high activity levels, with CoreG forming the bulk of the population. We do not find any relationship between radio-power and black hole mass. A minimum black hole

  6. SDSS-IV MaNGA: Variation of the Stellar Initial Mass Function in Spiral and Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Li, Hongyu; Ge, Junqiang; Mao, Shude; Cappellari, Michele; Long, R. J.; Li, Ran; Emsellem, Eric; Dutton, Aaron A.; Li, Cheng; Bundy, Kevin; Thomas, Daniel; Drory, Niv; Lopes, Alexandre Roman

    2017-04-01

    We perform Jeans anisotropic modeling (JAM) on elliptical and spiral galaxies from the MaNGA DR13 sample. By comparing the stellar mass-to-light ratios estimated from stellar population synthesis and from JAM, we find a systematic variation of the initial mass function (IMF) similar to that in the earlier {{ATLAS}}3{{D}} results. Early-type galaxies (elliptical and lenticular) with lower velocity dispersions within one effective radius are consistent with a Chabrier-like IMF, while galaxies with higher velocity dispersions are consistent with a more bottom-heavy IMF such as the Salpeter IMF. Spiral galaxies have similar systematic IMF variations, but with slightly different slopes and larger scatters, due to the uncertainties caused by the higher gas fractions and extinctions for these galaxies. Furthermore, we examine the effects of stellar mass-to-light ratio gradients on our JAM modeling, and we find that the trends become stronger after considering the gradients.

  7. Radio Galaxy Zoo: A Search for Hybrid Morphology Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Kapińska, A. D.; Terentev, I.; Wong, O. I.; Shabala, S. S.; Andernach, H.; Rudnick, L.; Storer, L.; Banfield, J. K.; Willett, K. W.; de Gasperin, F.; Lintott, C. J.; López-Sánchez, Á. R.; Middelberg, E.; Norris, R. P.; Schawinski, K.; Seymour, N.; Simmons, B.

    2017-12-01

    Hybrid morphology radio sources (HyMoRS) are a rare type of radio galaxy that display different Fanaroff-Riley classes on opposite sides of their nuclei. To enhance the statistical analysis of HyMoRS, we embarked on a large-scale search of these sources within the international citizen science project, Radio Galaxy Zoo (RGZ). Here, we present 25 new candidate hybrid morphology radio galaxies. Our selected candidates are moderate power radio galaxies ({L}{median}=4.7× {10}24 W Hz-1 sr-1) at redshifts 0.14< z< 1.0. Hosts of nine candidates have spectroscopic observations, of which six are classified as quasars, one as high- and two as low-excitation galaxies. Two candidate HyMoRS are giant (> 1 Mpc) radio galaxies, one resides at the center of a galaxy cluster, and one is hosted by a rare green bean galaxy. Although the origin of the hybrid morphology radio galaxies is still unclear, this type of radio source starts depicting itself as a rather diverse class. We discuss hybrid radio morphology formation in terms of the radio source environment (nurture) and intrinsically occurring phenomena (nature; activity cessation and amplification), showing that these peculiar radio galaxies can be formed by both mechanisms. While high angular resolution follow-up observations are still necessary to confirm our candidates, we demonstrate the efficacy of the RGZ in the pre-selection of these sources from all-sky radio surveys, and report the reliability of citizen scientists in identifying and classifying complex radio sources.

  8. Hα3: an Hα imaging survey of HI selected galaxies from ALFALFA. II. Star formation properties of galaxies in the Virgo cluster and surroundings

    NASA Astrophysics Data System (ADS)

    Gavazzi, G.; Fumagalli, M.; Fossati, M.; Galardo, V.; Grossetti, F.; Boselli, A.; Giovanelli, R.; Haynes, M. P.

    2013-05-01

    Context. We present the analysis of Hα3, an Hα narrow-band imaging follow-up survey of 409 galaxies selected from the HI Arecibo Legacy Fast ALFA Survey (ALFALFA) in the Local Supercluster, including the Virgo cluster, in the region 11h < RA < 16h ; 4o < Dec < 16°; 350 < cz < 2000 km s-1. Aims: Taking advantage of Hα3, which provides the complete census of the recent massive star formation rate (SFR) in HI-rich galaxies in the local Universe and of ancillary optical data from SDSS we explore the relations between the stellar mass, the HI mass, and the current, massive SFR of nearby galaxies in the Virgo cluster. We compare these with those of isolated galaxies in the Local Supercluster, and we investigate the role of the environment in shaping the star formation properties of galaxies at the present cosmological epoch. Methods: By using the Hα hydrogen recombination line as a tracer of recent star formation, we investigated the relationships between atomic neutral gas and newly formed stars in different environments (cluster and field), for many morphological types (spirals and dwarfs), and over a wide range of stellar masses (107.5 to 1011.5 M⊙). To quantify the degree of environmental perturbation, we adopted an updated calibration of the HI deficiency parameter which we used to divide the sample into three classes: unperturbed galaxies (DefHI ≤ 0.3), perturbed galaxies (0.3 < DefHI < 0.9), and highly perturbed galaxies (DefHI ≥ 0.9). Results: Studying the mean properties of late-type galaxies in the Local Supercluster, we find that galaxies in increasing dense local galaxy conditions (or decreasing projected angular separation from M 87) show a significant decrease in the HI content and in the mean specific SFR, along with a progressive reddening of their stellar populations. The gradual quenching of the star formation occurs outside-in, consistently with the predictions of the ram pressure model. Once considered as a whole, the Virgo cluster is

  9. Galaxy and Mass Assembly (GAMA): small-scale anisotropic galaxy clustering and the pairwise velocity dispersion of galaxies

    NASA Astrophysics Data System (ADS)

    Loveday, J.; Christodoulou, L.; Norberg, P.; Peacock, J. A.; Baldry, I. K.; Bland-Hawthorn, J.; Brown, M. J. I.; Colless, M.; Driver, S. P.; Holwerda, B. W.; Hopkins, A. M.; Kafle, P. R.; Liske, J.; Lopez-Sanchez, A. R.; Taylor, E. N.

    2018-03-01

    The galaxy pairwise velocity dispersion (PVD) can provide important tests of non-standard gravity and galaxy formation models. We describe measurements of the PVD of galaxies in the Galaxy and Mass Assembly (GAMA) survey as a function of projected separation and galaxy luminosity. Due to the faint magnitude limit (r < 19.8) and highly complete spectroscopic sampling of the GAMA survey, we are able to reliably measure the PVD to smaller scales (r⊥ = 0.01 h - 1 Mpc) than previous work. The measured PVD at projected separations r⊥ ≲ 1 h - 1 Mpc increases near monotonically with increasing luminosity from σ12 ≈ 200 km s - 1 at Mr = -17 mag to σ12 ≈ 600 km s - 1 at Mr ≈ -22 mag. Analysis of the Gonzalez-Perez et al. (2014) GALFORM semi-analytic model yields no such trend of PVD with luminosity: the model overpredicts the PVD for faint galaxies. This is most likely a result of the model placing too many low-luminosity galaxies in massive haloes.

  10. Amazing Andromeda Galaxy

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The many 'personalities' of our great galactic neighbor, the Andromeda galaxy, are exposed in this new composite image from NASA's Galaxy Evolution Explorer and the Spitzer Space Telescope.

    The wide, ultraviolet eyes of Galaxy Evolution Explorer reveal Andromeda's 'fiery' nature -- hotter regions brimming with young and old stars. In contrast, Spitzer's super-sensitive infrared eyes show Andromeda's relatively 'cool' side, which includes embryonic stars hidden in their dusty cocoons.

    Galaxy Evolution Explorer detected young, hot, high-mass stars, which are represented in blue, while populations of relatively older stars are shown as green dots. The bright yellow spot at the galaxy's center depicts a particularly dense population of old stars.

    Swaths of red in the galaxy's disk indicate areas where Spitzer found cool, dusty regions where stars are forming. These stars are still shrouded by the cosmic clouds of dust and gas that collapsed to form them.

    Together, Galaxy Evolution Explorer and Spitzer complete the picture of Andromeda's swirling spiral arms. Hints of pinkish purple depict regions where the galaxy's populations of hot, high-mass stars and cooler, dust-enshrouded stars co-exist.

    Located 2.5 million light-years away, the Andromeda is our largest nearby galactic neighbor. The galaxy's entire disk spans about 260,000 light-years, which means that a light beam would take 260,000 years to travel from one end of the galaxy to the other. By comparison, our Milky Way galaxy's disk is about 100,000 light-years across.

    This image is a false color composite comprised of data from Galaxy Evolution Explorer's far-ultraviolet detector (blue), near-ultraviolet detector (green), and Spitzer's multiband imaging photometer at 24 microns (red).

  11. Spitzer IRS Observations of Low-Mass Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Thornton, Carol E.; Barth, Aaron J.; Ho, Luis C.; Greene, Jenny E.

    2010-05-01

    The Sloan Digital Sky Survey has made it possible to identify the first samples of active galaxies with estimated black hole masses below ~ 106 M⊙. We have obtained Spitzer IRS low-resolution spectra, covering 5-38 μm, of a sample of 41 Seyfert galaxies with low-mass black holes. Our sample includes SDSS-selected objects from the low-mass Seyfert 1 sample of Greene & Ho (2004) and the low-mass Seyfert 2 sample of Barth et al. (2008), as well as NGC 4395 and POX 52. The goals of this work are to examine the dust emission properties of these objects and investigate the relationship between type 1 and type 2 AGNs at low luminosities and low masses, to search for evidence of star formation, and to use emission-line diagnostics to constrain physical conditions within the narrow-line regions. Here we present preliminary results from this project.

  12. Galaxy Zoo: quantitative visual morphological classifications for 48 000 galaxies from CANDELS

    NASA Astrophysics Data System (ADS)

    Simmons, B. D.; Lintott, Chris; Willett, Kyle W.; Masters, Karen L.; Kartaltepe, Jeyhan S.; Häußler, Boris; Kaviraj, Sugata; Krawczyk, Coleman; Kruk, S. J.; McIntosh, Daniel H.; Smethurst, R. J.; Nichol, Robert C.; Scarlata, Claudia; Schawinski, Kevin; Conselice, Christopher J.; Almaini, Omar; Ferguson, Henry C.; Fortson, Lucy; Hartley, William; Kocevski, Dale; Koekemoer, Anton M.; Mortlock, Alice; Newman, Jeffrey A.; Bamford, Steven P.; Grogin, N. A.; Lucas, Ray A.; Hathi, Nimish P.; McGrath, Elizabeth; Peth, Michael; Pforr, Janine; Rizer, Zachary; Wuyts, Stijn; Barro, Guillermo; Bell, Eric F.; Castellano, Marco; Dahlen, Tomas; Dekel, Avishai; Ownsworth, Jamie; Faber, Sandra M.; Finkelstein, Steven L.; Fontana, Adriano; Galametz, Audrey; Grützbauch, Ruth; Koo, David; Lotz, Jennifer; Mobasher, Bahram; Mozena, Mark; Salvato, Mara; Wiklind, Tommy

    2017-02-01

    We present quantified visual morphologies of approximately 48 000 galaxies observed in three Hubble Space Telescope legacy fields by the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and classified by participants in the Galaxy Zoo project. 90 per cent of galaxies have z ≤ 3 and are observed in rest-frame optical wavelengths by CANDELS. Each galaxy received an average of 40 independent classifications, which we combine into detailed morphological information on galaxy features such as clumpiness, bar instabilities, spiral structure, and merger and tidal signatures. We apply a consensus-based classifier weighting method that preserves classifier independence while effectively down-weighting significantly outlying classifications. After analysing the effect of varying image depth on reported classifications, we also provide depth-corrected classifications which both preserve the information in the deepest observations and also enable the use of classifications at comparable depths across the full survey. Comparing the Galaxy Zoo classifications to previous classifications of the same galaxies shows very good agreement; for some applications, the high number of independent classifications provided by Galaxy Zoo provides an advantage in selecting galaxies with a particular morphological profile, while in others the combination of Galaxy Zoo with other classifications is a more promising approach than using any one method alone. We combine the Galaxy Zoo classifications of `smooth' galaxies with parametric morphologies to select a sample of featureless discs at 1 ≤ z ≤ 3, which may represent a dynamically warmer progenitor population to the settled disc galaxies seen at later epochs.

  13. Measuring Extinction in Local Group Galaxies Using Background Galaxies

    NASA Astrophysics Data System (ADS)

    Wyder, T. K.; Hodge, P. W.

    1999-05-01

    Knowledge of the distribution and quantity of dust in galaxies is important for understanding their structure and evolution. The goal of our research is to measure the total extinction through Local Group galaxies using measured properties of background galaxies. Our method relies on the SExtractor software as an objective and automated method of detecting background galaxies. In an initial test, we have explored two WFPC2 fields in the SMC and two in M31 obtained from the HST archives. The two pointings in the SMC are fields around the open clusters L31 and B83 while the two M31 fields target the globular clusters G1 and G170. Except for the G1 observations of M31, the fields chosen are very crowded (even when observed with HST) and we chose them as a particularly stringent test of the method. We performed several experiments using a series of completeness tests that involved superimposing comparison fields, adjusted to the equivalent exposure time, from the HST Medium-Deep and Groth-Westphal surveys. These tests showed that for crowded fields, such as the two in the core of the SMC and the one in the bulge of M31, this automated method of detecting galaxies can be completely dominated by the effects of crowding. For these fields, only a small fraction of the added galaxies was recovered. However, in the outlying G1 field in M31, almost all of the added galaxies were recovered. The numbers of actual background galaxies in this field are consistent with zero extinction. As a follow-up experiment, we used image processing techniques to suppress stellar objects while enhancing objects with non-stellar, more gradual luminosity profiles. This method yielded significant numbers of background galaxies in even the most crowded fields, which we are now analyzing to determine the total extinction and reddening caused by the foreground galaxy.

  14. The formation and evolution of high-redshift dusty galaxies

    NASA Astrophysics Data System (ADS)

    Ma, Jingzhe; Gonzalez, Anthony H.; Ge, Jian; Vieira, Joaquin D.; Prochaska, Jason X.; Spilker, Justin; Strandet, Maria; Ashby, Matthew; Noterdaeme, Pasquier; Lundgren, Britt; Zhao, Yinan; Ji, Tuo; Zhang, Shaohua; Caucal, Paul; SPT SMG Collaboration

    2017-01-01

    Star formation and chemical evolution are among the biggest questions in galaxy formation and evolution. High-redshift dusty galaxies are the best sites to investigate mass assembly and growth, star formation rates, star formation history, chemical enrichment, and physical conditions. My thesis is based on two populations of high-redshift dusty galaxies, submillimeter galaxies (SMGs) and quasar 2175 Å dust absorbers, which are selected by dust emission and dust absorption, respectively.For the SMG sample, I have worked on the gravitationally lensed dusty, star-forming galaxies (DSFGs) at 2.8 < z < 5.7, which were first discovered by the South Pole Telescope (SPT) and further confirmed by ALMA. My thesis is focused on the stellar masses and star formation rates of these objects by means of multi-wavelength spectral energy distribution (SED) modelling. The data include HST/WFC3, Spitzer/IRAC, Herschel/PACS, Herschel/SPIRE, APEX/Laboca and SPT. Compared to the star-forming main sequence (MS), these DSFGs have specific SFRs that lie above the MS, suggesting that we are witnessing ongoing strong starburst events that may be driven by major mergers. SPT0346-52 at z = 5.7, the most extraordinary source in the SPT survey for which we obtained Chandra X-ray and ATCA radio data, was confirmed to have the highest star formation surface density of any known galaxy at high-z.The other half of my thesis is focused on a new population of quasar absorption line systems, 2175 Å dust absorbers, which are excellent probes of gas and dust properties, chemical evolution and physical conditions in the absorbing galaxies. This sample was selected from the SDSS and BOSS surveys and followed up with the Echelle Spectrographs and Imager on the Keck-II telescope, the Red & Blue Channel Spectrograph on the Multiple Mirror Telescope, and the Ultraviolet and Visible Echelle Spectrograph onboard the Very Large Telescope. We found a correlation between the presence of the 2175 Å bump and other

  15. Observations of starburst galaxies: Science and supporting technology

    NASA Astrophysics Data System (ADS)

