Science.gov

Sample records for galaxy spin chirality

  1. Coexistence of chiral symmetry restoration and random orientation of galaxies

    NASA Astrophysics Data System (ADS)

    Aryal, B.; Paudel, S.; Saurer, W.

    2008-02-01

    We studied the chiral symmetry restoration and the spatial orientation of 2288 spiral and spiral barred galaxies that have radial velocities (RV) less than 5000 km s-1. A random direction of the rotation of galaxies is assumed in order to classify the structural modes. The distribution of spin vector and spin vector projections of leading and trailing arm galaxies in the total sample and subsamples are studied. We use chi-square, auto-correlation and Fourier tests in order to discriminate the preferred alignments from the random alignments. A good correlation between the random alignment and the chiral symmetry is noticed in the Local Supercluster (RV < 3000 km s-1) and in galaxies nearby the Local Supercluster (3000 < RV (km s-1) ≤ 5000). Spiral galaxies show a similar result. The barred spirals show an opposite trend to that observed for the spirals. Nearby the Local Supercluster, we noticed a preferred spatial alignment and non-chiral property in the leading and trailing arm spiral barred galaxies. Our result predicts that the progressive loss of chirality might have some connection with the rotationally supported (spirals, barred spirals) and randomized (lenticulars, ellipticals) systems. Thus, we suspect that the dynamical processes in the cluster evolution give rise to a dynamical loss of chirality.

  2. Chirality dependent spin polarization of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Jiang, Wanrun; Wang, Bo; Gao, Yang; Wang, Zhigang; Zhang, Rui-Qin

    2016-02-01

    The spin polarization of carbon nanotubes (CNTs) offers a tunable building block for spintronic devices and is also crucial for realizing carbon-based electronics. However, the effect of chiral CNTs is still unclear. In this paper, we use the density functional theory (DFT) method to investigate the spin polarization of a series of typical finite-length chiral CNTs (9, m). The results show that the spin density of chiral CNTs (9, m) decreases gradually with the increase in m and vanishes altogether when m is larger than or equal to 6. The armchair edge units on both ends of the (9, m) CNTs exhibit a clear inhibition of spin polarization, allowing control of the spin density of (9, m) CNTs by adjusting the number of armchair edge units on the tube end. Furthermore, analysis of the orbitals shows that the spin of the ground state for (9, m) CNTs mainly comes from the contributions of the frontier molecular orbitals (MOs), and the energy gap decreases gradually with the spin density for chiral CNTs. Our work further develops the study of the spin polarization of CNTs and provides a strategy for controlling the spin polarization of functional molecular devices through chiral vector adjustment.

  3. Chiral spin liquids in arrays of spin chains

    NASA Astrophysics Data System (ADS)

    Pereira, Rodrigo

    The chiral spin liquid proposed by Kalmeyer and Laughlin is a spin analogue of the fractional quantum Hall effect: it has gapped bulk quasiparticles, charge-neutral chiral edge modes and topological order in the ground state. Recently there has been unambiguous numerical evidence that the chiral spin liquid can be stabilized as the ground state of extended Heisenberg models on the kagome lattice. I will talk about an analytical approach to investigate the emergence and the properties of the chiral spin liquid phase in spatially anisotropic 2D lattices. The approach is inspired by ``coupled-wire constructions'' of quantum Hall states: starting from a quasi-1D system, we build towards the 2D limit by coupling Heisenberg chains with three-spin interactions that drive the chiral spin order. Using a renormalization group analysis, we show that the chiral spin liquid is more easily stabilized in the kagome lattice than in the triangular lattice. Moreover, using the conformal field theory that describes single chains, we explicitly construct the operators that create bulk quasiparticles and those that account for the topological degeneracy on the torus. I will also discuss possible extensions of this approach to construct more exotic quantum spin liquids.

  4. Excitations in the chiral spin liquid

    NASA Astrophysics Data System (ADS)

    Schroeter, Darrell

    2009-03-01

    Recently, a spin-Hamiltonian was presented [Schroeter et al, Phys. Rev. Lett. 99, 097202 (2007)] for which the chiral spin liquid is the exact ground state. This poster will present a numerical study of the excitations of the model, including results obtained by exact diagonalization of the model on 16 and 25-site lattices.

  5. Controlling and imaging chiral spin textures

    NASA Astrophysics Data System (ADS)

    Chen, Gong

    Chirality in magnetic materials is fundamentally interesting and holds potential for logic and memory applications. Using spin-polarized low-energy electron microscopy at National Center for Electron Microscopy, we recently observed chiral domain walls in thin films. We developed ways to tailor the Dzyaloshinskii-Moriya interaction, which drives the chirality, by interface engineering and by forming ternary superlattices. We find that spin-textures can be switched between left-handed, right-handed, cycloidal, helical and mixed domain wall structures by controlling uniaxial strain in magnetic films. We also demonstrate an experimental approach to stabilize skyrmions in magnetic multilayers without external magnetic field. These results exemplify the rich physics of chirality associated with interfaces of magnetic materials

  6. Field induced spin chirality and chirality switching in magnetic multilayers

    NASA Astrophysics Data System (ADS)

    Tartakovskaya, Elena V.

    2015-05-01

    The physical origin of the field-induced spin chirality experimentally observed in rare earth multilayers is determined. It is shown that the effect is possible due to the interplay between solid-state exchange interactions (the Ruderman-Kittel-Kasuya-Yosida and the Dsyaloshinsky-Moriya interactions), the external magnetic field and a special confinement of magnetic constituents. The presented model describes a certain temperature dependence of the chirality factor in agreement with experimental data and opens a new way to design nanostructured objects with predicted handedness.

  7. Kagome antiferromagnet: a chiral topological spin liquid?

    PubMed

    Messio, Laura; Bernu, Bernard; Lhuillier, Claire

    2012-05-18

    Inspired by the recent discovery of a new instability towards a chiral phase of the classical Heisenberg model on the kagome lattice, we propose a specific chiral spin liquid that reconciles different, well-established results concerning both the classical and quantum models. This proposal is analyzed in an extended mean-field Schwinger boson framework encompassing time reversal symmetry breaking phases, which allows both a classical and a quantum phase description. At low temperatures, we find that quantum fluctuations favor this chiral phase, which is stable against small perturbations of second- and third-neighbor interactions. For spin-1/2, this phase may be, beyond the mean field, a chiral gapped spin liquid. Such a phase is consistent with the density matrix renormalization group results of Yan et al. [Science 332, 1173 (2011)]. Mysterious features of the low-lying excitations of exact diagonalization spectra also find an explanation in this framework. Moreover, thermal fluctuations compete with quantum ones and induce a transition from this flux phase to a planar zero flux phase at a nonzero value of the renormalized temperature (T/S2), reconciling these results with those obtained for the classical system. PMID:23003183

  8. Cosmic Shear from Galaxy Spins.

    PubMed

    Lee; Pen

    2000-03-20

    We discuss the origin of galactic angular momentum and the statistics of the present-day spin distribution. It is expected that the galaxy spin axes are correlated with the intermediate principal axis of the gravitational shear tensor. This allows one to reconstruct the shear field and thereby the full gravitational potential from the observed galaxy spin fields. We use the direction of the angular momentum vector without any information of its magnitude, which requires a measurement of the position angle and inclination on the sky of each disk galaxy. We present the maximum likelihood shear inversion procedure, which involves a constrained linear minimization. The theory is tested against numerical simulations. We find the correlation strength of nonlinear structures with the initial shear field and show that accurate large-scale density reconstructions are possible at the expected noise level. PMID:10702119

  9. Generation of chiral spin state by quantum simulation

    NASA Astrophysics Data System (ADS)

    Tanamoto, Tetsufumi

    2016-06-01

    Chirality of materials in nature appears when there are asymmetries in their lattice structures or interactions in a certain environment. Recent development of quantum simulation technology has enabled the manipulation of qubits. Accordingly, chirality can be realized intentionally rather than passively observed. Here we theoretically provide simple methods to create a chiral spin state in a spin-1/2 qubit system on a square lattice. First, we show that switching on and off the Heisenberg and X Y interactions produces the chiral interaction directly in the effective Hamiltonian without controlling local fields. Moreover, when initial states of spin qubits are appropriately prepared, we prove that the chirality with desirable phase is dynamically obtained. Finally, even for the case where switching on and off the interactions is infeasible and the interactions are always on, we show that, by preparing an asymmetric initial qubit state, the chirality whose phase is π /2 is dynamically generated.

  10. Projective symmetry group classification of chiral spin liquids

    NASA Astrophysics Data System (ADS)

    Bieri, Samuel; Lhuillier, Claire; Messio, Laura

    2016-03-01

    We present a general review of the projective symmetry group classification of fermionic quantum spin liquids for lattice models of spin S =1 /2 . We then introduce a systematic generalization of the approach for symmetric Z2 quantum spin liquids to the one of chiral phases (i.e., singlet states that break time reversal and lattice reflection, but conserve their product). We apply this framework to classify and discuss possible chiral spin liquids on triangular and kagome lattices. We give a detailed prescription on how to construct quadratic spinon Hamiltonians and microscopic wave functions for each representation class on these lattices. Among the chiral Z2 states, we study the subset of U(1) phases variationally in the antiferromagnetic J1-J2-Jd Heisenberg model on the kagome lattice. We discuss static spin structure factors and symmetry constraints on the bulk spectra of these phases.

  11. THE GALACTIC SPIN OF AGN GALAXIES

    SciTech Connect

    Cervantes-Sodi, Bernardo; Hernandez, X.; Park, Changbom; Choi, Yun-Young E-mail: xavier@astroscu.unam.mx

    2011-07-01

    Using an extensive sample of galaxies selected from the Sloan Digital Sky Survey Data Release 5, we compare the angular momentum distribution of active galactic nuclei (AGNs) with non-AGN hosting late-type galaxies. To this end we characterize galactic spin through the dimensionless angular momentum parameter {lambda}, which we estimate through simple dynamical considerations. Using a volume-limited sample, we find a considerable difference when comparing the empirical distributions of {lambda} for AGNs and non-AGN galaxies, the AGNs showing typically low {lambda} values and associated dispersions, while non-AGNs present higher {lambda} values and a broader distribution. A more striking difference is found when looking at {lambda} distributions in thin M{sub r} cuts; while the spin of non-AGN galaxies presents an anticorrelation with M{sub r} , with bright (massive) galaxies having low spins, AGN host galaxies present uniform values of {lambda} at all magnitudes, a behavior probably imposed by the fact that most late-type AGN galaxies present a narrow range in color, with a typical constant {lambda} value. We also find that the fraction of AGN hosting galaxies in our sample strongly depends on galactic spin, increasing dramatically for decreasing {lambda}. For AGN host galaxies, we compute the mass of their supermassive black holes and find that this value tends to be higher for low spin galaxies, even at fixed luminosity, a result that could account, to a certain extent, for the spread on the luminosity-black-hole mass relation.

  12. Chiral spin-3 /2 particles in a medium

    NASA Astrophysics Data System (ADS)

    Nieves, José F.; Sahu, Sarira

    2016-05-01

    We consider the propagation of a chiral spin-3 /2 particle in a background medium using the thermal field theory (TFT) method, in analogy to the cases of a spin-1 /2 fermion (e.g., a neutrino) and the photon. We present a systematic decomposition of the thermal self-energy, from which the dispersion relation of the modes that propagate in the medium are obtained. We find that there are several modes and in each case we obtain the equation for the dispersion relation as well as the corresponding spin-3 /2 spinor. As an example of the general procedure and results, we consider a model in which the chiral spin-3 /2 particle couples to a spin-1 /2 fermion and a scalar particle, and propagates in a thermal background composed of such particles. The dispersion relations and corresponding spinors are detemined explicitly in this case from the 1-loop TFT expression for the self-energy. The results in this case share some resemblance and analogies with the photon and the chiral fermion cases but, as already noted, there are also differences. The present work provides the groundwork for considering problems related to the properties of chiral spin-3 /2 particles in a medium, in analogy to the case of neutrinos for example, which can be relevant in physical contexts of current interest.

  13. Chirality-Dependent Transmission of Spin Waves through Domain Walls.

    PubMed

    Buijnsters, F J; Ferreiros, Y; Fasolino, A; Katsnelson, M I

    2016-04-01

    Spin-wave technology (magnonics) has the potential to further reduce the size and energy consumption of information-processing devices. In the submicrometer regime (exchange spin waves), topological defects such as domain walls may constitute active elements to manipulate spin waves and perform logic operations. We predict that spin waves that pass through a domain wall in an ultrathin perpendicular-anisotropy film experience a phase shift that depends on the orientation of the domain wall (chirality). The effect, which is absent in bulk materials, originates from the interfacial Dzyaloshinskii-Moriya interaction and can be interpreted as a geometric phase. We demonstrate analytically and by means of micromagnetic simulations that the phase shift is strong enough to switch between constructive and destructive interference. The two chirality states of the domain wall may serve as a memory bit or spin-wave switch in magnonic devices. PMID:27104725

  14. Chirality-Dependent Transmission of Spin Waves through Domain Walls

    NASA Astrophysics Data System (ADS)

    Buijnsters, F. J.; Ferreiros, Y.; Fasolino, A.; Katsnelson, M. I.

    2016-04-01

    Spin-wave technology (magnonics) has the potential to further reduce the size and energy consumption of information-processing devices. In the submicrometer regime (exchange spin waves), topological defects such as domain walls may constitute active elements to manipulate spin waves and perform logic operations. We predict that spin waves that pass through a domain wall in an ultrathin perpendicular-anisotropy film experience a phase shift that depends on the orientation of the domain wall (chirality). The effect, which is absent in bulk materials, originates from the interfacial Dzyaloshinskii-Moriya interaction and can be interpreted as a geometric phase. We demonstrate analytically and by means of micromagnetic simulations that the phase shift is strong enough to switch between constructive and destructive interference. The two chirality states of the domain wall may serve as a memory bit or spin-wave switch in magnonic devices.

  15. Spin of the proton in chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Li, Hongna; Wang, P.; Leinweber, D. B.; Thomas, A. W.

    2016-04-01

    Proton spin is investigated in chiral effective field theory through an examination of the singlet axial charge, a0, and the two nonsinglet axial charges, a3 and a8. Finite-range regularization is considered as it provides an effective model for estimating the role of disconnected sea-quark loop contributions to baryon observables. Baryon octet and decuplet intermediate states are included to enrich the spin and flavor structure of the nucleon, redistributing spin under the constraints of chiral symmetry. In this context, the proton spin puzzle is well understood with the calculation describing all three of the axial charges reasonably well. The strange quark contribution to the proton spin is negative with magnitude 0.01. With appropriate Q2 evolution, we find the singlet axial charge at the experimental scale to be â0=0 .31-0.05+0.04 , consistent with the range of current experimental values.

  16. Continuum model for chiral induced spin selectivity in helical molecules

    SciTech Connect

    Medina, Ernesto; González-Arraga, Luis A.; Finkelstein-Shapiro, Daniel; Mujica, Vladimiro; Berche, Bertrand

    2015-05-21

    A minimal model is exactly solved for electron spin transport on a helix. Electron transport is assumed to be supported by well oriented p{sub z} type orbitals on base molecules forming a staircase of definite chirality. In a tight binding interpretation, the spin-orbit coupling (SOC) opens up an effective π{sub z} − π{sub z} coupling via interbase p{sub x,y} − p{sub z} hopping, introducing spin coupled transport. The resulting continuum model spectrum shows two Kramers doublet transport channels with a gap proportional to the SOC. Each doubly degenerate channel satisfies time reversal symmetry; nevertheless, a bias chooses a transport direction and thus selects for spin orientation. The model predicts (i) which spin orientation is selected depending on chirality and bias, (ii) changes in spin preference as a function of input Fermi level and (iii) back-scattering suppression protected by the SO gap. We compute the spin current with a definite helicity and find it to be proportional to the torsion of the chiral structure and the non-adiabatic Aharonov-Anandan phase. To describe room temperature transport, we assume that the total transmission is the result of a product of coherent steps.

  17. Chiral Spin-Orbital Liquids with Nodal Lines

    NASA Astrophysics Data System (ADS)

    Natori, W. M. H.; Andrade, E. C.; Miranda, E.; Pereira, R. G.

    2016-07-01

    Strongly correlated materials with strong spin-orbit coupling hold promise for realizing topological phases with fractionalized excitations. Here, we propose a chiral spin-orbital liquid as a stable phase of a realistic model for heavy-element double perovskites. This spin liquid state has Majorana fermion excitations with a gapless spectrum characterized by nodal lines along the edges of the Brillouin zone. We show that the nodal lines are topological defects of a non-Abelian Berry connection and that the system exhibits dispersing surface states. We discuss some experimental signatures of this state and compare them with properties of the spin liquid candidate Ba2YMoO6.

  18. Tunable chiral spin texture in magnetic domain-walls.

    PubMed

    Franken, J H; Herps, M; Swagten, H J M; Koopmans, B

    2014-01-01

    Magnetic domain-walls (DWs) with a preferred chirality exhibit very efficient current-driven motion. Since structural inversion asymmetry (SIA) is required for their stability, the observation of chiral domain walls in highly symmetric Pt/Co/Pt is intriguing. Here, we tune the layer asymmetry in this system and observe, by current-assisted DW depinning experiments, a small chiral field which sensitively changes. Moreover, we convincingly link the observed efficiency of DW motion to the DW texture, using DW resistance as a direct probe for the internal orientation of the DW under the influence of in-plane fields. The very delicate effect of capping layer thickness on the chiral field allows for its accurate control, which is important in designing novel materials for optimal spin-orbit-torque-driven DW motion. PMID:24919162

  19. Tunable chiral spin texture in magnetic domain-walls

    NASA Astrophysics Data System (ADS)

    Franken, J. H.; Herps, M.; Swagten, H. J. M.; Koopmans, B.

    2014-06-01

    Magnetic domain-walls (DWs) with a preferred chirality exhibit very efficient current-driven motion. Since structural inversion asymmetry (SIA) is required for their stability, the observation of chiral domain walls in highly symmetric Pt/Co/Pt is intriguing. Here, we tune the layer asymmetry in this system and observe, by current-assisted DW depinning experiments, a small chiral field which sensitively changes. Moreover, we convincingly link the observed efficiency of DW motion to the DW texture, using DW resistance as a direct probe for the internal orientation of the DW under the influence of in-plane fields. The very delicate effect of capping layer thickness on the chiral field allows for its accurate control, which is important in designing novel materials for optimal spin-orbit-torque-driven DW motion.

  20. Imaging chiral spin textures with spin-polarized low energy electron microscopy

    NASA Astrophysics Data System (ADS)

    Schmid, Andreas

    2015-03-01

    Chirality in magnetic materials is fundamentally interesting holds potential for logic and memory applications. Using spin-polarized low-energy electron microscopy, we recently observed chiral Néel walls in thin films. We developed ways to tailor the Dzyaloshinskii-Moriya interaction, which drives the chirality, by interface engineering, and we found that Néel- and Bloch- chirality type can be tuned in the presence of uniaxial strain. This work was done in collaboration with G. Chen, A.T.N'diaye, T.P.Ma, A.Mascaraque, C.Won, Z.Q.Qiu, Y.Z.Wu.

  1. Chiral spin waves in Fermi liquids with spin-orbit coupling.

    PubMed

    Ashrafi, Ali; Maslov, Dmitrii L

    2012-11-30

    We predict the existence of chiral spin waves-collective modes in a two-dimensional Fermi liquid with the Rashba or Dresselhaus spin-orbit coupling. Starting from the phenomenological Landau theory, we show that the long-wavelength dynamics of magnetization is governed by the Klein-Gordon equations. The standing-wave solutions of these equations describe ''particles" with effective masses, whose magnitudes and signs depend on the strength of the electron-electron interaction. The spectrum of the spin-chiral modes for arbitrary wavelengths is determined from the Dyson equation for the interaction vertex. We propose to observe spin-chiral modes via microwave absorption by standing waves confined by an in-plane profile of the spin-orbit splitting. PMID:23368155

  2. Spin dynamics under local gauge fields in chiral spin-orbit coupling systems

    NASA Astrophysics Data System (ADS)

    Tan, S. G.; Jalil, M. B. A.; Fujita, T.; Liu, X. J.

    2011-02-01

    We present a theoretical description of local spin dynamics in magnetic systems with a chiral spin texture and finite spin-orbit coupling (SOC). Spin precession about the relativistic effective magnetic field in a SOC system gives rise to a non-Abelian SU(2) gauge field reminiscent of the Yang-Mills field. In addition, the adiabatic relaxation of electron spin along the local spin yields an U(1) ⊗ U(1) topological gauge (Berry) field. We derive the corresponding equation of motion i.e. modified Landau-Lifshitz-Gilbert (LLG) equation, for the local spin under the influence of these effects. Focusing on the SU(2) gauge, we obtain the spin torque magnitude, and the amplitude and frequency of spin oscillations in this system. Our theoretical estimates indicate significant spin torque and oscillations in systems with large spin-orbit coupling, which may be utilized in technological applications such as current-induced magnetization-switching and tunable microwave oscillators.

  3. Haldane-Hubbard Mott Insulator: From Tetrahedral Spin Crystal to Chiral Spin Liquid

    NASA Astrophysics Data System (ADS)

    Hickey, Ciaran; Cincio, Lukasz; Papic, Zlatko; Paramekanti, Arun

    Motivated by recent experimental realizations of artificial gauge fields in ultracold atoms, we study the honeycomb lattice Haldane-Hubbard Mott insulator of spin- 1 / 2 fermions using exact diagonalization and density matrix renormalization group methods. We show that this model exhibits various chiral magnetic orders including a wide regime of triple-Q tetrahedral order. Incorporating third-neighbor hopping frustrates and ultimately melts this tetrahedral spin crystal. From analyzing low energy spectra, many-body Chern numbers, entanglement spectra, and modular matrices, we identify the molten state as a chiral spin liquid with gapped semion excitations.

  4. An Exact Chiral Spin Liquid with Non-Abelian Anyons

    SciTech Connect

    Yao, Hong

    2010-04-06

    We establish the existence of a chiral spin liquid (CSL) as the exact ground state of the Kitaev model on a decorated honeycomb lattice, which is obtained by replacing each site in the familiar honeycomb lattice with a triangle. The CSL state spontaneously breaks time reversal symmetry but preserves other symmetries. There are two topologically distinct CSLs separated by a quantum critical point. Interestingly, vortex excitations in the topologically nontrivial (Chern number {+-}1) CSL obey non-Abelian statistics.

  5. Theory of spin resonance in a chiral helimagnet

    NASA Astrophysics Data System (ADS)

    Kishine, Jun-Ichiro; Ovchinnikov, A. S.

    2009-06-01

    It is suggested that marked features of symmetry-breaking mechanism and elementary excitations in chiral helimagnet come up as visible effects in electron-spin-resonance (ESR) profile. Under the magnetic field applied parallel and perpendicular to the helical axis, elementary excitations are, respectively, described by the helimagnon associated with rotational symmetry breaking and the magnetic kink crystal phonon associated with translational symmetry breaking. We demonstrate how the ESR spectra distinguish these excitations.

  6. Proton spin problem and chiral constituent quark model

    SciTech Connect

    Rana, J. M. S.; Dahiya, H.; Gupta, M.

    2008-10-13

    Some of the non-relativistic quark model (NRQM) predictions of some spin and flavor parameters are in sharp conflict with the observations made from deep inelastic scattering experiments. Besides this there are other spin and flavor dependent quantities which could not be explained by NRQM. These contradictions are referred to as Proton spin problem. These issues get resolved, to some extent, in Chiral Constituent Quark Model (CQM) which incorporates the basic features of NRQM and chiral symmetry. The implications of the latest data pertaining to u-bar-d-bar asymmetry and the spin polarization functions on the contributions of singlet Goldstone Boson {eta}' within CQM with configuration mixing for explaining the proton spin problem have been investigated. It is found that the present data favors smaller values of the coupling of singlet Goldstone Boson as compared to the corresponding contributions from {pi}, K and {eta}' Goldstone bosons. It seems that a small non-zero value of the coupling of {eta}'({zeta}{ne}0)({zeta}{ne}0) is preferred over {zeta} = -0.10 phenomenologically.

  7. Haldane-Hubbard Mott Insulator: From Tetrahedral Spin Crystal to Chiral Spin Liquid

    NASA Astrophysics Data System (ADS)

    Hickey, Ciarán; Cincio, Lukasz; Papić, Zlatko; Paramekanti, Arun

    2016-04-01

    Motivated by cold atom experiments on Chern insulators, we study the honeycomb lattice Haldane-Hubbard Mott insulator of spin-1 /2 fermions using exact diagonalization and density matrix renormalization group methods. We show that this model exhibits various chiral magnetic orders including a wide regime of triple-Q tetrahedral order. Incorporating third-neighbor hopping frustrates and ultimately melts this tetrahedral spin crystal. From analyzing the low energy spectrum, many-body Chern numbers, entanglement spectra, and modular matrices, we identify the molten state as a chiral spin liquid (CSL) with gapped semion excitations. We formulate and study the Chern-Simons-Higgs field theory of the exotic CSL-to-tetrahedral spin crystallization transition.

  8. Haldane-Hubbard Mott Insulator: From Tetrahedral Spin Crystal to Chiral Spin Liquid.

    PubMed

    Hickey, Ciarán; Cincio, Lukasz; Papić, Zlatko; Paramekanti, Arun

    2016-04-01

    Motivated by cold atom experiments on Chern insulators, we study the honeycomb lattice Haldane-Hubbard Mott insulator of spin-1/2 fermions using exact diagonalization and density matrix renormalization group methods. We show that this model exhibits various chiral magnetic orders including a wide regime of triple-Q tetrahedral order. Incorporating third-neighbor hopping frustrates and ultimately melts this tetrahedral spin crystal. From analyzing the low energy spectrum, many-body Chern numbers, entanglement spectra, and modular matrices, we identify the molten state as a chiral spin liquid (CSL) with gapped semion excitations. We formulate and study the Chern-Simons-Higgs field theory of the exotic CSL-to-tetrahedral spin crystallization transition. PMID:27082001

  9. Exactly solvable Hamiltonian for the chiral spin liquid

    NASA Astrophysics Data System (ADS)

    Schroeter, Darrell; Kapit, Eliot

    2006-03-01

    An exact spin Hamiltonian for the chiral spin liquid will be presented. The model starts with the quantum Hall wave function on a lattice of N sites in a toroidal geometry, a state that describes a spin liquid that violates the symmetries of parity and time reversal. A parent Hamiltonian for which the state is the exact ground state is constructed out of vector operators that annihilate the ground state. This model avoids the subtle error that has been identified [D. F. Schroeter, Ann. Phys. 310, 155 (2004)] in Laughlin's original solution to the problem [R. B. Laughlin, Ann. Phys. 191, 163 (1989)]. The construction of the model and its numerical verification will be presented.

  10. Electrically tunable spin polarization of chiral edge modes in a quantum anomalous Hall insulator

    NASA Astrophysics Data System (ADS)

    Zhang, Rui-Xing; Hsu, Hsiu-Chuan; Liu, Chao-Xing

    2016-06-01

    In the quantum anomalous Hall effect, chiral edge modes are expected to conduct spin polarized current without dissipation and thus hold great promise for future electronics and spintronics with low energy consumption. However, spin polarization of chiral edge modes has never been established in experiments. In this work, we theoretically study spin polarization of chiral edge modes in the quantum anomalous Hall effect, based on both the effective model and more realistic tight-binding model constructed from first-principles calculations. We find that spin polarization can be manipulated by tuning either a local gate voltage or the Fermi energy. We also propose to extract spin information of chiral edge modes by contacting the quantum anomalous Hall insulator to a ferromagnetic lead. The establishment of spin polarization of chiral edge modes, as well as the manipulation and detection in a fully electrical manner, will pave the way to the applications of the quantum anomalous Hall effect in spintronics.

  11. Coriolis effect and spin Hall effect of light in an inhomogeneous chiral medium.

    PubMed

    Zhang, Yongliang; Shi, Lina; Xie, Changqing

    2016-07-01

    We theoretically investigate the spin Hall effect of spinning light in an inhomogeneous chiral medium. The Hamiltonian equations of the photon are analytically obtained within eikonal approximation in the noninertial orthogonal frame. Besides the usual spin curvature coupling, the chiral parameter enters the Hamiltonian as a spin-torsion-like interaction. We reveal that both terms have parallel geometric origins as the Coriolis terms of Maxwell's equations in nontrivial frames. PMID:27367104

  12. Spin dynamics under local gauge fields in chiral spin-orbit coupling systems

    SciTech Connect

    Tan, S.G.; Jalil, M.B.A.; Fujita, T.; Liu, X.J.

    2011-02-15

    Research Highlights: > We derive a modified LLG equation in magnetic systems with spin-orbit coupling (SOC). > Our results are applied to magnetic multilayers, and DMS and magnetic Rashba systems. > SOC mediated magnetization switching is predicted in rare earth metals (large SOC). > The magnetization trajectory and frequency can be modulated by applied voltage. > This facilitates potential application as tunable microwave oscillators. - Abstract: We present a theoretical description of local spin dynamics in magnetic systems with a chiral spin texture and finite spin-orbit coupling (SOC). Spin precession about the relativistic effective magnetic field in a SOC system gives rise to a non-Abelian SU(2) gauge field reminiscent of the Yang-Mills field. In addition, the adiabatic relaxation of electron spin along the local spin yields an U(1) x U(1) topological gauge (Berry) field. We derive the corresponding equation of motion i.e. modified Landau-Lifshitz-Gilbert (LLG) equation, for the local spin under the influence of these effects. Focusing on the SU(2) gauge, we obtain the spin torque magnitude, and the amplitude and frequency of spin oscillations in this system. Our theoretical estimates indicate significant spin torque and oscillations in systems with large spin-orbit coupling, which may be utilized in technological applications such as current-induced magnetization-switching and tunable microwave oscillators.

  13. Experimentally tunable chiral spin transfer torque in domain wall motion

    NASA Astrophysics Data System (ADS)

    Ryu, Kwang-Su; Yang, See-Hun; Parkin, Stuart

    2016-05-01

    Domain walls (DWs) can be moved very efficiently with nanosecond long current pulses in perpendicularly magnetized Co/Ni/Co nanowires formed with platinum under- and over-layers due to a chiral spin torque mechanism. In these structures the DWs exhibit a chiral Néel structure that has been proposed is set by a Dyzaloshinskii–Moriya exchange interaction (DMI) arising from the Pt/Co and Co/Pt interfaces. The strength of this interaction can be measured from the longitudinal field dependence of the current induced DW velocity. We show, thereby, that the magnitude and sign of the DMI is strongly dependent and monotonically changes as small changes in the thicknesses of the Co layers are made. However, due to the chiral nature of the DMI we show that the magnitude and sign of the DMI is determined by the difference between the respective DMI at the upper and lower interfaces, which compensate each other. Thus, we find that the DMI increases as the lower Co thickness is increased but decreases as the upper Co thickness is increased, changing sign in both cases.

  14. Chiral Spin Liquid in a Frustrated Anisotropic Kagome Heisenberg Model

    NASA Astrophysics Data System (ADS)

    He, Yin-Chen; Sheng, D. N.; Chen, Yan

    2014-04-01

    Kalmeyer-Laughlin (KL) chiral spin liquid (CSL) is a type of quantum spin liquid without time-reversal symmetry, and it is considered as the parent state of an exotic type of superconductor—anyon superconductor. Such an exotic state has been sought for more than twenty years; however, it remains unclear whether it can exist in a realistic system where time-reversal symmetry is breaking (T breaking) spontaneously. By using the density matrix renormalization group, we show that KL CSL exists in a frustrated anisotropic kagome Heisenberg model, which has spontaneous T breaking. We find that our model has two topological degenerate ground states, which exhibit nonvanishing scalar chirality order and are protected by finite excitation gap. Furthermore, we identify this state as KL CSL by the characteristic edge conformal field theory from the entanglement spectrum and the quasiparticles braiding statistics extracted from the modular matrix. We also study how this CSL phase evolves as the system approaches the nearest-neighbor kagome Heisenberg model.

  15. A chiral SU( N) gauge theory and its non-chiral Spin(8) dual

    NASA Astrophysics Data System (ADS)

    Pouliot, P.; Strassler, M. J.

    1996-02-01

    We study supersymmetric SU( N - 4) gauge theories with a symmetric tensor and N antifundamental representations. The theory with W = 0 has a dual description in terms of a non-chiral Spin(8) theory with one spinor and N vectors. This duality flows to the SO( N) duality of Seiberg and to a duality proposed by one of us. It also flows to dualities for a number of Spin( m) theories, m ≤ 8. For N = 6, when an N = 2 SUSY superpotential is added, the singularities of Seiberg and Witten are recovered. For N ≤ 6, a mass for the spinor generates the branches of SO(8) theories found by Intriligator and Seiberg. Other phenomena include a classical constraint mapped to an anomaly equation under duality and an intricate consistency check on the renormalization group flow.

  16. Chiral resolution of spin angular momentum in linearly polarized and unpolarized light

    PubMed Central

    Hernández, R. J.; Mazzulla, A.; Provenzano, C.; Pagliusi, P.; Cipparrone, G.

    2015-01-01

    Linearly polarized (LP) and unpolarized (UP) light are racemic entities since they can be described as superposition of opposite circularly polarized (CP) components of equal amplitude. As a consequence they do not carry spin angular momentum. Chiral resolution of a racemate, i.e. separation of their chiral components, is usually performed via asymmetric interaction with a chiral entity. In this paper we provide an experimental evidence of the chiral resolution of linearly polarized and unpolarized Gaussian beams through the transfer of spin angular momentum to chiral microparticles. Due to the interplay between linear and angular momentum exchange, basic manipulation tasks, as trapping, spinning or orbiting of micro-objects, can be performed by light with zero helicity. The results might broaden the perspectives for development of miniaturized and cost-effective devices. PMID:26585284

  17. Effective spin-orbit couplings in an analytical tight-binding model of DNA: Spin filtering and chiral spin transport

    NASA Astrophysics Data System (ADS)

    Varela, Solmar; Mujica, Vladimiro; Medina, Ernesto

    2016-04-01

    We derive a detailed analytical tight-binding (TB) model for a double helix emulating DNA with one type of nucleotide pair and a single oriented π orbital per base. The TB model incorporates both kinetic and intrinsic spin-orbit (ISO) contributions as well as Rashba-type interactions coupled to an external electric field along the axis of the double helix. The helical structure of the molecule renders the ISO first order in the interaction strength (in the meV range) as in carbon nanotubes. The coupling between the ISO and the chirality of the molecule is manifest in the effective coupling parameters while the Rashba coupling is only weakly dependent on structural chirality. A continuum model at half filling is derived where the dispersion is linear around the Fermi level. Spin transport can be completely solved in the case of ISO and the dominant Rashba type term. Spin selectivity is shown to exist for this minimal model (with features similar to recent experimental findings) when the double helix is biased and thus time reversal symmetry is broken. The model also display robustness toward scattering because of the chiral nature of the eigenstates.

  18. Chiral Tunneling of Topological States: Towards the Efficient Generation of Spin Current Using Spin-Momentum Locking

    NASA Astrophysics Data System (ADS)

    Habib, K. M. Masum; Sajjad, Redwan N.; Ghosh, Avik W.

    2015-05-01

    We show that the interplay between chiral tunneling and spin-momentum locking of helical surface states leads to spin amplification and filtering in a 3D topological insulator (TI). Our calculations show that the chiral tunneling across a TI p n junction allows normally incident electrons to transmit, while the rest are reflected with their spins flipped due to spin-momentum locking. The net result is that the spin current is enhanced while the dissipative charge current is simultaneously suppressed, leading to an extremely large, gate-tunable spin-to-charge current ratio (˜20 ) at the reflected end. At the transmitted end, the ratio stays close to 1 and the electrons are completely spin polarized.

  19. Chiral and critical spin liquids in a spin-1/2 kagome antiferromagnet

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Gong, S. S.; Sheng, D. N.

    2015-07-01

    The kagome spin-1/2 systems have attracted intensive attention in recent years as the primary candidate for hosting different gapped spin liquids (SLs). To uncover the nature of the novel quantum phase transition between the SL states, we study a minimum X Y model with the nearest-neighbor (NN) (Jx y), the second-NN, and the third-NN couplings (J2 x y=J3 x y=Jxy ' ). We identify the time-reversal-symmetry-broken chiral SL (CSL) with the turn on of a small perturbation Jxy '˜0.06 Jx y , which is fully characterized by the fractionally quantized topological Chern number and the conformal edge spectrum as the ν =1 /2 fractional quantum Hall state. Interestingly, the NN X Y model (Jxy '=0 ) is shown to be a critical SL state adjacent to the CSL, characterized by the gapless spin singlet and spin triplet excitations. The quantum phase transition from the CSL to the gapless critical SL is driven by the collapsing of the neutral (spin singlet) excitation gap. The effect of the NN spin-z coupling Jz is also studied, which leads to a quantum phase diagram with an extended regime for the gapless SL.

  20. Spin-Chirality-Driven Ferroelectricity on a Perfect Triangular Lattice Antiferromagnet

    SciTech Connect

    Mitamura, H.; Watanuki, R.; Kaneko, Koji; Onozaki, N.; Amou, Y.; Kittaka, S.; Kobayashi, Riki; Shimura, Y.; Yamamoto, I.; Suzuki, K.; Chi, Songxue; Sakakibara, T.

    2014-10-01

    Magnetic field (B) variation of the electrical polarization Pc ( ∥c) of the perfect triangular lattice antiferromagnet RbFe(MoO4)2 is examined up to the saturation point of the magnetization for B⊥c. Pc is observed only in phases for which chirality is predicted in the in-plane magnetic structures. No strong anomaly is observed in Pc at the field at which the spin modulation along the c axis, and hence the spin helicity, exhibits a discontinuity to the commensurate state. These results indicate that the ferroelectricity in this compound originates predominantly from the spin chirality, the explanation of which would require a new mechanism for magnetoferroelectricity. Lastly, the obtained field-temperature phase diagrams of ferroelectricity well agree with those theoretically predicted for the spin chirality of a Heisenberg spin triangular lattice antiferromagnet.

  1. Spin-Chirality-Driven Ferroelectricity on a Perfect Triangular Lattice Antiferromagnet

    DOE PAGESBeta

    Mitamura, H.; Watanuki, R.; Kaneko, Koji; Onozaki, N.; Amou, Y.; Kittaka, S.; Kobayashi, Riki; Shimura, Y.; Yamamoto, I.; Suzuki, K.; et al

    2014-10-01

    Magnetic field (B) variation of the electrical polarization Pc ( ∥c) of the perfect triangular lattice antiferromagnet RbFe(MoO4)2 is examined up to the saturation point of the magnetization for B⊥c. Pc is observed only in phases for which chirality is predicted in the in-plane magnetic structures. No strong anomaly is observed in Pc at the field at which the spin modulation along the c axis, and hence the spin helicity, exhibits a discontinuity to the commensurate state. These results indicate that the ferroelectricity in this compound originates predominantly from the spin chirality, the explanation of which would require a newmore » mechanism for magnetoferroelectricity. Lastly, the obtained field-temperature phase diagrams of ferroelectricity well agree with those theoretically predicted for the spin chirality of a Heisenberg spin triangular lattice antiferromagnet.« less

  2. Spin correlation and Majorana spectrum in chiral spin liquids in a decorated-honeycomb Kitaev model

    NASA Astrophysics Data System (ADS)

    Nasu, Joji; Motome, Yukitoshi

    2016-02-01

    Temperature evolution of the spin correlation and excitation spectrum is investigated for the Kitaev model defined on a decorated honeycomb lattice by using the quantum Monte Carlo simulation in the Majorana fermion representation. The ground state of this quantum spin model is given by two kinds of chiral spin liquids: one is topologically trivial with Abelian anyon excitations, and the other is topologically nontrivial with non-Abelian anyon excitations. While lowering temperature, the model exhibits several crossovers in the paramagnetic state, which originate from the fractionalization of quantum spins into Majorana fermions, in addition to a phase transition associated with time reversal symmetry breaking. We show that the spin correlation develops around the crossover temperatures, whereas it shows a slight change at the critical temperature, as in other Kitaev-type models. We also calculate the excitation spectrum in terms of Majorana fermions, and find that the excitation gap in the non-Abelian phase is fragile against thermal fluctuations of the Z2 fluxes, while that in the Abelian phase remains open.

  3. Chiral and Critical Spin Liquids in Spin-1/2 Kagome Antiferromagnet

    NASA Astrophysics Data System (ADS)

    Sheng, Dongning; Zhu, Wei; Gong, Shoushu; Group of D. N. Sheng Team, Prof.

    2015-03-01

    The spin liquids (SL) and their phase transitions have attracted much attentions. The extended kagome antiferromagnet emerges as the primary candidate for hosting both time reversal symmetry (TRS) preserving and TRS breaking SLs based on DMRG simulations. To uncover the nature of the novel transition between them, we study a minimum XY model with the nearest-neighbor (NN) (Jxy), the second and third neighbor couplings (J2 xy =J3 xy =Jxy'). We identify the chiral SL (CSL) with the turn on of a small perturbation Jxy' ~ 0 . 06Jxy , which is characterized by topological Chern number and conformal edge spectrum as the ν = 1 / 2 fractional quantum Hall state. On the other hand, the NN XY model (Jxy' = 0) is shown to be a critical SL, characterized by the gapless spin singlet and vanishing small spin triplet excitations. The phase transition from the CSL to the critical SL is driven by the collapsing of singlet gap. By following the evolution of entanglement spectrum, we find the transition takes place through the coupling of the edge states with opposite chiralities, which merge into the bulk and become gapless neutral excitations. The effect of the NN spin- z coupling is also studied, which leads to a phase diagram with an extended regime for the gapless SL. U.S. Department of Energy, Office of Basic Energy Sciences under Grant No. DE-FG02-06ER46305 (W.Z., D.N.S.), the National Science Foundation through Grants DMR-1408560 (S.S.G).

  4. On the Galactic Spin of Barred Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Cervantes-Sodi, Bernardo; Li, Cheng; Park, Changbom; Wang, Lixin

    2013-09-01

    We present a study of the connection between the galactic spin parameter (λ d ) and the bar fraction in a volume-limited sample of 10,674 disk galaxies drawn from the Sloan Digital Sky Survey Data Release 7. The galaxies in our sample are visually classified into one of three groups: non-barred galaxies and galaxies hosting long or short bars, respectively. We find that the spin distributions of these three classes are statistically different, with galaxies hosting long bars having the lowest λ d values, followed by non-barred galaxies, while galaxies with short bars present typically high spin parameters. The bar fraction presents its maximum at low to intermediate λ d values for the case of long bars, while the maximum for short bars is at high λ d . This bimodality is in good agreement with previous studies finding longer bars hosted by luminous, massive, red galaxies with a low content of cold gas, while short bars were found in low luminosity, low mass, blue galaxies that were typically gas rich. In addition, the rise and fall of the bar fraction as a function of λ d , within the long-bar sample shown in our results, can be explained as a result of two competing factors: the self-gravity of the disk that enhances bar instabilities and the support by random motions, instead of ordered rotational motion, that prevents the formation/growth of bars.

  5. ON THE GALACTIC SPIN OF BARRED DISK GALAXIES

    SciTech Connect

    Cervantes-Sodi, Bernardo; Li, Cheng; Wang, Lixin; Park, Changbom

    2013-09-20

    We present a study of the connection between the galactic spin parameter (λ{sub d}) and the bar fraction in a volume-limited sample of 10,674 disk galaxies drawn from the Sloan Digital Sky Survey Data Release 7. The galaxies in our sample are visually classified into one of three groups: non-barred galaxies and galaxies hosting long or short bars, respectively. We find that the spin distributions of these three classes are statistically different, with galaxies hosting long bars having the lowest λ{sub d} values, followed by non-barred galaxies, while galaxies with short bars present typically high spin parameters. The bar fraction presents its maximum at low to intermediate λ{sub d} values for the case of long bars, while the maximum for short bars is at high λ{sub d}. This bimodality is in good agreement with previous studies finding longer bars hosted by luminous, massive, red galaxies with a low content of cold gas, while short bars were found in low luminosity, low mass, blue galaxies that were typically gas rich. In addition, the rise and fall of the bar fraction as a function of λ{sub d}, within the long-bar sample shown in our results, can be explained as a result of two competing factors: the self-gravity of the disk that enhances bar instabilities and the support by random motions, instead of ordered rotational motion, that prevents the formation/growth of bars.

  6. Staggered spin susceptibility and chiral phase transition in thermal QED3

    NASA Astrophysics Data System (ADS)

    Feng, Hong-tao; Zhou, Yu-qing; Yin, Pei-Lin; Zong, Hong-shi

    2013-12-01

    Based on the truncated Dyson-Schwinger equation, we first study the influence of the vertex correction on the staggered spin susceptibility χs. The numerical results show that the vertex correction plays an important role in the study of the staggered spin susceptibility. We then generalize the above work to the case of finite temperature. It is found for the first time that, as the temperature increases, the chiral condensate vanishes at the phase transition point where χs reveals an obvious skip, and therefore as a physical observable, the staggered spin susceptibility could be regarded as the order parameter of chiral phase transition in QED3.

  7. Enantioselective Guest Effect on the Spin State of a Chiral Coordination Framework.

    PubMed

    Gural'skiy, Il'ya A; Kucheriv, Olesia I; Shylin, Sergii I; Ksenofontov, Vadim; Polunin, Ruslan A; Fritsky, Igor O

    2015-12-01

    The diversity of spin crossover (SCO) complexes that, on the one hand, display variable temperature, abruptness and hysteresis of the spin transition, and on the other hand, are spin-sensitive to the various guest molecules, makes these materials unique for the detection of different organic and inorganic compounds. We have developed a homochiral SCO coordination polymer with a spin transition sensitive to the inclusion of the guest 2-butanol, and these solvates with (R)- and (S)-alcohols demonstrate different SCO behaviours depending on the chirality of the organic analyte. A stereoselective response to the guest inclusion is detected as a shift in the temperature of the transition both from dia- to para- and from para- to diamagnetic states in heating and cooling modes respectively. Furthermore, the Mössbauer spectroscopy directly visualizes how the metallic centres in a chiral coordination framework differently sense the interaction with guests of different chiralities. PMID:26477972

  8. Field and chirality effects on electrochemical charge transfer rates: spin dependent electrochemistry.

    PubMed

    Mondal, Prakash Chandra; Fontanesi, Claudio; Waldeck, David H; Naaman, Ron

    2015-03-24

    This work examines whether electrochemical redox reactions are sensitive to the electron spin orientation by examining the effects of magnetic field and molecular chirality on the charge transfer process. The working electrode is either a ferromagnetic nickel film or a nickel film that is coated with an ultrathin (5-30 nm) gold overlayer. The electrode is coated with a self-assembled monolayer that immobilizes a redox couple containing chiral molecular units, either the redox active dye toluidine blue O with a chiral cysteine linking unit or cytochrome c. By varying the direction of magnetization of the nickel, toward or away from the adsorbed layer, we demonstrate that the electrochemical current depends on the orientation of the electrons' spin. In the case of cytochrome c, the spin selectivity of the reduction is extremely high, namely, the reduction occurs mainly with electrons having their spin-aligned antiparallel to their velocity. PMID:25752750

  9. Chirality evaluation of spin spiral in Mn thin film on W(110)

    NASA Astrophysics Data System (ADS)

    Haze, Masahiro; Yoshida, Yasuo; Hasegawa, Yukio

    In crystal fields with broken inversion symmetry such as surfaces or interfaces, the Dzyaloshinskii-Moriya interaction (DMI), which is induced by the spin orbit interaction, may have a significant contribution to the formation of spin structures. Because of DMI, magnetic thin films formed on a heavy-elemental substrate such as W often exhibit peculiar spin spiral structures whose chirality is fixed and determined by the polarity of DMI. Investigating the chirality of spin structures is thus important to reveal the formation mechanism of spin structures and, more specifically, to determine whether DMI plays a decisive role on it. Monolayer (ML) Mn thin films formed on W(110), the first surface spin spiral structures, show a cycloidal spin spiral structure propagating along to [1-10] axis. Spin-polarized scanning tunneling microscopy (SP-STM) and theoretical analysis based on density functional calculation revealed left-handed chirality of the structure and concluded that it is driven by DMI. A SP-STM recent study revealed that double layer (DL) Mn thin films on W(110) show a conical spin spiral structure whose propagation direction is along [001]. The chirality and its driving interaction, however, have not been revealed yet. Here in this study, we have investigated the chirality of DL Mn by SP-STM. Our experimental results revealed that the spin spiral structure of DL Mn is homochiral but right-handed, which is opposite to that of ML Mn. In the presentation we will discuss different roles of DMI exerted on the two Mn thin films.

  10. FREQUENT SPIN REORIENTATION OF GALAXIES DUE TO LOCAL INTERACTIONS

    SciTech Connect

    Cen, Renyue

    2014-04-10

    We study the evolution of angular momenta of M {sub *} = 10{sup 10}-10{sup 12} M {sub ☉} galaxies utilizing large-scale ultra-high resolution cosmological hydrodynamic simulations and find that the spin of the stellar component changes direction frequently because of interactions with nearby systems, such as major mergers, minor mergers, significant gas inflows, and torques. The rate and nature of change of spin direction cannot be accounted for by large-scale tidal torques, because the rates of the latter fall short by orders of magnitude and because the apparent random swings of the spin direction are inconsistent with the alignment by linear density field. The implications for galaxy formation as well as the intrinsic alignment of galaxies are profound. Assuming the large-scale tidal field is the sole alignment agent, a new picture emerging is that intrinsic alignment of galaxies would be a balance between slow large-scale coherent torquing and fast spin reorientation by local interactions. What is still open is whether other processes, such as feeding galaxies with gas and stars along filaments or sheets, introduce coherence for spin directions of galaxies along the respective structures.

  11. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer

    NASA Astrophysics Data System (ADS)

    Coles, R. J.; Price, D. M.; Dixon, J. E.; Royall, B.; Clarke, E.; Kok, P.; Skolnick, M. S.; Fox, A. M.; Makhonin, M. N.

    2016-03-01

    Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this paper, we demonstrate that the naturally occurring electromagnetic field chirality that arises in nanobeam waveguides leads to unidirectional photon emission from quantum dot spin states, with resultant in-plane transfer of matter-qubit information. The chiral behaviour occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques, we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We further show that the chiral phenomena are much more tolerant to dot position than in standard photonic crystal waveguides, exhibit spin-path readout up to 95+/-5% and have potential to serve as the basis of spin-logic and network implementations.

  12. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer.

    PubMed

    Coles, R J; Price, D M; Dixon, J E; Royall, B; Clarke, E; Kok, P; Skolnick, M S; Fox, A M; Makhonin, M N

    2016-01-01

    Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this paper, we demonstrate that the naturally occurring electromagnetic field chirality that arises in nanobeam waveguides leads to unidirectional photon emission from quantum dot spin states, with resultant in-plane transfer of matter-qubit information. The chiral behaviour occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques, we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We further show that the chiral phenomena are much more tolerant to dot position than in standard photonic crystal waveguides, exhibit spin-path readout up to 95±5% and have potential to serve as the basis of spin-logic and network implementations. PMID:27029961

  13. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer

    PubMed Central

    Coles, R. J.; Price, D. M.; Dixon, J. E.; Royall, B.; Clarke, E.; Kok, P.; Skolnick, M. S.; Fox, A. M.; Makhonin, M. N.

    2016-01-01

    Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this paper, we demonstrate that the naturally occurring electromagnetic field chirality that arises in nanobeam waveguides leads to unidirectional photon emission from quantum dot spin states, with resultant in-plane transfer of matter-qubit information. The chiral behaviour occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques, we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We further show that the chiral phenomena are much more tolerant to dot position than in standard photonic crystal waveguides, exhibit spin-path readout up to 95±5% and have potential to serve as the basis of spin-logic and network implementations. PMID:27029961

  14. Simulating Chiral Magnetic and Separation Effects with Spin-Orbit Coupled Atomic Gases

    NASA Astrophysics Data System (ADS)

    Huang, Xu-Guang

    2016-02-01

    The chiral magnetic and chiral separation effects—quantum-anomaly-induced electric current and chiral current along an external magnetic field in parity-odd quark-gluon plasma—have received intense studies in the community of heavy-ion collision physics. We show that analogous effects occur in rotating trapped Fermi gases with Weyl-Zeeman spin-orbit coupling where the rotation plays the role of an external magnetic field. These effects can induce a mass quadrupole in the atomic cloud along the rotation axis which may be tested in future experiments. Our results suggest that the spin-orbit coupled atomic gases are potential simulators of the chiral magnetic and separation effects.

  15. Simulating Chiral Magnetic and Separation Effects with Spin-Orbit Coupled Atomic Gases.

    PubMed

    Huang, Xu-Guang

    2016-01-01

    The chiral magnetic and chiral separation effects-quantum-anomaly-induced electric current and chiral current along an external magnetic field in parity-odd quark-gluon plasma-have received intense studies in the community of heavy-ion collision physics. We show that analogous effects occur in rotating trapped Fermi gases with Weyl-Zeeman spin-orbit coupling where the rotation plays the role of an external magnetic field. These effects can induce a mass quadrupole in the atomic cloud along the rotation axis which may be tested in future experiments. Our results suggest that the spin-orbit coupled atomic gases are potential simulators of the chiral magnetic and separation effects. PMID:26868084

  16. Simulating Chiral Magnetic and Separation Effects with Spin-Orbit Coupled Atomic Gases

    PubMed Central

    Huang, Xu-Guang

    2016-01-01

    The chiral magnetic and chiral separation effects—quantum-anomaly-induced electric current and chiral current along an external magnetic field in parity-odd quark-gluon plasma—have received intense studies in the community of heavy-ion collision physics. We show that analogous effects occur in rotating trapped Fermi gases with Weyl-Zeeman spin-orbit coupling where the rotation plays the role of an external magnetic field. These effects can induce a mass quadrupole in the atomic cloud along the rotation axis which may be tested in future experiments. Our results suggest that the spin-orbit coupled atomic gases are potential simulators of the chiral magnetic and separation effects. PMID:26868084

  17. Variational Monte Carlo study of chiral spin liquid in quantum antiferromagnet on the triangular lattice

    NASA Astrophysics Data System (ADS)

    Hu, Wen-Jun; Gong, Shou-Shu; Sheng, D. N.

    2016-08-01

    By using Gutzwiller projected fermionic wave functions and variational Monte Carlo technique, we study the spin-1 /2 Heisenberg model with the first-neighbor (J1), second-neighbor (J2), and additional scalar chiral interaction JχSi.(Sj×Sk) on the triangular lattice. In the nonmagnetic phase of the J1-J2 triangular model with 0.08 ≲J2/J1≲0.16 , recent density-matrix renormalization group (DMRG) studies [Zhu and White, Phys. Rev. B 92, 041105(R) (2015), 10.1103/PhysRevB.92.041105 and Hu, Gong, Zhu, and Sheng, Phys. Rev. B 92, 140403(R) (2015), 10.1103/PhysRevB.92.140403] find a possible gapped spin liquid with the signal of a competition between a chiral and a Z2 spin liquid. Motivated by the DMRG results, we consider the chiral interaction JχSi.(Sj×Sk) as a perturbation for this nonmagnetic phase. We find that with growing Jχ, the gapless U(1) Dirac spin liquid, which has the best variational energy for Jχ=0 , exhibits the energy instability towards a gapped spin liquid with nontrivial magnetic fluxes and nonzero chiral order. We calculate topological Chern number and ground-state degeneracy, both of which identify this flux state as the chiral spin liquid with fractionalized Chern number C =1 /2 and twofold topological degeneracy. Our results indicate a positive direction to stabilize a chiral spin liquid near the nonmagnetic phase of the J1-J2 triangular model.

  18. Spin orbit torques and chiral spin textures in ultrathin magnetic films (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Beach, Geoffrey S.

    2015-09-01

    Spin orbit coupling at interfaces can give rise to chiral magnetic textures such as homochiral domain walls and skyrmions, as well as current-induced torques that can effectively manipulate them [1-3]. This talk will describe interface-driven spin-orbit torques and Dzyaloshinskii-Moriya interactions (DMIs) in ultrathin metallic ferromagnets adjacent to nonmagnetic heavy metals. We show that the DMI depends strongly on the heavy metal, differing by a factor of ~20 between Pt and Ta [4], and describe the influence of strong DMI on domain wall dynamics and spin Hall effect switching [5]. We present high-resolution magnetic force microscopy imaging of static magnetic textures that directly reveal the role of DMI and allow its strength to be quantified. Finally, we will describe how SOTs can be enhanced through interface engineering [6] and tuned by a gate voltage [7] by directly controlling the interfacial oxygen coordination at a ferromagnet/oxide interface [8]. [1] A. Thiaville, et al., Europhys. Lett. 100, 57002 (2012). [2] S. Emori, et al., Nature Mater. 12, 611 (2013). [3] J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, Nature Nano. 8, 839 (2013). [4] S. Emori, et al., Phys. Rev. B 90, 184427 (2014). [5] N. Perez, et al., Appl. Phys. Lett. 104, 092403 (2014). [6] S. Woo, et al., Appl. Phys. Lett. 105, 212404 (2014). [7] S. Emori, et al., Appl. Phys. Lett. 105, 222401 (2014). [8] U. Bauer, et al., Nature Mater. 14, 174 (2015).

  19. GALAXY SPIN ALIGNMENT IN FILAMENTS AND SHEETS: OBSERVATIONAL EVIDENCE

    SciTech Connect

    Tempel, Elmo; Libeskind, Noam I. E-mail: nlibeskind@aip.de

    2013-10-01

    The properties of galaxies are known to be affected by their environment. One important question is how their angular momentum reflects the surrounding cosmic web. We use the Sloan Digital Sky Survey to investigate the spin axes of spiral and elliptical galaxies relative to their surrounding filament/sheet orientations. To detect filaments, a marked point process with interactions (the {sup B}isous model{sup )} is used. Sheets are found by detecting 'flattened' filaments. The minor axes of ellipticals are found to be preferentially perpendicular to hosting filaments. A weak correlation is found with sheets. These findings are consistent with the notion that elliptical galaxies formed via mergers, which predominantly occurred along the filaments. The spin axis of spiral galaxies is found to align with the host filament, with no correlation between spiral spin and sheet normal. When examined as a function of distance from the filament axis, a much stronger correlation is found in the outer parts, suggesting that the alignment is driven by the laminar infall of gas from sheets to filaments. When compared with numerical simulations, our results suggest that the connection between dark matter halo and galaxy spin is not straightforward. Our results provide an important input to the understanding of how galaxies acquire their angular momentum.

  20. Vector chiral spin liquid phase in quasi-one-dimensional incommensurate helimagnets

    NASA Astrophysics Data System (ADS)

    Cinti, Fabio; Cuccoli, Alessandro; Rettori, Angelo

    2011-05-01

    Making use of detailed classical Monte Carlo simulations, we study the critical properties of a two-dimensional planar spin model on a square lattice composed by weakly interacting helimagnetic chains. We find a large temperature window where the vector chirality order parameter, <κjk> = , the key quantity in multiferroic systems, takes nonzero value in the absence of long-range order or quasi-long-range order. The phase diagram we obtain for different strengths of the interchain coupling clearly shows that the weakness of the interchain interaction plays an essential role in order to observe the vector chiral spin liquid phase in a temperature range of up to now unattained width (≃7%, to be compared with ≃1% or less previously reported for fully frustrated models, the only well-investigated systems unambiguously displaying spin-chirality decoupling). The relevance of our results for three-dimensional models is also discussed.

  1. Quantum Spin Dimers from Chiral Dissipation in Cold-Atom Chains

    NASA Astrophysics Data System (ADS)

    Ramos, Tomás; Pichler, Hannes; Daley, Andrew J.; Zoller, Peter

    2014-12-01

    We consider the nonequilibrium dynamics of a driven dissipative spin chain with chiral coupling to a one-dimensional (1D) bosonic bath, and its atomic implementation with a two-species mixture of cold quantum gases. The reservoir is represented by a spin-orbit coupled 1D quasicondensate of atoms in a magnetized phase, while the spins are identified with motional states of a separate species of atoms in an optical lattice. The chirality of reservoir excitations allows the spins to couple differently to left- and right-moving modes, which in our atomic setup can be tuned from bidirectional to purely unidirectional. Remarkably, this leads to a pure steady state in which pairs of neighboring spins form dimers that decouple from the remainder of the chain. Our results also apply to current experiments with two-level emitters coupled to photonic waveguides.

  2. Chiral magnetism and spontaneous spin Hall effect of interacting Bose superfluids

    NASA Astrophysics Data System (ADS)

    Li, Xiaopeng; Natu, Stefan; Paramekanti, Arun

    2015-03-01

    Recent experiments on ultracold atoms in optical lattices have synthesized a variety of tunable bands with degenerate double-well structures in momentum space. Such degeneracies in the single particle spectrum strongly enhance quantum fluctuations, and may lead to exotic many-body ground states. We consider weakly interacting spinor Bose gases in such bands, and discover a universal quantum ``order by disorder'' phenomenon which selects a novel chiral spin superfluid with remarkable properties such as spontaneous anomalous spin Hall effect and momentum space antiferromagnetism. For bosons in the excited Dirac band of a hexagonal lattice, such a state supports staggered spin loop currents in real space. We show that Bloch oscillations provide a powerful dynamical route to quantum state preparation of such a chiral spin superfluid. Our predictions can be readily tested in spin resolved time-of-flight experiments. JQI-NSF-PFC, ARO-Atomtronics-MURI, NSERC of Canada.

