Sample records for gallic acid content

  1. Relative content of gallic acid over 5-galloylquinic acid as an index for the baking intensity of oolong teas.

    PubMed

    Wang, Miki Mei-Chi; Yeh, Yun; Shih, Yu-En; Tzen, Jason Tze-Cheng

    2018-04-01

    Phenolic compounds in a series of old oolong teas prepared by baking annually were monitored and compared. The results showed that the relative content of gallic acid over 5-galloylquinic acid was subsequently elevated during this preparatory process. To reveal the effect was mainly resulted from baking or aging, two sets of oolong teas were collected and examined; one set was generated from fresh oolong tea via continually daily baking and the other set was composed of aged oolong teas with no or light baking in the storage period. The relative content of gallic acid over 5-galloylquinic acid was observed to be subsequently elevated when oolong tea was continually baked at 90, 100, 110, and 120 °C for 8 h day after day. In contrast, the relative contents of gallic acid over 5-galloylquinic acid in aged oolong teas with no or light baking were found to be similar to or slightly higher than that in fresh oolong tea. The results suggest that the relative content of gallic acid over 5-galloylquinic acid seems to be a suitable index for the baking intensity of oolong tea in different preparations. Copyright © 2017. Published by Elsevier B.V.

  2. Transglycosylation of gallic acid by using Leuconostoc glucansucrase and its characterization as a functional cosmetic agent.

    PubMed

    Nam, Seung-Hee; Park, Jeongjin; Jun, Woojin; Kim, Doman; Ko, Jin-A; Abd El-Aty, A M; Choi, Jin Young; Kim, Do-Ik; Yang, Kwang-Yeol

    2017-12-22

    Gallic acid glycoside was enzymatically synthesized by using dextransucrase and sucrose from gallic acid. After purification by butanol partitioning and preparative HPLC, gallic acid glucoside was detected at m/z 355 (C 13 , H 16 , O 10 , Na) + by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The yield of gallic acid glucoside was found to be 35.7% (114 mM) by response surface methodology using a reaction mixture of 319 mM gallic acid, 355 mM sucrose, and 930 mU/mL dextransucrase. The gallic acid glucoside obtained showed 31% higher anti-lipid peroxidation and stronger inhibition (Ki = 1.23 mM) against tyrosinase than that shown by gallic acid (Ki = 1.98 mM). In UVB-irradiated human fibroblast cells, gallic acid glucoside lowered matrix metalloproteinase-1 levels and increased the collagen content, which was indicative of a stronger anti-aging effect than that of gallic acid or arbutin. These results indicated that gallic acid glucoside is likely a superior cosmetic ingredient with skin-whitening and anti-aging functions.

  3. Probing Gallic Acid for Its Broad Spectrum Applications.

    PubMed

    Choubey, Sneha; Goyal, Soniya; Varughese, Lesley Rachel; Kumar, Vinod

    2018-03-29

    Gallic acid and its derivatives not only exhibit excellent antioxidant, anticarcinogenic, antimutagenic, antimicrobial properties but also provide protection to the cells against oxidative stress. Gallic acid (3, 4, 5-trihydroxybenzoic acid), a low molecular triphenolic compound has arised as an efficient apoptosis inducing agent. The antimicrobial and other biological properties of gallic acid and its derivatives seemed to be linked with the hydrolysis of ester linkage between gallic acid and polyols like tannins hydrolyzed after ripening of many edible fruits. Gallic acid serves a natural defense mechanism against microbial infections and modulation of immune-responses. The current review updates us with the diverse roles played by gallic acid, its antioxidant potential, action mechanism and more importantly the diverse array of applications in therapeutic and pharmaceutical area. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Gallic Acid Induces Apoptosis in Human Gastric Adenocarcinoma Cells.

    PubMed

    Tsai, Chung-Lin; Chiu, Ying-Ming; Ho, Tin-Yun; Hsieh, Chin-Tung; Shieh, Dong-Chen; Lee, Yi-Ju; Tsay, Gregory J; Wu, Yi-Ying

    2018-04-01

    Gastric cancer is one of the most common malignant cancers with a poor prognosis and high mortality rate worldwide. Current treatment of gastric cancer includes surgery and chemotherapy as the main modalities, but the potentially severe side-effects of chemotherapy present a considerable challenge. Gallic acid is a trihydroxybenzoic acid found to exert an anticancer effect against a variety of cancer cells. The purpose of this study was to determine the anti-cancer activity of Galla chinensis and its main component gallic acid on human gastric adenocarcinoma cells. MTT assay and cell death ELISA were used to determine the apoptotic effect of Gallic Chinensis and gallic acid on human gastric adenocarcinoma cells. To determine the pathway and relevant components by which gallic acid-induced apoptosis is mediated through, cells were transfected with siRNA (Fas, FasL, DR5, p53) using Lipofectamine 2000. Reults: Gallic Chinensis and gallic acid induced apoptosis of human gastric adenocarcinoma cells. Gallic acid induced up-regulation of Fas, FasL, and DR5 expression in AGS cells. Transfection of cells with Fas, FasL, or DR5 siRNA reduced gallic acid-induced cell death. In addition, p53 was shown to be involved in gallic acid-mediated Fas, FasL, and DR5 expression as well as cell apoptosis in AGS cells. These results suggest that gallic acid has a potential role in the treatment of gastric cancer. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  5. Gallic Acid Content in Taiwanese Teas at Different Degrees of Fermentation and Its Antioxidant Activity by Inhibiting PKCδ Activation: In Vitro and in Silico Studies.

    PubMed

    Kongpichitchoke, Teeradate; Chiu, Ming-Tzu; Huang, Tzou-Chi; Hsu, Jue-Liang

    2016-10-12

    Teas can be classified according to their degree of fermentation, which has been reported to affect both the bioactive components in the teas and their antioxidative activity. In this study, four kinds of commercial Taiwanese tea at different degrees of fermentation, which include green (non-fermented), oolong (semi-fermented), black (fully fermented), and Pu-erh (post-fermented) tea, were profiled for catechin levels by using high performance liquid chromatography (HPLC). The result indicated that the gallic acid content in tea was directly proportional to the degree of fermentation in which the lowest and highest gallic acid content were 1.67 and 21.98 mg/g from green and Pu-erh tea, respectively. The antioxidative mechanism of the gallic acid was further determined by in vitro and in silico analyses. In vitro assays included the use of phorbol ester-induced macrophage RAW264.7 cell model for determining the inhibition of reactive oxygen species (ROS) production, and PKCδ and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit (p47) activations. The results showed that only at a concentration of 5.00 μM could gallic acid significantly ( p < 0.05) reduce ROS levels in phorbol ester-activated macrophages. Moreover, protein immunoblotting expressed similar results in which activations of PKCδ and p47 were only significantly ( p < 0.05) attenuated by 5.00 μM treatment. Lastly, in silico experiments further revealed that gallic acid could block PKCδ activation by occupying the phorbol ester binding sites of the protein.

  6. Characterization and antioxidant activity of gallic acid derivative

    NASA Astrophysics Data System (ADS)

    Malinda, Krissan; Sutanto, Hery; Darmawan, Akhmad

    2017-11-01

    Peroxidase enzyme was used to catalyze the dimerization process of gallic acid. The structure of the dimerization product was characterized by 1H NMR and LC-MS-MS. The mechanism of gallic acid dimerization was also discussed. It was proposed that ellagic acid was formed through an oxidative coupling mechanism that lead to the formation of a C-C bond and followed by an intramolecular Fischer esterification mechanism that lead to the formation of two C-O bonds. Moreover, the antioxidant activity of gallic acid and ellagic acid were also studied. Gallic acid and ellagic acid exhibited the DPPH radical scavenging activity with IC50 values of 13.2 μM and 15.9 μM, respectively.

  7. Gallic acid attenuates type I diabetic nephropathy in rats.

    PubMed

    Garud, Mayuresh Sudamrao; Kulkarni, Yogesh Anant

    2018-02-25

    Literature suggests that TGF-β1 has a central role in the progression of diabetic nephropathy and its down regulation can improve the disease condition. Oxidative stress, generation of advanced glycation end products and activation of renin angiotensin system are the connecting links between hyperglycemia and TGF-β1 over expression. Gallic acid is a phytochemical having wide range of biological activities. Gallic acid is reported to have antioxidant and advanced glycation inhibitory activity. It has also shown inhibitory effects on angiotensin converting enzyme. Gallic acid qualifies as a drug candidate to be tested in the diabetic nephropathy, one of the important complication of diabetes. Streptozotocin (55 mg/kg body weight, i.p.) induced diabetic nephropathy was used as an experimental model. Gallic acid was evaluated for its possible effect at the dose of 20 and 40 mg/kg body weight. Gallic acid treatment significantly lowered plasma levels of the creatinine and blood urea nitrogen and elevated the levels of the protein and albumin. Gallic acid also improved creatinine clearance. Determination of oxidative stress parameters showed that the oxidative stress in kidney tissues was reduced significantly in gallic acid treated animals. Results of the plasma, urine and oxidative stress parameters were also reflected in the histopathological evaluation showing improvement in kidney pathophysiology. ELISA assay for circulating TGF-β1 evaluation and immunohistochemical study for determination of kidney expression of TGF-β1 revealed that gallic acid significantly lowered both the circulating and tissue levels of TGF-β1. Results support the hypothesis that gallic acid can be effectively used in the treatment of diabetic nephropathy. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Effect of gallic and protocatechuic acids on the metabolism of ethyl carbamate in Chinese yellow rice wine brewing.

    PubMed

    Zhou, Wanyi; Fang, Ruosi; Chen, Qihe

    2017-10-15

    It was studied that gallic and protocatechuic acids played important roles in ethyl carbamate (EC) forming. Gallic and protocatechuic acids can reduce the arginine consumption through inhibiting the arginine deiminase enzyme. Therefore, they are generally added to regulate EC catabolism in the course of yellow rice wine leavening at the third day. In this work, gallic and protocatechuic acids made little influence on the growth of Saccharomyces cerevisiae. Besides, the addition of 200mg/L gallic or protocatechuic acid could prevent the transformation from urea/citrulline to EC. Gallic acid showed better inhibiting effect that the content of EC could be reduced by 91.9% at most. Furthermore, the production of amino acids and volatile flavor compounds are not markedly affected by phenolic compounds. The discoveries reveal that EC can be reduced by supplying gallic acid or protocatechuic acid while yellow rice wine leavening. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Cardioprotective effects of gallic acid in diabetes-induced myocardial dysfunction in rats

    PubMed Central

    Patel, Snehal S.; Goyal, Ramesh K.

    2011-01-01

    Background: Normalization of hyperglycemia, hyperlipidemia, and oxidative stress is an important objective in preventing diabetes-induced cardiac dysfunction. Objective: This study was undertaken to examine the effects of gallic acid in myocardial dysfunctions associated with type-1 diabetes. Materials and Methods: Diabetes was induced by single intravenous injection of streptozotocin (STZ, 50 mg/kg i.v.). Gallic acid was administered daily at three different doses (100, 50, and 25 mg/kg p.o.) for 8 weeks at the end of which blood samples were collected and analyzed for various biochemical parameters. Results: Injection of STZ produced significant loss of body weight (BW), polyphagia, polydypsia, hyperglycemia, hypoinsulinemia, hyperlipidemia, hypertension, bradycardia, and myocardial functional alterations. Treatment with gallic acid significantly lowered fasting glucose, the AUCglucose level in a dose-dependent manner; however, the insulin level was not increased significantly at same the dose and prevented loss of BW, polyphagia, and polydypsia in diabetic rats. It also prevented STZ-induced hyperlipidemia, hypertension, bradycardia, structural alterations in cardiac tissue such as increase in force of contraction, left ventricular weight to body weight ratio, collagen content, protein content, serum lactate dehydrogenase, and creatinine kinase levels in a dose-dependent manner. Further, treatment also produced reduction in lipid peroxidation and increase in antioxidant parameters in heart of diabetic rats. Conclusion: The results of this study suggest that gallic acid to be beneficial for the treatment of myocardial damage associated with type-1 diabetes. PMID:22224046

  10. Two shikimate dehydrogenases, VvSDH3 and VvSDH4, are involved in gallic acid biosynthesis in grapevine

    PubMed Central

    Bontpart, Thibaut; Marlin, Thérèse; Vialet, Sandrine; Guiraud, Jean-Luc; Pinasseau, Lucie; Meudec, Emmanuelle; Sommerer, Nicolas; Cheynier, Véronique; Terrier, Nancy

    2016-01-01

    In plants, the shikimate pathway provides aromatic amino acids that are used to generate numerous secondary metabolites, including phenolic compounds. In this pathway, shikimate dehydrogenases (SDH) ‘classically’ catalyse the reversible dehydrogenation of 3-dehydroshikimate to shikimate. The capacity of SDH to produce gallic acid from shikimate pathway metabolites has not been studied in depth. In grapevine berries, gallic acid mainly accumulates as galloylated flavan-3-ols. The four grapevine SDH proteins have been produced in Escherichia coli. In vitro, VvSDH1 exhibited the highest ‘classical’ SDH activity. Two genes, VvSDH3 and VvSDH4, mainly expressed in immature berry tissues in which galloylated flavan-3-ols are accumulated, encoded enzymes with lower ‘classical’ activity but were able to produce gallic acid in vitro. The over-expression of VvSDH3 in hairy-roots increased the content of aromatic amino acids and hydroxycinnamates, but had little or no effect on molecules more distant from the shikimate pathway (stilbenoids and flavan-3-ols). In parallel, the contents of gallic acid, β-glucogallin, and galloylated flavan-3-ols were increased, attesting to the influence of this gene on gallic acid metabolism. Phylogenetic analysis from dicotyledon SDHs opens the way for the examination of genes from other plants which accumulate gallic acid-based metabolites. PMID:27241494

  11. Two shikimate dehydrogenases, VvSDH3 and VvSDH4, are involved in gallic acid biosynthesis in grapevine.

    PubMed

    Bontpart, Thibaut; Marlin, Thérèse; Vialet, Sandrine; Guiraud, Jean-Luc; Pinasseau, Lucie; Meudec, Emmanuelle; Sommerer, Nicolas; Cheynier, Véronique; Terrier, Nancy

    2016-05-01

    In plants, the shikimate pathway provides aromatic amino acids that are used to generate numerous secondary metabolites, including phenolic compounds. In this pathway, shikimate dehydrogenases (SDH) 'classically' catalyse the reversible dehydrogenation of 3-dehydroshikimate to shikimate. The capacity of SDH to produce gallic acid from shikimate pathway metabolites has not been studied in depth. In grapevine berries, gallic acid mainly accumulates as galloylated flavan-3-ols. The four grapevine SDH proteins have been produced in Escherichia coli In vitro, VvSDH1 exhibited the highest 'classical' SDH activity. Two genes, VvSDH3 and VvSDH4, mainly expressed in immature berry tissues in which galloylated flavan-3-ols are accumulated, encoded enzymes with lower 'classical' activity but were able to produce gallic acid in vitro The over-expression of VvSDH3 in hairy-roots increased the content of aromatic amino acids and hydroxycinnamates, but had little or no effect on molecules more distant from the shikimate pathway (stilbenoids and flavan-3-ols). In parallel, the contents of gallic acid, β-glucogallin, and galloylated flavan-3-ols were increased, attesting to the influence of this gene on gallic acid metabolism. Phylogenetic analysis from dicotyledon SDHs opens the way for the examination of genes from other plants which accumulate gallic acid-based metabolites. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Antidiabetic Activity from Gallic Acid Encapsulated Nanochitosan

    NASA Astrophysics Data System (ADS)

    Purbowatiningrum; Ngadiwiyana; Ismiyarto; Fachriyah, E.; Eviana, I.; Eldiana, O.; Amaliyah, N.; Sektianingrum, A. N.

    2017-02-01

    Diabetes mellitus (DM) has become a health problem in the world because it causes death. One of the phenolic compounds that have antidiabetic activity is gallic acid. However, the use of this compound still provides unsatisfactory results due to its degradation during the absorption process. The solution offered to solve the problem is by encapsulated it within chitosan nanoparticles that serve to protect the bioactive compound from degradation, increases of solubility and delivery of a bioactive compound to the target site by using freeze-drying technique. The result of chitosan nanoparticle’s Scanning Electron Microscopy (SEM) showed that chitosan nanoparticle’s size is uniform and it is smaller than chitosan. The value of encapsulation efficiency (EE) of gallic acid which encapsulated within chitosan nanoparticles is about 50.76%. Inhibition test result showed that gallic acid-chitosan nanoparticles at 50 ppm could inhibite α-glucosidase activity in 28.87% with 54.94 in IC50. So it can be concluded that gallic acid can be encapsulated in nanoparticles of chitosan and proved that it could inhibit α-glucosidase.

  13. Antimicrobial activity of gallic acid against thermophilic Campylobacter is strain specific and associated with a loss of calcium ions.

    PubMed

    Sarjit, Amreeta; Wang, Yi; Dykes, Gary A

    2015-04-01

    Gallic acid has been suggested as a potential antimicrobial for the control of Campylobacter but its effectiveness is poorly studied. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of gallic acid against Campylobacter jejuni (n = 8) and Campylobacter coli (n = 4) strains was determined. Gallic acid inhibited the growth of five C. jejuni strains and three C. coli strains (MIC: 15.63-250 μg mL(-1)). Gallic acid was only bactericidal to two C. coli strains (MBC: 125 and 62.5 μg mL(-1)). The mechanism of the bactericidal effect against these two strains (and selected non-susceptible controls) was investigated by determining decimal reduction times and by monitoring the loss of cellular content and calcium ions, and changes in cell morphology. Gallic acid did not result in a loss of cellular content or morphological changes in the susceptible strains as compared to the controls. Gallic acid resulted in a loss of calcium ions (0.58-1.53 μg mL(-1) and 0.54-1.17 μg mL(-1), respectively, over a 180 min period) from the susceptible strains but not the controls. Gallic acid is unlikely to be an effective antimicrobial against Campylobacter in a practical sense unless further interventions to ensure an effective bactericidal mode of action against all strains are developed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. One-Pot Procedure for Recovery of Gallic Acid from Wastewater and Encapsulation within Protein Particles.

    PubMed

    Nourbakhsh, Himan; Madadlou, Ashkan; Emam-Djomeh, Zahra; Wang, Yi-Cheng; Gunasekaran, Sundaram; Mousavi, Mohammad E

    2016-02-24

    A whey protein isolate solution was heat-denatured and treated with the enzyme transglutaminase, which cross-linked ≈26% of the amino groups and increased the magnitude of the ζ-potential value. The protein solution was microemulsified, and then the resulting water-in-oil microemulsion was dispersed within a gallic acid-rich model wastewater. Gallic acid extraction by the outlined microemulsion liquid membrane (MLM) from the exterior aqueous phase (wastewater) and accumulation within the internal aqueous nanodroplets induced protein cold-set gelation and resulted in the formation of gallic acid-enveloping nanoparticles. Measurements with a strain-controlled rheometer indicated a progressive increase in the MLM viscosity during gallic acid recovery corresponding to particle formation. The mean hydrodynamic size of the nanoparticles made from the heat-denatured and preheated enzymatically cross-linked proteins was 137 and 122 nm, respectively. The enzymatic cross-linking of whey proteins led to a higher gallic acid recovery yield and increased the glass transition enthalpy and temperature. A similar impact on glass transition indices was observed by the gallic acid-induced nanoparticulation of proteins. Scanning electron microscopy showed the existence of numerous jammed/fused nanoparticles. It was suggested on the basis of the results of Fourier transform infrared spectroscopy that the in situ nanoparticulation of proteins shifted the C-N stretching and C-H bending peaks to higher wavenumbers. X-ray diffraction results proposed a decreased β-sheet content for proteins because of the acid-induced particulation. The nanoparticles made from the enzymatically cross-linked protein were more stable against the in vitro gastrointestinal digestion and retained almost 19% of the entrapped gallic acid after 300 min sequential gastric and intestinal digestions.

  15. Complexation and molecular modeling studies of europium(III)-gallic acid-amino acid complexes.

    PubMed

    Taha, Mohamed; Khan, Imran; Coutinho, João A P

    2016-04-01

    With many metal-based drugs extensively used today in the treatment of cancer, attention has focused on the development of new coordination compounds with antitumor activity with europium(III) complexes recently introduced as novel anticancer drugs. The aim of this work is to design new Eu(III) complexes with gallic acid, an antioxida'nt phenolic compound. Gallic acid was chosen because it shows anticancer activity without harming health cells. As antioxidant, it helps to protect human cells against oxidative damage that implicated in DNA damage, cancer, and accelerated cell aging. In this work, the formation of binary and ternary complexes of Eu(III) with gallic acid, primary ligand, and amino acids alanine, leucine, isoleucine, and tryptophan was studied by glass electrode potentiometry in aqueous solution containing 0.1M NaNO3 at (298.2 ± 0.1) K. Their overall stability constants were evaluated and the concentration distributions of the complex species in solution were calculated. The protonation constants of gallic acid and amino acids were also determined at our experimental conditions and compared with those predicted by using conductor-like screening model for realistic solvation (COSMO-RS) model. The geometries of Eu(III)-gallic acid complexes were characterized by the density functional theory (DFT). The spectroscopic UV-visible and photoluminescence measurements are carried out to confirm the formation of Eu(III)-gallic acid complexes in aqueous solutions. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Prophylactic Antioxidant Potential of Gallic Acid in Murine Model of Sepsis

    PubMed Central

    Maurya, Harikesh; Mangal, Vaishali; Gandhi, Sanjay; Prabhu, Kathiresan; Ponnudurai, Kathiresan

    2014-01-01

    Present study is to investigate the effect of Gallic acid pretreatment on survival of septic animals and oxidative stress in different organs like lungs, liver, kidney, spleen, and vascular dysfunction of mice. Sepsis was induced by cecal ligation and puncture (CLP) in healthy adult male albino mice (25–30 g) and was divided into 3 groups each consisting of 6 animals, that is, sham-operated (SO group (Group I), SO + sepsis (Group II), and Gallic acid + sepsis (Group III)). Group III animals were pretreated with Gallic acid at the dose rate of 20 mg/kg body weight for 2 days before induction of sepsis. Animals were sacrificed on 8th day and the tissue samples were obtained for further investigation on lipid peroxidation (LPO), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GSH). Gallic acid pretreatment significant (P < 0.05) reduces kidney, spleen, liver, and lungs' malondialdehyde level in septic mice. However, it fails to improve reduced glutathione level in all given organs, while, Gallic acid pretreated mice showed significant improvement in SOD activity of kidney and spleen when compared to septic mice. Finally, the beneficial effects of Gallic acid pretreatment in sepsis are evident from the observations that Gallic acid partially restored SOD and catalase activity and completely reversed lipid peroxidation. Further studies are required to find out the possible mechanisms underlying the beneficial effects of Gallic acid on large population. PMID:25018890

  17. Nanoencapsulation of gallic acid and evaluation of its cytotoxicity and antioxidant activity.

    PubMed

    de Cristo Soares Alves, Aline; Mainardes, Rubiana Mara; Khalil, Najeh Maissar

    2016-03-01

    Gallic acid is an important polyphenol compound presenting various biological activities. The objective of this study was to prepare, characterize and evaluate poly(lactic-co-glycolic acid) (PLGA) nanoparticles coated or not with polysorbate 80 (PS80) containing gallic acid. Nanoparticles coated or not with PS80 were produced by emulsion solvent evaporation method and presented a mean size of around 225 nm, gallic acid encapsulation efficiency of around 26% and zeta potential of -22 mV. Nanoparticle formulations were stable during storage, except nanoparticles coated with PS80 stored at room temperature. In vitro release profile demonstrated a quite sustained gallic acid release from nanoparticles and PS80-coating decreased drug release. Cytotoxicity over red blood cells was assessed and gallic acid-loaded PLGA nanoparticles at all analyzed concentrations demonstrated lack of hemolysis, while PS80-nanoparticles containing gallic acid were cytotoxic only in higher concentrations. Antioxidant potential of nanoparticles containing gallic acid was assessed and PLGA uncoated nanoparticles presented greater efficacy than PS80-coated PLGA nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Gallic Acid: Review of the Methods of Determination and Quantification.

    PubMed

    Fernandes, Felipe Hugo Alencar; Salgado, Hérida Regina Nunes

    2016-05-03

    Gallic acid (3,4,5 trihydroxybenzoic acid) is a secondary metabolite present in most plants. This metabolite is known to exhibit a range of bioactivities including antioxidant, antimicrobial, anti-inflammatory, and anticancer. There are various methods to analyze gallic acid including spectrometry, chromatography, and capillary electrophoresis, among others. They have been developed to identify and quantify this active ingredient in most biological matrices. The aim of this article is to review the available information on analytical methods for gallic acid, as well as presenting the advantages and limitations of each technique.

  19. Gallic acid attenuates calcium calmodulin-dependent kinase II-induced apoptosis in spontaneously hypertensive rats.

    PubMed

    Jin, Li; Piao, Zhe Hao; Liu, Chun Ping; Sun, Simei; Liu, Bin; Kim, Gwi Ran; Choi, Sin Young; Ryu, Yuhee; Kee, Hae Jin; Jeong, Myung Ho

    2018-03-01

    Hypertension causes cardiac hypertrophy and leads to heart failure. Apoptotic cells are common in hypertensive hearts. Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) is associated with apoptosis. We recently demonstrated that gallic acid reduces nitric oxide synthase inhibition-induced hypertension. Gallic acid is a trihydroxybenzoic acid and has been shown to have beneficial effects, such as anti-cancer, anti-calcification and anti-oxidant activity. The purpose of this study was to determine whether gallic acid regulates cardiac hypertrophy and apoptosis in essential hypertension. Gallic acid significantly lowered systolic and diastolic blood pressure in spontaneously hypertensive rats (SHRs). Wheat germ agglutinin (WGA) and H&E staining revealed that gallic acid reduced cardiac enlargement in SHRs. Gallic acid treatment decreased cardiac hypertrophy marker genes, including atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), in SHRs. The four isoforms, α, β, δ and γ, of CaMKII were increased in SHRs and were significantly reduced by gallic acid administration. Gallic acid reduced cleaved caspase-3 protein as well as bax, p53 and p300 mRNA levels in SHRs. CaMKII δ overexpression induced bax and p53 expression, which was attenuated by gallic acid treatment in H9c2 cells. Gallic acid treatment reduced DNA fragmentation and the TUNEL positive cells induced by angiotensin II. Taken together, gallic acid could be a novel therapeutic for the treatment of hypertension through suppression of CaMKII δ-induced apoptosis. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  20. Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells

    PubMed Central

    ZHAO, BING; HU, MENGCAI

    2013-01-01

    Gallic acid is a trihydroxybenzoic acid, also known as 3,4,5-trihydroxybenzoic acid, which is present in plants worldwide, including Chinese medicinal herbs. Gallic acid has been shown to have cytotoxic effects in certain cancer cells, without damaging normal cells. The objective of the present study was to determine whether gallic acid is able to inhibit human cervical cancer cell viability, proliferation and invasion and suppress cervical cancer cell-mediated angiogenesis. Treatment of HeLa and HTB-35 human cancer cells with gallic acid decreased cell viability in a dose-dependent manner. BrdU proliferation and tube formation assays indicated that gallic acid significantly decreased human cervical cancer cell proliferation and tube formation in human umbilical vein endothelial cells, respectively. Additionally, gallic acid decreased HeLa and HTB-35 cell invasion in vitro. Western blot analysis demonstrated that the expression of ADAM17, EGFR, p-Akt and p-Erk was suppressed by gallic acid in the HeLa and HTB-35 cell lines. These data indicate that the suppression of ADAM17 and the downregulation of the EGFR, Akt/p-Akt and Erk/p-Erk signaling pathways may contribute to the suppression of cancer progression by Gallic acid. Gallic acid may be a valuable candidate for the treatment of cervical cancer. PMID:24843386

  1. Antiulcerogenic Effect of Gallic Acid in Rats and its Effect on Oxidant and Antioxidant Parameters in Stomach Tissue

    PubMed Central

    Sen, S.; Asokkumar, K.; Umamaheswari, M.; Sivashanmugam, A. T.; Subhadradevi, V.

    2013-01-01

    In the present study, we investigate the antiulcerogenic effect of gallic acid against aspirin plus pyrolus ligation-induced gastric ulcer in rats. Rats were treated with gallic acid (100 and 200 mg/kg) and famotidine (20 mg/kg) for 1 week, followed by induction of gastric ulcer using the aspirin plus pyrolus ligation model. At the end of 4 h after ligation, the rats were sacrificed and ulcer index, gastric juice volume, pH and other biochemical parameter of gastric juice were evaluated. Stomachs of rats were evaluated biochemically to determine oxidant and antioxidant parameters. Pretreatment with gallic acid significantly decreased ulcer index, gastric juice volume, free and total acidity, total protein, DNA content and increased pH and carbohydrates concentration. Gallic acid at a dose of 100 and 200 mg/kg exerted 69.7 and 78.9% ulcer inhibition, respectively. The levels of superoxide dismutase, catalase, reduced glutathione, glutathione reductase, glutathione peroxidise, glucose-6-phosphate dehydrogenase were increased while reduction in myeloperoxidase and lipid peroxidation were observed in the stomach tissues of the drug treated rats. The histopathological studies further confirmed the antiulcer activity of gallic acid. We conclude that the gallic acid possesses antiulcer effect and that these occur by a mechanism that involves attenuation of offensive factors, improvement of mucosal defensive with activation of antioxidant parameters and inhibition of some toxic oxidant parameters. PMID:24019562

  2. Mitigation of diazinon-induced cardiovascular and renal dysfunction by gallic acid

    PubMed Central

    Ajibade, Temitayo Olabisi; Omobowale, Temidayo Olutayo; Asenuga, Ebunoluwa Racheal; Afolabi, Jeremiah Moyinoluwa; Adedapo, Adeolu Alex

    2016-01-01

    Studies of the link between environmental pollutants and cardiovascular dysfunction, neglected for decades, have recently provided new insights into the pathology and consequences of these killers. In this study, rats were divided into four groups, each containing 10 rats. The rats in group one served as controls and were administered normal saline, whereas the rats in group two were orally gavaged with 3 mg/kg of diazinon (DZN) alone for twenty one consecutive days. The rats in groups 3 and 4 were administered respective 60 mg/kg and 120 mg/kg gallic acid (GA) in addition to DZN for twenty one consecutive days. Exposure of rats to diazinon significantly (p<0.05) reduced the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and reduced glutathione (GSH) content. Malondialdehyde, hydrogen peroxide (H2O2) and nitric oxide (NO) contents were also significantly (p<0.05) elevated following DZN exposure. DZN further caused a significant (p<0.05) decrease of heart rate and QT interval prolongation. Hematologic analysis revealed significant reduction (p<0.05) in packed cell volume (PCV), hemoglobin concentration (Hb), red blood cell (RBC) count, and total white blood cell count of rats administered only DZN. Observations in this study suggest a modulatory role of gallic acid in diazinon-induced anemia and associated cardiovascular dysfunction in rats. Treatment with gallic acid reversed the oxidative stress markers studied, increased the antioxidant defence system and reduced deleterious effects on hematological parameters in rats. Pathologic findings of the heart and kidney were also found to be lessened. PMID:28652848

  3. An Efficient Protocol for Preparation of Gallic Acid from Terminalia bellirica (Gaertn.) Roxb by Combination of Macroporous Resin and Preparative High-Performance Liquid Chromatography.

    PubMed

    Zou, Denglang; Chen, Tao; Chen, Chen; Li, Hongmei; Liu, Yongling; Li, Yulin

    2016-08-01

    In this article, macroporous resin column chromatography and preparative high-performance liquid chromatography were applied for preparation of gallic acid from Terminalia bellirica (Gaertn.) Roxb. In the first step, six kinds of resins were investigated by adsorption and desorption tests and AB-8 macroporous resin was selected for the enrichment of gallic acid. As a result, 20 g of gallic acid at a purity of 71% could be separated from 100 g of crude extract in which the content of gallic acid was 16.7% and the recovery of gallic acid reached 85.0%. In the second step, preparative high-performance liquid chromatography was selected to purify gallic acid. As a result, 640 mg of gallic acid at a purity of 99.1% was obtained from 1 g of sample in 35 min. The results demonstrated that macroporous resin coupled with preparative high-performance liquid chromatography was suitable for preparation of gallic acid from T. bellirica (Gaertn.) Roxb. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Exogenous application of rutin and gallic acid regulate antioxidants and alleviate reactive oxygen generation in Oryza sativa L.

    PubMed

    Singh, Akanksha; Gupta, Rupali; Pandey, Rakesh

    2017-04-01

    The effect of rutin and gallic acid on growth, phytochemical and defense gene activation of rice ( Oryza sativa L.) was investigated. The seeds of rice were primed with different concentrations of rutin and gallic acid (10-60 µg mL -1 ) to explicate the effect on germination on water agar plates. Further, to study the effect of most effective concentrations of gallic acid (60 µg mL -1 ) and rutin (50 µg mL -1 ), greenhouse pot experiment was set up to determine the changes in growth, antioxidant and defense parameters. The results revealed more pronounced effect of gallic acid on total chlorophyll and carotenoids as well as on total flavonoid content and free radical scavenging activities. Gene expression analysis of OsWRKY71, PAL, CHS and LOX genes involved in strengthening the plant defense further validated the results obtained from the biochemical analysis. Microscopic analysis also confirmed reduction in total reactive oxygen species, free radicals like H 2 O 2 and O 2 - by exogenous application of gallic acid and rutin. The data obtained thus suggest that both gallic acid and rutin can affect the growth and physiology of rice plants and therefore can be used to develop effective plant growth promoters and as substitute of biofertilizers for maximizing their use in field conditions.

  5. Antibacterial Effect of Gallic Acid against Aeromonas hydrophila and Aeromonas sobria Through Damaging Membrane Integrity.

    PubMed

    Lu, Jing; Wang, Zhenning; Ren, Mengrou; Huang, Guoren; Fang, Baochen; Bu, Xiujuan; Liu, Yanhui; Guan, Shuang

    In the study, we investigated the antibacterial activity and mechanism of gallic acid against Aeromonas hydrophila and Aeromonas sobria. Gallic acid showed strong antimicrobial activity against the two bacteria. Furthermore, the antibacterial mechanism of gallic acid (0, 3, 6, 12 mM) was performed by membrane integrity assay and scanning electron microscopy (SEM) assay. The results showed that gallic acid notably increased the released material absorption value at 260, 280 nm and electric conductivity in a dose-dependent manner. Moreover, the SEM assay showed that gallic acid induced severe shrink of bacterial intima and irregular morphology in a dose-dependent manner. The SDS-PAGE profiles further confirmed that gallic acid could damage bacterial cells. These results indicated gallic acid exhibited antibacterial effect by destroying membrane integrity of A. hydrophila and A. sobria. Hence, gallic acid has great potential as a new natural food preservative in food fresh-keeping and storage.

  6. Protective effects of gallic acid against spinal cord injury-induced oxidative stress.

    PubMed

    Yang, Yong Hong; Wang, Zao; Zheng, Jie; Wang, Ran

    2015-08-01

    The present study aimed to investigate the role of gallic acid in oxidative stress induced during spinal cord injury (SCI). In order to measure oxidative stress, the levels of lipid peroxide, protein carbonyl, reactive oxygen species and nitrates/nitrites were determined. In addition, the antioxidant status during SCI injury and the protective role of gallic acid were investigated by determining glutathione levels as well as the activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase. Adenosine triphophatase (ATPase) enzyme activities were determined to evaluate the role of gallic acid in SCI-induced deregulation of the activity of enzymes involved in ion homeostasis. The levels of inflammatory markers such as nuclear factor (NF)-κB and cycloxygenase (COX)-2 were determined by western blot analysis. Treatment with gallic acid was observed to significantly mitigate SCI-induced oxidative stress and the inflammatory response by reducing the oxidative stress, decreasing the expression of NF-κB and COX-2 as well as increasing the antioxidant status of cells. In addition, gallic acid modulated the activity of ATPase enzymes. Thus the present study indicated that gallic acid may have a role as a potent antioxidant and anti-inflammatory agent against SCI.

  7. Effect of Gallic acid on mechanical and water barrier properties of zein-oleic acid composite films.

    PubMed

    Masamba, Kingsley; Li, Yue; Hategekimana, Joseph; Liu, Fei; Ma, Jianguo; Zhong, Fang

    2016-05-01

    In this study, the effect of gallic acid on mechanical and water barrier properties of zein-oleic acid 0-4 % composite films was investigated. Molecular weight distribution analysis was carried out to confirm gallic acid induced cross linking through change in molecular weight in fraction containing zein proteins. Results revealed that gallic acid treatment increased tensile strength from 17.9 MPa to 26.0 MPa, decreased water vapour permeability from 0.60 (g mm m(-2) h(-1) kPa(-1)) to 0.41 (g mm m(-2) h(-1) kPa(-1)), increased solubility from 6.3 % to 10.2 % and marginally increased elongation at break from 3.7 % to 4.2 % in zein films only. However, gallic acid treatment in zein-oleic composite films did not significantly influence mechanical and water barrier properties and in most instances irrespective of oleic acid concentration, the properties were negatively affected. Results from scanning electron microscopy showed that both gallic acid treated and untreated zein films and composite films containing 3 % oleic acid had a compact and homogeneous structure while those containing 4 % oleic acid had inhomogeneous structure. The findings have demonstrated that gallic acid treatment can significantly improve mechanical and water barrier properties especially in zein films only as opposed to when used in composite films using zein and oleic acid.

  8. Gallic acid targets acute myeloid leukemia via Akt/mTOR-dependent mitochondrial respiration inhibition.

    PubMed

    Gu, Ruixin; Zhang, Minqin; Meng, Hu; Xu, Dandan; Xie, Yonghua

    2018-06-05

    Gallic acid is one of the many phenolic acids that can be found in dietary substances and traditional medicine herbs. The anti-cancer activities of gallic acid have been shown in various cancers but its underlying molecular mechanisms are not well understood. In this study, we show Akt/mammalian target of rapamycin (mTOR)-dependent inhibition of mitochondrial respiration as a mechanism of gallic acid's action in acute myeloid leukemia (AML). Gallic acid significantly induces apoptosis of AML cell lines, primary mononuclear cells (MNC) and CD34 stem/progenitors isolated form AML patients via caspase-dependent pathway. It also significantly enhances two standard AML chemotherapeutic agents' efficacy in vitro cell culture system and in vivo xenograft model. Gallic acid inhibits dose- and time-dependent mitochondrial respiration, leading to decreased ATP production and oxidative stress. Overexpression of constitutively active Akt restores gallic acid-mediated inhibition of mTOR signaling, mitochondrial dysfunction, energy crisis and apoptosis. Our results demonstrate that mitochondrial respiration inhibition by gallic acid is a consequence of Akt/mTOR signaling suppression. Our findings suggest that combination therapy with gallic acid may enhance antileukemic efficacy of standard chemotherapeutic agents in AML. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancers by accelerating EGFR turnover.

    PubMed

    Nam, Boas; Rho, Jin Kyung; Shin, Dong-Myung; Son, Jaekyoung

    2016-10-01

    Gallic acid is a common botanic phenolic compound, which is present in plants and foods worldwide. Gallic acid is implicated in various biological processes such as cell growth and apoptosis. Indeed, gallic acid has been shown to induce apoptosis in many cancer types. However, the molecular mechanisms of gallic acid-induced apoptosis in cancer, particularly lung cancer, are still unclear. Here, we report that gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancer (NSCLC) cells, but not in EGFR-WT NSCLC cells. Treatment with gallic acid resulted in a significant reduction in proliferation and induction of apoptosis, only in EGFR-mutant NSCLC cells. Interestingly, treatment with gallic acid led to a robust decrease in EGFR levels, which is critical for NSCLC survival. Treatment with gallic acid had no significant effect on transcription, but induced EGFR turnover. Indeed, treatment with a proteasome inhibitor dramatically reversed gallic acid-induced EGFR downregulation. Moreover, treatment with gallic acid induced EGFR turnover leading to apoptosis in EGFR-TKI (tyrosine kinase inhibitor)-resistant cell lines, which are dependent on EGFR signaling for survival. Thus, these studies suggest that gallic acid can induce apoptosis in EGFR-dependent lung cancers that are dependent on EGFR for growth and survival via acceleration of EGFR turnover. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Protective effect of gallic acid against cisplatin-induced ototoxicity in rats.

    PubMed

    Kilic, Korhan; Sakat, Muhammed Sedat; Akdemir, Fazile Nur Ekinci; Yildirim, Serkan; Saglam, Yavuz Selim; Askin, Seda

    2018-04-07

    Cisplatin is an antineoplastic agent widely used in the treatment of a variety of cancers. Ototoxicity is one of the main side-effects restricting the use of cisplatin. The purpose of this study was to investigate the protective efficacy of gallic acid, in biochemical, functional and histopathological terms, against ototoxicity induced by cisplatin. Twenty-eight female Sprague Dawley rats were included. Rats were randomly assigned into four groups of seven animals each. Cisplatin group received a single intraperitoneal dose of 15mg/kg cisplatin. Gallic acid group received intraperitoneal gallic acid at 100mg/kg for five consecutive days. Cisplatin+Gallic acid group received intraperitoneal gallic acid at 100mg/kg for five consecutive days and a single intraperitoneal dose of 15mg/kg cisplatin at 3rd day. A control group received 1mL intraperitoneal saline solution for five consecutive days. Prior to drug administration, all rats were exposed to the distortion product otoacoustic emissions test. The test was repeated on the 6th day of the study. All rats were then sacrificed; the cochleas were removed and set aside for biochemical and histopathological analyses. In Cisplatin group, Day 6 signal noise ratio values were significantly lower than those of the other groups. Also, malondialdehyde levels in cochlear tissues were significantly higher, superoxide dismutase and glutathione peroxidase activities were significantly lower compared to the control group. Histopathologic evaluation revealed erosion in the stria vascularis, degeneration and edema in the connective tissue layer in endothelial cells, impairment of outer hair cells and a decrease in the number of these calls. In the Cisplatin+Gallic acid group, this biochemical, histopathological and functional changes were reversed. In the light of our findings, we think that gallic acid may have played a protective role against cisplatin-induced ototoxicity in rats, as indicated by the distortion product otoacoustic

  11. Agdc1p - a Gallic Acid Decarboxylase Involved in the Degradation of Tannic Acid in the Yeast Blastobotrys (Arxula) adeninivorans.

    PubMed

    Meier, Anna K; Worch, Sebastian; Böer, Erik; Hartmann, Anja; Mascher, Martin; Marzec, Marek; Scholz, Uwe; Riechen, Jan; Baronian, Kim; Schauer, Frieder; Bode, Rüdiger; Kunze, Gotthard

    2017-01-01

    Tannins and hydroxylated aromatic acids, such as gallic acid (3,4,5-trihydroxybenzoic acid), are plant secondary metabolites which protect plants against herbivores and plant-associated microorganisms. Some microbes, such as the yeast Arxula adeninivorans are resistant to these antimicrobial substances and are able to use tannins and gallic acid as carbon sources. In this study, the Arxula gallic acid decarboxylase (Agdc1p) which degrades gallic acid to pyrogallol was characterized and its function in tannin catabolism analyzed. The enzyme has a higher affinity for gallic acid (K m -0.7 ± 0.2 mM, k cat -42.0 ± 8.2 s -1 ) than to protocatechuic acid (3,4-dihydroxybenzoic acid) (K m -3.2 ± 0.2 mM, k cat -44.0 ± 3.2 s -1 ). Other hydroxylated aromatic acids, such as 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid are not gallic acid decarboxylase substrates. A. adeninivorans G1212/YRC102-AYNI1-AGDC1, which expresses the AGDC1 gene under the control of the strong nitrate inducible AYNI1 promoter achieved a maximum gallic acid decarboxylase activity of 1064.4 U/l and 97.5 U/g of dry cell weight in yeast grown in minimal medium with nitrate as nitrogen source and glucose as carbon source. In the same medium, gallic acid decarboxylase activity was not detected for the control strain G1212/YRC102 with AGDC1 expression under the control of the endogenous promoter. Gene expression analysis showed that AGDC1 is induced by gallic acid and protocatechuic acid. In contrast to G1212/YRC102-AYNI1-AGDC1 and G1212/YRC102, A. adeninivorans G1234 [Δ agdc1 ] is not able to grow on medium with gallic acid as carbon source but can grow in presence of protocatechuic acid. This confirms that Agdc1p plays an essential role in the tannic acid catabolism and could be useful in the production of catechol and cis,cis -muconic acid. However, the protocatechuic acid catabolism via Agdc1p to catechol seems to be

  12. Preparation and bactericide activity of gallic acid stabilized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Moreno-Álvarez, S. A.; Martínez-Castañón, G. A.; Niño-Martínez, N.; Reyes-Macías, J. F.; Patiño-Marín, N.; Loyola-Rodríguez, J. P.; Ruiz, Facundo

    2010-10-01

    In this work, gold nanoparticles with three different sizes (13.7, 39.4, and 76.7 nm) were prepared using a simple aqueous method with gallic acid as the reducing and stabilizing agent, the different sizes were obtained varying some experimental parameters as the pH of the reaction and the amount of the gallic acid. The prepared nanoparticles were characterized using X-ray diffraction, transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy. Samples were identified as elemental gold and present spherical morphology, a narrow size distribution and good stabilization according to TEM and DLS results. The antibacterial activity of this gallic acid stabilized gold nanoparticles against S. mutans (the etiologic agent of dental caries) was assessed using a microdilution method obtaining a minimum inhibitory concentration of 12.31, 12.31, and 49.25 μg/mL for 13.7, 39.4, and 76.7 nm gold nanoparticles, respectively. The antibacterial assay showed that gold nanoparticles prepared in this work present a bactericide activity by a synergistic action with gallic acid. The MIC found for this nanoparticles are much lower than those reported for mixtures of gold nanoparticles and antibiotics.

  13. Synergistic effect of the combination of gallic acid and famotidine in protection of rat gastric mucosa.

    PubMed

    Asokkumar, K; Sen, Saikat; Umamaheswari, M; Sivashanmugam, A T; Subhadradevi, V

    2014-08-01

    Antioxidant supplements with existing drugs may confer better therapeutic efficacy in oxidative stress related diseases. The purpose of the present work was to characterize the interaction and investigate the protective effect of H2 blocker famotidine and gallic acid in combination against experimentally induced peptic ulcer. Preventive effect of gallic acid and famotidine in different combinations was investigated against aspirin plus pyloric ligation induced ulcer in rat. Ulcer index, gastric juice volume, pH, other biochemical parameters of gastric juice and antioxidant activity using stomach tissue were estimated. Pretreatment with gallic acid and famotidine in combinations for 7 days, protected the gastric mucosa significantly (p<0.05, 0.01), which was evidenced by decrease in ulcer index, gastric juice volume, free and total acidity, total protein, pepsin and DNA content, and increase in pH, carbohydrates concentration in gastric juice. Combination treatment increases levels of superoxide dismutase, catalase, reduced glutathione, glutathione reductase and glucose-6-phosphate dehydrogenase, and decreases lipid peroxidation, myloperoxidase in stomach tissue. Along with higher dose combination, lower dose combinations like gallic acid (50mg/kg) plus famotidine (10mg/kg) also offered better antiulcer activity than their individual effect. Histopathological studies confirmed their antiulcer activity. Combination treatments confer synergistic protective effect against peptic ulcer in rats, which was related to the gastroprotective, antisecratory and antioxidant activity of combination treatment. Results proved that use of gallic acid with existing antiulcer drug will be more useful in the prevention/management of peptic ulcer. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  14. Effect of gallic acid/chitosan coating on fresh pork quality in modified atmosphere packaging.

    PubMed

    Fang, Zhongxiang; Lin, Daniel; Warner, Robyn Dorothy; Ha, Minh

    2018-09-15

    Fresh meat safety and quality is a major concern of consumers in the current food market. The objective of this research was to investigate a newly developed gallic acid/chitosan edible coating on the preservation of fresh pork quality in modified atmosphere package (MAP) stored at 4 °C. The pork loins were coated with 2% chitosan (CHI), 0.2% gallic acid in 2% chitosan (CHI/0.2G), or 0.4% gallic acid in 2% chitosan (CHI/0.4G). Results showed that the antimicrobial activity of the chitosan coating was increased with the incorporation of gallic acid. The CHI/0.2G and CHI/0.4G pork loins also had lower lipid oxidation and myoglobin oxidation. However, the CHI/0.4G sample exhibited a pro-protein oxidation effect, suggesting an optimal concentration of gallic acid should be incorporated. This research provides a practical method in application of gallic acid/chitosan coatings on preservation of fresh pork to improve the safety and quality in MAP environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Synthesis of molecular imprinting polymers for extraction of gallic acid from urine.

    PubMed

    Bhawani, Showkat Ahmad; Sen, Tham Soon; Ibrahim, Mohammad Nasir Mohammad

    2018-02-21

    The molecularly imprinted polymers for gallic acid were synthesized by precipitation polymerization. During the process of synthesis a non-covalent approach was used for the interaction of template and monomer. In the polymerization process, gallic acid was used as a template, acrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker and 2,2'-azobisisobutyronitrile as an initiator and acetonitrile as a solvent. The synthesized imprinted and non-imprinted polymer particles were characterized by using Fourier-transform infrared spectroscopy and scanning electron microscopy. The rebinding efficiency of synthesized polymer particles was evaluated by batch binding assay. The highly selective imprinted polymer for gallic acid was MIPI1 with a composition (molar ratio) of 1:4:20, template: monomer: cross-linker, respectively. The MIPI1 showed highest binding efficiency (79.50%) as compared to other imprinted and non-imprinted polymers. The highly selective imprinted polymers have successfully extracted about 80% of gallic acid from spiked urine sample.

  16. Gallic acid and p-coumaric acid attenuate type 2 diabetes-induced neurodegeneration in rats.

    PubMed

    Abdel-Moneim, Adel; Yousef, Ahmed I; Abd El-Twab, Sanaa M; Abdel Reheim, Eman S; Ashour, Mohamed B

    2017-08-01

    The brain of diabetics revealed deterioration in many regions, especially the hippocampus. Hence, the present study aimed to evaluate the effects of gallic acid and p-coumaric acid against the hippocampal neurodegeneration in type 2 diabetic rats. Adult male albino rats were randomly allocated into four groups: Group 1 served as control ones and others were induced with diabetes. Group 2 considered as diabetic, and groups 3 and 4 were further orally treated with gallic acid (20 mg/kg b.wt./day) and p-coumaric acid (40 mg/kg b.wt./day) for six weeks. Diabetic rats revealed significant elevation in the levels of serum glucose, blood glycosylated hemoglobin and serum tumor necrosis factor-α, while the level of serum insulin was significantly declined. Furthermore, the brain of diabetic rats showed a marked increase in oxidative stress and a decrease of antioxidant parameters as well as upregulation the protein expression of Bax and downregulation the protein expression of Bcl-2 in the hippocampus. Treatment of diabetic rats with gallic acid and p-coumaric acid significantly ameliorated glucose tolerance, diminished the brain oxidative stress and improved antioxidant status, declined inflammation and inhibited apoptosis in the hippocampus. The overall results suggested that gallic acid and p-coumaric acid may inhibit hippocampal neurodegeneration via their potent antioxidant, anti-inflammatory and anti-apoptotic properties. Therefore, both compounds can be recommended as hopeful adjuvant agents against brain neurodegeneration in diabetics.

  17. Gallic Acid Protects 6-OHDA Induced Neurotoxicity by Attenuating Oxidative Stress in Human Dopaminergic Cell Line.

    PubMed

    Chandrasekhar, Y; Phani Kumar, G; Ramya, E M; Anilakumar, K R

    2018-06-01

    Gallic acid is one of the most important polyphenolic compounds, which is considered an excellent free radical scavenger. 6-Hydroxydopamine (6-OHDA) is a neurotoxin, which has been implicated in mainly Parkinson's disease (PD). In this study, we investigated the molecular mechanism of the neuroprotective effects of gallic acid on 6-OHDA induced apoptosis in human dopaminergic cells, SH-SY5Y. Our results showed that 6-OHDA induced cytotoxicity in SH-SY5Y cells was suppressed by pre-treatment with gallic acid. The percentage of live cells (90%) was high in the pre-treatment of gallic acid when compared with 6-OHDA alone treated cell line. Moreover, gallic acid was very effective in attenuating the disruption of mitochondrial membrane potential, elevated levels of intracellular ROS and apoptotic cell death induced by 6-OHDA. Gallic acid also lowered the ratio of the pro-apoptotic Bax protein and the anti-apoptotic Bcl-2 protein in SH-SY5Y cells. 6-OHDA exposure was up-regulated caspase-3 and Keap-1 and, down-regulated Nrf2, BDNF and p-CREB, which were sufficiently reverted by gallic acid pre-treatment. These findings indicate that gallic acid is able to protect the neuronal cells against 6-OHDA induced injury and proved that gallic acid might potentially serve as an agent for prevention of several human neurodegenerative diseases caused by oxidative stress and apoptosis.

  18. Agdc1p – a Gallic Acid Decarboxylase Involved in the Degradation of Tannic Acid in the Yeast Blastobotrys (Arxula) adeninivorans

    PubMed Central

    Meier, Anna K.; Worch, Sebastian; Böer, Erik; Hartmann, Anja; Mascher, Martin; Marzec, Marek; Scholz, Uwe; Riechen, Jan; Baronian, Kim; Schauer, Frieder; Bode, Rüdiger; Kunze, Gotthard

    2017-01-01

    Tannins and hydroxylated aromatic acids, such as gallic acid (3,4,5-trihydroxybenzoic acid), are plant secondary metabolites which protect plants against herbivores and plant-associated microorganisms. Some microbes, such as the yeast Arxula adeninivorans are resistant to these antimicrobial substances and are able to use tannins and gallic acid as carbon sources. In this study, the Arxula gallic acid decarboxylase (Agdc1p) which degrades gallic acid to pyrogallol was characterized and its function in tannin catabolism analyzed. The enzyme has a higher affinity for gallic acid (Km −0.7 ± 0.2 mM, kcat −42.0 ± 8.2 s−1) than to protocatechuic acid (3,4-dihydroxybenzoic acid) (Km −3.2 ± 0.2 mM, kcat −44.0 ± 3.2 s−1). Other hydroxylated aromatic acids, such as 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid are not gallic acid decarboxylase substrates. A. adeninivorans G1212/YRC102-AYNI1-AGDC1, which expresses the AGDC1 gene under the control of the strong nitrate inducible AYNI1 promoter achieved a maximum gallic acid decarboxylase activity of 1064.4 U/l and 97.5 U/g of dry cell weight in yeast grown in minimal medium with nitrate as nitrogen source and glucose as carbon source. In the same medium, gallic acid decarboxylase activity was not detected for the control strain G1212/YRC102 with AGDC1 expression under the control of the endogenous promoter. Gene expression analysis showed that AGDC1 is induced by gallic acid and protocatechuic acid. In contrast to G1212/YRC102-AYNI1-AGDC1 and G1212/YRC102, A. adeninivorans G1234 [Δagdc1] is not able to grow on medium with gallic acid as carbon source but can grow in presence of protocatechuic acid. This confirms that Agdc1p plays an essential role in the tannic acid catabolism and could be useful in the production of catechol and cis,cis-muconic acid. However, the protocatechuic acid catabolism via Agdc1p to catechol seems to be

  19. Interactive effects of gallic/ferulic/caffeic acids and anthocyanins on pigment thermal stabilities.

    PubMed

    Qian, Bing-Jun; Liu, Jian-Hua; Zhao, Shu-Juan; Cai, Jian-Xiong; Jing, Pu

    2017-06-01

    The data presented in this article are related to the research article entitled "The effects of gallic/ferulic/caffeic acids on colour intensification and anthocyanin stability" (Qian et al., 2017) [1]. This paper described preparation and isolation of anthocyanins from purple sweet potatoes (PSP) and the time-course of anthocyanin profiles treated with gallic, ferulic, or caffeic acids at 95 °C. The color appearance of PSPanthocyanins alone, or with gallic, ferulic, or caffeic acids was described after the 15 h of thermal treatment. The high resolution mass spectrographs of PSP anthocyanins were determined using UPLC-ESI-HRMS. The spatial interaction of peonidin 3-O-(2-O-β-D-glucopyranocyl-β-D-glucopyranoide)-5-O-β-D-glucopyranoside and gallic/ferulic/caffeic acids was illustrated by molecular dynamic simulation.

  20. Gallic Acid Attenuates Postoperative Intra-Abdominal Adhesion by Inhibiting Inflammatory Reaction in a Rat Model

    PubMed Central

    Wei, Guangbing; Wu, Yunhua; Gao, Qi; Shen, Cong; Chen, Zilu; Wang, Kang; Yu, Junhui

    2018-01-01

    Background Intra-abdominal adhesion is one of the most common complications after abdominal surgery. The efficacy of current treatments for intra-abdominal adhesion is unsatisfactory. In this study, we investigated the effect of gallic acid on the prevention and treatment of intra-abdominal adhesions after abdominal surgery using an intra-abdominal adhesion rat model. Material/Methods The experimental rats were randomly divided into the sham operation group, the control group, the chitosan group, and 3 gallic acid groups of different concentrations. All rats except those in the sham operation group received cecal abrasion to induce adhesion. From the first postoperative day, the rats in the gallic acid groups were administered different concentrations of gallic acid in a 2-ml gavage daily. All rats were sacrificed on postoperative day 7, and the degree of intra-abdominal adhesion was evaluated by the naked eye. The amount of collagen deposited between the injured peritoneal tissues was assessed by Sirius red staining. Serum levels of interleukin-6 (IL-6), tumor necrosis factor (TNF-α), and transforming growth factor-β (TGF-β) were measured by ELISA. Western blot was used to detect the level of NF-κB phosphorylation in the injured peritoneal or adhesion tissues of the rats. Results Compared with the control group, the scores of intra-abdominal adhesions in the rats treated with larger doses of gallic acid were significantly decreased, and the degree of inflammation and fibrosis was also significantly decreased. Gallic acid significantly reduced IL-6, TNF-α, and TGF-β1 serum levels. NF-κB phosphorylation in the higher gallic acid groups was significantly reduced. Conclusions Gallic acid inhibits the formation of postoperative intra-abdominal adhesions in rats by inhibiting the inflammatory reaction and fibrogenesis. Gallic acid is a promising drug for preventing intra-abdominal adhesions. PMID:29429982

  1. Use of Gallic Acid to Enhance the Antioxidant and Mechanical Properties of Active Fish Gelatin Film.

    PubMed

    Limpisophon, Kanokrat; Schleining, Gerhard

    2017-01-01

    This study explores the potential roles of gallic acid in fish gelatin film for improving mechanical properties, UV barrier, and providing antioxidant activities. Glycerol, a common used plasticizer, also impacts on mechanical properties of the film. A factorial design was used to investigate the effects of gallic acid and glycerol concentrations on antioxidant activities and mechanical properties of fish gelatin film. Increasing the amount of gallic acid increased the antioxidant capacities of the film measured by radical scavenging assay and the ferric reducing ability of plasma assay. The released antioxidant power of gallic acid from the film was not reduced by glycerol. The presence of gallic acid not only increased the antioxidant capacity of the film, but also increased the tensile strength, elongation at break, and reduced UV absorption due to interaction between gallic acid and protein by hydrogen bonding. Glycerol did not affect the antioxidant capacities of the film, but increased the elasticity of the films. Overall, this study revealed that gallic acid entrapped in the fish gelatin film provided antioxidant activities and improved film characteristics, namely UV barrier, strength, and elasticity of the film. © 2016 Institute of Food Technologists®.

  2. Gallic Acid Is an Antagonist of Semen Amyloid Fibrils That Enhance HIV-1 Infection.

    PubMed

    LoRicco, Josephine G; Xu, Changmingzi Sherry; Neidleman, Jason; Bergkvist, Magnus; Greene, Warner C; Roan, Nadia R; Makhatadze, George I

    2016-07-01

    Recent in vitro studies have demonstrated that amyloid fibrils found in semen from healthy and HIV-infected men, as well as semen itself, can markedly enhance HIV infection rates. Semen fibrils are made up of multiple naturally occurring peptide fragments derived from semen. The best characterized of these fibrils are SEVI (semen-derived enhancer of viral infection), made up of residues 248-286 of prostatic acidic phosphatase, and the SEM1 fibrils, made up of residues 86-107 of semenogelin 1. A small molecule screen for antagonists of semen fibrils identified four compounds that lowered semen-mediated enhancement of HIV-1 infectivity. One of the four, gallic acid, was previously reported to antagonize other amyloids and to exert anti-inflammatory effects. To better understand the mechanism by which gallic acid modifies the properties of semen amyloids, we performed biophysical measurements (atomic force microscopy, electron microscopy, confocal microscopy, thioflavin T and Congo Red fluorescence assays, zeta potential measurements) and quantitative assays on the effects of gallic acid on semen-mediated enhancement of HIV infection and inflammation. Our results demonstrate that gallic acid binds to both SEVI and SEM1 fibrils and modifies their surface electrostatics to render them less cationic. In addition, gallic acid decreased semen-mediated enhancement of HIV infection but did not decrease the inflammatory response induced by semen. Together, these observations identify gallic acid as a non-polyanionic compound that inhibits semen-mediated enhancement of HIV infection and suggest the potential utility of incorporating gallic acid into a multicomponent microbicide targeting both the HIV virus and host components that promote viral infection. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Gallic Acid Is an Antagonist of Semen Amyloid Fibrils That Enhance HIV-1 Infection*

    PubMed Central

    LoRicco, Josephine G.; Xu, Changmingzi Sherry; Neidleman, Jason; Bergkvist, Magnus; Greene, Warner C.; Roan, Nadia R.; Makhatadze, George I.

    2016-01-01

    Recent in vitro studies have demonstrated that amyloid fibrils found in semen from healthy and HIV-infected men, as well as semen itself, can markedly enhance HIV infection rates. Semen fibrils are made up of multiple naturally occurring peptide fragments derived from semen. The best characterized of these fibrils are SEVI (semen-derived enhancer of viral infection), made up of residues 248–286 of prostatic acidic phosphatase, and the SEM1 fibrils, made up of residues 86–107 of semenogelin 1. A small molecule screen for antagonists of semen fibrils identified four compounds that lowered semen-mediated enhancement of HIV-1 infectivity. One of the four, gallic acid, was previously reported to antagonize other amyloids and to exert anti-inflammatory effects. To better understand the mechanism by which gallic acid modifies the properties of semen amyloids, we performed biophysical measurements (atomic force microscopy, electron microscopy, confocal microscopy, thioflavin T and Congo Red fluorescence assays, zeta potential measurements) and quantitative assays on the effects of gallic acid on semen-mediated enhancement of HIV infection and inflammation. Our results demonstrate that gallic acid binds to both SEVI and SEM1 fibrils and modifies their surface electrostatics to render them less cationic. In addition, gallic acid decreased semen-mediated enhancement of HIV infection but did not decrease the inflammatory response induced by semen. Together, these observations identify gallic acid as a non-polyanionic compound that inhibits semen-mediated enhancement of HIV infection and suggest the potential utility of incorporating gallic acid into a multicomponent microbicide targeting both the HIV virus and host components that promote viral infection. PMID:27226574

  4. Gallic acid attenuates pulmonary fibrosis in a mouse model of transverse aortic contraction-induced heart failure.

    PubMed

    Jin, Li; Piao, Zhe Hao; Sun, Simei; Liu, Bin; Ryu, Yuhee; Choi, Sin Young; Kim, Gwi Ran; Kim, Hyung-Seok; Kee, Hae Jin; Jeong, Myung Ho

    2017-12-01

    Gallic acid, a trihydroxybenzoic acid found in tea and other plants, attenuates cardiac hypertrophy, fibrosis, and hypertension in animal models. However, the role of gallic acid in heart failure remains unknown. In this study, we show that gallic acid administration prevents heart failure-induced pulmonary fibrosis. Heart failure induced in mice, 8weeks after transverse aortic constriction (TAC) surgery, was confirmed by echocardiography. Treatment for 2weeks with gallic acid but not furosemide prevented cardiac dysfunction in mice. Gallic acid significantly inhibited TAC-induced pathological changes in the lungs, such as increased lung mass, pulmonary fibrosis, and damaged alveolar morphology. It also decreased the expression of fibrosis-related genes, including collagen types I and III, fibronectin, connective tissue growth factor (CTGF), and phosphorylated Smad3. Further, it inhibited the expression of epithelial-mesenchymal transition (EMT)-related genes, such as N-cadherin, vimentin, E-cadherin, SNAI1, and TWIST1. We suggest that gallic acid has therapeutic potential for the treatment of heart failure-induced pulmonary fibrosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum.

    PubMed

    BenSaad, Lamees A; Kim, Kah Hwi; Quah, Chin Chew; Kim, Wee Ric; Shahimi, Mustafa

    2017-01-14

    Punica granatum (pomegranate), an edible fruit originating in the Middle East, has been used as a traditional medicine for treatment of pain and inflammatory conditions such as peptic ulcer. The numerous risks associated with nonsteroidal anti-inflammatory drugs (NSAIDs) for treatment of pain and inflammation give rise to using medicinal herbs as alternative therapies. This study aimed to evaluate the anti-inflammatory effect of isolated compounds from the ethyl acetate (EtOAc) fraction of P. granatum by determination of their inhibitory effects on lipopolysaccharide (LPS), stimulated nitric oxide (NO), prostaglandin E2 (PGE-2), interleukin-6 (IL-6) and cyclooxxgenase-2 (COX-2) release from RAW264.7 cells. The compounds ellagic acid, gallic acid and punicalagin A&B were isolated from EtOAc by high performance liquid chromatography (HPLC) and further identified by mass spectrometry (MS). The inhibitory effect of ellagic acid, gallic acid and punicalagin A&B were evaluated on the production of LPS-induced NO by Griess reagent, PGE-2 and IL-6 by immunoassay kit and prostaglandin E2 competitive ELISA kit, and COX-2 by Western blotting. Ellagic acid, gallic acid and punicalagin A&B potentially inhibited LPS-induced NO, PGE-2 and IL-6 production. The results indicate that ellagic acid, gallic acid and punicalagin may be the compounds responsible for the anti-inflammatory potential of P. granatum.

  6. Determination of gallic acid with rhodanine by reverse flow injection analysis using simplex optimization.

    PubMed

    Phakthong, Wilaiwan; Liawruangrath, Boonsom; Liawruangrath, Saisunee

    2014-12-01

    A reversed flow injection (rFI) system was designed and constructed for gallic acid determination. Gallic acid was determined based on the formation of chromogen between gallic acid and rhodanine, resulting in a colored product with a λmax at 520 nm. The optimum conditions for determining gallic acid were also investigated. Optimizations of the experimental conditions were carried out based on the so-call univariate method. The conditions obtained were 0.6% (w/v) rhodanine, 70% (v/v) ethanol, 0.9 mol L(-1) NaOH, 2.0 mL min(-1) flow rate, 75 μL injection loop and 600 cm mixing tubing length, respectively. Comparative optimizations of the experimental conditions were also carried out by multivariate or simplex optimization method. The conditions obtained were 1.2% (w/v) rhodanine, 70% (v/v) ethanol, 1.2 mol L(-1) NaOH, flow rate 2.5 mL min(-1), 75 μL injection loop and 600 cm mixing tubing length, respectively. It was found that the optimum conditions obtained by the former optimization method were mostly similar to those obtained by the latter method. The linear relationship between peak height and the concentration of gallic acid was obtained over the range of 0.1-35.0 mg L(-1) with the detection limit 0.081 mg L(-1). The relative standard deviations were found to be in the ranges 0.46-1.96% for 1, 10, 30 mg L(-1) of gallic acid (n=11). The method has the advantages of simplicity extremely high selectivity and high precision. The proposed method was successfully applied to the determination of gallic acid in longan samples without interferent effects from other common phenolic compounds that might be present in the longan samples collected in northern Thailand. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Investigation into structure and dehydration dynamic of gallic acid monohydrate: A Raman spectroscopic study.

    PubMed

    Cai, Qiang; Xue, Jiadan; Wang, Qiqi; Du, Yong

    2018-05-02

    The dehydration process of gallic acid monohydrate was carried out by heating method and characterized using Raman spectroscopic technique. Density functional theory calculation with B3LYP function is applied to simulate optimized structures and vibrational frequencies of anhydrous gallic acid and its corresponding monohydrated form. Different vibrational modes are assigned by comparison between experimental and theoretical Raman spectra of above two polymorphs. Raman spectra show that vibrational modes of the monohydrate are distinctively different from those of anhydrous one. Meanwhile, the dynamic information about dehydration process of gallic acid monohydrate could also be observed and monitored directly with the help of Raman spectral analysis. The decay rate of the characteristic band from gallic acid monohydrate and the growth rate of anhydrous one are pretty consistent with each other. It indicates that there is no intermediate present during the dehydration process of gallic acid monohydrate. The results could offer us benchmark works for identifying both anhydrous and hydrated pharmaceutical compounds, characterizing their corresponding molecular conformation within various crystalline forms, and also providing useful information about the process of dehydration dynamic at the microscopic molecular level. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Anti-inflammatory and ameliorative effects of gallic acid on fluoxetine-induced oxidative stress and liver damage in rats.

    PubMed

    Karimi-Khouzani, Omid; Heidarian, Esfandiar; Amini, Sayed Asadollah

    2017-08-01

    Fluoxetine-induced liver damage is a cause of chronic liver disease. In the present study the hepatoprotective effects of gallic acid against fluoxetine-induced liver damage were examined. Forty-eight male rats were divided into six groups as follow: group 1, the control group; group 2, rats receiving fluoxetine (24mg/kg bw daily, po) without treatment; group 3, rats receiving 24mg/kg bw fluoxetine, treated with 50mg/kg bw silymarin and groups 4, 5, and 6 in which gallic acid (50, 100, and 200mg/kg bw, po, respectively) was prescribed after the consumption of fluoxetine. The histopathological changes of hepatic tissues were checked out. Fluoxetine caused a significant increase in the levels of serum glutamate oxaloacetate transaminase (GOT), serum glutamate pyruvate transaminase (GPT), lipid profiles, urea, fasting blood sugar (FBS), creatinine (Cr), protein carbonyl (PC) content, malondialdehyde (MDA), and liver TNF-α as an inflammatory element. Also, the obtained results of group 2 revealed a significant decline in ferric reducing ability of plasma (FRAP), liver catalase (CAT), superoxide dismutase (SOD), and vitamin C levels. The treatment with gallic acid showed significant ameliorations in abnormalities of fluoxetine-induced liver injury as represented by the improvement of hepatic CAT, SOD activities, vitamin C levels, serum biochemical parameters, and histopathological changes, in addition to the recovery of antioxidant defense system status. Gallic acid has inhibitory effects on fluoxetine-induced liver damage. The effect of gallic acid is derived from free radical scavenging properties and the anti-inflammatory effect related to TNF-α. Copyright © 2017. Published by Elsevier Urban & Partner Sp. z o.o.

  9. Gallic Acid Attenuates Platelet Activation and Platelet-Leukocyte Aggregation: Involving Pathways of Akt and GSK3β

    PubMed Central

    Chang, Shih-Sheng; Lee, Viola S. Y.; Tseng, Yu-Lun; Chang, Kuan-Cheng; Chen, Kuen-Bao; Chen, Yuh-Lien; Li, Chi-Yuan

    2012-01-01

    Platelet activation and its interaction with leukocytes play an important role in atherothrombosis. Cardiovascular diseases resulted from atherothrombosis remain the major causes of death worldwide. Gallic acid, a major constituent of red wine and tea, has been believed to have properties of cardiovascular protection, which is likely to be related to its antioxidant effects. Nonetheless, there were few and inconsistent data regarding the effects of gallic acid on platelet function. Therefore, we designed this in vitro study to determine whether gallic acid could inhibit platelet activation and the possible mechanisms. From our results, gallic acid could concentration-dependently inhibit platelet aggregation, P-selectin expression, and platelet-leukocyte aggregation. Gallic acid prevented the elevation of intracellular calcium and attenuated phosphorylation of PKCα/p38 MAPK and Akt/GSK3β on platelets stimulated by the stimulants ADP or U46619. This is the first mechanistic explanation for the inhibitory effects on platelets from gallic acid. PMID:22811749

  10. Antioxidant multi-walled carbon nanotubes by free radical grafting of gallic acid: new materials for biomedical applications.

    PubMed

    Cirillo, Giuseppe; Hampel, Silke; Klingeler, Rüdiger; Puoci, Francesco; Iemma, Francesca; Curcio, Manuela; Parisi, Ortensia Ilaria; Spizzirri, Umile Gianfranco; Picci, Nevio; Leonhardt, Albrecht; Ritschel, Manfred; Büchner, Bernd

    2011-02-01

    To prove the possibility of covalently functionalizing multi-walled carbon nanotubes (CNTs) by free radical grafting of gallic acid on their surface with the subsequent synthesis of materials with improved biological properties evaluated by specific in-vitro assays. Antioxidant CNTs were synthesized by radical grafting of gallic acid onto pristine CNTs. The synthesis of carbon nanotubes was carried out in a fixed-bed reactor and, after the removal of the amorphous carbon, the grafting process was performed. The obtained materials were characterized by fluorescence and Fourier transform infrared spectroscopy (FT-IR) analyses. After assessment of the biocompatibility and determination of the disposable phenolic group content, the antioxidant properties were evaluated in terms of total antioxidant activity and scavenger ability against 2,2'-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl and peroxyl radicals. Finally the inhibition activity on acetylcholinesterase was evaluated.   The covalent functionalization of CNTs with gallic acid was confirmed and the amount of gallic acid bound per g of CNTs was found to be 2.1±0.2 mg. Good antioxidant and scavenging properties were recorded in the functionalized CNTs, which were found to be able to inhibit the acetylcholinesterase with potential improved activity for biomedical and pharmaceutical applications. For the first time, a free radical grafting procedure was proposed as a synthetic approach for the covalent functionalization of CNTs with an antioxidant polyphenol. © 2010 The Authors. JPP © 2010 Royal Pharmaceutical Society.

  11. Non-toxic agarose/gelatin-based microencapsulation system containing gallic acid for antifungal application.

    PubMed

    Lam, P-L; Gambari, R; Kok, S H-L; Lam, K-H; Tang, J C-O; Bian, Z-X; Lee, K K-H; Chui, C-H

    2015-02-01

    Aspergillus niger (A. niger) is a common species of Aspergillus molds. Cutaneous aspergillosis usually occurs in skin sites near intravenous injection and approximately 6% of cutaneous aspergillosis cases which do not involve burn or HIV-infected patients are caused by A. niger. Biomaterials and biopharmaceuticals produced from microparticle-based drug delivery systems have received much attention as microencapsulated drugs offer an improvement in therapeutic efficacy due to better human absorption. The frequently used crosslinker, glutaraldehyde, in gelatin-based microencapsulation systems is considered harmful to human beings. In order to tackle the potential risks, agarose has become an alternative polymer to be used with gelatin as wall matrix materials of microcapsules. In the present study, we report the eco-friendly use of an agarose/gelatin-based microencapsulation system to enhance the antifungal activity of gallic acid and reduce its potential cytotoxic effects towards human skin keratinocytes. We used optimal parameter combinations, such as an agarose/gelatin ratio of 1:1, a polymer/oil ratio of 1:60, a surfactant volume of 1% w/w and a stirring speed of 900 rpm. The minimum inhibitory concentration of microencapsulated gallic acid (62.5 µg/ml) was significantly improved when compared with that of the original drug (>750 µg/ml). The anti-A. niger activity of gallic acid -containing microcapsules was much stronger than that of the original drug. Following 48 h of treatment, skin cell survival was approximately 90% with agarose/gelatin microcapsules containing gallic acid, whereas cell viability was only 25-35% with free gallic acid. Our results demonstrate that agarose/gelatin-based microcapsules containing gallic acid may prove to be helpful in the treatment of A. niger-induced skin infections near intravenous injection sites.

  12. Gallic Acid Grafted Chitosan Has Enhanced Oxidative Stability in Bulk Oils.

    PubMed

    Gim, Seo Yeong; Hong, Seungmi; Kim, Mi-Ja; Lee, JaeHwan

    2017-07-01

    Gallic acid (GA) was grafted in chitosan and the effects of GA grafted chitosan (GA-g-CS) on the oxidative stability in bulk oil was tested at 60 and 140 °C. To text oxidative stability in oils, headspace oxygen content, conjugated dienoic acid (CDA) value, p-anisidine value (p-AV), and acid value were determined. Chitosan itself did not show antioxidative or prooxidative effects in oils at 60 °C. However, GA-g-CS and GA acted as antioxidants at 60 °C. At 140 °C heating with moisture supplied condition, different results were observed. GA-g-CS acted as antioxidants based on the results of CDA and p-AV. However, chitosan showed the highest oxidative stability based on results of acid value and brown color formation at 140 °C. This could be due to reduction of moisture content by chitosan. GA was continuously released from GA-g-CS in bulk oil. This might have provided extra antioxidant activities to oils. © 2017 Institute of Food Technologists®.

  13. Gallic Acid Inhibited Matrix Invasion and AP-1/ETS-1-Mediated MMP-1 Transcription in Human Nasopharyngeal Carcinoma Cells

    PubMed Central

    S. Pang, Jong-Hwei; Yen, Jia-Hau; Wu, Hsiao-Ting; Huang, Sheng-Teng

    2017-01-01

    Gallic acid is a trihydroxybenzoic acid found in natural herbal plants. Gallic acid has been reported to inhibit the migration and invasive capability of various cancers. Little is known about the underlying mechanisms of invasion responsible for cancer metastasis via gallic acid. The present study was intended to investigate the anti-invasive effect of gallic acid on human nasopharyngeal carcinoma cells (NPC-BM1) and its related mechanism. Gallic acid inhibited the invasion of NPC-BM1 cells dose- and time-dependently without significant cytotoxic effect. Affymetrix oligonucleotide microarray analysis revealed matrix metalloproteinase-1 (MMP-1) as the most down-regulated gene in NPC-BM1 cells by gallic acid. The cytosolic and secreted MMP-1 levels were both found to be inhibited by gallic acid as demonstrated by western blot analysis and ELISA respectively. The mRNA expression and transcription of MMP-1 gene was also down-regulated as determined by RT/real-time PCR and promoter activity assay. The expression of two major transcription binding factors in the MMP-1 promoter, AP-1 and ETS-1, were demonstrated to be reduced by gallic acid in NPC-BM1 cells. The effect of gallic acid was associated with the inhibition of p38 MAPK signaling pathway. In addition, gallic acid enhanced the gene expression of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) which further suppressed the MMP-1 activity. These findings may be useful to develop a novel chemotherapeutic agent to inhibit the metastasis of nasopharyngeal cancer. PMID:28672814

  14. Gallic Acid Inhibited Matrix Invasion and AP-1/ETS-1-Mediated MMP-1 Transcription in Human Nasopharyngeal Carcinoma Cells.

    PubMed

    Pang, Jong-Hwei S; Yen, Jia-Hau; Wu, Hsiao-Ting; Huang, Sheng-Teng

    2017-06-24

    Gallic acid is a trihydroxybenzoic acid found in natural herbal plants. Gallic acid has been reported to inhibit the migration and invasive capability of various cancers. Little is known about the underlying mechanisms of invasion responsible for cancer metastasis via gallic acid. The present study was intended to investigate the anti-invasive effect of gallic acid on human nasopharyngeal carcinoma cells (NPC-BM1) and its related mechanism. Gallic acid inhibited the invasion of NPC-BM1 cells dose- and time-dependently without significant cytotoxic effect. Affymetrix oligonucleotide microarray analysis revealed matrix metalloproteinase-1 (MMP-1) as the most down-regulated gene in NPC-BM1 cells by gallic acid. The cytosolic and secreted MMP-1 levels were both found to be inhibited by gallic acid as demonstrated by western blot analysis and ELISA respectively. The mRNA expression and transcription of MMP-1 gene was also down-regulated as determined by RT/real-time PCR and promoter activity assay. The expression of two major transcription binding factors in the MMP-1 promoter, AP-1 and ETS-1, were demonstrated to be reduced by gallic acid in NPC-BM1 cells. The effect of gallic acid was associated with the inhibition of p38 MAPK signaling pathway. In addition, gallic acid enhanced the gene expression of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) which further suppressed the MMP-1 activity. These findings may be useful to develop a novel chemotherapeutic agent to inhibit the metastasis of nasopharyngeal cancer.

  15. Gallic acid inhibits vascular calcification through the blockade of BMP2-Smad1/5/8 signaling pathway.

    PubMed

    Kee, Hae Jin; Cho, Soo-Na; Kim, Gwi Ran; Choi, Sin Young; Ryu, Yuhee; Kim, In Kyeom; Hong, Young Joon; Park, Hyung Wook; Ahn, Youngkeun; Cho, Jeong Gwan; Park, Jong Chun; Jeong, Myung Ho

    2014-11-01

    Vascular calcification is associated with increased risk of morbidity and mortality in patients with cardiovascular diseases, chronic kidney diseases, and diabetes. Gallic acid, a natural compound found in gallnut and green tea, is known to be antifungal, antioxidant, and anticancer. Here we investigated the effect of gallic acid on vascular smooth muscle cell (VSMC) calcification and the underlying mechanism. Gallic acid inhibited inorganic phosphate-induced osteoblast differentiation markers as well as calcification phenotypes (as determined by calcium deposition, Alizarin Red, and Von Kossa staining). Knockdown of BMP2 or Noggin blocked phosphate-induced calcification. Gallic acid suppressed phosphorylation of Smad1/5/8 protein induced by inorganic phosphate. Taken together, we suggest that gallic acid acts as a novel therapeutic agent of vascular calcification by mediating BMP2-Smad1/5/8 signaling pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Time-dependent inhibition of CYP3A4 by gallic acid in human liver microsomes and recombinant systems.

    PubMed

    Pu, Qiang-Hong; Shi, Liang; Yu, Chao

    2015-03-01

    1.Gallic acid is a main polyphenol in various fruits and plants. Inhibitory characteristics of gallic acid on CYP3A4 were still unclear. The objective of this work is hence to investigate inhibitory characteristics of gallic acid on CYP3A4 using testosterone as the probe substrate in human liver microsomes (HLMs) and recombinant CYP3A4 (rCYP3A4) systems. 2.Gallic acid caused concentration-dependent loss of CYP3A4 activity with IC50 values of 615.2 μM and 669.5 μM in HLM and rCYP3A4 systems, respectively. IC50-shift experiments showed that pre-incubation with gallic acid in the absence of NADPH contributed to 12- or 14-fold reduction of IC50 in HLM and rCYP3A4 systems, respectively, supporting a time-dependent inhibition. In HLM, time-dependent inactivation variables KI and Kinact were 485.8 μM and 0.05 min(-1), respectively. 3.Compared with the presence of NADPH, pre-incubation of gallic acid in the absence of NADPH markedly increased its inhibitory effects in HLM and rCYP3A4 systems. Those results indicate that CYP3A4 inactivation by gallic acid was independent on NADPH and was mainly mediated its oxidative products. 4.In conclusion, we showed that gallic acid weakly and time-dependently inactivated CYP3A4 via its oxidative products.

  17. Enhanced oral bioavailability of metoprolol with gallic acid and ellagic acid in male Wistar rats: involvement of CYP2D6 inhibition.

    PubMed

    Athukuri, Bhargavi Latha; Neerati, Prasad

    2016-12-01

    Cytochrome P450-2D6 (CYP2D6), a member of the CYP450 mixed function oxidase system, is an important CYP isoform with regard to herbal-drug interactions and is responsible for the metabolism of nearly 25% of drugs. Until now, studies on the effects of various phytochemicals on CYP2D6 activity in vivo have been very rare. Gallic acid and ellagic acid are natural polyphenols which are widely distributed in fruits and medicinal plants. In the present study, the effects of gallic acid and ellagic acid pretreatment on intestinal transport and oral bioavailability of metoprolol were investigated. The intestinal transport of metoprolol was assessed by conducting an in situ single pass intestinal perfusion (SPIP) study. The bioavailability study was conducted to evaluate the pharmacokinetic parameters of orally administered metoprolol in rats. After pretreatment with gallic acid and ellagic acid, no significant change in effective permeability of metoprolol was observed at the ileum part of rat intestine. A significant improvement in the peak plasma concentration (Cmax) and area under the serum concentration-time profile (AUC) and decrease in clearance were observed in rats pretreated with gallic acid and ellagic acid. Gallic acid and ellagic acid significantly enhanced the oral bioavailability of metoprolol by inhibiting CYP2D6-mediated metabolism in the rat liver. Hence, adverse herbal-drug interactions may result with concomitant ingestion of gallic acid and ellagic acid supplements and drugs that are CYP2D6 substrates. The clinical assessment of these interactions should be further investigated in human volunteers.

  18. Gallic Acid Decreases Inflammatory Cytokine Secretion Through Histone Acetyltransferase/Histone Deacetylase Regulation in High Glucose-Induced Human Monocytes.

    PubMed

    Lee, Wooje; Lee, Sang Yeol; Son, Young-Jin; Yun, Jung-Mi

    2015-07-01

    Hyperglycemia contributes to diabetes and several diabetes-related complications. Gallic acid is a polyhydroxy phenolic compound found in various natural products. In this study, we investigated the effects and mechanism of gallic acid on proinflammatory cytokine secretion in high glucose-induced human monocytes (THP-1 cells). THP-1 cells were cultured under normoglycemic or hyperglycemic conditions, in the absence or presence of gallic acid. Hyperglycemic conditions significantly induced histone acetylation, nuclear factor-κB (NF-κB) activation, and proinflammatory cytokine release from THP-1 cells, whereas gallic acid suppressed NF-κB activity and cytokine release. It also significantly reduced CREB-binding protein/p300 (CBP/p300, a NF-κB coactivator) gene expression, acetylation levels, and CBP/p300 histone acetyltransferase (HAT) activity. In addition, histone deacetylase 2 (HDAC2) expression was significantly induced. These results suggest that gallic acid inhibits hyperglycemic-induced cytokine production in monocytes through epigenetic changes involving NF-κB. Therefore, gallic acid may have potential for the treatment and prevention of diabetes and its complications.

  19. Protective effect of gallic acid in experimental model of ketamine-induced psychosis: possible behaviour, biochemical, neurochemical and cellular alterations.

    PubMed

    Yadav, Monu; Jindal, Deepak Kumar; Dhingra, Mamta Sachdeva; Kumar, Anil; Parle, Milind; Dhingra, Sameer

    2018-04-01

    Gallic acid has been reported to possess a number of psychopharmacological activities. These activities are attributed to the antioxidant potential due to the presence of phenolic moeity. The present study was carried out to investigate the protective effects of gallic acid in an experimental model of ketamine-induced psychosis in mice. Ketamine (50 mg/kg, i.p.) was used to induce stereotyped psychotic behavioural symptoms in mice. Behavioural studies (locomotor activity, stereotype behaviour, immobility duration and memory retention) were carried out to investigate the protective of gallic acid on ketamine-induced psychotic symptoms, followed by biochemical and neurochemical changes and cellular alterations in the brain. Chronic treatment with gallic acid for 15 consecutive days significantly attenuated stereotyped behavioural symptoms in mice. Biochemical estimations revealed that gallic acid reduced the lipid peroxidation and restored the total brain proteins. Furthermore, gallic acid remarkably reduced the dopamine levels, AChE activity and inflammatory surge (serum TNF-α), and increased the levels of GABA and increased glutathione in mice. The study revealed that gallic acid could ameliorate psychotic symptoms and biochemical changes in mice, indicating protective effects in psychosis.

  20. Simultaneous determination of gallic acid and gentisic acid in organic anion transporter expressing cells by liquid chromatography-tandem mass spectrometry.

    PubMed

    Wang, Li; Halquist, Matthew S; Sweet, Douglas H

    2013-10-15

    In order to elucidate the role of organic anion transporters (OATs) in the renal elimination of gallic acid and gentisic acid, a new, rapid, and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the simultaneous determination of gallic acid and gentisic acid in cell lysate, using Danshensu as the internal standard (IS). After a simple liquid-liquid extraction, the analytes were detected in negative ESI mode using selected reaction monitoring. The precursor-to-product ion transitions (m/z) were 169.0→125.0, 153.1→108.0, and 196.8→135.2 for gallic acid, gentisic acid, and the IS, respectively. Chromatographic separation was achieved on a C18 column using mobile phases consisting of water with 0.1% acetic acid (A) and acetonitrile with 0.05% formic acid. (B) The total run time was 3min and calibration curves were linear over the concentrations of 0.33-2400ng/mL for both compounds (r(2)>0.995). Good precision (between 3.11% and 14.1% RSD) and accuracy (between -12.7% and 11% bias) was observed for quality controls at concentrations of 0.33 (lower limit of quantification), 1, 50, and 2000ng/mL. The mean extraction recovery of gallic acid and gentisic acid was 80.7% and 83.5%, respectively. Results from post-column infusion and post-extraction methods indicated that the analytical method exhibited negligible matrix effects. Finally, this validated assay was successfully applied in a cellular uptake study to determine the intracellular concentrations of gallic acid and gentisic acid in OAT expressing cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. The Influence of Prefermentative Addition of Gallic Acid on the Phenolic Composition and Chromatic Characteristics of Cabernet Sauvignon Wines.