    Laag, Edward Aric

    In chapter 1 we report on the development of wavefront reconstruction and control algorithms for multi-conjugate adaptive optics (MCAO) and the results of testing them in the laboratory under conditions that simulate an 8 meter class telescope. The UCO/Lick Observatory Laboratory for Adaptive Optics Multi-Conjugate testbed allows us to test wide field of view adaptive optics systems as they might be instantiated in the near future on giant telescopes. In particular, we have been investigating the performance of MCAO using five laser beacons for wavefront sensing and a minimum variance algorithm for control of two conjugate deformable mirrors. We have demonstrated improved Strehl ratio and enlarged field of view performance when compared to conventional AO techniques. We have demonstrated improved MCAO performance with the implementation of a routine that minimizes the generalized isoplanatism when turbulent layers do not correspond to deformable mirror conjugate altitudes. Finally, we have demonstrated suitability of the system for closed-loop operation when configured to feed back conditional mean estimates of wavefront residuals rather than the directly measured residuals. This technique has recently been referred to as the "pseudo-open-loop" control law in the literature. Chapter 2 introduces the Multi-wavelength Extreme Starburst Sample (MESS), a new catalog of 138 star-forming galaxies (0.1 < z < 0.3) optically selected from the SDSS using emission line strength diagnostics to have SFR ≥ 50 M⊙ yr-1 based on a Kroupa IMF. The MESS was designed to complement samples of nearby star forming galaxies such as the luminous infrared galaxies (LIRGs), and ultraviolet luminous galaxies (UVLGs). Observations using the multiband imaging photometer (MIPS; 24, 70, and 160mum channels) on the Spitzer Space Telescope indicate the MESS galaxies have IR luminosities similar to those of LIRGs, with an estimated median LTIR ˜ 3 x 1011 L⊙ . The selection criteria for the

  16. Optical-Near-infrared Color Gradients and Merging History of Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Duho; Im, Myungshin

    2013-04-01

    It has been suggested that merging plays an important role in the formation and the evolution of elliptical galaxies. While gas dissipation by star formation is believed to steepen metallicity and color gradients of the merger products, mixing of stars through dissipation-less merging (dry merging) is believed to flatten them. In order to understand the past merging history of elliptical galaxies, we studied the optical-near-infrared (NIR) color gradients of 204 elliptical galaxies. These galaxies are selected from the overlap region of the Sloan Digital Sky Survey (SDSS) Stripe 82 and the UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). The use of optical and NIR data (g, r, and K) provides large wavelength baselines, and breaks the age-metallicity degeneracy, allowing us to derive age and metallicity gradients. The use of the deep SDSS Stripe 82 images makes it possible for us to examine how the color/age/metallicity gradients are related to merging features. We find that the optical-NIR color and the age/metallicity gradients of elliptical galaxies with tidal features are consistent with those of relaxed ellipticals, suggesting that the two populations underwent a similar merging history on average and that mixing of stars was more or less completed before the tidal features disappeared. Elliptical galaxies with dust features have steeper color gradients than the other two types, even after masking out dust features during the analysis, which can be due to a process involving wet merging. More importantly, we find that the scatter in the color/age/metallicity gradients of the relaxed and merging feature types decreases as their luminosities (or masses) increase at M > 1011.4 M ⊙ but stays large at lower luminosities. Mean metallicity gradients appear nearly constant over the explored mass range, but a possible flattening is observed at the massive end. According to our toy model that predicts how the distribution of metallicity gradients

  17. A New Approach to Galaxy Morphology. I. Analysis of the Sloan Digital Sky Survey Early Data Release

    NASA Astrophysics Data System (ADS)

    Abraham, Roberto G.; van den Bergh, Sidney; Nair, Preethi

    2003-05-01

    In this paper we present a new statistic for quantifying galaxy morphology based on measurements of the Gini coefficient of galaxy light distributions. This statistic is easy to measure and is commonly used in econometrics to measure how wealth is distributed in human populations. When applied to galaxy images, the Gini coefficient provides a quantitative measure of the inequality with which a galaxy's light is distributed among its constituent pixels. We measure the Gini coefficient of local galaxies in the Early Data Release of the Sloan Digital Sky Survey and demonstrate that this quantity is closely correlated with measurements of central concentration, but with significant scatter. This scatter is almost entirely due to variations in the mean surface brightness of galaxies. By exploring the distribution of galaxies in the three-dimensional parameter space defined by the Gini coefficient, central concentration, and mean surface brightness, we show that all nearby galaxies lie on a well-defined two-dimensional surface (a slightly warped plane) embedded within a three-dimensional parameter space. By associating each galaxy sample with the equation of this plane, we can encode the morphological composition of the entire SDSS g*-band sample using the following three numbers: {22.451, 5.366, 7.010}. The i*-band sample is encoded as {22.149, 5.373, and 7.627}.

  18. Modeling MgII Absorbers from SDSS Spectroscopic and Imaging Catalogs

    NASA Astrophysics Data System (ADS)

    Rimoldini, L. G.; Menard, B.; Nestor, D. B.; Rao, S. M.; Sheth, R. K.; Turnshek, D. A.; Zibetti, S.; Feather, S.; Quider, A.

    2005-12-01

    The detection of more than 14,000 MgII absorption doublets along the sight-lines to SDSS DR4 QSOs (pursued by Turnshek, Nestor, Rao, and collaborators) has produced the largest sample of MgII absorbers to date in the redshift interval 0.37 < z < 2.30. The statistical relation between galaxies and MgII systems is investigated by cross-correlating the spectroscopic MgII catalog with the SDSS imaging catalog of galaxies in the neighborhood of QSO sight-lines. A model for MgII absorbers is derived to account for the measured MgII rest equivalent width distribution and the absorbing galaxy properties (e.g., luminosity, impact parameter, and morphological type). Some preliminary results of our analysis are presented. This work was supported in part by the National Science Foundation. L.G.R. acknowledges further support from the Z. Daniel's Predoctoral Fellowship.

  19. The rarity of dust in metal-poor galaxies.

    PubMed

    Fisher, David B; Bolatto, Alberto D; Herrera-Camus, Rodrigo; Draine, Bruce T; Donaldson, Jessica; Walter, Fabian; Sandstrom, Karin M; Leroy, Adam K; Cannon, John; Gordon, Karl

    2014-01-09

    Galaxies observed at redshift z > 6, when the Universe was less than a billion years old, thus far very rarely show evidence of the cold dust that accompanies star formation in the local Universe, where the dust-to-gas mass ratio is around one per cent. A prototypical example is the galaxy Himiko (z = 6.6), which--a mere 840 million years after the Big Bang--is forming stars at a rate of 30-100 solar masses per year, yielding a mass assembly time of about 150 × 10(6) years. Himiko is thought to have a low fraction (2-3 per cent of the Sun's) of elements heavier than helium (low metallicity), and although its gas mass cannot yet be determined its dust-to-stellar mass ratio is constrained to be less than 0.05 per cent. The local dwarf galaxy I Zwicky 18, which has a metallicity about 4 per cent that of the Sun's and is forming stars less rapidly (assembly time about 1.6 × 10(9) years) than Himiko but still vigorously for its mass, is also very dust deficient and is perhaps one of the best analogues of primitive galaxies accessible to detailed study. Here we report observations of dust emission from I Zw 18, from which we determine its dust mass to be 450-1,800 solar masses, yielding a dust-to-stellar mass ratio of about 10(-6) to 10(-5) and a dust-to-gas mass ratio of 3.2-13 × 10(-6). If I Zw 18 is a reasonable analogue of Himiko, then Himiko's dust mass must be around 50,000 solar masses, a factor of 100 below the current upper limit. These numbers are quite uncertain, but if most high-z galaxies are more like Himiko than like the very-high-dust-mass galaxy SDSS J114816.64 + 525150.3 at z ≈ 6, which hosts a quasar, then our prospects for detecting the gas and dust inside such galaxies are much poorer than hitherto anticipated.

  20. How Do Galaxies Grow?

    NASA Astrophysics Data System (ADS)

    2008-08-01

    Astronomers have caught multiple massive galaxies in the act of merging about 4 billion years ago. This discovery, made possible by combining the power of the best ground- and space-based telescopes, uniquely supports the favoured theory of how galaxies form. ESO PR Photo 24/08 ESO PR Photo 24/08 Merging Galaxies in Groups How do galaxies form? The most widely accepted answer to this fundamental question is the model of 'hierarchical formation', a step-wise process in which small galaxies merge to build larger ones. One can think of the galaxies forming in a similar way to how streams merge to form rivers, and how these rivers, in turn, merge to form an even larger river. This theoretical model predicts that massive galaxies grow through many merging events in their lifetime. But when did their cosmological growth spurts finish? When did the most massive galaxies get most of their mass? To answer these questions, astronomers study massive galaxies in clusters, the cosmological equivalent of cities filled with galaxies. "Whether the brightest galaxies in clusters grew substantially in the last few billion years is intensely debated. Our observations show that in this time, these galaxies have increased their mass by 50%," says Kim-Vy Tran from the University of Zürich, Switzerland, who led the research. The astronomers made use of a large ensemble of telescopes and instruments, including ESO's Very Large Telescope (VLT) and the Hubble Space Telescope, to study in great detail galaxies located 4 billion light-years away. These galaxies lie in an extraordinary system made of four galaxy groups that will assemble into a cluster. In particular, the team took images with VIMOS and spectra with FORS2, both instruments on the VLT. From these and other observations, the astronomers could identify a total of 198 galaxies belonging to these four groups. The brightest galaxies in each group contain between 100 and 1000 billion of stars, a property that makes them comparable

  1. Galaxy Clustering Topology in the Sloan Digital Sky Survey Main Galaxy Sample: A Test for Galaxy Formation Models

    NASA Astrophysics Data System (ADS)

    Choi, Yun-Young; Park, Changbom; Kim, Juhan; Gott, J. Richard, III; Weinberg, David H.; Vogeley, Michael S.; Kim, Sungsoo S.; SDSS Collaboration

    2010-09-01

    We measure the topology of the main galaxy distribution using the Seventh Data Release of the Sloan Digital Sky Survey, examining the dependence of galaxy clustering topology on galaxy properties. The observational results are used to test galaxy formation models. A volume-limited sample defined by Mr < -20.19 enables us to measure the genus curve with an amplitude of G = 378 at 6 h -1 Mpc smoothing scale, with 4.8% uncertainty including all systematics and cosmic variance. The clustering topology over the smoothing length interval from 6 to 10 h -1 Mpc reveals a mild scale dependence for the shift (Δν) and void abundance (AV ) parameters of the genus curve. We find substantial bias in the topology of galaxy clustering with respect to the predicted topology of the matter distribution, which varies with luminosity, morphology, color, and the smoothing scale of the density field. The distribution of relatively brighter galaxies shows a greater prevalence of isolated clusters and more percolated voids. Even though early (late)-type galaxies show topology similar to that of red (blue) galaxies, the morphology dependence of topology is not identical to the color dependence. In particular, the void abundance parameter AV depends on morphology more strongly than on color. We test five galaxy assignment schemes applied to cosmological N-body simulations of a ΛCDM universe to generate mock galaxies: the halo-galaxy one-to-one correspondence model, the halo occupation distribution model, and three implementations of semi-analytic models (SAMs). None of the models reproduces all aspects of the observed clustering topology; the deviations vary from one model to another but include statistically significant discrepancies in the abundance of isolated voids or isolated clusters and the amplitude and overall shift of the genus curve. SAM predictions of the topology color dependence are usually correct in sign but incorrect in magnitude. Our topology tests indicate that, in

  2. SUBMILLIMETER GALAXY NUMBER COUNTS AND MAGNIFICATION BY GALAXY CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lima, Marcos; Jain, Bhuvnesh; Devlin, Mark

    2010-07-01

    We present an analytical model that reproduces measured galaxy number counts from surveys in the wavelength range of 500 {mu}m-2 mm. The model involves a single high-redshift galaxy population with a Schechter luminosity function that has been gravitationally lensed by galaxy clusters in the mass range 10{sup 13}-10{sup 15} M{sub sun}. This simple model reproduces both the low-flux and the high-flux end of the number counts reported by the BLAST, SCUBA, AzTEC, and South Pole Telescope (SPT) surveys. In particular, our model accounts for the most luminous galaxies detected by SPT as the result of high magnifications by galaxy clustersmore » (magnification factors of 10-30). This interpretation implies that submillimeter (submm) and millimeter surveys of this population may prove to be a useful addition to ongoing cluster detection surveys. The model also implies that the bulk of submm galaxies detected at wavelengths larger than 500 {mu}m lie at redshifts greater than 2.« less

  3. Les galaxies

    NASA Astrophysics Data System (ADS)

    Combes, Francoise

    2016-08-01

    Considerable progress has been made on galaxy formation and evolution in recent years, and new issues. The old Hubble classification according to the tuning fork of spirals, lenticulars and ellipticals, is still useful but has given place to the red sequence, the blue cloud and the green valley, showing a real bimodality of types between star forming galaxies (blue) and quenched ones (red). Large surveys have shown that stellar mass and environment density are the two main factors of the evolution from blue to red sequences. Evolution is followed directly with redshift through a look-back time of more than 12 billion years. The most distant galaxy at z=11. has already a stellar mass of a billion suns. In an apparent anti-hierarchical scenario, the most massive galaxies form stars early on, while essentially dwarf galaxies are actively star-formers now. This downsizing feature also applies to the growth of super-massive black holes at the heart of each bulgy galaxy. The feedback from active nuclei is essential to explain the distribution of mass in galaxies, and in particular to explain why the fraction of baryonic matter is so low, lower by more than a factor 5 than the baryonic fraction of the Universe. New instruments just entering in operation, like MUSE and ALMA, provide a new and rich data flow, which is developed in this series of articles.

  4. SFR bulge-to-disk ratios from the CALIFA IFS nearby galaxies survey

    NASA Astrophysics Data System (ADS)

    Catalán-Torrecilla, Cristina; Gil de Paz, Armando; Castillo-Morales, Africa; Iglesias Páramo, Jorge; Sanchez, Sebastian

    2015-08-01

    Our ultimate aim is to study the evolution of the Star Formation Rate (SFR) by components (nuclei, bulges, disks) as a key constraint for the models of galaxy formation and evolution. In order to provide a local benchmark, we start from the analysis of a sample of nearby galaxies from the CALIFA Integral Field Spectroscopy (IFS) survey. Prior to this study, we have verified that the extinction-corrected Halpha luminosity provided by CALIFA IFS data recovers the total SFR by means of comparing measurements from this estimator with single-band (22μm, TIR and FUV) and hybrid tracers (FUV+22μm, FUV+TIR, Halpha+22μm, Halpha+TIR) for our sample of 272 CALIFA galaxies (Catalán-Torrecilla et al. 2015). We focus here on the study of the SFR bulge-to-disk ratio in nearby galaxies, something achievable in large numbers thanks to the good spatial resolution of our optical stellar-absorption and extinction corrected IFS-based Halpha maps. The results of the photometric decomposition of SDSS images of our sample is used as a prior is this analysis. The CALIFA objects analyzed range from galaxies that have all the SFR concentrated in the nuclear part to cases in which the SFR is spread over the disk and include both barred and unbarred galaxies. In summary, we are able to explore the distribution of the SFR in scales of 0.3-1.6 kpc for a rather large and well-characterized galaxy sample in the Local Universe.This and similar studies at higher redshifts will be key to understand how and at what rate galaxies assemble their stellar masses, either through mergers and/or secular processes.