  3. Chiral magnetism and spontaneous spin Hall effect of interacting Bose superfluids

    NASA Astrophysics Data System (ADS)

    Li, Xiaopeng; Natu, Stefan S.; Paramekanti, Arun; Sarma, S. Das

    2014-10-01

    Recent experiments on ultracold atoms in optical lattices have synthesized a variety of tunable bands with degenerate double-well structures in momentum space. Such degeneracies in the single-particle spectrum strongly enhance quantum fluctuations, and often lead to exotic many-body ground states. Here we consider weakly interacting spinor Bose gases in such bands, and discover a universal quantum ‘order by disorder’ phenomenon which selects a novel superfluid with chiral spin order displaying remarkable properties such as spontaneous spin Hall effect and momentum space antiferromagnetism. For bosons in the excited Dirac band of a hexagonal lattice, such a state supports staggered spin loop currents in real space. We show that Bloch oscillations provide a powerful dynamical route to quantum state preparation of such a chiral spin superfluid. Our predictions can be readily tested in spin-resolved time-of-flight experiments.

  4. Chiral magnetism and spontaneous spin Hall effect of interacting Bose superfluids.

    PubMed

    Li, Xiaopeng; Natu, Stefan S; Paramekanti, Arun; Das Sarma, S

    2014-01-01

    Recent experiments on ultracold atoms in optical lattices have synthesized a variety of tunable bands with degenerate double-well structures in momentum space. Such degeneracies in the single-particle spectrum strongly enhance quantum fluctuations, and often lead to exotic many-body ground states. Here we consider weakly interacting spinor Bose gases in such bands, and discover a universal quantum 'order by disorder' phenomenon which selects a novel superfluid with chiral spin order displaying remarkable properties such as spontaneous spin Hall effect and momentum space antiferromagnetism. For bosons in the excited Dirac band of a hexagonal lattice, such a state supports staggered spin loop currents in real space. We show that Bloch oscillations provide a powerful dynamical route to quantum state preparation of such a chiral spin superfluid. Our predictions can be readily tested in spin-resolved time-of-flight experiments. PMID:25300774

  5. Multiple spectra of electron spin resonance in chiral molecule-based magnets networked by a single chiral ligand

    NASA Astrophysics Data System (ADS)

    Mito, M.; Nagano, T.; Tsuruta, K.; Deguchi, H.; Takagi, S.; Kishine, J.; Yoshida, Y.; Inoue, K.

    2013-10-01

    A molecule-based magnet [Cr(CN)6][Mn(R/S)-pnH(H2O)](H2O) (termed R/S-GN) is a chiral crystal without an inversion center and mirror reflection, and its structural network is constructed using a chiral ligand diaminopropane (R/S)-pn. In S-GN, multiple spectra of ESR were observed below the magnetic ordering temperature by Morgunov et al. [Phys. Rev. B 77, 184419 (2008)]. They concluded that the phenomenon at the high field side occurred because the incommensurate magnetic structure resulted in a length-controllable superlattice of domain walls (the so-called chiral soliton lattice, CSL) under a dc magnetic field H applied perpendicular to the magnetic chiral axis. However, there multiple spectra were observed even for H nearly parallel to the chiral axis, a-axis, and their interpretation is unreasonable. Thus, we conducted an X-band electron spin resonance (ESR) measurement of R-GN under conditions similar to those of their experiment and performed Fourier spectrum analyses for the data of R-GN as an approach of physical characterization. By using two Lorentz spectra, the main ESR spectra for H // a were reproduced, and furthermore two prominent periodic modes were found by spectrum analyses based on Fourier transform. Two characteristic periods, p1 and p2 (chiral crystals.

  6. Magnetochiral nonreciprocity of volume spin wave propagation in chiral-lattice ferromagnets

    NASA Astrophysics Data System (ADS)

    Seki, S.; Okamura, Y.; Kondou, K.; Shibata, K.; Kubota, M.; Takagi, R.; Kagawa, F.; Kawasaki, M.; Tatara, G.; Otani, Y.; Tokura, Y.

    2016-06-01

    In magnetic materials with chiral crystal structure, it has been predicted that quasiparticle flows propagating parallel and antiparallel to the external magnetic field can show different propagating character, with its sign of nonreciprocity dependent on the chirality of the underlying bulk crystal lattice. This unique phenomenon, termed magnetochiral nonreciprocity, has previously been demonstrated for the propagating light and conduction electrons but seldom for other quasiparticles. In this study, we report the experimental observation of magnetochiral nonreciprocity of propagating magnons for a chiral-lattice ferromagnet Cu2OSeO3 by employing the spin wave spectroscopy. We found that the sign of nonreciprocity is reversed for the opposite chirality of crystal, and also directly identified the wave-number-linear term in the spin wave dispersion associated with the Dzyaloshinskii-Moriya (DM) interaction as the origin of observed nonreciprocity. Our present results pave a route for the design of efficient spin wave diode based on the bulk crystallographic symmetry breaking and also offer a unique method to evaluate the magnitude of DM interaction in chiral-lattice bulk compounds.

  7. Influence of black hole spin on galaxy properties

    NASA Astrophysics Data System (ADS)

    Cora, S. A.; Del P. Lagos, C.; Padilla, N. D.

    We use a hybrid model that combines a cosmological N-body simulation of the concordance Lambda Cold Dark Matter paradigm and a semi-analytic model of galaxy formation (Lagos, Cora & Padilla 2008a) to study the development of the spin of central super-massive black holes (SMBHs), and the relations between the BH spin and mass, and the morphology and radio-loudness of host galaxies. BH spins are computed using the alpha model (Shakura & Sunyaev 1973) and considering a warped disc treatment (King et al. 2005). The direction of the BH spin is inferred from the angular momentum of the source of the accreted material, which encodes information on the evolution of the surrounding large-scale structure.

  8. Reflective Spin-Orbit Geometric Phase from Chiral Anisotropic Optical Media

    NASA Astrophysics Data System (ADS)

    Rafayelyan, Mushegh; Tkachenko, Georgiy; Brasselet, Etienne

    2016-06-01

    We report on highly reflective spin-orbit geometric phase optical elements based on a helicity-preserving circular Bragg-reflection phenomenon. First, we present a dynamical geometric phase experiment using a flat chiral Bragg mirror. Then, we show that shaping such a geometric phase allows the efficient spin-orbit tailoring of light fields without the need to fulfill any condition on birefringent phase retardation, in contrast to the case of transmission spin-orbit optical elements. This is illustrated by optical vortex generation from chiral liquid crystal droplets in the Bragg regime that unveils spin-orbit consequences of the droplet's curvature. Our results thus introduce a novel class of geometric phase elements—"Bragg-Berry" optical elements.

  9. Cooperative phenomenon in a rippled graphene: Chiral spin guide

    NASA Astrophysics Data System (ADS)

    Pudlak, M.; Pichugin, K. N.; Nazmitdinov, R. G.

    2015-11-01

    We analyze spin scattering in ballistic transport of electrons through a ripple at a normal incidence of an electron flow. The model of a ripple consists of a curved graphene surface in the form of an arc of a circle connected from the left-hand and right-hand sides to two flat graphene sheets. At certain conditions the curvature-induced spin-orbit coupling creates a transparent window for incoming electrons with one spin polarization simultaneously with a backscattering of those with opposite polarization. This window is equally likely transparent for electrons with spin up and spin down that move in opposite directions. The spin-filtering effect that is small in one ripple becomes prominent with the increase of N consequently connected ripples that create a graphene sheet of the sinusoidal type. We present the analytical expressions for spin-up and spin-down transmission probabilities as a function of N connected ripples.

  10. Spontaneous formation of a nonuniform chiral spin liquid in a moat-band lattice.

    PubMed

    Sedrakyan, Tigran A; Glazman, Leonid I; Kamenev, Alex

    2015-01-23

    A number of lattices exhibit moatlike band structures, i.e., a band with infinitely degenerate energy minima attained along a closed line in the Brillouin zone. If such a lattice is populated with hard-core bosons, the degeneracy prevents their condensation. At half-filling, the system is equivalent to the s=1/2  XY model at a zero magnetic field, while the absence of condensation translates into the absence of magnetic order in the XY plane. Here, we show that the ground state breaks time reversal as well as inversion symmetries. This state, which may be identified with the chiral spin liquid, has a bulk gap and chiral gapless edge excitations. The applications of the developed analytical theory include an explanation of recent numerical findings and a suggestion for the chiral spin liquid realizations in experiments with cold atoms in optical lattices. PMID:25659019

  11. Chiral Selective Chemistry Induced by Natural Selection of Spin-Polarized Electrons.

    PubMed

    Rosenberg, Richard A; Mishra, Debabrata; Naaman, Ron

    2015-06-15

    The search to understand the origin of homochirality in nature has been ongoing since the time of Pasteur. Previous work has shown that DNA can act as a spin filter for low-energy electrons and that spin-polarized secondary electrons produced by X-ray irradiation of a magnetic substrate can induce chiral selective chemistry. In the present work it is demonstrated that secondary electrons from a substrate that are transmitted through a chiral overlayer cause enantiomeric selective chemistry in an adsorbed adlayer. We determine the quantum yields (QYs) for dissociation of (R)- or (S)-epichlorohydrin adsorbed on a chiral self-assembled layer of DNA on gold and on bare gold (for control). The results show that there is a significant difference in the QYs between the two enantiomers when adsorbed on DNA, but none when they are adsorbed on bare Au. We propose that the effect results from natural spin filtering effects cause by the chiral monolayer. PMID:25950284

  12. Vector chiral phases in the frustrated 2D XY model and quantum spin chains.

    PubMed

    Schenck, H; Pokrovsky, V L; Nattermann, T

    2014-04-18

    The phase diagram of the frustrated 2D classical and 1D quantum XY models is calculated analytically. Four transitions are found: the vortex unbinding transitions triggered by strong fluctuations occur above and below the chiral transition temperature. Vortex interaction is short range on small and logarithmic on large scales. The chiral transition, though belonging to the Ising universality class by symmetry, has different critical exponents due to nonlocal interaction. In a narrow region close to the Lifshitz point a reentrant phase transition between paramagnetic and quasiferromagnetic phase appears. Applications to antiferromagnetic quantum spin chains and multiferroics are discussed. PMID:24785067

  13. Multi-Q hexagonal spin density waves and dynamically generated spin-orbit coupling: Time-reversal invariant analog of the chiral spin density wave

    NASA Astrophysics Data System (ADS)

    Venderbos, J. W. F.

    2016-03-01

    We study hexagonal spin-channel ("triplet") density waves with commensurate M -point propagation vectors. We first show that the three Q =M components of the singlet charge density and charge-current density waves can be mapped to multicomponent Q =0 nonzero angular momentum order in three dimensions (3D) with cubic crystal symmetry. This one-to-one correspondence is exploited to define a symmetry classification for triplet M -point density waves using the standard classification of spin-orbit coupled electronic liquid crystal phases of a cubic crystal. Through this classification we naturally identify a set of noncoplanar spin density and spin-current density waves: the chiral spin density wave and its time-reversal invariant analog. These can be thought of as 3 DL =2 and 4 spin-orbit coupled isotropic β -phase orders. In contrast, uniaxial spin density waves are shown to correspond to α phases. The noncoplanar triple-M spin-current density wave realizes a novel 2 D semimetal state with three flavors of four-component spin-momentum locked Dirac cones, protected by a crystal symmetry akin to nonsymmorphic symmetry, and sits at the boundary between a trivial and topological insulator. In addition, we point out that a special class of classical spin states, defined as classical spin states respecting all lattice symmetries up to global spin rotation, are naturally obtained from the symmetry classification of electronic triplet density waves. These symmetric classical spin states are the classical long-range ordered limits of chiral spin liquids.

  14. Enhanced Stability of Skyrmions in Two-Dimensional Chiral Magnets with Rashba Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Banerjee, Sumilan; Rowland, James; Erten, Onur; Randeria, Mohit

    2014-07-01

    Recent developments have led to an explosion of activity on skyrmions in three-dimensional (3D) chiral magnets. Experiments have directly probed these topological spin textures, revealed their nontrivial properties, and led to suggestions for novel applications. However, in 3D the skyrmion crystal phase is observed only in a narrow region of the temperature-field phase diagram. We show here, using a general analysis based on symmetry, that skyrmions are much more readily stabilized in two-dimensional (2D) systems with Rashba spin-orbit coupling. This enhanced stability arises from the competition between field and easy-plane magnetic anisotropy and results in a nontrivial structure in the topological charge density in the core of the skyrmions. We further show that, in a variety of microscopic models for magnetic exchange, the required easy-plane anisotropy naturally arises from the same spin-orbit coupling that is responsible for the chiral Dzyaloshinskii-Moriya interactions. Our results are of particular interest for 2D materials like thin films, surfaces, and oxide interfaces, where broken surface-inversion symmetry and Rashba spin-orbit coupling naturally lead to chiral exchange and easy-plane compass anisotropy. Our theory gives a clear direction for experimental studies of 2D magnetic materials to stabilize skyrmions over a large range of magnetic fields down to T=0.

  15. Resonant mixing of optical orbital and spin angular momentum by using chiral silicon nanosphere clusters.

    PubMed

    Al-Jarro, Ahmed; Biris, Claudiu G; Panoiu, Nicolae C

    2016-04-01

    We present an in-depth analysis of the resonant intermixing between optical orbital and spin angular momentum of Laguerre-Gaussian (LG) beams, mediated by chiral clusters made of silicon nanospheres. In particular, we establish a relationship between the spin and orbital quantum numbers characterizing the LG beam and the order q of the rotation symmetry group q of the cluster of nanospheres for which resonantly enhanced coupling between the two components of the optical angular momentum is observed. Thus, similar to the case of diffraction grating-mediated transfer of linear momentum between optical beams, we demonstrate that clusters of nanospheres that are invariant to specific rotation transformations can efficiently transfer optical angular momentum between LG beams with different quantum numbers. We also discuss the conditions in which the resonant interaction between LG beams and a chiral cluster of nanospheres leads to the generation of superchiral light. PMID:27136989

  16. Chiral phase from three-spin interactions in an optical lattice

    SciTech Connect

    D'Cruz, Christian; Pachos, Jiannis K.

    2005-10-15

    A spin-1/2 chain model that includes three-spin interactions can effectively describe the dynamics of two species of bosons trapped in an optical lattice with a triangular-ladder configuration. A perturbative theoretical approach and numerical study of its ground state is performed that reveals a rich variety of phases and criticalities. We identify phases with periodicity one, two, or three, as well as critical points that belong in the same universality class as the Ising or the three-state Potts model. We establish a range of parameters, corresponding to a large degeneracy present between phases with period 2 and 3, that nests a gapless incommensurate chiral phase.

  17. Sustained chiral magnetic domain wall motion driven by spin-orbit torques under the tilted current

    NASA Astrophysics Data System (ADS)

    He, Peng-Bin; Yan, Han; Cai, Meng-Qiu; Li, Zai-Dong

    2016-06-01

    We theoretically investigate the steady magnetic domain wall driven by spin-orbit torques in the heavy-metal/magnet bilayers with perpendicular anisotropy. Based on collective coordinates method and stability analysis, we analyze the effects of tilted current and Dzyaloshinskii-Moriya interaction on the wall. We find that the wall acquires a sustained motion in the high-current regime by deviating the current from the wall track. Also, a persistent motion can be supported by the competition between spin-orbit torques and Dzyaloshinskii-Moriya interaction in transforming wall type. In the low-current regime, there exist a switching of wall chirality and a reversal of wall motion.

  18. Vector chiral spin liquid phase in quasi-one-dimensional incommensurate helimagnets

    SciTech Connect

    Cinti, Fabio; Cuccoli, Alessandro; Rettori, Angelo

    2011-05-01

    Making use of detailed classical Monte Carlo simulations, we study the critical properties of a two-dimensional planar spin model on a square lattice composed by weakly interacting helimagnetic chains. We find a large temperature window where the vector chirality order parameter, <{kappa}{sub jk}> = , the key quantity in multiferroic systems, takes nonzero value in the absence of long-range order or quasi-long-range order. The phase diagram we obtain for different strengths of the interchain coupling clearly shows that the weakness of the interchain interaction plays an essential role in order to observe the vector chiral spin liquid phase in a temperature range of up to now unattained width ({approx_equal}7%, to be compared with {approx_equal}1% or less previously reported for fully frustrated models, the only well-investigated systems unambiguously displaying spin-chirality decoupling). The relevance of our results for three-dimensional models is also discussed.

  19. Cold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers

    PubMed Central

    Eckshtain-Levi, Meital; Capua, Eyal; Refaely-Abramson, Sivan; Sarkar, Soumyajit; Gavrilov, Yulian; Mathew, Shinto P.; Paltiel, Yossi; Levy, Yaakov; Kronik, Leeor; Naaman, Ron

    2016-01-01

    Chirality-induced spin selectivity is a recently-discovered effect, which results in spin selectivity for electrons transmitted through chiral peptide monolayers. Here, we use this spin selectivity to probe the organization of self-assembled α-helix peptide monolayers and examine the relation between structural and spin transfer phenomena. We show that the α-helix structure of oligopeptides based on alanine and aminoisobutyric acid is transformed to a more linear one upon cooling. This process is similar to the known cold denaturation in peptides, but here the self-assembled monolayer plays the role of the solvent. The structural change results in a flip in the direction of the electrical dipole moment of the adsorbed molecules. The dipole flip is accompanied by a concomitant change in the spin that is preferred in electron transfer through the molecules, observed via a new solid-state hybrid organic–inorganic device that is based on the Hall effect, but operates with no external magnetic field or magnetic material. PMID:26916536

  20. Broadband chirality-coded meta-aperture for photon-spin resolving.

    PubMed

    Du, Luping; Kou, Shan Shan; Balaur, Eugeniu; Cadusch, Jasper J; Roberts, Ann; Abbey, Brian; Yuan, Xiao-Cong; Tang, Dingyuan; Lin, Jiao

    2015-01-01

    The behaviour of light transmitted through an individual subwavelength aperture becomes counterintuitive in the presence of surrounding 'decoration', a phenomenon known as the extraordinary optical transmission. Despite being polarization-sensitive, such an individual nano-aperture, however, often cannot differentiate between the two distinct spin-states of photons because of the loss of photon information on light-aperture interaction. This creates a 'blind-spot' for the aperture with respect to the helicity of chiral light. Here we report the development of a subwavelength aperture embedded with metasurfaces dubbed a 'meta-aperture', which breaks this spin degeneracy. By exploiting the phase-shaping capabilities of metasurfaces, we are able to create specific meta-apertures in which the pair of circularly polarized light spin-states produces opposite transmission spectra over a broad spectral range. The concept incorporating metasurfaces with nano-apertures provides a venue for exploring new physics on spin-aperture interaction and potentially has a broad range of applications in spin-optoelectronics and chiral sensing. PMID:26628047

  1. Cold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers

    NASA Astrophysics Data System (ADS)

    Eckshtain-Levi, Meital; Capua, Eyal; Refaely-Abramson, Sivan; Sarkar, Soumyajit; Gavrilov, Yulian; Mathew, Shinto P.; Paltiel, Yossi; Levy, Yaakov; Kronik, Leeor; Naaman, Ron

    2016-02-01

    Chirality-induced spin selectivity is a recently-discovered effect, which results in spin selectivity for electrons transmitted through chiral peptide monolayers. Here, we use this spin selectivity to probe the organization of self-assembled α-helix peptide monolayers and examine the relation between structural and spin transfer phenomena. We show that the α-helix structure of oligopeptides based on alanine and aminoisobutyric acid is transformed to a more linear one upon cooling. This process is similar to the known cold denaturation in peptides, but here the self-assembled monolayer plays the role of the solvent. The structural change results in a flip in the direction of the electrical dipole moment of the adsorbed molecules. The dipole flip is accompanied by a concomitant change in the spin that is preferred in electron transfer through the molecules, observed via a new solid-state hybrid organic-inorganic device that is based on the Hall effect, but operates with no external magnetic field or magnetic material.

  2. Emergent Chiral Spin Liquid: Fractional Quantum Hall Effect in a Kagome Heisenberg Model

    PubMed Central

    Gong, Shou-Shu; Zhu, Wei; Sheng, D. N.

    2014-01-01

    The fractional quantum Hall effect (FQHE) realized in two-dimensional electron systems under a magnetic field is one of the most remarkable discoveries in condensed matter physics. Interestingly, it has been proposed that FQHE can also emerge in time-reversal invariant spin systems, known as the chiral spin liquid (CSL) characterized by the topological order and the emerging of the fractionalized quasiparticles. A CSL can naturally lead to the exotic superconductivity originating from the condense of anyonic quasiparticles. Although CSL was highly sought after for more than twenty years, it had never been found in a spin isotropic Heisenberg model or related materials. By developing a density-matrix renormalization group based method for adiabatically inserting flux, we discover a FQHE in a isotropic kagome Heisenberg model. We identify this FQHE state as the long-sought CSL with a uniform chiral order spontaneously breaking time reversal symmetry, which is uniquely characterized by the half-integer quantized topological Chern number protected by a robust excitation gap. The CSL is found to be at the neighbor of the previously identified Z2 spin liquid, which may lead to an exotic quantum phase transition between two gapped topological spin liquids. PMID:25204626

  3. Cold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers.

    PubMed

    Eckshtain-Levi, Meital; Capua, Eyal; Refaely-Abramson, Sivan; Sarkar, Soumyajit; Gavrilov, Yulian; Mathew, Shinto P; Paltiel, Yossi; Levy, Yaakov; Kronik, Leeor; Naaman, Ron

    2016-01-01

    Chirality-induced spin selectivity is a recently-discovered effect, which results in spin selectivity for electrons transmitted through chiral peptide monolayers. Here, we use this spin selectivity to probe the organization of self-assembled α-helix peptide monolayers and examine the relation between structural and spin transfer phenomena. We show that the α-helix structure of oligopeptides based on alanine and aminoisobutyric acid is transformed to a more linear one upon cooling. This process is similar to the known cold denaturation in peptides, but here the self-assembled monolayer plays the role of the solvent. The structural change results in a flip in the direction of the electrical dipole moment of the adsorbed molecules. The dipole flip is accompanied by a concomitant change in the spin that is preferred in electron transfer through the molecules, observed via a new solid-state hybrid organic-inorganic device that is based on the Hall effect, but operates with no external magnetic field or magnetic material. PMID:26916536

  4. Emergent Chiral Spin Liquid: Fractional Quantum Hall Effect in a Kagome Heisenberg Model

    NASA Astrophysics Data System (ADS)

    Gong, Shou-Shu; Zhu, Wei; Sheng, D. N.

    2014-09-01

    The fractional quantum Hall effect (FQHE) realized in two-dimensional electron systems under a magnetic field is one of the most remarkable discoveries in condensed matter physics. Interestingly, it has been proposed that FQHE can also emerge in time-reversal invariant spin systems, known as the chiral spin liquid (CSL) characterized by the topological order and the emerging of the fractionalized quasiparticles. A CSL can naturally lead to the exotic superconductivity originating from the condense of anyonic quasiparticles. Although CSL was highly sought after for more than twenty years, it had never been found in a spin isotropic Heisenberg model or related materials. By developing a density-matrix renormalization group based method for adiabatically inserting flux, we discover a FQHE in a isotropic kagome Heisenberg model. We identify this FQHE state as the long-sought CSL with a uniform chiral order spontaneously breaking time reversal symmetry, which is uniquely characterized by the half-integer quantized topological Chern number protected by a robust excitation gap. The CSL is found to be at the neighbor of the previously identified Z2 spin liquid, which may lead to an exotic quantum phase transition between two gapped topological spin liquids.

  5. Broadband chirality-coded meta-aperture for photon-spin resolving

    PubMed Central

    Du, Luping; Kou, Shan Shan; Balaur, Eugeniu; Cadusch, Jasper J.; Roberts, Ann; Abbey, Brian; Yuan, Xiao-Cong; Tang, Dingyuan; Lin, Jiao

    2015-01-01

    The behaviour of light transmitted through an individual subwavelength aperture becomes counterintuitive in the presence of surrounding ‘decoration', a phenomenon known as the extraordinary optical transmission. Despite being polarization-sensitive, such an individual nano-aperture, however, often cannot differentiate between the two distinct spin-states of photons because of the loss of photon information on light-aperture interaction. This creates a ‘blind-spot' for the aperture with respect to the helicity of chiral light. Here we report the development of a subwavelength aperture embedded with metasurfaces dubbed a ‘meta-aperture', which breaks this spin degeneracy. By exploiting the phase-shaping capabilities of metasurfaces, we are able to create specific meta-apertures in which the pair of circularly polarized light spin-states produces opposite transmission spectra over a broad spectral range. The concept incorporating metasurfaces with nano-apertures provides a venue for exploring new physics on spin-aperture interaction and potentially has a broad range of applications in spin-optoelectronics and chiral sensing. PMID:26628047

  6. Time-reversal asymmetry without local moments via directional scalar spin chirality

    NASA Astrophysics Data System (ADS)

    Hosur, Pavan

    Quantum phases of matter that violate time-reversal symmetry invariably develop local spin or orbital moments in the ground state. Here, a directional scalar spin chiral order (DSSCO) phase is introduced, that disrespects time-reversal symmetry but has no static moments. It can be obtained by melting the spin moments in a magnetically ordered phase but retaining residual broken time-reversal symmetry. Orbital moments are then precluded by the spatial symmetries of the spin rotation symmetric state. Interestingly, polar Kerr effect in the 3D DSSCO has the same symmetries as those observed experimentally in the pseudogap phase of several underdoped cuprates. Finally, it is shown that the DSSCO provides a phenomenological route for reconciling the results of Kerr effect and nuclear magnetic resonance experiments in the cuprates, with charge ordering tendencies - observed in X-ray diffraction studies - playing a crucial role. The so-called ''memory effect'' in the cuprates can be incorporated into this picture as well.

  7. New predictions for generalized spin polarizabilities from heavy baryon chiral perturbation theory

    SciTech Connect

    Kao, C.-W.; Pasquini, Barbara; Vanderhaeghen, Marc

    2004-12-01

    We extract the next-to-next-to-leading order results for spin-flip generalized polarizabilities (GPs) of the nucleon from the spin-dependent amplitudes for virtual Compton scattering at O(p{sup 4}) in heavy baryon chiral perturbation theory. At this order, no unknown low-energy constants enter the theory, allowing us to make absolute predictions for all spin-flip GPs. Furthermore, by using constraint equations between the GPs due to nucleon crossing combined with charge conjugation symmetry of the virtual Compton scattering amplitudes, we get a next-to-next-to-next-to-leading order prediction for one of the GPs. We provide estimates for forthcoming double-polarization experiments which allow one to access these spin-flip GPs of the nucleon.

  8. New predictions for generalized spin polarizabilities from heavy baryon chiral perturbation theory

    SciTech Connect

    Chung-Wen Kao; Barbara Pasquini; Marc Vanderhaeghen

    2004-08-01

    We extract the next-to-next-to-leading order results for spin-flip generalized polarizabilities (GPs) of the nucleon from the spin-dependent amplitudes for virtual Compton scattering (VCS) at {Omicron}(p{sup 4}) in heavy baryon chiral perturbation theory. At this order, no unknown low energy constants enter the theory, allowing us to make absolute predictions for all spin-flip GPs. Furthermore, by using constraint equations between the GPs due to nucleon crossing combined with charge conjugation symmetry of the VCS amplitudes, we get a next-to-next-to-next-to-leading order prediction for one of the GPs. We provide estimates for forthcoming double polarization experiments which allow to access these spin-flip GPs of the nucleon.

  9. Itinerant chiral ferromagnetism in a trapped Rashba spin-orbit-coupled Fermi gas

    NASA Astrophysics Data System (ADS)

    Zhang, Shang-Shun; Liu, Wu-Ming; Pu, Han

    2016-04-01

    We consider a repulsive two-component Fermi gas confined in a two-dimensional isotropic harmonic potential and subject to a large Rashba spin-orbit coupling. The single-particle dispersion can be tailored by the spin-orbit-coupling term, which provides an opportunity to study itinerant ferromagnetism in this system. We show that the interplay among spin-orbit coupling, correlation effect, and mean-field repulsion leads to a competition between ferromagnetic and nonmagnetic phases. The weakly correlated nonmagnetic and the ferromagnetic phases can be well described by the mean-field Hartree-Fock theory, while the transition between the ferromagnetic and a strongly correlated nonmagnetic phase is driven by beyond-mean-field quantum correlation effect. Furthermore, the ferromagnetic phase of this system possesses a chiral current density induced by the Rashba spin-orbit coupling, whose experimental signature is investigated.

  10. Ultradiffuse galaxies: the high-spin tail of the abundant dwarf galaxy population

    NASA Astrophysics Data System (ADS)

    Amorisco, N. C.; Loeb, A.

    2016-06-01

    Recent observations have revealed the existence of an abundant population of faint, low surface brightness (SB) galaxies, which appear to be numerous and ubiquitous in nearby galaxy clusters, including the Virgo, Coma and Fornax clusters. With median stellar masses of dwarf galaxies, these ultradiffuse galaxies (UDGs) have unexpectedly large sizes, corresponding to a mean SB of 24 ≲ <μe>r mag-1 arcsec2 ≲ 27 within the effective radius. We show that the UDG population represents the tail of galaxies formed in dwarf-sized haloes with higher-than-average angular momentum. By adopting the standard model of disc formation - in which the size of galaxies is set by the spin of the halo - we recover both the abundance of UDGs as a function of the host cluster mass and the distribution of sizes within the UDG population. According to this model, UDGs are not failed L* galaxies, but genuine dwarfs, and their low SB is not uniquely connected to the harsh cluster environment. We therefore expect a correspondingly abundant population of UDGs in the field, with possibly different morphologies and colours.

  11. Skyrmion dynamics in chiral ferromagnets under spin-transfer torque

    NASA Astrophysics Data System (ADS)

    Komineas, Stavros; Papanicolaou, Nikos

    2015-11-01

    We study the dynamics of skyrmions under spin-transfer torque in Dzyaloshinskii-Moriya materials with easy-axis anisotropy. In particular, we study the motion of a topological skyrmion with skyrmion number Q =1 and a nontopological skyrmionium with Q =0 using their linear momentum, virial relations, and numerical simulations. The nontopological Q =0 skyrmionium is accelerated in the direction of the current flow and it either reaches a steady state with constant velocity, or it is elongated to infinity. The steady-state velocity is given by a balance between current and dissipation and has an upper limit. In contrast, the topological Q =1 skyrmion converges to a steady state with constant velocity at an angle to the current flow. When the spin current stops the Q =1 skyrmion is spontaneously pinned, whereas the Q =0 skyrmionium continues propagation. Exact solutions for the propagating skyrmionium are identified as solutions of equations given numerically in a previous work. Further exact results for propagating skyrmions are given in the case of the pure exchange model. The traveling solutions provide arguments that a spin-polarized current will cause rigid motion of a skyrmion or a skyrmionium.

  12. Excitations from a chiral magnetized state of a frustrated quantum spin liquid

    SciTech Connect

    Garlea, Vasile O; Zheludev, Andrey I; Tsvelik, A.; Regnault, L.-P.; Habicht, Klaus; Kiefer, K.; Roessli, Bertrand

    2009-01-01

    We study excitations in weakly interacting pairs of quantum spin ladders coupled through geometrically frustrated bonds. The ground state is a disordered spin liquid, at high fields replaced by an ordered chiral helimagnetic phase. The spectra observed by high-field inelastic neutron scattering experiments on the prototype compound Sul Cu2Cl4 are qualitatively different from those in the previously studied frustration-free spin liquids. Beyond the critical field Hc = 3.7 T, the soft mode that drives the quantum phase transition spawns two separate excitations: a gapless Goldstone mode and a massive magnon. Additional massive quasiparticles are clearly visible below Hc, but are destroyed in the ordered phase. In their place one observes a sharply bound excitation continuum.

  13. Kagome Chiral Spin Liquid as a Gauged U (1 ) Symmetry Protected Topological Phase

    NASA Astrophysics Data System (ADS)

    He, Yin-Chen; Bhattacharjee, Subhro; Pollmann, Frank; Moessner, R.

    2015-12-01

    While the existence of a chiral spin liquid (CSL) on a class of spin-1 /2 kagome antiferromagnets is by now well established numerically, a controlled theoretical path from the lattice model leading to a low-energy topological field theory is still lacking. This we provide via an explicit construction starting from reformulating a microscopic model for a CSL as a lattice gauge theory and deriving the low-energy form of its continuum limit. A crucial ingredient is the realization that the bosonic spinons of the gauge theory exhibit a U (1 ) symmetry protected topological (SPT) phase, which upon promoting its U (1 ) global symmetry to a local gauge structure ("gauging"), yields the CSL. We suggest that such an explicit lattice-based construction involving gauging of a SPT phase can be applied more generally to understand topological spin liquids.

  14. Magnetic ground state and spin fluctuations in MnGe chiral magnet as studied by muon spin rotation

    NASA Astrophysics Data System (ADS)

    Martin, N.; Deutsch, M.; Bert, F.; Andreica, D.; Amato, A.; Bonfà, P.; De Renzi, R.; Rößler, U. K.; Bonville, P.; Fomicheva, L. N.; Tsvyashchenko, A. V.; Mirebeau, I.

    2016-05-01

    We have studied by muon spin resonance (μ SR ) the helical ground state and fluctuating chiral phase recently observed in the MnGe chiral magnet. At low temperature, the muon polarization shows double-period oscillations at short-time scales. Their analysis, akin to that recently developed for MnSi [A. Amato et al., Phys. Rev. B 89, 184425 (2014), 10.1103/PhysRevB.89.184425], provides an estimation of the field distribution induced by the Mn helical order at the muon site. The refined muon position agrees nicely with ab initio calculations. With increasing temperature, an inhomogeneous fluctuating chiral phase sets in, characterized by two well-separated frequency ranges which coexist in the sample. Rapid and slow fluctuations, respectively, associated with short-range and long-range ordered helices, coexist in a large temperature range below TN=170 K. We discuss the results with respect to MnSi, taking the short helical period, metastable quenched state, and peculiar band structure of MnGe into account.

  15. Chiral magnetism and spin liquid Mott insulators induced by synthetic gauge fields

    NASA Astrophysics Data System (ADS)

    Paramekanti, Arun; Hickey, Ciaran; Cincio, Lukasz; Papic, Zlatko; Vellat-Sadashivan, Arun; Sohal, Ramanjit

    2016-05-01

    Recent experiments using Raman-assisted tunneling or lattice-shaking have realized synthetic gauge fields and optical lattice bands with nontrivial band topology. Here we examine the effect of particle interactions in such bands, focussing on two-component fermions with local Hubbard repulsion. We show that interactions can drive the integer quantum Hall insulator into Mott insulating states which possess noncoplanar chiral magnetic textures and even chiral spin liquids with many-body topological order. We establish our results using a combination of mean field theory, strong coupling expansions, numerical exact diagonalization and DMRG methods. We also discuss possible signatures of such non-coplanar orders in Bragg scattering and noise measurements.

  16. RECOILING SUPERMASSIVE BLACK HOLES IN SPIN-FLIP RADIO GALAXIES

    SciTech Connect

    Liu, F. K.; Wang Dong; Chen Xian

    2012-02-20

    Numerical relativity simulations predict that coalescence of supermassive black hole (SMBH) binaries leads not only to a spin flip but also to a recoiling of the merger remnant SMBHs. In the literature, X-shaped radio sources are popularly suggested to be candidates for SMBH mergers with spin flip of jet-ejecting SMBHs. Here we investigate the spectral and spatial observational signatures of the recoiling SMBHs in radio sources undergoing black hole spin flip. Our results show that SMBHs in most spin-flip radio sources have mass ratio q {approx}> 0.3 with a minimum possible value q{sub min} {approx_equal} 0.05. For major mergers, the remnant SMBHs can get a kick velocity as high as 2100 km s{sup -1} in the direction within an angle {approx}< 40 Degree-Sign relative to the spin axes of remnant SMBHs, implying that recoiling quasars are biased to be with high Doppler-shifted broad emission lines while recoiling radio galaxies are biased to large apparent spatial off-center displacements. We also calculate the distribution functions of line-of-sight velocity and apparent spatial off-center displacements for spin-flip radio sources with different apparent jet reorientation angles. Our results show that the larger the apparent jet reorientation angle is, the larger the Doppler-shifting recoiling velocity and apparent spatial off-center displacement will be. We investigate the effects of recoiling velocity on the dust torus in spin-flip radio sources and suggest that recoiling of SMBHs would lead to 'dust-poor' active galactic nuclei. Finally, we collect a sample of 19 X-shaped radio objects and for each object give the probability of detecting the predicted signatures of recoiling SMBH.

  17. Search for Asymmetric Interactions between Chiral Molecules and Spin-Polarized Electrons

    NASA Astrophysics Data System (ADS)

    Dreiling, Joan; Litaker, Eric; Gay, Timothy

    2013-05-01

    We present our preliminary asymmetry results for the transmission of longitudinally spin-polarized electrons through a vapor of chirally-pure bromocamphor (C10H15BrO) molecules. We define the asymmetry for transmission as A = [(I ↑-I ↓) /(I ↑ + I ↓) ]R- [(I ↑-I ↓) /(I ↑ + I ↓) ]L, where I ↑ (I ↓) is the transmitted current measured for spin-up (spin-down) electrons and the ``L'' and ``R'' subscripts correspond to the left- and right-handed chirality of the molecules. At present, we have measured A at 1.5 eV electron scattering energy to be 5.4(2.5)*10-5 when the transmitted, magnetically collimated electron beam is attenuated to 10% of its initial value, corresponding to a pressure of a few millitorr in a cell of length 2.54 cm. This should be compared with the measurements of Mayer et al., where they report an asymmetry (by our definition) of about 3.4(0.2)*10-4 for the same incident energy and electron beam attenuation. We discuss possible reasons for this discrepancy.

  18. Renormalization and additional degrees of freedom within the chiral effective theory for spin-1 resonances

    SciTech Connect

    Kampf, Karol; Novotny, Jiri; Trnka, Jaroslav

    2010-06-01

    We study in detail various aspects of the renormalization of the spin-1 resonance propagator in the effective field theory framework. First, we briefly review the formalisms for the description of spin-1 resonances in the path integral formulation with the stress on the issue of propagating degrees of freedom. Then we calculate the one-loop 1{sup --} meson self-energy within the resonance chiral theory in the chiral limit using different methods for the description of spin-1 particles, namely, the Proca field, antisymmetric tensor field, and the first-order formalisms. We discuss in detail technical aspects of the renormalization procedure which are inherent to the power-counting nonrenormalizable theory and give a formal prescription for the organization of both the counterterms and one-particle irreducible graphs. We also construct the corresponding propagators and investigate their properties. We show that the additional poles corresponding to the additional one-particle states are generated by loop corrections, some of which are negative norm ghosts or tachyons. We count the number of such additional poles and briefly discuss their physical meaning.

  19. Interfacial exchange-coupling induced chiral symmetry breaking of spin-orbit effects

    NASA Astrophysics Data System (ADS)

    Perna, P.; Ajejas, F.; Maccariello, D.; Fernandez Cuñado, J. L.; Guerrero, R.; Niño, M. A.; Bollero, A.; Miranda, R.; Camarero, J.

    2015-12-01

    We demonstrate that the interfacial exchange coupling in ferromagnetic/antiferromagnetic (FM/AFM) systems induces symmetry breaking of the spin-orbit (SO) effects. This has been done by studying the field and angle dependencies of anisotropic magnetoresistance and vectorial-resolved magnetization hysteresis loops, measured simultaneously and reproduced with numerical simulations. We show how the induced unidirectional magnetic anisotropy at the FM/AFM interface results in strong asymmetric transport behaviors, which are chiral around the magnetization hard-axis direction. Similar asymmetric features are anticipated in other SO-driven phenomena.

  20. Nucleon structure functions and longitudinal spin asymmetries in the chiral quark constituent model

    NASA Astrophysics Data System (ADS)

    Dahiya, Harleen; Randhawa, Monika

    2016-06-01

    We have analyzed the phenomenological dependence of the spin independent (F1p ,n and F2p ,n) and the spin dependent (g1p ,n) structure functions of the nucleon on the Bjorken scaling variable x using the unpolarized distribution functions of the quarks q (x ) and the polarized distribution functions of the quarks Δ q (x ) respectively. The chiral constituent quark model, which is known to provide a satisfactory explanation of the proton spin crisis and related issues in the nonperturbative regime, has been used to compute explicitly the valence and sea quark flavor distribution functions of p and n . In light of the improved precision of the world data, the p and n longitudinal spin asymmetries [A1p(x ) and A1n(x )] have been calculated. The implication of the presence of the sea quarks has been discussed for the ratio of polarized to unpolarized quark distribution functions for up and down quarks in the p and n Δ/up(x ) up(x ) , Δ/dp(x ) dp(x ) , Δ/un(x ) un(x ) , and Δ/dn(x ) dn(x ) . The ratio of the n and p structure functions Rn p(x )=F/2n(x ) F2p(x ) has also been presented. The results have been compared with the recent available experimental observations. The results on the spin sum rule have also been included and compared with data and other recent approaches.

  1. Non-Markovian dynamics in chiral quantum networks with spins and photons

    NASA Astrophysics Data System (ADS)

    Ramos, Tomás; Vermersch, Benoît; Hauke, Philipp; Pichler, Hannes; Zoller, Peter

    2016-06-01

    We study the dynamics of chiral quantum networks consisting of nodes coupled by unidirectional or asymmetric bidirectional quantum channels. In contrast to familiar photonic networks where driven two-level atoms exchange photons via 1D photonic nanostructures, we propose and study a setup where interactions between the atoms are mediated by spin excitations (magnons) in 1D X X spin chains representing spin waveguides. While Markovian quantum network theory eliminates quantum channels as structureless reservoirs in a Born-Markov approximation to obtain a master equation for the nodes, we are interested in non-Markovian dynamics. This arises from the nonlinear character of the dispersion with band-edge effects, and from finite spin propagation velocities leading to time delays in interactions. To account for the non-Markovian dynamics we treat the quantum degrees of freedom of the nodes and connecting channel as a composite spin system with the surrounding of the quantum network as a Markovian bath, allowing for an efficient solution with time-dependent density matrix renormalization-group techniques. We illustrate our approach showing non-Markovian effects in the driven-dissipative formation of quantum dimers, and we present examples for quantum information protocols involving quantum state transfer with engineered elements as basic building blocks of quantum spintronic circuits.

  2. Crystalline and spin chiralities in multiferroics with langasite-type structure and Fe1- x Co x Si crystals

    NASA Astrophysics Data System (ADS)

    Pikin, S. A.; Lyubutin, I. S.; Dudka, A. P.

    2015-09-01

    It is shown that, when magnetic ordering occurs in layered iron-containing langasites (sp. gr. P321), one of the reasons for spin chiralities of different signs is the presence of structural chirality (the existence of inversion twins), which, in turn, is due to the nonsymmetricity of these crystals. Spin helicoids arise in these multiferroics at split sites of Fe3+ ions below the Néel point. The direction of electric polarization vectors coincides with the direction of the magnetic helicoid axes because of the piezoelectric properties of these materials. Due to the magnetostriction effects, structural chirality wave vector k z exceeds the magnetic helicoid wave vector by a factor of 2: k z = 2 q z. The temperatures of transitions to the chiral structural and chiral magnetic states may differ. In particular, if the structural transition initial temperature exceeds the magnetic transition temperature ( Т U > Т М ), structural displacements may arise in the absence of magnetism at Т М < Т < Т U . In noncentrosymmetric Fe1- x Co x Si crystals (sp. gr. P213), which are not multiferroics, magnetic chirality is due to the Dzyaloshinski-Moriya interaction. The dependence of the moduli of incommensurate wave number of the corresponding helicoid on the atomic composition of the crystals under consideration is nonmonotonic.

  3. Spin-Dependent Emission from Arrays of Planar Chiral Nanoantennas Due to Lattice and Localized Plasmon Resonances.

    PubMed

    Cotrufo, Michele; Osorio, Clara I; Koenderink, A Femius

    2016-03-22

    Chiral plasmonic nanoantennas manifest a strong asymmetric response to circularly polarized light. Particularly, the geometric handedness of a plasmonic structure can alter the circular polarization state of light emitted from nearby sources, leading to a spin-dependent emission direction. In past experiments, these effects have been attributed entirely to the localized plasmonic resonances of single antennas. In this work, we demonstrate that, when chiral nanoparticles are arranged in diffractive arrays, lattice resonances play a primary role in determining the spin-dependent emission of light. We fabricate 2D diffractive arrays of planar chiral metallic nanoparticles embedded in a light-emitting dye-doped slab. By measuring the polarized photoluminescence enhancement, we show that the geometric chirality of the array's unit cell induces a preferential circular polarization, and that both the localized surface plasmon resonance and the delocalized hybrid plasmonic-photonic mode contribute to this phenomenon. By further mapping the angle-resolved degree of circular polarization, we demonstrate that strong chiral dissymmetries are mainly localized at the narrow emission directions of the surface lattice resonances. We validate these results against a coupled dipole model calculation, which correctly reproduces the main features. Our findings demonstrate that, in diffractive arrays, lattice resonances play a primary role into the light spin-orbit effect, introducing a highly nontrivial behavior in the angular spectra. PMID:26854880

  4. Synthetic-gauge-field stabilization of the chiral-spin-liquid phase

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Hazzard, Kaden R. A.; Rey, Ana Maria; Hermele, Michael

    2016-06-01

    We explore the phase diagram of the SU (N ) Hubbard models describing fermionic alkaline-earth-metal atoms in a square optical lattice with, on average, one atom per site, using a slave rotor mean-field approach. We find that the chiral spin liquid (CSL) predicted for N ≥5 and large interactions passes through a fractionalized state with a spinon Fermi surface as interactions are decreased before transitioning to a weakly interacting metal. We show that by adding a uniform artificial gauge field with 2 π /N flux per plaquette, the CSL becomes the ground state for all N ≥3 at intermediate interactions, persists to weaker interactions, and exhibits a larger spin gap. For N ≥5 we find the CSL is the ground state everywhere the system is a Mott insulator. The gauge field stabilization of the CSL at lower interactions, and thus at weaker lattice depths, together with the increased spin gap, can relax the temperature constraints required for its experimental realization in ultracold atom systems.

  5. Spin-orbit coupling, compass anisotropy and skyrmions in 2D chiral magnets

    NASA Astrophysics Data System (ADS)

    Banerjee, Sumilan; Erten, Onur; Rowland, James; Randeria, Mohit

    2014-03-01

    Spin-orbit coupling (SOC) gives rise to the chiral Dzyaloshinskii-Moriya (DM) interaction in systems that lack inversion symmetry like non-centrosymmetric helimagnets, and two-dimensional magnetism at surfaces and interfaces. We explore here the role of SOC in several microscopic exchange mechanisms - superexchange, double exchange and RKKY - in insulating and itinerant electron systems. We show that, in addition to giving rise to the DM interaction, SOC generically leads to compass anisotropy terms. Although seemingly negligible, the compass terms are energetically comparable to DM and play a crucial role in deciding the fate of the magnetic ground state. We demonstrate that the compass terms act as an effective easy-plane anisotropy in 2D chiral magnets and lead to extremely large region of stable skyrmion crystal (SkX) phase in a perpendicular magnetic field. We discuss the electronic properties of SkX in this hitherto unexplored region of the anisotropy-field plane for itinerant systems. We also comment on the possibility of realizing such SkX phase in the oxide interfaces. JR and MR supported by NSF MRSEC DMR-0820414 and SB by DOE-BES DE-SC0005035.

  6. The Ultraviolet View of Multi-Spin Galaxies: Insight from Smooth Particle Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Bettoni, D.; Mazzei, P.; Marino, A.; Rampazzo, R.; Galletta, G.; Buson, L. M.

    2014-05-01

    The UV images of the Galaxy Evolution Explorer satellite revealed that about (30±3)% of early-type galaxies show UV emission indicating a rejuvenation episode. In early-type galaxies with multi-spin components this percentage increases at 50%. We present here the characteristics of this sample and our smooth particle hydrodynamic simulations with chemo-photometric implementation that provide dynamical and morphological information together with the spectral energy distribution at each evolutionary stage. We show our match of the global properties of two early-type galaxies, NGC 3626 and NGC 5173. For these galaxies we can trace their evolutionary path.

  7. Spin Alignments of Spiral Galaxies within the Large-scale Structure from SDSS DR7

    NASA Astrophysics Data System (ADS)

    Zhang, Youcai; Yang, Xiaohu; Wang, Huiyuan; Wang, Lei; Luo, Wentao; Mo, H. J.; van den Bosch, Frank C.

    2015-01-01

    Using a sample of spiral galaxies selected from the Sloan Digital Sky Survey Data Release 7 and Galaxy Zoo 2, we investigate the alignment of spin axes of spiral galaxies with their surrounding large-scale structure, which is characterized by the large-scale tidal field reconstructed from the data using galaxy groups above a certain mass threshold. We find that the spin axes only have weak tendencies to be aligned with (or perpendicular to) the intermediate (or minor) axis of the local tidal tensor. The signal is the strongest in a cluster environment where all three eigenvalues of the local tidal tensor are positive. Compared to the alignments between halo spins and the local tidal field obtained in N-body simulations, the above observational results are in best agreement with those for the spins of inner regions of halos, suggesting that the disk material traces the angular momentum of dark matter halos in the inner regions.

  8. SPIN ALIGNMENTS OF SPIRAL GALAXIES WITHIN THE LARGE-SCALE STRUCTURE FROM SDSS DR7

    SciTech Connect

    Zhang, Youcai; Yang, Xiaohu; Luo, Wentao; Wang, Huiyuan; Wang, Lei; Mo, H. J.; Van den Bosch, Frank C. E-mail: xyang@sjtu.edu.cn

    2015-01-01

    Using a sample of spiral galaxies selected from the Sloan Digital Sky Survey Data Release 7 and Galaxy Zoo 2, we investigate the alignment of spin axes of spiral galaxies with their surrounding large-scale structure, which is characterized by the large-scale tidal field reconstructed from the data using galaxy groups above a certain mass threshold. We find that the spin axes only have weak tendencies to be aligned with (or perpendicular to) the intermediate (or minor) axis of the local tidal tensor. The signal is the strongest in a cluster environment where all three eigenvalues of the local tidal tensor are positive. Compared to the alignments between halo spins and the local tidal field obtained in N-body simulations, the above observational results are in best agreement with those for the spins of inner regions of halos, suggesting that the disk material traces the angular momentum of dark matter halos in the inner regions.

  9. Chiral spin liquid emerging between competing magnetic order states in the spin-1/2 J1-J2-J3 kagome Heisenberg model

    NASA Astrophysics Data System (ADS)

    Gong, Shoushu; Zhu, Wei; Balents, Leon; Sheng, Dongning

    2015-03-01

    We studied the extended spin- 1 / 2 kagome model with the first neighbor (J1), the second (J2) and third neighbor (J3) couplings using density matrix renormalization group. We established a quantum phase diagram for 0 <= J 2 <= 0 . 25J1 and 0 <=J3 <=J1 , where we find a q = (0 , 0) Neel phase, a chiral spin liquid (CSL), a cuboc1 phase that breaks both time-reversal and spin rotational symmetries, and a valence-bond solid at the neighbor of the Heisenberg model, where a possible Z2 spin liquid has been previously identified. Interestingly, the classical cuboc1 phase could survive in the spin- 1 / 2 system with strong quantum fluctuations, and the CSL emerges between the q = (0 , 0) and the cuboc1 phases. We discover that the CSL has the short spin correlation pattern consistent with the cuboc1 phase, but the chiral order structure is totally different. The CSL might be understood as a result of the competitions between the q = (0 , 0) and the cuboc1 phases in the presence of strong quantum fluctuations. We further studied the quantum phase transitions from the CSL to the magnetically ordered phases, and to the possible Z2 spin liquid of the Heisenberg kagome model. Interestingly, the exotic continuous topological phase transition might be realized in the system.

  10. Skyrmions in chiral magnets with Rashba and Dresselhaus Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Randeria, Mohit

    Studies of skyrmions in chiral magnets have focused largely on systems with broken bulk inversion and a Dzyaloshinkii-Moriya interaction (DMI) of the Dresselhaus form. The skyrmion crystal is then stable only in a small regime with easy-axis anisotropy. I will show how skyrmion crystal phases can be stabilized over a much larger region of field and anisotropy down to zero temperature in systems with a Rashba DMI that break surface inversion or mirror symmetry. Increasing the ratio of Rashba to Dresselhaus DMI leads to a progressively larger domain of stability for skyrmions, especially in the easy-plane anisotropy regime. The spin texture and topological charge density then develop nontrivial spatial structures, different from conventional skyrmions, with a quantized topological charge given by a Chern number. Our theoretical results predict how tuning the Rashba spin orbit coupling and magnetic anisotropy can help stabilize skyrmion phases in thin films, surfaces, interfaces and bulk magnets with broken mirror symmetry. Supported by the NSF Grant DMR-1410364 and by the CEM, an NSF MRSEC, under Grant DMR-1420451.

  11. Orbital magnetization and its effects in spin-chiral ferromagnetic kagomé lattice

    NASA Astrophysics Data System (ADS)

    Wang, Zhigang; Zhang, Ping

    2007-08-01

    Recently, Berry phase in the semiclassical dynamics of Bloch electrons has been found to make a correction to the phase-space density of states and a general multiband formula for finite-temperature orbital magnetization has been given [D. Xiao , Phys. Rev. Lett. 97, 026603 (2006)], where the orbital magnetization M consists of two parts, i.e., the conventional part Mc and the Berry-phase correction part MΩ . Using this general formula, we theoretically investigate the orbital magnetization and its effects on thermoelectric transport and magnetic susceptibility properties of the two-dimensional kagomé lattice with spin anisotropies included. The study in this paper is highly interesting because of the nonzero spin chirality parameter ϕ (see text), which results in profound effects on the topology of the electron Bloch states and the orbital magnetization properties. It is found that the two parts in orbital magnetization oppose each other. In particular, we show that the orbital magnetization displays fully different behaviors in the metallic and insulating regions, which is due to the different roles Mc and MΩ play in these two regions. The anomalous Nernst conductivity is also calculated, which displays a peak-valley structure as a function of the electron Fermi energy.

  12. Chiral molecule for spin filtering purposes: the study of L- and D-Alanine

    NASA Astrophysics Data System (ADS)

    Yitamben, Esmeralda; Rosenberg, Richard; Guisinger, Nathan

    2011-03-01

    The field of molecular electronics has attracted scientists by the great opportunities and versatility it offers as a replacement for standard semiconductor electronics with organic materials, thus bringing down the cost, and opening endless possibilities for chemical synthesis, and scientific breakthrough. Of particular interest is the use of chiral molecules, such as alanine, for spin filtering studies in hope of creating highly spin-polarized charge carriers for spintronics applications. Preliminary studies of both L- and D-alanine on Cu(111) were conducted using scanning tunneling microscopy and spectroscopy, revealing the formation of a 2-dimensional phase at low coverage, a hexagonal ``flower'' pattern at intermediate coverage, and a chain and ring superstructures at high coverage. A model is proposed to explain the surface chemistry and bonding of the molecules on the metallic surface. Current studies of L- and D-alanine on Fe/W show promises in the intermediate coverage regime. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

  13. Photospintronics: Magnetic Field-Controlled Photoemission and Light-Controlled Spin Transport in Hybrid Chiral Oligopeptide-Nanoparticle Structures

    PubMed Central

    2016-01-01

    The combination of photonics and spintronics opens new ways to transfer and process information. It is shown here that in systems in which organic molecules and semiconductor nanoparticles are combined, matching these technologies results in interesting new phenomena. We report on light induced and spin-dependent charge transfer process through helical oligopeptide–CdSe nanoparticles’ (NPs) architectures deposited on ferromagnetic substrates with small coercive force (∼100–200 Oe). The spin control is achieved by the application of the chirality-induced spin-dependent electron transfer effect and is probed by two different methods: spin-controlled electrochemichemistry and photoluminescence (PL) at room temperature. The injected spin could be controlled by excitation of the nanoparticles. By switching the direction of the magnetic field of the substrate, the PL intensity could be alternated. PMID:27027885

  14. Photospintronics: Magnetic Field-Controlled Photoemission and Light-Controlled Spin Transport in Hybrid Chiral Oligopeptide-Nanoparticle Structures.

    PubMed

    Mondal, Prakash Chandra; Roy, Partha; Kim, Dokyun; Fullerton, Eric E; Cohen, Hagai; Naaman, Ron

    2016-04-13

    The combination of photonics and spintronics opens new ways to transfer and process information. It is shown here that in systems in which organic molecules and semiconductor nanoparticles are combined, matching these technologies results in interesting new phenomena. We report on light induced and spin-dependent charge transfer process through helical oligopeptide-CdSe nanoparticles' (NPs) architectures deposited on ferromagnetic substrates with small coercive force (∼100-200 Oe). The spin control is achieved by the application of the chirality-induced spin-dependent electron transfer effect and is probed by two different methods: spin-controlled electrochemichemistry and photoluminescence (PL) at room temperature. The injected spin could be controlled by excitation of the nanoparticles. By switching the direction of the magnetic field of the substrate, the PL intensity could be alternated. PMID:27027885

  15. Higher moments of nucleon spin structure functions in heavy baryon chiral perturbation theory and in a resonance model

    SciTech Connect

    C. Kao; D. Drechsel; S. Kamalov; M. Vanderhaeghen

    2003-11-01

    The third moment d{sub 2} of the twist-3 part of the nucleon spin structure function g{sub 2} is generalized to arbitrary momentum transfer Q{sup 2} and is evaluated in heavy baryon chiral perturbation theory (HBChPT) up to order {Omicron}(p{sup 4}) and in a unitary isobar model (MAID). We show how to link d{sub 2} as well as higher moments of the nucleon spin structure functions g{sub 1} and g{sub 2} to nucleon spin polarizabilities. We compare our results with the most recent experimental data, and find a good description of these available data within the unitary isobar model. We proceed to extract the twist-4 matrix element f{sub 2} which appears in the 1/Q{sup 2} suppressed term in the twist expansion of the spin structure function g{sub 1} for proton and neutron.

  16. Spin orientation of supermassive black holes in active galaxies

    NASA Astrophysics Data System (ADS)

    Kollatschny, W.

    2003-12-01

    Accretion of gas onto a central supermassive black hole is generally accepted to be the source of the emitted energy in active galactic nuclei. The broad emission lines we observe in their optical spectra are probably formed in the wind of an accretion disk at distances of light days to light years from the central black hole. The variable fraction of the emission lines originates at typical distances of only 1 to 50 light days from the central supermassive black hole. We derived a central black hole mass of Morbital1.8+/- 0.4x 107 Msun in the Seyfert galaxy Mrk 110 assuming the broad emission lines are generated in gas clouds orbiting within an accretion disk. This figure depends on the inclination angle of the accretion disk. Here we report on the detection of gravitational redshifted emission in the variable fraction of the broad emission lines. We derive a central black hole mass of Mgrav=14.0+/- 3.0x 107 Msun. These measurements are independent on the orientation of the accretion disk. The comparison of both black hole mass estimates allows to determine the projection of the central accretion disk angle i to 21+/-5 deg in Mrk 110 and therefore the orientation of the spin axis of the central black hole. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen. This paper is dedicated to Frank Bash without whose efforts the Hobby-Eberly Telescope would not have been possible.

  17. Elastic energy and phase structure in a continuous spin Ising chain with applications to chiral homopolymers.

    PubMed

    Chernodub, M N; Lundgren, Martin; Niemi, Antti J

    2011-01-01

    We present a numerical Monte Carlo analysis of the phase structure in a continuous spin Ising chain that describes chiral homopolymers. We find that depending on the value of the Metropolis temperature, the model displays the three known nontrivial phases of polymers: At low temperatures the model is in a collapsed phase, at medium temperatures it is in a random walk phase, and at high temperatures it enters the self-avoiding random walk phase. By investigating the temperature dependence of the specific energy we confirm that the transition between the collapsed phase and the random walk phase is a phase transition, while the random walk phase and self-avoiding random walk phase are separated from each other by a crossover transition. We propose that the model can be applied to characterize the statistical properties of protein folding. For this we compare the predictions of the model to a phenomenological elastic energy formula, proposed by J. Lei and K. Huang [e-print arXiv:1002.5013; Europhys. Lett. 88, 68004 (2009)] to describe folded proteins. PMID:21405680

  18. Elastic energy and phase structure in a continuous spin Ising chain with applications to chiral homopolymers

    NASA Astrophysics Data System (ADS)

    Chernodub, M. N.; Lundgren, Martin; Niemi, Antti J.

    2011-01-01

    We present a numerical Monte Carlo analysis of the phase structure in a continuous spin Ising chain that describes chiral homopolymers. We find that depending on the value of the Metropolis temperature, the model displays the three known nontrivial phases of polymers: At low temperatures the model is in a collapsed phase, at medium temperatures it is in a random walk phase, and at high temperatures it enters the self-avoiding random walk phase. By investigating the temperature dependence of the specific energy we confirm that the transition between the collapsed phase and the random walk phase is a phase transition, while the random walk phase and self-avoiding random walk phase are separated from each other by a crossover transition. We propose that the model can be applied to characterize the statistical properties of protein folding. For this we compare the predictions of the model to a phenomenological elastic energy formula, proposed by J. Lei and K. Huang [e-print arXiv:1002.5013; Europhys. Lett.EULEEJ0295-507510.1209/0295-5075/88/68004 88, 68004 (2009)] to describe folded proteins.

  19. The alignment of galaxy spin with the shear field in observations

    NASA Astrophysics Data System (ADS)

    Pahwa, Isha; Libeskind, Noam I.; Tempel, Elmo; Hoffman, Yehuda; Tully, R. Brent; Courtois, Hélène M.; Gottlöber, Stefan; Steinmetz, Matthias; Sorce, Jenny G.