    PubMed

    Liu, Yue; Zhang, Bo; He, Fei; Duan, Chang-Qing; Shi, Ying

    2016-07-01

    In this study, the prefermentative addition of gallic acid in Cabernet Sauvignon red winemaking was performed. The influence of gallic acid addition on wine phenolic composition, the ratio of copigmentation, and the color parameters were monitored throughout the winemaking process. The results showed that the prefermentative addition of gallic acid enhanced the extraction of total anthocyanins and the copigmentation effect, producing wines with more darkness, redness, yellowness, and saturation. Moreover, the addition of gallic acid contributed to the concentration of total phenolic acids. However, it had a negative effect on the concentrations of flavonols and flavan-3-ols in the final wines. Thus, the prefermentative addition of gallic acid at appropriate levels might be a promising enological technology to obtain wines with high color quality and aging potential. © 2016 Institute of Food Technologists®

  2. Preparation of Fe3O4 magnetic nanoparticles coated with gallic acid for drug delivery

    PubMed Central

    Dorniani, Dena; Hussein, Mohd Zobir Bin; Kura, Aminu Umar; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2012-01-01

    Background and methods Magnetic iron oxide nanoparticles were prepared using a sonochemical method under atmospheric conditions at a Fe2+ to Fe3+ molar ratio of 1:2. The iron oxide nanoparticles were subsequently coated with chitosan and gallic acid to produce a core-shell structure. Results X-ray diffraction demonstrated that the magnetic nanoparticles were pure Fe3O4 with a cubic inverse spinel structure. Transmission electron microscopy showed that the Fe3O4 nanoparticles were of spherical shape with a mean diameter of 11 nm, compared with 13 nm for the iron oxide-chitosan-gallic acid (FCG) nanocarriers. Conclusion The magnetic nanocarrier enhanced the thermal stability of the drug, gallic acid. Release of the active drug from the FCG nanocarrier was found to occur in a controlled manner. The gallic acid and FCG nanoparticles were not toxic in a normal human fibroblast (3T3) line, and anticancer activity was higher in HT29 than MCF7 cell lines. PMID:23166439

  3. [Simultaneous isolation and purification of gallic acid and brevifolincarboxylic acid from Polygonum capitatum by high-speed counter-current chromatography].

    PubMed

    Chen, Xinxia; Zhang, Liyan; Wan, Jinzhi; Liang, Bin; Xie, Yu

    2010-08-01

    To isolate and purify gallic acid and brevifolincarboxylic acid simultaneously by high-speed counter-current chromatography (HSCCC) from a crude extract of Polygonum capitatum. The biphasic solvent system composed of ethyl acetate-n-butanol-0.44% acetic acid (3:1:5) was used at a flow rate of 2.0 mL x min(-1), while the aqueous phase was selected as the mobile phase and the apparatus was rotated at 860 r x min(-1). The effluent was detected at 272 nm. 51.5 mg of gallic acid and 5.9 mg of brevifolincarboxylic acid were separated from 1.07 g of the crude extract with the purities of 99.7% and 97.5%, respectively, while brevifolincarboxylic acid was obtained firstly from the genus Polygonum. The structures of the compounds were identified by ultraviolet spectrometry (UV), infra-red spectrometry (IR), liquid chromatography/mass spectrometry (LC/MS), time-of-flight mass spectrometry( TOF-MS), 1H-nuclear magnetic resonance (NMR) and 13C-NMR. This method is feasible and rapid for isolation and purification of gallice acid and brevifolincarboxylil acid.

  4. Statistical optimization of bioprocess parameters for enhanced gallic acid production from coffee pulp tannins by Penicillium verrucosum.

    PubMed

    Bhoite, Roopali N; Navya, P N; Murthy, Pushpa S

    2013-01-01

    Gallic acid (3,4,5-trihydroxybenzoic acid) was produced by microbial biotransformation of coffee pulp tannins by Penicillium verrucosum. Gallic acid production was optimized using response surface methodology (RSM) based on central composite rotatable design. Process parameters such as pH, moisture, and fermentation period were considered for optimization. Among the various fungi isolated from coffee by-products, Penicillium verrucosum produced 35.23 µg/g of gallic acid on coffee pulp as sole carbon source in solid-state fermentation. The optimum values of the parameters obtained from the RSM were pH 3.32, moisture 58.40%, and fermentation period of 96 hr. Gallic acid production with an increase of 4.6-fold was achieved upon optimization of the process parameters. The results optimized could be translated to 1-kg tray fermentation. High-performance liquid chromatography (HPLC) analysis and spectral studies such as mass spectroscopy (MS) and (1)H-nuclear magnetic resonance (NMR) confirmed that the bioactive compound isolated was gallic acid. Thus, coffee pulp, which is available in enormous quantity, could be used for the production of value-added products that can find avenues in food, pharmaceutical, and chemical industries.

  5. Molecular mechanics and dynamics studies on the interaction of gallic acid with collagen-like peptides

    NASA Astrophysics Data System (ADS)

    Madhan, B.; Thanikaivelan, P.; Subramanian, V.; Raghava Rao, J.; Unni Nair, Balachandran; Ramasami, T.

    2001-10-01

    Molecular modelling approaches have been used to understand the interaction of collagen-like peptides with gallic acid, which mimic vegetable tanning processes involved in protein stabilization. Several interaction sites have been identified and the binding energies of the complexes have been calculated. The calculated binding energies for various geometries are in the range 6-13 kcal/mol. It is found that some complexes exhibit hydrogen bonding, and electrostatic interaction plays a dominant role in the stabilization of the peptide by gallic acid. The π-OH type of interaction is also observed in the peptide stabilization. Molecular dynamics (MD) simulation for 600 ps revealed the possibility of hydrogen bonding between the collagen-like peptide and gallic acid.

  6. Effects of polyurethane matrices on fungal tannase and gallic acid production under solid state culture*

    PubMed Central

    Treviňo, Lucia; Contreras-Esquivel, Juan C.; Rodríguez-Herrera, Raul; Aguilar, Cristóbal Noé

    2007-01-01

    The influence of the physical structure of polyurethane matrix as a support in a solid state culture in tannase production and gallic acid accumulation by Aspergillus niger Aa-20 was evaluated. Three different polyurethane matrices were used as the support: continuous, semi-discontinuous and discontinuous. The highest tannase production at 2479.59 U/L during the first 12 h of culture was obtained using the discontinuous matrix. The gallic acid was accumulated at 7.64 g/L at the discontinuous matrix. The results show that the discontinuous matrix of polyurethane is better for tannase production and gallic acid accumulation in a solid state culture bioprocess than the continuous and semi-discontinuous matrices. PMID:17910122

  7. Gallic acid, a phenolic compound isolated from Mimosa bimucronata (DC.) Kuntze leaves, induces diuresis and saluresis in rats.

    PubMed

    Schlickmann, Fabile; Boeing, Thaise; Mariano, Luisa Nathália Bolda; da Silva, Rita de Cássia Melo Vilhena de Andrade Fonseca; da Silva, Luisa Mota; de Andrade, Sérgio Faloni; de Souza, Priscila; Cechinel-Filho, Valdir

    2018-06-01

    Although present in the leaves of Mimosa bimucronata (DC.) and many other medicinal plants commonly used to augment urinary volume excretion, the effects of gallic acid as a diuretic agent remain to be studied. Wistar rats were orally treated with vehicle, hydrochlorothiazide, or gallic acid. The effects of gallic acid in the presence of hydrochlorothiazide, furosemide, amiloride, L-NAME, atropine, and indomethacin were also investigated. Diuretic index, pH, conductivity, and electrolyte excretion were evaluated at the end of the experiment (after 8 or 24 h). Gallic acid induced diuretic and saluretic (Na + and Cl - ) effects, without interfering with K + excretion, when orally given to female and male rats at a dose of 3 mg/kg. These effects were associated with increased creatinine and conductivity values while pH was unaffected by any of the treatments. Plasma Na + , K + , and Cl - levels were not affected by any of the acute treatments. The combination with hydrochlorothiazide or furosemide was unable to intensify the effects of gallic acid when compared with the response obtained with each drug alone. On the other hand, the treatment with amiloride plus gallic acid amplified both diuresis and saluresis, besides to a marked potassium-sparing effect. Its diuretic action was significantly prevented in the presence of indomethacin, a cyclooxygenase inhibitor, but not with the pretreatments with L-NAME or atropine. Although several biological activities have already been described for gallic acid, this is the first study demonstrating its potential as a diuretic agent.

  8. Combined Efficacy of Gallic Acid and MiADMSA with Limited Beneficial Effects Over MiADMSA Against Arsenic-induced Oxidative Stress in Mouse.

    PubMed

    Pachauri, Vidhu; Flora, Sjs

    2015-01-01

    Gallic acid is an organic acid known for its antioxidant and anticancer properties. The present study is focused on evaluating the role of gallic acid in providing better therapeutic outcomes against arsenic-induced toxicity. Animals pre-exposed to arsenic were treated with monoisoamyl meso-2,3-dimercaptosuccinic acid (MiADMSA), a new chelating drug, alone and in combination with gallic acid, consecutively for 10 days. The study suggests that (1) gallic acid in presence of MiADMSA is only moderately beneficial against arsenic, (2) monotherapy with gallic acid is more effective than in combination with MiADMSA after arsenic exposure in reducing oxidative injury, and (3) MiADMSA monotherapy as reported previously provides significant therapeutic efficacy against arsenic. Thus, based on the present results, we conclude that gallic acid is effective against arsenic-induced oxidative stress but provides limited additional beneficial effects when administered in combination with MiADMSA. We still recommend that lower doses of gallic acid be evaluated both individually and in combination with MiADMSA, as it might not exhibit the shortcomings we observed with higher doses in this study.

  9. The effects of gallic/ferulic/caffeic acids on colour intensification and anthocyanin stability.

    PubMed

    Qian, Bing-Jun; Liu, Jian-Hua; Zhao, Shu-Juan; Cai, Jian-Xiong; Jing, Pu

    2017-08-01

    The mechanism by which copigments stabilize colour, by protecting anthocyanin chromophores from nucleophilic attack, seems well accepted. This study was to determine effects of gallic/ferulic/caffeic acids on colour intensification and anthocyanin stability. Molecular dynamics simulations were applied to explore molecular interactions. Phenolic acids intensified the colour by 19%∼27%. Colour fading during heating followed first-order reactions with half-lives of 3.66, 9.64, 3.50, and 3.39h, whereas anthocyanin degradation, determined by the pH differential method (or HPLC-PDA), followed second-order reactions with half-lives of 3.29 (3.40), 3.43 (3.39), 2.29 (0.39), and 2.72 (0.32)h alone or with gallic/ferulic/caffeic acids, respectively, suggesting that anthocyanin degradation was faster than the colour fading. The strongest protection of gallic acids might be attributed to the shortest distance (4.37Å) of its aromatic ring to the anthocyanin (AC) panel. Hyperchromic effects induced by phenolic acids were pronounced and they obscured the accelerated anthocyanin degradation due to self-association interruption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Gallic Acid Induces a Reactive Oxygen Species-Provoked c-Jun NH2-Terminal Kinase-Dependent Apoptosis in Lung Fibroblasts

    PubMed Central

    Chen, Chiu-Yuan; Chen, Kun-Chieh; Yang, Tsung-Ying; Liu, Hsiang-Chun; Hsu, Shih-Lan

    2013-01-01

    Idiopathic pulmonary fibrosis is a chronic lung disorder characterized by fibroblasts proliferation and extracellular matrix accumulation. Induction of fibroblast apoptosis therefore plays a crucial role in the resolution of this disease. Gallic acid (3,4,5-trihydroxybenzoic acid), a common botanic phenolic compound, has been reported to induce apoptosis in tumor cell lines and renal fibroblasts. The present study was undertaken to examine the role of mitogen-activated protein kinases (MAPKs) in lung fibroblasts apoptosis induced by gallic acid. We found that treatment with gallic acid resulted in activation of c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and protein kinase B (PKB, Akt), but not p38MAPK, in mouse lung fibroblasts. Inhibition of JNK using pharmacologic inhibitor (SP600125) and genetic knockdown (JNK specific siRNA) significantly inhibited p53 accumulation, reduced PUMA and Fas expression, and abolished apoptosis induced by gallic acid. Moreover, treatment with antioxidants (vitamin C, N-acetyl cysteine, and catalase) effectively diminished gallic acid-induced hydrogen peroxide production, JNK and p53 activation, and cell death. These observations imply that gallic acid-mediated hydrogen peroxide formation acts as an initiator of JNK signaling pathways, leading to p53 activation and apoptosis in mouse lung fibroblasts. PMID:23533505

  11. Synthesis, structure, antitumor activity of novel pharmaceutical co-crystals based on bispyridyl-substituted α, β-unsaturated ketones with gallic acid

    NASA Astrophysics Data System (ADS)

    Liu, Lian-Dong; Liu, Shu-Lian; Liu, Zhi-Xian; Hou, Gui-Ge

    2016-05-01

    Three novel pharmaceutical co-crystals, (A)·(gallic acid) (1), (B)·(gallic acid) (2), and (C)·(gallic acid) (3) were generated based on 2,6-bis((pyridin-4-yl)methylene)cyclohexanone (A), N-methyl-3,5-bis((pyridin-3-yl)methylene)-4-piperidone (B), N-methyl-3,5-bis((pyridin-4-yl)methylene)-4-piperidone (C) with gallic acid, respectively. They are characterized by elemental analysis, FTIR spectroscopy, 1H NMR and single-crystal X-ray diffraction. Structural analysis reveals that two pharmaceutical ingredients link each other into H-bonding-driven 3D network in 1, 2, or 2D plane in 3. In addition, their antitumor activities against human neoplastic cell lines A549, SGC-7901, MCF-7, OVCA-433, HePG2 and cytotoxicity for HUVEC cell lines by CCK-8 method were evaluated primarily. Compared with gallic acid and free A, B and C, their antitumor activities have improved distinctly, while cytotoxicities have reduced markedly, especially for co-crystal 1. This is mainly because of the synergistic effect between pharmaceutical ingredients A, B, and C and gallic acid.

  12. Gallic acid against hepatocellular carcinoma: An integrated scheme of the potential mechanisms of action from in vivo study.

    PubMed

    Aglan, Hadeer A; Ahmed, Hanaa H; El-Toumy, Sayed A; Mahmoud, Nadia S

    2017-06-01

    The global burden of hepatocellular carcinoma is increasing; actually, it is estimated as 750,000 new cases annually. This study was initiated to emphasize the possibility that gallic acid could alleviate hepatocarcinogenesis in vivo. In this study, 40 rats were enrolled and distributed as follows; group 1 was set as negative control, while all of groups 2, 3, and 4 were orally received N-nitrosodiethylamine for hepatocellular carcinoma induction. Group 2 was left untreated, whereas groups 3 and 4 were orally treated with gallic acid and doxorubicin, respectively. The current data indicated that gallic acid administration in hepatocellular carcinoma bearing rats yielded significant decline in serum levels of alpha-fetoprotein, glypican-3, and signal transducer and activator of transcription 3 along with significant enhancement in serum suppressors of cytokine signaling 3 level. Also, gallic acid-treated group displayed significant downregulation in the gene expression levels of hepatic gamma glutamyl transferase and heat shock protein gp96. Intriguingly, treatment with gallic acid remarkably ameliorated the destabilization of liver tissue architecture caused by N-nitrosodiethylamine intoxication as evidenced by histopathological investigation. In conclusion, this study demonstrates that the hepatocarcinogenic effect of N-nitrosodiethylamine can be abrogated by gallic acid supplementation owing to its affinity to regulate signal transducer and activator of transcription 3 signaling pathway through its outstanding bioactivities including antioxidant, anti-inflammatory, apoptotic, and antitumor effects.

  13. Antistaphylococcal and biofilm inhibitory activities of gallic, caffeic, and chlorogenic acids.

    PubMed

    Luís, Ângelo; Silva, Filomena; Sousa, Sónia; Duarte, Ana Paula; Domingues, Fernanda

    2014-01-01

    Staphylococcus aureus is a Gram-positive pathogen which is able to form biofilms, exhibiting a more pronounced resistance to antibiotics and disinfectants. The hurdles posed in eradicating biofilms have driven the search for new compounds able to fight these structures. Phenolic compounds constitute one of the most numerous and ubiquitous group of plant secondary metabolites with many biological activities. The aim of the present work was to study the potential antimicrobial and antibiofilm properties of gallic, caffeic, and chlorogenic acids against S. aureus as well to elucidate its mechanism of action. It was concluded that the phenolic acids studied in this work have antistaphylococcal properties. For instance, gallic acid is able to influence the adhesion properties of S. aureus. The phenolic acids tested were also able to inhibit the production of α-hemolysin by this microorganism, with the exception of chlorogenic acid. Regarding its mechanism of action, caffeic acid interferes with the stability of the cell membrane and with the metabolic activity of the cells of S. aureus.

  14. Natural flavonoids as antidiabetic agents. The binding of gallic and ellagic acids to glycogen phosphorylase b.

    PubMed

    Kyriakis, Efthimios; Stravodimos, George A; Kantsadi, Anastassia L; Chatzileontiadou, Demetra S M; Skamnaki, Vassiliki T; Leonidas, Demetres D

    2015-07-08

    We present a study on the binding of gallic acid and its dimer ellagic acid to glycogen phosphorylase (GP). Ellagic acid is a potent inhibitor with Kis of 13.4 and 7.5 μM, in contrast to gallic acid which displays Kis of 1.7 and 3.9 mM for GPb and GPa, respectively. Both compounds are competitive inhibitors with respect to the substrate, glucose-1-phoshate, and non-competitive to the allosteric activator, AMP. However, only ellagic acid functions with glucose in a strongly synergistic mode. The crystal structures of the GPb-gallic acid and GPb-ellagic acid complexes were determined at high resolution, revealing that both ligands bind to the inhibitor binding site of the enzyme and highlight the structural basis for the significant difference in their inhibitory potency. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. SERS spectrum of gallic acid obtained from a modified silver colloid

    NASA Astrophysics Data System (ADS)

    Garrido, C.; Diaz-Fleming, G.; Campos-Vallette, M. M.

    2016-06-01

    Two different crystals of the gallic acid were microscopically separated from a p.a. commercial product. The Raman spectra analysis allowed distinguishing monomeric and dimeric structures. The vibrational wave numbers were computed using DFT quantum chemical calculations. The data obtained from wave number calculations are used to assign vibrational bands obtained in the Raman spectrum. The dimer, characterized as ellagic acid, involves the carboxyl and hydroxyl moieties. The Raman spectrum in water solution of each species is dominated by the monomeric form. A low negatively charged Ag colloid allowed obtain to the best of our knowledge, the first surface enhanced Raman scattering (SERS) spectrum of the gallic acid. The possible electrophilic attacking sites of the title molecule are identified using MEP surface plot study and the orientation of the analyte on the metal surface is proposed tilted to the surface.

  16. Combined Efficacy of Gallic Acid and MiADMSA with Limited Beneficial Effects Over MiADMSA Against Arsenic-induced Oxidative Stress in Mouse

    PubMed Central

    Pachauri, Vidhu; Flora, SJS

    2015-01-01

    Gallic acid is an organic acid known for its antioxidant and anticancer properties. The present study is focused on evaluating the role of gallic acid in providing better therapeutic outcomes against arsenic-induced toxicity. Animals pre-exposed to arsenic were treated with monoisoamyl meso-2,3-dimercaptosuccinic acid (MiADMSA), a new chelating drug, alone and in combination with gallic acid, consecutively for 10 days. The study suggests that (1) gallic acid in presence of MiADMSA is only moderately beneficial against arsenic, (2) monotherapy with gallic acid is more effective than in combination with MiADMSA after arsenic exposure in reducing oxidative injury, and (3) MiADMSA monotherapy as reported previously provides significant therapeutic efficacy against arsenic. Thus, based on the present results, we conclude that gallic acid is effective against arsenic-induced oxidative stress but provides limited additional beneficial effects when administered in combination with MiADMSA. We still recommend that lower doses of gallic acid be evaluated both individually and in combination with MiADMSA, as it might not exhibit the shortcomings we observed with higher doses in this study. PMID:26339189

  17. Tuning stable and unstable aggregates of gallic acid capped gold nanoparticles using Mg2+ as coordinating agent.

    PubMed

    Kim, Dae-Young; Shinde, Surendra; Ghodake, Gajanan

    2017-05-15

    High reducibility of gallic acid allows synthesis of small sized monodisperse gold nanoparticles (GNPs) at ambient temperature (25°C). Mg 2+ rapidly interacts with the gallic acid ligands and suppresses the dispersion of GNPs therefore, causing a decrease in UV-vis absorbance intensity, and color change from red to blue. Thus, the colorimetric response of GNPs with Mg 2+ was investigated by observing temporal quenching of UV-vis absorbance and precise tuning of fractal growth of GNP aggregates. Moreover, Mg 2+ at concentrations as low as 200ppb can be detected using gallic acid ligand-mediated coordination chemistry which results quenching in UV-vis absorbance proportional to the exposure time. This gallic acid-based colorimetric sensor shown a great potential for the selective detection of pathologically important electrolyte Mg 2+ without any interference from other cations Ca 2+ and K + . Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The fifth solvatomorph of gallic acid with a supramolecular channel structure: Structural complexity and phase transitions

    NASA Astrophysics Data System (ADS)

    Thomas, Sajesh P.; Kaur, Ramanpreet; Kaur, Jassjot; Sankolli, Ravish; Nayak, Susanta K.; Guru Row, Tayur N.

    2013-01-01

    A new solvatomorph of gallic acid was generated using chiral additive technique and characterized by single crystal and powder X-ray diffraction, C-13 NMR, IR spectroscopic techniques and thermal analysis. The supramolecular channels formed by hexameric motifs of gallic acid and solvent molecules contain highly disordered solvent molecules with fractional occupancies.

  19. Propyl gallate synthesis using acidophilic tannase and simultaneous production of tannase and gallic acid by marine Aspergillus awamori BTMFW032.

    PubMed

    Beena, P S; Basheer, Soorej M; Bhat, Sarita G; Bahkali, Ali H; Chandrasekaran, M

    2011-07-01

    Marine Aspergillus awamori BTMFW032, recently reported by us, produce acidophilic tannase as extracellular enzyme. Here, we report the application of this enzyme for synthesis of propyl gallate by direct transesterification of tannic acid and in tea cream solubilisation besides the simultaneous production of gallic acid along with tannase under submerged fermentation by this fungus. This acidophilic tannase enabled synthesis of propyl gallate by direct transesterification of tannic acid using propanol as organic reaction media under low water conditions. The identity of the product was confirmed with thin layer chromatography and Fourier transform infrared spectroscopy. It was noted that 699 U/ml of enzyme could give 60% solubilisation of tea cream within 1 h. Enzyme production medium was optimized adopting Box-Behnken design for simultaneous synthesis of tannase and gallic acid. Process variables including tannic acid, sodium chloride, ferrous sulphate, dipotassium hydrogen phosphate, incubation period and agitation were recognized as the critical factors that influenced tannase and gallic acid production. The model obtained predicted 4,824.61 U/ml of tannase and 136.206 μg/ml gallic acid after 48 h of incubation, whereas optimized medium supported 5,085 U/ml tannase and 372.6 μg/ml of gallic acid production after 36 and 84 h of incubation, respectively, with a 15-fold increase in both enzyme and gallic acid production. Results indicated scope for utilization of this acidophilic tannase for transesterification of tannic acid into propyl gallate, tea cream solubilisation and simultaneous production of gallic acid along with tannase.

  20. EPR spectral investigation of radiation-induced radicals of gallic acid.

    PubMed

    Tuner, Hasan

    2017-11-01

    In the present work, spectroscopic features of the radiation-induced radicals of gallic acid compounds were investigated using electron paramagnetic resonance (EPR) spectroscopy. While un-irradiated samples presented no EPR signal, irradiated samples exhibited an EPR spectrum consisting of an intense resonance line at the center and weak lines on both sides. Detailed microwave saturation investigations were carried out to determine the origin of the experimental EPR lines. It is concluded that the two side lines of the triplet satellite originate from forbidden "spin-flip" transitions. The spectroscopic and structural features of the radiation-induced radicals were determined using EPR spectrum fittings. The experimental EPR spectra of the two gallic acid compounds were consistent with the calculated EPR spectroscopic features of the proposed radicals. It is concluded that the most probable radicals are the cyclohexadienyl-type, [Formula: see text] radicals for both compounds.

  1. Free radicals produced by the oxidation of gallic acid: An electron paramagnetic resonance study.

    PubMed

    Eslami, Angelique C; Pasanphan, Wanvimol; Wagner, Brett A; Buettner, Garry R

    2010-08-05

    Gallic acid (3,4,5-trihydroxybenzoic acid) is found in a wide variety of plants; it is extensively used in tanning, ink dyes, as well as in the manufacturing of paper. The gallate moiety is a key component of many functional phytochemicals. In this work electron paramagnetic spectroscopy (EPR) was used to detect the free radicals generated by the air-oxidation of gallic acid. We found that gallic acid produces two different radicals as a function of pH. In the pH range between 7-10, the spectrum of the gallate free radical is a doublet of triplets (aH = 1.00 G, aH = 0.23 G, aH = 0.28 G). This is consistent with three hydrogens providing hyperfine splitting. However, in a more alkaline environment, pH >10, the hyperfine splitting pattern transforms into a 1:2:1 pattern (aH (2) = 1.07 G). Using D2O as a solvent, we demonstrate that the third hydrogen (i.e. aH = 0.28 G) at lower pH is a slowly exchanging hydron, participating in hydrogen bonding with two oxygens in ortho position on the gallate ring. The pKa of this proton has been determined to be 10. This simple and novel approach permitted the understanding of the prototropic equilibrium of the semiquinone radicals generated by gallic acid, a ubiquitous compound, allowing new insights into its oxidation and subsequent reactions.

  2. Gallic acid modulates phenotypic behavior and gene expression in oral squamous cell carcinoma cells by interfering with leptin pathway.

    PubMed

    Santos, Eliane Macedo Sobrinho; da Rocha, Rogério Gonçalves; Santos, Hércules Otacílio; Guimarães, Talita Antunes; de Carvalho Fraga, Carlos Alberto; da Silveira, Luiz Henrique; Batista, Paulo Ricardo; de Oliveira, Paulo Sérgio Lopes; Melo, Geraldo Aclécio; Santos, Sérgio Henrique; de Paula, Alfredo Maurício Batista; Guimarães, André Luiz Sena; Farias, Lucyana Conceição

    2018-01-01

    Gallic acid is a polyphenolic compost appointed to interfere with neoplastic cells behavior. Evidence suggests an important role of leptin in carcinogenesis pathways, inducing a proliferative phenotype. We investigated the potential of gallic acid to modulate leptin-induced cell proliferation and migration of oral squamous cell carcinoma cell lines. The gallic acid effect on leptin secretion by oral squamous cell carcinoma cells, as well as the underlying molecular mechanisms, was also assessed. For this, we performed proliferation, migration, immunocytochemical and qPCR assays. The expression levels of cell migration-related genes (MMP2, MMP9, Col1A1, and E-cadherin), angiogenesis (HIF-1α, mir210), leptin signaling (LepR, p44/42 MAPK), apoptosis (casp-3), and secreted leptin levels by oral squamous cell carcinoma cells were also measured. Gallic acid decreased proliferation and migration of leptin-treated oral squamous cell carcinoma cells, and reduced mRNA expression of MMP2, MMP9, Col1A1, mir210, but did not change HIF-1α. Gallic acid decreased levels of leptin secreted by oral squamous cell carcinoma cells, accordingly with downregulation of p44/42 MAPK expression. Thus, gallic acid appears to break down neoplastic phenotype of oral squamous cell carcinoma cells by interfering with leptin pathway. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. The anti-inflammatory and anti-apoptotic effects of gallic acid against mucosal inflammation- and erosions-induced by gastric ischemia-reperfusion in rats

    PubMed Central

    Mard, Seyyed Ali; Mojadami, Shahnaz; Farbood, Yaghoob; Gharib Naseri, Mohammad Kazem

    2015-01-01

    The present study aimed to evaluate the protective effect of gallic acid on gastric mucosal lesions caused by ischemia-reperfusion (I/R) injury in rat. Forty male rats were randomly divided into sham, control (I/R injury) and three gallic acid-pretreated groups. To induce I/R lesions, the celiac artery was clamped for 30 min and then the clamp was removed to allow reperfusion for 6 hr. Pretreated rats received gallic acid (15, 30 or 60 mg kg-1, intraperitoneally) 30 min prior to the induction of I/R injury. Macroscopic and microscopic evaluations of the areas of ulceration were compared. Samples of gastric mucosa were collected to evaluate the protein expression of pro-apoptotic factor, caspase-3, and pro-inflammatory enzyme, inducible nitric oxide synthase (iNOS) using western blot. Pretreatment with gallic acid decreased the total area of gastric lesions. Gallic acid at 30 mg kg-1 decreased the levels of protein expression of caspase-3 and iNOS induced by I/R injury. Our findings showed the protective effect of gallic acid on gastric mucosa against ischemia-reperfusion injury. This effect of gallic acid was mainly mediated by reducing protein expression of iNOS and caspase-3. PMID:26973766

  4. The anti-inflammatory and anti-apoptotic effects of gallic acid against mucosal inflammation- and erosions-induced by gastric ischemia-reperfusion in rats.

    PubMed

    Mard, Seyyed Ali; Mojadami, Shahnaz; Farbood, Yaghoob; Gharib Naseri, Mohammad Kazem

    2015-01-01

    The present study aimed to evaluate the protective effect of gallic acid on gastric mucosal lesions caused by ischemia-reperfusion (I/R) injury in rat. Forty male rats were randomly divided into sham, control (I/R injury) and three gallic acid-pretreated groups. To induce I/R lesions, the celiac artery was clamped for 30 min and then the clamp was removed to allow reperfusion for 6 hr. Pretreated rats received gallic acid (15, 30 or 60 mg kg(-1), intraperitoneally) 30 min prior to the induction of I/R injury. Macroscopic and microscopic evaluations of the areas of ulceration were compared. Samples of gastric mucosa were collected to evaluate the protein expression of pro-apoptotic factor, caspase-3, and pro-inflammatory enzyme, inducible nitric oxide synthase (iNOS) using western blot. Pretreatment with gallic acid decreased the total area of gastric lesions. Gallic acid at 30 mg kg(-1) decreased the levels of protein expression of caspase-3 and iNOS induced by I/R injury. Our findings showed the protective effect of gallic acid on gastric mucosa against ischemia-reperfusion injury. This effect of gallic acid was mainly mediated by reducing protein expression of iNOS and caspase-3.

  5. Effect of the structure of gallic acid and its derivatives on their interaction with plant ferritin.

    PubMed

    Wang, Qunqun; Zhou, Kai; Ning, Yong; Zhao, Guanghua

    2016-12-15

    Gallic acid and its derivatives co-exist with protein components in foodstuffs, but there is few report on their interaction with proteins. On the other hand, plant ferritin represents not only a novel class of iron supplement, but also a new nanocarrier for encapsulation of bioactive nutrients. However, plant ferritin is easy to be degraded by pepsin in the stomach, thereby limiting its application. Herein, we investigated the interaction of gallic acid and its derivatives with recombinant soybean seed H-2 ferritin (rH-2). We found that these phenolic acids interacted with rH-2 in a structure-dependent manner; namely, gallic acid (GA), methyl gallate (MEGA) and propyl gallate (PG) having three HO groups can bind to rH-2, while their analogues with two HO groups cannot. Consequently, such binding largely inhibited ferritin degradation by pepsin. These findings advance our understanding of the relationship between the structure and function of phenolic acids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Gallic acid-based indanone derivative interacts synergistically with tetracycline by inhibiting efflux pump in multidrug resistant E. coli.

    PubMed

    Dwivedi, Gaurav Raj; Tiwari, Nimisha; Singh, Aastha; Kumar, Akhil; Roy, Sudeep; Negi, Arvind Singh; Pal, Anirban; Chanda, Debabrata; Sharma, Ashok; Darokar, Mahendra P

    2016-03-01

    The purpose of the present study was to study the synergy potential of gallic acid-based derivatives in combination with conventional antibiotics using multidrug resistant cultures of Escherichia coli. Gallic acid-based derivatives significantly reduced the MIC of tetracycline against multidrug resistant clinical isolate of E. coli. The best representative, 3-(3',4,'5'-trimethoxyphenyl)-4,5,6-trimethoxyindanone-1, an indanone derivative of gallic acid, was observed to inhibit ethidium bromide efflux and ATPase which was also supported by in silico docking. This derivative extended the post-antibiotic effect and decreased the mutation prevention concentration of tetracycline. This derivative in combination with TET was able to reduce the concentration of TNFα up to 18-fold in Swiss albino mice. This derivative was nontoxic and well tolerated up to 300 mg/kg dose in subacute oral toxicity study in mice. This is the first report of gallic acid-based indanone derivative as drug resistance reversal agent acting through ATP-dependent efflux pump inhibition.

  7. Acute toxicity and sublethal effects of gallic and pelargonic acids on the zebrafish Danio rerio.

    PubMed

    Techer, Didier; Milla, Sylvain; Fontaine, Pascal; Viot, Sandrine; Thomas, Marielle

    2015-04-01

    Gallic and pelargonic acids are naturally found in a variety of plants and food products. Despite their extensive use in man-made applications, little is known regarding their potential risks to aquatic vertebrates. The aim of this work was to assess the acute toxicity of these polyphenolic and fatty acid compounds to the zebrafish. In order to get insights into sublethal effects, the enzyme activity of usual biomarkers related to oxidative stress and biotransformation were also assessed in fish. These latter included total superoxide dismutase, catalase as well as total glutathione peroxidase for antioxidant defence mechanisms and glutathione S-transferase for biotransformation related enzyme. Gallic acid was practically non-toxic (96-h lethal concentration (LC50) > 100 mg/L) whereas pelargonic acid was slightly toxic (96-h LC50 of 81.2 mg/L). Moreover, biomarker analyses indicated enhanced superoxide dismutase activity in fish exposed to 20, 40 and 100 mg/L of gallic acid compared to control. A dose-dependent induction of glutathione peroxidase and glutathione S-transferase was reported following gallic acid exposure at the tested concentrations of 10, 20 and 40 mg/L, with the exception of 100 mg/L of substance where basal activity levels were reported. In the case of pelargonic acid, there was no change in antioxidant enzyme activity while an inhibition of glutathione S-transferase was observed from organisms exposed to 45, 58 and 76 mg/L of test solution. The results concerning sublethal effects on biological parameters of zebrafish highlighted thereby the need for further investigations following chronic exposure to both organic acids.

  8. Effects of Gallic Acid and Cyclosporine A on Antioxidant Capacity and Cardiac Markers of Rat Isolated Heart After Ischemia/Reperfusion

    PubMed Central

    Badavi, Mohammad; Sadeghi, Najmeh; Dianat, Mahin; Samarbafzadeh, Alireza

    2014-01-01

    Background: Myocardial infarction is one of the important causes of death during old ages. Gallic acid as an antioxidant or cyclosporine A (CsA) as inhibitor of mitochondrial permeability transition pore (mPTP) alone could prevent these complications to some extent, but their combination effect has not been investigated. Objectives: The aim of this study was to determine the combined effect of gallic acid and CsA on antioxidant capacity of isolated heart tissues during ischemia reperfusion. Materials and Methods: Eighty male Wistar rats were randomly assigned to different groups: sham, control (Ca, received saline, 1 mL/kg); 3 groups were pretreated with gallic acid (G1a: 7.5, G2a: 15, G3a: 30 mg/kg) for 10 days, and the other 3 groups were pretreated with gallic acid and received CsA (0.2 µM) for 10 minutes before induction of ischemia and during the first 10 minutes of reperfusion (G1b, G2b and G3b) and the last group received CsA alone (Cb). After 10 days of pretreatment, the heart was isolated and transferred to the Langendorff apparatus and exposed to 30 minutes ischemia followed by 60 minutes of reperfusion. After that cardiac markers and antioxidant enzymes were assessed in cardiac tissues. Results: Lactate dehydrogenase (LDH), Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) activity increased and malondialdehyde (MDA) decreased in animals pretreated with gallic acid significantly. However, pretreatment with gallic acid followed by CsA during reperfusion improved the antioxidant capacity and cardiac marker enzymes and restored the lipid peroxidation more effective than gallic acid or CsA alone. Nevertheless, CsA did not change the cardiac marker enzymes significantly. Conclusions: Gallic acid and CsA combination improved antioxidant capacity and cell membrane integrity more than each one alone. Therefore, it can be a therapeutic approach to reduce the I/R injury. PMID:25068044

  9. Anti-Inflammatory Effect of Gallic Acid-Eluting Stent in a Porcine Coronary Restenosis Model

    PubMed Central

    Seob Lim, Kyung; Park, Jun-Kyu; Ho Jeong, Myung; Ho Bae, In; Sung Park, Dae; Won Shim, Jae; Ha Kim, Jung; Kuk Kim, Hyun; Soo Kim, Sung; Sun Sim, Doo; Joon Hong, Young; Han Kim, Ju; Ahn, Youngkeun

    2018-01-01

    Background Gallic acid (3,4,5-trihydroxybenzoic acid) is a natural polyphenol and strong natural antioxidant found abundantly in red wine and green tea. The aim of this study was to examine the anti-inflammatory effect of a novel gallic acid-eluting stent in a porcine coronary restenosis model. Methods Fifteen pigs were randomized into three groups; in which a total of 30 coronary arteries (10 in each group) were implanted with gallic acid-eluting stents (GESs, n = 10), gallic acid and sirolimus-eluting stents (GSESs, n = 10), or sirolimus-eluting stents (SESs, n = 10). Histopathologic analysis was performed 28 days after stenting. Results There were no significant differences in injury score and fibrin score among the groups, however there were significant differences in the internal elastic lamina (4.0 ± 0.83 mm2 in GES vs. 3.0 ± 0.53 mm2 in GSES vs. 4.6 ± 1.43 mm2 in SES, p < 0.0001), lumen area (2.3 ± 0.49 mm2 in GES vs. 1.9 ± 0.67 mm2 in GSES vs. 2.9 ± 0.56 mm2 in SES, p < 0.0001), neointimal area (1.7 ± 0.63 mm2 in GES vs. 1.1 ± 0.28 mm2 in GSES vs. 1.7 ± 1.17 mm2 in SES, p < 0.05), and percent area of stenosis (42.4% ± 9.22% in GES vs. 38.2% ± 12.77% in GSES vs. 33.9% ± 15.64% in SES, p < 0.05). The inflammation score was significantly lower in the GES and GSES groups compared to that in the SES group [1.0 (range: 1.0 to 2.0) in GES vs. 1.0 (range: 1.0 to 1.0) in GSES vs. 1.5 (range: 1.0 to 3.0) in SES, p < 0.05]. Conclusions The GES group had a greater percent area of stenosis than the SES group. Although gallic acid in the GES and GSES groups did not show a synergistic effect in suppressing neointimal hyperplasia, it resulted in greater inhibition of the inflammatory reaction in the porcine coronary restenosis model than in the SES group. PMID:29844643

  10. Computational study of molecular electrostatic potential, docking and dynamics simulations of gallic acid derivatives as ABL inhibitors.

    PubMed

    Raghi, K R; Sherin, D R; Saumya, M J; Arun, P S; Sobha, V N; Manojkumar, T K

    2018-04-05

    Chronic myeloid leukemia (CML), a hematological malignancy arises due to the spontaneous fusion of the BCR and ABL gene, resulting in a constitutively active tyrosine kinase (BCR-ABL). Pharmacological activity of Gallic acid and 1,3,4-Oxadiazole as potential inhibitors of ABL kinase has already been reported. Objective of this study is to evaluate the ABL kinase inhibitory activity of derivatives of Gallic acid fused with 1,3,4-Oxadiazole moieties. Attempts have been made to identify the key structural features responsible for drug likeness of the Gallic acid and the 1,3,4-Oxadiazole ring using molecular electrostatic potential maps (MESP). To investigate the inhibitory activity of Gallic acid derivatives towards the ABL receptor, we have applied molecular docking and molecular dynamics (MD) simulation approaches. A comparative study was performed using Bosutinib as the standard which is an approved CML drug acting on the same receptor. Furthermore, the novel compounds designed and reported here in were evaluated for ADME properties and the results indicate that they show acceptable pharmacokinetic properties. Accordingly these compounds are predicted to be drug like with low toxicity potential. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. EGFR-dependent signalling reduced and p38 dependent apoptosis required by Gallic acid in Malignant Mesothelioma cells.

    PubMed

    Demiroglu-Zergeroglu, Asuman; Candemir, Gulsife; Turhanlar, Ebru; Sagir, Fatma; Ayvali, Nurettin

    2016-12-01

    The unrestrained EGFR signalling contributes to malignant phenotype in a number of cancers including Malignant Mesotheliomas. Present study was designed to evaluate EGFR-dependent anti-proliferative and apoptotic effects of Gallic acid in transformed Mesothelial (MeT-5A) and Malignant Mesothelioma (SPC212) cells. Gallic acid reduced the viability of Malignant Mesothelioma cells in a concentration and time-dependent manner. However, viability of mesothelial cells reduced only at high concentration and longer time periods. Gallic acid restrained the activation of EGFR, ERK1/2 and AKT proteins and down regulated expression of Cyclin D and Bcl-2 genes, but upregulated the expression of p21 gene in EGF-induced SPC212 cells. GA-induced transitory G1 arrest and triggered mitochondrial and death receptor mediated apoptosis, which requires p38MAPK activation. The data provided here indicate that GA is able to inhibit EGFR dependent proliferation and survival signals and induces p38 pathway dependent apoptosis in Malignant Mesothelioma cells. On the basis of these experimental findings it is worthwhile to investigate further the biological activity of Gallic acid on other Mesothelioma cell lines harbouring aberrant EGFR signals. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Gallic acid as a protective antioxidant against anthocyanin degradation and color loss in vitamin-C fortified cranberry juice.

    PubMed

    Roidoung, Sunisa; Dolan, Kirk D; Siddiq, Muhammad

    2016-11-01

    The objective of this study was to evaluate different antioxidants for anthocyanin (ACY) retention in vitamin C fortified cranberry juice and assess its quality. Cranberry juice was fortified with 40-80mg/100mL vitamin C and added hesperidin, catechin, and gallic acid at different concentrations. Juice was pasteurized at 85°C for 1min and stored at 23°C for 16days. ACYs, vitamin C, color intensity, and browning index (BI) were evaluated at 2-day intervals. Gallic acid was found to be the most effective antioxidant against ACYs degradation and significantly (p<0.05) increased red color intensity by 37% and ACY concentration by 41%, compared to the control. After 16-day storage, the BI of gallic acid-added juice was significantly lower (0.80 vs 1.00) than the control juice. The outcome of this research provided a potential solution of using gallic acid to preserve a health-beneficial component (ACYs), and endogenous red color in cranberry juice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The effect of gallic acid on cytotoxicity, Ca(2+) homeostasis and ROS production in DBTRG-05MG human glioblastoma cells and CTX TNA2 rat astrocytes.

    PubMed

    Hsu, Shu-Shong; Chou, Chiang-Ting; Liao, Wei-Chuan; Shieh, Pochuen; Kuo, Daih-Huang; Kuo, Chun-Chi; Jan, Chung-Ren; Liang, Wei-Zhe

    2016-05-25

    Gallic acid, a polyhydroxylphenolic compound, is widely distributed in various plants, fruits and foods. It has been shown that gallic acid passes into blood brain barrier and reaches the brain tissue of middle cerebral artery occlusion rats. However, the effect of gallic acid on Ca(2+) signaling in glia cells is unknown. This study explored whether gallic acid affected Ca(2+) homeostasis and induced Ca(2+)-associated cytotoxicity in DBTRG-05MG human glioblastoma cells and CTX TNA2 rat astrocytes. Gallic acid (20-40 μM) concentration-dependently induced cytotoxicity and intracellular Ca(2+) level ([Ca(2+)]i) increases in DBTRG-05MG cells but not in CTX TNA2 cells. In DBTRG-05MG cells, the Ca(2+) response was decreased by half by removal of extracellular Ca(2+). In Ca(2+)-containing medium, gallic acid-induced Ca(2+) entry was inhibited by store-operated Ca(2+) channel inhibitors (2-APB, econazole and SKF96365). In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin abolished gallic acid-induced [Ca(2+)]i increases. Conversely, incubation with gallic acid also abolished thapsigargin-induced [Ca(2+)]i increases. Inhibition of phospholipase C with U73122 abolished gallic acid-induced [Ca(2+)]i increases. Gallic acid significantly caused cytotoxicity in DBTRG-05MG cells, which was partially prevented by prechelating cytosolic Ca(2+) with BAPTA-AM. Moreover, gallic acid activated mitochondrial apoptotic pathways that involved ROS production. Together, in DBTRG-05MG cells but not in CTX TNA2 cells, gallic acid induced [Ca(2+)]i increases by causing Ca(2+) entry via 2-APB, econazole and SKF96365-sensitive store-operated Ca(2+) entry, and phospholipase C-dependent release from the endoplasmic reticulum. This Ca(2+) signal subsequently evoked mitochondrial pathways of apoptosis that involved ROS production. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Effects of gallic acid on delta - aminolevulinic dehydratase activity and in the biochemical, histological and oxidative stress parameters in the liver and kidney of diabetic rats.

    PubMed

    de Oliveira, Lizielle Souza; Thomé, Gustavo Roberto; Lopes, Thauan Faccin; Reichert, Karine Paula; de Oliveira, Juliana Sorraila; da Silva Pereira, Aline; Baldissareli, Jucimara; da Costa Krewer, Cristina; Morsch, Vera Maria; Chitolina Schetinger, Maria Rosa; Spanevello, Roselia Maria

    2016-12-01

    Diabetes mellitus (DM) is characterised by hyperglycaemia associated with the increase of oxidative stress. Gallic acid has potent antioxidant properties. The aim of this study was to evaluate the effect of gallic acid on the biochemical, histological and oxidative stress parameters in the liver and kidney of diabetic rats. Male rats were divided in groups: control, gallic acid, diabetic and diabetic plus gallic acid. DM was induced in the animals by intraperitoneal injection of streptozotocin (65mg/kg). Gallic acid (30mg/kg) was administered orally for 21days. Our results showed an increase in reactive species levels and lipid peroxidation, and a decrease in activity of the enzymes superoxide dismutase and delta-aminolevulinic acid dehydratase in the liver and kidney of the diabetic animals (P<0.05). Gallic acid treatment showed protective effects in these parameters evaluated, and also prevented a decrease in the activity of catalase and glutathione S-transferase, and vitamin C levels in the liver of diabetic rats. In addition, gallic acid reduced the number of nuclei and increased the area of the core in hepatic tissue, and increased the glomerular area in renal tissue. These results indicate that gallic acid can protect against oxidative stress-induced damage in the diabetic state. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Anti-pandemic influenza A (H1N1) virus potential of catechin and gallic acid.

    PubMed

    You, Huey-Ling; Huang, Chao-Chun; Chen, Chung-Jen; Chang, Cheng-Chin; Liao, Pei-Lin; Huang, Sheng-Teng

    2018-05-01

    The pandemic influenza A (H1N1) virus has spread worldwide and infected a large proportion of the human population. Discovery of new and effective drugs for the treatment of influenza is a crucial issue for the global medical community. According to our previous study, TSL-1, a fraction of the aqueous extract from the tender leaf of Toonasinensis, has demonstrated antiviral activities against pandemic influenza A (H1N1) through the down-regulation of adhesion molecules and chemokine to prevent viral attachment. The aim of the present study was to identify the active compounds in TSL-1 which exert anti-influenza A (H1N1) virus effects. XTT assay was used to detect the cell viability. Meanwhile, the inhibitory effect on the pandemic influenza A (H1N1) virus was analyzed by observing plaque formation, qRT-PCR, neuraminidase activity, and immunofluorescence staining of influenza A-specific glycoprotein. Both catechin and gallic acid were found to be potent inhibitors in terms of influenza virus mRNA replication and MDCK plaque formation. Additionally, both compounds inhibited neuraminidase activities and viral glycoprotein. The 50% effective inhibition concentration (EC 50 ) of catechin and gallic acid for the influenza A (H1N1) virus were 18.4 μg/mL and 2.6 μg/mL, respectively; whereas the 50% cytotoxic concentrations (CC 50 ) of catechin and gallic acid were >100 μg/mL and 22.1 μg/mL, respectively. Thus, the selectivity indexes (SI) of catechin and gallic acid were >5.6 and 22.1, respectively. The present study demonstrates that catechin might be a safe reagent for long-term use to prevent influenza A (H1N1) virus infection; whereas gallic acid might be a sensitive reagent to inhibit influenza virus infection. We conclude that these two phyto-chemicals in TSL-1 are responsible for exerting anti-pandemic influenza A (H1N1) virus effects. Copyright © 2017. Published by Elsevier Taiwan LLC.

  16. Inhibition of class IIa histone deacetylase activity by gallic acid, sulforaphane, TMP269, and panobinostat.

    PubMed

    Choi, Sin Young; Kee, Hae Jin; Jin, Li; Ryu, Yuhee; Sun, Simei; Kim, Gwi Ran; Jeong, Myung Ho

    2018-05-01

    Histone deacetylase (HDAC) inhibitors are gaining increasing attention as potential therapeutics for cardiovascular diseases as well as cancer. We recently reported that the class II HDAC inhibitor, MC1568, and the phytochemical, gallic acid, lowered high blood pressure in mouse models of hypertension. We hypothesized that class II HDACs may be involved in the regulation of hypertension. The aim of this study was to determine and compare the effects of well-known HDAC inhibitors (TMP269, panobinostat, and MC1568), phytochemicals (gallic acid, sulforaphane, and piceatannol), and anti-hypertensive drugs (losartan, carvedilol, and furosemide) on activities of class IIa HDACs (HDAC4, 5, 7, and 9). The selective class IIa HDAC inhibitor, TMP269, and the pan-HDAC inhibitor, panobinostat, but not MC1568, clearly inhibited class IIa HDAC activities. Among the three phytochemicals, gallic acid showed remarkable inhibition, whereas sulforaphane presented mild inhibition of class IIa HDACs. Piceatannol inhibited only HDAC7 activity. As expected, the anti-hypertensive drugs losartan, carvedilol, and furosemide did not affect the activity of any class IIa HDAC. In addition, we evaluated the inhibitory effect of several compounds on the activity of class l HDACs (HDAC1, 2, 3, and 8) and class IIb HDAC (HDAC6). MC1568 did not affect the activities of HDAC1, HDAC2, and HDAC3, but it reduced the activity of HDAC8 at concentrations of 1 and 10 μM. Gallic acid weakly inhibited HDAC1 and HDAC6 activities, but strongly inhibited HDAC8 activity with effectiveness comparable to that of trichostatin A. Inhibition of HDAC2 activity by sulforaphane was stronger than that by piceatnnaol. These results indicated that gallic acid is a powerful dietary inhibitor of HDAC8 and class IIa/b HDAC activities. Sulforaphane may also be used as a dietary inhibitor of HDAC2 and class IIa HDAC. Our findings suggest that the class II HDAC inhibitor, MC1568, does not inhibit class IIa HDAC, but inhibits

  17. Gallic acid grafting effect on delivery performance and antiglaucoma efficacy of antioxidant-functionalized intracameral pilocarpine carriers.

    PubMed

    Chou, Shih-Feng; Luo, Li-Jyuan; Lai, Jui-Yang

    2016-07-01

    Functionalization of therapeutic carrier biomaterials can potentially provide additional benefits in drug delivery for disease treatment. Given that this modification determines final therapeutic efficacy of drug carriers, here, we investigate systematically the role of grafting amount of antioxidant gallic acid (GA) onto GN in situ gelling copolymers made of biodegradable gelatin and thermo-responsive poly(N-isopropylacrylamide) for intracameral delivery of pilocarpine in antiglaucoma treatment. As expected, increasing redox reaction time increased total antioxidant activities and free radical scavenging abilities of synthesized carrier biomaterials. The hydrophilic nature of antioxidant molecules strongly affected physicochemical properties of carrier materials with varying GA grafting amounts, thereby dictating in vitro release behaviors and mechanisms of pilocarpine. In vitro oxidative stress challenges revealed that biocompatible carriers with high GA content alleviated lens epithelial cell damage and reduced reactive oxygen species. Intraocular pressure and pupil diameter in glaucomatous rabbits showed correlations with GA-mediated release of pilocarpine. Additionally, enhanced pharmacological treatment effects prevented corneal endothelial cell loss during disease progression. Increasing GA content increased total antioxidant level and decreased nitrite level in the aqueous humor, suggesting a much improved antioxidant status in glaucomatous eyes. This work significantly highlights the dependence of physicochemical properties, drug release behaviors, and bioactivities on intrinsic antioxidant capacities of therapeutic carrier biomaterials for glaucoma treatment. Development of injectable biodegradable polymer depots and functionalization of carrier biomaterials with antioxidant can potentially provide benefits such as improved bioavailability, controlled release pattern, and increased therapeutic effect in intracameral pilocarpine administration for glaucoma

  18. Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity

    PubMed Central

    Ryu, Yuhee; Jin, Li; Kee, Hae Jin; Piao, Zhe Hao; Cho, Jae Yeong; Kim, Gwi Ran; Choi, Sin Young; Lin, Ming Quan; Jeong, Myung Ho

    2016-01-01

    Gallic acid, a type of phenolic acid, has been shown to have beneficial effects in inflammation, vascular calcification, and metabolic diseases. The present study was aimed at determining the effect and regulatory mechanism of gallic acid in cardiac hypertrophy and fibrosis. Cardiac hypertrophy was induced by isoproterenol (ISP) in mice and primary neonatal cardiomyocytes. Gallic acid pretreatment attenuated concentric cardiac hypertrophy. It downregulated the expression of atrial natriuretic peptide, brain natriuretic peptide, and beta-myosin heavy chain in vivo and in vitro. Moreover, it prevented interstitial collagen deposition and expression of fibrosis-associated genes. Upregulation of collagen type I by Smad3 overexpression was observed in cardiac myoblast H9c2 cells but not in cardiac fibroblasts. Gallic acid reduced the DNA binding activity of phosphorylated Smad3 in Smad binding sites of collagen type I promoter in rat cardiac fibroblasts. Furthermore, it decreased the ISP-induced phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal regulated kinase (ERK) protein in mice. JNK2 overexpression reduced collagen type I and Smad3 expression as well as GATA4 expression in H9c2 cells and cardiac fibroblasts. Gallic acid might be a novel therapeutic agent for the prevention of cardiac hypertrophy and fibrosis by regulating the JNK2 and Smad3 signaling pathway. PMID:27703224

  19. Anti-Inflammatory Activities of Pentaherbs Formula, Berberine, Gallic Acid and Chlorogenic Acid in Atopic Dermatitis-Like Skin Inflammation.

    PubMed

    Tsang, Miranda S M; Jiao, Delong; Chan, Ben C L; Hon, Kam-Lun; Leung, Ping C; Lau, Clara B S; Wong, Eric C W; Cheng, Ling; Chan, Carmen K M; Lam, Christopher W K; Wong, Chun K

    2016-04-20

    Atopic dermatitis (AD) is a common allergic skin disease, characterized by dryness, itchiness, thickening and inflammation of the skin. Infiltration of eosinophils into the dermal layer and presence of edema are typical characteristics in the skin biopsy of AD patients. Previous in vitro and clinical studies showed that the Pentaherbs formula (PHF) consisting of five traditional Chinese herbal medicines, Flos Lonicerae, Herba Menthae, Cortex Phellodendri, Cortex Moutan and Rhizoma Atractylodis at w/w ratio of 2:1:2:2:2 exhibited therapeutic potential in treating AD. In this study, an in vivo murine model with oxazolone (OXA)-mediated dermatitis was used to elucidate the efficacy of PHF. Active ingredients of PHF water extract were also identified and quantified, and their in vitro anti-inflammatory activities on pruritogenic cytokine IL-31- and alarmin IL-33-activated human eosinophils and dermal fibroblasts were evaluated. Ear swelling, epidermis thickening and eosinophils infiltration in epidermal and dermal layers, and the release of serum IL-12 of the murine OXA-mediated dermatitis were significantly reduced upon oral or topical treatment with PHF (all p < 0.05). Gallic acid, chlorogenic acid and berberine contents (w/w) in PHF were found to be 0.479%, 1.201% and 0.022%, respectively. Gallic acid and chlorogenic acid could suppress the release of pro-inflammatory cytokine IL-6 and chemokine CCL7 and CXCL8, respectively, in IL-31- and IL-33-treated eosinophils-dermal fibroblasts co-culture; while berberine could suppress the release of IL-6, CXCL8, CCL2 and CCL7 in the eosinophil culture and eosinophils-dermal fibroblasts co-culture (all p < 0.05). These findings suggest that PHF can ameliorate allergic inflammation and attenuate the activation of eosinophils.

  20. Gallic acid abolishes the EGFR/Src/Akt/Erk-mediated expression of matrix metalloproteinase-9 in MCF-7 breast cancer cells.

    PubMed

    Chen, Ying-Jung; Lin, Ku-Nan; Jhang, Li-Mei; Huang, Chia-Hui; Lee, Yuan-Chin; Chang, Long-Sen

    2016-05-25

    Several studies have revealed that natural compounds are valuable resources to develop novel agents against dysregulation of the EGF/EGFR-mediated matrix metalloproteinase-9 (MMP-9) expression in cancer cells. In view of the findings that EGF/EGFR-mediated MMP-9 expression is closely related to invasion and metastasis of breast cancer. To determine the beneficial effects of gallic acid on the suppression of breast cancer metastasis, we explored the effect of gallic acid on MMP-9 expression in EGF-treated MCF-7 breast cancer cells. Treatment with EGF up-regulated MMP-9 mRNA and protein levels in MCF-7 cells. EGF treatment induced phosphorylation of EGFR and elicited Src activation, subsequently promoting Akt/NFκB (p65) and ERK/c-Jun phosphorylation in MCF-7 cells. Activation of Akt/p65 and ERK/c-Jun was responsible for the MMP-9 up-regulation in EGF-treated cells. Gallic acid repressed the EGF-induced activation of EGFR and Src; furthermore, inactivation of Akt/p65 and ERK/c-Jun was a result of the inhibitory effect of gallic acid on the EGF-induced MMP-9 up-regulation. Over-expression of constitutively active Akt and MEK1 or over-expression of constitutively active Src eradicated the inhibitory effect of gallic acid on the EGF-induced MMP-9 up-regulation. A chromosome conformation capture assay showed that EGF induced a chromosomal loop formation in the MMP-9 promoter via NFκB/p65 and AP-1/c-Jun activation. Treatment with gallic acid, EGFR inhibitor, or Src inhibitor reduced DNA looping. Taken together, our data suggest that gallic acid inhibits the activation of EGFR/Src-mediated Akt and ERK, leading to reduced levels of p65/c-Jun-mediated DNA looping and thus inhibiting MMP-9 expression in EGF-treated MCF-7 cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Luminescent behavior of cadmium sulfide quantum dots for gallic acid estimation

    NASA Astrophysics Data System (ADS)

    Singh, Suman; Garg, Sourav; Chahal, Jitender; Raheja, Khushboo; Singh, Deepak; Singla, M. L.

    2013-03-01

    Thioglycolic acid capped cadmium sulfide (CdS/T) quantum dots have been synthesized using wet chemistry and their optical behavior has been investigated using UV-visible absorption and fluorescence spectroscopy. The role of the capping agent, sulfide source concentration, pH and temperature has been studied and discussed. Studies showed that alkaline pH leads to a decrease in the size of quantum dots and reflux temperature above 70 °C resulted in red-shift of emission spectra which is due to narrowing of the bandgap. Further, to reduce the toxicity and photochemical instability of quantum dots, the quantum dots have been functionalized with polyethylene glycol (PEG), which resulted in a 20% enhancement of the fluorescence intensity. The application potential of CdS/T-PEG quantum dots was further studied using gallic acid as a model compound. The sensing is based on fluorescence quenching of quantum dots in the presence of gallic acid, and this study showed linearity in the range from 1.3 × 10-8 to 46.5 × 10-8 mM, with a detection limit of 3.6 × 10-8 mM.

  2. Bioavailable Concentrations of Delphinidin and Its Metabolite, Gallic Acid, Induce Antioxidant Protection Associated with Increased Intracellular Glutathione in Cultured Endothelial Cells

    PubMed Central

    Goszcz, Katarzyna; Deakin, Sherine J.; Duthie, Garry G.; Stewart, Derek

    2017-01-01

    Despite limited bioavailability and rapid degradation, dietary anthocyanins are antioxidants with cardiovascular benefits. This study tested the hypothesis that the antioxidant protection conferred by the anthocyanin, delphinidin, is mediated by modulation of endogenous antioxidant defences, driven by its degradation product, gallic acid. Delphinidin was found to degrade rapidly (t1/2 ~ 30 min), generating gallic acid as a major degradation product. Both delphinidin and gallic acid generated oxygen-centred radicals at high (100 μM) concentrations in vitro. In a cultured human umbilical vein endothelial cell model of oxidative stress, the antioxidant protective effects of both delphinidin and gallic acid displayed a hormesic profile; 100 μM concentrations of both were cytotoxic, but relatively low concentrations (100 nM–1 μM) protected the cells and were associated with increased intracellular glutathione. We conclude that delphinidin is intrinsically unstable and unlikely to confer any direct antioxidant activity in vivo yet it offered antioxidant protection to cells at low concentrations. This paradox might be explained by the ability of the degradation product, gallic acid, to confer benefit. The findings are important in understanding the mode of protection conferred by anthocyanins and reinforce the necessity to conduct in vitro experiments at biologically relevant concentrations. PMID:29081896

  3. Antifungal Activity of Gallic Acid In Vitro and In Vivo.

    PubMed

    Li, Zhi-Jian; Liu, Meng; Dawuti, Gulina; Dou, Qin; Ma, Yu; Liu, Heng-Ge; Aibai, Silafu

    2017-07-01

    Gallic acid (GA) is a polyphenol natural compound found in many medicinal plant species, including pomegranate rind (Punica granatum L.), and has been shown to have antiinflammatory and antibacterial properties. Pomegranate rind is used to treat bacterial and fungal pathogens in Uyghur and other systems of traditional medicine, but, surprisingly, the effects of GA on antifungal activity have not yet been reported. In this study, we aimed to investigate the inhibitory effects of GA on fungal strains both in vitro and in vivo. The minimal inhibitory concentration (MIC) was determined by the NCCLS (M38-A and M27-A2) standard method in vitro, and GA was found to have a broad spectrum of antifungal activity, with MICs for all the tested dermatophyte strains between 43.75 and 83.33 μg/mL. Gallic acid was also active against three Candida strains, with MICs between 12.5 and 100.0 μg/mL. The most sensitive Candida species was Candida albicans (MIC = 12.5 μg/mL), and the most sensitive filamentous species was Trichophyton rubrum (MIC = 43.75 μg/mL), which was comparable in potency to the control, fluconazole. The mechanism of action was investigated for inhibition of ergosterol biosynthesis using an HPLC-based assay and an enzyme linked immunosorbent assay. Gallic acid reduced the activity of sterol 14α-demethylase P450 (CYP51) and squalene epoxidase in the T. rubrum membrane, respectively. In vivo model demonstrated that intraperitoneal injection administration of GA (80 mg/kg d) significantly enhanced the cure rate in a mice infection model of systemic fungal infection. Overall, our results confirm the antifungal effects of GA and suggest a mechanism of action, suggesting that GA has the potential to be developed further as a natural antifungal agent for clinical use. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Antioxidant activity of gallic acid and methyl gallate in triacylglycerols of Kilka fish oil and its oil-in-water emulsion.

    PubMed

    Asnaashari, Maryam; Farhoosh, Reza; Sharif, Ali

    2014-09-15

    The anti-DPPH radical effect as well as anti-peroxide activity of gallic acid, methyl gallate, and α-tocopherol in a bulk Kilka fish oil and its oil-in-water emulsion stabilized by soy protein isolate at 55°C were investigated. Gallic acid with the lowest hydrophobicity (log P=-0.28) was found to be the most active antiradical agent (IC50=29.5 μM), followed by methyl gallate (IC50=38.0 μM, log P=-0.23) and α-tocopherol (IC50=105.3 μM, log P=0.70). The anti-peroxide activity in the bulk oil system decreased in the order of methyl gallate>gallic acid>α-tocopherol. In the emulsion system, methyl gallate still behaved better than gallic acid, but the highest activity belonged to α-tocopherol. Based on the calculation of a number of kinetic parameters, the antioxidants, in general, showed better performances in the bulk oil system than in the emulsion system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Gallic acid reduces cell growth by induction of apoptosis and reduction of IL-8 in HepG2 cells.

    PubMed

    Lima, Kelly Goulart; Krause, Gabriele Catyana; Schuster, Aline Daniele; Catarina, Anderson Velasque; Basso, Bruno Souza; De Mesquita, Fernanda Cristina; Pedrazza, Leonardo; Marczak, Elisa Simon; Martha, Bianca Andrade; Nunes, Fernanda Bordignon; Chiela, Eduardo Cremonese Filippi; Jaeger, Natália; Thomé, Marcos Paulo; Haute, Gabriela Viegas; Dias, Henrique Bregolin; Donadio, Márcio Vinícius Fagundes; De Oliveira, Jarbas Rodrigues

    2016-12-01

    Hepatocellular carcinoma is the most prevalent primary liver tumor and is among the top ten cancer that affect the world population. Its development is related, in most cases, to the existence of chronic liver injury, such as in cirrhosis. The knowledge about the correlation between chronic inflammation and cancer has driven new researches with anti-inflammatory agents that have potential for the development of antitumor drugs. Gallic acid is a phenolic acid found in many natural products and have shown anti-inflammatory, anti-tumor, anti-mutagenic and antioxidant actions. The purpose of this study was to investigate the effect of gallic acid on acute and chronic cell proliferation and inflammatory parameters of hepatocellular carcinoma cells (HepG2), as well as to investigate the mechanisms involved. Results showed that the gallic acid decreased the proliferation of HepG2 cells in a dose-dependent manner (Trypan blue exclusion assay), without causing necrosis (LDH assay). We observed a significant increase in the percentage of small and regular nuclei (Nuclear Morphometric Analysis assay), a significant induction of apoptosis by Annexin V-FITC and PI assay and no interference with the cell cycle using the FITC BrdU Flow Kit. We observed a significant reduction in the levels of IL-8 and increased levels of IL-10 and IL-12 (Cytometric Bead Array Human Inflammation Assay). Furthermore, gallic acid caused no cancer cells regrowth at a long term (Cumulative Population Doubling assay). According to these results, gallic acid showed a strong potential as an anti-tumor agent in hepatocellular carcinoma cells. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Synthesis and spectroscopic characterization of gallic acid and some of its azo complexes

    NASA Astrophysics Data System (ADS)

    Masoud, Mamdouh S.; Hagagg, Sawsan S.; Ali, Alaa E.; Nasr, Nessma M.

    2012-04-01

    A series of gallic acid and azo gallic acid complexes were prepared and characterized by elemental analysis, IR, electronic spectra and magnetic susceptibility. The complexes were of different geometries: Octahedral, Tetrahedral and Square Planar. ESR was studied for copper complexes. All of the prepared complexes were of isotropic nature. The thermal analyses of the complexes were studied by DTA and DSC techniques. The thermodynamic parameters and the thermal transitions, such as glass transitions, crystallization and melting temperatures for some ligands and their complexes were evaluated and discussed. The entropy change values, ΔS#, showed that the transition states are more ordered than the reacting complexes. The biological activities of some ligands and their complexes are tested against Gram positive and Gram negative bacteria. The results showed that some complexes have a well considerable activity against different organisms.

  7. Inhibition of Melanogenesis by Gallic Acid: Possible Involvement of the PI3K/Akt, MEK/ERK and Wnt/β-Catenin Signaling Pathways in B16F10 Cells

    PubMed Central

    Su, Tzu-Rong; Lin, Jen-Jie; Tsai, Chi-Chu; Huang, Tsu-Kei; Yang, Zih-Yan; Wu, Ming-O; Zheng, Yu-Qing; Su, Ching-Chyuan; Wu, Yu-Jen

    2013-01-01

    Gallic acid is one of the major flavonoids found in plants. It acts as an antioxidant, and seems to have anti-inflammatory, anti-viral, and anti-cancer properties. In this study, we investigated the effects of gallic acid on melanogenesis, including the activation of melanogenesis signaling pathways. Gallic acid significantly inhibited both melanin synthesis and tyrosinase activity in a dose- and time-dependent manner, and decreased the expression of melanogenesis-related proteins, such as microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 (TRP1), and dopachrome tautomerase (Dct). In addition, gallic acid also acts by phosphorylating and activating melanogenesis inhibitory proteins such as Akt and mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK). Using inhibitors against PI3K/Akt (LY294002) or MEK/ERK-specific (PD98059), the hypopigmentation effect was suppressed, and the gallic acid-initiated activation of MEK/ERK and PI3K/Akt was also revoked. Gallic acid also increased GSK3β and p-β-catenin expression but down-regulated p-GSK3β. Moreover, GSK3β-specific inhibitor (SB216763) restored gallic acid-induced melanin reduction. These results suggest that activation of the MEK/ERK, PI3K/Akt, and inhibition of Wnt/β-catenin signaling pathways is involved in the melanogenesis signaling cascade, and that activation by gallic acid reduces melanin synthesis via down-regulation of MITF and its downstream signaling pathway. In conclusion, gallic acid may be a potentially agent for the treatment of certain skin conditions. PMID:24129178

  8. Synthesis of Gallic Acid Analogs as Histamine and Pro-Inflammatory Cytokine Inhibitors for Treatment of Mast Cell-Mediated Allergic Inflammation.

    PubMed

    Fei, Xiang; Je, In-Gyu; Shin, Tae-Yong; Kim, Sang-Hyun; Seo, Seung-Yong

    2017-05-29

    Gallic acid (3,4,5-trihydroxybenzoic acid), is a natural product found in various foods and herbs that are well known as powerful antioxidants. Our previous report demonstrated that it inhibits mast cell-derived inflammatory allergic reactions by blocking histamine release and pro-inflammatory cytokine expression. In this report, various amide analogs of gallic acid have been synthesized by introducing different amines through carbodiimide-mediated amide coupling and Pd/C-catalyzed hydrogenation. These compounds showed a modest to high inhibitory effect on histamine release and pro-inflammatory cytokine expression. Among them, the amide bearing ( S )-phenylglycine methyl ester 3d was found to be more active than natural gallic acid. Further optimization yielded several ( S )- and ( R )-phenylglycine analogs that inhibited histamine release in vitro. Our findings suggest that some gallamides could be used as a treatment for allergic inflammatory diseases.

  9. Antidepressant-like effect of gallic acid in mice: Dual involvement of serotonergic and catecholaminergic systems.

    PubMed

    Can, Özgür Devrim; Turan, Nazlı; Demir Özkay, Ümide; Öztürk, Yusuf

    2017-12-01

    This study was planned to examine the antidepressant potency of gallic acid (30 and 60mg/kg), a phenolic acid widely distributed in nature, together with its possible underlying monoaminergic mechanisms. Antidepressant-like activity was assessed using the tail suspension (TST) and the modified forced swimming tests (MFST). Locomotor activity was evaluated in an activity cage. Administration of gallic acid at 60mg/kg reduced the immobility duration of mice in both the TST and MFST without any changes in the locomotor activity. The anti-immobility effect observed in the TST was abolished with pre-treatment of p-chlorophenylalanine methyl ester (an inhibitor of serotonin synthesis; 100mg/kg i.p. administered for 4-consecutive days), ketanserin (a 5-HT2A/2C antagonist; 1mg/kg i.p.), ondansetron (a 5-HT3 antagonist; 0.3mg/kg i.p.), α-methyl-para-tyrosine methyl ester (an inhibitor of catecholamine synthesis; 100mg/kg i.p.), phentolamine (non-selective alpha-adrenoceptor antagonist; 5mg/kg i.p.), SCH 23390 (a dopamine D1 antagonist; 0.05mg/kg s.c.), and sulpiride (a dopamine D2/D3 antagonist; 50mg/kg i.p.). However, NAN 190 (a 5-HT1A antagonist; 0.5mg/kg i.p.) and propranolol (a non-selective β-adrenoceptor antagonist; 5mg/kg i.p.) pre-treatments were ineffective at reversing the antidepressant-like effects of gallic acid. The results of the present study indicate that gallic acid seems to have a dual mechanism of action by increasing not only serotonin but also catecholamine levels in synaptic clefts of the central nervous system. Further alpha adrenergic, 5-HT2A/2C and 5-HT3 serotonergic, and D1, D2, and D3 dopaminergic receptors also seem to be involved in this antidepressant-like activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Allelopathic potential and ecotoxicity evaluation of gallic and nonanoic acids to prevent cyanobacterial growth in lentic systems: A preliminary mesocosm study.

    PubMed

    Techer, Didier; Fontaine, Pascal; Personne, Aline; Viot, Sandrine; Thomas, Marielle

    2016-03-15

    The increase in anthropogenic nutrient loading affecting many freshwater ecosystems combined with global warming may lead to cyanobacterial blooms on an increasingly frequent basis. Among the various physicochemical and biological methods which have been proposed to rapidly control blue-green algae growth, the use of plant-derived substances such as allelochemicals has gained great interest as an environment-friendly approach. The primary aim of this work was to evaluate the efficiency of gallic and nonanoic acid application to preemptively inhibit cyanobacterial growth in lentic hydrosystems. In order to address the process feasibility under realistic exposure scenarios, thirteen outdoor freshwater mesocosms (unit volume: 3m(3)) were designed, each containing phytoplankton (including local blue-green algae species) and various non-target organisms from higher trophic levels (Physa, Lymnaea, Gammarus, and Scardinius erythrophthalmus). After an 8-week mesocosm stabilization period, a full factorial design based on the presence/absence of gallic acid (GA) and nonanoic acid (NA) (including a control group) was implemented into the exposure tanks. Regular monitoring of major phytoplankton taxa was conducted during a 28-day experiment using an on-line fluorometer. The main results suggested that gallic acid was more efficient than nonanoic acid at limiting cyanobacterial growth at concentrations as low as 1 mg L(-1). Successive gallic acid applications (at 1, 2 and 4 mg L(-1)) at the early stages of cyanobacterial growth did not allow the complete elimination of blue-green algae from the mesocosms. However, the specificity of the allelopathic effect of gallic acid towards cyanobacteria was compatible with the maintenance of a primary productivity in the treated tanks as indicated by the photoautotrophic growth of other algal taxa. Finally, no biomarker induction signal could be reported in non-target species. Further gallic acid application trials in lentic systems such

  11. Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential.

    PubMed

    Mittal, Amit Kumar; Kumar, Sanjay; Banerjee, Uttam Chand

    2014-10-01

    In this study a synthetic approach for the stable, mono-dispersed high yielding bimetallic (Ag-Se) nanoparticles by quercetin and gallic acid is described. The bimetallic nanoparticles were synthesized at room temperature. Different reaction parameters (concentration of quercetin, gallic acid and Ag/Se salt, pH, temperature and reaction time) were optimized to control the properties of nanoparticles. The nanoparticles were characterized by various analytical techniques and their size was determined to be 30-35 nm. Our findings suggest that both the reduction as well as stabilization of nanoparticles were achieved by the flavonoids and phenolics. This study describes the efficacy of quercetin and gallic acid mediated synthesis of bimetallic (Ag-Se) nanoparticles and their in vitro antioxidant, antimicrobial (Gram-positive and Gram-negative bacteria) and antitumor potentials. The synthesized Ag-Se nanoparticles were used as anticancer agents for Dalton lymphoma (DL) cells and in in vitro 80% of its viability was reduced at 50 μg/mL. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Enhanced Oral Bioavailability of Diltiazem by the Influence of Gallic Acid and Ellagic Acid in Male Wistar Rats: Involvement of CYP3A and P-gp Inhibition.

    PubMed

    Athukuri, Bhargavi Latha; Neerati, Prasad

    2017-09-01

    The oral bioavailability of diltiazem is very low due to rapid first pass metabolism in liver and intestine. The purpose of the study was to investigate the effect of gallic acid and ellagic acid on intestinal transport and oral bioavailability of diltiazem in rats. The intestinal transport and permeability of diltiazem was evaluated by in vitro non-everted sac method and in situ single pass intestinal perfusion study. The oral pharmacokinetics was evaluated by conducting oral bioavailability study. The intestinal transport and apparent permeability of diltiazem were significantly enhanced in duodenum, jejunum, and ileum of gallic and ellagic acid-treated groups. The effective permeability of diltiazem was significantly enhanced in ileum part of gallic and ellagic acid-treated groups. When compared with control group, the presence of these two phytochemicals significantly enhanced the area under plasma concentration-time curve and the peak plasma concentration of diltiazem (C max ). Gallic acid and ellagic acid significantly increased the bioavailability of diltiazem due to the inhibition of both CYP3A-mediated metabolism and P-glycoprotein-mediated efflux in the intestine and/or liver. Based on these results, the clinical experiments are warranted for the confirmation to reduce the dose of diltiazem when concomitantly administered with these phytochemicals. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Improved Anticancer Effect of Magnetite Nanocomposite Formulation of GALLIC Acid (Fe₃O₄-PEG-GA) Against Lung, Breast and Colon Cancer Cells.

    PubMed

    Rosman, Raihana; Saifullah, Bullo; Maniam, Sandra; Dorniani, Dena; Hussein, Mohd Zobir; Fakurazi, Sharida

    2018-02-02

    Lung cancer, breast cancer and colorectal cancer are the most prevalent fatal types of cancers globally. Gallic acid (3,4,5-trihydroxybenzoic acid) is a bioactive compound found in plants and foods, such as white tea, witch hazel and it has been reported to possess anticancer, antioxidant and anti-inflammatory properties. In this study we have redesigned our previously reported anticancer nanocomposite formulation with improved drug loading based on iron oxide magnetite nanoparticles coated with polyethylene glycol and loaded with anticancer drug gallic acid (Fe₃O₄-PEG-GA). The in vitro release profile and percentage drug loading were found to be better than our previously reported formulation. The anticancer activity of pure gallic acid (GA), empty carrier (Fe₃O₄-PEG) nanocarrier and of anticancer nanocomposite (Fe₃O₄-PEG-GA) were screened against human lung cancer cells (A549), human breast cancer cells (MCF-7), human colon cancer cells (HT-29) and normal fibroblast cells (3T3) after incubation of 24, 48 and 72 h using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) MTT assay. The designed formulation (Fe₃O₄-PEG-GA) showed better anticancer activity than free gallic acid (GA). The results of the in vitro studies are highly encouraging to conduct the in vivo studies.

  14. Simultaneous Determination of Gallic Acid, Ellagic Acid, and Eugenol in Syzygium aromaticum and Verification of Chemical Antagonistic Effect by the Combination with Curcuma aromatica Using Regression Analysis

    PubMed Central

    Seo, Chang-Seob; Kim, Seong-Sil; Ha, Hyekyung

    2013-01-01

    This study was designed to perform simultaneous determination of three reference compounds in Syzygium aromaticum (SA), gallic acid, ellagic acid, and eugenol, and to investigate the chemical antagonistic effect when combining Curcuma aromatica (CA) with SA, based on chromatographic analysis. The values of LODs and LOQs were 0.01–0.11 μg/mL and 0.03–0.36 μg/mL, respectively. The intraday and interday precisions were <3.0 of RSD values, and the recovery was in the range of 92.19–103.24%, with RSD values <3.0%. Repeatability and stability were 0.38–0.73% and 0.49–2.24%, respectively. Compared with the content of reference and relative peaks in SA and SA combined with CA (SAC), the amounts of gallic acid and eugenol were increased, while that of ellagic acid was decreased in SAC (compared with SA), and most of peak areas in SA were reduced in SAC. Regression analysis of the relative peak areas between SA and SAC showed r 2 values >0.87, indicating a linear relationship between SA and SAC. These results demonstrate that the components contained in CA could affect the extraction of components of SA mainly in a decreasing manner. The antagonistic effect of CA on SA was verified by chemical analysis. PMID:23878761

  15. Protective effect of gallic acid and Syzygium cumini extract against oxidative stress-induced cellular injury in human lymphocytes.

    PubMed

    De Bona, Karine Santos; Bonfanti, Gabriela; Bitencourt, Paula Eliete Rodrigues; da Silva, Thainan Paz; Borges, Raphaela Maleski; Boligon, Aline; Pigatto, Aline; Athayde, Margareth Lynde; Moretto, Maria Beatriz

    2016-01-01

    Syzygium cumini (Myrtaceae) presents antioxidant, anti-inflammatory, hypoglycemic and antibacterial effects; however, the cellular and molecular mechanisms of action in the immune system are not yet completely elucidated. This study evaluates the in vitro effect of gallic acid and aqueous S. cumini leaf extract (ASc) on adenosine deaminase (ADA) and dipeptidyl peptidase IV (DPP-IV) activities, cell viability and oxidative stress parameters in lymphocytes exposed to 2, 2'-azobis-2-amidinopropane dihydrochloride (AAPH). Lymphocytes were incubated with ASc (100 and 500 µg/ml) and gallic acid (50 and 200 µM) at 37 °C for 30 min followed by incubation with AAPH (1 mM) at 37 °C for 2 h. After the incubation time, the lymphocytes were used for determinations of ADA, DPP-IV and lactate dehydrogenase (LDH) activities, lipid peroxidation, protein thiol (P-SH) group levels and cellular viability by colorimetric methods. (i) HPLC fingerprinting of ASc revealed the presence of catechin, epicatechin, rutin, quercitrin, isoquercitrin, quercetin, kaempferol and chlorogenic, caffeic, gallic and ellagic acids; (ii) for the first time, ASc reduced the AAPH-induced increase in ADA activity, but no effect was observed on DPP-IV activity; (iii) ASc increased P-SH groups and cellular viability and decreased LDH activity, but was not able to reduce the AAPH-induced lipid peroxidation; (iv) gallic acid showed less protective effects than ASc. ASc affects the purinergic system and may modulate adenosine levels, indicating that the extract of this plant exhibits immunomodulatory properties. ASc also may potentially prevent the cellular injury induced by oxidative stress, highlighting its cytoprotective effects.

  16. Induction of Biofilm Formation in the Betaproteobacterium Burkholderia unamae CK43B Exposed to Exogenous Indole and Gallic Acid

    PubMed Central

    Kim, Dongyeop; Sitepu, Irnayuli R.

    2013-01-01

    Burkholderia unamae CK43B, a member of the Betaproteobacteria that was isolated from the rhizosphere of a Shorea balangeran sapling in a tropical peat swamp forest, produces neither indole nor extracellular polymeric substances associated with biofilm formation. When cultured in a modified Winogradsky's medium supplemented with up to 1.7 mM indole, B. unamae CK43B maintains its planktonic state by cell swelling and effectively degrades exogenous indole. However, in medium supplemented with 1.7 mM exogenous indole and 1.0 mM gallic acid, B. unamae CK43B produced extracellular polymeric substances and formed a biofilm. The concentration indicated above of gallic acid alone had no effect on either the growth or the differentiation of B. unamae CK43B cells above a certain concentration threshold, whereas it inhibited indole degradation by B. unamae CK43B to 3-hydroxyindoxyl. In addition, coculture of B. unamae CK43B with indole-producing Escherichia coli in nutrient-rich Luria-Bertani medium supplemented with 1.0 mM gallic acid led to the formation of mixed cell aggregates. The viability and active growth of B. unamae CK43B cells in a coculture system with Escherichia coli were evidenced by fluorescence in situ hybridization. Our data thus suggest that indole facilitates intergenus communication between indole-producing gammaproteobacteria and some indole-degrading bacteria, particularly in gallic acid-rich environments. PMID:23747701

  17. Thermally and vibrationally induced conformational isomerizations, infrared spectra, and photochemistry of gallic acid in low-temperature matrices

    NASA Astrophysics Data System (ADS)

    Justino, Licínia L. G.; Reva, Igor; Fausto, Rui

    2016-07-01

    Near-infrared (near-IR) narrowband selective vibrational excitation and annealing of gallic acid (3,4,5-trihydroxybenzoic acid) isolated in cryogenic matrices were used to induce interconversions between its most stable conformers. The isomerizations were probed by infrared spectroscopy. An extensive set of quantum chemical calculations, carried out at the DFT(B3LYP)/6-311++G(d,p) level of approximation, was used to undertake a detailed analysis of the ground state potential energy surface of the molecule. This investigation of the molecule conformational space allowed extracting mechanistic insights into the observed annealing- or near-IR-induced isomerization processes. The infrared spectra of the two most stable conformers of gallic acid in N2, Xe, and Ar matrices were fully assigned. Finally, the UV-induced photochemistry of the matrix isolated compound was investigated.

  18. Highly selective and efficient imprinted polymers based on carboxyl-functionalized magnetic nanoparticles for the extraction of gallic acid from pomegranate rind.

    PubMed

    Zhang, Junjie; Li, Benqiang; Yue, Huijuan; Wang, Jing; Zheng, Yuansuo

    2018-01-01

    With the combined surface imprinting technique and immobilized template strategy, molecularly imprinted magnetic nanoparticles were successfully prepared and coupled with high-performance liquid chromatography to selectively separate and determine gallic acid from the pomegranate rind. On the surface of carboxyl-functionalized magnetic nanospheres, thin imprinting shells were formed using dopamine as monomer and crosslinker. The characteristics, polymerization conditions, and adsorption performances of the resultant nanomaterials were investigated in detail. In addition of good crystallinity, satisfactory magnetism, and uniform morphology of the obtained polymers, they had rapid binding kinetics, high adsorption capacity, and favorable reusability. In the mixed solution of four hydroxybenzoic acids, the prepared nanomaterials have an excellent selectivity to gallic acid with an imprinting factor of as high as 17.5. Therefore, the polymers have great potentials in specific extraction and enrichment of gallic acid from the complex natural resources. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Influence of waterborne gallic and pelargonic acid exposures on biochemical and reproductive parameters in the zebrafish (Danio rerio).

    PubMed

    Techer, Didier; Milla, Sylvain; Fontaine, Pascal; Viot, Sandrine; Thomas, Marielle

    2017-01-01

    Gallic and pelargonic acids are biologically derived substances receiving a growing interest as eco-friendly biocides with potential applications in freshwater system management. However, some data gaps remain to address their chronic ecotoxicity issue, particularly for fish. This work aimed at investigating the sublethal effects of a long-term waterborne exposure of zebrafish to these compounds. Mature fish were exposed to gallic or pelargonic acid at the concentrations of 0, 0.05, 0.5 and 5 mg/L during one month under semi-static conditions. Fecundity, hatching rate and median hatching time were regularly evaluated. Circulating sex hormone levels (11 ketotestosterone -11 KT, 17 βestradiol -E2-), plasma vitellogenin (Vtg), and gonad histology were monitored in males and females after exposure. Lactate dehydrogenase (LDH), total glutathione peroxydase (GPx) and glutathione-S transferase (GST) activities were assessed as enzymatic biomarkers of exposure in fish liver. Significant increases of GPx activity were reported in females exposed to both type of chemicals regardless the contamination level. Moreover, 5 mg/L gallic acid induced a decrease in 11-KT levels for males. For fish exposed to pelargonic acid, decreases in circulating hormone levels were reported respectively at 0.05 and 5 mg/L for 11-KT in males, and at 0.5 mg/L for E2 in females. However, no histological alteration in gonads neither significant variation in reproductive performances were detected following zebrafish exposure to gallic or pelargonic acid. Additional investigations concerning the mode of application and the environmental fate of these substances may warrant their further use in freshwater systems at concentrations compatible with biocidal/allelochemical effects. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 227-240, 2017. © 2015 Wiley Periodicals, Inc.

  20. [Gallic acid inhibits inflammatory response of RAW264.7 macrophages by blocking the activation of TLR4/NF-κB induced by LPS].

    PubMed

    Huang, Lihua; Hou, Lin; Xue, Hainan; Wang, Chunjie

    2016-12-01

    Objective To observe the influence of gallic acid on Toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) pathway in the RAW264.7 macrophages stimulated by lipopolysaccharide (LPS). Methods RAW264.7 macrophages were divided into the following groups: control group, LPS group, LPS combined with gallic acid group, LPS combined with pyrrolidine dithiocarbamate (PDTC) group and LPS combined with dexamethasone (DM) group. RAW264.7 cells were cultured for 24 hours after corresponding treatments. The levels of tumor necrosis factor α (TNF-α), interleukin-1 (IL-1) and IL-6 were detected by ELISA. The levels of TLR4 and NF-κB mRNAs were tested by real-time PCR. The levels of p-IκBα, p65, p-p65 and TLR4 proteins were examined by Western blotting. Results The expression levels of TNF-α, IL-1 and IL-6 were up-regulated in the RAW264.7 macrophages after stimulated by LPS. Gallic acid could reduce the elevated expression levels of TNF-α, IL-1 and IL-6 induced by LPS. The expression of TLR4 significantly increased after stimulated by LPS and NF-κB was activated. Gallic acid could reverse the above changes and prevent the activation of NF-κB. Conclusion Gallic acid could inhibit LPS-induced inflammatory response in RAW264.7 macrophages via TLR4/NF-κB pathway.

  1. In Vitro Antioxidant-Activity Evaluation of Gallic-Acid-Grafted Chitosan Conjugate Synthesized by Free-Radical-Induced Grafting Method.

    PubMed

    Hu, Qiaobin; Wang, Taoran; Zhou, Mingyong; Xue, Jingyi; Luo, Yangchao

    2016-07-27

    The major objective of this work was to develop a green and facile process to prepare gallic acid-chitosan conjugate and comprehensively evaluate the physicochemical properties and biological activities of an as-prepared water-soluble chitosan derivative. A free-radical-induced grafting approach using an ascorbic acid-hydrogen peroxide redox pair was adopted. The obtained conjugate was characterized by Fourier transform infrared spectroscopy, UV-vis, X-ray diffraction, and pKa analysis. The antioxidant activities were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6)-sulphonic acid (ABTS), reducing power, and oxygen-radical antioxidant-capacity assays. The results showed that the mass ratio of gallic acid to chitosan played a vital role in determining the grafting degree and ζ potential of the conjugates, with the ratio of 0.5:1 being the optimal ratio that resulted in the highest grafting degree. The antioxidant assays demonstrated that conjugation significantly improved the antioxidant activities, being dramatically higher than that of free chitosan. It was notable that the DPPH- and ABTS-scavenging activities of conjugate at 0.4 mg/mL reached the same level as the free gallic acid at the equivalent concentration. Our study demonstrated a green and facile synthesis approach to preparing a novel water-soluble chitosan derivative that may have promising potentials in the food industry.