  5. Connection between Stellar Mass Distributions within Galaxies and Quenching Since z = 2

    NASA Astrophysics Data System (ADS)

    Mosleh, Moein; Tacchella, Sandro; Renzini, Alvio; Carollo, C. Marcella; Molaeinezhad, Alireza; Onodera, Masato; Khosroshahi, Habib G.; Lilly, Simon

    2017-03-01

    We study the history from z˜ 2 to z˜ 0 of the stellar mass assembly of quiescent and star-forming galaxies in a spatially resolved fashion. For this purpose, we use multi-wavelength imaging data from the Hubble Space Telescope (HST) over the GOODS fields and the Sloan Digital Sky Survey (SDSS) for the local population. We present the radial stellar mass surface density profiles of galaxies with {M}* > {10}10 {M}⊙ , corrected for mass-to-light ratio ({M}* /L) variations, and derive the half-mass-radius (R m ), central stellar mass surface density within 1 kpc ({{{Σ }}}1) and surface density at R m ({{{Σ }}}m) for star-forming and quiescent galaxies and study their evolution with redshift. At fixed stellar mass, the half-mass sizes of quiescent galaxies increase from z˜ 2 to z˜ 0 by a factor of ˜ 3-5, whereas the half-mass sizes of star-forming galaxies increase only slightly, by a factor of ˜2. The central densities {{{Σ }}}1 of quiescent galaxies decline slightly (by a factor of ≲ 1.7) from z˜ 2 to z˜ 0, while for star-forming galaxies {{{Σ }}}1 increases with time, at fixed mass. We show that the central density {{{Σ }}}1 has a tighter correlation with specific star-formation rate (sSFR) than {{{Σ }}}m and for all masses and redshifts galaxies with higher central density are more prone to be quenched. Reaching a high central density ({{{Σ }}}1≳ {10}10 {M}⊙ {{kpc}}2) seems to be a prerequisite for the cessation of star formation, though a causal link between high {{{Σ }}}1 and quenching is difficult to prove and their correlation can have a different origin.

  6. Color-magnitude relations in nearby galaxy clusters

    NASA Astrophysics Data System (ADS)

    Rasheed, Mariwan A.; Mohammad, Khalid K.

    2018-06-01

    The rest-frame (g-r) /Mr color-magnitude relations of 12 Abell-type clusters are analyzed in the redshift range (0.02≲ z ≲ 0.10) and within a projected radius of 0.75 Mpc using photometric data from SDSS-DR9. We show that the color-magnitude relation parameters (slope, zero-point, and scatter) do not exhibit significant evolution within this low-redshift range. Thus, we can say that during the look-back time of z ˜ 0.1 all red sequence galaxies evolve passively, without any star formation activity.

  7. Tidal Disruption Event Host Galaxies in the Context of the Local Galaxy Population

    NASA Astrophysics Data System (ADS)

    Law-Smith, Jamie; Ramirez-Ruiz, Enrico; Ellison, Sara L.; Foley, Ryan J.

    2017-11-01

    We study the properties of tidal disruption event (TDE) host galaxies in the context of a catalog of ˜500,000 galaxies from the Sloan Digital Sky Survey. We explore whether selection effects can account for the overrepresentation of TDEs in E+A/post-starburst galaxies by creating matched galaxy samples. Accounting for possible selection effects due to black hole (BH) mass, redshift completeness, strong active galactic nucleus presence, bulge colors, and surface brightness can reduce the apparent overrepresentation of TDEs in E+A host galaxies by a factor of ˜4 (from ˜×100-190 to ˜×25-48), but cannot fully explain the preference. We find that TDE host galaxies have atypical photometric properties compared to similar, “typical” galaxies. In particular, TDE host galaxies tend to live in or near the “green valley” between star-forming and passive galaxies, and have bluer bulge colors ({{Δ }}(g-r)≈ 0.3 mag), lower half-light surface brightnesses (by ˜1 mag/arcsec2), higher Sérsic indices ({{Δ }}{n}{{g}}≈ 3), and higher bulge-to-total-light ratios ({{Δ }}B/T≈ 0.5) than galaxies with matched BH masses. We find that TDE host galaxies appear more centrally concentrated and that all have high galaxy Sérsic indices and B/T fractions—on average in the top 10% of galaxies of the same BH mass—suggesting a higher nuclear stellar density. We identify a region in the Sérsic index and BH mass parameter space that contains ˜2% of our reference catalog galaxies but ≥slant 60 % of TDE host galaxies. The unique photometric properties of TDE host galaxies may be useful for selecting candidate TDEs for spectroscopic follow-up observations in large transient surveys.

  8. The Dependence of Galaxy Clustering on Stellar-mass Assembly History for LRGs

    NASA Astrophysics Data System (ADS)

    Montero-Dorta, Antonio D.; Pérez, Enrique; Prada, Francisco; Rodríguez-Torres, Sergio; Favole, Ginevra; Klypin, Anatoly; Cid Fernandes, Roberto; González Delgado, Rosa M.; Domínguez, Alberto; Bolton, Adam S.; García-Benito, Rubén; Jullo, Eric; Niemiec, Anna

    2017-10-01

    We analyze the spectra of 300,000 luminous red galaxies (LRGs) with stellar masses {M}* ≳ {10}11 {M}⊙ from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). By studying their star formation histories, we find two main evolutionary paths converging into the same quiescent galaxy population at z˜ 0.55. Fast-growing LRGs assemble 80% of their stellar mass very early on (z˜ 5), whereas slow-growing LRGs reach the same evolutionary state at z˜ 1.5. Further investigation reveals that their clustering properties on scales of ˜1-30 Mpc are, at a high level of significance, also different. Fast-growing LRGs are found to be more strongly clustered and reside in overall denser large-scale structure environments than slow-growing systems, for a given stellar-mass threshold. Our results show a dependence of clustering on a property that is directly related to the evolution of galaxies, I.e., the stellar-mass assembly history, for a homogeneous population of similar mass and color. In a forthcoming work, we will address the halo connection in the context of galaxy assembly bias.

  9. THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahid, H. J.; Kewley, L. J.; Kudritzki, R. P.

    In this study, we investigate the relation between stellar mass, dust extinction, and star formation rate (SFR) using {approx}150,000 star-forming galaxies from SDSS DR7. We show that the relation between dust extinction and SFR changes with stellar mass. For galaxies at the same stellar mass, dust extinction is anti-correlated with the SFR at stellar masses <10{sup 10} M {sub Sun }. There is a sharp transition in the relation at a stellar mass of 10{sup 10} M {sub Sun }. At larger stellar masses, dust extinction is positively correlated with the SFR for galaxies at the same stellar mass. Themore » observed relation between stellar mass, dust extinction, and SFR presented in this study helps to confirm similar trends observed in the relation between stellar mass, metallicity, and SFR. The relation reported in this study provides important new constraints on the physical processes governing the chemical evolution of galaxies. The correlation between SFR and dust extinction for galaxies with stellar masses >10{sup 10} M {sub Sun} is shown to extend to the population of quiescent galaxies suggesting that the physical processes responsible for the observed relation between stellar mass, dust extinction, and SFR may be related to the processes leading to the shutdown of star formation in galaxies.« less

  10. Submillimeter Galaxies as Progenitors of Compact Quiescent Galaxies

    NASA Technical Reports Server (NTRS)

    Toft, S.; Smolcic, V.; Magnelli, B.; Karim, A.; Zirm, A.; Michalowski, M.; Capak, P.; Sheth, K.; Schawinski, K.; Krogager, J.-K.; hide

    2014-01-01

    Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts.With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42(sup+40) -29 Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.

  11. Submillimeter Galaxies as Progenitors of Compact Quiescent Galaxies

    NASA Astrophysics Data System (ADS)

    Toft, S.; Smolčić, V.; Magnelli, B.; Karim, A.; Zirm, A.; Michalowski, M.; Capak, P.; Sheth, K.; Schawinski, K.; Krogager, J.-K.; Wuyts, S.; Sanders, D.; Man, A. W. S.; Lutz, D.; Staguhn, J.; Berta, S.; Mccracken, H.; Krpan, J.; Riechers, D.

    2014-02-01

    Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts. With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42^{+40}_{-29} Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.

  12. SDSS-IV MaNGA: environmental dependence of stellar age and metallicity gradients in nearby galaxies

    NASA Astrophysics Data System (ADS)

    Zheng, Zheng; Wang, Huiyuan; Ge, Junqiang; Mao, Shude; Li, Cheng; Li, Ran; Mo, Houjun; Goddard, Daniel; Bundy, Kevin; Li, Hongyu; Nair, Preethi; Lin, Lihwai; Long, R. J.; Riffel, Rogério; Thomas, Daniel; Masters, Karen; Bizyaev, Dmitry; Brownstein, Joel R.; Zhang, Kai; Law, David R.; Drory, Niv; Roman Lopes, Alexandre; Malanushenko, Olena

    2017-03-01

    We present a study on the stellar age and metallicity distributions for 1105 galaxies using the STARLIGHT software on MaNGA (Mapping Nearby Galaxies at APO) integral field spectra. We derive age and metallicity gradients by fitting straight lines to the radial profiles, and explore their correlations with total stellar mass M*, NUV - r colour and environments, as identified by both the large-scale structure (LSS) type and the local density. We find that the mean age and metallicity gradients are close to zero but slightly negative, which is consistent with the inside-out formation scenario. Within our sample, we find that both the age and metallicity gradients show weak or no correlation with either the LSS type or local density environment. In addition, we also study the environmental dependence of age and metallicity values at the effective radii. The age and metallicity values are highly correlated with M* and NUV - r and are also dependent on LSS type as well as local density. Low-mass galaxies tend to be younger and have lower metallicity in low-density environments while high-mass galaxies are less affected by environment.

  13. N-body modeling of barlens galaxies: Boxy/Peanut/X observed at different viewing geometries

    NASA Astrophysics Data System (ADS)

    Salo, Heikki; Laurikainen, Eija

    2017-06-01

    We use stellar dynamical N-body simulations to explore barlens galaxies, i.e. galaxies with lens-like central structures embedded in their bars, with a size about one-half of the narrow bar component. Because of their roundish isophotes, barlenses are often confused with classical bulges. However, growing evidence indicates that barlenses form a part of the bar, corresponding to the face-on projection of the vertically extended Boxy/Peanut/X central structures seen in edge-on barred galaxies (see Laurikainen et al. 2014, 2016, Athanassoula et al. 2015). B/P/X/barlens structures appear mostly in galaxies with stellar masses above 1010 solar masses. It has been suggested by Bland-Hawthorn & Gerhard (2016) that in face-on view also our Milky Way is likely to be a barlens galaxy.Here we review the morphological appearance of B/P/X/barlens galaxies (aspect ratio, size compared to the narrow bar) as a function of viewing inclination, by comparing synthetic images from simulations with the 3.6 micron data from S4G (Spitzer Survey of Stellar Structure in Galaxies). We demonstrate how the X/barlens morphology depends on the central mass concentration in galaxies; the pure barlens morphology requires steep inner rotation curves, while for shallower slopes the central structure still resembles a barlens, but shows boxy isophotes or X-signature even at low inclinations. This simulated behavior is confirmed with S4G data (Salo & Laurikainen 2017). We also use broadband SDSS colors and CALIFA DR3 data from literature, to analyze the ages and metallicities of the barlens components with respect to the narrow bar and the centralpeak of the galaxies. Finally, kinematic maps of the simulated galaxies are presented, illustrating the expected signatures of barlens component on the H3 and H4 Hermite-moments.

  14. The formation of galaxies

    NASA Technical Reports Server (NTRS)

    Efstathiou, G.; Silk, J.

    1983-01-01

    Current models of galaxy formation are examined in a review of recent observational and theoretical studies. Observational data on elliptical galaxies, disk galaxies, luminosity functions, clustering, and angular fluctuations in the cosmic microwave background are summarized. Theoretical aspects discussed include the origin and early evolution of small fluctuations, matter and radiation fluctuations, the formation of large-scale structure, dissipationless galaxy formation, galaxy mergers, dissipational galaxy formation, and the implications of particle physics (GUTs, massive neutrinos, and gravitinos) for cosmology.

  15. Strong bimodality in the host halo mass of central galaxies from galaxy-galaxy lensing

    NASA Astrophysics Data System (ADS)

    Mandelbaum, Rachel; Wang, Wenting; Zu, Ying; White, Simon; Henriques, Bruno; More, Surhud

    2016-04-01

    We use galaxy-galaxy lensing to study the dark matter haloes surrounding a sample of locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey. We measure mean halo mass as a function of the stellar mass and colour of the central galaxy. Mock catalogues constructed from semi-analytic galaxy formation simulations demonstrate that most LBGs are the central objects of their haloes, greatly reducing interpretation uncertainties due to satellite contributions to the lensing signal. Over the full stellar mass range, 10.3 < log [M*/M⊙] < 11.6, we find that passive central galaxies have haloes that are at least twice as massive as those of star-forming objects of the same stellar mass. The significance of this effect exceeds 3σ for log [M*/M⊙] > 10.7. Tests using the mock catalogues and on the data themselves clarify the effects of LBG selection and show that it cannot artificially induce a systematic dependence of halo mass on LBG colour. The bimodality in halo mass at fixed stellar mass is reproduced by the astrophysical model underlying our mock catalogue, but the sign of the effect is inconsistent with recent, nearly parameter-free age-matching models. The sign and magnitude of the effect can, however, be reproduced by halo occupation distribution models with a simple (few-parameter) prescription for type dependence.

  16. Peculiar motions of galaxy clusters in the regions of the Corona Borealis, Bootes, Z 5029/A 1424, A 1190, A 1750/A 1809 superclusters of galaxies

    NASA Astrophysics Data System (ADS)

    Kopylova, F. G.; Kopylov, A. I.

    2017-10-01

    We present results of the study of peculiar motions of 57 clusters and groups of galaxies in the regions of the Corona Borealis (CrB), Bootes (Boo), Z5029/A1424, A1190, A1750/A1809 superclusters of galaxies and the galaxy clusters located beyond massive structures (0.05 < z < 0.10). Using the SDSS (Data Release 8) data, a sample of early-type galaxies was compiled in the systems under study, their fundamental planes were built, and relative distances and peculiar velocities were determined. Within the galaxy superclusters, significant peculiar motions along the line of sight are observed with rms deviations of 652 ± 50 kms-1—in CrB, 757 ± 70 kms-1—in Boo. In the most massive A2065 cluster in the CrB supercluster, no peculiar velocity was found. Peculiar motions of the other galaxy clusters can be caused by their gravitational interaction both with A2065 and with the A2142 supercluster. It has been found that there are two superclusters projected onto each other in the region of the Bootes supercluster with a radial velocity difference of about 4000 kms-1. In the Z 5029/A1424 supercluster near the rich Z5029 cluster, the most considerable peculiar motions with a rms deviations of 1366 ± 170 kms-1 are observed. The rms deviations of peculiar velocities of 20 clusters that do not belong to large-scale structures is equal to 0 ± 20 kms-1. The whole sample of the clusters under study has the mean peculiar velocity equal to 83 ± 130 kms-1 relative to the cosmic microwave background.

  17. Galaxy And Mass Assembly (GAMA): galaxy environments and star formation rate variations

    NASA Astrophysics Data System (ADS)

    Wijesinghe, D. B.; Hopkins, A. M.; Brough, S.; Taylor, E. N.; Norberg, P.; Bauer, A.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S.; Driver, S.; Grootes, M. W.; Jones, D. H.; Kelvin, L.; Loveday, J.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Sharp, R.; Baldry, I.; Sadler, E. M.; Liske, J.; Robotham, A. S. G.; Bamford, S.; Bland-Hawthorn, J.; Gunawardhana, M.; Meyer, M.; Parkinson, H.; Drinkwater, M. J.; Peacock, J.; Tuffs, R.

    2012-07-01

    We present a detailed investigation into the effects of galaxy environment on their star formation rates (SFRs) using galaxies observed in the Galaxy And Mass Assembly (GAMA) survey. We use three independent volume-limited samples of galaxies within z < 0.2 and Mr < -17.8. We investigate the known SFR-density relationship and explore in detail the dependence of SFR on stellar mass and density. We show that the SFR-density trend is only visible when we include the passive galaxy population along with the star-forming population. This SFR-density relation is absent when we consider only the star-forming population of galaxies, consistent with previous work. While there is a strong dependence of the EWHα on density we find, as in previous studies, that these trends are largely due to the passive galaxy population and this relationship is absent when considering a 'star-forming' sample of galaxies. We find that stellar mass has the strongest influence on SFR and EWHα with the environment having no significant effect on the star formation properties of the star-forming population. We also show that the SFR-density relationship is absent for both early- and late-type star-forming galaxies. We conclude that the stellar mass has the largest impact on the current SFR of a galaxy, and any environmental effect is not detectable. The observation that the trends with density are due to the changing morphology fraction with density implies that the time-scales must be very short for any quenching of the SFR in infalling galaxies. Alternatively, galaxies may in fact undergo predominantly in situ evolution where the infall and quenching of galaxies from the field into dense environments is not the dominant evolutionary mode.