    2016-03-01

    Tidal torque theory suggests that galaxies gain angular momentum in the linear stage of structure formation. Such a theory predicts alignments between the spin of haloes and tidal shear field. However, non-linear evolution and angular momentum acquisition may alter this prediction significantly. In this paper, we use a reconstruction of the cosmic shear field from observed peculiar velocities combined with spin axes extracted from galaxies within 115 Mpc (˜8000 km s-1) from 2MASS Redshift Survey (2MRS) catalogue to test whether or not galaxies appear aligned with principal axes of shear field. Although linear reconstructions of the tidal field have looked at similar issues, this is the first such study to examine galaxy alignments with velocity shear field. Ellipticals in the 2MRS sample show a statistically significant alignment with two of the principal axes of the shear field. In general, elliptical galaxies have their short axis aligned with the axis of greatest compression and perpendicular to the axis of slowest compression. Spiral galaxies show no signal. Such an alignment is significantly strengthened when considering only those galaxies that are used in velocity field reconstruction. When examining such a subsample, a weak alignment with the axis of greatest compression emerges for spiral galaxies as well. This result indicates that although velocity field reconstructions still rely on fairly noisy and sparse data, the underlying alignment with shear field is strong enough to be visible even when small numbers of galaxies are considered - especially if those galaxies are used as constraints in the reconstruction.

  20. Experimental studies of skyrmion textures and spin torque effects in chiral magnets

    NASA Astrophysics Data System (ADS)

    Ritz, Robert

    2012-02-01

    Small angle neutron scattering and measurements of a topological Hall signal identify the formation of skyrmion lattices in the non-centrosymmetric B20 compounds MnSi [1], Mn1-xFexSi, Mn1-xCoxSi and the strongly doped semiconductor Fe1-xCoxSi [2]. This observation has been confirmed by Lorentz force microscopy in thin samples of Fe1-xCoxSi, FeGe and, most recently, MnSi, where even individual skyrmions have been spotted [3]. Because the skyrmion lattices are exceptionally weakly pinned to the crystal lattice, extreme care has to be exercised when studying the precise intrinsic morphology of related spin textures in bulk samples. As a particularly striking property each skyrmion supports precisely one quantum of emergent magnetic flux. This permits a highly efficient coupling between skyrmions and conduction electrons which results in spin torque effects at ultra-low current densities as seen in small angle neutron scattering [4] and the emergent electric field when the skyrmions move [5].[4pt] Work in collaboration with: T. Adams, A. Bauer, B. Binz, P. B"oni, G. Brandl, R. A. Duine, K. Everschor, C. Franz, M. Garst, R. Georgii, S. Gottlieb-Sch"onmeyer, W. Heusler, M. Janoschek, F. Jonietz, T. Keller, K. Mitterm"uller, S. M"uhlbauer, W. M"unzer, A. Neubauer, P.G. Niklowitz, C. Pfleiderer, A. Rosch, T. Schulz, A. Tischendorf, M. Wagner.[4pt] [1] S. M"uhlbauer et al., Science 323, 915 (2009); A. Neubauer et al., Phys. Rev. Lett. 102, 186602 (2010); C. Pfleiderer et al., J. Phys. Cond. Matter 22, 164207 (2010); T. Adams et al., Phys. Rev. Lett., in press, arXiv/1107.0993. [0pt] [2] W. M"unzer et al., Phys. Rev. B 81, 041203(R) (2010). [0pt] [3] X. Z. Yu et al., Nature 465, 901 (2010); X. Z. Yu et al., Nature Materials 10, 106 (2010). [0pt] [4] F. Jonietz et al., Science, 330, 1648 (2010). [0pt] [5] Emergent electrodynamics of skyrmions in a chiral magnet, T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner, C. Franz, and C. Pfleiderer, K. Everschor, M. Garst, and A

  1. Chiral quark model of nucleon spin-flavor structure with SU(3) and axial-U(1) breakings

    SciTech Connect

    Cheng, T.P.; Li, L.

    1998-01-01

    The chiral quark model with a nonet of Goldstone bosons can yield an adequate description of the observed proton flavor and spin structure. In a previous publication we have compared the results of an SU(3) symmetric calculation with the phenomenological findings based on experimental measurements and SU(3) symmetry relations. In this paper we discuss their SU(3) and axial U(1) breaking corrections. Our result demonstrates the broad consistency of the chiral quark model with the experimental observations of the proton spin-flavor structure. With two parameters, we obtain a very satifactory fit to the F/D ratios for the octet baryon masses and for their axial vector couplings, as well as the different quark flavor contributions to the proton spin. The result also can account for not only the light quark asymmetry {bar u}{minus}{bar d} but also the strange quark content {bar s} of the proton sea. SU(3) breaking is the key in reconciling the {bar s} value as measured in the neutrino charm production and that as deduced from the pion nucleon {sigma} term. {copyright} {ital 1997} {ital The American Physical Society}

  2. Linking the Spin Evolution of Massive Black Holes to Galaxy Kinematics

    NASA Astrophysics Data System (ADS)

    Sesana, A.; Barausse, E.; Dotti, M.; Rossi, E. M.

    2014-10-01

    We present the results of a semianalytical model that evolves the masses and spins of massive black holes together with the properties of their host galaxies across the cosmic history. As a consistency check, our model broadly reproduces a number of observations, e.g., the cosmic star formation history; the black hole mass, luminosity, and galaxy mass functions at low redshift; the black hole-bulge mass relation; and the morphological distribution at low redshift. For the first time in a semianalytical investigation, we relax the simplifying assumptions of perfect coherency or perfect isotropy of the gas fueling the black holes. The dynamics of gas is instead linked to the morphological properties of the host galaxies, resulting in different spin distributions for black holes hosted in different galaxy types. We compare our results with the observed sample of spin measurements obtained through broad Kα iron line fitting. The observational data disfavor both accretion along a fixed direction and isotropic fueling. Conversely, when the properties of the accretion flow are anchored to the kinematics of the host galaxy, we obtain a good match between theoretical expectations and observations. A mixture of coherent accretion and phases of activity in which the gas dynamics is similar to that of the stars in bulges (i.e., with a significant velocity dispersion superimposed to a net rotation) best describes the data, adding further evidence in support of the coevolution of massive black holes and their hosts.

  3. Linking the spin evolution of massive black holes to galaxy kinematics

    SciTech Connect

    Sesana, A.; Barausse, E.; Dotti, M.; Rossi, E. M. E-mail: barausse@iap.fr E-mail: emr@strw.leidenuniv.nl

    2014-10-20

    We present the results of a semianalytical model that evolves the masses and spins of massive black holes together with the properties of their host galaxies across the cosmic history. As a consistency check, our model broadly reproduces a number of observations, e.g., the cosmic star formation history; the black hole mass, luminosity, and galaxy mass functions at low redshift; the black hole-bulge mass relation; and the morphological distribution at low redshift. For the first time in a semianalytical investigation, we relax the simplifying assumptions of perfect coherency or perfect isotropy of the gas fueling the black holes. The dynamics of gas is instead linked to the morphological properties of the host galaxies, resulting in different spin distributions for black holes hosted in different galaxy types. We compare our results with the observed sample of spin measurements obtained through broad Kα iron line fitting. The observational data disfavor both accretion along a fixed direction and isotropic fueling. Conversely, when the properties of the accretion flow are anchored to the kinematics of the host galaxy, we obtain a good match between theoretical expectations and observations. A mixture of coherent accretion and phases of activity in which the gas dynamics is similar to that of the stars in bulges (i.e., with a significant velocity dispersion superimposed to a net rotation) best describes the data, adding further evidence in support of the coevolution of massive black holes and their hosts.

  4. Effective spin-1/2 scalar chiral order on kagome lattices in Nd3Sb3Mg2O14

    NASA Astrophysics Data System (ADS)

    Scheie, A.; Sanders, M.; Krizan, J.; Qiu, Y.; Cava, R. J.; Broholm, C.

    2016-05-01

    We introduce Nd3Sb3Mg2O14 with ideal kagome lattices of neodymium ions in ABC stacking. Thermodynamic measurements show a Curie-Weiss temperature of ΘCW=-0.12 K, a Nd3 + spin-1/2 Kramers doublet ground state, and a second-order phase transition at TN=0.56 (2 ) K. Neutron scattering reveals noncoplanar scalar chiral k =0 magnetic order with a correlation length exceeding 400 Å=55 a and an ordered moment of 1.79 (5 ) μB . This order includes a canted ferromagnetic component perpendicular to the kagome planes favored by Dzyaloshinskii-Moriya interactions.

  5. Radio Loudness of AGNs: Host Galaxy Morphology and the Spin Paradigm

    SciTech Connect

    Stawarz, L.; Sikora, M.; Lasota, J.-P.

    2007-10-15

    We investigate how the total radio luminosity of AGN-powered radio sources depends on their accretion luminosity and the central black hole mass. We find that AGNs form two distinct and well separated sequences on the radio-loudness -- Eddington-ratio plane. We argue that these sequences mark the real upper bounds of radio-loudness of two distinct populations of AGNs: those hosted respectively by elliptical and disk galaxies. Both sequences show the same dependence of the radio-loudness on the Eddington ratio (an increase with decreasing Eddington ratio), which suggests that another parameter in addition to the accretion rate must play a role in determining the jet production efficiency in active galactic nuclei, and that this parameter is related to properties of the host galaxy. The revealed host-related radio dichotomy breaks down at high accretion rates where the dominant fraction of luminous quasars hosted by elliptical galaxies is radio quiet. We argue that the huge difference between the radio-loudness reachable by AGNs in disc and elliptical galaxies can be explained by the scenario according to which the spin of a black hole determines the outflows power, and central black holes can reach large spins only in early type galaxies (following major mergers), and not (in a statistical sense) in spiral galaxies.

  6. Metastable configurations of a finite-size chain of classical spins within the one-dimensional chiral XY-model

    NASA Astrophysics Data System (ADS)

    Popov, Alexander P.; Gloria Pini, Maria; Rettori, Angelo

    2016-03-01

    The metastable states of a finite-size chain of N classical spins described by the chiral XY-model on a discrete one-dimensional lattice are calculated by means of a general theoretical method recently developed by one of us. This method allows one to determine all the possible equilibrium magnetic states in an accurate and systematic way. The ground state of a chain consisting of N classical XY spins is calculated in the presence of (i) a symmetric ferromagnetic exchange interaction, favoring parallel alignment of nearest neighbor spins, (ii) a uniaxial anisotropy, favoring a given direction in the film plane, and (iii) an antisymmetric Dzyaloshinskii-Moriya interaction (DMI), favoring perpendicular alignment of nearest neighbor spins. In addition to the ground state with a non-uniform helical spin arrangement, which originates from the energy competition in the finite-size chain with open boundary conditions, we have found a considerable number of higher-energy equilibrium states. In the investigated case of a chain with N=10 spins and a DMI much smaller than the in-plane uniaxial anisotropy, it turns out that a metastable (unstable) state of the finite chain is characterized by a configuration where none (at least one) of the inner spins is nearly parallel to the hard axis. The role of the DMI is to establish a unique rotational sense for the helical ground state. Moreover, the number of both metastable and unstable equilibrium states is doubled with respect to the case of zero DMI. This produces modifications in the Peierls-Nabarro potential encountered by a domain wall during its displacement along the discrete spin chain.

  7. SU (2 )1 chiral edge modes of a critical spin liquid

    NASA Astrophysics Data System (ADS)

    Poilblanc, Didier; Schuch, Norbert; Affleck, Ian

    2016-05-01

    Protected chiral edge modes are a well-known signature of topologically ordered phases like the fractional quantum Hall states. Recently, using the framework of projected entangled pair states (PEPS) on the square lattice, we constructed a family of chiral resonating valence bond states with Z2 gauge symmetry. Here we revisit and analyze in full details the properties of the edge modes as given by their entanglement spectra on a cylinder. Surprisingly, we show that the latter can be well described by a chiral SU (2 )1 conformal field theory, as for the ν =1 /2 (bosonic) gapped Laughlin state, although our numerical data suggest a critical bulk compatible with an emergent U(1 ) gauge symmetry. We propose that our family of PEPS may physically describe a boundary between a chiral topological phase and a trivial phase.

  8. Electric-field-induced spin resonance in antiferromagnetic insulators: Inverse process of the dynamical chiral magnetic effect

    NASA Astrophysics Data System (ADS)

    Sekine, Akihiko; Chiba, Takahiro

    2016-06-01

    We propose a realization of the electric-field-induced antiferromagnetic resonance. We consider three-dimensional antiferromagnetic insulators with spin-orbit coupling characterized by the existence of a topological term called the θ term. By solving the Landau-Lifshitz-Gilbert equation in the presence of the θ term, we show that, in contrast to conventional methods using ac magnetic fields, the antiferromagnetic resonance state is realized by ac electric fields along with static magnetic fields. This mechanism can be understood as the inverse process of the dynamical chiral magnetic effect, an alternating current generation by magnetic fields. In other words, we propose a way to electrically induce the dynamical axion field in condensed matter. We discuss a possible experiment to observe our proposal, which utilizes the spin pumping from the antiferromagnetic insulator into a heavy metal contact.

  9. Chiral Spin-Density Wave, Spin-Charge-Chern Liquid, and d +id Superconductivity in 1/4-Doped Correlated Electronic Systems on the Honeycomb Lattice

    NASA Astrophysics Data System (ADS)

    Jiang, Shenghan; Mesaros, Andrej; Ran, Ying

    2014-07-01

    Recently, two interesting candidate quantum phases—the chiral spin-density wave state featuring anomalous quantum Hall effect and the d+id superconductor—were proposed for the Hubbard model on the honeycomb lattice at 1/4 doping. Using a combination of exact diagonalization, density matrix renormalization group, the variational Monte Carlo method, and quantum field theories, we study the quantum phase diagrams of both the Hubbard model and the t-J model on the honeycomb lattice at 1/4 doping. The main advantage of our approach is the use of symmetry quantum numbers of ground-state wave functions on finite-size systems (up to 32 sites) to sharply distinguish different quantum phases. Our results show that for 1≲U/t<40 in the Hubbard model and for 0.1chiral spin-density wave state or a spin-charge-Chern liquid, but not a d +id superconductor. However, in the t-J model, upon increasing J, the system goes through a first-order phase transition at J/t=0.80(2) into the d+id superconductor. Here, the spin-charge-Chern liquid state is a new type of topologically ordered quantum phase with Abelian anyons and fractionalized excitations. Experimental signatures of these quantum phases, such as tunneling conductance, are calculated. These results are discussed in the context of 1/4-doped graphene systems and other correlated electronic materials on the honeycomb lattice.

  10. The effect of field cooling on a spin-chiral domain structure in a magnetoelectric helimagnet Ba0.5Sr1.5Zn2Fe12O22

    NASA Astrophysics Data System (ADS)

    Hiraoka, Y.; Tanaka, Y.; Oura, M.; Wakabayashi, Y.; Kimura, T.

    2015-06-01

    Spin-chiral domain structures near a cleaved crystal face of a magnetoelectric helimagnet, Ba0.5Sr1.5Zn2Fe12O22, were examined after various magnetic and electric field-cooling procedures by means of the scanning resonant X-ray microdiffraction technique using circularly polarized X-rays. We have found that the application of a magnetic field (1-2 k Oe) during the field-cooling procedure stabilizes one of the handedness among the two spin-chiral states (left- or right-handed screw structure) and makes nearly a single spin-chiral domain in the vicinity of the cleaved crystal face. However, it makes the degree of the spin chirality spatially inhomogeneous even within a domain. We discuss the observed field-cooling effect in terms of possible formation of spin-chiral domains with "stripe-type" domain walls accompanied by randomly-distributed ferromagnetic islands.

  11. Lifetimes and chirality of spin waves in antiferromagnetic and ferromagnetic FeRh from the perspective of time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Sandratskii, Leonid M.; Buczek, Paweł

    2012-01-01

    The study of the spin excitations in antiferromagnetic (AFM) and ferromagnetic (FM) phases of FeRh is reported. We demonstrate that, although the Fe atomic moments are well defined, there is a number of important phenomena absent in the Heisenberg description: Landau damping of spin waves, large Rh moments induced by the AFM magnons, and the formation of the optical magnons terminated by Stoner excitations. We relate the properties of the spin-wave damping to the features of the Stoner continuum and compare the chirality of the spin excitations in AFM, FM, and paramagnetic systems.

  12. Crystalline and spin chiralities in multiferroics with langasite-type structure and Fe{sub 1–x}Co{sub x}Si crystals

    SciTech Connect

    Pikin, S. A. Lyubutin, I. S.; Dudka, A. P.

    2015-09-15

    It is shown that, when magnetic ordering occurs in layered iron-containing langasites (sp. gr. P321), one of the reasons for spin chiralities of different signs is the presence of structural chirality (the existence of inversion twins), which, in turn, is due to the nonsymmetricity of these crystals. Spin helicoids arise in these multiferroics at split sites of Fe{sup 3+} ions below the Néel point. The direction of electric polarization vectors coincides with the direction of the magnetic helicoid axes because of the piezoelectric properties of these materials. Due to the magnetostriction effects, structural chirality wave vector k{sub z} exceeds the magnetic helicoid wave vector by a factor of 2: k{sub z} = 2q{sub z}. The temperatures of transitions to the chiral structural and chiral magnetic states may differ. In particular, if the structural transition initial temperature exceeds the magnetic transition temperature (Τ{sub U}> Τ{sub M}), structural displacements may arise in the absence of magnetism at Τ{sub M} < Τ < Τ{sub U}. In noncentrosymmetric Fe{sub 1–x}Co{sub x}Si crystals (sp. gr. P2{sub 1}3), which are not multiferroics, magnetic chirality is due to the Dzyaloshinski–Moriya interaction. The dependence of the moduli of incommensurate wave number of the corresponding helicoid on the atomic composition of the crystals under consideration is nonmonotonic.

  13. Numerical evidence for a chiral spin liquid in the XXZ model on the kagome lattice in a magnetic field

    NASA Astrophysics Data System (ADS)

    Changlani, Hitesh; Kumar, Krishna; Clark, Bryan; Fradkin, Eduardo

    Frustrated spin systems in two dimensions provide a fertile ground for discovering exotic states of matter, often with topologically non-trivial properties. In this work, we investigate the possible existence of a chiral spin liquid state in the spin 1/2 XXZ model on the frustrated kagome lattice in the presence of a magnetic field. This model is equivalent to a hard-core bosonic one with density-density interactions at finite filling fraction. Motivated by previous field theoretic predictions utilizing a Chern-Simons theory adapted for this lattice, we focus our attention to understanding the XY limit for the 2/3 magnetization plateau (equivalent to a system of hard-core bosons at 1/6 filling with weak nearest-neighbor repulsive interactions). Performing exact or accurate numerical computations, and based on energetics and construction of minimally entangled states and associated modular matrices, we provide evidence for such a spin liquid. We study the nature of this phase and examine its stability to additional interactions. We acknowledge support from the SciDAC program under Award Number DE-FG02-12ER46875.

  14. Fundamental Mass-Spin-Morphology Relation Of Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Obreschkow, D.; Glazebrook, K.

    2014-03-01

    This work presents high-precision measurements of the specific baryon angular momentum j b contained in stars, atomic gas, and molecular gas, out to >~ 10 scale radii, in 16 nearby spiral galaxies of the THINGS sample. The accuracy of these measurements improves on existing studies by an order of magnitude, leading to the discovery of a strong correlation between the baryon mass M b, j b, and the bulge mass fraction β, fitted by \\beta =-(0.34+/- 0.03)\\,lg\\,(j_bM_b^{-1}/[10^{-7}\\, kpc\\,km\\,s^{-1}\\,{M}_{\\odot }^{-1}])-(0.04+/- 0.01) on the full sample range of 0 <= β <~ 0.3 and 109 M ⊙ < M b < 1011 M ⊙. The corresponding relation for the stellar quantities M * and j * is identical within the uncertainties. These M-j-β relations likely originate from the proportionality between jM -1 and the surface density of the disk that dictates its stability against (pseudo-)bulge formation. Using a cold dark matter model, we can approximately explain classical scaling relations, such as the fundamental plane of spiral galaxies, the Tully-Fisher relation, and the mass-size relation, in terms of the M-j(-β) relation. These results advocate the use of mass and angular momentum as the most fundamental quantities of spiral galaxies.

  15. A new spin on discs of satellite galaxies

    NASA Astrophysics Data System (ADS)

    Cautun, Marius; Wang, Wenting; Frenk, Carlos S.; Sawala, Till

    2015-05-01

    We investigate the angular and kinematic distributions of satellite galaxies around a large sample of bright isolated primaries in the spectroscopic and photometric catalogues of the Sloan Digital Sky Survey (SDSS). We detect significant anisotropy in the spatial distribution of satellites. To test whether this anisotropy could be related to the rotating discs of satellites recently found by Ibata et al. in a sample of SDSS galaxies, we repeat and extend their analysis. Ibata et al. found an excess of satellites on opposite sides of their primaries having anticorrelated radial velocities. We find that this excess is sensitive to small changes in the sample selection criteria which can greatly reduce its significance. In addition, we find no evidence for correspondingly correlated velocities for satellites observed on the same side of their primaries, which would be expected for rotating discs of satellites. We conclude that the detection of rotating planes of satellites in the observational sample of Ibata et al. is not robust to changes in the sample selection criteria. We compare our data to the Λ cold dark matter Millennium simulations populated with galaxies according to the semi-analytic model of Guo et al. We find excellent agreement with the spatial distribution of satellites in the SDSS data and the lack of a strong signal from coherent rotation.

  16. Fundamental mass-spin-morphology relation of spiral galaxies

    SciTech Connect

    Obreschkow, D.; Glazebrook, K.

    2014-03-20

    This work presents high-precision measurements of the specific baryon angular momentum j {sub b} contained in stars, atomic gas, and molecular gas, out to ≳ 10 scale radii, in 16 nearby spiral galaxies of the THINGS sample. The accuracy of these measurements improves on existing studies by an order of magnitude, leading to the discovery of a strong correlation between the baryon mass M {sub b}, j {sub b}, and the bulge mass fraction β, fitted by β=−(0.34±0.03) lg (j{sub b}M{sub b}{sup −1}/[10{sup −7} kpc km s{sup −1} M{sub ⊙}{sup −1}])−(0.04±0.01) on the full sample range of 0 ≤ β ≲ 0.3 and 10{sup 9} M {sub ☉} < M {sub b} < 10{sup 11} M {sub ☉}. The corresponding relation for the stellar quantities M {sub *} and j {sub *} is identical within the uncertainties. These M-j-β relations likely originate from the proportionality between jM {sup –1} and the surface density of the disk that dictates its stability against (pseudo-)bulge formation. Using a cold dark matter model, we can approximately explain classical scaling relations, such as the fundamental plane of spiral galaxies, the Tully-Fisher relation, and the mass-size relation, in terms of the M-j(-β) relation. These results advocate the use of mass and angular momentum as the most fundamental quantities of spiral galaxies.

  17. Chiral spin density wave order on the frustrated honeycomb and bilayer triangle lattice hubbard model at half-filling.

    PubMed

    Jiang, Kun; Zhang, Yi; Zhou, Sen; Wang, Ziqiang

    2015-05-29

    We study the Hubbard model on the frustrated honeycomb lattice with nearest-neighbor hopping t_{1} and second nearest-neighbor hopping t_{2}, which is isomorphic to the bilayer triangle lattice, using the SU(2)-invariant slave boson theory. We show that the Coulomb interaction U induces antiferromagnetic (AF) chiral spin density wave (χSDW) order in a wide range of κ=t_{2}/t_{1} where both the two-sublattice AF order at small κ and the decoupled three-sublattice 120° order at large κ are strongly frustrated, leading to three distinct phases with different anomalous Hall responses. We find a continuous transition from a χSDW semimetal with the anomalous Hall effect to a topological chiral Chern insulator exhibiting the quantum anomalous Hall effect, followed by a discontinuous transition to a χSDW insulator with a zero total Chern number but an anomalous ac Hall effect. The χSDW is likely a generic phase of strongly correlated and highly frustrated hexagonal lattice electrons. PMID:26066448

  18. Chiral Spin Density Wave Order on the Frustrated Honeycomb and Bilayer Triangle Lattice Hubbard Model at Half-Filling

    NASA Astrophysics Data System (ADS)

    Jiang, Kun; Zhang, Yi; Zhou, Sen; Wang, Ziqiang

    2015-05-01

    We study the Hubbard model on the frustrated honeycomb lattice with nearest-neighbor hopping t1 and second nearest-neighbor hopping t2, which is isomorphic to the bilayer triangle lattice, using the SU(2)-invariant slave boson theory. We show that the Coulomb interaction U induces antiferromagnetic (AF) chiral spin density wave (χ SDW ) order in a wide range of κ =t2/t1 where both the two-sublattice AF order at small κ and the decoupled three-sublattice 120° order at large κ are strongly frustrated, leading to three distinct phases with different anomalous Hall responses. We find a continuous transition from a χ SDW semimetal with the anomalous Hall effect to a topological chiral Chern insulator exhibiting the quantum anomalous Hall effect, followed by a discontinuous transition to a χ SDW insulator with a zero total Chern number but an anomalous ac Hall effect. The χ SDW is likely a generic phase of strongly correlated and highly frustrated hexagonal lattice electrons.

  19. Spatially Resolving Spin-split Edge States of Chiral Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Crommie, M. F.

    2011-03-01

    A central question in the field of graphene-related research is how graphene behaves when it is patterned at the nanometer scale with different edge geometries. The most fundamental shape in this regard is the graphene nanoribbon (GNR), a narrow strip of graphene that is characterized by its width and chirality. GNRs have been predicted to exhibit a wide range of behavior that includes tunable energy gaps and unique 1D edge states with unusual magnetic structure. I will discuss a scanning tunneling microscopy and spectroscopy (STS) study of GNRs that allows us to examine how GNR electronic structure depends on the chirality of atomically well-defined GNR edges. Our STS measurements reveal the presence of 1D GNR edge states that closely match theoretical expectations for GNRs of similar width and chirality. We additionally observe width-dependent energy splitting in GNR edge states, providing compelling evidence of their magnetic nature. This work performed in collaboration with Chenggang Tao, Liying Jiao, Oleg V. Yazyev, Yen-Chia Chen, Juanjuan Feng, Xiaowei Zhang, Rodrigo B. Capaz, James M. Tour, Alex Zettl, Steven G. Louie, and Hongjie Dai.

  20. Two-dimensional massless Dirac fermions, chiral pseudo-spins, and Berry's phase in few-layer black phosphorus

    NASA Astrophysics Data System (ADS)

    Baik, Seung Su; Choi, Hyoung Joon

    Black phosphorus (BP) and its two-dimensional (2D) derivative phosphorene are rapidly emerging nanoelectronic materials with potential applicability to field effect transistors and optoelectronic devices. Unlike the gapless semiconductor graphene, multilayer BP has a substantial band gap of 0.2 eV, and this band-gap size is predicted being sensitive to the external perturbations such as pressure, strain, and electric field. Very recently, a semiconductor-semimetal transition in BP was realized by the surface potassium (K) doping, producing a Dirac semimetal state with a linear dispersion in the armchair direction and a quadratic one in the zigzag direction. Here, based on first-principles density functional calculations, we present that beyond the critical K density, 2D massless Dirac fermions emerge in K-doped few-layer BP, and the electronic states around Dirac points have chiral pseudo-spins and Berry's phase. These features are robust with respect to the spin-orbit interaction. The switchable massless Dirac fermions discussed here may open a new way for the development of high performance devices in 2D materials beyond graphene. This work was supported by NRF of Korea (Grant No. 2011-0018306) and KISTI supercomputing center (Project No. KSC-2015-C3-039).

  1. Chirality-driven intrinsic spin-glass ordering and field-induced ferromagnetism in Ni3Al nanoparticle aggregates

    NASA Astrophysics Data System (ADS)

    Kaul, S. N.; Messala, Umasankar

    2016-03-01

    Weak itinerant-electron ferromagnet Ni3Al is driven to magnetic instability (quantum critical point, QCP, where the long-range ferromagnetic order of the bulk ceases to exist) by reducing the average crystallite size to d=50 nm. 'Zero-field' (H=0) linear and nonlinear ac-susceptibilities, measured on Ni3Al nanoparticle aggregates, with d=50 nm (S1) and d=5 nm (S2), provide strong evidence for two spin glass (SG)-like thermodynamic phase transitions: one at Ti(H = 0) ≃ 30 K (Ti† (H = 0) ≃ 230 K) and the other at a lower temperature Tp(H = 0) ≃ 8 K (Th(H = 0) ≃ 52 K) in S1 (S2). 'In-field' (H ≠ 0) linear ac-susceptibility and dc magnetization demonstrate that the thermodynamic nature of these transitions is preserved in finite fields. The presently determined H-T phase diagrams for the samples S1 and S2 are compared with those predicted by the Kotliar-Sompolinsky and Gabay-Toulouse mean-field models and Monte Carlo simulations, based on the chirality-driven spin glass (SG) ordering scenario, for a three-dimensional nearest-neighbor Heisenberg SG system with or without weak random anisotropy. Such a detailed comparison permits us to unambiguously identify various 'zero-field' and 'in-field' SG phase transitions as: (i) the simultaneous paramagnetic (PM)-chiral glass (CG) and PM-SG phase transitions at Ti(H), (ii) the PM-CG transition at Ti† (H), (iii) the replica symmetry-breaking SG transition at Tp(H), and (iv) the continuous spin-rotation symmetry-breaking SG transition at Th(H). In the presence of random anisotropy, magnetization fails to saturate even at 90 kOe in S1 whereas negligibly small anisotropy allows even fields as weak as 1 kOe to saturate magnetization and induce ferromagnetism in S2. Due to the proximity to CG/SG-QCP, magnetization and susceptibility both exhibit non-Fermi liquid behavior over a wide range at low temperatures.

  2. A NEW APPROACH TO CONSTRAIN BLACK HOLE SPINS IN ACTIVE GALAXIES USING OPTICAL REVERBERATION MAPPING

    SciTech Connect

    Wang, Jian-Min; Du, Pu; Li, Yan-Rong; Hu, Chen; Ho, Luis C.; Bai, Jin-Ming

    2014-09-01

    A tight relation between the size of the broad-line region (BLR) and optical luminosity has been established in about 50 active galactic nuclei studied through reverberation mapping of the broad Hβ emission line. The R {sub BLR}-L relation arises from simple photoionization considerations. Using a general relativistic model of an optically thick, geometrically thin accretion disk, we show that the ionizing luminosity jointly depends on black hole mass, accretion rate, and spin. The non-monotonic relation between the ionizing and optical luminosity gives rise to a complicated relation between the BLR size and the optical luminosity. We show that the reverberation lag of Hβ to the varying continuum depends very sensitively on black hole spin. For retrograde spins, the disk is so cold that there is a deficit of ionizing photons in the BLR, resulting in shrinkage of the hydrogen ionization front with increasing optical luminosity, and hence shortened Hβ lags. This effect is specially striking for luminous quasars undergoing retrograde accretion, manifesting in strong deviations from the canonical R {sub BLR}-L relation. This could lead to a method to estimate black hole spins of quasars and to study their cosmic evolution. At the same time, the small scatter of the observed R {sub BLR}-L relation for the current sample of reverberation-mapped active galaxies implies that the majority of these sources have rapidly spinning black holes.

  3. Effects of external magnetic field and magnetic anisotropy on chiral spin structures of square nanodisks investigated with a quantum simulation approach

    NASA Astrophysics Data System (ADS)

    Liu, Zhaosen; Ian, Hou

    2016-04-01

    We employed a quantum simulation approach to investigate the magnetic properties of monolayer square nanodisks with Dzyaloshinsky-Moriya (DM) interaction. The computational program converged very quickly, and generated chiral spin structures on the disk planes with good symmetry. When the DM interaction is sufficiently strong, multi-domain structures appears, their sizes or average distance between each pair of domains can be approximately described by a modified grid theory. We further found that the external magnetic field and uniaxial magnetic anisotropy both normal to the disk plane lead to reductions of the total free energy and total energy of the nanosystems, thus are able to stabilize and/or induce the vortical structures, however, the chirality of the vortex is still determined by the sign of the DM interaction parameter. Moreover, the geometric shape of the nanodisk affects the spin configuration on the disk plane as well.

  4. Angular dependence of the spin textures in two-dimensional chiral magnets

    SciTech Connect

    Tang, Dan; Qi, Yang

    2015-05-28

    The angular dependence of spin textures in thin helimagnetic films is investigated by a Monte Carlo simulation. When an external field is applied at an angle relative to the film normal, we find that the skyrmion states with broken axis-symmetric structure are able to persist over a wide range of angles by changing the spin orientation. In addition, the uniaxial anisotropy is able to stabilize the distorted skyrmions. This behavior reflects the robust topological stability of skyrmion states in helimagnets and favors their application in spintronic devices.

  5. A Chiral, Photoluminescent, and Spin-Canted {Cu(I)Re(IV)2}n Branched Chain.

    PubMed

    Martínez-Lillo, José; Armentano, Donatella; Fortea-Pérez, Francisco R; Stiriba, Salah-Eddine; De Munno, Giovanni; Lloret, Francesc; Julve, Miguel; Faus, Juan

    2015-05-18

    A new heteroleptic 1D Cu(I)-Re(IV) coordination polymer of the formula {Cu(I)Re(IV)Cl4(μ-Cl)(μ-pyz)[Re(IV)Cl4(μ-bpym)]}n·nMeNO2 (1; pyz = pyrazine, bpym = 2,2'-bipyrimidine) has been prepared through the Cu(I)-mediated self-assembly of two different Re(IV) metalloligands, namely, [ReCl5(pyz)](-) and [ReCl4(bpym)]. 1 consists of chiral branched chains with an overall rack-type architecture displaying photoemission and magnetic ordering. These results constitute a first step toward making new multifunctional magnetic materials based on mixed 3d-5d molecular systems. PMID:25950857

  6. Galaxies

    SciTech Connect

    Not Available

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented.

  7. Jet drifts and flips in radio galaxies as probes of the historical evolution of spin axis in supermassive black holes

    NASA Astrophysics Data System (ADS)

    Saripalli, Lakshmi; Subrahmanyan, Ravi; Hall Roberts, David

    2015-08-01

    Jets in radio galaxies create twin lobes of synchrotron plasma on opposite sides of the host elliptical. The jets are believed to emerge along the spin axis of the central supermassive black hole. The history of evolution in spin axis is traced in the off axis distortions in the radio structure. We have analyzed the radio structures in a large sample of distorted radio galaxies to examine black hole spin axis behavior. These sources are selected specifically to have low axial-ratio structures and hence off-axis distortions that are, however, unbiased with respect to the nature of the distortions.We have imaged 52 radio galaxies having length to width ratio less than 1 to obtain detailed radio structures that enable a tracing of the origin of the off-axis radio emission. The unique sample consists of radio sources where the off axis radio emission originates from strategic locations - regions closer to the host galaxy and from the outer ends of the jets. A third category consists of sources where there is only a swathe of radio emission nearly orthogonal to the radio axis and passing through the central radio core.Our study has highlighted the potential of radio galaxies in tracing black hole spin axis changes over time; we use the occurrence rates of the different categories of sources to derive occurrence rates of drifts and flips in black hole axis. Since the host galaxies are an unbiased sampling of luminous elliptical galaxies, the rates derived are relevant to this parent population (Roberts, Cohen, Lu, Saripalli and Subrahmanyan, 2015, arXiv150203954; Roberts, Saripalli, Subrahmanyan, 2015, arXiv150302021).

  8. Spintronics: Chiral damping

    PubMed Central

    Kim, Kyoung-Whan; Lee, Hyun-Woo

    2016-01-01

    The analysis of the magnetic domain wall motion in a nanostructured magnetic system with strong spin-orbit coupling shows that the energy dissipation can be chiral when the inversion symmetry is broken. PMID:26906956

  9. Stardust, Supernovae and the Chirality of the Amino Acids

    SciTech Connect

    Boyd, R N; Kajino, T; Onaka, T

    2011-03-09

    A mechanism for creating enantiomerism in the amino acids, the building blocks of the proteins, that involves global selection of one chirality by interactions between the amino acids and neutrinos from core-collapse supernovae is described. The selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth's amino acids.

  10. A MONTE CARLO MARKOV CHAIN BASED INVESTIGATION OF BLACK HOLE SPIN IN THE ACTIVE GALAXY NGC 3783

    SciTech Connect

    Reynolds, Christopher S.; Lohfink, Anne M.; Trippe, Margaret L.; Brenneman, Laura W.; Miller, Jon M.; Fabian, Andrew C.; Nowak, Michael A. E-mail: alohfink@astro.umd.edu

    2012-08-20

    The analysis of relativistically broadened X-ray spectral features from the inner accretion disk provides a powerful tool for measuring the spin of supermassive black holes in active galactic nuclei (AGNs). However, AGN spectra are often complex and careful analysis employing appropriate and self-consistent models is required if one has to obtain robust results. In this paper, we revisit the deep 2009 July Suzaku observation of the Seyfert galaxy NGC 3783 in order to study in a rigorous manner the robustness of the inferred black hole spin parameter. Using Monte Carlo Markov chain techniques, we identify a (partial) modeling degeneracy between the iron abundance of the disk and the black hole spin parameter. We show that the data for NGC 3783 strongly require both supersolar iron abundance (Z{sub Fe} = 2-4 Z{sub Sun }) and a rapidly spinning black hole (a > 0.89). We discuss various astrophysical considerations that can affect the measured abundance. We note that, while the abundance enhancement inferred in NGC 3783 is modest, the X-ray analysis of some other objects has found extreme iron abundances. We introduce the hypothesis that the radiative levitation of iron ions in the innermost regions of radiation-dominated AGN disks can enhance the photospheric abundance of iron. We show that radiative levitation is a plausible mechanism in the very inner regions of high accretion rate AGN disks.

  11. Antiferromagnetic order driven chiral topological spin density waves on the repulsive Haldane-Hubbard model on square lattices

    NASA Astrophysics Data System (ADS)

    Wu, Ya-Jie; Li, Ning; He, Jing; Kou, Su-Peng

    2016-03-01

    In this paper, based on mean-field approach and random-phase-approximation, we study the magnetic properties of the repulsive Haldane-Hubbard model on a square lattice. We find antiferromagnetic order driven topological spin density waves beyond Landau’s symmetry-breaking paradigm, for which the effective low energy physics is determined by Chern-Simons-Hopf gauge field theories with different K matrices.

  12. Coupling of chiralities in spin and physical spaces: the Möbius ring as a case study.

    PubMed

    Pylypovskyi, Oleksandr V; Kravchuk, Volodymyr P; Sheka, Denis D; Makarov, Denys; Schmidt, Oliver G; Gaididei, Yuri

    2015-05-15

    We show that the interaction of the magnetic subsystem of a curved magnet with the magnet curvature results in the coupling of a topologically nontrivial magnetization pattern and topology of the object. The mechanism of this coupling is explored and illustrated by an example of a ferromagnetic Möbius ring, where a topologically induced domain wall appears as a ground state in the case of strong easy-normal anisotropy. For the Möbius geometry, the curvilinear form of the exchange interaction produces an additional effective Dzyaloshinskii-like term which leads to the coupling of the magnetochirality of the domain wall and chirality of the Möbius ring. Two types of domain walls are found, transversal and longitudinal, which are oriented across and along the Möbius ring, respectively. In both cases, the effect of magnetochirality symmetry breaking is established. The dependence of the ground state of the Möbius ring on its geometrical parameters and on the value of the easy-normal anisotropy is explored numerically. PMID:26024195

  13. Exact chiral spin liquids and mean-field perturbations of gamma matrix models on the ruby lattice

    NASA Astrophysics Data System (ADS)

    Whitsitt, Seth; Chua, Victor; Fiete, Gregory A.

    2012-11-01

    We theoretically studied an exactly solvable gamma matrix generalization of the Kitaev spin model on the ruby lattice, which is a honeycomb lattice with ‘expanded’ vertices and links. We find that this model displays an exceptionally rich phase diagram that includes (i) gapless phases with stable spin Fermi surfaces, (ii) gapless phases with low-energy Dirac cones and quadratic band touching points and (iii) gapped phases with finite Chern numbers possessing the values ±4,±3,±2 and ±1. The model is then generalized to include Ising-like interactions that break the exact solvability of the model in a controlled manner. When these terms are dominant, they lead to a trivial Ising ordered phase which is shown to be adiabatically connected to a large coupling limit of the exactly solvable phase. In the limit where these interactions are weak, we treat them within mean-field theory and present the resulting phase diagrams. We discuss the nature of the transitions between various phases. Our results show the richness of possible ground states in closely related magnetic systems.

  14. On the spin bias of satellite galaxies in the local group-like environment

    SciTech Connect

    Lee, Jounghun; Lemson, Gerard E-mail: lemson@mpa-garching.mpg.de

    2013-05-01

    We utilize the Millennium-II simulation databases to study the spin bias of dark subhalos in the Local Group-like systems which have two prominent satellites with comparable masses. Selecting the group-size halos with total mass similar to that of the Local Group (LG) from the friends-of-friends halo catalog and locating their subhalos from the substructure catalog, we determine the most massive (main) and second to the most massive (submain) ones among the subhalos hosted by each selected halo. When the dimensionless spin parameter (λ) of each subhalo is derived from its specific angular momentum and circular velocity at virial radius, a signal of correlation is detected between the spin parameters of the subhalos and the main-to-submain mass ratios of their host halos at z = 0: the higher main-to-submain mass ratio a host halo has, the higher mean spin parameter its subhalos have. It is also found that the correlations exist even for the subhalo progenitors at z = 0.5 and 1. Our interpretation of this result is that the subhalo spin bias is not a transient effect but an intrinsic property of a LG-like system with higher main-to- submain mass ratio, caused by stronger anisotropic stress in the region. A cosmological implication of our result is also discussed.

  15. Chiral squaring

    NASA Astrophysics Data System (ADS)

    Nagy, S.

    2016-07-01

    We construct the states and symmetries of N = 4 super-Yang-Mills by tensoring two N = 1 chiral multiplets and introducing two extra SUSY generators. This allows us to write the maximal N = 8 supergravity as four copies of the chiral multiplet. We extend this to higher dimensions and discuss applications to scattering amplitudes.

  16. Chiral superconductors.

    PubMed

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed. PMID:27088452

  17. Chiral superconductors

    NASA Astrophysics Data System (ADS)

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  18. THE BLACK HOLE SPIN AND SOFT X-RAY EXCESS OF THE LUMINOUS SEYFERT GALAXY FAIRALL 9

    SciTech Connect

    Lohfink, Anne M.; Reynolds, Christopher S.; Mushotzky, Richard F.; Miller, Jon M.; Brenneman, Laura W.; Nowak, Michael A.; Fabian, Andrew C.

    2012-10-10

    We present an analysis of all XMM-Newton and Suzaku X-ray spectra of the nearby luminous Seyfert galaxy Fairall 9. Confirming previous analyses, we find robust evidence for a broad iron line associated with X-ray reflection from the innermost accretion disk. By fitting a spectral model that includes a relativistically ionized reflection component, we examine the constraints on the inclination of the inner accretion disk and the black hole spin, and the complications introduced by the presence of a photoionized emission line system. Employing multi-epoch fitting, we attempt to obtain robust and concordant measures of the accretion disk parameters. We also clearly see a soft X-ray excess in Fairall 9. During certain epochs, the soft excess can be described with the same disk reflection component that produces the iron line. However, there are epochs where an additional soft component is required. This can be attributed to either an additional highly ionized, strongly blurred disk reflection component or a new X-ray continuum component.

  19. Lateral chirality-sorting optical forces

    PubMed Central

    Hayat, Amaury; Mueller, J. P. Balthasar; Capasso, Federico

    2015-01-01

    The transverse component of the spin angular momentum of evanescent waves gives rise to lateral optical forces on chiral particles, which have the unusual property of acting in a direction in which there is neither a field gradient nor wave propagation. Because their direction and strength depends on the chiral polarizability of the particle, they act as chirality-sorting and may offer a mechanism for passive chirality spectroscopy. The absolute strength of the forces also substantially exceeds that of other recently predicted sideways optical forces. PMID:26453555

  20. Isotopic chirality

    SciTech Connect

    Floss, H.G.

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  1. Punctuated Chirality

    NASA Astrophysics Data System (ADS)

    Gleiser, Marcelo; Thorarinson, Joel; Walker, Sara Imari

    2008-12-01

    Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively L-amino acids, while only D-sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high intensity and long duration events may drive achiral initial conditions towards chirality. We argue that life’s homochirality resulted from sequential chiral symmetry breaking triggered by environmental events, thus extending the theory of punctuated equilibrium to the prebiotic realm. Applying our arguments to other potentially life-bearing planetary platforms, we predict that a statistically representative sampling will be racemic on average.

  2. Punctuated chirality.

    PubMed

    Gleiser, Marcelo; Thorarinson, Joel; Walker, Sara Imari

    2008-12-01

    Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively L-amino acids, while only D-sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high intensity and long duration events may drive achiral initial conditions towards chirality. We argue that life's homochirality resulted from sequential chiral symmetry breaking triggered by environmental events, thus extending the theory of punctuated equilibrium to the prebiotic realm. Applying our arguments to other potentially life-bearing planetary platforms, we predict that a statistically representative sampling will be racemic on average. PMID:18841492

  3. Prebiotic chirality

    NASA Astrophysics Data System (ADS)

    Mekki-Berrada, Ali

    Bringing closer phospholipids each other on a bilayer of liposome, causes their rotation around their fatty acids axis, generating a force which brings closer the two sheets of the bilayer. In this theoretical study I show that for getting the greater cohesion of the liposome, by these forces, the serine in the hydrophilic head must have a L chirality. In the case where the hydrophilic head is absent amino acids with L chirality could contribute to this cohesion by taking the place of L-serine. Some coenzymes having a configuration similar to ethanolamine may also contribute. This is the case of pyridoxamine, thiamine and tetrahydrofolic acid. The grouping of amino acids of L chirality and pyridoxamine on the wall could initialize the prebiotic metabolism of these L amino acids only. This would explain the origin of the homo-chirality of amino acids in living world. Furthermore I show that in the hydrophilic head, the esterification of glycerol-phosphate by two fatty acids go through the positioning of dihydroxyacetone-phosphate and L-glyceraldehyde-3-phosphate, but not of D-glyceraldehyde-3-phosphate, prior their hydrogenation to glycerol-3- phosphate. The accumulation of D-glyceraldehyde-3-phosphate in the cytoplasm displace the thermodynamic equilibria towards the synthesis of D-dATP from D-glyceraldehyde-3-phosphate, acetaldehyde and prebiotic adenine, a reaction which does not require a coenzyme in the biotic metabolism. D-dATP and thiamine, more prebiotic metabolism of L-amino acids on the wall, would initialize D-pentoses phosphate and D-nucleotides pathways from the reaction of D-glyceraldehyde-3-phosphate + dihydroxyacetone-phosphate + prebiotic nucleic bases. The exhaustion of the prebiotic glyceraldehyde (racemic) and the nascent biotic metabolism dominated by D-glyceraldehyde-3-phosphate, would explain the origin of homo-chirality of sugars in living world. References: http://en.wikiversity.org/wiki/Prebiotic_chirality

  4. Chiral Dynamics 2006

    NASA Astrophysics Data System (ADS)

    Ahmed, Mohammad W.; Gao, Haiyan; Weller, Henry R.; Holstein, Barry

    2007-10-01

    pt. A. Plenary session. Opening remarks: experimental tests of chiral symmetry breaking / A. M. Bernstein. [Double pie symbols] scattering / H. Leutwyler. Chiral effective field theory in a [Triangle]-resonance region / V. Pascalutsa. Some recent developments in chiral perturbation theory / Ulf-G. Mei ner. Chiral extrapolation and nucleon structure from the lattice / R.D. Young. Recent results from HAPPEX / R. Michaels. Chiral symmetries and low energy searches for new physics / M.J. Ramsey-Musolf. Kaon physics: recent experimental progress / M. Moulson. Status of the Cabibbo angle / V. Cirigliano. Lattice QCD and nucleon spin structure / J.W. Negele. Spin sum rules and polarizabilities: results from Jefferson lab / J-P Chen. Compton scattering and nucleon polarisabilities / Judith A. McGovern. Virtual compton scattering at MIT-bates / R. Miskimen. Physics results from the BLAST detector at the BATES accelerator / R.P. Redwine. The [Pie sympbol]NN system, recent progress / C. Hanhart. Application of chiral nuclear forces to light nuclei / A. Nogga. New results on few-body experiments at low energy / Y. Nagai. Few-body lattice calculations / M.J. Savage. Research opportunities at the upgraded HI?S facility / H.R. Weller -- pt. B. Goldstone boson dynamics. Working group summary: Goldstone Boson dynamics / G. Colangelo and S. Giovannella. Recent results on radiative Kaon decays from NA48 and NA48/2 / S.G. López. Cusps in K-->3 [Pie symbol] decays / B. Kubis. Recent KTeV results on radiative Kaon decays / M.C. Ronquest. The [Double pie symbols] scattering amplitude / J.R. Peláez. Determination of the Regge parameters in the [Double pie symbols] scattering amplitude / I. Caprini. e+e- Hadronic cross section measurement at DA[symbol]NE with the KLOE detector / P. Beltrame. Measurement of the form factors of e+e- -->2([Pie symbol]+[Pie symbol]-), pp and the resonant parameters of the heavy charmonia at BES / H. Hu. Measurement of e+e- multihadronic cross section below 4

  5. Chirality and gravitational parity violation.

    PubMed

    Bargueño, Pedro

    2015-06-01

    In this review, parity-violating gravitational potentials are presented as possible sources of both true and false chirality. In particular, whereas phenomenological long-range spin-dependent gravitational potentials contain both truly and falsely chiral terms, it is shown that there are models that extend general relativity including also coupling of fermionic degrees of freedom to gravity in the presence of torsion, which give place to short-range truly chiral interactions similar to that usually considered in molecular physics. Physical mechanisms which give place to gravitational parity violation together with the expected size of the effects and their experimental constraints are discussed. Finally, the possible role of parity-violating gravity in the origin of homochirality and a road map for future research works in quantum chemistry is presented. PMID:25919812

  6. Establishing the fundamental magnetic interactions in the chiral Skyrmionic Mott insulator Cu(2)OSeO(3) by terahertz electron spin resonance.

    PubMed

    Ozerov, M; Romhányi, J; Belesi, M; Berger, H; Ansermet, J-Ph; van den Brink, Jeroen; Wosnitza, J; Zvyagin, S A; Rousochatzakis, I

    2014-10-10

    The recent discovery of Skyrmions in Cu(2)OSeO(3) has established a new platform to create and manipulate Skyrmionic spin textures. We use high-field electron spin resonance with a terahertz free-electron laser and pulsed magnetic fields up to 64 T to probe and quantify its microscopic spin-spin interactions. In addition to the previously observed long-wavelength Goldstone mode, this technique probes also the high-energy part of the excitation spectrum which is inaccessible by standard low-frequency electron spin resonance. Fitting the behavior of the observed modes in magnetic field to a theoretical framework establishes experimentally that the fundamental magnetic building blocks of this Skyrmionic magnet are rigid, highly entangled and weakly coupled tetrahedra. PMID:25375739

  7. Chiral symmetry in rotating systems

    NASA Astrophysics Data System (ADS)

    Malik, Sham S.

    2015-08-01

    The triaxial rotating system at critical angular momentum I ≥Iband exhibits two enatiomeric (the left- and right-handed) forms. These enatiomers are related to each other through dynamical chiral symmetry. The chiral symmetry in rotating system is defined by an operator χ ˆ =Rˆy (π) T ˆ, which involves the product of two distinct symmetries, namely, continuous and discrete. Therefore, new guidelines are required for testing its commutation with the system Hamiltonian. One of the primary objectives of this study is to lay down these guidelines. Further, the possible impact of chiral symmetry on the geometrical arrangement of angular momentum vectors and investigation of observables unique to nuclear chiral-twins is carried out. In our model, the angular momentum components (J1, J2, J3) occupy three mutually perpendicular axes of triaxial shape and represent a non-planar configuration. At certain threshold energy, the equation of motion in angular momentum develops a second order phase transition and as a result two distinct frames (i.e., the left- and right-handed) are formed. These left- and right-handed states correspond to a double well system and are related to each other through chiral operator. At this critical angular momentum, the centrifugal and Coriolis interactions lower the barrier in the double well system. The tunneling through the double well starts, which subsequently lifts the degeneracy among the rotational states. A detailed analysis of the behavior of rotational energies, spin-staggering, and the electromagnetic transition probabilities of the resulting twin-rotational bands is presented. The ensuing model results exhibit similarities with many observed features of the chiral-twins. An advantage of our formalism is that it is quite simple and it allows us to pinpoint the understanding of physical phenomenon which lead to chiral-twins in rotating systems.

  8. Chiral streamers

    SciTech Connect

    Zou, Dandan; Cao, Xin; Lu, Xinpei; Ostrikov, Kostya

    2015-10-15

    The interaction of time-varying electromagnetic fields and solid, liquid, and gaseous matter may lead to electrical breakdown phenomena through the excitation of ionization waves or streamers that control the dynamics of localized plasma propagation through the media. The streamers usually propagate along straight lines, either between random points in space or along a certain direction in a guided mode. Here, we report on a new type of plasma discharges with the regular helical propagation pattern driven by a pulsed dc voltage in nitrogen at sub-atmospheric-pressure conditions. The helical guided streamers, named chiral streamers or chi-streamers, are excited without any external magnetic fields, which commonly cause helical plasma motions. We also demonstrate a hybrid propagation mode involving the interchangeable chiral streamers and the straight-line propagating plasmas. High-speed, time-resolved optical imaging reveals that the chiral streamers and the hybrid patterns are made of spatially localized discrete plasma bullets, similar to the straight-line guided streamers. These results may enable effective control of propagation of confined plasmas and electromagnetic energy along pre-determined, potentially deterministic paths, which have important implications for the development of next-generation plasma-based radiation sources, communication devices, and medical treatments.

  9. Chiral streamers

    NASA Astrophysics Data System (ADS)

    Zou, Dandan; Cao, Xin; Lu, Xinpei; Ostrikov, Kostya Ken

    2015-10-01

    The interaction of time-varying electromagnetic fields and solid, liquid, and gaseous matter may lead to electrical breakdown phenomena through the excitation of ionization waves or streamers that control the dynamics of localized plasma propagation through the media. The streamers usually propagate along straight lines, either between random points in space or along a certain direction in a guided mode. Here, we report on a new type of plasma discharges with the regular helical propagation pattern driven by a pulsed dc voltage in nitrogen at sub-atmospheric-pressure conditions. The helical guided streamers, named chiral streamers or chi-streamers, are excited without any external magnetic fields, which commonly cause helical plasma motions. We also demonstrate a hybrid propagation mode involving the interchangeable chiral streamers and the straight-line propagating plasmas. High-speed, time-resolved optical imaging reveals that the chiral streamers and the hybrid patterns are made of spatially localized discrete plasma bullets, similar to the straight-line guided streamers. These results may enable effective control of propagation of confined plasmas and electromagnetic energy along pre-determined, potentially deterministic paths, which have important implications for the development of next-generation plasma-based radiation sources, communication devices, and medical treatments.

  10. Dark-ages reionization and galaxy formation simulation - II. Spin and concentration parameters for dark matter haloes during the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Angel, Paul W.; Poole, Gregory B.; Ludlow, Aaron D.; Duffy, Alan R.; Geil, Paul M.; Mutch, Simon J.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2016-06-01

    We use high-resolution N-body simulations to study the concentration and spin parameters of dark matter haloes in the mass range 108 M⊙ h-1 < M < 1011 M⊙ h-1 and redshifts 5 < z < 10, corresponding to the haloes of galaxies thought to be responsible for reionization. We build a subsample of equilibrium haloes and contrast their properties to the full population that also includes unrelaxed systems. Concentrations are calculated by fitting both NFW and Einasto profiles to the spherically averaged density profiles of individual haloes. After removing haloes that are out of equilibrium, we find a z > 5 concentration-mass (c(M)) relation that is almost flat and well described by a simple power law for both NFW and Einasto fits. The intrinsic scatter around the mean relation is Δcvir ˜ 1 (or 20 per cent) at z = 5. We also find that the analytic model proposed by Ludlow et al. reproduces the mass and redshift dependence of halo concentrations. Our best-fitting Einasto shape parameter, α, depends on peak height, ν, in a manner that is accurately described by α = 0.0070ν2 + 0.1839. The distribution of the spin parameter, λ, has a weak dependence on equilibrium state; λ peaks at roughly ˜0.033 for our relaxed sample, and at ˜0.04 for the full population. The spin-virial mass relation has a mild negative correlation at high redshift.

  11. Simplification of the 1H NMR spectra of enantiomers dissolved in chiral liquid crystals, combining variable angle sample spinning and selective refocusing experiments.

    PubMed

    Beguin, Laetitia; Courtieu, Jacques; Ziani, Latifa; Merlet, Denis

    2006-12-01

    This work presents a technique to simplify overcrowded proton spectra in chiral liquid crystal solvents using rotation of the sample near the magic angle, VASS, combined with homonuclear selective refocusing 2D NMR experiments, SERF. This methodology provides a powerful tool to visualise enantiomers out of unresolved proton spectra. A modified SERF sequence is presented where the resulting 2D spectrum can be phased to increase the resolution. Accurate enantiomeric excesses are determined that are not possible to measure on static samples. Two examples are presented. PMID:16991108

  12. Chiral Thermoelectrics with Quantum Hall Edge States

    NASA Astrophysics Data System (ADS)

    Sánchez, Rafael; Sothmann, Björn; Jordan, Andrew N.

    2015-04-01

    The thermoelectric properties of a three-terminal quantum Hall conductor are investigated. We identify a contribution to the thermoelectric response that relies on the chirality of the carrier motion rather than on spatial asymmetries. The Onsager matrix becomes maximally asymmetric with configurations where either the Seebeck or the Peltier coefficients are zero while the other one remains finite. Reversing the magnetic field direction exchanges these effects, which originate from the chiral nature of the quantum Hall edge states. The possibility to generate spin-polarized currents in quantum spin Hall samples is discussed.

  13. Plasmonic enhancement of chiral light-matter interactions

    NASA Astrophysics Data System (ADS)

    Alizadeh, Mohammadhossein

    Plasmonic nanostructures provide unique opportunities to improve the detection limits of chiroptical spectroscopies by enhancing chiral light-matter interactions. The most significant of such interaction occur in ultraviolet (UV) range of the electromagnetic spectrum that remains challenging to access by conventional localized plasmon resonance based sensors. Although Surface Plasmon Polaritons (SPPs) on noble metal films can sustain resonances in the desired spectral range, their transverse magnetic nature has been an obstacle for enhancing chiroptical effects. We demonstrate, both analytically and numerically, that SPPs excited by near-field sources can exhibit rich and non-trivial chiral characteristics. In particular, we show that the excitation of SPPs by a chiral source not only results in a locally enhanced optical chirality but also achieves manifold enhancement of net optical chirality. Our finding that SPPs facilitate a plasmonic enhancement of optical chirality in the UV part of the spectrum is of great interest in chiral bio-sensing. Next we focus on the new concepts of transverse spin angular momentum and Belinfante spin momentum of evanescent waves, which have recently drawn considerable attention. We investigate these novel physical properties of electromagnetic fields in the context of chiral surface plasmon polaritons. We demonstrate, both analytically and numerically, that locally excited surface plasmon polaritons possess transverse Spin angular momentum and Belinfante momentum with rich and non-trivial characteristics. We also show that the transverse spin angular momentum of locally excited surface plasmon polaritons leads to the emergence of transverse chiral forces in opposite directions for chiral objects of different handedness. The magnitude of such a transverse force is comparable to the optical gradient force and scattering forces. This finding may pave the way for realization of optical separation of chiral biomolecules.

  14. A semiclassical formulation of the chiral magnetic effect and chiral anomaly in even d + 1 dimensions

    NASA Astrophysics Data System (ADS)

    Dayi, Ömer F.; Elbistan, Mahmut

    2016-05-01

    In terms of the matrix valued Berry gauge field strength for the Weyl Hamiltonian in any even space-time dimensions a symplectic form whose elements are matrices in spin indices is introduced. Definition of the volume form is modified appropriately. A simple method of finding the path integral measure and the chiral current in the presence of external electromagnetic fields is presented. It is shown that within this new approach the chiral magnetic effect as well as the chiral anomaly in even d + 1 dimensions are accomplished straightforwardly.

  15. Broken chiral symmetry on a null plane

    SciTech Connect

    Beane, Silas R.

    2013-10-15

    On a null-plane (light-front), all effects of spontaneous chiral symmetry breaking are contained in the three Hamiltonians (dynamical Poincaré generators), while the vacuum state is a chiral invariant. This property is used to give a general proof of Goldstone’s theorem on a null-plane. Focusing on null-plane QCD with N degenerate flavors of light quarks, the chiral-symmetry breaking Hamiltonians are obtained, and the role of vacuum condensates is clarified. In particular, the null-plane Gell-Mann–Oakes–Renner formula is derived, and a general prescription is given for mapping all chiral-symmetry breaking QCD condensates to chiral-symmetry conserving null-plane QCD condensates. The utility of the null-plane description lies in the operator algebra that mixes the null-plane Hamiltonians and the chiral symmetry charges. It is demonstrated that in a certain non-trivial limit, the null-plane operator algebra reduces to the symmetry group SU(2N) of the constituent quark model. -- Highlights: •A proof (the first) of Goldstone’s theorem on a null-plane is given. •The puzzle of chiral-symmetry breaking condensates on a null-plane is solved. •The emergence of spin-flavor symmetries in null-plane QCD is demonstrated.

