Science.gov

Sample records for gallium iodides

  1. Gallium

    SciTech Connect

    1996-01-01

    Discovered in 1875 through a study of its spectral properties, gallium was the first element to be uncovered following the publication of Mendeleev`s Periodic Table. French chemist, P.E. Lecoq de Boisbaudran, named his element discovery in honor of his native country; gallium is derived from the Latin word for France-{open_quotes}Gallia.{close_quotes}. This paper describes the properties, sources, and market for gallium.

  2. Gallium scan

    MedlinePlus

    Liver gallium scan; Bony gallium scan ... You will get a radioactive material called gallium injected into your vein. The gallium travels through the bloodstream and collects in the bones and certain organs. Your health care provider will ...

  3. Potassium Iodide

    MedlinePlus

    ... radioactive iodine that may be released during a nuclear radiation emergency. Radioactive iodine can damage the thyroid gland. ... only take potassium iodide if there is a nuclear radiation emergency and public officials tell you that you ...

  4. Potassium Iodide

    MedlinePlus

    Potassium iodide is used to protect the thyroid gland from taking in radioactive iodine that may be released during a nuclear radiation emergency. Radioactive iodine can damage the thyroid gland. You ...

  5. Methyl iodide

    Integrated Risk Information System (IRIS)

    Methyl iodide ; CASRN 74 - 88 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effe

  6. Methyl Iodide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl iodide (MeI, iodomethane, CH3I) was reported as a potential alternative to the stratospheric ozone-depleting fumigant methyl bromide (MeBr) in the mid-1990s (Sims et al., 1995; Ohr et al., 1996). It has since received significant research attention to determine its environmental fate and tran...

  7. Gallium uptake in the thyroid gland in amiodarone-induced hyperthyroidism

    SciTech Connect

    Ling, M.C.; Dake, M.D.; Okerlund, M.D.

    1988-04-01

    Amiodarone is an iodinated antiarrhythmic agent that is effective in the treatment of atrial and ventricular arrhythmias. A number of side effects are seen, including pulmonary toxicity and thyroid dysfunction. A patient with both amiodarone-induced pneumonitis and hyperthyroidism who exhibited abnormal gallium activity in the lungs, as well as diffuse gallium uptake in the thyroid gland is presented. The latter has not been previously reported and supports the concept of iodide-induced thyroiditis with gallium uptake reflecting the inflammatory response.

  8. Gallium fluoroarsenates.

    PubMed

    Marshall, Kayleigh L; Armstrong, Jennifer A; Weller, Mark T

    2015-07-28

    Six new phases in the gallium-fluoride-arsenate system have been synthesised hydrofluorothermally using a fluoride-rich medium and "HAsF6" (HF : AsF5) as a reactant. RbGaF3(H2AsO4), KGaF(H2AsO4) and [piperazine-H2]2[Ga2F8(HAsO4)]·H2O have one dimensional structures, [DABCO-H2]2[Ga4F7O2H(AsO4)2]·4H2O consists of two dimensionally connected polyhedral layers, while GaF(AsO3[OH,F])2 and (NH4)3Ga4F9(AsO4)2 both have three-dimensionally connected polyhedral frameworks. PMID:26095086

  9. Cesium iodide alloys

    DOEpatents

    Kim, H.E.; Moorhead, A.J.

    1992-12-15

    A transparent, strong CsI alloy is described having additions of monovalent iodides. Although the preferred iodide is AgI, RbI and CuI additions also contribute to an improved polycrystalline CsI alloy with outstanding multispectral infrared transmittance properties. 6 figs.

  10. Investigations in gallium removal

    SciTech Connect

    Philip, C.V.; Pitt, W.W.; Beard, C.A.

    1997-11-01

    Gallium present in weapons plutonium must be removed before it can be used for the production of mixed-oxide (MOX) nuclear reactor fuel. The main goal of the preliminary studies conducted at Texas A and M University was to assist in the development of a thermal process to remove gallium from a gallium oxide/plutonium oxide matrix. This effort is being conducted in close consultation with the Los Alamos National Laboratory (LANL) personnel involved in the development of this process for the US Department of Energy (DOE). Simple experiments were performed on gallium oxide, and cerium-oxide/gallium-oxide mixtures, heated to temperatures ranging from 700--900 C in a reducing environment, and a method for collecting the gallium vapors under these conditions was demonstrated.