  18. Galaxy masses in large surveys: Connecting luminous and dark matter with weak lensing and kinematics

    NASA Astrophysics Data System (ADS)

    Reyes, Reinabelle

    2011-01-01

    Galaxy masses are difficult to determine because light traces stars and gas in a non-trivial way, and does not trace dark matter, which extends well beyond the luminous regions of galaxies. In this thesis, I use the most direct probes of dark matter available---weak gravitational lensing and galaxy kinematics---to trace the total mass in galaxies (and galaxy clusters) in large surveys. In particular, I use the large, homogeneous dataset from the Sloan Digital Sky Survey (SDSS), which provides spectroscopic redshifts for a large sample of galaxies at z ≲ 0.2 and imaging data to a depth of r < 22. By combining complementary probes, I am able to obtain robust observational constraints that cannot be obtained from any single technique alone. First, I use weak lensing of galaxy clusters to derive an optimal optical tracer of cluster mass, which was found to be a combination of cluster richness and the luminosity of the brightest cluster galaxy. Next, I combine weak lensing of luminous red galaxies with redshift distortions and clustering measurements to derive a robust probe of gravity on cosmological scales. Finally, I combine weak lensing with the kinematics of disk galaxies to constrain the total mass profile over several orders of magnitude. I derive a minimal-scatter relation between disk velocity and stellar mass (also known as the Tully-Fisher relation) that can be used, by construction, on a similarly-selected lens sample. Then, I combine this relation with halo mass measurements from weak lensing to place constraints on the ratio of the optical to virial velocities, as well as the ratio of halo to stellar masses, both as a function of stellar mass. These results will serve as inputs to and constraints on disk galaxy formation models, which will be explored in future work.

  19. [Galaxy/quasar classification based on nearest neighbor method].

    PubMed

    Li, Xiang-Ru; Lu, Yu; Zhou, Jian-Ming; Wang, Yong-Jun

    2011-09-01

    With the wide application of high-quality CCD in celestial spectrum imagery and the implementation of many large sky survey programs (e. g., Sloan Digital Sky Survey (SDSS), Two-degree-Field Galaxy Redshift Survey (2dF), Spectroscopic Survey Telescope (SST), Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) program and Large Synoptic Survey Telescope (LSST) program, etc.), celestial observational data are coming into the world like torrential rain. Therefore, to utilize them effectively and fully, research on automated processing methods for celestial data is imperative. In the present work, we investigated how to recognizing galaxies and quasars from spectra based on nearest neighbor method. Galaxies and quasars are extragalactic objects, they are far away from earth, and their spectra are usually contaminated by various noise. Therefore, it is a typical problem to recognize these two types of spectra in automatic spectra classification. Furthermore, the utilized method, nearest neighbor, is one of the most typical, classic, mature algorithms in pattern recognition and data mining, and often is used as a benchmark in developing novel algorithm. For applicability in practice, it is shown that the recognition ratio of nearest neighbor method (NN) is comparable to the best results reported in the literature based on more complicated methods, and the superiority of NN is that this method does not need to be trained, which is useful in incremental learning and parallel computation in mass spectral data processing. In conclusion, the results in this work are helpful for studying galaxies and quasars spectra classification.

  20. Experimenting with galaxies

    NASA Technical Reports Server (NTRS)

    Miller, Richard H.

    1992-01-01

    A study to demonstrate how the dynamics of galaxies may be investigated through the creation of galaxies within a computer model is presented. The numerical technique for simulating galaxies is shown to be both highly efficient and highly robust. Consideration is given to the anatomy of a galaxy, the gravitational N-body problem, numerical approaches to the N-body problem, use of the Poisson equation, and the symplectic integrator.

  1. The Neutral Gas Properties of Extremely Isolated Early-type Galaxies. II.

    NASA Astrophysics Data System (ADS)

    Ashley, Trisha; Marcum, Pamela M.; Fanelli, Michael N.

    2018-01-01

    As part of an ongoing study of isolated early-type galaxies (IEG), we present neutral hydrogen (H I) observations of six IEGs obtained with the Green Bank Telescope. Two of the six IEGs presented in this paper have detected H I emission (KIG 870 and SDSS J102145.89+383249.8). KIG 870 has an H I emission profile that is strongly asymmetric about the optical systemic velocity with a redshifted double-horned profile and a blueshifted single-peaked component. KIG 870 is likely an advanced merger system. SDSS J102145.89+383249.8 has a Gaussian-like profile, indicating that the H I is not strongly rotating, is in a face-on disk, or is in a thick-disk similar to a dwarf galaxy. Our parent sample of H I observations is composed of 12 IEGs, 7 of which have now been detected in H I. The dwarf and luminous IEGs in our parent sample have median H I-mass-to-blue-luminosity ratios that are each three times larger than that of their non-cluster ETG counterparts, indicating that IEGs in our sample are significantly more gas rich than non-cluster ETGs.

  2. Galaxy NGC5962

    NASA Image and Video Library

    2003-07-25

    NASA Galaxy Evolution Explorer took this ultraviolet color image of the galaxy NGC5962 on June 7, 2003. This spiral galaxy is located 90 million light-years from Earth. http://photojournal.jpl.nasa.gov/catalog/PIA04635

  3. The metal enrichment of passive galaxies in cosmological simulations of galaxy formation

    NASA Astrophysics Data System (ADS)

    Okamoto, Takashi; Nagashima, Masahiro; Lacey, Cedric G.; Frenk, Carlos S.

    2017-02-01

    Massive early-type galaxies have higher metallicities and higher ratios of α elements to iron than their less massive counterparts. Reproducing these correlations has long been a problem for hierarchical galaxy formation theory, both in semi-analytic models and cosmological hydrodynamic simulations. We show that a simulation in which gas cooling in massive dark haloes is quenched by radio-mode active galactic nuclei (AGNs) feedback naturally reproduces the observed trend between α/Fe and the velocity dispersion of galaxies, σ. The quenching occurs earlier for more massive galaxies. Consequently, these galaxies complete their star formation before α/Fe is diluted by the contribution from Type Ia supernovae. For galaxies more massive than ˜1011 M⊙, whose α/Fe correlates positively with stellar mass, we find an inversely correlated mass-metallicity relation. This is a common problem in simulations in which star formation in massive galaxies is quenched either by quasar- or radio-mode AGN feedback. The early suppression of gas cooling in progenitors of massive galaxies prevents them from recapturing enriched gas ejected as winds. Simultaneously reproducing the [α/Fe]-σ relation and the mass-metallicity relation is, thus, difficult in the current framework of galaxy formation.

  4. Multiple Core Galaxies

    NASA Technical Reports Server (NTRS)

    Miller, R.H.; Morrison, David (Technical Monitor)

    1994-01-01

    Nuclei of galaxies often show complicated density structures and perplexing kinematic signatures. In the past we have reported numerical experiments indicating a natural tendency for galaxies to show nuclei offset with respect to nearby isophotes and for the nucleus to have a radial velocity different from the galaxy's systemic velocity. Other experiments show normal mode oscillations in galaxies with large amplitudes. These oscillations do not damp appreciably over a Hubble time. The common thread running through all these is that galaxies often show evidence of ringing, bouncing, or sloshing around in unexpected ways, even though they have not been disturbed by any external event. Recent observational evidence shows yet another phenomenon indicating the dynamical complexity of central regions of galaxies: multiple cores (M31, Markarian 315 and 463 for example). These systems can hardly be static. We noted long-lived multiple core systems in galaxies in numerical experiments some years ago, and we have more recently followed up with a series of experiments on multiple core galaxies, starting with two cores. The relevant parameters are the energy in the orbiting clumps, their relative.masses, the (local) strength of the potential well representing the parent galaxy, and the number of cores. We have studied the dependence of the merger rates and the nature of the final merger product on these parameters. Individual cores survive much longer in stronger background potentials. Cores can survive for a substantial fraction of a Hubble time if they travel on reasonable orbits.

  5. Deep infrared galaxies

    NASA Technical Reports Server (NTRS)

    Ashby, Matthew; Houck, J. R.; Hacking, Perry B.

    1992-01-01

    High signal-to-noise ratio optical spectra of 17 infrared-bright emission-line galaxies near the north ecliptic pole are presented. Reddening-corrected line ratios forbidden O III 5007/H-beta, N II 6583/H-alpha, S II (6716 + 6731)/H-alpha, and O I 6300/H-alpha are used to discriminate between candidate energy generation mechanisms in each galaxy. These criteria have frequently been applied to optically selected samples of galaxies in the past, but this is the first time they have been applied to a set of faint flux-limited infrared-selected objects. The analysis indicates the sample contains seven starburst galaxies and three (AGN). However, seven galaxies in the present sample elude the classification scheme based on these line ratios. It is concluded that a two-component (starburst plus AGN) model for energy generation is inadequate for infrared galaxies.

  6. Galaxy And Mass Assembly (GAMA): The M-Z relation for galaxy groups

    NASA Astrophysics Data System (ADS)

    Lara-López, M. A.; Hopkins, A. M.; Robotham, A.; Owers, M. S.; Colless, M.; Brough, S.; Norberg, P.; Steele, O.; Taylor, E. N.; Thomas, D.

    2013-04-01

    The stellar mass and metallicity are among the fundamental parameters of galaxies. An understanding of the interplay between those properties as well as their environmental dependence will give us a general picture of the physics and feedback processes ongoing in groups of galaxies. We study the relationships and environmental dependencies between the stellar mass, and gas metallicity for more than 1900 galaxies in groups up to redshift 0.35 using the Galaxy And Mass Assembly (GAMA) survey. Using a control sample of more than 28 000 star-forming field galaxies, we find evidence for a decrement of the gas metallicity for galaxies in groups.

  7. Comparing pymorph and SDSS photometry - II. The differences are more than semantics and are not dominated by intracluster light

    NASA Astrophysics Data System (ADS)

    Bernardi, M.; Fischer, J.-L.; Sheth, R. K.; Meert, A.; Huertas-Company, M.; Shankar, F.; Vikram, V.

    2017-07-01

    The Sloan Digital Sky Survey (SDSS) pipeline photometry underestimates the brightnesses of the most luminous galaxies. This is mainly because (I) the SDSS overestimates the sky background, and (II) single-component or two-component Sérsic-based models better fit the surface brightness profile of galaxies, especially at high luminosities, than the de Vaucouleurs model used by the SDSS pipeline. We use the pymorph photometric reductions to isolate effect (II) and show that it is the same in the full sample as in small group environments, and for satellites in the most massive clusters as well. None of these are expected to be significantly affected by intracluster light (ICL). We only see an additional effect for centrals in the most massive haloes, but we argue that even this is not dominated by ICL. Hence, for the vast majority of galaxies, the differences between pymorph and SDSS pipeline photometry cannot be ascribed to the semantics of whether or not one includes the ICL when describing the stellar mass of massive galaxies. Rather, they likely reflect differences in star formation or assembly histories. Failure to account for the SDSS underestimate has significantly biased most previous estimates of the SDSS luminosity and stellar mass functions, and therefore halo model estimates of the z ˜ 0.1 relation between the mass of a halo and that of the galaxy at its centre. We also show that when one studies correlations, at fixed group mass, with a quantity that was not used to define the groups, then selection effects appear. We show why such effects arise and should not be mistaken for physical effects.

  8. SDSS IV MaNGA—Rotation Velocity Lags in the Extraplanar Ionized Gas from MaNGA Observations of Edge-on Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bizyaev, D.; Pan, K.; Brinkmann, J.

    2017-04-20

    We present a study of the kinematics of the extraplanar ionized gas around several dozen galaxies observed by the Mapping of Nearby Galaxies at the Apache Point Observatory (MaNGA) survey. We considered a sample of 67 edge-on galaxies out of more than 1400 extragalactic targets observed by MaNGA, in which we found 25 galaxies (or 37%) with regular lagging of the rotation curve at large distances from the galactic midplane. We model the observed H α emission velocity fields in the galaxies, taking projection effects and a simple model for the dust extinction into account. We show that the verticalmore » lag of the rotation curve is necessary in the modeling, and estimate the lag amplitude in the galaxies. We find no correlation between the lag and the star formation rate in the galaxies. At the same time, we report a correlation between the lag and the galactic stellar mass, central stellar velocity dispersion, and axial ratio of the light distribution. These correlations suggest a possible higher ratio of infalling-to-local gas in early-type disk galaxies or a connection between lags and the possible presence of hot gaseous halos, which may be more prevalent in more massive galaxies. These results again demonstrate that observations of extraplanar gas can serve as a potential probe for accretion of gas.« less

  9. SDSS IV MaNGA—Rotation Velocity Lags in the Extraplanar Ionized Gas from MaNGA Observations of Edge-on Galaxies

    NASA Astrophysics Data System (ADS)

    Bizyaev, D.; Walterbos, R. A. M.; Yoachim, P.; Riffel, R. A.; Fernández-Trincado, J. G.; Pan, K.; Diamond-Stanic, A. M.; Jones, A.; Thomas, D.; Cleary, J.; Brinkmann, J.

    2017-04-01

    We present a study of the kinematics of the extraplanar ionized gas around several dozen galaxies observed by the Mapping of Nearby Galaxies at the Apache Point Observatory (MaNGA) survey. We considered a sample of 67 edge-on galaxies out of more than 1400 extragalactic targets observed by MaNGA, in which we found 25 galaxies (or 37%) with regular lagging of the rotation curve at large distances from the galactic midplane. We model the observed Hα emission velocity fields in the galaxies, taking projection effects and a simple model for the dust extinction into account. We show that the vertical lag of the rotation curve is necessary in the modeling, and estimate the lag amplitude in the galaxies. We find no correlation between the lag and the star formation rate in the galaxies. At the same time, we report a correlation between the lag and the galactic stellar mass, central stellar velocity dispersion, and axial ratio of the light distribution. These correlations suggest a possible higher ratio of infalling-to-local gas in early-type disk galaxies or a connection between lags and the possible presence of hot gaseous halos, which may be more prevalent in more massive galaxies. These results again demonstrate that observations of extraplanar gas can serve as a potential probe for accretion of gas.

  10. Executing SADI services in Galaxy.

    PubMed

    Aranguren, Mikel Egaña; González, Alejandro Rodríguez; Wilkinson, Mark D

    2014-01-01

    In recent years Galaxy has become a popular workflow management system in bioinformatics, due to its ease of installation, use and extension. The availability of Semantic Web-oriented tools in Galaxy, however, is limited. This is also the case for Semantic Web Services such as those provided by the SADI project, i.e. services that consume and produce RDF. Here we present SADI-Galaxy, a tool generator that deploys selected SADI Services as typical Galaxy tools. SADI-Galaxy is a Galaxy tool generator: through SADI-Galaxy, any SADI-compliant service becomes a Galaxy tool that can participate in other out-standing features of Galaxy such as data storage, history, workflow creation, and publication. Galaxy can also be used to execute and combine SADI services as it does with other Galaxy tools. Finally, we have semi-automated the packing and unpacking of data into RDF such that other Galaxy tools can easily be combined with SADI services, plugging the rich SADI Semantic Web Service environment into the popular Galaxy ecosystem. SADI-Galaxy bridges the gap between Galaxy, an easy to use but "static" workflow system with a wide user-base, and SADI, a sophisticated, semantic, discovery-based framework for Web Services, thus benefiting both user communities.

  11. A multiwavelength survey of H I-excess galaxies with surprisingly inefficient star formation

    NASA Astrophysics Data System (ADS)

    Geréb, K.; Janowiecki, S.; Catinella, B.; Cortese, L.; Kilborn, V.

    2018-05-01

    We present the results of a multiwavelength survey of H I-excess galaxies, an intriguing population with large H I reservoirs associated with little current star formation. These galaxies have stellar masses M⋆ > 1010 M⊙, and were identified as outliers in the gas fraction versus NUV-r colour and stellar mass surface density scaling relations based on the GALEX Arecibo SDSS Survey (GASS). We obtained H I interferometry with the Giant Metrewave Radio Telescope, Keck optical long-slit spectroscopy, and deep optical imaging (where available) for four galaxies. Our analysis reveals multiple possible reasons for the H I excess in these systems. One galaxy, AGC 10111, shows an H I disc that is counter-rotating with respect to the stellar bulge, a clear indication of external origin of the gas. Another galaxy appears to host a Malin 1-type disc, where a large specific angular momentum has to be invoked to explain the extreme M_{H I}/M⋆ ratio of 166 per cent. The other two galaxies have early-type morphology with very high gas fractions. The lack of merger signatures (unsettled gas, stellar shells, and streams) in these systems suggests that these gas-rich discs have been built several Gyr ago, but it remains unclear how the gas reservoirs were assembled. Numerical simulations of large cosmological volumes are needed to gain insight into the formation of these rare and interesting systems.