  2. In Vitro Sustained Release Study of Gallic Acid Coated with Magnetite-PEG and Magnetite-PVA for Drug Delivery System

    PubMed Central

    Kura, Aminu Umar; Hussein-Al-Ali, Samer Hasan; Bin Hussein, Mohd Zobir; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2014-01-01

    The efficacy of two nanocarriers polyethylene glycol and polyvinyl alcohol magnetic nanoparticles coated with gallic acid (GA) was accomplished via X-ray diffraction, infrared spectroscopy, magnetic measurements, thermal analysis, and TEM. X-ray diffraction and TEM results showed that Fe3O4 nanoparticles were pure iron oxide having spherical shape with the average diameter of 9 nm, compared with 31 nm and 35 nm after coating with polyethylene glycol-GA (FPEGG) and polyvinyl alcohol-GA (FPVAG), respectively. Thermogravimetric analyses proved that after coating the thermal stability was markedly enhanced. Magnetic measurements and Fourier transform infrared (FTIR) revealed that superparamagnetic iron oxide nanoparticles could be successfully coated with two polymers (PEG and PVA) and gallic acid as an active drug. Release behavior of gallic acid from two nanocomposites showed that FPEGG and FPVAG nanocomposites were found to be sustained and governed by pseudo-second-order kinetics. Anticancer activity of the two nanocomposites shows that the FPEGG demonstrated higher anticancer effect on the breast cancer cell lines in almost all concentrations tested compared to FPVAG. PMID:24737969

  3. Thermally and vibrationally induced conformational isomerizations, infrared spectra, and photochemistry of gallic acid in low-temperature matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Justino, Licínia L. G., E-mail: liciniaj@ci.uc.pt; Reva, Igor; Fausto, Rui

    2016-07-07

    Near-infrared (near-IR) narrowband selective vibrational excitation and annealing of gallic acid (3,4,5-trihydroxybenzoic acid) isolated in cryogenic matrices were used to induce interconversions between its most stable conformers. The isomerizations were probed by infrared spectroscopy. An extensive set of quantum chemical calculations, carried out at the DFT(B3LYP)/6-311++G(d,p) level of approximation, was used to undertake a detailed analysis of the ground state potential energy surface of the molecule. This investigation of the molecule conformational space allowed extracting mechanistic insights into the observed annealing- or near-IR-induced isomerization processes. The infrared spectra of the two most stable conformers of gallic acid in N{sub 2},more » Xe, and Ar matrices were fully assigned. Finally, the UV-induced photochemistry of the matrix isolated compound was investigated.« less

  4. Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast cancer MDA-MB-231 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying-Jung; Lee, Yuan-Chin; Huang, Chia-Hui

    Triple-negative breast cancers (TNBCs) are highly invasive and have a higher rate of distant metastasis. Matrix metalloproteinase-9 (MMP-9) plays a crucial role in EGF/EGFR-mediated malignant progression and metastasis of TNBCs. Various studies have revealed that treatment with gallic acid down-regulates MMP-9 expression in cancer cells, and that conjugation of phytochemical compounds with gold nanoparticles (AuNPs) increases the anti-tumor activity of the phytochemical compounds. Thus, the effect of gallic acid-capped AuNPs (GA-AuNPs) on MMP-9 expression in EGF-treated TNBC MDA-MB-231 cells was analyzed in the present study. The so-called green synthesis of AuNPs by means of gallic acid was performed at pHmore » 10, and the resulting GA-AuNPs had spherical shape with an average diameter of approximately 50 nm. GA-AuNPs notably suppressed migration and invasion of EGF-treated cells, and inhibited EGF-induced MMP-9 up-regulation. GA-AuNPs abrogated EGF-induced Akt/p65 and ERK/c-Jun phosphorylation, leading to down-regulation of MMP-9 mRNA and protein expression in EGF-treated cells. Meanwhile, EGF-induced p300 stabilization was found to be involved in MMP-9 expression, whereas GA-AuNPs inhibited the EGF-promoted stability of the p300 protein. Although GA-AuNPs and gallic acid suppressed EGF-induced MMP-9 up-regulation via the same signaling pathway, the effective concentration of gallic acid was approximately 100-fold higher than that of GA-AuNPs for inhibition of MMP-9 expression in EGF-treated cells to a similar extent. Collectively, our data indicate that, in comparison with gallic acid, GA-AuNPs have a superior ability to inhibit EGF/EGFR-mediated MMP-9 expression in TNBC MDA-MB-231 cells. Our findings also point to a way to improve the anti-tumor activity of gallic acid. - Highlights: • Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression. • EGF-induced MMP-9 expression via p300 stabilization and NFκB/c-Jun activation. • Gallic

  5. Synthesis and application of in-situ molecularly imprinted silica monolithic in pipette-tip solid-phase microextraction for the separation and determination of gallic acid in orange juice samples.

    PubMed

    Arabi, Maryam; Ghaedi, Mehrorang; Ostovan, Abbas

    2017-03-24

    A novel strategy was presented for the synthesis and application of functionalized silica monolithic as artificial receptor of gallic acid at micro-pipette tip. A sol-gel process was used to prepare the sorbent. In this in-situ polymerization reaction, tetraethyl orthosilicate (TEOS), 3-aminopropyl trimethoxysilane (APTMS), gallic acid and thiourea were used, respectively, as cross-linker, functionalized monomer, template and precursor to make crack-free and non-fragile structure. Such durable and inexpensive in-situ monolithic was successfully employed as useful tool for highly efficient extraction of gallic acid from orange juice samples. The effective parameters in extraction recovery were investigated and optimum conditions were obtained using experimental design methodology. Applying HPLC-UV for separation quantification at optimal conditions, the gallic acid was efficiently extracted without significant matrix interference. Good linearity for gallic acid in the range of 0.02-5.0mgL -1 with correlation coefficients of R 2 >0.999 revealed well applicability of the method for trace analysis. Copyright © 2017. Published by Elsevier B.V.

  6. Gallic acid indanone and mangiferin xanthone are strong determinants of immunosuppressive anti-tumour effects of Mangifera indica L. bark in MDA-MB231 breast cancer cells.

    PubMed

    García-Rivera, Dagmar; Delgado, René; Bougarne, Nadia; Haegeman, Guy; Berghe, Wim Vanden

    2011-06-01

    Vimang is a standardized extract derived from Mango bark (Mangifera Indica L.), commonly used as anti-inflammatory phytomedicine, which has recently been used to complement cancer therapies in cancer patients. We have further investigated potential anti-tumour effects of glucosylxanthone mangiferin and indanone gallic acid, which are both present in Vimang extract. We observed significant anti-tumour effects of both Vimang constituents in the highly aggressive and metastatic breast cancer cell type MDA-MB231. At the molecular level, mangiferin and gallic acid both inhibit classical NFκB activation by IKKα/β kinases, which results in impaired IκB degradation, NFκB translocation and NFκB/DNA binding. In contrast to the xanthone mangiferin, gallic acid further inhibits additional NFκB pathways involved in cancer cell survival and therapy resistance, such as MEK1, JNK1/2, MSK1, and p90RSK. This results in combinatorial inhibition of NFκB activity by gallic acid, which results in potent inhibition of NFκB target genes involved in inflammation, metastasis, anti-apoptosis and angiogenesis, such as IL-6, IL-8, COX2, CXCR4, XIAP, bcl2, VEGF. The cumulative NFκB inhibition by gallic acid, but not mangiferin, is also reflected at the level of cell survival, which reveals significant tumour cytotoxic effects in MDA-MB231 cells. Altogether, we identify gallic acid, besides mangiferin, as an essential anti-cancer component in Vimang extract, which demonstrates multifocal inhibition of NFκB activity in the cancer-inflammation network. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Plant Natural Products Calycosin and Gallic Acid Synergistically Attenuate Neutrophil Infiltration and Subsequent Injury in Isoproterenol-Induced Myocardial Infarction: A Possible Role for Leukotriene B4 12-Hydroxydehydrogenase?

    PubMed Central

    Cheng, Yuanyuan; Tse, Hung Fat; Le, X. Chris; Rong, Jianhui

    2015-01-01

    Leukotriene B4 12-hydroxydehydrogenase (LTB4DH) catalyzes the oxidation of proinflammatory LTB4 into less bioactive 12-oxo-LTB4. We recently discovered that LTB4DH was induced by two different natural products in combination. We previously isolated gallic acid from Radix Paeoniae through a bioactivity-guided fractionation procedure. The purpose of this study is to test the hypothesis that LTB4DH inducers may suppress neutrophil-mediated inflammation in myocardial infarction. We first isolated the active compound(s) from another plant, Radix Astragali, by the similar strategy. By evaluating LTB4DH induction, we identified calycosin and formononetin from Radix Astragali by HPLC-ESI-MS technique. We confirmed that gallic acid and commercial calycosin or formononetin could synergistically induce LTB4DH expression in HepG2 cells and human neutrophils. Moreover, calycosin and gallic acid attenuated the effects of LTB4 on the survival and chemotaxis of neutrophil cell culture. We further demonstrated that calycosin and gallic acid synergistically suppressed neutrophil infiltration and protected cardiac integrity in the isoproterenol-induced mice model of myocardial infarction. Calycosin and gallic acid dramatically suppressed isoproterenol-induced increase in myeloperoxidase (MPO) activity and malondialdehyde (MDA) level. Collectively, our results suggest that LTB4DH inducers (i.e., calycosin and gallic acid) may be a novel combined therapy for the treatment of neutrophil-mediated myocardial injury. PMID:26265982

  8. Bifunctional viscous nanovesicles co-loaded with resveratrol and gallic acid for skin protection against microbial and oxidative injuries.

    PubMed

    Vitonyte, Justina; Manca, Maria Letizia; Caddeo, Carla; Valenti, Donatella; Peris, Josè Esteban; Usach, Iris; Nacher, Amparo; Matos, Maria; Gutiérrez, Gemma; Orrù, Germano; Fernàndez-Busquets, Xavier; Fadda, Anna Maria; Manconi, Maria

    2017-05-01

    Resveratrol and gallic acid were co-loaded in phospholipid vesicles aiming at protecting the skin from external injuries, such as oxidative stress and microbial infections. Liposomes were prepared using biocompatible phospholipids dispersed in water. To improve vesicle stability and applicability, the phospholipids and the phenols were dispersed in water/propylene glycol or water/glycerol, thus obtaining PEVs and glycerosomes, respectively. The vesicles were characterized by size, morphology, physical stability, and their therapeutic efficacy was investigated in vitro. The vesicles were spherical, unilamellar and small in size: liposomes and glycerosomes were around 70nm in diameter, while PEVs were larger (∼170nm). The presence of propylene glycol or glycerol increased the viscosity of the vesicle systems, positively affecting their stability. The ability of the vesicles to promote the accumulation of the phenols (especially gallic acid) in the skin was demonstrated, as well as their low toxicity and great ability to protect keratinocytes and fibroblasts from oxidative damage. Additionally, an improvement of the antimicrobial activity of the phenols was shown against different skin pathogens. The co-loading of resveratrol and gallic acid in modified phospholipid vesicles represents an innovative, bifunctional tool for preventing and treating skin affections. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Skin delivery of antioxidant surfactants based on gallic acid and hydroxytyrosol.

    PubMed

    Alonso, Cristina; Lucas, Ricardo; Barba, Clara; Marti, Meritxell; Rubio, Laia; Comelles, Francesc; Morales, Juan Carlos; Coderch, Luisa; Parra, José Luís

    2015-07-01

    The aim of this study has been to investigate the dermal absorption profile of the antioxidant compounds gallic acid and hydroxytyrosol as well as their derivatives, hexanoate (hexyl gallate and hydroxytyrosol hexanoate) and octanoate (octyl gallate and octanoate derivative) alkyl esters (antioxidant surfactants). Previously, the scavenging capacity of these compounds, expressed as efficient dose ED50, has also determined. The percutaneous absorption of these compounds was obtained by an in vitro methodology using porcine skin biopsies on Franz static diffusion cells. The antiradical activity of compounds was determined using the 1,1-diphenyl-2-picrylhydrazyl free radical method. The percutaneous penetration results show the presence of antioxidants in all layers of the skin. The content of the cutaneously absorbed compound is higher for the antioxidant surfactants (ester derivatives). This particular behaviour could be due to the higher hydrophobicity of these compounds and the presence of surface activity in the antioxidant surfactants. These new antioxidant surfactants display optimum properties, which may be useful in the preparation of emulsified systems in cosmetic and pharmaceutical formulations because of their suitable surface activity and because they can protect the skin from oxidative damage. © 2015 Royal Pharmaceutical Society.

  10. Gallic acid attenuates hypertension, cardiac remodeling, and fibrosis in mice with NG-nitro-L-arginine methyl ester-induced hypertension via regulation of histone deacetylase 1 or histone deacetylase 2.

    PubMed

    Jin, Li; Lin, Ming Quan; Piao, Zhe Hao; Cho, Jae Yeong; Kim, Gwi Ran; Choi, Sin Young; Ryu, Yuhee; Sun, Simei; Kee, Hae Jin; Jeong, Myung Ho

    2017-07-01

    Gallic acid, a natural chemical found in plants, has been reported to show antioxidant, anticancer, and anti-inflammatory effects. We investigated the efficacy of a short-term or long-term treatment with gallic acid in N-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive mice and the underlying regulatory mechanism. Hypertension was sufficiently induced after 2 weeks of L-NAME administration. Cardiac remodeling was assessed by echocardiography. Hypertrophic markers, transcription factors, and fibrosis-related gene expression were evaluated by quantitative real-time polymerase chain reaction and western blotting. Gallic acid effectively lowered SBP, regardless of the administration route (intraperitoneal or oral). L-NAME increased the left ventricular (LV) thickness without an increase in the total heart weight. Weekly echocardiography demonstrated that gallic acid significantly reduced LV posterior wall and septum thickness in chronic L-NAME mice from 3 to 7 weeks. The administration of gallic acid to mice showed a dual preventive and therapeutic effect on the L-NAME-induced LV remodeling. The effect was associated with the suppression of the gene expression of hypertrophy markers and the GATA-binding factor 6 (GATA6) transcription factor. Short-term or long-term treatment with gallic acid attenuated cardiac fibrosis and reduced the expression of histone deacetylase 1 and 2 in H9c2 cells and in rat primary cardiac fibroblasts, as well as in vivo. Small interfering RNA knockdown confirmed the association of these enzymes with L-NAME-induced cardiac remodeling and fibrosis. These results suggested that gallic acid may be a potential therapeutic agent for the treatment of cardiovascular diseases with hypertension and cardiac fibrosis.

  11. Simultaneous analysis of tea catechins, caffeine, gallic acid, theanine and ascorbic acid by micellar electrokinetic capillary chromatography.

    PubMed

    Aucamp, J P; Hara, Y; Apostolides, Z

    2000-04-21

    A micellar electrokinetic capillary chromatography (MEKC) method for the simultaneous analysis of five tea catechins, theanine, caffeine, gallic acid and ascorbic acid has been developed. The catechins are (-)-epicatechin, (+)-catechin, (-)-epigallocatechin, (-)-epicatechin gallate and (-)-epigallocatechin gallate. p-Nitrophenol serves as both reference and internal standard. All the components are separated within 13 min with a 57 cm uncoated fused-silica column. On-column detection was carried out at 200 nm. This method has been used to measure these compounds in fresh tea leaves and tea liquor. The limit of detection for all analytes ranged from 1 to 20 microg/ml.

  12. Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet.

    PubMed

    Huang, Da-Wei; Chang, Wen-Chang; Wu, James Swi-Bea; Shih, Rui-Wen; Shen, Szu-Chuan

    2016-02-01

    Herein, we investigated the hypoglycemic effect of plant gallic acid (GA) on glucose uptake in an insulin-resistant cell culture model and on hepatic carbohydrate metabolism in rats with a high-fructose diet (HFD)-induced diabetes. Our hypothesis is that GA ameliorates hyperglycemia via alleviating hepatic insulin resistance by suppressing hepatic inflammation and improves abnormal hepatic carbohydrate metabolism by suppressing hepatic gluconeogenesis and enhancing the hepatic glycogenesis and glycolysis pathways in HFD-induced diabetic rats. Gallic acid increased glucose uptake activity by 19.2% at a concentration of 6.25 μg/mL in insulin-resistant FL83B mouse hepatocytes. In HFD-induced diabetic rats, GA significantly alleviated hyperglycemia, reduced the values of the area under the curve for glucose in an oral glucose tolerance test, and reduced the scores of the homeostasis model assessment of insulin resistance index. The levels of serum C-peptide and fructosamine and cardiovascular risk index scores were also significantly decreased in HFD rats treated with GA. Moreover, GA up-regulated the expression of hepatic insulin signal transduction-related proteins, including insulin receptor, insulin receptor substrate 1, phosphatidylinositol-3 kinase, Akt/protein kinase B, and glucose transporter 2, in HFD rats. Gallic acid also down-regulated the expression of hepatic gluconeogenesis-related proteins, such as fructose-1,6-bisphosphatase, and up-regulated expression of hepatic glycogen synthase and glycolysis-related proteins, including hexokinase, phosphofructokinase, and aldolase, in HFD rats. Our findings indicate that GA has potential as a health food ingredient to prevent diabetes mellitus. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Two choices for the functionalization of silica nanoparticles with gallic acid: characterization of the nanomaterials and their antimicrobial activity against Paenibacillus larvae

    NASA Astrophysics Data System (ADS)

    Vico, Tamara A.; Arce, Valeria B.; Fangio, María F.; Gende, Liesel B.; Bertran, Celso A.; Mártire, Daniel O.; Churio, María S.

    2016-11-01

    Silica nanoparticles attached to gallic acid were synthesized from 7-nm diameter fumed silica particles by different functionalization methods involving the condensation of hydroxyl or carboxyl groups. The particles were characterized by thermal analyses and UV-vis, FTIR, NMR, and EPR spectroscopies. In comparison to free gallic acid, enhanced stability and increased antimicrobial activity against Paenibacillus larvae were found for the functionalized nanoparticles. Thus, both derivatization strategies result in improved properties of the natural polyphenol as antimicrobial agent for the treatment of honeybee pathologies.

  14. Evaluation of gallic acid loaded zein sub-micron electrospun fibre mats as novel active packaging materials.

    PubMed

    Neo, Yun Ping; Swift, Simon; Ray, Sudip; Gizdavic-Nikolaidis, Marija; Jin, Jianyong; Perera, Conrad O

    2013-12-01

    The applicability of gallic acid loaded zein (Ze-GA) electrospun fibre mats towards potential active food packaging material was evaluated. The surface chemistry of the electrospun fibre mats was determined using X-ray photon spectroscopy (XPS). The electrospun fibre mats showed low water activity and whitish colour. Thermogravimetric analysis (TGA) and Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy revealed the stability of the fibre mats over time. The Ze-GA fibre mats displayed similar rapid release profiles, with Ze-GA 20% exhibiting the fastest release rate in water as compared to the others. Gallic acid diffuses from the electrospun fibres in a Fickian diffusion manner and the data obtained exhibited a better fit to Higuchi model. L929 fibroblast cells were cultured on the electrospun fibres to demonstrate the absence of cytotoxicity. Overall, the Ze-GA fibre mats demonstrated antibacterial activity and properties consistent with those considered desirable for active packaging material in the food industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Relationship between the lipophilicity of gallic acid n-alquil esters' derivatives and both myeloperoxidase activity and HOCl scavenging.

    PubMed

    Rosso, Rober; Vieira, Tiago O; Leal, Paulo C; Nunes, Ricardo J; Yunes, Rosendo A; Creczynski-Pasa, Tânia B

    2006-09-15

    The gallic acid and several n-alkyl gallates, with the same number of hydroxyl substituents, varying only in the side carbonic chain length, with respective lipophilicity defined through the C log P, were studied. It evidenced the structure-activity relationship of the myeloperoxidase activity inhibition and the hypochlorous acid scavenger property, as well as its low toxicity in rat hepatic tissue. The gallates with C log P below 3.0 (compounds 2-7) were more active against the enzyme activity, what means that the addition of 1-6 carbons (C log P between 0.92 and 2.92) at the side chain increased approximately 50% the gallic acid effect. However, a relationship between the HOCl scavenging capability and the lipophilicity was not observed. With these results it is possible to suggest that the gallates protect the HOCl targets through two mechanisms: inhibiting its production by the enzyme and scavenging the reactive specie.

  16. Strecker Aldehyde Formation in Wine: New Insights into the Role of Gallic Acid, Glucose, and Metals in Phenylacetaldehyde Formation.

    PubMed

    Monforte, Ana Rita; Martins, Sara I F S; Silva Ferreira, Antonio C

    2018-03-14

    Strecker degradation (SD) leading to the formation of phenylacetaldehyde (PA) was studied in wine systems. New insights were gained by using two full factorial designs focusing on the effects of (1) pH and (2) temperature. In each design of experiments (DoE) three factors, glucose, gallic acid, and metals at two levels (present or absence), were varied while phenylalanine was kept constant. The obtained results gave a clear indication, with statistical significance, that in wine conditions, the SD occurs in the presence of metals preferentially via the phenolic oxidation independent of the temperature (40 or 80 °C). The reaction of the amino acid with the o-quinone formed by the oxidation of the gallic acid seems to be favored when compared with the SD promoted by the reaction with α-dicarbonyls formed by MR between glucose and phenylalanine. In fact, kinetics results showed that the presence of glucose had an inhibitory effect on PA rate of formation. PA formation was 4 times higher in the control wine when compared to the same wine with 10 g/L glucose added. By gallic acid quinone quantitation it is shown that glucose affects directly the concentration of the quinone. decreasing the rate of quinone formation. This highlights the role of sugar in o-quinone concentration and consequently in the impact on Strecker aldehyde formation, a promising new perspective regarding wine shelf-life understanding.

  17. Crystal water as the mol-ecular glue for obtaining different co-crystal ratios: the case of gallic acid tris-caffeine hexa-hydrate.

    PubMed

    Vella-Zarb, L; Baisch, U

    2018-04-01

    The crystal structure of the hexa-hydrate co-crystal of gallic acid and caffeine, C 7 H 6 O 5 ·3C 8 H 10 N 4 O 2 ·6H 2 O or GAL3CAF·6H 2 O , is a remarkable example of the importance of hydrate water acting as structural glue to facilitate the crystallization of two components of different stoichiometries and thus to compensate an imbalance of hydrogen-bond donors and acceptors. The water mol-ecules provide the additional hydrogen bonds required to form a crystalline solid. Whereas the majority of hydrogen bonds forming the inter-molecular network between gallic acid and caffeine are formed by crystal water, only one direct classical hydrogen bond between two mol-ecules is formed between the carb-oxy-lic oxygen of gallic acid and the carbonyl oxygen of caffeine with d ( D ⋯ A ) = 2.672 (2) Å. All other hydrogen bonds either involve crystal water or utilize protonated carbon atoms as donors.

  18. Prescription Proportion of Pomegranate Extract Gallic Acid Gel by Orthogonal Design

    NASA Astrophysics Data System (ADS)

    Fan, Gaofu; Liu, Xiushu; Tang, Jie; Gong, Jumei; Fu, Entao; Cai, Yuhua; Xu, Zhenguo

    2018-05-01

    The aim of the present work was to optimize the formulation of pomegranate extract gallic acid gel by orthogonal design. Using orthogonal design, propylene glycol, carbomer-940 and gel pH level as influencing factors, the evaluation key index was external apearance malleability, uniformity, and eccentric for gel, and the optimum formula was selected. The present findings suggest that 10% propylene glycol, 1.5% Carbopol-940, and gel pH in the range of 4.5∼5.5, and the indexes of the optimal. The inclusion complexes showed that after the orthogonal design, the preparation process was simple, stable and controllable quality, with production feasibility.

  19. Radioprotective Effects of Gallic Acid in Mice

    PubMed Central

    Nair, Gopakumar Gopinathan

    2013-01-01

    Radioprotecting ability of the natural polyphenol, gallic acid (3,4,5-trihydroxybenzoic acid, GA), was investigated in Swiss albino mice. Oral administration of GA (100 mg/kg body weight), one hour prior to whole body gamma radiation exposure (2–8 Gy; 6 animals/group), reduced the radiation-induced cellular DNA damage in mouse peripheral blood leukocytes, bone marrow cells, and spleenocytes as revealed by comet assay. The GA administration also prevented the radiation-induced decrease in the levels of the antioxidant enzyme, glutathione peroxidise (GPx), and nonprotein thiol glutathione (GSH) and inhibited the peroxidation of membrane lipids in these animals. Exposure of mice to whole body gamma radiation also caused the formation of micronuclei in blood reticulocytes and chromosomal aberrations in bone marrow cells, and the administration of GA resulted in the inhibition of micronucleus formation and chromosomal aberrations. In irradiated animals, administration of GA elicited an enhancement in the rate of DNA repair process and a significant increase in endogenous spleen colony formation. The administration of GA also prevented the radiation-induced weight loss and mortality in animals (10 animals/group) exposed to lethal dose (10 Gy) of gamma radiation. (For every experiment unirradiated animals without GA administration were taken as normal control; specific dose (Gy) irradiated animals without GA administration serve as radiation control; and unirradiated GA treated animals were taken as drug alone control). PMID:24069607

  20. Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast cancer MDA-MB-231 cells.

    PubMed

    Chen, Ying-Jung; Lee, Yuan-Chin; Huang, Chia-Hui; Chang, Long-Sen

    2016-11-01

    Triple-negative breast cancers (TNBCs) are highly invasive and have a higher rate of distant metastasis. Matrix metalloproteinase-9 (MMP-9) plays a crucial role in EGF/EGFR-mediated malignant progression and metastasis of TNBCs. Various studies have revealed that treatment with gallic acid down-regulates MMP-9 expression in cancer cells, and that conjugation of phytochemical compounds with gold nanoparticles (AuNPs) increases the anti-tumor activity of the phytochemical compounds. Thus, the effect of gallic acid-capped AuNPs (GA-AuNPs) on MMP-9 expression in EGF-treated TNBC MDA-MB-231 cells was analyzed in the present study. The so-called green synthesis of AuNPs by means of gallic acid was performed at pH10, and the resulting GA-AuNPs had spherical shape with an average diameter of approximately 50nm. GA-AuNPs notably suppressed migration and invasion of EGF-treated cells, and inhibited EGF-induced MMP-9 up-regulation. GA-AuNPs abrogated EGF-induced Akt/p65 and ERK/c-Jun phosphorylation, leading to down-regulation of MMP-9 mRNA and protein expression in EGF-treated cells. Meanwhile, EGF-induced p300 stabilization was found to be involved in MMP-9 expression, whereas GA-AuNPs inhibited the EGF-promoted stability of the p300 protein. Although GA-AuNPs and gallic acid suppressed EGF-induced MMP-9 up-regulation via the same signaling pathway, the effective concentration of gallic acid was approximately 100-fold higher than that of GA-AuNPs for inhibition of MMP-9 expression in EGF-treated cells to a similar extent. Collectively, our data indicate that, in comparison with gallic acid, GA-AuNPs have a superior ability to inhibit EGF/EGFR-mediated MMP-9 expression in TNBC MDA-MB-231 cells. Our findings also point to a way to improve the anti-tumor activity of gallic acid. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Quantum chemical density functional theory studies on the molecular structure and vibrational spectra of Gallic acid imprinted polymers

    NASA Astrophysics Data System (ADS)

    Pardeshi, Sushma; Dhodapkar, Rita; Kumar, Anupama

    2013-12-01

    Gallic acid (GA) is known by its antioxidant, anticarcinogenic properties and scavenger activity against several types of harmful free radicals. Molecularly imprinted polymers (MIPs) are used in separation of a pure compound from complex matrices. A stable template-monomer complex generates the MIPs with the highest affinity and selectivity for the template. The quantum chemical computations based on density functional theory (DFT) was used on the template Gallic acid (GA), monomer acrylic acid (AA) and GA-AA complex to study the nature of interactions involved in the GA-AA complex. B3LYP/6-31+G(2d,2p) model chemistry was used to optimize their structures and frequency calculations. The effect of porogen acetonitrile (ACN) on complex formation was included by using polarizable continuum model (PCM). The results demonstrated the formation of a stable GA-AA complex through the intermolecular hydrogen bonding between carboxylic acid groups of GA and AA. The Mulliken atomic charge analysis and simulated vibrational spectra also supported the stable hydrogen bonding interaction between the carboxylic acid groups of GA and AA with minimal interference of porogen ACN. Further, simulations on GA-AA mole ratio revealed that 1:4 GA-AA was optimum for synthesis of MIP for GA.

  2. Gastroprotective Effect of Ginger Rhizome (Zingiber officinale) Extract: Role of Gallic Acid and Cinnamic Acid in H+, K+-ATPase/H. pylori Inhibition and Anti-Oxidative Mechanism

    PubMed Central

    Nanjundaiah, Siddaraju M.; Annaiah, Harish Nayaka Mysore; Dharmesh, Shylaja M.

    2011-01-01

    Zinger officinale has been used as a traditional source against gastric disturbances from time immemorial. The ulcer-preventive properties of aqueous extract of ginger rhizome (GRAE) belonging to the family Zingiberaceae is reported in the present study. GRAE at 200 mg kg−1 b.w. protected up to 86% and 77% for the swim stress-/ethanol stress-induced ulcers with an ulcer index (UI) of 50 ± 4.0/46 ± 4.0, respectively, similar to that of lansoprazole (80%) at 30 mg kg−1 b.w. Increased H+, K+-ATPase activity and thiobarbituric acid reactive substances (TBARS) were observed in ulcer-induced rats, while GRAE fed rats showed normalized levels and GRAE also normalized depleted/amplified anti-oxidant enzymes in swim stress and ethanol stress-induced animals. Gastric mucin damage was recovered up to 77% and 74% in swim stress and ethanol stress, respectively after GRAE treatment. GRAE also inhibited the growth of H. pylori with MIC of 300 ± 38 μg and also possessed reducing power, free radical scavenging ability with an IC50 of 6.8 ± 0.4 μg mL−1 gallic acid equivalent (GAE). DNA protection up to 90% at 0.4 μg was also observed. Toxicity studies indicated no lethal effects in rats fed up to 5 g kg−1 b.w. Compositional analysis favored by determination of the efficacy of individual phenolic acids towards their potential ulcer-preventive ability revealed that between cinnamic (50%) and gallic (46%) phenolic acids, cinnamic acid appear to contribute to better H+, K+-ATPase and Helicobacter pylori inhibitory activity, while gallic acid contributes significantly to anti-oxidant activity. PMID:19570992

  3. Graphene Oxide-Gallic Acid Nanodelivery System for Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Dorniani, Dena; Saifullah, Bullo; Barahuie, Farahnaz; Arulselvan, Palanisamy; Hussein, Mohd Zobir Bin; Fakurazi, Sharida; Twyman, Lance J.

    2016-11-01

    Despite the technological advancement in the biomedical science, cancer remains a life-threatening disease. In this study, we designed an anticancer nanodelivery system using graphene oxide (GO) as nanocarrier for an active anticancer agent gallic acid (GA). The successful formation nanocomposite (GOGA) was characterized using XRD, FTIR, HRTEM, Raman, and UV/Vis spectroscopy. The release study shows that the release of GA from the designed anticancer nanocomposite (GOGA) occurs in a sustained manner in phosphate-buffered saline (PBS) solution at pH 7.4. In in vitro biological studies, normal fibroblast (3T3) and liver cancer cells (HepG2) were treated with different concentrations of GO, GOGA, and GA for 72 h. The GOGA nanocomposite showed the inhibitory effect to cancer cell growth without affecting normal cell growth. The results of this research are highly encouraging to go further for in vivo studies.

  4. Synthesis and structure identification of 2-amino-4, 6- dimethyl pyrimidine with gallic acid and pimelic acid

    NASA Astrophysics Data System (ADS)

    Mekala, R.; Jagdish, P.; Mathammal, R.

    2018-07-01

    Reaction of 2-amino-4, 6- dimethyl pyrimidine with carboxylic acid such as gallic acid and pimelic acid, yielded a salt and co-crystal, respectively. The new crystal forms were obtained from slow evaporation technique. The crystal structure and hydrogen bond interaction of the two crystals were determined by single X-ray diffraction analysis. Inter molecular interactions of the compounds were investigated using the 3D Hirshfeld surfaces and the associated 2D fingerprint plots. The functional groups were identified by the FTIR, FT-Raman spectral studies. The presence of carbon and hydrogen in the two samples were identified by the 1H and 13C NMR analysis. The excited energy was observed using UV-Visible spectral analysis. The fluorescence spectra revealed the emission state of the two samples. The thermal behaviour and stability of the two compounds were evaluated by the TGA-DSC analysis.

  5. Rise in the pH of an unfrozen solution in ice due to the presence of NaCl and promotion of decomposition of gallic acids owing to a change in the pH.

    PubMed

    Takenaka, Norimichi; Tanaka, Masayuki; Okitsu, Kenji; Bandow, Hiroshi

    2006-09-14

    Oxidative decomposition of gallic acid occurs in alkaline solutions but hardly arises in acidic solutions. We have found that the addition of sodium chloride promotes the decomposition of gallic acid caused by freezing even under neutral and acidic conditions. Even at pH 4.5, gallic acid was decomposed by freezing in the presence of NaCl; however, in the absence of NaCl, it was hardly decomposed by freezing at pH lower than 7. Chloride ions are more easily incorporated in ice than sodium ions when the NaCl solution is frozen. The unfrozen solution in ice becomes positively charged, and as a result, protons transfer from the unfrozen solution to the ice. We measured the pH in the unfrozen solution which coexists with single-crystal ice formed from a 5 mmol dm(-3) NaCl solution and determined the pH to be 8.6 at equilibrium with CO(2) of 380 ppm or 11.3 in the absence of CO(2) compared to pH 5.6 in the original solution. From the model calculation performed for gallic acid solution in the presence of 5 mmol dm(-3) NaCl, it can be estimated that the amount of OH(-) transferred from the ice to the solution corresponds to 1.26 x 10(-5) mol dm(-3). The amount of OH(-) transferred is concentrated into the unfrozen solution and affects the pH of the unfrozen solution. Therefore, the pH in an unfrozen gallic acid solution in ice becomes alkaline, and the decomposition of gallic acid proceeds. It is expected that other base-catalyzed reactions in weakly acidic solutions also proceed by freezing in the presence of NaCl without the need for any alkaline reagents.

  6. Enhanced anticancer effect of fabricated gallic acid/CdS on the rGO nanosheets on human glomerular mesangial (IP15) and epithelial proximal (HK2) kidney cell lines - Cytotoxicity investigations.

    PubMed

    Peng, Wei; Luo, Pengcheng; Gui, Dingwen; Jiang, Weidong; Wu, Haixia; Zhang, Jie

    2018-01-01

    In spite of the technological innovation in the biomedical science, cancer remains a critical disease. In this study, we designed a gallic acid/cadmium sulfide (GA/CdS) nanocomposite fabricated on the reduced graphene oxide (GA/CdS-rGO) nanosheets for the treatment system of human kidney cancer cells. The GA/CdS-rGO nanosheets have been prepared using gallic acid as a reducing agent. The characterization of nanocomposites was studied using UV-Vis spectroscope, FT-IR, XRD, SEM and TEM. The microscopic images showed the spherical shape and nano-scaled CdS nanoparticles on the sheet like rGO nanomaterials. These structural and morphology investigations show that excellent properties of as-prepared GA/CdS-rGO has ability to treat the human glomerular mesangial (IP15) cancer cells at 50μg/ml as an IC 50 value, without affecting the epithelial proximal (HK-2) normal cells. In vitro cytotoxicity results showed that the variability of toxic effects after CdS exposure was strongly associated to the cellular Cd content. Release of Cd 2+ from nanocomposites depended to solubility and particle degradation of CdS nanoparticles were considered to be the main cause of these cytotoxicity. The in vitro analysis results indicated that heterogeneity of Cd and gallic acid toxicity that was highly dependent on the physico-chemical properties of the nanocomposites. The cytotoxicity results suggested that the prepared nanomaterials were toxic and inhibitory efficiency to human kidney cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effects and interactions of gallic acid, eugenol and temperature on thermal inactivation of Salmonella spp. in ground chicken

    USDA-ARS?s Scientific Manuscript database

    The combined effects of heating temperature (55 to 65C), gallic acid (0 to 2.0%), and eugenol (0 to 2.0%) on thermal inactivation of Salmonella in ground chicken were assessed. Thermal death times were determined in bags submerged in a heated water bath maintained at various set temperatures, follo...

  8. Terahertz spectroscopic investigation of gallic acid and its monohydrate

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Li, Shaoping; Wang, Chenyang; Zou, Tao; Pan, Tingting; Zhang, Jianbing; Xu, Zhou; Ren, Guanhua; Zhao, Hongwei

    2018-02-01

    The low-frequency spectra of gallic acid (GA) and its monohydrate were investigated by terahertz time-domain spectroscopy (THz-TDS) in the range of 0.5 to 4.5 THz. The dehydration process of GA monohydrate was monitored on-line. The kinetic mechanism of the dehydration process was analyzed depending on the THz spectral change at different temperatures. The results indicate that the diffusion of water molecule dominates the speed of the entire dehydration process. Solid-state density functional theory (DFT) calculations of the vibrational modes of both GA and its monohydrate were performed based on their crystalline structures for better interpreting the experimental THz spectra. The results demonstrate that the characterized features of GA mainly originate from the collective vibrations of molecules. And the interactions between GA and water molecules are responsible for THz fingerprint of GA monohydrate. Multi-techniques including differential scanning calorimetry and thermogravimetry (DSC-TG) and powder X-ray diffraction (PXRD) were also carried out to further investigate GA and its monohydrate.

  9. Dynamic calibration approach for determining catechins and gallic acid in green tea using LC-ESI/MS.

    PubMed

    Bedner, Mary; Duewer, David L

    2011-08-15

    Catechins and gallic acid are antioxidant constituents of Camellia sinensis, or green tea. Liquid chromatography with both ultraviolet (UV) absorbance and electrospray ionization mass spectrometric (ESI/MS) detection was used to determine catechins and gallic acid in three green tea matrix materials that are commonly used as dietary supplements. The results from both detection modes were evaluated with 14 quantitation models, all of which were based on the analyte response relative to an internal standard. Half of the models were static, where quantitation was achieved with calibration factors that were constant over an analysis set. The other half were dynamic, with calibration factors calculated from interpolated response factor data at each time a sample was injected to correct for potential variations in analyte response over time. For all analytes, the relatively nonselective UV responses were found to be very stable over time and independent of the calibrant concentration; comparable results with low variability were obtained regardless of the quantitation model used. Conversely, the highly selective MS responses were found to vary both with time and as a function of the calibrant concentration. A dynamic quantitation model based on polynomial data-fitting was used to reduce the variability in the quantitative results using the MS data.

  10. Assessment of phenolic acid content and in vitro antiradical characteristics of hawthorn.

    PubMed

    Öztürk, Nilgün; Tunçel, Muzaffer

    2011-06-01

    The infusions and extracts obtained from leaves with flowers, fruit peel, and seed from hawthorn (Crataegus monogyna Jacq., Family Rosaceae) were subjected to evaluation as potential sources of antioxidant phytochemicals on the basis of their total content of phenolics, levels of phenolic acids, and in vitro antiradical activity. Total phenolic content of extracts was determined using the modified Folin-Ciocalteau method. Antioxidant activity was determined for phenolic extracts by a method involving the use of the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH). Phenolic acids containing extracts and infusions from hawthorn leaves, fruit peel, and seeds were obtained using different polarity solvents and separated by reverse-phase high-performance liquid chromatography, which enabled improved separation by the use of a C(18) column, an acidic mobile phase, and gradient elusion. The highest total phenolic content (343.54 mg of gallic acid equivalents/g) and the highest DPPH radical scavenging activity as the inhibition percentage (60.36%) were obtained in ethyl acetate extract from hawthorn leaves with flower. Also, the highest phenolic acid content was measured in the extracts of hawthorn leaves with flowers: protocathechuic (108-128 mg/100 g), p-hydroxy benzoic (141-468 mg/100 g), caffeic (137-3,580 mg/100 g), chlorogenic (925-4,637 mg/100 g), ferulic (3,363-3,462 mg/100 g), vanillic (214 mg/100 g), and syringic (126 mg/100 g) acids. The results indicate that hawthorn is a promising plant because of its high antioxidant activity.

  11. A C8-Modified Graphene@mSiO2 Composites Based Method for Quantification of Gallic Acid in Rat Plasma after Oral Administration of Changtai Granule and Its Application to Pharmacokinetics.

    PubMed

    Xu, Chen; Yu, Yingjia; Ling, Li; Wang, Yang; Zhang, Jundong; Li, Yan; Duan, Gengli

    2017-01-01

    A rapid, effective extraction technique has been established for measuring the gallic acid in rat plasma by using sandwich-structured graphene/mesoporous silica composites with C 8 -modified interior pore-walls as adsorbent. The unique characteristics of the graphene-silica composites excluded large molecules, like proteins, from the mesopore channels as a result of size exclusion effect, leading to a direct extraction of drug molecules from protein-rich biological samples such as plasma without any other pretreatment procedure. Followed by elution and centrifugation, the gallic acid-absorbed composites were rapidly isolated before LC-MS/MS. Serving as a reliable tool for analysis of Traditional Chinese Medicine: Changtai Granule, the newly developed method was fully validated and successfully applied in the pharmacokinetic study of gallic acid in rat plasma. Extraction recovery, matrix effect and stability were satisfactory in rat plasma. According to the results of pharmacokinetic studies, Changtai Granule exhibited greater adsorption, distribution and clearance properties of gallic acid in the treatment of ulcerative colitis. Hence, this study may offer a valuable alternative to simplify and speed up sample preparation, and be useful for clinical studies of related preparations.

  12. Docking analysis of gallic acid derivatives as HIV-1 protease inhibitors.

    PubMed

    Singh, Anjali; Pal, Tapan Kumar

    2015-01-01

    HIV-1 Protease (HIV-1 PR) enzymes are essential for accurate assembly and maturation of infectious HIV retroviruses. The significant role of HIV-1 protease in viral replication has made it a potential drug target. In the recent past, phytochemical Gallic Acid (GA) derivatives have been screened for protease inhibitor activity. The present work aims to design and evaluate potential GA-based HIV-1 PR phytoinhibitors by docking approach. The ligands were prepared by ChemDraw and docking was performed in HEX software. In this present study, one of the GA analogues (GA4) emerged as a potent drug candidate for HIV-1 PR inhibition, and docking results showed it to be comparable with anti-HIV drugs, darunavir and amprenavir. The GA4 derivative provided a lead for designing more effective HIV-1 PR inhibitors.

  13. Quantitative analysis of rutin, quercetin, naringenin, and gallic acid by validated RP- and NP-HPTLC methods for quality control of anti-HBV active extract of Guiera senegalensis.

    PubMed

    Alam, Perwez; Parvez, Mohammad K; Arbab, Ahmed H; Al-Dosari, Mohammed S

    2017-12-01

    Guiera senegalensis J.F. Gmel (Combretaceae) is a folk medicinal plant used in various metabolic and infectious diseases. In addition to its antiviral activities against herpes and fowlpox, the anti-HBV efficacy is very recently reported. To develop and validate simple, sensitive RP-/NP-HPTLC methods for quantitative determination of biomarkers rutin, quercetin, naringenin, and gallic acid in the anti-HBV active G. senegalensis leaves ethanol-extract. RP-HPTLC (rutin & quercetin; phase- acetonitrile:water, 4:6) and NP-HPTLC (naringenin & gallic acid; phase- toluene:ethyl acetate:formic acid, 6:4:0.8) were performed on glass-backed silica gel plates 60F 254 -RP18 and 60F 254 , respectively. The methods were validated according to the ICH guidelines. Well-separated and compact spots (R f ) of rutin (0.52 ± 0.006), quercetin (0.23 ± 0.005), naringenin (0.56 ± 0.009) and gallic acid (0.28 ± 0.006) were detected. The regression equations (Y) were 12.434x + 443.49, 10.08x + 216.85, 11.253x + 973.52 and 11.082x + 446.41 whereas the coefficient correlations (r 2 ) were 0.997 ± 0.0004, 0.9982 ± 0.0001, 0.9974 ± 0.0004 and 0.9981 ± 0.0001, respectively. The linearity ranges (ng/spot) were 200-1400 (RP-HPTLC) and 100-1200 (NP-HPTLC). The LOD/LOQ (ng/band) were 33.03/100.1 (rutin), 9.67/29.31 (quercetin), 35.574/107.8 (naringenin), and 12.32/37.35 (gallic acid). Gallic acid (7.01 μg/mg) was the most abundant biomarker compared to rutin (2.42 μg/mg), quercetin (1.53 μg/mg) and naringenin (0.14 μg/mg) in the extract. The validated NP-/RP-HPTLC methods were simple, accurate, and sensitive for separating and quantifying antiviral biomarkers in G. senegalensis, and endorsed its anti-HBV activity. The developed methods could be further employed in the standardization and quality-control of herbal formulations.

  14. Gallic Acid Promotes Wound Healing in Normal and Hyperglucidic Conditions.

    PubMed

    Yang, Dong Joo; Moh, Sang Hyun; Son, Dong Hwee; You, Seunghoon; Kinyua, Ann W; Ko, Chang Mann; Song, Miyoung; Yeo, Jinhee; Choi, Yun-Hee; Kim, Ki Woo

    2016-07-08

    Skin is the outermost layer of the human body that is constantly exposed to environmental stressors, such as UV radiation and toxic chemicals, and is susceptible to mechanical wounding and injury. The ability of the skin to repair injuries is paramount for survival and it is disrupted in a spectrum of disorders leading to skin pathologies. Diabetic patients often suffer from chronic, impaired wound healing, which facilitate bacterial infections and necessitate amputation. Here, we studied the effects of gallic acid (GA, 3,4,5-trihydroxybenzoic acid; a plant-derived polyphenolic compound) on would healing in normal and hyperglucidic conditions, to mimic diabetes, in human keratinocytes and fibroblasts. Our study reveals that GA is a potential antioxidant that directly upregulates the expression of antioxidant genes. In addition, GA accelerated cell migration of keratinocytes and fibroblasts in both normal and hyperglucidic conditions. Further, GA treatment activated factors known to be hallmarks of wound healing, such as focal adhesion kinases (FAK), c-Jun N-terminal kinases (JNK), and extracellular signal-regulated kinases (Erk), underpinning the beneficial role of GA in wound repair. Therefore, our results demonstrate that GA might be a viable wound healing agent and a potential intervention to treat wounds resulting from metabolic complications.

  15. Gallic acid is an active component for the anticarcinogenic action of grape seed procyanidins in pancreatic cancer cells.

    PubMed

    Cedó, Lídia; Castell-Auví, Anna; Pallarès, Victor; Macià, Alba; Blay, Mayte; Ardévol, Anna; Motilva, Maria-José; Pinent, Montserrat

    2014-01-01

    The aim of the present work was to evaluate the effects of a grape seed procyanidin extract (GSPE) on proliferation and apoptosis in the pancreatic adenocarcinoma cell line MIA PaCa-2 and identify the components of the extract with higher activity. The effects of the extract were analyzed on the proliferation and apoptosis processes in MIA PaCa-2 cells, as well as in the levels of the apoptosis markers Bcl-2 and Bax, the mitochondrial membrane potential, and reactive oxygen species levels. Finally, the components of the extract with higher effects were elucidated using enriched fractions of the extract and pure compounds. The results showed that GSPE inhibits cell proliferation and increases apoptosis in MIA PaCa-2 cells, which is primarily mediated by the downregulation of the antiapoptotic protein Bcl-2 and the depolarization of the mitochondrial membrane. GSPE also reduced the formation of reactive oxygen species. The component of the extract that possesses the highest antiproliferative and proapoptotic activity was gallic acid. In conclusion, GSPE acts as anticarcinogenic in MIA PaCa-2 cells, with gallic acid as the major single active constituent of the extract.

  16. Functionalities of chitosan conjugated with stearic acid and gallic acid and application of the modified chitosan in stabilizing labile aroma compounds in an oil-in-water emulsion.

    PubMed

    Yang, Tsung-Shi; Liu, Tai-Ti; Lin, I-Hwa

    2017-08-01

    The aims of this research were to conjugate chitosan (CT) with stearic acid (SA) and gallic acid (GA), and apply the modified chitosan to stabilize labile aroma compounds such as allyl isothiocyanate (AITC) and limonene in oil-in-water emulsions. Generally, the antioxidant activity of CT-SA-GA increased as the GA content in the conjugate increased. In most assays, GA had a lower IC 50 value than that of CT-SA-GA; however, CT-SA-GA exhibited better performance than GA in the Fe 2+ -chelating activity. In accelerated tests (heating or illumination) for evaluating the chemical stability of AITC and limonene during storage, CT-SA and CT-SA-GA were used to prepare AITC and limonene O/W emulsions, respectively. Tween 80 and Span 80 (T-S-80), an emulsifier mixture, were used as a control in both emulsions for comparison. The results show that CT-SA or CT-SA-GA could protect AITC or limonene from degradation or oxidation more effectively than T-S-80. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effect of postharvest methyl jasmonate treatment on fatty acid composition and phenolic acid content in olive fruits during storage.

    PubMed

    Flores, Gema; Blanch, Gracia Patricia; Del Castillo, María Luisa Ruiz

    2017-07-01

    The nutritional effects of both table olives and olive oil are attributed not only to their fatty acids but also to antioxidant phenolics such as phenolic acids. Delays in oil processing usually result in undesirable oxidation and hydrolysis processes leading to formation of free fatty acids. These alterations create the need to process oil immediately after olive harvest. However, phenolic content decreases drastically during olive storage resulting in lower quality oil. In the present study we propose postharvest methyl jasmonate treatment as a mean to avoid changes in fatty acid composition and losses of phenolic acids during olive storage. Contents of fatty acids and phenolic acids were estimated in methyl jasmonate treated olives throughout 30-day storage, as compared with those of untreated olives. Significant decreases of saturated fatty acids were observed in treated samples whereas increases of oleic, linoleic and linolenic acids were respectively measured (i.e. from 50.8% to 64.5%, from 7.2% to 9.1% and from 1.5% to 9.3%). Also, phenolic acid contents increased significantly in treated olives. Particularly, increases of gallic acid from 1.35 to 6.29 mg kg -1 , chlorogenic acid from 9.18 to 16.21 mg kg -1 , vanillic acid from 9.61 to 16.99 mg kg -1 , caffeic acid from 5.12 to 12.55 mg kg -1 , p-coumaric acid from 0.96 to 5.31 mg kg -1 and ferulic acid from 4.05 to 10.43 mg kg -1 were obtained. Methyl jasmonate treatment is proposed as an alternative postharvest technique to traditional methods to guarantee olive oil quality when oil processing is delayed and olive fruits have to necessarily to be stored. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Biomimetic growth of gallic acid-ZnO hybrid assemblies and their applications

    NASA Astrophysics Data System (ADS)

    Sarker, Nazmul H.; Barnaby, Stacey N.; Fath, Karl R.; Frayne, Stephen H.; Nakatsuka, Nako; Banerjee, Ipsita A.

    2012-03-01

    In this study, we probed the biomimetic formation of gallic acid (GA)-ZnO nanoparticle hybrids. It was found that the morphologies formed were dependent upon pH values, resulting in GA-ZnO hybrids of varying shapes such as micro or nanoplates or fibers. The formed supramolecular GA-ZnO hybrids were found to be luminescent as indicated by confocal microscopy and were utilized for the photocatalytic degradation of the organic dye methylene blue. We also explored the bactericidal effects of the hybrids on Staphylococcus aureus ( S. aureus) as well as Escherichia Coli ( E. Coli). Thus, we have developed a new class of shape-controlled nanohybrid assemblies via mild, green synthetic methods that may be utilized for photocatalytic degradation for environmental remediation as well as for antibacterial applications.

  19. Ameliorative effects of gallic acid, quercetin and limonene on urethane-induced genotoxicity and oxidative stress in Drosophila melanogaster.

    PubMed

    Nagpal, Isha; Abraham, Suresh K

    2017-05-01

    The main objective of our present work was to ascertain the efficacy of Drosophila melanogaster model for assessing antigenotoxic and antioxidant effects of dietary phytochemicals gallic acid (GA), quercetin (QC) and limonene (Lim) against urethane (URE), a genotoxic environmental carcinogen. Oregon-K (ORK) adult male flies were fed GA, QC and Lim in combination with URE (20 mM) in 10% sucrose for 72 h. Third instar larvae were fed instant medium containing the above phytochemicals and URE for 24 h. Sex-linked recessive lethal (SLRL) test and assays for estimating glutathione content (GSH), glutathione S-transferase (GST), catalase (CAT), superoxide dismutase (SOD) and lipid peroxidation (MDA content) were performed. Adult feeding experiments demonstrated that co-treatment of flies with URE and the test phytochemicals has significantly decreased the frequencies of SLRL mutations in all the germ cell stages when compared to that with URE alone. Larval feeding experiments also showed a similar pattern. The above results correlate well with antioxidative potentials of the test agents where we observed the elevated enzymatic levels with a significant reduction in MDA level in Drosophila larvae. The results further suggest that the dietary phytochemicals have an antioxidant and antimutagenic property which can be assessed using D. melanogaster.

  20. Gallic acid attenuates high-fat diet fed-streptozotocin-induced insulin resistance via partial agonism of PPARγ in experimental type 2 diabetic rats and enhances glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway.

    PubMed

    Gandhi, Gopalsamy Rajiv; Jothi, Gnanasekaran; Antony, Poovathumkal James; Balakrishna, Kedike; Paulraj, Michael Gabriel; Ignacimuthu, Savarimuthu; Stalin, Antony; Al-Dhabi, Naif Abdullah

    2014-12-15

    In this study, the therapeutic efficacy of gallic acid from Cyamopsis tetragonoloba (L.) Taub. (Fabaceae) beans was examined against high-fat diet fed-streptozotocin-induced experimental type 2 diabetic rats. Molecular-dockings were done to determine the putative binding modes of gallic acid into the active sites of key insulin-signaling markers. Gallic acid (20 mg/kg) given to high-fat diet fed-streptozotocin-induced rats lowered body weight gain, fasting blood glucose and plasma insulin in diabetic rats. It further restored the alterations of biochemical parameters to near normal levels in diabetic treated rats along with cytoprotective action on pancreatic β-cell. Histology of liver and adipose tissues supported the biochemical findings. Gallic acid significantly enhanced the level of peroxisome proliferator-activated receptor γ (PPARγ) expression in the adipose tissue of treated rat compared to untreated diabetic rat; it also slightly activated PPARγ expressions in the liver and skeletal muscle. Consequently, it improved insulin-dependent glucose transport in adipose tissue through translocation and activation of glucose transporter protein 4 (GLUT4) in phosphatidylinositol 3-kinase (PI3K)/phosphorylated protein kinase B (p-Akt) dependent pathway. Gallic acid docked with PPARγ; it exhibited promising interactions with the GLUT4, glucose transporter protein 1 (GLUT1), PI3K and p-Akt. These findings provided evidence to show that gallic acid could improve adipose tissue insulin sensitivity, modulate adipogenesis, increase adipose glucose uptake and protect β-cells from impairment. Hence it can be used in the management of obesity-associated type 2 diabetes mellitus. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Alterations in blood pressure, antioxidant status and caspase 8 expression in cobalt chloride-induced cardio-renal dysfunction are reversed by Ocimum gratissimum and gallic acid in Wistar rats.

    PubMed

    Akinrinde, A S; Oyagbemi, A A; Omobowale, T O; Asenuga, E R; Ajibade, T O

    2016-07-01

    The protective abilities of the chloroform extract of Ocimum gratissimum (COG) and gallic acid against cobalt chloride (CoCl2) - induced cardiac and renal toxicity were evaluated. Rats were exposed to CoCl2 (350ppm) for 7 days, either alone, or in combination with COG (100 and 200mg/kg) or gallic acid (120mg/kg). CoCl2 given alone, caused significant increases (p<0.05) in oxidative stress parameters (hydrogen peroxide, H2O2 and malondialdehyde, MDA) and increased expression of the apoptotic initiator caspase 8 in the heart and kidneys. There was significant reduction (p<0.05) in reduced glutathione (GSH) in cardiac and renal tissues; reduction in superoxide dismutase (SOD) activity in the kidneys and adaptive increases in Glutathione S-transferase (GST) and catalase (CAT). CoCl2 also produced significant reduction (p<0.05) in systolic (SBP), diastolic (DBP) and mean arterial (MAP) blood pressures. Oral COG and gallic acid treatment significantly reduced (p<0.05) the levels of H2O2 and MDA; with reduced expression of caspase 8 and restoration of GSH levels, GPx, SOD and CAT activities, howbeit, to varying degrees in the heart and kidneys. COG (200mg/kg) was most effective in restoring the blood pressures in the rats to near control levels. CoCl2-induced histopathological lesions including myocardial infarction and inflammation and renal tubular necrosis and inflammation were effectively ameliorated by the treatments administered. This study provides evidence for the protective roles of O. gratissimum and gallic acid by modulation of CoCl2-induced alterations in blood pressure, antioxidant status and pro-apoptotic caspase 8 in Wistar rats. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Bacillus sphaericus: the highest bacterial tannase producer with potential for gallic acid synthesis.

    PubMed

    Raghuwanshi, Shailendra; Dutt, Kakoli; Gupta, Pritesh; Misra, Swati; Saxena, Rajendra Kumar

    2011-06-01

    An indigenously isolated strain of Bacillus sphaericus was found to produce 1.21 IU/ml of tannase under unoptimized conditions. Optimizing the process one variable at a time resulted in the production of 7.6 IU/ml of tannase in 48 h in the presence of 1.5% tannic acid. A 9.26-fold increase in tannase production was achieved upon further optimization using response surface methodology (RSM), a statistical approach. This increase led to a production level of 11.2I U/ml in medium containing 2.0% tannic acid, 2.5% galactose, 0.25% ammonium chloride, and 0.1% MgSO(4) pH 6.0 incubated at 37°C and 100 rpm for 48 h with a 2.0% inoculum level. Scaling up tannase production in a 30-l bioreactor resulted in the production of 16.54 IU/ml after 36 h. Thus far, this tannase production is the highest reported in this bacterial strain. Partially purified tannase exhibited an optimum pH of 5.0 with activity in the pH range of 3 to 8; 50°C was the optimal temperature for activity. Efficient conversion of tannic acid to purified gallic acid (90.80%) was achieved through crystallization. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. A cellular uptake and cytotoxicity properties study of gallic acid-loaded mesoporous silica nanoparticles on Caco-2 cells

    NASA Astrophysics Data System (ADS)

    Rashidi, Ladan; Vasheghani-Farahani, Ebrahim; Soleimani, Masoud; Atashi, Amir; Rostami, Khosrow; Gangi, Fariba; Fallahpour, Masoud; Tahouri, Mohammad Taher

    2014-03-01

    In this study, the effects of intracellular delivery of various concentrations of gallic acid (GA) as a semistable antioxidant, gallic acid-loaded mesoporous silica nanoparticles (MSNs-GA), and cellular uptake of nanoparticles into Caco-2 cells were investigated. MSNs were synthesized and loaded with GA, then characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, N2 adsorption isotherms, X-ray diffraction, and thermal gravimetric analysis. The cytotoxicity of MSNs and MSNs-GA at low and high concentrations were studied by means of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) test and flow cytometry. MSNs did not show significant toxicity in various concentrations (0-500 μg/ml) on Caco-2 cells. For MSNs-GA, cell viability was reduced as a function of incubation time and different concentrations of nanoparticles. The in vitro GA release from MSNs-GA exhibited the same antitumor properties as free GA on Caco-2 cells. Flow cytometry results confirmed those obtained using MTT assay. TEM and fluorescent microscopy confirmed the internalization of MSNs by Caco-2 cells through nonspecific cellular uptake. MSNs can easily internalize into Caco-2 cells without deleterious effects on cell viability. The cell viability of Caco-2 cells was affected during MSNs-GA uptake. MSNs could be designed as suitable nanocarriers for antioxidants delivery.

  4. Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol.

    PubMed

    Lima, Valéria N; Oliveira-Tintino, Cícera D M; Santos, Enaide S; Morais, Luís P; Tintino, Saulo R; Freitas, Thiago S; Geraldo, Yuri S; Pereira, Raimundo L S; Cruz, Rafael P; Menezes, Irwin R A; Coutinho, Henrique D M

    2016-10-01

    The indiscriminate use of antimicrobial drugs has increased the spectrum of exposure of these organisms. In our studies, these phenolic compounds were evaluated: gallic acid, caffeic acid and pyrogallol. The antibacterial, antifungal and modulatory of antibiotic activities of these compounds were assayed using microdilution method of Minimum Inhibitory Concentration (MIC) to bacteria and Minimum Fungicide Concentration (MFC) to fungi. The modulation was made by comparisons of the MIC and MFC of the compounds alone and combined with drugs against bacteria and fungi respectively, using a sub-inhibitory concentration of 128 μg/mL of substances (MIC/8). All substances not demonstrated clinically relevant antibacterial activity with a MIC above ≥1024 μg/mL. As a result, we observed that the caffeic acid presented a potentiating antibacterial effect over the 3 groups of bacteria studied. Pyrogallol showed a synergistic effect with two of the antibiotics tested, but only against Staphylococcus aureus. In general, caffeic acid was the substance that presented with the greatest number of antibiotics and with the greatest number of bacteria. In relation to the antifungal activity of all the compounds, the verified results were ≥1024 μg/mL, not demonstrating significant activity. Regarding potentiation of the effect of fluconazole, was observed synergistic effect only when assayed against Candida tropicalis, with all substances. Therefore, as can be seen, the compounds presented as substances that can be promising potentiating agents of antimicrobial drugs, even though they do not have direct antibacterial and antifungal action. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Application of α-aminoisobutyric acid and β-aminoisobutyric acid inhibits pericarp browning of harvested longan fruit.

    PubMed

    Wang, Hui; Zhi, Wei; Qu, Hongxia; Lin, Hetong; Jiang, Yueming

    2015-12-01

    Pericarp browning is a critical problem resulting in reduced commercial value and shelf life of longan fruit. Two non-protein amino acids, α-aminoisobutyric acid (AIB) and β-aminoisobutyric acid (BAIB) at 100 and 1 mM were applied to longan fruit prior to storage for up to 8 days at 25 °C respectively. Contents of the major five phenolics (gallic acid, catechin, corilagin, epicatechin and gallocatechin gallate) were assayed by high-performance liquid chromatography (HPLC). Physiological properties related to pericarp browning of longan fruit were investigated during storage. Respiration rate, membrane permeability, malondialdehyde (MDA) content, and activities of polyphenol oxidase (PPO) and peroxidase (POD) were down-regulated by AIB or BAIB treatments, with significantly lower pericarp browning index and higher proportion of edible fruit than the control. Moreover, exogenous application of AIB and BAIB maintained higher contents of catechin, corilagin, epicatechin and gallocatechin gallate, but lower content of gallic acid compared to the control in the pericarp of longan fruit during storage, which was associated with the oxidation of browning substrate. Pericarp browning was inhibited and storage life of longan fruit was extended effectively by AIB and BAIB treatments with AIB treatment being more significant than BAIB. The findings may provide a new strategy for controlling pericarp browning of harvested longan fruit.

  6. Sugars, ascorbic acid, total phenolic content and total antioxidant activity in passion fruit (Passiflora) cultivars.

    PubMed

    Devi Ramaiya, Shiamala; Bujang, Japar Sidik; Zakaria, Muta Harah; King, Wong Sing; Shaffiq Sahrir, Muhd Arif

    2013-03-30

    The levels of sugars, ascorbic acid, total phenolic content (TPC) and total antioxidant activity (TAA) were determined in fruit juices from seven passion fruit (Passiflora spp.) cultivars: P. edulis cultivars Purple, Frederick, Yellow, Pink, P. edulis f. flavicarpa, P. maliformis and P. quadrangularis (we also tested this cultivar's mesocarp). Purple and Yellow P. edulis had significantly higher total sugar, 142.85 ± 0.17 g kg⁻¹ and 139.69 ± 0.12 g kg⁻¹, respectively, than other cultivars. Glucose and fructose content were higher in juice from vine-ripened fruits of Purple, Frederick and Yellow P. edulis, P. quadrangularis and P. maliformis. Sucrose content was significantly higher in juice of non-vine-ripened fruits of P. edulis (Pink) and P. edulis f. flavicarpa. Ascorbic acid, TPC and TAA were significantly higher in vine-ripened Purple and Yellow P. edulis; ranges were 0.22-0.33 g kg⁻¹, 342.80-382.00 mg gallic acid equivalent L⁻¹ and 409.13-586.70 µmol Trolox L⁻¹, respectively. Based on principal component analysis (PCA) and cluster analysis, the main variables - °Brix, total sugar, glucose, fructose, ascorbic acid, TPC and TAA - formed the characteristics for the group comprising Purple and Yellow P. edulis. Glucose, fructose, sucrose, ascorbic acid, TAA and TPC were quantified in passion fruit juices. Variation of the above variables in juices of Passiflora depends on the cultivar and ripeness. © 2012 Society of Chemical Industry.

  7. Anti-tumour potential of a gallic acid-containing phenolic fraction from Oenothera biennis.

    PubMed

    Pellegrina, Chiara Dalla; Padovani, Giorgia; Mainente, Federica; Zoccatelli, Gianni; Bissoli, Gaetano; Mosconi, Silvia; Veneri, Gianluca; Peruffo, Angelo; Andrighetto, Giancarlo; Rizzi, Corrado; Chignola, Roberto

    2005-08-08

    A phenolic fraction purified form defatted seeds of Oenothera biennis promoted selective apoptosis of human and mouse bone marrow-derived cell lines following first-order kinetics through a caspase-dependent pathway. In non-leukemia tumour cell lines, such as human colon carcinoma CaCo(2) cells and mouse fibrosarcoma WEHI164 cells, this fraction inhibited (3)H-thymidine incorporation but not cell death or cell cycle arrest. Human peripheral blood mononuclear cells showed low sensitivity to treatment. Single bolus injection of the phenolic fraction could delay the growth of established myeloma tumours in syngeneic animals. HPLC and mass spectrometry analysis revealed that the fraction contains gallic acid. However, the biological activity of the fraction differs from the activity of this phenol and hence it should be attributed to other co-purified molecules which remain still unidentified.

  8. Cocrystals of a 1,2,4-thiadiazole-based potent neuroprotector with gallic acid: solubility, thermodynamic stability relationships and formation pathways.

    PubMed

    Surov, Artem O; Churakov, Andrei V; Proshin, Alexey N; Dai, Xia-Lin; Lu, Tongbu; Perlovich, German L

    2018-05-30

    Three distinct solid forms, namely anhydrous cocrystals with 2 : 1 and 1 : 1 drug/acid ratios ([TDZ : GA] (2 : 1), [TDZ : GA] (1 : 1)), and a hydrated one having 1 : 1 : 1 drug/acid/water stoichiometry ([TDZ : GA : H2O] (1 : 1 : 1)), have been formed by cocrystallization of the biologically active 1,2,4-thiadiazole derivative (TDZ) with gallic acid (GA). The thermodynamic stability relationships between the cocrystals were rationalized in terms of Gibbs energies of the formation reactions and further verified by performing a set of competitive and exchange mechanochemical reactions. Interestingly, competitive grinding in the presence of the structurally related vanillic acid led to the formation of a new polymorphic form of the [TDZ : Vanillic acid] (1 : 1) cocrystal, which was promoted by gallic acid. The mechanochemical method was also applied to elucidate the alternative pathways of the [TDZ : GA : H2O] (1 : 1 : 1) cocrystal formation. Direct cocrystallization of TDZ with GA monohydrate was found to proceed much faster than the reaction of TDZ and anhydrous GA in the presence of an acetonitrile/water mixture, which may indicate the presence of a transitional stage. According to dissolution studies, the [TDZ : GA : H2O] (1 : 1 : 1) cocrystal was ca. 6.6 times more soluble than the parent 1,2,4-thiadiazole at pH 2.0 and 25.0 °C. The apparent two-step dehydration behavior of the [TDZ : GA : H2O] (1 : 1 : 1) cocrystal monohydrate was clarified by analyzing the intermolecular interactions of water molecules with the crystalline environment derived from solid state DFT calculations.

  9. Functional Characterization of Epitheaflagallin 3-O-Gallate Generated in Laccase-Treated Green Tea Extracts in the Presence of Gallic Acid.

    PubMed

    Itoh, Nobuya; Kurokawa, Junji; Isogai, Yasuhiro; Ogasawara, Masaru; Matsunaga, Takayuki; Okubo, Tsutomu; Katsube, Yuji

    2017-12-06

    Epitheaflagallin (ETFG) and epitheaflagallin 3-O-gallate (ETFGg) are minor polyphenols in black tea extract that are enzymatically synthesized from epigallocatechin (EGC) and epigallocatechin gallate (EGCg), respectively, in green tea extract via laccase oxidation in the presence of gallic acid. The constituents of laccase-treated green tea extract in the presence of gallic acid are thus quite different from those of nonlaccase-treated green tea extract: EGC and EGCg are present in lower concentrations, and ETFG and ETFGg are present in higher concentrations. Additionally, laccase-treated green tea extract contains further polymerized catechin derivatives, comparable with naturally fermented teas such as oolong tea and black tea. We found that ETFGg and laccase-treated green tea extracts exhibit versatile physiological functions in vivo and in vitro, including antioxidative activity, pancreatic lipase inhibition, Streptococcus sorbinus glycosyltransferase inhibition, and an inhibiting effect on the activity of matrix metalloprotease-1 and -3 and their synthesis by human gingival fibroblasts. We confirmed that these inhibitory effects of ETFGg in vitro match well with the results obtained by docking simulations of the compounds with their target enzymes or noncatalytic protein. Thus, ETFGg and laccase-treated green tea extracts containing ETFGg are promising functional food materials with potential antiobesity and antiperiodontal disease activities.

  10. Phenolics content and antioxidant activity of tartary buckwheat from different locations.

    PubMed

    Guo, Xu-Dan; Ma, Yu-Jie; Parry, John; Gao, Jin-Ming; Yu, Liang-Li; Wang, Min

    2011-11-25

    Two tartary buckwheat samples (Xingku No.2 and Diqing) grown at three locations were analyzed for free and bound phenolic content and antioxidant properties. Moreover, the relative contributions of variety and growing environment to phenolic content and antioxidant properties were determined, as well as correlations of these properties to growing conditions. The total phenolic contents varied from 5,150 to 9,660 μmol of gallic acid equivalents per 100 gram of dry weight (DW) of tartary buckwheat and the free phenolics accounted for 94% to 99%. Rutin content was in the range from 518.54 to 1,447.87 mg per 100 gram of DW of tartary buckwheat. p-Hydroxybenzoic, ferulic and protocatechuic acids were the prominent phenolic acids and other phenolics, including p-coumaric, gallic, caffeic, vanillic and syringic acids were also detected. Tartary buckwheat exhibited higher DPPH· and ABTS·+ scavenging activities and was more effective at preventing the bleaching of β-carotene in comparison with reference antioxidant and plant phenolics constituents. Additionally, growing conditions and the interaction between variety and environment may have more contribution than variety to individual phenolics and antioxidant properties of tartary buckwheat. Environmental parameters such as higher altitudes may also have an increasing effect on rutin and phenolic acids. This study suggests that tartary buckwheat has potential health benefits because of its high phenolic content and antioxidant properties. These components could also be enhanced by optimizing the growing conditions of a selected variety.

  11. Flexible graphene/carbon nanotube hybrid papers chemical-reduction-tailored by gallic acid for high-performance electrochemical capacitive energy storages

    NASA Astrophysics Data System (ADS)

    Yao, Lu; Zhou, Chao; Hu, Nantao; Hu, Jing; Hong, Min; Zhang, Liying; Zhang, Yafei

    2018-03-01

    Mechanically robust graphene papers with both high gravimetric and volumetric capacitances are desired for high-performance energy storages. However, it's still a challenge to tailor the structure of graphene papers in order to meet this requirement. In this work, a kind of chemical-reduction-tailored mechanically-robust reduced graphene oxide/carbon nanotube hybrid paper has been reported for high-performance electrochemical capacitive energy storages. Gallic acid (GA), as an excellent reducing agent, was used to reduce graphene oxide. Through vacuum filtration of gallic acid reduced graphene oxide (GA-rGO) and carboxylic multiwalled carbon nanotubes (MWCNTs) aqueous suspensions, mechanically robust GA-rGO/MWCNTs hybrid papers were obtained. The resultant hybrid papers showed high gravimetric capacitance of 337.6 F g-1 (0.5 A g-1) and volumetric capacitance of 151.2 F cm-3 (0.25 A cm-3). In addition, the assembled symmetric device based on the hybrid papers exhibited high gravimetric capacitance of 291.6 F g-1 (0.5 A g-1) and volumetric capacitance of 136.6 F cm-3 (0.25 A cm-3). Meanwhile, it exhibited excellent rate capability and cycling stability. Above all, this chemical reduction tailoring technique and the resultant high-performance GA-rGO/MWCNTs hybrid papers give an insight for designing high-performance electrodes and hold a great potential in the field of energy storages.

  12. Improved Quantification of Free and Ester-Bound Gallic Acid in Foods and Beverages by UHPLC-MS/MS.

    PubMed

    Newsome, Andrew G; Li, Yongchao; van Breemen, Richard B

    2016-02-17

    Hydrolyzable tannins are measured routinely during the characterization of food and beverage samples. Most methods for the determination of hydrolyzable tannins use hydrolysis or methanolysis to convert complex tannins to small molecules (gallic acid, methyl gallate, and ellagic acid) for quantification by HPLC-UV. Often unrecognized, analytical limitations and variability inherent in these approaches for the measurement of hydrolyzable tannins include the variable mass fraction (0-0.90) that is released as analyte, contributions of sources other than tannins to hydrolyzable gallate (can exceed >10 wt %/wt), the measurement of both free and total analyte, and lack of controls to account for degradation. An accurate, specific, sensitive, and higher-throughput approach for the determination of hydrolyzable gallate based on ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) that overcomes these limitations was developed.

  13. Mathematical evaluation of the amino acid and polyphenol content and antioxidant activities of fruits from different apricot cultivars.

    PubMed

    Sochor, Jiri; Skutkova, Helena; Babula, Petr; Zitka, Ondrej; Cernei, Natalia; Rop, Otakar; Krska, Boris; Adam, Vojtech; Provazník, Ivo; Kizek, Rene

    2011-09-01

    Functional foods are of interest because of their significant effects on human health, which can be connected with the presence of some biologically important compounds. In this study, we carried out complex analysis of 239 apricot cultivars (Prunus armeniaca L.) cultivated in Lednice (climatic area T4), South Moravia, Czech Republic. Almost all previously published studies have focused only on analysis of certain parameters. However, we focused on detection both primary and secondary metabolites in a selection of apricot cultivars with respect to their biological activity. The contents of thirteen biogenic alpha-L-amino acids (arginine, asparagine, isoleucine, lysine, serine, threonine, valine, leucine, phenylalanine, tryptophan, tyrosine, proline and alanine) were determined using ion exchange chromatography with UV-Vis spectrometry detection. Profile of polyphenols, measured as content of ten polyphenols with significant antioxidant properties (gallic acid, procatechinic acid, p-aminobenzoic acid, chlorogenic acid, caffeic acid, vanillin, p-coumaric acid, rutin, ferrulic acid and quercetrin), was determined by high performance liquid chromatography with spectrometric/electrochemical detection. Moreover, content of total phenolics was determined spectrophotometrically using the Folin-Ciocalteu method. Antioxidant activity was determined using five independent spectrophotometric methods: DPPH assay, DMPD method, ABTS method, FRAP and Free Radicals methods. Considering the complexity of the obtained data, they were processed and correlated using bioinformatics techniques (cluster analysis, principal component analysis). The studied apricot cultivars were clustered according to their common biochemical properties, which has not been done before. The observed similarities and differences were discussed.

  14. A computational investigation on the structure, global parameters and antioxidant capacity of a polyphenol, Gallic acid.

    PubMed

    Rajan, Vijisha K; Muraleedharan, K

    2017-04-01

    A computational DFT-B3LYP structural analysis of a poly phenol, Gallic acid (GA) has been performed by using 6-311++ G (df, p) basis set. The GA is a relatively stable molecule with considerable radical scavenging capacity. It is a well known antioxidant. The NBO analysis shows that the aromatic system is delocalized. The results reveal that the most stable radical is formed at O 3 -atom upon scavenging the free radicals. Global descriptive parameters show that GA acts as an acceptor center in charge transfer complex formation which is supported by ESP and contour diagrams and also by Q max value. The GA is a good antioxidant and it can be better understood by HAT and TMC mechanisms as it has low BDE, ΔH acidity and ΔG acidity values. The ΔBDE and ΔAIP values also confirm that the antioxidant capacity of GA can be explained through HAT rather than the SET-PT mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Assessment of exposure to oak wood dust using gallic acid as a chemical marker.

    PubMed

    Carrieri, Mariella; Scapellato, Maria Luisa; Salamon, Fabiola; Gori, Giampaolo; Trevisan, Andrea; Bartolucci, Giovanni Battista

    2016-01-01

    The American Conference of Governmental Industrial Hygienists (ACGIH) has classified oak dust as a human carcinogen (A1), based on increased sinus and nasal cancer rates among exposed workers. The aims of this study were to investigate the use of gallic acid (GA) as a chemical marker of occupational exposure to oak dusts, to develop a high-performance liquid chromatography-diode array detector method to quantify GA and to apply the method in the analysis of oak dust samples collected in several factories. A high-performance liquid chromatography method was developed to detect GA in oak wood dust. The method was tested in the field, and GA was extracted from inhalable oak wood dust collected using the Institute of Occupational Medicine inhalable dust sampler in the air of five woodworking plants where only oak wood is used. A total of 57 samples with dust concentrations in the range of 0.27-11.14 mg/m(3) were collected. Five of these samples exceeded the Italian threshold limit value of 5 mg/m(3), and 30 samples exceeded the ACGIH TLV of 1 mg/m(3). The GA concentrations were in the range 0.02-4.18 µg/m(3). The total oak dust sampled was correlated with the GA content with a correlation coefficient (r) of 0.95. The GA in the tannic extracts of oak wood may be considered a good marker for this type of wood, and its concentration in wood dust sampled in the work environment is useful in assessing the true exposure to carcinogenic oak dust.

  16. Gontscharovia popovii, a new source of carvacrol, its polyphenolic constituents, essential oil analysis, total phenolic content and antioxidant activity.

    PubMed

    Zareiyan, Faraneh; Rowshan, Vahid; Bahmanzadegan, Atefeh; Hatami, Ahmad

    2017-09-28

    The experiment was carried out using the shadow-dried aerial parts including leaves and shoots of Gontscharovia popovii collected in Fars province in order to investigate the polyphenolic compositions, antioxidant activity, total phenolic content and essential oil constituents. The result showed IC 50 of 395.77 μg mL -1 and total phenolic content of about 20.01 mg g -1 gallic acid equivalent dry weight. It also showed a wild range of polyphenols such as; Gallic acid, catechin, chloregenic acid, rutin, vanillin, trans-Ferulic acid, sinapic acid, coumarin, hesperedin, quercetin, hesperetin, eugenol and carvacrol as the main detected polyphenols. Some major compounds were also detected through essential oil analysis, such as; 76.7% carvacrol, 4.25% γ-Terpinene, 3.8% p-Cymene and 2.4% (E)-Caryophyllene. Qualitative and quantitative analyses of chemical compounds of G. popovii was performed using HPLC, GC, GC/MS and microplate reader.

  17. Intermolecular interactions in aqueous solutions of gallic acid at 296-306 K according to spectrofluorimetry and densimetry data

    NASA Astrophysics Data System (ADS)

    Grigoryan, K. R.; Sargsyan, L. S.

    2015-12-01

    Features of intermolecular interactions in aqueous solutions of gallic acid (GA) are studied by means of densimetry and fluorescence spectroscopy (intrinsic fluorescence, 2D spectra, and excitation/ emission matrix fluorescence spectra, 3D) at 296.15, 301.15, and 306.15 K in the concentration range of 5.88 × 10-4-5.88 × 10-2 mol L-1. It is shown by analyzing the concentration and temperature dependences of the apparent molar volumes and fluorescence parameters of GA that the equilibrium between nonassociated and associated species in the solution and the hydration of these species undergo changes.

  18. Prediction of oxidation parameters of purified Kilka fish oil including gallic acid and methyl gallate by adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network.

    PubMed

    Asnaashari, Maryam; Farhoosh, Reza; Farahmandfar, Reza

    2016-10-01

    As a result of concerns regarding possible health hazards of synthetic antioxidants, gallic acid and methyl gallate may be introduced as natural antioxidants to improve oxidative stability of marine oil. Since conventional modelling could not predict the oxidative parameters precisely, artificial neural network (ANN) and neuro-fuzzy inference system (ANFIS) modelling with three inputs, including type of antioxidant (gallic acid and methyl gallate), temperature (35, 45 and 55 °C) and concentration (0, 200, 400, 800 and 1600 mg L(-1) ) and four outputs containing induction period (IP), slope of initial stage of oxidation curve (k1 ) and slope of propagation stage of oxidation curve (k2 ) and peroxide value at the IP (PVIP ) were performed to predict the oxidation parameters of Kilka oil triacylglycerols and were compared to multiple linear regression (MLR). The results showed ANFIS was the best model with high coefficient of determination (R(2)  = 0.99, 0.99, 0.92 and 0.77 for IP, k1 , k2 and PVIP , respectively). So, the RMSE and MAE values for IP were 7.49 and 4.92 in ANFIS model. However, they were to be 15.95 and 10.88 and 34.14 and 3.60 for the best MLP structure and MLR, respectively. So, MLR showed the minimum accuracy among the constructed models. Sensitivity analysis based on the ANFIS model suggested a high sensitivity of oxidation parameters, particularly the induction period on concentrations of gallic acid and methyl gallate due to their high antioxidant activity to retard oil oxidation and enhanced Kilka oil shelf life. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Phenolic compounds and fatty acid composition of organic and conventional grown pecan kernels

    USDA-ARS?s Scientific Manuscript database

    In this study, differences in contents of phenolic compounds and fatty acids in pecan kernels of organically versus conventionally grown pecan cultivars (‘Desirable’, ‘Cheyenne’, and ‘Wichita’) were evaluated. Although we were able to identify nine phenolic compounds (gallic acid, catechol, catechin...

  20. Enhancement of periodate-hydrogen peroxide chemiluminescence by nitrogen doped carbon dots and its application for the determination of pyrogallol and gallic acid.

    PubMed

    Shah, Syed Niaz Ali; Li, Haifang; Lin, Jin-Ming

    2016-06-01

    A new sensitized chemiluminescence (CL) was developed to broaden the analytical application of KIO4-H2O2 system. The nitrogen doped carbon dots (N-CDs) dramatically boosted the CL intensity of KIO4-H2O2 system which was further enriched by basic medium. In light of EPR analysis, free radical scavenging studies and CL spectra the detail mechanism for the enhancement was conferred in the presence of N-CDs and NaOH. The results suggested that CL of KIO4-H2O2 system in the presence and absence of N-CDs and NaOH proceeds via radical pathway. The enhanced CL was used for the determination of pyrogallol and gallic acid in range of 1.0×10(-4)-1.0×10(-7)M with 4.6×10(-8) and 6.1×10(-8)M limit of detection respectively. The relative standard deviation (RSD) at a concentration of 10(-5) for gallic acid and pyrogallol was 1.4% and 2.3% respectively (n=11). The attained results unveil that the present method is sensitive, faster, simpler and less costly compared to other methods and could be applied to determine polyphenols in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Insulin-secretagogue, antihyperlipidemic and other protective effects of gallic acid isolated from Terminalia bellerica Roxb. in streptozotocin-induced diabetic rats.

    PubMed

    Latha, R Cecily Rosemary; Daisy, P

    2011-01-15

    Diabetes mellitus causes derangement of carbohydrate, protein and lipid metabolism which eventually leads to a number of secondary complications. Terminalia bellerica is widely used in Indian medicine to treat various diseases including diabetes. The present study was carried out to isolate and identify the putative antidiabetic compound from the fruit rind of T. bellerica and assess its chemico-biological interaction in experimental diabetic rat models. Bioassay guided fractionation was followed to isolate the active compound, structure was elucidated using (1)H and (13)C NMR, IR, UV and mass spectrometry and the compound was identified as gallic acid (GA). GA isolated from T. bellerica and synthetic GA was administered to streptozotocin (STZ)-induced diabetic male Wistar rats at different doses for 28 days. Plasma glucose level was significantly (p<0.05) reduced in a dose-dependent manner when compared to the control.Histopathological examination of the pancreatic sections showed regeneration of β-cells of islets of GA-treated rats when compared to untreated diabetic rats. In addition, oral administration of GA (20mg/kg bw) significantly decreased serum total cholesterol, triglyceride, LDL-cholesterol, urea, uric acid, creatinine and at the same time markedly increased plasma insulin, C-peptide and glucose tolerance level. Also GA restored the total protein, albumin and body weight of diabetic rats to near normal. Thus our findings indicate that gallic acid present in fruit rind of T. bellerica is the active principle responsible for the regeneration of β-cells and normalizing all the biochemical parameters related to the patho-biochemistry of diabetes mellitus and hence it could be used as a potent antidiabetic agent. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Comparison of Antioxidant Evaluation Assays for Investigating Antioxidative Activity of Gallic Acid and Its Alkyl Esters in Different Food Matrices.

    PubMed

    Phonsatta, Natthaporn; Deetae, Pawinee; Luangpituksa, Pairoj; Grajeda-Iglesias, Claudia; Figueroa-Espinoza, Maria Cruz; Le Comte, Jérôme; Villeneuve, Pierre; Decker, Eric A; Visessanguan, Wonnop; Panya, Atikorn

    2017-08-30

    The addition of antioxidants is one of the strategies to inhibit lipid oxidation, a major cause of lipid deterioration in foods leading to rancidity development and nutritional losses. However, several studies have been reported that conventional antioxidant assays, e.g., TPC, ABTS, FRAP, and ORAC could not predict antioxidant performance in several foods. This study aimed to investigate the performance of two recently developed assays, e.g., the conjugated autoxidizable triene (CAT) and the apolar radical-initiated conjugated autoxidizable triene (ApoCAT) assays to predict the antioxidant effectiveness of gallic acid and its esters in selected food models in comparison with the conventional antioxidant assays. The results indicated that the polarities of the antioxidants have a strong impact on antioxidant activities. In addition, different oxidant locations demonstrated by the CAT and ApoCAT assays influenced the overall antioxidant performances of the antioxidants with different polarities. To validate the predictability of the assays, the antioxidative performance of gallic acid and its alkyl esters was investigated in oil-in-water (O/W) emulsions, bulk soybean oils, and roasted peanuts as the lipid food models. The results showed that only the ApoCAT assay could be able to predict the antioxidative performances in O/W emulsions regardless of the antioxidant polarities. This study demonstrated that the relevance of antioxidant assays to food models was strongly dependent on physical similarities between the tested assays and the food structure matrices.

  3. Radiation sensitivity and EPR dosimetric potential of gallic acid and its esters

    NASA Astrophysics Data System (ADS)

    Tuner, Hasan; Oktay Bal, M.; Polat, Mustafa

    2015-02-01

    In the preset work the radiation sensitivities of Gallic Acid anhydrous and monohydrate, Octyl, Lauryl, and Ethyl Gallate (GA, GAm, OG, LG, and EG) were investigated in the intermediate (0.5-20 kGy) and low radiation (<10 Gy) dose range using Electron Paramagnetic Resonance (EPR) spectroscopy. While OG, LG, and EG are presented a singlet EPR spectra, their radiation sensitivity found to be very different in the intermediate dose range. At low radiation dose range (<10 Gy) only LG is found to be present a signal that easily distinguished from the noise signals. The intermediate and low dose range radiation sensitivities are compared using well known EPR dosimeter alanine. The radiation yields (G) of the interested material were found to be 1.34×10-2, 1.48×10-2, 4.14×10-2, and 6.03×10-2, 9.44×10-2 for EG, GA, GAm, OG, and LG, respectively at the intermediate dose range. It is found that the simple EPR spectra and the noticeable EPR signal of LG make it a promising dosimetric material to be used below 10 Gy of radiation dose.

  4. Rosmarinic acid content in antidiabetic aqueous extract of Ocimum canum sims grown in Ghana.

    PubMed

    Berhow, Mark A; Affum, Andrews Obeng; Gyan, Ben A

    2012-07-01

    Rosmarinic acid (RA) is an important antioxidant polyphenol that is found in a variety of spices and herbs, including Ocimum canum Sims (locally called eme or akokobesa in Ghana). Aqueous extracts from the leaves of O. canum are used as an antidiabetic herbal medicine in Ghana. Analytical thin-layer chromatography was used to examine the composition of the polyphenols in leaf extracts. The polyphenol content in the aqueous and methanol extracts from the leaf, as determined by the Folin-Ciocalteu method, were 314 and 315 mg gallic acid equivalent/g leaf sample, respectively. The total flavonoid concentration as determined by the aluminum(III) chloride method was 135 mg catechin equivalent/g leaf sample. High-performance liquid chromatography coupled to an electrospray Quadrupole time-of-flight mass spectrometer was also used to determine the polyphenol fingerprint profile in the leaf extracts of O. canum. Although the average RA concentration in the O. canum leaf extracts from Ghana was 1.69 mg/g dry weight (reported values range from 0.01 to 99.62 mg/g dry weight), this polyphenol was still a prominent peak in addition to caffeic acid derivatives.