  11. Gallium nitride optoelectronic devices

    NASA Technical Reports Server (NTRS)

    Chu, T. L.; Chu, S. S.

    1972-01-01

    The growth of bulk gallium nitride crystals was achieved by the ammonolysis of gallium monochloride. Gallium nitride single crystals up to 2.5 x 0.5 cm in size were produced. The crystals are suitable as substrates for the epitaxial growth of gallium nitride. The epitaxial growth of gallium nitride on sapphire substrates with main faces of (0001) and (1T02) orientations was achieved by the ammonolysis of gallium monochloride in a gas flow system. The grown layers had electron concentrations in the range of 1 to 3 x 10 to the 19th power/cu cm and Hall mobilities in the range of 50 to 100 sq cm/v/sec at room temperature.

  12. Mercury iodide crystal growth

    NASA Technical Reports Server (NTRS)

    Cadoret, R.

    1982-01-01

    The purpose of the Mercury Iodide Crystal Growth (MICG) experiment is the growth of near-perfect single crystals of mercury Iodide (HgI2) in a microgravity environment which will decrease the convection effects on crystal growth. Evaporation and condensation are the only transformations involved in this experiment. To accomplish these objectives, a two-zone furnace will be used in which two sensors collect the temperature data (one in each zone).

  13. Lung gallium scan

    MedlinePlus

    ... inflammation in the lungs, most often due to sarcoidosis or a certain type of pneumonia. Normal Results ... up very little gallium. What Abnormal Results Mean Sarcoidosis Other respiratory infections, most often pneumocystis jirovecii pneumonia ...

  14. Preventing Supercooling Of Gallium

    NASA Technical Reports Server (NTRS)

    Massucco, Arthur A.; Wenghoefer, Hans M.; Wilkins, Ronnie

    1994-01-01

    Principle of heterogeneous nucleation exploited to prevent gallium from supercooling, enabling its use as heat-storage material that crystallizes reproducibly at its freezing or melting temperature of 29 to 30 degrees C. In original intended application, gallium used as heat-storage material in gloves of space suits. Terrestrial application lies in preparation of freezing-temperature reference samples for laboratories. Principle of heterogeneous nucleation also exploited similarly in heat pipes filled with sodium.

  15. Electrodeposition of gallium for photovoltaics

    DOEpatents

    Bhattacharya, Raghu N.

    2016-08-09

    An electroplating solution and method for producing an electroplating solution containing a gallium salt, an ionic compound and a solvent that results in a gallium thin film that can be deposited on a substrate.

  16. Cesium iodide alloys

    SciTech Connect

    Kim, Hyoun-Ee; Moorhead, A.J.

    1991-01-01

    This invention relates to a CsI composition with improved mechanical strength and outstanding multispectral infrared transmittance, for window use. The additive is a monovalent iodide, other than CsI, added in amounts sufficient to maximize fracture strength from 16 to 40 MPa, while maintaining at least 10% transparency in the 4 to 50 micrometer wavelength range. The preferred additive is AgI, although RbI or CuI can be used. 6 figs. (DLC)

  17. Frequently Asked Questions on Potassium Iodide (KI)

    MedlinePlus

    ... needs to take potassium iodide (KI) after a nuclear radiation release? What potassium iodide (KI) products are currently ... needs to take potassium iodide (KI) after a nuclear radiation release? The FDA guidance prioritizes groups based on ...

  18. Hydrogen iodide decomposition

    DOEpatents

    O'Keefe, Dennis R.; Norman, John H.

    1983-01-01

    Liquid hydrogen iodide is decomposed to form hydrogen and iodine in the presence of water using a soluble catalyst. Decomposition is carried out at a temperature between about 350.degree. K. and about 525.degree. K. and at a corresponding pressure between about 25 and about 300 atmospheres in the presence of an aqueous solution which acts as a carrier for the homogeneous catalyst. Various halides of the platinum group metals, particularly Pd, Rh and Pt, are used, particularly the chlorides and iodides which exhibit good solubility. After separation of the H.sub.2, the stream from the decomposer is countercurrently extracted with nearly dry HI to remove I.sub.2. The wet phase contains most of the catalyst and is recycled directly to the decomposition step. The catalyst in the remaining almost dry HI-I.sub.2 phase is then extracted into a wet phase which is also recycled. The catalyst-free HI-I.sub.2 phase is finally distilled to separate the HI and I.sub.2. The HI is recycled to the reactor; the I.sub.2 is returned to a reactor operating in accordance with the Bunsen equation to create more HI.