  12. A finer view of the conditional galaxy luminosity function and magnitude-gap statistics

    NASA Astrophysics Data System (ADS)

    Trevisan, M.; Mamon, G. A.

    2017-10-01

    The gap between first- and second-ranked galaxy magnitudes in groups is often considered a tracer of their merger histories, which in turn may affect galaxy properties, and also serves to test galaxy luminosity functions (LFs). We remeasure the conditional luminosity function (CLF) of the Main Galaxy Sample of the SDSS in an appropriately cleaned subsample of groups from the Yang catalogue. We find that, at low group masses, our best-fitting CLF has steeper satellite high ends, yet higher ratios of characteristic satellite to central luminosities in comparison with the CLF of Yang et al. The observed fractions of groups with large and small magnitude gaps as well as the Tremaine & Richstone statistics are not compatible with either a single Schechter LF or with a Schechter-like satellite plus lognormal central LF. These gap statistics, which naturally depend on the size of the subsamples, and also on the maximum projected radius, Rmax, for defining the second brightest galaxy, can only be reproduced with two-component CLFs if we allow small gap groups to preferentially have two central galaxies, as expected when groups merge. Finally, we find that the trend of higher gap for higher group velocity dispersion, σv, at a given richness, discovered by Hearin et al., is strongly reduced when we consider σv in bins of richness, and virtually disappears when we use group mass instead of σv. This limits the applicability of gaps in refining cosmographic studies based on cluster counts.

  13. Relations between stellar mass and electron temperature-based metallicity for star-forming galaxies in a wide mass range

    NASA Astrophysics Data System (ADS)

    Shi, Wei-Bin; Liang, Yan-Chun; Shao, Xu; Liu, Xiao-Wei; Zhao, Gang; Hammer, Francois; Zhang, Yong; Flores, Hector; Ruan, Gui-Ping; Zhou, Li

    2014-07-01

    We select 947 star-forming galaxies from SDSS-DR7 with [O III]λ4363 emission lines detected at a signal-to-noise ratio larger than 5σ. Their electron temperatures and direct oxygen abundances are then determined. We compare the results from different methods. t2, the electron temperature in the low ionization region, estimated from t3, that in the high ionization region, is compared using three analysis relations between t2 - t3. These show obvious differences, which result in some different ionic oxygen abundances. The results of t3, t2, O++/H+ and O+/H+ derived by using methods from IRAF and literature are also compared. The ionic abundances O++/H+ are higher than O+/H+ for most cases. The different oxygen abundances derived from Te and the strong-line ratios show a clear discrepancy, which is more obvious following increasing stellar mass and strong-line ratio R23. The sample of galaxies from SDSS with detected [O III]λ4363 have lower metallicites and higher star formation rates, so they may not be typical representatives of the whole population of galaxies. Adopting data objects from Andrews & Martini, Liang et al. and Lee et al. data, we derive new relations of stellar mass and metallicity for star-forming galaxies in a much wider stellar mass range: from 106 Msolar to 1011 Msolar.

  14. A radial measurement of the galaxy tidal alignment magnitude with BOSS data

    NASA Astrophysics Data System (ADS)

    Martens, Daniel; Hirata, Christopher M.; Ross, Ashley J.; Fang, Xiao

    2018-07-01

    The anisotropy of galaxy clustering in redshift space has long been used to probe the rate of growth of cosmological perturbations. However, if galaxies are aligned by large-scale tidal fields, then a sample with an orientation-dependent selection effect has an additional anisotropy imprinted on to its correlation function. We use the LOWZ and CMASS catalogues of SDSS-III BOSS Data Release 12 to divide galaxies into two subsamples based on their offset from the Fundamental Plane, which should be correlated with orientation. These subsamples must trace the same underlying cosmology, but have opposite orientation-dependent selection effects. We measure the clustering parameters of each subsample and compare them in order to calculate the dimensionless parameter B, a measure of how strongly galaxies are aligned by gravitational tidal fields. We found that for CMASS (LOWZ), the measured B was -0.024 ± 0.015 (-0.030 ± 0.016). This result can be compared to the theoretical predictions of Hirata, who argued that since galaxy formation physics does not depend on the direction of the `observer,' the same intrinsic alignment parameters that describe galaxy-ellipticity correlations should also describe intrinsic alignments in the radial direction. We find that the ratio of observed to theoretical values is 0.51 ± 0.32 (0.77 ± 0.41) for CMASS (LOWZ). We combine the results to obtain a total Obs/Theory = 0.61 ± 0.26. This measurement constitutes evidence (between 2σand 3σ) for radial intrinsic alignments, and is consistent with theoretical expectations (<2σ difference).

  15. A Radial Measurement of the Galaxy Tidal Alignment Magnitude with BOSS Data

    NASA Astrophysics Data System (ADS)

    Martens, Daniel; Hirata, Christopher M.; Ross, Ashley J.; Fang, Xiao

    2018-05-01

    The anisotropy of galaxy clustering in redshift space has long been used to probe the rate of growth of cosmological perturbations. However, if galaxies are aligned by large-scale tidal fields, then a sample with an orientation-dependent selection effect has an additional anisotropy imprinted onto its correlation function. We use the LOWZ and CMASS catalogs of SDSS-III BOSS Data Release 12 to divide galaxies into two sub-samples based on their offset from the Fundamental Plane, which should be correlated with orientation. These sub-samples must trace the same underlying cosmology, but have opposite orientation-dependent selection effects. We measure the clustering parameters of each sub-sample and compare them in order to calculate the dimensionless parameter B, a measure of how strongly galaxies are aligned by gravitational tidal fields. We found that for CMASS (LOWZ), the measured B was -0.024 ± 0.015 (-0.030 ± 0.016). This result can be compared to the theoretical predictions of Hirata (2009), who argued that since galaxy formation physics does not depend on the direction of the "observer," the same intrinsic alignment parameters that describe galaxy-ellipticity correlations should also describe intrinsic alignments in the radial direction. We find that the ratio of observed to theoretical values is 0.51 ± 0.32 (0.77 ± 0.41) for CMASS (LOWZ). We combine the results to obtain a total Obs/Theory = 0.61 ± 0.26. This measurement constitutes evidence (between 2 and 3σ) for radial intrinsic alignments, and is consistent with theoretical expectations (<2σ difference).

  16. Galaxy Distribution in Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Okamoto, T.; Yachi, S.; Habe, A.

    beta-discrepancy have been pointed out from comparison of optical and X-ray observations of clusters of galaxies. To examine physical reason of beta-discrepancy, we use N-body simulation which contains two components, dark particles and galaxies which are identified by using adaptive-linking friend of friend technique at a certain red-shift. The gas component is not included here, since the gas distribution follows the dark matter distribution in dark halos (Jubio F. Navarro, Carlos S. Frenk and Simon D. M. White 1995). We find that the galaxy distribution follows the dark matter distribution, therefore beta-discrepancy does not exist, and this result is consistent with the interpretation of the beta-discrepancy by Bahcall and Lubin (1994), which was based on recent observation.

  17. Discovery of an Extremely Luminous Dust-obscured Galaxy Observed with SDSS, WISE, JCMT, and SMA

    NASA Astrophysics Data System (ADS)

    Toba, Yoshiki; Ueda, Junko; Lim, Chen-Fatt; Wang, Wei-Hao; Nagao, Tohru; Chang, Yu-Yen; Saito, Toshiki; Kawabe, Ryohei

    2018-04-01

    We present the discovery of an extremely luminous dust-obscured galaxy (DOG) at z spec = 3.703, WISE J101326.25+611220.1. This DOG is selected as a candidate of extremely luminous infrared (IR) galaxies based on the photometry from the Sloan Digital Sky Survey and Wide-field Infrared Survey Explorer. In order to derive its accurate IR luminosity, we perform follow-up observations at 450 and 850 μm using the Submillimetre Common User Bolometer Array 2 on the James Clerk Maxwell Telescope, and at 870 and 1300 μm using the Submillimeter Array, which enable us to pin down its IR Spectral Energy Distribution (SED). We perform SED fitting using 14 photometric data (0.4–1300 μm) and estimate its IR luminosity, L IR (8–1000 μm), to be {2.2}-1.0+1.5 ×1014 L ⊙, making it one of the most luminous IR galaxies in the universe. The energy contribution from an active galactic nucleus (AGN) to the IR luminosity is {94}-20+6%, which indicates that it is an AGN-dominated DOG. On the other hand, its stellar mass (M *) and star formation rate (SFR) are {log}({M}* /{M}ȯ ) = {11.2}-0.2+0.6 and {log}({SFR}/{M}ȯ {yr}}-1) = {3.1}-0.1+0.2, respectively, which means that this DOG can be considered a starburst galaxy in the M *–SFR plane. This extremely luminous DOG shows significant AGN and star-forming activity that provides us with an important laboratory to probe the maximum phase of the coevolution of galaxies and supermassive black holes.

  18. The SAMI Galaxy Survey: the intrinsic shape of kinematically selected galaxies

    NASA Astrophysics Data System (ADS)

    Foster, C.; van de Sande, J.; D'Eugenio, F.; Cortese, L.; McDermid, R. M.; Bland-Hawthorn, J.; Brough, S.; Bryant, J.; Croom, S. M.; Goodwin, M.; Konstantopoulos, I. S.; Lawrence, J.; López-Sánchez, Á. R.; Medling, A. M.; Owers, M. S.; Richards, S. N.; Scott, N.; Taranu, D. S.; Tonini, C.; Zafar, T.

    2017-11-01

    Using the stellar kinematic maps and ancillary imaging data from the Sydney AAO Multi Integral field (SAMI) Galaxy Survey, the intrinsic shape of kinematically selected samples of galaxies is inferred. We implement an efficient and optimized algorithm to fit the intrinsic shape of galaxies using an established method to simultaneously invert the distributions of apparent ellipticities and kinematic misalignments. The algorithm output compares favourably with previous studies of the intrinsic shape of galaxies based on imaging alone and our re-analysis of the ATLAS3D data. Our results indicate that most galaxies are oblate axisymmetric. We show empirically that the intrinsic shape of galaxies varies as a function of their rotational support as measured by the 'spin' parameter proxy λ _{R_e}. In particular, low-spin systems have a higher occurrence of triaxiality, while high-spin systems are more intrinsically flattened and axisymmetric. The intrinsic shape of galaxies is linked to their formation and merger histories. Galaxies with high-spin values have intrinsic shapes consistent with dissipational minor mergers, while the intrinsic shape of low-spin systems is consistent with dissipationless multimerger assembly histories. This range in assembly histories inferred from intrinsic shapes is broadly consistent with expectations from cosmological simulations.

  19. Evolution of Lyman-α Emitters, Lyman-break Galaxies and Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Mori, M.; Umemura, M.

    2008-10-01

    High redshift Lyman-α emitters (LAEs) and Lyman-break galaxies (LBGs) possibly provide a significant key for the embryology of galaxies. LBGs have been argued as candidate progenitors of present-day elliptical galaxies in terms of their observed properties. But, what evolutionary stages LBGs correspond to and how they are related to LAEs are still under debate. Here, we present an ultra-high-resolution hydrodynamic simulation of galaxy formation. We show that, at the earliest stages of less than 3×10^8 years, continual supernova explosions produce multitudinous hot bubbles and cooled HI shells in between. The HI shells radiate intense Lyman-α emission like LAEs. We found that the bubbly structures produced are quite similar to the observed features in the Lyman-α surface brightness distribution of the extended LAEs. After 10^9 years, the galaxy emission is dominated by stellar continuum, exhibiting an LBG-like spectrum. Also, we find that, as a result of purely dynamical evolution over 13 billion years, the properties of this galaxy match those of present-day elliptical galaxies well. It is implied that the major episode of star formation and chemical enrichment in elliptical galaxies is almost completed in the evolutionary path from LAEs to LBGs.

  20. Joint analysis of galaxy-galaxy lensing and galaxy clustering: Methodology and forecasts for Dark Energy Survey

    DOE PAGES

    Park, Y.; Krause, E.; Dodelson, S.; ...

    2016-09-30

    The joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large scale structure. Our analysis will be carried out on data from the Dark Energy Survey (DES), with its measurements of both the distribution of galaxies and the tangential shears of background galaxies induced by these foreground lenses. We develop a practical approach to modeling the assumptions and systematic effects affecting small scale lensing, which provides halo masses, and large scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we studymore » how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects sub-dominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. Finally, we conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that covered over 1000 square degrees, and to 3.9%/2.3% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties.« less

  1. Joint analysis of galaxy-galaxy lensing and galaxy clustering: Methodology and forecasts for Dark Energy Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Y.; Krause, E.; Dodelson, S.

    The joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large scale structure. Our analysis will be carried out on data from the Dark Energy Survey (DES), with its measurements of both the distribution of galaxies and the tangential shears of background galaxies induced by these foreground lenses. We develop a practical approach to modeling the assumptions and systematic effects affecting small scale lensing, which provides halo masses, and large scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we studymore » how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects sub-dominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. Finally, we conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that covered over 1000 square degrees, and to 3.9%/2.3% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties.« less

  2. Brighter galaxy bias: underestimating the velocity dispersions of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Old, L.; Gray, M. E.; Pearce, F. R.

    2013-09-01

    We study the systematic bias introduced when selecting the spectroscopic redshifts of brighter cluster galaxies to estimate the velocity dispersion of galaxy clusters from both simulated and observational galaxy catalogues. We select clusters with Ngal ≥ 50 at five low-redshift snapshots from the publicly available De Lucia & Blaziot semi-analytic model galaxy catalogue. Clusters are also selected from the Tempel Sloan Digital Sky Survey Data Release 8 groups and clusters catalogue across the redshift range 0.021 ≤ z ≤ 0.098. We employ various selection techniques to explore whether the velocity dispersion bias is simply due to a lack of dynamical information or is the result of an underlying physical process occurring in the cluster, for example, dynamical friction experienced by the brighter cluster members. The velocity dispersions of the parent dark matter (DM) haloes are compared to the galaxy cluster dispersions and the stacked distribution of DM particle velocities is examined alongside the corresponding galaxy velocity distribution. We find a clear bias between the halo and the semi-analytic galaxy cluster velocity dispersion on the order of σgal/σDM ˜ 0.87-0.95 and a distinct difference in the stacked galaxy and DM particle velocities distribution. We identify a systematic underestimation of the velocity dispersions when imposing increasing absolute I-band magnitude limits. This underestimation is enhanced when using only the brighter cluster members for dynamical analysis on the order of 5-35 per cent, indicating that dynamical friction is a serious source of bias when using galaxy velocities as tracers of the underlying gravitational potential. In contrast to the literature we find that the resulting bias is not only halo mass dependent but also that the nature of the dependence changes according to the galaxy selection strategy. We make a recommendation that, in the realistic case of limited availability of spectral observations, a strictly

  3. NGC 3934: a shell galaxy in a compact galaxy environment

    NASA Astrophysics Data System (ADS)

    Bettoni, D.; Galletta, G.; Rampazzo, R.; Marino, A.; Mazzei, P.; Buson, L. M.

    2011-10-01

    Context. Mergers/accretions are considered the main drivers of the evolution of galaxies in groups. We investigate the NGC 3933 poor galaxy association that contains NGC 3934, which is classified as a polar-ring galaxy. Aims: The multi-band photometric analysis of NGC 3934 allows us to investigate the nature of this galaxy and to re-define the NGC 3933 group members with the aim to characterize the group's dynamical properties and its evolutionary phase. Methods: We imaged the group in the far (FUV, λeff = 1539 Å) and near (NUV, λeff = 2316 Å) ultraviolet (UV) bands of the Galaxy Evolution Explorer (GALEX). From the deep optical imaging we determined the fine structure of NGC 3934. We measured the recession velocity of PGC 213894 which shows that it belongs to the NGC 3933 group. We derived the spectral energy distribution (SED) from FUV to far-IR emission of the two brightest members of the group. We compared a grid of smooth particle hydrodynamical (SPH) chemo-photometric simulations with the SED and the integrated properties of NGC 3934 and NGC 3933 to devise their possible formation/evolutionary scenarios. Results: The NGC 3933 group has six bright members: a core composed of five galaxies, which have Hickson's compact group characteristics, and a more distant member, PGC 37112. The group velocity dispersion is relatively low (157 ± 44 km s-1). The projected mass, from the NUV photometry, is ~7 × 1012 M⊙ with a crossing time of 0.04 Hubble times, suggesting that at least in the center the group is virialized. We do not find evidence that NGC 3934 is a polar-ring galaxy, as suggested by the literature, but find that it is a disk galaxy with a prominent dust-lane structure and a wide type-II shell structure. Conclusions: NGC 3934 is a quite rare example of a shell galaxy in a likely dense galaxy region. The comparison between physically motivated SPH simulations with multi-band integrated photometry suggests that NGC 3934 is the product of a major merger.