  5. Gallic acid grafting modulates the oxidative potential of ferrimagnetic bioactive glass-ceramic SC-45.

    PubMed

    Corazzari, Ingrid; Tomatis, Maura; Turci, Francesco; Ferraris, Sara; Bertone, Elisa; Prenesti, Enrico; Vernè, Enrica

    2016-12-01

    Magnetite-containing glass-ceramics are promising bio-materials for replacing bone tissue after tumour resection. Thanks to their ferrimagnetic properties, they generate heat when subjected to an alternated magnetic field. In virtue of this they can be employed for the hyperthermic treatment of cancer. Moreover, grafting anti-cancer drugs onto their surface produces specific anti-neoplastic activity in these biomaterials. Gallic acid (GA) exhibits antiproliferative activity which renders it a promising candidate for anticancer applications. In the present paper, the reactivity of ferrimagnetic glass-ceramic SC-45 grafted with GA (SC-45+GA) was studied in terms of ROS release, rupture of the C-H bond of the formate molecule and Fenton reactivity by EPR/spin trapping in acellular systems. The ability of these materials to cause lipid peroxidation was assessed by UV-vis/TBA assay employing linoleic acid as a model of membrane lipid. The results, compared to those obtained with SC-45, showed that GA grafting (i) significantly enhanced the Fenton reactivity and (ii) restored the former reactivity of SC-45 towards both the C-H bond and linoleic acid which had been completely suppressed by prolonged contact with water. Fe 2+ centres at the surface are probably implicated. GA, acting as a pro-oxidant, reduces Fe 3+ to Fe 2+ by maintaining a supply of Fe 2+ at the surface of SC-45+GA. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Ultrasound stimulated release of gallic acid from chitin hydrogel matrix.

    PubMed

    Jiang, Huixin; Kobayashi, Takaomi

    2017-06-01

    Ultrasound (US) stimulated drug release was examined in this study using a chitin hydrogel matrix loaded with gallic acid (GA), a drug used for wound healing and anticancer. Using phase inversion, GA-chitin hydrogels were prepared from chitin-dimethylacetamide (DMAc)/lithium chloride (LiCl) solution in the presence of GA, with 24h exposure of the solution to water vapor. The GA release from the GA-chitin hydrogel was examined under different US powers of 0-30W at 43kHz. The effects of GA loading amounts in the hydrogels (0.54, 0.43, and 0.25mg/cm 3 ) and chitin concentrations (0.1, 0.5, and 1wt%) on the release behaviors were recorded under 43kHz US exposure at 30W. Results show that US accelerated the release efficiencies for all samples. Furthermore, the release efficiency increased concomitantly with increasing US power, GA loading amount, and decrease of the chitin concentration. The highest release rate of 0.74μg/mL·min was obtained from 0.54mg/cm 3 of GA-loaded hydrogel fabricated from a 0.1wt% chitin mixture solution under 43kHz US exposure at 30W: nine times higher than that of the sample without US exposure. The hydrogel viscoelasticity demonstrated that the US irradiation rigidified the material. FT-IR showed that US can break the hydrogen bonds in the GA-chitin hydrogels. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Green synthesis of gold and silver nanoparticles using gallic acid: catalytic activity and conversion yield toward the 4-nitrophenol reduction reaction

    NASA Astrophysics Data System (ADS)

    Park, Jisu; Cha, Song-Hyun; Cho, Seonho; Park, Youmie

    2016-06-01

    In the present report, gallic acid was used as both a reducing and stabilizing agent to synthesize gold and silver nanoparticles. The synthesized gold and silver nanoparticles exhibited characteristic surface plasmon resonance bands at 536 and 392 nm, respectively. Nanoparticles that were approximately spherical in shape were observed in high-resolution transmission electron microscopy and atomic force microscopy images. The hydrodynamic radius was determined to be 54.4 nm for gold nanoparticles and 33.7 nm for silver nanoparticles in aqueous medium. X-ray diffraction analyses confirmed that the synthesized nanoparticles possessed a face-centered cubic structure. FT-IR spectra demonstrated that the carboxylic acid functional groups of gallic acid contributed to the electrostatic binding onto the surface of the nanoparticles. Zeta potential values of -41.98 mV for the gold nanoparticles and -53.47 mV for the silver nanoparticles indicated that the synthesized nanoparticles possess excellent stability. On-the-shelf stability for 4 weeks also confirmed that the synthesized nanoparticles were quite stable without significant changes in their UV-visible spectra. The synthesized nanoparticles exhibited catalytic activity toward the reduction reaction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. The rate constant of the silver nanoparticles was higher than that of the gold nanoparticles in the catalytic reaction. Furthermore, the conversion yield (%) of 4-nitrophenol to 4-aminophenol was determined using reversed-phase high-performance liquid chromatography with UV detection at 254 nm. The silver nanoparticles exhibited an excellent conversion yield (96.7-99.9 %), suggesting that the synthesized silver nanoparticles are highly efficient catalysts for the 4-nitrophenol reduction reaction.

  8. Dinuclear copper(II) octaazamacrocyclic complex in a PVC coated GCE and graphite as a voltammetric sensor for determination of gallic acid and antioxidant capacity of wine samples.

    PubMed

    Petković, B B; Stanković, D; Milčić, M; Sovilj, S P; Manojlović, D

    2015-01-01

    A novel efficient differential pulse voltammetric (DPV) method for determination gallic acid (GA) was developed by using an electrochemical sensor based on [Cu2tpmc](ClO4)4 immobilized in PVC matrix and coated on graphite (CGE) or classy carbon rod (CGCE). The proposed method is based on the gallic acid oxidation process at formed [Cu2tpmcGA](3+) complex at the electrode surface. The complexation was explored by molecular modeling and DFT calculations. Voltammograms for both sensors, recorded in a HNO3 as a supporting electrolyte at pH 2 and measured in 2.5×10(-7) to 1.0×10(-4) M of GA, resulted with two linear calibration curves (for higher and lower GA concentration range). The detection limit at CGE was 1.48×10(-7) M, while at CGCE was 4.6×10(-6) M. CGE was successfully applied for the determination of the antioxidant capacity based on GA equivalents for white, rosé and red wine samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. The relationship between antiglycation activity and procyanidin and phenolic content in commercial grape seed products.

    PubMed

    Sun, Cathy; McIntyre, Kristina; Saleem, Ammar; Haddad, Pierre Selim; Arnason, John Thor

    2012-02-01

    Eight commercial grape seed products (GSPs) were assessed for their inhibition of the formation of advanced glycation end-products in vitro. All 8 commercial GSPs included in this study were potent inhibitors of advanced glycation end-product formation with IC(50) values ranging from 2.93 to 20.0 µg/mL. Total procyanidin content ranged from 60% to 73%. HPLC-DAD-ELSD results indicate that (+)-catechin, (-)-epicatechin, procyanidin B1, and procyanidin B2 were predominant and ubiquitously present in all the products under study, while gallic acid and procyanidin B4 were present in relatively minor amounts. The IC(50) values correlated with total phenolic content, and multiple regression analysis indicated that IC(50) is a linear function of the concentration of gallic acid and procyanidins B1, B2, and B4. Based on this study, GSPs have the potential to complement conventional diabetes medication toward disease management and prevention.

  10. Functionalized ZnO Nanoparticles with Gallic Acid for Antioxidant and Antibacterial Activity against Methicillin-Resistant S. aureus

    PubMed Central

    Lee, Joo Min; Choi, Kyong-Hoon; Min, Jeeeun; Kim, Ho-Joong; Jee, Jun-Pil; Park, Bong Joo

    2017-01-01

    In this study, we report a new multifunctional nanoparticle with antioxidative and antibacterial activities in vitro. ZnO@GA nanoparticles were fabricated by coordinated covalent bonding of the antioxidant gallic acid (GA) on the surface of ZnO nanoparticles. This addition imparts both antioxidant activity and high affinity for the bacterial cell membrane. Antioxidative activities at various concentrations were evaluated using a 2,2′-azino-bis(ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging method. Antibacterial activities were evaluated against Gram-positive bacteria (Staphylococcus aureus: S. aureus), including several strains of methicillin-resistant S. aureus (MRSA), and Gram-negative bacteria (Escherichia coli). The functionalized ZnO@GA nanoparticles showed good antioxidative activity (69.71%), and the bactericidal activity of these nanoparticles was also increased compared to that of non-functionalized ZnO nanoparticles, with particularly effective inhibition and high selectivity for MRSA strains. The results indicate that multifunctional ZnO nanoparticles conjugated to GA molecules via a simple surface modification process displaying both antioxidant and antibacterial activity, suggesting a possibility to use it as an antibacterial agent for removing MRSA. PMID:29099064

  11. Gallic acid conjugated with gold nanoparticles: antibacterial activity and mechanism of action on foodborne pathogens

    PubMed Central

    Rattanata, Narintorn; Klaynongsruang, Sompong; Leelayuwat, Chanvit; Limpaiboon, Temduang; Lulitanond, Aroonlug; Boonsiri, Patcharee; Chio-Srichan, Sirinart; Soontaranon, Siriwat; Rugmai, Supagorn; Daduang, Jureerut

    2016-01-01

    Foodborne pathogens, including Plesiomonas shigelloides and Shigella flexneri B, are the major cause of diarrheal endemics worldwide. Antibiotic drug resistance is increasing. Therefore, bioactive compounds with antibacterial activity, such as gallic acid (GA), are needed. Gold nanoparticles (AuNPs) are used as drug delivery agents. This study aimed to conjugate and characterize AuNP–GA and to evaluate the antibacterial activity. AuNP was conjugated with GA, and the core–shell structures were characterized by small-angle X-ray scattering and transmission electron microscopy. Antibacterial activity of AuNP–GA against P. shigelloides and S. flexneri B was evaluated by well diffusion method. AuNP–GA bactericidal mechanism was elucidated by Fourier transform infrared microspectroscopic analysis. The results of small-angle X-ray scattering showed that AuNP–GA conjugation was successful. Antibacterial activity of GA against both bacteria was improved by conjugation with AuNP because the minimum inhibitory concentration value of AuNP–GA was significantly decreased (P<0.0001) compared to that of GA. Fourier transform infrared analysis revealed that AuNP–GA resulted in alterations of lipids, proteins, and nucleic acids at the bacterial cell membrane. Our findings show that AuNP–GA has potential for further application in biomedical sciences. PMID:27555764

  12. Gallic acid conjugated with gold nanoparticles: antibacterial activity and mechanism of action on foodborne pathogens.

    PubMed

    Rattanata, Narintorn; Klaynongsruang, Sompong; Leelayuwat, Chanvit; Limpaiboon, Temduang; Lulitanond, Aroonlug; Boonsiri, Patcharee; Chio-Srichan, Sirinart; Soontaranon, Siriwat; Rugmai, Supagorn; Daduang, Jureerut

    2016-01-01

    Foodborne pathogens, including Plesiomonas shigelloides and Shigella flexneri B, are the major cause of diarrheal endemics worldwide. Antibiotic drug resistance is increasing. Therefore, bioactive compounds with antibacterial activity, such as gallic acid (GA), are needed. Gold nanoparticles (AuNPs) are used as drug delivery agents. This study aimed to conjugate and characterize AuNP-GA and to evaluate the antibacterial activity. AuNP was conjugated with GA, and the core-shell structures were characterized by small-angle X-ray scattering and transmission electron microscopy. Antibacterial activity of AuNP-GA against P. shigelloides and S. flexneri B was evaluated by well diffusion method. AuNP-GA bactericidal mechanism was elucidated by Fourier transform infrared microspectroscopic analysis. The results of small-angle X-ray scattering showed that AuNP-GA conjugation was successful. Antibacterial activity of GA against both bacteria was improved by conjugation with AuNP because the minimum inhibitory concentration value of AuNP-GA was significantly decreased (P<0.0001) compared to that of GA. Fourier transform infrared analysis revealed that AuNP-GA resulted in alterations of lipids, proteins, and nucleic acids at the bacterial cell membrane. Our findings show that AuNP-GA has potential for further application in biomedical sciences.

  13. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria.

    PubMed

    Borges, Anabela; Saavedra, Maria J; Simões, Manuel

    2012-01-01

    The activity of two phenolic acids, gallic acid (GA) and ferulic acid (FA) at 1000 μg ml(-1), was evaluated on the prevention and control of biofilms formed by Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes. In addition, the effect of the two phenolic acids was tested on planktonic cell susceptibility, bacterial motility and adhesion. Biofilm prevention and control were tested using a microtiter plate assay and the effect of the phenolic acids was assessed on biofilm mass (crystal violet staining) and on the quantification of metabolic activity (alamar blue assay). The minimum bactericidal concentration for P. aeruginosa was 500 μg ml(-1) (for both phenolic acids), whilst for E. coli it was 2500 μg ml(-1) (FA) and 5000 μg ml(-1) (GA), for L. monocytogenes it was >5000 μg ml(-1) (for both phenolic acids), and for S. aureus it was 5000 μg ml(-1) (FA) and >5000 μg ml(-1) (GA). GA caused total inhibition of swimming (L. monocytogenes) and swarming (L. monocytogenes and E. coli) motilities. FA caused total inhibition of swimming (L. monocytogenes) and swarming (L. monocytogenes and E. coli) motilities. Colony spreading of S. aureus was completely inhibited by FA. The interference of GA and FA with bacterial adhesion was evaluated by the determination of the free energy of adhesion. Adhesion was less favorable when the bacteria were exposed to GA (P. aeruginosa, S. aureus and L. monocytogenes) and FA (P. aeruginosa and S. aureus). Both phenolics had preventive action on biofilm formation and showed a higher potential to reduce the mass of biofilms formed by the Gram-negative bacteria. GA and FA promoted reductions in biofilm activity >70% for all the biofilms tested. The two phenolic acids demonstrated the potential to inhibit bacterial motility and to prevent and control biofilms of four important human pathogenic bacteria. This study also emphasizes the potential of phytochemicals as an emergent source of biofilm

  14. [Ecology suitability of Polygonum capitatum in Guizhou province based on topographical conditions].

    PubMed

    Zhang, Xiaobo; Zhou, Tao; Guo, Lanping; Zhu, Shoudong; Huang, Luqi

    2011-02-01

    To study ecology suitability rank dividing of Polygonum capitatum for selecting artificial planting base and high-quality industrial raw material in Guizhou province. Based on the investigation of PCB and DEM data of Guizhou province, the relationship between the gallic acid content in P. capitatum and topographical conditions was analyzed by statistical analysis. The geographic information systems (GIS)-based assessment and landscape ecological principles were applied to assess ecology suitability areas of P. capitatum in Guizhou. slope, aspect and altitude are main topographical factors that affect the content of gallic acid in P. capitatum. The gallic acid content of P. capitatum is higher in the lower altitude, shady slope and smaller slope areas. The gallic acid content is higher in the eastern areas of Guizhou province.

  15. Nanoparticle mediated brain targeted delivery of gallic acid: in vivo behavioral and biochemical studies for improved antioxidant and antidepressant-like activity.

    PubMed

    Nagpal, Kalpana; Singh, Shailendra Kumar; Mishra, Dina Nath

    2012-11-01

    Gallic acid had been reported to possess antidepressant like activity, which may be attributed to its CNS effects like increase in reduced glutathione levels, increased catalase activity and decreased malonaldehyde levels in brain. This study was designed to enhance the antidepressant-like activity of gallic acid (GA) using nanoparticulate delivery system in swiss male albino mice and to explore the possible underlying mechanisms for this activity. GA loaded chitosan nanoparticles (GANP) and corresponding tween 80 coated batch (cGANP) were formulated for brain targeting of GA and characterized for physicochemical parameters, morphology, differential scanning calorimetry and in vitro drug release. GA, GANP, cGANP (dose equivalent to GA 10 mg/kg, i.p.) and positive control drug, Fluoxetine (10 mg/kg, i.p.) were administered for successive seven days to male swiss albino mice. Then, the in vivo antidepressant-like activity was evaluated using Despair Swim Test (DST) and Tail Suspension Test (TST); along with the evaluation of MAO-A activity, reduced glutathione, malonaldehyde level, catalase and locomotor activity in mice. KEYFINDINGS: cGANP (equivalent to 10 mg/kg, i.p.) significantly decreased immobility period of mice in DST and TST, indicating significant antidepressant-like activity. There was no significant effect on locomotor activity of the mice by GA and its nanoparticle formulations. cGANP (10 mg/kg, i.p.) significantly decreased Monoamine oxidase-A (MAO-A) activity, malondialdehyde levels, and catalase activity in mice. GA possess significant antidepressant like activity and ligand coated nanoparticle approach with improved brain targeting may serve as an effective approach to enhance such effect.

  16. The toxic effect of gallic acid on biochemical factors, viability and proliferation of rat bone marrow mesenchymal stem cells was compensated by boric acid.

    PubMed

    Abnosi, Mohammad Hussein; Yari, Somayeh

    2018-07-01

    Gallic acid (GA) and boron are found in many plants. Our previous studies showed 6 ng/ml boric acid (BA) had positive effect on biochemistry of rat bone marrow mesenchymal stem cells (MSCs) and their osteogenic differentiation. Therefore, we investigate the effect of different doses of GA alone and in the presence of BA on MSCs. the viability of MSCs was assayed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and trypan blue at 12, 24 and 36 h in presence of different concentration of GA. Then 30 and 120 μM of GA as well as 6 ng/ml of BA in 36 h were selected for further study. The proliferation, Morphology, sodium and potassium level, concentration of calcium, activity of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) as well as malondialdehyde (MDA) concentration, total antioxidant capacity (FRAP) and activity of superoxide dismutase (SOD) and catalase (CAT) were estimated. Results showed GA alone reduced viability, proliferation, nuclear diameter and cytoplasm area. In addition, GA showed anaerobic metabolic shift but no change in MDA and scavenging enzymes. Both concentration of GA caused elevation of FRAP, whereas only at 120 μM increased the sodium-potassium and reduced calcium. The co-treatment of GA and BA improves the viability, proliferation and morphology of the cells. In addition, co-treatment compensated the metabolic shift caused by GA and could balance the potassium level and FRAP as it was raised by GA. Although GA content of tea is harmful to the cells but simultaneous consumption of fruits and vegetables as a rich source of boron might compensate the damaging effect of GA. Copyright © 2018 Elsevier GmbH. All rights reserved.

  17. Antioxidant activity, phenolic content, and peroxide value of essential oil and extracts of some medicinal and aromatic plants used as condiments and herbal teas in Turkey.

    PubMed

    Ozcan, Mehmet Musa; Erel, Ozcan; Herken, Emine Etöz

    2009-02-01

    The antioxidant activity, total peroxide values, and total phenol contents of several medicinal and aromatic plant essential oil and extracts from Turkey were examined. Total phenolic contents were determined using a spectrophotometric technique and calculated as gallic acid equivalents. Total antioxidant activity of essential oil and extracts varied from 0.6853 to 1.3113 and 0.3189 to 0.6119 micromol of Trolox equivalents/g, respectively. The total phenolic content of essential oil ranged from 0.0871 to 0.5919 mg of gallic acid/g dry weight. However, the total phenolic contents of extracts were found to be higher compared with those of essential oils. The amount of total peroxide values of oils varied from 7.31 (pickling herb) to 58.23 (bitter fennel flower) mumol of H(2)O(2)/g. As a result, it is shown that medicinal plant derivatives such as extract and essential oils can be useful as a potential source of total phenol, peroxide, and antioxidant capacity for protection of processed foods.

  18. The Tissue Distribution and Urinary Excretion Study of Gallic Acid and Protocatechuic Acid after Oral Administration of Polygonum Capitatum Extract in Rats.

    PubMed

    Ma, Feng-Wei; Deng, Qing-Fang; Zhou, Xin; Gong, Xiao-Jian; Zhao, Yang; Chen, Hua-Guo; Zhao, Chao

    2016-03-24

    In the present study, we investigated the tissue distribution and urinary excretion of gallic acid (GA) and protocatechuic acid (PCA) after rat oral administration of aqueous extract of Polygonum capitatum (P. capitatum, named Herba Polygoni Capitati in China). An UHPLC-MS/MS analytical method was developed and adopted for quantification of GA and PCA in different tissue homogenate and urine samples. Interestingly, we found that GA and PCA showed a relatively targeted distribution in kidney tissue after dosing 60 mg/kg P. capitatum extract (equivalent to 12 mg/kg of GA and 0.9 mg/kg of PCA). The concentrations of GA and PCA in the kidney tissue reached 1218.62 ng/g and 43.98 ng/g, respectively, at one hour after oral administration. The results helped explain the empirical use of P. capitatum for kidney diseases in folk medicine. Further studies on urinary excretion of P. capitatum extract indicated that GA and PCA followed a concentrated elimination over a 4-h period. The predominant metabolites were putatively identified to be 4-methylgallic acid (4-OMeGA) and 4-methylprotocatechuic acid (4-OMePCA) by analyzing their precursor ions and characteristic fragment ions using tandem mass spectrometry. However, the amount of unchanged GA and PCA that survived the metabolism were about 14.60% and 15.72% of the total intake, respectively, which is reported for the first time in this study.

  19. Changes in composition and enamel demineralization inhibition activities of gallic acid at different pH values.

    PubMed

    Zhang, Jingyang; Huang, Xuelian; Huang, Shengbin; Deng, Meng; Xie, Xincheng; Liu, Mingdong; Liu, Hongling; Zhou, Xuedong; Li, Jiyao; Ten Cate, Jacob Martien

    2015-01-01

    Gallic acid (GA) has been shown to inhibit demineralization and enhance remineralization of enamel; however, GA solution is highly acidic. This study was to investigate the stability of GA solutions at various pH and to examine the resultant effects on enamel demineralization. The stability of GA in H2O or in phosphate buffer at pH 5.5, pH 7.0 and pH 10.0 was evaluated qualitatively by ultraviolet absorption spectra and quantified by high performance liquid chromatography with diode array detection (HPLC-DAD). Then, bovine enamel blocks were subjected to a pH-cycling regime of 12 cycles. Each cycle included 5 min applications with one of the following treatments: 1 g/L NaF (positive control), 4 g/L GA in H2O or buffered at pH 5.5, pH 7.0 and pH 10.0 and buffers without GA at the same pH (negative control), followed by a 60 min application with pH 5.0 acidic buffers and a 5 min application with neutral buffers. The acidic buffers were analysed for dissolved calcium. GA was stable in pure water and acidic condition, but was unstable in neutral and alkaline conditions, in which ultraviolet spectra changed and HPLC-DAD analysis revealed that most of the GA was degraded. All the GA groups significantly inhibited demineralization (p < 0.05) and there was no significant difference of the inhibition efficacy among different GA groups (p > 0.05). GA could inhibit enamel demineralization and the inhibition effect is not influenced by pH. GA could be a useful source as an anti-cariogenic agent for broad practical application.

  20. Antioxidant capacity and polyphenolic content of blueberry (Vaccinium corymbosum L.) leaf infusions.

    PubMed

    Piljac-Zegarac, J; Belscak, A; Piljac, A

    2009-06-01

    Antioxidant capacity and polyphenolic content of leaf infusions prepared from six highbush blueberry cultivars (Vaccinium corymbosum L.), one wild lowbush blueberry cultivar (Vaccinium myrtillus L.), and one commercially available mix of genotypes were determined. In order to simulate household tea preparation conditions, infusions were prepared in water heated to 95 degrees C. The dynamics of extraction of polyphenolic antioxidants were monitored over the course of 30 minutes. Extraction efficiency, quantified in terms of the total phenol (TP) content, and antioxidant capacity of infusions, evaluated by the ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging assays, were compared with cultivar type and extraction time. The 30-minute infusions exhibited the highest TP content and antioxidant capacity according to all three assays. Wild blueberry infusion had the highest TP content (1,879 mg/L gallic acid equivalents [GAE]) and FRAP values (20,050 microM). The range of TP values for 30-minute infusions was 394-1,879 mg/L GAE with a mean of 986 mg/L GAE across cultivars; FRAP values fell between 3,015 and 20,050 microM with a mean of 11,234 microM across cultivars. All 30-minute infusions exhibited significant scavenging capacity for DPPH(*) and ABTS(*+) radicals, comparable to different concentrations of catechin, gallic acid, and 6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid. Overall, tested infusions showed significant reducing capacity as well as radical scavenging potential, which places blueberry leaf tea high on the list of dietary sources of antioxidants.

  1. Fungal Pretreatment of Sweet Sorghum Bagasse with Combined CuSO4-Gallic Acid Supplement for Improvement in Lignin Degradation, Selectivity, and Enzymatic Saccharification.

    PubMed

    Mishra, Vartika; Jana, Asim K

    2017-09-01

    Sweet sorghum (Sorghum sp.) has high biomass yield. Hydrolysis of lignocellulosic sweet sorghum bagasse (SSB) to fermentable sugar could be useful for manufacture of biofuel or other fermentation products. Pretreatment of lignocellulosic biomass to degrade lignin before enzymatic hydrolysis is a key step. Fungal pretreatment of SSB with combined CuSO 4 -gallic acid supplements in solid-state fermentation (SSF) to achieve higher lignin degradation, selectivity value (SV), and enzymatic hydrolysis to sugar was studied. Coriolus versicolor was selected due to high activities of ligninolytic enzymes laccase, lignin peroxidase (LiP), manganese peroxidase (MnP), polyphenol oxidase (PPO), and arylalcohol oxidase (AAO) and low activities of cellulolytic enzymes CMCase, FPase, and β-glucosidase with high lignin degradation and SV in 20 days. CuSO 4 /gallic acid increased the activities of ligninolytic enzymes resulting in enhanced lignin degradations and SVs. Cumulative/synergistic effect of combined supplements further increased the activities of laccase, LiP, MnP, PPO, and AAO by 7.6, 14.6, 2.67, 2.06, and 2.15-folds, respectively (than control), resulting in highest lignin degradation 31.1 ± 1.4% w/w (1.56-fold) and SV 2.33 (3.58-fold). Enzymatic hydrolysis of pretreated SSB yielded higher (~2.2 times) fermentable sugar. The study showed combined supplements can improve fungal pretreatment of lignocellulosic biomass. XRD, SEM, FTIR, and TGA/DTG of SSB confirmed the results.

  2. Gallic acid regulates skin photoaging in UVB-exposed fibroblast and hairless mice.

    PubMed

    Hwang, Eunson; Park, Sang-Yong; Lee, Hyun Ji; Lee, Tae Youp; Sun, Zheng-Wang; Yi, Tae Hoo

    2014-12-01

    Ultraviolet (UV) radiation is the primary factor in skin photoaging, which is characterized by wrinkle formation, dryness, and thickening. The mechanisms underlying skin photoaging are closely associated with degradation of collagen via upregulation of matrix metalloproteinase (MMP) activity, which is induced by reactive oxygen species (ROS) production. Gallic acid (GA), a phenolic compound, possesses a variety of biological activities including antioxidant and antiinflammatory activities. We investigated the protective effects of GA against photoaging caused by UVB irradiation using normal human dermal fibroblasts (NHDFs) in vitro and hairless mice in vivo. The production levels of ROS, interlukin-6, and MMP-1 were significantly suppressed, and type I procollagen expression was stimulated in UVB-irradiated and GA-treated NHDFs. GA treatment inhibited the activity of transcription factor activation protein 1. The effects of GA following topical application and dietary administration were examined by measuring wrinkle formation, histological modification, protein expression, and physiological changes such as stratum corneum hydration, transepidermal water loss, and erythema index. We found that GA decreased dryness, skin thickness, and wrinkle formation via negative modulation of MMP-1 secretion and positive regulation of elastin, type I procollagen, and transforming growth factor-β1. Our data indicate that GA is a potential candidate for the prevention of UVB-induced premature skin aging. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Gallic Acid as an Oxygen Scavenger in Bio-Based Multilayer Packaging Films

    PubMed Central

    Pant, Astrid F.; Sängerlaub, Sven; Müller, Kajetan

    2017-01-01

    Oxygen scavengers are used in food packaging to protect oxygen-sensitive food products. A mixture of gallic acid (GA) and sodium carbonate was used as an oxygen scavenger (OSc) in bio-based multilayer packaging films produced in a three-step process: compounding, flat film extrusion, and lamination. We investigated the film surface color as well as oxygen absorption at different relative humidities (RHs) and temperatures, and compared the oxygen absorption of OSc powder, monolayer films, and multilayer films. The films were initially brownish-red in color but changed to greenish-black during oxygen absorption under humid conditions. We observed a maximum absorption capacity of 447 mg O2/g GA at 21 °C and 100% RH. The incorporation of GA into a polymer matrix reduced the rate of oxygen absorption compared to the GA powder because the polymer acted as a barrier to oxygen and water vapor diffusion. As expected, the temperature had a significant effect on the initial absorption rate of the multilayer films; the corresponding activation energy was 75.4 kJ/mol. Higher RH significantly increased the oxygen absorption rate. These results demonstrate for the first time the production and the properties of a bio-based multilayer packaging film with GA as the oxygen scavenger. Potential applications include the packaging of food products with high water activity (aw > 0.86). PMID:28772849

  4. Gallic Acid as an Oxygen Scavenger in Bio-Based Multilayer Packaging Films.

    PubMed

    Pant, Astrid F; Sängerlaub, Sven; Müller, Kajetan

    2017-05-03

    Oxygen scavengers are used in food packaging to protect oxygen-sensitive food products. A mixture of gallic acid (GA) and sodium carbonate was used as an oxygen scavenger (OSc) in bio-based multilayer packaging films produced in a three-step process: compounding, flat film extrusion, and lamination. We investigated the film surface color as well as oxygen absorption at different relative humidities (RHs) and temperatures, and compared the oxygen absorption of OSc powder, monolayer films, and multilayer films. The films were initially brownish-red in color but changed to greenish-black during oxygen absorption under humid conditions. We observed a maximum absorption capacity of 447 mg O₂/g GA at 21 °C and 100% RH. The incorporation of GA into a polymer matrix reduced the rate of oxygen absorption compared to the GA powder because the polymer acted as a barrier to oxygen and water vapor diffusion. As expected, the temperature had a significant effect on the initial absorption rate of the multilayer films; the corresponding activation energy was 75.4 kJ/mol. Higher RH significantly increased the oxygen absorption rate. These results demonstrate for the first time the production and the properties of a bio-based multilayer packaging film with GA as the oxygen scavenger. Potential applications include the packaging of food products with high water activity (a w > 0.86).

  5. Influence of gallic acid on α-amylase and α-glucosidase inhibitory properties of acarbose.

    PubMed

    Oboh, Ganiyu; Ogunsuyi, Opeyemi Babatunde; Ogunbadejo, Mariam Damilola; Adefegha, Stephen Adeniyi

    2016-07-01

    Acarbose is an antidiabetic drug which acts by inhibiting α-amylase and α-glucosidase activities but with deleterious side effects. Gallic acid (GA) is a phenolic acid that is widespread in plant foods. We therefore investigated the influence of GA on α-amylase and α-glucosidase inhibitory properties of acarbose (in vitro). Aqueous solutions of acarbose and GA were prepared to a final concentration of 25μM each. Thereafter, mixtures of the samples (50% acarbose + 50% GA; 75% acarbose+25% GA; and 25% acarbose+75% GA) were prepared. The results revealed that the combination of 50% acarbose and 50% GA showed the highest α-glucosidase inhibitory effect, while 75% acarbose+25% GA showed the highest α-amylase inhibitory effect. Furthermore, all the samples caused the inhibition of Fe 2+ -induced lipid peroxidation (in vitro) in rat pancreatic tissue homogenate, with the combination of 50% acarbose and 50% GA causing the highest inhibition. All the samples also showed antioxidant properties (reducing property, 2,2'-azino-bis (-3-ethylbenzthiazoline-6-sulphonate [ABTS*] and 1,1-diphenyl-2-picrylhydrazyl [DPPH] free radicals scavenging abilities, and Fe 2+ chelating ability). Therefore, combinations of GA with acarbose could be employed as antidiabetic therapy, with a possible reduction of side effects of acarbose; nevertheless, the combination of 50% acarbose and 50% GA seems the best. Copyright © 2016. Published by Elsevier B.V.

  6. Skin penetration and antioxidant effect of cosmeto-textiles with gallic acid.

    PubMed

    Alonso, C; Martí, M; Barba, C; Lis, M; Rubio, L; Coderch, L

    2016-03-01

    In this work, the antioxidant gallic acid (GA) has been encapsulated in microspheres prepared with poly-ε-caprolactone (PCL) and incorporated into polyamide (PA) obtaining the cosmeto-textile. The topical application of the cosmeto-textile provides a reservoir effect in the skin delivery of GA. The close contact of the cosmeto-textile, containing microsphere-encapsulated GA (ME-GA), with the skin and their corresponding occlusion, may be the main reasons that explain the crossing of active principle (GA) through the skin barrier, located in the stratum corneum, and its penetration into the different compartments of the skin, epidermis and dermis. An ex vivo assessment was performed to evaluate the antioxidant effect of the ME-GA on the stratum corneum (SC) using the thiobarbituric acid-reactive species (TBARS) test. The test is based on a non-invasive ex vivo methodology that evaluates lipid peroxides formed in the outermost layers of the SC from human volunteers after UV radiation to determine the effectiveness of an antioxidant. In this case, a ME-GA cosmeto-textile or ME-GA formulation were applied to the skin in vivo and lipid peroxidation (LPO) in the horny layer were determined after UV irradiation. This methodology may be used as a quality control tool to determine ex vivo the percentage of LPO inhibition on human SC for a variety of antioxidants that are topically applied, in this case GA. Results show that LPO formation was inhibited in human SC when GA was applied directly or embedded in the cosmeto-textile, demonstrating the effectiveness of both applications. The percentage of LPO inhibition obtained after both topical applications was approximately 10% for the cosmeto-textile and 41% for the direct application of microspheres containing GA. This methodology could be used to determine the effectiveness of topically applied antioxidants encapsulated in cosmeto-textiles on human SC. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Characterization of the Interaction between Gallic Acid and Lysozyme by Molecular Dynamics Simulation and Optical Spectroscopy

    PubMed Central

    Zhan, Minzhong; Guo, Ming; Jiang, Yanke; Wang, Xiaomeng

    2015-01-01

    The binding interaction between gallic acid (GA) and lysozyme (LYS) was investigated and compared by molecular dynamics (MD) simulation and spectral techniques. The results from spectroscopy indicate that GA binds to LYS to generate a static complex. The binding constants and thermodynamic parameters were calculated. MD simulation revealed that the main driving forces for GA binding to LYS are hydrogen bonding and hydrophobic interactions. The root-mean-square deviation verified that GA and LYS bind to form a stable complex, while the root-mean-square fluctuation results showed that the stability of the GA-LYS complex at 298 K was higher than that at 310 K. The calculated free binding energies from the molecular mechanics/Poisson-Boltzmann surface area method showed that van der Waals forces and electrostatic interactions are the predominant intermolecular forces. The MD simulation was consistent with the spectral experiments. This study provides a reference for future study of the pharmacological mechanism of GA. PMID:26140374

  8. Characterization of the Interaction between Gallic Acid and Lysozyme by Molecular Dynamics Simulation and Optical Spectroscopy.

    PubMed

    Zhan, Minzhong; Guo, Ming; Jiang, Yanke; Wang, Xiaomeng

    2015-07-01

    The binding interaction between gallic acid (GA) and lysozyme (LYS) was investigated and compared by molecular dynamics (MD) simulation and spectral techniques. The results from spectroscopy indicate that GA binds to LYS to generate a static complex. The binding constants and thermodynamic parameters were calculated. MD simulation revealed that the main driving forces for GA binding to LYS are hydrogen bonding and hydrophobic interactions. The root-mean-square deviation verified that GA and LYS bind to form a stable complex, while the root-mean-square fluctuation results showed that the stability of the GA-LYS complex at 298 K was higher than that at 310 K. The calculated free binding energies from the molecular mechanics/Poisson-Boltzmann surface area method showed that van der Waals forces and electrostatic interactions are the predominant intermolecular forces. The MD simulation was consistent with the spectral experiments. This study provides a reference for future study of the pharmacological mechanism of GA.

  9. Design of titanium nitride- and wolfram carbide-doped RGO/GC electrodes for determination of gallic acid.

    PubMed

    Stanković, Dalibor M; Ognjanović, Miloš; Martin, Fabian; Švorc, Ľubomir; Mariano, José F M L; Antić, Bratislav

    2017-12-15

    In the present paper, the electrochemical behavior and the properties of two modified glassy carbon (GC) electrodes used for quantification of gallic acid in sweet wines were compared. A comparative study was conducted between titanium nitride- or wolfram carbide-doped reduced graphene oxide, labeled as TNrGO and WCrGO, respectively, modified GC electrodes, which are promising composite nanomaterials for electroanalytical applications. For the first time, WCrGO was synthesized and its electroanalytical properties compared with those of TNrGO. Results showed that the proposed materials exhibited enhanced characteristics, e.g., low limits of detection (1.1 μM and 3.1 μM for TNrGO and WCrGO, respectively), wide linear ranges (for TNrGO 4.5-76 μM and for WCrGO 10-100 μM), low adsorption, and low background current, which make them promising candidates for electrochemical sensing applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Gallic acid loaded PEO-core/zein-shell nanofibers for chemopreventive action on gallbladder cancer cells.

    PubMed

    Acevedo, Francisca; Hermosilla, Jeyson; Sanhueza, Claudia; Mora-Lagos, Barbara; Fuentes, Irma; Rubilar, Mónica; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2018-07-01

    Coaxial electrospinning was used to develop gallic acid (GA) loaded poly(ethylene oxide)/zein nanofibers in order to improve its chemopreventive action on human gallbladder cancer cells. Using a Plackett-Burman design, the effects of poly(ethylene oxide) and zein concentration and applied voltage on the diameter and morphology index of nanofibers were investigated. Coaxial nanofibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). GA loading efficiency as high as 77% was obtained under optimal process conditions. The coaxial nanofibers controlled GA release in acid and neutral pH medium. Cytotoxicity and reactive oxygen species (ROS) production on gallbladder cancer cell lines GB-d1 and NOZ in the presence of GA-nanofibers were assessed. GA-nanofibers triggered an increase in the cellular cytotoxicity compared with free GA on GB-d1 and NOZ cells. Statistically significant differences were found in ROS levels of GA-nanofibers compared with free GA on NOZ cells. Differently, ROS production on GB-d1 cell line was similar. Based on these results, the coaxial nanofibers obtained in this study under optimized operational conditions offer an alternative for the development of a GA release system with improved chemopreventive action on gallbladder cancer cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Determination of total phenolic content and antioxidant activitity of methanol extract of Maranta arundinacea L fresh leaf and tuber

    NASA Astrophysics Data System (ADS)

    Kusbandari, A.; Susanti, H.

    2017-11-01

    Maranta arundinacea L is one of herbaceous plants in Indonesia which have flavonoid content. Flavonoids has antioxidants activity by inhibition of free radical oxidation reactions. The study aims were to determination total phenolic content and antioxidant activity of methanol extract of fresh leaf and tuber of M. arundinacea L by UV-Vis spectrophotometer. The methanol extracts were obtained with maceration and remaseration method of fresh leaves and tubers. The total phenolic content was assayed with visible spectrophotometric using Folin Ciocalteau reagent. The antioxidant activity was assayed with 1,1-diphenyl-2-picrilhidrazil (DPPH) compared to gallic acid. The results showed that methanol extract of tuber and fresh leaf of M. arundinacea L contained phenolic compound with total phenolic content (TPC) in fresh tuber of 3.881±0.064 (% GAE) and fresh leaf is 6.518±0.163 (% b/b GAE). IC50 value from fresh tuber is 1.780±0.0005 μg/mL and IC50 fresh leaf values of 0.274±0.0004 μg/mL while the standard gallic acid is IC50 of 0.640±0.0002 μg/mL.

  12. Analysis of Organic Acids, Deacetyl Asperulosidic Acid and Polyphenolic Compounds as a Potential Tool for Characterization of Noni (Morinda citrifolia) Products.

    PubMed

    Bittová, Miroslava; Hladůkova, Dita; Roblová, Vendula; Krácmar, Stanislav; Kubán, Petr; Kubán, Vlastimil

    2015-11-01

    Organic acids, deacetyl asperulosidic acid (DAA) and polyphenolic compounds in various noni (Morinda citrifolia L.) products (4 juices, 4 dry fruit powders and 2 capsules with dry fruit powder) were analyzed. Reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with a variable wavelength detector (VWD) and electrospray ionization time-of-flight mass spectrometer (ESI-TOF MS) was applied for simultaneous analysis of organic acids (malic, lactic, citric and succinic acid) and DAA. An RP-HPLC method with diode-array detector (DAD) was developed for the analysis of polyphenolic compound content (rutin, catechin, quercitrin, kaempferol, gallic acid, caffeic acid and p-coumaric acid). The developed methods can contribute to better characterization of available noni products that is required from the consumers. In our study, we discovered significant dissimilarities in the content of DAA, citric acid and several phenolic compounds in some samples.

  13. Discovery of a new mitochondria permeability transition pore (mPTP) inhibitor based on gallic acid.

    PubMed

    Teixeira, José; Oliveira, Catarina; Cagide, Fernando; Amorim, Ricardo; Garrido, Jorge; Borges, Fernanda; Oliveira, Paulo J

    2018-12-01

    Pharmacological interventions targeting mitochondria present several barriers for a complete efficacy. Therefore, a new mitochondriotropic antioxidant (AntiOxBEN 3 ) based on the dietary antioxidant gallic acid was developed. AntiOxBEN 3 accumulated several thousand-fold inside isolated rat liver mitochondria, without causing disruption of the oxidative phosphorylation apparatus, as seen by the unchanged respiratory control ratio, phosphorylation efficiency, and transmembrane electric potential. AntiOxBEN 3 showed also limited toxicity on human hepatocarcinoma cells. Moreover, AntiOxBEN 3 presented robust iron-chelation and antioxidant properties in both isolated liver mitochondria and cultured rat and human cell lines. Along with its low toxicity profile and high antioxidant activity, AntiOxBEN 3 strongly inhibited the calcium-dependent mitochondrial permeability transition pore (mPTP) opening. From our data, AntiOxBEN 3 can be considered as a lead compound for the development of a new class of mPTP inhibitors and be used as mPTP de-sensitiser for basic research or clinical applications or emerge as a therapeutic application in mitochondria dysfunction-related disorders.

  14. Inhibitory effect of gallic acid on CCl4-mediated liver fibrosis in mice.

    PubMed

    Wang, Jing; Tang, Long; White, James; Fang, Jing

    2014-05-01

    The aim of this study was to investigate the effect of gallic acid (GA) on liver fibrosis induced by carbon tetrachloride (CCl4). Male BALB/c mice were randomly divided into four groups: normal control group (group A), CCl4-induced liver injury control group (group B), and CCl4 induction with GA of low dose (5 mg/kg) and high dose (15 mg/kg) treatment group (group C and group D). GA was intra-gastric given for mice once a day after 2 weeks of CCl4 induction. Animals were killed at the eighth week. Degrees of fibrosis and collagen percentage were measured. Hyaluronic acid (HA), type IV collagen (cIV), malondialdehyde (MDA), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl transferase (γ-GT) were determined. Expression of matrix metalloproteinases-2 (MMP-2) and tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) mRNA levels were examined by RT-PCR. Western blotting was carried out to evaluate the changes of MMP-2 protein. HE and VG stainings showed GA in a dose-dependent manner improved significantly the fibrosis condition in CCl4-injured mice (P < 0.05 or P < 0.01). Also, the concentrations of HA, cIV, and MDA, as well as the serum levels of ALT, AST, and γ-GT were markedly reduced by GA (P < 0.05 or P < 0.01), and decreases in MMP-2, TIMP-1 mRNA, and MMP-2 protein were observed as well (P < 0.05 or P < 0.01). GA could exert protective effect on liver injury and reduce liver fibrosis induced by CCl4 in mice, which might be through the inhibition of hepatic stellate cell activity.

  15. Heterogeneous photocatalytic degradation of gallic acid under different experimental conditions.

    PubMed

    Quici, Natalia; Litter, Marta I

    2009-07-01

    UV/TiO(2)-heterogeneous photocatalysis was tested as a process to degrade gallic acid (Gal) in oxygenated solutions at pH 3. In the absence of oxidants other than oxygen, decay followed a zero order rate at different concentrations and was slow at concentrations higher than 0.5 mM. Addition of Fe(3+), H(2)O(2) and the combination Fe(3+)/H(2)O(2) improved Gal degradation. In the absence of H(2)O(2), an optimal Fe : Gal molar ratio of 0.33 : 1 was found for the photocatalytic decay, beyond which addition of Fe(3+) was detrimental and even worse in comparison with the system in the absence of Fe(3+). TiO(2) addition was beneficial compared with the same system in the absence of the photocatalyst if Fe(3+) was added at low concentration (0.33 : 1 Fe : Gal molar ratio), while at high concentration (1 : 1 Fe : Gal molar ratio) TiO(2) did not exert any significant effect. H(2)O(2) addition (1 : 0.33 Gal : H(2)O(2) molar ratio, absence of Fe(iii)) also enhanced the heterogeneous photocatalytic reaction. Simultaneous addition of Fe(3+) and H(2)O(2) was more effective than the addition of the separate oxidants. This system was compared with Fenton and photo-Fenton systems. At low H(2)O(2) concentration (0.33 : 1 : 0.2 Fe : Gal : H(2)O(2) molar ratio), the presence of TiO(2) also enhanced the reaction. The influence of the thermal charge transfer reaction between Gal and Fe(iii), which leads to an important Gal depletion in the dark with formation of quinones, was analysed. The mechanisms taking place in these complex systems are proposed, paying particular attention to the important charge transfer reaction of the Fe(iii)-Gal complex operative in dark conditions.

  16. The effect of heat treatment on phenolic compounds and fatty acid composition of Brazilian nut and hazelnut.

    PubMed

    Özcan, Mehmet Musa; Juhaimi, Fahad Al; Uslu, Nurhan

    2018-01-01

    Brazilian peanut oil content increased with oven heating (65.08%) and decreased with microwave heating process (61.00%). While the phenolic content of untreated Brazilian nut was the highest of 68.97 mg GAE/100 g. Hazelnut (Sivri) contained the highest antioxidant activity (86.52%, untreated). Results reflected significantly differences between the antioxidant effect and total phenol contents of Brazilian nut and hazelnut (Sivri) kernels heated in the oven and microwave. Microwave heating caused a decrease in antioxidant activity of hazelnut. Gallic acid, 3,4-dihydroxybenzoic acid and (+)- and catechin were the main phenolic compounds of raw Brazilian nut with the value of 5.33, 4.33 and 4.88 mg/100 g, respectively, while the dominant phenolics of raw hazelnut (Sivri) kernels were gallic acid (4.81 mg/100 g), 3,4-dihydroxybenzoic acid (4.61 mg/100 g), (+)-catechin (6.96 mg/100 g) and 1,2-dihydroxybenzene (4.14 mg/100 g). Both conventional and microwave heating caused minor reduction in phenolic compounds. The main fatty acids of Brazilian nut oil were linoleic (44.39-48.18%), oleic (27.74-31.74%), palmitic (13.09-13.70%) and stearic (8.20-8.91%) acids, while the dominant fatty acids of hazelnut (Sivri) oil were oleic acid (80.84%), respectively. The heating process caused noticeable change in fatty acid compositions of both nut oils.

  17. Comparative study of the antioxidant capacity and polyphenol content of Douro wines by chemical and electrochemical methods.

    PubMed

    Rebelo, M J; Rego, R; Ferreira, M; Oliveira, M C

    2013-11-01

    A comparative study of the antioxidant capacity and polyphenols content of Douro wines by chemical (ABTS and Folin-Ciocalteau) and electrochemical methods (cyclic voltammetry and differential pulse voltammetry) was performed. A non-linear correlation between cyclic voltammetric results and ABTS or Folin-Ciocalteau data was obtained if all types of wines (white, muscatel, ruby, tawny and red wines) are grouped together in the same correlation plot. In contrast, a very good linear correlation was observed between the electrochemical antioxidant capacity determined by differential pulse voltammetry and the radical scavenging activity of ABTS. It was also found that the antioxidant capacity of wines evaluated by the electrochemical methods (expressed as gallic acid equivalents) depend on background electrolyte of the gallic acid standards, type of electrochemical signal (current or charge) and electrochemical technique. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. The effect of microwave roasting on bioactive compounds, antioxidant activity and fatty acid composition of apricot kernel and oils.

    PubMed

    Al Juhaimi, Fahad; Musa Özcan, Mehmet; Ghafoor, Kashif; Babiker, Elfadıl E

    2018-03-15

    In this study, the effect of microwave (360W, 540W and 720W) oven roasting on oil yields, phenolic compounds, antioxidant activity, and fatty acid composition of some apricot kernel and oils was investigated. While total phenol contents of control group of apricot kernels change between 54.41mgGAE/100g (Soğancıoğlu) and 59.61mgGAE/100g (Hasanbey), total phenol contents of kernel samples roasted in 720W were determined between 27.41mgGAE/100g (Çataloğlu) and 34.52mgGAE/100g (Soğancıoğlu). Roasting process in microwave at 720W caused the reduction of some phenolic compounds of apricot kernels. The gallic acid contents of control apricot kernels ranged between 7.23mg/100g (Kabaaşı) and 11.23mg/100g (Çataloğlu) whereas the gallic acid contents of kernels roasted in 540W changed between 15.35mg/100g (Soğancıoğlu) and 21.17mg/100g (Çataloğlu). In addition, oleic acid contents of control group oils vary between 65.98% (Soğancıoğlu) and 71.86% (Hasanbey), the same fatty acid ranged from 63.48% (Soğancıoğlu) to 70.36% (Hasanbey). Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Role of gallic and p-coumaric acids in the AHL-dependent expression of flgA gene and in the process of biofilm formation in food-associated Pseudomonas fluorescens KM120.

    PubMed

    Myszka, Kamila; Schmidt, Marcin T; Białas, Wojciech; Olkowicz, Mariola; Leja, Katarzyna; Czaczyk, Katarzyna

    2016-09-01

    In the process of Pseudomonas fluorescens biofilm formation, N-acyl-l-homoserine lactone (AHL)-mediated flagella synthesis plays a key role. Inhibition of AHL production may attenuate P. fluorescens biofilm on solid surfaces. This work validated the anti-biofilm properties of p-coumaric and gallic acids via the ability of phenolics to suppress AHL synthesis in P. fluorescens KM120. The dependence between synthesis of AHL molecules, expression of flagella gene (flgA) and the ability of biofilm formation by P. fluorescens KM120 on a stainless steel surface (type 304L) was also investigated. Research was carried out in a purpose-built flow cell device. Limitations on AHL synthesis in P. fluorescens KM120 were observed at concentrations of 120 and 240 µmol L(-1) of phenolic acids in medium. At such levels of gallic and p-coumaric acids the ability of P. fluorescens KM120 to synthesize 3-oxo-C6-homoserine lactone (HSL) was not observed. These concentrations caused decreased expression of flgA gene in P. fluorescens KM120. The changes in expression of AHL-dependent flgA gene significantly decreased the rate of microorganism colonization on the stainless steel surface. Phenolic acids are able to inhibit biofilm formation. The results obtained in the work may help to develop alternative techniques for anti-biofilm treatment in the food industry. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  20. Effect of Gallic Acid on Dementia Type of Alzheimer Disease in Rats: Electrophysiological and Histological Studies.

    PubMed

    Hajipour, Somayeh; Sarkaki, Alireza; Farbood, Yaghoob; Eidi, Akram; Mortazavi, Pejman; Valizadeh, Zohreh

    2016-04-01

    To study the effect of gallic acid (GA) on hippocampal long-term potentiation (LTP) and histological changes in animal model of Alzheimer disease (AD) induced by beta-amyloid (Aβ). Sixty-four adult male Wistar rats (300±20 g) were divided into 8 groups: 1) Control (Cont); 2) AD; 3) Sham; 4-7) AD+GA (50, 100, and 200 mg/kg for 10 days, orally) or vehicle, 8) Cont+GA100, Aβ (1μg/μL in each site) was infused into hippocampus bilaterally. Changes of amplitude and slope of LTP induced in hippocampal dentate gyrus (DG) were evaluated by high frequency stimulation (HFS) of perforant path (PP). Data showed that LTP amplitude and area under curve significantly impaired in AD rats (P<0.001), while significantly improved in AD rats treated with GA (P<0.05, P<0.01). Current findings suggest that GA reduces neural damage and brain amyloid neuropathology and improves cognitive function via free radicals scavenging and inhibiting oligomerization of Aβ but with no effect on healthy rats.

  1. Tryptamine-Gallic Acid Hybrid Prevents Non-steroidal Anti-inflammatory Drug-induced Gastropathy

    PubMed Central

    Pal, Chinmay; Bindu, Samik; Dey, Sumanta; Alam, Athar; Goyal, Manish; Iqbal, Mohd. Shameel; Sarkar, Souvik; Kumar, Rahul; Halder, Kamal Krishna; Debnath, Mita Chatterjee; Adhikari, Susanta; Bandyopadhyay, Uday

    2012-01-01

    We have investigated the gastroprotective effect of SEGA (3a), a newly synthesized tryptamine-gallic acid hybrid molecule against non-steroidal anti-inflammatory drug (NSAID)-induced gastropathy with mechanistic details. SEGA (3a) prevents indomethacin (NSAID)-induced mitochondrial oxidative stress (MOS) and dysfunctions in gastric mucosal cells, which play a pathogenic role in inducing gastropathy. SEGA (3a) offers this mitoprotective effect by scavenging of mitochondrial superoxide anion (O2˙̄) and intramitochondrial free iron released as a result of MOS. SEGA (3a) in vivo blocks indomethacin-mediated MOS, as is evident from the inhibition of indomethacin-induced mitochondrial protein carbonyl formation, lipid peroxidation, and thiol depletion. SEGA (3a) corrects indomethacin-mediated mitochondrial dysfunction in vivo by restoring defective electron transport chain function, collapse of transmembrane potential, and loss of dehydrogenase activity. SEGA (3a) not only corrects mitochondrial dysfunction but also inhibits the activation of the mitochondrial pathway of apoptosis by indomethacin. SEGA (3a) inhibits indomethacin-induced down-regulation of bcl-2 and up-regulation of bax genes in gastric mucosa. SEGA (3a) also inhibits indometacin-induced activation of caspase-9 and caspase-3 in gastric mucosa. Besides the gastroprotective effect against NSAID, SEGA (3a) also expedites the healing of already damaged gastric mucosa. Radiolabeled (99mTc-labeled SEGA (3a)) tracer studies confirm that SEGA (3a) enters into mitochondria of gastric mucosal cell in vivo, and it is quite stable in serum. Thus, SEGA (3a) bears an immense potential to be a novel gastroprotective agent against NSAID-induced gastropathy. PMID:22157011

  2. Comparison of the contents of various antioxidants of sea buckthorn berries using CE.

    PubMed

    Gorbatsova, Jelena; Lõugas, Tiina; Vokk, Raivo; Kaljurand, Mihkel

    2007-11-01

    The increased interest in sea buckthorn (Hippophae rhamnoides L.) made it possible to investigate the antioxidant content in it. To address this issue, the presence of following antioxidant compounds were analyzed: trans-resveratrol, catechin, myricetin, quercetin, p-coumaric acid, caffeic acid, L-ascorbic acid (AA), and gallic acid (linear range of 50-150 micromol/L) in six different varieties of sea buckthorn berries extracts (sea buckthorn varieties: "Trofimovskaja (TR)," "Podarok Sadu (PS)," and "Avgustinka (AV),") received from two local Estonian companies. Trans-Resveratrol, catechin, AA, myricetin, and quercetin were found in extracts of sea buckthorn. Moreover, AA, myricetin, and quercetin contents were quantified. The biggest average AA content was found in TR (740 mg/100 g of dried berries, respectively). Furthermore, the same varieties gave the biggest quercetin content 116 mg/100 g of dried berries, respectively. For analysis, CZE was used and the results were partly validated by HPLC. Statistically no big differences in levels of antioxidants were consistently found in different varieties of sea buckthorn extracts investigated in this work.

  3. Wheat germ oil enrichment in broiler feed with α-lipoic acid to enhance the antioxidant potential and lipid stability of meat.

    PubMed

    Arshad, Muhammad Sajid; Anjum, Faqir Muhammad; Khan, Muhammad Issa; Shahid, Muhammad; Akhtar, Saeed; Sohaib, Muhammad

    2013-11-04

    Lipid peroxidation is the cause of declining the meat quality. Natural antioxidants plays a vital role in enhancing the stability and quality of meat. The supplementation of natural antioxidants in feed decreases lipid peroxidation and improves the stability of meat. The present research was conducted to determine the effect of α-lipoic acid, α-tocopherol and wheat germ oil on the status of antioxidants, quality and lipid stability of broiler meat. One day old male broilers were fed with different feeds containing antioxidants i.e. natural (wheat germ oil) and synthetic α-tocopherol and α-lipoic acid during the two experimental years. The feed treatments have significant variation on the body weight and feed conversion ratio (FCR) while having no influence on the feed intake. The broilers fed on wheat germ oil (natural α-tocopherol) gained maximum body weight (2451.97 g & 2466.07 g) in the experimental years 2010-11 & 2011-12, respectively. The higher total phenolic contents were found in the broilers fed on wheat germ oil plus α-lipoic acid in breast (162.73±4.8 mg Gallic acid equivalent/100 g & 162.18±4.5 mg Gallic acid equivalent/100 g) and leg (149.67±3.3 mg Gallic acid equivalent/100 g & 146.07±3.2 mg Gallic acid equivalent/100 g) meat during both experimental years. Similar trend was observed for the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power assay (FRAP). The production of malondialdehydes in the breast and leg meat increased with progressive increase in the time period. The deposition of α-tocopherol (AT) and α-lipoic acid (ALA) contents were found to be higher in the broilers fed on wheat germ oil plus α-lipoic acid in breast and leg meat during the both experimental years. In conclusion, the combination of wheat germ oil and α-lipoic acid has more beneficial for stability and the quality of the broiler meat and more work should be needed in future for the bio-evaluation of this kind of functional meat in

  4. Wheat germ oil enrichment in broiler feed with α-lipoic acid to enhance the antioxidant potential and lipid stability of meat

    PubMed Central

    2013-01-01

    Background Lipid peroxidation is the cause of declining the meat quality. Natural antioxidants plays a vital role in enhancing the stability and quality of meat. The supplementation of natural antioxidants in feed decreases lipid peroxidation and improves the stability of meat. Methods The present research was conducted to determine the effect of α-lipoic acid, α-tocopherol and wheat germ oil on the status of antioxidants, quality and lipid stability of broiler meat. One day old male broilers were fed with different feeds containing antioxidants i.e. natural (wheat germ oil) and synthetic α-tocopherol and α-lipoic acid during the two experimental years. Results The feed treatments have significant variation on the body weight and feed conversion ratio (FCR) while having no influence on the feed intake. The broilers fed on wheat germ oil (natural α-tocopherol) gained maximum body weight (2451.97 g & 2466.07 g) in the experimental years 2010–11 & 2011–12, respectively. The higher total phenolic contents were found in the broilers fed on wheat germ oil plus α-lipoic acid in breast (162.73±4.8 mg Gallic acid equivalent/100 g & 162.18±4.5 mg Gallic acid equivalent/100 g) and leg (149.67±3.3 mg Gallic acid equivalent/100 g & 146.07±3.2 mg Gallic acid equivalent/100 g) meat during both experimental years. Similar trend was observed for the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power assay (FRAP). The production of malondialdehydes in the breast and leg meat increased with progressive increase in the time period. The deposition of α-tocopherol (AT) and α-lipoic acid (ALA) contents were found to be higher in the broilers fed on wheat germ oil plus α-lipoic acid in breast and leg meat during the both experimental years. Conclusion In conclusion, the combination of wheat germ oil and α-lipoic acid has more beneficial for stability and the quality of the broiler meat and more work should be needed in future for the bio

  5. Gallic acid induced apoptotic events in HCT-15 colon cancer cells.

    PubMed

    Subramanian, Aruna Priyadharshni; Jaganathan, Saravana Kumar; Mandal, Mahitosh; Supriyanto, Eko; Muhamad, Ida Idayu

    2016-04-21

    To investigate the inhibitory action of diet-derived phenolic compound gallic acid (GA) against HCT-15 colon cancer cells. The antiproliferative effect of GA against colon cancer cells was determined by performing thiazolyl blue tetrazolium bromide (MTT) assay. The colony forming ability of GA treated colon cancer cells was evaluated using the colony forming assay. The cell cycle changes induced by GA in HCT-15 cells were analyzed by propidium iodide staining. Levels of reactive oxygen species (ROS) and mitochondrial membrane potential of HCT-15 exposed to GA was assessed using 2',7'-dichlorfluorescein-diacetate and rhodamine-123 respectively, with the help of flow cytometry. Morphological changes caused by GA treatment in the colon cancer cells were identified by scanning electron microscope and photomicrograph examination. Apoptosis was confirmed using flow cytometric analysis of GA treated HCT-15 cells after staining with Yo-Pro-1. MTT assay results illustrated that GA has an inhibitory effect on HCT-15 cells with IC50 value of 740 μmol/L. A time-dependent inhibition of colony formation was evident with GA treatment. Cell cycle arrest was evident from the accumulation of GA treated HCT-15 cells at sub-G1 phase (0.98 ± 1.03 vs 58.01 ± 2.05) with increasing exposure time. Flow cytometric analysis of GA treated HCT-15 cells depicted early events associated with apoptosis like lipid layer breakage and fall in mitochondrial membrane potential apart from an increase in the generation of ROS which were in a time dependent manner. SEM and photomicrograph images of the GA-treated cells displayed membrane blebbing and cell shrinking characteristics of apoptosis. Further apoptosis confirmation by Yo-Pro-1 staining also showed the time-dependent increase of apoptotic cells after treatment. These results show that GA induced ROS dependent apoptosis and inhibited the growth of colon cancer cells.

  6. Fabrication of chitosan/gallic acid 3D microporous scaffold for tissue engineering applications.

    PubMed

    Thangavel, Ponrasu; Ramachandran, Balaji; Muthuvijayan, Vignesh

    2016-05-01

    This study explores the potential of gallic acid incorporated chitosan (CS/GA) 3D scaffolds for tissue engineering applications. Scaffolds were prepared by freezing and lyophilization technique and characterized. FTIR spectra confirmed the presence of GA in chitosan (CS) gel. DSC and TGA analysis revealed that the structure of chitosan was not altered due to the incorporation of GA, but thermal stability was significantly increased compared to the CS scaffold. SEM micrographs showed smooth, homogeneous, and microporous architecture of the scaffolds with good interconnectivity. CS/GA scaffolds exhibited approximately 90% porosity on average, increased swelling (600-900%) and controlled biodegradation (15-40%) in PBS (pH 7.4 at 37°C) with 1 mg/mL of lysozyme. CS/GA scaffolds showed 2-4 fold decrease in CFUs (p < 0.05) for both gram positive and gram negative bacteria compared to the CS scaffold. Cytotoxicity of these scaffolds was evaluated using NIH 3T3 L1 fibroblast cells. CS/GA 0.25% scaffold showed similar viability with CS scaffold at 24 and 48 h. CS/GA scaffolds (0.5-1.0%) showed 60-75% viability at 24 h and 90% at 48 h. SEM images showed that an increased cell attachment was observed for CS/GA scaffolds compared to CS scaffolds. These findings authenticate that CS/GA scaffolds were cytocompatible and would be useful for tissue engineering applications. © 2015 Wiley Periodicals, Inc.

  7. Surface functionalization of bioactive glasses with natural molecules of biological significance, Part I: Gallic acid as model molecule

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Ferraris, Sara; Prenesti, Enrico; Verné, Enrica

    2013-12-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) and its derivatives are a group of biomolecules (polyphenols) obtained from plants. They have effects which are potentially beneficial to heath, for example they are antioxidant, anticarcinogenic and antibacterial, as recently investigated in many fields such as medicine, food and plant sciences. The main drawbacks of these molecules are both low stability and bioavailability. In this research work the opportunity to graft GA to bioactive glasses is investigated, in order to deliver the undamaged biological molecule into the body, using the biomaterial surfaces as a localized carrier. GA was considered for functionalization since it is a good model molecule for polyphenols and presents several interesting biological activities, like antibacterial, antioxidant and anticarcinogenic properties. Two different silica based bioactive glasses (SCNA and CEL2), with different reactivity, were employed as substrates. UV photometry combined with the Folin&Ciocalteu reagent was adopted to test the concentration of GA in uptake solution after functionalization. This test verified how much GA consumption occurred with surface modification and it was also used on solid samples to test the presence of GA on functionalized glasses. XPS and SEM-EDS techniques were employed to characterize the modification of material surface properties and functional group composition before and after functionalization.

  8. Free and Bound Phenolic Compound Content and Antioxidant Activity of Different Cultivated Blue Highland Barley Varieties from the Qinghai-Tibet Plateau.

    PubMed

    Yang, Xi-Juan; Dang, Bin; Fan, Ming-Tao

    2018-04-11

    In this study, the polyphenols composition and antioxidant properties of 12 blue highland barley varieties planted on the Qinghai-Tibet Plateau area were measured. The contents of the free, bound and total phenolic acids varied between 166.20-237.60, 170.10-240.75 and 336.29-453.94 mg of gallic acid equivalents per 100 g of dry weight (DW) blue highland barley grains, while the free and bound phenolic acids accounted for 50.09% and 49.91% of the total phenolic acids, respectively. The contents of the free, bound and total flavones varied among 20.61-25.59, 14.91-22.38 and 37.91-47.98 mg of catechin equivalents per 100 g of dry weight (DW) of blue highland barley grains, while the free and bound flavones accounted for 55.90% and 44.10% of the total flavones, respectively. The prominent phenolic compounds in the blue hulless barley grains were gallic acid, benzoic acid, syringic acid, 4-coumaric acid, naringenin, hesperidin, rutin, (+)-catechin and quercetin. Among these, protocatechuic acid, chlorogenic acid and (+)-catechin were the major phenolic compounds in the free phenolics extract. The most abundant bound phenolics were gallic acid, benzoic acid, syringic acid, 4-coumaric acid, benzoic acid, dimethoxybenzoic acid, naringenin, hesperidin, quercetin and rutin. The average contribution of the bound phenolic extract to the DPPH • free radical scavenging capacity was higher than 86%, that of free phenolic extract to the ABTS •+ free radical scavenging capacity was higher than 79%, and that of free phenolic (53%) to the FRAP antioxidant activity was equivalent to that of the bound phenol extract (47%). In addition, the planting environment exerts a very important influence on the polyphenol composition, content and antioxidant activity of blue highland barley. The correlation analysis showed that 2,4-hydroxybenzoic acid and protocatechuic acid were the main contributors to the DPPH • and ABTS •+ free radical scavenging capacity in the free phenolic extract

  9. Formation of redispersible polyelectrolyte complex nanoparticles from gallic acid-chitosan conjugate and gum arabic.

    PubMed

    Hu, Qiaobin; Wang, Taoran; Zhou, Mingyong; Xue, Jingyi; Luo, Yangchao

    2016-11-01

    Polyelectrolyte complex (PEC) nanoparticles between chitosan (CS) and biomacromolecules offer better physicochemical properties as delivery vehicles for nutrients than other CS-based nanoparticles. Our major objective was to fabricate PEC nanoparticles between water soluble gallic acid-chitosan conjugate (GA-CS) and gum arabic. The optimal fabrication method, physicochemical characteristics and stability were investigated. Furthermore, we also evaluated the effects of nano spray drying technology on the morphology and redispersibility of nanoparticle powders using Buchi B-90 Nano Spray Dryer. Results showed that the mass ratio between GA-CS and gum arabic and the preparation pH had significant contributions in determining the particle size and count rate of the nanoparticles, with the ratio of 3:1 and pH 5.0 being the optimal conditions that resulted in 112.2nm and 122.9kcps. The polyethylene glycol (PEG) played a vital role in forming the well-separated spray dried nanoparticles. The most homogeneous nanoparticles with the smoothest surface were obtained when the mass ratio of GA-CS and PEG was 1:0.5. In addition, the GA-CS/gum arabic spray dried nanoparticles exhibited excellent water-redispersibiliy compared to native CS/gum arabic nanoparticles. Our results demonstrated GA-CS/gum arabic nanoparticles were successfully fabricated with promising physicochemical properties and great potential for their applications in food and pharmaceutical industries. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Tunicate-Inspired Gallic Acid/Metal Ion Complex for Instant and Efficient Treatment of Dentin Hypersensitivity.

    PubMed

    Prajatelistia, Ekavianty; Ju, Sung-Won; Sanandiya, Naresh D; Jun, Sang Ho; Ahn, Jin-Soo; Hwang, Dong Soo

    2016-04-20

    Dentin hypersensitivity is sharp and unpleasant pains caused by exposed dentinal tubules when enamel outside of the tooth wears away. The occlusion of dentinal tubules via in situ remineralization of hydroxyapatite is the best method to alleviate the symptoms caused by dentin hypersensitivity. Commercially available dental desensitizers are generally effective only on a specific area and are relatively toxic, and their performance usually depends on the skill of the clinician. Here, a facile and efficient dentin hypersensitivity treatment with remarkable aesthetic improvement inspired by the tunicate-self-healing process is reported. As pyrogallol groups in tunicate proteins conjugate with metal ions to heal the torn body armor of a tunicate, the ingenious mechanism by introducing gallic acid (GA) as a cheap, abundant, and edible alternative to the pyrogallol groups of the tunicate combined with a varied daily intake of metal ion sources is mimicked. In particular, the GA/Fe(3+) complex exhibits the most promising results, to the instant ≈52% blockage in tubules within 4 min and ≈87% after 7 d of immersion in artificial saliva. Overall, the GA/metal ion complex-mediated coating is facile, instant, and effective, and is suggested as an aesthetic solution for treating dentin hypersensitivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Rational engineering of p-hydroxybenzoate hydroxylase to enable efficient gallic acid synthesis via a novel artificial biosynthetic pathway.

    PubMed

    Chen, Zhenya; Shen, Xiaolin; Wang, Jian; Wang, Jia; Yuan, Qipeng; Yan, Yajun

    2017-11-01

    Gallic acid (GA) is a naturally occurring phytochemical that has strong antioxidant and antibacterial activities. It is also used as a potential platform chemical for the synthesis of diverse high-value compounds. Hydrolytic degradation of tannins by acids, bases or microorganisms serves as a major way for GA production, which however, might cause environmental pollution and low yield and efficiency. Here, we report a novel approach for efficient microbial production of GA. First, structure-based rational engineering of PobA, a p-hydroxybenzoate hydroxylase from Pseudomonas aeruginosa, generated a new mutant, Y385F/T294A PobA, which displayed much higher activity toward 3,4-dihydroxybenzoic acid (3,4-DHBA) than the wild-type and any other reported mutants. Remarkably, expression of this mutant in Escherichia coli enabled generation of 1149.59 mg/L GA from 1000 mg/L 4-hydroxybenzoic acid (4-HBA), representing a 93% molar conversion ratio. Based on that, we designed and reconstituted a novel artificial biosynthetic pathway of GA and achieved 440.53 mg/L GA production from simple carbon sources in E. coli. Further enhancement of precursor supply through reinforcing shikimate pathway was able to improve GA de novo production to 1266.39 mg/L in shake flasks. Overall, this study not only led to the development of a highly active PobA variant for hydroxylating 3,4-DHBA into GA via structure-based protein engineering approach, but also demonstrated a promising pathway for bio-based manufacturing of GA and its derived compounds. Biotechnol. Bioeng. 2017;114: 2571-2580. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Ameliorative Effect of Gallic Acid on Cyclophosphamide-Induced Oxidative Injury and Hepatic Dysfunction in Rats

    PubMed Central

    Olayinka, Ebenezer Tunde; Ore, Ayokanmi; Ola, Olaniyi Solomon; Adeyemo, Oluwatobi Adewumi

    2015-01-01

    Cyclophosphamide (CP), a bifunctional alkylating agent used in chemotherapy has been reported to induce organ toxicity mediated by generation of reactive oxygen species and oxidative stress. Gallic acid (GA), a phenolic substance, is a natural antioxidant with proven free radical scavenging activity and offers protection against oxidative damage. This research study was designed to investigate the ameliorative effect of GA against CP-induced toxicity in rats. Twenty-five male Wistar rats (180–200 g) were randomized into five treatment groups: (A) control, (B) CP, 2 mg/kg body weight (b.w.), (C) pre-treatment with GA (20 mg/kg b.w.) for seven days followed by CP (2 mg/kg b.w.) for seven days, (D) co-treatment with GA (20 mg/kg b.w) and CP (2 mg/kg b.w.) for seven days, and (E) GA (20 mg/kg b.w.) for seven days. CP induced marked renal and hepatic damages as plasma levels of urea, creatinine, bilirubin and activities of AST, ALT, ALP and GGT were significantly elevated (p < 0.05) in the CP-treated group relative to control. In addition, hepatic levels of GSH, vitamin C and activities of SOD, catalase and GST significantly reduced in the CP-treated group when compared with control. This was accompanied with a significant increase in hepatic lipid peroxidation. The restoration of the markers of renal and hepatic damages as well as antioxidant indices and lipid peroxidation by pre- and co-treatment with GA clearly shows that GA offers ameliorative effect by scavenging the reactive oxygen species generated by CP. This protective effect may be attributed to the antioxidant property of gllic acid. PMID:29083393

  13. Physico-chemical properties, antioxidant activity and mineral contents of pineapple genotypes grown in china.

    PubMed

    Lu, Xin-Hua; Sun, De-Quan; Wu, Qing-Song; Liu, Sheng-Hui; Sun, Guang-Ming

    2014-06-23

    The fruit physico-chemical properties, antioxidant activity and mineral contents of 26 pineapple [Ananas comosus (L.) Merr.] genotypes grown in China were measured. The results showed great quantitative differences in the composition of these pineapple genotypes. Sucrose was the dominant sugar in all 26 genotypes, while citric acid was the principal organic acid. Potassium, calcium and magnesium were the major mineral constituents. The ascorbic acid (AsA) content ranged from 5.08 to 33.57 mg/100 g fresh weight (FW), while the total phenolic (TP) content varied from 31.48 to 77.55 mg gallic acid equivalents (GAE)/100 g FW. The two parameters in the predominant cultivars Comte de Paris and Smooth Cayenne were relative low. However, MD-2 indicated the highest AsA and TP contents (33.57 mg/100 g and 77.55 mg GAE/100 g FM, respectively), and it also showed the strongest antioxidant capacity 22.85 and 17.30 μmol TE/g FW using DPPH and TEAC methods, respectively. The antioxidant capacity of pineapple was correlated with the contents of phenolics, flavonoids and AsA. The present study provided important information for the further application of those pineapple genotypes.

  14. Identification of protoxins and a microbial basis for red maple (Acer rubrum) toxicosis in equines.

    PubMed

    Agrawal, Karan; Ebel, Joseph G; Altier, Craig; Bischoff, Karyn

    2013-01-01

    The leaves of Acer rubrum (red maple), especially when wilted in the fall, cause severe oxidative damage to equine erythrocytes, leading to potentially fatal methemoglobinemia and hemolytic anemia. Gallic acid and tannins from A. rubrum leaves have been implicated as the toxic compounds responsible for red maple toxicosis, but the mechanism of action and toxic principle(s) have not been elucidated to date. In order to investigate further how red maple toxicosis occurs, aqueous solutions of gallic acid, tannic acid, and ground dried A. rubrum leaves were incubated with contents of equine ileum, jejunum, cecum, colon, and liver, and then analyzed for the metabolite pyrogallol, as pyrogallol is a more potent oxidizing agent. Gallic acid was observed to be metabolized to pyrogallol maximally in equine ileum contents in the first 24 hr. Incubation of tannic acid and A. rubrum leaves, individually with ileum contents, produced gallic acid and, subsequently, pyrogallol. Ileum suspensions, when passed through a filter to exclude microbes but not enzymes, formed no pyrogallol, suggesting a microbial basis to the pathway. Bacteria isolated from ileum capable of pyrogallol formation were identified as Klebsiella pneumoniae and Enterobacter cloacae. Therefore, gallotannins and free gallic acid are present in A. rubrum leaves and can be metabolized by K. pneumoniae and E. cloacae found in the equine ileum to form pyrogallol either directly or through a gallic acid intermediate (gallotannins). Identification of these compounds and their physiological effects is necessary for the development of effective treatments for red maple toxicosis in equines.

  15. Effect of tannic and gallic acids alone or in combination with carbenicillin or tetracycline on Chromobacterium violaceum CV026 growth, motility, and biofilm formation.

    PubMed

    Dusane, Devendra H; O'May, Che; Tufenkji, Nathalie

    2015-07-01

    Chromobacterium violaceum is an opportunistic pathogen that causes infections that are difficult to treat. The goal of this research was to evaluate the effect of selected tannins (tannic acid (TA) and gallic acid (GA)) on bacterial growth, motility, antibiotic (carbenicillin, tetracycline) susceptibility, and biofilm formation. Both tannins, particularly TA, impaired bacterial growth levels and swimming motilities at sub-minimum inhibitory concentrations (sub-MICs). In combination with tannins, antibiotics showed increased MICs, suggesting that tannins interfered with antibacterial activity. Sub-MICs of tetracycline or TA alone enhanced biofilm formation of C. violaceum; however, in combination, these compounds inhibited biofilm formation. In contrast, carbenicillin at sub-MICs was effective in inhibiting C. violaceum biofilm formation; however, in combination with lower concentrations of TA or GA, biofilms were enhanced. These results provide insights into the effects of tannins on C. violaceum growth and their varying interaction with antibiotics used to target C. violaceum infections.

  16. Preparation and in vitro characterization of gallic acid-loaded human serum albumin nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohammad-Beigi, Hossein; Shojaosadati, Seyed Abbas; Morshedi, Dina; Arpanaei, Ayyoob; Marvian, Amir Tayaranian

    2015-04-01

    Gallic acid (GA), as an antioxidant and antiparkinson agent, was loaded onto cationic human serum albumin nanoparticles (HSA NPs). Polyethylenimine (PEI)-coated HSA (PEI-HSA) NPs were prepared using three different methods: (I) coating negatively charged HSA NPs with positively charged PEI through attractive electrostatic interactions, (II) coating HSA NPs with PEI via covalent amide bond formation using N-(3-dimethylaminopropyl)- N-ethylcarbodiimide hydrochloride, and (III) coating HSA NPs with PEI via covalent bonding using glutaraldehyde for linking amine groups of PEI and amine groups of albumin NPs. Method II was selected since it resulted in a higher shift in the zeta potential value (mV) and less zeta potential value deviation, and also less size polydispersity. GA was loaded by adsorption onto the surface of PEI-HSA NPs of two different sizes: 117 ± 2.9 nm (PEI-P1) and 180 ± 3.1 nm (PEI-P2) NPs. Both GA-entrapment and GA-loading efficiencies increased slightly with the increasing size of NPs, and were affected intensely by the mass ratio of GA to PEI-HSA NPs. Free radical scavenging of GA was quantified based on the 2,2-diphenyl-1-picrylhydrazyl method. The obtained results showed that GA remains active during the preparation of GA-loaded PEI-HSA NPs. The cytotoxicities of HSA, PEI-HSA, and GA-loaded PEI-HSA NPs on the PC-12 cells, as the neuroendocrine cell line, were measured. Our results indicate that positively charged PEI-HSA NPs are good candidates for efficient and safe delivery of GA to the brain.

  17. Preparation and antibacterial activities of chitosan-gallic acid/polyvinyl alcohol blend film by LED-UV irradiation.

    PubMed

    Yoon, Soon-Do; Kim, Young-Mog; Kim, Boo Il; Je, Jae-Young

    2017-11-01

    Active blend films from chitosan-gallic acid (CGA) and polyvinyl alcohol (PVA) were prepared via a simple mixing and casting method through the addition of citric acid as a plasticizer. The CGA/PVA blend films were characterized using Fourier transform infrared spectroscopy (FT-IR). The mechanical properties including tensile strength (TS) and elongation at break (%E), degree of solubility (S) and swelling behavior (DS), water vapor adsorption, and antimicrobial activities of the CGA/PVA blend films with and without LED (light emitting diode)-UV irradiation were also investigated. The CGA/PVA blend films exposed to UV irradiation exerted a higher TS (43.5MPa) and lower %E (50.40), S (0.38) and DS (2.73) compared to the CGA/PVA blend films (TS=41.7MPa, %E=55.40, S=0.42, and DS=3.16) not exposed LED-UV irradiation, indicating that the cross-linkage between CGA and PVA had been strengthened by LED-UV irradiation. However, the water vapor adsorption in the CGA/PVA blend films increased due to the changes of surface roughness and pore volume after LED-UV irradiation, and all values increased by increasing the CGA concentrations in the CGA/PVA blend films. The antimicrobial activities of the CGA/PVA blend films showed that the efficient concentration of CGA in the CGA/PVA blend films was over 1.0%. Taken together, the CGA/PVA blend films have potential for use as food packing materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The Teratogenicity and the Action Mechanism of Gallic Acid Relating with Brain and Cervical Muscles

    PubMed Central

    Hsieh, Chiu Lan; Lin, Chien-Hong; Chen, Kuan Chou; Peng, Chiung-Chi; Peng, Robert Y.

    2015-01-01

    Gallic acid (3,4,5-trihydroxybenzoic acid) (GA) and other flavanoids are extensively used in nutraceuticals because of their antioxidant and antiinflammatory properties. While examining whether GA is effective in alleviating valproic-acid-induced teratogenesis in a chicken embryo model (CEM), we observed embryo hemorrhage and liposis in the musculi longissimus cervicis. We conducted this study to determine whether GA is inherently teratogenic and the extent to which the risk can be transferred to fetuses. A CEM was used to administer GA at 2, 6, 10, and 14 μM. GA at 2 μM did not exhibit cytotoxicity. At 6, 10, and 14 μM, GA caused severe decreases in body and liver weights, causing -5.6%, -21.3%, and -27.5% body weights and 4.0, 3.8, and 3.2-g, liver weights, respectively, in day-1 chicks. The optimal alive birth rate (or damaging rate) reached 33.3%, 39.4%, and 29.2% at 6, 10, and 14 μM GA, respectively. The damaged tissue was primarily cervical muscle (musculi longissimus cervicis), as evidenced by liposis, Zenker’s necrosis, and hemolysis. The erythrocyte, hemoglobin, eosinophil, lymphocyte, and monocyte counts were severely reduced and PPAR-α was downregulated, whereas the Ras/Raf/JAK/STAT pathway was upregulated. The GA dose required to induce teratogenesis was ≥ 6 μM (1.02 mg/kg), which can be easily consumed by pregnant women in typical teas such as Chinese Pu-’Er and Chinese black teas, indicating a potential risk to human fetuses. GA at doses ≥ 1.02 mg/kg of body weight potentially causes characteristic cerebral hemolysis and liposis in the musculi longissimus cervicis. The mechanism of action of GA is multidisciplinary: The liposis can be ascribed to downregulation of PPAR-α; the erythrocyte hemolysis can be attributed to its unique autooxidative and prooxidant behavior and the inhibition of carbonic anhydrase; and the proliferation and differentiation deficits can be attributed to the upregulation of the Ras/Raf/JAK/STAT pathway. PMID

  19. [Fat and fatty acids chosen in chocolates content].

    PubMed

    Tarkowski, Andrzej; Kowalczyk, Magdalena

    2007-01-01

    The objective of present work was to comparison of fat and chosen fatty acid in chocolates with, approachable on national market. In the investigations on fat and fatty acids content in the milk chocolates, there were used 14 chocolates, divided into 3 groups either without, with supplements and stuffing. Crude fat content in the chocolates was determined on Soxhlet automatic apparatus. The saturated ad nsaturated acids content was determined using gas chromatographic method. Content of fat and fatty cids in chocolates were differentiation. The highest crude fat content was finding in chocolates with tuffing (31.8%) and without supplements (28.9%). The sum of saturated fatty acids content in fat above 62%) was highest and low differentiation in the chocolates without supplements. Among of saturated and unsaturated fatty acids depended from kind of chocolates dominated, palmitic, stearic, oleic and, linoleic acids. Supplements of nut in chocolates had on influence of high oleic and linoleic level

  20. Gallic acid/hydroxypropyl-β-cyclodextrin complex: Improving solubility for application on in vitro/ in vivo Candida albicans biofilms

    PubMed Central

    Teodoro, Guilherme Rodrigues; Salvador, Marcos José; Koga-Ito, Cristiane Yumi

    2017-01-01

    The aim of this study was to increase the solubility of gallic acid (GA) for the treatment of Candida albicans biofilm, which is very difficult to treat and requires high drug concentrations. Cyclodextrins (CDs) were used for this purpose. Complexes were evaluated by phase-solubility studies, prepared by spray drying and characterized by drug loading, scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The complexes were tested on C. albicans biofilm using in vitro and in vivo models. HPβCD formed soluble inclusion complexes with GA. The percentage of GA in GA/HPβCD was 10.8 ± 0.01%. The SEM and DSC analyses confirmed the formation of inclusion complexes. GA/HPβCD maintained the antimicrobial activity of the pure GA. GA/HPβCD was effective on C. albicans biofilms of 24 and 48h. The in vivo results showed an anti-inflammatory activity of GA/HPβCD with no difference in invading hypha counting among the groups. This study encourages the development of new antifungal agents. PMID:28700692

  1. Total Phenolics and Total Flavonoids in Selected Indian Medicinal Plants

    PubMed Central

    Sulaiman, C. T.; Balachandran, Indira

    2012-01-01

    Plant phenolics and flavonoids have a powerful biological activity, which outlines the necessity of their determination. The phenolics and flavonoids content of 20 medicinal plants were determined in the present investigation. The phenolic content was determined by using Folin-Ciocalteu assay. The total flavonoids were measured spectrophotometrically by using the aluminium chloride colorimetric assay. The results showed that the family Mimosaceae is the richest source of phenolics, (Acacia nilotica: 80.63 mg gallic acid equivalents, Acacia catechu 78.12 mg gallic acid equivalents, Albizia lebbeck 66.23 mg gallic acid equivalents). The highest total flavonoid content was revealed in Senna tora which belongs to the family Caesalpiniaceae. The present study also shows the ratio of flavonoids to the phenolics in each sample for their specificity. PMID:23439764

  2. Total phenolics and total flavonoids in selected Indian medicinal plants.

    PubMed

    Sulaiman, C T; Balachandran, Indira

    2012-05-01

    Plant phenolics and flavonoids have a powerful biological activity, which outlines the necessity of their determination. The phenolics and flavonoids content of 20 medicinal plants were determined in the present investigation. The phenolic content was determined by using Folin-Ciocalteu assay. The total flavonoids were measured spectrophotometrically by using the aluminium chloride colorimetric assay. The results showed that the family Mimosaceae is the richest source of phenolics, (Acacia nilotica: 80.63 mg gallic acid equivalents, Acacia catechu 78.12 mg gallic acid equivalents, Albizia lebbeck 66.23 mg gallic acid equivalents). The highest total flavonoid content was revealed in Senna tora which belongs to the family Caesalpiniaceae. The present study also shows the ratio of flavonoids to the phenolics in each sample for their specificity.

  3. Gallic acid induced apoptotic events in HCT-15 colon cancer cells

    PubMed Central

    Subramanian, Aruna Priyadharshni; Jaganathan, Saravana Kumar; Mandal, Mahitosh; Supriyanto, Eko; Muhamad, Ida Idayu

    2016-01-01

    AIM: To investigate the inhibitory action of diet-derived phenolic compound gallic acid (GA) against HCT-15 colon cancer cells. METHODS: The antiproliferative effect of GA against colon cancer cells was determined by performing thiazolyl blue tetrazolium bromide (MTT) assay. The colony forming ability of GA treated colon cancer cells was evaluated using the colony forming assay. The cell cycle changes induced by GA in HCT-15 cells were analyzed by propidium iodide staining. Levels of reactive oxygen species (ROS) and mitochondrial membrane potential of HCT-15 exposed to GA was assessed using 2’,7’-dichlorfluorescein-diacetate and rhodamine-123 respectively, with the help of flow cytometry. Morphological changes caused by GA treatment in the colon cancer cells were identified by scanning electron microscope and photomicrograph examination. Apoptosis was confirmed using flow cytometric analysis of GA treated HCT-15 cells after staining with Yo-Pro-1. RESULTS: MTT assay results illustrated that GA has an inhibitory effect on HCT-15 cells with IC50 value of 740 μmol/L. A time-dependent inhibition of colony formation was evident with GA treatment. Cell cycle arrest was evident from the accumulation of GA treated HCT-15 cells at sub-G1 phase (0.98 ± 1.03 vs 58.01 ± 2.05) with increasing exposure time. Flow cytometric analysis of GA treated HCT-15 cells depicted early events associated with apoptosis like lipid layer breakage and fall in mitochondrial membrane potential apart from an increase in the generation of ROS which were in a time dependent manner. SEM and photomicrograph images of the GA-treated cells displayed membrane blebbing and cell shrinking characteristics of apoptosis. Further apoptosis confirmation by Yo-Pro-1 staining also showed the time-dependent increase of apoptotic cells after treatment. CONCLUSION: These results show that GA induced ROS dependent apoptosis and inhibited the growth of colon cancer cells. PMID:27099438

  4. 9 CFR 317.362 - Nutrient content claims for fat, fatty acids, and cholesterol content.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... acids, and cholesterol content. 317.362 Section 317.362 Animals and Animal Products FOOD SAFETY AND... Nutrition Labeling § 317.362 Nutrient content claims for fat, fatty acids, and cholesterol content. (a) General requirements. A claim about the level of fat, fatty acid, and cholesterol in a product may only be...

  5. 9 CFR 381.462 - Nutrient content claims for fat, fatty acids, and cholesterol content.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... acids, and cholesterol content. 381.462 Section 381.462 Animals and Animal Products FOOD SAFETY AND... Nutrition Labeling § 381.462 Nutrient content claims for fat, fatty acids, and cholesterol content. (a) General requirements. A claim about the level of fat, fatty acid, and cholesterol in a product may only be...