  16. Bars Triggered By Galaxy Flybys

    NASA Astrophysics Data System (ADS)

    Holley-Bockelmann, Kelly; Lang, Meagan; Sinha, Manodeep

    2015-05-01

    Galaxy mergers drive galaxy evolution and are a key mechanism by which galaxies grow and transform. Unlike galaxy mergers where two galaxies combine into one remnant, galaxy flybys occur when two independent galaxy halos interpenetrate but detach at a later time; these one-time events are surprisingly common and can even out-number galaxy mergers at low redshift for massive halos. Although these interactions are transient and occur far outside the galaxy disk, flybys can still drive a rapid and large pertubations within both the intruder and victim halos. We explored how flyby encounters can transform each galaxy using a suite of N-body simulations. We present results from three co-planar flybys between disk galaxies, demonstrating that flybys can both trigger strong bar formation and can spin-up dark matter halos.

  17. Chiral mirrors

    SciTech Connect

    Plum, Eric; Zheludev, Nikolay I.

    2015-06-01

    Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media.

  18. Holographic chiral induced W-gravities

    NASA Astrophysics Data System (ADS)

    Poojary, Rohan R.; Suryanarayana, Nemani V.

    2015-10-01

    We study boundary conditions for 3-dimensional higher spin gravity that admit asymptotic symmetry algebras expected of 2-dimensional induced higher spin theories in the light-cone gauge. For the higher spin theory based on sl(3,{R})oplus sl(3,{R}) algebra, our boundary conditions give rise to one copy of classical W 3 and a copy of sl(3,{R}) or su(1 , 2) Kac-Moody as the asymptotic symmetry algebra. We propose that the higher spin theories with these boundary conditions describe appropriate chiral induced W-gravity theories on the boundary. We also consider boundary conditions of spin-3 higher spin gravity that admit a u(1) ⊕ u(1) current algebra.

  19. Preparation, characterization and magnetic behavior of a spin-labelled physical hydrogel containing a chiral cyclic nitroxide radical unit fixed inside the gelator molecule.

    PubMed

    Takemoto, Yusa; Yamamoto, Takayuki; Ikuma, Naohiko; Uchida, Yoshiaki; Suzuki, Katsuaki; Shimono, Satoshi; Takahashi, Hiroki; Sato, Nobuhiro; Oba, Yojiro; Inoue, Rintaro; Sugiyama, Masaaki; Tsue, Hirohito; Kato, Tatsuhisa; Yamauchi, Jun; Tamura, Rui

    2015-07-21

    An optically active amphiphilic nitroxide radical compound [(S,S,R)-], which contains a paramagnetic (2S,5S)-2,5-dimethyl-2,5-diphenylpyrrolidine-N-oxyl radical group fixed in the inner position together with a hydrophobic long alkyl chain and a hydrophilic (R)-alanine residue in the opposite terminal positions, was found to serve as a low-molecular-weight gelator in H2O to give rise to a spin-labelled physical hydrogel. Characterization of the hydrogel was performed by microscopic (SEM, TEM and AFM) techniques, XRD and SAXS measurements, and IR, UV and CD spectroscopies. The gel-sol transition temperature was determined by EPR spectral line-width (ΔHpp) analysis. Measurement of the temperature dependence of relative paramagnetic susceptibility (χrel) for the hydrogel and sol phases was achieved by means of the double-integration of VT-EPR spectra. PMID:26073537

  20. Chirality of Viral Capsids

    NASA Astrophysics Data System (ADS)

    Dharmavaram, Sanjay; Xie, Fangming; Bruinsma, Robijn; Klug, William; Rudnick, Joseph

    Most icosahedral viruses are classified by their T-number which identifies their capsid in terms of the number of capsomers and their relative arrangement. Certain T-numbers (T = 7 for instance) are inherently chiral (with no reflection planes) while others (e.g. T = 1) are achiral. We present a Landau-Brazovskii (LB) theory for weak crystallization in which a scalar order parameter that measures density of capsid proteins successfully predicts the various observed T-numbers and their respective chiralities. We find that chiral capsids gain stability by spontaneously breaking symmetry from an unstable chiral state. The inherently achiral LB-free energy does not preferentially select a particular chiral state from its mirror reflection. Based on the physical observation that proteins are inherently chiral molecules with directional interactions, we propose a new chiral term to the LB energy as a possible selection mechanism for chirality.

  1. Possible chiral bands in {sup 194}Tl

    SciTech Connect

    Masiteng, P. L.; Ramashidzha, T. M.; Maliage, S. M.; Sharpey-Schafer, J. F.; Vymers, P. A.; Lawrie, E. A.; Lawrie, J. J.; Bark, R. A.; Mullins, S. M.; Murray, S. H. T.; Kau, J.; Komati, F.; Lindsay, R.; Matamba, I.; Mutshena, P.; Zhang, Y.

    2011-10-28

    High spin states in {sup 194}Tl, excited through the {sup 181}Ta({sup 18}O,5n) fusion evaporation reaction, were studied using the AFRODITE array at iThemba LABS. Candidate chiral bands built on the {pi}h{sub 9/2} x {nu}i{sub 13/2}{sup 1} configuration were found. Furthermore these bands were observed through a band crossing caused by the excitation of a {nu}i{sub 13/2} pair. Above the band crossing the excitation energies remain close, suggesting that chirality may persist for the four quasiparticle configuration too.

  2. Phenomenology of chiral damping in noncentrosymmetric magnets

    NASA Astrophysics Data System (ADS)

    Akosa, Collins Ashu; Miron, Ioan Mihai; Gaudin, Gilles; Manchon, Aurélien

    2016-06-01

    A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking inversion symmetry. We show that the magnetic damping tensor acquires a component linear in magnetization gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such a damping in ferromagnetic metals, among which local spin pumping in the presence of an anomalous Hall effect and an effective "s-d" Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping in terms of domain-wall motion is investigated in the flow and creep regimes.

  3. Introduction to chiral symmetry

    SciTech Connect

    Koch, V.

    1996-01-08

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. Effective chiral models such as the linear and nonlinear sigma model will be discussed as well as the essential ideas of chiral perturbation theory. Some applications to the physics of ultrarelativistic heavy ion collisions will be presented.

  4. Invariant Spin in the Proton

    SciTech Connect

    Thomas, Anthony W.

    2008-10-13

    We discuss recent theoretical progress in understanding the distribution of spin and orbital angular momentum in the proton. Particular attention is devoted to the effect of QCD evolution and to the distinction between 'chiral' and 'invariant' spin. This is particularly significant with respect to the possible presence of polarized strange quarks.

  5. Invariant Spin in the Proton

    SciTech Connect

    Thomas, Anthony

    2008-11-01

    We discuss recent theoretical progress in understanding the distribution of spin and orbital angular momentum in the proton. Particular attention is devoted to the effect of QCD evolution and to the distinction between "chiral" and "invariant" spin. This is particularly significant with respect to the possible presence of polarized strange quarks.

  6. Chirality in nonlinear optics.

    PubMed

    Haupert, Levi M; Simpson, Garth J

    2009-01-01

    The past decade has witnessed the emergence of new measurement approaches and applications for chiral thin films and materials enabled by the observations of the high sensitivity of second-order nonlinear optical measurements to chirality. In thin films, the chiral response to second harmonic generation and sum frequency generation (SFG) from a single molecular monolayer is often comparable with the achiral response. The chiral specificity also allows for symmetry-allowed SFG in isotropic chiral media, confirming predictions made approximately 50 years ago. With these experimental demonstrations in hand, an important challenge is the construction of intuitive predictive models that allow the measured chiral response to be meaningfully related back to molecular and macromolecular structure. This review defines and considers three distinct mechanisms for chiral effects in uniaxially oriented assemblies: orientational chirality, intrinsic chirality, and isotropic chirality. The role of each is discussed in experimental and computational studies of bacteriorhodopsin films, binaphthol, and collagen. Collectively, these three model systems support a remarkably simple framework for quantitatively recovering the measured chiral-specific activity. PMID:19046125

  7. Chirality in Nonlinear Optics

    NASA Astrophysics Data System (ADS)

    Haupert, Levi M.; Simpson, Garth J.

    2009-05-01

    The past decade has witnessed the emergence of new measurement approaches and applications for chiral thin films and materials enabled by the observations of the high sensitivity of second-order nonlinear optical measurements to chirality. In thin films, the chiral response to second harmonic generation and sum frequency generation (SFG) from a single molecular monolayer is often comparable with the achiral response. The chiral specificity also allows for symmetry-allowed SFG in isotropic chiral media, confirming predictions made ˜50 years ago. With these experimental demonstrations in hand, an important challenge is the construction of intuitive predictive models that allow the measured chiral response to be meaningfully related back to molecular and macromolecular structure. This review defines and considers three distinct mechanisms for chiral effects in uniaxially oriented assemblies: orientational chirality, intrinsic chirality, and isotropic chirality. The role of each is discussed in experimental and computational studies of bacteriorhodopsin films, binaphthol, and collagen. Collectively, these three model systems support a remarkably simple framework for quantitatively recovering the measured chiral-specific activity.

  8. Emergent spin

    SciTech Connect

    Creutz, Michael

    2014-03-15

    Quantum mechanics and relativity in the continuum imply the well known spin–statistics connection. However for particles hopping on a lattice, there is no such constraint. If a lattice model yields a relativistic field theory in a continuum limit, this constraint must “emerge” for physical excitations. We discuss a few models where a spin-less fermion hopping on a lattice gives excitations which satisfy the continuum Dirac equation. This includes such well known systems such as graphene and staggered fermions. -- Highlights: •The spin–statistics theorem is not required for particles on a lattice. •Spin emerges dynamically when spinless fermions have a relativistic continuum limit. •Graphene and staggered fermions are examples of this phenomenon. •The phenomenon is intimately tied to chiral symmetry and fermion doubling. •Anomaly cancellation is a crucial feature of any valid lattice fermion action.

  9. Chiral symmetry and chiral-symmetry breaking

    SciTech Connect

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)

  10. Theory of magnon motive force in chiral ferromagnets

    NASA Astrophysics Data System (ADS)

    Güngördü, Utkan; Kovalev, Alexey A.

    2016-07-01

    We predict that magnon motive force can lead to temperature dependent, nonlinear chiral damping in both conducting and insulating ferromagnets. We estimate that this damping can significantly influence the motion of skyrmions and domain walls at finite temperatures. We also find that in systems with low Gilbert damping moving chiral magnetic textures and resulting magnon motive forces can induce large spin and energy currents in the transverse direction.

  11. Chiral Surface Modes in Three-Dimensional Topological Insulators

    NASA Astrophysics Data System (ADS)

    Hattori, Kiminori; Okamoto, Hiroaki

    2016-05-01

    Where chiral modes should appear is an essential question for the quantum anomalous Hall (QAH) effect in three-dimensional topological insulators (3DTIs). In this letter, we show that in a slab of ferromagnetic 3DTI subjected to a uniform exchange field normal to its top and bottom surfaces, the QAH effect creates a single chiral surface mode delocalized on the side faces. In a nonmagnetic 3DTI, analogously, delocalized helical modes consisting of a pair of oppositely propagating chiral surface modes are produced by the quantum spin Hall effect.

  12. Electromagnetic propulsion and separation by chirality of nanoparticles in liquids.

    PubMed

    Kirkinis, E; Andreev, A V; Spivak, B

    2012-01-01

    We introduce a new mechanism for the propulsion and separation by chirality of small ferromagnetic particles suspended in a liquid. Under the action of a uniform dc magnetic field H and an ac electric field E isomers with opposite chirality move in opposite directions. Such a mechanism could have a significant impact on a wide range of emerging technologies. The component of the chiral velocity that is odd in H is found to be proportional to the intrinsic orbital and spin angular momentum of the magnetized electrons. This effect arises because a ferromagnetic particle responds to the applied torque as a small gyroscope. PMID:22400671

  13. Electromagnetic propulsion and separation by chirality of nanoparticles in liquids

    NASA Astrophysics Data System (ADS)

    Kirkinis, E.; Andreev, A. V.; Spivak, B.

    2012-01-01

    We introduce a new mechanism for the propulsion and separation by chirality of small ferromagnetic particles suspended in a liquid. Under the action of a uniform dc magnetic field H and an ac electric field E isomers with opposite chirality move in opposite directions. Such a mechanism could have a significant impact on a wide range of emerging technologies. The component of the chiral velocity that is odd in H is found to be proportional to the intrinsic orbital and spin angular momentum of the magnetized electrons. This effect arises because a ferromagnetic particle responds to the applied torque as a small gyroscope.

  14. Chiral magnetic effect in ZrTe5

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Kharzeev, Dmitri E.; Zhang, Cheng; Huang, Yuan; Pletikosić, I.; Fedorov, A. V.; Zhong, R. D.; Schneeloch, J. A.; Gu, G. D.; Valla, T.

    2016-06-01

    The chiral magnetic effect is the generation of an electric current induced by chirality imbalance in the presence of a magnetic field. It is a macroscopic manifestation of the quantum anomaly in relativistic field theory of chiral fermions (massless spin 1/2 particles with a definite projection of spin on momentum)--a remarkable phenomenon arising from a collective motion of particles and antiparticles in the Dirac sea. The recent discovery of Dirac semimetals with chiral quasiparticles opens a fascinating possibility to study this phenomenon in condensed matter experiments. Here we report on the measurement of magnetotransport in zirconium pentatelluride, ZrTe5, that provides strong evidence for the chiral magnetic effect. Our angle-resolved photoemission spectroscopy experiments show that this material’s electronic structure is consistent with a three-dimensional Dirac semimetal. We observe a large negative magnetoresistance when the magnetic field is parallel with the current. The measured quadratic field dependence of the magnetoconductance is a clear indication of the chiral magnetic effect. The observed phenomenon stems from the effective transmutation of a Dirac semimetal into a Weyl semimetal induced by parallel electric and magnetic fields that represent a topologically non-trivial gauge field background. We expect that the chiral magnetic effect may emerge in a wide class of materials that are near the transition between the trivial and topological insulators.

  15. Chiral magnetic effect in ZrTe5

    DOE PAGESBeta

    Li, Q.; Kharzeev, D. E.; Zhang, C.; Huang, Y.; Pletikosic, I.; Fedorov, A. V.; Zhong, R. D.; Schneeloch, J. A.; Gu, G. D.; Valla, T.

    2016-02-08

    The chiral magnetic effect is the generation of electric current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum anomaly in relativistic field theory of chiral fermions (massless spin 1/2 particles with a definite projection of spin on momentum) - a dramatic phenomenon arising from a collective motion of particles and antiparticles in the Dirac sea. The recent discovery of Dirac semimetals with chiral quasi-particles opens a fascinating possibility to study this phenomenon in condensed matter experiments. Here we report on the measurement of magneto-transport in zirconium pentatelluride, ZrTe5 that providesmore » a strong evidence for the chiral magnetic effect. Our angleresolved photoemission spectroscopy experiments show that this material’s electronic structure is consistent with a 3D Dirac semimetal. We observe a large negative magnetoresistance when magnetic field is parallel with the current. The measured quadratic field dependence of the magnetoconductance is a clear indication of the chiral magnetic effect. The observed phenomenon stems from the effective transmutation of Dirac semimetal into a Weyl semimetal induced by the parallel electric and magnetic fields that represent a topologically nontrivial gauge field background. We expect that chiral magnetic effect may emerge in a wide class of materials that are near the transition between the trivial and topological insulators.« less

  16. Chiral plaquette polaron theory of cuprate superconductivity

    NASA Astrophysics Data System (ADS)

    Tahir-Kheli, Jamil; Goddard, William A., III

    2007-07-01

    Ab initio density functional calculations on explicitly doped La2-xSrxCuO4 find that doping creates localized holes in out-of-plane orbitals. A model for cuprate superconductivity is developed based on the assumption that doping leads to the formation of holes on a four-site Cu plaquette composed of the out-of-plane A1 orbitals apical Opz , planar Cud3z2-r2 , and planar Opσ . This is in contrast to the assumption of hole doping into planar Cudx2-y2 and Opσ orbitals as in the t-J model. Allowing these holes to interact with the d9 spin background leads to chiral polarons with either a clockwise or anticlockwise charge current. When the polaron plaquettes percolate through the crystal at x≈0.05 for La2-xSrxCuO4 , a Cudx2-y2 and planar Opσ band is formed. The computed percolation doping of x≈0.05 equals the observed transition to the “metallic” and superconducting phase for La2-xSrxCuO4 . Spin exchange Coulomb repulsion with chiral polarons leads to d -wave superconducting pairing. The equivalent of the Debye energy in phonon superconductivity is the maximum energy separation between a chiral polaron and its time-reversed partner. This energy separation is on the order of the antiferromagnetic spin coupling energy, Jdd˜0.1eV , suggesting a higher critical temperature. An additive skew-scattering contribution to the Hall effect is induced by chiral polarons and leads to a temperature dependent Hall effect that fits the measured values for La2-xSrxCuO4 . The integrated imaginary susceptibility, observed by neutron spin scattering, satisfies ω/T scaling due to chirality and spin-flip scattering of polarons along with a uniform distribution of polaron energy splittings. The derived functional form is compatible with experiments. The static spin structure factor for chiral spin coupling of the polarons to the undoped antiferromagnetic Cud9 spins is computed for classical spins on large two-dimensional lattices and is found to be incommensurate with a

  17. Planar plasmonic chiral nanostructures.

    PubMed

    Zu, Shuai; Bao, Yanjun; Fang, Zheyu

    2016-02-21

    A strong chiral optical response induced at a plasmonic Fano resonance in a planar Au heptamer nanostructure was experimentally and theoretically demonstrated. The scattering spectra show the characteristic narrow-band feature of Fano resonances for both left and right circular polarized lights, with a chiral response reaching 30% at the Fano resonance. Specifically, we systematically investigate the chiral response of planar heptamers with gradually changing the inter-particle rotation angles and separation distance. The chiral spectral characteristics clearly depend on the strength of Fano resonances and the associated near-field optical distributions. Finite element method simulations together with a multipole expansion method demonstrate that the enhanced chirality is caused by the excitation of magnetic quadrupolar and electric toroidal dipolar modes. Our work provides an effective method for the design of 2D nanostructures with a strong chiral response. PMID:26818746

  18. Axially chiral BODIPYs.

    PubMed

    Lerrick, Reinner I; Winstanley, Thomas P L; Haggerty, Karen; Wills, Corinne; Clegg, William; Harrington, Ross W; Bultinck, Patrick; Herrebout, Wouter; Benniston, Andrew C; Hall, Michael J

    2014-05-11

    The synthesis and resolution of a class of chiral organic fluorophores, axially chiral 4,4-difluoro-4-bora-3a,4a-diaza-s-indacenes (Ax*-BODIPY), is described. Ax*-BODIPYs were prepared through a modular synthesis combined with a late stage Heck functionalisation. Resolution was achieved by preparative chiral HPLC. Absolute stereochemical assignment was performed by comparison of experimental ECD spectra with TD-DFT calculations. PMID:24676233

  19. Galaxies et trous noirs supermassifs

    NASA Astrophysics Data System (ADS)

    Collin-Zahn, Suzy

    2016-08-01

    A few percents of galaxies are classified as « active ». An active galaxy is a galaxy whose nucleus emits more energy than the whole galaxy in the form of electromagnetic radiation, relativistic particles, or mechanical energy. It is activated by a supermassive black hole fueled by matter falling on it, whose characteristics (Eddington luminosity, spin) are recalled. The class includes quasars and Seyfert galaxies. All massive "non active" galaxies contain a supermassive black hole, but there is not enough matter in its environment so as the nucleus becomes luminous. Different items are considered in the paper : how supermassive black holes are fueled, the accretion disc, the jets and the winds, the unified model of active galaxies, how are determined the masses of supermassive black holes, and what is the relation between the evolution of galaxies and supermassive black holes.

  20. Chiral atomically thin films

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm–1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  1. Chiral atomically thin films.

    PubMed

    Kim, Cheol-Joo; Sánchez-Castillo, A; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm(-1)) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra. PMID:26900756

  2. Complex Langevin simulation of chiral symmetry restoration at finite baryonic density

    NASA Astrophysics Data System (ADS)

    Ilgenfritz, Ernst-Michael

    1986-12-01

    A recently proposed effective SU(3) spin model with chiral order parameter is studied by means of the complex Langevin equation. A first-order chiral symmetry restoring and deconfining transition is observed at sufficiently low temperature at finite baryonic density. Permanent address: Sektion Physik, Karl-Marx Universität, DDR-7010 Leipzig, German Democratic Republic.

  3. Imaging and Tailoring the Chirality of Domain Walls in Magnetic Films.

    PubMed

    Chen, Gong; Schmid, Andreas K

    2015-10-14

    Electric-current-induced magnetization switching is a keystone concept in the development of spintronics devices. In the last few years this field has experienced a significant boost with the discovery of ultrafast domain wall motions and very low threshold currents in structures designed to stabilize chiral spin textures. Imaging domain-wall spin textures in situ, while fabricating magnetic multilayer structures, is a powerful way to investigate the forces stabilizing this type of chirality, and informs strategies to engineer structures with controlled spin textures. Here, recent results applying spin-polarized low-energy electron microscopy to image chiral domain walls in magnetic multilayer films are summarized. Providing a way to measure the strength of the asymmetric exchange interaction that causes the chirality, this approach can be used to tailor the texture and handedness of magnetic domain walls by interface engineering. These results advance understanding of the underlying physics and offer new insights toward the design of spintronic devices. PMID:26032892

  4. Chiral geometry in multiple chiral doublet bands

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Chen, Qibo

    2016-02-01

    The chiral geometry of multiple chiral doublet bands with identical configuration is discussed for different triaxial deformation parameters γ in the particle rotor model with . The energy spectra, electromagnetic transition probabilities B(M1) and B(E2), angular momenta, and K-distributions are studied. It is demonstrated that the chirality still remains not only in the yrast and yrare bands, but also in the two higher excited bands when γ deviates from 30°. The chiral geometry relies significantly on γ, and the chiral geometry of the two higher excited partner bands is not as good as that of the yrast and yrare doublet bands. Supported by Plan Project of Beijing College Students’ Scientific Research and Entrepreneurial Action, Major State 973 Program of China (2013CB834400), National Natural Science Foundation of China (11175002, 11335002, 11375015, 11461141002), National Fund for Fostering Talents of Basic Science (NFFTBS) (J1103206), Research Fund for Doctoral Program of Higher Education (20110001110087) and China Postdoctoral Science Foundation (2015M580007)

  5. Chiral Properties in ^134Pr

    NASA Astrophysics Data System (ADS)

    Starosta, K.; Chiara, C. J.; Fossan, D. B.; Koike, T.; Beausang, C. W.; Hecht, A. A.; Boston, A. J.; Chantler, H. J.; Paul, E. S.; Scraggs, H. C.; Simons, A.; Wadsworth, R.; Clark, R. M.

    2001-04-01

    The πh_11/2νh_11/2 doublet bands in ^134Pr, which represent the best evidence to date for chiral symmetry breaking in odd-odd nuclei [1], were investigated with the GAMMASPHERE array using the ^116Cd(^23Na,5n) reaction at 115 MeV. From thin-target data, the nearly degenerate ΔI=1 side band was extended from a 9^+ bandhead up to a spin of 24^+ with E2 crossovers, a total of 15 units of spin, while the main yrast band was observed from an 8^+ bandhead to 24^+. Measured γ-ray intensities suggest a staggering of the B(M1)/B(E2) ratios in the main band with the ratio smaller for even-spin initial states; these compare well with those of other N=75 isotones. Relative transition rates for γ-rays linking the doublet bands have also been extracted. Analysis of backed-target data aimed at absolute transition rates is underway. The results will be compared to calculations with particle-hole triaxial-rotor and 3-D TAC models. [1mm] [1] C.M.Petrache, et al., Nucl.Phys.A597(1996)106; V.I.Dimitrov, et al., PRL 84(2000)5732; K. Starosta, et al., PRL 86(2001).

  6. Chiral Drugs: An Overview

    PubMed Central

    Nguyen, Lien Ai; He, Hua; Pham-Huy, Chuong

    2006-01-01

    About more than half of the drugs currently in use are chiral compounds and near 90% of the last ones are marketed as racemates consisting of an equimolar mixture of two enantiomers. Although they have the same chemical structure, most isomers of chiral drugs exhibit marked differences in biological activities such as pharmacology, toxicology, pharmacokinetics, metabolism etc. Some mechanisms of these properties are also explained. Therefore, it is important to promote the chiral separation and analysis of racemic drugs in pharmaceutical industry as well as in clinic in order to eliminate the unwanted isomer from the preparation and to find an optimal treatment and a right therapeutic control for the patient. In this article, we review the nomenclature, pharmacology, toxicology, pharmacokinetics, metabolism etc of some usual chiral drugs as well as their mechanisms. Different techniques used for the chiral separation in pharmaceutical industry as well as in clinical analyses are also examined. PMID:23674971

  7. Magnetic Reversal of Electric Polarization with Fixed Chirality of Magnetic Structure in a Chiral-Lattice Helimagnet MnSb_{2}O_{6}.

    PubMed

    Kinoshita, M; Seki, S; Sato, T J; Nambu, Y; Hong, T; Matsuda, M; Cao, H B; Ishiwata, S; Tokura, Y

    2016-07-22

    The correlation between magnetic and dielectric properties has been investigated for the single crystal of the chiral triangular-lattice helimagnet MnSb_{2}O_{6}. We found that the spin-spiral plane in the ground state has a considerable tilting from the (110) plane and that the sign of the spin-spiral tilting angle is coupled to the clockwise or counterclockwise manner of spin rotation and accordingly to the sign of magnetically induced electric polarization. This leads to unique magnetoelectric responses such as the magnetic-field-induced selection of a single ferroelectric domain as well as the reversal of electric polarization just by a slight tilting of the magnetic field direction, where the chiral nature of the crystal structure plays a crucial role through the coupling of the chirality between the crystal and magnetic structures. Our results demonstrate that crystallographic chirality can be an abundant source of novel magnetoelectric functions with coupled internal degrees of freedom. PMID:27494497

  8. Magnetic Reversal of Electric Polarization with Fixed Chirality of Magnetic Structure in a Chiral-Lattice Helimagnet MnSb2 O6

    NASA Astrophysics Data System (ADS)

    Kinoshita, M.; Seki, S.; Sato, T. J.; Nambu, Y.; Hong, T.; Matsuda, M.; Cao, H. B.; Ishiwata, S.; Tokura, Y.

    2016-07-01

    The correlation between magnetic and dielectric properties has been investigated for the single crystal of the chiral triangular-lattice helimagnet MnSb2 O6 . We found that the spin-spiral plane in the ground state has a considerable tilting from the (110) plane and that the sign of the spin-spiral tilting angle is coupled to the clockwise or counterclockwise manner of spin rotation and accordingly to the sign of magnetically induced electric polarization. This leads to unique magnetoelectric responses such as the magnetic-field-induced selection of a single ferroelectric domain as well as the reversal of electric polarization just by a slight tilting of the magnetic field direction, where the chiral nature of the crystal structure plays a crucial role through the coupling of the chirality between the crystal and magnetic structures. Our results demonstrate that crystallographic chirality can be an abundant source of novel magnetoelectric functions with coupled internal degrees of freedom.

  9. Chiral magnetism at oxide interfaces

    NASA Astrophysics Data System (ADS)

    Randeria, Mohit

    2014-03-01

    There are tantalizing hints of magnetism at the n-type LaAlO3/SrTiO3 interface, but the experimental evidence remains controversial in view of some of the differences between different samples and probes. I will argue that if magnetism exists at interfaces, symmetry arguments imply chiral interactions that lead to a spiral ground state in zero external field and skyrmion crystals for H ≠ 0 . I will next present a microscopic model that provides a possible mechanism for the formation of local moments. I will show that the coupling of these moments to itinerant electrons leads to ferromagnetic double exchange together with Dzyaloshinskii-Moriya (DM) interactions and an easy-plane ``compass'' anisotropy, which arise from Rashba spin-orbit coupling (SOC) due to the lack of inversion symmetry at the interface. The compass term, often ignored in the literature on chiral magnetism, is shown to play a crucial role in determining the magnetic ground state. I will compare our results with existing torque magnetometry data on LAO/STO and try to reconcile it with scanning SQUID magnetometry. Finally, I will present the phase diagram in a field and show that easy-plane anisotropy stabilizes an unexpectedly large skyrmion crystal phase and describe its properties. (Work done in collaboration with Sumilan Banerjee, Onur Erten, Daniel Kestner and James Rowland). Supported by DOE-BES DE-SC0005035, NSF-DMR-1006532 and NSF MRSEC DMR-0820414.

  10. Observation of the chiral magnetic effect in ZrTe₅

    SciTech Connect

    Li, Qiang; Kharzeev, Dmitri E.; Zhang, Cheng; Huang, Yuan; Pletikosic, I.; Fedorov, A. V.; Zhong, R. D.; Schneeloch, J. A.; Gu, G. D.; Valla, T.

    2015-02-08

    The chiral magnetic effect is the generation of electric current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum anomaly in relativistic field theory of chiral fermions (massless spin 1/2 particles with a definite projection of spin on momentum) – a dramatic phenomenon arising from a collective motion of particles and antiparticles in the Dirac sea. The recent discovery of Dirac semimetals with chiral quasi-particles opens a fascinating possibility to study this phenomenon in condensed matter experiments. Here we report on the first observation of chiral magnetic effect through the measurement of magneto-transport in zirconium pentatelluride, ZrTe₅. Our angle-resolved photoemission spectroscopy experiments show that this material’s electronic structure is consistent with a 3D Dirac semimetal. We observe a large negative magnetoresistance when magnetic field is parallel with the current. The measured quadratic field dependence of the magnetoconductance is a clear indication of the chiral magnetic effect. Furthermore, the observed phenomenon stems from the effective transmutation of Dirac semimetal into a Weyl semimetal induced by the parallel electric and magnetic fields that represent a topologically nontrivial gauge field background.

  11. Observation of the chiral magnetic effect in ZrTe₅

    DOE PAGESBeta

    Li, Qiang; Kharzeev, Dmitri E.; Zhang, Cheng; Huang, Yuan; Pletikosic, I.; Fedorov, A. V.; Zhong, R. D.; Schneeloch, J. A.; Gu, G. D.; Valla, T.

    2015-02-08

    The chiral magnetic effect is the generation of electric current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum anomaly in relativistic field theory of chiral fermions (massless spin 1/2 particles with a definite projection of spin on momentum) – a dramatic phenomenon arising from a collective motion of particles and antiparticles in the Dirac sea. The recent discovery of Dirac semimetals with chiral quasi-particles opens a fascinating possibility to study this phenomenon in condensed matter experiments. Here we report on the first observation of chiral magnetic effect through the measurementmore » of magneto-transport in zirconium pentatelluride, ZrTe₅. Our angle-resolved photoemission spectroscopy experiments show that this material’s electronic structure is consistent with a 3D Dirac semimetal. We observe a large negative magnetoresistance when magnetic field is parallel with the current. The measured quadratic field dependence of the magnetoconductance is a clear indication of the chiral magnetic effect. Furthermore, the observed phenomenon stems from the effective transmutation of Dirac semimetal into a Weyl semimetal induced by the parallel electric and magnetic fields that represent a topologically nontrivial gauge field background.« less

  12. Spin-Wave Diode

    NASA Astrophysics Data System (ADS)

    Lan, Jin; Yu, Weichao; Wu, Ruqian; Xiao, Jiang

    2015-10-01

    A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures, and it lies at the heart of modern information systems. The spin wave or magnon, representing a collective quasiparticle excitation of the magnetic order in magnetic materials, is a promising candidate for an information carrier for the next-generation energy-saving technologies. Here, we propose a scalable and reprogrammable pure spin-wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin-wave diode, utilizing the chiral bound states in a magnetic domain wall with a Dzyaloshinskii-Moriya interaction, and confirm its performance through micromagnetic simulations. Our findings open a new vista for realizing different types of pure spin-wave logic components and finally achieving an energy-efficient and hardware-reprogrammable spin-wave computer.

  13. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  14. Space Group Symmetry Fractionalization in a Chiral Kagome Heisenberg Antiferromagnet

    NASA Astrophysics Data System (ADS)

    Zaletel, Michael P.; Zhu, Zhenyue; Lu, Yuan-Ming; Vishwanath, Ashvin; White, Steven R.

    2016-05-01

    The anyonic excitations of a spin liquid can feature fractional quantum numbers under space group symmetries. Detecting these fractional quantum numbers, which are analogs of the fractional charge of Laughlin quasiparticles, may prove easier than the direct observation of anyonic braiding and statistics. Motivated by the recent numerical discovery of spin-liquid phases in the kagome Heisenberg antiferromagnet, we theoretically predict the pattern of space group symmetry fractionalization in the kagome lattice SO(3)-symmetric chiral spin liquid. We provide a method to detect these fractional quantum numbers in finite-size numerics which is simple to implement in the density matrix renormalization group. Applying these developments to the chiral spin liquid phase of a kagome Heisenberg model, we find perfect agreement between our theoretical prediction and numerical observations.

  15. Space Group Symmetry Fractionalization in a Chiral Kagome Heisenberg Antiferromagnet.

    PubMed

    Zaletel, Michael P; Zhu, Zhenyue; Lu, Yuan-Ming; Vishwanath, Ashvin; White, Steven R

    2016-05-13

    The anyonic excitations of a spin liquid can feature fractional quantum numbers under space group symmetries. Detecting these fractional quantum numbers, which are analogs of the fractional charge of Laughlin quasiparticles, may prove easier than the direct observation of anyonic braiding and statistics. Motivated by the recent numerical discovery of spin-liquid phases in the kagome Heisenberg antiferromagnet, we theoretically predict the pattern of space group symmetry fractionalization in the kagome lattice SO(3)-symmetric chiral spin liquid. We provide a method to detect these fractional quantum numbers in finite-size numerics which is simple to implement in the density matrix renormalization group. Applying these developments to the chiral spin liquid phase of a kagome Heisenberg model, we find perfect agreement between our theoretical prediction and numerical observations. PMID:27232041

  16. Tailoring azimuthal optical force on lossy chiral particles in Bessel beams

    NASA Astrophysics Data System (ADS)

    Chen, Huajin; Wang, Neng; Lu, Wanli; Liu, Shiyang; Lin, Zhifang

    2014-10-01

    Based on the Mie scattering theory and Maxwell stress tensor method, we investigate the transverse optical force (TOF) acting on chiral particles illuminated by a zero-order Bessel beam. It is demonstrated that the particle chirality can induce an azimuthal optical force (AOF), resulting in orbital motion of particles around the optical beam axis. The AOF depends strongly on particle loss as well as the handedness of chirality, with its amplitude capable of changing by over an order of magnitude by particle's chiral loss. The other component of TOF, the radial optical force (ROF), is much less sensitive to the magnitude and handedness of the particle chirality as well as the loss when the chirality is small. Analytical result based on dipole approximation reveals that the AOF arises from the direct coupling of particle chirality to both the spin angular momentum (SAM) and optical vorticity (curl of Poynting vector), exhibiting a conversion of optical SAM of an incident beam to mechanical orbital angular momentum of an illuminated particle. Differently, the ROF originates from the transverse gradient force. In addition, particle chirality yields a negative contribution to the gradient force; thus the ROF can be attenuated and even reversed in direction when particle chirality is sufficiently large. These characteristics of TOF might find applications in chirality detection as well as sorting chiral particles of different handedness and separating them from conventional ones.

  17. The properties of isolated chiral skyrmions in thin magnetic films

    NASA Astrophysics Data System (ADS)

    Leonov, A. O.; Monchesky, T. L.; Romming, N.; Kubetzka, A.; Bogdanov, A. N.; Wiesendanger, R.

    2016-06-01

    Axisymmetric solitonic states (chiral skyrmions) were first predicted theoretically more than two decades ago. However, until recently they have been observed in a form of skyrmionic condensates (hexagonal lattices and other mesophases). In this paper we report experimental and theoretical investigations of isolated chiral skyrmions discovered in PdFe/Ir(111) bilayers two years ago by Romming et al (2013 Science 341 636). The results of spin-polarized scanning tunneling microscopy analyzed within the continuum and discrete models provide a consistent description of isolated skyrmions in thin layers. The existence region of chiral skyrmions is restricted by strip-out instabilities at low fields and a collapse at high fields. We demonstrate that the same equations describe axisymmetric localized states in all condensed matter systems with broken mirror symmetry, and thus our findings establish basic properties of isolated skyrmions common for chiral liquid crystals, different classes of noncentrosymmetric magnets, ferroelectrics, and multiferroics.

  18. Chiral Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Tiburzi, Brian C.

    The era of high-precision lattice QCD has led to synergy between lattice computations and phenomenological input from chiral perturbation theory. We provide an introduction to chiral perturbation theory with a bent towards understanding properties of the nucleon and other low-lying baryons. Four main topics are the basis for this chapter. We begin with a discussion of broken symmetries and the procedure to construct the chiral Lagrangian. The second topic concerns specialized applications of chiral perturbation theory tailored to lattice QCD, such as partial quenching, lattice discretization, and finite-volume effects. We describe inclusion of the nucleon in chiral perturbation theory using a heavy-fermion Euclidean action. Issues of convergence are taken up as our final topic. We consider expansions in powers of the strange-quark mass, and the appearance of unphysical singularities in the heavy-particle formulation. Our aim is to guide lattice practitioners in understanding the predictions chiral perturbation theory makes for baryons, and show how the lattice will play a role in testing the rigor of the chiral expansion at physical values of the quark masses.

  19. Applications of chiral symmetry

    SciTech Connect

    Pisarski, R.D.

    1995-03-01

    The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T{sub {chi}} implies that the {rho} and a{sub 1} vector mesons are degenerate in mass. In a gauged linear sigma model the {rho} mass increases with temperature, m{sub {rho}}(T{sub {chi}}) > m{sub {rho}}(0). The author conjectures that at T{sub {chi}} the thermal {rho} - a{sub 1}, peak is relatively high, at about {approximately}1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The {omega} meson also increases in mass, nearly degenerate with the {rho}, but its width grows dramatically with temperature, increasing to at least {approximately}100 MeV by T{sub {chi}}. The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from {open_quotes}quenched{close_quotes} heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates.

  20. Chiral Sensitivity in the Dissociative Electron Attachment of Halocamphor Molecules

    NASA Astrophysics Data System (ADS)

    Dreiling, Joan

    2016-05-01

    We have demonstrated chirally-dependent molecular destruction when incident longitudinally-spin-polarized (chiral) electrons break bonds in chiral molecules. This chiral sensitivity was observed through an asymmetry in the dissociative electron attachment (DEA) reaction rate with chiral 3-bromocamphor (C10 H15 BrO). Such an observation provides an unambiguous demonstration of the idea underlying the Vester-Ulbricht hypothesis, which attempts to explain the origins of the homochirality that is observed in many biological systems. While the lack of inversion symmetry in these reactions allows the effects we observe to occur, their dynamic causes are poorly understood. We have further studied the asymmetries in the DEA rates for two additional halocamphor molecules, 3-iodocamphor (C10 H15 IO) and 10-iodocamphor, in a systematic effort to illuminate the mechanisms responsible for the chiral sensitivity. The DEA signal depends on the sign of the incident electron helicity for a given target handedness in all molecules, and it varies with both the atomic number and the location of the heaviest atom in the molecule. Surprisingly, the DEA asymmetries for 10-iodocamphor, in which the heaviest atom is farther from a chiral center than for the other molecules, produced the largest asymmetries. This work was performed at the University of Nebraska-Lincoln. This project was funded by NSF Grant PHY-1206067.

  1. Chiral damping of magnetic domain walls.

    PubMed

    Jué, Emilie; Safeer, C K; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles

    2016-03-01

    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics, current-induced spin-orbit torques and some topological magnetic structures. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii-Moriya interaction (DMI) exhibit identical spatial symmetry. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. ). PMID:26689141

  2. Quantum group extended chiral p-models

    NASA Astrophysics Data System (ADS)

    Hadjiivanov, L. K.; Paunov, R. R.; Todorov, I. T.

    1991-06-01

    The quantum symmetry group U q of an extended chiral conformal model is determined by the requirement that symmetry transformations commute with braid group statistics operators and by the relation between fusion rules and tensor product expansions of a certain class of U 4 representations. For thermal minimal " p-models", involving no more than p - 1 unitary lowest weight representations of the Virasoro algebra Vir, U 4 is the quantum universal enveloping (QUE) algebra U 4(sl(2)) with deformation parameter q satisfying q + q-1 = 2 cos π/ p ( qp = - 1, p = 4, 5,…). To each 2-dimensional local field labelled by a pair of nonnegative integers v, v¯ (0 ⩽ v, v¯ ⩽ p - 2) we make correspond an analytic chiral field φv, of weight Δ vand q- spin I v¯. The correlation functions of φv, transform under an 1-dimensional unitary representation of the braid group. As a result we reproduce the ADE classification of 2-dimensional p models in terms of their extended chiral counterparts. It turns out that U q-extended chiral p-models always involve non-unitary and indecomposable representations of Vir.

  3. Chiral damping of magnetic domain walls

    NASA Astrophysics Data System (ADS)

    Jué, Emilie; Safeer, C. K.; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles

    2016-03-01

    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics, current-induced spin-orbit torques and some topological magnetic structures. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii-Moriya interaction (DMI) exhibit identical spatial symmetry. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. ).

  4. Chirality control in oligothiophene through chiral wrapping.

    PubMed

    Sanji, Takanobu; Kato, Nobu; Tanaka, Masato

    2006-01-19

    [structure: see text] Mixing oligothiophenes and polysaccharides, such as amylose and schizophyllan, affords novel inclusion complexes, in which oligothiophene guests adopt twisted conformation in the chiral channel created by left- or right-handed helical wrapping with the polysaccharide host polymers, leading to optical activity. PMID:16408883

  5. Spontaneous chiral symmetry breaking by hydromagnetic buoyancy

    NASA Astrophysics Data System (ADS)

    Chatterjee, Piyali; Mitra, Dhrubaditya; Brandenburg, Axel; Rheinhardt, Matthias

    2011-08-01

    Evidence for the parity-breaking nature of the magnetic buoyancy instability in a stably stratified gas is reported. In the absence of rotation, no helicity is produced, but the nonhelical state is found to be unstable to small helical perturbations during the development of the instability. The parity-breaking nature of this magnetohydrodynamic instability appears to be the first of its kind and has properties similar to those in chiral symmetry breaking in biochemistry. Applications to the production of mean fields in galaxy clusters are discussed.

  6. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Boulle, Olivier; Vogel, Jan; Yang, Hongxin; Pizzini, Stefania; de Souza Chaves, Dayane; Locatelli, Andrea; Menteş, Tevfik Onur; Sala, Alessandro; Buda-Prejbeanu, Liliana D.; Klein, Olivier; Belmeguenai, Mohamed; Roussigné, Yves; Stashkevich, Andrey; Chérif, Salim Mourad; Aballe, Lucia; Foerster, Michael; Chshiev, Mairbek; Auffret, Stéphane; Miron, Ioan Mihai; Gaudin, Gilles

    2016-05-01

    Magnetic skyrmions are chiral spin structures with a whirling configuration. Their topological properties, nanometre size and the fact that they can be moved by small current densities have opened a new paradigm for the manipulation of magnetization at the nanoscale. Chiral skyrmion structures have so far been experimentally demonstrated only in bulk materials and in epitaxial ultrathin films, and under an external magnetic field or at low temperature. Here, we report on the observation of stable skyrmions in sputtered ultrathin Pt/Co/MgO nanostructures at room temperature and zero external magnetic field. We use high lateral resolution X-ray magnetic circular dichroism microscopy to image their chiral Néel internal structure, which we explain as due to the large strength of the Dzyaloshinskii–Moriya interaction as revealed by spin wave spectroscopy measurements. Our results are substantiated by micromagnetic simulations and numerical models, which allow the identification of the physical mechanisms governing the size and stability of the skyrmions.

  7. Synthesis of Chiral Cyclopentenones.

    PubMed

    Simeonov, Svilen P; Nunes, João P M; Guerra, Krassimira; Kurteva, Vanya B; Afonso, Carlos A M

    2016-05-25

    The cyclopentenone unit is a very powerful synthon for the synthesis of a variety of bioactive target molecules. This is due to the broad diversity of chemical modifications available for the enone structural motif. In particular, chiral cyclopentenones are important precursors in the asymmetric synthesis of target chiral molecules. This Review provides an overview of reported methods for enantioselective and asymmetric syntheses of cyclopentenones, including chemical and enzymatic resolution, asymmetric synthesis via Pauson-Khand reaction, Nazarov cyclization and organocatalyzed reactions, asymmetric functionalization of the existing cyclopentenone unit, and functionalization of chiral building blocks. PMID:27101336

  8. The covariant chiral ring

    NASA Astrophysics Data System (ADS)

    Bourget, Antoine; Troost, Jan

    2016-03-01

    We construct a covariant generating function for the spectrum of chiral primaries of symmetric orbifold conformal field theories with N = (4 , 4) supersymmetry in two dimensions. For seed target spaces K3 and T 4, the generating functions capture the SO(21) and SO(5) representation theoretic content of the chiral ring respectively. Via string dualities, we relate the transformation properties of the chiral ring under these isometries of the moduli space to the Lorentz covariance of perturbative string partition functions in flat space.

  9. Universal chiral-triggered magnetization switching in confined nanodots

    PubMed Central

    Martinez, Eduardo; Torres, Luis; Perez, Noel; Hernandez, Maria Auxiliadora; Raposo, Victor; Moretti, Simone

    2015-01-01

    Spin orbit interactions are rapidly emerging as the key for enabling efficient current-controlled spintronic devices. Much work has focused on the role of spin-orbit coupling at heavy metal/ferromagnet interfaces in generating current-induced spin-orbit torques. However, the strong influence of the spin-orbit-derived Dzyaloshinskii-Moriya interaction (DMI) on spin textures in these materials is now becoming apparent. Recent reports suggest DMI-stabilized homochiral domain walls (DWs) can be driven with high efficiency by spin torque from the spin Hall effect. However, the influence of the DMI on the current-induced magnetization switching has not been explored nor is yet well-understood, due in part to the difficulty of disentangling spin torques and spin textures in nano-sized confined samples. Here we study the magnetization reversal of perpendicular magnetized ultrathin dots, and show that the switching mechanism is strongly influenced by the DMI, which promotes a universal chiral non-uniform reversal, even for small samples at the nanoscale. We show that ultrafast current-induced and field-induced magnetization switching consists on local magnetization reversal with domain wall nucleation followed by its propagation along the sample. These findings, not seen in conventional materials, provide essential insights for understanding and exploiting chiral magnetism for emerging spintronics applications. PMID:26062075

  10. Hypernuclei and in-medium chiral dynamics

    NASA Astrophysics Data System (ADS)

    Finelli, P.

    2008-04-01

    A recently introduced relativistic nuclear energy density functional, constrained by features of low-energy QCD, is extended to describe the structure of hypernuclei. The density-dependent mean field and the spin-orbit potential of a Λ-hyperon in a nucleus, are consistently calculated using the SU(3) extension of in-medium chiral perturbation theory. The leading long-range ΛN interaction arises from kaon-exchange and 2π-exchange with a Σ-hyperon in the intermediate state. Scalar and vector mean fields, originating from in-medium changes of the quark condensates, produce a sizeable short-range spin-orbit interaction. The model, when applied to oxygen as a test case, provides a natural explanation for the smallness of the effective Λ spin-orbit potential: an almost complete cancellation between the background contributions (scalar and vector) and the long-range terms generated by two-pion exchange.

  11. HUBBLE REVEALS 'BACKWARDS' SPIRAL GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers have found a spiral galaxy that may be spinning to the beat of a different cosmic drummer. To the surprise of astronomers, the galaxy, called NGC 4622, appears to be rotating in the opposite direction to what they expected. Pictures by NASA's Hubble Space Telescope helped astronomers determine that the galaxy may be spinning clockwise by showing which side of the galaxy is closer to Earth. A Hubble telescope photo of the oddball galaxy is this month's Hubble Heritage offering. The image shows NGC 4622 and its outer pair of winding arms full of new stars [shown in blue]. Astronomers are puzzled by the clockwise rotation because of the direction the outer spiral arms are pointing. Most spiral galaxies have arms of gas and stars that trail behind as they turn. But this galaxy has two 'leading' outer arms that point toward the direction of the galaxy's clockwise rotation. To add to the conundrum, NGC 4622 also has a 'trailing' inner arm that is wrapped around the galaxy in the opposite direction it is rotating. Based on galaxy simulations, a team of astronomers had expected that the galaxy was turning counterclockwise. NGC 4622 is a rare example of a spiral galaxy with arms pointing in opposite directions. What caused this galaxy to behave differently from most galaxies? Astronomers suspect that NGC 4622 interacted with another galaxy. Its two outer arms are lopsided, meaning that something disturbed it. The new Hubble image suggests that NGC 4622 consumed a small companion galaxy. The galaxy's core provides new evidence for a merger between NGC 4622 and a smaller galaxy. This information could be the key to understanding the unusual leading arms. Galaxies, which consist of stars, gas, and dust, rotate very slowly. Our Sun, one of many stars in our Milky Way Galaxy, completes a circuit around the Milky Way every 250 million years. NGC 4622 resides 111 million light-years away in the constellation Centaurus. The pictures were taken in May 2001 with Hubble

  12. Nonlinear chiral transport phenomena

    NASA Astrophysics Data System (ADS)

    Chen, Jiunn-Wei; Ishii, Takeaki; Pu, Shi; Yamamoto, Naoki

    2016-06-01

    We study the nonlinear responses of relativistic chiral matter to the external fields such as the electric field E , gradients of temperature and chemical potential, ∇T and ∇μ . Using the kinetic theory with Berry curvature corrections under the relaxation time approximation, we compute the transport coefficients of possible new electric currents that are forbidden in usual chirally symmetric matter but are allowed in chirally asymmetric matter by parity. In particular, we find a new type of electric current proportional to ∇μ ×E due to the interplay between the effects of the Berry curvature and collisions. We also derive an analog of the "Wiedemann-Franz" law specific for anomalous nonlinear transport in relativistic chiral matter.

  13. Finite nuclei in relativistic models with a light chiral scalar meson

    SciTech Connect

    Serot, B.D.; Furnstahl, R.J.

    1993-10-01

    Relativistic chiral models with a light scalar, meson appear to provide an economical marriage of successful relativistic mean-field theories and chiral symmetry. In these models, the scalar meson serves as both the chiral partner of the pion and the mediator of the intermediate-range nucleon-nucleon (NN) attraction. However, while some of these models can reproduce the empirical nuclear matter saturation point, they fail to reproduce observed properties of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface energetics. There deficiencies imply that this realization of chiral symmetry is incorrect. An alternative scenario for chiral hadronic models, which features a heavy chiral scalar and dynamical generation of the NN attraction, is discussed.

  14. Chiral plasma instabilities.

    PubMed

    Akamatsu, Yukinao; Yamamoto, Naoki

    2013-08-01

    We study the collective modes in relativistic electromagnetic or quark-gluon plasmas with an asymmetry between left- and right-handed chiral fermions, based on the recently formulated kinetic theory with Berry curvature corrections. We find that there exists an unstable mode, signaling the presence of a plasma instability. We argue the fate of this "chiral plasma instability" including the effect of collisions, and briefly discuss its relevance in heavy ion collisions and compact stars. PMID:23952387

  15. All-electrical production of spin-polarized currents in carbon nanotubes: Rashba spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Santos, Hernán; Latgé, A.; Alvarellos, J. E.; Chico, Leonor

    2016-04-01

    We study the effect of the Rashba spin-orbit interaction in the quantum transport of carbon nanotubes with arbitrary chiralities. For certain spin directions, we find a strong spin-polarized electrical current that depends on the diameter of the tube, the length of the Rashba region, and on the tube chirality. Predictions for the spin-dependent conductances are presented for different families of achiral and chiral tubes. We have found that different symmetries acting on spatial and spin variables have to be considered in order to explain the relations between spin-resolved conductances in carbon nanotubes. These symmetries are more general than those employed in planar graphene systems. Our results indicate the possibility of having stable spin-polarized electrical currents in absence of external magnetic fields or magnetic impurities in carbon nanotubes.

  16. Backwards Spiral Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Astronomers using NASA's Hubble Space Telescope have found a spiral galaxy that may rotate in the opposite direction from what was expected.

    A picture of the oddball galaxy is available at http://heritage.stsci.edu or http://oposite.stsci.edu/pubinfo/pr/2002/03 or http://www.jpl.nasa.gov/images/wfpc . It was taken in May 2001 by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    The picture showed which side of galaxy NGC 4622 is closer to Earth; that information helped astronomers determine that the galaxy may be spinning clockwise. The image shows NGC 4622 and its outer pair of winding arms full of new stars, shown in blue.

    Astronomers are puzzled by the clockwise rotation because of the direction the outer spiral arms are pointing. Most spiral galaxies have arms of gas and stars that trail behind as they turn. But this galaxy has two 'leading' outer arms that point toward the direction of the galaxy's clockwise rotation. NGC 4622 also has a 'trailing' inner arm that is wrapped around the galaxy in the opposite direction. Based on galaxy simulations, a team of astronomers had expected that the galaxy was turning counterclockwise.

    NGC 4622 is a rare example of a spiral galaxy with arms pointing in opposite directions. Astronomers suspect this oddity was caused by the interaction of NGC 4622 with another galaxy. Its two outer arms are lopsided, meaning that something disturbed it. The new Hubble image suggests that NGC 4622 consumed a smaller companion galaxy.

    Galaxies, which consist of stars, gas, and dust, rotate very slowly. Our Sun, one of many stars in our Milky Way galaxy, completes a circuit around the Milky Way every 250 million years. NGC 4622 lies 111 million light-years away in the direction of the constellation Centaurus.

    The science team, consisting of Drs. Ron Buta and Gene Byrd from the University of Alabama, Tuscaloosa, and Tarsh Freeman of Bevill State

  17. Chiral Sensitivity in Electron-Molecule Interactions

    NASA Astrophysics Data System (ADS)

    Dreiling, Joan

    2015-09-01

    All molecular forms of life possess a chiral asymmetry, with amino acids and sugars found respectively in L- and D-enantiomers only. The primordial origin of this enantiomeric excess is unknown. One possible explanation is given by the Vester- Ulbricht hypothesis, which suggests that left-handed electrons present in beta-radiation, produced by parity-violating weak decays, interacted with biological precursors and preferentially destroyed one of the two enantiomers. Experimental tests of this idea have thus far yielded inconclusive results. We show direct evidence for chirally-dependent bond breaking through a dissociative electron attachment (DEA) reaction when spin-polarized electrons are incident on gas-phase chiral molecules. This provides unambiguous evidence for a well-defined, chirally-sensitive destructive molecular process and, as such, circumstantial evidence for the Vester-Ulbricht hypothesis. I will also present the results of our systematic study of the DEA asymmetry for different chiral halocamphor molecules. Three halocamphor molecules were investigated: 3-bromocamphor (C10H15BrO), 3-iodocamphor(C10H15IO), and 10-iodocamphor. The DEA asymmetries collected for bromocamphor and iodocamphor are qualitatively different, suggesting that the atomic number of the heaviest atom in the molecule plays a crucial role in the asymmetric interactions. The DEA asymmetry data for 3- and 10-iodocamphor have the same qualitative behavior, but the 10-iodocamphor asymmetry is about twice as large at the lowest energies investigated, so the location of the heavy atom in the camphor molecule also affects the asymmetries. This work was performed at the University of Nebraska-Lincoln. This project is funded by NSF Grant PHY-1206067.

  18. About flavor, spin, and color

    SciTech Connect

    Jora, Renata

    2010-09-01

    Chiral symmetry breaking (restoration) for SU(N) gauge theories is a topic of great interest and not yet fully explained. We consider the phenomenon as a collective spin effect and determine its behavior in terms of the number of flavors N{sub f}.

  19. Vortex Crystals with Chiral Stripes in Itinerant Magnets

    NASA Astrophysics Data System (ADS)

    Ozawa, Ryo; Hayami, Satoru; Barros, Kipton; Chern, Gia-Wei; Motome, Yukitoshi; Batista, Cristian D.

    Noncoplanar spin textures in itinerant magnets are generating increasing interest because of the associated spin Berry phase, which induces a tremendous effective magnetic field on the itinerant electrons. Such noncoplanar spin textures appear frequently in itinerant magnets, even with vanishingly small spin-orbit coupling. We explore a generic condition for noncoplanar spin ordering, with a focus on ``frustration'' in itinerant magnets, that is characterized by multiple global maxima in the magnetic susceptibility. In a simple square Kondo lattice model, we find that a noncoplanar vortex-antivortex crystal with a one-dimensional modulation of spin scalar chirality becomes stable in a wide range of electron filling fraction. The unexpected result is obtained by careful analyses of higher-order terms in the perturbative expansion in terms of the Kondo exchange coupling and the degree of noncoplanarity, as well as numerical simulation based on the Langevin and stochastic Landau-Lifshitz-Gilbert dynamics with the kernel polynomial method.

  20. Hyperfine meson splittings: chiral symmetry versus transverse gluon exchange

    SciTech Connect

    Felipe J. Llanes-Estrada; Stephen R. Cotanch; Adam P. Szczepaniak; Eric S. Swanson

    2004-02-01

    Meson spin splittings are examined within an effective Coulomb gauge QCD Hamiltonian incorporating chiral symmetry and a transverse hyperfine interaction necessary for heavy quarks. For light and heavy quarkonium systems the pseudoscalar-vector meson spectrum is generated by approximate BCS-RPA diagonalizations. This relativistic formulation includes both S and D waves for the vector mesons which generates a set of coupled integral equations. A smooth transition from the heavy to the light quark regime is found with chiral symmetry dominating the /pi-/rho mass difference. A good, consistent description of the observed meson spin splittings and chiral quantities, such as the quark condensate and the /pi mass, is obtained. Similar comparisons with TDA diagonalizations, which violate chiral symmetry, are deficient for light pseudoscalar mesons indicating the need to simultaneously include both chiral symmetry and a hyperfine interaction. The /eta{sub b} mass is predicted to be around 9400 MeV consistent with other theoretical expectations and above the unconfirmed 9300 MeV candidate. Finally, for comparison with lattice results, the J reliability parameter is also evaluated.

  1. Chiral Graphene Quantum Dots.

    PubMed

    Suzuki, Nozomu; Wang, Yichun; Elvati, Paolo; Qu, Zhi-Bei; Kim, Kyoungwon; Jiang, Shuang; Baumeister, Elizabeth; Lee, Jaewook; Yeom, Bongjun; Bahng, Joong Hwan; Lee, Jaebeom; Violi, Angela; Kotov, Nicholas A

    2016-02-23

    Chiral nanostructures from metals and semiconductors attract wide interest as components for polarization-enabled optoelectronic devices. Similarly to other fields of nanotechnology, graphene-based materials can greatly enrich physical and chemical phenomena associated with optical and electronic properties of chiral nanostructures and facilitate their applications in biology as well as other areas. Here, we report that covalent attachment of l/d-cysteine moieties to the edges of graphene quantum dots (GQDs) leads to their helical buckling due to chiral interactions at the "crowded" edges. Circular dichroism (CD) spectra of the GQDs revealed bands at ca. 210-220 and 250-265 nm that changed their signs for different chirality of the cysteine edge ligands. The high-energy chiroptical peaks at 210-220 nm correspond to the hybridized molecular orbitals involving the chiral center of amino acids and atoms of graphene edges. Diverse experimental and modeling data, including density functional theory calculations of CD spectra with probabilistic distribution of GQD isomers, indicate that the band at 250-265 nm originates from the three-dimensional twisting of the graphene sheet and can be attributed to the chiral excitonic transitions. The positive and negative low-energy CD bands correspond to the left and right helicity of GQDs, respectively. Exposure of liver HepG2 cells to L/D-GQDs reveals their general biocompatibility and a noticeable difference in the toxicity of the stereoisomers. Molecular dynamics simulations demonstrated that d-GQDs have a stronger tendency to accumulate within the cellular membrane than L-GQDs. Emergence of nanoscale chirality in GQDs decorated with biomolecules is expected to be a general stereochemical phenomenon for flexible sheets of nanomaterials. PMID:26743467

  2. Kaon Thresholds and Two-Flavor Chiral Expansions for Hyperons

    SciTech Connect

    Fu-Jiun Jiang, Brian C. Tiburzi, Andre Walker-Loud

    2011-01-01

    Two-flavor chiral expansions provide a useful perturbative framework to study hadron properties. Such expansions should exhibit marked improvement over the conventional three-flavor chiral expansion. Although one can theoretically formulate two-flavor theories for the various hyperon multiplets, the nearness of kaon thresholds can seriously undermine the effectiveness of the perturbative expansion in practice. We investigate the importance of virtual kaon thresholds on hyperon properties, specifically their masses and isovector axial charges. Using a three-flavor expansion that includes SU(3) breaking effects, we uncover the underlying expansion parameter governing the description of virtual kaon thresholds. For spin-half hyperons, this expansion parameter is quite small. Consequently virtual kaon contributions are well described in the two-flavor theory by terms analytic in the pion mass-squared. For spin three-half hyperons, however, one is closer to the kaon production threshold, and the expansion parameter is not as small. Breakdown of SU(2) chiral perturbation theory is shown to arise from a pole in the expansion parameter associated with the kaon threshold. Estimating higher-order corrections to the expansion parameter is necessary to ascertain whether the two-flavor theory of spin three-half hyperons remains perturbative. We find that, despite higher-order corrections, there is a useful perturbative expansion for the masses and isovector axial charges of both spin-half and spin three-half hyperons.