  4. Understanding the scatter in the spatially resolved star formation main sequence of local massive spiral galaxies

    NASA Astrophysics Data System (ADS)

    Abdurro'uf; Akiyama, Masayuki

    2017-08-01

    We investigate the relation between star formation rate (SFR) and stellar mass (M*) at the sub-galactic scale (˜1 kpc) of 93 local (0.01 < z < 0.02) massive (M* > 1010.5 M⊙) spiral galaxies. To derive a spatially resolved SFR and stellar mass, we perform the so-called pixel-to-pixel spectral energy distribution (SED) fitting, which fits an observed spatially resolved multiband SED with a library of model SEDs using Bayesian statistics. We use two bands (far-ultraviolet or FUV and near-ultraviolet or NUV) and five bands (u, g, r, I and z) of imaging data from Galaxy Evolution Explorer (GALEX) and Sloan Digital Sky Survey (SDSS), respectively. We find a tight nearly linear relation between the local surface density of SFR (ΣSFR) and stellar mass (Σ*), which is flattened at high Σ*. The near linear relation between Σ* and ΣSFR suggests a constant specific SFR (sSFR) throughout the galaxies, and the scatter of the relation is directly related to that of the sSFR. Therefore, we analyse the variation of the sSFR in various scales. More massive galaxies on average have lower sSFR throughout them than less massive galaxies. We also find that barred galaxies have a lower sSFR in the core region than non-barred galaxies. However, in the outer region, the sSFRs of barred and non-barred galaxies are similar and lead to a similar total sSFR.

  5. Sub-mm galaxies as progenitors of compact quiescent galaxies

    NASA Astrophysics Data System (ADS)

    Toft, Sune

    2015-08-01

    Three billion years after the big bang (at redshift z=2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts which produce dense remnants. Sub-millimetre selected galaxies (SMGs) are prime examples of intense, gas-rich, starbursts. With a new, mass-complete spectroscopic sample of compact quiescent galaxies at z=2 and a statistically well-understood sample of SMGs, we show that z = 3 -6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42 (+40/-29) Myr (consistent with independent estimates), indicating that the bulk of stars in these massive galaxies were formed in a major, early surge of star-formation. These results suggests a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star-formation through their appearance as high stellardensity galaxy cores and to their ultimate fate as giant ellipticals.If time permits i will show novel, spatially resolved spectroscopic observations of the inner regions (rgalaxies at z>2, allowing for strong new constraints on their formation and evolutionary path

  6. A methodology to address mixed AGN and starlight contributions in emission line galaxies found in the RESOLVE survey and ECO catalog

    NASA Astrophysics Data System (ADS)

    Richardson, Chris T.; Kannappan, Sheila; Bittner, Ashley; Isaac, Rohan; RESOLVE

    2017-01-01

    We present a novel methodology for modeling emission line galaxy samples that span the entire BPT diagram. Our methodology has several advantages over current modeling schemes: the free variables in the model are identical for both AGN and SF galaxies; these free variables are more closely linked to observable galaxy properties; and the ionizing spectra including an AGN and starlight are handled self-consistently rather than empirically. We show that our methodology is capable of fitting the vast majority of SDSS galaxies that fall within the traditional regions of galaxy classification on the BPT diagram. We also present current results for relaxing classification boundaries and extending our galaxies into the dwarf regime, using the REsolved Spectroscopy of a Local VolumE (RESOLVE) survey and the Environmental COntext (ECO) catalog, with special attention to compact blue E/S0s. We compare this methodology to PCA decomposition of the spectra. This work is supported by National Science Foundation awards AST-0955368 and CISE/ACI-1156614.

  7. Galaxy And Mass Assembly (GAMA): bivariate functions of Hα star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Gunawardhana, M. L. P.; Hopkins, A. M.; Taylor, E. N.; Bland-Hawthorn, J.; Norberg, P.; Baldry, I. K.; Loveday, J.; Owers, M. S.; Wilkins, S. M.; Colless, M.; Brown, M. J. I.; Driver, S. P.; Alpaslan, M.; Brough, S.; Cluver, M.; Croom, S.; Kelvin, L.; Lara-López, M. A.; Liske, J.; López-Sánchez, A. R.; Robotham, A. S. G.

    2015-02-01

    We present bivariate luminosity and stellar mass functions of Hα star-forming galaxies drawn from the Galaxy And Mass Assembly (GAMA) survey. While optically deep spectroscopic observations of GAMA over a wide sky area enable the detection of a large number of 0.001 < SFRHα (M⊙ yr-1) < 100 galaxies, the requirement for an Hα detection in targets selected from an r-band magnitude-limited survey leads to an incompleteness due to missing optically faint star-forming galaxies. Using z < 0.1 bivariate distributions as a reference we model the higher-z distributions, thereby approximating a correction for the missing optically faint star-forming galaxies to the local star formation rate (SFR) and M densities. Furthermore, we obtain the r-band luminosity functions (LFs) and stellar mass functions of Hα star-forming galaxies from the bivariate LFs. As our sample is selected on the basis of detected Hα emission, a direct tracer of ongoing star formation, this sample represents a true star-forming galaxy sample, and is drawn from both photometrically classified blue and red subpopulations, though mostly from the blue population. On average 20-30 per cent of red galaxies at all stellar masses are star forming, implying that these galaxies may be dusty star-forming systems.

  8. GalaxyGAN: Generative Adversarial Networks for recovery of galaxy features

    NASA Astrophysics Data System (ADS)

    Schawinski, Kevin; Zhang, Ce; Zhang, Hantian; Fowler, Lucas; Krishnan Santhanam, Gokula

    2017-02-01

    GalaxyGAN uses Generative Adversarial Networks to reliably recover features in images of galaxies. The package uses machine learning to train on higher quality data and learns to recover detailed features such as galaxy morphology by effectively building priors. This method opens up the possibility of recovering more information from existing and future imaging data.

  9. Predicting galaxy star formation rates via the co-evolution of galaxies and haloes

    NASA Astrophysics Data System (ADS)

    Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; Becker, Matthew R.; Behroozi, Peter S.; Skibba, Ramin A.; Reyes, Reinabelle; Zentner, Andrew R.; van den Bosch, Frank C.

    2015-01-01

    In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy of fixed stellar mass is determined by its dark matter halo formation history, e.g. more quiescent galaxies reside in older haloes. We present new Sloan Digital Sky Survey measurements of the galaxy two-point correlation function and galaxy-galaxy lensing as a function of stellar mass and SFR, separated into quenched and star-forming galaxy samples to test this simple model. We find that our age matching model is in excellent agreement with these new measurements. We also find that our model is able to predict: (1) the relative SFRs of central and satellite galaxies, (2) the SFR dependence of the radial distribution of satellite galaxy populations within galaxy groups, rich groups, and clusters and their surrounding larger scale environments, and (3) the interesting feature that the satellite quenched fraction as a function of projected radial distance from the central galaxy exhibits an ˜r-.15 slope, independent of environment. These accurate predictions are intriguing given that we do not explicitly model satellite-specific processes after infall, and that in our model the virial radius does not mark a special transition region in the evolution of a satellite. The success of the model suggests that present-day galaxy SFR is strongly correlated with halo mass assembly history.

  10. Galaxy UGC10445

    NASA Image and Video Library

    2003-07-25

    This ultraviolet color image of the galaxy UGC10445 was taken by NASA Galaxy Evolution Explorer on June 7 and June 14, 2003. UGC10445 is a spiral galaxy located 40 million light-years from Earth. http://photojournal.jpl.nasa.gov/catalog/PIA04623

  11. The galaxy builders

    NASA Astrophysics Data System (ADS)

    Cho, Adrian

    2018-06-01

    Philip Hopkins, a theoretical astrophysicist at the California Institute of Technology in Pasadena, likes to prank his colleagues. An expert in simulating the formation of galaxies, Hopkins sometimes begins his talks by projecting images of his creations next to photos of real galaxies and defying his audience to tell them apart. "We can even trick astronomers," Hopkins says. For decades, scientists have tried to simulate how the trillions of galaxies in the observable universe arose from clouds of gas after the big bang. But only in the past few years have the simulations begun to reproduce both the details of individual galaxies and their distribution of masses and shapes. As the fake universes improve, their role is also changing. Previously, information flowed one way: from the astronomers studying real galaxies to the modelers trying to simulate them. Now, insight is flowing the other way, too, with the models helping guide astronomers and astrophysicists. The models suggest that the earliest galaxies were oddly pickle-shaped, that wafer-thin spiral galaxies are surprisingly rugged in the face of collisions, and, perhaps most important, that galaxies must form stars far more slowly than astrophysicists expected. Progress is coming so fast, says Tiziana Di Matteo, a numerical cosmologist at Carnegie Mellon University in Pittsburgh, Pennsylvania, that "the whole thing has reached this little golden age."

  12. SDSS-IV MaNGA: Star Formation Cessation in Low-redshift Galaxies. I. Dependence on Stellar Mass and Structural Properties

    NASA Astrophysics Data System (ADS)

    Wang, Enci; Li, Cheng; Xiao, Ting; Lin, Lin; Bershady, Matthew; Law, David R.; Merrifield, Michael; Sanchez, Sebastian F.; Riffel, Rogemar A.; Riffel, Rogerio; Yan, Renbin

    2018-04-01

    We investigate radial gradients in the recent star formation history (SFH) of 1917 galaxies with 0.01 < z < 0.14 from the Mapping Nearby Galaxies at Apache Point Observatory project. For each galaxy, we obtain two-dimensional maps and radial profiles for three spectroscopically measured parameters that are sensitive to the recent SFH: D n (4000) (the 4000 Å break), EW(Hδ A ), and EW(Hα) (the equivalent width of the Hδ absorption and the Hα emission line). The majority of the spaxels are consistent with models of a continuously declining star formation rate, indicating that starbursts occur rarely in local galaxies with regular morphologies. We classify the galaxies into three classes: fully star-forming (SF), partly quenched (PQ), and totally quenched (TQ). The galaxies that are less massive than 1010 M ⊙ present at most weak radial gradients in the diagnostic parameters. In contrast, massive galaxies with a stellar mass above 1010 M ⊙ present significant gradients in the three diagnostic parameters if they are classified as SF or PQ but show weak gradients in D n (4000) and EW(Hδ A ) and no gradients in EW(Hα) if they are in the TQ class. This implies the existence of a critical stellar mass (∼1010 M ⊙) above which the star formation in a galaxy is shut down from the inside out. Galaxies tend to evolve synchronously from the inner to the outer regions before their mass reaches the critical value. We have further divided the sample at a fixed mass by both bulge-to-total luminosity ratio and morphological type, finding that our conclusions hold regardless of these factors; it appears that the presence of a central dense object is not a driving parameter but rather a by-product of the star formation cessation process.

  13. BULGELESS GIANT GALAXIES CHALLENGE OUR PICTURE OF GALAXY FORMATION BY HIERARCHICAL CLUSTERING ,

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kormendy, John; Cornell, Mark E.; Drory, Niv

    2010-11-01

    To better understand the prevalence of bulgeless galaxies in the nearby field, we dissect giant Sc-Scd galaxies with Hubble Space Telescope (HST) photometry and Hobby-Eberly Telescope (HET) spectroscopy. We use the HET High Resolution Spectrograph (resolution R {identical_to} {lambda}/FWHM {approx_equal} 15, 000) to measure stellar velocity dispersions in the nuclear star clusters and (pseudo)bulges of the pure-disk galaxies M 33, M 101, NGC 3338, NGC 3810, NGC 6503, and NGC 6946. The dispersions range from 20 {+-} 1 km s{sup -1} in the nucleus of M 33 to 78 {+-} 2 km s{sup -1} in the pseudobulge of NGC 3338.more » We use HST archive images to measure the brightness profiles of the nuclei and (pseudo)bulges in M 101, NGC 6503, and NGC 6946 and hence to estimate their masses. The results imply small mass-to-light ratios consistent with young stellar populations. These observations lead to two conclusions. (1) Upper limits on the masses of any supermassive black holes are M{sub .} {approx}< (2.6 {+-} 0.5) x 10{sup 6} M{sub sun} in M 101 and M{sub .} {approx}< (2.0 {+-} 0.6) x 10{sup 6} M{sub sun} in NGC 6503. (2) We show that the above galaxies contain only tiny pseudobulges that make up {approx}<3% of the stellar mass. This provides the strongest constraints to date on the lack of classical bulges in the biggest pure-disk galaxies. We inventory the galaxies in a sphere of radius 8 Mpc centered on our Galaxy to see whether giant, pure-disk galaxies are common or rare. We find that at least 11 of 19 galaxies with V{sub circ} > 150 km s{sup -1}, including M 101, NGC 6946, IC 342, and our Galaxy, show no evidence for a classical bulge. Four may contain small classical bulges that contribute 5%-12% of the light of the galaxy. Only four of the 19 giant galaxies are ellipticals or have classical bulges that contribute {approx}1/3 of the galaxy light. We conclude that pure-disk galaxies are far from rare. It is hard to understand how bulgeless galaxies could form as the

  14. The discrimination between star-forming and AGN galaxies in the absence of Hαand [NII]: A machine learning approach

    NASA Astrophysics Data System (ADS)

    Teimoorinia, H.; Keown, J.

    2018-05-01

    In the absence of the two emission lines Hαand [NII] (6584Å) in a BPT diagram, we show that other spectral information is sufficiently informative to distinguish AGN galaxies from star-forming galaxies. We use pattern recognition methods and a sample of galaxy spectra from the Sloan Digital Sky Survey (SDSS) to show that, in this survey, the flux and equivalent width of [OIII] (5007Å) and Hβ, along with the 4000Å break, can be used to classify galaxies in a BPT diagram. This method provides a higher accuracy of predictions than those which use stellar mass and [OIII]/Hβ. First, we use BPT diagrams and various physical parameters to re-classify the galaxies. Next, using confusion matrices, we determine the `correctly' predicted classes as well as confused cases. In this way, we investigate the effect of each parameter in the confusion matrices and rank the physical parameters used in the discrimination of the different classes. We show that in this survey, for example, {g - r} colour can provide the same accuracy as galaxy stellar mass to predict whether or not a galaxy hosts an AGN. Finally, with the same information, we also rank the parameters involved in the discrimination of Seyfert and LINER galaxies.

  15. Faint blue galaxies revisited

    NASA Astrophysics Data System (ADS)

    Ferguson, Henry C.

    If dwarf-elliptical galaxies formed their stars very rapdily (on timescales of less than 1 Gyr), they may in principle be detectable out to high redshift. Prior to the discovery of cosmic acceleration, it appeared that rapid and late formation dwarf elliptical galaxies might be required to explain the number counts of faint galaxies. A plausible hypothesis emerged: that photoionization by the UV background prevents gas cooling in low-mass halos until z ≲ 1.5. The discovery of cosmic acceleration eased the tension between predicted galaxy number counts and galaxy-evolution models. Nevertheless, there is some evidence for relatively late star formation in nearby dE's, and the photoionization delay mechanism still appears to have some merit. It is thus of interest to look back in time to see if we can find starbursting dwarf galaxies at moderate redshift. We review the connection between faint-blue galaxies and bursting-dwarf galaxies and discuss some attempts to identify progenitors to dE galaxies in the Hubble Ultra Deep Field (HUDF) observations. We find roughly 85 galaxies in the HUDF with redshifts 0.6 that appear to have formed most of their stars at z. Of these, 70% have half-light radii less than 1.5 kpc. These are thus "smoking gun" candidates for dwarf galaxies that are either collapsing for the first time at moderate redshifts or have otherwise been unable to form stars for more than 1/3 of a Hubble time.