  6. 9 CFR 381.462 - Nutrient content claims for fat, fatty acids, and cholesterol content.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... acids, and cholesterol content. 381.462 Section 381.462 Animals and Animal Products FOOD SAFETY AND... Nutrition Labeling § 381.462 Nutrient content claims for fat, fatty acids, and cholesterol content. (a) General requirements. A claim about the level of fat, fatty acid, and cholesterol in a product may only be...

  7. 9 CFR 317.362 - Nutrient content claims for fat, fatty acids, and cholesterol content.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... acids, and cholesterol content. 317.362 Section 317.362 Animals and Animal Products FOOD SAFETY AND... Nutrition Labeling § 317.362 Nutrient content claims for fat, fatty acids, and cholesterol content. (a) General requirements. A claim about the level of fat, fatty acid, and cholesterol in a product may only be...

  8. Antiviral Effects of Black Raspberry (Rubus coreanus) Seed and Its Gallic Acid against Influenza Virus Infection.

    PubMed

    Lee, Ji-Hye; Oh, Mi; Seok, Jong Hyeon; Kim, Sella; Lee, Dan Bi; Bae, Garam; Bae, Hae-In; Bae, Seon Young; Hong, Young-Min; Kwon, Sang-Oh; Lee, Dong-Hun; Song, Chang-Seon; Mun, Ji Young; Chung, Mi Sook; Kim, Kyung Hyun

    2016-06-06

    Influenza is a serious public health concern worldwide, as it causes significant morbidity and mortality. The emergence of drug-resistant viral strains requires new approaches for the treatment of influenza. In this study, Rubus coreanus seed (RCS) that is left over from the production of wine or juice was found to show antiviral activities against influenza type A and B viruses. Using the time-of-addition plaque assay, viral replication was almost completely abolished by simultaneous treatment with the RCS fraction of less than a 1-kDa molecular weight (RCSF1). One of the polyphenols derived from RCSF1, gallic acid (GA), identified by liquid chromatography-tandem mass spectrometry, showed inhibitory effects against both influenza type A and B viruses, albeit at relatively high concentrations. RCSF1 was bound to hemagglutinin protein, inhibited hemagglutination significantly and disrupted viral particles, whereas GA was found to only disrupt the viral particles by using transmission electron microscopy. In BALB/c mice infected with influenza virus, oral administration of RCSF1 significantly improved the survival rate and reduced the viral titers in the lungs. Our results demonstrate that RCSF1 and GA show potent and broad antiviral activity against influenza A and B type viruses and are promising sources of agents that target virus particles.

  9. Antiviral Effects of Black Raspberry (Rubus coreanus) Seed and Its Gallic Acid against Influenza Virus Infection

    PubMed Central

    Lee, Ji-Hye; Oh, Mi; Seok, Jong Hyeon; Kim, Sella; Lee, Dan Bi; Bae, Garam; Bae, Hae-In; Bae, Seon Young; Hong, Young-Min; Kwon, Sang-Oh; Lee, Dong-Hun; Song, Chang-Seon; Mun, Ji Young; Chung, Mi Sook; Kim, Kyung Hyun

    2016-01-01

    Influenza is a serious public health concern worldwide, as it causes significant morbidity and mortality. The emergence of drug-resistant viral strains requires new approaches for the treatment of influenza. In this study, Rubus coreanus seed (RCS) that is left over from the production of wine or juice was found to show antiviral activities against influenza type A and B viruses. Using the time-of-addition plaque assay, viral replication was almost completely abolished by simultaneous treatment with the RCS fraction of less than a 1-kDa molecular weight (RCSF1). One of the polyphenols derived from RCSF1, gallic acid (GA), identified by liquid chromatography-tandem mass spectrometry, showed inhibitory effects against both influenza type A and B viruses, albeit at relatively high concentrations. RCSF1 was bound to hemagglutinin protein, inhibited hemagglutination significantly and disrupted viral particles, whereas GA was found to only disrupt the viral particles by using transmission electron microscopy. In BALB/c mice infected with influenza virus, oral administration of RCSF1 significantly improved the survival rate and reduced the viral titers in the lungs. Our results demonstrate that RCSF1 and GA show potent and broad antiviral activity against influenza A and B type viruses and are promising sources of agents that target virus particles. PMID:27275830

  10. 9 CFR 381.462 - Nutrient content claims for fat, fatty acids, and cholesterol content.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Nutrition Labeling § 381.462 Nutrient content claims for fat, fatty acids, and cholesterol content. (a) General requirements. A claim about the level of fat, fatty acid, and cholesterol in a product may only be... fat. (iv) A synonym for “___ percent fat free” is “___ percent lean.” (c) Fatty acid content claims...

  11. 9 CFR 317.362 - Nutrient content claims for fat, fatty acids, and cholesterol content.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Nutrition Labeling § 317.362 Nutrient content claims for fat, fatty acids, and cholesterol content. (a) General requirements. A claim about the level of fat, fatty acid, and cholesterol in a product may only be.... (iv) A synonym for “___ percent fat free” is “___ percent lean.” (c) Fatty acid content claims. (1...

  12. 9 CFR 381.462 - Nutrient content claims for fat, fatty acids, and cholesterol content.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... acids, and cholesterol content. 381.462 Section 381.462 Animals and Animal Products FOOD SAFETY AND... Nutrition Labeling § 381.462 Nutrient content claims for fat, fatty acids, and cholesterol content. Link to... level of fat, fatty acid, and cholesterol in a product may only be made on the label or in labeling of...

  13. 9 CFR 317.362 - Nutrient content claims for fat, fatty acids, and cholesterol content.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... acids, and cholesterol content. 317.362 Section 317.362 Animals and Animal Products FOOD SAFETY AND... Nutrition Labeling § 317.362 Nutrient content claims for fat, fatty acids, and cholesterol content. Link to... level of fat, fatty acid, and cholesterol in a product may only be made on the label or in labeling of...

  14. Phenolic acid composition and antioxidant properties of Malaysian honeys.

    PubMed

    Khalil, M I; Alam, N; Moniruzzaman, M; Sulaiman, S A; Gan, S H

    2011-08-01

    The phenolic acid and flavonoid contents of Malaysian Tualang, Gelam, and Borneo tropical honeys were compared to those of Manuka honey. Ferric reducing/antioxidant power assay (FRAP) and the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical-scavenging activities were also quantified. All honey extracts exhibited high phenolic contents (15.21 ± 0.51- 42.23 ± 0.64 mg/kg), flavonoid contents (11.52 ± 0.27- 25.31 ± 0.37 mg/kg), FRAP values (892.15 ± 4.97- 363.38 ± 10.57 μM Fe[II]/kg), and high IC₅₀ of DPPH radical-scavenging activities (5.24 ± 0.40- 17.51 ± 0.51 mg/mL). Total of 6 phenolic acids (gallic, syringic, benzoic, trans-cinnamic, p-coumaric, and caffeic acids) and 5 flavonoids (catechin, kaempferol, naringenin, luteolin, and apigenin) were identified. Among the Malaysian honey samples, Tualang honey had the highest contents of phenolics, and flavonoids, and DPPH radical-scavenging activities. We conclude that among Malaysian honey samples, Tualang honey is the richest in phenolic acids, and flavonoid compounds, which have strong free radical-scavenging activities. © 2011 Institute of Food Technologists®

  15. Effect of dietary supplementation of gallic acid on nitrogen balance, nitrogen excretion pattern and urinary nitrogenous constituents in beef cattle.

    PubMed

    Wei, Chen; Yang, Kai; Zhao, Guangyong; Lin, Shixin; Xu, Zhiwei

    2016-10-01

    The objective of the trial was to study the effects of dietary supplementation of gallic acid (GA) on nitrogen (N) balance, N excretion pattern and urinary N constituents in beef cattle. In a 4 × 4 Latin square design, four male 30-month-old Simmental cattle (443 ± 22 kg live weight) received four levels of GA (purity ≥ 98.5%), i.e. 0, 5.3, 10.5, 21.1 g/kg DM, added to a basal ration. Each experimental period lasted 17 d, consisting of 12 d adaptation and 5 d sampling. The results showed that supplementation of GA at 5.3, 10.5 or 21.1 g/kg DM did not affect the N balance but regulated the N excretion pattern by increasing the ratio of faecal N/urinary N and decreasing the ratio of urinary urea N/total urinary N in beef cattle fed at maintenance level.

  16. Effect of platelets on apparent leucocyte ascorbic acid content.

    PubMed

    Evans, R M; Currie, L; Campbell, A

    1980-09-01

    The leucocyte ascorbic acid content is widely used as a measure of tissue ascorbic acid status. Standard methods of analysis, however, isolate both leucocytes and platelets (buffy layer), with consequent overestimation, since platelet ascorbic acid is attributed to the leucocytes. Fourteen healthy individuals on ascorbic acid supplements and 11 patients on mega dose ascorbic acid therapy were studied. A significant correlation was demonstrated between the 'leucocyte' ascorbic acid content and the platelet: leucocyte ratio (r = 0.70, P < 0.001). It is suggested that changes in the relative distribution of platelets and leucocytes in the blood will result in an apparent change in the 'leucocyte' ascorbic acid content regardless of any actual change in the ascorbic acid content of the cells.

  17. Breeding Vegetables with Increased Content in Bioactive Phenolic Acids.

    PubMed

    Kaushik, Prashant; Andújar, Isabel; Vilanova, Santiago; Plazas, Mariola; Gramazio, Pietro; Herraiz, Francisco Javier; Brar, Navjot Singh; Prohens, Jaime

    2015-10-09

    Vegetables represent a major source of phenolic acids, powerful antioxidants characterized by an organic carboxylic acid function and which present multiple properties beneficial for human health. In consequence, developing new varieties with enhanced content in phenolic acids is an increasingly important breeding objective. Major phenolic acids present in vegetables are derivatives of cinnamic acid and to a lesser extent of benzoic acid. A large diversity in phenolic acids content has been found among cultivars and wild relatives of many vegetable crops. Identification of sources of variation for phenolic acids content can be accomplished by screening germplasm collections, but also through morphological characteristics and origin, as well as by evaluating mutations in key genes. Gene action estimates together with relatively high values for heritability indicate that selection for enhanced phenolic acids content will be efficient. Modern genomics and biotechnological strategies, such as QTL detection, candidate genes approaches and genetic transformation, are powerful tools for identification of genomic regions and genes with a key role in accumulation of phenolic acids in vegetables. However, genetically increasing the content in phenolic acids may also affect other traits important for the success of a variety. We anticipate that the combination of conventional and modern strategies will facilitate the development of a new generation of vegetable varieties with enhanced content in phenolic acids.

  18. Comparative Assessment of Phenolic Content and in Vitro Antioxidant Capacity in the Pulp and Peel of Mango Cultivars

    PubMed Central

    Abbasi, Arshad Mehmood; Guo, Xinbo; Fu, Xiong; Zhou, Lin; Chen, Youngsheng; Zhu, Yong; Yan, Huaifeng; Liu, Rui Hai

    2015-01-01

    Mango (Mangifera indica L.), also called “the king of fruits”, is one of the most popular fruits in tropical regions. Pulp and peel samples of mango cultivars were analyzed to estimate total phenolic, total flavonoid and total anthocyanin contents. Phenolic acids, hydrophilic peroxyl radical scavenging capacity (hydro-PSC) and oxygen radical scavenging capacity (ORAC) in vitro were also determined. Total phenolics and flavonoid contents were found maximum in the peel of Xiao Tainang and Da Tainang cultivars, respectively, whereas Xiao Tainang also exhibited significant antioxidant capacity. Noteworthy, concentrations of gallic acid, protocatechuic acid, ferulic acid, chlorogenic acid and caffeic acids at 79.15, 64.33, 33.75, 27.19 and 13.62 mg/100 g fresh weight (FW) were quantified for Da Tainang, Xiao Tainang and of Jidan cultivars, respectively. Comparatively, a higher level of phenolics and significant antioxidant capacity in mango peel indicated that it might be useful as a functional food and value-added ingredient to promote human health. PMID:26075869

  19. α-Tocopherol/Gallic Acid Cooperation in the Protection of Galactolipids Against Ozone-Induced Oxidation.

    PubMed

    Rudolphi-Skórska, Elżbieta; Filek, Maria; Zembala, Maria

    2016-04-01

    The protective ability of α-tocopherol (TOH) and gallic acid (GA) acting simultaneously at the moment of oxidizer application was evaluated by determination of galactolipid layers' oxidation degree. Addition of GA resulted in a significant decrease of ozone-derived radicals shifting the threshold of lipid sensitivity by an amount approximately corresponding to the GA intake in bulk reaction with ozone. TOH presence in lipid layers results in a change of the role of GA which additionally may be involved in the reduction of tocopheroxyl radical formed during oxidation. This leads to a decrease in effectiveness of GA in diminishing the amount of ozone radicals. Such an effect was not observed for mixed layers containing galactolipid and pre-oxidized tocopherol where the ozone threshold level was associated with a stoichiometry of GA + O3 reaction. It was concluded that probably subsequent transformations of tocopheroxyl radical to less reactive forms prevent its reaction with GA the entire quantity of which is used for radicals scavenging. This result shows the role of time parameter in systems where substrates are engaged in various reactions taking place simultaneously. The inactivation of 1,1-diphenyl-2-picrylhydrazyl radical by studied antioxidants in homogeneous system confirmed observations made on the basis of lipid layer properties indicating their antagonistic action (at least at studied conditions). Formation of layers in post-oxidation situation did not depend whether tocopherol was oxidized during oxidation of lipid/tocopherol mixture or was introduced as pre-oxidized. This may be interpreted as indication that products of tocopherol oxidation may stabilize lipid layers.

  20. Antioxidant activities and fatty acid composition of wild grown myrtle (Myrtus communis L.) fruits

    PubMed Central

    Serce, Sedat; Ercisli, Sezai; Sengul, Memnune; Gunduz, Kazim; Orhan, Emine

    2010-01-01

    The fruits of eight myrtles, Myrtus communis L. accessions from the Mediterranean region of Turkey were evaluated for their antioxidant activities and fatty acid contents. The antioxidant activities of the fruit extracts were determined by using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and β-carotene-linoleic acid assays. The fatty acid contents of fruits were determined by using gas chromatography. The methanol extracts of fruits exhibited a high level of free radical scavenging activity. There was a wide range (74.51-91.65%) of antioxidant activity among the accessions in the β-carotene-linoleic acid assay. The amount of total phenolics (TP) was determined to be between 44.41-74.44 μg Gallic acid equivalent (GAE)/mg, on a dry weight basis. Oleic acid was the dominant fatty acid (67.07%), followed by palmitic (10.24%), and stearic acid (8.19%), respectively. These results suggest the future utilization of myrtle fruit extracts as food additives or in chemoprevention studies. PMID:20548930

  1. Antioxidant activities and fatty acid composition of wild grown myrtle (Myrtus communis L.) fruits.

    PubMed

    Serce, Sedat; Ercisli, Sezai; Sengul, Memnune; Gunduz, Kazim; Orhan, Emine

    2010-01-01

    The fruits of eight myrtles, Myrtus communis L. accessions from the Mediterranean region of Turkey were evaluated for their antioxidant activities and fatty acid contents. The antioxidant activities of the fruit extracts were determined by using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and beta-carotene-linoleic acid assays. The fatty acid contents of fruits were determined by using gas chromatography. The methanol extracts of fruits exhibited a high level of free radical scavenging activity. There was a wide range (74.51-91.65%) of antioxidant activity among the accessions in the beta-carotene-linoleic acid assay. The amount of total phenolics (TP) was determined to be between 44.41-74.44 mug Gallic acid equivalent (GAE)/mg, on a dry weight basis. Oleic acid was the dominant fatty acid (67.07%), followed by palmitic (10.24%), and stearic acid (8.19%), respectively. These results suggest the future utilization of myrtle fruit extracts as food additives or in chemoprevention studies.

  2. Mechanism of in situ surface polymerization of gallic acid in an environmental-inspired preparation of carboxylated core-shell magnetite nanoparticles.

    PubMed

    Tóth, Ildikó Y; Szekeres, Márta; Turcu, Rodica; Sáringer, Szilárd; Illés, Erzsébet; Nesztor, Dániel; Tombácz, Etelka

    2014-12-30

    Magnetite nanoparticles (MNPs) with biocompatible coatings are good candidates for MRI (magnetic resonance imaging) contrasting, magnetic hyperthermia treatments, and drug delivery systems. The spontaneous surface induced polymerization of dissolved organic matter on environmental mineral particles inspired us to prepare carboxylated core-shell MNPs by using a ubiquitous polyphenolic precursor. Through the adsorption and in situ surface polymerization of gallic acid (GA), a polygallate (PGA) coating is formed on the nanoparticles (PGA@MNP) with possible antioxidant capacity. The present work explores the mechanism of polymerization with the help of potentiometric acid-base titration, dynamic light scattering (for particle size and zeta potential determination), UV-vis (UV-visible light spectroscopy), FTIR-ATR (Fourier-transformed infrared spectroscopy by attenuated total reflection), and XPS (X-ray photoelectron spectroscopy) techniques. We observed the formation of ester and ether linkages between gallate monomers both in solution and in the adsorbed state. Higher polymers were formed in the course of several weeks both on the surface of nanoparticles and in the dispersion medium. The ratio of the absorbances of PGA supernatants at 400 and 600 nm (i.e., the E4/E6 ratio commonly used to characterize the degree of polymerization of humic materials) was determined to be 4.3, similar to that of humic acids. Combined XPS, dynamic light scattering, and FTIR-ATR results revealed that, prior to polymerization, the GA monomers became oxidized to poly(carboxylic acid)s due to ring opening while Fe(3+) ions reduced to Fe(2+). Our published results on the colloidal and chemical stability of PGA@MNPs are referenced thoroughly in the present work. Detailed studies on biocompatibility, antioxidant property, and biomedical applicability of the particles will be published.

  3. Gallic acid improved behavior, brain electrophysiology, and inflammation in a rat model of traumatic brain injury.

    PubMed

    Sarkaki, Alireza; Farbood, Yaghoub; Gharib-Naseri, Mohammad Kazem; Badavi, Mohammad; Mansouri, Mohammad Taghi; Haghparast, Abbas; Mirshekar, Mohammad Ali

    2015-08-01

    Traumatic brain injury (TBI) is one of the main causes of intellectual and cognitive disabilities. In the clinic it is essential to limit the development of cognitive impairment after TBI. In this study, the effects of gallic acid (GA; 100 mg/kg, per oral, from 7 days before to 2 days after TBI induction) on neurological score, passive avoidance memory, long-term potentiation (LTP) deficits, and levels of proinflammatory cytokines including interleukin-1 beta (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) in the brain have been evaluated. Brain injury was induced following Marmarou's method. Data were analyzed by one-way and repeated measures ANOVA followed by Tukey's post-hoc test. The results indicated that memory was significantly impaired (p < 0.001) in the group treated with TBI + vehicle, together with deterioration of the hippocampal LTP and increased brain tissue levels of IL-1β, IL-6, and TNF-α. GA treatment significantly improved memory and LTP in the TBI rats. The brain tissue levels of IL-1β, IL-6, and TNF-α were significantly reduced (p < 0.001) in the group treated with GA. The results suggest that GA has neuroprotective properties against TBI-induced behavioral, electrophysiological, and inflammatory disorders, probably via the decrease of cerebral proinflammatory cytokines.

  4. Gallic acid prevents nonsteroidal anti-inflammatory drug-induced gastropathy in rat by blocking oxidative stress and apoptosis.

    PubMed

    Pal, Chinmay; Bindu, Samik; Dey, Sumanta; Alam, Athar; Goyal, Manish; Iqbal, Mohd Shameel; Maity, Pallab; Adhikari, Susanta S; Bandyopadhyay, Uday

    2010-07-15

    Nonsteroidal anti-inflammatory drug (NSAID)-induced oxidative stress plays a critical role in gastric mucosal cell apoptosis and gastropathy. NSAIDs induce the generation of hydroxyl radical ((*)OH) through the release of free iron, which plays an important role in developing gastropathy. Thus, molecules having both iron-chelating and antiapoptotic properties will be beneficial in preventing NSAID-induced gastropathy. Gallic acid (GA), a polyphenolic natural product, has the capacity to chelate free iron. Here, we report that GA significantly prevents, as well as heals, NSAID-induced gastropathy. In vivo, GA blocks NSAID-mediated mitochondrial oxidative stress by preventing mitochondrial protein carbonyl formation, lipid peroxidation, and thiol depletion. In vitro, GA scavenges free radicals and blocks (*)OH-mediated oxidative damage. GA also attenuates gastric mucosal cell apoptosis in vivo as well as in vitro in cultured gastric mucosal cells as evident from the TUNEL assay. GA prevents NSAID-induced activation of caspase-9, a marker for the mitochondrial pathway of apoptosis, and restores NSAID-mediated collapse of the mitochondrial transmembrane potential and dehydrogenase activity. Thus, the inhibition of mitochondrial oxidative stress by GA is associated with the inhibition of NSAID-induced mitochondrial dysfunction and activation of apoptosis in gastric mucosal cells, which are responsible for gastric injury or gastropathy. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Hydrophilic Graphene Preparation from Gallic Acid Modified Graphene Oxide in Magnesium Self-Propagating High Temperature Synthesis Process

    NASA Astrophysics Data System (ADS)

    Cao, Lei; Li, Zhenhuan; Su, Kunmei; Cheng, Bowen

    2016-10-01

    Hydrophilic graphene sheets were synthesized from a mixture of magnesium and gallic acid (GA) modified graphene oxide (GO) in a self-propagating high-temperature synthesis (SHS) process, and hydrophilic graphene sheets displayed the higher C/O ratio (16.36), outstanding conductivity (~88900 S/m) and excellent water-solubility. GO sheets were connected together by GA, and GA was captured to darn GO structure defects through the formation of hydrogen bonds and ester bonds. In SHS process, the most oxygen ions of GO reacted with magnesium to prevent the escape of carbon dioxide and carbon monoxide to from the structure defects associated with vacancies, and GA could take place the high-temperature carbonization, during which a large-area graphene sheets formed with a part of the structure defects being repaired. When only GO was reduced by magnesium in SHS process, and the reduced GO (rGO) exhibited the smaller sheets, the lower C/O ratio (15.26), the weaker conductivity (4200 S/m) and the poor water-solubility because rGO inevitably left behind carbon vacancies and topological defects. Therefore, the larger sheet, less edge defects and free structure defects associated with vacancies play a key role for graphene sheets good dispersion in water.

  6. Synthesis, structure and characterization of a hybrid centrosymmetric material (4-dimethylaminopyridinium nitrate gallic acid monohydrate) well-designed for non-linear optics

    NASA Astrophysics Data System (ADS)

    Ennaceur, Nasreddine; Jalel, Boutheina; Henchiri, Rokaya; Cordier, Marie; Ledoux-Rak, Isabelle

    2018-01-01

    Hybrid material: 4-Dimethylaminopyridinium nitrate gallic acid monohydrate abbreviated DNGA monohydrate has been successfully synthesized by slow evaporation method at room temperature. X-ray diffraction (XRD) on a single crystal showed that the latter was crystallized in P-1 space group. Likewise, thermal analyses demonstrated the stability of our crystal up to 80 °C. Besides, the analysis of the infrared spectrum (FTIR), allowed us to confirm the presence of the different groups present in the structure. Furthermore, by studying the UV-Visible spectrum, the transparency of our crystal was proven. Despite the fact that of having a centrosymmetric structure, the nonlinear optical properties of our single crystal, which was tested by Kurtz-Perry technique, proved that its second harmonic generation efficiency was 1.22 times more than that of KDP (potassium dihydrogen phosphate) single crystal. This nonlinear optical behavior of the studied compound was also determined through the calculations of polarizability and first hyperpolarizability values.

  7. GC-Content of Synonymous Codons Profoundly Influences Amino Acid Usage

    PubMed Central

    Li, Jing; Zhou, Jun; Wu, Ying; Yang, Sihai; Tian, Dacheng

    2015-01-01

    Amino acids typically are encoded by multiple synonymous codons that are not used with the same frequency. Codon usage bias has drawn considerable attention, and several explanations have been offered, including variation in GC-content between species. Focusing on a simple parameter—combined GC proportion of all the synonymous codons for a particular amino acid, termed GCsyn—we try to deepen our understanding of the relationship between GC-content and amino acid/codon usage in more details. We analyzed 65 widely distributed representative species and found a close association between GCsyn, GC-content, and amino acids usage. The overall usages of the four amino acids with the greatest GCsyn and the five amino acids with the lowest GCsyn both vary with the regional GC-content, whereas the usage of the remaining 11 amino acids with intermediate GCsyn is less variable. More interesting, we discovered that codon usage frequencies are nearly constant in regions with similar GC-content. We further quantified the effects of regional GC-content variation (low to high) on amino acid usage and found that GC-content determines the usage variation of amino acids, especially those with extremely high GCsyn, which accounts for 76.7% of the changed GC-content for those regions. Our results suggest that GCsyn correlates with GC-content and has impact on codon/amino acid usage. These findings suggest a novel approach to understanding the role of codon and amino acid usage in shaping genomic architecture and evolutionary patterns of organisms. PMID:26248983

  8. 9 CFR 317.362 - Nutrient content claims for fat, fatty acids, and cholesterol content.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... acids, and cholesterol content. 317.362 Section 317.362 Animals and Animal Products FOOD SAFETY AND... Nutrition Labeling § 317.362 Nutrient content claims for fat, fatty acids, and cholesterol content. Link to..., and cholesterol in a product may only be made on the label or in labeling of products if: (1) The...

  9. 9 CFR 381.462 - Nutrient content claims for fat, fatty acids, and cholesterol content.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... acids, and cholesterol content. 381.462 Section 381.462 Animals and Animal Products FOOD SAFETY AND... Nutrition Labeling § 381.462 Nutrient content claims for fat, fatty acids, and cholesterol content. Link to..., and cholesterol in a product may only be made on the label or in labeling of products if: (1) The...

  10. Simultaneous estimation of phenolic acids in sea buckthorn (Hippophaë rhamnoides) using RP-HPLC with DAD.

    PubMed

    Arimboor, Ranjith; Kumar, K Sarin; Arumughan, C

    2008-05-12

    A RP-HPLC-DAD method was developed and validated for the simultaneous analysis of nine phenolic acids including gallic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, salicylic acid, p-coumaric acid, cinnamic acid, caffiec acid and ferulic acid in sea buckthorn (SB) (Hippophaë rhamnoides) berries and leaves. The method was validated in terms of linearity, LOD, precision, accuracy and recovery and found to be satisfactory. Phenolic acid derivatives in anatomical parts of SB berries and leaves were separated into free phenolic acids, phenolic acids bound as esters and phenolic acids bound as glycosides and profiled in HPLC. Berry pulp contained a total of 1068 mg/kg phenolic acids, of which 58.8% was derived from phenolic glycosides. Free phenolic acids and phenolic acid esters constituted 20.0% and 21.2%, respectively, of total phenolic acids in SB berry pulp. The total phenolic acid content in seed kernel (5741 mg/kg) was higher than that in berry pulp and seed coat (Table 2). Phenolic acids liberated from soluble esters constituted the major fraction of phenolic acids (57.3% of total phenolic acids) in seed kernel. 8.4% and 34.3% of total phenolic acids in seed kernel were, respectively contributed by free and phenolic acids liberated from glycosidic bonds. The total soluble phenolic acids content in seed coat (448 mg/kg) was lower than that in seed kernel and pulp (Table 2). Proportion of free phenolic acids in total phenolic acids in seed coat was higher than that in seed kernel and pulp. Phenolic acids bound as esters and glycosides, respectively contributed 49.1% and 20.3% of total phenolic acids in seed coat. The major fraction (approximately 70%) of phenolic acids in SB berries was found to be concentrated in the seeds. Gallic acid was the predominant phenolic acid both in free and bound forms in SB berry parts and leaves.

  11. Effects of aerosol formulation to amino acids and fatty acids contents in Haruan extract.

    PubMed

    Febriyenti; Bai-Baie, Saringat Bin; Laila, Lia

    2012-01-01

    Haruan (Channa striatus) extract was formulated to aerosol for wound and burn treatment. Haruan extract is containing amino acids and fatty acids that important for wound healing process. The purpose of this study is to observe the effect of formulation and other excipients in the formula to amino acids and fatty acids content in Haruan extract before and after formulated into aerosol. Precolumn derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) method is used for amino acids analysis. Fatty acids in Haruan extract were esterified using transesterification method to form FAMEs before analyzed using GC. Boron trifluoride-methanol reagent is used for transesterification. Tyrosine and methionine concentrations were different after formulated. The concentrations were decrease. There are six fatty acids have amount that significantly different after formulated into concentrate and aerosol. Contents of these fatty acids were increase. Generally, fatty acids which had content increased after formulated were the long-chain fatty acids. This might be happen because of chain extension process. Saponification and decarboxylation would give the chain extended product. Therefore contents of long-chain fatty acids were increase. Generally, the aerosol formulation did not affect the amino acids concentrations in Haruan extract while some long-chain fatty acids concentrations were increase after formulated into concentrate and aerosol.

  12. Gallic Acid Ameliorated Impaired Glucose and Lipid Homeostasis in High Fat Diet-Induced NAFLD Mice

    PubMed Central

    Chao, Jung; Huo, Teh-Ia; Cheng, Hao-Yuan; Tsai, Jen-Chieh; Liao, Jiunn-Wang; Lee, Meng-Shiou; Qin, Xue-Mei; Hsieh, Ming-Tsuen; Pao, Li-Heng; Peng, Wen-Huang

    2014-01-01

    Gallic acid (GA), a naturally abundant plant phenolic compound in vegetables and fruits, has been shown to have potent anti-oxidative and anti-obesity activity. However, the effects of GA on nonalcoholic fatty liver disease (NAFLD) are poorly understood. In this study, we investigated the beneficial effects of GA administration on nutritional hepatosteatosis model by a more “holistic view” approach, namely 1H NMR-based metabolomics, in order to prove efficacy and to obtain information that might lead to a better understanding of the mode of action of GA. Male C57BL/6 mice were placed for 16 weeks on either a normal chow diet, a high fat diet (HFD, 60%), or a high fat diet supplemented with GA (50 and 100 mg/kg/day, orally). Liver histopathology and serum biochemical examinations indicated that the daily administration of GA protects against hepatic steatosis, obesity, hypercholesterolemia, and insulin resistance among the HFD-induced NAFLD mice. In addition, partial least squares discriminant analysis scores plots demonstrated that the cluster of HFD fed mice is clearly separated from the normal group mice plots, indicating that the metabolic characteristics of these two groups are distinctively different. Specifically, the GA-treated mice are located closer to the normal group of mice, indicating that the HFD-induced disturbances to the metabolic profile were partially reversed by GA treatment. Our results show that the hepatoprotective effect of GA occurs in part through a reversing of the HFD caused disturbances to a range of metabolic pathways, including lipid metabolism, glucose metabolism (glycolysis and gluconeogenesis), amino acids metabolism, choline metabolism and gut-microbiota-associated metabolism. Taken together, this study suggested that a 1H NMR-based metabolomics approach is a useful platform for natural product functional evaluation. The selected metabolites are potentially useful as preventive action biomarkers and could also be used to help

  13. Green synthesis and characterization of Au@Pt core-shell bimetallic nanoparticles using gallic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Guojun; Zheng, Hongmei; Shen, Ming; Wang, Lei; Wang, Xiaosan

    2015-06-01

    In this study, we developed a facile and benign green synthesis approach for the successful fabrication of well-dispersed urchin-like Au@Pt core-shell nanoparticles (NPs) using gallic acid (GA) as both a reducing and protecting agent. The proposed one-step synthesis exploits the differences in the reduction potentials of AuCl4- and PtCl62-, where the AuCl4- ions are preferentially reduced to Au cores and the PtCl62- ions are then deposited continuously onto the Au core surface as a Pt shell. The as-prepared Au@Pt NPs were characterized by transmission electron microscope (TEM); high-resolution transmission electron microscope (HR-TEM); scanning electron microscope (SEM); UV-vis absorption spectra (UV-vis); X-ray diffraction (XRD); Fourier transmission infrared spectra (FT-IR). We systematically investigated the effects of some experimental parameters on the formation of the Au@Pt NPs, i.e., the reaction temperature, the molar ratios of HAuCl4/H2PtCl6, and the amount of GA. When polyvinylpyrrolidone K-30 (PVP) was used as a protecting agent, the Au@Pt core-shell NPs obtained using this green synthesis method were better dispersed and smaller in size. The as-prepared Au@Pt NPs exhibited better catalytic activity in the reaction where NaBH4 reduced p-nitrophenol to p-aminophenol. However, the results showed that the Au@Pt bimetallic NPs had a lower catalytic activity than the pure Au NPs obtained by the same method, which confirmed the formation of Au@Pt core-shell nanostructures because the active sites on the surfaces of the Au NPs were covered with a Pt shell.

  14. Crude ethanol extracts from grape seeds and peels exhibit anti-tyrosinase activity.

    PubMed

    Hsu, Cheng-Kuang; Chou, Su-Tze; Huang, Pai-Jane; Mong, Mei-Chin; Wang, Chien-Kuo; Hsueh, Yu-Pin; Jhan, Jyun-Kai

    2012-01-01

    This study aimed to evaluate the anti-tyrosinase activities of ethanol extracts from the peels and the seeds of Kyoho grapes and Red Globe grapes (KG-PEE, KG-SEE, RGG-PEE, and RGG-SEE). The total phenolic content in KG-SEE and RGG-SEE was 400 +/- 11 and 339 +/- 7 mg gallic acid equivalent/g, respectively, about 22 times and 13 times that in KG-PEE and RGG-PEE, respectively. Both seed extracts showed significantly higher anti-tyrosinase activity than the peel extracts due to their high total phenolic content. The gallic acid content in RGG-SEE was twice that in KG-SEE, and gallic acid showed high anti-tyrosinase activity; thus, RGG-SEE had higher anti-tyrosinase activity than KG-SEE. Lineweaver-Burk plots revealed that the inhibitory mechanism of the ethanol extracts from the grapes was a mix-type inhibition. Grape seed has a greater total phenolic content and has potential as a skin-lighting agent.

  15. Green synthesis of Se/Ru alloy nanoparticles using gallic acid and evaluation of theiranti-invasive effects in HeLa cells.

    PubMed

    Zhou, Yanhui; Xu, Meng; Liu, Yanan; Bai, Yan; Deng, Yuqian; Liu, Jie; Chen, Lanmei

    2016-08-01

    Methods for the synthesis of nanoparticles (NPs) for biomedical applications ideally involve the use of nontoxic reducing and capping agents, and more importantly, enable control over the shape and size of the particles. As such, we used gallic acid (GA) as both a reducing and a capping agent in a simple and "green" synthesis of stable Se/Rualloy NPs (GA-Se/RuNPs). The diameter and morphology of the Se/Ru alloy NPs were regulated by GA concentration, and the presence of Ru was found to be a key factor in regulating and controlling the size of GA-Se/RuNPs. Moreover, GA-Se/RuNPs suppressed HeLa cell proliferation through the induction of apoptosis at concentrations that were nontoxic in normal cells. Furthermore, GA-Se/RuNPs effectively inhibited migration and invasion in HeLa cells via the inhibition of MMP-2 and MMP-9 proteins. Our findings confirm that bimetallic (Se/Ru) NPs prepared via GA-mediated synthesis exhibit enhanced anticancer effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Inhibition of α-Glucosidase, Total Phenolic Content and Flavonoid Content on Skin Fruit and Flesh Extracts of Some Varieties of Snake Fruits

    NASA Astrophysics Data System (ADS)

    Rohaeti, E.; Fauzi, M. R.; Batubara, I.

    2017-03-01

    This study aimed to determine the antidiabetic activity of the skin fruit and flesh of snack fruit through α-glucosidase inhibition and correlated with total phenolic and flavonoid content as well as thin layer chromatography bio-autography. Seven varieties of varieties of skin and flesh of the fruits each extracted by maceration using ethanol 70%. The results show the highest power of the α-glucosidase inhibition obtained at Manonjaya skin extract with IC50 value of 17.9 µg/mL. The TLC pattern indicates the presence of four active spot on skin extract and two spots on flesh extracts on the use of solvent BuOH:HAc:water (6:2:2). The highest phenolic content obtained at skin fruit extract of Salak Mawar 186.15 ± 1.66 mg of gallic acid equivalents per gram extract. The highest total flavonoid content obtained in Salak Malaka skin fruit extract that is 7:43 ± 0:04 milli gram of quercetin equivalents

  17. 21 CFR 101.62 - Nutrient content claims for fat, fatty acid, and cholesterol content of foods.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... cholesterol content of foods. 101.62 Section 101.62 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Nutrient Content Claims § 101.62 Nutrient content claims for fat, fatty acid, and cholesterol content of foods. (a) General requirements. A claim about the level of fat, fatty acid, and cholesterol in a food...

  18. [Comparative study of chemical composition of pomegranate peel pomegranates inside and pomegranate seeds].

    PubMed

    Zhou, Qian; Sun, Li-Li; Dai, Yan-Peng; Wang, Liang; Su, Ben-Zheng

    2013-07-01

    An HPLC fingerprint of pomegranate peel was established. Using chromatographic conditions, we compared the chemical composition of pomegranate peel, inside and seeds, and simultaneously determined the contents of gallic acid and ellagic acid. By comparison, we found that there were no significant differences between pomegranate peel and inside, but there was a big difference between pomegranate seeds and another two. The contents of gallic acid and ellagic acid of pomegranate peel respectively were 0.33%, 0.59%, while in pomegranate inside the result respectively were 0.52%, 0.38%. Content of ellagic acid from pomegranate seeds was only 0.01%. By study, we thought that when pomegranate peel was processed, pomegranate seeds should be removed, while pomegranate inside could be retained on the premise of full drying.

  19. Purification and characterization of a novel tannase produced by Kluyveromyces marxianus using olive pomace as solid support, and its promising role in gallic acid production.

    PubMed

    Mahmoud, Abeer E; Fathy, Shadia A; Rashad, Mona M; Ezz, Magda K; Mohammed, Amira T

    2018-02-01

    Tannase is considered one of the most important industrial enzymes that find great applications in various sectors. Production of tannases through solid state fermentation (SSF) using agro-industrial wastes is an eco-friendly and cheap technology. Tannase was produced by the yeast Kluyveromyces marxianus using olive pomace as a solid support under SSF. It was purified using ammonium sulfate fractional precipitation followed by Sephadex G-200 gel filtration resulting in 64.6% enzyme yield with 1026.12U/mg specific activity and 24.21 purification fold. Pure tannase had molecular weight of 65 KDa and 66.62 KDa by SDS-PAGE and gel filtration, respectively. It showed a maximal activity at 35°C having two different pH optima, one of which is acidic (4.5) and the other one is alkaline (8.5). The enzyme was stable in the acidic range of pH (4.0-5.5) for 30min, and thermostable within the temperature range 30-70°C. Using tannic acid, the enzyme had a Km value of 0.77mM and Vmax of 263.20μmolemin -1 ml -1 . The effect of different metal ions on enzymatic activity was evaluated. HPLC analysis data indicated that the purified enzyme could carry out 24.65% tannic acid conversion with 5.25 folds increase in gallic acid concentration within 30min only. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. [CONTENT OF TRANS FATTY ACIDS IN FOOD PRODUCTS IN SPAIN].

    PubMed

    Robledo de Dios, Teresa; Dal Re Saavedra, M Ángeles; Villar Villalba, Carmen; Pérez-Farinós, Napoleón

    2015-09-01

    trans fatty acids are associated to several health disorders, as ischemic heart disease or diabetes mellitus. to assess the content of trans fatty acids in products in Spain, and the percentage of trans fatty acids respecting total fatty acids. 443 food products were acquired in Spain, and they were classified into groups. The content in fatty acids was analyzed using gas chromatography. Estimates of central tendency and variability of the content of trans fatty acids in each food group were computed (in g of trans fatty acids/100 g of product). The percentage of trans fatty acids respecting total fatty acids was calculated in each group. 443 products were grouped into 42 groups. Median of trans fatty acids was less than 0.55 g / 100 g of product in all groups except one. 83 % of groups had less than 2 % of trans fatty acids, and 71 % of groups had less than 1 %. the content of trans fatty acids in Spain is low, and it currently doesn't play a public health problem. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  1. Isoniazid cocrystals with anti-oxidant hydroxy benzoic acids

    NASA Astrophysics Data System (ADS)

    Mashhadi, Syed Muddassir Ali; Yunus, Uzma; Bhatti, Moazzam Hussain; Tahir, Muhammad Nawaz

    2014-11-01

    Isoniazid is the primary constituent of “triple therapy” used to effectively treat tuberculosis. In tuberculosis and other diseases, tissue inflammation and free radical burst from macrophages results in oxidative stress. These free radicals cause pulmonary inflammation if not countered by anti-oxidants. Therefore, in the present study cocrystals of isoniazid with four anti-oxidant hydroxy benzoic acids have been reported. Gallic acid, 2,3-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, and 3-hydroxybenzoic acid resulted in the formation of cocrystals when reacted with isoniazid. Cocrystal structure analysis confirmed the existence of pyridine-carboxylic acid synthon in the cocrystals of isoniazid with Gallic acid, 2,3-dihydroxybenzoic acid and 3-hydroxybenzoic acid. While cocrystal of 3,5-dihydroxybenzoic acid formed the pyridine-hydroxy group synthon. Other synthons of different graph sets are formed between hydrazide group of isoniazid and coformers involving Nsbnd H⋯O and Osbnd H⋯N bonds. All the cocrystals were in 1:1 stoichiometric ratio.

  2. Gallic acid-based alkyl esters synthesis in a water-free system by celite-bound lipase of Bacillus licheniformis SCD11501.

    PubMed

    Sharma, Shivika; Kanwar, Shamsher S; Dogra, Priyanka; Chauhan, Ghanshyam S

    2015-01-01

    Gallic acid (3, 4, 5- trihydroxybenzoic acid) is an important antioxidant, anti-inflammatory, and radical scavenging agent. In the present study, a purified thermo-tolerant extra-cellular lipase of Bacillus licheniformis SCD11501 was successfully immobilized by adsorption on Celite 545 gel matrix followed by treatment with a cross-linking agent, glutaraldehyde. The celite-bound lipase treated with glutaraldehyde showed 94.8% binding/retention of enzyme activity (36 U/g; specific activity 16.8 U/g matrix; relative increase in enzyme activity 64.7%) while untreated matrix resulted in 88.1% binding/retention (28.0 U/g matrix; specific activity 8.5 U/g matrix) of lipase. The celite-bound lipase was successfully used to synthesis methyl gallate (58.2%), ethyl gallate (66.9%), n-propyl gallate (72.1%), and n-butyl gallate (63.8%) at 55(o) C in 10 h under shaking (150 g) in a water-free system by sequentially optimizing various reaction parameters. The low conversion of more polar alcohols such as methanol and ethanol into their respective gallate esters might be due to the ability of these alcohols to severely remove water from the protein hydration shell, leading to enzyme inactivation. Molecular sieves added to the reaction mixture resulted in enhanced yield of the alkyl ester(s). The characterization of synthesised esters was done through fourier transform infrared (FTIR) spectroscopy and (1) H NMR spectrum analysis. © 2015 American Institute of Chemical Engineers.

  3. Sensitive and selective determination of gallic acid in green tea samples based on an electrochemical platform of poly(melamine) film.

    PubMed

    Su, Ya-Ling; Cheng, Shu-Hua

    2015-12-11

    In this work, an electrochemical sensor coupled with an effective flow-injection amperometry (FIA) system is developed, targeting the determination of gallic acid (GA) in a mild neutral condition, in contrast to the existing electrochemical methods. The sensor is based on a thin electroactive poly(melamine) film immobilized on a pre-anodized screen-printed carbon electrode (SPCE*/PME). The characteristics of the sensing surface are well-characterized by field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and surface water contact angle experiments. The proposed assay exhibits a wide linear response to GA in both pH 3 and pH 7.0 phosphate buffer solutions (PBS) under the optimized flow-injection amperometry. The detection limit (S/N = 3) is 0.076 μM and 0.21 μM in the pH 3 and pH 7 solutions, respectively. A relative standard deviation (RSD) of 3.9% is obtained for 57 successive measurements of 50 μM GA in pH 7 solutions. Interference studies indicate that some inorganic salts, catechol, caffeine and ascorbic acid do not interfere with the GA assay. The interference effects from some orthodiphenolic compounds are also investigated. The proposed method and a conventional Folin-Ciocalteu method are applied to detect GA in green tea samples using the standard addition method, and satisfactory spiked recoveries are obtained. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Volatile flavor compounds, total polyphenolic contents and antioxidant activities of a China gingko wine.

    PubMed

    Wang, Xu; Xie, Kelin; Zhuang, Haining; Ye, Ran; Fang, Zhongxiang; Feng, Tao

    2015-09-01

    The volatile compounds in gingko wine, a novel functional wine, were extracted by head-space solid phase micro-extraction (SPME) and analyzed by gas chromatography-mass spectrometry (GC-MS) coupled with odor activity value (OAV) and relative odor contribution (ROC) analyses. In addition, the total polyphenolic content of gingko wine was determined using the Folin-Ciocalteu reagent, and its antioxidant capacity was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. Fifty-eight compounds were tentatively identified, including 13 esters, 10 alcohols, 11 acids, 12 carbonyl compounds, 2 lactones, 2 phenols, and 8 hydrocarbons. Ethyl hexanoate, ethyl pentanoate, nonanal, ethyl butyrate and ethyl heptanoate were the major contributors to the gingko wine aroma based on the results of OAV and ROC. The total phenols content of the gingko wine was 456 mg/L gallic acid equivalents, and its antioxidant capacity was higher than those of typical Chinese liquors analyzed in this paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. 21 CFR 184.1097 - Tannic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Tannic acid. 184.1097 Section 184.1097 Food and... Substances Affirmed as GRAS § 184.1097 Tannic acid. (a) Tannic acid (CAS Reg. No. 1401-55-4), or hydrolyzable gallotannin, is a complex polyphenolic organic structure that yields gallic acid and either glucose or quinic...

  6. 21 CFR 184.1097 - Tannic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Tannic acid. 184.1097 Section 184.1097 Food and... Substances Affirmed as GRAS § 184.1097 Tannic acid. (a) Tannic acid (CAS Reg. No. 1401-55-4), or hydrolyzable gallotannin, is a complex polyphenolic organic structure that yields gallic acid and either glucose or quinic...

  7. The Phenolic Contents and Antioxidant Activities of Infusions of Sambucus nigra L.

    PubMed

    Viapiana, Agnieszka; Wesolowski, Marek

    2017-03-01

    The aim of this work was to evaluate the antioxidant potential of teas prepared from twenty-four commercially available berries and flowers of Sambucus nigra L. in relation to their phenolic profile, as reflected by the most representative phenolic acids (caffeic, chlorogenic, p-coumaric, ferulic, gallic and syringic acids); flavonols (quercetin, kaempferol, myricetin and rutin); and total phenolic (TPC), phenolic acid (TAC) and flavonoid (TFC) contents. The infusions prepared from elderflowers contained more abundant phenolic compounds than the elderberry infusions. The TPC of these infusions ranged from 19.81 to 23.90 mg of gallic acid equivalents/g dry weight of sample (GAE/g DW) for elderberries and from 15.23 to 35.57 mg GAE/g DW for elderflowers, whereas the TFC ranged from 2.60 to 4.49 mg of rutin equivalents/g dry weight of sample (RUTE/g DW) in elderberry infusions and from 5.27 to 13.19 mg RUTE/g DW in elderflower infusions. Among the phenolic compounds quantified in this study, quercetin (2.07-9.48 mg/g DW) and myricetin (1.17-9.62 mg/g DW) had the highest concentrations in the teas prepared from berries and flowers, respectively. Moreover, the antioxidant potential of elder infusions assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and ferric reducing antioxidant power (FRAP) assays revealed that the teas prepared from flowers had higher mean DPPH and FRAP activities than the teas prepared from berries. Therefore, elder beverages could be important dietary sources of natural antioxidants that contribute to the prevention of diseases caused by oxidative stress.

  8. Efficient procedure for isolating methylated catechins from green tea and effective simultaneous analysis of ten catechins, three purine alkaloids, and gallic acid in tea by high-performance liquid chromatography with diode array detection.

    PubMed

    Hu, Bing; Wang, Lin; Zhou, Bei; Zhang, Xin; Sun, Yi; Ye, Hong; Zhao, Liyan; Hu, Qiuhui; Wang, Guoxiang; Zeng, Xiaoxiong

    2009-04-10

    Monomers of (-)-epigallocatechin (EGC), (-)-epigallocatechin gallate (EGCG), (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3''Me) and (-)-3-O-methyl epicatechin gallate (ECG3'Me) (purity, >97%) were successfully prepared from extract of green tea by two-time separation with Toyopearl HW-40S column chromatography eluted by 80% ethanol. In addition, monomers of (-)-catechin (C), (-)-gallocatechin (GC), (-)-gallocatechin gallate (GCG), and (-)-catechin gallate (CG) (purity, >98%) were prepared from EC, EGC, EGCG, and ECG by heat-epimerization and semi-preparative HPLC chromatography. With the prepared catechin standards, an effective and simultaneous HPLC method for the analysis of gallic acid, tea catechins, and purine alkaloids in tea was developed in the present study. Using an ODS-100Z C(18) reversed-phase column, fourteen compounds were rapidly separated within 15min by a linear gradient elution of formic acid solution (pH 2.5) and methanol. A 2.5-7-fold reduction in HPLC analysis time was obtained from existing analytical methods (40-105min) for gallic acid, tea catechins including O-methylated catechins and epimers of epicatechins, as well as purine alkaloids. Detection limits were generally on the order of 0.1-1.0ng for most components at the applied wavelength of 280nm. Method replication generally resulted in intraday and interday peak area variation of <6% for most tested components in green, Oolong, black, and pu-erh teas. Recovery rates were generally within the range of 92-106% with RSDs less than 4.39%. Therefore, advancement has been readily achievable with commonly used chromatography equipments in the present study, which will facilitate the analytical, clinical, and other studies of tea catechins.

  9. Post-Stroke Depression Modulation and in Vivo Antioxidant Activity of Gallic Acid and Its Synthetic Derivatives in a Murine Model System.

    PubMed

    Nabavi, Seyed Fazel; Habtemariam, Solomon; Di Lorenzo, Arianna; Sureda, Antoni; Khanjani, Sedigheh; Nabavi, Seyed Mohammad; Daglia, Maria

    2016-04-28

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is a plant secondary metabolite, which shows antioxidant activity and is commonly found in many plant-based foods and beverages. Recent evidence suggests that oxidative stress contributes to the development of many human chronic diseases, including cardiovascular and neurodegenerative pathologies, metabolic syndrome, type 2 diabetes and cancer. GA and its derivative, methyl-3-O-methyl gallate (M3OMG), possess physiological and pharmacological activities closely related to their antioxidant properties. This paper describes the antidepressive-like effects of intraperitoneal administration of GA and two synthetic analogues, M3OMG and P3OMG (propyl-3-O-methylgallate), in balb/c mice with post-stroke depression, a secondary form of depression that could be due to oxidative stress occurring during cerebral ischemia and the following reperfusion. Moreover, this study determined the in vivo antioxidant activity of these compounds through the evaluation of superoxide dismutase (SOD) and catalase (Cat) activity, thiobarbituric acid-reactive substances (TBARS) and reduced glutathione (GSH) levels in mouse brain. GA and its synthetic analogues were found to be active (at doses of 25 and 50 mg/kg) in the modulation of depressive symptoms and the reduction of oxidative stress, restoring normal behavior and, at least in part, antioxidant endogenous defenses, with M3OMG being the most active of these compounds. SOD, TBARS, and GSH all showed strong correlation with behavioral parameters, suggesting that oxidative stress is tightly linked to the pathological processes involved in stroke and PSD. As a whole, the obtained results show that the administration of GA, M3OMG and P3OMG induce a reduction in depressive symptoms and oxidative stress.

  10. Post-Stroke Depression Modulation and in Vivo Antioxidant Activity of Gallic Acid and Its Synthetic Derivatives in a Murine Model System

    PubMed Central

    Nabavi, Seyed Fazel; Habtemariam, Solomon; Di Lorenzo, Arianna; Sureda, Antoni; Khanjani, Sedigheh; Nabavi, Seyed Mohammad; Daglia, Maria

    2016-01-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is a plant secondary metabolite, which shows antioxidant activity and is commonly found in many plant-based foods and beverages. Recent evidence suggests that oxidative stress contributes to the development of many human chronic diseases, including cardiovascular and neurodegenerative pathologies, metabolic syndrome, type 2 diabetes and cancer. GA and its derivative, methyl-3-O-methyl gallate (M3OMG), possess physiological and pharmacological activities closely related to their antioxidant properties. This paper describes the antidepressive-like effects of intraperitoneal administration of GA and two synthetic analogues, M3OMG and P3OMG (propyl-3-O-methylgallate), in balb/c mice with post-stroke depression, a secondary form of depression that could be due to oxidative stress occurring during cerebral ischemia and the following reperfusion. Moreover, this study determined the in vivo antioxidant activity of these compounds through the evaluation of superoxide dismutase (SOD) and catalase (Cat) activity, thiobarbituric acid-reactive substances (TBARS) and reduced glutathione (GSH) levels in mouse brain. GA and its synthetic analogues were found to be active (at doses of 25 and 50 mg/kg) in the modulation of depressive symptoms and the reduction of oxidative stress, restoring normal behavior and, at least in part, antioxidant endogenous defenses, with M3OMG being the most active of these compounds. SOD, TBARS, and GSH all showed strong correlation with behavioral parameters, suggesting that oxidative stress is tightly linked to the pathological processes involved in stroke and PSD. As a whole, the obtained results show that the administration of GA, M3OMG and P3OMG induce a reduction in depressive symptoms and oxidative stress. PMID:27136579

  11. Gallic Acid Enriched Fraction of Phyllanthus emblica Potentiates Indomethacin-Induced Gastric Ulcer Healing via e-NOS-Dependent Pathway

    PubMed Central

    Chatterjee, Ananya; Chatterjee, Sirshendu; Biswas, Angshuman; Bhattacharya, Sayanti; Chattopadhyay, Subrata; Bandyopadhyay, Sandip K.

    2012-01-01

    The healing activity of gallic acid enriched ethanolic extract (GAE) of Phyllanthus emblica fruits (amla) against the indomethacin-induced gastric ulceration in mice was investigated. The activity was correlated with the ability of GAE to alter the cyclooxygenase- (COX-) dependent healing pathways. Histology of the stomach tissues revealed maximum ulceration on the 3rd day after indomethacin (18 mg/kg, single dose) administration that was associated with significant increase in inflammatory factors, namely, mucosal myeloperoxidase (MPO) activity and inducible nitric oxide synthase (i-NOS) expression. Proangiogenic parameters such as the levels of prostaglandin (PG) E2, vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), von Willebrand Factor VIII, and endothelial NOS (e-NOS) were downregulated by indomethacin. Treatment with GAE (5 mg/kg/day) and omeprazole (3 mg/kg/day) for 3 days led to effective healing of the acute ulceration, while GAE could reverse the indomethacin-induced proinflammatory changes of the designated biochemical parameters. The ulcer healing activity of GAE was, however, compromised by coadministration of the nonspecific NOS inhibitor, N-nitro-L-arginine methyl ester (L-NAME), but not the i-NOS-specific inhibitor, L-N6-(1-iminoethyl) lysine hydrochloride (L-NIL). Taken together, these results suggested that the GAE treatment accelerates ulcer healing by inducing PGE2 synthesis and augmenting e-NOS/i-NOS ratio. PMID:22966242

  12. Gadolinium-Doped Gallic Acid-Zinc/Aluminium-Layered Double Hydroxide/Gold Theranostic Nanoparticles for a Bimodal Magnetic Resonance Imaging and Drug Delivery System.

    PubMed

    Sani Usman, Muhammad; Hussein, Mohd Zobir; Fakurazi, Sharida; Masarudin, Mas Jaffri; Ahmad Saad, Fathinul Fikri

    2017-08-31

    We have developed gadolinium-based theranostic nanoparticles for co-delivery of drug and magnetic resonance imaging (MRI) contrast agent using Zn/Al-layered double hydroxide as the nanocarrier platform, a naturally occurring phenolic compound, gallic acid (GA) as therapeutic agent, and Gd(NO₃)₃ as diagnostic agent. Gold nanoparticles (AuNPs) were grown on the system to support the contrast for MRI imaging. The nanoparticles were characterized using techniques such as Hi-TEM, XRD, ICP-ES. Kinetic release study of the GA from the nanoparticles showed about 70% of GA was released over a period of 72 h. The in vitro cell viability test for the nanoparticles showed relatively low toxicity to human cell lines (3T3) and improved toxicity on cancerous cell lines (HepG2). A preliminary contrast property test of the nanoparticles, tested on a 3 Tesla MRI machine at various concentrations of GAGZAu and water (as a reference) indicates that the nanoparticles have a promising dual diagnostic and therapeutic features to further develop a better future for clinical remedy for cancer treatment.

  13. Gadolinium-Doped Gallic Acid-Zinc/Aluminium-Layered Double Hydroxide/Gold Theranostic Nanoparticles for a Bimodal Magnetic Resonance Imaging and Drug Delivery System

    PubMed Central

    Sani Usman, Muhammad; Hussein, Mohd Zobir; Fakurazi, Sharida; Ahmad Saad, Fathinul Fikri

    2017-01-01

    We have developed gadolinium-based theranostic nanoparticles for co-delivery of drug and magnetic resonance imaging (MRI) contrast agent using Zn/Al-layered double hydroxide as the nanocarrier platform, a naturally occurring phenolic compound, gallic acid (GA) as therapeutic agent, and Gd(NO3)3 as diagnostic agent. Gold nanoparticles (AuNPs) were grown on the system to support the contrast for MRI imaging. The nanoparticles were characterized using techniques such as Hi-TEM, XRD, ICP-ES. Kinetic release study of the GA from the nanoparticles showed about 70% of GA was released over a period of 72 h. The in vitro cell viability test for the nanoparticles showed relatively low toxicity to human cell lines (3T3) and improved toxicity on cancerous cell lines (HepG2). A preliminary contrast property test of the nanoparticles, tested on a 3 Tesla MRI machine at various concentrations of GAGZAu and water (as a reference) indicates that the nanoparticles have a promising dual diagnostic and therapeutic features to further develop a better future for clinical remedy for cancer treatment. PMID:28858229

  14. Chebulagic acid Chebulinic acid and Gallic acid, the active principles of Triphala, inhibit TNFα induced pro-angiogenic and pro-inflammatory activities in retinal capillary endothelial cells by inhibiting p38, ERK and NFkB phosphorylation.

    PubMed

    Shanmuganathan, Sivasankar; Angayarkanni, Narayanasamy

    2018-04-17

    Tumor necrosis factor-α (TNFα) a pleiotropic cytokine induces pro-inflammatory and pro-angiogenic changes in conditions such as diabetic retinopathy (DR) and neovascular age related macular degeneration (NV-AMD). Hence, inhibition of TNFα mediated changes can benefit the management of DR and NV-AMD. Triphala, an ayurvedic herbal preparation is known to have immunomodulatry functions. In this study we evaluated the alcoholic extract of triphala (AlE) and its compounds Chebulagic acid (CA), Chebulinic acid (CI) and Gallic acid (GA) for their anti-TNFα activity. TNFα induced pro-inflammatory and pro-angiogenic changes in the retinal-choroid microvascular endothelial cells (RF/6A). Treatment with CA/CI/GA and the whole Triphala extract showed characteristic inhibition of MMP-9, cell proliferation/migration and tube formation as well the expression of IL-6, IL-8 and MCP-1 without affecting cell viability. This was mediated by inhibition of p38, ERK and NFκB phosphorylation. Ex vivo angiogenesis assay using chick chorioallantoic membrane (CAM) model also showed that TNFα-induced angiogenesis and it was inhibited by AlE and its active principles. Further, in silico studies revealed that CA, CI and GA are capable of binding the TNFα-receptor-1 to mediate anti-TNFα activity. This study explains the immunomodulatory function of Triphala, evaluated in the context of retinal and choroid vasculopathies in vitro and ex vivo; which showed that CA, CI and GA can be a potential pharmacological agents in the management of DR and NV-AMD. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Investigation of Polyhenolic Content of Rose Hip (Rosa canina L.) Tea Extracts: A Comparative Study

    PubMed Central

    İlbay, Zeynep; Şahin, Selin; Kırbaşlar, Ş. İsmail

    2013-01-01

    Three different brands of Rose hip (Rosa canina L.) tea were extracted with water, ethanol (EtOH), methanol (MeOH), and aqueous mixtures (50%, v/v) by ultrasound-assisted extraction (UAE) and Soxhlet methods. Total phenolic content was determined according to the Folin-Ciocalteu method. The results were presented by means of the extract yields and total phenolic contents, expressed in gallic acid equivalent (GAE) per g of dried matter (DM). The greatest amount of extract observed in tea samples was obtained by UAE through water with the value of 619.37 ± 0.58 mg/g DM. Regarding the phenolic content, the best result was achieved by the Soxhlet method through 50% MeOH mixture (59.69 ± 0.89 mg GAE/g DM), followed by the UAE method with water (48.59 ± 0.29 mg GAE/g DM). PMID:28239095

  16. Quantitative determination of a synthetic amide derivative of gallic acid, SG-HQ2, using liquid chromatography tandem mass spectrometry, and its pharmacokinetics in rats.

    PubMed

    Seo, Seung-Yong; Kang, Wonku

    2016-11-30

    An amide derivative of gallic acid (GA), 3,4,5-trihydroxy-N-(8-hydroxyquinolin-2-yl)benzamide) (SG-HQ2) was recently synthesized, and its inhibitory actions were previously shown on histamine release and pro-inflammatory cytokine expression. In this study, a simultaneous quantification method was developed for the determination of SG-HQ2 and its possible metabolite, GA, in rat plasma using liquid chromatography with a tandem mass spectrometry (LC-MS/MS). After simple protein precipitation with acetonitrile including diclofenac (internal standard, IS), the analytes were chromatographed on a reversed phased column with a mobile phase of acetonitrile and water (60:40, v/v, including 0.1% formic acid). The ion transitions of the precursor to the product ion were principally protonated ion [M+H] + at m/z 313.2→160.6 for SG-HQ2, and deprotonated ions [M-H] - at m/z 168.7→124.9 for GA and 296.0→251.6 for the IS. The accuracy and precision of the assay were in accordance with FDA regulations for the validation of bioanalytical methods. This method was successfully applied to a pharmacokinetic study of SG-HQ2 after intravenous administration in rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The Content of Dietary Fibre and Polyphenols in Morphological Parts of Buckwheat (Fagopyrum tataricum).

    PubMed

    Dziedzic, Krzysztof; Górecka, Danuta; Szwengiel, Artur; Sulewska, Hanna; Kreft, Ivan; Gujska, Elżbieta; Walkowiak, Jarosław

    2018-03-01

    In this report, we presented the profile of polyphenolic substances in flowers, leaves, stalk and roots of Fagopyrum tataricum estimated by using RP-UHPLC-ESI-MS equipment (reversed-phase ultra-high-performance liquid chromatography electrospray ionisation mass spectrometry). The neutral detergent fibre, acid detergent fibre, acid detergent lignin, cellulose and hemicellulose were also determined. Flowers, leaves, stalk and roots showed varying levels of dietary fibre and polyphenols. The highest content of neutral and acid detergent fibre were found in the roots (63.92 and 45.45% d.m., respectively) while the most rich in phenolic compounds were flowers (4.8 mg/1 g d.m.). Root and stalk contained the highest level of cellulose, 38.70 and 25.57% d.m., respectively. Among the investigated polyphenolic substances such as: 2,6-dihydroxybenzoic acid, 3,4-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, 4-hydrobenzoic acid, caffeic acid, catechin, chlorogenic acid, fagopyrin, ferulic acid, myricetin, gallic acid, isovanilic acid, isovitexin, kaempferol, luteolin, p-coumaric acid, procyanidin B2, quercetin, quercetin 3-D galactoside, rutin, syringic acid and vitexin, we observed that the contents of rutin and chlorogenic acid were the highest. We found some correlation between dietary fibre fractions and individual phenolic substances. The levels of acid detergent fibre (ADF), cellulose and hemicellulose were negatively correlated with isovitexin, kaempferol, vitexin, fagopyrin, caffeic acid and procyanidin B2 content. In this investigation, two solvents (water and methanol) were estimated regarding their extraction efficiency of phenolic compounds. Taking these results into consideration, we recommend using methanol as the extractor to isolate chlorogenic acid, fagopyrin, kaempferol, procyanidin B2, quercetin, quercetin 3-D-galactoside, rutin, vitexin, and water for other investigated polyphenolic substances obtained from Fagopyrum tataricum.

  18. Antioxidant activity and total phenolic and flavonoids content variations of leaves extracts of white Horehound (Marrubium vulgare Linné) from three geographical origins.

    PubMed

    Bouterfas, K; Mehdadi, Z; Elaoufi, M M; Latreche, A; Benchiha, W

    2016-11-01

    To elucidate the effect of the sampling location of Marrubium vulgare L. leaves on phenolic contents and antioxidant proprieties of flavonoids extracts. M. vulgare L. leaves were collected from three different geographical locations belonging to northwest Algeria: Tessala (mountain region), M'sila forest (coastal region), and Ain Skhouna (steppe region). The flavonoid extraction was achieved using organic solvents with different polarities (methanol, chloroform, ethyl acetate, and hexane). Folin-Ciocalteu colorimetric method was used for quantification of total phenolic contents, and aluminum chloride assay for quantification of total flavonoid contents. The antioxidant properties of flavonoids extract were studied by free l,l-diphenyl-2-picrylhydrazyl radical-scavenging technique. Total phenolic and flavonoids concentrations varied respectively between 40.7 and 160mg gallic acid equivalents/g and 27.4 and 66.3mg catechin equivalents/g. The DPPH free radical-scavenging activity shows that the antioxidant activity of the flavonoid extracts varied significantly (P<0.001) depending on the type of the organic solvent used, and the sampling location. The methanol, chloroform and ethyl acetate extracts exhibited the highest percentages of inhibition unlike to the aqueous and hexane extracts. These percentages are ranged from 54.8 to 98.8% at 1000μg/mL. In general, M'sila forest flavonoids extracts showed the highest free radical inhibition capacity; followed by those of Ain Skhouna and Tessala Mountain. The inhibitory concentration 50 (IC 50 ) ranged from 33.7 to 774μg/mL and often exceeded those recorded by phenolic standards (ascorbic acid, gallic acid, caffeic acid, tannic acid and catechin). The phytochemical screening revealed the presence of some flavonoid classes, such as flavans and flavanols. The results suggested a potent antioxidant activity of M. vulgare flavonoids extracts, which may find its application in feature research for the food and the

  19. Changes in Phenolic Acid Content in Maize during Food Product Processing.

    PubMed

    Butts-Wilmsmeyer, Carrie J; Mumm, Rita H; Rausch, Kent D; Kandhola, Gurshagan; Yana, Nicole A; Happ, Mary M; Ostezan, Alexandra; Wasmund, Matthew; Bohn, Martin O

    2018-04-04

    The notion that many nutrients and beneficial phytochemicals in maize are lost due to food product processing is common, but this has not been studied in detail for the phenolic acids. Information regarding changes in phenolic acid content throughout processing is highly valuable because some phenolic acids are chemopreventive agents of aging-related diseases. It is unknown when and why these changes in phenolic acid content might occur during processing, whether some maize genotypes might be more resistant to processing induced changes in phenolic acid content than other genotypes, or if processing affects the bioavailability of phenolic acids in maize-based food products. For this study, a laboratory-scale processing protocol was developed and used to process whole maize kernels into toasted cornflakes. High-throughput microscale wet-lab analyses were applied to determine the concentrations of soluble and insoluble-bound phenolic acids in samples of grain, three intermediate processing stages, and toasted cornflakes obtained from 12 ex-PVP maize inbreds and seven hybrids. In the grain, insoluble-bound ferulic acid was the most common phenolic acid, followed by insoluble-bound p-coumaric acid and soluble cinnamic acid, a precursor to the phenolic acids. Notably, the ferulic acid content was approximately 1950 μg/g, more than ten-times the concentration of many fruits and vegetables. Processing reduced the content of the phenolic acids regardless of the genotype. Most changes occurred during dry milling due to the removal of the bran. The concentration of bioavailable soluble ferulic and p-coumaric acid increased negligibly due to thermal stresses. Therefore, the current dry milling based processing techniques used to manufacture many maize-based foods, including breakfast cereals, are not conducive for increasing the content of bioavailable phenolics in processed maize food products. This suggests that while maize is an excellent source of phenolics, alternative

  20. Influence of apple and citrus pectins, processed mango peels, a phenolic mango peel extract, and gallic Acid as potential feed supplements on in vitro total gas production and rumen methanogenesis.

    PubMed

    Geerkens, Christian Hubert; Schweiggert, Ralf Martin; Steingass, Herbert; Boguhn, Jeannette; Rodehutscord, Markus; Carle, Reinhold

    2013-06-19

    Several food processing byproducts were assessed as potential feed and feed supplements. Since their chemical composition revealed a high nutritional potential for ruminants, the Hohenheim in vitro gas test was used to investigate total gas, methane, and volatile fatty acid production as well as protozoal numbers after ruminal digestion of different substrate levels. Processing byproducts used were low- and high-esterified citrus and apple pectins, integral mango peels, and depectinized mango peels. In addition, the effect of a phenolic mango peel extract and pure gallic acid was investigated. The highest decrease in methane production (19%) was achieved by supplementing high levels of low-esterified citrus pectin to the hay-based diet. Interestingly, total gas production was not affected at the same time. Showing valuable nutritional potential, all byproducts exhibited, e.g., high metabolizable energy (11.9-12.8 MJ/kg DM). In conclusion, all byproducts, particularly low-esterified citrus pectin, revealed promising potential as feed and feed supplements.

  1. Polyphenol content and antioxidant properties of colored soybean seeds from central Europe.

    PubMed

    Malenčić, Djordje; Cvejić, Jelena; Miladinović, Jegor

    2012-01-01

    The antioxidant activity and contents of various polyphenol classes in the seeds of seven soybean varieties of different seed color and one yellow seed cultivar, representing a reference genotype, were evaluated. Total polyphenols and tannins were determined after extraction of plant material with 70% aqueous acetone, and total flavonoids were extracted with methanol and acetic acid, whereas anthocyanins were extracted with 20% aqueous ethanol. In addition, isoflavone content and composition were determined using high-performance liquid chromatography analysis. Antioxidant activity of seed extracts was evaluated by the 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity assay. A positive linear correlation between antioxidant activity and contents of total polyphenols and anthocyanins was established. The highest antioxidant activity was observed in the extracts of black and brown varieties, which also showed high levels of all polyphenol classes examined. Yellow seed had the highest total isoflavone content (3.62 mg/g of dry material). The highest concentration of total daidzein was determined in black seeds (>2.0 mg/g of dry material), and the highest total glycitein and genistein contents occurred in the yellow cultivar (0.53 and 1.49 mg/g of dry material, respectively). According to our results, varieties of black and brown seeds could be of special interest not only for their large content of total polyphenols, ranging from 4.94 to 6.22 mg of gallic acid equivalents/g of dry material, but also for their high content of natural antioxidants such as anthocyanins.

  2. Proteomic study reveals a co-occurrence of gallic acid-induced apoptosis and glycolysis in B16F10 melanoma cells.

    PubMed

    Liu, Cheng; Lin, Jen-Jie; Yang, Zih-Yan; Tsai, Chi-Chu; Hsu, Jue-Liang; Wu, Yu-Jen

    2014-12-03

    Gallic acid (GA) has long been associated with a wide range of biological activities. In this study, its antitumor effect against B16F10 melanoma cells was demonstrated by MTT assay, cell migration assay, wound-healing assay, and flow cytometric analysis. GA with a concentration >200 μM shows apoptotic activity toward B16F10 cells. According to Western blotting data, overexpressions of cleaved forms of caspase-9, caspase-3, and PARP-1 and pro-apoptotic Bax and Bad, accompanied by underexpressed anti-apoptotic Bcl-2 and Bcl-xL indicate that GA induces B16F10 cell apoptosis via mitochondrial pathway. The 2-DE based comparative proteomics was further employed in B16F10 cells with and without GA treatment for a large-scale protein expression profiling. A total of 41 differential protein spots were quantified, and their identities were characterized using LC-MS/MS analysis and database matching. In addition to some regulated proteins that were associated with apoptosis, interestingly, some identified proteins involved in glycolysis such as glucokinase, α-enolase, aldolase, pyruvate kinase, and GAPDH were simultaneously up-regulated, which reveals that the GA-induced cellular apoptosis in B16 melanoma cells is associated with metabolic glycolysis.

  3. Statistical mixture design selective extraction of compounds with antioxidant activity and total polyphenol content from Trichilia catigua.

    PubMed

    Lonni, Audrey Alesandra Stinghen Garcia; Longhini, Renata; Lopes, Gisely Cristiny; de Mello, João Carlos Palazzo; Scarminio, Ieda Spacino

    2012-03-16

    Statistical design mixtures of water, methanol, acetone and ethanol were used to extract material from Trichilia catigua (Meliaceae) barks to study the effects of different solvents and their mixtures on its yield, total polyphenol content and antioxidant activity. The experimental results and their response surface models showed that quaternary mixtures with approximately equal proportions of all four solvents provided the highest yields, total polyphenol contents and antioxidant activities of the crude extracts followed by ternary design mixtures. Principal component and hierarchical clustering analysis of the HPLC-DAD spectra of the chromatographic peaks of 1:1:1:1 water-methanol-acetone-ethanol mixture extracts indicate the presence of cinchonains, gallic acid derivatives, natural polyphenols, flavanoids, catechins, and epicatechins. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Rapid ultrasound-assisted magnetic microextraction of gallic acid from urine, plasma and water samples by HKUST-1-MOF-Fe3O4-GA-MIP-NPs: UV-vis detection and optimization study.

    PubMed

    Asfaram, Arash; Ghaedi, Mehrorang; Dashtian, Kheibar

    2017-01-01

    Magnetite (Fe 3 O 4 nanoparticles (NPs)) HKUST-1 metal organic framework (MOF) composite as a support was used for surface imprinting of gallic acid imprinted polymer (HKUST-1-MOF-Fe 3 O 4 -GA-MIP) using vinyltrimethoxysilane (VTMOS) as the cross-linker. Subsequently, HKUST-1-MOF-Fe 3 O 4 -NPs-GA-MIP characterized by FT-IR, XRD and FE-SEM analysis and applied for fast and selective and sensitive ultrasound assisted dispersive magnetic solid phase microextraction of gallic acid (GA) by UV-Vis (UA-DMSPME-UV-Vis) detection method. Plackett-Burman design (PBD) and central composite design (CCD) according to desirability function (DF) indicate the significant variables among the extraction factors vortex (mixing) time (min), sonication time (min), temperature (°C), eluent volume (L), pH and HKUST-1-MOF-Fe 3 O 4 -NPs-GA-MIP mass (mg) and their contribution on the response. Optimum conditions and values correspond to pH, HKUST-1-MOF-Fe 3 O 4 -NPs-GA-MIP mass, sonication time and the eluent volume were set as follow 3.0, 1.6mg, 4.0min and 180μL, respectively. The average recovery (ER%) of GA was 98.13% with desirability of 0.997, while the present method has best operational performance like wide linear range 8-6000ngmL -1 with a Limit of detection (LOD) of 1.377ngmL -1 , limit of quantification (LOQ) 4.591ngmL -1 and precision (<3.50% RSD). The recovery of GA in urine, human plasma and water samples within the range of 92.3-100.6% that strongly support high applicability of present method for real samples analysis, which candidate this method as promise for further application. Copyright © 2016. Published by Elsevier B.V.

  5. Profiling and characterization by LC-MSn of the galloylquinic acids of green tea, tara tannin, and tannic acid.

    PubMed

    Clifford, Michael N; Stoupi, Stavroula; Kuhnert, Nikolai

    2007-04-18

    Green tea, tara tannin, and tannic acid have been profiled for their contents of galloylquinic acids using LC-MS8. These procedures have provided evidence for the first observation of (i) 1-galloylquinic acid (11), 1,3,5-trigalloylquinic acid (22), 4-(digalloyl)quinic acid (28), 5-(digalloyl)quinic acid (29), and either 3-galloyl-5-(digalloyl)quinic acid (32) or 3-(digalloyl)-5-galloylquinic acid (33) from any source; (ii) 4-galloyl-5-(digalloyl)quinic acid (34), 5-galloyl-4-(digalloyl)quinic acid (35), 3-(digalloyl)-4,5-digalloylquinic acid (41), 4-(digalloyl)-3,5-digalloylquinic acid (40), 5-(digalloyl)-3,4-digalloylquinic acid (39), and 1,3,4-trigalloylquinic acid (21) from tara tannin; and (iii) 3-galloylquinic acid (12) and 4-galloylquinic acid (14) from green tea. The first mass spectrometric fragmentation data are reported for galloylquinic acids containing between five and eight gallic acid residues. For each of these mass ranges at least two isomers based on the 1,3,4,5-tetragalloylquinic acid core (25) and at least three based on the 3,4,5-trigalloylquinic acid core (24) were observed. Methanolysis of tara tannin yielded methyl gallate, methyl digallate, and methyl trigallate, demonstrating that some of these galloylquinic acids contained at least one side chain of up to four galloyl residues.

  6. Octyl gallate and gallic acid isolated from Terminalia bellarica regulates normal cell cycle in human breast cancer cell lines.

    PubMed

    Sales, Mary Selesty; Roy, Anita; Antony, Ludas; Banu, Sakhila K; Jeyaraman, Selvaraj; Manikkam, Rajalakshmi

    2018-07-01

    Herbal medicines stand unique and effective in treating human diseases. Terminalia bellarica (T. bellarica) is a potent medicinal herb, with a wide range of pharmacological activities. The present study was aimed to evaluate the effect of octyl gallate (OG) and gallic acid (GA) isolated from methanolic fruit extract of T. bellirica to inhibit the survival of breast cancer cells (MCF-7 & MDA-MB-231). Both OG & GA exhibited decreased MCF-7 & MDA-MB-231 survival and induced apoptosis, with IC 50 value of OG and GA as 40 μM and 80 μM respectively. No toxic effect was observed on normal breast cells (MCF-10A). The compounds inhibited cell cycle progression by altering the expression of the cell cycle regulators (Cyclin D1, D3, CDK-4, CDK-6, p18 INK4, p21Waf-1 and p27 KIP). Octyl gallate was more effective at low concentrations than GA. In-silico results provided stable interactions between the compounds and target proteins. The present investigation proved the downregulation of positive cell cycle regulators and upregulation of negative cell cycle regulators inducing apoptosis in compound-treated breast cancer cells. Hence, both the compounds may serve as potential anticancer agents and could be developed as breast cancer drugs, with further explorations. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Identification of phenolic acids and flavonoids in monofloral honey from Bangladesh by high performance liquid chromatography: determination of antioxidant capacity.

    PubMed

    Moniruzzaman, Mohammed; Yung An, Chua; Rao, Pasupuleti Visweswara; Hawlader, Mohammad Nurul Islam; Azlan, Siti Amirah Binti Mohd; Sulaiman, Siti Amrah; Gan, Siew Hua

    2014-01-01

    The aim of the present study was to characterize the phenolic acids, flavonoids, and antioxidant properties of monofloral honey collected from five different districts in Bangladesh. A new high performance liquid chromatography (HPLC) equipped with a UV detector method was developed for the identification of the phenolic acids and flavonoids. A total of five different phenolic acids were identified, with the most abundant being caffeic acid, benzoic acid, gallic acid, followed by chlorogenic acid and trans-cinnamic acid. The flavonoids, kaempferol, and catechin were most abundant, followed by myricetin and naringenin. The mean moisture content, total sugar content, and color characteristics of the honey samples were 18.36 ± 0.95%, 67.40 ± 5.63 g/100 g, and 129.27 ± 34.66 mm Pfund, respectively. The mean total phenolic acids, total flavonoid content, and proline content were 199.20 ± 135.23, 46.73 ± 34.16, and 556.40 ± 376.86 mg/kg, respectively, while the mean FRAP values and DPPH radical scavenging activity were 327.30 ± 231.87 μM Fe (II)/100 g and 36.95 ± 20.53%, respectively. Among the different types of honey, kalijira exhibited the highest phenolics and antioxidant properties. Overall, our study confirms that all the investigated honey samples are good sources of phenolic acids and flavonoids with good antioxidant properties.

  8. Formation of β-glucogallin, the precursor of ellagic acid in strawberry and raspberry

    PubMed Central

    Schulenburg, Katja; Feller, Antje; Hoffmann, Thomas; Schecker, Johannes H.; Martens, Stefan; Schwab, Wilfried

    2016-01-01

    Ellagic acid/ellagitannins are plant polyphenolic antioxidants that are synthesized from gallic acid and have been associated with a reduced risk of cancer and cardiovascular diseases. Here, we report the identification and characterization of five glycosyltransferases (GTs) from two genera of the Rosaceae family (Fragaria and Rubus; F.×ananassa FaGT2*, FaGT2, FaGT5, F. vesca FvGT2, and R. idaeus RiGT2) that catalyze the formation of 1-O-galloyl-β-d-glucopyranose (β-glucogallin) the precursor of ellagitannin biosynthesis. The enzymes showed substrate promiscuity as they formed glucose esters of a variety of (hydroxyl)benzoic and (hydroxyl)cinnamic acids. Determination of kinetic values and site-directed mutagenesis revealed amino acids that affected substrate preference and catalytic activity. Green immature strawberry fruits were identified as the main source of gallic acid, β-glucogallin, and ellagic acid in accordance with the highest GT2 gene expression levels. Injection of isotopically labeled gallic acid into green fruits of stable transgenic antisense FaGT2 strawberry plants clearly confirmed the in planta function. Our results indicate that GT2 enzymes might contribute to the production of ellagic acid/ellagitannins in strawberry and raspberry, and are useful to develop strawberry fruit with additional health benefits and for the biotechnological production of bioactive polyphenols. PMID:26884604

  9. Fat content, fatty acid pattern and iron content in livers of turkeys with hepatic lipidosis.

    PubMed

    Visscher, Christian; Middendorf, Lea; Günther, Ronald; Engels, Alexandra; Leibfacher, Christof; Möhle, Henrik; Düngelhoef, Kristian; Weier, Stefan; Haider, Wolfram; Radko, Dimitri

    2017-05-30

    The so-called "hepatic lipidosis" in turkeys is an acute progressive disease associated with a high mortality rate in a very short time. Dead animals show a massive fatty degeneration of the liver. The cause is still unclear. Previous findings suggest that there may be parallels to human non-alcoholic fatty liver disease. The object of the study was to examine the changes in the fat contents, the fatty acid composition and the iron content in livers of animals, which have died from hepatic lipidosis. The conspicuous livers (n = 85) were collected from 20 flocks where the phenomenon of massive increased animal losses accompanied by marked macroscopically visible pathological liver steatosis suddenly occurred. For comparison and as a reference, livers (n = 16) of two healthy flocks were taken. Healthy and diseased flocks were fed identical diets concerning official nutrient recommendations and were operating under standardized, comparable conventional conditions. Compared to livers of healthy animals, in the livers of turkeys died from hepatic lipidosis there were found massively increased fat levels (130 ± 33.2 vs. 324 ± 101 g/kg dry matter-DM). In all fatty livers, different fatty acids concentrations were present in significantly increased concentrations compared to controls (palmitic acid: 104 g/kg DM, +345%; palmitoleic acid: 18.0 g/kg DM, + 570%; oleic acid: 115 g/kg DM, +437%). Fatty acids concentrations relevant for liver metabolism and inflammation were significantly reduced (arachidonic acid: 2.92 g/kg DM, -66.6%; eicosapentaenoic acid: 0.141 g/kg DM, -78.3%; docosahexaenoic acid: 0.227 g/kg DM, -90.4%). The ratio of certain fatty acids to one another between control and case livers changed analogously to liver diseases in humans (e.g.: C18:0/C16:0 - 0.913 against 0.311; C16:1n7/C16:0 - 0.090 against 0.165; C18:1/C18:0 - 0.938 against 4.03). The iron content in the liver tissue also increased massively (271 ± 51.5 vs 712 ± 214 mg/kg DM). The hepatic

  10. Optimization of pulsed ultrasound-assisted technique for extraction of phenolics from pomegranate peel of Malas variety: Punicalagin and hydroxybenzoic acids.

    PubMed

    Kazemi, Milad; Karim, Roselina; Mirhosseini, Hamed; Abdul Hamid, Azizah

    2016-09-01

    Pomegranate peel is a rich source of phenolic compounds (such as punicalagin and hydroxybenzoic acids). However, the content of such bioactive compounds in the peel extract can be affected by extraction type and condition. It was hypothesized that the optimization of a pulsed ultrasound-assisted extraction (PUAE) technique could result in the pomegranate peel extract with higher yield and antioxidant activity. The main goal was to optimize PUAE condition resulting in the highest yield and antioxidant activity as well as the highest contents of punicalagin and hydroxybenzoic acids. The operation at the intensity level of 105W/cm(2) and duty cycle of 50% for a short time (10min) had a high efficiency for extraction of phenolics from pomegranate peel. The application of such short extraction can save the energy and cost of the production. Punicalagin and ellagic acid were the most predominant phenolic compounds quantified in the pomegranate peel extract (PPE) from Malas variety. PPE contained a minor content of gallic acid. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Desensitizing Mitochondrial Permeability Transition by ERK-Cyclophilin D Axis Contributes to the Neuroprotective Effect of Gallic Acid against Cerebral Ischemia/Reperfusion Injury

    PubMed Central

    Sun, Jing; Ren, Da-Dui; Wan, Jin-Yi; Chen, Chen; Chen, Dong; Yang, Huan; Feng, Chun-Lai; Gao, Jing

    2017-01-01

    Ischemic stroke is a devastating disease with complex pathophysiology. Much evidence confirms that opening of the mitochondrial permeability transition pore (MPTP) is related with mitochondrial dysfunction to apoptosis in ischemic stroke, thus elucidating its signaling mechanism and screening novel MPTP inhibitor is therefore of paramount importance. Our earlier studies identified that gallic acid (GA), a naturally occurring plant phenol, endows with effect on inhibition of mitochondrial dysfunction, which has significant neuroprotective effect in cerebral ischemia/reperfusion injury. However, its molecular mechanisms regulating mitochondrial dysfunction remain elusive. Here, we uncover a role of GA in protecting mitochondria via MPTP inhibition. In addition to inhibit CypD binding to adenine nucleotide translocator, GA potentiates extracellular signal-regulated kinases (ERK) phosphorylation, leading to a decrease in cyclophilin D (CypD) expression, resulting in a desensitization to induction of MPTP, thus inhibiting caspase activation and ultimately giving rise to cellular survival. Our study firstly identifies ERK-CypD axis is one of the cornerstones of the cell death pathways following ischemic stroke, and confirms GA is a novel inhibitor of MPTP, which inhibits apoptosis depending on regulating the ERK-CypD axis. PMID:28428752

  12. Antioxidant capacity, total phenolics and nutritional content in selected ethiopian staple food ingredients.

    PubMed

    Forsido, Sirawdink Fikreyesus; Rupasinghe, H P Vasantha; Astatkie, Tess

    2013-12-01

    The total antioxidant capacity, total phenolics content (TPC) and nutritional content of five types of enset (Enset ventricosum) flour in comparison with four staples (teff [Eragrostis tef], wheat, corn and tapioca) were evaluated. Teff, corn and "amicho" (corm of enset) had the highest ferric reducing antioxidant power (FRAP). The FRAP and TPC of teff (1.8 mmol Trolox equivalence/100 g dry matter (DM) and 123.6 mg gallic acid equivalent/100 g DM, respectively) were over 4-fold larger than the lowest obtained from "bulla" (dehydrated juice of pseudostem of enset). Corn had the lowest IC(50) value of 1,1-diphenyl-2-picrylhydrazyl radical scavenging (10.27 mg DM mL(-1)). Teff had the highest crude fat content (3.71%) and some mineral profile (P, Mg, Mn and Cu). Enset products had higher fiber, Ca, K, Mg and Mn content as compared to wheat and corn. Ethiopian staple teff has a potential for developing value-added food products with nutritional and health benefits.

  13. The impacts of temperature, alcoholic degree and amino acids content on biogenic amines and their precursor amino acids content in red wine.

    PubMed

    Lorenzo, C; Bordiga, M; Pérez-Álvarez, E P; Travaglia, F; Arlorio, M; Salinas, M R; Coïsson, J D; Garde-Cerdán, T

    2017-09-01

    The aim was to study how factors such as temperature, alcoholic degree, and amino acids supplementation are able to influence the content of tyramine, histamine, 2-phenylethylamine, tryptamine and their precursor amino acids in winemaking process. Biogenic amines and amino acids were quantified at the beginning, middle and end of alcoholic fermentation, and at the end of malolactic fermentation. In general, samples produced with amino acid supplementation did not show the highest concentrations of biogenic amines, except for histamine, which content increased with the addition of the four amino acids. The synthesis of tyramine was mainly affected by the temperature and alcoholic degree, the formation of phenylethylamine was largely influenced by alcoholic degree, and tryptamine synthesis principally depended on temperature. Interestingly, there was interaction between these three factors for the biogenic amines studied. In conclusion, winemaking conditions should be established depending on the biogenic amine which synthesis is required to be controlled. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Antioxidant properties and phenolic profile characterization by LC-MS/MS of selected Tunisian pomegranate peels.