  3. Local light-induced magnetization using nanodots and chiral molecules.

    PubMed

    Dor, Oren Ben; Morali, Noam; Yochelis, Shira; Baczewski, Lech Tomasz; Paltiel, Yossi

    2014-11-12

    With the increasing demand for miniaturization, nanostructures are likely to become the primary components of future integrated circuits. Different approaches are being pursued toward achieving efficient electronics, among which are spin electronics devices (spintronics). In principle, the application of spintronics should result in reducing the power consumption of electronic devices. Recently a new, promising, effective approach for spintronics has emerged, using spin selectivity in electron transport through chiral molecules. In this work, using chiral molecules and nanocrystals, we achieve local spin-based magnetization generated optically at ambient temperatures. Through the chiral layer, a spin torque can be transferred without permanent charge transfer from the nanocrystals to a thin ferromagnetic layer, creating local perpendicular magnetization. We used Hall sensor configuration and atomic force microscopy (AFM) to measure the induced local magnetization. At low temperatures, anomalous spin Hall effects were measured using a thin Ni layer. The results may lead to optically controlled spintronics logic devices that will enable low power consumption, high density, and cheap fabrication. PMID:25313442

  4. d+id' Chiral Superconductivity in Bilayer Silicene

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Liu, Cheng-Cheng; Wu, Kehui; Yang, Fan; Yao, Yugui

    2013-08-01

    We investigate the structure and physical properties of the undoped bilayer silicene through first-principles calculations and find the system is intrinsically metallic with sizable pocket Fermi surfaces. When realistic electron-electron interaction turns on, the system is identified as a chiral d+id' topological superconductor mediated by the strong spin fluctuation on the border of the antiferromagnetic spin density wave order. Moreover, the tunable Fermi pocket area via strain makes it possible to adjust the spin density wave critical interaction strength near the real one and enables a high superconducting critical temperature.

  5. Chiral quirkonium decays

    NASA Astrophysics Data System (ADS)

    Fok, R.; Kribs, Graham D.

    2011-08-01

    We calculate the two-body decay rates of quirkonium states formed from quirks that acquire mass solely through electroweak symmetry breaking. We consider SU(N)ic infracolor with two flavors of quirks transforming under the electroweak group (but not QCD) of the standard model. In one case, the quirks are in a chiral representation of the electroweak group, while in the other case, a vectorlike representation. The differences in the dominant decay channels between “chiral quirkonia” versus “vectorlike quirkonia” are striking. Several chiral quirkonia states can decay into the unique two-body resonance channels WH, ZH, tt¯, tb¯/bt¯, and γH, which never dominate for vectorlike quirkonia. Additionally, the channels WW, WZ, ZZ, and Wγ, are shared among both chiral and vectorlike quirkonia. Resonances of dileptons or light quarks (dijets) can dominate for some vectorlike quirkonia states throughout their mass range, while these modes never dominate for chiral quirkonia unless the decays into pairs of gauge or Higgs bosons are kinematically forbidden.

  6. Chiral Quirkonium Decays

    SciTech Connect

    Fok, R.; Kribs, Graham D.; /Fermilab

    2011-06-01

    We calculate the two-body decay rates of quirkonium states formed from quirks that acquire mass solely through electroweak symmetry breaking. We consider SU(N){sub ic} infracolor with two flavors of quirks transforming under the electroweak group (but not QCD) of the standard model. In one case, the quirks are in a chiral representation of the electroweak group, while in the other case, a vectorlike representation. The differences in the dominant decay channels between 'chiral quirkonia' versus 'vectorlike quirkonia' are striking. Several chiral quirkonia states can decay into the unique two-body resonance channels WH, ZH, t{bar t}, t{bar b}/b{bar t}, and {gamma}H, which never dominate for vectorlike quirkonia. Additionally, the channels WW, WZ, ZZ, and W{gamma}, are shared among both chiral and vectorlike quirkonia. Resonances of dileptons or light quarks (dijets) can dominate for some vectorlike quirkonia states throughout their mass range, while these modes never dominate for chiral quirkonia unless the decays into pairs of gauge or Higgs bosons are kinematically forbidden.

  7. Spontaneous chirality in simple systems

    PubMed

    Pickett; Gross; Okuyama

    2000-10-23

    Two simple examples of spontaneous chiral symmetry breaking are presented. The first is close-packed cylindrically confined spheres. As the cylinder diameter is varied, one obtains a variety of chiral phases. The second example involves unconfined dipolar particles with an isotropic attraction, which also exhibits chiral ground states. We speculate that a dilute magnetorheological fluid film, with the addition of smaller particles to provide an attractive entropic interaction, will exhibit a chiral columnar ground state. PMID:11030973

  8. Universal spin-momentum locked optical forces

    NASA Astrophysics Data System (ADS)

    Kalhor, Farid; Thundat, Thomas; Jacob, Zubin

    2016-02-01

    Evanescent electromagnetic waves possess spin-momentum locking, where the direction of propagation (momentum) is locked to the inherent polarization of the wave (transverse spin). We study the optical forces arising from this universal phenomenon and show that the fundamental origin of recently reported non-trivial optical chiral forces is spin-momentum locking. For evanescent waves, we show that the direction of energy flow, the direction of decay, and the direction of spin follow a right hand rule for three different cases of total internal reflection, surface plasmon polaritons, and HE11 mode of an optical fiber. Furthermore, we explain how the recently reported phenomena of lateral optical force on chiral and achiral particles are caused by the transverse spin of the evanescent field and the spin-momentum locking phenomenon. Finally, we propose an experiment to identify the unique lateral forces arising from the transverse spin in the optical fiber and point to fundamental differences of the spin density from the well-known orbital angular momentum of light. Our work presents a unified view on spin-momentum locking and how it affects optical forces on chiral and achiral particles.

  9. Inertial Mass from Spin Nonlinearity

    NASA Astrophysics Data System (ADS)

    Cohen, Marcus

    The inertial mass of a Fermion shows up as chiral cross-coupling in its Dirac system. No scalar term can invariantly couple left and right chirality fields; the Dirac matrices must be spin tensors of mixed chirality. We show how such tensor couplings could arise from nonlinear mixing of four spinor fields, two representing the local electron fields and two inertial spinor fields sourced in the distant masses. We thus give a model that implements Mach's principle. Following Mendel Sachs,1 we let the inertial spinors factor the moving spacetime tetrads qα(x) and bar {q}α (x) that appear in the Dirac operator. The inertial spinors do more than set the spacetime "stage;" they are players in the chiral dynamics. Specifically, we show how the massive Dirac system arises as the envelope modulation equations coupling left and right chirality electron fields on a Friedmann universe via nonlinear "spin gratings" with the inertial spinor fields. These gratings implement Penrose's "mass-scatterings," which keep the null zig-zags of the bispinor wave function confined to a timelike world tube. Local perturbations to the inertial spinor fields appear in the Dirac system as Abelian and non-Abelian vector potentials.

  10. Baryon chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Scherer, S.

    2012-03-01

    We provide a short introduction to the one-nucleon sector of chiral perturbation theory and address the issue of power counting and renormalization. We discuss the infrared regularization and the extended on-mass-shell scheme. Both allow for the inclusion of further degrees of freedom beyond pions and nucleons and the application to higher-loop calculations. As applications we consider the chiral expansion of the nucleon mass to order Script O(q6) and the inclusion of vector and axial-vector mesons in the calculation of nucleon form factors. Finally, we address the complex-mass scheme for describing unstable particles in effective field theory.

  11. Artificial frustrated spin systems

    NASA Astrophysics Data System (ADS)

    Perrin, Y.; Chioar, I. A.; Nguyen, V. D.; Lacour, D.; Hehn, M.; Montaigne, F.; Canals, B.; Rougemaille, N.

    2015-09-01

    Complex architectures of nanostructures are routinely elaborated using bottom-up or nanofabrication processes. This technological capability allows scientists to engineer materials with properties that do not exist in nature, but also to manufacture model systems to explore fundamental issues in condensed matter physics. Two-dimensional frustrated arrays of magnetic nanostructures are one class of systems for which theoretical predictions can be tested experimentally. These systems have been the subject of intense research in the last few years and allowed the investigation of a rich physics and fascinating phenomena, such as the exploration of the extensively degenerate ground-state manifolds of spin ice systems, the evidence of new magnetic phases in purely two-dimensional lattices, and the observation of pseudoexcitations involving classical analogues of magnetic monopoles. We show here, experimentally and theoretically, that simple magnetic geometries can lead to unconventional, non-collinear spin textures. For example, kagome arrays of inplane magnetized nano-islands do not show magnetic order. Instead, these systems are characterized by spin textures with intriguing properties, such as chirality, coexistence of magnetic order and disorder, and charge crystallization. Magnetic frustration effects in lithographically patterned kagome arrays of nanomagnets with out-of-plane magnetization also lead to an unusal, and still unknown, magnetic ground state manifold. Besides the influence of the lattice geometry, the micromagnetic nature of the elements constituting the arrays introduce the concept of chiral magnetic monopoles, bringing additional complexity into the physics of artificial frustrated spin systems.

  12. SUZAKU OBSERVATIONS OF 4U 1957+11: POTENTIALLY THE MOST RAPIDLY SPINNING BLACK HOLE IN (THE HALO OF) THE GALAXY

    SciTech Connect

    Nowak, Michael A.; Schulz, Norbert; Wilms, Joern; Pottschmidt, Katja; Maitra, Dipankar; Miller, Jon E-mail: nss@space.mit.edu E-mail: katja@milkyway.gsfc.nasa.gov E-mail: jonmm@umich.edu

    2012-01-10

    We present three Suzaku observations of the black hole candidate 4U 1957+11 (V1408 Aql)-a source that exhibits some of the simplest and cleanest examples of soft, disk-dominated spectra. 4U 1957+11 also presents among the highest peak temperatures found from disk-dominated spectra. Such temperatures may be associated with rapid black hole spin. The 4U 1957+11 spectra also require a very low normalization, which can be explained by a combination of small inner disk radius and a large distance (>10 kpc) which places 4U 1957+11 well into the Galactic halo. We perform joint fits to the Suzaku spectra with both relativistic and Comptonized disk models. Assuming a low-mass black hole and the nearest distance (3 M{sub Sun }, 10 kpc), the dimensionless spin parameter a* {identical_to} Jc/GM{sup 2} {approx}> 0.9. Higher masses and farther distances yield a* Almost-Equal-To 1. Similar conclusions are reached with Comptonization models; they imply a combination of small inner disk radii (or, equivalently, rapid spin) and large distance. Low spin cannot be recovered unless 4U 1957+11 is a low-mass black hole that is at the unusually large distance of {approx}> 40 kpc. We speculate whether the suggested maximal spin is related to how the system came to reside in the halo.

  13. Suzaku Observations of 4U 1957+11: Potentially the Most Rapidly Spinning Black Hole in (the Halo of) the Galaxy

    NASA Technical Reports Server (NTRS)

    Nowak, Michael A.; Wilms, Joern; Pottschmidt, Katja; Schulz, Norbert; Maitra, Dipankar; Miller, Jon

    2011-01-01

    We present three Suzaku observations of the black hole candidate 4U 1957+11 (V 1408 Aql) - a source that exhibits some of. the simplest and cleanest examples of soft, disk-dominated spectra. 4U 1957+ II also presents among the. highest peak temperatures found from disk-dominated spectra. Such temperatures may be associated with rapid black hole spin. The 4U 1957+11 spectra also require a very low normalization, which can be explained by a combination of small inner disk radius and a large distance (> 10 kpc) which places 4U 1957+ 11 well into the Galactic halo. We perform Joint fits to the Suzaku spectra with both relativistic and Comptonized disk models. Assuming a low mass black hole and the nearest distance (3 Stellar Mass, 10 kpc), the dimensionless spin parameter a* = Jc/GM(sup 2)> or approx. 0.9. Higher masses and farther distances yield a* approx. = 1. Similar conclusions are reached with Comptonization models; they imply a combination of small inner disk radii (or, equivalently, rapid spin) and large distance. Low spin cannot be recovered unless 4U 1957+11 is a low mass black hole that is at the unusually large distance of > or approx.40 kpc. We speculate whether the suggested maximal spin is related to how the system came to reside in the halo.

  14. Energetic molding of chiral magnetic bubbles

    NASA Astrophysics Data System (ADS)

    Lau, Derek; Sundar, Vignesh; Zhu, Jian-Gang; Sokalski, Vincent

    2016-08-01

    Topologically protected magnetic structures such as skyrmions and domain walls (DWs) have drawn a great deal of attention recently due to their thermal stability and potential for manipulation by spin current, which is the result of chiral magnetic configurations induced by the interfacial Dzyaloshinskii-Moriya interaction (DMI). Designing devices that incorporate DMI necessitates a thorough understanding of how the interaction presents and can be measured. One approach is to measure growth asymmetry of chiral bubble domains in perpendicularly magnetized thin films, which has been described elsewhere by thermally activated DW motion. Here, we demonstrate that the anisotropic angular dependence of DW energy originating from the DMI is critical to understanding this behavior. Domains in Co/Ni multilayers are observed to preferentially grow into nonelliptical teardrop shapes, which vary with the magnitude of an applied in-plane field. We model the domain profile using energetic calculations of equilibrium shape via the Wulff construction, which serves as a new paradigm for describing chiral domains that explains both the teardrop shape and the reversal of growth symmetry at large fields.

  15. Contesting the paradigm of chirality

    NASA Astrophysics Data System (ADS)

    Efrati, Efi

    2012-02-01

    In 1893 Lord Kelvin coined the term chirality, and stated what is to become the elementary paradigm of chirality: 'I call any geometrical figure, or any group of points, chiral, and say it has chirality, if its image in a plane mirror , ideally realized cannot be brought to coincide with itself'. While the notion of chirality has greatly advanced our understanding of the structures of molecules and crystals, it has been shown to be inconsistent with every pseudo-scalar quantification. In this talk I will present a tabletop demonstration of a chiral structure which is constructed through the achiral summation of identical elementary units which are symmetric under reflection. The seeming contradiction to the definition of chirality is reconciled by proposing an alternative definition, relying on the physicist interpretation of the right hand rule.

  16. Dissipative vibrational model for chiral recognition in olfaction

    NASA Astrophysics Data System (ADS)

    Tirandaz, Arash; Taher Ghahramani, Farhad; Shafiee, Afshin

    2015-09-01

    We examine the olfactory discrimination of left- and right-handed enantiomers of chiral odorants based on the odorant-mediated electron transport from a donor to an acceptor of the olfactory receptors embodied in a biological environment. The chiral odorant is effectively described by an asymmetric double-well potential whose minima are associated to the left- and right-handed enantiomers. The introduced asymmetry is considered an overall measure of chiral interactions. The biological environment is conveniently modeled as a bath of harmonic oscillators. The resulting spin-boson model is adapted by a polaron transformation to derive the corresponding Born-Markov master equation with which we obtain the elastic and inelastic electron tunneling rates. We show that the inelastic tunneling through left- and right-handed enantiomers occurs with different rates. The discrimination mechanism depends on the ratio of tunneling frequency to localization frequency.

  17. Dissipative vibrational model for chiral recognition in olfaction.

    PubMed

    Tirandaz, Arash; Taher Ghahramani, Farhad; Shafiee, Afshin

    2015-09-01

    We examine the olfactory discrimination of left- and right-handed enantiomers of chiral odorants based on the odorant-mediated electron transport from a donor to an acceptor of the olfactory receptors embodied in a biological environment. The chiral odorant is effectively described by an asymmetric double-well potential whose minima are associated to the left- and right-handed enantiomers. The introduced asymmetry is considered an overall measure of chiral interactions. The biological environment is conveniently modeled as a bath of harmonic oscillators. The resulting spin-boson model is adapted by a polaron transformation to derive the corresponding Born-Markov master equation with which we obtain the elastic and inelastic electron tunneling rates. We show that the inelastic tunneling through left- and right-handed enantiomers occurs with different rates. The discrimination mechanism depends on the ratio of tunneling frequency to localization frequency. PMID:26465515

  18. Strong, spectrally-tunable chirality in diffractive metasurfaces

    PubMed Central

    De Leon, Israel; Horton, Matthew J.; Schulz, Sebastian A.; Upham, Jeremy; Banzer, Peter; Boyd, Robert W.

    2015-01-01

    Metamaterials and metasurfaces provide a paradigm-changing approach for manipulating light. Their potential has been evinced by recent demonstrations of chiral responses much greater than those of natural materials. Here, we demonstrate theoretically and experimentally that the extrinsic chiral response of a metasurface can be dramatically enhanced by near-field diffraction effects. At the core of this phenomenon are lattice plasmon modes that respond selectively to the illumination’s polarization handedness. The metasurface exhibits sharp features in its circular dichroism spectra, which are tunable over a broad bandwidth by changing the illumination angle over a few degrees. Using this property, we demonstrate an ultra-thin circular-polarization sensitive spectral filter with a linewidth of ~10 nm, which can be dynamically tuned over a spectral range of 200 nm. Chiral diffractive metasurfaces, such as the one proposed here, open exciting possibilities for ultra-thin photonic devices with tunable, spin-controlled functionality. PMID:26338445

  19. Gyrotropic magnetic effects in chiral metals

    NASA Astrophysics Data System (ADS)

    Souza, Ivo; Zhong, Shudan; Vanderbilt, David; Moore, Joel

    We consider two conjugate transport effects occuring in chiral metals as the low-frequency limit of natural optical activity (optical gyrotropy). One occurs in the clean limit where ω is small compared to the minimum energy for interband transitions, but large compared to the scattering rate 1 / τ . It consists of a dissipationless current induced by a magnetic field, Ji =αij'Bj , and is different from the chiral magnetic effect requiring a static B and an electric-field pulse E ∥ B . In the inverse effect a magnetization is generated by a dissipative current, Mi = (1 / ω) αji' ' Ej , with E the field driving the current and ω << 1 / τ , as discussed by Yoda et al., Sci. Rep. 5, 12024 (2015). The low-frequency gyrotropic responses α' and α'' in the clean and dirty limits can be combined into a complex tensor α =α' + iα'' given by the Fermi-surface integral of the total (orbital plus spin) intrinsic magnetic moment of the Bloch electrons, with a prefactor proportional to 1 - iωτ . Without spin-orbit coupling, only the orbital moment contributes.

  20. The Mass and Spin of The Extreme Narrow Line Seyfert 1 Galaxy 1H 0707-495 and Its Implications for The Trigger for Relativistic Jets

    NASA Astrophysics Data System (ADS)

    Done, Chris; Jin, Chichuan

    2016-05-01

    Relativistic reflection models of the X-ray spectrum of the `complex' Narrow Line Seyfert 1 (NLS1) 1H 0707-495 require a high spin, moderate inclination, low mass black hole. With these parameters fixed, the observed optical/UV emission directly determines the mass accretion rate through the outer disc and hence predicts the bolometric luminosity. This is 140 - 260 × the Eddington limit. Such a disc should power a strong wind, and winds are generically expected to be clumpy. Changing inclination angle with respect to a clumpy wind structure gives a possible explanation for the otherwise puzzling difference between `complex' NLS1 such as 1H 0707-495 and `simple' ones like PG 1244+026. Lines of sight which intercept the wind show deep absorption features at iron from the hot phase of the wind, together with stochastic dips and complex absorption when the clumps occult the X-ray source (complex NLS1), whereas both these features are absent for more face-on inclination (simple NLS1). This geometry is quite different to the clean view of a flat disc which is assumed for the spin measurements in relativistic reflection models, so it is possible that even 1H 0707-495 has low spin. If so, this re-opens the simplest and hence very attractive possibility that high black hole spin is a necessary and sufficient condition to trigger highly relativistic (bulk Lorentz factor ˜10 - 15) jets.

  1. The mass and spin of the extreme Narrow Line Seyfert 1 Galaxy 1H 0707-495 and its implications for the trigger for relativistic jets

    NASA Astrophysics Data System (ADS)

    Done, Chris; Jin, Chichuan

    2016-08-01

    Relativistic reflection models of the X-ray spectrum of the `complex' Narrow Line Seyfert 1 (NLS1) 1H 0707-495 require a high-spin, moderate-inclination, low-mass black hole. With these parameters fixed, the observed optical/UV emission directly determines the mass accretion rate through the outer disc and hence predicts the bolometric luminosity. This is 140-260 times the Eddington limit. Such a disc should power a strong wind, and winds are generically expected to be clumpy. Changing inclination angle with respect to a clumpy wind structure gives a possible explanation for the otherwise puzzling difference between `complex' NLS1 such as 1H 0707-495 and `simple' ones like PG 1244+026. Lines of sight which intercept the wind show deep absorption features at iron from the hot phase of the wind, together with stochastic dips and complex absorption when the clumps occult the X-ray source (complex NLS1), whereas both these features are absent for more face-on inclination (simple NLS1). This geometry is quite different from the clean view of a flat disc which is assumed for the spin measurements in relativistic reflection models, so it is possible that even 1H 0707-495 has low spin. If so, this re-opens the simplest and hence very attractive possibility that high black hole spin is a necessary and sufficient condition to trigger highly relativistic (bulk Lorentz factor ˜10-15) jets.

  2. Finite nuclei in relativistic models with a light chiral scalar meson

    SciTech Connect

    Furnstahl, R.J. ); Serot, B.D. )

    1993-05-01

    Relativistic chiral models with a light scalar meson appear to provide an economical marriage of successful relativistic mean-field theories and chiral symmetry. The scalar meson serves as both the chiral partner of the pion and the mediator of the intermediate-range nucleon-nucleon ([ital NN]) attraction. However, while some of these models can reproduce the empirical nuclear matter saturation point, they fail to reproduce observed properties of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface energetics. These deficiencies imply that this realization of chiral symmetry is incorrect. An alternative scenario, which features a heavy chiral scalar and dynamical generation of the [ital NN] attraction, is discussed.

  3. Theories of galaxy formation

    SciTech Connect

    Jones, B.J.T.

    1980-01-01

    The current status of some theories of galaxy formation that are consistent with the hot big bang origin of the universe is reviewed. In the cosmic turbulence theory, an attempt is made to explain not only the characteristic masses and angular momenta of galaxies, but to describe in detail the spectrum of galaxy clustering problems with regard to the observed abundances of the light elements, a Kolmogorov spectrum of turbulence and the fireball are discussed. Attention is given to a primordial chaotic magnetic field, the comparison between baryon-symmetric cosmologies, the origin of galactic spin and theories starting from isothermal perturbations. Also considered are the dilemma of the initial conditions with respect to the era after 10 to the -4th s, and the pancake theory, in which the planar structures that arise provide a natural explanation for filamentary structures.

  4. Role of the Electron Spin Polarization in Water Splitting

    PubMed Central

    2015-01-01

    We show that in an electrochemical cell, in which the photoanode is coated with chiral molecules, the overpotential required for hydrogen production drops remarkably, as compared with cells containing achiral molecules. The hydrogen evolution efficiency is studied comparing seven different organic molecules, three chiral and four achiral. We propose that the spin specificity of electrons transferred through chiral molecules is the origin of a more efficient oxidation process in which oxygen is formed in its triplet ground state. The new observations are consistent with recent theoretical works pointing to the importance of spin alignment in the water-splitting process. PMID:26615833

  5. Galaxy Transformation from Flyby Encounters

    NASA Astrophysics Data System (ADS)

    Davis, Christina

    2016-05-01

    Galaxy flybys are transient encounters where two halos interpenetrate and later detach forever. Although these encounters are surprisingly common—even outnumbering galaxy mergers for massive halos at the present epoch—their dynamical effects have been largely ignored. Using idealized collisionless N-body simulations of flyby encounters, it has been shown that a galaxy flyby can excite a bar and spin up the halo. Here, we compare the structural properties of recent flybys to that of recent mergers and isolated systems within the Illustris Simulation.

  6. Intrinsic spin torque without spin-orbit coupling

    PubMed Central

    Kim, Kyoung-Whan; Lee, Kyung-Jin; Lee, Hyun-Woo; Stiles, M. D.

    2016-01-01

    We derive an intrinsic contribution to the non-adiabatic spin torque for non-uniform magnetic textures. It differs from previously considered contributions in several ways and can be the dominant contribution in some models. It does not depend on the change in occupation of the electron states due to the current flow but rather is due to the perturbation of the electronic states when an electric field is applied. Therefore it should be viewed as electric-field-induced rather than current-induced. Unlike previously reported non-adiabatic spin torques, it does not originate from extrinsic relaxation mechanisms nor spin-orbit coupling. This intrinsic non-adiabatic spin torque is related by a chiral connection to the intrinsic spin-orbit torque that has been calculated from the Berry phase for Rashba systems. PMID:26877628

  7. Spin Selective Charge Transport through Cysteine Capped CdSe Quantum Dots.

    PubMed

    Bloom, Brian P; Kiran, Vankayala; Varade, Vaibhav; Naaman, Ron; Waldeck, David H

    2016-07-13

    This work demonstrates that chiral imprinted CdSe quantum dots (QDs) can act as spin selective filters for charge transport. The spin filtering properties of chiral nanoparticles were investigated by magnetic conductive-probe atomic force microscopy (mCP-AFM) measurements and magnetoresistance measurements. The mCP-AFM measurements show that the chirality of the quantum dots and the magnetic orientation of the tip affect the current-voltage curves. Similarly, magnetoresistance measurements demonstrate that the electrical transport through films of chiral quantum dots correlates with the chiroptical properties of the QD. The spin filtering properties of chiral quantum dots may prove useful in future applications, for example, photovoltaics, spintronics, and other spin-driven devices. PMID:27336320

  8. Chiral electron-chiral target scattering

    SciTech Connect

    Trantham, K.W.; Gay, T.J. Johnston, M.E.

    1996-05-01

    It is possible to have an electronic counterpart to the well known effect of optical circular dichroism: electron circular dichroism (ECD) is the preferential scattering of longitudinally polarized electrons by a chiral target. Resulting essentially from a difference in total scattering cross section for different incident electron helicities, this {open_quotes}parity-violating{close_quotes} effect is allowed by symmetry because the scattering target is handed. The authors have searched for ECD in camphor by measuring the transmitted intensity of electrons with positive (negative) helicity I{sub +({minus})} through a gas cell containing stereoisomers of camphor vapor and constructing the asymmetry A = (I{sub +} {minus} I{sub {minus}}). Within their sensitivity (2x10{sup {minus}4}) the authors were not able to detect ECD at the energies investigated (10 eV). Prospects for future investigations, particularly in light of the recent positive results measured in Muenster, will be discussed.

  9. Ternary superlattice boosting interface-stabilized magnetic chirality

    SciTech Connect

    Chen, Gong; Schmid, Andreas K.; N'Diaye, Alpha T.; Wu, Yizheng

    2015-02-09

    In cobalt-nickel multilayers grown on iridium surfaces, magnetic homo-chirality can be stabilized by Dzyaloshinskii-Moriya interactions (DMI) at the interface with the substrate. When thickness of the multilayers is increased beyond threshold values, then non-chiral bulk properties exceed interface contributions and this type of chirality vanishes. Here, we use spin-polarized low energy electron microscopy to measure these thickness thresholds, and we determine estimates of the strength of the DMI from the measurements. Even though the same 5d heavy metal is used as a substrate, a remarkably large variation is found between the two 3d magnets: our results indicate that the strength of the DMI at Co/Ir interfaces is three times larger than at Ni/Ir interfaces. We show how this finding provides ways to extend interfacial-DMI stabilization of domain wall chirality to 3d/5d/3d ternary multilayers such as [Ni/Ir/Co]{sub n}. Such strategies may extend chirality-control to larger film thickness and a wider range of substrates, which may be useful for designing new spintronics devices.

  10. Chiral projected entangled-pair state with topological order.

    PubMed

    Yang, Shuo; Wahl, Thorsten B; Tu, Hong-Hao; Schuch, Norbert; Cirac, J Ignacio

    2015-03-13

    We show that projected entangled-pair states (PEPS) can describe chiral topologically ordered phases. For that, we construct a simple PEPS for spin-1/2 particles in a two-dimensional lattice. We reveal a symmetry in the local projector of the PEPS that gives rise to the global topological character. We also extract characteristic quantities of the edge conformal field theory using the bulk-boundary correspondence. PMID:25815954

  11. Transition Probabilities And Chiral Symmetry In 134Pr

    SciTech Connect

    Tonev, D.; De Angelis, G.; Gadea, A.; Axiotis, M.; Marginean, N.; Martines, T.; Napoli, D.R.; Prete, G.; Behera, B.R.; Rusu, C.; Petkov, P.; Dewald, A.; Pejovic, P.; Fitzler, A.; Moeller, O.; Zell, K.O.; Balabanski, D.; Bednarczyk, P.; Camera, F.; Paleni, A.

    2005-04-05

    Lifetime measurements in 134Pr were performed by means of the Recoil distance Doppler-shift and Doppler-shift attenuation methods using the multidetector array EUROBALL, in conjunction with the inner BGO ball. The derived B(E2) transition strengths within the two bands candidates for chiral partners behave differently with increasing spin while the corresponding B(M1) values have a similar behaviour within the experimental uncertainties.

  12. Chiral Biomarkers in Meteorites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2010-01-01

    The chirality of organic molecules with the asymmetric location of group radicals was discovered in 1848 by Louis Pasteur during his investigations of the rotation of the plane of polarization of light by crystals of sodium ammonium paratartrate. It is well established that the amino acids in proteins are exclusively Levorotary (L-aminos) and the sugars in DNA and RNA are Dextrorotary (D-sugars). This phenomenon of homochirality of biological polymers is a fundamental property of all life known on Earth. Furthermore, abiotic production mechanisms typically yield recemic mixtures (i.e. equal amounts of the two enantiomers). When amino acids were first detected in carbonaceous meteorites, it was concluded that they were racemates. This conclusion was taken as evidence that they were extraterrestrial and produced by abiologically. Subsequent studies by numerous researchers have revealed that many of the amino acids in carbonaceous meteorites exhibit a significant L-excess. The observed chirality is much greater than that produced by any currently known abiotic processes (e.g. Linearly polarized light from neutron stars; Circularly polarized ultraviolet light from faint stars; optically active quartz powders; inclusion polymerization in clay minerals; Vester-Ulbricht hypothesis of parity violations, etc.). This paper compares the measured chirality detected in the amino acids of carbonaceous meteorites with the effect of these diverse abiotic processes. IT is concluded that the levels observed are inconsistent with post-arrival biological contamination or with any of the currently known abiotic production mechanisms. However, they are consistent with ancient biological processes on the meteorite parent body. This paper will consider these chiral biomarkers in view of the detection of possible microfossils found in the Orgueil and Murchison carbonaceous meteorites. Energy dispersive x-ray spectroscopy (EDS) data obtained on these morphological biomarkers will be

  13. A Chiral Granular Gas

    NASA Astrophysics Data System (ADS)

    Tsai, J.-C.; Ye, Fangfu; Rodriguez, Juan; Gollub, J. P.; Lubensky, T. C.

    2005-05-01

    Inspired by rattleback toys, we created small chiral wires that rotate in a preferred direction on a vertically oscillating platform and quantified their motion with experiment and simulation. We demonstrate experimentally that angular momentum of rotation about particle centers of mass is converted to collective angular momentum of center-of-mass motion in a granular gas of these wires, and we introduce a continuum model that explains our observations.

  14. A chiral granular gas.

    PubMed

    Tsai, J-C; Ye, Fangfu; Rodriguez, Juan; Gollub, J P; Lubensky, T C

    2005-06-01

    Inspired by rattleback toys, we created small chiral wires that rotate in a preferred direction on a vertically oscillating platform and quantified their motion with experiment and simulation. We demonstrate experimentally that angular momentum of rotation about particle centers of mass is converted to collective angular momentum of center-of-mass motion in a granular gas of these wires, and we introduce a continuum model that explains our observations. PMID:16090323

  15. Chiral symmetry and pentaquarks

    SciTech Connect

    Dmitri Diakonov

    2004-07-01

    Spontaneous chiral symmetry breaking, mesons and baryons are illustrated in the language of the Dirac theory. Various forces acting between quarks inside baryons are discussed. I explain why the naive quark models typically overestimate pentaquark masses by some 500 MeV and why in the fully relativistic approach to baryons pentaquarks turn out to be light. I discuss briefly why it can be easier to produce pentaquarks at low than at high energies.

  16. Interfacial organization of achiral porphyrins via unidirectional compression: a general method for chiroptical porphyrin assemblies of selected chirality.

    PubMed

    Zhang, Xiao; Wang, Yanping; Chen, Penglei; Rong, Yunlong; Liu, Minghua

    2016-05-18

    Porphyrins are considered to be important scaffolds bridging supramolecular chemistry and chiral chemistry, where chirality selection via physical effects such as directional stirring and spin-coating has aroused particular interest. Nevertheless, these protocols could only work on a limited number of achiral porphyrins. It still remains a formidable challenge to pave a general avenue for the construction of chiral assemblies using achiral porphyrins. By means of a unique Langmuir-Schaefer (LS) technique of a unidirectional compression configuration, we herein have demonstrated that a series of achiral porphyrins could be facilely organized to form chiral interfacial assemblies of controlled supramolecular chirality. It has been disclosed that such a fascinating chirality selection scenario is intimately related to the direction of the compression-generated vortex-like flow, while the compression speed, one of the most significant parameters of the Langmuir technique, contributes less to this issue. With regard to a surface-pressure-dependent chirality selection phenomenon, it is suggested that the directional vortex-like flow generated by lateral compression might play a role in promoting the preferential growth of chiral assemblies showing an enhanced yet controlled CD signal. Our protocol might be, to some extent, a general method for achieving chiral porphyrin assemblies of controlled chirality. PMID:27156996

  17. Chirality and protein folding

    NASA Astrophysics Data System (ADS)

    Kwiecinska, Joanna I.; Cieplak, Marek

    2005-05-01

    There are several simple criteria of folding to a native state in model proteins. One of them involves crossing of a threshold value of the root mean square deviation distance away from the native state. Another checks whether all native contacts are established, i.e. whether the interacting amino acids come closer than some characteristic distance. We use Go-like models of proteins and show that such simple criteria may prompt one to declare folding even though fragments of the resulting conformations have a wrong sense of chirality. We propose that a better condition of folding should augment the simple criteria with the requirement that most of the local values of the chirality should be nearly native. The kinetic discrepancy between the simple and compound criteria can be substantially reduced in the Go-like models by providing the Hamiltonian with a term which favours native values of the local chirality. We study the effects of this term as a function of its amplitude and compare it to other models such as ones with side groups and ones with angle-dependent potentials.

  18. Optical effects of spin currents in semiconductors

    NASA Astrophysics Data System (ADS)

    Wang, Jing

    2011-03-01

    BANG-FEN ZHU, Department of Physics and Institute of Advanced Study, Tsinghua University, REN-BAO LIU, Department of Physics, The Chinese University of Hong Kong -- We predict the linear and second-order nonlinear optical effects of spin currents in semiconductors, based on systematic symmetry analysis and microscopic calculations with realistic models [1, 2]. By an analogue to the Ampere effect and Oersted effect, we conceived and verified that a spin current can be coupled to a ``photon spin curren'' carried by a polarized light beam, which causes sizeable Faraday rotation without involving net magnetization. Furthermore, a spin current can have a strong second-order nonlinear optical effect with unique polarization-dependence due to the special symmetry properties of the spin current. In particular, for a longitudinal spin current, in which the spins point parallel or anti-parallel to the current direction is a chiral quantity, a chiral sum-frequency effect will be induced. The second-order optical effects of spin currents have been experimentally verified immediately after the theoretical prediction. These discoveries represent new phenomena in magneto-optics, with potential spin-photonic applications. They bring new opportunities to research of spintronics and may also facilitate research of topological insulators where the edge states form pure spin currents. This work was supported by the NSFC Grant Nos.10574076, 10774086, and the Basic Research Program of China Grant 2006CB921500, Hong Kong RGC HKU 10/CRF/08 and Hong Kong GRF CUHK 402207.

  19. Chirality and equilibrium biopolymer bundles.

    PubMed

    Grason, Gregory M; Bruinsma, Robijn F

    2007-08-31

    We use continuum theory to show that chirality is a key thermodynamic control parameter for the aggregation of biopolymers: chirality produces a stable disperse phase of hexagonal bundles under moderately poor solvent conditions, as has been observed in in vitro studies of F actin [O. Pelletier et al., Phys. Rev. Lett. 91, 148102 (2003)]. The large characteristic radius of these chiral bundles is not determined by a mysterious long-range molecular interaction but by in-plane shear elastic stresses generated by the interplay between a chiral torque and an unusual, but universal, nonlinear gauge term in the strain tensor of ordered chains that is imposed by rotational invariance. PMID:17931038

  20. Spectral separation of optical spin based on antisymmetric Fano resonances

    PubMed Central

    Piao, Xianji; Yu, Sunkyu; Hong, Jiho; Park, Namkyoo

    2015-01-01

    We propose a route to the spectral separation of optical spin angular momentum based on spin-dependent Fano resonances with antisymmetric spectral profiles. By developing a spin-form coupled mode theory for chiral materials, the origin of antisymmetric Fano spectra is clarified in terms of the opposite temporal phase shift for each spin, which is the result of counter-rotating spin eigenvectors. An analytical expression of a spin-density Fano parameter is derived to enable quantitative analysis of the Fano-induced spin separation in the spectral domain. As an application, we demonstrate optical spin switching utilizing the extreme spectral sensitivity of the spin-density reversal. Our result paves a path toward the conservative spectral separation of spins without any need of the magneto-optical effect or circular dichroism, achieving excellent purity in spin density superior to conventional approaches based on circular dichroism. PMID:26561372

  1. Spin-dependent Klein tunneling in graphene: Role of Rashba spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Liu, Ming-Hao; Bundesmann, Jan; Richter, Klaus

    2012-02-01

    Within an effective Dirac theory the low-energy dispersions of monolayer graphene in the presence of Rashba spin-orbit coupling and spin-degenerate bilayer graphene are described by formally identical expressions. We explore implications of this correspondence for transport by choosing chiral tunneling through pn and pnpjunctions as a concrete example. A real-space Green's function formalism based on a tight-binding model is adopted to perform the ballistic transport calculations, which cover and confirm previous theoretical results based on the Dirac theory. Chiral tunneling in monolayer graphene in the presence of Rashba coupling is shown to indeed behave like in bilayer graphene. Combined effects of a forbidden normal transmission and spin separation are observed within the single-band n↔p transmission regime. The former comes from real-spin conservation, in analogy with pseudospin conservation in bilayer graphene, while the latter arises from the intrinsic spin-Hall mechanism of the Rashba coupling.

  2. Chiral drag force

    NASA Astrophysics Data System (ADS)

    Rajagopal, Krishna; Sadofyev, Andrey V.

    2015-10-01

    We provide a holographic evaluation of novel contributions to the drag force acting on a heavy quark moving through strongly interacting plasma. The new contributions are chiral in the sense that they act in opposite directions in plasmas containing an excess of left- or right-handed quarks. The new contributions are proportional to the coefficient of the axial anomaly, and in this sense also are chiral. These new contributions to the drag force act either parallel to or antiparallel to an external magnetic field or to the vorticity of the fluid plasma. In all these respects, these contributions to the drag force felt by a heavy quark are analogous to the chiral magnetic effect (CME) on light quarks. However, the new contribution to the drag force is independent of the electric charge of the heavy quark and is the same for heavy quarks and antiquarks, meaning that these novel effects do not in fact contribute to the CME current. We show that although the chiral drag force can be non-vanishing for heavy quarks that are at rest in the local fluid rest frame, it does vanish for heavy quarks that are at rest in a suitably chosen frame. In this frame, the heavy quark at rest sees counterpropagating momentum and charge currents, both proportional to the axial anomaly coefficient, but feels no drag force. This provides strong concrete evidence for the absence of dissipation in chiral transport, something that has been predicted previously via consideration of symmetries. Along the way to our principal results, we provide a general calculation of the corrections to the drag force due to the presence of gradients in the flowing fluid in the presence of a nonzero chemical potential. We close with a consequence of our result that is at least in principle observable in heavy ion collisions, namely an anticorrelation between the direction of the CME current for light quarks in a given event and the direction of the kick given to the momentum of all the heavy quarks and

  3. Chiral topological orders in an optical Raman lattice

    NASA Astrophysics Data System (ADS)

    Liu, Xiong-Jun; Liu, Zheng-Xin; Law, K. T.; Liu, W. Vincent; Ng, T. K.

    2016-03-01

    We find an optical Raman lattice without spin-orbit coupling showing chiral topological orders for cold atoms. Two incident plane-wave lasers are applied to simultaneously generate a double-well square lattice and periodic Raman couplings, the latter of which drive the nearest-neighbor hopping and create a staggered flux pattern across the lattice. Such a minimal setup can yield the quantum anomalous Hall effect with a large gap-bandwidth ratio in the single particle regime, while in the interacting regime it achieves the J 1-J 2-K spin model, with the nearest-neighboring (J 1) and next-nearest-neightboring (J 2) exchange coupling coefficients, and the three three-spin interacting parameter (K) is controllable. We show that the J 1-J 2-K spin model may support a chiral spin liquid phase. It is interesting that the quantum anomalous Hall state can be detected by only measuring the Bloch states in the two symmetric momentum points of the first Brillouin zone. Further, we also show that heating in the present optical Raman lattice can be essentially reduced compared with the conventional laser-assisted tunneling schemes. This suggests that the predicted topological states be reachable with the current experimental capability.

  4. Out-of-plane spin-orientation dependent magnetotransport properties in the anisotropic helimagnet CR1/3NbS2 [Spin-Orbit Coupling Induced Anisotropy in the Magnetotransport of the Chiral Helimagnet Cr1=3NbS2

    SciTech Connect

    Bornstein, Alexander C.; Chapman, Benjamin J.; Ghimire, Nirmal J.; Mandrus, David G.; Parker, David S.; Lee, Minhyea

    2015-05-01

    Understanding the role of spin-orbit coupling (SOC) has been crucial for controlling magnetic anisotropy in magnetic multilayer films. It has been shown that electronic structure can be altered via interface SOC by varying the superlattice structure, resulting in spontaneous magnetization perpendicular or parallel to the plane. In lieu of magnetic thin films, we study the similarly anisotropic helimagnet Cr1/3NbS2 where the spin-polarization direction, controlled by the applied magnetic field, can modify the electronic structure. As a result, the direction of spin polarization can modulate the density of states and in turn affect the in-plane electrical conductivity. In Cr1/3NbS2, we found an enhancement of in-plane conductivity when the spin polarization is out-of-plane as compared to in-plane spin polarization. This is consistent with the increase in density of states near the Fermi energy at the same spin configuration, found from first-principles calculations. We also observe unusual field dependence of the Hall signal in the same temperature range. This is unlikely to originate from the noncollinear spin texture but rather further indicates strong dependence of electronic structure on spin orientation relative to the plane.

  5. Out-of-plane spin-orientation dependent magnetotransport properties in the anisotropic helimagnet CR1/3NbS2 [Spin-Orbit Coupling Induced Anisotropy in the Magnetotransport of the Chiral Helimagnet Cr1=3NbS2

    DOE PAGESBeta

    Bornstein, Alexander C.; Chapman, Benjamin J.; Ghimire, Nirmal J.; Mandrus, David G.; Parker, David S.; Lee, Minhyea

    2015-05-01

    Understanding the role of spin-orbit coupling (SOC) has been crucial for controlling magnetic anisotropy in magnetic multilayer films. It has been shown that electronic structure can be altered via interface SOC by varying the superlattice structure, resulting in spontaneous magnetization perpendicular or parallel to the plane. In lieu of magnetic thin films, we study the similarly anisotropic helimagnet Cr1/3NbS2 where the spin-polarization direction, controlled by the applied magnetic field, can modify the electronic structure. As a result, the direction of spin polarization can modulate the density of states and in turn affect the in-plane electrical conductivity. In Cr1/3NbS2, we foundmore » an enhancement of in-plane conductivity when the spin polarization is out-of-plane as compared to in-plane spin polarization. This is consistent with the increase in density of states near the Fermi energy at the same spin configuration, found from first-principles calculations. We also observe unusual field dependence of the Hall signal in the same temperature range. This is unlikely to originate from the noncollinear spin texture but rather further indicates strong dependence of electronic structure on spin orientation relative to the plane.« less

  6. Chiral Crystallization of Ethylenediamine Sulfate

    ERIC Educational Resources Information Center

    Koby, Lawrence; Ningappa, Jyothi B.; Dakesssian, Maria; Cuccia, Louis A.

    2005-01-01

    The optimal conditions for the crystallization of achiral ethylenediamine sulfate into large chiral crystals that are ideal for polarimetry studies and observation using Polaroid sheets are presented. This experiment is an ideal undergraduate experiment, which clearly demonstrates the chiral crystallization of an achiral molecule.

  7. CHIRAL POLLUTANTS: OCCURRENCE AND SIGNIFICANCE

    EPA Science Inventory

    This task involves process research to determine the environmental occurrence and fate of enantiomers of selected chiral pesticides, PCBs and other chiral pollutants with an emphasis on currently-used modern pesticides expected to have short to intermediate environmental half-liv...

  8. CHIRAL PESTICIDES: OCCURRENCE AND SIGNIFICANCE

    EPA Science Inventory

    Like amino acids, certain pesticides exist in "left-handed" and "right-handed" (chiral) forms. Commercially available chiral pesticides are produced as racemic mixtures in which the ratio of the two forms (or enantiomers) is 1:1. Enantiomers have the same ...

  9. Emergent electrodynamics from moving magnetic whirls in chiral magnets

    NASA Astrophysics Data System (ADS)

    Rosch, Achim

    2012-02-01

    In chiral magnets a lattice of magnetic whirls -- so-called skyrmions -- is stabilized in a small temperature and field range by thermal fluctuations [1]. We discuss how electric and spin currents couple to these skyrmions. As the spin of the electrons locally adjusts to the magnetic texture, the electron picks up a Berry phase. The effects of these time-dependent Berry phases are best described by ``artificial'' electric and magnetic fields of an emergent electrodynamics which couple to the spin and the spin currents. The efficient Berry phase coupling together with a partial cancellation of pinning forces due to the stiffness of the skyrmion lattice allows to explain theoretically experiments [2], which show that skyrmion lattices can be controlled by ultrasmall current densities. Using tiny gradients of temperature or magnetic field it is also possible to induce rotations of the skyrmion lattice. The topologically quantized winding number of the skyrmions induces exactly one quantum of emergent magnetic flux per skyrmion. Therefore one can also determine quantitatively the emergent electric field induced by a moving skyrmion following Faraday's law of induction as has been measured in recent experiments [3].[4pt] [1] Skyrmion Lattice in a Chiral Magnet, S. M"uhlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. B"oni, Science 323, 915 (2009). [0pt] [2] Spin Transfer Torques in MnSi at Ultralow Current Densities, F. Jonietz, S. M"hlbauer, C. Pfleiderer, A. Neubauer, W. M"unzer, A. Bauer, T. Adams, R. Georgii, P. B?ni, R. A. Duine, K. Everschor, M. Garst, and A. Rosch, Science 330, 1648 (2010).[0pt] [3] Emergent electrodynamics of skyrmions in a chiral magnet, T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner, C. Franz, and C. Pfleiderer, K. Everschor, M. Garst, and A. Rosch, preprint 2011.

  10. Spin-one matter fields

    NASA Astrophysics Data System (ADS)

    Napsuciale, M.; Rodríguez, S.; Ferro-Hernández, Rodolfo; Gómez-Ávila, Selim

    2016-04-01

    Spin-one matter fields are relevant both for the description of hadronic states and as potential extensions of the Standard Model. In this work we present a formalism for the description of massive spin-one fields transforming in the (1 ,0 )⊕(0 ,1 ) representation of the Lorentz group, based on the covariant projection onto parity eigenspaces and Poincaré orbits. The formalism yields a constrained dynamics. We solve the constraints and perform the canonical quantization accordingly. This formulation uses the recent construction of a parity-based covariant basis for matrix operators acting on the (j ,0 )⊕(0 ,j ) representations. The algebraic properties of the covariant basis play an important role in solving the constraints and allowing the canonical quantization of the theory. We study the chiral structure of the theory and conclude that it is not chirally symmetric in the massless limit, hence it is not possible to have chiral gauge interactions. However, spin-one matter fields can have vector gauge interactions. Also, the dimension of the field makes self-interactions naively renormalizable. Using the covariant basis, we classify all possible self-interaction terms.

  11. Mass-Selective Chiral Analysis.

    PubMed

    Boesl, Ulrich; Kartouzian, Aras

    2016-06-12

    Three ways of realizing mass-selective chiral analysis are reviewed. The first is based on the formation of diastereomers that are of homo- and hetero- type with respect to the enantiomers of involved chiral molecules. This way is quite well-established with numerous applications. The other two ways are more recent developments, both based on circular dichroism (CD). In one, conventional or nonlinear electronic CD is linked to mass spectrometry (MS) by resonance-enhanced multiphoton ionization. The other is based on CD in the angular distribution of photoelectrons, which is measured in combination with MS via photoion photoelectron coincidence. Among the many important applications of mass-selective chiral analysis, this review focuses on its use as an analytical tool for the development of heterogeneous enantioselective chemical catalysis. There exist other approaches to combine chiral analysis and mass-selective detection, such as chiral chromatography MS, which are not discussed here. PMID:27070181

  12. Controlling Chirality of Entropic Crystals

    NASA Astrophysics Data System (ADS)

    Damasceno, Pablo F.; Karas, Andrew S.; Schultz, Benjamin A.; Engel, Michael; Glotzer, Sharon C.

    2015-10-01

    Colloidal crystal structures with complexity and diversity rivaling atomic and molecular crystals have been predicted and obtained for hard particles by entropy maximization. However, thus far homochiral colloidal crystals, which are candidates for photonic metamaterials, are absent. Using Monte Carlo simulations we show that chiral polyhedra exhibiting weak directional entropic forces self-assemble either an achiral crystal or a chiral crystal with limited control over the crystal handedness. Building blocks with stronger faceting exhibit higher selectivity and assemble a chiral crystal with handedness uniquely determined by the particle chirality. Tuning the strength of directional entropic forces by means of particle rounding or the use of depletants allows for reconfiguration between achiral and homochiral crystals. We rationalize our findings by quantifying the chirality strength of each particle, both from particle geometry and potential of mean force and torque diagrams.

  13. Mass-Selective Chiral Analysis

    NASA Astrophysics Data System (ADS)

    Boesl, Ulrich; Kartouzian, Aras

    2016-06-01

    Three ways of realizing mass-selective chiral analysis are reviewed. The first is based on the formation of diastereomers that are of homo- and hetero- type with respect to the enantiomers of involved chiral molecules. This way is quite well-established with numerous applications. The other two ways are more recent developments, both based on circular dichroism (CD). In one, conventional or nonlinear electronic CD is linked to mass spectrometry (MS) by resonance-enhanced multiphoton ionization. The other is based on CD in the angular distribution of photoelectrons, which is measured in combination with MS via photoion photoelectron coincidence. Among the many important applications of mass-selective chiral analysis, this review focuses on its use as an analytical tool for the development of heterogeneous enantioselective chemical catalysis. There exist other approaches to combine chiral analysis and mass-selective detection, such as chiral chromatography MS, which are not discussed here.

  14. Controlling Chirality of Entropic Crystals.

    PubMed

    Damasceno, Pablo F; Karas, Andrew S; Schultz, Benjamin A; Engel, Michael; Glotzer, Sharon C

    2015-10-01

    Colloidal crystal structures with complexity and diversity rivaling atomic and molecular crystals have been predicted and obtained for hard particles by entropy maximization. However, thus far homochiral colloidal crystals, which are candidates for photonic metamaterials, are absent. Using Monte Carlo simulations we show that chiral polyhedra exhibiting weak directional entropic forces self-assemble either an achiral crystal or a chiral crystal with limited control over the crystal handedness. Building blocks with stronger faceting exhibit higher selectivity and assemble a chiral crystal with handedness uniquely determined by the particle chirality. Tuning the strength of directional entropic forces by means of particle rounding or the use of depletants allows for reconfiguration between achiral and homochiral crystals. We rationalize our findings by quantifying the chirality strength of each particle, both from particle geometry and potential of mean force and torque diagrams. PMID:26550757

  15. Nucleon Spin Structure at Low Energies

    SciTech Connect

    Krebs, H.; Bernard, V.; Meissner, Ulf-G.

    2009-07-27

    We apply chiral effective field theory with explicit DELTA-1232) degrees of freedom to study double virtual Compton scattering at the photon point. Generalized spin polarizabilities are calculated up to order epsilon{sup 3} in the covariant small scale expansion. Systematic inclusion of DELTA degrees of freedom drastically improves the theoretical predictions.

  16. Enantiospecific spin polarization of electrons photoemitted through layers of homochiral organic molecules.

    PubMed

    Niño, Miguel Ángel; Kowalik, Iwona Agnieszka; Luque, Francisco Jesús; Arvanitis, Dimitri; Miranda, Rodolfo; de Miguel, Juan José

    2014-11-26

    Electrons photoemitted through layers of purely organic chiral molecules become strongly spin-polarized even at room temperature and for double-monolayer thicknesses. The substitution of one enantiomer for its mirror image does not revert the sign of the spin polarization, rather its direction in space. These findings might lead to the obtention of highly efficient spin filters for spintronic applications. PMID:25183637

  17. Lorentz invariance in chiral kinetic theory.

    PubMed

    Chen, Jing-Yuan; Son, Dam T; Stephanov, Mikhail A; Yee, Ho-Ung; Yin, Yi

    2014-10-31

    We show that Lorentz invariance is realized nontrivially in the classical action of a massless spin-1/2 particle with definite helicity. We find that the ordinary Lorentz transformation is modified by a shift orthogonal to the boost vector and the particle momentum. The shift ensures angular momentum conservation in particle collisions and implies a nonlocality of the collision term in the Lorentz-invariant kinetic theory due to side jumps. We show that 2/3 of the chiral-vortical effect for a uniformly rotating particle distribution can be attributed to the magnetic moment coupling required by the Lorentz invariance. We also show how the classical action can be obtained by taking the classical limit of the path integral for a Weyl particle. PMID:25396362

  18. Chiral fiber optical isolator

    NASA Astrophysics Data System (ADS)

    Kopp, Victor I.; Zhang, Guoyin; Zhang, Sheng; Genack, Azriel Z.; Neugroschl, Dan

    2009-02-01

    We propose an in-fiber chiral optical isolator based on chiral fiber polarizer technology and calculate its performance by incorporating the magnetic field into the scattering matrix. The design will be implemented in a special preform, which is passed through a miniature heat zone as it is drawn and twisted. The birefringence of the fiber is controlled by adjusted the diameter of a dual-core optical fiber. By adjusting the twist, the fiber can convert linear to circular polarization and reject one component of circular polarization. In the novel central portion of the isolator, the fiber diameter is large. The effective birefringence of the circular central core with high Verdet constant embedded in an outer core of slightly smaller index of refraction is small. The central potion is a non-reciprocal polarization converter which passes forward traveling left circularly polarized (LCP) light as LCP, while converting backward propagating LCP to right circularly polarized (RCP) light. Both polarizations of light traveling backwards are scattered out of the isolator. Since it is an all-glass structure, we anticipate that the isolator will be able to handle several watts of power and will be environmentally robust.

  19. Chiral-odd generalized parton distributions in transverse and longitudinal impact parameter spaces

    SciTech Connect

    Chakrabarti, D.; Manohar, R.; Mukherjee, A.

    2009-02-01

    We investigate the chiral-odd generalized parton distributions for nonzero skewness {zeta} in transverse and longitudinal position spaces by taking Fourier transform with respect to the transverse and longitudinal momentum transfer, respectively. We present overlap formulas for the chiral-odd generalized parton distributions in terms of light-front wave functions (LFWFs) of the proton both in the Efremov-Radyushkin-Brodsky-Lepage and Dokshitzer-Gribov-Lipatov-Altarelli-Parisi regions. We calculate them in a field theory inspired model of a relativistic spin-1/2 composite state with the correct correlation between the different LFWFs in Fock space, namely, that of the quantum fluctuations of an electron in a generalized form of QED. We show the spin-orbit correlation effect of the two-particle LFWF as well as the correlation between the constituent spin and the transverse spin of the target.

  20. Chiral-odd generalized parton distributions in transverse and longitudinal impact parameter spaces

    NASA Astrophysics Data System (ADS)

    Chakrabarti, D.; Manohar, R.; Mukherjee, A.

    2009-02-01

    We investigate the chiral-odd generalized parton distributions for nonzero skewness ζ in transverse and longitudinal position spaces by taking Fourier transform with respect to the transverse and longitudinal momentum transfer, respectively. We present overlap formulas for the chiral-odd generalized parton distributions in terms of light-front wave functions (LFWFs) of the proton both in the Efremov-Radyushkin-Brodsky-Lepage and Dokshitzer-Gribov-Lipatov-Altarelli-Parisi regions. We calculate them in a field theory inspired model of a relativistic spin-1/2 composite state with the correct correlation between the different LFWFs in Fock space, namely, that of the quantum fluctuations of an electron in a generalized form of QED. We show the spin-orbit correlation effect of the two-particle LFWF as well as the correlation between the constituent spin and the transverse spin of the target.

  1. Galaxy masses

    NASA Astrophysics Data System (ADS)

    Courteau, Stéphane; Cappellari, Michele; de Jong, Roelof S.; Dutton, Aaron A.; Emsellem, Eric; Hoekstra, Henk; Koopmans, L. V. E.; Mamon, Gary A.; Maraston, Claudia; Treu, Tommaso; Widrow, Lawrence M.

    2014-01-01

    Galaxy masses play a fundamental role in our understanding of structure formation models. This review addresses the variety and reliability of mass estimators that pertain to stars, gas, and dark matter. The different sections on masses from stellar populations, dynamical masses of gas-rich and gas-poor galaxies, with some attention paid to our Milky Way, and masses from weak and strong lensing methods all provide review material on galaxy masses in a self-consistent manner.

  2. The nucleon and Delta-resonance masses in relativistic chiral effective-field theory

    SciTech Connect

    V. Pascalutsa; M. Vanderhaeghen

    2005-11-28

    We study the chiral behavior of the nucleon and De-isobar masses within a manifestly covariant chiral effective-field theory, consistent with the analyticity principle. We compute the {pi} N and {pi}{Delta} one-loop contributions to the mass and field-normalization constant, and find that they can be described in terms of universal relativistic loop functions, multiplied by appropriate spin, isospin and coupling constants. We show that these relativistic one-loop corrections, when properly renormalized, obey the chiral power-counting and vanish in the chiral limit. The results including only the {pi} N-loop corrections compare favorably with the lattice QCD data for the pion-mass dependence of the nucleon and De masses, while inclusion of the {pi}/De loops tends to spoil this agreement.

  3. Chiral quantum dot based materials

    NASA Astrophysics Data System (ADS)

    Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii

    2014-05-01

    Recently, the use of stereospecific chiral stabilising molecules has also opened another avenue of interest in the area of quantum dot (QD) research. The main goal of our research is to develop new types of technologically important quantum dot materials containing chiral defects, study their properties and explore their applications. The utilisation of chiral penicillamine stabilisers allowed the preparation of new water soluble white emitting CdS quantum nanostructures which demonstrated circular dichroism in the band-edge region of the spectrum. It was also demonstrated that all three types of QDs (D-, L-, and Rac penicillamine stabilised) show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. In this work the chiral CdS based quantum nanostructures have also been doped by copper metal ions and new chiral penicilamine stabilized CuS nanoparticles have been prepared and investigated. It was found that copper doping had a strong effect at low levels in the synthesis of chiral CdS nanostructures. We expect that this research will open new horizons in the chemistry of chiral nanomaterials and their application in biotechnology, sensing and asymmetric synthesis.

  4. Chiral perturbation theory with nucleons

    SciTech Connect

    Meissner, U.G.

    1991-09-01

    I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, {pi}N scattering and the {sigma}-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon.

  5. Andromeda Galaxy

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    This image is a Galaxy Evolution Explorer observation of the large galaxy in Andromeda, Messier 31. The Andromeda galaxy is the most massive in the local group of galaxies that includes our Milky Way. Andromeda is the nearest large galaxy to our own. The image is a mosaic of 10 separate Galaxy Evolution Explorer images taken in September, 2003. The color image (with near ultraviolet shown by red and far ultraviolet shown by blue) shows blue regions of young, hot, high mass stars tracing out the spiral arms where star formation is occurring, and the central orange-white 'bulge' of old, cooler stars formed long ago. The star forming arms of Messier 31 are unusual in being quite circular rather than the usual spiral shape. Several companion galaxies can also be seen. These include Messier 32, a dwarf elliptical galaxy directly below the central bulge and just outside the spiral arms, and Messier 110 (M110), which is above and to the right of the center. M110 has an unusual far ultraviolet bright core in an otherwise 'red,' old star halo. Many other regions of star formation can be seen far outside the main body of the galaxy.

  6. Starburst galaxies

    NASA Technical Reports Server (NTRS)

    Weedman, Daniel W.

    1987-01-01

    The infrared properties of star-forming galaxies, primarily as determined by the Infrared Astronomy Satellite (IRAS), are compared to X-ray, optical, and radio properties. Luminosity functions are reviewed and combined with those derived from optically discovered samples using 487 Markarian galaxies with redshifts and published IRAS 60 micron fluxes, and 1074 such galaxies in the Center for Astrophysics redshift survey. It is found that the majority of infrared galaxies which could be detected are low luminosity sources already known from the optical samples, but non-infrared surveys have found only a very small fraction of the highest luminosity sources. Distributions of infrared to optical fluxes and available spectra indicate that the majority of IRAS-selected galaxies are starburst galaxies. Having a census of starburst galaxies and associated dust allow severl important global calculations. The source counts are predicted as a function of flux limits for both infrared and radio fluxes. These galaxies are found to be important radio sources at faint flux limits. Taking the integrated flux to z = 3 indicates that such galaxies are a significant component of the diffuse X-ray background, and could be the the dominant component depending on the nature of the X-ray spectra and source evolution.