  16. Ultracompact Blue Dwarfs: Galaxy Formation in the Local Universe?

    NASA Astrophysics Data System (ADS)

    Corbin, Michael

    2004-07-01

    Recent observations suggest that very low-mass galaxies in the local universe are still in the process of formation. To investigate this issue we propose to obtain deep ACS HRC images in the U, V and I bands of a sample of 11 "ultracompact" blue dwarf galaxies {UCBDs} identified in the Sloan Digital Sky Survey. These objects are nearby {z < 0.009}, actively star-forming, and have extremely small angular and physical sizes {d < 6" and D < 1 kpc}. They also tend to reside in voids. Our WFPC2 images of the prototype object of this class, POX 186, reveal this tiny object to have a highly disturbed morphlogy indicative of a recent {within 10^8 yr} collision between two small { 100 pc} clumps of stars that could represent the long-sought building blocks predicted by the Press-Schechter model of hierarchical galaxy formation. This collision has also triggered the formation of a "super" star cluster {SSC} at the object's core that may be the progenitor of a globular cluster. POX 186 thus appears to be a very small dwarf galaxy in the process of formation. This exciting discovery strongly motivates HST imaging of a full sample of UCBDs in order to determine if they have morphologies similar to POX 186. HST images are essential for resolving the structure of these objects, including establishing the presence of SSCs. HST also offers the only way to determine their morphologies in the near UV. The spectra of the objects available from the SDSS will also allow us to measure their star formation rates, dust content and metallicities. In addition to potentially providing the first direct evidence of Press-Schechter building blocks, these data could yield insight into the relationship between galaxy and globular cluster formation, and will serve as a test of the recent "downsizing" model of galaxy formation in which the least massive objects are the last to form.

  17. The Prevalence of Ionized Gas Outflow Signatures in SDSS-IV MaNGA Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Flores, Anthony M.; Wylezalek, Dominika; Zakamska, Nadia

    2018-01-01

    Actively accreting supermassive black holes (AGN) can have a variety of effects on their host galaxies, from generating large regions of hot, photoionized gas, to driving AGN feedback in the form of galaxy wide outflows that may affect the evolution of the galaxy over time by quenching their star formation and by thus setting limits to the total mass of their host galaxy. The focus of this work is to assess the prevalence of AGN-driven outflows in low-redshift AGN of moderate power using IFU observations of 2778 galaxies available through SDSS-IV MaNGA.SDSS-IV MaNGA is an optical spectroscopic IFU survey which will have obtained spatially resolved spectroscopic observations of ~10,000 galaxies at z ≤ 0.1 and with stellar masses >10^9 solar masses over the next three years, allowing us to describe the kinematic properties of a large galaxy sample across different spatial regions.We have re-mapped the kinematics of the [O III] emission line to account for asymmetries and secondary kinematic components in the emission line brought on by potential AGN-driven outflows. Using all galaxies currently in the MaNGA survey, we implement a new fitting procedure to help determine the prevalence of these secondary components. Specifically, we use the non-parametric W80 value as a proxy for velocity dispersion, which we expect to be affected especially in the case of asymmetries and broadening of the emission lines. Separating these galaxies into two samples of independently identified AGN candidates and non-AGN, I will show that broad secondary components are twice as common in MaNGA-selected AGN compared to galaxies in MaNGA not classified as AGN. Moreover, when the underlying distribution of W80 values are compared between samples, I will show that the differences in these distributions are statistically significant. This demonstrates that large IFU survey like SDSS-IV MaNGA will uncover many previously unknown AGN and AGN feedback signatures. Outflows and feedback from low

  18. THE ORIGIN AND OPTICAL DEPTH OF IONIZING RADIATION IN THE 'GREEN PEA' GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaskot, A. E.; Oey, M. S.

    2013-04-01

    Although Lyman-continuum (LyC) radiation from star-forming galaxies likely drove the reionization of the universe, observations of star-forming galaxies at low redshift generally indicate low LyC escape fractions. However, the extreme [O III]/[O II] ratios of the z = 0.1-0.3 Green Pea galaxies may be due to high escape fractions of ionizing radiation. To analyze the LyC optical depths and ionizing sources of these rare, compact starbursts, we compare nebular photoionization and stellar population models with observed emission lines in the Peas' Sloan Digital Sky Survey (SDSS) spectra. We focus on the six most extreme Green Peas, the galaxies with themore » highest [O III]/[O II] ratios and the best candidates for escaping ionizing radiation. The Balmer line equivalent widths and He I {lambda}3819 emission in the extreme Peas support young ages of 3-5 Myr, and He II {lambda}4686 emission in five extreme Peas signals the presence of hard ionizing sources. Ionization by active galactic nuclei or high-mass X-ray binaries is inconsistent with the Peas' line ratios and ages. Although stacked spectra reveal no Wolf-Rayet (WR) features, we tentatively detect WR features in the SDSS spectra of three extreme Peas. Based on the Peas' ages and line ratios, we find that WR stars, chemically homogeneous O stars, or shocks could produce the observed He II emission. If hot stars are responsible, then the Peas' optical depths are ambiguous. However, accounting for emission from shocks lowers the inferred optical depth and suggests that the Peas may be optically thin. The Peas' ages likely optimize the escape of LyC radiation; they are old enough for supernovae and stellar winds to reshape the interstellar medium, but young enough to possess large numbers of UV-luminous O or WR stars.« less

  19. New analytical solutions for chemical evolution models: characterizing the population of star-forming and passive galaxies

    NASA Astrophysics Data System (ADS)

    Spitoni, E.; Vincenzo, F.; Matteucci, F.

    2017-03-01

    Context. Analytical models of chemical evolution, including inflow and outflow of gas, are important tools for studying how the metal content in galaxies evolves as a function of time. Aims: We present new analytical solutions for the evolution of the gas mass, total mass, and metallicity of a galactic system when a decaying exponential infall rate of gas and galactic winds are assumed. We apply our model to characterize a sample of local star-forming and passive galaxies from the Sloan Digital Sky Survey data, with the aim of reproducing their observed mass-metallicity relation. Methods: We derived how the two populations of star-forming and passive galaxies differ in their particular distribution of ages, formation timescales, infall masses, and mass loading factors. Results: We find that the local passive galaxies are, on average, older and assembled on shorter typical timescales than the local star-forming galaxies; on the other hand, the star-forming galaxies with higher masses generally show older ages and longer typical formation timescales compared than star-forming galaxies with lower masses. The local star-forming galaxies experience stronger galactic winds than the passive galaxy population. Exploring the effect of assuming different initial mass functions in our model, we show that to reproduce the observed mass-metallicity relation, stronger winds are requested if the initial mass function is top-heavy. Finally, our analytical models predict the assumed sample of local galaxies to lie on a tight surface in the 3D space defined by stellar metallicity, star formation rate, and stellar mass, in agreement with the well-known fundamental relation from adopting gas-phase metallicity. Conclusions: By using a new analytical model of chemical evolution, we characterize an ensemble of SDSS galaxies in terms of their infall timescales, infall masses, and mass loading factors. Local passive galaxies are, on average, older and assembled on shorter typical

  20. Environment of Submillimeter Galaxies

    NASA Astrophysics Data System (ADS)

    Hou, K.-c.; Chen, L.-w.

    2013-10-01

    To study the environment of high-redshift star-forming galaxies — submillimeter galaxies (SMGs) — and their role during large-scale structure formation, we have estimated the galaxy number density fluctuations around SMGs, and analyzed their cross correlation functions with Lyman alpha emitters (LAEs), and optical-selected galaxies with photometric redshift in the COSMOS and ECDFS fields. Only a marginal cross-correlation between SMGs and optical-selected galaxies at most redshifts intervals is found in our results, except a relatively strong correlation detected in the cases of AzTEC-detected SMGs with galaxies at z ˜2.6 and 3.6. The density fluctuations around SMGs with redshift estimated show most SMGs located in a high-density region. There is no correlation signal between LAEs and SMGs, and the galaxy density fluctuations indicate a slightly anti-correlation on a scale smaller than 2 Mpc. Furthermore, we also investigate the density fluctuations of passive and starforming galaxies selected by optical and near infrared colors at similar redshift around SMGs. Finally the implication from our results to the interconnection between high-redshift galaxy populations is discussed.

  1. MULTIPLE GALAXY COLLISIONS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Here is a sampling of 15 ultraluminous infrared galaxies viewed by NASA's Hubble Space Telescope. Hubble's sharp vision reveals more complexity within these galaxies, which astronomers are interpreting as evidence of a multiple-galaxy pileup. These images, taken by the Wide Field and Planetary Camera 2, are part of a three-year study of 123 galaxies within 3 billion light-years of Earth. The study was conducted in 1996, 1997, and 1999. False colors were assigned to these photos to enhance fine details within these coalescing galaxies. Credits: NASA, Kirk Borne (Raytheon and NASA Goddard Space Flight Center, Greenbelt, Md.), Luis Colina (Instituto de Fisica de Cantabria, Spain), and Howard Bushouse and Ray Lucas (Space Telescope Science Institute, Baltimore, Md.)

  2. Image decomposition of barred galaxies and AGN hosts

    NASA Astrophysics Data System (ADS)

    Gadotti, Dimitri Alexei

    2008-02-01

    I present the results of multicomponent decomposition of V and R broad-band images of a sample of 17 nearby galaxies, most of them hosting bars and active galactic nuclei (AGN). I use BUDDA v2.1 to produce the fits, allowing the inclusion of bars and AGN in the models. A comparison with previous results from the literature shows a fairly good agreement. It is found that the axial ratio of bars, as measured from ellipse fits, can be severely underestimated if the galaxy axisymmetric component is relatively luminous. Thus, reliable bar axial ratios can only be determined by taking into account the contributions of bulge and disc to the light distribution in the galaxy image. Through a number of tests, I show that neglecting bars when modelling barred galaxies can result in an overestimation of the bulge-to-total luminosity ratio of a factor of 2. Similar effects result when bright, type 1 AGN are not considered in the models. By artificially redshifting the images, I show that the structural parameters of more distant galaxies can in general be reliably retrieved through image fitting, at least up to the point where the physical spatial resolution is ~1.5kpc. This corresponds, for instance, to images of galaxies at z = 0.05 with a seeing full width at half-maximum (FWHM) of 1.5arcsec, typical of the Sloan Digital Sky Survey (SDSS). In addition, such a resolution is also similar to what can be achieved with the Hubble Space Telescope (HST), and ground-based telescopes with adaptive optics, at z ~ 1-2. Thus, these results also concern deeper studies such as COSMOS and SINS. This exercise shows that disc parameters are particularly robust, but bulge parameters are prone to errors if its effective radius is small compared to the seeing radius, and might suffer from systematic effects. For instance, the bulge-to-total luminosity ratio is systematically overestimated, on average, by 0.05 (i.e. 5 per cent of the galaxy total luminosity). In this low-resolution regime, the

  3. Galaxy Zoo: evidence for rapid, recent quenching within a population of AGN host galaxies

    NASA Astrophysics Data System (ADS)

    Smethurst, R. J.; Lintott, C. J.; Simmons, B. D.; Schawinski, K.; Bamford, S. P.; Cardamone, C. N.; Kruk, S. J.; Masters, K. L.; Urry, C. M.; Willett, K. W.; Wong, O. I.

    2016-12-01

    We present a population study of the star formation history of 1244 Type 2 active galactic nuclei (AGN) host galaxies, compared to 6107 inactive galaxies. A Bayesian method is used to determine individual galaxy star formation histories, which are then collated to visualize the distribution for quenching and quenched galaxies within each population. We find evidence for some of the Type 2 AGN host galaxies having undergone a rapid drop in their star formation rate within the last 2 Gyr. AGN feedback is therefore important at least for this population of galaxies. This result is not seen for the quenching and quenched inactive galaxies whose star formation histories are dominated by the effects of downsizing at earlier epochs, a secondary effect for the AGN host galaxies. We show that histories of rapid quenching cannot account fully for the quenching of all the star formation in a galaxy's lifetime across the population of quenched AGN host galaxies, and that histories of slower quenching, attributed to secular (non-violent) evolution, are also key in their evolution. This is in agreement with recent results showing that both merger-driven and non-merger processes are contributing to the co-evolution of galaxies and supermassive black holes. The availability of gas in the reservoirs of a galaxy, and its ability to be replenished, appear to be the key drivers behind this co-evolution.

  4. Biases in Metallicity Measurements from Global Galaxy Spectra: The Effects of Flux Weighting and Diffuse Ionized Gas Contamination

    NASA Astrophysics Data System (ADS)

    Sanders, Ryan L.; Shapley, Alice E.; Zhang, Kai; Yan, Renbin

    2017-12-01

    Galaxy metallicity scaling relations provide a powerful tool for understanding galaxy evolution, but obtaining unbiased global galaxy gas-phase oxygen abundances requires proper treatment of the various line-emitting sources within spectroscopic apertures. We present a model framework that treats galaxies as ensembles of H II and diffuse ionized gas (DIG) regions of varying metallicities. These models are based upon empirical relations between line ratios and electron temperature for H II regions, and DIG strong-line ratio relations from SDSS-IV MaNGA IFU data. Flux-weighting effects and DIG contamination can significantly affect properties inferred from global galaxy spectra, biasing metallicity estimates by more than 0.3 dex in some cases. We use observationally motivated inputs to construct a model matched to typical local star-forming galaxies, and quantify the biases in strong-line ratios, electron temperatures, and direct-method metallicities as inferred from global galaxy spectra relative to the median values of the H II region distributions in each galaxy. We also provide a generalized set of models that can be applied to individual galaxies or galaxy samples in atypical regions of parameter space. We use these models to correct for the effects of flux-weighting and DIG contamination in the local direct-method mass-metallicity and fundamental metallicity relations, and in the mass-metallicity relation based on strong-line metallicities. Future photoionization models of galaxy line emission need to include DIG emission and represent galaxies as ensembles of emitting regions with varying metallicity, instead of as single H II regions with effective properties, in order to obtain unbiased estimates of key underlying physical properties.

  5. The X-Shooter Lens Survey - I. Dark matter domination and a Salpeter-type initial mass function in a massive early-type galaxy

    NASA Astrophysics Data System (ADS)

    Spiniello, C.; Koopmans, L. V. E.; Trager, S. C.; Czoske, O.; Treu, T.

    2011-11-01

    We present the first results from the X-Shooter Lens Survey: an analysis of the massive early-type galaxy SDSS J1148+1930 at redshift z= 0.444. We combine its extended kinematic profile - derived from spectra obtained with X-Shooter on the European Southern Observatory Very Large Telescope - with strong gravitational lensing and multicolour information derived from Sloan Digital Sky Survey (SDSS) images. Our main results are as follows. (i) The luminosity-weighted stellar velocity dispersion is <σ*>(≲Reff) = 352 ± 10 ± 16 km s-1, extracted from a rectangular aperture of 1.8 × 1.6 arcsec2 centred on the galaxy, more accurate and considerably lower than a previously published value of ˜450 km s-1. (ii) A single-component (stellar plus dark) mass model of the lens galaxy yields a logarithmic total-density slope of γ'= 1.72+0.05- 0.06 (68 per cent confidence level, CL; ?) within a projected radius of ˜2.16 arcsec. (iii) The projected stellar mass fraction, derived solely from the lensing and dynamical data, is f*(SDSS colours, we find f*, Salp(SDSS colours for a Salpeter IMF, which is preferred over a Chabrier IMF at variance with standard results for lower mass galaxies. Dwarf-rich IMFs in the lower mass range of 0.1-0.7 M⊙, with α≥ 3 (with dN/dM∝M-α) - such as that recently suggested for massive early-type galaxies with α= 3 in the mass range 0.1-1 M⊙- are excluded at the >90 per cent CL and in some cases violate the total lensing

  6. OPTICAL-NEAR-INFRARED COLOR GRADIENTS AND MERGING HISTORY OF ELLIPTICAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Duho; Im, Myungshin

    2013-04-01

    It has been suggested that merging plays an important role in the formation and the evolution of elliptical galaxies. While gas dissipation by star formation is believed to steepen metallicity and color gradients of the merger products, mixing of stars through dissipation-less merging (dry merging) is believed to flatten them. In order to understand the past merging history of elliptical galaxies, we studied the optical-near-infrared (NIR) color gradients of 204 elliptical galaxies. These galaxies are selected from the overlap region of the Sloan Digital Sky Survey (SDSS) Stripe 82 and the UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Surveymore » (LAS). The use of optical and NIR data (g, r, and K) provides large wavelength baselines, and breaks the age-metallicity degeneracy, allowing us to derive age and metallicity gradients. The use of the deep SDSS Stripe 82 images makes it possible for us to examine how the color/age/metallicity gradients are related to merging features. We find that the optical-NIR color and the age/metallicity gradients of elliptical galaxies with tidal features are consistent with those of relaxed ellipticals, suggesting that the two populations underwent a similar merging history on average and that mixing of stars was more or less completed before the tidal features disappeared. Elliptical galaxies with dust features have steeper color gradients than the other two types, even after masking out dust features during the analysis, which can be due to a process involving wet merging. More importantly, we find that the scatter in the color/age/metallicity gradients of the relaxed and merging feature types decreases as their luminosities (or masses) increase at M > 10{sup 11.4} M{sub Sun} but stays large at lower luminosities. Mean metallicity gradients appear nearly constant over the explored mass range, but a possible flattening is observed at the massive end. According to our toy model that predicts how the distribution of

  7. Galaxies in ΛCDM with Halo Abundance Matching: Luminosity-Velocity Relation, Baryonic Mass-Velocity Relation, Velocity Function, and Clustering

    NASA Astrophysics Data System (ADS)

    Trujillo-Gomez, Sebastian; Klypin, Anatoly; Primack, Joel; Romanowsky, Aaron J.