    PubMed

    Abid, Mouna; Yaich, Héla; Cheikhrouhou, Salma; Khemakhem, Ibtihel; Bouaziz, Mohamed; Attia, Hamadi; Ayadi, M A

    2017-08-01

    Antioxidant contents and activities of different extracts from four Tunisian pomegranate peels, locally called "Acide", "Gabsi", "Nebli" and "Tounsi", were studied. Peels samples were extracted with three solvents (water, ethanol and acetone). For each extract, the total phenol contents and antioxidant activity were evaluated. The highest values of polyphenol, tannins, flavonoids and anthocyanins were recorded in the acetone extract of Acide ecotype with 304.6 mg gallic acid equivalent/g; 292.23 mg gallic acid equivalent/g; 15.46 mg Quercetin/g and 54.51 mg cy-3-glu/100 g, respectively. The acetone extract of Acide ecotype also showed the highest free radical-scavenging and reducing power activity compared to other extracts. Besides, the phytochemical analysis by LC-MS/MS revealed a high content of ellagitannins with punicalagin and punicalagin derivatives as the major compounds that might be responsible for promising antioxidant activity of pomegranate peel extracts. Two compounds (Castalagin derivative and Galloyl-bis-HHDP-hex derivative) were detected only in "Acide" ecotype in important contents.

  15. Influence of phenolic compounds on the growth and arginine deiminase system in a wine lactic acid bacterium

    PubMed Central

    Alberto, María R.; de Nadra, María C. Manca; Arena, Mario E.

    2012-01-01

    The influence of seven phenolic compounds, normally present in wine, on the growth and arginine deiminase system (ADI) of Lactobacillus hilgardii X1B, a wine lactic acid bacterium, was established. This system provides energy for bacterial growth and produces citrulline that reacts with ethanol forming the carcinogen ethyl carbamate (EC), found in some wines. The influence of phenolic compounds on bacterial growth was compound dependent. Growth and final pH values increased in presence of arginine. Arginine consumption decreased in presence of protocatechuic and gallic acids (31 and 17%, respectively) and increased in presence of quercetin, rutin, catechin and the caffeic and vanillic phenolic acids (between 10 and 13%, respectively). ADI enzyme activities varied in presence of phenolic compounds. Rutin, quercetin and caffeic and vanillic acids stimulated the enzyme arginine deiminase about 37–40%. Amounts of 200 mg/L gallic and protocatechuic acids inhibited the arginine deiminase enzyme between 53 and 100%, respectively. Ornithine transcarbamylase activity was not modified at all concentrations of phenolic compounds. As gallic and protocatechuic acids inhibited the arginine deiminase enzyme that produces citrulline, precursor of EC, these results are important considering the formation of toxic compounds. PMID:24031815

  16. Effect of Cooking on Isoflavones, Phenolic Acids, and Antioxidant Activity in Sprouts of Prosoy Soybean (Glycine max).

    PubMed

    Kumari, Shweta; Chang, Sam K C

    2016-07-01

    Soy sprouts possess health benefits and is required to be cooked before consumption. The effects of cooking on the phenolic components and antioxidant properties of soy sprouts with different germination days were investigated. A food-grade cultivar Prosoy with a high protein content was germinated for 1, 2, 3, 5, and 7 d and cooked till palatable for 20, 20, 5, 5, and 7 min, respectively. Total phenolic content (TPC), total flavonoids content (TFC), condensed tannins content (CTC), individual phenolic acids, isoflavones, DPPH, ferric-reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC) of raw and cooked sprouts were measured. Cooking caused significant losses in phenolic content and antioxidant activities, and maximum loss was on day 3 > 5 > 7, including TPC (32%, 23%, and 15%), TFC (50%, 44%, and 20%), CTC (73%, 47%, and 12%), DPPH (31%, 15%, and 5%), FRAP (34%, 25%, and 1%), and ORAC (34%, 22%, 32%), respectively. Cooking caused significant losses in most individual phenolic acid, benzoic group, cinnamic group, total phenolic composition, individual isoflavones, and total isoflavones. The losses of phenolic acids such as gallic, protocatechuic, hydroxybenzoic, syringic, chlorogenic, or sinapic acids during cooking were not compensated by the increases in trihydroxybenzoic, vanillic or coumaric acids on certain days of germination. Cooking caused minimal changes in phenolic acid composition of day 1 and 2 sprouts compared to 3, 5, and 7 d sprouts. © 2016 Institute of Food Technologists®

  17. Effect of omega-3 fatty acids on the modification of erythrocyte membrane fatty acid content including oleic acid in peritoneal dialysis patients.

    PubMed

    An, W S; Lee, S M; Son, Y K; Kim, S E; Kim, K H; Han, J Y; Bae, H R; Park, Y

    2012-01-01

    Erythrocyte membrane fatty acids (FA), such as oleic acid, are related to acute coronary syndrome. There is no report about the effect of omega-3 FA on oleic acid in peritoneal dialysis (PD) patients. We hypothesized that omega-3 FA can modify erythrocyte membrane FA, including oleic acid, in PD patients. In a double-blind, randomized, placebo-controlled study, 18 patients who were treated with PD for at least 6 months were randomized to treatment for 12 weeks with omega-3 FA or placebo. Erythrocyte membrane FA content was measured by gas chromatography at baseline and after 12 weeks. The erythrocyte membrane content of eicosapentaenoic acid and docosahexaenoic acid was significantly increased and saturated FA and oleic acid were significantly decreased in the omega-3 FA supplementation group after 12 weeks compared to baseline. In conclusion, erythrocyte membrane FA content, including oleic acid, was significantly modified by omega-3 FA supplementation for 12 weeks in PD patients. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Chlorogenic acid isomer contents in 100 plants commercialized in Brazil.

    PubMed

    Meinhart, Adriana Dillenburg; Damin, Fernanda Mateus; Caldeirão, Lucas; da Silveira, Tayse Ferreira Ferreira; Filho, José Teixeira; Godoy, Helena Teixeira

    2017-09-01

    This study analysed 100 plants employed in Brazil as ingredients to infusions for their caffeic acid, 3-caffeoylquinic acid (3-CQA), 4-caffeoylquinic acid (4-CQA), 5-caffeoylquinic acid (5-CQA), 3,4-dicaffeoylquinic acid (3,4-DQA), 3,5-dicaffeoylquinic acid (3,5-DQA), and 4,5-dicaffeoylquinic acid (4,5-DQA) contents. The samples were collected from public markets and analysed using ultra-high performance liquid chromatography (UPLC). The highest concentrations of chlorogenic acids were found in yerba mate (Ilex paraguariensis), 9,2g·100g -1 , white tea (Camellia sinensis), winter's bark (Drimys winteri), green tea (Camellia sinensis), elderflower (Sambucus nigra), and Boehmeria caudata (known as assa-peixe in Brazil), 1,1g·100g -1 . The present work showcased the investigation of chlorogenic acids in a wide range of plants not yet studied in this regard and also resulted in a comparative table which explores the content of six isomers in the samples. Copyright © 2017. Published by Elsevier Ltd.

  19. Polyphenol Content and Antioxidant Properties of Colored Soybean Seeds from Central Europe

    PubMed Central

    Cvejić, Jelena; Miladinović, Jegor

    2012-01-01

    Abstract The antioxidant activity and contents of various polyphenol classes in the seeds of seven soybean varieties of different seed color and one yellow seed cultivar, representing a reference genotype, were evaluated. Total polyphenols and tannins were determined after extraction of plant material with 70% aqueous acetone, and total flavonoids were extracted with methanol and acetic acid, whereas anthocyanins were extracted with 20% aqueous ethanol. In addition, isoflavone content and composition were determined using high-performance liquid chromatography analysis. Antioxidant activity of seed extracts was evaluated by the 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity assay. A positive linear correlation between antioxidant activity and contents of total polyphenols and anthocyanins was established. The highest antioxidant activity was observed in the extracts of black and brown varieties, which also showed high levels of all polyphenol classes examined. Yellow seed had the highest total isoflavone content (3.62 mg/g of dry material). The highest concentration of total daidzein was determined in black seeds (>2.0 mg/g of dry material), and the highest total glycitein and genistein contents occurred in the yellow cultivar (0.53 and 1.49 mg/g of dry material, respectively). According to our results, varieties of black and brown seeds could be of special interest not only for their large content of total polyphenols, ranging from 4.94 to 6.22 mg of gallic acid equivalents/g of dry material, but also for their high content of natural antioxidants such as anthocyanins. PMID:21861721

  20. Comparative Analysis of γ-Oryzanol, β-Glucan, Total Phenolic Content and Antioxidant Activity in Fermented Rice Bran of Different Varieties

    PubMed Central

    Jung, Tae-Dong; Shin, Gi-Hae; Kim, Jae-Min; Choi, Sun-Il; Lee, Jin-Ha; Lee, Sang Jong; Park, Seon Ju; Woo, Koan Sik; Oh, Sea Kwan; Lee, Ok-Hawn

    2017-01-01

    Rice bran, a by-product derived from processing rice, is a rich source of bioactive compounds. Recent studies have suggested that the fermentation can improve their biological activities. This study aimed to determined the level of γ-oryzanol, β-glucan and total phenol contents of fermented rice bran from 21 Korean varieties, as well as to evaluate their antioxidant activities. We also assessed the validation of the analytical method for determining γ-oryzanol content in fermented rice brans. Among the fermented rice brans, the Haedam rice bran contained the highest level of total phenol content (156.08 mg gallic acid equivalents/g), DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity (71.30%) and ORAC (Oxygen radical absorbance capacity) value (1101.31 μM trolox equivalents/g). Furthermore, the fermented Migwang rice bran showed the highest level of γ-oryzanol content (294.77 ± 6.74 mg/100 g). PMID:28587204

  1. Comparative Analysis of γ-Oryzanol, β-Glucan, Total Phenolic Content and Antioxidant Activity in Fermented Rice Bran of Different Varieties.

    PubMed

    Jung, Tae-Dong; Shin, Gi-Hae; Kim, Jae-Min; Choi, Sun-Il; Lee, Jin-Ha; Lee, Sang Jong; Park, Seon Ju; Woo, Koan Sik; Oh, Sea Kwan; Lee, Ok-Hawn

    2017-06-03

    Rice bran, a by-product derived from processing rice, is a rich source of bioactive compounds. Recent studies have suggested that the fermentation can improve their biological activities. This study aimed to determined the level of γ-oryzanol, β-glucan and total phenol contents of fermented rice bran from 21 Korean varieties, as well as to evaluate their antioxidant activities. We also assessed the validation of the analytical method for determining γ-oryzanol content in fermented rice brans. Among the fermented rice brans, the Haedam rice bran contained the highest level of total phenol content (156.08 mg gallic acid equivalents/g), DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity (71.30%) and ORAC (Oxygen radical absorbance capacity) value (1101.31 μM trolox equivalents/g). Furthermore, the fermented Migwang rice bran showed the highest level of γ-oryzanol content (294.77 ± 6.74 mg/100 g).

  2. Antioxidant activity and total phenolic content of ethanolic extract of Caesalpinia bonducella seeds.

    PubMed

    Shukla, Shruti; Mehta, Archana; John, Jinu; Singh, Siddharth; Mehta, Pradeep; Vyas, Suresh Prasad

    2009-08-01

    The aim of this study was to assess the in vitro potential of ethanolic extract of Caesalpinia bonducella seeds as a natural antioxidant. The DPPH activity of the extract (20, 40, 50, 100 and 200 microg/ml) was increased in a dose dependent manner, which was found in the range of 38.93-74.77% as compared to ascorbic acid (64.26-82.58%). The IC(50) values of ethanolic extract and ascorbic acid in DPPH radical scavenging assay were obtained to be 74.73 and 26.68 microg/ml, respectively. The ethanolic extract was also found to scavenge the superoxide generated by EDTA/NBT system. Measurement of total phenolic content of the ethanolic extract of C. bonducella was achieved using Folin-Ciocalteau reagent containing 62.50mg/g of phenolic content, which was found significantly higher when compared to reference standard gallic acid. The ethanolic extract also inhibited the hydroxyl radical, nitric oxide, superoxide anions with IC(50) values of 109.85, 102.65 and 89.84 microg/ml, respectively. However, the IC(50) values for the standard ascorbic acid were noted to be 70.79, 65.98 and 36.68 microg/ml respectively. The results obtained in this study clearly indicate that C. bonducella has a significant potential to use as a natural antioxidant agent.

  3. [Hydrocyanic acid content in cerals and cereal products].

    PubMed

    Lehmann, G; Zinsmeister, H D; Erb, N; Neunhoeffer, O

    1979-03-01

    In the above paper for the first time a systematic study of the amount of hydrocyanic acid in grains and cereal products is reported. Among 24 analysed wheat, rye, maize and oats types, the presence of hydrocyanic acid could be identified in 19 cases in their Karyopses. Similar is the result with 28 among 31 analysed cereal products. The content of hydrocyanic acid lies between 0.1 and 45 microgram/100 gr dried mass.

  4. Identification of Phenolic Acids and Flavonoids in Monofloral Honey from Bangladesh by High Performance Liquid Chromatography: Determination of Antioxidant Capacity

    PubMed Central

    Moniruzzaman, Mohammed; Yung An, Chua; Rao, Pasupuleti Visweswara; Hawlader, Mohammad Nurul Islam; Azlan, Siti Amirah Binti Mohd; Sulaiman, Siti Amrah; Gan, Siew Hua

    2014-01-01

    The aim of the present study was to characterize the phenolic acids, flavonoids, and antioxidant properties of monofloral honey collected from five different districts in Bangladesh. A new high performance liquid chromatography (HPLC) equipped with a UV detector method was developed for the identification of the phenolic acids and flavonoids. A total of five different phenolic acids were identified, with the most abundant being caffeic acid, benzoic acid, gallic acid, followed by chlorogenic acid and trans-cinnamic acid. The flavonoids, kaempferol, and catechin were most abundant, followed by myricetin and naringenin. The mean moisture content, total sugar content, and color characteristics of the honey samples were 18.36 ± 0.95%, 67.40 ± 5.63 g/100 g, and 129.27 ± 34.66 mm Pfund, respectively. The mean total phenolic acids, total flavonoid content, and proline content were 199.20 ± 135.23, 46.73 ± 34.16, and 556.40 ± 376.86 mg/kg, respectively, while the mean FRAP values and DPPH radical scavenging activity were 327.30 ± 231.87 μM Fe (II)/100 g and 36.95 ± 20.53%, respectively. Among the different types of honey, kalijira exhibited the highest phenolics and antioxidant properties. Overall, our study confirms that all the investigated honey samples are good sources of phenolic acids and flavonoids with good antioxidant properties. PMID:25045696

  5. Effect of methyl jasmonate application to grapevine leaves on grape amino acid content.

    PubMed

    Garde-Cerdán, Teresa; Portu, Javier; López, Rosa; Santamaría, Pilar

    2016-07-15

    Over the last few years, considerable attention has been paid to the application of elicitors to vineyard. However, research about the effect of elicitors on grape amino acid content is scarce. Therefore, the aim of this study was to evaluate the influence of foliar application of methyl jasmonate on must amino acid content. Results revealed that total amino acid content was not modified by the application of methyl jasmonate. However, the individual content of certain amino acids was increased as consequence of methyl jasmonate foliar application, i.e., histidine, serine, tryptophan, phenylalanine, tyrosine, asparagine, methionine, and lysine. Among them, phenylalanine content was considerably increased; this amino acid is precursor of phenolic and aromatic compounds. In conclusion, foliar application of methyl jasmonate improved must nitrogen composition. This finding suggests that methyl jasmonate treatment might be conducive to obtain wines of higher quality since must amino acid composition could affect the wine volatile composition and the fermentation kinetics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Correlation between Chlorophyll and Chlorogenic Acid Content in Tobacco Leaves 1

    PubMed Central

    Sheen, S. J.

    1973-01-01

    A positive correlation (r = 0.75, P < 0.01) was obtained between chlorophyll and chlorogenic acid content in the seedling leaves of burley and dark tobaccos. The dark tobaccos contained significantly higher concentrations of both constituents than the burleys. Such a correlation also occurred in a cytoplasmic mutant of chlorophyll-variegated tobacco when the green and yellow laminae were compared. In addition, the activity of phenylalanine ammonia-lyase and polyphenol-oxidase was higher in the green lamina than in the yellow tissue, which coincided with quantitative distribution of chlorogenic acid. Chlorophyll deficiency induced by streptomycin in tobacco seedlings resulted in a progressive decrease in chlorogenic acid content. However, an interruption of streptomycin treatment provoked accumulation of the two compounds. Dark-grown seedlings showed an increase in the content of chlorophyll and chlorogenic acid upon illumination. Incorporation of l-phenylalanine-U-14C into chlorogenic acid during leaf greening was drastically reduced owing to the presence of phenylpyruvate; the latter compound is a possible by-product of chlorophyll biosynthesis. This phenomenon was also evident with light-grown leaves. Results suggest that in addition to phenylalanine ammonia-lyase as a key enzyme regulating chlorogenic acid biosynthesis, an alternative pathway involving the conversion of phenylpyruvate to cinnamate may be functional in tobacco leaves. This pathway may bear importance as to higher chlorogenic acid content in dark tobaccos than in burleys. PMID:16658575

  7. Oil and fatty acid contents in seed of Citrullus lanatus Schrad.

    PubMed

    Jarret, Robert L; Levy, Irvin J

    2012-05-23

    Intact seed of 475 genebank accessions of Citrullus ( C. lanatus var. lanatus and C. lanatus var. citroides) were analyzed for percent oil content using TD-NMR. Extracts from whole seed of 96 accessions of C. lanatus (30 var. citroides, 33 var. lanatus, and 33 egusi), C. colocynthis (n = 3), C. ecirrhosus (n = 1), C. rehmii (n = 1), and Benincasa fistulosa (n = 3) were also analyzed for their fatty acids content. Among the materials analyzed, seed oil content varied from 14.8 to 43.5%. Mean seed oil content in egusi types of C. lanatus was significantly higher (mean = 35.6%) than that of either var. lanatus (mean = 23.2%) or var. citroides (mean = 22.6%). Egusi types of C. lanatus had a significantly lower hull/kernel ratio when compared to other C. lanatus var. lanatus or C. lanatus var. citroides. The principal fatty acid in all C. lanatus materials examined was linoleic acid (43.6-73%). High levels of linoleic acid were also present in the materials of C. colocynthis (71%), C. ecirrhosus (62.7%), C. rehmii (75.8%), and B. fistulosa (73.2%), which were included for comparative purposes. Most all samples contained traces (<0.5%) of arachidonic acid. The data presented provide novel information on the range in oil content and variability in the concentrations of individual fatty acids present in a diverse array of C. lanatus, and its related species, germplasm.

  8. Determination of total phenolics, flavonoid contents and antioxidant activity of different mBHT fractions: A polyherbal medicine.

    PubMed

    Parthasarathi, Shanmugam; Park, Yong-Ki

    2015-11-01

    In this study, antioxidant activity, total phenolic and flavonoids content of four different fractions from the traditional Korean polyherbal medicine of Modified Bo-yang-Hwan-o-Tang (mBHT) was determined using spectrophotometric methods. Antioxidant activity of fractions was expressed as percentage of DPPH radicals inhibition and IC₅₀ values (μg/ml). Values in percentage ranged from 48.35 to 77.43%. The reducing powers of all the extracts were comparable with that of positive control sample of Butylated hydroxyl tolune (BHT) and ascorbic acid which was found to be dose dependent. Total phenolic content ranged from 106.83 ± 0.002 to 188.661 ± 0.002 mg/g, expressed as gallic acid equivalents. The total flavonoid contents varied from 28.44 ± 0.001 to 105.25 ± 0.001 mg/g, expressed as quarcetin equivalents. Ethyl acetate fractions of mBHT showed the highest phenolic (188.66 mg GAE/g) and flavonoids (105.25 mg QAE/g) contents and strong antioxidant activity. Total phenolics and flavonoid content of all the mBHT fractions were found reasonably correlated with IC₅₀ of DPPH (R²=0.980 and 0.932, respectively). The high contents of phenolic compounds indicated that these compounds responsible for antioxidant activity. Therefore, ethyl acetate fractions of mBHT can be regarded as promising candidates for natural plant sources of antioxidants.

  9. Preliminary phytochemical screening and in vitro antioxidant activities of the aqueous extract of Helichrysum longifolium DC.

    PubMed

    Aiyegoro, Olayinka A; Okoh, Anthony I

    2010-05-14

    Many oxidative stress related diseases are as a result of accumulation of free radicals in the body. A lot of researches are going on worldwide directed towards finding natural antioxidants of plants origins. The aims of this study were to evaluate in vitro antioxidant activities and to screen for phytochemical constituents of Helichrysum longifolium DC. [Family Asteraceae] aqueous crude extract. We assessed the antioxidant potential and phytochemical constituents of crude aqueous extract of Helichrysum longifolium using tests involving inhibition of superoxide anions, DPPH, H2O2, NO and ABTS. The flavonoid, proanthocyanidin and phenolic contents of the extract were also determined using standard phytochemical reaction methods. Phytochemical analyses revealed the presence of tannins, flavonoids, steroids and saponins. The total phenolic content of the aqueous leaf extract was 0.499 mg gallic acid equivalent/g of extract powder. The total flavonoid and proanthocyanidin contents of the plant were 0.705 and 0.005 mg gallic acid equivalent/g of extract powder respectively. The percentage inhibition of lipid peroxide at the initial stage of oxidation showed antioxidant activity of 87% compared to those of BHT (84.6%) and gallic acid (96%). Also, the percentage inhibition of malondialdehyde by the extract showed percentage inhibition of 78% comparable to those of BHT (72.24%) and Gallic (94.82%). Our findings provide evidence that the crude aqueous extract of H. longifolium is a potential source of natural antioxidants, and this justified its uses in folkloric medicines.

  10. In vitro callus culture of Heliotropium indicum Linn. for assessment of total phenolic and flavonoid content and antioxidant activity.

    PubMed

    Kumar, Muthusamy Senthil; Chaudhury, Shibani; Balachandran, Srinivasan

    2014-12-01

    The total phenolic and flavonoid content and percentage of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of callus and in vivo plant parts of Heliotropium indicum Linn. were estimated. Murashige and Skoog (MS) basal medium supplemented with α-naphthaleneacetic acid (NAA) 2.0 mg/l with benzyladenine (BA) 0.5 mg/l showed the highest amount of callus biomass (1.87 g/tube). The morphology of callus was significantly different according to the plant growth regulators and their concentrations used in the medium. The highest amount of total phenolic (21.70 mg gallic acid equivalent per gram (GAE/g)) and flavonoid (4.90 mg quercetin equivalent per gram (QE/g)) content and the maximum percentage (77.78 %) of radical scavenging activity were estimated in the extract of inflorescence. The synergistic effect of NAA (2.0 mg/l) and BA (0.5 mg/l) enhances the synthesis of total phenolic (9.20 mg GAE/g) and flavonoid (1.25 mg QE/g) content in the callus tissue. The callus produced by the same concentration shows 45.24 % of free radical scavenging activity. While comparing the various concentrations of NAA with 2,4-dichlorophenoxyacetic acid (2,4-D) for the production of callus biomass, total phenolic and flavonoid content and free radical scavenging activity, all the concentrations of NAA were found to be superior than those of 2,4-D.

  11. Factors affecting conjugated linoleic acid content in milk and meat.

    PubMed

    Dhiman, Tilak R; Nam, Seung-Hee; Ure, Amy L

    2005-01-01

    Conjugated linoleic acid (CLA) has been recently studied mainly because of its potential in protecting against cancer, atherogenesis, and diabetes. Conjugated linoleic acid (CLA) is a collective term for a series of conjugated dienoic positional and geometrical isomers of linoleic acid, which are found in relative abundance in milk and tissue fat of ruminants compared with other foods. The cis-9, trans-11 isomer is the principle dietary form of CLA found in ruminant products and is produced by partial ruminal biohydrogenation of linoleic acid or by endogenous synthesis in the tissues themselves. The CLA content in milk and meat is affected by several factors, such as animal's breed, age, diet, and management factors related to feed supplements affecting the diet. Conjugated linoleic acid in milk or meat has been shown to be a stable compound under normal cooking and storage conditions. Total CLA content in milk or dairy products ranges from 0.34 to 1.07% of total fat. Total CLA content in raw or processed beef ranges from 0.12 to 0.68% of total fat. It is currently estimated that the average adult consumes only one third to one half of the amount of CLA that has been shown to reduce cancer in animal studies. For this reason, increasing the CLA contents of milk and meat has the potential to raise the nutritive and therapeutic values of dairy products and meat.

  12. Increased 13-hydroxyoctadecadienoic acid content in lipopolysaccharide stimulated macrophages.

    PubMed

    Schade, U F; Burmeister, I; Engel, R

    1987-09-15

    Endotoxin-stimulated mouse peritoneal macrophages were found to contain 13-hydroxyoctadecadienoic acid, which was released upon alkaline hydrolysis of the cells. Compared to untreated cells, incubation with LPS increased the content of 13-hydroxyoctadecadienoic acid in macrophage hydrolysates to about 8-fold. Analysis of the material on chiralphase HPLC revealed that it consisted prevalently of 13(S)-hydroxyoctadecadienoic acid. This indicates its enzymatic origine.

  13. Effect of natural antioxidants in Spanish salchichón elaborated with encapsulated n-3 long chain fatty acids in konjac glucomannan matrix.

    PubMed

    Munekata, P E S; Domínguez, R; Franco, D; Bermúdez, R; Trindade, M A; Lorenzo, Jose M

    2017-02-01

    The effect of natural antioxidants on physicochemical properties, lipid and protein oxidation, volatile compounds and free fatty acids (FFA) were determined in Spanish salchichón enriched with n-3 fatty acids encapsulated and stabilized in konjac matrix. Phenolic compounds of beer residue extract (BRE), chestnut leaves extract (CLE) and peanut skin extract (PSE) were also identified and quantified. Five batches of salchichón were prepared: control (CON, without antioxidants), butylated hydroxytoluene (BHT), BRE, CLE and PSE. The main phenolic compounds were catechin and benzoic acid for BRE, gallic acid and catechin for CLE and catechin and protocatechuic acid for PSE. Statistical analysis did not show significant differences on chemical composition among treatments. Reductions in luminosity (P<0.05) and pH (P<0.001) were observed with the CLE batch, whereas the other colour parameters were not affected by the addition of natural antioxidants. Finally, the inclusion of antioxidants (P<0.001) decreased the hexanal content, whereas the FFA content increased by the addition of natural extracts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Growth Conditions To Reduce Oxalic Acid Content of Spinach

    NASA Technical Reports Server (NTRS)

    Johnson-Rutzke, Corinne

    2003-01-01

    A controlled-environment agricultural (CEA) technique to increase the nutritive value of spinach has been developed. This technique makes it possible to reduce the concentration of oxalic acid in spinach leaves. It is desirable to reduce the oxalic acid content because oxalic acid acts as an anti-nutritive calcium-binding component. More than 30 years ago, an enzyme (an oxidase) that breaks down oxalic acid into CO2 and H2O2 was discovered and found to be naturally present in spinach leaves. However, nitrate, which can also be present because of the use of common nitratebased fertilizers, inactivates the enzyme. In the CEA technique, one cuts off the supply of nitrate and keeps the spinach plants cool while providing sufficient oxygen. This technique provides the precise environment that enables the enzyme to naturally break down oxalate. The result of application of this technique is that the oxalate content is reduced by 2/3 in one week.

  15. n3- polyunsaturated Fat Acid Content of Some Edible Fish from Bahrain Waters

    NASA Astrophysics Data System (ADS)

    Al-Arrayedu, F. H.; Al Maskati, H. A.; Abdullah, F. J.

    1999-08-01

    This study was performed to determine the content of n3- polyunsaturated fatty acids in 10 fish species that are commonly consumed in Bahrain in addition to the main commercial shrimp species. White sardinella, which is a plankton feeder, had the highest content of n3- polyunsaturated fatty acids. It had the highest value of eicosapentaenoic acid (146.5 ± 20 mg 100 g-1) and linolenic acid (98.9±f 100 g-1) and the second highest value of docosahexaenoic acid at (133.7 ± 22 mg 100 g-1). Spanish mackerel which feeds mainly on sardinella was second with eicosapentaenoc acid at 55 ± 5.4 mg 100 g-1, docosahexaenoic acid at 161 ± 19.8 mg 100 g-1, linolenic acid at 16.4 mg 100 g-1 and docosapentaenoic acid at 25 ± 1.9 mg 100 g-1. Rabbitfish, the most popular edible fish in Bahrain which feeds mainly on benthic algae had the third highest content of n3- polyunsaturated fatty acids with eicosapentaenoic acid at 37.5 ± 3.9 mg 100 g-1, docosahexaenoic acid at 76 ± 6.7 mg 100 g-1, and docosapentaenoic acid at 85.8 ± 10 mg 100 g-1. The other fish and crustacean species studied were Arabian carpet shark, doublebar bream, grouper, gray grunt, golden travally, keeled mullet, spangled emperor and shrimp. The study explores the transfer of n3- polyunsaturated fatty acids through the food webs of the examined fish. It is apparent, generally, that plankton feeders displayed the highest content of n3- polyunsaturated fatty acids followed by seaweed and algae grazers, with benthic carnivores feeding on invertebrates displaying the poorest content. The values reported here, however, are much lower than those reported for fish available in American markets and in Mediterranean fish. Warm water temperature and high salinity which lead to lowering of the density of phytoplankton and phytoplankton content of n3- polyunsaturated fatty acids are suggested as the reason for the observed low values of n3- polyunsaturated fatty acids in Bahrain fish.

  16. Ambient Profiling of Phenolic Content in Tea Infusions by Matrix-Assisted Ionization in Vacuum

    NASA Astrophysics Data System (ADS)

    Cody, Robert B.

    2018-05-01

    Matrix-assisted ionization in vacuum (MAIV) was used to analyze the polyphenol content of ten different tea infusions. Nine different Camellia sinensis infusions were analyzed including three green teas, two black teas, two oolong teas, jasmine tea, and white tea. An infusion of rooibos (Aspalathus linearis) tea was also analyzed. Each freshly brewed tea was diluted 1:1 with methanol, and 100 ppm of phenolphthalein was added as an internal standard. An excess of 3-nitrobenzonitrile (NBN) was added to each vial, and the solution containing NBN crystals was analyzed by aspiration directly into the mass spectrometer sampling orifice. A working curve constructed for dilutions of catechin with phenolphthalein internal standard showed good linearity for five replicates of each concentration. The measured relative abundances of flavonoid polyphenols in each tea were in good agreement with previously reported values. Polyphenol content in tea infusions varied from 19.2 to 108.6 mg 100 mL-1. In addition to the expected catechin flavonoids, abundant quinic acid and gallic acid was detected in the C. sinensis infusions. Characteristic A. linearis flavonoids were detected in the rooibos tea.

  17. Performance and fat quality of heavy pigs fed maize differing in linoleic acid content.

    PubMed

    Della Casa, G; Bochicchio, D; Faeti, V; Marchetto, G; Poletti, E; Rossi, A; Panciroli, A; Mordenti, A L; Brogna, N

    2010-01-01

    Maize shows wide differences in linoleic acid due both to total lipid content and to fatty acid profile. Therefore, diets containing the same high maize percentage (up to 55%) can differ in linoleic acid content and lead to subcutaneous fats of differing suitability for raw ham curing. Two trials were performed on heavy pigs; in the first, 60 pigs (body weight 48.7+/-5.1 kg) were fed three diets made using three maize batches differing in linoleic acid due to different total lipid content, in the second trial, 40 pigs (live weight 70.4+/-3.4 kg) were fed two diets made using two maize batches differing in linoleic acid due to their fatty acid profile. Pigs were slaughtered at 170 kg of live weight. In both trials, the growth and slaughtering performance did not differ. In the first trial the three diets lead to a different content of linoleic acid both in subcutaneous (low linoleic vs medium linoleic vs high linoleic P0.01) and intramuscular fat (low linoleic vs high linoleic P0.05). In the second trial different linoleic acid content was observed for subcutaneous fat (P0.01) but not for intramuscular fat. To formulate diets for heavy pigs, it is crucial to know the linoleic acid content of the maize used, because differences of only 0.3% can lead to significant differences in fatty acids composition of depot fats.

  18. Changes in the free amino acid contents of honeys during storage at ambient temperature.

    PubMed

    Iglesias, M Teresa; Martín-Alvarez, Pedro J; Polo, M Carmen; de Lorenzo, Cristina; Gonzalez, Montserrat; Pueyo, Encarnación

    2006-11-29

    This study was carried out to establish the changes in the free amino acid contents of floral honeys, honeydew honeys, and blend honeys during storage at room temperature and to test the capacity of the amino acids to distinguish the origin of the honeys after storage. For this purpose, 54 artisanal honeys (39 floral, 5 honeydew, and 10 blend) were studied. Samples were taken from recently collected honeys and at 3, 6, 9, 12, 16, 20, and 24 months after harvesting. The contents of most of the free amino acids were found to decrease with storage time, with the greatest reduction observed in the first 9 months. The contents of the amino acids aspartic acid, beta-alanine, and proline increased in the first few months after storage, reaching maximum values at 6 months, suggesting the possible existence of enzymatic activities. The application of stepwise discriminant analysis to the free amino acid content data demonstrated that the contents of the amino acids valine, beta-alanine, gamma-aminobutyric acid, serine, isoleucine, alpha-alanine, ornithine, and glutamine correctly assigned 87% of honeys to their group of origin: floral, honeydew, or blend.

  19. Direct effect of acid rain on leaf chlorophyll content of terrestrial plants in China.

    PubMed

    Du, Enzai; Dong, Dan; Zeng, Xuetong; Sun, Zhengzhong; Jiang, Xiaofei; de Vries, Wim

    2017-12-15

    Anthropogenic emissions of acid precursors in China have resulted in widespread acid rain since the 1980s. Although efforts have been made to assess the indirect, soil mediated ecological effects of acid rain, a systematic assessment of the direct foliage injury by acid rain across terrestrial plants is lacking. Leaf chlorophyll content is an important indicator of direct foliage damage and strongly related to plant productivity. We synthesized data from published literature on experiments of simulated acid rain, by directly exposing plants to acid solutions with varying pH levels, to assess the direct effect of acid rain on leaf chlorophyll content across 67 terrestrial plants in China. Our results indicate that acid rain substantially reduces leaf chlorophyll content by 6.71% per pH unit across the recorded plant species. The direct reduction of leaf chlorophyll content due to acid rain exposure showed no significant difference across calcicole, ubiquist or calcifuge species, implying that soil acidity preference does not influence the sensitivity to leaf injury by acid rain. On average, the direct effects of acid rain on leaf chlorophyll on trees, shrubs and herbs were comparable. The effects, however varied across functional groups and economic use types. Specifically, leaf chlorophyll content of deciduous species was more sensitive to acid rain in comparison to evergreen species. Moreover, vegetables and fruit trees were more sensitive to acid rain than other economically used plants. Our findings imply a potential production reduction and economic loss due to the direct foliage damage by acid rain. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Enhanced functional properties of tannic acid after thermal hydrolysis

    USDA-ARS?s Scientific Manuscript database

    Thermal hydrolysis processing of fresh tannic acid was carried out in a closed reactor at four different temperatures (65, 100, 150 and 200°C). Pressures reached in the system were 1.3 and 4.8 MPa at 150 and 200°C, respectively. Hydrolysis products (gallic acid and pyrogallol) were separated and qua...

  1. An electrochemical sensor for gallic acid based on Fe₂O₃/electro-reduced graphene oxide composite: Estimation for the antioxidant capacity index of wines.

    PubMed

    Gao, Feng; Zheng, Delun; Tanaka, Hidekazu; Zhan, Fengping; Yuan, Xiaoning; Gao, Fei; Wang, Qingxiang

    2015-12-01

    A highly sensitive electrochemical sensor for gallic acid (GA), an important polyphenolic compound, was fabricated using the hybrid material of chitosan (CS), fishbone-shaped Fe2O3 (fFe2O3), and electrochemically reduced graphene oxide (ERGO) as the sensing matrix. The electrochemical characterization experiments showed that the CS-fFe2O3-ERGO modified glassy carbon electrode (CS-fFe2O3-ERGO/GCE) had large surface area, excellent electronic conductivity and high stability. The GA presented a superior electrochemical response on CS-fFe2O3-ERGO/GCE in comparison with the single-component modified electrode. The electrochemical mechanism and optimal test conditions of GA on the electrode surface were carefully investigated. Under the optimal conditions, the oxidation peak currents in differential pulse voltammetry (DPV) experiments exhibited a good linear relationship with the logarithmic values of GA concentration over the range from 1.0×10(-6)M to 1.0×10(-4)M. Based on signal-to-noise (S/N) characteristic of 3, the detection limit was estimated to be 1.5×10(-7)M. The proposed sensor has also been applied for estimating the antioxidant capacity index of real samples of red and white wines. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Palmitoleic acid (16:1n7) increases oxygen consumption, fatty acid oxidation and ATP content in white adipocytes.

    PubMed

    Cruz, Maysa M; Lopes, Andressa B; Crisma, Amanda R; de Sá, Roberta C C; Kuwabara, Wilson M T; Curi, Rui; de Andrade, Paula B M; Alonso-Vale, Maria I C

    2018-03-20

    We have recently demonstrated that palmitoleic acid (16:1n7) increases lipolysis, glucose uptake and glucose utilization for energy production in white adipose cells. In the present study, we tested the hypothesis that palmitoleic acid modulates bioenergetic activity in white adipocytes. For this, 3 T3-L1 pre-adipocytes were differentiated into mature adipocytes in the presence (or absence) of palmitic (16:0) or palmitoleic (16:1n7) acid at 100 or 200 μM. The following parameters were evaluated: lipolysis, lipogenesis, fatty acid (FA) oxidation, ATP content, oxygen consumption, mitochondrial mass, citrate synthase activity and protein content of mitochondrial oxidative phosphorylation (OXPHOS) complexes. Treatment with 16:1n7 during 9 days raised basal and isoproterenol-stimulated lipolysis, FA incorporation into triacylglycerol (TAG), FA oxidation, oxygen consumption, protein expression of subunits representing OXPHOS complex II, III, and V and intracellular ATP content. These effects were not observed in adipocytes treated with 16:0. Palmitoleic acid, by concerted action on lipolysis, FA esterification, mitochondrial FA oxidation, oxygen consumption and ATP content, does enhance white adipocyte energy expenditure and may act as local hormone.

  3. Surfactant-enhanced disinfection of the human norovirus surrogate, Tulane virus, with organic acids and surfactant

    USDA-ARS?s Scientific Manuscript database

    Combination treatments of surfactants and phenolic or short-chained organic acids (SCOA) may act synergistically or additively as sanitizers to inactive foodborne viruses and prevent outbreaks. The purpose of this study was to investigate the effect of gallic acid (GA), tannic acid (TA), p-coumaric ...

  4. Fabrication and characterization of electrospun gelatin nanofibers crosslinked with oxidized phenolic compounds.

    PubMed

    Tavassoli-Kafrani, Elham; Goli, Sayed Amir Hossein; Fathi, Milad

    2017-10-01

    In this study, the ability of oxidized phenolic compounds of tannic, gallic, ferulic and caffeic acids to crosslink gelatin (G) was investigated. The electrospun crosslinked gelatin nanofibers were assessed in terms of gelatin solution properties, fiber morphology, thermal properties, FTIR spectra, XRD pattern and antioxidant activity. Tannic acid showed the most crosslinking activity towards gelatin (13.3 vs 7.44, 4.65, and 3.45% for caffeic, gallic and ferulic, respectively). Crosslinking enhanced roughly electrical conductivity of gelatin solution while the surface tension and viscosity reduced. According to scanning electron microscopy (SEM) results, the fibrous structure of crosslinked gelatin nanofibers didn't change while their diameter increased to the highest value of 280nm for gelatin-tannic. Gelatin-gallic sample showed the highest total phenolic content (86.3mg gallic acid equivalent/g) and antioxidant activity (86.5%). Surprisingly, from differential scanning calorimetry (DSC) curves, it was found that crosslinking led to the reduction of thermal stability of gelatin nanofibers. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Gallic acid sensitizes paclitaxel-resistant human ovarian carcinoma cells through an increase in reactive oxygen species and subsequent downregulation of ERK activation.

    PubMed

    Sánchez-Carranza, Jessica Nayelli; Díaz, J Fernando; Redondo-Horcajo, Mariano; Barasoain, Isabel; Alvarez, Laura; Lastres, Pedro; Romero-Estrada, Antonio; Aller, Patricio; González-Maya, Leticia

    2018-06-01

    Paclitaxel (PTX) is currently used as a front-line chemotherapeutic agent for several types of cancer, including ovarian carcinoma; however, PTX-resistance frequently arises through multiple mechanisms. The development of new strategies using natural compounds and PTX in combination has been the aim of several prior studies, in order to enhance the efficacy of chemotherapy. In this study, we found the following: (i) gallic acid (GA), a phenolic compound, potentiated the capacity of PTX to decrease proliferation and to cause G2/M cycle arrest in the PTX-resistant A2780AD ovarian cancer cell line; (ii) GA exerted a pro-oxidant action by increasing the production of reactive oxygen species (ROS), and co-treatment with the antioxidant agent N‑acetyl-L‑cysteine (NAC) prevented GA+PTX-induced cell proliferation inhibition and G2/M phase arrest; (iii) PTX stimulated ERK phosphorylation/activation, and co-treatment with the MEK/ERK inhibitor PD98049 potentiated the proliferation inhibition and G2/M phase arrest; (iv) and finally, GA abrogated the PTX-induced stimulation of ERK phosphorylation, a response that was prevented by co-treatment with NAC. Taken together, these results indicate that GA sensitizes PTX-resistant ovarian carcinoma cells via the ROS‑mediated inactivation of ERK, and suggest that GA could represent a useful co-adjuvant to PTX in ovarian carcinoma treatment.

  6. Comparison of erythrocyte membrane fatty acid contents in renal transplant recipients and dialysis patients.

    PubMed

    Oh, J S; Kim, S M; Sin, Y H; Kim, J K; Park, Y; Bae, H R; Son, Y K; Nam, H K; Kang, H J; An, W S

    2012-12-01

    Alterations of erythrocyte membrane fatty acid (FA) composition play important roles in cellular function because they change the membrane microenvironment, including transmembrane receptors. The erythrocyte membrane oleic acid content is higher among patients with acute coronary syndrome and also in dialysis patients. However, available data are limited concerning erythrocyte membrane FA content in kidney transplant recipients (KTP). We sought to test the hypothesis that erythrocyte membrane FA content among KTP were different from those in dialysis patients. In this cross-sectional study, we recruited 35 hemodialysis, 33 peritoneal dialysis 49 KTP, and 33 normal control subjects (CTL). Their erythrocyte membrane FA content were measured by gas chromatography. The mean ages of the enrolled dialysis patients, KTP, and CTL were 56.4 ± 10.1, 48.9 ± 10.4, and 49.5 ± 8.3 years, respectively. Mean kidney transplant duration was 89.8 ± 64.8 months and mean dialysis duration, 49.0 ± 32.6 months. The intakes of vegetable lipid and vegetable protein including total calories were significantly increased among KTP versus dialysis patients. Total cholesterol (P < .001) and high density lipoprotein cholesterol (HDL; P < .001) levels were significantly higher and C-reactive protein was significantly lower among KTP compared with dialysis patients. The erythrocyte membrane content of palmitoleic acid (P < .001) was significantly higher but oleic acid (P < .001) significantly lower in KTP compared with dialysis patients. The erythrocyte membrane contents of arachidonic acid and docosahexaenoic acid were significantly higher, and linoleic acid and the omega-6 FA to omega-3 FA ratio (P < .001) significantly lower in KTP compared with dialysis patients. The erythrocyte membrane content of oleic acid was independently associated with monounsaturated fatty acid (beta = 0.771, P < .001), eicosapentaeonic acid (beta = -0.244, P = .010), and HDL (beta = -0.139, P = .049) in KTP. FA

  7. Preliminary phytochemical screening and In vitro antioxidant activities of the aqueous extract of Helichrysum longifolium DC

    PubMed Central

    2010-01-01

    Background Many oxidative stress related diseases are as a result of accumulation of free radicals in the body. A lot of researches are going on worldwide directed towards finding natural antioxidants of plants origins. The aims of this study were to evaluate in vitro antioxidant activities and to screen for phytochemical constituents of Helichrysum longifolium DC. [Family Asteraceae] aqueous crude extract. Methods We assessed the antioxidant potential and phytochemical constituents of crude aqueous extract of Helichrysum longifolium using tests involving inhibition of superoxide anions, DPPH, H2O2, NO and ABTS. The flavonoid, proanthocyanidin and phenolic contents of the extract were also determined using standard phytochemical reaction methods. Results Phytochemical analyses revealed the presence of tannins, flavonoids, steroids and saponins. The total phenolic content of the aqueous leaf extract was 0.499 mg gallic acid equivalent/g of extract powder. The total flavonoid and proanthocyanidin contents of the plant were 0.705 and 0.005 mg gallic acid equivalent/g of extract powder respectively. The percentage inhibition of lipid peroxide at the initial stage of oxidation showed antioxidant activity of 87% compared to those of BHT (84.6%) and gallic acid (96%). Also, the percentage inhibition of malondialdehyde by the extract showed percentage inhibition of 78% comparable to those of BHT (72.24%) and Gallic (94.82%). Conclusions Our findings provide evidence that the crude aqueous extract of H. longifolium is a potential source of natural antioxidants, and this justified its uses in folkloric medicines. PMID:20470421

  8. Extracts of Phenolic Compounds from Seeds of Three Wild Grapevines—Comparison of Their Antioxidant Activities and the Content of Phenolic Compounds

    PubMed Central

    Weidner, Stanisław; Powałka, Anna; Karamać, Magdalena; Amarowicz, Ryszard

    2012-01-01

    Phenolic compounds were extracted from three wild grapevine species: Vitis californica, V. riparia and V. amurensis seeds using 80% methanol or 80% acetone. The total content of phenolic compounds was determined utilizing the Folin-Ciocalteu’s phenol reagent while the content of tannins was assayed with the vanillin and BSA precipitation methods. Additionally, the DPPH free radical scavenging activity and the reduction power of the extracts were measured. The RP-HPLC method was applied to identify the phenolic compounds in the extracts, such as phenolic acids and catechins. The seeds contained large amounts of tannins, catechins and gallic acid and observable quantities of p-coumaric acid. The total content of phenolic compounds and tannins was similar in the extracts from V. californica and V. riparia seeds. However, the total content of total phenolic compounds and tannins in the extracts from V. californica and V. riperia seeds were about two-fold higher than that in the extracts from V. amurensis seeds. Extracts from seeds of the American species (V. californica and V. riparia) contained similarly high concentrations of tannins, whereas extracts from seeds of V. amurensis had approximately half that amount of these compounds. The content of catechin and epicatechin was similar in all extracts. The highest DPPH• anti-radical scavenging activity was observed in the acetonic and methanolic extracts of V. californica and V. riparia seeds— while the acetonic extract from the V. californica seeds was the strongest reducing agent. PMID:22489161

  9. Coffee with a high content of chlorogenic acids and low content of hydroxyhydroquinone improves postprandial endothelial dysfunction in patients with borderline and stage 1 hypertension.

    PubMed

    Kajikawa, Masato; Maruhashi, Tatsuya; Hidaka, Takayuki; Nakano, Yukiko; Kurisu, Satoshi; Matsumoto, Takeshi; Iwamoto, Yumiko; Kishimoto, Shinji; Matsui, Shogo; Aibara, Yoshiki; Yusoff, Farina Mohamad; Kihara, Yasuki; Chayama, Kazuaki; Goto, Chikara; Noma, Kensuke; Nakashima, Ayumu; Watanabe, Takuya; Tone, Hiroshi; Hibi, Masanobu; Osaki, Noriko; Katsuragi, Yoshihisa; Higashi, Yukihito

    2018-01-12

    The purpose of this study was to evaluate acute effects of coffee with a high content of chlorogenic acids and different hydroxyhydroquinone contents on postprandial endothelial dysfunction. This was a single-blind, randomized, placebo-controlled, crossover-within-subject clinical trial. A total of 37 patients with borderline or stage 1 hypertension were randomized to two study groups. The participants consumed a test meal with a single intake of the test coffee. Subjects in the Study 1 group were randomized to single intake of coffee with a high content of chlorogenic acids and low content of hydroxyhydroquinone or coffee with a high content of chlorogenic acids and a high content of hydroxyhydroquinone with crossover. Subjects in the Study 2 group were randomized to single intake of coffee with a high content of chlorogenic acids and low content of hydroxyhydroquinone or placebo coffee with crossover. Endothelial function assessed by flow-mediated vasodilation and plasma concentration of 8-isoprostanes were measured at baseline and at 1 and 2 h after coffee intake. Compared with baseline values, single intake of coffee with a high content of chlorogenic acids and low content of hydroxyhydroquinone, but not coffee with a high content of chlorogenic acids and high content of hydroxyhydroquinone or placebo coffee, significantly improved postprandial flow-mediated vasodilation and decreased circulating 8-isoprostane levels. These findings suggest that a single intake of coffee with a high content of chlorogenic acids and low content of hydroxyhydroquinone is effective for improving postprandial endothelial dysfunction. URL for Clinical Trial: https://upload.umin.ac.jp ; Registration Number for Clinical Trial: UMIN000013283.

  10. Carotenoids, Phenolic Profile, Mineral Content and Antioxidant Properties in Flesh and Peel of Prunus persica Fruits during Two Maturation Stages.

    PubMed

    Dabbou, Samia; Maatallah, Samira; Castagna, Antonella; Guizani, Monia; Sghaeir, Wala; Hajlaoui, Hichem; Ranieri, Annamaria

    2017-03-01

    Carotenoids and phenolic profile, antioxidant activity as well as concentrations of selected macronutrients (K, N, Mg, Ca and Na) and micronutrients (Zn, Cu and Mn) in flesh and peel of peach fruit were recorded at two harvest dates. Predominant mineral was potassium, followed by calcium, magnesium and sodium. The concentration of most micronutrients was greater in the peel than in the flesh especially in early season. The concentration of most elements in flesh and peel decreased during fruit maturation. Total carotenoids content varied with respect to the cultivar. β-cryptoxanthin and β-carotene were the major carotenoids in both tissues and flesh contain the lowest amounts. Neochlorogenic acid, chlorogenic acid, catechin, epicatechin, gallic acid, rutin, quercetin-3-O-galactoside, cyanidin-3-O-glucoside, cyanidin-3-O-rutinoside, were detected in both peel and flesh, with chlorogenic acid and catechin being the predominant components. Peel extracts showed markedly higher antioxidant activities, when estimated by ABTS or DPPH assays, than the flesh counterparts, consistent with the observed higher phenolic content. Overall, total phenolics levels increased at full ripening stage in both peel and flesh. The results found herein provide important data on carotenoids, phenolic and macro- and micronutrient changes during fruit growth, and emphases peach fruit as a potential functional food.

  11. Ultra-small iron-gallic acid coordination polymer nanoparticles for chelator-free labeling of 64Cu and multimodal imaging-guided photothermal therapy.

    PubMed

    Jin, Qiutong; Zhu, Wenjun; Jiang, Dawei; Zhang, Rui; Kutyreff, Christopher J; Engle, Jonathan W; Huang, Peng; Cai, Weibo; Liu, Zhuang; Cheng, Liang

    2017-08-31

    Cancer nanotechnology has become the hot topic nowadays. While various kinds of nanomaterials have been widely explored for innovative cancer imaging and therapy applications, safe multifunctional nano-agents without long-term retention and toxicity are still demanded. Herein, iron-gallic acid coordination nanoparticles (Fe-GA CPNs) with ultra-small sizes are successfully synthesized by a simple method for multimodal imaging-guided cancer therapy. After surface modification with polyethylene glycol (PEG), the synthesized Fe-GA-PEG CPNs show high stability in various physiological solutions. Taking advantage of high near-infrared (NIR) absorbance as well as the T 1 -MR contrasting ability of Fe-GA-PEG CPNs, in vivo photoacoustic tomography (PAT) and magnetic resonance (MR) bimodal imaging are carried out, revealing the efficient passive tumor targeting of these ultra-small CPNs after intravenous (i.v.) injection. Interestingly, such Fe-GA-PEG CPNs could be labeled with the 64 Cu isotope via a chelator-free method for in vivo PET imaging, which also illustrates the high tumor uptake of Fe-GA CPNs. We further utilize Fe-GA-PEG CPNs for in vivo photothermal therapy and achieve highly effective tumor destruction after i.v. injection of Fe-GA-PEG CPNs and the following NIR laser irradiation of the tumors, without observing any apparent toxicity of such CPNs to the treated animals. Our work highlights the promise of ultra-small iron coordination nanoparticles for imaging-guided cancer therapy.

  12. Polyphenols of Salix aegyptiaca modulate the activities of drug metabolizing and antioxidant enzymes, and level of lipid peroxidation.

    PubMed

    Nauman, Mohd; Kale, R K; Singh, Rana P

    2018-03-07

    Salix aegyptiaca is known for its medicinal properties mainly due to the presence of salicylate compounds. However, it also contains other beneficial phytochemicals such as gallic acid, quercetin, rutin and vanillin. The aim of the study was to examine the redox potential, antioxidant and anti-inflammatory activity of these phytochemicals along with acetylsalicylic acid. The redox potential and antioxidant activity of gallic acid, quercetin, rutin, vanillin and acetylsalicylic acid were determined by oxidation-reduction potential electrode method and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, respectively. In ex vivo studies, antioxidant activity of these phytochemicals was determined by lipid peroxidation and carbonyl content assay in the liver of mice. Anti-inflammatory activity was determined by protein denaturation method. Six-week old C57BL/6 mice treated with gallic acid (100 mg/kg body weight) and acetylsalicylic acid (25 and 50 mg/kg body weight) to investigate their in vivo modulatory effects on the specific activities of drug metabolizing phase I and phase II enzymes, antioxidant enzymes and level of lipid peroxidation in liver. The order of ability to donate electron and antioxidant activity was found to be: gallic acid > quercetin > rutin > vanillin > acetylsalicylic acid. In ex vivo studies, the similar pattern and magnitude of inhibitory effects of these phytochemicals against peroxidative damage in microsomes and protein carbonyl in cytosolic fraction were observed. In in vivo studies, gallic acid and acetylsalicylic acid alone or in combination, enhanced the specific activities of drug metabolizing phase I and phase II enzymes as well as antioxidant enzymes and also inhibited lipid peroxidation in liver. These findings show a close link between the electron donation and antioxidation potential of these phytochemicals, and in turn their biological activity. Gallic acid, quercetin, rutin and vanillin were found to be better electron donors and

  13. Determining total phenolic content and total antioxidant capacity of loquat cultivars grown in Hatay.

    PubMed

    Polat, A Aytekin; Calişkan, Oğuzhan; Serçe, Sedat; Saraçoğlu, Onur; Kaya, Cemal; Ozgen, Mustafa

    2010-01-01

    Several fruit characteristics of five loquat (Eriobotrya japonica (Thunb.) Lindl.) cultivars/selections grown in Dörtyol, Hatay, Turkey were investigated in 2008. The cultivars/selections included 'Baduna 5', Güzelyurt 1, 'Hafif Cukurgöbek', 'Ottaviani,' and Type 1. The characteristics evaluated included fruit weight, width, length, seed number and weight, flesh/seed ratio, total soluble solids (TSS), pH, acidity, total phenolic (TP) content, and total antioxidant capacity (TAC), determined by the ferric reducing antioxidant power (FRAP) assay. The analyses were conducted by three replicates, with 30 fruits in each replicate. The results indicated that there were significant differences among the cultivars, for all the traits tested. For example, 'Hafif Cukurgöbek' and 'Ottaviani' had smaller fruits than others, although 'Hafif Cukurgöbek' had heavier seeds. The flesh/seed ratio was the highest in Type 1, while 'Hafif Cukurgöbek' had the highest pH and high soluble solids. 'Baduna 5' and 'Hafif Cukurgöbek' had the highest acidity. The TP ranged from 129 ('Baduna 5') to 578 ('Hafif Cukurgöbek') mg gallic acid equivalent (GAE)/kg fresh fruit (fw). 'Hafif Cukurgöbek' also had the highest FRAP mean (12.1 mmol Trolox Equivalent (TE)/kg fw). The results suggest that loquat cultivars have a variable range of TP content and a relatively high total antioxidant capacity, which is crucial for human health.

  14. Potential for food-drug interactions by dietary phenolic acids on human organic anion transporters 1 (SLC22A6), 3 (SLC22A8), and 4 (SLC22A11).

    PubMed

    Wang, Li; Sweet, Douglas H

    2012-10-15

    Phenolic acids exert beneficial health effects such as anti-oxidant, anti-carcinogenic, and anti-inflammatory activities and show systemic exposure after consumption of common fruits, vegetables, and beverages. However, knowledge regarding which components convey therapeutic benefits and the mechanism(s) by which they cross cell membranes is extremely limited. Therefore, we determined the inhibitory effects of nine food-derived phenolic acids, p-coumaric acid, ferulic acid, gallic acid, gentisic acid, 4-hydroxybenzoic acid, protocatechuic acid, sinapinic acid, syringic acid, and vanillic acid, on human organic anion transporter 1 (hOAT1), hOAT3, and hOAT4. In the present study, inhibition of OAT-mediated transport of prototypical substrates (1 μM) by phenolic acids (100 μM) was examined in stably expressing cell lines. All compounds significantly inhibited hOAT3 transport, while just ferulic, gallic, protocatechuic, sinapinic, and vanillic acid significantly blocked hOAT1 activity. Only sinapinic acid inhibited hOAT4 (~35%). For compounds exhibiting inhibition > ~60%, known clinical plasma concentration levels and plasma protein binding in humans were examined to select compounds to evaluate further with dose-response curves (IC(50) values) and drug-drug interaction (DDI) index determinations. IC(50) values ranged from 1.24 to 18.08 μM for hOAT1 and from 7.35 to 87.36 μM for hOAT3. Maximum DDI indices for gallic and gentisic acid (≫0.1) indicated a very strong potential for DDIs on hOAT1 and/or hOAT3. This study indicates that gallic acid from foods or supplements, or gentisic acid from salicylate-based drug metabolism, may significantly alter the pharmacokinetics (efficacy and toxicity) of concomitant therapeutics that are hOAT1 and/or hOAT3 substrates. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. A simple ultrasensitive electrochemical sensor for simultaneous determination of gallic acid and uric acid in human urine and fruit juices based on zirconia-choline chloride-gold nanoparticles-modified carbon paste electrode.

    PubMed

    Shahamirifard, Seyed Alireza; Ghaedi, Mehrorang; Razmi, Zahra; Hajati, Shaaker

    2018-08-30

    The determination of gallic acid (GA) and uric acid (UA) is essential due to their biological properties. Numerous methods have been reported for the analysis of GA and UA in various real samples. However, the development of a simple, rapid and practical sensor still remains a great challenge. Here, a carbon paste electrode (CPE) was modified by nanocomposite containing zirconia nanoparticles (ZrO 2 NPs), Choline chloride (ChCl) and gold nanoparticles (AuNPs) to construct ZrO 2 -ChCl-AuNPs/CPE as electrochemical sensor for the simultaneous electro-oxidation of GA and UA. Characterization was performed by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy. The modified electrode was investigated by different methods including electrochemical impedance spectroscopy and cyclic voltammetry. Kinetic parameters such as charge transfer coefficient, standard heterogeneous electron transfer rate constant and other parameters were calculated via voltammetry techniques. Differential pulse voltammetry was used for simultaneous determination of GA and UA applying the ZrO 2 -ChCl-AuNPs/CPE electrode. At the optimum conditions, this sensor showed a linear response in the ranges 0.22- 55 and 0.12-55 µM for GA and UA, respectively. In addition, low detection limits of 25 and 15 nM were obtained for GA and UA, respectively. Furthermore, ZrO 2 -ChCl-AuNPs/CPE was successfully applied for the independent determination of GA in green tea and fruit juice as well as the simultaneous determination of GA and UA in human urine samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Food acid content and erosive potential of sugar-free confections.

    PubMed

    Shen, P; Walker, G D; Yuan, Y; Reynolds, C; Stacey, M A; Reynolds, E C

    2017-06-01

    Dental erosion is an increasingly prevalent problem associated with frequent consumption of acidic foods and beverages. The aim of this study was to measure the food acid content and the erosive potential of a variety of sugar-free confections. Thirty sugar-free confections were selected and extracts analysed to determine pH, titratable acidity, chemical composition and apparent degree of saturation with respect to apatite. The effect of the sugar-free confections in artificial saliva on human enamel was determined in an in vitro dental erosion assay using change in surface microhardness. The change in surface microhardness was used to categorize the confections as high, moderate or low erosive potential. Seventeen of the 30 sugar-free confections were found to contain high concentrations of food acids, exhibit low pH and high titratable acidity and have high erosive potential. Significant correlations were found between the dental erosive potential (change in enamel surface microhardness) and pH and titratable acidity of the confections. Ten of these high erosive potential confections displayed dental messages on the packaging suggesting they were safe for teeth. Many sugar-free confections, even some with 'Toothfriendly' messages on the product label, contain high contents of food acids and have erosive potential. © 2017 Australian Dental Association.

  17. Tocopherol content and Fatty Acid profile of different Iranian date seed oils.

    PubMed

    Biglar, Mahmood; Khanavi, Mahnaz; Hajimahmoodi, Mannan; Hassani, Shokufeh; Moghaddam, Ghazaleh; Sadeghi, Naficeh; Oveisi, Mohammad Reza

    2012-01-01

    Date is one of the world's oldest food-producing plants wich has always played an important role in the economy and social life. Various researchers examined chemical composition and nutritional values of edible parts of dates while limited information about chemical composition and nutritional quality of date seed is available. In this study, fatty acid composition and total tocopherol content of 14 Iranian date seed oils were studied. Statistical analysis was performed through SPSS computing package. According to the fatty acid profiles, seven fatty acids were found through nearly 50% oleic acid in seeds. Shekar cultivar by 51.40% had the maximum amount and Lasht cultivar by 33.38% had the minimum amount of oleic acid. Tocopherol content in the samples varied between 33.86 μg vit E/g oil for Shahabi2 to 10.09 μg vit E/g oil for Shekar. Tocopherol content was 1.88 and 0.61 μg respectively in one-gram seed of these two cultivars. Iranian date seed oils classified as oleic-lauric oil, had a high amount of oleic acid and could serve as a profitable source of valuable oils for industrial applications.

  18. Enhancement of nutritionally significant constituents of black currant seeds by chemical elicitor application.

    PubMed

    Flores, Gema; Ruiz del Castillo, María Luisa

    2016-03-01

    Black currant seeds are obtained as a residue during juice production. Black currant seed oil contains high amounts of nutritionally desirable constituents such as γ-linolenic acid (GLA), α-linolenic acid (ALA) and stearidonic acid (SA), as well as certain phenolic acids, which act as natural antioxidants. Fatty acids and phenolic acids of seeds from black currant cultivars after elicitation with methyl jasmonate (MJ) were examined. GLA contents around 25% with respect to total fatty acid content were measured in seeds after pre-harvest treatment of black currants with 0.02mM MJ in 0.05% Tween-20. High GLA samples also exhibited high SA content (higher than 10% with respect to total fatty acid content); however, ALA dropped (from 16% to 10%). High GLA content seeds also showed increased contents of gallic, caffeic, p-coumaric and ferulic acids. In particular, seeds from 0.02mM MJ treated Ben Hope black currants exerted contents of gallic, caffeic, p-coumaric and ferulic acids of 201.4, 125.9, 201.3 and 112.5μgg(-1)vs 124.3, 58.6, 165.4 and 95.8μgg(-1) measured in seeds from untreated Ben Hope black currants. Comparable results were obtained for Ben Alder and Ben Gairn berries. Chemical elicitation with 0.02 MJ is proposed as an industrial practice in such a way that, after consideration of quality issues, it would be obtained high added value black currant seeds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Modification of Erythrocyte Membrane Fatty Acid Contents After Kidney Transplantation: A Prospective Study.

    PubMed

    Son, Y K; Kwon, H; Lee, H W; Jeong, E G; Lee, S M; Kim, S E; Park, Y; An, W S

    2018-06-01

    Modifications of erythrocyte membrane fatty acid (FA) contents may affect cellular function or transmembrane receptors. One cross-sectional study has shown that kidney transplant (KTP) recipients have lower erythrocyte membrane oleic acid content than dialysis patients do. Therefore, we prospectively tested whether erythrocyte membrane contents of FA including oleic acid change after KTP. We recruited 23 KTP recipients (September 2011 through May 2014). Blood samples were obtained immediately before KTP and 6 months after. Erythrocyte membrane FA contents were measured by gas chromatography. Mean age of the enrolled KTP recipients was 45.3 ± 10.9 years, and men represented 66.7% of the cases. ABO-incompatible KTPs constituted 14.3% and cadaver donors 42.9% of the cases. Steroids, mycophenolate mofetil, and tacrolimus were used as immunosuppressive treatment. There was no significant difference in dietary consumption between time points before and 6 months after KTP. Total cholesterol and low-density lipoprotein cholesterol levels were significantly higher at 6 months after KTP as compared with baseline. Erythrocyte membrane contents of polyunsaturated FA, ω-3 FA, ω-6 FA, and the ω-3 index were significantly higher, but erythrocyte membrane contents of total saturated FAs, total monounsaturated FAs, including oleic acid, total trans-FA, palmitoleic acid, and the ω-6-to-ω-3 ratio were significantly lower at 6 months after KTP. Erythrocyte membrane FA contents significantly changed toward a more favorable cardiovascular profile after KTP. These changes in erythrocyte membrane FA contents may be related to improved renal function because of the absence of significant dietary changes. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Proximate Composition, Amino Acid, Mineral, and Heavy Metal Content of Dried Laver

    PubMed Central

    Hwang, Eun-Sun; Ki, Kyung-Nam; Chung, Ha-Yull

    2013-01-01

    Laver, a red algae belonging to the genus Porphyra, is one of the most widely consumed edible seaweeds. The most popular commercial dried laver species, P. tenera and P. haitanensis, were collected from Korea and China, respectively, and evaluated for proximate composition, amino acids, minerals, trace heavy metals, and color. The moisture and ash contents of P. tenera and P. haitanensis ranged from 3.66~6.74% and 8.78~9.07%, respectively; crude lipid and protein contents were 1.96~2.25% and 32.16~36.88%, respectively. Dried lavers were found to be a good source of amino acids, such as asparagine, isoleucine, leucine, and taurine, and γ-aminobutyric acid. K, Ca, Mg, Na, P, I, Fe, and Se minerals were selected for analysis. A clear regional variation existed in the amino acid, mineral, and trace metal contents of lavers. Regular consumption of lavers may have heath benefits because they are relatively low in fat and high in protein, and contain functional amino acids and minerals. PMID:24471123

  1. Proximate composition, amino Acid, mineral, and heavy metal content of dried laver.

    PubMed

    Hwang, Eun-Sun; Ki, Kyung-Nam; Chung, Ha-Yull

    2013-06-01

    Laver, a red algae belonging to the genus Porphyra, is one of the most widely consumed edible seaweeds. The most popular commercial dried laver species, P. tenera and P. haitanensis, were collected from Korea and China, respectively, and evaluated for proximate composition, amino acids, minerals, trace heavy metals, and color. The moisture and ash contents of P. tenera and P. haitanensis ranged from 3.66~6.74% and 8.78~9.07%, respectively; crude lipid and protein contents were 1.96~2.25% and 32.16~36.88%, respectively. Dried lavers were found to be a good source of amino acids, such as asparagine, isoleucine, leucine, and taurine, and γ-aminobutyric acid. K, Ca, Mg, Na, P, I, Fe, and Se minerals were selected for analysis. A clear regional variation existed in the amino acid, mineral, and trace metal contents of lavers. Regular consumption of lavers may have heath benefits because they are relatively low in fat and high in protein, and contain functional amino acids and minerals.

  2. Comparative content of total polyphenols and dietary fiber in tropical fruits and persimmon.

    PubMed

    Gorinstein, S; Zemser, M; Haruenkit, R; Chuthakorn, R; Grauer, F; Martin-Belloso, O; Trakhtenberg, S

    1999-06-01

    Recent studies have shown that dietary fiber and polyphenols of vegetables and fruits improve lipid metabolism and prevent the oxidation of low density lipoprotein cholesterol (LDL-C), which hinder the development of atherosclerosis. The goal of this study was to measure the total polyphenol and dietary fiber contents of some tropical fruits (i.e., pineapple, wax apple, rambutan, lichi, guava, and mango) and compare the results to the content of these substances in the better characterized persimmon. It was found that lichi, guava, and ripe mango (cv. Keaw) have 3.35, 4.95, and 6.25 mg of total polyphenols in 100 g fresh fruit, respectively. This is significantly higher than in persimmon, pineapple, wax apple, mature green mango, and rambutan [P < 0.0005 for pineapple (Smooth Cayene variant), wax apple, persimmon, rambutan, mature green mango (cv. Keaw); the value of P < 0.001 is found only for pineapple (Phuket, Queen variant)]. The same relationship was observed for the contents of gallic acid and of dietary fiber. It can be supposed that among the studied fruit, lichi, guava, and ripe mango may be preferable for dietary prevention of atherosclerosis.

  3. Antioxidant activity of some Moroccan marine microalgae: Pufa profiles, carotenoids and phenolic content.

    PubMed

    Maadane, Amal; Merghoub, Nawal; Ainane, Tarik; El Arroussi, Hicham; Benhima, Redouane; Amzazi, Saaid; Bakri, Youssef; Wahby, Imane

    2015-12-10

    In order to promote Moroccan natural resources, this study aims to evaluate the potential of microalgae isolated from Moroccan coastlines, as new source of natural antioxidants. Different extracts (ethanolic, ethanol/water and aqueous) obtained from 9 microalgae strains were screened for their in vitro antioxidant activity using DPPH free radical-scavenging assay. The highest antioxidant potentials were obtained in Dunalliela sp., Tetraselmis sp. and Nannochloropsis gaditana extracts. The obtained results indicate that ethanol extract of all microalgae strains exhibit higher antioxidant activity, when compared to water and ethanol/water extracts. Therefore, total phenolic and carotenoid content measurement were performed in active ethanol extracts. The PUFA profiles of ethanol extracts were also determined by GC/MS analysis. The studied microalgae strains displayed high PUFA content ranging from 12.9 to 76.9 %, total carotenoids content varied from 1.9 and 10.8mg/g of extract and total polyphenol content varied from 8.1 to 32.0mg Gallic acid Equivalent/g of extract weight. The correlation between the antioxidant capacities and the phenolic content and the carotenoids content were found to be insignificant, indicating that these compounds might not be major contributor to the antioxidant activity of these microalgae. The microalgae extracts exerting the high antioxidant activity are potential new source of natural antioxidants. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Gallic acid inhibits the release of ADAMTS4 in nucleus pulposus cells by inhibiting p65 phosphorylation and acetylation of the NF-κB signaling pathway.

    PubMed

    Huang, Yao; Chen, Jian; Jiang, Tao; Zhou, Zheng; Lv, Bin; Yin, Guoyong; Fan, Jin

    2017-07-18

    This study investigated the inhibitory effect of gallic acid (GA) on the release of A Disintegrin and Metalloproteinase with Thrombospondin motifs 4 (ADAMTS4) through the regulation of the NF-κB signaling pathway, which is closely related to the matrix metalloproteinases in nucleus pulposus cells. Different concentrations of GA were added to TNF-α-induced human nucleus pulposus cells (hNPCs) and intervertebral disc degeneration rat model. ADAMTS-4 expression increased both in the TNF-α-induced nucleus pulposus cells and intervertebral disc degeneration rat model. By contrast, the release of ADAMTS-4 was reduced, and the TNF-α-induced apoptosis of nucleus pulposus cells was significantly inhibited after addition of GA at different concentrations. Further study found that the levels of phosphorylated p65 (p-p65) was increased and the classical NF-κB signal pathway was activated after the nucleus pulposus cells were stimulated by TNF-α. Meanwhile, GA suppressed the p65 phosphorylation and inceased p65 deacetylation levels. As a consequence, GA can decrease the expression of ADAMTS-4 in nucleus pulposus cells by regulating the phosphorylation and acetylation of p65 in NF-κB signaling pathways.

  5. Dietary phenolic acids reverse insulin resistance, hyperglycaemia, dyslipidaemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats.

    PubMed

    Ibitoye, Oluwayemisi B; Ajiboye, Taofeek O

    2017-12-20

    This study investigated the influence of caffeic, ferulic, gallic and protocatechuic acids on high-fructose diet-induced metabolic syndrome in rats. Oral administration of the phenolic acids significantly reversed high-fructose diet-mediated increase in body mass index and blood glucose. Furthermore, phenolic acids restored high-fructose diet-mediated alterations in metabolic hormones (insulin, leptin and adiponectin). Similarly, elevated tumour necrosis factor-α, interleukin-6 and -8 were significantly lowered. Administration of phenolic acids restored High-fructose diet-mediated increase in the levels of lipid parameters and indices of atherosclerosis, cardiac and cardiovascular diseases. High-fructose diet-mediated decrease in activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glucose 6-phosphate dehydrogenase) and increase in oxidative stress biomarkers (reduced glutathione, lipid peroxidation products, protein oxidation and fragmented DNA) were significantly restored by the phenolic acids. The result of this study shows protective influence of caffeic acid, ferulic acid, gallic acid and protocatechuic acid in high-fructose diet-induced metabolic syndrome.

  6. Palliative effects of extra virgin olive oil, gallic acid, and lemongrass oil dietary supplementation on growth performance, digestibility, carcass traits, and antioxidant status of heat-stressed growing New Zealand White rabbits.

    PubMed

    Al-Sagheer, Adham A; Daader, Ahmed H; Gabr, Hassan A; Abd El-Moniem, Elham A

    2017-03-01

    This study explored the effects of supplemental dietary extra virgin olive oil (EVOO), gallic acid (GA), or lemongrass essential oil (LGEO) on growth performance, nutrient digestibility, carcass traits, lipid peroxidation, hematological, and antioxidative status in growing rabbits under heat stress conditions. A total of 48 male growing New Zealand White rabbits were randomly divided into four equal groups, which received a basal diet without any supplementation or supplemented with 15 g EVOO, 500 mg GA, or 400 mg LGEO/kg of diet, for eight consecutive weeks. Results revealed that the overall mean of temperature humidity index was 84.67 ± 0.35, reflecting a state of severe heat stress. Moreover, dietary supplementation with EVOO, GA, or LGEO significantly increased live body weight and daily body weight gain but decreased both feed conversion ratio and daily water consumption. Additionally, a significant increase in both organic matter and crude protein digestibility besides a remarkable elevation in the nutritive values of digestible crude protein, total digestible nutrients, and digestible energy, as well as an increase in the numbers of WBCs, lymphocytes, and heterophils was significant in EVOO-supplemented rabbits. Supplementation with EVOO, GA, or LGEO in the heat-stressed growing rabbit's diet enhanced catalase activity and reduced glutathione content, whereas EVOO-treated rabbits had the highest values. Also, malondialdehyde activity was reduced in response to all tested additives. In conclusion, these findings suggested that addition of EVOO, GA, or LGEO in growing rabbit's diet could be used effectively to alleviate negative impacts of heat stress load on performance, nutrient digestibility, oxidative status, and hemato-biochemical features. Furthermore, among these additives, EVOO achieved the best effects.

  7. Acid-neutralizing capacity and sodium content of antacid products from Belgium.

    PubMed

    Gombatz, V W

    1984-01-01

    The acid-neutralizing capacity and sodium content of nine antacid products available in Belgium were evaluated and compared with typical values for Mylanta-II. Liquid and tablets of Mylanta-II have a higher acid-neutralizing capacity per unit dose than do all the other Belgian antacids tested. On a unit dose basis, the sodium contents of the Mylanta-II products are lower than those of all other Belgian antacids tested except Maalox products. Because the minimum recommended dose (MRD) of Mylanta-II liquid is 5 ml, while that of Maalox is 10 ml, the sodium content of the MRD of Mylanta-II liquid is lower than that of the MRD of any of the other Belgian liquid antacids tested.

  8. Two-year variations of phenolics, flavonoids and antioxidant contents in acacia honey.

    PubMed

    Moniruzzaman, Mohammed; Sulaiman, Siti Amrah; Azlan, Siti Amirah Mohd; Gan, Siew Hua

    2013-11-27

    Honey is a good source of several important chemical compounds and antioxidants and is harvested throughout the year. However, no study has determined how their contents change over the years. The aim of the present research was to investigate the changes in the phenolics, flavonoids and antioxidant properties, as well as other physicochemical properties, of Malaysian acacia honey collected during different months during a two year period. The DPPH (1,1-diphenyl-2-picrylhydrazyl) and FRAP (ferric reducing antioxidant power) methods were used to determine the total antioxidant activity of the honey samples. Generally, honey samples collected in the beginning and the middle of the year tended to have higher sugar content, which may be attributed to its high acidic nature and low moisture content. There was a gradual increase in the phenolic content of the acacia honey samples collected between September 2010 and December 2010. The honey sample collected at the beginning of the year (January) showed the highest color intensity and was dark amber in color. It also contained the highest concentration of phenolic compounds (341.67 ± 2.94 mg(gallic acid)/kg), the highest flavonoid content (113.06 ± 6.18 mg(catechin)/kg) and the highest percentage of DPPH inhibition and the highest FRAP value, confirming its high antioxidant potential. There was a positive correlation between DPPH and total phenolic content, suggesting that phenolic compounds are the strongest contributing factor to the radical scavenging activity of Malaysian acacia honeys. Overall, our results indicated that there were significant seasonal variations in the antioxidant potentials of honey over the two year period and the time of honey collection affects its physicochemical properties. Therefore, acacia honey from Malaysia should ideally be collected during the dry season, particularly in the months of January, May and June.

  9. Potential of endophytic fungus Phomopsis liquidambari for transformation and degradation of recalcitrant pollutant sinapic acid.

    PubMed

    Xie, Xing-Guang; Huang, Chun-Yan; Fu, Wan-Qiu; Dai, Chuan-Chao

    2016-03-01

    The biodegradation potential of sinapic acid, one of the most representative methoxy phenolic pollutants presented in industrial wastewater, was first studied using an endophytic fungus called Phomopsis liquidambari. This strain can effectively degrade sinapic acid in flasks and in soil and the possible biodegradation pathway was first systematically proposed on the basis of the metabolite production patterns and the identification of the metabolites by GC-MS and HPLC-MS. Sinapic acid was first transformed to 2,6-dimethoxy-4-vinylphenol that was further degraded via 4-hydroxy-3,5-dimethoxybenzaldehyde, syringic acid, gallic acid, and citric acid which involved in the continuous catalysis by phenolic acid decarboxylase, laccase, and gallic acid dioxygenase. Moreover, their activities and gene expression levels exhibited a 'cascade induction' response with the changes in metabolic product concentrations and the generation of fungal laccase significantly improved the degradation process. This study is the first report of an endophytic fungus that has great potential to degrade xenobiotic sinapic acid, and also provide a basis for practical application of endophytic fungus in the bioremediation of sinapic acid-contaminated industrial wastewater and soils. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  10. [Determination of total tannins in the roots, branches, leaves and pericarps of Juglans mandshurica].

    PubMed

    Wang, Tianmin; Sun, Xiaoli; Peng, Xue; Zhai, Yanjun; Chu, Zhengyun; Zhang, Hui; Kang, Tingguo; Chen, Hubiao

    2011-01-01

    The roots, barks, branches and pericarps of Juglans mandshurica were used as folk medicine in China and reputed for its treatment of several cancers, such as gastric cancer, liver cancer and leukemia. The extracts of the roots, branches, leaves and pericarps of J. mandshurica have been experimentally proved to show anti-tumor activities. Tannins, which exhibited antioxidant and anti-tumor activities, were the main constituents in J. mandshurica. In this paper, a simple spectrophotometric method was developed for the determination of total tannins in the roots, branches, leaves and pericarps of J. mandshurica collected in Dalian and Anshan of Liaoning Province. Gallic acid was used as standard compound and the content of total tannins was calculated as gallic acid equivalent. As a result of the method validation, a good linearity (r = 0.9997, n = 5) and a high recovery of gallic acid (99.02%, RSD 3.7%, n = 9) was achieved. Eight samples including four parts of J. mandshurica collected in two places were analyzed for their total tannins with the established method. In the corresponding parts of J. mandshurica, except the pericarps, the contents of total tannins showed no significant difference between samples collected in Dalian and Anshan, while the content of total tannins in different parts of J. mandshurica were significantly different. The average content of total tannins in the roots, branches, leaves and pericarps of samples collected in Dalian and Anshan was 45.66, 23.40, 58.24, 3.58 mg g(-1), respectively.

  11. Folic acid content and antioxidant activity of different types of beers available in Hungarian retail.

    PubMed

    Koren, Dániel; Orbán, Csaba; Galló, Nóra; Kun, Szilárd; Vecseri-Hegyes, Beáta; Kun-Farkas, Gabriella

    2017-04-01

    In this study 40 Hungarian retail beers were evaluated for folic acid content, antioxidant profile and physicochemical parameters. The physicochemical parameters, folic acid content and antioxidant activity of alcohol-free beers were the lowest. Folic acid content of beers aged with sour cherries showed high values, more than 0.4 mg/l and an alcohol-free beer-based mixed drink made with lemon juice contained more than 0.2 mg/l of folic acid. Dark beers and beers aged with sour cherries had the highest antioxidant activity probably owing to their high extract content, components released from the fruits and special malts. These results highlight the possibility of achieving adequate folic acid and relevant antioxidant intake without excessive alcohol and energy consumption by selecting appropriate beer types.

  12. Determination of the ascorbic acid content of two medicinal plants in Nigeria.

    PubMed

    H A, Okeri; P O, Alonge

    2006-01-01

    The fresh and dried leaves of two edible plants, Oldenlandia corymbosa and Dissotis rotundifolia have been assayed for their ascorbic acid content. They were found to be rich sources of ascorbic acid (vitamin C) when compared with some common garden fruits and vegetables. Students' t-test statistical analysis using INSTAT.EXE program for the results (mean+/-SEM) shows that there was no significant difference for the fresh leaves of the individual plants and also there is no significant difference for the dried leaves (P=0.05). However, there was significant difference between ascorbic acid content of the fresh and dried leaves of the same plant, obviously indicating that the fresh leaves contain more ascorbic acid than the dried leaves.

  13. [Influence of exogenous gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid contents in roots of melon seedling under hypoxia stress].

    PubMed

    Wang, Chun-Yan; Li, Jing-Rui; Xia, Qing-Ping; Wu, Xiao-Lei; Gao, Hong-Bo

    2014-07-01

    This paper investigated the influence of gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid content under hypoxia stress by accurately controlling the level of dissolved oxygen in hydroponics, using the roots of melon 'Xiyu 1' seedlings as the test material. The results showed that compared with the control, the growth of roots was inhibited seriously under hypoxia stress. Meanwhile, the hypoxia-treated roots had significantly higher activities of glutamate decarboxylase (GAD), glutamate dehydrogenase (GDH), glutamate synthase (GOGAT), glutamine synthetase (GS), alanine aminotransferase (ALT), aspartate aminotransferase (AST) as well as the contents of GABA, pyruvic acid, alanine (Ala) and aspartic acid (Asp). But the contents of glutamic acid (Glu) and alpha-keto glutaric acid in roots under hypoxia stress was obviously lower than those of the control. Exogenous treatment with GABA alleviated the inhibition effect of hypoxia stress on root growth, which was accompanied by an increase in the contents of endogenous GABA, Glu, alpha-keto glutaric acid and Asp. Furthermore, under hypoxia stress, the activities of GAD, GDH, GOGAT, GS, ALT, AST as well as the contents of pyruvic acid and Ala significantly decreased in roots treated with GABA. However, adding GABA and viny-gamma-aminobutyric acid (VGB) reduced the alleviation effect of GABA on melon seedlings under hypoxia stress. The results suggested that absorption of GABA by roots could alleviate the injury of hypoxia stress to melon seedlings. This meant that GABA treatment allows the normal physiological metabolism under hypoxia by inhibiting the GAD activity through feedback and maintaining higher Glu content as well as the bal- ance of carbon and nitrogen.

  14. Development and validation of a simple high performance thin layer chromatography method combined with direct 1,1-diphenyl-2-picrylhydrazyl assay to quantify free radical scavenging activity in wine.

    PubMed

    Agatonovic-Kustrin, Snezana; Morton, David W; Yusof, Ahmad P

    2016-04-15

    The aim of this study was to: (a) develop a simple, high performance thin layer chromatographic (HPTLC) method combined with direct 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay to rapidly assess and compare free radical scavenging activity or anti-oxidant activity for major classes of polyphenolics present in wines; and (b) to investigate relationship between free radical scavenging activity to the total polyphenolic content (TPC) and total antioxidant capacity (TAC) in the wine samples. The most potent free radical scavengers that we tested for in the wine samples were found to be resveratrol (polyphenolic non-flavonoid) and rutin (flavonoid), while polyphenolic acids (caffeic acid and gallic acid) although present in all wine samples were found to be less potent free radical scavengers. Therefore, the total antioxidant capacity was mostly affected by the presence of resveratrol and rutin, while total polyphenolic content was mostly influenced by the presence of the less potent free radical scavengers gallic and caffeic acids. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. UV light impact on ellagitannins and wood surface colour of European oak ( Quercus petraea and Quercus robur)

    NASA Astrophysics Data System (ADS)

    Zahri, S.; Belloncle, C.; Charrier, F.; Pardon, P.; Quideau, S.; Charrier, B.

    2007-03-01

    Two European oak species ( Q. petraea and Q. robur) have a high content of phenols which may participate in the alteration of colour upon UV irradiation. To study the photodegradation process of oak surfaces, the two oak species extractives, vescalagin, castalagin, ellagic acid and gallic acid were analysed quantitatively by HPLC before and after UV irradiation. Irradiation time was altered between 3, 24, 72, 96, 120, 144, 192 and 216 h. In parallel, any colour changes of Oak wood surface was followed after 120 h of UV-irradiation by measuring CIELAB parameters (DL*, Da*, Db* and DE*). We observed that 60% of total phenol content of extractives decreased after the maximal exposure time. Our findings also showed that castalagin and gallic acid were destroyed after 216 h and vescalagin and ellagic acid after 72 h. This study proves the photosenibility of oakwood extractives which, supplementary to lignin degradation, would strongly result in the discolouration of oak heartwood.

  16. HPLC-ED Analysis of Phenolic Compounds in Three Bosnian Crataegus Species.

    PubMed

    Čulum, Dušan; Čopra-Janićijević, Amira; Vidic, Danijela; Klepo, Lejla; Tahirović, Azra; Bašić, Neđad; Maksimović, Milka

    2018-04-24

    The aim of this work was the qualitative and quantitative determination of selected phenolic compounds in three Crataegus species grown in Bosnia. Crataegus plants are consumed for medicinal purposes and as foodstuff in the form of canned fruit, jam, jelly, tea, and wine. Two samples of plant material, dry leaves with flowers, and berries of three Crataegus species— Crataegus rhipidophylla Gand., Crataegus x subsphaericea Gand., and Crataegus x macrocarpa Hegetschw.—were analyzed. Twelve ethanolic extracts were isolated from the selected plant material using Soxhlet and ultrasound extraction, respectively. Soxhlet extraction proved to be more effective than ultrasound extraction. A simple and sensitive method, high-performance liquid chromatography with electrochemical detection, HPLC-ED, was used for the simultaneous determination of phenolic acids and flavonoids in Crataegus species. The content of gallic acid in the extracts ranged from 0.001 to 0.082 mg/g dry weight (DW), chlorogenic acid from 0.19 to 8.70 mg/g DW, and rutin from 0.03 to 13.49 mg/g DW. Two flavonoids, vitexin and hyperoside, commonly found in chemotaxonomic investigations of Crataegus species, were not detected in the examined extracts. In general, leaves with flowers samples are richer in gallic acid and rutin, whereas the berries samples are richer in chlorogenic acid. Distinct similarities were found in the relative distribution of gallic acid among the three species. Extracts of C. x macrocarpa had the highest content of all detected compounds, while significant differences were found in rutin content, depending on the plant organ. To the best of our knowledge, this is the first study reporting content of phenolic compounds in Crataegus rhipidophylla Gand., Crataegus x subsphaericea , and Crataegus x macrocarpa from Bosnia.

  17. HPLC-ED Analysis of Phenolic Compounds in Three Bosnian Crataegus Species

    PubMed Central

    Čulum, Dušan; Vidic, Danijela; Klepo, Lejla; Tahirović, Azra; Bašić, Neđad; Maksimović, Milka

    2018-01-01

    The aim of this work was the qualitative and quantitative determination of selected phenolic compounds in three Crataegus species grown in Bosnia. Crataegus plants are consumed for medicinal purposes and as foodstuff in the form of canned fruit, jam, jelly, tea, and wine. Two samples of plant material, dry leaves with flowers, and berries of three Crataegus species—Crataegus rhipidophylla Gand., Crataegus x subsphaericea Gand., and Crataegus x macrocarpa Hegetschw.—were analyzed. Twelve ethanolic extracts were isolated from the selected plant material using Soxhlet and ultrasound extraction, respectively. Soxhlet extraction proved to be more effective than ultrasound extraction. A simple and sensitive method, high-performance liquid chromatography with electrochemical detection, HPLC-ED, was used for the simultaneous determination of phenolic acids and flavonoids in Crataegus species. The content of gallic acid in the extracts ranged from 0.001 to 0.082 mg/g dry weight (DW), chlorogenic acid from 0.19 to 8.70 mg/g DW, and rutin from 0.03 to 13.49 mg/g DW. Two flavonoids, vitexin and hyperoside, commonly found in chemotaxonomic investigations of Crataegus species, were not detected in the examined extracts. In general, leaves with flowers samples are richer in gallic acid and rutin, whereas the berries samples are richer in chlorogenic acid. Distinct similarities were found in the relative distribution of gallic acid among the three species. Extracts of C. x macrocarpa had the highest content of all detected compounds, while significant differences were found in rutin content, depending on the plant organ. To the best of our knowledge, this is the first study reporting content of phenolic compounds in Crataegus rhipidophylla Gand., Crataegus x subsphaericea, and Crataegus x macrocarpa from Bosnia. PMID:29695058

  18. Augmenting the activity of antifungal agents against aspergilli using structural analogues of benzoic acid as chemosensitizing agents

    USDA-ARS?s Scientific Manuscript database

    Several benzoic acid analogs showed antifungal activity against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis. Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids increased by addition of a methyl, methoxyl...