  7. Magnetic torque measurements in a chiral magnet CrNb3S6

    NASA Astrophysics Data System (ADS)

    Yonemura, Junichiro; Kida, Takanori; Yoshizawa, Daichi; Kousaka, Yusuke; Akimitsu, Jun; Nishihara, Sadafumi; Inoue, Katsua; Kishine, Junichiro; Hagiwara, Masayuki; Togawa, Yoshihiko

    Chiral magnetic orders emerge in a particular class of magnetic materials with a chiral crystal structure. As a consequence of the competition between Heisenberg exchange and Dyzaloshinskii-Moriya (DM) interactions in the presence of external magnetic field, chiral helimagnetic order (CHM) formed at zero magnetic field transforms into a nonlinear magnetic superlattice called chiral soliton lattice (CSL) under magnetic fields perpendicular to the chiral axis. The CSL consists of forced ferromagnetic (FM) regions periodically partitioned by chiral soliton kinks of spins. The period of the CSL increases gradually with increasing magnetic field. The CSL is the ground state and exhibits a phase transition into forced FM state above the critical field. To understand the nature of the phase transition, it is important to examine thermodynamic quantities such as magnetization. Furthermore, it is interesting to explore the possibility of the discretization of such physical quantities in a finite CSL system. In this talk, we will present the development of magnetic torque measurement method using micro cantilever in order to precisely measure the magnetization of a micro-sized sample and a set of experimental data obtained by magnetic torque measurements performed in chiral magnet CrNb3S6. Hysteresis and stepped behavior of magnetization observed are discussed.

  8. An Anderson-like model of the QCD chiral transition

    NASA Astrophysics Data System (ADS)

    Giordano, Matteo; Kovács, Tamás G.; Pittler, Ferenc

    2016-06-01

    We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian ("Dirac-Anderson Hamiltonian") carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the QCD spectrum and of the Dirac eigenmodes concerning chiral symmetry breaking and localisation, both in the ordered (deconfined) and disordered (confined) phases. Moreover, it allows us to study separately the roles played in the two phenomena by the diagonal and the off-diagonal terms of the Dirac-Anderson Hamiltonian. Our results support our expectation that chiral symmetry restoration and localisation of the low modes are closely related, and that both are triggered by the deconfinement transition.

  9. Nucleon-to-{delta} axial transition form factors in relativistic baryon chiral perturbation theory

    SciTech Connect

    Geng, L. S.; Camalich, J. Martin; Alvarez-Ruso, L.; Vacas, M. J. Vicente

    2008-07-01

    We report a theoretical study of the axial nucleon-to-delta (1232) (N{yields}{delta}) transition form factors up to one-loop order in relativistic baryon chiral perturbation theory. We adopt a formalism in which the {delta} couplings obey the spin-3/2 gauge symmetry and, therefore, decouple the unphysical spin-1/2 fields. We compare the results with phenomenological form factors obtained from neutrino bubble-chamber data and in quark models.

  10. Experimental evidence for chirality in the odd-A 105Rh

    NASA Astrophysics Data System (ADS)

    Timár, J.; Joshi, P.; Starosta, K.; Dimitrov, V. I.; Fossan, D. B.; Molnár, J.; Sohler, D.; Wadsworth, R.; Algora, A.; Bednarczyk, P.; Curien, D.; Dombrádi, Zs.; Duchene, G.; Gizon, A.; Gizon, J.; Jenkins, D. G.; Koike, T.; Krasznahorkay, A.; Paul, E. S.; Raddon, P. M.; Rainovski, G.; Scheurer, J. N.; Simons, A. J.; Vaman, C.; Wilkinson, A. R.; Zolnai, L.; Frauendorf, S.

    2004-09-01

    High-spin states in 105Rh were populated by the 96Zr(13C, p3n) reaction at beam energies of 51 and 58 MeV, and studied using the EUROBALL IV γ-ray spectrometer and the DIAMANT charged particle array. A pair of nearly degenerate ΔI = 1 three-quasiparticle bands with the same spins and parity have been observed. Comparison of the experimental results with tilted axis cranking calculations confirms the chiral character of the two bands, while arguments based on the excitation of particles within the πg9 / 2 ν(h11 / 2) 2 configuration of the yrast band and comparison with the previously observed γ band exclude the other possible interpretations. This is the first experimental evidence for three-quasiparticle chiral structure in the A ∼ 100 region, and the first simultaneous observation of a γ band and chiral partner bands in one nucleus.

  11. Non-magnetic organic/inorganic spin injector at room temperature

    SciTech Connect

    Mathew, Shinto P.; Mondal, Prakash Chandra; Naaman, Ron; Moshe, Hagay; Mastai, Yitzhak

    2014-12-15

    Spin injection into solid-state devices is commonly performed by use of ferromagnetic metal electrodes. Here, we present a spin injector design without permanent magnet; rather, the spin selectivity is determined by a chiral tunneling barrier. The chiral tunneling barrier is composed of an ultrathin Al{sub 2}O{sub 3} layer that is deposited on top of a chiral self-assembled monolayer (SAM), which consists of cysteine or oligopeptide molecules. The experimentally observed magnetoresistance can be up to 20% at room temperature, and it displays an uncommon asymmetric curve as a function of the applied magnetic field. These findings show that the spin injector transmits only one spin orientation, independent of external magnetic field. The sign of the magnetoresistance depends on the handedness of the molecules in the SAM, which act as a spin filter, and the magnitude of the magnetoresistance depends only weakly on temperature.

  12. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures.

    PubMed

    Boulle, Olivier; Vogel, Jan; Yang, Hongxin; Pizzini, Stefania; de Souza Chaves, Dayane; Locatelli, Andrea; Menteş, Tevfik Onur; Sala, Alessandro; Buda-Prejbeanu, Liliana D; Klein, Olivier; Belmeguenai, Mohamed; Roussigné, Yves; Stashkevich, Andrey; Chérif, Salim Mourad; Aballe, Lucia; Foerster, Michael; Chshiev, Mairbek; Auffret, Stéphane; Miron, Ioan Mihai; Gaudin, Gilles

    2016-05-01

    Magnetic skyrmions are chiral spin structures with a whirling configuration. Their topological properties, nanometre size and the fact that they can be moved by small current densities have opened a new paradigm for the manipulation of magnetization at the nanoscale. Chiral skyrmion structures have so far been experimentally demonstrated only in bulk materials and in epitaxial ultrathin films, and under an external magnetic field or at low temperature. Here, we report on the observation of stable skyrmions in sputtered ultrathin Pt/Co/MgO nanostructures at room temperature and zero external magnetic field. We use high lateral resolution X-ray magnetic circular dichroism microscopy to image their chiral Néel internal structure, which we explain as due to the large strength of the Dzyaloshinskii-Moriya interaction as revealed by spin wave spectroscopy measurements. Our results are substantiated by micromagnetic simulations and numerical models, which allow the identification of the physical mechanisms governing the size and stability of the skyrmions. PMID:26809057

  13. CHIRAL MODEL FOR DENSE, HOT AND STRANGE HADRONIC MATTER

    SciTech Connect

    ZSCHIESCHE,D.; PAPAZOGLOU,P.; BECKMANN,C.W.; SCHRAMM,S.; SCHAFFNER-BIELICH,J.; STOCKER,H.; GREINER,W.

    1999-06-10

    Until now it is not possible to determine the equation of state (EOS) of hadronic matter from QCD. One successfully applied alternative way to describe the hadronic world at high densities and temperatures are effective models like the RMF-models, where the relevant degrees of freedom are baryons and mesons instead of quarks and gluons. Since approximate chiral symmetry is an essential feature of QCD, it should be a useful concept for building and restricting effective models. It has been shown that effective {sigma}-{omega}-models including SU(2) chiral symmetry are able to obtain a reasonable description of nuclear matter and finite nuclei. Recently [4] the authors have shown that an extended SU(3) x SU(3) chiral {sigma}-{omega} model is able to describe nuclear matter ground state properties, vacuum properties and finite nuclei satisfactorily. This model includes the lowest SU(3) multiplets of the baryons (octet and decuplet), the spin-0 and the spin-1 mesons as the relevant degrees of freedom. Here they discuss the predictions of this model for dense, hot, and strange hadronic matter.

  14. Spinning fluids in general relativity

    NASA Technical Reports Server (NTRS)

    Ray, J. R.; Smalley, L. L.

    1982-01-01

    General relativity field equations are employed to examine a continuous medium with internal spin. A variational principle formerly applied in the special relativity case is extended to the general relativity case, using a tetrad to express the spin density and the four-velocity of the fluid. An energy-momentum tensor is subsequently defined for a spinning fluid. The equations of motion of the fluid are suggested to be useful in analytical studies of galaxies, for anisotropic Bianchi universes, and for turbulent eddies.

  15. Extremely large, gate tunable spin Hall angle in 3D Topological Insulator pn junction

    NASA Astrophysics Data System (ADS)

    Habib, K. M. Masum; Sajjad, Redwan; Ghosh, Avik

    2015-03-01

    The band structure of the surface states of a three dimensional Topological Insulator (3D TI) is similar to that of graphene featuring massless Dirac Fermions. We show that due to this similarity, the chiral tunneling of electron in a graphene pn junction also appears in 3D TI. Electrons with very small incident angle (modes) are allowed to transmit through a TI pn junction (TIPNJ) due to the chiral tunneling. The rest of the electrons are reflected. As a result, the charge current in a TIPNJ is suppressed. Due to the spin momentum locking, all the small angle modes are spin-down states. Therefore, the transmitted end of the TIPNJ becomes highly spin polarized. On the other hand, the spin of the reflected electron is flipped due to spin momentum locking. This enhances the spin current at the injection end. Thus, the interplay between the chiral tunneling and spin momentum locking reduces the charge current but enhances the spin current at the same time, leading to an extremely large (~20) spin Hall angle. Since the chiral tunneling can be controlled by an external electric field, the spin Hall angle is gate tunable. The spin current generated by a TIPNJ can be used for energy-efficient switching of nanoscaled ferromagnets, which is an essential part of spintronic devices. This work is supported by the NRI INDEX center.

  16. Spin Physics with CLAS

    SciTech Connect

    Yelena Prok

    2010-05-01

    Inelastic scattering using polarized nucleon targets and polarized charged lepton beams allows the extraction of double and single spin asymmetries that provide information about the helicity structure of the nucleon. A program designed to study such processes at low and intermediate $Q^2$ for the proton and deuteron has been pursued by the CLAS Collaboration at Jefferson Lab since 1998. Our inclusive data with high statistical precision and extensive kinematic coverage allow us to better constrain the polarized parton distributions and to accurately determine various moments of spin structure function $g_1$ as a function of $Q^2$. The latest results will be shown, illustrating our contribution to the world data, with comparisons of the data with NLO global fits, phenomenological models, chiral perturbation theory and the GDH and Bjorken sum rules. The semi-inclusive measurements of single and double spin asymmetries for charged and neutral pions are also show, indicating the importance of the orbital motion of quarks in understanding the spin structure of the nucleon.

  17. Spin-transfer torques in helimagnets

    NASA Astrophysics Data System (ADS)

    Hals, Kjetil M. D.; Brataas, Arne

    2013-05-01

    We theoretically investigate current-induced magnetization dynamics in chiral-lattice helimagnets. Spin-orbit coupling in noncentrosymmetric crystals induces a reactive spin-transfer torque that has not been previously considered. We demonstrate how the torque is governed by the crystal symmetry and acts as an effective magnetic field along the current direction in cubic B20-type crystals. The effects of the new torque are computed for current-induced dynamics of spin spirals and the Doppler shift of spin waves. In current-induced spin-spiral motion, the new torque tilts the spiral structure. The spin waves of the spiral structure are initially displaced by the new torque, while the dispersion relation is unaffected.

  18. Unlocking Bloch-type chirality in ultrathin magnets through uniaxial strain.

    PubMed

    Chen, Gong; N'Diaye, Alpha T; Kang, Sang Pyo; Kwon, Hee Young; Won, Changyeon; Wu, Yizheng; Qiu, Z Q; Schmid, Andreas K

    2015-01-01

    Chiral magnetic domain walls are of great interest because lifting the energetic degeneracy of left- and right-handed spin textures in magnetic domain walls enables fast current-driven domain wall propagation. Although two types of magnetic domain walls are known to exist in magnetic thin films, Bloch- and Néel-walls, up to now the stabilization of homochirality was restricted to Néel-type domain walls. Since the driving mechanism of thin-film magnetic chirality, the interfacial Dzyaloshinskii-Moriya interaction, is thought to vanish in Bloch-type walls, homochiral Bloch walls have remained elusive. Here we use real-space imaging of the spin texture in iron/nickel bilayers on tungsten to show that chiral domain walls of mixed Bloch-type and Néel-type can indeed be stabilized by adding uniaxial strain in the presence of interfacial Dzyaloshinskii-Moriya interaction. Our findings introduce Bloch-type chirality as a new spin texture, which may open up new opportunities to design spin-orbitronics devices. PMID:25798953

  19. From helical state to chiral state in ferromagnetic bilayer graphene

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Zhou, Yuan; Zhang, Jun

    2015-06-01

    We explore topological phases in biased ferromagnetic bilayer graphene, formed by bilayer graphene subjected to an external ferromagnetic exchange field, under a magnetic field. The most likely way to obtain a variety of distinct broken symmetry topological phases is proposed by means of ferromagnetic exchange field. Both spin-filtered quantum Hall and quantum spin Hall (QSH) phases are found. Edge modes in this QSH phase carry charge, spin and valley currents. When both time reversal and inversion symmetries are broken, the QSH phase remains robust against weak disorder. Moreover, topological phase transition from helical phase to chiral phase can be driven by simply tuning bias voltage or Fermi energy. A few possible experimental realizations are also discussed.

  20. Amino Acids and Chirality

    NASA Technical Reports Server (NTRS)

    Cook, Jamie E.

    2012-01-01

    Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.

  1. Spin transport in helical biological systems

    SciTech Connect

    Díaz, Elena; Gutierrez, Rafael

    2014-08-20

    Motivated by the recent experimental demonstration of spin selective effects in monolayers of double-stranded DNA oligomers, our work presents a minimal model to describe electron transmission through helical fields. Our model highlight that the lack of inversion symmetry due to the chirality of the potential is a key factor which will lead to a high spin-polarization (SP). We also study the stability of the SP against fluctuations of the electronic structure induced by static disorder affecting the on-site energies. In the energy regions where the spin-filtering occurs, our results remain stable against moderate disorders although the SP is slightly reduced.

  2. Widespread spin polarization effects in photoemission from topological insulators

    SciTech Connect

    Jozwiak, C.; Chen, Y. L.; Fedorov, A. V.; Analytis, J. G.; Rotundu, C. R.; Schmid, A. K.; Denlinger, J. D.; Chuang, Y.-D.; Lee, D.-H.; Fisher, I. R.; Birgeneau, R. J.; Shen, Z.-X.; Hussain, Z.; Lanzara, A.

    2011-06-22

    High-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES) was performed on the three-dimensional topological insulator Bi{sub 2}Se{sub 3} using a recently developed high-efficiency spectrometer. The topological surface state's helical spin structure is observed, in agreement with theoretical prediction. Spin textures of both chiralities, at energies above and below the Dirac point, are observed, and the spin structure is found to persist at room temperature. The measurements reveal additional unexpected spin polarization effects, which also originate from the spin-orbit interaction, but are well differentiated from topological physics by contrasting momentum and photon energy and polarization dependencies. These observations demonstrate significant deviations of photoelectron and quasiparticle spin polarizations. Our findings illustrate the inherent complexity of spin-resolved ARPES and demonstrate key considerations for interpreting experimental results.

  3. Chiral Bosonization of Superconformal Ghosts

    NASA Technical Reports Server (NTRS)

    Shi, Deheng; Shen, Yang; Liu, Jinling; Xiong, Yongjian

    1996-01-01

    We explain the difference of the Hilbert space of the superconformal ghosts (beta,gamma) system from that of its bosonized fields phi and chi. We calculate the chiral correlation functions of phi, chi fields by inserting appropriate projectors.

  4. Life's chirality from prebiotic environments

    NASA Astrophysics Data System (ADS)

    Gleiser, Marcelo; Walker, Sara Imari

    2012-10-01

    A key open question in the study of life is the origin of biomolecular homochirality: almost every life-form on Earth has exclusively levorotary amino acids and dextrorotary sugars. Will the same handedness be preferred if life is found elsewhere? We review some of the pertinent literature and discuss recent results suggesting that life's homochirality resulted from sequential chiral symmetry breaking triggered by environmental events. In one scenario, autocatalytic prebiotic reactions undergo stochastic fluctuations due to environmental disturbances, in a mechanism reminiscent of evolutionary punctuated equilibrium: short-lived destructive events may lead to long-term enantiomeric excess. In another, chiral-selective polymerization reaction rates influenced by environmental effects lead to substantial chiral excess even in the absence of autocatalysis. Applying these arguments to other potentially life-bearing platforms has implications to the search for extraterrestrial life: we predict that a statistically representative sampling of extraterrestrial stereochemistry will be racemic (chirally neutral) on average.

  5. Critical dimensions for chiral bosons

    SciTech Connect

    Mezincescu, L.; Nepomechie, R.I.

    1988-05-15

    We give the Lagrangian formulation of a Bose model in 1+1 dimensions which describes a free chiral Lie-algebra-valued current. This model is a non-Abelian generalization of the chiral scalar model of Siegel. Both the Abelian and non-Abelian actions have a gauge invariance, which becomes anomalous when the models are quantized. The condition that this anomaly be canceled coincides with the string no-ghost condition.

  6. Transverse charge and magnetization densities in the nucleon's chiral periphery

    SciTech Connect

    Granados, Carlos G.; Weiss, Christian

    2014-01-01

    In the light-front description of nucleon structure the electromagnetic form factors are expressed in terms of frame-independent transverse densities of charge and magnetization. Recent work has studied the transverse densities at peripheral distances b = O(M{pi}{sup -1}), where they are governed by universal chiral dynamics and can be computed in a model-independent manner. Of particular interest is the comparison of the peripheral charge and magnetization densities. We summarize (a) their interpretation as spin-independent and -dependent current matrix elements; (b) the leading-order chiral effective field theory results; (c) their mechanical interpretation in the light-front formulation; (d) the large-N_c limit of QCD and the role of {Delta} intermediate states; (e) the connection with generalized parton distributions and peripheral high-energy scattering processes.

  7. Two-dimensional chiral asymmetry in unidirectional magnetic anisotropy structures

    NASA Astrophysics Data System (ADS)

    Perna, P.; Ajejas, F.; Maccariello, D.; Cuñado, J. L.; Guerrero, R.; Niño, M. A.; Muñoz, M.; Prieto, J. L.; Miranda, R.; Camarero, J.

    2016-05-01

    We investigate the symmetry-breaking effects of magnetic nanostructures that present unidirectional (one-fold) magnetic anisotropy. Angular and field dependent transport and magnetic properties have been studied in two different exchange-biased systems, i.e. ferromagnetic (FM)/ antiferromagnetic (AFM) bilayer and spin-valve structures. We experimentally show the direct relationships between the magnetoresistance (MR) response and the magnetization reversal pathways for any field value and direction. We demonstrate that even though the MR signals are related to different transport phenomena, namely anisotropic magnetoresistance (AMR) and giant magnetoresistance (GMR), chiral asymmetries are found around the magnetization hard-axis direction, in both cases originated from the one-fold symmetry of the interfacial exchange coupling. Our results indicate that the chiral asymmetry of transport and magnetic behaviors are intrinsic of systems with an unidirectional contribution.

  8. Spin manipulation in carbon nanotubes: All electrical spin filtering through spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Diniz, G. S.; Latgé, A.; Ulloa, S. E.

    2011-03-01

    Carbon nanotubes (CNTs) are known to exhibit interesting physical properties, such as metallic or insulating behavior for different chiral vectors. Application of external electric fields and the presence of spin-orbit interaction (SOI) result in modification of the energy level structure of CNTs and their conductance profiles. SOI couples spin and orbital degrees of freedom in these nanostructures, and we explore this effect in this work. We present calculations of the electronic transport of different single-wall CNTs in the presence of SOI. Our calculation uses a single-orbital tight-binding Hamiltonian representation and the equilibrium surface Green's function formalism to calculate electronic transport. We consider the effects of both Rashba and intrinsic SOIs. Our results show possible implementations of carbon nanotubes as spin filtering devices for spatially asymmetric electric fields. We further discuss the spin polarization for different CNT size, chirality, field strength, and the spatially varying fields induced by the adsorption of DNA on their surface. Supported by NSF and CAPES/Fulbright.

  9. Octet spin fractions and the proton spin problem.

    PubMed

    Shanahan, P E; Thomas, A W; Tsushima, K; Young, R D; Myhrer, F

    2013-05-17

    The relatively small fraction of the spin of the proton carried by its quarks presents a major challenge to our understanding of the strong interaction. Traditional efforts to explore this problem have involved new and imaginative experiments and QCD based studies of the nucleon. We propose a new approach to the problem that exploits recent advances in lattice QCD. In particular, we extract values for the spin carried by the quarks in other members of the baryon octet in order to see whether the suppression observed for the proton is a general property or depends significantly on the baryon structure. We compare these results with the values for the spin fractions calculated within a model that includes the effects of confinement, relativity, gluon exchange currents, and the meson cloud required by chiral symmetry, finding a very satisfactory level of agreement given the precision currently attainable. PMID:25167398

  10. ORBITAL DEPENDENCE OF GALAXY PROPERTIES IN SATELLITE SYSTEMS OF GALAXIES

    SciTech Connect

    Hwang, Ho Seong; Park, Changbom E-mail: cbp@kias.re.k

    2010-09-01

    We study the dependence of satellite galaxy properties on the distance to the host galaxy and the orbital motion (prograde and retrograde orbits) using the Sloan Digital Sky Survey (SDSS) data. From SDSS Data Release 7, we find 3515 isolated satellite systems of galaxies at z < 0.03 that contain 8904 satellite galaxies. Using this sample, we construct a catalog of 635 satellites associated with 215 host galaxies whose spin directions are determined by our inspection of the SDSS color images and/or by spectroscopic observations in the literature. We divide satellite galaxies into prograde and retrograde orbit subsamples depending on their orbital motion with respect to the spin direction of the host. We find that the number of galaxies in prograde orbit is nearly equal to that of retrograde orbit galaxies: the fraction of satellites in prograde orbit is 50% {+-} 2%. The velocity distribution of satellites with respect to their hosts is found to be almost symmetric: the median bulk rotation of satellites is -1 {+-} 8 km s{sup -1}. It is found that the radial distribution of early-type satellites in prograde orbit is strongly concentrated toward the host while that of retrograde ones shows much less concentration. We also find the orbital speed of late-type satellites in prograde orbit increases as the projected distance to the host (R) decreases while the speed decreases for those in retrograde orbit. At R less than 0.1 times the host virial radius (R < 0.1r{sub vir,host}), the orbital speed decreases in both prograde and retrograde orbit cases. Prograde satellites are on average fainter than retrograde satellites for both early and late morphological types. The u - r color becomes redder as R decreases for both prograde and retrograde orbit late-type satellites. The differences between prograde and retrograde orbit satellite galaxies may be attributed to their different origin or the different strength of physical processes that they have experienced through

  11. Majorana Fermions in Chiral Topological Ferromagnetic Nanowires

    NASA Astrophysics Data System (ADS)

    Dumitrescu, Eugen; Roberts, Brenden; Tewari, Sumanta; Sau, Jay D.

    2015-03-01

    Motivated by a recent experiment in which zero-bias peaks have been observed in STM experiments performed on chains of magnetic atoms on a superconductor, we show that a multichannel ferromagnetic wire deposited on a spin-orbit coupled superconducting substrate can realize a non-trivial chiral topological superconducting state with Majorana bound states localized at the wire ends. The non-trivial topological state occurs for generic parameters requiring no fine tuning, at least for very large exchange spin splitting in the wire. We theoretically obtain the signatures which appear in the presence of an arbitrary number of Majorana modes in multi-wire systems incorporating the role of finite temperature, finite potential barrier at the STM tip, and finite wire length. These signatures are presented in terms of spatial profiles of STM differential conductance which clearly reveal zero energy Majorana end modes and the prediction of a multiple Majorana based fractional Josephson effect. Co-author: S. Das Sarma. Work supported by AFOSR (FA9550-13-1-0045) at Clemson University and by LPS-CMTC and JQI-NSF-PFC at the University of Maryland.

  12. Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation

    PubMed Central

    Qian, Hai-Long; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2016-01-01

    Covalent organic frameworks (COFs) are a novel class of porous materials, and offer great potential for various applications. However, the applications of COFs in chiral separation and chiral catalysis are largely underexplored due to the very limited chiral COFs available and their challenging synthesis. Here we show a bottom-up strategy to construct chiral COFs and an in situ growth approach to fabricate chiral COF-bound capillary columns for chiral gas chromatography. We incorporate the chiral centres into one of the organic ligands for the synthesis of the chiral COFs. We subsequently in situ prepare the COF-bound capillary columns. The prepared chiral COFs and their bound capillary columns give high resolution for the separation of enantiomers with excellent repeatability and reproducibility. The proposed strategy provides a promising platform for the synthesis of chiral COFs and their chiral separation application. PMID:27401541

  13. Correlation between structures of chiral polymers and their efficiency for chiral resolution by crystallization.

    PubMed

    Menahem, Tali; Pravda, Martin; Mastai, Yitzhak

    2009-10-01

    In this work, we describe the correlation between chiral polymer structures, particularly alpha-helical and random coil conformations, and their efficiency as chiral resolving agents in crystallization processes. A set of chiral block copolymers based on polyethylene oxide with chiral glutamic acid oligopeptide segments (PEG(113)-b-(+)-(S)-Glu(20)) were synthesized and employed as additives in the crystallization of rac-threonine. CD spectroscopy demonstrates that structures of chiral polymers could be switched between a helical and a disordered random coil by pH. The effect of these polymers at different conformations on the crystallization kinetics, crystal morphology, and chiral resolution of rac-threonine is reported. Our study demonstrates that only chiral polymers with alpha-helical conformations of the chiral segment are effective as additives for chiral resolution throughout crystallization. Overall, our results provide useful guidelines for the selection and design of chiral polymer additives that will act efficiently for chiral resolution by crystallization. PMID:19455618

  14. Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation

    NASA Astrophysics Data System (ADS)

    Qian, Hai-Long; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2016-07-01

    Covalent organic frameworks (COFs) are a novel class of porous materials, and offer great potential for various applications. However, the applications of COFs in chiral separation and chiral catalysis are largely underexplored due to the very limited chiral COFs available and their challenging synthesis. Here we show a bottom-up strategy to construct chiral COFs and an in situ growth approach to fabricate chiral COF-bound capillary columns for chiral gas chromatography. We incorporate the chiral centres into one of the organic ligands for the synthesis of the chiral COFs. We subsequently in situ prepare the COF-bound capillary columns. The prepared chiral COFs and their bound capillary columns give high resolution for the separation of enantiomers with excellent repeatability and reproducibility. The proposed strategy provides a promising platform for the synthesis of chiral COFs and their chiral separation application.

  15. Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation.

    PubMed

    Qian, Hai-Long; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2016-01-01

    Covalent organic frameworks (COFs) are a novel class of porous materials, and offer great potential for various applications. However, the applications of COFs in chiral separation and chiral catalysis are largely underexplored due to the very limited chiral COFs available and their challenging synthesis. Here we show a bottom-up strategy to construct chiral COFs and an in situ growth approach to fabricate chiral COF-bound capillary columns for chiral gas chromatography. We incorporate the chiral centres into one of the organic ligands for the synthesis of the chiral COFs. We subsequently in situ prepare the COF-bound capillary columns. The prepared chiral COFs and their bound capillary columns give high resolution for the separation of enantiomers with excellent repeatability and reproducibility. The proposed strategy provides a promising platform for the synthesis of chiral COFs and their chiral separation application. PMID:27401541

  16. Exotic skyrmion crystals in chiral magnets with compass anisotropy

    PubMed Central

    Chen, J. P.; Zhang, Dan-Wei; Liu, J. -M.

    2016-01-01

    The compass-type anisotropy appears naturally in diverse physical contexts with strong spin-orbit coupling (SOC) such as transition metal oxides and cold atomic gases etc, and it has been receiving substantial attention. Motivated by recent studies and particularly recent experimental observations on helimagnet MnGe, we investigate the critical roles of this compass-type anisotropy in modulating various spin textures of chiral magnets with strong SOC, by Monte Carlo simulations based on a classical Heisenberg spin model with Dzyaloshinsky-Moriya interaction and compass anisotropy. A phase diagram with emergent spin orders in the space of compass anisotropy and out-of-plane magnetic field is presented. In this phase diagram, we propose that a hybrid super-crystal structure consisting of alternating half-skyrmion and half-anti-skyrmion is the possible zero-field ground state of MnGe. The simulated evolution of the spin structure driven by magnetic field is in good accordance with experimental observations on MnGe. Therefore, this Heisenberg spin model successfully captures the main physics responsible for the magnetic structures in MnGe, and the present work may also be instructive to research on the magnetic states in other systems with strong SOC. PMID:27377149

  17. Exotic skyrmion crystals in chiral magnets with compass anisotropy

    NASA Astrophysics Data System (ADS)

    Chen, J. P.; Zhang, Dan-Wei; Liu, J.-M.

    2016-07-01

    The compass-type anisotropy appears naturally in diverse physical contexts with strong spin-orbit coupling (SOC) such as transition metal oxides and cold atomic gases etc, and it has been receiving substantial attention. Motivated by recent studies and particularly recent experimental observations on helimagnet MnGe, we investigate the critical roles of this compass-type anisotropy in modulating various spin textures of chiral magnets with strong SOC, by Monte Carlo simulations based on a classical Heisenberg spin model with Dzyaloshinsky-Moriya interaction and compass anisotropy. A phase diagram with emergent spin orders in the space of compass anisotropy and out-of-plane magnetic field is presented. In this phase diagram, we propose that a hybrid super-crystal structure consisting of alternating half-skyrmion and half-anti-skyrmion is the possible zero-field ground state of MnGe. The simulated evolution of the spin structure driven by magnetic field is in good accordance with experimental observations on MnGe. Therefore, this Heisenberg spin model successfully captures the main physics responsible for the magnetic structures in MnGe, and the present work may also be instructive to research on the magnetic states in other systems with strong SOC.

  18. Exotic skyrmion crystals in chiral magnets with compass anisotropy.

    PubMed

    Chen, J P; Zhang, Dan-Wei; Liu, J-M

    2016-01-01

    The compass-type anisotropy appears naturally in diverse physical contexts with strong spin-orbit coupling (SOC) such as transition metal oxides and cold atomic gases etc, and it has been receiving substantial attention. Motivated by recent studies and particularly recent experimental observations on helimagnet MnGe, we investigate the critical roles of this compass-type anisotropy in modulating various spin textures of chiral magnets with strong SOC, by Monte Carlo simulations based on a classical Heisenberg spin model with Dzyaloshinsky-Moriya interaction and compass anisotropy. A phase diagram with emergent spin orders in the space of compass anisotropy and out-of-plane magnetic field is presented. In this phase diagram, we propose that a hybrid super-crystal structure consisting of alternating half-skyrmion and half-anti-skyrmion is the possible zero-field ground state of MnGe. The simulated evolution of the spin structure driven by magnetic field is in good accordance with experimental observations on MnGe. Therefore, this Heisenberg spin model successfully captures the main physics responsible for the magnetic structures in MnGe, and the present work may also be instructive to research on the magnetic states in other systems with strong SOC. PMID:27377149

  19. Les galaxies

    NASA Astrophysics Data System (ADS)

    Combes, Francoise

    2016-08-01

    Considerable progress has been made on galaxy formation and evolution in recent years, and new issues. The old Hubble classification according to the tuning fork of spirals, lenticulars and ellipticals, is still useful but has given place to the red sequence, the blue cloud and the green valley, showing a real bimodality of types between star forming galaxies (blue) and quenched ones (red). Large surveys have shown that stellar mass and environment density are the two main factors of the evolution from blue to red sequences. Evolution is followed directly with redshift through a look-back time of more than 12 billion years. The most distant galaxy at z=11. has already a stellar mass of a billion suns. In an apparent anti-hierarchical scenario, the most massive galaxies form stars early on, while essentially dwarf galaxies are actively star-formers now. This downsizing feature also applies to the growth of super-massive black holes at the heart of each bulgy galaxy. The feedback from active nuclei is essential to explain the distribution of mass in galaxies, and in particular to explain why the fraction of baryonic matter is so low, lower by more than a factor 5 than the baryonic fraction of the Universe. New instruments just entering in operation, like MUSE and ALMA, provide a new and rich data flow, which is developed in this series of articles.

  20. Light-Induced Exciton Spin Hall Effect in van der Waals Heterostructures.

    PubMed

    Li, Yun-Mei; Li, Jian; Shi, Li-Kun; Zhang, Dong; Yang, Wen; Chang, Kai

    2015-10-16

    We propose a light-induced spin Hall effect for interlayer exciton gas in monolayer MoSe2-WSe2 van der Waals heterostructure. By applying two infrared, spatially varying laser beams coupled to the exciton internal states, a spin-dependent gauge potential on the exciton center-of-mass motion is induced. This gauge potential deflects excitons in different spin states towards opposite directions, leading to a finite spin current but vanishing mass current. In the Hall bar geometry, the spin-dependent deflection gives rise to spin-dependent chiral edge states with spin-velocity locking. The spin current and chiral edge states of the excitons can be detected by spatially resolved photoluminescence spectroscopy. PMID:26550894

  1. Imprint of inflation on galaxy shape correlations

    NASA Astrophysics Data System (ADS)

    Schmidt, Fabian; Chisari, Nora Elisa; Dvorkin, Cora

    2015-10-01

    We show that intrinsic (not lensing-induced) correlations between galaxy shapes offer a new probe of primordial non-Gaussianity and inflationary physics which is complementary to galaxy number counts. Specifically, intrinsic alignment correlations are sensitive to an anisotropic squeezed limit bispectrum of the primordial perturbations. Such a feature arises in solid inflation, as well as more broadly in the presence of light higher spin fields during inflation (as pointed out recently by Arkani-Hamed and Maldacena). We present a derivation of the all-sky two-point correlations of intrinsic shapes and number counts in the presence of non-Gaussianity with general angular dependence, and show that a quadrupolar (spin-2) anisotropy leads to the analog in galaxy shapes of the well-known scale-dependent bias induced in number counts by isotropic (spin-0) non-Gaussianity. Moreover, in the presence of non-zero anisotropic non-Gaussianity, the quadrupole of galaxy shapes becomes sensitive to far superhorizon modes. These effects come about because long-wavelength modes induce a local anisotropy in the initial power spectrum, with which galaxies will correlate. We forecast that future imaging surveys could provide constraints on the amplitude of anisotropic non-Gaussianity that are comparable to those from the Cosmic Microwave Background (CMB). These are complementary as they probe different physical scales. The constraints, however, depend on the sensitivity of galaxy shapes to the initial conditions which we only roughly estimate from observed tidal alignments.

  2. Resonant collective dynamics of the weakly pinned soliton lattice in a monoaxial chiral helimagnet

    NASA Astrophysics Data System (ADS)

    Kishine, Jun-ichiro; Proskurin, I.; Bostrem, I. G.; Ovchinnikov, A. S.; Sinitsyn, Vl. E.

    2016-02-01

    We study the spin dynamics of a confined chiral soliton lattice whose ends are weakly held. We demonstrate that in this case the system possesses its own resonant frequency. To study features of the resonant dynamics, we analyze the collective motion of the system driven by an oscillating magnetic field directed along the chiral axis. By using the method of collective coordinates we find analytically the resonant frequency and verify the result by numerical simulation of the spin dynamics with the aid of Landau-Lifshitz-Gilbert equations. The numerical simulation shows an appearance of the asymmetric profile of the frequency response function with increasing ac field, which is typical for a nonlinear resonance. To give an explanation of this behavior, we invoke the multiple-time-scale method and predict an emergence of hysteresis phenomena. We also demonstrate that the spin-motive force is strongly amplified by the resonant oscillations.

  3. Spin voltage generation through optical excitation of complementary spin populations.

    PubMed

    Bottegoni, Federico; Celebrano, Michele; Bollani, Monica; Biagioni, Paolo; Isella, Giovanni; Ciccacci, Franco; Finazzi, Marco

    2014-08-01

    By exploiting the spin degree of freedom of carriers inside electronic devices, spintronics has a huge potential for quantum computation and dissipationless interconnects. Pure spin currents in spintronic devices should be driven by a spin voltage generator, able to drive the spin distribution out of equilibrium without inducing charge currents. Ideally, such a generator should operate at room temperature, be highly integrable with existing semiconductor technology, and not interfere with other spintronic building blocks that make use of ferromagnetic materials. Here we demonstrate a device that matches these requirements by realizing the spintronic equivalent of a photovoltaic generator. Whereas a photovoltaic generator spatially separates photoexcited electrons and holes, our device exploits circularly polarized light to produce two spatially well-defined electron populations with opposite in-plane spin projections. This is achieved by modulating the phase and amplitude of the light wavefronts entering a semiconductor (germanium) with a patterned metal overlayer (platinum). The resulting light diffraction pattern features a spatially modulated chirality inside the semiconductor, which locally excites spin-polarized electrons thanks to electric dipole selection rules. PMID:24952750

  4. Can a Non-Chiral Object Be Made of Two Identical Chiral Moieties?

    ERIC Educational Resources Information Center

    LeMarechal, Jean Francois

    2008-01-01

    Several pedagogical objects can be used to discuss chirality. Here, we use the cut of an apple to show that the association of identical chiral moieties can form a non-chiral object. Octahedral chirality is used to find situations equivalent to the cut of the apple. (Contains 5 figures.)

  5. Andromeda Galaxy

    NASA Astrophysics Data System (ADS)

    Walterbos, R.; Murdin, P.

    2000-11-01

    The Andromeda galaxy is the closest SPIRAL GALAXY to the MILKY WAY, just visible to the naked eye on a dark night as a faint smudge of light in the constellation Andromeda. The earliest records of the Andromeda nebula, as it is still often referred to, date back to AD 964, to the `Book of the Fixed Stars' published by the Persian astronomer AL-SÛFI. The first European to officially note the Andro...

  6. Geometrical spin symmetry and spin

    SciTech Connect

    Pestov, I. B.

    2011-07-15

    Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.

  7. Chiral Chlordane Components in Environmental Matrices

    EPA Science Inventory

    Chlordane, a persistent, bioaccumulative and toxic organochlorine pesticide, has been studied for many years. Since the advent of chiral analysis for environmental samples, over 2,400 measurements have been made of various chiral chlordane components. Chlordane enantiomer fractio...

  8. Light-front representation of chiral dynamics in peripheral transverse densities

    DOE PAGESBeta

    Granados, Carlos G.; Weiss, Christian

    2015-07-31

    The nucleon's electromagnetic form factors are expressed in terms of the transverse densities of charge and magnetization at fixed light-front time. At peripheral transverse distances b = O(M_pi^{-1}) the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). We represent the leading-order chiral EFT results for the peripheral transverse densities as overlap integrals of chiral light-front wave functions, describing the transition of the initial nucleon to soft pion-nucleon intermediate states and back. The new representation (a) explains the parametric order of the peripheral transverse densities; (b) establishes an inequality between the spin-independentmore » and -dependent densities; (c) exposes the role of pion orbital angular momentum in chiral dynamics; (d) reveals a large left-right asymmetry of the current in a transversely polarized nucleon and suggests a simple interpretation. The light-front representation enables a first-quantized, quantum-mechanical view of chiral dynamics that is fully relativistic and exactly equivalent to the second-quantized, field-theoretical formulation. It relates the charge and magnetization densities measured in low-energy elastic scattering to the generalized parton distributions probed in peripheral high-energy scattering processes. The method can be applied to nucleon form factors of other operators, e.g. the energy-momentum tensor.« less

  9. Light-front representation of chiral dynamics in peripheral transverse densities

    SciTech Connect

    Granados, Carlos G.; Weiss, Christian

    2015-07-31

    The nucleon's electromagnetic form factors are expressed in terms of the transverse densities of charge and magnetization at fixed light-front time. At peripheral transverse distances b = O(M_pi^{-1}) the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). We represent the leading-order chiral EFT results for the peripheral transverse densities as overlap integrals of chiral light-front wave functions, describing the transition of the initial nucleon to soft pion-nucleon intermediate states and back. The new representation (a) explains the parametric order of the peripheral transverse densities; (b) establishes an inequality between the spin-independent and -dependent densities; (c) exposes the role of pion orbital angular momentum in chiral dynamics; (d) reveals a large left-right asymmetry of the current in a transversely polarized nucleon and suggests a simple interpretation. The light-front representation enables a first-quantized, quantum-mechanical view of chiral dynamics that is fully relativistic and exactly equivalent to the second-quantized, field-theoretical formulation. It relates the charge and magnetization densities measured in low-energy elastic scattering to the generalized parton distributions probed in peripheral high-energy scattering processes. The method can be applied to nucleon form factors of other operators, e.g. the energy-momentum tensor.

  10. Electron spin relaxation in carbon nanotubes: Dyakonov-Perel mechanism

    NASA Astrophysics Data System (ADS)

    Semenov, Yuriy; Zavada, John; Kim, Ki Wook

    2010-03-01

    The long standing problem of unaccountable short spin relaxation in carbon nanotubes (CNT) meets a disclosure in terms of curvature-mediated spin-orbital interaction that leads to spin fluctuating precession analogous to Dyakonov-Perel mechanism. Strong anisotropy imposed by arbitrary directed magnetic field has been taken into account in terms of extended Bloch equations. Especially, stationary spin current through CNT can be controlled by spin-flip processes with relaxation time as less as 150 ps, the rate of transversal polarization (i.e. decoherence) runs up to 1/(70 ps) at room temperature while spin interference of the electrons related to different valleys can be responsible for shorter spin dephasing. Dependencies of spin-relaxation parameters on magnetic field strength and orientation, CNT curvature and chirality have been analyzed.

  11. Effects of chirality and surface stresses on the bending and buckling of chiral nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Shan; Shimada, Takahiro; Wang, Gang-Feng; Kitamura, Takayuki

    2014-01-01

    Due to their superior optical, elastic and electrical properties, chiral nanowires have many applications as sensors, probes, and building blocks of nanoelectromechanical systems. In this paper, we develop a refined Euler-Bernoulli beam model for chiral nanowires with surface effects and material chirality incorporated. This refined model is employed to investigate the bending and buckling of chiral nanowires. It is found that surface effects and material chirality significantly affect the elastic behaviour of chiral nanowires. This study is helpful not only for understanding the size-dependent behaviour of chiral nanowires, but also for characterizing their mechanical properties.

  12. Plasmonic rack-and-pinion gear with chiral metasurface

    NASA Astrophysics Data System (ADS)

    Gorodetski, Yuri; Karabchevsky, Alina

    2016-04-01

    The effect of circularly polarized beaming excited by traveling surface plasmons, via chiral metasurface is experimentally studied. Here we show that the propagation direction of the plasmonic wave, evanescently excited on the thin gold film affects the handedness of the scattered beam polarization. Nanostructured metasurface leads to excitation of localized plasmonic modes whose relative spatial orientation induces overall spin-orbit interaction. This effect is analogical to the rack-and-pinion gear: the rotational motion into the linear motion converter. From the practical point of view, the observed effect can be utilized in integrated optical circuits for communication systems, cyber security and sensing.

  13. Including the {delta}(1232) resonance in baryon chiral perturbation theory

    SciTech Connect

    Hacker, C.; Wies, N.; Scherer, S.; Gegelia, J.

    2005-11-01

    Baryon chiral perturbation theory with explicit {delta}(1232) degrees of freedom is considered. The most general interactions of pions, nucleons, and {delta} consistent with all underlying symmetries as well as with the constraint structure of higher-spin fields are constructed. By use of the extended on-mass-shell renormalization scheme, a manifestly Lorentz-invariant effective-field theory with a systematic power counting is obtained. As applications, we discuss the mass of the nucleon, the pion-nucleon {sigma} term, and the pole of the {delta} propagator.

  14. Chiral projected entangled-pair state with topological order

    NASA Astrophysics Data System (ADS)

    Yang, Shuo; Wahl, Thorsten; Tu, Hong-Hao; Schuch, Norbert; Cirac, J. Ignacio

    We show that projected entangled-pair states (PEPS) can describe chiral topologically ordered phases. For that, we construct a simple PEPS for spin-1/2 particles in a two-dimensional lattice. We reveal a symmetry in the local projector of the PEPS that gives rise to the global topological character. We also extract characteristic quantities of the edge conformal field theory using the bulk-boundary correspondence. EU projects SIQS and QALGO, the Alexander von Humboldt foundation, the Government of Canada through Industry Canada, and the Province of Ontario through the Ministry of Economic Development & Innovation.

  15. Mode bifurcation of a bouncing dumbbell with chirality.

    PubMed

    Kubo, Yoshitsugu; Inagaki, Shio; Ichikawa, Masatoshi; Yoshikawa, Kenichi

    2015-05-01

    We studied the behavior of a dumbbell bouncing upon a sinusoidally vibrating plate. By introducing chiral asymmetry to the geometry of the dumbbell, we observed a cascade of bifurcations with an increase in the vibration amplitude: spinning, orbital, and rolling. In contrast, for an achiral dumbbell, bifurcation is generated by a change from random motion to vectorial inchworm motion. A simple model particle was considered in a numerical simulation that reproduced the essential aspects of the experimental observation. The mode bifurcation from directional motion to random motion is interpreted analytically by a simple mechanical discussion. PMID:26066227

  16. Ring Galaxies

    NASA Astrophysics Data System (ADS)

    Dennefeld, M.; Materne, J.

    1980-09-01

    Among the 338 exotic, intriguing and/or fascinating objects contained in Arp's catalogue of peculiar galaxies, two, Arp 146 and 147, are calling special attention as a presumably separate class of objects displaying closed rings with almost empty interior. It is difficult to find out when, historically speaking, attention was called first to this type of object as a peculiar class, but certainly ga1axies with rings were widely found and recognized in the early sixties, ul}der others by Vorontsov-Velyaminov (1960), Sandage (1961) in the Hubble Atlas or de Vaucouleurs (1964) in the first reference catalogue of ga1axies. The most recent estimates by Arp and Madore (1977) from a search on about 200 Schmidt plates covering 7,000 square degrees give 3.6 per cent of ring galaxies among 2,784 peculiar galaxies found. However, despite the mythological perfection associated with a circle, some ordering is necessary before trying to understand the nature of such objects. This is particularly true because a large fraction of those galaxies with rings are probably normal spiral galaxies of type RS or S(r) as defined by de Vaucouleurs, where the spiral arms are simply "closing the circle". A good example of such "ordinary" galaxy is NGC 3081 in the Hubble Atlas .

  17. Hydrogen-Regulated Chiral Nanoplasmonics.

    PubMed

    Duan, Xiaoyang; Kamin, Simon; Sterl, Florian; Giessen, Harald; Liu, Na

    2016-02-10

    Chirality is a highly important topic in modern chemistry, given the dramatically different pharmacological effects that enantiomers can have on the body. Chirality of natural molecules can be controlled by reconfiguration of molecular structures through external stimuli. Despite the rapid progress in plasmonics, active regulation of plasmonic chirality, particularly in the visible spectral range, still faces significant challenges. In this Letter, we demonstrate a new class of hybrid plasmonic metamolecules composed of magnesium and gold nanoparticles. The plasmonic chirality from such plasmonic metamolecules can be dynamically controlled by hydrogen in real time without introducing macroscopic structural reconfiguration. We experimentally investigate the switching dynamics of the hydrogen-regulated chiroptical response in the visible spectral range using circular dichroism spectroscopy. In addition, energy dispersive X-ray spectroscopy is used to examine the morphology changes of the magnesium particles through hydrogenation and dehydrogenation processes. Our study can enable plasmonic chiral platforms for a variety of gas detection schemes by exploiting the high sensitivity of circular dichroism spectroscopy. PMID:26745446

  18. Tactoids of chiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Palacio-Betancur, Viviana; Villada-Gil, Stiven; Zhou, Ye; Armas-Pérez, Julio C.; de Pablo, Juan José; Hernández-Ortiz, Juan Pablo

    The phase diagram of chiral liquid crystals confined in ellipsoids is obtained, by following a theoretically informed Monte Carlo relaxation of the tensor alignment field Q. The free energy of the system is described by a functional in the framework of the Landau-de Gennes formalism. This study also includes the effect of anchoring strength, curvature, and chirality of the system. In the low chirality region of the phase diagram we found the twist bipolar (BS) phase and some cholesteric phases such as the radial spherical structure (RSS), twist cylinder (TC) and double twist cylinder (DTC) whose axis of rotation is not necessarily aligned with the major axis of the geometry. For high chirality scenarios, the disclination lines are twisted or bent near the surface preventing the formation of symmetric networks of defects, although an hexagonal pattern is formed on the surface which might serve as open sites for collocation of colloids. By analyzing the free energies of isochoric systems, prolate geometries tend to be more favorable for high chirality and low anchoring conditions. Universidad Nacional de Colombia Ph.D. grant and COLCIENCIAS under the Contract No. 110-165-843-748. CONACYT for Postdoctoral Fellowships Nos. 186166 and 203840.

  19. Chiral Thirring–Wess model

    SciTech Connect

    Rahaman, Anisur

    2015-10-15

    The vector type of interaction of the Thirring–Wess model was replaced by the chiral type and a new model was presented which was termed as chiral Thirring–Wess model in Rahaman (2015). The model was studied there with a Faddeevian class of regularization. Few ambiguity parameters were allowed there with the apprehension that unitarity might be threatened like the chiral generation of the Schwinger model. In the present work it has been shown that no counter term containing the regularization ambiguity is needed for this model to be physically sensible. So the chiral Thirring–Wess model is studied here without the presence of any ambiguity parameter and it has been found that the model not only remains exactly solvable but also does not lose the unitarity like the chiral generation of the Schwinger model. The phase space structure and the theoretical spectrum of this new model have been determined in the present scenario. The theoretical spectrum is found to contain a massive boson with ambiguity free mass and a massless boson.

  20. Controlling Chirality of Entropic Crystals

    NASA Astrophysics Data System (ADS)

    Damasceno, Pablo; Karas, Andrew; Schultz, Benjamin; Engel, Michael; Glotzer, Sharon

    Colloidal crystal structures with complexity and diversity rivaling atomic and molecular crystals have been predicted and obtained for hard particles by entropy maximization. However, thus far homochiral colloidal crystals, which are candidates for photonic metamaterials, are absent. Using Monte Carlo simulations we show that chiral polyhedra exhibiting weak directional entropic forces self-assemble either an achiral crystal or a chiral crystal with limited control over the crystal handedness. Building blocks with stronger faceting exhibit higher selectivity and assemble a chiral crystal with handedness uniquely determined by the particle chirality. Tuning the strength of directional entropic forces by means of particle rounding or the use of depletants allows for reconfiguration between achiral and homochiral crystals. We rationalize our findings by quantifying the chirality strength of each particle, both from particle geometry and potential of mean force and torque diagrams. Work supported by the National Science Foundation, Division of Materials Research Award No. DMR 1120923, U.S. Army Research Office under Grant Award No. W911NF-10-1-0518, and also by the DOD/ASD (R&E) under Award No. N00244-09-1-0062.

  1. Chiral lattice fermions with correct vacuum polarization and chiral anomaly

    SciTech Connect

    Pryor, C. )

    1991-04-15

    An action for chiral lattice fermions is proposed, which avoids the Nielsen-Ninomiya theorem by virtue of its nonlocality and nonbilinearity. The action is constructed by eliminating the extra fermion modes with a gauge-violating Majorana-type Wilson mass, which is then rendered invariant by an integration over gauge transformations. The free propagator is calculated, and the one-loop vacuum polarization is shown to be identical to that for Wilson fermions, even at nonzero lattice spacing. Also the chiral anomaly is shown to be the same as for Wilson fermions in the continuum limit.

  2. Repulsive Casimir force in chiral metamaterials.

    PubMed

    Zhao, R; Zhou, J; Koschny, Th; Economou, E N; Soukoulis, C M

    2009-09-01

    We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy possibly exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients. PMID:19792309

  3. Chiral Bands and Triaxiality

    SciTech Connect

    Petrache, C.M.

    2004-02-27

    The results obtained with the GASP array in the A=130 mass region are reviewed, emphasizing the discovery excited highly-deformed bands and their decay out, the study of the odd-odd Pr nuclei up to high spins, the discovery of stable triaxial bands in Nd nuclei close to the N=82 shell closure. The very recent studies of nuclei near the proton drip line are described. A discussion of the origin of the various doublet bands observed in odd-odd nuclei of the A=130 mass region is presented.

  4. Chiral Sensor for Enantiodiscrimination of Varied Acids.

    PubMed

    Huang, Huayin; Bian, Guangling; Zong, Hua; Wang, Yabai; Yang, Shiwei; Yue, Huifeng; Song, Ling; Fan, Hongjun

    2016-06-01

    A chiral thiophosphoroamide 4 derived from (1R,2R)-1,2-diaminocyclohexane is used as a highly effective chiral sensor for the chiral recognition of varied acids via ion-pairing and hydrogen-bonding interactions using (1)H, (19)F and (31)P NMR. PMID:27192021

  5. Microwave propagation in chiral metamaterials

    NASA Astrophysics Data System (ADS)

    Prybylski, Aida; Yon, Luis; Noginova, Natalia

    Chiral hyperbolic metamaterials are predicted to show interesting properties associated with possible topological photonic states in these materials, which present new opportunities for light control and manipulation. As prototypes, we consider two metal-dielectric systems designed for microwave range: a twisted wires array, where chirality is associated with shape of metal inclusions, and a rotated layer system, with parallel wires in each layer, and direction of the wires orientation rotated from layer to layer. Systems with different content of metal and layer-to-layer distance were fabricated and studied in the free space propagation experiment. The results were discussed in terms of effective media consideration.

  6. Collisions in Chiral Kinetic Theory.

    PubMed

    Chen, Jing-Yuan; Son, Dam T; Stephanov, Mikhail A

    2015-07-10

    Using a covariant formalism, we construct a chiral kinetic theory Lorentz invariant to order O(ℏ), which includes collisions. We find a new contribution to the particle number current due to the side jumps required by the conservation of angular momentum during collisions. We also find a conserved symmetric stress-energy tensor as well as the H function obeying Boltzmann's H theorem. We demonstrate their use by finding a general equilibrium solution and the values of the anomalous transport coefficients characterizing the chiral vortical effect. PMID:26207458

  7. Emergence of transverse spin in optical modes of semiconductor nanowires.

    PubMed

    Alizadeh, M H; Reinhard, Björn M

    2016-04-18

    The transverse spin angular momentum of light has recently received tremendous attention as it adds a new degree of freedom for controlling light-matter interactions. In this work we demonstrate the generation of transverse spin angular momentum by the weakly-guided mode of semiconductor nanowires. The evanescent field of these modes in combination with the transversality condition rigorously accounts for the occurrence of transverse spin angular momentum. The intriguing and nontrivial spin properties of optical modes in semiconductor nanowires are of high interest for a broad range of new applications including chiral optical trapping, quantum information processing, and nanophotonic circuitry. PMID:27137285

  8. Mechanical chirality: A chiral catalyst with a ring to it

    NASA Astrophysics Data System (ADS)

    Goldup, Stephen M.

    2016-05-01

    A chiral [2]rotaxane in which the asymmetry is derived from the way in which the two components are mechanically interlocked -- rather than being encoded in the covalent connectivity of the components themselves -- has been shown to act as an enantioselective organocatalyst.

  9. Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Miller, Christopher J. Miller

    2012-03-01

    There are many examples of clustering in astronomy. Stars in our own galaxy are often seen as being gravitationally bound into tight globular or open clusters. The Solar System's Trojan asteroids cluster at the gravitational Langrangian in front of Jupiter’s orbit. On the largest of scales, we find gravitationally bound clusters of galaxies, the Virgo cluster (in the constellation of Virgo at a distance of ˜50 million light years) being a prime nearby example. The Virgo cluster subtends an angle of nearly 8◦ on the sky and is known to contain over a thousand member galaxies. Galaxy clusters play an important role in our understanding of theUniverse. Clusters exist at peaks in the three-dimensional large-scale matter density field. Their sky (2D) locations are easy to detect in astronomical imaging data and their mean galaxy redshifts (redshift is related to the third spatial dimension: distance) are often better (spectroscopically) and cheaper (photometrically) when compared with the entire galaxy population in large sky surveys. Photometric redshift (z) [Photometric techniques use the broad band filter magnitudes of a galaxy to estimate the redshift. Spectroscopic techniques use the galaxy spectra and emission/absorption line features to measure the redshift] determinations of galaxies within clusters are accurate to better than delta_z = 0.05 [7] and when studied as a cluster population, the central galaxies form a line in color-magnitude space (called the the E/S0 ridgeline and visible in Figure 16.3) that contains galaxies with similar stellar populations [15]. The shape of this E/S0 ridgeline enables astronomers to measure the cluster redshift to within delta_z = 0.01 [23]. The most accurate cluster redshift determinations come from spectroscopy of the member galaxies, where only a fraction of the members need to be spectroscopically observed [25,42] to get an accurate redshift to the whole system. If light traces mass in the Universe, then the locations

  10. Coherent perfect absorption in chiral metamaterials.

    PubMed

    Ye, Yuqian; Hay, Darrick; Shi, Zhimin

    2016-07-15

    We study the coherent perfect absorption (CPA) of a chiral structure and derive analytically the CPA condition for transversely isotropic chiral structures in circular polarization bases. The coherent absorption of such a chiral system is generally polarization dependent and can be tuned by the relative phase between the coherent input beams. To demonstrate our theoretical predictions, a chiral metamaterial absorber operating in the terahertz frequency range is optimized. We numerically demonstrate that a coherent absorption of 99.5% can be achieved. Moreover, we show that an optimized CPA chiral structure can be used as an interferometric control of polarization state of the output beams with constant output intensity. PMID:27420535

  11. Scaling laws in chiral hydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naoki

    2016-06-01

    We study the turbulent regime of chiral (magneto)hydrodynamics for charged and neutral matter with chirality imbalance. We find that the chiral magnetohydrodynamics for charged plasmas possesses a unique scaling symmetry, only without fluid helicity under the local charge neutrality. We also find a different type of unique scaling symmetry in the chiral hydrodynamics for neutral matter with fluid helicity in the inertial range. We show that these symmetries dictate the self-similar inverse cascade of the magnetic and kinetic energies. Our results imply the possible inverse energy cascade in core-collapse supernovae due to the chiral transport of neutrinos.

  12. Chiral xenobiotics bioaccumulations and environmental health prospectives.

    PubMed

    Hussain, Iqbal; ALOthman, Zeid A; Alwarthan, Abdulrahman A; Sanagi, Mohd Marsin; Ali, Imran

    2015-08-01

    The chiral xenobiotics are very dangerous for all of us due to the different enantioselective toxicities of the enantiomers. Besides, these have different enantioselective bioaccumulations and behaviors in our body and other organisms. It is of urgent need to understand the enantioselective bioaccumulations, toxicities, and the health hazards of the chiral xenobiotics. The present article describes the classification, sources of contamination, distribution, enantioselective bioaccumulation, and the toxicities of the chiral xenobiotics. Besides, the efforts are also made to discuss the prevention and remedial measures of the havoc of the chiral xenobiotics. The challenges of the chiral xenobiotics have also been highlighted. Finally, future prospectives are also discussed. PMID:26148690

  13. Critical phenomena of emergent magnetic monopoles in a chiral magnet

    PubMed Central

    Kanazawa, N.; Nii, Y.; Zhang, X. -X.; Mishchenko, A. S.; De Filippis, G.; Kagawa, F.; Iwasa, Y.; Nagaosa, N.; Tokura, Y.

    2016-01-01

    Second-order continuous phase transitions are characterized by symmetry breaking with order parameters. Topological orders of electrons, characterized by the topological index defined in momentum space, provide a distinct perspective for phase transitions, which are categorized as quantum phase transitions not being accompanied by symmetry breaking. However, there are still limited observations of counterparts in real space. Here we show a real-space topological phase transition in a chiral magnet MnGe, hosting a periodic array of hedgehog and antihedgehog topological spin singularities. This transition is driven by the pair annihilation of the hedgehogs and antihedgehogs acting as monopoles and antimonopoles of the emergent electromagnetic field. Observed anomalies in the magnetoresistivity and phonon softening are consistent with the theoretical prediction of critical phenomena associated with enhanced fluctuations of emergent field near the transition. This finding reveals a vital role of topology of the spins in strongly correlated systems. PMID:27181484

  14. Helimagnon bands as universal excitations of chiral magnets

    NASA Astrophysics Data System (ADS)

    Janoschek, M.; Bernlochner, F.; Dunsiger, S.; Pfleiderer, C.; Böni, P.; Roessli, B.; Link, P.; Rosch, A.

    2010-06-01

    MnSi is a cubic compound with small magnetic anisotropy, which stabilizes a helimagnetic spin spiral that reduces to a ferromagnetic and antiferromagnetic state in the long- and short-wavelength limits, respectively. We report a comprehensive inelastic neutron-scattering study of the collective magnetic excitations in the helimagnetic state of MnSi. In our study we observe a rich variety of seemingly anomalous excitation spectra, as measured in well over 20 different locations in reciprocal space. Using a model based on only three parameters, namely, the measured pitch of the helix, the measured ferromagnetic spin wave stiffness and the amplitude of the signal, as the only free variable, we can simultaneously account for all of the measured spectra in excellent quantitative agreement with experiment. Our study identifies the formation of intense, strongly coupled bands of helimagnons as a universal characteristic of systems with weak chiral interactions.

  15. Fast chirality reversal of the magnetic vortex by electric current

    SciTech Connect

    Lim, W. L. Liu, R. H.; Urazhdin, S.; Tyliszczak, T.; Erokhin, S. G.; Berkov, D.

    2014-12-01

    The possibility of high-density information encoding in magnetic materials by topologically stable inhomogeneous magnetization configurations such as domain walls, skyrmions, and vortices has motivated intense research into mechanisms enabling their control and detection. While the uniform magnetization states can be efficiently controlled by electric current using magnetic multilayer structures, this approach has proven much more difficult to implement for inhomogeneous states. Here, we report direct observation of fast reversal of magnetic vortex by electric current in a simple planar structure based on a bilayer of spin Hall material Pt with a single microscopic ferromagnetic disk contacted by asymmetric electrodes. The reversal is enabled by a combination of the chiral Oersted field and spin current generated by the nonuniform current distribution in Pt. Our results provide a route for the efficient control of inhomogeneous magnetization configurations by electric current.