    2011-11-01

    galaxies as a function of circular velocity with the available observations, again finding a very good agreement. The predicted circular velocity function (VF) is also in agreement with the galaxy VF from 80 to 400 km s-1, using the HIPASS survey for late-type galaxies and Sloan Digital Sky Survey (SDSS) for early-type galaxies. However, in accord with other recent results, we find that the DM halos with V circ < 80 km s-1 are much more abundant than observed galaxies with the same V circ. Finally, we find that the two-point correlation function of bright galaxies in our model matches very well the results from the final data release of the SDSS, especially when a small amount of scatter is included in the HAM prescription.

  8. Galaxy collisions as a mechanism of ultra diffuse galaxy (UDG) formation

    NASA Astrophysics Data System (ADS)

    Baushev, A. N.

    2018-04-01

    We suggest a possible mechanism of ultra diffuse galaxy formation: the UDGs may occur as a result of a central collision of galaxies. If the galaxies are young and contain a lot of gas, the collision may kick all the gas off the systems and thus strongly suppress any further star formation. As a result, the galaxies now have a very low surface brightness and other properties typical of the ultra diffuse galaxies. We use the Coma cluster (where numerous UDGs were recently discovered) to test the efficiency of the process. The mechanism works very well and can transform a significant fraction of the cluster population into ultra diffuse galaxies. The UDGs formed by the process concentrate towards the center of the cluster, and their globular cluster systems remain undamaged, in accordance with observational results. The projected surface density of UDGs in the cluster may help us to recognize the mechanism of UDG formation, or clarify relative contributions of several possible competitive mechanisms at work.

  9. A wide-field survey of satellite galaxies around the spiral galaxy M106

    NASA Astrophysics Data System (ADS)

    Kim, E.; Kim, M.; Hwang, N.; Lee, M. G.; Chun, M.-Y.; Ann, H. B.

    2011-04-01

    We present a wide-field survey of satellite galaxies in M106 (NGC 4258) covering a ?× 2° field around M106 using Canada-France-Hawaii Telescope/MegaCam. We find 16 satellite galaxy candidates of M106. Eight of these galaxies are found to be dwarf galaxies that are much smaller and fainter than the remaining galaxies. Three of these galaxies are new findings. Surface brightness profiles of 15 out of 16 satellite galaxies can be represented well by an exponential disc profile with varying scalelength. We derive the surface number density distribution of these satellite galaxies. The central number density profile (d < 100 kpc) is well fitted by a power law with a power index of -2.1 ± 0.5, similar to the expected power index of isothermal distribution. The luminosity function of these satellites is represented well by the Schechter function with a faint-end slope of -1.19+0.03-0.06. Integrated photometric properties (total luminosity, total colour and disc scalelength) and the spatial distribution of these satellite galaxies are found to be roughly similar to those of the Milky Way and M31.

  10. Distant Galaxy Clusters Hosting Extreme Central Galaxies

    NASA Astrophysics Data System (ADS)

    McDonald, Michael

    2014-09-01

    The recently-discovered Phoenix cluster harbors the most star-forming central cluster galaxy of any cluster in the known Universe, by nearly a factor of 10. This extreme system appears to be fulfilling early cooling flow predictions, although the lack of similar systems makes any interpretation difficult. In an attempt to find other "Phoenix-like" clusters, we have cross-correlated archival all-sky surveys (in which Phoenix was detected) and isolated 4 similarly-extreme systems which are also coincident in position and redshift with an overdensity of red galaxies. We propose here to obtain Chandra observations of these extreme, Phoenix-like systems, in order to confirm them as relaxed, rapidly-cooling galaxy clusters.

  11. Star-formation rate in compact star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Izotova, I. Y.; Izotov, Y. I.

    2018-03-01

    We use the data for the Hβ emission-line, far-ultraviolet (FUV) and mid-infrared 22 μm continuum luminosities to estimate star formation rates < SFR > averaged over the galaxy lifetime for a sample of about 14000 bursting compact star-forming galaxies (CSFGs) selected from the Data Release 12 (DR12) of the Sloan Digital Sky Survey (SDSS). The average coefficient linking < SFR > and the star formation rate SFR0 derived from the Hβ luminosity at zero starburst age is found to be 0.04. We compare < SFR > s with some commonly used SFRs which are derived adopting a continuous star formation during a period of {˜} 100 Myr, and find that the latter ones are 2-3 times higher. It is shown that the relations between SFRs derived using a geometric mean of two star-formation indicators in the UV and IR ranges and reduced to zero starburst age have considerably lower dispersion compared to those with single star-formation indicators. We suggest that our relations for < SFR > determination are more appropriate for CSFGs because they take into account a proper temporal evolution of their luminosities. On the other hand, we show that commonly used SFR relations can be applied for approximate estimation within a factor of {˜} 2 of the < SFR > averaged over the lifetime of the bursting compact galaxy.

  12. Galaxy Messier 83

    NASA Image and Video Library

    2003-07-25

    This image of the spiral galaxy Messier 83 was taken by NASA's Galaxy Evolution Explorer on June 7, 2003. Located 15 million light years from Earth and known as the Southern Pinwheel Galaxy, Messier 83 displays significant amounts of ultraviolet emissions far from the optically bright portion of the galaxy. It is also known to have an extended hydrogen disc that appears to radiate a faint ultraviolet emission. The red stars in the foreground of the image are Milky Way stars. http://photojournal.jpl.nasa.gov/catalog/PIA04629

  13. Finding the First Galaxies

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    Astronomers study distant galaxies by taking long exposures in deep survey fields. They choose fields that are empty of known sources, so that they are statistically representative of the Universe as a whole. Astronomers can compare the distribution of the detected galaxies in brightness, color, morphology and redshift to theoretical models, in order to puzzle out the processes of galaxy evolution. In 2004, the Hubble Space Telescope was pointed at a small, deep-survey field in the southern constellation Fornax for more than 500 hours of exposure time. The resulting Hubble Ultra-Deep Field could see the faintest and most distant galaxies that the telescope is capable of viewing. These galaxies emitted their light less than 1 billion years after the Big Bang. From the Ultra Deep Field and other galaxy surveys, astronomers have built up a history of star formation in the universe. the peak occurred about7 billion years ago, about half of the age of the current universe, then the number of stars that were forming was about 15 time the rate today. Going backward in time to when the very first starts and galaxies formed, the average star-formation rate should drop to zero. but when looking at the most distant galaxies in the Ultra Deep field, the star formation rate is still higher than it is today. The faintest galaxies seen by Hubble are not the first galaxies that formed in the early universe. To detect these galaxies NASA is planning the James Webb Space Telescope for launch in 2013. Webb will have a 6.5-meter diameter primary mirror, much bigger than Hubble's 2.4-meter primary, and will be optimized for infrared observations to see the highly redshifted galaxies.

  14. Primordial random motions and angular momenta of galaxies and galaxy clusters.

    NASA Technical Reports Server (NTRS)

    Silk, J.; Lea, S.

    1973-01-01

    We study the decay of primordial random motions of galaxies and galaxy clusters in an expanding universe by solving a kinetic equation for the relaxation of differential energy spectra N(E, t). Systematic dissipative energy losses are included, involving gravitational drag by, and accretion of, intergalactic matter, as well as the effect of collisions with other systems. Formal and numerical solutions are described for two distinct modes of galaxy formation in a turbulent medium, corresponding to formation at a distinct epoch and to continuous formation of galaxies. We show that any primordial random motions of galaxies at the present epoch can amount to at most a few km/sec, and that collisions at early epochs can lead to the acquisition of significant amounts of primordial angular momentum.

  15. The early phase of the SMBH-galaxy coevolution in low-z "young" galaxies

    NASA Astrophysics Data System (ADS)

    Nagao, Tohru

    2014-01-01

    It is now widely recognized that most galaxies have a supermassive black hole (SMBH) in their nucleus, and the evolution of SMBHs is closely related with that of their host galaxies (the SMBH-galaxy coevolution). This is suggested by the correlation in the mass of SMBHs and their host galaxies, that has been observed in low redshifts. However, the physics of the coevolution is totally unclear, that prevents us from complete understandings of the galaxy evolution. One possible strategy to tackle this issue is measuring the mass ratio between SMBHs and their host galaxies (M_BH/M_host) at high redshifs, since different scenarios predict different evolution of the ratio ofMBH/Mhost. However it is extremely challenging to measure the mass of the host of high-z quasars, given the faint surface brightness of the host at close to the glaring quasar nucleus. Here we propose a brand-new approach to assess the early phase of the SMBH-galaxy coevolution, by focusing on low-z AGN-hosting "young" galaxies. Specifically, we focus on some very metal-poor galaxies with broadline Balmer lines at z ~ 0.1 - 0.3. By examining the SMBH scaling relations in some low-z metal-poor AGNs through high-resolution IRCS imaging observations, we will discriminate various scenarios for the SMBH-galaxy coevolution.

  16. The dwarf galaxy UGC 5272 and its small companion galaxy

    NASA Technical Reports Server (NTRS)

    Hopp, U.; Schulte-Ladbeck, R. E.

    1991-01-01

    The present study of optical images and spectroscopy of the dwarf irregular galaxy UGC 5272 notes the presence, at 3.6 kpc, of a small neighboring galaxy which is also of irregular type and has a Holmberg diameter of 0.6 kpc. Attention is given to the possibility that the two galaxies, which are resolved into single stars, may form a physical pair. It is suggested that the blue-to-red supergiant ratio of UGC 5272 is high due to its low metallicity. While its extremely blue colors are suggestive of a recent starburst, the structural parameters of the galaxy are surprisingly normal. The gas contribution to total mass is high.

  17. The H IX galaxy survey - II. H I kinematics of H I eXtreme galaxies

    NASA Astrophysics Data System (ADS)

    Lutz, K. A.; Kilborn, V. A.; Koribalski, B. S.; Catinella, B.; Józsa, G. I. G.; Wong, O. I.; Stevens, A. R. H.; Obreschkow, D.; Dénes, H.

    2018-05-01

    By analysing a sample of galaxies selected from the H I Parkes All Sky Survey (HIPASS) to contain more than 2.5 times their expected H I content based on their optical properties, we investigate what drives these H I eXtreme (H IX) galaxies to be so H I-rich. We model the H I kinematics with the Tilted Ring Fitting Code TiRiFiC and compare the observed H IX galaxies to a control sample of galaxies from HIPASS as well as simulated galaxies built with the semi-analytic model DARK SAGE. We find that (1) H I discs in H IX galaxies are more likely to be warped and more likely to host H I arms and tails than in the control galaxies, (2) the average H I and average stellar column density of H IX galaxies is comparable to the control sample, (3) H IX galaxies have higher H I and baryonic specific angular momenta than control galaxies, (4) most H IX galaxies live in higher spin haloes than most control galaxies. These results suggest that H IX galaxies are H I-rich because they can support more H I against gravitational instability due to their high specific angular momentum. The majority of the H IX galaxies inherits their high specific angular momentum from their halo. The H I content of H IX galaxies might be further increased by gas-rich minor mergers. This paper is based on data obtained with the Australia Telescope Compact Array through the large program C 2705.

  18. Galaxy Surface Photometry

    NASA Astrophysics Data System (ADS)

    Milvang-Jensen, Bo; Jørgensen, Inger

    We describe galaxy surface photometry based on fitting ellipses to the isophotes of the galaxies. Example galaxies with different isophotal shapes are used to illustrate the process, including how the deviations from elliptical isophotes are quantified using Fourier expansions. We show how the definitions of the Fourier coefficients employed by different authors are linked. As examples of applications of surface photometry we discuss the determination of the relative disk luminosities and the inclinations for E and S0 galaxies. We also describe the color-magnitude and color-color relations. When using both near-infrared and optical photometry, the age--metallicity degeneracy may be broken. Finally we discuss the Fundamental Plane where surface photometry is combined with spectroscopy. It is shown how the FP can be used as a sensitive tool to study galaxy evolution.

  19. A study of star formation by Hα emission of galaxies in the galaxy group NGC 4213

    NASA Astrophysics Data System (ADS)

    Maungkorn, Sakdawoot; Kriwattanawong, Wichean

    2017-09-01

    This research aims to study hydrogen alpha emission, corresponding to star formation of galaxies in the NGC 4213 group that has an average recession velocity of 6,821 km/s. The imaging observations with broad-band filters (B, V and RC) and narrow-band filters ([S II] and Red-continuum) were carried out from the 2.4-m reflecting telescope at Thai National Observatory (TNO). There are 11 sample galaxies in this study, consisting of 2 elliptical, 2 lenticular and 7 spiral galaxies. It was found that the late-type galaxies tend to be bluer than early-type galaxies, due to these galaxies consist of relatively high proportion of blue stars. Furthermore, the equivalent width of hydrogen alpha (EW(Hα)) tends to increase as a function of morphological type. This indicates that star formation in late-type galaxies taking place more than the early-type galaxies. Furthermore, a ratio of the star formation rate to galaxy mass also increases slightly with the galaxy type. This could be due to the interaction between galaxy-galaxy or tidal interaction occurring within the galaxy group.

  20. Identification and properties of host galaxies of RCR radio sources

    NASA Astrophysics Data System (ADS)

    Zhelenkova, O. P.; Soboleva, N. S.; Majorova, E. K.; Temirova, A. V.

    2013-01-01

    FIRST and NVSS radio maps are used to cross identify the radio sources of the RCR catalog, which is based on observational data obtained in several runs of the "Cold" survey, with the SDSS and DPOSS digital optical sky surveys and the 2MASS, LAS UKIDSS, and WISE infrared surveys. Digital images in various filters and the coadded gri-band SDSS images, red and infrared DPOSS images, JHK-band UKIDSS images, and JHK-band 2MASS images are analyzed for the sources with no optical candidates found in the above catalogs. Our choice of optical candidates was based on the data on the structure of the radio source, its photometry, and spectroscopy (where available). We found reliable identifications for 86% of the radio sources; possible counterparts for 8% of the sources, and failed to find any optical counterparts for 6% of the sources because their host objects proved to be fainter than the limiting magnitude of the corresponding surveys. A little over half of all the identifications proved to be galaxies; about one quarter were quasars, and the types of the remaining objects were difficult to determine because of their faintness. A relation between the luminosity and the radioloudness index was derived and used to estimate the 1.4 and 3.94 GHz luminosities for the sources with unknown redshifts. We found 3% and 60% of all the RCR radio sources to be FRI-type objects ( L ≲ 1024 W/Hz at 1.4 GHz) and powerful FRII-type galaxies ( L ≳ 1026.5 W/Hz), respectively, whereas the rest are sources including objects of the FRI, FRII, and mixed FRI-FRII types. Unlike quasars, galaxies show a trend of decreasing luminosity with decreasing flux density. Note that identification would be quite problematic without the software and resources of the virtual observatory.