  19. Effect of roasting on phenolic content and antioxidant activities of whole cashew nuts, kernels, and testa.

    PubMed

    Chandrasekara, Neel; Shahidi, Fereidoon

    2011-05-11

    The effect of roasting on the content of phenolic compounds and antioxidant properties of cashew nuts and testa was studied. Whole cashew nuts, subjected to low-temperature (LT) and high-temperature (HT) treatments, were used to determine the antioxidant activity of products. Antioxidant activities of cashew nut, kernel, and testa phenolics extracted increased as the roasting temperature increased. The highest activity, as determined by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity, oxygen radical absorbance capacity (ORAC), hydroxyl radical scavenging capacity, Trolox equivalent antioxidant activity (TEAC), and reducing power, was achieved when nuts were roasted at 130 °C for 33 min. Furthermore, roasting increased the total phenolic content (TPC) in both the soluble and bound extracts from whole nut, kernel, and testa but decreased that of the proanthocyanidins (PC) except for the soluble extract of cashew kernels. In addition, cashew testa afforded a higher extract yield, TPC, and PC in both soluble and bound fractions compared to that in whole nuts and kernels. Phenolic acids, namely, syringic (the predominant one), gallic, and p-coumaric acids, were identified. Flavonoids, namely, (+)-catechin, (-)-epicatechin, and epigallocatechin, were also identified, and their contents increased with increasing temperature. The results so obtained suggest that HT-short time (HTST) roasting effectively enhances the antioxidant activity of cashew nuts and testa.

  20. Proanthocyanidin Characterization, Antioxidant and Cytotoxic Activities of Three Plants Commonly Used in Traditional Medicine in Costa Rica: Petiveria alliaceae L., Phyllanthus niruri L. and Senna reticulata Willd.

    PubMed Central

    Navarro, Mirtha; Moreira, Ileana; Arnaez, Elizabeth; Quesada, Silvia; Azofeifa, Gabriela; Alvarado, Diego; Monagas, Maria J.

    2017-01-01

    The phenolic composition of aerial parts from Petiveria alliaceae L., Phyllanthus niruri L. and Senna reticulata Willd., species commonly used in Costa Rica as traditional medicines, was studied using UPLC-ESI-TQ-MS on enriched-phenolic extracts. Comparatively, higher values of total phenolic content (TPC), as measured by the Folin-Ciocalteau method, were observed for P. niruri extracts (328.8 gallic acid equivalents/g) than for S. reticulata (79.30 gallic acid equivalents/g) whereas P. alliaceae extract showed the lowest value (13.45 gallic acid equivalents/g). A total of 20 phenolic acids and proanthocyanidins were identified in the extracts, including hydroxybenzoic acids (benzoic, 4-hydroxybenzoic, gallic, prochatechuic, salicylic, syringic and vanillic acids); hydroxycinnamic acids (caffeic, ferulic, and p-coumaric acids); and flavan-3-ols monomers [(+)-catechin and (−)-epicatechin)]. Regarding proanthocyanidin oligomers, five procyanidin dimers (B1, B2, B3, B4, and B5) and one trimer (T2) are reported for the first time in P. niruri, as well as two propelargonidin dimers in S. reticulata. Additionally, P. niruri showed the highest antioxidant DPPH and ORAC values (IC50 of 6.4 μg/mL and 6.5 mmol TE/g respectively), followed by S. reticulata (IC50 of 72.9 μg/mL and 2.68 mmol TE/g respectively) and P. alliaceae extract (IC50 >1000 μg/mL and 1.32 mmol TE/g respectively). Finally, cytotoxicity and selectivity on gastric AGS and colon SW20 adenocarcinoma cell lines were evaluated and the best values were also found for P. niruri (SI = 2.8), followed by S. reticulata (SI = 2.5). Therefore, these results suggest that extracts containing higher proanthocyanidin content also show higher bioactivities. Significant positive correlation was found between TPC and ORAC (R2 = 0.996) as well as between phenolic content as measured by UPLC-DAD and ORAC (R2 = 0.990). These findings show evidence for the first time of the diversity of phenolic acids in P. alliaceae and S

  1. Phenolic compounds, organic acids and antioxidant activity of grape juices produced in industrial scale by different processes of maceration.

    PubMed

    Lima, Marcos dos Santos; da Conceição Prudêncio Dutra, Maria; Toaldo, Isabela Maia; Corrêa, Luiz Claudio; Pereira, Giuliano Elias; de Oliveira, Débora; Bordignon-Luiz, Marilde Terezinha; Ninow, Jorge Luiz

    2015-12-01

    The effect of maceration process on the profile of phenolic compounds, organic acids composition and antioxidant activity of grape juices from new varieties of Vitis labrusca L. obtained in industrial scale was investigated. The extraction process presented a high yield without pressing the grapes. The use of a commercial pectinase resulted in an increase on extraction yield and procyanidins B1 and B2 concentrations and a decrease on turbidity and concentration of catechins. The combination of 60 °C and 3.0 mL 100 kg(-1) of enzyme resulted in the highest extraction of phenolic compounds, reducing the content of acetic acid. The juices presented high antioxidant activity, related to the great concentration of malvidin, cyanidin, catechin and caffeic, cinnamic and gallic acids. Among the bioactive compounds, the juices presented high concentration of procyanidin B1, caffeic acid and trans-resveratrol, with higher levels compared to those reported in the literature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. HPLC determination of phenolic acids, flavonoids and juglone in walnut leaves.

    PubMed

    Nour, Violeta; Trandafir, Ion; Cosmulescu, Sina

    2013-10-01

    A high-performance liquid chromatographic method with gradient elution and diode-array detection was developed to quantify free phenolic acids (gallic, vanillic, chlorogenic, caffeic, syringic, p-coumaric, ferulic, sinapic, salycilic, elagic and trans-cinnamic), flavonoids (catechin, epicatechin, rutin, myricetin and quercetin) and juglone in walnut leaves. Chromatographic separation was performed on a Hypersil Gold C18 column (5 µm particle size, 250 × 4.6 mm) and detection was conducted at three different wavelengths (254, 278 and 300 nm) according to the absorption maxima of the analyzed compounds. Validation procedures were conducted and the method was proven to be precise, accurate and sensitive. The developed method has been applied to analyze walnut leaves samples from nine different cultivars, with the same agricultural, geographical and climatic conditions. The experimental results revealed high concentrations of myricetin, catechin hydrate and rutin, and low concentrations of quercetin and epicatechin aglycones. Ellagic acid was established as the dominating phenolic acid of walnut leaves, followed by trans-cinnamic, chlorogenic and caffeic acids. Juglone content varied between 44.55 and 205.12 mg/100 g fresh weight. Significant differences were detected among cultivars for the concentration levels of phenolics.

  3. Screening of the antioxidative properties and total phenolic contents of three endemic Tanacetum subspecies from Turkish flora.

    PubMed

    Tepe, Bektas; Sokmen, Atalay

    2007-11-01

    Methanolic extracts of three different Tanacetum subspecies [Tanacetum densum (Lab.) Schultz Bip. subsp. sivasicum Hub-Mor and Grierson, Tanacetum densum (Lab.) Schultz Bip. subsp. eginense Heywood and Tanacetum densum (Lab.) Schultz Bip. subsp. amani Heywood] which are endemic to Turkish flora were screened for their possible antioxidant activities by two complementary test systems namely DPPH free radical scavenging and beta-carotene/linoleic acid. In DPPH system, the most active plant was T. densum subsp. amani with an IC(50) value of 69.30+/-0.37 microg/ml. On the other hand, T. densum subsp. sivasicum exerted greater antioxidant activity than those of other subspecies in beta-carotene/linoleic acid system (79.10%+/-1.83). Antioxidant activities of BHT, curcumine and ascorbic acid were also determined as positive controls in parallel experiments. Total phenolic constituents of the extracts of Tanacetum subspecies were performed employing the literature methods involving Folin-Ciocalteu reagent and gallic acid as standard. The amount of total phenolics was highest in subsp. sivasicum (162.33+/-3.57 microg/mg), followed by subsp. amani (158.44+/-2.17 microg/mg). Especially, a positive correlation was observed between total phenolic content and antioxidant activity of the extracts.

  4. Assessment of Antioxidant Properties in Fruits of Myrica esculenta: A Popular Wild Edible Species in Indian Himalayan Region

    PubMed Central

    Rawat, Sandeep; Jugran, Arun; Giri, Lalit; Bhatt, Indra D.; Rawal, Ranbeer S.

    2011-01-01

    Crude extract of Myrica esculenta fruits, a wild edible species of Indian Himalayan Region, was evaluated for phenolic compounds and antioxidant properties. Results revealed significant variation in total phenolic and flavonoid contents across populations. Among populations, total phenolic content varied between 1.78 and 2.51 mg gallic acid equivalent/g fresh weight (fw) of fruits and total flavonoids ranged between 1.31 and 1.59 mg quercetin equivalent/g fw. Antioxidant activity determined by 2,2′-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging, 1,1-diphenyl-2-picrylhydrazyl radical scavenging and ferric reducing antioxidant power (FRAP) exhibited considerable antioxidant potential and showed significant positive correlation with total phenolic and total flavonoids content. High performance liquid chromatography analysis revealed significant variation (P <  .01) in phenolic compounds (i.e., gallic acid, catechin, hydroxybenzioc acid and ρ-coumaric acid) across populations. This study provides evidences to establish that consumption of M. esculenta fruits while providing relished taste would also help in reduction of free radicals. Therefore, this wild edible species deserves promotion in the region through horticulture and forestry interventions. PMID:21785629

  5. Genotype x environment interactions in eggplant for fruit phenolic acid content

    USDA-ARS?s Scientific Manuscript database

    Eggplant fruit are a rich source of phenolic acids that contribute to fruit nutritive value and influence culinary quality. We evaluated the influence of production environment on eggplant fruit phenolic acid content. Ten Solanum melongena accessions including five F1 hybrid cultivars, three open-...

  6. Determination of Phenolic Acids in Sugarcane Vinasse by HPLC with Pulse Amperometry

    PubMed Central

    Freitas, P. V.; Beluomini, M. A.; da Silva, J. L.; Stradiotto, N. R.

    2018-01-01

    A reversed-phase liquid chromatographic separation with pulsed amperometric detection of phenolic acids at a glassy carbon electrode is described. Chromatographic separation was carried out in isocratic conditions using 0.20 mol·L−1 acetic acid (pH 5.0)/water (80 : 20, v/v) as mobile phase under constant working potential mode of 0.80 V. Chromatographic peaks presented high resolution and separation. Calibration curves exhibited excellent correlation coefficients, above 0.995. Linear ranges of the analytes, in mg L−1, were of 0.018–18 (gallic acid), 0.146–19 (vanillic acid), 0.13–17 (caffeic acid), 0.016–16 (ferulic acid), and 0.008–17 (p-coumaric acid), respectively. Limits of detection ranged from 1.6 to 97 μg·L−1 and precision varied in 1.73–3.78% interval. Concentrations of 19 ± 0.51 mg·L−1 and 7.8 ± 2.5 mg·L−1 were found for vanillic and caffeic acids, respectively, in a sugarcane vinasse sample. Gallic, ferulic, and p-coumaric acids were not detected. Recovery results demonstrated that the proposed method is accurate, and it can be used to detect and quantify phenolic acids in sugarcane vinasse without any influence of interferents. PMID:29600112

  7. Modulation of GABAA receptors by valerian extracts is related to the content of valerenic acid.

    PubMed

    Trauner, Gabriele; Khom, Sophia; Baburin, Igor; Benedek, Birgit; Hering, Steffen; Kopp, Brigitte

    2008-01-01

    Valeriana Officinalis L . is a traditionally used sleep remedy, however, the mechanism of action and the substances responsible for its sedative and sleep-enhancing properties are not fully understood. As we previously identified valerenic acid as a subunit-specific allosteric modulator of GABAA receptors, we now investigated the relation between modulation of GABAA receptors by Valerian extracts of different polarity and the content of sesquiterpenic acids (valerenic acid, acetoxyvalerenic acid). All extracts were analysed by HPLC concerning the content of sesquiterpenic acids. GABAA receptors composed of alpha 1, beta 2 and gamma 2S subunits were expressed in Xenopus laevis oocytes and the modulation of chloride currents through GABAA receptors (IGABA) by Valerian extracts was investigated using the two-microelectrode voltage clamp technique. Apolar extracts induced a significant enhancement of IGABA, whereas polar extracts showed no effect. These results were confirmed by fractionating a highly active ethyl acetate extract: again fractions with high contents of valerenic acid exhibited strong receptor activation. In addition, removal of sesquiterpenic acids from the ethyl acetate extract led to a loss of I (GABA) enhancement. In conclusion, our data show that the extent of GABAA receptor modulation by Valerian extracts is related to the content of valerenic acid.

  8. Flow injection chemiluminescence determination of the total phenolics levels in plant-derived beverages using soluble manganese(IV).

    PubMed

    Nalewajko-Sieliwoniuk, Edyta; Tarasewicz, Iwona; Kojło, Anatol

    2010-05-23

    This study established a flow injection (FI) methodology for the determination of the total phenolic content in plant-derived beverages based on soluble manganese(IV) chemiluminescence (CL) detection. It was found that mixing polyphenols with acidic soluble manganese(IV) in the presence of formaldehyde evoked chemiluminescence. Based on this finding, a new FI-CL method was developed for the estimation of the total content of phenolic compounds (expressed as milligrams of gallic acid equivalent per litre of drink) in a variety of wine, tea and fruit juice samples. The proposed method is sensitive with a detection limit of 0.02 ng mL(-1) (gallic acid), offers a wide linear dynamic range (0.5-400 ng mL(-1)) and high sample throughput (247 samples h(-1)). The relative standard deviation for 15 measurements was 3.8% for 2 ng mL(-1) and 0.45% for 10 ng mL(-1) of gallic acid. Analysis of 36 different samples showed that the results obtained by the proposed FI-CL method correlate highly with those obtained by spectrophotometric methods commonly used for the evaluation of the total phenolic/antioxidant level. However, the FI-CL method was found to be far simpler, more rapid and selective, with almost no interference from non-phenolic components of the samples examined. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Determination of phenolic compounds content and antioxidant activity in skin, pulp, seed, cane and leaf of five native grape cultivars in West Azerbaijan province, Iran.

    PubMed

    Farhadi, Khalil; Esmaeilzadeh, Forough; Hatami, Mehdi; Forough, Mehrdad; Molaie, Rahim

    2016-05-15

    In the present work, the phenolic compounds content and antioxidant activity in the skin, pulp, seed, cane and leaf of one international (Muscat) and five native (Hosseini, Ghara Shira, Agh Shani, Ghara Shani and Ghara Ghandome) grape cultivated in West Azerbaijan, Iran were investigated. Ghara Shani grape skin was found to contain the highest content of total phenolic and anthocyanin and cane of Ghara Shani contains the highest amount of flavonoid. A remarkable DPPH radical scavenging activity up to 95% and consequently, the lowest IC50 was found for skin of Ghara Shani. According to RP-HPLC experiments, the highest concentration of phenolic compounds was identified as catechin (945 μg/g), epicatechin (482 μg/g), gallic acid (319 μg/g) and resveratrol (29.8 μg/g) in skin of Ghara Shani, quercetin in cane of Ghara Shani (956 μg/g), rutin in skin of Ghara Shira (298 μg/g) and caffeic acid in cane of Ghara Shira (17.4 μg/g). Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Effects of cooking techniques on fatty acid and oxylipin content of farmed rainbow trout (Oncorhynchus mykiss).

    PubMed

    Flaskerud, Katrina; Bukowski, Michael; Golovko, Mikhail; Johnson, LuAnn; Brose, Stephen; Ali, Ashrifa; Cleveland, Beth; Picklo, Matthew; Raatz, Susan

    2017-11-01

    The aim of this study was to investigate the effect of various cooking techniques on the fatty acid and oxylipin content of farmed rainbow trout. Rainbow trout is an excellent source of long-chain omega-3 ( n -3) polyunsaturated fatty acids (PUFA) which have beneficial health effects. Fillets of 2-year-old farmed rainbow trout were baked, broiled, microwaved, or pan-fried in corn (CO), canola (CaO), peanut (PO), or high oleic sunflower oil (HOSO). Fatty acids and oxidized lipids were extracted from these samples and their respective raw fillet samples. Fatty acid content was determined using gas chromatography and oxylipin content by mass spectroscopy. The values obtained from each cooking method were compared to those obtained from the respective raw fillets using paired t tests. PUFA content was not altered when samples were baked, broiled, microwaved, or pan-fried in CO or CaO. Pan-frying in PO reduced α-linolenic acid (18:3 n -3), eicosadienoic acid (20:2 n -6), and dihomo-γ-linolenic acid (20:3 n -6), while pan-frying in HOSO reduced 18:3 n -3, eicosapentaenoic acid (20:5 n -3), docosapentaenoic acid (22:5 n -3), docosahexaenoic acid (22:6 n -3), linoleic acid (18:2 n -6), 18:3 n -6, 20:2 n -6, 20:3 n -6, docosatrienoic acid (22:2 n -6), and adrenic acid (22:4 n -6) compared to raw fish. Cooking decreased the omega-6 ( n -6) PUFA-derived oxylipins, but caused no change in 20:5 n -3 or 22:6 n -3-derived oxylipins of the fillets. In conclusion, pan-frying was the only cooking method to alter the fatty acid content of the fillets, while observed changes in oxylipin content varied by cooking method. As the physiological impact of oxylipins is currently unknown, these results suggest that the cooking methods which optimize the consumption of n -3 PUFA from rainbow trout are baking, broiling, microwaving, or pan-frying in CO, CaO, or PO.

  11. Effects of methyl gallate and gallic acid on the production of inflammatory mediators interleukin-6 and interleukin-8 by oral epithelial cells stimulated with Fusobacterium nucleatum.

    PubMed

    Kang, Mi-Sun; Jang, Hee-Sook; Oh, Jong-Suk; Yang, Kyu-Ho; Choi, Nam-Ki; Lim, Hoi-Soon; Kim, Seon-Mi

    2009-12-01

    Interactions between periodontal bacteria and human oral epithelial cells can lead to the activation and expression of a variety of inflammatory mediators in epithelial cells. Fusobacterium nucleatum is a filamentous human pathogen that is strongly associated with periodontal diseases. This study examined the effects of methyl gallate (MG) and gallic acid (GA) on the production of inflammatory mediators, interleukin (IL)-6 and IL-8, by oral epithelial cells stimulated by F. nucleatum. In a real-time reverse transcription-polymerase chain reaction and an enzyme-linked immunosorbent assay, live F. nucleatum induced high levels of gene expression and protein release of IL-6 and IL-8. The effects of MG and GA were examined by treating KB oral epithelial cells with MG and GA and stimulating them with F. nucleatum. MG and GA inhibited significantly the increases in the IL-6 and IL-8 gene and protein levels in a dose-dependent manner. These Compounds also inhibited the growth of F. nucleatum. No visible effects of MG and GA on the adhesion and invasion of KB cells by F. nucleatum were observed. In conclusion, both MG and GA inhibit IL-6 and IL-8 production from F. nucleatum-activated KB cells.

  12. Bile acid composition of gallbladder contents in dogs with gallbladder mucocele and biliary sludge.

    PubMed

    Kakimoto, Toshiaki; Kanemoto, Hideyuki; Fukushima, Kenjiro; Ohno, Koichi; Tsujimoto, Hajime

    2017-02-01

    OBJECTIVE To examine bile acid composition of gallbladder contents in dogs with gallbladder mucocele and biliary sludge. ANIMALS 18 dogs with gallbladder mucocele (GBM group), 8 dogs with immobile biliary sludge (i-BS group), 17 dogs with mobile biliary sludge (m-BS group), and 14 healthy dogs (control group). PROCEDURES Samples of gallbladder contents were obtained by use of percutaneous ultrasound-guided cholecystocentesis or during cholecystectomy or necropsy. Concentrations of 15 bile acids were determined by use of highperformance liquid chromatography, and a bile acid compositional ratio was calculated for each group. RESULTS Concentrations of most bile acids in the GBM group were significantly lower than those in the control and m-BS groups. Compositional ratio of taurodeoxycholic acid, which is 1 of 3 major bile acids in dogs, was significantly lower in the GBM and i-BS groups, compared with ratios for the control and m-BS groups. The compositional ratio of taurocholic acid was significantly higher and that of taurochenodeoxycholic acid significantly lower in the i-BS group than in the control group. CONCLUSIONS AND CLINICAL RELEVANCE In this study, concentrations and fractions of bile acids in gallbladder contents were significantly different in dogs with gallbladder mucocele or immobile biliary sludge, compared with results for healthy control dogs. Studies are needed to determine whether changes in bile acid composition are primary or secondary events of gallbladder abnormalities.

  13. Changes in brain amino acid content induced by hyposmolar stress and energy deprivation.

    PubMed

    Haugstad, T S; Valø, E T; Langmoen, I A

    1995-12-01

    The changes in endogenous amino acids in brain extracellular and intracellular compartments evoked by hyposmotic stress and energy deprivation were compared. Tissue content and release of ten amino acids were measured simultaneously in rat hippocampal slices by means of high performance liquid chromatography. Hyposmotic stress induced a large release of taurine (25568 pmol mg-1 protein), and a smaller release of glutamate, accompanied by an inverse change in tissue content. Adding mannitol to correct osmolarity, blocked these changes. Energy deprivation caused an increase in the release of all amino acids except glutamine. The release was particularly large for glutamate and GABA (31141 and 13282 pmol mg-1, respectively). The intracellular concentrations were generally reduced, but the total amount of the released amino acids increased In contrast to the effect seen during hyposmolar stress, mannitol enhanced the changes due to energy deprivation. The results show that hyposmolar stress and energy deprivation cause different content and release profiles, suggesting that the mechanisms involved in the two situations are either different or modulated in different ways. The intracellular amino acid depletion seen during energy deprivation shows that increased outward transport is probably a primary event, and increased amino acid formation likely secondary to this release.

  14. Antioxidant activity, phenolic-flavonoid content and high-performance liquid chromatography profiling of three different variants of Syzygium cumini seeds: A comparative study.

    PubMed

    Priya, Syama Hari; Prakasan, Nisha; Purushothaman, Jayamurthy

    2017-01-01

    The medicinally important phytochemicals present in Syzygium cumini seeds probably accounts for its wide use in traditional systems of medicines in India, like Ayurveda, Unani, and Siddha. The aim of the study was to determine the antioxidant potential of three different geographical variants of S. cumini seeds and to compare the phenolic profiling to know the effect of geographical variation in phenolic composition. Total phenolic and flavonoid content of S. cumini seeds were analyzed. Antioxidant activities in terms of 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), nitric oxide and superoxide radical scavenging assays were performed. The most active fractions were subjected to high-performance liquid chromatography (HPLC) profiling to identify the phenolic composition. Among all the fractions, 70% methanol fraction of S. cumini seed showed significant antioxidant potential. There existed a linear correlation between phenolic content and antioxidant activity. HPLC profiling of 70% methanol (ME) fractions of all the variants revealed the presence of phenolic compounds with high concentrations of ellagic acid and gallic acid. The differences in phenolic concentration due to geographical changes might be the reason for higher antioxidant potential showed by 70% ME of Trivandrum variant. 70% methanolic fraction of S. cumini can act as a novel source of natural antioxidant.

  15. [Effects of electromagnetic pulse on contents of amino acids in hippocampus of rats].

    PubMed

    Li, Yu-hong; Wang, De-wen; Peng, Rui-yun; Li, Zi-jian; Dong, Biao; Dong, Fang-ting; Liang, Yue-qin; Hu, Wen-hua

    2003-10-01

    To investigate the relationship between the changes of amino acids contents in hippocampus of rats and electromagnetic pulse (EMP) exposure. Rats were decapitated and hippocampus were removed after EMP (6 x 10(4) V/m, rise time 20 ns, pulse width 30 micro s, 5 pulses in 2 minutes) irradiation, and contents of amino acids were detected with high performance liquid chromatograpy (HPLC). The contents of aspartic acid (Asp) and glutamic acid (Glu) increased significantly 0, 3, 6 h after irradiation. The peak values of Asp [(17.25 +/- 1.63) pmol/ micro l] and Glu [(13.67 +/- 0.95) pmol/ micro l] were higher than those of control [(10.56 +/- 1.50), (6.94 +/- 1.10) pmol/ micro l respectively, P < 0.05]. Then both decreased gradually and reached the normal level 24 - 48 h after irradiation. The contents of glycine (Gly), taurine (Tau) and gamma-aminobutyric acid (GABA) also rose after exposure, the peak value of them [(4.51 +/- 0.60), (29.85 +/- 2.70), (5.14 +/- 0.73) pmol/ micro l respectively] were higher than those of control group [(2.18 +/- 0.31), (9.88 +/- 1.47), (2.84 +/- 0.67) pmol/ micro l, P < 0.05], then recovered 48 h after irradiation. The value of Glu/GABA increased immediately after exposure (3.45 +/- 0.25, P < 0.05), then decreased 24 h (1.62 +/- 0.23, P < 0.05) and recovered 48 h after exposure. The toxic effect of excess excitatory amino acids may be partly responsible for the early retardation (within 24 h) of learning of rats.

  16. Content and synthesis of nucleic acids in the cartilage in chondromalacia patellae.

    PubMed

    Lund, F; Telhag, H

    1978-12-01

    The content and the synthesis of nucleic acids in chondromalacian, osteoarthritis and normal cartilage was compared. The chondromalacian cartilage differed from osteoarthritis in that the content of nucleic acids was less. Also, the cell density was less in chondromalacian than in normal cartilage as opposed to previous findings in osteoarthritis. The synthesis of DNA was greater in chondromalacian than in normal cartilage but less than in osteoarthritis. With regard to the RNA synthesis, however, the chondromalacian cartilage showed a higher rate than both normal and osteoarthritic cartilage.

  17. Phytochemicals content, antioxidant activity and acetylcholinesterase inhibition properties of indigenous Garcinia parvifolia fruit.

    PubMed

    Ali Hassan, Siti Hawa; Fry, Jeffrey R; Abu Bakar, Mohd Fadzelly

    2013-01-01

    Garcinia parvifolia belongs to the same family as mangosteen (Garcinia mangostana), which is known locally in Sabah as "asam kandis" or cherry mangosteen. The present study was conducted to determine the phytochemicals content (total phenolic, flavonoid, anthocyanin, and carotenoid content) and antioxidant and acetylcholinesterase inhibition activity of the flesh and peel of G. parvifolia. All samples were freeze-dried and extracted using 80% methanol and distilled water. For the 80% methanol extract, the flesh of G. parvifolia displayed higher phenolic and flavonoid contents than the peel, with values of 7.2 ± 0.3 mg gallic acid equivalent (GAE)/g and 5.9 ± 0.1 mg rutin equivalent (RU)/g, respectively. Anthocyanins were detected in the peel part of G. parvifolia but absent in the flesh. The peel of G. parvifolia displayed higher total carotenoid content as compared to the flesh part with the values of 17.0 ± 0.3 and 3.0 ± 0.0 mg β-carotene equivalents (BC)/100 g, respectively. The free-radical scavenging, ferric reducing, and acetylcholinesterase inhibition effect of the flesh were higher as compared to the peel in both extracts. These findings suggested that the edible part of G. parvifolia fruit has a potential as a natural source of antioxidant and anti-Alzheimer's agents.

  18. Phytochemicals Content, Antioxidant Activity and Acetylcholinesterase Inhibition Properties of Indigenous Garcinia parvifolia Fruit

    PubMed Central

    Ali Hassan, Siti Hawa; Fry, Jeffrey R.

    2013-01-01

    Garcinia parvifolia belongs to the same family as mangosteen (Garcinia mangostana), which is known locally in Sabah as “asam kandis” or cherry mangosteen. The present study was conducted to determine the phytochemicals content (total phenolic, flavonoid, anthocyanin, and carotenoid content) and antioxidant and acetylcholinesterase inhibition activity of the flesh and peel of G. parvifolia. All samples were freeze-dried and extracted using 80% methanol and distilled water. For the 80% methanol extract, the flesh of G. parvifolia displayed higher phenolic and flavonoid contents than the peel, with values of 7.2 ± 0.3 mg gallic acid equivalent (GAE)/g and 5.9 ± 0.1 mg rutin equivalent (RU)/g, respectively. Anthocyanins were detected in the peel part of G. parvifolia but absent in the flesh. The peel of G. parvifolia displayed higher total carotenoid content as compared to the flesh part with the values of 17.0 ± 0.3 and 3.0 ± 0.0 mg β-carotene equivalents (BC)/100 g, respectively. The free-radical scavenging, ferric reducing, and acetylcholinesterase inhibition effect of the flesh were higher as compared to the peel in both extracts. These findings suggested that the edible part of G. parvifolia fruit has a potential as a natural source of antioxidant and anti-Alzheimer's agents. PMID:24288662

  19. Development and UFLC-MS/MS Characterization of a Product-Specific Standard for Phenolic Quantification of Maple-Derived Foods.

    PubMed

    Liu, Yongqiang; Ma, Hang; Seeram, Navindra P

    2016-05-04

    The phenolic contents of plant foods are commonly quantified by the Folin-Ciocalteu assay based on gallic acid equivalents (GAEs). However, this may lead to inaccuracies because gallic acid is not always representative of the structural heterogeneity of plant phenolics. Therefore, product-specific standards have been developed for the phenolic quantification of several foods. Currently, maple-derived foods (syrup, sugar, sap/water, and extracts) are quantified for phenolic contents based on GAEs. Because lignans are the predominant phenolics present in maple, herein, a maple phenolic lignan-enriched standard (MaPLES) was purified (by chromatography) and characterized (by UFLC-MS/MS with lignans previously isolated from maple syrup). Using MaPLES and secoisolariciresinol (a commercially available lignan), the phenolic contents of the maple-derived foods increased 3-fold compared to GAEs. Therefore, lignan-based standards are more appropriate for phenolic quantification of maple-derived foods versus GAEs. Also, MaPLES can be utilized for the authentication and detection of fake label claims on maple products.

  20. Interaction of flavan-3-ol derivatives and different caseins is determined by more than proline content and number of proline repeats.

    PubMed

    Bohin, Maxime C; Vincken, Jean-Paul; Westphal, Adrie H; Tripp, Annelise M; Dekker, Peter; van der Hijden, Harry T W M; Gruppen, Harry

    2014-09-01

    Interactions of Type A and B flavan-3-ol dimers (procyanidins) and several monomeric flavan-3-ols, with α-casein and β-casein, were investigated. Binding affinities measured were related to the ligands structure, including several properties (e.g. intrinsic flexibility (number of rotatable bonds) and hydrophobicity), and to the amino-acid composition of the caseins. A monomeric flavan-3-ol esterified with gallic acid (EGCG) had a five to ten times higher affinity to caseins compared to the non-galloylated dimeric flavan-3-ols. In this case, the larger number of rotatable bonds in EGCG might be accountable for this difference. Comparing flavan-3-ol dimers, intrinsic flexibility did not consistently promote interactions, as procyanidin A1 displayed a higher affinity to α-casein than the supposedly more flexible B-type dimers investigated. Despite its higher content of proline, compared to α-casein, β-casein did not always have a higher affinity for the ligands investigated (e.g. no interaction with procyanidin A1 detected). These results suggest that more factors than proline content and the number of proline repeats govern phenolic-casein interactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Thiamine and fatty acid content of Lake Michigan Chinook salmon

    USGS Publications Warehouse

    Honeyfield, D.C.; Peters, A.K.; Jones, M.L.

    2008-01-01

    Nutritional status of Lake Michigan Chinook salmon (Oncorhynchus tshawytscha) is inadequately documented. An investigation was conducted to determine muscle and liver thiamine content and whole body fatty acid composition in small, medium and large Chinook salmon. Muscle and liver thiamine concentrations were highest in small salmon, and tended to decrease with increasing fish size. Muscle thiamine was higher in fall than spring in large salmon. The high percentage of Chinook salmon (24-32% in fall and 58-71% in spring) with muscle thiamine concentration below 500 pmol/g, which has been associated with loss of equilibrium and death in other Great Lake salmonines, suggest that Chinook appear to rely less on thiamine than other Great Lakes species for which such low concentrations would be associated with thiamine deficiency (Brown et al. 2005b). A positive correlation was observed between liver total thiamine and percent liver lipids (r = 0.53, P < 0.0001, n = 119). In medium and large salmon, liver lipids were observed to be low in fish with less than 4,000 pmol/g liver total thiamine. In individuals with greater than 4,000 pmol/g liver thiamine, liver lipid increased with thiamine concentration. Individual fatty acids declined between fall and spring. Essential omega-3 fatty acids appear to be conserved as lipid content declined. Arachidonic acid (C20:4n6), an essential omega-6 fatty acid was not different between fall and spring, although the sum of omega-6 (Sw6) fatty acids declined over winter. Elevated concentrations of saturated fatty acids (sum) were observed in whole body tissue lipid. In summary, thiamine, a dietary essential vitamin, and individual fatty acids were found to vary in Lake Michigan Chinook salmon by fish size and season of the year.

  2. Comparative genome analysis to identify SNPs associated with high oleic acid and elevated protein content in soybean.

    PubMed

    Kulkarni, Krishnanand P; Patil, Gunvant; Valliyodan, Babu; Vuong, Tri D; Shannon, J Grover; Nguyen, Henry T; Lee, Jeong-Dong

    2018-03-01

    The objective of this study was to determine the genetic relationship between the oleic acid and protein content. The genotypes having high oleic acid and elevated protein (HOEP) content were crossed with five elite lines having normal oleic acid and average protein (NOAP) content. The selected accessions were grown at six environments in three different locations and phenotyped for protein, oil, and fatty acid components. The mean protein content of parents, HOEP, and NOAP lines was 34.6%, 38%, and 34.9%, respectively. The oleic acid concentration of parents, HOEP, and NOAP lines was 21.7%, 80.5%, and 20.8%, respectively. The HOEP plants carried both FAD2-1A (S117N) and FAD2-1B (P137R) mutant alleles contributing to the high oleic acid phenotype. Comparative genome analysis using whole-genome resequencing data identified six genes having single nucleotide polymorphism (SNP) significantly associated with the traits analyzed. A single SNP in the putative gene Glyma.10G275800 was associated with the elevated protein content, and palmitic, oleic, and linoleic acids. The genes from the marker intervals of previously identified QTL did not carry SNPs associated with protein content and fatty acid composition in the lines used in this study, indicating that all the genes except Glyma.10G278000 may be the new genes associated with the respective traits.

  3. Antioxidant capacity, phenolic acids and caffeine contents of some commercial coffees available on the Romanian market.

    PubMed

    Trandafir, Ion; Nour, Violeta; Ionica, Mira Elena

    2013-03-01

    In the present study a simple and highly sensitive RP-HPLC method has been established for simultaneous determination of chlorogenic acid, caffeic acid, vanillic acid and caffeine in coffee samples. The method has been applied to eight different coffees available on the Romanian market which were previously analysed concerning the total polyphenols content and antioxidant capacity. Reduction of the DPPH radical was used to determine the antioxidant capacity of the coffee extracts while the total polyphenols content was determined by spectrophotometry (Folin Ciocalteu's method). The total polyphenols content ranged from 1.98 g GAE/100 g to 4.19 g GAE/100 g while the caffeine content ranged from 1.89 g/100 g to 3.05 g/100 g. A large variability was observed in chlorogenic acid content of the investigated coffee samples which ranged between 0.6 and 2.32 g/100 g.

  4. Green technology approach towards herbal extraction method

    NASA Astrophysics Data System (ADS)

    Mutalib, Tengku Nur Atiqah Tengku Ab; Hamzah, Zainab; Hashim, Othman; Mat, Hishamudin Che

    2015-05-01

    The aim of present study was to compare maceration method of selected herbs using green and non-green solvents. Water and d-limonene are a type of green solvents while non-green solvents are chloroform and ethanol. The selected herbs were Clinacanthus nutans leaf and stem, Orthosiphon stamineus leaf and stem, Sesbania grandiflora leaf, Pluchea indica leaf, Morinda citrifolia leaf and Citrus hystrix leaf. The extracts were compared with the determination of total phenolic content. Total phenols were analyzed using a spectrophotometric technique, based on Follin-ciocalteau reagent. Gallic acid was used as standard compound and the total phenols were expressed as mg/g gallic acid equivalent (GAE). The most suitable and effective solvent is water which produced highest total phenol contents compared to other solvents. Among the selected herbs, Orthosiphon stamineus leaves contain high total phenols at 9.087mg/g.

  5. Chemical Composition and Bioactivities of Two Common Chaenomeles Fruits in China: Chaenomeles speciosa and Chaenomeles sinensis.

    PubMed

    Miao, Jing; Zhao, Chengcheng; Li, Xia; Chen, Xuetao; Mao, Xinhui; Huang, Hanhan; Wang, Tingting; Gao, Wenyuan

    2016-08-01

    Contents of total flavonoids, total phenolics, total triterpenes, total condensed tannin and total saponins in peels, flesh and endocarps of Chaenomeles speciosa (CSP) and Chaenomeles sinensis (CSS) were determined by colorimetric method, while 5 phenolics (vanillic, gallic, chlorogenic, ferulic and p-coumaric acids), 2 triterpenes (oleanolic and ursolic acids), and 3 flavonoids (rutin, catechin and epicatechin) were identified and quantified by high-performance liquid chromatography-mass spectrometry (HPLC-MS) and HPLC, and antioxidant and α-glucosidase inhibitory activities of them also were evaluated as well as their digestive characteristics. In the correlation analysis, total phenolics, vanillic acid, catechin, ursolic acid and oleanolic acid all contribute to DPPH(·) scavenge capacity, gallic acid contributes to total ferric reducing antioxidant power, while total triterpenes, total saponins, chlorogenic acid and ferullic acid contribute to α-glucosidase inhibitory activity. In the principal component analysis, endocarps of CSP and CSS both show better quality than their peels and flesh, respectively. In vitro digestion can increase contents of total flavonoids, total condensed tannin and total saponins, while contents of total phenolics and total triterpenes decreased greatly. Our study would contribute to the full use of discarded parts of the 2 Chaenomeles and be helpful to establish a good foundation for further research of CSP and CSS. © 2016 Institute of Food Technologists®

  6. Protective effects of kolaviron and gallic acid against cobalt-chloride-induced cardiorenal dysfunction via suppression of oxidative stress and activation of the ERK signaling pathway.

    PubMed

    Akinrinde, Akinleye Stephen; Omobowale, Olutayo; Oyagbemi, Ademola; Asenuga, Ebunoluwa; Ajibade, Temitayo

    2016-12-01

    Cobalt (Co) toxicity is a potential public health problem due to recent renewed use of Co in orthopedic implants, dietary supplements, and blood doping in athletes and horses. We investigated the protective roles of kolaviron (KV), a bi-flavonoid of Garcinia kola, and gallic acid (GA) on cobalt chloride (CoCl 2 )-induced cardiorenal damage in rats. CoCl 2 caused significant increases (p < 0.05) in serum creatine kinase-myocardial band (CK-MB), lactate dehydrogenase (LDH), aspartate transaminase (AST), xanthine oxidase (XO), urea, creatinine, malondialdehyde, H 2 O 2 , nitric oxide, as well as C-reactive protein expression, along with significant (p < 0.05) reduction in cardiac and renal expression of extracellular signal regulated kinase (ERK) and the activities of superoxide dismutase, catalase, and glutathione S-transferase. KV and GA prevented the toxic effects of CoCl 2 by stimulating ERK expression and reversing Co-induced biochemical changes. Administration of CoCl 2 alone did not significantly alter ECG patterns in the rats, although co-treatment with KV (200 mg/kg) produced QT-segment prolongation and also appeared to potentiate Co hypotension. Histopathology of the heart and kidneys of rats treated with KV and GA confirmed the biochemical data. KV and GA thus protected against cardiac and renal damage in Co intoxication via antioxidant and (or) cell survival mechanisms, possibly involving ERK activation.

  7. Kynurenic acid content in anti-rheumatic herbs.

    PubMed

    Zgrajka, Wojciech; Turska, Monika; Rajtar, Grażyna; Majdan, Maria; Parada-Turska, Jolanta

    2013-01-01

    The use of herbal medicines is common among people living in rural areas and increasingly popular in urbanized countries. Kynurenic acid (KYNA) is a metabolite of kynurenine possessing anti-inflammatory, anti-oxidative and pain reliving properties. Previous data indicated that the content of KYNA in the synovial fluid of patients with rheumatoid arthritis is lower than in patients with osteoarthritis. Rheumatoid arthritis is a chronic, systemic inflammatory disorder affecting about 1% of the world's population. The aim of the presented study was to investigate the content of KYNA in 11 herbal preparations used in rheumatic diseases. The following herbs were studied: bean pericarp, birch leaf, dandelion root, elder flower, horsetail herb, nettle leaf, peppermint leaf and willow bark. An anti-rheumatic mixture of the herbs Reumatefix and Reumaflos tea were also investigated. The herbs were prepared according to producers' directions. In addition, the herbal supplement Devil's Claw containing root of Harpagophytum was used. KYNA content was measured using the high-performance liquid chromatography method, and KYNA was detected fluorometrically. KYNA was found in all studied herbal preparations. The highest content of KYNA was found in peppermint, nettle, birch leaf and the horsetail herb. The lowest content of KYNA was found in willow bark, dandelion root and in the extract from the root of Harpagophytum. These findings indicate that the use of herbal preparations containing a high level of KYNA can be considered as a supplementary measure in rheumatoid arthritis therapy, as well as in rheumatic diseases prevention.

  8. An 11-bp Insertion in Zea mays fatb Reduces the Palmitic Acid Content of Fatty Acids in Maize Grain

    PubMed Central

    Li, Qing; Yang, Xiaohong; Zheng, Debo; Warburton, Marilyn; Chai, Yuchao; Zhang, Pan; Guo, Yuqiu; Yan, Jianbing; Li, Jiansheng

    2011-01-01

    The ratio of saturated to unsaturated fatty acids in maize kernels strongly impacts human and livestock health, but is a complex trait that is difficult to select based on phenotype. Map-based cloning of quantitative trait loci (QTL) is a powerful but time-consuming method for the dissection of complex traits. Here, we combine linkage and association analyses to fine map QTL-Pal9, a QTL influencing levels of palmitic acid, an important class of saturated fatty acid. QTL-Pal9 was mapped to a 90-kb region, in which we identified a candidate gene, Zea mays fatb (Zmfatb), which encodes acyl-ACP thioesterase. An 11-bp insertion in the last exon of Zmfatb decreases palmitic acid content and concentration, leading to an optimization of the ratio of saturated to unsaturated fatty acids while having no effect on total oil content. We used three-dimensional structure analysis to explain the functional mechanism of the ZmFATB protein and confirmed the proposed model in vitro and in vivo. We measured the genetic effect of the functional site in 15 different genetic backgrounds and found a maximum change of 4.57 mg/g palmitic acid content, which accounts for ∼20–60% of the variation in the ratio of saturated to unsaturated fatty acids. A PCR-based marker for QTL-Pal9 was developed for marker-assisted selection of nutritionally healthier maize lines. The method presented here provides a new, efficient way to clone QTL, and the cloned palmitic acid QTL sheds lights on the genetic mechanism of oil biosynthesis and targeted maize molecular breeding. PMID:21931818

  9. Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing*

    PubMed Central

    Huang, Wu-yang; Zhang, Hong-cheng; Liu, Wen-xu; Li, Chun-yang

    2012-01-01

    Berries are a good source of natural antioxidants. In the present study, the total antioxidant capacity and phenolic composition of three berry fruits (blueberry, blackberry, and strawberry) cultivated in Nanjing were investigated. Blueberry, with a Trolox equivalent antioxidant capacity (TEAC) value of 14.98 mmol Trolox/100 g dry weight (DW), exhibited the strongest total antioxidant capacity using both the 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) methods. Blueberry also had the highest total phenolic content (TPC, 9.44 mg gallic acid/g DW), total flavonoid content (TFC, 36.08 mg rutin/g DW), and total anthocyanidin content (TAC, 24.38 mg catechin/g DW). A preliminary analysis using high performance liquid chromatography (HPLC) showed that the blueberry, blackberry, and strawberry samples tested contained a range of phenolic acids (including gallic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, p-coumaric acid, ferulic acid, ellagic acid, and cinnamic acid) and various types of flavonoids (flavone: luteolin; flavonols: rutin, myricetin, quercetrin, and quercetin; flavanols: gallocatechin, epigallocatechin, catechin, and catechin gallate; anthocyanidins: malvidin-3-galactoside, malvidin-3-glucoside, and cyanidin). In particular, the blueberries had high levels of proanthocyanidins and anthocyanidins, which might be responsible for their strong antioxidant activities. These results indicate a potential market role for berries (especially blueberries) as a functional food ingredient or nutraceutical. PMID:22302422

  10. Metabolic variation and antioxidant potential of Malus prunifolia (wild apple) compared with high flavon-3-ol containing fruits (apple, grapes) and beverage (black tea).

    PubMed

    Maria John, K M; Enkhtaivan, Gansukh; Kim, Ju Jin; Kim, Doo Hwan

    2014-11-15

    Secondary metabolic variation of wild apple (Malus prunifolia) was compared with fruits that contained high flavan-3-ol like grapes (GR), apple (App) and the beverage, black tea (BT). The polyphenol contents in wild apple was higher than in GR and App but less than BT. The identified phenolic acids (gallic, protocatechuic, chlorogenic, p-coumaric and ferulic acids) and flavonoids (quercetin and myricetin) indicate that wild apple was higher than that of App. Among all the samples, BT had highest antioxidant potential in terms of 2,2'-Azinobis (3-thylbenzothiazoline-6-sulfonic acid) diammonium salt (95.36%), metal chelating (45.36%) and phosphomolybdenum activity (95.8 mg/g) because of the high flavan-3-ol content. The gallic acid and epigallocatechin gallate were highly correlated with antioxidant potential and these metabolites levels are higher in wild apple than that of App. Wild apples being a non-commercial natural source, a detailed study of this plant will be helpful for the food additive and preservative industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Bioactives of coffee cherry pulp and its utilisation for production of Cascara beverage.

    PubMed

    Heeger, Andrea; Kosińska-Cagnazzo, Agnieszka; Cantergiani, Ennio; Andlauer, Wilfried

    2017-04-15

    Coffee cherry pulp is a by-product obtained during coffee production. Coffee cherry pulp contains considerable amounts of phenolic compounds and caffeine. An attempt to produce Cascara, a refreshing beverage, has been made. Six dried coffee pulp samples and a beverage called Cascara produced in Switzerland out of one of those samples were investigated. Aqueous extraction of coffee pulps revealed a content of total polyphenols between 4.9 and 9.2mg gallic acid equivalents (GAE)/gDM. The antioxidant capacity was between 51 and 92μmol Trolox equivalents (TE)/gDM as measured by the assay with ABTS radical. Bourbon variety from Congo and maragogype variety showed highest caffeine contents with 6.5 and 6.8mg/gDM. In all samples chlorogenic acid, protocatechuic acid, gallic acid and rutin were present. The beverage Cascara contained 226mg/L of caffeine and 283mgGAE/L of total polyphenols whereas antioxidant capacity amounted to 8.9mmol TE/L. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds.

    PubMed

    Gülçin, Ilhami

    2005-11-01

    Water and ethanol crude extracts from black pepper (Piper nigrum) were investigated for their antioxidant and radical scavenging activities in six different assay, namely, total antioxidant activity, reducing power, 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) free radical scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, and metal chelating activities. Both water extract (WEBP) and ethanol extract (EEBP) of black pepper exhibited strong total antioxidant activity. The 75 microg/ml concentration of WEBP and EEBP showed 95.5% and 93.3% inhibition on peroxidation of linoleic acid emulsion, respectively. On the other hand, at the same concentration, standard antioxidants such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and alpha-tocopherol exhibited 92.1%, 95.0%, and 70.4% inhibition on peroxidation of linoleic acid emulsion, respectively. Also, total phenolic content in both WEBP and EEBP were determined as gallic acid equivalents. The total phenolics content of water and ethanol extracts were determined by the Folin-Ciocalteu procedure and 54.3 and 42.8 microg gallic acid equivalent of phenols was detected in 1 mg WEBP and EEBP.

  13. Exploring genotypic variations for improved oil content and healthy fatty acids composition in rapeseed (Brassica napus L.).

    PubMed

    Ishaq, Muhammad; Razi, Raziuddin; Khan, Sabaz Ali

    2017-04-01

    Development of new genotypes having high oil content and desirable levels of fatty acid compositions is a major objective of rapeseed breeding programmes. In the current study combining ability was determined for oil, protein, glucosinolates and various fatty acids content using 8 × 8 full diallel in rapeseed (Brassica napus). Highly significant genotypic differences were observed for oil, protein, glucosinolates, oleic acid, linolenic acid and erucic acid content. Mean squares due to general combining ability (GCA), specific combining ability (SCA) and reciprocal combining ability (RCA) were highly significant (P ≤ 0.01) for biochemical traits. Parental line AUP-17 for high oil content and low glucosinolates, genotype AUP-2 for high protein and oleic acids, and AUP-18 for low lenolenic and erucic acid were best general combiners. Based on desirable SCA effects, F 1 hybrids AUP-17 × AUP-20; AUP-2 × AUP-8; AUP-7 × AUP-14; AUP-2 × AUP-9; AUP-7 × AUP-14 and AUP-2 × AUP-9 were found superior involving at least one best general combiner. F 1 hybrids AUP-17 × AUP-20 (for oil content); AUP-2 × AUP-8 (for protein content); AUP-7 × AUP-14 (for glucosinolates); AUP-2 × AUP-9 (for oleic acid); AUP-7 × AUP-14 (for linolenic acid) and AUP-2 × AUP-9 (for erucic acid) were found superior involving at least one best general combiner. As reciprocal crosses of AUP-14 with AUP-7 and AUP-8 were superior had low × low and low × high GCA effects for glucosinolates and oleic acid, respectively therefore, these could be exploited in future rapeseed breeding programmes to develop new lines with good quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Variation in gymnemic acid content and non-destructive harvesting of Gymnema sylvestre (Gudmar)

    PubMed Central

    Pandey, Ashok Kumar; Yadav, Swati

    2010-01-01

    Background: Madhunashini (Gymnema sylvestre R. Br.) commonly known as ‘Gudmar’ in Hindi is an important medicinal climber and extensively used in almost all Indian System of Medicine as a remedy for diabetes, rheumatism, cough, ulcer, jaundice, dyspepsia, constipation, eyes pain and also in snakebite. In India, it is found growing in Andhra Pradesh, Bihar, Chhattisgarh, Karnataka, Kerala, Madhya Pradesh, Maharastra, Orissa, Tamil Nadu, Uttar Pradesh and West Bengal. The major phytoconstituents are gymnemic acids, gudmarin and saponins. Methods: In the present study, Gymnema germplasm collected from various regions of Madhya Pradesh was evaluated on the basis of their morphological characteristics and gymnemic acid content. Gymnemic acid content in the leaves was estimated by HPLC. We have also standardized the non-destructive harvesting practices of Gudmar. Selective harvesting was done without harming the main plant. Only mature leaves (60%) were hand plucked in the month of October. Second harvest was done in the month of June. Results: Data revealed that gymnemic acid content varied between 0.96% ± 0.03 (Seoni) to 1.58% ±0.03 (Amarkantak). It was also observed that the leaves left at the time of 1st harvest during October matured in June at the time of 2nd harvest. Conclusion: Non destructive harvesting practice did not have any negative impact on overall development of the plant. It is evident that there is wide variation in the morphological characteristics and gymnemic acid content in G. sylvestre collected from various locations, which can be exploited for further crop improvement programmes. PMID:21589758

  15. Variation in gymnemic acid content and non-destructive harvesting of Gymnema sylvestre (Gudmar).

    PubMed

    Pandey, Ashok Kumar; Yadav, Swati

    2010-09-01

    Madhunashini (Gymnema sylvestre R. Br.) commonly known as 'Gudmar' in Hindi is an important medicinal climber and extensively used in almost all Indian System of Medicine as a remedy for diabetes, rheumatism, cough, ulcer, jaundice, dyspepsia, constipation, eyes pain and also in snakebite. In India, it is found growing in Andhra Pradesh, Bihar, Chhattisgarh, Karnataka, Kerala, Madhya Pradesh, Maharastra, Orissa, Tamil Nadu, Uttar Pradesh and West Bengal. The major phytoconstituents are gymnemic acids, gudmarin and saponins. In the present study, Gymnema germplasm collected from various regions of Madhya Pradesh was evaluated on the basis of their morphological characteristics and gymnemic acid content. Gymnemic acid content in the leaves was estimated by HPLC. We have also standardized the non-destructive harvesting practices of Gudmar. Selective harvesting was done without harming the main plant. Only mature leaves (60%) were hand plucked in the month of October. Second harvest was done in the month of June. Data revealed that gymnemic acid content varied between 0.96% ± 0.03 (Seoni) to 1.58% ±0.03 (Amarkantak). It was also observed that the leaves left at the time of 1(st) harvest during October matured in June at the time of 2(nd) harvest. Non destructive harvesting practice did not have any negative impact on overall development of the plant. It is evident that there is wide variation in the morphological characteristics and gymnemic acid content in G. sylvestre collected from various locations, which can be exploited for further crop improvement programmes.

  16. Comparative study on fatty acid composition of olive (Olea europaea L.), with emphasis on phytosterol contents.

    PubMed

    Ozkan, Ali; Aboul-Enein, Hassan Y; Kulak, Muhittin; Bindak, Recep

    2017-08-01

    The present study was designed to determine the fatty acid composition and phytosterol contents of Turkish native olive cultivars, namely Kilis Yağlık and Nizip Yağlık cv. In this context, olive fruits from 34 locations were sampled and then screened for their components in comparison. Fifteen different fatty acids were found in both olive oils. In the order of abundance, the most important ones were oleic acid (18:1) > palmitic acid (16:0) > linoleic acid (18:2) > stearic acid (18:0). Significant differences were observed in the contents of oleic acid (18:1), palmitic acid (16:0), linoleic acid (18:2) but not for stearic acid content in comparison both oils (p < 0.01). There were significant differences in terms of unsaturated fatty acids, saturated fatty acids and polyunsaturated fatty acids (p < 0.01). The seven phytosterols - cholesterol, campesterol, stigmasterol, β-sitosterol, Δ-5-avenasterol, Δ-7-stigmastenol and Δ-7-avenasterol - were studied in both oil sources. The predominant sterols were β-sitosterol, Δ5-avenasterol and campesterol in the samples analysed. However, no significant differences were found in the levels of the phytosterols between the two olive cultivars. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Effect of microwave drying and oven drying on the water activity, color, phenolic compounds content and antioxidant activity of coconut husk (Cocos nucifera L.).

    PubMed

    Valadez-Carmona, Lourdes; Cortez-García, Rosa María; Plazola-Jacinto, Carla Patricia; Necoechea-Mondragón, Hugo; Ortiz-Moreno, Alicia

    2016-09-01

    The coconut ( Cocos nucifera L.) husk is basically composed by fiber and pith material and remained under-utilized. This is an important source of phenolic compounds that could be used as functional ingredients. The aim of this study was to determine the effect of: oven-drying (OD) and microwave drying (MD), on the water activity, color, phenolic compound content and antioxidant activity of coconut husk. The OD was performed at 60 °C for 12 h and MD was performed at 900 W for 10 min. The total phenolic content (TPC) in fresh coconut husk was 64.2 mg GAE/g dry wt and significant higher than observed after OD and MD of 35.8 and 45.5 mg GAE/g dry wt, respectively. Ten phenols were identified in fresh and dehydrated coconut husks. The husk MD showed an increase in the content of gallic, 4-hydroxybenzoic, ferulic and syringic acids and epicatechin compared with the fresh; while coconut husk OD and MD, showed a decrease in the content of vanillic acid, vanillin, catequin and kaempferol. The antioxidant activity decreased after both OD and MD. However, MD resulted in a better antioxidant activity in husk than OD. MD of husk resulted into better retention of preserved color, TPC and TFC than OD.

  18. Determining total phenolic content and total antioxidant capacity of loquat cultivars grown in Hatay

    PubMed Central

    Polat, A. Aytekin; Çalişkan, Oğuzhan; Serçe, Sedat; Saraçoğlu, Onur; Kaya, Cemal; Özgen, Mustafa

    2010-01-01

    Several fruit characteristics of five loquat (Eriobotrya japonica (Thunb.) Lindl.) cultivars/selections grown in Dörtyol, Hatay, Turkey were investigated in 2008. The cultivars/selections included ‘Baduna 5’, Güzelyurt 1, ‘Hafif Çukurgöbek’, ‘Ottaviani,’ and Type 1. The characteristics evaluated included fruit weight, width, length, seed number and weight, flesh/seed ratio, total soluble solids (TSS), pH, acidity, total phenolic (TP) content, and total antioxidant capacity (TAC), determined by the ferric reducing antioxidant power (FRAP) assay. The analyses were conducted by three replicates, with 30 fruits in each replicate. The results indicated that there were significant differences among the cultivars, for all the traits tested. For example, ‘Hafif Çukurgöbek’ and ‘Ottaviani’ had smaller fruits than others, although ‘Hafif Çukurgöbek’ had heavier seeds. The flesh/seed ratio was the highest in Type 1, while ‘Hafif Çukurgöbek’ had the highest pH and high soluble solids. ‘Baduna 5’ and ‘Hafif Çukurgöbek’ had the highest acidity. The TP ranged from 129 (‘Baduna 5’) to 578 (‘Hafif Çukurgöbek’) mg gallic acid equivalent (GAE)/kg fresh fruit (fw). ‘Hafif Çukurgöbek’ also had the highest FRAP mean (12.1 mmol Trolox Equivalent (TE)/kg fw). The results suggest that loquat cultivars have a variable range of TP content and a relatively high total antioxidant capacity, which is crucial for human health. PMID:20548929

  19. The Effect of Copper And Zinc Nanoparticles on the Growth Parameters, Contents of Ascorbic Acid, and Qualitative Composition of Amino Acids and Acylcarnitines in Pistia stratiotes L. (Araceae)

    NASA Astrophysics Data System (ADS)

    Olkhovych, Olga; Volkogon, Mykola; Taran, Nataliya; Batsmanova, Lyudmyla; Kravchenko, Inna

    2016-04-01

    The paper covers the research of copper and zinc nanoparticle effect on the content of ascorbic acid, and quantitative and qualitative composition of amino acids and acylcarnitines in Pistia stratiotes L. plants. Plant exposition to copper nanoparticles led to the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 25 %), and (3) the amount of all studied amino acids except for the glycine amino acid. At this, the amount of 5-oxoproline, arginine, leucine, ornithine, phenylalanine, proline, serine, and tyrosine was two times lower than in control plants. The reduction of the contents of 8 out of 12 investigated acylcarnitines (namely C0, C2, C3, C5, C6, C8, C16, C18:1) was observed in plants under the influence of copper nanoparticles. The result of plants incubation with zinc nanoparticles was the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 15 %), (3) the content of leucine, methionine, phenylalanine, proline, and tyrosine (more than twice), and (4) the content of 10 acylcarnitines (C0, C2, C3, C4, C5, C10, C16, C18, C18:1, C18:2). The observed reduction in amino acid contents may negatively affect plants adaptive reactions associated with de novo synthesis of stress proteins. At the same time, the decrease in the content of acylcarnitines, responsible for fatty acid transportation, may lead to the changes in the activity and direction of lipid metabolism in plants and reduce plant's ability to use free fatty acids as the oxidation substrate for cell reparation.

  20. Assessment of oil content and fatty acid composition variability in two economically important Hibiscus species.

    PubMed

    Wang, Ming Li; Morris, Brad; Tonnis, Brandon; Davis, Jerry; Pederson, Gary A

    2012-07-04

    The Hibiscus genus encompasses more than 300 species, but kenaf (Hibiscus cannabinus L.) and roselle (Hibiscus sabdariffa L.) are the two most economically important species within the genus. Seeds from these two Hibiscus species contain a relatively high amount of oil with two unusual fatty acids: dihydrosterculic and vernolic acids. The fatty acid composition in the oil can directly affect oil quality and its utilization. However, the variability in oil content and fatty acid composition for these two species is unclear. For these two species, 329 available accessions were acquired from the USDA germplasm collection. Their oil content and fatty acid composition were determined by nuclear magnetic resonance (NMR) and gas chromatography (GC), respectively. Using NMR and GC analyses, we found that Hibiscus seeds on average contained 18% oil and seed oil was composed of six major fatty acids (each >1%) and seven minor fatty acids (each <1%). Hibiscus cannabinus seeds contained significantly higher amounts of oil (18.14%), palmitic (20.75%), oleic (28.91%), vernolic acids (VA, 4.16%), and significantly lower amounts of stearic (3.96%), linoleic (39.49%), and dihydrosterculic acids (DHSA, 1.08%) than H. sabdariffa seeds (17.35%, 18.52%, 25.16%, 3.52%, 4.31%, 44.72%, and 1.57%, respectively). For edible oils, a higher oleic/linoleic (O/L) ratio and lower level of DHSA are preferred, and for industrial oils a high level of VA is preferred. Our results indicate that seeds from H. cannabinus may be of higher quality than H. sabdariffa seeds for these reasons. Significant variability in oil content and major fatty acids was also detected within both species. The variability in oil content and fatty acid composition revealed from this study will be useful for exploring seed utilization and developing new cultivars in these Hibiscus species.

  1. Validated Method for the Characterization and Quantification of Extractable and Nonextractable Ellagitannins after Acid Hydrolysis in Pomegranate Fruits, Juices, and Extracts.

    PubMed

    García-Villalba, Rocío; Espín, Juan Carlos; Aaby, Kjersti; Alasalvar, Cesarettin; Heinonen, Marina; Jacobs, Griet; Voorspoels, Stefan; Koivumäki, Tuuli; Kroon, Paul A; Pelvan, Ebru; Saha, Shikha; Tomás-Barberán, Francisco A

    2015-07-29

    Pomegranates are one of the main highly valuable sources of ellagitannins. Despite the potential health benefits of these compounds, reliable data on their content in pomegranates and derived extracts and food products is lacking, as it is usually underestimated due to their complexity, diversity, and lack of commercially available standards. This study describes a new method for the analysis of the extractable and nonextractable ellagitannins based on the quantification of the acid hydrolysis products that include ellagic acid, gallic acid, sanguisorbic acid dilactone, valoneic acid dilactone, and gallagic acid dilactone in pomegranate samples. The study also shows the occurrence of ellagitannin C-glycosides in pomegranates. The method was optimized using a pomegranate peel extract. To quantify nonextractable ellagitannins, freeze-dried pomegranate fruit samples were directly hydrolyzed with 4 M HCl in water at 90 °C for 24 h followed by extraction of the pellet with dimethyl sulfoxide/methanol (50:50, v/v). The method was validated and reproducibility was assessed by means of an interlaboratory trial, showing high reproducibility across six laboratories with relative standard deviations below 15%. Their applicability was demonstrated in several pomegranate extracts, different parts of pomegranate fruit (husk, peels, and mesocarp), and commercial juices. A large variability has been found in the ellagitannin content (150-750 mg of hydrolysis products/g) and type (gallagic acid/ellagic acid ratios between 4 and 0.15) of the 11 pomegranate extracts studied.

  2. Variation in the fatty-acid content in seeds of various black, red, and white currant varieties.

    PubMed

    Šavikin, Katarina P; Ðorđević, Boban S; Ristić, Mihailo S; Krivokuća-Ðokić, Dragana; Pljevljakušić, Dejan S; Vulić, Todor

    2013-01-01

    Currant seeds, a by-product of juice production, are recognized as a valuable source of oil rich in polyunsaturated fatty acids. We have evaluated 28 currant varieties for their oil content and fatty-acid composition. The oil content in the seeds ranged from 18.2-27.7%, and no statistical difference between varieties of different fruit color were recorded. Furthermore, the estimated oil yields in the field production ranged from 26.4-212.4 kg/ha. The GC and GC/MS chemical profiles of the seed oils extracted from all examined varieties were common for currants. Linoleic acid (LA) was the major component, with contents ranging from 32.7-46.9% of total fatty acids, followed by α-linolenic acid (ALA; 2.9-32.0 %), oleic acid (OA; 9.8-19.9%), γ-linolenic acid (GLA; 3.3-18.5%), palmitic acid (PA; 4.4-8.1%), stearidonic acid (SDA; 2.2-4.7%), and stearic acid (SA; 1.2-2.4%). Quantitative differences in the fatty-acid profiles between varieties of different fruit color were observed. Blackcurrant varieties showed significantly higher contents of LA, GLA, and PA than red and white currant varieties, whereas significantly higher amounts of ALA and OL were detected in the red and white varieties. Cluster analysis based on the chemical oil profiles joined the blackcurrants in one group, while most of the red and white cultivars joined in a second group at the same linkage distance. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  3. Phenolic compounds, organic acids and antioxidant activity of grape juices produced from new Brazilian varieties planted in the Northeast Region of Brazil.

    PubMed

    Lima, Marcos Dos Santos; Silani, Igor de Souza Veras; Toaldo, Isabela Maia; Corrêa, Luiz Claudio; Biasoto, Aline Camarão Telles; Pereira, Giuliano Elias; Bordignon-Luiz, Marilde T; Ninow, Jorge Luiz

    2014-10-15

    The phenolic compounds, organic acids and the antioxidant activity were determined for grape juice samples from new Brazilian varieties grown in the Sub-middle São Francisco Valley in the Northeast Region of Brazil. The results showed that the Brazilian grape juices have high antioxidant activity, which was significantly correlated with the phenolic compounds catechin, epicatechin gallate, procyanidin B1, rutin, gallic acid, caffeic acid, p-coumaric acid, pelargonidin-3-glucoside, cyanidin-3-glucoside, cyaniding-3,5-diglucoside and delphinidin-3-glucoside. The produced juice samples showed higher concentrations of trans-resveratrol than those observed in juices made from different varieties of grapes from traditional growing regions. Organic acids concentrations were similar to those of juices produced from other classical varieties. It was demonstrated that it is possible to prepare juices from grapes of new varieties grown in the Northeast of Brazil containing a high content of bioactive compounds and typical characteristics of the tropical viticulture practised in the Sub-middle São Francisco Valley. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Effects of DDT and BHC on amino acid content and its varieties in Chlorella vulgaris Beij. and Cladophora sp.

    NASA Astrophysics Data System (ADS)

    Lin, Yixiong

    1991-03-01

    In Chlorella vulgaris Beij. and Cladophora sp. treated with different concentrations of r-BHC and p, p-DDT, the protein and free amino acid content in both were higher than those in the controls, and the free amino acid content was even higher than the protein amino acid content.

  5. Nitrogen fertilization and plant growth promoting rhizobacteria treatments affected amino acid content of cabbage

    NASA Astrophysics Data System (ADS)

    Dursun, Atilla; Yildirim, Ertan; Ekinci, Melek; Turan, Metin; Kul, Raziye; Karagöz, Fazilet P.

    2017-04-01

    This study was designed to determine the influence of a nitrogen fixing plant growth promoting rhizobacteria (PGPR) inoculation (seed coating and seedling dipping) and 6 doses of nitrogen (0, 40, 80, 120, 160, 200 kg ha-1) application on amino acid contents of cabbage. Coating and seedling dipping applications caused a significant increase in values histidine, glycine, thionin, arginine and alanine of cabbage. Highest glutamate, serine, asparagines and glutamine contents were obtained from 160-200 kg ha-1 nitrogen dose applied plants. As a result, the use of bacteria treatments provides means of improving amino acid contents in cabbage.

  6. Physical characters and antioxidant, sugar, and mineral nutrient contents in fruit from 29 apricot (Prunus armeniaca L.) cultivars and hybrids.

    PubMed

    Drogoudi, Pavlina D; Vemmos, Stavros; Pantelidis, Georgios; Petri, Evangelia; Tzoutzoukou, Chrysoula; Karayiannis, Irene

    2008-11-26

    Fruit physical and chemical characters of 29 apricot cultivars of Greek and American origin and their hybrids were evaluated using correlation and principal component analysis. A remarkable variation was observed in the total phenol content (0.3-7.4 mg gallic acid equivalent g(-1) FW) and total antioxidant capacity (0.026-1.858 mg ascorbic acid equivalent g(-1) FW), with the American origin cultivars Robada and NJA(2) and the new cultivar Nike exhibiting the greatest values. The cultivar Tomcot and hybrid 467/99 had the highest content of total carotene (37.8 microg beta-carotene equivalent g(-1) FW), which was up to four times greater as compared with the rest of studied genotypes. The dominant sugar in fruit tissue was sucrose, followed second by glucose and third by sorbitol and fructose-inositol. The new cultivars Nike, Niobe, and Neraida contained relatively higher contents of sucrose and total sugars, while Ninfa and P. Tirynthos contained relatively higher contents of K, Ca, and Mg. Correlation analysis suggested that late-harvesting cultivars/hybrids had greater fruit developmental times (r = 0.817) and contained higher sugar (r = 0.704) and less Mg contents (r= -0.742) in fruit tissue. The total antioxidant capacity was better correlated with the total phenol content (r = 0.954) as compared with the total carotenoid content (r = 0.482). Weak correlations were found between the fruit skin color and the antioxidant contents in flesh tissue. Multivariate analysis allowed the grouping of variables, with more important variables being the harvest date, fruit developmental time, skin Chroma, sorbitol, and total sugar, K and Mg contents. Plotting the genotypes in a dendrogram revealed cases of homonymy between parents and hybrids, although independent segregation of the measured traits after hybridization was also found.

  7. Effect of stevia and citric acid on the stability of phenolic compounds and in vitro antioxidant and antidiabetic capacity of a roselle (Hibiscus sabdariffa L.) beverage.

    PubMed

    Pérez-Ramírez, Iza F; Castaño-Tostado, Eduardo; Ramírez-de León, José A; Rocha-Guzmán, Nuria E; Reynoso-Camacho, Rosalía

    2015-04-01

    Plant infusions are consumed due to their beneficial effects on health, which is attributed to their bioactive compounds content. However, these compounds are susceptible to degradation during processing and storage. The objective of this research was to evaluate the effect of stevia and citric acid on the stability of phenolic compounds, antioxidant capacity and carbohydrate-hydrolysing enzyme inhibitory activity of roselle beverages during storage. The optimum extraction conditions of roselle polyphenolic compounds was of 95 °C/60 min, which was obtained by a second order experimental design. The incorporation of stevia increased the stability of colour and some polyphenols, such as quercetin, gallic acid and rosmarinic acid, during storage. In addition, stevia decreased the loss of ABTS, DPPH scavenging activity and α-amylase inhibitory capacity, whereas the incorporation of citric acid showed no effect. These results may contribute to the improvement of technological processes for the elaboration of hypocaloric and functional beverages. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Changes of Protein and Lipid Contents, Amino Acid and Fatty Acid Compositions in Eggs and Yolk-Sac Larvae of American Shad ( Alosa sapidissima)

    NASA Astrophysics Data System (ADS)

    Liu, Zhifeng; Gao, Xiaoqiang; Yu, Jiuxiang; Wang, Yaohui; Guo, Zhenglong; Huang, Bin; Liu, Baoliang; Hong, Lei

    2018-04-01

    To investigate the changes of the biochemical composition of American shad ( Alosa sapidissima) eggs and larvae at embryonic and early larval stages, samples were collected at different development stages from artificial fertilization to the end of yolk absorption including 2 h, 12 h and 30 h after fertilization and newly hatched larvae including 1 and 3 days after hatching. The composition of lipid, fatty acids, protein and amino acids were analyzed. The content of total protein exhibited a decreasing trend during embryogenesis and larval development, and a significant reduction was detected after hatching ( P < 0.05). The total lipid content remained relative stable. A significant reduction was detected in almost all amino acids after hatching except for glycine ( P < 0.05), while a significant decrease was found in the content of cysteine, proline, tyrosine, valine, isoleucine, leucine and phenylalanine during the yolk-sac phase ( P < 0.05). On the other hand, all the groups of fatty acids remained stable during the period of embryogenesis. But after hatching, a significant decrease was found in the content of C18:2n-6, C18:3n-6, SFA and ratio of EPA/ARA ( P < 0.05), while a significant increase was found in the content of C18:3n-3, C20:4n-6, C22:6n-3 and ratio of n-3/n-6 ( P < 0.05). In conclusion, the combined data suggested that American shad utilizes the protein content as preferential energy substrates during embryonic and early larval developments with some specificity in the consumption of different amino acids.

  9. Analysis of Antibacterial Activity and Bioactive Compounds of the Giant Mushroom, Macrocybe gigantea (Agaricomycetes), from India.

    PubMed

    Gaur, Tanvi; Rao, P B

    2017-01-01

    The antibacterial activity, phenolic profile, and bioactive compounds of fruiting bodies from 2 strains (MA1 and MA2) of the giant mushroom Macrocybe gigantea were evaluated to access their nutraceutical efficacy. The antibacterial activity was higher in MA2 against all selected pathogenic bacteria. Selected phenolics were analyzed by high-performance liquid chromatography coupled with ultraviolet-visible detection. Gallic acid, ferulic acid, quercetin, p-hydroxy benzoic acid, cinnamic acid, and rutin contents (micrograms per gram dry weight) were quantified. Quercetin and rutin were absent in both strains of M. gigantea. M. gigantea MA2 showed relatively higher phenolic content (915.8 μg/g dry weight) than M. gigantea MA1 (854.4 μg/g dry weight). Among the phenolics, gallic acid is found in the largest amount; in M. gigantea MA2, it was 847.9 ± 2.67 μg/g dry weight. Gas chromatography-mass spectrometry analysis showed the presence of bioactive compounds in both strains; most compounds were antibacterial. Thus, the selected strains of M. gigantea can combat oxidative damage and can be used in foods, pharmaceuticals, and cosmetics because of their antioxidant potential.

  10. Pharmacognostic Specification, Chlorogenic Acid Content, and In vitro Antioxidant Activities of Lonicera japonica Flowering Bud.

    PubMed

    Chaowuttikul, Chayanon; Palanuvej, Chanida; Ruangrungsi, Nijsiri

    2017-01-01

    Lonicera japonica Thunb. or Japanese Honeysuckle has been widely used in traditional medicine for antipyretic. To establish the pharmacognostic specification of L. japonica flowering bud in Thailand and to determine its chlorogenic acid content and in vitro antioxidant activities. Dried L. japonica flowering bud from 15 various herbal drugstores throughout Thailand were investigated for pharmacognostic specification. Their chlorogenic acid contents were quantitatively analyzed by thin layer chromatography (TLC) densitometry with winCATS software. The mobile phase for TLC development consisted of ethyl acetate: formic acid: acetic acid: water (10:1.1:1.1:2.6). Antioxidant activities were investigated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric ion reducing antioxidant power assay, nitric oxide scavenging assay, and β-carotene bleaching assays. Qualified L. japonica flowering bud in Thailand was presented that the contents of loss on drying, total ash, acid-insoluble ash, and water should not be >10.11%, 6.59%, 1.14%, and 10.82% by weight, respectively. The ethanol and water soluble extractive values should not be < 16.46% and 28.88% by weight, respectively. Chlorogenic acid content in L. japonica flowering bud was found to be 2.24 ± 0.50 g/100 g of crude drug. L. japonica flowering bud showed DPPH and nitric oxide scavenging activities as well as reducing power property. This pharmacognostic specification with special reference to the chlorogenic acid content can be used for quality control of L. japonica flowering bud in Thailand. The potential antioxidant of this crude drug was demonstrated in vitro . Pharmacognostic specification of Lonicera japonica flowering bud in Thailand has been establishedThe chlorogenic acid content has been quantified by thin layer chromatography-densitometryThe ethanolic extract of L. japonica flowering bud showed antioxidation potential, especially on reducing power property. Abbreviations Used: TLC: Thin layer

  11. Pharmacognostic Specification, Chlorogenic Acid Content, and In vitro Antioxidant Activities of Lonicera japonica Flowering Bud

    PubMed Central

    Chaowuttikul, Chayanon; Palanuvej, Chanida; Ruangrungsi, Nijsiri

    2017-01-01

    Background: Lonicera japonica Thunb. or Japanese Honeysuckle has been widely used in traditional medicine for antipyretic. Objective: To establish the pharmacognostic specification of L. japonica flowering bud in Thailand and to determine its chlorogenic acid content and in vitro antioxidant activities. Materials and Methods: Dried L. japonica flowering bud from 15 various herbal drugstores throughout Thailand were investigated for pharmacognostic specification. Their chlorogenic acid contents were quantitatively analyzed by thin layer chromatography (TLC) densitometry with winCATS software. The mobile phase for TLC development consisted of ethyl acetate: formic acid: acetic acid: water (10:1.1:1.1:2.6). Antioxidant activities were investigated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric ion reducing antioxidant power assay, nitric oxide scavenging assay, and β-carotene bleaching assays. Results: Qualified L. japonica flowering bud in Thailand was presented that the contents of loss on drying, total ash, acid-insoluble ash, and water should not be >10.11%, 6.59%, 1.14%, and 10.82% by weight, respectively. The ethanol and water soluble extractive values should not be < 16.46% and 28.88% by weight, respectively. Chlorogenic acid content in L. japonica flowering bud was found to be 2.24 ± 0.50 g/100 g of crude drug. L. japonica flowering bud showed DPPH and nitric oxide scavenging activities as well as reducing power property. Conclusion: This pharmacognostic specification with special reference to the chlorogenic acid content can be used for quality control of L. japonica flowering bud in Thailand. The potential antioxidant of this crude drug was demonstrated in vitro. SUMMARY Pharmacognostic specification of Lonicera japonica flowering bud in Thailand has been establishedThe chlorogenic acid content has been quantified by thin layer chromatography-densitometryThe ethanolic extract of L. japonica flowering bud showed antioxidation potential

  12. Antioxidant capacities, phenolic contents, and GC/MS analysis of Rhodiola imbricata Edgew. root extracts from Trans-Himalaya.

    PubMed

    Tayade, A B; Dhar, P; Sharma, M; Chauhan, R S; Chaurasia, O P; Srivastava, R B

    2013-03-01

    Our aim was to assess the antioxidant capacities and phenolic constituents of methanol and aqueous extracts of Rhodiola imbricata Edgew. root from Trans-Himalayan cold desert of Ladakh. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging capacity of the root extracts increased in a dose-dependent manner (up to 0.1 mg/mL) and root extract concentrations required for 50% inhibition of radical scavenging effect (IC50 ) were recorded as 0.013 and 0.014 mg/mL (for DPPH) and 0.016 and 0.017 mg/mL (for ABTS) for methanol and aqueous extracts, respectively. The total antioxidant power of the extract was determined by ferric reducing antioxidant power (FRAP) assay. Total polyphenol and phenolic acid content of methanol and aqueous extracts were 112.24, 59.06, 39.02, and 16.95 mg gallic acid equivalent/g of extract, respectively. Total flavonoid and flavonol contents were estimated to be 30.2, 17.67, 20.68, and 7.38 mg quercetin equivalent/g of extract, respectively. In all antioxidant capacity assays, the methanol extract exhibited significantly higher antioxidant capacity than that of aqueous extract due to the presence of significantly higher amount of vital phytoconstitiuents, viz. polyphenol, phenolic acid, and flavonol. GC/MS analysis showed that phytosterols, alkyl halide, phenols, and fatty acid esters were major phytochemical clusters. On the other hand, monoterpenes, fatty acids, tocopherols, aliphatic hydrocarbons, and ethers were found to be present in comparatively less amount in the methanol extract. Hence, our study signifies that this high-altitude medicinal herb could be used as the natural source of antioxidants and supports its use in traditional system of medicine to ameliorate oxidative stress and high-altitude maladies. © 2013 Institute of Food Technologists®

  13. Effect of gamma 60Co irradiation on the lipid content and fatty acid composition of Nannochloropsis sp. microalgae

    NASA Astrophysics Data System (ADS)

    Ermavitalini, Dini; Sari, Ika Puspita; Prasetyo, Endry Nugroho; Abdulgani, Nurlita; Saputro, Triono Bagus

    2017-06-01

    Nannochloropsissp. has been identified as a promising feed stock for biodiesel production in recent years. Nannochloropsis sp. have high lipid content between 31-68 % of dry biomass weight. Mutagenesis induced by Gamma 60Co irradiation can be utilized to alter Nannochloropsis sp. characteristic to get microalgae mutant strain that can produce a higher lipid content than the wild strain. The aim of this research was to know the effect of gamma 60Co irradiation to the biomass, lipid content and fatty acid compotition of Nannochloropsis sp. microalgae. In this research, irradiation was done in different doses there were 0, 2, 4, 6 and 10 Gray (Gy). Measuring microalgae biomass and lipid content were done in late exponential phase at the end of each treatment. Research design used is random complete with 95 % confident level for quantitative analysis based on biomass and lipid content. Fatty acid compotition was analyzed by gas chromatography-mass spectrometry (GC-MS). Results showed that gamma irradiated gave an effect on lipid content and fatty acid profile of Nannochloropsis sp. Tukey test showed total lipid content of control micoalgae (0 Gy) was significat different with 10 Gy irradiated microalgae, but no significant different with 2,4 and 6 Gy irradiated microalgae. The highest lipid content were found in 10 Gy irradiated microalgae equal to 62.65 %. Fatty acid profile of 10 Gy irradiated Nannochloropsis sp. had 9 fatty acids while control Nannochloropsis sp. had 6 fatty acids.

  14. Development of SSR Markers Linked to Low Hydrocyanic Acid Content in Sorghum-Sudan Grass Hybrid Based on BSA Method.

    PubMed

    Xiao-Xia, Yu; Zhi-Hua, Liu; Zhuo, Yu; Yue, Shi; Xiao-Yu, Li

    2016-01-01

    Sorghum-Sudan grass hybrid containing high hydrocyanic acid content can cause hydrocyanic acid poisoning to the livestock and limit the popularization of this forage crop. Molecular markers associated with low hydrocyanic acid content can speed up the process of identification of genotypes with low hydrocyanic acid content. In the present study, 11 polymorphic SSR primers were screened and used for bulked segregant analysis and single marker analysis. Three SSR markers Xtxp7230, Xtxp7375 and Bnlg667960 associated with low hydrocyanic acid content were rapidly identified by BSA. In single marker analysis, six markers Xtxp7230, Xtxp7375, Bnlg667960, Xtxp67-11, Xtxp295-7 and Xtxp12-9 were linked to low hydrocyanic acid content, which explained the proportion of phenotypic variation from 7.6 % to 41.2 %. The markers identified by BSA were also verified by single marker analysis. The three SSR marker bands were then cloned and sequenced for sequence homology analysis in NCBI. It is the first report on the development of molecular markers associated with low hydrocyanic acid content in sorghum- Sudan grass hybrid. These markers will be useful for genetic improvement of low hydrocyanic acid sorghum-Sudan grass hybrid by marker-assisted breeding.

  15. Reduction of Nucleic Acid Content in Candida Yeast Cells by Bovine Pancreatic Ribonuclease A Treatment

    PubMed Central

    Castro, A. C.; Sinskey, A. J.; Tannenbaum, S. R.

    1971-01-01

    Yeast as a source of protein for human consumption is limited by its relatively high nucleic acid content. In this study, we developed an enzymatic method of decreasing the nucleic acid content. Candida utilis cells, heat-shocked at 80 C for 30 sec, were treated with bovine pancreatic ribonuclease A. Maximum leakage of nucleic acid was observed when the incubation temperature was between 55 and 65 C, the pH of the system from 6.75 to 8.0, and the enzyme-to-cell ratio 1:10,000 on a weight-by-weight basis. Other factors, such as yeast strain, age of cells, and method of propagation, did not influence the susceptibility of the yeast cells to the action of ribonuclease. Buffers and monovalent cations had no inhibiting effects. Magnesium and calcium ions at concentrations greater than 0.001 m showed marked inhibition on the rate of nucleic acid leakage. This enzymatic method reduced the nucleic acid content of yeast cells from 7.5 to 9.0% to 1.5 to 2.0% with no significant concomitant loss of protein. PMID:5165838

  16. [The changes in contents and composition of phenolic acids during cell xylem growth in scots pine].

    PubMed

    Antonova, G F; Zheliznichenko, T V; Stasova, V V

    2011-01-01

    The contents and composition of alcohol soluble phenolic acids were studied during cell xylem growth in the course of wood annual increment formation in the stems of Scots pine. The cells of cambium zone, of two stages of expansion growth and the outset of secondary thickening zone (before lignification) were successively gathered from the stem segments of 25-old pine trees in the period of earlywood xylem formation with constant anatomical and histochemical control. The contents of free and bound forms of phenolic acids, isolated by 80% ethanol from tissues, as well as of their ethers and esters were calculated both per dry weight and per cell. The content and relation of the fractions and the composition of phenolic acid have been found to change significantly from cambium zone to the outset of tracheid secondary thickening. The character of the variations depends on a calculation method. According to the calculation per cell the amount of free and bound phenolic acids and in their composition of esters and especially ethers increased at the first step of expansion growth zone, decreased at the second one and rose again in the outset of secondary wall deposition. In dependence on the stage of cell development the pool of bound phenolic acids exceeded of free acid pool in 2-5 times. Sinapic and ferulic acids dominated in the composition of free hydroxycinnamic acids. The content and composition of hydroxycinnamic acids in ethers and esters depended on cell development phase. In cambium p-coumaric and sinapic acids were principal aglycons in ethers, at other stages these were sinapic and caffeic acids. The esters in cambium zone included essentially p-coumaric acid and at the other stages - sinapic and ferulic acids. At the first phase of growth benzoic acid was connected principally by ester bonds. The pool of these esters decreased from the first phase of growth to the outset of cell wall thickening and in proportion to this the level of free benzoic acid rose.

  17. Phytochemical screening, total phenolic, total flavonoids contents and antioxidant activity of cinchona ledgeriana leaves ethanol extract

    NASA Astrophysics Data System (ADS)

    Sundowo, Andini; Artanti, Nina; Hanafi, M.; Minarti, Primahana, Gian

    2017-11-01

    C ledgeriana is a medicinal plant that contains alkaloids, especially on the barks for commercial production of quinine as antimalarial. The main alkaloids in this plant are cinchonine, cinchonidine, quinine and quinidine. Besides for antiamalarial this plant is also commonly used to treat whooping cough, influenza and dysentery. Compare to other medicinal plants, nowadays only very few studies were conducted in Cinchona species. Our current study aims to determine the content of phytochemical, total phenol and total flavonoids from C. ledgeriana leaves 70% ethanol extract. The extraction was performed by maceration method using 70% ethanol solvent and then fractionated into hexane, ethylacetate and butanol. Phytochemical screening was performed to determine the content of alkaloids, flavonoids, terpenoids, tannins and saponins. Total phenol and flavonoid contents of the extract were determined by Folin-Ciocalteu and alumunium chloride colorimetric methods using gallic acid and quercetin as standards. The antioxidant activity was determined by using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. The results of phytochemical screening showed that the 70% ethanol extract of C. ledgeriana leaves contained alkaloids, flavonoids, terpenoids, tannins and saponins. The total phenol and total flavonoids analysis showed that ethyl acetate fraction had the highest total phenol (40.23%) and total flavonoids (65.34%).

  18. Comparison of the Proximate Composition, Total Carotenoids and Total Polyphenol Content of Nine Orange-Fleshed Sweet Potato Varieties Grown in Bangladesh.

    PubMed

    Alam, Mohammad Khairul; Rana, Ziaul Hasan; Islam, Sheikh Nazrul

    2016-09-14

    In an attempt to develop the food composition table for Bangladesh, the nutritional composition of nine varieties of orange-fleshed sweet potato was analyzed together with total carotenoids (TCC) and total polyphenol content (TPC). Each variety showed significant variation in different nutrient contents. The quantification of the TCC and TPC was done by spectrophotometric measurement, and the proximate composition was done by the AOAC method. The obtained results showed that total polyphenol content varied from 94.63 to 136.05 mg gallic acid equivalent (GAE)/100 g fresh weight. Among the selected sweet potatoes, Bangladesh Agricultural Research Institute (BARI) Sweet Potato 7 (SP7) contained the highest, whereas BARI SP6 contained the lowest amount of total polyphenol content. The obtained results also revealed that total carotenoids content ranged from 0.38 to 7.24 mg/100 g fresh weight. BARI SP8 showed the highest total carotenoids content, whereas BARI SP6 showed the lowest. Total carotenoids content was found to be higher in dark orange-colored flesh varieties than their light-colored counterparts. The results of the study indicated that selected sweet potato varieties are rich in protein and carbohydrate, low in fat, high in polyphenol and carotenoids and, thus, could be a good source of dietary antioxidants to prevent free radical damage, which leads to chronic diseases, and also to prevent vitamin A malnutrition.