  16. Virtual Compton scattering off the nucleon in chiral perturbation theory

    SciTech Connect

    Hemmert, T.R.; Holstein, B.R.; Knoechlein, G.; Scherer, S.

    1997-03-01

    We investigate the spin-independent part of the virtual Compton scattering (VCS) amplitude off the nucleon within the framework of chiral perturbation theory. We perform a consistent calculation to third order in external momenta according to Weinberg`s power counting. With this calculation we can determine the second- and fourth-order structure-dependent coefficients of the general low-energy expansion of the spin-averaged VCS amplitude based on gauge invariance, crossing symmetry, and the discrete symmetries. We discuss the kinematical regime to which our calculation can be applied and compare our expansion with the multipole expansion by Guichon, Liu, and Thomas. We establish the connection of our calculation with the generalized polarizabilities of the nucleon where it is possible. {copyright} {ital 1997} {ital The American Physical Society}

  17. Critical phenomena of emergent magnetic monopoles in a chiral magnet.

    PubMed

    Kanazawa, N; Nii, Y; Zhang, X-X; Mishchenko, A S; De Filippis, G; Kagawa, F; Iwasa, Y; Nagaosa, N; Tokura, Y

    2016-01-01

    Second-order continuous phase transitions are characterized by symmetry breaking with order parameters. Topological orders of electrons, characterized by the topological index defined in momentum space, provide a distinct perspective for phase transitions, which are categorized as quantum phase transitions not being accompanied by symmetry breaking. However, there are still limited observations of counterparts in real space. Here we show a real-space topological phase transition in a chiral magnet MnGe, hosting a periodic array of hedgehog and antihedgehog topological spin singularities. This transition is driven by the pair annihilation of the hedgehogs and antihedgehogs acting as monopoles and antimonopoles of the emergent electromagnetic field. Observed anomalies in the magnetoresistivity and phonon softening are consistent with the theoretical prediction of critical phenomena associated with enhanced fluctuations of emergent field near the transition. This finding reveals a vital role of topology of the spins in strongly correlated systems. PMID:27181484

  18. Critical phenomena of emergent monopoles in a chiral magnet

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Xiao; Nagaosa, Naoto

    A three-dimensional cubic Skyrmion crystal in the bulk, which is simultaneously a lattice of monopole-antimonopole pairs predicted theoretically, has been recently identified experimentally in MnGe. Adopting appropriate temperature Green's function technique for optical conductivity and devising a solvable phonon-magnon interaction, we systematically developed the theory of coupling spin-waves to both itinerant electrons and mechanical degrees of freedom in this chiral magnet, describing the latest experimental observations including anomalies and critical phenomena in magnetotransport and magnetoelasticity, which are identified as hallmarks of fluctuations of the emergent monopolar fields upon the nontrivial monopole dynamics and especially a topological phase transition signifying strong correlation. As a whole, they speak for a crucial role played by the monopole defects and hence the real-space spin topology in this material.

  19. Critical phenomena of emergent magnetic monopoles in a chiral magnet

    NASA Astrophysics Data System (ADS)

    Kanazawa, N.; Nii, Y.; Zhang, X.-X.; Mishchenko, A. S.; de Filippis, G.; Kagawa, F.; Iwasa, Y.; Nagaosa, N.; Tokura, Y.

    2016-05-01

    Second-order continuous phase transitions are characterized by symmetry breaking with order parameters. Topological orders of electrons, characterized by the topological index defined in momentum space, provide a distinct perspective for phase transitions, which are categorized as quantum phase transitions not being accompanied by symmetry breaking. However, there are still limited observations of counterparts in real space. Here we show a real-space topological phase transition in a chiral magnet MnGe, hosting a periodic array of hedgehog and antihedgehog topological spin singularities. This transition is driven by the pair annihilation of the hedgehogs and antihedgehogs acting as monopoles and antimonopoles of the emergent electromagnetic field. Observed anomalies in the magnetoresistivity and phonon softening are consistent with the theoretical prediction of critical phenomena associated with enhanced fluctuations of emergent field near the transition. This finding reveals a vital role of topology of the spins in strongly correlated systems.

  20. In-medium chiral SU (3) dynamics and hypernuclear structure

    NASA Astrophysics Data System (ADS)

    Finelli, P.; Kaiser, N.; Vretenar, D.; Weise, W.

    2007-12-01

    A previously introduced relativistic energy density functional, successfully applied to ordinary nuclei, is extended to hypernuclei. The density-dependent mean field and the spin-orbit potential are consistently calculated for a Λ hyperon in the nucleus using the SU (3) extension of in-medium chiral perturbation theory. The leading long range ΛN interaction arises from kaon-exchange and 2π-exchange with Σ hyperon in the intermediate state. Scalar and vector mean fields reflecting in-medium changes of the quark condensates are constrained by QCD sum rules. The model, applied to oxygen as a test case, describes spectroscopic data in good agreement with experiment. In particular, the smallness of the Λ spin-orbit interaction finds a natural explanation in terms of an almost complete cancellation between scalar-vector background contributions and long-range terms generated by two-pion exchange.

  1. Galaxy formation

    SciTech Connect

    Silk, J.

    1984-11-01

    Implications of the isotropy of the cosmic microwave background on large and small angular scales for galaxy formation are reviewed. In primeval adiabatic fluctuations, a universe dominated by cold, weakly interacting nonbaryonic matter, e.g., the massive photino is postulated. A possible signature of photino annihilation in our galactic halo involves production of cosmic ray antiprotons. If the density is near its closure value, it is necessary to invoke a biasing mechanism for suppressing galaxy formation throughout most of the universe in order to reconcile the dark matter density with the lower astronomical determinations of the mean cosmological density. A mechanism utilizing the onset of primordial massive star formation to strip gaseous protogalaxies is described. Only the densest, early collapsing systems form luminous galaxies. (ESA)

  2. Helical motion of chiral liquid crystal droplets

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takaki; Sano, Masaki

    Artificial swimmers have been intensively studied to understand the mechanism of the locomotion and collective behaviors of cells and microorganisms. Among them, most of the artificial swimmers are designed to move along the straight path. However, in biological systems, chiral dynamics such as circular and helical motion are quite common because of the chirality of their bodies, which are made of chiral biomolecules. To understand the role of the chirality in the physics of microswimmers, we designed chiral artificial swimmers and the theoretical model for the chiral motion. We found that chiral liquid crystal droplets, when dispersed in surfactant solutions, swim in the helical path induced by the Marangoni effect. We will discuss the mechanism of the helical motion with our phenomenological model. This work is supported by Grant-in-Aid for JSPS Fellows (Grant No. 26.9814), and MEXT KAKENHI Grant No. 25103004.

  3. Chirality effect in disordered graphene ribbon junctions

    NASA Astrophysics Data System (ADS)

    Long, Wen

    2012-05-01

    We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon.

  4. On the tensorial nature of chirality

    NASA Astrophysics Data System (ADS)

    Efrati, Efi; Irvine, William

    2013-03-01

    Chirality occupies a central role in fields ranging from biological self assembly to the design of optical meta-materials. The definition of chirality, as given by lord Kelvin in 1893, associates handedness with the lack of mirror symmetry. However, the quantification of chirality based on this definition has proven to be an elusive task. The difficulty in quantifying chirality is contrasted by the ease with which one determines the handedness of objects with a well defined axis such as screws and helices. In this talk I will present table-top demonstrations that show that a single object can simultaneously be left handed and right handed when considered from different directions. The orientation dependence of handedness motivates a tensorial quantification of chirality relating directions to rotations. I will give an explicit example of such a tensorial measure of chirality for embedded surfaces, and show how the tensorial nature of chirality can be probed in experiments and exploited as a design principle.

  5. Micropatterning of cells reveals chiral morphogenesis

    PubMed Central

    2013-01-01

    Invariant left-right (LR) patterning or chirality is critical for embryonic development. The loss or reversal of LR asymmetry is often associated with malformations and disease. Although several theories have been proposed, the exact mechanism of the initiation of the LR symmetry has not yet been fully elucidated. Recently, chirality has been detected within single cells as well as multicellular structures using several in vitro approaches. These studies demonstrated the universality of cell chirality, its dependence on cell phenotype, and the role of physical boundaries. In this review, we discuss the theories for developmental LR asymmetry, compare various in vitro cell chirality model systems, and highlight possible roles of cell chirality in stem cell differentiation. We emphasize that the in vitro cell chirality systems have great promise for helping unveil the nature of chiral morphogenesis in development. PMID:23672821

  6. Baryon and chiral symmetry breaking

    SciTech Connect

    Gorsky, A.; Krikun, A.

    2014-07-23

    We briefly review the generalized Skyrmion model for the baryon recently suggested by us. It takes into account the tower of vector and axial mesons as well as the chiral symmetry breaking. The generalized Skyrmion model provides the qualitative explanation of the Ioffe’s formula for the baryon mass.

  7. Chiral phosphines in nucleophilic organocatalysis

    PubMed Central

    Xiao, Yumei; Sun, Zhanhu

    2014-01-01

    Summary This review discusses the tertiary phosphines possessing various chiral skeletons that have been used in asymmetric nucleophilic organocatalytic reactions, including annulations of allenes, alkynes, and Morita–Baylis–Hillman (MBH) acetates, carbonates, and ketenes with activated alkenes and imines, allylic substitutions of MBH acetates and carbonates, Michael additions, γ-umpolung additions, and acylations of alcohols. PMID:25246969

  8. Dynamics of the chiral transition

    SciTech Connect

    Gavin, S.

    1994-07-01

    Measurements of disoriented chiral condensates (DCC) in heavy ion collisions at RHIC can yield fundamental information on the nature of the QCD phase transition. I review theoretical efforts to understand DCC formation and present work in progress on possible experimental ramifications.

  9. Dynamics of the chiral transition

    SciTech Connect

    Gavin, S.

    1995-07-10

    Measurements of disoriented chiral condensates (DCC) in heavy ion collisions at RHIC can yield fundamental information on the nature of the QCD phase transition. I review theoretical efforts to understand DCC formation and present work in progress on their possible experimental ramifications. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  10. Whirlpool Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Scientists are seeing unprecedented detail of the spiral arms and dust clouds in the nearby Whirlpool galaxy, thanks to a new Hubble Space Telescope image, available at http://www.jpl.nasa.gov/pictures/wfpc/wfpc.html. The image uses data collected January 15 and 24, 1995, and July 21, 1999, by Hubble's Wide Field and Planetary Camera 2, designed and built by JPL. Using the image, a research group led by Dr. Nick Scoville of the California Institute of Technology, Pasadena, clearly defined the structure of the galaxy's cold dust clouds and hot hydrogen, and they linked star clusters within the galaxy to their parent dust clouds.

    The Whirlpool galaxy is one of the most photogenic galaxies. This celestial beauty is easily seen and photographed with smaller telescopes and studied extensively from large ground- and space-based observatories. The new composite image shows visible starlight and light from the emission of glowing hydrogen, which is associated with the most luminous young stars in the spiral arms.

    The galaxy is having a close encounter with a nearby companion galaxy, NGC 5195, just off the upper edge of the image. The companion's gravitational pull is triggering star formation in the main galaxy, lit up by numerous clusters of young and energetic stars in brilliant detail. Luminous clusters are highlighted in red by their associated emission from glowing hydrogen gas.

    This image was composed by the Hubble Heritage Team from Hubble archive data and was superimposed onto data taken by Dr. Travis Rector of the National Optical Astronomy Observatory at the .9-meter (35-inch) telescope at the National Science Foundation's Kitt Peak National Observatory, Tucson, Ariz. Scoville's team includes M. Polletta of the University of Geneva, Switzerland; S. Ewald and S. Stolovy of Caltech; and R. Thompson and M. Rieke of the University of Arizona, Tucson.

    The Space Telescope Science Institute, Baltimore, Md., manages space operations for the Hubble Space

  11. Chiral phonons at high-symmetry points in monolayer hexagonal lattices.

    PubMed

    Zhang, Lifa; Niu, Qian

    2015-09-11

    In monolayer hexagonal lattices, the intravalley and intervalley scattering of electrons can involve chiral phonons at Brillouin-zone center and corners, respectively. At these high-symmetry points, there is a threefold rotational symmetry endowing phonon eigenmodes with a quantized pseudoangular momentum, which includes orbital and spin parts. Conservation of pseudoangular momentum yields selection rules for intravalley and intervalley scattering of electrons by phonons. Concrete predictions of helicity-resolved optical phenomena are made on monolayer molybdenum disulfide. The chiral phonons at Brillouin-zone corners excited by polarized photons can be detected by a valley phonon Hall effect. The chiral phonons, together with phonon circular polarization, phonon pseudoangular momentum, selection rules, and valley phonon Hall effect will extend the basis for valley-based electronics and phononics applications in the future. PMID:26406841

  12. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons

    NASA Astrophysics Data System (ADS)

    Mancini, M.; Pagano, G.; Cappellini, G.; Livi, L.; Rider, M.; Catani, J.; Sias, C.; Zoller, P.; Inguscio, M.; Dalmonte, M.; Fallani, L.

    2015-09-01

    Chiral edge states are a hallmark of quantum Hall physics. In electronic systems, they appear as a macroscopic consequence of the cyclotron orbits induced by a magnetic field, which are naturally truncated at the physical boundary of the sample. Here we report on the experimental realization of chiral edge states in a ribbon geometry with an ultracold gas of neutral fermions subjected to an artificial gauge field. By imaging individual sites along a synthetic dimension, encoded in the nuclear spin of the atoms, we detect the existence of the edge states and observe the edge-cyclotron orbits induced during quench dynamics. The realization of fermionic chiral edge states opens the door for edge state interferometry and the study of non-Abelian anyons in atomic systems.

  13. Chiral Phonons at High-Symmetry Points in Monolayer Hexagonal Lattices

    NASA Astrophysics Data System (ADS)

    Zhang, Lifa; Niu, Qian

    2015-09-01

    In monolayer hexagonal lattices, the intravalley and intervalley scattering of electrons can involve chiral phonons at Brillouin-zone center and corners, respectively. At these high-symmetry points, there is a threefold rotational symmetry endowing phonon eigenmodes with a quantized pseudoangular momentum, which includes orbital and spin parts. Conservation of pseudoangular momentum yields selection rules for intravalley and intervalley scattering of electrons by phonons. Concrete predictions of helicity-resolved optical phenomena are made on monolayer molybdenum disulfide. The chiral phonons at Brillouin-zone corners excited by polarized photons can be detected by a valley phonon Hall effect. The chiral phonons, together with phonon circular polarization, phonon pseudoangular momentum, selection rules, and valley phonon Hall effect will extend the basis for valley-based electronics and phononics applications in the future.

  14. Detailed spectroscopy of the chiral-twin candidate bands in {sup 136}Pm

    SciTech Connect

    Hartley, D. J.; Riedinger, L. L.; Riley, M. A.; Balabanski, D. L.; Kondev, F. G.; Laird, R. W.; Pfohl, J.; Archer, D. E.; Brown, T. B.; Clark, R. M.

    2001-09-01

    The chiral-twin candidate bands recently observed in {sup 136}Pm have been extended to high spins [I=(21)] using the Gammasphere {gamma}-ray spectrometer and the Microball charged-particle detector array. A more-detailed spectroscopy of the bands was possible, where the rotational alignments and B(M1)/B(E2) ratios confirm that both sequences have the {pi}h{sub 11/2}{nu}h{sub 11/2} configuration. Particle-rotor calculations of intraband and interband transition strength ratios of the chiral-twin bands are compared with experimental values for the first time. Good agreement was found between the predicted transition strength ratios and the experimental values, thus supporting the possible chiral nature of the {pi}h{sub 11/2}{nu}h{sub 11/2} configuration in {sup 136}Pm.

  15. Staggered fermions and chiral symmetry breaking in transverse lattice regulated QED

    SciTech Connect

    Griffin, P.A.

    1992-07-01

    Staggered fermions are constructed for the transverse lattice regularization scheme. The weak perturbation theory of transverse lattice non-compact QED is developed in light-cone gauge, and we argue that for fixed lattice spacing this theory is ultraviolet finite, order by order in perturbation theory. However, by calculating the anomalous scaling dimension of the link fields, we find that the interaction Hamiltonian becomes non-renormalizable for g{sup 2}(a) > 4{pi}, where g(a) is the bare (lattice) QED coupling constant. We conjecture that this is the critical point of the chiral symmetry breaking phase transition in QED. Non-perturbative chiral symmetry breaking is then studied in the strong coupling limit. The discrete remnant of chiral symmetry that remains on the lattice is spontaneously broken, and the ground state to lowest order in the strong coupling expansion corresponds to the classical ground state of the two-dimensional spin one-half Heisenberg antiferromagnet.

  16. Berry curvature and four-dimensional monopoles in the relativistic chiral kinetic equation.

    PubMed

    Chen, Jiunn-Wei; Pu, Shi; Wang, Qun; Wang, Xin-Nian

    2013-06-28

    We derive a relativistic chiral kinetic equation with manifest Lorentz covariance from Wigner functions of spin-1/2 massless fermions in a constant background electromagnetic field. It contains vorticity terms and a four-dimensional Euclidean Berry monopole which gives an axial anomaly. By integrating out the zeroth component of the 4-momentum p, we reproduce the previous three-dimensional results derived from the Hamiltonian approach, together with the newly derived vorticity terms. The phase space continuity equation has an anomalous source term proportional to the product of electric and magnetic fields (FσρF[over ˜]σρ∼EσBσ). This provides a unified interpretation of the chiral magnetic and vortical effects, chiral anomaly, Berry curvature, and the Berry monopole in the framework of Wigner functions. PMID:23848865

  17. Nuclear chiral dynamics and thermodynamics

    NASA Astrophysics Data System (ADS)

    Holt, Jeremy W.; Kaiser, Norbert; Weise, Wolfram

    2013-11-01

    This presentation reviews an approach to nuclear many-body systems based on the spontaneously broken chiral symmetry of low-energy QCD. In the low-energy limit, for energies and momenta small compared to a characteristic symmetry breaking scale of order 1 GeV, QCD is realized as an effective field theory of Goldstone bosons (pions) coupled to heavy fermionic sources (nucleons). Nuclear forces at long and intermediate distance scales result from a systematic hierarchy of one- and two-pion exchange processes in combination with Pauli blocking effects in the nuclear medium. Short distance dynamics, not resolved at the wavelengths corresponding to typical nuclear Fermi momenta, are introduced as contact interactions between nucleons. Apart from a set of low-energy constants associated with these contact terms, the parameters of this theory are entirely determined by pion properties and low-energy pion-nucleon scattering observables. This framework (in-medium chiral perturbation theory) can provide a realistic description of both isospin-symmetric nuclear matter and neutron matter, with emphasis on the isospin-dependence determined by the underlying chiral NN interaction. The importance of three-body forces is emphasized, and the role of explicit Δ(1232)-isobar degrees of freedom is investigated in detail. Nuclear chiral thermodynamics is developed and a calculation of the nuclear phase diagram is performed. This includes a successful description of the first-order phase transition from a nuclear Fermi liquid to an interacting Fermi gas and the coexistence of these phases below a critical temperature Tc. Density functional methods for finite nuclei based on this approach are also discussed. Effective interactions, their density dependence and connections to Landau Fermi liquid theory are outlined. Finally, the density and temperature dependences of the chiral (quark) condensate are investigated.

  18. LETTER TO THE EDITOR: Parity-broken ground state for the spin-1 pyrochlore antiferromagnet

    NASA Astrophysics Data System (ADS)

    Yamashita, Yasufumi; Ueda, Kazuo; Sigrist, Manfred

    2001-12-01

    The ground-state properties of the spin-1 pyrochlore antiferromagnet are studied by applying the VBS-like tetrahedron-unit decomposition to the original spin system. The symmetrization required on every vertex is taken into account by introducing a ferromagnetic coupling. The pairwise effective Hamiltonian between the adjacent tetrahedrons is obtained by considering the next nearest neighbour and the third neighbour exchange interactions. We find that the transverse component of the spin chirality exhibits a long-range order, breaking the parity symmetry of the tetrahedral group, while the chirality itself is not broken.

  19. Effect of chirality on domain wall dynamics in molecular ferrimagnet [MnII(HL-pn)(H2O)][MnIII(CN)6]·2H2O

    NASA Astrophysics Data System (ADS)

    Mushenok, F.; Koplak, O.; Morgunov, R.

    2011-11-01

    In this paper we distinguish the contributions of switching, slide, creep and Debye relaxation modes of the domain wall dynamics to the low-frequency magnetic properties of chiral and racemic [MnII(HL-pn)(H2O)][MnIII(CN)6]·2H2O molecular ferrimagnets. We demonstrate that crystal and spin chirality affects the characteristic transition temperatures between different modes. In chiral crystals, transitions to the creep and Debye relaxation modes were observed at T = 7 K and 5 K, whereas in racemic crystals the same transitions occurred at higher temperatures T = 13 K and 9 K, respectively. Difference of the Peierls relief in chiral and racemic crystals is a possible reason of the chirality effect on the domain walls dynamics.

  20. Electrical Detection of the Helical Spin Texture in a p-type Topological Insulator Sb2Te3

    PubMed Central

    Li, C. H.; van ‘t Erve, O. M. J.; Li, Y. Y.; Li, L.; Jonker, B. T.

    2016-01-01

    The surface states of 3D topological insulators (TIs) exhibit a helical spin texture with spin locked at right angles with momentum. The chirality of this spin texture is expected to invert crossing the Dirac point, a property that has been experimentally observed by optical probes. Here, we directly determine the chirality below the Dirac point by electrically detecting spin-momentum locking in surface states of a p-type TI, Sb2Te3. A current flowing in the Sb2Te3 surface states generates a net spin polarization due to spin-momentum locking, which is electrically detected as a voltage on an Fe/Al2O3 tunnel barrier detector. Measurements of this voltage as a function of current direction and detector magnetization indicate that hole spin-momentum locking follows the right-hand rule, opposite that of electron, providing direct confirmation that the chirality is indeed inverted below Dirac point. The spin signal is linear with current, and exhibits a temperature dependence consistent with the semiconducting nature of the TI film and freeze-out of bulk conduction below 100 K. Our results demonstrate that the chirality of the helical spin texture of TI surface states can be determined electrically, an enabling step in the electrical manipulation of spins in next generation TI-based quantum devices. PMID:27404321

  1. Electrical Detection of the Helical Spin Texture in a p-type Topological Insulator Sb2Te3.

    PubMed

    Li, C H; van 't Erve, O M J; Li, Y Y; Li, L; Jonker, B T

    2016-01-01

    The surface states of 3D topological insulators (TIs) exhibit a helical spin texture with spin locked at right angles with momentum. The chirality of this spin texture is expected to invert crossing the Dirac point, a property that has been experimentally observed by optical probes. Here, we directly determine the chirality below the Dirac point by electrically detecting spin-momentum locking in surface states of a p-type TI, Sb2Te3. A current flowing in the Sb2Te3 surface states generates a net spin polarization due to spin-momentum locking, which is electrically detected as a voltage on an Fe/Al2O3 tunnel barrier detector. Measurements of this voltage as a function of current direction and detector magnetization indicate that hole spin-momentum locking follows the right-hand rule, opposite that of electron, providing direct confirmation that the chirality is indeed inverted below Dirac point. The spin signal is linear with current, and exhibits a temperature dependence consistent with the semiconducting nature of the TI film and freeze-out of bulk conduction below 100 K. Our results demonstrate that the chirality of the helical spin texture of TI surface states can be determined electrically, an enabling step in the electrical manipulation of spins in next generation TI-based quantum devices. PMID:27404321

  2. Electrical Detection of the Helical Spin Texture in a p-type Topological Insulator Sb2Te3

    NASA Astrophysics Data System (ADS)

    Li, C. H.; van ‘T Erve, O. M. J.; Li, Y. Y.; Li, L.; Jonker, B. T.

    2016-07-01

    The surface states of 3D topological insulators (TIs) exhibit a helical spin texture with spin locked at right angles with momentum. The chirality of this spin texture is expected to invert crossing the Dirac point, a property that has been experimentally observed by optical probes. Here, we directly determine the chirality below the Dirac point by electrically detecting spin-momentum locking in surface states of a p-type TI, Sb2Te3. A current flowing in the Sb2Te3 surface states generates a net spin polarization due to spin-momentum locking, which is electrically detected as a voltage on an Fe/Al2O3 tunnel barrier detector. Measurements of this voltage as a function of current direction and detector magnetization indicate that hole spin-momentum locking follows the right-hand rule, opposite that of electron, providing direct confirmation that the chirality is indeed inverted below Dirac point. The spin signal is linear with current, and exhibits a temperature dependence consistent with the semiconducting nature of the TI film and freeze-out of bulk conduction below 100 K. Our results demonstrate that the chirality of the helical spin texture of TI surface states can be determined electrically, an enabling step in the electrical manipulation of spins in next generation TI-based quantum devices.

  3. Measurement of the generalized forward spin polarizabilities of the neutron

    SciTech Connect

    Moskov Amarian; Leonard Auerbach; Todd Averett; J. Berthot; Pierre Bertin; William Bertozzi; Tim Black; Edward Brash; David Brown; Etienne Burtin; John Calarco; Gordon Cates; Zhengwei Chai; Jian-Ping Chen; Seonho Choi; Eugene Chudakov; Evaristo Cisbani; Cornelis de Jager; Alexandre Deur; Rachele Di Salvo; Sonja Dieterich; Pibero Djawotho; John Finn; Kevin Fissum

    2004-05-01

    The generalized forward spin polarizabilities {gamma}{sub 0} and {delta}{sub LT} of the neutron have been extracted for the first time in a Q{sup 2} range from 0.1 to 0.9 GeV{sup 2}. Since {gamma}{sub 0} is sensitive to nucleon resonances and {delta}{sub LT} is insensitive to the {Delta} resonance, it is expected that the pair of forward spin polarizabilities should provide benchmark tests of the current understanding of the chiral dynamics of QCD. The new results on {delta}{sub LT} show significant disagreement with Chiral Perturbation Theory calculations, while the data for {gamma}{sub 0} at low Q{sup 2} are in good agreement with a next-to-lead order Relativistic Baryon Chiral Perturbation theory calculation. The data show good agreement with the phenomenological MAID model.

  4. Dancing in the dark: galactic properties trace spin swings along the cosmic web

    NASA Astrophysics Data System (ADS)

    Dubois, Y.; Pichon, C.; Welker, C.; Le Borgne, D.; Devriendt, J.; Laigle, C.; Codis, S.; Pogosyan, D.; Arnouts, S.; Benabed, K.; Bertin, E.; Blaizot, J.; Bouchet, F.; Cardoso, J.-F.; Colombi, S.; de Lapparent, V.; Desjacques, V.; Gavazzi, R.; Kassin, S.; Kimm, T.; McCracken, H.; Milliard, B.; Peirani, S.; Prunet, S.; Rouberol, S.; Silk, J.; Slyz, A.; Sousbie, T.; Teyssier, R.; Tresse, L.; Treyer, M.; Vibert, D.; Volonteri, M.

    2014-10-01

    A large-scale hydrodynamical cosmological simulation, Horizon-AGN, is used to investigate the alignment between the spin of galaxies and the cosmic filaments above redshift 1.2. The analysis of more than 150 000 galaxies per time step in the redshift range 1.2 < z < 1.8 with morphological diversity shows that the spin of low-mass blue galaxies is preferentially aligned with their neighbouring filaments, while high-mass red galaxies tend to have a perpendicular spin. The reorientation of the spin of massive galaxies is provided by galaxy mergers, which are significant in their mass build-up. We find that the stellar mass transition from alignment to misalignment happens around 3 × 1010 M⊙. Galaxies form in the vorticity-rich neighbourhood of filaments, and migrate towards the nodes of the cosmic web as they convert their orbital angular momentum into spin. The signature of this process can be traced to the properties of galaxies, as measured relative to the cosmic web. We argue that a strong source of feedback such as active galactic nuclei is mandatory to quench in situ star formation in massive galaxies and promote various morphologies. It allows mergers to play their key role by reducing post-merger gas inflows and, therefore, keeping spins misaligned with cosmic filaments.

  5. A kagome map of spin liquids from XXZ to Dzyaloshinskii-Moriya ferromagnet

    NASA Astrophysics Data System (ADS)

    Essafi, Karim; Benton, Owen; Jaubert, L. D. C.

    2016-01-01

    Despite its deceptive simplicity, few concepts have more fundamental implications than chirality, from the therapeutic activity of drugs to the fundamental forces of nature. In magnetic materials, chirality gives rise to unconventional phenomena such as the anomalous Hall effect and multiferroicity, taking an enhanced flavour in the so-called spin-liquid phases where magnetic disorder prevails. Kagome systems sit at the crossroad of these ideas. Motivated by the recent synthesis of rare-earth kagome materials and the progresses in optical-lattice experiments, we bring together an entire network of spin liquids with anisotropic and Dzyaloshinskii-Moriya interactions. This network revolves around the Ising antiferromagnet and ends on (ferromagnetic) chiral spin liquids with spontaneously broken time-reversal symmetry. As for the celebrated Heisenberg antiferromagnet, it now belongs to a triad of equivalently disordered phases. The present work provides a unifying theory of kagome spin liquids with time-reversal invariant nearest-neighbour Hamiltonians.

  6. A kagome map of spin liquids from XXZ to Dzyaloshinskii–Moriya ferromagnet

    PubMed Central

    Essafi, Karim; Benton, Owen; Jaubert, L.D.C.

    2016-01-01

    Despite its deceptive simplicity, few concepts have more fundamental implications than chirality, from the therapeutic activity of drugs to the fundamental forces of nature. In magnetic materials, chirality gives rise to unconventional phenomena such as the anomalous Hall effect and multiferroicity, taking an enhanced flavour in the so-called spin-liquid phases where magnetic disorder prevails. Kagome systems sit at the crossroad of these ideas. Motivated by the recent synthesis of rare-earth kagome materials and the progresses in optical-lattice experiments, we bring together an entire network of spin liquids with anisotropic and Dzyaloshinskii–Moriya interactions. This network revolves around the Ising antiferromagnet and ends on (ferromagnetic) chiral spin liquids with spontaneously broken time-reversal symmetry. As for the celebrated Heisenberg antiferromagnet, it now belongs to a triad of equivalently disordered phases. The present work provides a unifying theory of kagome spin liquids with time-reversal invariant nearest-neighbour Hamiltonians. PMID:26796866

  7. Ab Initio Neutron Drops with Chiral Hamiltonians

    NASA Astrophysics Data System (ADS)

    Potter, Hugh; Maris, Pieter; Vary, James

    2015-04-01

    Ab initio calculations for neutron drops are of interest for insights into neutron-rich nuclei and neutron star matter, and for examining the neutron-only sector of nucleon-nucleon and 3-nucleon interactions. I present ab initio results calculated using the no-core shell model with 2- and 3-body chiral Hamiltonians for neutron drops up to 20 neutrons confined in a 10 MeV harmonic trap. I discuss ground state energies, internal energies, radii, and evidence for pairing. In addition, excitation energies can be used to investigate the spin-orbit splittings in the p-shell and sd -shell. Prior Green's Function Monte Carlo calculations using the Argonne v8' potential with added 3-nucleon forces serve as a comparison. Supported by DOE Grants DESC0008485 (SciDAC/NUCLEI), DE-FG02-87ER40371, and NSF Grant 0904782; computational resources provided by the Oak Ridge Leadership Computing Facility (DOE Office of Science Contract DE-AC05-00OR22725) under an INCITE award.

  8. Tunable exchange bias in dilute magnetic alloys - chiral spin glasses

    NASA Astrophysics Data System (ADS)

    Hudl, Matthias; Mathieu, Roland; Nordblad, Per

    2016-01-01

    A unidirectional anisotropy appears in field cooled samples of dilute magnetic alloys at temperatures well below the cusp temperature of the zero field cooled magnetization curve. Magnetization measurements on a Cu(13.5 at% Mn) sample show that this anisotropy is essentially temperature independent and acts on a temperature dependent excess magnetization, ΔM. The anisotropy can be partially or fully transferred from being locked to the direction of the cooling field at lower fields to becoming locked to the direction of ΔM at larger fields, thus instead appearing as a uniaxial anisotropy. This introduces a deceiving division of the anisotropy into a superposition of a unidirectional and a uniaxial part. This two faced nature of the anisotropy has been empirically scrutinized and concluded to originate from one and the same exchange mechanism: the Dzyaloshinsky-Moriya interaction.

  9. Spin correlations and topological entanglement entropy in a non-Abelian spin-one spin liquid

    NASA Astrophysics Data System (ADS)

    Wildeboer, Julia; Bonesteel, N. E.

    2016-07-01

    We analyze the properties of a non-Abelian spin-one chiral spin liquid state proposed by Greiter and Thomale [Phys. Rev. Lett. 102, 207203 (2009), 10.1103/PhysRevLett.102.207203] using Monte Carlo. In this state the bosonic ν =1 Moore-Read Pfaffian wave function is used to describe a gas of bosonic spin flips on a square lattice with one flux quantum per plaquette. For toroidal geometries there is a three-dimensional space of these states corresponding to the topological degeneracy of the bosonic Moore-Read state on the torus. We show that spin correlations for different states in this space become indistinguishable for large system size. We also calculate the Renyi entanglement entropy for different system partitions to extract the topological entanglement entropy and provide evidence that the topological order of the lattice spin-liquid state is the same as that of the continuum Moore-Read state from which it is constructed.

  10. Why the proton spin is not due to quarks

    SciTech Connect

    Karliner, M.

    1988-07-01

    Recent EMC data on the spin-dependent proton structure function suggest that very little of the proton spin is due to the helicity of the quarks inside it. We argue that, at leading order in the 1/N/sub c/ expansion, none of the proton spin would be carried by quarks in the chiral limit where m/sub q/ = 0. This model-independent result is based on a physical picture of the nucleon as a soliton solution of the effective chiral Lagrangian of large-N/sub c/ QCD. The Skyrme model is then used to estimate quark contribution to the proton spin when chiral symmetry and flavor SU(3) are broken: this contribution turns out to be small, as suggested by the EMC. Next, we discuss the other possible contributions to the proton helicity in the infinite-momentum frame---polarized gluons (..delta..G), and orbital angular momentum (L/sub z/). We argue on general grounds and by explicit example the ..delta..G = 0 and that if the parameters of the chiral Lagrangian are adjusted so that gluons carry /approximately/50% of the proton momentum, most of the orbital angular momentum L/sub z/ is carried by quarks. We mention several experiments to test the EMC results and their interpretation. 43 refs., 3 figs.

  11. Chiral sensing by nonchiral tetrapyrroles.

    PubMed

    Labuta, Jan; Hill, Jonathan P; Ishihara, Shinsuke; Hanyková, Lenka; Ariga, Katsuhiko

    2015-03-17

    Enantiomeric excess (ee) is a measure of the purity of an enantiomer of a chiral compound with respect to the presence of the complementary enantiomer. It is an important aspect of chemistry, especially in the fields of pharmaceuticals and asymmetric catalysis. Existing methods for determination of enantiomeric excesses using nuclear magnetic resonance (NMR) spectroscopy mostly rely on special chiral reagents (auxiliaries) that form two or more diastereomeric complexes with a chiral compound. As a result of this, the NMR spectrum of each enantiomer is different, allowing the determination of enantiomeric excess. In this Account, we describe a molecular design process that has allowed us to prepare prochiral solvating agents for NMR determination of ee of a wide variety of analyte types. At the outset of this work, we initially encountered the phenomenon of NMR peak splitting in the oxoporphyrinogen (OxP) host component of a supramolecular host-guest complex, where the extent of the splitting is apparently proportional to the guests' ee. Upon closer examination of the mechanism of action, it was found that several complicating factors, including prototropic tautomerism, macrocyclic inversion (ring-flipping), and 1:2 host-guest stoichiometry, obstruct potential applications of OxP as a chiral solvating agent. By considering the molecular conformation of the OxP host, a saddle-shaped calix[4]pyrrole, we moved to study the tetraphenylporphyrin (TPP) dication since it has a similar form, and it was found that it could also be used to probe ee. However, although TPP does not suffer from disadvantageous tautomeric processes, it is still subject to macrocyclic inversion and has the additional serious disadvantage of operating for ee sensing only at depressed temperatures. The intrinsic disadvantages of the OxP and TPP systems were finally overcome by covalently modifying the OxP chromophore by regioselective N-alkylation at one face of the molecule. This procedure yields a

  12. Extragalatic zoo. I. [New galaxies

    SciTech Connect

    Schorn, R.A.

    1988-01-01

    The characteristics of various types of extragalactic objects are described. Consideration is given to cD galaxies, D galaxies, N galaxies, Markarian galaxies, liners, starburst galaxies, and megamasers. Emphasis is also placed on the isolated extragalatic H I region; the isolated extragalatic H II region; primeval galaxies or photogalaxies; peculiar galaxies; Arp galaxies; interacting galaxies; ring galaxies; and polar-ring galaxies. Diagrams of these objects are provided.

  13. Universal helimagnon and skyrmion excitations in metallic, semiconducting and insulating chiral magnets

    NASA Astrophysics Data System (ADS)

    Schwarze, T.; Waizner, J.; Garst, M.; Bauer, A.; Stasinopoulos, I.; Berger, H.; Pfleiderer, C.; Grundler, D.

    2015-05-01

    Nearly seven decades of research on microwave excitations of magnetic materials have led to a wide range of applications in electronics. The recent discovery of topological spin solitons in chiral magnets, so-called skyrmions, promises high-frequency devices that exploit the exceptional emergent electrodynamics of these compounds. Therefore, an accurate and unified quantitative account of their resonant response is key. Here, we report all-electrical spectroscopy of the collective spin excitations in the metallic, semiconducting and insulating chiral magnets MnSi, Fe1-xCoxSi and Cu2OSeO3, respectively, using broadband coplanar waveguides. By taking into account dipolar interactions, we achieve a precise quantitative modelling across the entire magnetic phase diagrams using two material-specific parameters that quantify the chiral and the critical field energy. The universal behaviour sets the stage for purpose-designed applications based on the resonant response of chiral magnets with tailored electric conductivity and an unprecedented freedom for an integration with electronics.

  14. A new class of chiral materials hosting magnetic skyrmions beyond room temperature.

    PubMed

    Tokunaga, Y; Yu, X Z; White, J S; Rønnow, H M; Morikawa, D; Taguchi, Y; Tokura, Y

    2015-01-01

    Skyrmions, topologically protected vortex-like nanometric spin textures in magnets, have been attracting increasing attention for emergent electromagnetic responses and possible technological applications for spintronics. In particular, metallic magnets with chiral and cubic/tetragonal crystal structure may have high potential to host skyrmions that can be driven by low electrical current excitation. However, experimental observations of skyrmions have been limited to below room temperature for the metallic chiral magnets, specifically for the MnSi-type B20 compounds. Towards technological applications, transcending this limitation is crucial. Here we demonstrate the formation of skyrmions with unique spin helicity both at and above room temperature in a family of cubic chiral magnets: β-Mn-type Co-Zn-Mn alloys with a different chiral space group from that of B20 compounds. Lorentz transmission electron microscopy, magnetization and small-angle neutron scattering measurements unambiguously reveal formation of a skyrmion crystal under application of a magnetic field in both thin-plate and bulk forms. PMID:26134284

  15. Universal helimagnon and skyrmion excitations in metallic, semiconducting and insulating chiral magnets.

    PubMed

    Schwarze, T; Waizner, J; Garst, M; Bauer, A; Stasinopoulos, I; Berger, H; Pfleiderer, C; Grundler, D

    2015-05-01

    Nearly seven decades of research on microwave excitations of magnetic materials have led to a wide range of applications in electronics. The recent discovery of topological spin solitons in chiral magnets, so-called skyrmions, promises high-frequency devices that exploit the exceptional emergent electrodynamics of these compounds. Therefore, an accurate and unified quantitative account of their resonant response is key. Here, we report all-electrical spectroscopy of the collective spin excitations in the metallic, semiconducting and insulating chiral magnets MnSi, Fe1-xCoxSi and Cu2OSeO3, respectively, using broadband coplanar waveguides. By taking into account dipolar interactions, we achieve a precise quantitative modelling across the entire magnetic phase diagrams using two material-specific parameters that quantify the chiral and the critical field energy. The universal behaviour sets the stage for purpose-designed applications based on the resonant response of chiral magnets with tailored electric conductivity and an unprecedented freedom for an integration with electronics. PMID:25730395

  16. A new class of chiral materials hosting magnetic skyrmions beyond room temperature

    PubMed Central

    Tokunaga, Y.; Yu, X. Z.; White, J. S.; Rønnow, H. M.; Morikawa, D.; Taguchi, Y.; Tokura, Y.

    2015-01-01

    Skyrmions, topologically protected vortex-like nanometric spin textures in magnets, have been attracting increasing attention for emergent electromagnetic responses and possible technological applications for spintronics. In particular, metallic magnets with chiral and cubic/tetragonal crystal structure may have high potential to host skyrmions that can be driven by low electrical current excitation. However, experimental observations of skyrmions have been limited to below room temperature for the metallic chiral magnets, specifically for the MnSi-type B20 compounds. Towards technological applications, transcending this limitation is crucial. Here we demonstrate the formation of skyrmions with unique spin helicity both at and above room temperature in a family of cubic chiral magnets: β-Mn-type Co-Zn-Mn alloys with a different chiral space group from that of B20 compounds. Lorentz transmission electron microscopy, magnetization and small-angle neutron scattering measurements unambiguously reveal formation of a skyrmion crystal under application of a magnetic field in both thin-plate and bulk forms. PMID:26134284

  17. Spin susceptibility of a 2D gas with Rashba spin-orbit in the HF approximation

    NASA Astrophysics Data System (ADS)

    Giuliani, Gabriele

    2005-03-01

    The in plane and out of plane spin susceptibility χS^ () (rs, α) in a two dimensional electron gas with Rashba spin-orbit is studied within the Hartree-Fock approximation in both the static (φ->0 first then q ->0) and adiabatic (q ->0 first then φ->0) limits. The latter is related to what is commonly referred to as the spin-Hall conductivity. The behavior of χS^ () (rs, α) as a function of the density parameter rs and the spin-orbit coupling strength α has been explored. At variance with a recent perturbative analysis, we find that, as one would expect, the exchange interaction tends to increase χS^ () (rs, α) over its non interacting value. The interplay between the differential instability of the paramagnetic chiral state as signaled by the divergence of χS^ () (rs, α) and the (first order) spin polarization transition to a spin-textured chiral state will be discussed.

  18. Chiral logarithms in quenched QCD

    SciTech Connect

    Y. Chen; S. J. Dong; T. Draper; I. Horvath; F. X. Lee; K. F. Liu; N. Mathur; and J. B. Zhang

    2004-08-01

    The quenched chiral logarithms are examined on a 163x28 lattice with Iwasaki gauge action and overlap fermions. The pion decay constant fpi is used to set the lattice spacing, a = 0.200(3) fm. With pion mass as low as {approx}180 MeV, we see the quenched chiral logarithms clearly in mpi2/m and fP, the pseudoscalar decay constant. The authors analyze the data to determine how low the pion mass needs to be in order for the quenched one-loop chiral perturbation theory (chiPT) to apply. With the constrained curve-fitting method, they are able to extract the quenched chiral logarithmic parameter delta together with other low-energy parameters. Only for mpi<=300 MeV do we obtain a consistent and stable fit with a constant delta which they determine to be 0.24(3)(4) (at the chiral scale Lambdachi = 0.8 GeV). By comparing to the 123x28 lattice, they estimate the finite volume effect to be about 2.7% for the smallest pion mass. They also fitted the pion mass to the form for the re-summed cactus diagrams and found that its applicable region is extended farther than the range for the one-loop formula, perhaps up to mpi {approx}500-600 MeV. The scale independent delta is determined to be 0.20(3) in this case. The authors study the quenched non-analytic terms in the nucleon mass and find that the coefficient C1/2 in the nucleon mass is consistent with the prediction of one-loop chiPT. They also obtain the low energy constant L5 from fpi. They conclude from this study that it is imperative to cover only the range of data with the pion mass less than {approx}300 MeV in order to examine the chiral behavior of the hadron masses and decay constants in quenched QCD and match them with quenched one-loop chiPT.

  19. Crashing galaxies, cosmic fireworks

    SciTech Connect

    Keel, W.C.

    1989-01-01

    The study of binary systems is reviewed. The history of the study of interacting galaxies, the behavior of gas in binary systems, studies to identify the processes that occur when galaxies interact, and the relationship of Seyfert galaxies and quasars to binary systems are discussed. The development of an atlas of peculiar galaxies (Arp, 1966) and methods for modeling galaxy interactions are examined.

  20. Measuring chirality in NMR in the presence of a time-dependent electric field

    SciTech Connect

    Walls, Jamie D.; Harris, Robert A.

    2014-06-21

    Traditional nuclear magnetic resonance (NMR) experiments are “blind” to chirality since the spectra for left and right handed enantiomers are identical in an achiral medium. However, theoretical arguments have suggested that the effective Hamiltonian for spin-1/2 nuclei in the presence of electric and magnetic fields can be different for left and right handed enantiomers, thereby enabling NMR to be used to spectroscopically detect chirality even in an achiral medium. However, most proposals to detect the chiral NMR signature require measuring signals that are equivalent to picomolar concentrations for {sup 1}H nuclei, which are outside current NMR detection limits. In this work, we propose to use an AC electric field that is resonantly modulated at the Larmor frequency, thereby enhancing the effect of the chiral term by four to six orders of magnitude. We predict that a steady-state transverse magnetization, whose direction will be opposite for different enantiomers, will build up during application of an AC electric field. We also propose an experimental setup that uses a solenoid coil with an AC current to generate the necessary periodic electric fields that can be used to generate chiral signals which are equivalent to the signal from a {sup 1}H submicromolar concentration.

  1. Stellar Populations in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    MacArthur, L. A.; Courteau, S.; Bell, E. F.; Holtzman, J. A.

    2004-12-01

    We investigate optical and near-IR color gradients in a sample of 172 low-inclination galaxies spanning Hubble types S0--Irr. The colors are compared to stellar population synthesis models from which luminosity-weighted average ages and metallicities are determined. We explore the effects of different underlying star formation histories and additional bursts of star formation. Because the observed gradients show radial structure, we measure ``inner'' and ``outer'' disk age and metallicity gradients. Relative trends in age and metallicity and their gradients are explored as a function of Hubble type, rotational velocity, total near-IR galaxy magnitude, central surface brightness, and scale length. We find strong correlations in age and metallicity with Hubble type, rotational velocity, total magnitude, and central surface brightness in the sense that earlier-type, faster rotating, more luminous, and higher surface brightness galaxies are older and more metal-rich, suggesting an early and more rapid star formation history for these galaxies. The increasing trends level off for T ⪉ 4 (Sbc and earlier), V {rot} ⪆ 120 km s-1, MK ⪉ -23 mag, and μ 0 ⪉ 18.5 mag arcsec-2. Outer disk gradients are weaker than the inner gradients as expected for a slower variation of the potential and surface brightness in the outer parts. We find that stronger age gradients are associated with weaker metallicity gradients. Relative trends in gradients with galaxy parameters do not agree with predictions of semi-analytic models of hierarchical galaxy formation, possibly as a result of bar-induced radial flows. However, the observed trends are in agreement with chemo-spectro photometric models of spiral galaxy evolution based on CDM-motivated scaling laws but including none of the hierarchical merging characteristics. This implies a strong dependence of the star formation history of spiral galaxies on the galaxy potential and halo spin parameter. L.A.M. and S.C acknowledge support

  2. Mechanism of chirality conversion by periodic change of temperature: Role of chiral clusters

    NASA Astrophysics Data System (ADS)

    Katsuno, Hiroyasu; Uwaha, Makio

    2016-01-01

    By grinding crystals in a solution, the chirality of crystal structure (and the molecular chirality for the case of chiral molecules as well) can be converted, and the cause of the phenomenon is attributed to crystal growth with chiral clusters. We show that the recently found chirality conversion with a periodic change of temperature can also be explained by crystal growth with chiral clusters. With the use of a generalized Becker-Döring model, which includes enantio-selective incorporation of small chiral clusters to large solid clusters, the change of cluster distribution and the mass flow between clusters are studied. The chiral clusters act as a reservoir to pump out the minority species to the majority, and the exponential amplification of the enantiomeric excess found in the experiment is reproduced in the numerical calculation.

  3. Transformation of the vector part of the 4-momentum in the Dirac equation and in Maxwell's equations in Majorana form for chiral media

    NASA Astrophysics Data System (ADS)

    Sadykov, N. R.

    2011-03-01

    It is suggested to extend the results obtained for Maxwell's equations in Majorana form (spin-1 particles) for spin particles with a half-integer spin and a nonzero mass. It is shown that in an unbounded "chiral medium" (twisted media) the degeneration existing between particles of different helicities is removed. For ultrarelativistic particles, an analog to the inverse optical Magnus effect follows where the effect is determined by the chirality of the medium. From the inverse scattering problem for the transforms under consideration it follows that the amplitude of the wave function of a particle in a chiral medium can vary with time according to a linear law (for example, the process of neutrino (antineutrino) production or annihilation), and the parameters of the medium satisfy the evolution equation.

  4. Enantioselective recognition at mesoporous chiral metal surfaces

    PubMed Central

    Wattanakit, Chularat; Côme, Yémima Bon Saint; Lapeyre, Veronique; Bopp, Philippe A.; Heim, Matthias; Yadnum, Sudarat; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2014-01-01

    Chirality is widespread in natural systems, and artificial reproduction of chiral recognition is a major scientific challenge, especially owing to various potential applications ranging from catalysis to sensing and separation science. In this context, molecular imprinting is a well-known approach for generating materials with enantioselective properties, and it has been successfully employed using polymers. However, it is particularly difficult to synthesize chiral metal matrices by this method. Here we report the fabrication of a chirally imprinted mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and chiral template molecules. The porous platinum retains a chiral character after removal of the template molecules. A matrix obtained in this way exhibits a large active surface area due to its mesoporosity, and also shows a significant discrimination between two enantiomers, when they are probed using such materials as electrodes. PMID:24548992

  5. Asymmetric synthesis using chiral-encoded metal

    PubMed Central

    Yutthalekha, Thittaya; Wattanakit, Chularat; Lapeyre, Veronique; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2016-01-01

    The synthesis of chiral compounds is of crucial importance in many areas of society and science, including medicine, biology, chemistry, biotechnology and agriculture. Thus, there is a fundamental interest in developing new approaches for the selective production of enantiomers. Here we report the use of mesoporous metal structures with encoded geometric chiral information for inducing asymmetry in the electrochemical synthesis of mandelic acid as a model molecule. The chiral-encoded mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and the chiral template molecule, perfectly retains the chiral information after removal of the template. Starting from a prochiral compound we demonstrate enantiomeric excess of the (R)-enantiomer when using (R)-imprinted electrodes and vice versa for the (S)-imprinted ones. Moreover, changing the amount of chiral cavities in the material allows tuning the enantioselectivity. PMID:27562028

  6. Molecular chirality: language, history, and significance.

    PubMed

    Gal, Joseph

    2013-01-01

    In this chapter some background material concerning molecular chirality and enantiomerism is presented. First some basic chemical-molecular aspects of chirality are reviewed, after which certain relevant terminology whose use in the literature has been problematic is discussed. Then an overview is provided of some of the early discoveries that laid the foundations of the science of molecular chirality in chemistry and biology, including the discovery of the phenomenon of molecular chirality by L. Pasteur, the proposals for the asymmetric carbon atom by J.H. van 't Hoff and J.A. Lebel, Pasteur's discovery of biological enantioselectivity, the discovery of enantioselectivity at biological receptors by A. Piutti, the studies of enzymatic stereoselectivity by E. Fischer, and the work on enantioselectivity in pharmacology by A. Cushny. Finally, the role of molecular chirality in pharmacotherapy and new-drug development, arguably one of the main driving forces for the current intense interest in the phenomenon of molecular chirality, is discussed. PMID:23666078

  7. Stable Pentaquarks from Strange Chiral Multiplets

    SciTech Connect

    Silas Beane

    2004-12-01

    The assumption of strong diquark correlations in the QCD spectrum suggests flavor multiplets of hadrons that are degenerate in the chiral limit. Generally it would be unnatural for there to be degeneracy in the hadron spectrum that is not protected by a QCD symmetry. Here we show--for pentaquarks constructed from diquarks--that these degeneracies can be naturally protected by the full chiral symmetry of QCD. The resulting chiral multiplet structure recovers the ideally-mixed pentaquark mass spectrum of the diquark model, and interestingly, requires that the axial couplings of the pentaquarks to states outside the degenerate multiplets vanish in the chiral limit. This result suggests that if these hadrons exist, they are stable in the chiral limit and therefore have widths that scale as the fourth power of the kaon mass over the chiral symmetry breaking scale. Natural-size widths are of order a few MeV.

  8. Anomalous Maxwell equations for inhomogeneous chiral plasma

    NASA Astrophysics Data System (ADS)

    Gorbar, E. V.; Shovkovy, I. A.; Vilchinskii, S.; Rudenok, I.; Boyarsky, A.; Ruchayskiy, O.

    2016-05-01

    Using the chiral kinetic theory we derive the electric and chiral current densities in inhomogeneous relativistic plasma. We also derive equations for the electric and chiral chemical potentials that close the Maxwell equations in such a plasma. The analysis is done in the regimes with and without a drift of the plasma as a whole. In addition to the currents present in the homogeneous plasma (Hall current, chiral magnetic, chiral separation, and chiral electric separation effects, as well as Ohm's current) we derive several new terms associated with inhomogeneities of the plasma. Apart from various diffusionlike terms, we find also new dissipationless terms that are independent of relaxation time. Their origin can be traced to the Berry curvature modifications of the kinetic theory.

  9. Asymmetric synthesis using chiral-encoded metal.

    PubMed

    Yutthalekha, Thittaya; Wattanakit, Chularat; Lapeyre, Veronique; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2016-01-01

    The synthesis of chiral compounds is of crucial importance in many areas of society and science, including medicine, biology, chemistry, biotechnology and agriculture. Thus, there is a fundamental interest in developing new approaches for the selective production of enantiomers. Here we report the use of mesoporous metal structures with encoded geometric chiral information for inducing asymmetry in the electrochemical synthesis of mandelic acid as a model molecule. The chiral-encoded mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and the chiral template molecule, perfectly retains the chiral information after removal of the template. Starting from a prochiral compound we demonstrate enantiomeric excess of the (R)-enantiomer when using (R)-imprinted electrodes and vice versa for the (S)-imprinted ones. Moreover, changing the amount of chiral cavities in the material allows tuning the enantioselectivity. PMID:27562028

  10. Chiral description of massive gravity

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sergei; Krasnov, Kirill; Speziale, Simone

    2013-06-01

    We propose and study a new first order version of the ghost-free massive gravity. Instead of metrics or tetrads, it uses a connection together with Plebanski's chiral 2-forms as fundamental variables, rendering the phase space structure similar to that of SU(2) gauge theories. The chiral description simplifies computations of the constraint algebra, and allows us to perform the complete canonical analysis of the system. In particular, we explicitly compute the secondary constraint and carry out the stabilization procedure, thus proving that in general the theory propagates 7 degrees of freedom, consistently with previous claims. Finally, we point out that the description in terms of 2-forms opens the door to an infinite class of ghost-free massive bi-gravity actions. Our results apply directly to Euclidean signature. The reality conditions to be imposed in the Lorentzian signature appear to be more complicated than in the usual gravity case and are left as an open issue.

  11. Bootstrapping N=2 chiral correlators

    NASA Astrophysics Data System (ADS)

    Lemos, Madalena; Liendo, Pedro

    2016-01-01

    We apply the numerical bootstrap program to chiral operators in four-dimensional N=2 SCFTs. In the first part of this work we study four-point functions in which all fields have the same conformal dimension. We give special emphasis to bootstrapping a specific theory: the simplest Argyres-Douglas fixed point with no flavor symmetry. In the second part we generalize our setup and consider correlators of fields with unequal dimension. This is an example of a mixed correlator and allows us to probe new regions in the parameter space of N=2 SCFTs. In particular, our results put constraints on relations in the Coulomb branch chiral ring and on the curvature of the Zamolodchikov metric.

  12. On chirality of slime mould.

    PubMed

    Dimonte, Alice; Adamatzky, Andrew; Erokhin, Victor; Levin, Michael

    2016-02-01

    Left-right patterning and lateralised behaviour is an ubiquitous aspect of plants and animals. The mechanisms linking cellular chirality to the large-scale asymmetry of multicellular structures are incompletely understood, and it has been suggested that the chirality of living cells is hardwired in their cytoskeleton. We examined the question of biased asymmetry in a unique organism: the slime mould Physarum polycephalum, which is unicellular yet possesses macroscopic, complex structure and behaviour. In laboratory experiment using a T-shape, we found that Physarum turns right in more than 74% of trials. The results are in agreement with previously published studies on asymmetric movement of muscle cells, neutrophils, liver cells and growing neural filaments, and for the first time reveal the presence of consistently-biased laterality in the fungi kingdom. Exact mechanisms of the slime mould's direction preference remain unknown. PMID:26747637

  13. Microfluidic Separation of Chiral Particles

    NASA Astrophysics Data System (ADS)

    Marcos; Fu, Henry; Powers, Thomas; Stocker, Roman

    2008-11-01

    We present a combined theoretical and experimental investigation of the fluid mechanics of a helix exposed to a shear flow. In addition to classic Jeffery orbits, Resistive Force Theory predicts a drift of the helix across streamlines, perpendicular to the shear plane. The direction of the drift is determined by the direction of the shear and the chirality of the helix. We verify this prediction experimentally using microfluidics, by exposing Leptospira biflexa, a non-motile strain of helical-shaped bacteria, to a plane parabolic flow. As the shear in the top and bottom halves of the microchannel has opposite sign, we predict and observe the bacteria in these two regions to drift in opposite directions. The magnitude of the separation is in good quantitative agreement with theory. This setup can be used to separate microscale chiral objects.

  14. On lattice chiral gauge theories

    NASA Technical Reports Server (NTRS)

    Maiani, L.; Rossi, G. C.; Testa, M.

    1991-01-01

    The Smit-Swift-Aoki formulation of a lattice chiral gauge theory is presented. In this formulation the Wilson and other non invariant terms in the action are made gauge invariant by the coupling with a nonlinear auxilary scalar field, omega. It is shown that omega decouples from the physical states only if appropriate parameters are tuned so as to satisfy a set of BRST identities. In addition, explicit ghost fields are necessary to ensure decoupling. These theories can give rise to the correct continuum limit. Similar considerations apply to schemes with mirror fermions. Simpler cases with a global chiral symmetry are discussed and it is shown that the theory becomes free at decoupling. Recent numerical simulations agree with those considerations.

  15. ENANTIOMERIC RATIOS OF CHIRAL PCB ATROPISOMERS IN RADIODATED SEDIMENT CORES

    EPA Science Inventory

    Enantiomeric ratios (ERs)) of chiral polychlorinated biphenyl (PCB) atropisomers were quantified in radiodated sediment cores of Lake Hartwell SC, a reservoir heavily impacted by PCBS, to study spatial and temporal changes in chirality. A chiral analysis of cores showed accumulat...

  16. Dynamics of skyrmions in chiral magnets: Dynamic phase transitions and equation of motion

    SciTech Connect

    Lin, Shi-Zeng Reichhardt, Charles; Batista, Cristian D.; Saxena, Avadh

    2014-05-07

    We study the dynamics of skyrmions in a metallic chiral magnet. First, we show that skyrmions can be created dynamically by destabilizing the ferromagnetic background state through a spin polarized current. We then treat skyrmions as rigid particles and derive the corresponding equation of motion. The dynamics of skyrmions is dominated by the Magnus force, which accounts for the weak pinning of skyrmions observed in experiments. Finally, we discuss the quantum motion of skyrmions.

  17. Anomalies and Discrete Chiral Symmetries

    SciTech Connect

    Creutz, M.

    2009-09-07

    The quantum anomaly that breaks the U(1) axial symmetry of massless multi-flavored QCD leaves behind a discrete flavor-singlet chiral invariance. With massive quarks, this residual symmetry has a close connection with the strong CP-violating parameter theta. One result is that if the lightest quarks are degenerate, then a first order transition will occur when theta passes through pi. The resulting framework helps clarify when the rooting prescription for extrapolating in the number of flavors is valid.

  18. Chiral particle separation by a nonchiral microlattice.

    PubMed

    Bogunovic, Lukas; Fliedner, Marc; Eichhorn, Ralf; Wegener, Sonja; Regtmeier, Jan; Anselmetti, Dario; Reimann, Peter

    2012-09-01

    We conceived a model experiment for a continuous separation strategy of chiral molecules (enantiomers) without the need of any chiral selector structure or derivatization agents: Microparticles that only differ by their chirality are shown to migrate along different directions when driven by a steady fluid flow through a square lattice of cylindrical posts. In accordance with our numerical predictions, the transport directions of the enantiomers depend very sensitively on the orientation of the lattice relative to the fluid flow. PMID:23005274

  19. Chiral Particle Separation by a Nonchiral Microlattice

    NASA Astrophysics Data System (ADS)

    Bogunovic, Lukas; Fliedner, Marc; Eichhorn, Ralf; Wegener, Sonja; Regtmeier, Jan; Anselmetti, Dario; Reimann, Peter

    2012-09-01

    We conceived a model experiment for a continuous separation strategy of chiral molecules (enantiomers) without the need of any chiral selector structure or derivatization agents: Microparticles that only differ by their chirality are shown to migrate along different directions when driven by a steady fluid flow through a square lattice of cylindrical posts. In accordance with our numerical predictions, the transport directions of the enantiomers depend very sensitively on the orientation of the lattice relative to the fluid flow.

  20. Chiral anomaly, bosonization, and fractional charge

    SciTech Connect

    Mignaco, J.A.; Monteiro, M.A.R.

    1985-06-15

    We present a method to evaluate the Jacobian of chiral rotations, regulating determinants through the proper-time method and using Seeley's asymptotic expansion. With this method we compute easily the chiral anomaly for ..nu.. = 4,6 dimensions, discuss bosonization of some massless two-dimensional models, and handle the problem of charge fractionization. In addition, we comment on the general validity of Fujikawa's approach to regulate the Jacobian of chiral rotations with non-Hermitian operators.

  1. Frustration and chiral orderings in correlated electron systems.

    PubMed

    Batista, Cristian D; Lin, Shi-Zeng; Hayami, Satoru; Kamiya, Yoshitomo

    2016-08-01

    The term frustration refers to lattice systems whose ground state cannot simultaneously satisfy all the interactions. Frustration is an important property of correlated electron systems, which stems from the sign of loop products (similar to Wilson products) of interactions on a lattice. It was early recognized that geometric frustration can produce rather exotic physical behaviors, such as macroscopic ground state degeneracy and helimagnetism. The interest in frustrated systems was renewed two decades later in the context of spin glasses and the emergence of magnetic superstructures. In particular, Phil Anderson's proposal of a quantum spin liquid ground state for a two-dimensional lattice S  =  1/2 Heisenberg magnet generated a very active line of research that still continues. As a result of these early discoveries and conjectures, the study of frustrated models and materials exploded over the last two decades. Besides the large efforts triggered by the search of quantum spin liquids, it was also recognized that frustration plays a crucial role in a vast spectrum of physical phenomena arising from correlated electron materials. Here we review some of these phenomena with particular emphasis on the stabilization of chiral liquids and non-coplanar magnetic orderings. In particular, we focus on the ubiquitous interplay between magnetic and charge degrees of freedom in frustrated correlated electron systems and on the role of anisotropy. We demonstrate that these basic ingredients lead to exotic phenomena, such as, charge effects in Mott insulators, the stabilization of single magnetic vortices, as well as vortex and skyrmion crystals, and the emergence of different types of chiral liquids. In particular, these orderings appear more naturally in itinerant magnets with the potential of inducing a very large anomalous Hall effect. PMID:27376461

  2. Frustration and chiral orderings in correlated electron systems

    NASA Astrophysics Data System (ADS)

    Batista, Cristian D.; Lin, Shi-Zeng; Hayami, Satoru; Kamiya, Yoshitomo

    2016-08-01

    The term frustration refers to lattice systems whose ground state cannot simultaneously satisfy all the interactions. Frustration is an important property of correlated electron systems, which stems from the sign of loop products (similar to Wilson products) of interactions on a lattice. It was early recognized that geometric frustration can produce rather exotic physical behaviors, such as macroscopic ground state degeneracy and helimagnetism. The interest in frustrated systems was renewed two decades later in the context of spin glasses and the emergence of magnetic superstructures. In particular, Phil Anderson’s proposal of a quantum spin liquid ground state for a two-dimensional lattice S  =  1/2 Heisenberg magnet generated a very active line of research that still continues. As a result of these early discoveries and conjectures, the study of frustrated models and materials exploded over the last two decades. Besides the large efforts triggered by the search of quantum spin liquids, it was also recognized that frustration plays a crucial role in a vast spectrum of physical phenomena arising from correlated electron materials. Here we review some of these phenomena with particular emphasis on the stabilization of chiral liquids and non-coplanar magnetic orderings. In particular, we focus on the ubiquitous interplay between magnetic and charge degrees of freedom in frustrated correlated electron systems and on the role of anisotropy. We demonstrate that these basic ingredients lead to exotic phenomena, such as, charge effects in Mott insulators, the stabilization of single magnetic vortices, as well as vortex and skyrmion crystals, and the emergence of different types of chiral liquids. In particular, these orderings appear more naturally in itinerant magnets with the potential of inducing a very large anomalous Hall effect.

  3. Objects of Maximum Electromagnetic Chirality

    NASA Astrophysics Data System (ADS)

    Fernandez-Corbaton, Ivan; Fruhnert, Martin; Rockstuhl, Carsten

    2016-07-01

    We introduce a definition of the electromagnetic chirality of an object and show that it has an upper bound. Reciprocal objects attain the upper bound if and only if they are transparent for all the fields of one polarization handedness (helicity). Additionally, electromagnetic duality symmetry, i.e., helicity preservation upon interaction, turns out to be a necessary condition for reciprocal objects to attain the upper bound. We use these results to provide requirements for the design of such extremal objects. The requirements can be formulated as constraints on the polarizability tensors for dipolar objects or on the material constitutive relations for continuous media. We also outline two applications for objects of maximum electromagnetic chirality: a twofold resonantly enhanced and background-free circular dichroism measurement setup, and angle-independent helicity filtering glasses. Finally, we use the theoretically obtained requirements to guide the design of a specific structure, which we then analyze numerically and discuss its performance with respect to maximal electromagnetic chirality.

  4. Chiral plasmons without magnetic field.

    PubMed

    Song, Justin C W; Rudner, Mark S

    2016-04-26

    Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons-chiral Berry plasmons (CBPs)-for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron-electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands. PMID:27071090

  5. Chiral plasmons without magnetic field

    NASA Astrophysics Data System (ADS)

    Song, Justin C. W.

    2016-04-01

    Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons—chiral Berry plasmons (CBPs)—for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron–electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands.

  6. Sperm Trajectories Form Chiral Ribbons

    PubMed Central

    Su, Ting-Wei; Choi, Inkyum; Feng, Jiawen; Huang, Kalvin; McLeod, Euan; Ozcan, Aydogan

    2013-01-01

    We report the discovery of an entirely new three-dimensional (3D) swimming pattern observed in human and horse sperms. This motion is in the form of ‘chiral ribbons’, where the planar swing of the sperm head occurs on an osculating plane creating in some cases a helical ribbon and in some others a twisted ribbon. The latter, i.e., the twisted ribbon trajectory, also defines a minimal surface, exhibiting zero mean curvature for all the points on its surface. These chiral ribbon swimming patterns cannot be represented or understood by already known patterns of sperms or other micro-swimmers. The discovery of these unique patterns is enabled by holographic on-chip imaging of >33,700 sperm trajectories at >90–140 frames/sec, which revealed that only ~1.7% of human sperms exhibit chiral ribbons, whereas it increases to ~27.3% for horse sperms. These results might shed more light onto the statistics and biophysics of various micro-swimmers' 3D motion. PMID:23588811

  7. Shaping galaxy evolution with galaxy structure

    NASA Astrophysics Data System (ADS)

    Cheung, Edmond

    A fundamental pursuit of astronomy is to understand galaxy evolution. The enormous scales and complex physics involved in this endeavor guarantees a never-ending journey that has enamored both astronomers and laymen alike. But despite the difficulty of this task, astronomers have still attempted to further this goal. Among of these astronomers is Edwin Hubble. His work, which includes the famous Hubble sequence, has immeasurably influenced our understanding of galaxy evolution. In this thesis, we present three works that continues Hubble's line of study by using galaxy structure to learn about galaxy evolution. First, we examine the dependence of galaxy quiescence on inner galactic structure with the AEGIS/ DEEP2 survey at 0.5In this thesis, we present three works that continues Hubble's line of study by using galaxy structure to learn about galaxy evolution. First, we examine the dependence of galaxy quiescence on inner galactic structure with the AEGIS/ DEEP2 survey at 0.5galaxies from quiescent galaxies. Our method indicates that the inner stellar mass is the most correlated parameter of quenching, implying that the process that quenches galaxies must also buildup their inner structure. Second, we explore the relationship between galactic bars and their host galaxies with Galaxy Zoo 2 at z˜0. The correlations of bar properties and galaxy properties are consistent with simulations of bar formation and evolution, indicating that bars affect their host galaxies. Finally, we investigate whether bars can drive supermassive black hole growth with data from Chandra and Galaxy Zoo: Hubble at 0.2galaxies to a matched sample of inactive, control galaxies shows that there is no statistically significant excess of bars in active hosts. Our result shows that bars are not the primary fueling mechanism of supermassive black hole

  8. Submillimeter Galaxies

    NASA Astrophysics Data System (ADS)

    Blain, A. W.

    2009-12-01

    The Universe was a more exciting place at moderate to high redshifts z˜3, after reionization took place, but before the present day galaxy properties were firmly established. From a wide variety of directions, we are gaining insight into the Universe at these epochs. Less gas was sequestered into stars and had been ejected into the interstellar medium as weakly emitting, slowly cooling debris, because a significant amount of star formation and supermassive blackhole growth in active galactic nuclei (AGNs) was still to occur. Furthermore, the processes that shape today’s galaxies were at work, and can be seen in real time with the appropriate tools. The most active regions of galaxies at these redshifts are deeply obscured at ultraviolet and optical wavelengths by an opaque interstellar medium (ISM) that absorbs most of their radiation, and then re-emits at far-infrared (IR) wavelengths. This emission provides us with a very powerful probe of the regions within galaxies where the most intense activity takes place; both their total energy output, and from spectroscopy, about the physics and chemistry of the atomic and molecular gas that fuels, hides and surrounds these regions. This information is unique, but not complete: radio, mid- and near-IR, optical and X-ray observations each provide unique complementary views. Nevertheless, probing the obscured Universe, with the Atacama Large (Sub-)Millimeter Array (ALMA), James Webb Space Telescope (JWST), Herschel Space Observatory, Wide Field Infrared Survey Explorer (WISE), and missions and telescopes that are not yet in construction, like an actively cooled sub-10-m class IR space telescope and a 25-m class ground-based submillimeter/THz telescope (CCAT) will provide a more complete picture of in which neighborhoods, by what means and how quickly the most vigorous bursts of activity take place.

  9. Towards control of the size and helicity of skyrmions in helimagnetic alloys by spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Shibata, K.; Yu, X. Z.; Hara, T.; Morikawa, D.; Kanazawa, N.; Kimoto, K.; Ishiwata, S.; Matsui, Y.; Tokura, Y.

    2013-10-01

    Chirality--that is, left- or right-handedness--is an important concept in a broad range of scientific areas. In condensed matter, chirality is found not only in molecular or crystal forms, but also in magnetic structures. A magnetic skyrmion is a topologically stable spin vortex structure, as observed in chiral-lattice helimagnets, and is one example of such a structure. The spin swirling direction (skyrmion helicity) should be closely related to the underlying lattice chirality via the relativistic spin-orbit coupling. Here, we report on the correlation between skyrmion helicity and crystal chirality in alloys of helimagnets Mn1-xFexGe with varying compositions by Lorentz transmission electron microscopy and convergent-beam electron diffraction over a broad range of compositions (x = 0.3-1.0). The skyrmion lattice constant shows non-monotonous variation with composition x, with a divergent behaviour around x = 0.8, where the correlation between magnetic helicity and crystal chirality changes sign. This originates from continuous variation of the spin-orbit coupling strength and its sign reversal in the metallic alloys as a function of x. Controllable spin-orbit coupling may offer a promising way to tune skyrmion size and helicity.

  10. Chiral selection on inorganic crystalline surfaces

    NASA Technical Reports Server (NTRS)

    Hazen, Robert M.; Sholl, David S.

    2003-01-01

    From synthetic drugs to biodegradable plastics to the origin of life, the chiral selection of molecules presents both daunting challenges and significant opportunities in materials science. Among the most promising, yet little explored, avenues for chiral molecular discrimination is adsorption on chiral crystalline surfaces - periodic environments that can select, concentrate and possibly even organize molecules into polymers and other macromolecular structures. Here we review experimental and theoretical approaches to chiral selection on inorganic crystalline surfaces - research that is poised to open this new frontier in understanding and exploiting surface-molecule interactions.

  11. Chiral Magnetic Effect in Hydrodynamic Approximation

    NASA Astrophysics Data System (ADS)

    Zakharov, Valentin I.

    We review derivations of the chiral magnetic effect (ChME) in hydrodynamic approximation. The reader is assumed to be familiar with the basics of the effect. The main challenge now is to account for the strong interactions between the constituents of the fluid. The main result is that the ChME is not renormalized: in the hydrodynamic approximation it remains the same as for non-interacting chiral fermions moving in an external magnetic field. The key ingredients in the proof are general laws of thermodynamics and the Adler-Bardeen theorem for the chiral anomaly in external electromagnetic fields. The chiral magnetic effect in hydrodynamics represents a macroscopic manifestation of a quantum phenomenon (chiral anomaly). Moreover, one can argue that the current induced by the magnetic field is dissipation free and talk about a kind of "chiral superconductivity". More precise description is a quantum ballistic transport along magnetic field taking place in equilibrium and in absence of a driving force. The basic limitation is the exact chiral limit while temperature—excitingly enough—does not seemingly matter. What is still lacking, is a detailed quantum microscopic picture for the ChME in hydrodynamics. Probably, the chiral currents propagate through lower-dimensional defects, like vortices in superfluid. In case of superfluid, the prediction for the chiral magnetic effect remains unmodified although the emerging dynamical picture differs from the standard one.

  12. Chiral mass-gap in curved space.

    PubMed

    Flachi, Antonino; Fukushima, Kenji

    2014-08-29

    We discuss a new type of QCD phenomenon induced in curved space. In the QCD vacuum, a mass-gap of Dirac fermions is attributed to the spontaneous breaking of chiral symmetry. If the curvature is positive large, the chiral condensate melts but a chiral invariant mass-gap can still remain, which we name the chiral gap effect in curved space. This leads to decoupling of quark deconfinement which implies a view of black holes surrounded by a first-order QCD phase transition. PMID:25215970

  13. Generation of a Chiral Giant Micelle.

    PubMed

    Ito, Thiago H; Salles, Airton G; Priebe, Jacks P; Miranda, Paulo C M L; Morgon, Nelson H; Danino, Dganit; Mancini, Giovanna; Sabadini, Edvaldo

    2016-08-23

    Over the past few years, chiral supramolecular assemblies have been successfully used for recognition, sensing and enantioselective transformations. Several approaches are available to control chirality of discrete assemblies (e.g., cages and capsules), but few are efficient in assuring chirality for micellar aggregates. Optically active amino acid-derived surfactants are commonly used to generate chiral spherical micelles. To circumvent this limitation, we benefited from the uniaxial growth of spherical micelles into long cylindrical micelles usually called wormlike or giant micelles, upon the addition of cosolutes. This paper describes the unprecedented formation of chiral giant micelles in aqueous solutions of cetyltrimethylammonium bromide (CTAB) upon increasing addition of enantiopure sodium salt of 1,1'-bi-2-naphthol (Na-binaphtholate) as a cosolute. Depending on the concentrations of CTAB and Na-binaphtholate, chiral gel-like systems are obtained. The transition from spherical to giant micellar structures was probed using rheology, cryo-transmission electron microscopy, polarimetry, and electronic circular dichroism (CD). CD can be effectively used to monitor the incorporation of Na-binaphtholate into the micelle palisade as well as to determine its transition to giant micellar structures. Our approach expands the scope for chirality induction in micellar aggregates bringing the possibility to generate "smart" chiral systems and an alternative asymmetric chiral environment to perform enantioselective transformations. PMID:27499127

  14. Inherently Chiral Spider-Like Oligothiophenes.

    PubMed

    Sannicolò, Francesco; Mussini, Patrizia R; Benincori, Tiziana; Martinazzo, Rocco; Arnaboldi, Serena; Appoloni, Giulio; Panigati, Monica; Quartapelle Procopio, Elsa; Marino, Valentina; Cirilli, Roberto; Casolo, Simone; Kutner, Wlodzimierz; Noworyta, Krzysztof; Pietrzyk-Le, Agnieszka; Iskierko, Zofia; Bartold, Katarzyna

    2016-07-25

    The racemate of an inherently chiral "spider-like" octathiophene monomer T83 , in which chirality is generated by torsion in its backbone, was synthesized. The racemate was resolved into configurationally stable antipodes by HPLC on a chiral stationary phase. Electrooxidation of the enantiomers resulted in materials displaying high enantiorecognition ability towards the antipodes of some chiral probes. Moreover, the T83 racemate demonstrated great aptitude to stimulate formation of 3D rigid architectures if used as a cross-linking monomer for molecular imprinting. This feature was exploited to devise a molecularly imprinted polymer-based chemosensor selective for a thymine-adenine oligonucleotide. PMID:27321902

  15. Chiral pattern formation in compact microbial colonies

    NASA Astrophysics Data System (ADS)

    Korolev, Kirill; Bino George, Ashish

    Chirality is ubiquitous in biology from single molecules to entire populations. Yet, we are still lacking a detailed understanding of how chiral patterns emerge from cell competition and growth, even in simple microbial colonies. Although many microbes grow as dense colonies with no apparent chirality, recent experiments with Escherichia coli have demonstrated that internal dynamics in such populations can be in fact chiral. We show that there is a unique way to extend the commonly-used reaction-diffusion models of colony growth to account for the emergent chirality. This new model connects microscopic and macroscopic chirality and explains the origin of logarithmic spirals separating different sub-populations in a colony. We also show that chirality is substantially enhanced by the cooperation among the cells at the expansion frontier. In heterogeneous populations composed of strains with different chiralities and growth rates, our model predicts a very rich set of possible dynamics. For example, different chiralities can result in either sharp boundaries between the strains or promote their intermixing depending on the preferred twisting directions of the strains.

  16. Electric-field-controlled suppression of Walker breakdown and chirality switching in magnetic domain wall motion

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Bo; Li, You-Quan

    2016-07-01

    We theoretically study the dynamics of a magnetic domain wall controlled by an electric field in the presence of the spin flexoelectric interaction. We reveal that this interaction generates an effective spin torque and results in significant changes in the current-driven domain wall motion. In particular, the electric field can stabilize the domain wall motion, leading to strong suppression of the current-induced Walker breakdown and thus allowing a higher maximum wall velocity. We can furthermore use this electric-field control to efficiently switch the chirality of a moving domain wall in the steady regime.

  17. Semi-phenomenological description of the chiral bands in 188,190Os

    NASA Astrophysics Data System (ADS)

    Raduta, A. A.; Raduta, C. M.

    2015-06-01

    A set of interacting particles are coupled to a phenomenological core described using the generalized coherent state model. Among the particle-core states, a finite set which have the property that the angular momenta carried by the proton and neutron quadrupole bosons and the particles, separately, are mutually orthogonal are identified. The magnetic properties of such states are studied. All terms of the model Hamiltonian exhibit chiral symmetry except the spin-spin interaction one. There are four bands of the type with two-quasiparticle-core dipole states, exhibiting properties which are specific to magnetic twin bands. An application is presented, for the isotopes 188,190Os.

  18. Dwarf spheroidal galaxies: Keystones of galaxy evolution

    NASA Technical Reports Server (NTRS)

    Gallagher, John S., III; Wyse, Rosemary F. G.

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  19. Quark and Glue Components of the Proton Spin from Lattice Calculation

    NASA Astrophysics Data System (ADS)

    Liu, Keh-Fei

    2016-02-01

    The status of lattice calculations of the quark spin, the quark orbital angular momentum, the glue angular momentum and glue spin in the nucleon is summarized. The quark spin calculation is recently carried out from the anomalous Ward identity with chiral fermions and is found to be small mainly due to the large negative anomaly term which is believed to be the source of the ‘proton spin crisis’. We also present the first calculation of the glue spin at finite nucleon momenta.

  20. Inherently Chiral Calixarenes: Synthesis, Optical Resolution, Chiral Recognition and Asymmetric Catalysis

    PubMed Central

    Li, Shao-Yong; Xu, Yao-Wei; Liu, Jun-Min; Su, Cheng-Yong

    2011-01-01

    Inherently chiral calixarenes, whose chirality is based on the absence of a planar symmetry or an inversion center in the molecules as a whole through the asymmetric array of several achiral groups upon the three-dimensional calix-skeletons, are challenging and attractive chiral molecules, because of their potential in supramolecular chemistry. The synthesis and optical resolution of all varieties of inherently chiral calixarenes are systematically discussed and classified, and their applications in chiral recognition and asymmetric catalysis are thoroughly illustrated in this review. PMID:21339996

  1. Antiferromagnetic molecular nanomagnets with odd-numbered coupled spins

    NASA Astrophysics Data System (ADS)

    Owerre, S. A.; Nsofini, J.

    2015-05-01

    In recent years, studies on cyclic molecular nanomagnets have captivated the attention of researchers. These magnets are finite in size and contain very large spins. They are interesting because they possess macroscopic quantum tunneling of Néel vectors. For antiferromagnetic molecular nanomagnets with finite number of even-numbered coupled spins, tunneling involves two classical localized Néel ground states separated by a magnetic energy barrier. The question is: can such phenomena be observed in nanomagnets with odd number of magnetic ions? The answer is not directly obvious because cyclic chains with odd-numbered coupled spins are frustrated as one cannot obtain a perfect Néel order. These frustrated spins can indeed be observed experimentally, so they are of interest. In this letter, we theoretically investigate macroscopic quantum tunneling in this odd spin system with arbitrary spins s, in the presence of a magnetic field applied along the plane of the magnet. In contrast to systems with an even-numbered coupled spins, the ground state of the cyclic odd-spin system contains a topological soliton due to spin frustration. Thus, the classical ground state is 2N-fold degenerate as the soliton can be placed anywhere along the ring with total S_z=+/- s . Small quantum fluctuations delocalize the soliton with a formation of an energy band. We obtain this energy band using degenerate perturbation theory at order 2s. We show that the soliton ground state is chiral for half-odd integer spins and non-chiral for integer spins. From the structure of the energy band we infer that as the value of the spin increases the inelastic polarized neutron-scattering intensity may increase or decrease depending on the strengths of the parameters of the Hamiltonian.

  2. Galaxies Collide to Create Hot, Huge Galaxy

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This image of a pair of colliding galaxies called NGC 6240 shows them in a rare, short-lived phase of their evolution just before they merge into a single, larger galaxy. The prolonged, violent collision has drastically altered the appearance of both galaxies and created huge amounts of heat turning NGC 6240 into an 'infrared luminous' active galaxy.

    A rich variety of active galaxies, with different shapes, luminosities and radiation profiles exist. These galaxies may be related astronomers have suspected that they may represent an evolutionary sequence. By catching different galaxies in different stages of merging, a story emerges as one type of active galaxy changes into another. NGC 6240 provides an important 'missing link' in this process.

    This image was created from combined data from the infrared array camera of NASA's Spitzer Space Telescope at 3.6 and 8.0 microns (red) and visible light from NASA's Hubble Space Telescope (green and blue).

  3. Galaxy NGC 55

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the nearby edge-on spiral galaxy NGC 55 was taken by Galaxy Evolution Explorer on September 14, 2003, during 2 orbits. This galaxy lies 5.4 million light years from our Milky Way galaxy and is a member of the 'local group' of galaxies that also includes the Andromeda galaxy (M31), the Magellanic clouds, and 40 other galaxies. The spiral disk of NGC 55 is inclined to our line of sight by approximately 80 degrees and so this galaxy looks cigar-shaped. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors, (colored red). The bright blue regions in this image are areas of active star formation detected in the ultraviolet by Galaxy Evolution Explorer. The red stars in this image are foreground stars in our own Milky Way galaxy.

  4. Chirally-modified metal surfaces: energetics of interaction with chiral molecules.

    PubMed

    Dementyev, Petr; Peter, Matthias; Adamovsky, Sergey; Schauermann, Swetlana

    2015-09-21

    Imparting chirality to non-chiral metal surfaces by adsorption of chiral modifiers is a highly promising route to create effective heterogeneously catalyzed processes for the production of enantiopure pharmaceuticals. One of the major current challenges in heterogeneous chiral catalysis is the fundamental-level understanding of how such chirally-modified surfaces interact with chiral and prochiral molecules to induce their enantioselective transformations. Herein we report the first direct calorimetric measurement of the adsorption energy of chiral molecules onto well-defined chirally-modified surfaces. Two model modifiers 1-(1-naphthyl)ethylamine and 2-methylbutanoic acid were used to impart chirality to Pt(111) and their interaction with propylene oxide was investigated by means of single-crystal adsorption calorimetry. Differential adsorption energies and absolute surface uptakes were obtained for the R- and S-enantiomers of propylene oxide under clean ultrahigh vacuum conditions. Two types of adsorption behavior were observed for different chiral modifiers, pointing to different mechanisms of imparting chirality to metal surfaces. The results are analyzed and discussed in view of previously reported stereoselectivity of adsorption processes. PMID:26256836

  5. Hydrodynamics of Liquids of Chiral Molecules and Suspensions Containing Chiral Particles

    NASA Astrophysics Data System (ADS)

    Andreev, A. V.; Son, D. T.; Spivak, B.

    2010-05-01

    We obtain hydrodynamic equations describing a fluid consisting of chiral molecules or a suspension of chiral particles in a Newtonian fluid. The hydrodynamic velocity and stresses arising in a flowing chiral liquid have components that are forbidden by symmetry in a Newtonian liquid. For example, a chiral liquid in a Poiseuille flow between parallel plates exerts forces on the plates, which are perpendicular to the flow. A generic flow results in spatial separation of particles of different chirality. Thus even a racemic suspension will exhibit chiral properties in a generic flow. A suspension of particles of random shape in a Newtonian liquid is described by equations which are similar to those describing a racemic mixture of chiral particles in a liquid.

  6. Spin flips - II. Evolution of dark matter halo spin orientation, and its correlation with major mergers

    NASA Astrophysics Data System (ADS)

    Bett, Philip E.; Frenk, Carlos S.

    2016-09-01

    We expand our previous study on the relationship between changes in the orientation of the angular momentum vector of dark matter haloes (`spin flips') and changes in their mass, to cover the full range of halo masses in a simulation cube of length 100 h-1 Mpc. Since strong disturbances to a halo (such as might be indicated by a large change in the spin direction) are likely also to disturb the galaxy evolving within, spin flips could be a mechanism for galaxy morphological transformation without involving major mergers. We find that 35 per cent of haloes have, at some point in their lifetimes, had a spin flip of at least 45° that does not coincide with a major merger. Over 75 per cent of large spin flips coincide with non-major mergers; only a quarter coincide with major mergers. We find a similar picture for changes to the inner halo spin orientation, although here there is an increased likelihood of a flip occurring. Changes in halo angular momentum orientation, and other such measures of halo perturbation, are therefore very important quantities to consider, in addition to halo mergers, when modelling the formation and evolution of galaxies and confronting such models with observations.

  7. Chiral plasmonic nanostructures on achiral nanopillars.

    PubMed

    Yeom, Bongjun; Zhang, Huanan; Zhang, Hui; Park, Jai Il; Kim, Kyoungwon; Govorov, Alexander O; Kotov, Nicholas A

    2013-11-13

    Chirality of plasmonic films can be strongly enhanced by three-dimensional (3D) out-of-plane geometries. The complexity of lithographic methods currently used to produce such structures and other methods utilizing chiral templates impose limitations on spectral windows of chiroptical effects, the size of substrates, and hence, further research on chiral plasmonics. Here we demonstrate 3D chiral plasmonic nanostructures (CPNs) with high optical activity in the visible spectral range based on initially achiral nanopillars from ZnO. We made asymmetric gold nanoshells on the nanopillars by vacuum evaporation at different inclination and rotation angles to achieve controlled symmetry breaking and obtained both left- and right-rotating isomers. The attribution of chiral optical effects to monolithic enantiomers made in this process was confirmed by theoretical calculations based on their geometry established from scanning electron microscope (SEM) images. The chirality of the nanoshells is retained upon the release from the substrate into a stable dispersion. Deviation of the incident angle of light from normal results in increase of polarization rotation and chiral g-factor as high as -0.3. This general approach for preparation of abiological nanoscale chiral materials can be extended to other out-of plane 3D nanostructures. The large area films made on achiral nanopillars are convenient for sensors, optical devices, and catalysis. PMID:24111695

  8. Orientation-Dependent Handedness and Chiral Design

    NASA Astrophysics Data System (ADS)

    Efrati, Efi; Irvine, William T. M.

    2014-01-01

    Chirality occupies a central role in fields ranging from biological self-assembly to the design of optical metamaterials. The definition of chirality, as given by Lord Kelvin, associates chirality with the lack of mirror symmetry: the inability to superpose an object on its mirror image. While this definition has guided the classification of chiral objects for over a century, the quantification of handed phenomena based on this definition has proven elusive, if not impossible, as manifest in the paradox of chiral connectedness. In this work, we put forward a quantification scheme in which the handedness of an object depends on the direction in which it is viewed. While consistent with familiar chiral notions, such as the right-hand rule, this framework allows objects to be simultaneously right and left handed. We demonstrate this orientation dependence in three different systems—a biomimetic elastic bilayer, a chiral propeller, and optical metamaterial—and find quantitative agreement with chirality pseudotensors whose form we explicitly compute. The use of this approach resolves the existing paradoxes and naturally enables the design of handed metamaterials from symmetry principles.

  9. Chiral gravity, log gravity, and extremal CFT

    SciTech Connect

    Maloney, Alexander; Song Wei; Strominger, Andrew

    2010-03-15

    We show that the linearization of all exact solutions of classical chiral gravity around the AdS{sub 3} vacuum have positive energy. Nonchiral and negative-energy solutions of the linearized equations are infrared divergent at second order, and so are removed from the spectrum. In other words, chirality is confined and the equations of motion have linearization instabilities. We prove that the only stationary, axially symmetric solutions of chiral gravity are BTZ black holes, which have positive energy. It is further shown that classical log gravity--the theory with logarithmically relaxed boundary conditions--has finite asymptotic symmetry generators but is not chiral and hence may be dual at the quantum level to a logarithmic conformal field theories (CFT). Moreover we show that log gravity contains chiral gravity within it as a decoupled charge superselection sector. We formally evaluate the Euclidean sum over geometries of chiral gravity and show that it gives precisely the holomorphic extremal CFT partition function. The modular invariance and integrality of the expansion coefficients of this partition function are consistent with the existence of an exact quantum theory of chiral gravity. We argue that the problem of quantizing chiral gravity is the holographic dual of the problem of constructing an extremal CFT, while quantizing log gravity is dual to the problem of constructing a logarithmic extremal CFT.

  10. Partially Quenched Chiral Perturbation Theory to NNLO

    SciTech Connect

    Laehde, Timo; Bijnens, Johan; Danielsson, Niclas

    2006-07-11

    This paper summarizes the recent calculations of the masses and decay constants of the pseudoscalar mesons at the two-loop level, or NNLO, in Partially Quenched Chiral Perturbation theory (PQ{chi}PT). Possible applications include chiral extrapolations of Lattice QCD, as well as the determination of the low-energy constants (LEC:s) of QCD.

  11. A lattice formulation of chiral gauge theories

    SciTech Connect

    Bodwin, G.T.

    1996-08-01

    We present a method for implementing gauge theories of chiral fermions on the lattice. Discussed topics include: the lattice as a UV regulator, a chiral QED model, modification of the fermion determinant, large gauge-field momenta, and a non-perturbative problem.

  12. Chiral THz metamaterial with tunable optical activity

    SciTech Connect

    Zhou, Jiangfeng; Taylor, Antoinette; O' Hara, John; Chowdhury, Roy; Zhao, Rongkuo; Soukoullis, Costas M

    2010-01-01

    Optical activity in chiral metamaterials is demonstrated in simulation and shows actively tunable giant polarization rotation at THz frequencies. Electric current distributions show that pure chirality is achieved by our bi-Iayer chiral metamaterial design. The chirality can be optically controlled by illumination with near-infrared light. Optical activity, occurring in chiral materials such as DNA, sugar and many other bio-molecules, is a phenomenon of great importance to many areas of science including molecular biology, analytical chemistry, optoelectronics and display applications. This phenomenon is well understood at an effective medium level as a magnetic/electric moment excited by the electric/magnetic field of the incident electromagnetic (EM) wave. Usually, natural chiral materials exhibit very weak optical activity e.g. a gyrotropic quartz crystal. The optical activity of chiral metamaterials, however, can be five orders of magnitude stronger. Chiral metamaterials are made of sub-wavelength resonators lacking symmetry planes. The asymmetry allows magnetic moments to be excited by the electric field of the incident EM wave and vice versa. Recently, chiral metamaterials have been demonstrated and lead to prospects in giant optical activity, circular dichroism, negative refraction and reversing the Casmir force. These fascinating optical properties require strong chirality, which may be designed through the microscopic structure of chiral metamaterials. However, these metamaterials have a fixed response function, defined by the geometric structuring, which limits their ability to manipulate EM waves. Active metamaterials realize dynamic control of response functions and have produced many influential applications such as ultra-fast switching devices, frequency and phase modulation and memory devices. Introducing active designs to chiral metamaterials will give additional freedom in controlling the optical activity, and therefore enable dynamic manipulation

  13. Chiral oily streaks in a smectic-A liquid crystal.

    PubMed

    Nemitz, Ian R; Ferris, Andrew J; Lacaze, Emmanuelle; Rosenblatt, Charles

    2016-08-21

    The liquid crystal octylcyanobiphenyl (8CB) was doped with the chiral agent CB15 and spin-coated onto a substrate treated for planar alignment of the director, resulting in a film of thickness several hundred nm in the smectic-A phase. In both doped and undoped samples, the competing boundary conditions - planar alignment at the substrate and vertical alignment at the free surface - cause the liquid crystal to break into a series of flattened hemicylinders to satisfy the boundary conditions. When viewed under an optical microscope with crossed polarizers, this structure results in a series of dark and light stripes ("oily streaks") of period ∼1 μm. In the absence of chiral dopant the stripes run perpendicular to the substrate's easy axis. However, when doped with chiral CB15 at concentrations up to c = 4 wt%, the stripe orientation rotates by a temperature-dependent angle φ with respect to the c = 0 stripe orientation, where φ increases monotonically with c. φ is largest just below the nematic - smectic-A transition temperature TNA and decreases with decreasing temperature. As the temperature is lowered, φ relaxes to a steady-state orientation close to zero within ∼1 °C of TNA. We suggest that the rotation phenomenon is a manifestation of the surface electroclinic effect: The rotation is due to the weak smectic order parameter and resulting large director tilt susceptibility with respect to the smectic layer normal near TNA, in conjunction with an effective surface electric field due to polar interactions between the liquid crystal and substrate. PMID:27426740

  14. A liquid crystalline chirality balance for vapours

    NASA Astrophysics Data System (ADS)

    Ohzono, Takuya; Yamamoto, Takahiro; Fukuda, Jun-Ichi

    2014-04-01

    Chiral discrimination of vapours plays an important role in olfactory perception of biological systems and its realization by artificial sensors has been an intriguing challenge. Here, we report a simple method that tangibly visualizes the chirality of a diverse variety of molecules dissolved from vapours with high sensitivity, by making use of a structural change in a periodic microstructure of a nematic liquid crystal confined in open microchannels. This microstructure is accompanied by a topological line defect of a zigzag form with equal lengths of ‘zig’ and ‘zag.’ We find that a tiny amount of vapour of chiral molecules injected onto the liquid crystal induces the imbalance of ‘zig’ and ‘zag’ depending on its enantiomeric excess within a few seconds. Our liquid-crystal-based ‘chirality balance’ offers a simple, quick and versatile chirality-sensing/-screening method for gas-phase analysis (for example, for odours, environmental chemicals or drugs).

  15. Spontaneous Chiral Symmetry Breaking for Finite Systems.

    PubMed

    Boscheto, Emerson; López-Castillo, Alejandro

    2015-12-01

    Theoretical clues are desirable to help uncover the origin of bio-homochirality in life, as well as the mechanisms for the asymmetric production of functional chiral substances. Here, an open-to-matter reaction network based on a model proposed by Plasson et al. is studied. In the extended model, the statistical fluctuations lead the system to break chiral symmetry autonomously, that is, without any initial enantiomeric excess or external influence. In the stability diagrams, we observe regions of parameter space that correspond to racemic, homochiral, chiral oscillatory, and, to our knowledge, for the first time in a chiral model, chaotic regimes. The dependencies of the final concentrations of chiral substances on the parameters are determined analytically and discussed for both the racemic and homochiral regimes. PMID:26395183

  16. Enantioselective environmental toxicology of chiral pesticides.

    PubMed

    Ye, Jing; Zhao, Meirong; Niu, Lili; Liu, Weiping

    2015-03-16

    The enantioselective environmental toxic effect of chiral pesticides is becoming more important. As the industry develops, increasing numbers of chiral insecticides and herbicides will be introduced into use, potentially posing toxic effects on nontarget living beings. Chiral pesticides, including herbicides such as acylanilides, phenoxypropanoic acids, and imidazolinones, and insecticides such as synthetic pyrethroids, organophosphates, and DDT often behave enantioselectively during agricultural use. These compounds also pose unpredictable enantioselective ecological threats to nontarget living beings and/or humans, affecting the food chain and entire ecosystems. Thus, to investigate the enantioselective toxic effects of chiral insecticides and herbicides is necessary during environmental protection. The environmental toxicology of chiral pesticides, especially the findings obtained from studies conducted in our laboratory during the past 10 years, is reviewed. PMID:25643169

  17. Chiral Extensions of the Mssm

    NASA Astrophysics Data System (ADS)

    Ferretti, Gabriele; Karateev, Denis

    2013-03-01

    We present a class of extensions of the MSSM characterized by a fully chiral field content (no μ-terms) and no baryon or lepton number violating term in the superpotential due to an extra U‧(1) gauge symmetry. The minimal model consists of the usual matter sector with family dependent U‧(1) charges, six Higgs weak doublets, and three singlets required to give masses to the Higgsinos and cancel anomalies. We discuss its main features such as the tree level mass spectrum and the constraints on flavor changing processes.

  18. Chirality and the Quark Model

    SciTech Connect

    Eric S. Swanson; Adam P. Szczepaniak

    2002-06-07

    The relationship of the quark model to the known chiral properties of QCD is a long-standing problem in the interpretation of low energy QCD. In particular, how can the pion be viewed as both a collective Goldstone boson quasiparticle and as a valence quark antiquark bound state? A comparison of the many-body solution of a simplified model of QCD to the constituent quark model demonstrates that the quark model is sufficiently flexible to describe meson hyperfine splitting provided proper renormalization conditions and correct degrees of freedom are employed consistently.

  19. Nuclear forces and chiral theories

    SciTech Connect

    Friar, J.L. |

    1995-09-01

    Recent successes in ab initio calculations of light nuclei (A=2-6) will be reviewed and correlated with the dynamical consequences of chiral symmetry. The tractability of nuclear physics evinced by these results is evidence for that symmetry. The relative importance of three-nucleon forces, four-nucleon forces, multi-pion exchanges, and relativistic corrections will be discussed in the context of effective field theories and dimensional power counting. Isospin violation in the nuclear force will also be discussed in this context.

  20. Galaxy groups

    SciTech Connect

    Brent Tully, R.

    2015-02-01

    Galaxy groups can be characterized by the radius of decoupling from cosmic expansion, the radius of the caustic of second turnaround, and the velocity dispersion of galaxies within this latter radius. These parameters can be a challenge to measure, especially for small groups with few members. In this study, results are gathered pertaining to particularly well-studied groups over four decades in group mass. Scaling relations anticipated from theory are demonstrated and coefficients of the relationships are specified. There is an update of the relationship between light and mass for groups, confirming that groups with mass of a few times 10{sup 12}M{sub ⊙} are the most lit up while groups with more and less mass are darker. It is demonstrated that there is an interesting one-to-one correlation between the number of dwarf satellites in a group and the group mass. There is the suggestion that small variations in the slope of the luminosity function in groups are caused by the degree of depletion of intermediate luminosity systems rather than variations in the number per unit mass of dwarfs. Finally, returning to the characteristic radii of groups, the ratio of first to second turnaround depends on the dark matter and dark energy content of the universe and a crude estimate can be made from the current observations of Ω{sub matter}∼0.15 in a flat topology, with a 68% probability of being less than 0.44.

  1. Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Tully, R. Brent

    2015-02-01

    Galaxy groups can be characterized by the radius of decoupling from cosmic expansion, the radius of the caustic of second turnaround, and the velocity dispersion of galaxies within this latter radius. These parameters can be a challenge to measure, especially for small groups with few members. In this study, results are gathered pertaining to particularly well-studied groups over four decades in group mass. Scaling relations anticipated from theory are demonstrated and coefficients of the relationships are specified. There is an update of the relationship between light and mass for groups, confirming that groups with mass of a few times {{10}12}{{M}⊙ } are the most lit up while groups with more and less mass are darker. It is demonstrated that there is an interesting one-to-one correlation between the number of dwarf satellites in a group and the group mass. There is the suggestion that small variations in the slope of the luminosity function in groups are caused by the degree of depletion of intermediate luminosity systems rather than variations in the number per unit mass of dwarfs. Finally, returning to the characteristic radii of groups, the ratio of first to second turnaround depends on the dark matter and dark energy content of the universe and a crude estimate can be made from the current observations of {{Ω}matter}˜ 0.15 in a flat topology, with a 68% probability of being less than 0.44.

  2. Terahertz Antiferromagnetic Spin Hall Nano-Oscillator

    NASA Astrophysics Data System (ADS)

    Cheng, Ran; Xiao, Di; Brataas, Arne

    2016-05-01

    We consider the current-induced dynamics of insulating antiferromagnets in a spin Hall geometry. Sufficiently large in-plane currents perpendicular to the Néel order trigger spontaneous oscillations at frequencies between the acoustic and the optical eigenmodes. The direction of the driving current determines the chirality of the excitation. When the current exceeds a threshold, the combined effect of spin pumping and current-induced torques introduces a dynamic feedback that sustains steady-state oscillations with amplitudes controllable via the applied current. The ac voltage output is calculated numerically as a function of the dc current input for different feedback strengths. Our findings open a route towards terahertz antiferromagnetic spin-torque oscillators.

  3. Terahertz Antiferromagnetic Spin Hall Nano-Oscillator.

    PubMed

    Cheng, Ran; Xiao, Di; Brataas, Arne

    2016-05-20

    We consider the current-induced dynamics of insulating antiferromagnets in a spin Hall geometry. Sufficiently large in-plane currents perpendicular to the Néel order trigger spontaneous oscillations at frequencies between the acoustic and the optical eigenmodes. The direction of the driving current determines the chirality of the excitation. When the current exceeds a threshold, the combined effect of spin pumping and current-induced torques introduces a dynamic feedback that sustains steady-state oscillations with amplitudes controllable via the applied current. The ac voltage output is calculated numerically as a function of the dc current input for different feedback strengths. Our findings open a route towards terahertz antiferromagnetic spin-torque oscillators. PMID:27258884

  4. Emergent electrodynamics of skyrmions in a chiral magnet

    NASA Astrophysics Data System (ADS)

    Schulz, T.; Ritz, R.; Bauer, A.; Halder, M.; Wagner, M.; Franz, C.; Pfleiderer, C.; Everschor, K.; Garst, M.; Rosch, A.

    2012-04-01

    When an electron moves in a smoothly varying non-collinear magnetic structure, its spin orientation adapts constantly, thereby inducing forces that act both on the magnetic structure and on the electron. These forces may be described by electric and magnetic fields of an emergent electrodynamics. The topologically quantized winding number of so-called skyrmions--a type of magnetic whirl discovered recently in chiral magnets--has been predicted to induce exactly one quantum of emergent magnetic flux per skyrmion. A moving skyrmion is therefore expected to induce an emergent electric field following Faraday's law of induction, which inherits this topological quantization. Here we report Hall-effect measurements that establish quantitatively the predicted emergent electrodynamics. We obtain quantitative evidence for the depinning of skyrmions from impurities (at current densities of only 106Am-2) and their subsequent motion. The combination of exceptionally small current densities and simple transport measurements offers fundamental insights into the connection between the emergent and real electrodynamics of skyrmions in chiral magnets, and might, in the long term, be important for applications.

  5. Finite-Temperature Properties of Three-Dimensional Chiral Helimagnets

    NASA Astrophysics Data System (ADS)

    Shinozaki, Misako; Hoshino, Shintaro; Masaki, Yusuke; Kishine, Jun-ichiro; Kato, Yusuke

    2016-07-01

    We study a three-dimensional (3d) classical chiral helimagnet at finite temperatures through analysis of a spin Hamiltonian, which is defined on a simple cubic lattice and consists of the Heisenberg exchange, monoaxial Dzyaloshinskii-Moriya interactions, and the Zeeman energy due to a magnetic field applied in the plane perpendicular to the helical axis. We take account of the quasi-two-dimensionality of the known monoaxial chiral helimagnet CrNb3S6 and we adopt three methods: (i) a conventional mean-field (MF) analysis, which we call the 3dMF method, (ii) a hybrid method called the 2dMC-1dMF method, which is composed of a classical Monte Carlo (MC) simulation and a MF approximation applied respectively to the intra- and interlayer interactions, and (iii) a simple-MC simulation (3dMC) at zero field. The temperature dependence of the magnetization calculated by the 3dMF method shows a cusp-like structure similar to that observed in experiments. In the absence of a magnetic field, both 2dMC-1dMF and 3dMC yield similar values of the transition temperature. The 2dMC-1dMF method provides a quantitative description of the thermodynamic properties, even under an external field, at an accessible numerical cost.

  6. Helimagnons in a chiral ground state of the pyrochlore antiferromagnets

    NASA Astrophysics Data System (ADS)

    Choi, Eunsong; Chern, Gia-Wei; Perkins, Natalia B.

    2013-02-01

    The Goldstone mode in a helical magnetic phase, also known as the helimagnon, is a propagating mode with a highly anisotropic dispersion relation. Here we study theoretically the magnetic excitations in a complex chiral ground state of pyrochlore antiferromagnets such as spinel CdCr2O4 and itinerant magnet YMn2. We show that the effective theory of the soft modes in the helical state possesses a symmetry similar to that of smectic liquid crystals. An overall agreement is obtained between experiments and our dynamics simulations with realistic model parameters. By exactly diagonalizing the linearized Landu-Lifshitz equation in various commensurate limits of the spiral order, we find a low-energy dispersion relation characteristic of the helimagnons. Our calculation thus reveals the first example of helimagnon excitations in geometrically frustrated spin systems.

  7. Effect of interlayer exchange coupling on magnetic chiral structures

    SciTech Connect

    Kang, S. P.; Kwon, H. Y.; Kim, H. S.; Shim, J. H.; Won, C.

    2015-07-28

    We numerically investigated the effect of interlayer exchange coupling on magnetic chiral structures, such as a helical/cycloidal spin structure and magnetic skyrmion crystal (SkX), which are produced in a magnetic system involving the Dzyaloshinskii-Moriya interaction (DMI). We report the existence of a phase transition where the length scale of magnetic structure discontinuously changes, and that there can be a novel magnetic structure around the phase boundary that exhibits double-ordering lengths of magnetic structure. Therefore, the system has multiple ground phases determined by the ratio of interlayer exchange coupling strength and DMI strength. Furthermore, we investigated the critical condition of the external perpendicular field required for the SkX. The critical field is significantly reduced under the effect of interlayer exchange coupling, which can stabilize the SkX without the external field.

  8. Estimation of optical rotation of chiral molecules with weak measurements.

    PubMed

    Qiu, Xiaodong; Xie, Linguo; Liu, Xiong; Luo, Lan; Zhang, Zhiyou; Du, Jinglei

    2016-09-01

    From its beginning, the measurement of optical rotation (OR) is crucial for the analysis of chiral molecules in many fields. However, the precision measurement of a weak OR signal with conventional setup remains elusive. In this Letter, we experimentally propose a precision method to determine the OR of glucose and fructose based on weak measurements. By using the spin Hall effect of light (SHEL) as a probe, a nonlinear weak measurements model is established that is applicable beyond the Aharonov-Albert-Vaidman (AAV) limit. Due to the high sensitivity of weak measurements amplification with respect to the OR, a tremendous variation of the amplified beam displacement of the SHEL is observed, while the concentration of glucose and fructose is slightly changed. PMID:27607965

  9. Synthesis and characterization of mixed ligand chiral nanoclusters.

    PubMed

    Guven, Zekiye P; Ustbas, Burcin; Harkness, Kellen M; Coskun, Hikmet; Joshi, Chakra P; Besong, Tabot M D; Stellacci, Francesco; Bakr, Osman M; Akbulut, Ozge

    2016-07-28

    Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. While the chiral ligand led mostly to the formation of nanoparticles, the presence of the achiral ligand drastically increased the yield of nanoclusters with enhanced chiral properties. PMID:27362744

  10. Engineering chiral density waves and topological band structures by multiple-Q superpositions of collinear up-up-down-down orders

    NASA Astrophysics Data System (ADS)

    Hayami, Satoru; Ozawa, Ryo; Motome, Yukitoshi

    2016-07-01

    Magnetic orders characterized by multiple ordering vectors harbor noncollinear and noncoplanar spin textures and can be a source of unusual electronic properties through the spin Berry phase mechanism. We theoretically show that such multiple-Q states are stabilized in itinerant magnets in the form of superpositions of collinear up-up-down-down (UUDD) spin states, which accompany the density waves of vector and scalar chirality. The result is drawn by examining the ground state of the Kondo lattice model with classical localized moments, especially when the Fermi surface is tuned to be partially nested by the symmetry-related commensurate vectors. We unveil the instability toward a double-Q UUDD state with vector chirality density waves on the square lattice and a triple-Q UUDD state with scalar chirality density waves on the triangular lattice, using the perturbative theory and variational calculations. The former double-Q state is also confirmed by large-scale Langevin dynamics simulations. We also show that, for a sufficiently large exchange coupling, the chirality density waves can induce rich nontrivial topology of electronic structures, such as the massless Dirac semimetal, Chern insulator with quantized topological Hall response, and peculiar edge states which depend on the phase of chirality density waves at the edges.

  11. Nucleic acids, proteins, and chirality

    NASA Technical Reports Server (NTRS)

    Usher, D. A.; Profy, A. T.; Walstrum, S. A.; Needels, M. C.; Bulack, S. C.; Lo, K. M.

    1984-01-01

    The present investigation is concerned with experimental results related, in one case, to the chirality of nucleotides, and, in another case, to the possibility of a link between the chirality of nucleic acids, and that of peptides. It has been found that aminoacylation of the 'internal' hydroxyl group of a dinucleoside monophosphate can occur stereoselectively. However, this reaction has not yet been made a part of a working peptide synthesis scheme. The formation and cleavage of oligonucleotides is considered. In the event of the formation of a helical complex between the oligonucleotide and the polymer, 1-prime,5-prime-bonds in the oligomer are found to become more resistant towards cleavage. The conditions required for peptide bond formation are examined, taking into account the known structures of RNA and possible mechanisms for prebiotic peptide bond formation. The possibility is considered that the 2-prime,5-prime-internucleotide linkage could have played an important part in the early days of biological peptide synthesis.

  12. Spin-orbit torques and anisotropic magnetization damping in skyrmion crystals

    NASA Astrophysics Data System (ADS)

    Hals, Kjetil M. D.; Brataas, Arne

    2014-02-01

    The length scale of the magnetization gradients in chiral magnets is determined by the relativistic Dzyaloshinskii-Moriya interaction. Thus, even conventional spin-transfer torques are controlled by the relativistic spin-orbit coupling in these systems, and additional relativistic corrections to the current-induced torques and magnetization damping become important for a complete understanding of the current-driven magnetization dynamics. We theoretically study the effects of reactive and dissipative homogeneous spin-orbit torques and anisotropic damping on the current-driven skyrmion dynamics in cubic chiral magnets. Our results demonstrate that spin-orbit torques play a significant role in the current-induced skyrmion velocity. The dissipative spin-orbit torque generates a relativistic Magnus force on the skyrmions, whereas the reactive spin-orbit torque yields a correction to both the drift velocity along the current direction and the transverse velocity associated with the Magnus force. The spin-orbit torque corrections to the velocity scale linearly with the skyrmion size, which is inversely proportional to the spin-orbit coupling. Consequently, the reactive spin-orbit torque correction can be the same order of magnitude as the nonrelativistic contribution. More importantly, the dissipative spin-orbit torque can be the dominant force that causes a deflected motion of the skyrmions if the torque exhibits a linear or quadratic relationship with the spin-orbit coupling. In addition, we demonstrate that the skyrmion velocity is determined by anisotropic magnetization damping parameters governed by the skyrmion size.

  13. D{sup 0} magnetism in Ca doped narrow carbon nanotubes: First principle chirality effect study

    SciTech Connect

    Hajiheidari, F.; Khoshnevisan, B.; Hashemifar, S. J.

    2014-06-21

    Curvature has always had crucial effects on the physical properties of narrow carbon nanotubes (CNTs) and here spin-polarized density functional calculations were employed to study electronic and magnetic properties of calcium-decorated narrow (5,5) and (9,0)CNTs with close diameters (∼7 Å) and different chiralities. Our results showed that chirality had great impact on the electronic structure and magnetization of the doped CNTs. In addition, internally or externally doping of the calcium atoms was studied comparatively and although for the (9,0)CNT the internal doping was the most stable configuration, which involves a novel kind of spin-polarization originated from Ca-4s electrons, but for the (5,5)tube the external doping was the most stable one without any spin-polarization. On the other hand, calcium doping in the center of the (5,5)CNT was an endothermic process and led to the spin-polarization of unoccupied Ca-3d orbitals via direct exchange interaction between adjacent Ca atoms. In the considered systems, the existence of magnetization in the absence of any transition-metal elements was an example of valuable d{sup 0} magnetism title.

  14. Switching of chiral magnetic skyrmions by picosecond magnetic field pulses via transient topological states

    PubMed Central

    Heo, Changhoon; Kiselev, Nikolai S.; Nandy, Ashis Kumar; Blügel, Stefan; Rasing, Theo

    2016-01-01

    Magnetic chiral skyrmions are vortex like spin structures that appear as stable or meta-stable states in magnetic materials due to the interplay between the symmetric and antisymmetric exchange interactions, applied magnetic field and/or uniaxial anisotropy. Their small size and internal stability make them prospective objects for data storage but for this, the controlled switching between skyrmion states of opposite polarity and topological charge is essential. Here we present a study of magnetic skyrmion switching by an applied magnetic field pulse based on a discrete model of classical spins and atomistic spin dynamics. We found a finite range of coupling parameters corresponding to the coexistence of two degenerate isolated skyrmions characterized by mutually inverted spin structures with opposite polarity and topological charge. We demonstrate how for a wide range of material parameters a short inclined magnetic field pulse can initiate the reliable switching between these states at GHz rates. Detailed analysis of the switching mechanism revealed the complex path of the system accompanied with the excitation of a chiral-achiral meron pair and the formation of an achiral skyrmion. PMID:27273157

  15. Switching of chiral magnetic skyrmions by picosecond magnetic field pulses via transient topological states.

    PubMed

    Heo, Changhoon; Kiselev, Nikolai S; Nandy, Ashis Kumar; Blügel, Stefan; Rasing, Theo

    2016-01-01

    Magnetic chiral skyrmions are vortex like spin structures that appear as stable or meta-stable states in magnetic materials due to the interplay between the symmetric and antisymmetric exchange interactions, applied magnetic field and/or uniaxial anisotropy. Their small size and internal stability make them prospective objects for data storage but for this, the controlled switching between skyrmion states of opposite polarity and topological charge is essential. Here we present a study of magnetic skyrmion switching by an applied magnetic field pulse based on a discrete model of classical spins and atomistic spin dynamics. We found a finite range of coupling parameters corresponding to the coexistence of two degenerate isolated skyrmions characterized by mutually inverted spin structures with opposite polarity and topological charge. We demonstrate how for a wide range of material parameters a short inclined magnetic field pulse can initiate the reliable switching between these states at GHz rates. Detailed analysis of the switching mechanism revealed the complex path of the system accompanied with the excitation of a chiral-achiral meron pair and the formation of an achiral skyrmion. PMID:27273157

  16. Switching of chiral magnetic skyrmions by picosecond magnetic field pulses via transient topological states

    NASA Astrophysics Data System (ADS)

    Heo, Changhoon; Kiselev, Nikolai S.; Nandy, Ashis Kumar; Blügel, Stefan; Rasing, Theo

    2016-06-01

    Magnetic chiral skyrmions are vortex like spin structures that appear as stable or meta-stable states in magnetic materials due to the interplay between the symmetric and antisymmetric exchange interactions, applied magnetic field and/or uniaxial anisotropy. Their small size and internal stability make them prospective objects for data storage but for this, the controlled switching between skyrmion states of opposite polarity and topological charge is essential. Here we present a study of magnetic skyrmion switching by an applied magnetic field pulse based on a discrete model of classical spins and atomistic spin dynamics. We found a finite range of coupling parameters corresponding to the coexistence of two degenerate isolated skyrmions characterized by mutually inverted spin structures with opposite polarity and topological charge. We demonstrate how for a wide range of material parameters a short inclined magnetic field pulse can initiate the reliable switching between these states at GHz rates. Detailed analysis of the switching mechanism revealed the complex path of the system accompanied with the excitation of a chiral-achiral meron pair and the formation of an achiral skyrmion.

  17. Hierarchical chirality transfer in the growth of Towel Gourd tendrils

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Shan; Wang, Gang; Feng, Xi-Qiao; Kitamura, Takayuki; Kang, Yi-Lan; Yu, Shou-Wen; Qin, Qing-Hua

    2013-10-01

    Chirality plays a significant role in the physical properties and biological functions of many biological materials, e.g., climbing tendrils and twisted leaves, which exhibit chiral growth. However, the mechanisms underlying the chiral growth of biological materials remain unclear. In this paper, we investigate how the Towel Gourd tendrils achieve their chiral growth. Our experiments reveal that the tendrils have a hierarchy of chirality, which transfers from the lower levels to the higher. The change in the helical angle of cellulose fibrils at the subcellular level induces an intrinsic torsion of tendrils, leading to the formation of the helical morphology of tendril filaments. A chirality transfer model is presented to elucidate the chiral growth of tendrils. This present study may help understand various chiral phenomena observed in biological materials. It also suggests that chirality transfer can be utilized in the development of hierarchically chiral materials having unique properties.

  18. Hierarchical chirality transfer in the growth of Towel Gourd tendrils.

    PubMed

    Wang, Jian-Shan; Wang, Gang; Feng, Xi-Qiao; Kitamura, Takayuki; Kang, Yi-Lan; Yu, Shou-Wen; Qin, Qing-Hua

    2013-01-01

    Chirality plays a significant role in the physical properties and biological functions of many biological materials, e.g., climbing tendrils and twisted leaves, which exhibit chiral growth. However, the mechanisms underlying the chiral growth of biological materials remain unclear. In this paper, we investigate how the Towel Gourd tendrils achieve their chiral growth. Our experiments reveal that the tendrils have a hierarchy of chirality, which transfers from the lower levels to the higher. The change in the helical angle of cellulose fibrils at the subcellular level induces an intrinsic torsion of tendrils, leading to the formation of the helical morphology of tendril filaments. A chirality transfer model is presented to elucidate the chiral growth of tendrils. This present study may help understand various chiral phenomena observed in biological materials. It also suggests that chirality transfer can be utilized in the development of hierarchically chiral materials having unique properties. PMID:24173107

  19. Atroposelective Synthesis of Axially Chiral Thiohydantoin Derivatives.

    PubMed

    Sarigul, Sevgi; Dogan, Ilknur

    2016-07-15

    Nonracemic axially chiral thiohydantoins were synthesized atroposelectively by the reaction of o-aryl isothiocyanates with amino acid ester salts in the presence of triethylamine (TEA). The synthesis of the nonaxially chiral derivatives, however, gave thiohydantoins racemized at C-5 of the heterocyclic ring. The micropreparatively resolved enantiomers of the nonaxially chiral derivatives from the racemic products were found to be optically stable under neutral conditions. On formation of the 5-methyl-3-arylthiohydantoin ring, bulky o-aryl substituents at N3 were found to suppress the C-5 racemization and in this way enabled the transfer of chirality from the α-amino acid to the products. The corresponding 5-isopropylthiohydantoins turned out to be more prone to racemization at C-5 during the ring formation. The isomer compositions of the synthesized axially chiral thiohydantoins have been determined through HPLC analyses with chiral stationary phases. In most cases a high prevalence of the P isomers over the M isomers has been obtained. The barriers to rotation determined around the Nsp(2)-Caryl chiral axis were found to be dependent upon the size of the o-halo aryl substituents. PMID:27322739

  20. Spontaneous Planar Chiral Symmetry Breaking in Cells

    NASA Astrophysics Data System (ADS)

    Hadidjojo, Jeremy; Lubensky, David

    Recent progress in animal development has highlighted the central role played by planar cell polarity (PCP) in epithelial tissue morphogenesis. Through PCP, cells have the ability to collectively polarize in the plane of the epithelium by localizing morphogenetic proteins along a certain axis. This allows direction-dependent modulation of tissue mechanical properties that can translate into the formation of complex, non-rotationally invariant shapes. Recent experimental observations[1] show that cells, in addition to being planar-polarized, can also spontaneously develop planar chirality, perhaps in the effort of making yet more complex shapes that are reflection non-invariant. In this talk we will present our work in characterizing general mechanisms that can lead to spontaneous chiral symmetry breaking in cells. We decompose interfacial concentration of polarity proteins in a hexagonal cell packing into irreducible representations. We find that in the case of polar concentration distributions, a chiral state can only be reached from a secondary instability after the cells are polarized. However in the case of nematic distributions, we show that a finite-amplitude (subcritical, or ``first-order'') nematic transition can send the system from disorder directly to a chiral state. In addition, we find that perturbing the system by stretching the hexagonal packing enables direct (supercritical, or ``second-order'') chiral transition in the nematic case. Finally, we do a Landau expansion to study competition between stretch-induced chirality and the tendency towards a non-chiral state in packings that have retained the full 6-fold symmetry.