  19. Comparison of the Proximate Composition, Total Carotenoids and Total Polyphenol Content of Nine Orange-Fleshed Sweet Potato Varieties Grown in Bangladesh

    PubMed Central

    Alam, Mohammad Khairul; Rana, Ziaul Hasan; Islam, Sheikh Nazrul

    2016-01-01

    In an attempt to develop the food composition table for Bangladesh, the nutritional composition of nine varieties of orange-fleshed sweet potato was analyzed together with total carotenoids (TCC) and total polyphenol content (TPC). Each variety showed significant variation in different nutrient contents. The quantification of the TCC and TPC was done by spectrophotometric measurement, and the proximate composition was done by the AOAC method. The obtained results showed that total polyphenol content varied from 94.63 to 136.05 mg gallic acid equivalent (GAE)/100 g fresh weight. Among the selected sweet potatoes, Bangladesh Agricultural Research Institute (BARI) Sweet Potato 7 (SP7) contained the highest, whereas BARI SP6 contained the lowest amount of total polyphenol content. The obtained results also revealed that total carotenoids content ranged from 0.38 to 7.24 mg/100 g fresh weight. BARI SP8 showed the highest total carotenoids content, whereas BARI SP6 showed the lowest. Total carotenoids content was found to be higher in dark orange-colored flesh varieties than their light-colored counterparts. The results of the study indicated that selected sweet potato varieties are rich in protein and carbohydrate, low in fat, high in polyphenol and carotenoids and, thus, could be a good source of dietary antioxidants to prevent free radical damage, which leads to chronic diseases, and also to prevent vitamin A malnutrition. PMID:28231159

  20. Comparison of polyunsaturated fatty acids content in filets of anadromous and landlocked sockeye salmon Oncorhynchus nerka.

    PubMed

    Gladyshev, Michail I; Lepskaya, Ekaterina V; Sushchik, Nadezhda N; Makhutova, Olesia N; Kalachova, Galina S; Malyshevskaya, Kseniya K; Markevich, Grigory N

    2012-12-01

    Fatty acid composition and content of 2 forms of sockeye salmon Oncorhynchus nerka from lakes in Kamchatka Peninsula (Russia) were compared. One form of sockeye salmon was anadromous ("marine"), that is, adult fish migrated in ocean to feed and grow and than return in the lake to breed. Fish of another form, kokanee, never migrate in the ocean. Per cent levels of the main indicators of nutritive value, eicosapentaenoic acid (EPA, 20:5n-3), and docosahexaenoic acid (DHA, 22:6n-3), were significantly higher in the landlocked O. nerka. However, concentrations of EPA and DHA per wet weight of filets were higher in the marine form, because of the relatively higher content of sum of fatty acids in their muscle tissue. As concluded, fish fed in marine environment had higher contents of long-chain n-3 fatty acids per wet weight than fish of the same species, fed in fresh waters. In general, both the anadromous sockeye salmon and the landlocked kokanee salmon can be recommended for human diet as a valuable product concerning contents of EPA and DHA. © 2012 Institute of Food Technologists®

  1. Total antioxidant and antiproliferative activities of twenty-four Vitis vinifera grapes

    USDA-ARS?s Scientific Manuscript database

    The phytochemical profiles of 24 Vitis vinifera grape cultivars, including total phenolics, total flavonoids, total antioxidant activity and antiproliferative activity, were determined. Total phenolic contents in the cultivars ranged from 95.3 to 686.5 mg of gallic acid equivalents/100 g FW, and to...

  2. Trans-fatty acid content of food products in Spain in 2015.

    PubMed

    Pérez-Farinós, Napoleón; Dal Re Saavedra, María Ángeles; Villar Villalba, Carmen; Robledo de Dios, Teresa

    2016-01-01

    To ascertain the content of trans-fatty acids (TFA) in food products in Spain in 2015 and assess trends in TFA content since 2010. We analysed the fat content of 277 food products purchased in Spanish supermarkets in 2015 and calculated both the total fat and TFA content and the proportion of TFA to total fats. The results obtained in 2015 were compared to those yielded by a similar study in 2010. In 2015, the majority of food products studied had a TFA content of less than 0.2g/100g product, and a TFA/total fat ratio of less than 2%. No significant increases were found compared to 2010. Food groups with a higher TFA content were dairy products of possible natural origin. TFA content in Spain is low and has significantly fallen since 2010. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Total phenolics content, anthocyanins, and dietary fiber content of apple pomace powders produced by vacuum-belt drying.

    PubMed

    Yan, Huitong; Kerr, William L

    2013-04-01

    Apple pomace is a waste material from apple juice processing, and contains significant amounts of dietary fiber and phytochemicals. Many of these compounds may be degraded post-pressing and during drying operations. Continuous vacuum-belt drying (VBD) was studied as a means of drying and maintaining quality of apple pomace. The color and chemical properties of samples dried by vacuum-belt drying at different temperatures were evaluated including total phenolics content (TPC), monomeric anthocyanins (TMA) and dietary fiber content (TDF). VBD powders were pale golden yellow, and those dried at 80°C did not differ in L*, a* and b* values from freeze-dried powders. VBD pomace had 44.9 to 51.9 g gallic acid equivalents kg(-1) TPC, with greatest retention for pomace dried at 80 and 95°C. TPC for pomace dried at 80 or 95°C was not significantly different from that for freeze-dried pomace. TMA levels (74.0 mg C3G kg(-1), where C3G is cyanidine 3-O-glucoside equivalents) were highest in pomace vacuum dried at 80°C. TDF ranged from 442 to 495 g kg(-1) in vacuum-dried pomace and was not significantly different from TDF of freeze-dried poamce (480 g kg(-1)). In all cases, TPC, TMA and TDF were higher in VBD pomace than in freeze-dried whole apple, while VBD pomace prepared at 80 or 95°C had fiber and phytochemical levels similar to freeze-dried powders. © 2012 Society of Chemical Industry.

  4. Tryptamine-gallic acid hybrid prevents non-steroidal anti-inflammatory drug-induced gastropathy: correction of mitochondrial dysfunction and inhibition of apoptosis in gastric mucosal cells.

    PubMed

    Pal, Chinmay; Bindu, Samik; Dey, Sumanta; Alam, Athar; Goyal, Manish; Iqbal, Mohd Shameel; Sarkar, Souvik; Kumar, Rahul; Halder, Kamal Krishna; Debnath, Mita Chatterjee; Adhikari, Susanta; Bandyopadhyay, Uday

    2012-01-27

    We have investigated the gastroprotective effect of SEGA (3a), a newly synthesized tryptamine-gallic acid hybrid molecule against non-steroidal anti-inflammatory drug (NSAID)-induced gastropathy with mechanistic details. SEGA (3a) prevents indomethacin (NSAID)-induced mitochondrial oxidative stress (MOS) and dysfunctions in gastric mucosal cells, which play a pathogenic role in inducing gastropathy. SEGA (3a) offers this mitoprotective effect by scavenging of mitochondrial superoxide anion (O(2)(·-)) and intramitochondrial free iron released as a result of MOS. SEGA (3a) in vivo blocks indomethacin-mediated MOS, as is evident from the inhibition of indomethacin-induced mitochondrial protein carbonyl formation, lipid peroxidation, and thiol depletion. SEGA (3a) corrects indomethacin-mediated mitochondrial dysfunction in vivo by restoring defective electron transport chain function, collapse of transmembrane potential, and loss of dehydrogenase activity. SEGA (3a) not only corrects mitochondrial dysfunction but also inhibits the activation of the mitochondrial pathway of apoptosis by indomethacin. SEGA (3a) inhibits indomethacin-induced down-regulation of bcl-2 and up-regulation of bax genes in gastric mucosa. SEGA (3a) also inhibits indometacin-induced activation of caspase-9 and caspase-3 in gastric mucosa. Besides the gastroprotective effect against NSAID, SEGA (3a) also expedites the healing of already damaged gastric mucosa. Radiolabeled ((99m)Tc-labeled SEGA (3a)) tracer studies confirm that SEGA (3a) enters into mitochondria of gastric mucosal cell in vivo, and it is quite stable in serum. Thus, SEGA (3a) bears an immense potential to be a novel gastroprotective agent against NSAID-induced gastropathy.

  5. Antioxidant capacity and phenolics content of apricot (Prunus armeniaca L.) kernel as a function of genotype.

    PubMed

    Korekar, Girish; Stobdan, Tsering; Arora, Richa; Yadav, Ashish; Singh, Shashi Bala

    2011-11-01

    Fourteen apricot genotypes grown under similar cultural practices in Trans-Himalayan Ladakh region were studied to find out the influence of genotype on antioxidant capacity and total phenolic content (TPC) of apricot kernel. The kernels were found to be rich in TPC ranging from 92.2 to 162.1 mg gallic acid equivalent/100 g. The free radical-scavenging activity in terms of inhibitory concentration (IC(50)) ranged from 43.8 to 123.4 mg/ml and ferric reducing antioxidant potential (FRAP) from 154.1 to 243.6 FeSO(4).7H(2)O μg/ml. A variation of 1-1.7 fold in total phenolic content, 1-2.8 fold in IC(50) by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and 1-1.6 fold in ferric reducing antioxidant potential among the examined kernels underlines the important role played by genetic background for determining the phenolic content and antioxidant potential of apricot kernel. A positive significant correlation between TPC and FRAP (r=0.671) was found. No significant correlation was found between TPC and IC(50); FRAP and IC(50); TPC and physical properties of kernel. Principal component analysis demonstrated that genotypic effect is more pronounced towards TPC and total antioxidant capacity (TAC) content in apricot kernel while the contribution of seed and kernel physical properties are not highly significant.

  6. Fates of Acid-Resistant and Non-Acid-Resistant Shiga Toxin-Producing Escherichia coli Strains in Ruminant Digestive Contents in the Absence and Presence of Probiotics ▿

    PubMed Central

    Chaucheyras-Durand, Frédérique; Faqir, Fahima; Ameilbonne, Aurélie; Rozand, Christine; Martin, Christine

    2010-01-01

    Healthy ruminants are the main reservoir of Shiga toxin-producing Escherichia coli (STEC). During their transit through the ruminant gastrointestinal tract, STEC encounters a number of acidic environments. As all STEC strains are not equally resistant to acidic conditions, the purpose of this study was to investigate whether acid resistance confers an ecological advantage to STEC strains in ruminant digestive contents and whether acid resistance mechanisms are induced in the rumen compartment. We found that acid-resistant STEC survived at higher rates during prolonged incubation in rumen fluid than acid-sensitive STEC and that they resisted the highly acidic conditions of the abomasum fluid, whereas acid-sensitive strains were killed. However, transit through the rumen contents allowed acid-sensitive strains to survive in the abomasum fluid at levels similar to those of acid-resistant STEC. The acid resistance status of the strains had little influence on STEC growth in jejunal and cecal contents. Supplementation with the probiotic Saccharomyces cerevisiae CNCM I-1077 or Lactobacillus acidophilus BT-1386 led to killing of all of the strains tested during prolonged incubation in the rumen contents, but it did not have any influence in the other digestive compartments. In addition, S. cerevisiae did not limit the induction of acid resistance in the rumen fluid. Our results indicate that the rumen compartment could be a relevant target for intervention strategies that could both limit STEC survival and eliminate induction of acid resistance mechanisms in order to decrease the number of viable STEC cells reaching the hindgut and thus STEC shedding and food contamination. PMID:19948865

  7. Alterations of the lipid content and fatty acid profile of Chlorella protothecoides under different light intensities.

    PubMed

    Krzemińska, Izabela; Piasecka, Agata; Nosalewicz, Artur; Simionato, Diana; Wawrzykowski, Jacek

    2015-11-01

    Chlorella protothecoides is a valuable source of lipids that may be used for biodiesel production. The present work shows analysis of the potential of photoheterotrophic cultivation of C. protothecoides under various light intensities aiming to identify the conditions with maximal biomass and lipid content. An increase in light intensity was associated with an increased specific growth rate and a shortened doubling time. Also, the relative total lipid content increased from 24.8% to 37.5% with increase of light intensity. The composition of fatty acid methyl esters was affected by light intensity with the C16-18 fatty acids increased from 76.97% to 90.24% of total fatty acids. However, the content of linolenic acids decreased with the increase of the culture irradiance. These studies indicate that cultures irradiated with high light intensities achieve the minimal specifications for biodiesel quality on linolenic acids and thus are suitable for biodiesel production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Low Temperature-Induced Decrease in trans-Delta-Hexadecenoic Acid Content Is Correlated with Freezing Tolerance in Cereals.

    PubMed

    Huner, N P; Williams, J P; Maissan, E E; Myscich, E G; Krol, M; Laroche, A; Singh, J

    1989-01-01

    The effect of growth at 5 degrees C on the trans-Delta(3)-hexadecenoic acid content of phosphatidyl(d)glycerol was examined in a total of eight cultivars of rye (Secale cereale L.) and what (Triticum aestivum L.) of varying freezing tolerance. In these monocots, low temperature growth caused decreases in the trans-Delta(3)-hexadecenoic acid content of between 0 and 74% with concomitant increases in the palmitic acid content of phosphatidyl(d)glycerol. These trends were observed for whole leaf extracts as well as isolated thylakoids. The low growth temperature-induced decrease in the trans-Delta(3)-hexadecenoic acid content was shown to be a linear function (r(2) = 0.954) of freezing tolerance in these cultivars. Of the six cold tolerant dicotyledonous species examined, only Brassica and Arabidopsis thaliana L. cv Columbia exhibited a 42% and 65% decrease, respectively, in trans-Delta(3)-hexadecenoic acid content. Thus, the relationship between the change in trans-Delta(3)-hexadecenoic acid content of phosphatidyl(d)glycerol and freezing tolerance cannot be considered a general one for all cold tolerant plant species. However, species which exhibited a low growth temperature-induced decrease in trans-Delta(3)-hexadecenoic acid also exhibited a concomitant shift in the in vitro organization of the light harvesting complex II from a predominantly oligomeric form to the monomeric form. We conclude that the proposed role of phosphatidyl(d)glycerol in modulating the organization of light harvesting complex II as a function of growth temperature manifests itself to varying degrees in different plant species. A possible physiological role for this phenomenon with respect to low temperature acclimation and freezing tolerance in cereals is discussed.

  9. Screening of Six Medicinal Plant Extracts Obtained by Two Conventional Methods and Supercritical CO₂ Extraction Targeted on Coumarin Content, 2,2-Diphenyl-1-picrylhydrazyl Radical Scavenging Capacity and Total Phenols Content.

    PubMed

    Molnar, Maja; Jerković, Igor; Suknović, Dragica; Bilić Rajs, Blanka; Aladić, Krunoslav; Šubarić, Drago; Jokić, Stela

    2017-02-24

    Six medicinal plants Helichrysum italicum (Roth) G. Don, Angelica archangelica L., Lavandula officinalis L., Salvia officinalis L., Melilotus officinalis L., and Ruta graveolens L. were used. The aim of the study was to compare their extracts obtained by Soxhlet (hexane) extraction, maceration with ethanol (EtOH), and supercritical CO₂ extraction (SC-CO₂) targeted on coumarin content (by high performance liquid chromatography with ultraviolet detection, HPLC-UV), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging capacity, and total phenols (TPs) content (by Folin-Ciocalteu assay). The highest extraction yields were obtained by EtOH, followed by hexane and SC-CO₂. The highest coumarin content (316.37 mg/100 g) was found in M. officinalis EtOH extracts, but its SC-CO₂ extraction yield was very low for further investigation. Coumarin was also found in SC-CO₂ extracts of S. officinalis , R. graveolens , A. archangelica , and L. officinalis . EtOH extracts of all plants exhibited the highest DPPH scavenging capacity. SC-CO₂ extracts exhibited antiradical capacity similar to hexane extracts, while S. officinalis SC-CO₂ extracts were the most potent (95.7%). EtOH extracts contained the most TPs (up to 132.1 mg gallic acid equivalents (GAE)/g from H. italicum ) in comparison to hexane or SC-CO₂ extracts. TPs content was highly correlated to the DPPH scavenging capacity of the extracts. The results indicate that for comprehensive screening of different medicinal plants, various extraction techniques should be used in order to get a better insight into their components content or antiradical capacity.

  10. Effect of high hydrostatic pressure on the polyphenols and antioxidant activity of plantain pulp (Musa paradisiaca AAB).

    PubMed

    Jiménez-Martínez, Miriam C; Montalvo-González, Efigenia; Sáyago-Ayerdi, Sonia G; Mercado-Mercado, Gilberto; Ramírez-de León, José A; Paz-Gamboa, Ernestina; Vivar-Vera, Maria A

    2017-06-01

    The impact of high-pressure processing (HPP) on the polyphenol (PP) content and antioxidant activity (AOX) of plantain pulp was evaluated. Pressures of 400, 500 and 600 MPa were applied to plantain pulp for 90 and 180 s at room temperature (25 °C). Polyphenoloxidase activity, extractable (EPP) and non-extractable PP (NEPP) contents, flavonoid content and AOX (FRAP, ABTS •+ ) were evaluated. In addition, PP identification was performed using high-performance liquid chromatography. Polyphenoloxidase activity was inhibited after HPP under all of the conditions studied. Increases of 110.80% and 137.40% in EPP content under conditions of 500 MPa/180 s and 600 MPa/90 s were observed with a simultaneous improvement in the AOX with increments of up to 128.71%. The treatment under conditions of 500 MPa/90 s had the highest total PP content, including the highest content of flavonoids (0.22 g ellagic acid equivalents kg -1  dry weight) and the proportion of NEPP that contained hydrolysable PPs (91.12 g gallic acid equivalents kg -1  dry weight with high AOX. The identified PPs included catechin, quercetin, gallic and hydroxybenzoic acids. HPP performed at a room temperature can be used for improving the total content of PP compounds in plantain pulp under specific pressure and time conditions. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. A new coruleoellagic acid derivative from stems of Rhodamnia dumetorum.

    PubMed

    Lakornwong, Waranya; Kanokmedhakul, Kwanjai; Kanokmedhakul, Somdej

    2018-07-01

    A new coruleoellagic acid derivative, 3,3',4,4',5'-pentamethylcoruleoellagic acid (1) together with nine known compounds, hexamethylcoruleoellagic acid (2), 3,4,3'-tri-O-methylellagic acid (3), heptaphylline (4), 7-methoxymukonal (5), dentatin (6), sinapaldehyde (7), gallic acid (8), 2,6-dimethoxy-4H-pyran-4-one (9) and β-sitosterol (10) were isolated from the stems of Rhodamnia dumetorum. Their structures were identified by physical and spectroscopic data (IR, 1D and 2D NMR, and MS). Compounds 1, 2 and 7-10 were tested for antibacterial activity against six pathogenic bacterial strains (Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, and Methicillin resistant S. aureus (MRSA)).

  12. Evaluation of Phenolic Content Variability along with Antioxidant, Antimicrobial, and Cytotoxic Potential of Selected Traditional Medicinal Plants from India.

    PubMed

    Singh, Garima; Passsari, Ajit K; Leo, Vincent V; Mishra, Vineet K; Subbarayan, Sarathbabu; Singh, Bhim P; Kumar, Brijesh; Kumar, Sunil; Gupta, Vijai K; Lalhlenmawia, Hauzel; Nachimuthu, Senthil K

    2016-01-01

    Plants have been used since ancient times as an important source of biologically active substances. The aim of the present study was to investigate the phytochemical constituents (flavonoids and phenolics), antioxidant potential, cytotoxicity against HepG2 (human hepato carcinoma) cancer cell lines, and the antimicrobial activity of the methanol extract of selected traditional medicinal plants collected from Mizoram, India. A number of phenolic compounds were detected using HPLC-DAD-ESI-TOF-MS, mainly Luteolin, Kaempferol, Myricetin, Gallic Acid, Quercetin and Rutin, some of which have been described for the first time in the selected plants. The total phenolic and flavonoid contents showed high variation ranging from 4.44 to 181.91 μg of Gallic Acid equivalent per milligram DW (GAE/mg DW) and 3.17 to 102.2 μg of Quercetin/mg, respectively. The antioxidant capacity was determined by DPPH (IC50 values ranges from 34.22 to 131.4 μg/mL), ABTS (IC50 values ranges from 24.08 to 513.4 μg/mL), and reducing power assays. Antimicrobial activity was assayed against gram positive (Staphylococcus aureus), gram negative (Escherichia coli, Pseudomonas aeruginosa), and yeast (Candida albicans) demonstrating that the methanol extracts of some plants were efficacious antimicrobial agents. Additionally, cytotoxicity was assessed on human hepato carcinoma (HepG2) cancer cell lines and found that the extracts of Albizia lebbeck, Dillenia indica, and Bombax ceiba significantly decreased the cell viability at low concentrations with IC50 values of 24.03, 25.09, and 29.66 μg/mL, respectively. This is the first report of detection of phenolic compounds along with antimicrobial, antioxidant and cytotoxic potential of selected medicinal plants from India, which indicates that these plants might be valuable source for human and animal health.

  13. Evaluation of Phenolic Content Variability along with Antioxidant, Antimicrobial, and Cytotoxic Potential of Selected Traditional Medicinal Plants from India

    PubMed Central

    Singh, Garima; Passsari, Ajit K.; Leo, Vincent V.; Mishra, Vineet K.; Subbarayan, Sarathbabu; Singh, Bhim P.; Kumar, Brijesh; Kumar, Sunil; Gupta, Vijai K.; Lalhlenmawia, Hauzel; Nachimuthu, Senthil K.

    2016-01-01

    Plants have been used since ancient times as an important source of biologically active substances. The aim of the present study was to investigate the phytochemical constituents (flavonoids and phenolics), antioxidant potential, cytotoxicity against HepG2 (human hepato carcinoma) cancer cell lines, and the antimicrobial activity of the methanol extract of selected traditional medicinal plants collected from Mizoram, India. A number of phenolic compounds were detected using HPLC-DAD-ESI-TOF-MS, mainly Luteolin, Kaempferol, Myricetin, Gallic Acid, Quercetin and Rutin, some of which have been described for the first time in the selected plants. The total phenolic and flavonoid contents showed high variation ranging from 4.44 to 181.91 μg of Gallic Acid equivalent per milligram DW (GAE/mg DW) and 3.17 to 102.2 μg of Quercetin/mg, respectively. The antioxidant capacity was determined by DPPH (IC50 values ranges from 34.22 to 131.4 μg/mL), ABTS (IC50 values ranges from 24.08 to 513.4 μg/mL), and reducing power assays. Antimicrobial activity was assayed against gram positive (Staphylococcus aureus), gram negative (Escherichia coli, Pseudomonas aeruginosa), and yeast (Candida albicans) demonstrating that the methanol extracts of some plants were efficacious antimicrobial agents. Additionally, cytotoxicity was assessed on human hepato carcinoma (HepG2) cancer cell lines and found that the extracts of Albizia lebbeck, Dillenia indica, and Bombax ceiba significantly decreased the cell viability at low concentrations with IC50 values of 24.03, 25.09, and 29.66 μg/mL, respectively. This is the first report of detection of phenolic compounds along with antimicrobial, antioxidant and cytotoxic potential of selected medicinal plants from India, which indicates that these plants might be valuable source for human and animal health. PMID:27066046

  14. Free radical grafting of gallic acid (GA) on cellulose nanocrystals (CNCS) and evaluation of antioxidant reinforced gellan gum films

    NASA Astrophysics Data System (ADS)

    Criado, P.; Fraschini, C.; Salmieri, S.; Becher, D.; Safrany, A.; Lacroix, M.

    2016-01-01

    Antiradical properties were introduced on cellulose nanocrystals (CNCs) by redox pair (RP) initiator and γ-radiation treatments. Different procedures were tested on CNC, first a 2 h reaction of hydrogen peroxide (H2O2)/ascorbic acid (AA) was performed on CNC solution. γ-Radiation treatment at 20 kGy dose was then applied and immediately after GA was reacted during 24 h with the pretreated CNCs, giving CNC-H2O2-AA-γ-GA. The formation of new carboxylic acids and carbonyl groups were characterized by FT-IR at 1650 and 1730 cm-1 respectively. Carboxylic acid functionalities were also analyzed by conductometric titration where an increase from 49 to 134 mmol COOH kg-1 was found from native to irradiated CNCs. A similar increase in the carboxylic acid content (132 mmol kg-1) was observed for CNC-H2O2-AA-γ-GA, showing the highest radical scavenging properties (8 mM Trolox eq/mg CNC). Thermogravimetric analysis confirmed the structural changes onto CNC. Film packaging containing 20% of CNC-H2O2-AA-γ-GA was then added to a gellan-based film packaging. A significant improvement (p<0.05) of the tensile strength (TS), the tensile modulus (TM) and the elongation at break (EB) and water vapor permeability reduction was observed when CNC-H2O2-AA-γ-GA was added to the film packaging formulation.

  15. Experienced Teachers' Pedagogical Content Knowledge of Teaching Acid-Base Chemistry

    ERIC Educational Resources Information Center

    Drechsler, Michal; Van Driel, Jan

    2008-01-01

    We investigated the pedagogical content knowledge (PCK) of nine experienced chemistry teachers. The teachers took part in a teacher training course on students' difficulties and the use of models in teaching acid-base chemistry, electrochemistry, and redox reactions. Two years after the course, the teachers were interviewed about their PCK of (1)…

  16. Pecan walnut (Carya illinoinensis (Wangenh.) K. Koch) oil quality and phenolic compounds as affected by microwave and conventional roasting.

    PubMed

    Juhaimi, Fahad Al; Özcan, Mehmet Musa; Uslu, Nurhan; Doğu, Süleyman

    2017-12-01

    In this study, the effects of conventional and microwave roasting on phenolic compounds, free acidity, peroxide value, fatty acid composition and tocopherol content of pecan walnut kernel and oil was investigated. The oil content of pecan kernels was 73.78% for microwave oven roasted at 720 W and 73.56% for conventional oven roasted at 110 °C. The highest free fatty acid content (0.50%) and the lowest peroxide value (2.48 meq O 2 /kg) were observed during microwave roasting at 720 W. The fatty acid profiles and tocopherol contents of pecan kernel oils did not show significant differences compared to raw samples. Roasting process in microwave oven at 720 W caused the reduction of some phenolic compounds, while the content of gallic acid exhibited a significant increase.

  17. Phenolic content and anti-hyperglycemic activity of pecan cultivars from Egypt.

    PubMed

    El Hawary, Seham S; Saad, Soumaya; El Halawany, Ali Mahmoud; Ali, Zeinab Y; El Bishbishy, Mahitab

    2016-01-01

    Pecans are commonly used nuts with important health benefits such as anti-hyperglycemic and anti-hyperlipidemic effects. A comparative investigation of the antihyperglycemic and total phenolic content of the leaves and shells of four pecan cultivars growing in Egypt was carried out. The selected cultivars (cv.) were Carya illinoinensis Wangneh. K. Koch. cv. Wichita, cv. WesternSchely, cv. Cherokee, and cv. Sioux family Juglandaceae. Total phenolic and flavonoid contents of the leaves and shells of pecan cultivars were carried out using Folin-Ciocalteu's and aluminum chloride assays, respectively. Moreover, HPLC profiling of phenolic and flavonoid contents was carried out using RP-HPLC-UV. In addition, in vivo anti-hyperglycemic activity of the ethanolic extracts (125 mg/kg bw, p.o.) of C. illinoinensis cultivars was carried out using streptozotocin (STZ)-induced diabetes in Sprague-Dawley rats for 4 weeks. Phenolic contents were higher in shells than leaves in all studied cultivars, while flavonoids were higher in leaves. Leaves and shells of cv. Sioux showed the highest phenolics (251.7 µg gallic acid equivalent (GAE)/g), and flavonoid contents (103.27 µg rutin equivalent (RE)/g and 210.67 µg quercetin equivalent (QE)/g), respectively. The HPLC profiling of C. illinoinensis cultivars resulted in the identification of eight flavonoids (five of these compounds are identified for the first time from pecan), and 15 phenolic acids (six are identified for the first time from pecan). Leaves of cv. Sioux revealed the most potent decrease in blood glucose and glycated hemoglobin (HbA1c%) (194.9 mg/dl and 6.52%, respectively), among other tested cultivars. Moreover, leaves of cv. Sioux significantly elevated serum total antioxidant capacity (TAC) and reduced glutathione (GSH) (0.33 mMol/l and 30.68 mg/dl, respectively), and significantly suppressed the markers of both lipid peroxidation (malondialdehyde, MDA) and protein oxidation (protein carbonyl, PC

  18. Antiinflammatory and antioxidant activities of gum mastic.

    PubMed

    Mahmoudi, M; Ebrahimzadeh, M A; Nabavi, S F; Hafezi, S; Nabavi, S M; Eslami, Sh

    2010-09-01

    Pistacia lentiscus has traditionally been used in the treatment of many diseases. Its resin was investigated for its mineral contents, anti-inflammatory and antioxidant activities in rats. Inhibition of carrageenan induced edema was used to evaluate anti-inflammatory activity. Fe2+ chelating ability, 1,1-diphenyl-2-picryl hydrazyl radical (DPPH) and nitric oxide scavenging activities were used to evaluate antioxidant activities and mineral contents were determined by atomic absorption spectroscopy. Gallic acid content was determined by HPLC. Resin produced statistically significant inhibition of edema at all doses when compared to the control groups. A 100% inhibition of inflammation was observed at 800 mg/kg i.p. Resin exhibit no toxicity up to 3 g/kg body weights i.p. in mice. Weak DPPH and nitric oxide scavenging activities were observed but showed good Fe2+ chelating ability (IC50 = 162 microg ml(-1)). The amount of elements was decreased in the order: Cu > Fe, Zn > Mn > Ni, Cd. Gallic acid content was 0.1 mg/g resin. These experimental data support the use of Pistacia lentiscus resin as an antiinflammatory and antioxidant agent.

  19. Reducing capacity, chlorogenic acid content and biological activity in a collection of scarlet (Solanum aethiopicum) and Gboma (S. macrocarpon) eggplants.

    PubMed

    Plazas, Mariola; Prohens, Jaime; Cuñat, Amparo Noelia; Vilanova, Santiago; Gramazio, Pietro; Herraiz, Francisco Javier; Andújar, Isabel

    2014-09-26

    Scarlet (Solanum aethiopicum) and gboma (S. macrocarpon) eggplants are important vegetables in Sub-Saharan Africa. Few studies have been made on these crops regarding the diversity of phenolic content and their biological activity. We have studied the reducing activity, the chlorogenic acid and other phenolic acid contents in a collection of 56 accessions of scarlet eggplant, including the four cultivated groups (Aculeatum, Gilo, Kumba, Shum) and the weedy intermediate S. aethiopicum-S. anguivi types, as well as in eight accessions of gboma eggplant, including the cultivated S. macrocarpon and its wild ancestor, S. dasyphyllum. A sample of the accessions evaluated in this collection has been tested for inhibition of nitric oxide (NO) using macrophage cell cultures. The results show that there is a great diversity in both crops for reducing activity, chlorogenic acid content and chlorogenic acid peak area (% of total phenolic acids). Heritability (H2) for these traits was intermediate to high in both crops. In all samples, chlorogenic acid was the major phenolic acid and accounted for more than 50% of the chromatogram peak area. Considerable differences were found among and within groups for these traits, but the greatest values for total phenolics and chlorogenic acid content were found in S. dasyphyllum. In most groups, reducing activity was positively correlated (with values of up to 0.904 in the Aculeatum group) with chlorogenic acid content. Inhibition of NO was greatest in samples having a high chlorogenic acid content. The results show that both crops are a relevant source of chlorogenic acid and other phenolic acids. The high diversity found also indicates that there are good prospects for breeding new scarlet and gboma eggplant cultivars with improved content in phenolics and bioactive properties.

  20. Reducing Capacity, Chlorogenic Acid Content and Biological Activity in a Collection of Scarlet (Solanum aethiopicum) and Gboma (S. macrocarpon) Eggplants

    PubMed Central

    Plazas, Mariola; Prohens, Jaime; Cuñat, Amparo Noelia; Vilanova, Santiago; Gramazio, Pietro; Herraiz, Francisco Javier; Andújar, Isabel

    2014-01-01

    Scarlet (Solanum aethiopicum) and gboma (S. macrocarpon) eggplants are important vegetables in Sub-Saharan Africa. Few studies have been made on these crops regarding the diversity of phenolic content and their biological activity. We have studied the reducing activity, the chlorogenic acid and other phenolic acid contents in a collection of 56 accessions of scarlet eggplant, including the four cultivated groups (Aculeatum, Gilo, Kumba, Shum) and the weedy intermediate S. aethiopicum-S. anguivi types, as well as in eight accessions of gboma eggplant, including the cultivated S. macrocarpon and its wild ancestor, S. dasyphyllum. A sample of the accessions evaluated in this collection has been tested for inhibition of nitric oxide (NO) using macrophage cell cultures. The results show that there is a great diversity in both crops for reducing activity, chlorogenic acid content and chlorogenic acid peak area (% of total phenolic acids). Heritability (H2) for these traits was intermediate to high in both crops. In all samples, chlorogenic acid was the major phenolic acid and accounted for more than 50% of the chromatogram peak area. Considerable differences were found among and within groups for these traits, but the greatest values for total phenolics and chlorogenic acid content were found in S. dasyphyllum. In most groups, reducing activity was positively correlated (with values of up to 0.904 in the Aculeatum group) with chlorogenic acid content. Inhibition of NO was greatest in samples having a high chlorogenic acid content. The results show that both crops are a relevant source of chlorogenic acid and other phenolic acids. The high diversity found also indicates that there are good prospects for breeding new scarlet and gboma eggplant cultivars with improved content in phenolics and bioactive properties. PMID:25264739

  1. The choice of ultrasound assisted extraction coupled with spectrophotometric for rapid determination of gallic acid in water samples: Central composite design for optimization of process variables.

    PubMed

    Pooralhossini, Jaleh; Ghaedi, Mehrorang; Zanjanchi, Mohammad Ali; Asfaram, Arash

    2017-01-01

    A sensitive procedure namely ultrasound-assisted (UA) coupled dispersive nano solid-phase microextraction spectrophotometry (DNSPME-UV-Vis) was designed for preconcentration and subsequent determination of gallic acid (GA) from water samples, while the detailed of composition and morphology and also purity and structure of this new sorbent was identified by techniques like field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and Energy-dispersive X-ray spectroscopy (EDX) techniques. Among conventional parameters viz. pH, amount of sorbent, sonication time and volume of elution solvent based on Response Surface Methodology (RSM) and central composite design according to statistics based contour the best operational conditions was set at pH of 2.0; 1.5mg sorbent, 4.0min sonication and 150μL ethanol. Under these pre-qualified conditions the method has linear response over wide concentration range of 15-6000ngmL -1 with a correlation coefficient of 0.9996. The good figure of merits like acceptable LOD (S/N=3) and LOQ (S/N=10) with numerical value of 2.923 and 9.744ngmL -1 , respectively and relative recovery between 95.54 and 100.02% show the applicability and efficiency of this method for real samples analysis with RSDs below 6.0%. Finally the method with good performance were used for monitoring under study analyte in various real samples like tap, river and mineral waters. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Quantification of phenolic acids and antioxidant potential of inbred, hybrid and composite cultivars of maize under different nitrogen regimes.

    PubMed

    Ganie, Arshid Hussain; Yousuf, Peerzada Yasir; Ahad, Amjid; Pandey, Renu; Ahmad, Sayeed; Aref, Ibrahim M; Noor, Jewel Jameeta; Iqbal, Muhammad

    2016-11-01

    Maize (Zea mays L.) is a multipurpose crop, which is immensely used worldwide for its nutritional as well as medicinal properties. This study evaluates the effect of varying concentrations of nitrogen (N) on accumulation of phenolic acids and antioxidant activity in different maize cultivars, including inbreds, hybrids and a composite, which were grown in natural light under controlled temperature (30°C/20°C D/N) and humidity (80%), with sufficient (4.5mM) and low (0.05mM) nitrogen supply. Seeds of different cultivars were powdered and extracted in a methanol:water (80:20) mixture through reflux at 60-75°C, and the extracts obtained were subjected to high performance thin layer chromatography (HPTLC), using ethyl acetate: acetic acid: formic acid: water (109:16:12:31) solvent system for the separation of phenolic acids. Antioxidant activity of the extracts was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and H2O2-scavenging activity assays. At sufficient nitrogen condition, the contents of different phenolic acids were higher in the composite cultivar (8.7 mg g-1 d.wt. in gallic acid to 39.3 mg g-1 d.wt. in cinnamic and salicylic acids) than in inbreds and hybrids. Under low nitrogen condition, the phenolic acids contents declined significantly in inbreds and hybrids, but remained almost unaffected in the composite. The antioxidant activity was also the maximum in the composite, and declined similarly as phenolic acids under low nitrogen supply, showing a significant reduction in inbreds and hybrids only. Therefore, the maize composite has a potential for being used as a nutraceutical in human-health sector.

  3. The content of protein and of amino acids in Jerusalem artichoke tubers (Helianthus tuberosus L.) of red variety Rote Zonenkugel.

    PubMed

    Cieślik, Ewa; Gębusia, Agnieszka; Florkiewicz, Adam; Mickowska, Barbara

    2011-01-01

    Jerusalem artichoke (Helianthus tuberosus L.) is grown primarily for its edible tubers, which were first cultivated by native Americans before the arrival of the Europeans. Unlike most tubers, but in common with other members of the Asteraceae, the tubers store fructans instead of starch. Fructans are non-digestible carbohydrates considered functional food ingredients because they affect body processes in ways that result in better health and in many diseases prevention. However, the Jerusalem artichoke deserves attention not only because of the content of fructans, recent studies also indicate a high protein content, including essential amino acids. The aim of the work was to establish the content of protein and amino acids in Jerusalem artichoke tubers (Helianthus tuberosus L.) of red variety--Rote Zonenkugel. The content of protein was estimated by Dumas method. The amino acids composition was analysed with ion-change chromatography with postcolumn derivatisation and detection of ninhydryn reaction with automatic amino acids analyser. The assessed liophylisate was characterised by high protein content (6.36%) in comparison to chicory (which is the main industrial source of fructans) and to commonly consumed potatoes. There was shown a few times higher content of essential amino acids (also of methionine) in comparison to chicory and potato. The examined essential amino acids were present in very advantagenous proportions. In Jerusalem artichoke tubers of Rote Zonenkugel variety of the high content of protein was established in comparison to other plant sources. The high content was found of amino acids with special stress on essential amino acids (esp. sulphur ones).

  4. Abscisic acid and pyrabactin improve vitamin C contents in raspberries.

    PubMed

    Miret, Javier A; Munné-Bosch, Sergi

    2016-07-15

    Abscisic acid (ABA) is a plant growth regulator with roles in senescence, fruit ripening and environmental stress responses. ABA and pyrabactin (a non-photosensitive ABA agonist) effects on red raspberry (Rubus idaeus L.) fruit development (including ripening) were studied, with a focus on vitamin and antioxidant composition. Application of ABA and/or pyrabactin just after fruit set did not affect the temporal pattern of fruit development and ripening; neither provitamin A (carotenoids) nor vitamin E contents were modified. In contrast, ABA and pyrabactin altered the vitamin C redox state at early stages of fruit development and more than doubled vitamin C contents at the end of fruit ripening. These were partially explained by changes in ascorbate oxidation and recycling. Therefore, ABA and pyrabactin applications may be used to increase vitamin C content of ripe fruits, increasing fruit quality and value. However, treatments containing pyrabactin-combined with ABA or alone-diminished protein content, thus partially limiting its potential applicability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Development of an instant coffee enriched with chlorogenic acids.

    PubMed

    Corso, Marinês Paula; Vignoli, Josiane Alessandra; Benassi, Marta de Toledo

    2016-03-01

    The objective of this study was to present possible formulations for an instant coffee product enriched with chlorogenic acids for the Brazilian market. Formulations were prepared with different concentrations of freeze dried extracts of green Coffea canephora beans (G) added to freeze dried extracts of roasted Coffea arabica (A) and Coffea canephora (C). Medium (M) and dark (D) roasting degrees instant coffee were produced (AM, AD, CM and CD) to obtain four formulations with green extract addition (AMG, ADG, CMG and CDG). Chlorogenic acids were determined by HPLC, with average contents of 7.2 %. Roasted extracts and formulations were evaluated for 5-CQA and caffeine contents (by HPLC), browned compounds (absorbance 420 nm), and antioxidant activity (ABTS and Folin). Coffee brews of the four formulations were also assessed in a lab-scale test by 42 consumers for acceptance of the color, aroma, flavor and body, overall acceptance and purchase intent, using a 10 cm hybrid scale. The formulations obtained acceptance scores of 6.6 and 7.7 for all attributes, thus they were equally acceptable. Greater purchase intent was observed for ADG, CDG and CMG (6.9) in comparison to AMG (6.1). The formulations had, on average, 2.5 times more 5-CQA than the average obtained from conventional commercial instant coffees. In addition to being more economically viable, the formulations developed with C. canephora (CDG and CMG) showed greater antioxidant potential (32.5 g of Trolox/100 g and 13.8 g of gallic acid equivalent/100 g) due to a balance in the amount of bioactive compounds.

  6. Comparison of the Effects of Blending and Juicing on the Phytochemicals Contents and Antioxidant Capacity of Typical Korean Kernel Fruit Juices

    PubMed Central

    Pyo, Young-Hee; Jin, Yoo-Jeong; Hwang, Ji-Young

    2014-01-01

    Four Korean kernel fruit (apple, pear, persimmon, and mandarin orange) juices were obtained by household processing techniques (i.e., blending, juicing). Whole and flesh fractions of each fruit were extracted by a blender or a juicer and then examined for phytochemical content (i.e., organic acids, polyphenol compounds). The antioxidant capacity of each juice was determined by ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. Results revealed that juices that had been prepared by blending whole fruits had stronger antioxidant activities and contained larger amounts of phenolic compounds than juices that had been prepared by juicing the flesh fraction of the fruit. However, the concentration of ascorbic acid in apple, pear, and mandarin orange juices was significantly (P<0.05) higher in juice that had been processed by juicing, rather than blending. The juices with the highest ascorbic acid (233.9 mg/serving), total polyphenols (862.3 mg gallic acid equivalents/serving), and flavonoids (295.1 mg quercetin equivalents/serving) concentrations were blended persimmon juice, blended mandarin orange juice, and juiced apple juice, respectively. These results indicate that juice extraction techniques significantly (P<0.05) influences the phytochemical levels and antioxidant capacity of fruit juices. PMID:25054109

  7. [Contents of tannins and oxalic acid in the selected forest fruits depending on the harvest site].

    PubMed

    Sembratowicz, Iwona; Ognik, Katarzyna; Rusinek, Elzbieta; Truchliński, Jerzy

    2008-01-01

    Contents of anti-nutritional components (tannins and oxalic acid) were determined in samples of forest fruits: blueberry, raspberry and wild strawberry harvested in Lublin region from areas considered as potentially not exposed to pollution (Skierbieszów Landscape Park) and potentially polluted areas (Cement Factory Rejowiec S.A.). Study revealed that blueberry and raspberry fruits collected on potentially polluted area were characterized by higher tannins contents than those harvested on potentially not polluted area. Oxalic acid level in studied material indicated its significantly higher concentration in wild strawberry fruits collected both from not exposed and polluted areas as compared to raspberry and blueberry. Tannins and oxalic acid contents in analyzed berries may be accepted as low and safe for human's health.

  8. Detailed dimethylacetal and fatty acid composition of rumen content from lambs fed lucerne or concentrate supplemented with soybean oil.

    PubMed

    Alves, Susana P; Santos-Silva, José; Cabrita, Ana R J; Fonseca, António J M; Bessa, Rui J B

    2013-01-01

    Lipid metabolism in the rumen is responsible for the complex fatty acid profile of rumen outflow compared with the dietary fatty acid composition, contributing to the lipid profile of ruminant products. A method for the detailed dimethylacetal and fatty acid analysis of rumen contents was developed and applied to rumen content collected from lambs fed lucerne or concentrate based diets supplemented with soybean oil. The methodological approach developed consisted on a basic/acid direct transesterification followed by thin-layer chromatography to isolate fatty acid methyl esters from dimethylacetal, oxo- fatty acid and fatty acid dimethylesters. The dimethylacetal composition was quite similar to the fatty acid composition, presenting even-, odd- and branched-chain structures. Total and individual odd- and branched-chain dimethylacetals were mostly affected by basal diet. The presence of 18:1 dimethylacetals indicates that biohydrogenation intermediates might be incorporated in structural microbial lipids. Moreover, medium-chain fatty acid dimethylesters were identified for the first time in the rumen content despite their concentration being relatively low. The fatty acids containing 18 carbon-chain lengths comprise the majority of the fatty acids present in the rumen content, most of them being biohydrogenation intermediates of 18:2n-6 and 18:3n-3. Additionally, three oxo- fatty acids were identified in rumen samples, and 16-O-18:0 might be produced during biohydrogenation of the 18:3n-3.

  9. Changes in polyphenol and polysaccharide content of grape seed extract and grape pomace after enzymatic treatment.

    PubMed

    Chamorro, S; Viveros, A; Alvarez, I; Vega, E; Brenes, A

    2012-07-15

    Grape seed extract and grape pomace are rich sources of polyphenols. The aim of this study was to evaluate the release of polyphenols, the solubilisation of carbohydrate, and the antioxidant capacity of these grape by-products after enzymatic reaction with carbohydrases (cellulolytic and pectinolytic activities) and tannase for 24h. The use of tannase in these by-products, and pectinase in grape pomace changed the galloylated form of catechin to its free form, releasing gallic acid and increasing the antioxidant activity. In grape pomace, cellulase treatment was not efficient for phenolic release and antioxidant activity improvement. The addition of carbohydrases to grape pomace, either alone or in combination, degraded the cell wall polysaccharides, increasing the content of monosaccharides. These results provide relevant data about the potential of pectinase, tannase and combinations of enzymes on the release of polyphenols and monosaccharides from grape by-products, improving the antioxidant capacity and the nutritional value. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Effects of induced subacute ruminal acidosis on milk fat content and milk fatty acid profile.

    PubMed

    Enjalbert, F; Videau, Y; Nicot, M C; Troegeler-Meynadier, A

    2008-06-01

    Two lactating dairy cows fitted with a rumen cannula received successively diets containing 0%, 20%, 34% and again 0% of wheat on a dry matter basis. After 5, 10 and 11 days, ruminal pH was measured between 8:00 and 16:00 hours, and milk was analysed for fat content and fatty acid profile. Diets with 20% and 34% wheat induced a marginal and a severe subacute ruminal acidosis respectively. After 11 days, diets with wheat strongly reduced the milk yield and milk fat content, increased the proportions of C8:0 to C13:0 even- or odd-chain fatty acids, C18:2 n-6 and C18:3 n-3 fatty acids but decreased the proportions of C18:0 and cis-9 C18:1 fatty acids. Wheat also increased the proportions of trans-5 to trans-10 C18:1, the latter exhibiting a 10-fold increase with 34% of wheat compared with value during the initial 0% wheat period. There was also an increase of trans-10, cis-12 C18:2 fatty acid and a decrease of trans-11 to trans-16 C18:1 fatty acids. The evolution during adaptation or after return to a 0% wheat diet was rapid for pH but much slower for the fatty acid profile. The mean ruminal pH was closely related to milk fat content, the proportion of odd-chain fatty acids (linear relationship) and the ratio of trans-10 C18:1/trans-11 C18:1 (nonlinear relationship). Such changes in fatty acid profile suggested a possible use for non-invasive diagnosis of subacute ruminal acidosis.

  11. Effect of deep-fat frying on ascorbic acid, carotenoids and potassium contents of plantain cylinders.

    PubMed

    Rojas-Gonzalez, Juan A; Avallone, Sylvie; Brat, Pierre; Trystram, Gilles; Bohuon, Philippe

    2006-01-01

    The influence of thermal treatment (frying of plantain) on the micronutrients ascorbic acid, potassium and carotenoids is evaluated. Cylinders (diameter 30 mm, thickness 10 mm) of plantain (Musa AAB 'barraganete') were fried at four thermal treatments (120-180 degrees C and from 24 to 4 min) to obtain products with approximately the same water content (approximately 0.8+/-0.02 kg/kg1) and fat content (approximately 0.15+/-0.06 kg/kg). The thermal study used the cook value and the mean cook value as indicators of the effect of several different treatment temperatures and times on quality. Deep-fat frying had no significant effect on carotenoid contents at any frying conditions, and on potassium content, except at 120 degrees C and 24 min (loss acid. The process with the greatest effect was low temperature and long time (120 degrees C/24 min), as observed for potassium and ascorbic acid. These results are in agreement with other studies that demonstrated short thermal treatments at high temperatures protect food nutritional quality, as shown by the cook value and the mean cook value. In our work, deep-fat frying of plantain preserved most of the micronutrient contents that were evaluated.

  12. Effects of benzoic and cinnamic acids on growth, mineral composition, and chlorophyll content of soybean.

    PubMed

    Baziramakenga, R; Simard, R R; Leroux, G D

    1994-11-01

    Organic acids are major water-soluble allelochemicals found in soil infested with quackgrass and are involved in several processes that are important in plant growth and development. This study was carried out to gain more information on the effects of benzoic acid (BEN) andtrans-cinnamic acid (CIN) on growth, mineral composition, and chlorophyll content of soybean [Glycine max (L.) Merr. cv. Maple Bell] grown in nutrient solution. The two allelochemicals reduced root and shoot dry biomass of soybean. Treated plants had fewer lateral roots and tended to grow more horizontally compared to the untreated plants. Lateral roots were stunted and less flexible. The amounts of P, K, Mg, Mn, Cl(-), and SO 4 (2-) were lower, and Zn and Fe contents were higher in roots of plants grown with BEN or CIN as compared to untreated plants. Shoots of plants grown with the allelochemical showed greater accumulation of Ca, Mg, and Zn, whereas P and Fe contents were reduced. The BEN and CIN also caused reductions in leaf chlorophyll content. The BEN and CIN may be responsible for negative allelopathic effects of quackgrass on soybean by inhibiting root growth, by altering ion uptake and transport, and by reducing chlorophyll content.

  13. Photodegradation of gallic acid under UV irradiation: insights regarding the pH effect on direct photolysis and the ROS oxidation-sensitized process of DOM.

    PubMed

    Du, Yingxun; Chen, Hui; Zhang, Yuanyuan; Chang, Yuguang

    2014-03-01

    In this study, the degradation of gallic acid (GA), a model compound for dissolved organic matter (DOM) in controlled UV/N2, UV/air, UV/Fe(3+)/N2, and UV/Fe(3+)/air systems was investigated to elucidate the contribution of direct photolysis and reactive oxygen species (ROS) oxidation to GA degradation at various pH values. In general, the order of the degradation rate of GA in these four systems was as follows: UV/Fe(3+)/air>UV/air>UV/Fe(3+)/N2≈UV/N2. In the UV/N2 system, GA underwent slow direct photolysis, the rate of which decreased with decreasing pH. In the UV/Fe(3+)/air system, the most rapid GA degradation was achieved at pH 5. ROS are mainly derived from two sources. The first source is attributed to the role of DO and the other is attributed to the interaction of Fe(3+) and DO. The contribution of ROS to GA oxidation is much greater (>71%) than that of direct photolysis (<29%) at each pH value and is most obvious at pH 5. H2O2 formation was detected during GA degradation in the UV/air and UV/Fe(3+)/air systems. Using ROS scavengers, it was found that oxidation by OH was the main mechanism of GA degradation in the UV/Fe(3+)/air system. Based on the experimental results, a mechanism for GA degradation and ROS formation involving the effect of pH was proposed. This study furthers our understanding of changes in DOM degradation mechanisms due to global acidification. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Effects of winter stocker growth rate and finishing system on: III. Tissue proximate, fatty acid, vitamin, and cholesterol content.

    PubMed

    Duckett, S K; Neel, J P S; Fontenot, J P; Clapham, W M

    2009-09-01

    Angus-cross steers (n = 198; 270 kg of BW; 8 mo) were used in a 3-yr study to assess the effects of winter stocker growth rate and finishing system on LM proximate, fatty acid, cholesterol, vitamin, and mineral composition. During the winter months (December to April), steers were randomly allotted to 3 stocker growth rates: low (0.23 kg/d), medium (0.45 kg/d), or high (0.68 kg/d). At the completion of the stockering phase, steers were allotted randomly within each stocker growth rate to a high concentrate (CONC) or pasture (PAST) finishing system and finished to an equal time endpoint. Winter stocker growth rate did not alter (P > 0.05) proximate, cholesterol, or vitamin content of the LM. All interactions among winter stocker growth rate and finishing system were nonsignificant, indicating that supplementation systems during winter stocker period did not influence beef composition after finishing on PAST or CONC. Finishing steers on CONC decreased (P < 0.001) moisture content of the LM and increased (P < 0.001) lipid content of the LM. Protein, ash, and cholesterol content of the LM did not differ (P > 0.05) between finishing systems. alpha-Tocopherol and beta-carotene content of the LM were 288 and 54% greater, respectively, for PAST-finished cattle than CONC. B-vitamins, thiamine and riboflavin, were also present in greater (P = 0.001) concentrations for PAST than CONC. Calcium, Mg, and K contents of the LM were greater (P < 0.05) for PAST than CONC. Total fatty acid content of the LM was 49% less for PAST than CONC. Myristoleic, palmitoleic, and oleic acid concentrations were all less (P = 0.001) for PAST than CONC. Trans-10 octadecenoic acid percentage in LM was 97% greater (P = 0.001) for CONC than PAST; conversely, trans-11 vaccenic acid percentage in the LM was 90% greater (P = 0.001) for PAST than CONC. Conjugated linoleic acid, cis-9, trans-11 isomer, percentage was greater (P = 0.001) by 117% for PAST than CONC. Linoleic acid (C18:2) concentration did

  15. Effects of the polyphenol content on the anti-diabetic activity of Cinnamomum zeylanicum extracts.

    PubMed

    IM, Krishnakumar; Issac, Abin; NM, Johannah; Ninan, Eapen; Maliakel, Balu; Kuttan, Ramadassan

    2014-09-01

    Cinnamomum zeylanicum is a popular kitchen spice widely investigated for insulin potentiating effects. Though a group of water soluble polyphenols belonging to the oligomeric procyanidins has been identified as the bioactive principle, the lack of systematic information on the effect of the polyphenol content on safety and anti-diabetic efficacy remains as a major limitation for the development of optimized and standardized cinnamon extracts for functional use. In the present paper, water soluble extracts of Cinnamomum zeylanicum containing 45 and 75% gallic acid equivalents (GAE) of polyphenol content were prepared by a novel process and characterized by tandem mass spectrometry. The polyphenol enhanced extracts were shown to be safe and offered better antioxidant potential, hypoglycemic effect, hypolipidimic effect, and significant decrease in other biochemical parameters as compared to the standard aqueous extract containing 15% GAE, when administered to streptozotocin-induced diabetic rats at 200 mg per kg b.w. for 30 days. The efficacy of polyphenol extracts in lowering blood glucose levels and ameliorating oxidative stress was further demonstrated in humans by administrating 'procynZ-45' containing 45% GAE polyphenols at a relatively low dosage of (125 mg × 2) per day for 30 days to 15 volunteers who had elevated fasting blood glucose levels; but not involved in any medication.

  16. Proximate composition, total phenolic content, and antioxidant activity of seagrape (Caulerpa lentillifera).

    PubMed

    Nguyen, Van Tang; Ueng, Jinn-Pyng; Tsai, Guo-Jane

    2011-09-01

    The proximate composition of seagrape (Caulerpa lentillifera) from culture ponds in Penghu, Taiwan was analyzed. The phenolic content and the antioxidant activities including the 1,1-diphenyl-2-picryl-hydrazil (DPPH) radical scavenging activity, ferric ion-reducing activity, hydrogen peroxide scavenging activity, and ferrous ion chelating (FIC) activity of the ethanolic extracts of dry seagrape samples using 2 drying methods of freeze drying and thermal drying were compared with the ethanolic extract of Oolong tea as a reference. The contents (dry weight basis) of carbohydrate, crude protein, crude lipid, crude fiber, and ash of seagrape obtained from culture ponds in Taiwan were 64.00%, 9.26%, 1.57%, 2.97%, and 22.20%, respectively. The total phenolic content (1.30 mg gallic acid equivalent [GAE]/g dry weight) of the ethanolic extract of thermally dried seagrape was significantly lower (P < 0.05) than that (2.04 mg GAE/g dry weight) of freeze-dried seagrape, and both were significantly lower than that (13.58 mg GAE/g dry weight) of Oolong tea. At the same phenolic content, the antioxidant activities of freeze-dried seagrape were significantly higher (P < 0.05) than those of thermally dried seagrape. Compared with Oolong tea, seagrape, irrespective of drying method used, generally had strong hydrogen peroxide scavenging activity; but it was weak in DPPH radical scavenging activity, ferric ion-reducing activity, and FIC activity. The antioxidant activity of seagrape and Oolong tea was significantly influenced by their phenolic contents. The proximate composition, total phenolic content, and antioxidant activity of seagrape (Caulerpa lentillifera) in Taiwan were determined in this research to indicate nutritionally of this edible seaweed to human health, and compared these results to previous studies. © 2011 Institute of Food Technologists®

  17. Prediction of the true digestible amino acid contents from the chemical composition of sorghum grain for poultry.

    PubMed

    Ebadi, M R; Sedghi, M; Golian, A; Ahmadi, H

    2011-10-01

    Accurate knowledge of true digestible amino acid (TDAA) contents of feedstuffs is necessary to accurately formulate poultry diets for profitable production. Several experimental approaches that are highly expensive and time consuming have been used to determine available amino acids. Prediction of the nutritive value of a feed ingredient from its chemical composition via regression methodology has been attempted for many years. The artificial neural network (ANN) model is a powerful method that may describe the relationship between digestible amino acid contents and chemical composition. Therefore, multiple linear regressions (MLR) and ANN models were developed for predicting the TDAA contents of sorghum grain based on chemical composition. A precision-fed assay trial using cecectomized roosters was performed to determine the TDAA contents in 48 sorghum samples from 12 sorghum varieties differing in chemical composition. The input variables for both MLR and ANN models were CP, ash, crude fiber, ether extract, and total phenols whereas the output variable was each individual TDAA for every sample. The results of this study revealed that it is possible to satisfactorily estimate the TDAA of sorghum grain through its chemical composition. The chemical composition of sorghum grain seems to highly influence the TDAA contents when considering components such as CP, crude fiber, ether extract, ash and total phenols. It is also possible to estimate the TDAA contents through multiple regression equations with reasonable accuracy depending on composition. However, a more satisfactory prediction may be achieved via ANN for all amino acids. The R(2) values for the ANN model corresponding to testing and training parameters showed a higher accuracy of prediction than equations established by the MLR method. In addition, the current data confirmed that chemical composition, often considered in total amino acid prediction, could be also a useful predictor of true digestible values

  18. Detailed Dimethylacetal and Fatty Acid Composition of Rumen Content from Lambs Fed Lucerne or Concentrate Supplemented with Soybean Oil

    PubMed Central

    Alves, Susana P.; Santos-Silva, José; Cabrita, Ana R. J.; Fonseca, António J. M.; Bessa, Rui J. B.

    2013-01-01

    Lipid metabolism in the rumen is responsible for the complex fatty acid profile of rumen outflow compared with the dietary fatty acid composition, contributing to the lipid profile of ruminant products. A method for the detailed dimethylacetal and fatty acid analysis of rumen contents was developed and applied to rumen content collected from lambs fed lucerne or concentrate based diets supplemented with soybean oil. The methodological approach developed consisted on a basic/acid direct transesterification followed by thin-layer chromatography to isolate fatty acid methyl esters from dimethylacetal, oxo- fatty acid and fatty acid dimethylesters. The dimethylacetal composition was quite similar to the fatty acid composition, presenting even-, odd- and branched-chain structures. Total and individual odd- and branched-chain dimethylacetals were mostly affected by basal diet. The presence of 18∶1 dimethylacetals indicates that biohydrogenation intermediates might be incorporated in structural microbial lipids. Moreover, medium-chain fatty acid dimethylesters were identified for the first time in the rumen content despite their concentration being relatively low. The fatty acids containing 18 carbon-chain lengths comprise the majority of the fatty acids present in the rumen content, most of them being biohydrogenation intermediates of 18∶2n−6 and 18∶3n−3. Additionally, three oxo- fatty acids were identified in rumen samples, and 16-O-18∶0 might be produced during biohydrogenation of the 18∶3n−3. PMID:23484024

  19. Enhancement of Phenolic Production and Antioxidant Activity from Buckwheat Leaves by Subcritical Water Extraction.

    PubMed

    Kim, Dong-Shin; Kim, Mi-Bo; Lim, Sang-Bin

    2017-12-01

    To enhance the production of phenolic compounds with high antioxidant activity and reduce the level of phototoxic fagopyrin, buckwheat leaves were extracted with subcritical water (SW) at 100~220°C for 10~50 min. The major phenolic compounds were quercetin, gallic acid, and protocatechuic acid. The cumulative amount of individual phenolic compounds increased with increasing extraction temperature from 100°C to 180°C and did not change significantly at 200°C and 220°C. The highest yield of individual phenolic compounds was 1,632.2 μg/g dry sample at 180°C, which was 4.7-fold higher than that (348.4 μg/g dry sample) at 100°C. Total phenolic content and total flavonoid content increased with increasing extraction temperature and decreased with increasing extraction time, and peaked at 41.1 mg gallic acid equivalents/g and 26.9 mg quercetin equivalents/g at 180°C/10 min, respectively. 2,2-Diphenyl-1-picrylhydrazyl free radical scavenging activity and ferric reducing ability of plasma reached 46.4 mg ascorbic acid equivalents/g and 72.3 mmol Fe 2+ /100 g at 180°C/10 min, respectively. The fagopyrin contents were reduced by 92.5~95.7%. Color values L * and b * decreased, and a * increased with increasing extraction temperature. SW extraction enhanced the yield of phenolic compounds with high antioxidant activity and reduced the fagopyrin content from buckwheat leaves.

  20. Frying stability of high oleic sunflower oils as affected by composition of tocopherol isomers and linoleic acid content.

    PubMed

    Aladedunye, Felix; Przybylski, Roman

    2013-12-01

    The influence of linoleic acid content and tocopherol isomeric composition on the frying performance of high oleic sunflower oil was evaluated during a 14-day restaurant style frying operation. At equal linoleic acid content, no significant difference was observed between high oleic sunflower oil containing only α-tocopherol and the sample containing a mixture of α-, γ-, and δ-isomers as measured by the amount of total polar components, oligomers, anisidine value, and free fatty acids. On the contrary, at similar tocopherol isomeric composition, high oleic sunflower oil containing lower amount of linoleic acid showed superior frying stability compared to the sample with a higher content of linoleic acid, suggesting that the frying performance of high oleic sunflower oil is dictated primarily by the level of linoleic acid, with the tocopherol isomeric composition of the oil having no significant influence. In all oil samples, the loss of γ-tocopherol was higher than the corresponding loss of α-tocopherol. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Effect of processing techniques on nutritional composition and antioxidant activity of fenugreek (Trigonella foenum-graecum) seed flour.

    PubMed

    Pandey, Hemlata; Awasthi, Pratima

    2015-02-01

    Fenugreek (Pusa Early Bunching) seeds were processed by using different processing methods viz. soaking, germination and roasting. Raw and processed fenugreek seed flours were analyzed for nutritional composition, anti- nutritional, and antioxidant activity. Raw fenugreek seed flour contained higher amount of dietary fiber (45.4 %) followed by 41.7 % in soaked seed flour, 40.9 % in roasted fenugreek seed flour and 31.3 % in germinated fenugreek seed flour. Processing of fenugreek seeds improved in vitro starch digestibility and in vitro protein digestibility. Soaking, germination and roasting enhanced total phenolic content and the antioxidant activity of fenugreek seed flour as compared to raw fenugreek seed flour. The phenolic content of soaked, germinated and roasted fenugreek seed flours was 54.4, 80.8 and 48.5 mg of gallic acid equivalents/g of sample in contrast to raw fenugreek seed flour (45.4 mg of gallic acid equivalents/g of sample). The antioxidant activity of the extracts of soaked, germinated and roasted fenugreek seed flours was 60.7 %, 73.9 % and 32.0 % whereas as the raw fenugreek seed flour exhibited 18.1 % antioxidant activity. Processing of fenugreek seeds also decreased phytic acid content significantly (P < 0.05) as compared to raw seeds.

  2. Rosmarinic acid content in antidiabetic aqueous extract of Ocimum canum Sims grown in Ghana

    USDA-ARS?s Scientific Manuscript database

    Rosmarinic acid (RA) is an important polyphenol that is found in a variety of herbs including Ocimum canum sims (locally called eme or akokobesa in Ghana). Aqueous extracts from the leaves of O.canum are used as an antidiabetic herbal medicine in Ghana. Interestingly, rosmarinic acid content and p...

  3. Prediction of sweetness and amino acid content in soybean crops from hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Monteiro, Sildomar Takahashi; Minekawa, Yohei; Kosugi, Yukio; Akazawa, Tsuneya; Oda, Kunio

    Hyperspectral image data provides a powerful tool for non-destructive crop analysis. This paper investigates a hyperspectral image data-processing method to predict the sweetness and amino acid content of soybean crops. Regression models based on artificial neural networks were developed in order to calculate the level of sucrose, glucose, fructose, and nitrogen concentrations, which can be related to the sweetness and amino acid content of vegetables. A performance analysis was conducted comparing regression models obtained using different preprocessing methods, namely, raw reflectance, second derivative, and principal components analysis. This method is demonstrated using high-resolution hyperspectral data of wavelengths ranging from the visible to the near infrared acquired from an experimental field of green vegetable soybeans. The best predictions were achieved using a nonlinear regression model of the second derivative transformed dataset. Glucose could be predicted with greater accuracy, followed by sucrose, fructose and nitrogen. The proposed method provides the possibility to provide relatively accurate maps predicting the chemical content of soybean crop fields.

  4. Association between vascular calcification scores on plain radiographs and fatty acid contents of erythrocyte membrane in hemodialysis patients.

    PubMed

    Son, Young K; Lee, Su M; Kim, Seong E; Kim, Ki H; Lee, Seon Y; Bae, Hae R; Han, Jin Y; Park, Yongsoon; An, Won S

    2012-01-01

    Vascular calcification (VC) scores determined by using simple plain radiographic films are known to be associated with coronary artery disease and mortality in patients undergoing hemodialysis (HD). Omega-3 fatty acid (FA) has been shown to reduce ectopic calcifications in an animal model, and it has also been shown that erythrocyte membrane omega-3 FA content is an independent discriminator of coronary artery disease. The present study was designed to demonstrate relations between VC scores and erythrocyte membrane FA contents in patients undergoing HD. A cross-sectional study was carried out. The study was carried out at an outpatient hemodialysis unit at Dong-A University Hospital, Busan, Republic of Korea. A total of 31 patients undergoing HD were recruited. Patients with significant malnutrition, a short duration of dialysis (<12 months), a history of recent infection, malignancy, or liver disease were excluded. Plain radiographic films of the feet, hands, pelvis, and lateral lumbar spine were examined and VC scores were determined using previously reported methods. Erythrocyte membrane FA contents were analyzed by gas chromatography. The erythrocyte membrane contents of eicosapentaenoic acid and docosahexaenoic acid were not found to be related with VC on simple plain radiographic films. However, erythrocyte membrane contents of oleic acid and total monounsaturated FA (MUFA) were significantly higher in patients with significant VC scores. Furthermore, erythrocyte membrane contents of MUFA and oleic acid were found to be negatively associated with high-density lipoprotein cholesterol level and positively associated with triglyceride level. Erythrocyte membrane contents of MUFA and oleic acid were found to be associated with VC scores determined using plain radiographs and with dyslipidemia in patients undergoing HD. Copyright © 2012 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  5. Seasonal, gender and regional variations in total phenolic, flavonoid, and condensed tannins contents and in antioxidant properties from Pistacia atlantica ssp. leaves.

    PubMed

    Ben Ahmed, Ziyad; Yousfi, Mohamed; Viaene, Johan; Dejaegher, Bieke; Demeyer, Kristiaan; Mangelings, Debby; Vander Heyden, Yvan

    2017-12-01

    The widespread use of Pistacia atlantica Desf. ssp. (Anacardiaceae) in traditional medicine can be partly attributed to the content of its secondary metabolites, in particular, the phenolic compounds. The effects of harvest period, growing region and gender on the phenolic compounds, flavonoids and condensed tannins contents were studied, as well as on the antioxidant activities of P. atlantica leaves in order to provide a scientific basis for optimal collection. Leaves were collected monthly from April to October 2010 in two Algerian sites. The powdered leaves were used for preparing the ethyl acetate extract. Contents of total phenolics (TPC), flavonoids (FC) and condensed tannins (CTC) were determined spectrophotometrically. Antioxidant activity was evaluated through radical scavenging activity (RSA) of 2,2-diphenyl-1-picrylhydrazyl (250 μM) and the reducing power capacity (RPC) determination by K 3 Fe(CN) 6 (1%). The TPC was found to vary from 79 ± 13 to 259 ± 8 mg gallic acid equivalents/g of dry weight (DW) during the study period. The RSA and RPC varied between 262 ± 18 and 675 ± 21 mg Ascorbic Acid Equivalent (AAE)/g DW, and from 259 ± 16 to 983 ± 20 mg AAE/g DW, respectively. A seasonal pattern was observed consisting of a decrease in TPC content and RPC from spring to autumn. The FC, CTC and RSA did not show a seasonal pattern. Our findings showed that secondary metabolite content and antioxidant activities of P. atlantica leaves were more influenced by harvest time and growing region than by gender.

  6. Antiproliferative activity in tumor cell lines, antioxidant capacity and total phenolic, flavonoid and tannin contents of Myrciaria floribunda.

    PubMed

    Tietbohl, Luis A C; Oliveira, Adriana P; Esteves, Ricardo S; Albuquerque, Ricardo D D G; Folly, Diogo; Machado, Francisco P; Corrêa, Arthur L; Santos, Marcelo G; Ruiz, Ana L G; Rocha, Leandro

    2017-01-01

    Myrciaria floribunda (H. West ex Willd.) O. Berg, Myrtaceae, is a native plant species of the Atlantic Rain Forest, from north to south of Brazil. The lyophilized ethyl acetate extract from the leaves of M. floribunda was investigated for its antiproliferative activity in tumor cell lines, antioxidant capacity and its total phenolic, flavonoid and tannin contents. Antiproliferative activity was tested in vitro against seven human cancer cells and against immortalized human skin keratinocytes line (HaCat, no cancer cell). Antioxidant activity was determined using 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and oxygen radical absorbing capacity (ORAC) assays and total phenolic, flavonoid and tannin contents were determined by spectrophotometric techniques. Ethyl acetate extract of M. floribunda exhibited antiproliferative activity against cancer cell lines with total growth inhibition (TGI) between 69.70 and 172.10 µg/mL. For HaCat cell, TGI value was 213.60 µg/mL. M. floribunda showed a strong antioxidant potential: EC50 of 45.89±0.42 µg/mL and 0.55±0.05 mmol TE/g for DPPH and ORAC, respectively. Total phenolic content was 0.23±0.013g gallic acid equivalents (GAE)/g extract and exhibited 13.10±1.60% of tannins content. The content of flavonoid was 24.08±0.44% expressed as rutin equivalents. These results provide a direction for further researches about the antitumoral potential of M. floribunda.

  7. Subclinical Ketosis on Dairy Cows in Transition Period in Farms with Contrasting Butyric Acid Contents in Silages

    PubMed Central

    Rodríguez, María Luisa; Martínez-Fernández, Adela; Soldado, Ana; Argamentería, Alejandro; Peláez, Mario; de la Roza-Delgado, Begoña

    2014-01-01

    This study examines the relationship between subclinical ketosis (SCK) in dairy cows and the butyric acid content of the silage used in their feeding. Twenty commercial farms were monitored over a period of 12 months. The feed at each farm and the silages used in its ration were sampled monthly for proximal analysis and for volatile fatty acid analysis. A total of 2857 urine samples were taken from 1112 cows to examine the ketonuria from about 30 days prepartum to 100 postpartum. Wide variation was recorded in the quality of silages used in the preparation of diets. Approximately 80% of the urine samples analyzed had no detectable ketone bodies, 16% returned values indicative of slight SCK, and the remainder, 4%, showed symptoms of ketosis. Most of the cases of hyperkenuria were associated with the butyric acid content of the silage used (r 2 = 0.56; P < 0.05). As the metabolizable energy content of the feed was similar, no relationship was observed between the proportion of cows with SCK and the energy content of the feed. In our study, the probability of dairy cows suffering SCK is higher when they are eating feed made from silage with a high butyric acid content (35.2 g/kg DM intake). PMID:25525616

  8. Subclinical ketosis on dairy cows in transition period in farms with contrasting butyric acid contents in silages.

    PubMed

    Vicente, Fernando; Rodríguez, María Luisa; Martínez-Fernández, Adela; Soldado, Ana; Argamentería, Alejandro; Peláez, Mario; de la Roza-Delgado, Begoña

    2014-01-01

    This study examines the relationship between subclinical ketosis (SCK) in dairy cows and the butyric acid content of the silage used in their feeding. Twenty commercial farms were monitored over a period of 12 months. The feed at each farm and the silages used in its ration were sampled monthly for proximal analysis and for volatile fatty acid analysis. A total of 2857 urine samples were taken from 1112 cows to examine the ketonuria from about 30 days prepartum to 100 postpartum. Wide variation was recorded in the quality of silages used in the preparation of diets. Approximately 80% of the urine samples analyzed had no detectable ketone bodies, 16% returned values indicative of slight SCK, and the remainder, 4%, showed symptoms of ketosis. Most of the cases of hyperkenuria were associated with the butyric acid content of the silage used (r2=0.56; P<0.05). As the metabolizable energy content of the feed was similar, no relationship was observed between the proportion of cows with SCK and the energy content of the feed. In our study, the probability of dairy cows suffering SCK is higher when they are eating feed made from silage with a high butyric acid content (35.2 g/kg DM intake).

  9. Phytochemical screening, antioxidant activity, total phenolic and total flavonoid contents of seven local varieties of Rosa indica L.

    PubMed

    Zahid, Kiran; Ahmed, Maqsood; Khan, Farah

    2018-05-01

    Rosa indica symbol of godness and beauty known for various healing power, has astringent, sedative, anti-inflammatory and antidepressant qualities. Standard methods were used for qualitative detection of phyto-compounds, and quantitative detection of antioxidants was done using DPPH radical scavenging assay, total phenolics and total flavonoids content were expressed in mg GAE/g dry weight and mg QE/g dry weight. Results revealed phyto-compounds presence in all varieties under study however maximum % inhibition was observed by R. indica var pink perfume (94 ± 0.6) with IC50 value 0.3376 ± 0.01 mg/mL. Highest phenolic and flavonoid content was observed in the leaves extract of R. indica var cardinal red, i.e. 3.3553 ± 0.11 (ethanol) mg of Gallic acid equivalents (GAE)/g dry weight and 3.736 ± 0.001(ethanol) mg of quercetin equivalents (QE)/g dry weight, respectively, at conc. 0.125 mg/mL. Our finding provides evidence that all varieties of rose contain medicinally important bioactive compounds and justifies their use for treatment of different diseases.

  10. Sugar and acid content of Citrus prediction modeling using FT-IR fingerprinting in combination with multivariate statistical analysis.

    PubMed

    Song, Seung Yeob; Lee, Young Koung; Kim, In-Jung

    2016-01-01

    A high-throughput screening system for Citrus lines were established with higher sugar and acid contents using Fourier transform infrared (FT-IR) spectroscopy in combination with multivariate analysis. FT-IR spectra confirmed typical spectral differences between the frequency regions of 950-1100 cm(-1), 1300-1500 cm(-1), and 1500-1700 cm(-1). Principal component analysis (PCA) and subsequent partial least square-discriminant analysis (PLS-DA) were able to discriminate five Citrus lines into three separate clusters corresponding to their taxonomic relationships. The quantitative predictive modeling of sugar and acid contents from Citrus fruits was established using partial least square regression algorithms from FT-IR spectra. The regression coefficients (R(2)) between predicted values and estimated sugar and acid content values were 0.99. These results demonstrate that by using FT-IR spectra and applying quantitative prediction modeling to Citrus sugar and acid contents, excellent Citrus lines can be early detected with greater accuracy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Differential Contribution of Endoplasmic Reticulum and Chloroplast ω-3 Fatty Acid Desaturase Genes to the Linolenic Acid Content of Olive (Olea europaea) Fruit.

    PubMed

    Hernández, M Luisa; Sicardo, M Dolores; Martínez-Rivas, José M

    2016-01-01

    Linolenic acid is a polyunsaturated fatty acid present in plant lipids, which plays key roles in plant metabolism as a structural component of storage and membrane lipids, and as a precursor of signaling molecules. The synthesis of linolenic acid is catalyzed by two different ω-3 fatty acid desaturases, which correspond to microsomal- (FAD3) and chloroplast- (FAD7 and FAD8) localized enzymes. We have investigated the specific contribution of each enzyme to the linolenic acid content in olive fruit. With that aim, we isolated two different cDNA clones encoding two ω-3 fatty acid desaturases from olive (Olea europaea cv. Picual). Sequence analysis indicates that they code for microsomal (OepFAD3B) and chloroplast (OepFAD7-2) ω-3 fatty acid desaturase enzymes, different from the previously characterized OekFAD3A and OekFAD7-1 genes. Functional expression in yeast of the corresponding OepFAD3A and OepFAD3B cDNAs confirmed that they encode microsomal ω-3 fatty acid desaturases. The linolenic acid content and transcript levels of olive FAD3 and FAD7 genes were measured in different tissues of Picual and Arbequina cultivars, including mesocarp and seed during development and ripening of olive fruit. Gene expression and lipid analysis indicate that FAD3A is the gene mainly responsible for the linolenic acid present in the seed, while FAD7-1 and FAD7-2 contribute mostly to the linolenic acid present in the mesocarp and, therefore, in the olive oil. These results also indicate the relevance of lipid trafficking between the endoplasmic reticulum and chloroplast in determining the linolenic acid content of membrane and storage lipids in oil-accumulating photosynthetic tissues. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Fatty acid composition and conjugated linoleic acid content in different carcass parts of Dağlıç lambs.

    PubMed

    Karabacak, Ali; Aytekin, İbrahim; Boztepe, Saim

    2014-01-01

    This study was conducted to compare fatty acid composition and content of conjugated linoleic acid (CLA) in different regions of sheep carcasses. Lambs of the Dağlıç breed were used for this purpose. Subsequent to a 68-day period of intensive fattening, fatty acids were examined in samples taken from the legs, shoulders, breasts, and ribs of lamb carcasses. According to the analysis, in leg, shoulder, breast, and rib, respectively, total saturated fatty acids (SFA) were found to be 40.38, 42.69, 42.56, and 40.27%, unsaturated fatty acids (MUFA) were found to be 40.38, 44.17, 46.17, and 49.50%, polyunsaturated fatty acids (PUFA) were found to be 4.79, 4.29, 3.80, and 3.72%, and CLAs were found to be 1.49, 1.69, 1.53, and 1.59%.

  13. [Trans fatty acid content in foods marketed in the community of Madrid(Spain)].

    PubMed

    Moreno Alcalde, Santiago; Ruiz-Roso, Baltasar; Pérez-Olleros, Lourdes; Belmonte Cortés, Susana

    2014-01-01

    As a consequence of the scientific evidence which show that the high consumption of trans fatty acids is a risk factor of certain illnesses, sanitary authorities recommend less than 1% intake of trans fatty acids of the total energy intake. Moreover, the European Commission must present, by December 2014, a report about the presence of trans fatty acids in the aliments as well as in the diet of the European Union population. Thus, this study can provide useful information to reach this objective. To determine trans fatty acid presence in some types of foods in the Community of Madrid. 170 samples of different foods commonly consumed by children and adolescents were selected and analized. All foods had been purchased in big shopping centers in the Community of Madrid during february of 2010. Results are shown as the percentage of each fatty acid compared to the total amount of fat in the aliment. Only 33 products (19.4%) showed the presence of trans fatty acids over the method detection limit (≥ 0.1g per 100g). The highest levels were found in dairy products, with an average content of 0,4%. DISCUSIÓN/CONCLUSIONES: The trans fatty acid content of the analyzed foods can be considered low, compared with the amount reported by other authors in food products marketed in Spain and other countries in the past few years. Further studies should be undertaken to control nutrition security and diet quality of fat intake in the Spanish population, particularly among children and adolescents.

  14. Determination of total polyphenolic content in red wines by means of the combined He-Ne laser optothermal window and Folin-Ciocalteu colorimetry assay.

    PubMed

    Dóka, Ottó; Bicanic, Dane

    2002-05-01

    The He-Ne laser (632.8 nm) and the concept of optothermal window (OW), a variant of the open photoacoustic cell, were combined with the Folin-Ciocalteu colorimetry assay to quantitate phenolics in four red wines. The total polyphenolic content in selected red wines varied between 786 and 1630 mg/L gallic acid equivalent (GAE) as determined by OW-Folin-Ciocalteu colorimetry, which compares well to 778 and 1614 mg/L GAE obtained for the same wines by means of classical spectrophotometry. The originality and merit of OW colorimetry used here is that, unlike what is encountered in conventional spectrometry, no intermediate dilution step is required when total polyhenolics are determined in red wine. The precision, defined as the closeness to each other of 256 replicate readings of the OW signal, is generally better than 2%.

  15. Evaluation of ozonation technique for pesticide residue removal and its effect on ascorbic acid, cyanidin-3-glucoside, and polyphenols in apple (Malus domesticus) fruits.

    PubMed

    Swami, Saurabh; Muzammil, Raunaq; Saha, Supradip; Shabeer, Ahammed; Oulkar, Dasharath; Banerjee, Kaushik; Singh, Shashi Bala

    2016-05-01

    Ozonated water dip technique was evaluated for the detoxification of six pesticides, i.e., chlorpyrifos, cypermethrin, azoxystrobin, hexaconazole, methyl parathion, and chlorothalonil from apple fruits. Results revealed that ozonation was better than washing alone. Ozonation for 15 min decreased residues of the test pesticides in the range of from 26.91 to 73.58%, while ozonation for 30 min could remove the pesticide residues by 39.39-95.14 % compared to 19.05-72.80 % by washing. Cypermethrin was the least removed pesticide by washing as well as by ozonation. Chlorothalonil, chlorpyrifos, and azoxystrobin were removed up to 71.45-95.14 % in a 30-min ozonation period. In case of methyl parathion removal, no extra advantage could be obtained by ozonation. The HPLC analysis indicated that ozonation also affected adversely the ascorbic acid and cyanidin-3-glucoside content of apples. However, 11 polyphenols studied showed a mixed trend. Gallic acid, 3,4-dihydroxybenzoic acid, catechin, epicatechin, p-coumaric acid, quercetin-3-O-glucoside, quercetin, and kaempferol were found to decrease while syringic acid, rutin, and resveratrol were found to increase in 30-min ozonation.

  16. Comparison of the Composition and Antioxidant Activities of Phenolics from the Fruiting Bodies of Cultivated Asian Culinary-Medicinal Mushrooms.

    PubMed

    Lin, Shaoling; Ching, Lai Tsz; Ke, Xinxin; Cheung, Peter Chi Keung

    2016-01-01

    The composition profile and the antioxidant properties of phenolics in water extracts obtained from the fresh fruiting bodies of 4 common cultivated Asian edible mushrooms-Agrocybe aegerita, Pleurotus ostreatus, P. eryngii, and Pholiota nameko were compared. The water extract from A. aegerita (AaE) had the highest total phenolic content (TPC) at 54.18 ± 0.27 gallic acid equivalents (μmol/L)/mg extract (P < 0.05), as measured by the Folin-Ciocalteu method, and consisted of the largest number (including gallic acid, protocatechuic acid, chlorogenic acid, ferulic acid, and sinapic acid) and total amounts of phenolic acids identified by Fourier transform-ion cyclotron resonance mass spectrometry. The water extract of Ph. nameko was found to have the second-highest TPC (43.55 ± 0.10 gallic acid equivalents [μmol/L]/mg extract), followed by the water extract of P. eryngii and the water extract of P. ostreatus (39.55 ± 0.25 and 39.02 ± 0.30 gallic acid equivalents/mg extract, respectively). The scavenging activities of the water extracts from these mushrooms were evaluated against 2,2-diphenyl-l-(2,4,6-trinitrophenyl) hydrazyl diphenylpicrylhydrazyl (DPPH), superoxide anion radicals, hydroxyl radicals, and hydrogen peroxide. Based on halfmaximal effective concentrations, AaE was more effective in scavenging hydrogen peroxide (<0.05), followed by DPPH (0.51 mg/mL), superoxide anion radicals (0.85 mg/mL) and hydroxyl radicals (5.94 mg/mL), then the other mushroom water extracts. The differences in the half-maximal effective concentrations of individual mushroom water extracts were probably the result of the different numbers and amounts of individual phenolic acids in the extracts. The antioxidant activities of the mushroom water extracts were correlated with their TPC. The strongest antioxidant properties of AaE were consistent with its highest TPC and with the largest number and amount of phenolics identified in the extract. These results indicated that cultivated

  17. Phenolic constituents of shea (Vitellaria paradoxa) kernels.

    PubMed

    Maranz, Steven; Wiesman, Zeev; Garti, Nissim

    2003-10-08

    Analysis of the phenolic constituents of shea (Vitellaria paradoxa) kernels by LC-MS revealed eight catechin compounds-gallic acid, catechin, epicatechin, epicatechin gallate, gallocatechin, epigallocatechin, gallocatechin gallate, and epigallocatechin gallate-as well as quercetin and trans-cinnamic acid. The mean kernel content of the eight catechin compounds was 4000 ppm (0.4% of kernel dry weight), with a 2100-9500 ppm range. Comparison of the profiles of the six major catechins from 40 Vitellaria provenances from 10 African countries showed that the relative proportions of these compounds varied from region to region. Gallic acid was the major phenolic compound, comprising an average of 27% of the measured total phenols and exceeding 70% in some populations. Colorimetric analysis (101 samples) of total polyphenols extracted from shea butter into hexane gave an average of 97 ppm, with the values for different provenances varying between 62 and 135 ppm of total polyphenols.

  18. Total Phenolic and Flavonoid Contents of Aqueous Extract of Stinging Nettle and In Vitro Antiproliferative Effect on Hela and BT-474 Cell Lines.

    PubMed

    Fattahi, Sadegh; Zabihi, Ebrahim; Abedian, Zeinab; Pourbagher, Roghayeh; Motevalizadeh Ardekani, Ali; Mostafazadeh, Amrollah; Akhavan-Niaki, Haleh

    2014-01-01

    Phenolic compounds including flavonoids and phenolic acids are plants secondary metabolites. Due to their ability to act as antioxidant agents, there is a growing interest to use those components in traditional medicine for cancer prevention or treatment. The aim of this study was to measure the amounts of total phenolics and flavonoids as well as anti-proliferative effect of aqueous extract of Stinging nettle on BT-474 and Hela cell lines. The amounts of phenolics content and total flavonoids were determined by folin ciocalteu and aluminium chloride methods, respectively. The free radical scavenging activity was measured by using diphenyl - picrylhydrazyl (DPPH). The reducing power of the extract was measured in the presence of potassium hexacyanoferrate and its antiproliferative activity was assessed on BT-474 and Hela cell lines using MTT assay. Total phenolic content was 322.941± 11.811 mg gallic acid/g extract. Total flavonoid content was 133.916±12.006 mg Catechin/g. The IC50 of DPPH radical was 1.2 mg/ ml and the reducing power was 218.9± 15.582 μg ascorbic acid/ g. Cell viability of BT-474 cells decreased to less than half of the control (no added extract) at the presence of 3 mg/ ml extract while no significant changes were detected for Hela cells at similar conditions. There was no significant difference in the percentage of surviving cells between consecutive days (day 1, 2 and 3) for both BT-474 and Hela cells (P>0.05). Although the relatively high amount of phenolic and flavonoid contents of the aqueous extract make this plant a promising candidate for diseases treatment; however, there is not a direct relationship between the amounts of these antioxidant components and the efficiency in in vitro cancer treatment.

  19. Total Phenolic and Flavonoid Contents of Aqueous Extract of Stinging Nettle and In Vitro Antiproliferative Effect on Hela and BT-474 Cell Lines

    PubMed Central

    Fattahi, Sadegh; Zabihi, Ebrahim; Abedian, Zeinab; Pourbagher, Roghayeh; Motevalizadeh Ardekani, Ali; Mostafazadeh, Amrollah; Akhavan-Niaki, Haleh

    2014-01-01

    Phenolic compounds including flavonoids and phenolic acids are plants secondary metabolites. Due to their ability to act as antioxidant agents, there is a growing interest to use those components in traditional medicine for cancer prevention or treatment. The aim of this study was to measure the amounts of total phenolics and flavonoids as well as anti-proliferative effect of aqueous extract of Stinging nettle on BT-474 and Hela cell lines. The amounts of phenolics content and total flavonoids were determined by folin ciocalteu and aluminium chloride methods, respectively. The free radical scavenging activity was measured by using diphenyl - picrylhydrazyl (DPPH). The reducing power of the extract was measured in the presence of potassium hexacyanoferrate and its antiproliferative activity was assessed on BT-474 and Hela cell lines using MTT assay. Total phenolic content was 322.941± 11.811 mg gallic acid/g extract. Total flavonoid content was 133.916±12.006 mg Catechin/g. The IC50 of DPPH radical was 1.2 mg/ ml and the reducing power was 218.9± 15.582 μg ascorbic acid/ g. Cell viability of BT-474 cells decreased to less than half of the control (no added extract) at the presence of 3 mg/ ml extract while no significant changes were detected for Hela cells at similar conditions. There was no significant difference in the percentage of surviving cells between consecutive days (day 1, 2 and 3) for both BT-474 and Hela cells (P>0.05). Although the relatively high amount of phenolic and flavonoid contents of the aqueous extract make this plant a promising candidate for diseases treatment; however, there is not a direct relationship between the amounts of these antioxidant components and the efficiency in in vitro cancer treatment. PMID:25035860

  20. Augmenting the activity of antifungal agents against aspergilli using structural analogues of benzoic acid as chemosensitizing agents

    USDA-ARS?s Scientific Manuscript database

    Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids were increased against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis, by addition of a methyl, methoxyl or a chloro group at position 4 of the aromatic ri...