  19. Gallium-containing anticancer compounds

    PubMed Central

    Chitambar, Christopher R

    2013-01-01

    There is an ever pressing need to develop new drugs for the treatment of cancer. Gallium nitrate, a group IIIa metal salt, inhibits the proliferation of tumor cells in vitro and in vivo and has shown activity against non-Hodgkin’s lymphoma and bladder cancer in clinical trials. Gallium can function as an iron mimetic and perturb iron-dependent proliferation and other iron-related processes in tumor cells. Gallium nitrate lacks cross resistance with conventional chemotherapeutic drugs and is not myelosuppressive; it can be used when other drugs have failed or when the blood count is low. Given the therapeutic potential of gallium, newer generations of gallium compounds are now in various phases of preclinical and clinical development. These compounds hold the promise of greater anti-tumor activity against a broader spectrum of cancers. The development of gallium compounds for cancer treatment and their mechanisms of action will be discussed. PMID:22800370

  20. Etching of mercuric iodide in cation iodide solutions

    NASA Astrophysics Data System (ADS)

    Ponpon, J. P.; Amann, M.

    2006-07-01

    The surface properties of mercuric iodide after etching in various cation iodide solutions have been investigated in terms of dissolution rate, morphology, electrical properties and reaction with water vapour. No significant differences have been observed in the etching rates. However, dissolution of HgI 2 in NH 4I, NaI, KI or RbI leaves the surface more or less covered with a residual iodo mercurate compound whose electrical properties and stability with regard to humidity may noticeably influence the behaviour of mercuric iodide devices. The smallest effect has been observed for etching in NaI.

  1. Gallium interactions with Zircaloy

    SciTech Connect

    Woods, A.L.; West, M.K.

    1999-01-01

    This study focuses on the effects of gallium ion implantation into zircaloy cladding material to investigate the effects that gallium may have in a reactor. High fluence ion implantation of Ga ions was conducted on heated Zircaloy-4 in the range of 10{sup 16}--10{sup 18} Ga ions/cm2. Surface effects were studied using SEM and electron microprobe analysis. The depth profile of Ga in the Zircaloy was characterized with Rutherford backscattering and SIMS techniques. Results indicate that the Zirc-4 is little affected up to a fluence of 10{sup 17} Ga ions/cm{sup 2}. After implantation of 10{sup 18} Ga ions/cm{sup 2}, sub-grain features on the order of 2 {micro}m were observed which may be due to intermetallic compound formation between Ga and Zr. For the highest fluence implant, Ga content in the Zirc-4 reached a saturation value of between 30 and 40 atomic %; significant enhanced diffusion was observed but gallium was not seen to concentrate at grain boundaries.

  2. 21 CFR 172.375 - Potassium iodide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium iodide. 172.375 Section 172.375 Food and... Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the following prescribed conditions: (a) Potassium iodide may be...

  3. 21 CFR 172.375 - Potassium iodide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium iodide. 172.375 Section 172.375 Food and... Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the following prescribed conditions: (a) Potassium iodide may be...

  4. 21 CFR 172.375 - Potassium iodide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodide. 172.375 Section 172.375 Food and... Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the following prescribed conditions: (a) Potassium iodide may be...

  5. 21 CFR 172.375 - Potassium iodide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium iodide. 172.375 Section 172.375 Food and....375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the following prescribed conditions: (a) Potassium iodide may be safely added to a food as a source of...

  6. 21 CFR 172.375 - Potassium iodide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium iodide. 172.375 Section 172.375 Food and... Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the following prescribed conditions: (a) Potassium iodide may be...

  7. Excited State Electronic Properties of Sodium Iodide and Cesium Iodide

    SciTech Connect

    Campbell, Luke W.; Gao, Fei

    2013-05-01

    We compute from first principles the dielectric function, loss function, lifetime and scattering rate of quasiparticles due to electronic losses, and secondary particle spectrum due to plasmon decay in two scintillating alkali halides, sodium iodide and cesium iodide. Particular emphasis is placed on quasiparticles within several multiples of the band gap from the band edges. A theory for the decay spectra of plasmons and other electronic excitations in crystals is presented. Applications to Monte Carlo radiation transport codes are discussed.

  8. Gallium--A smart metal

    USGS Publications Warehouse

    Foley, Nora; Jaskula, Brian

    2013-01-01

    Gallium is a soft, silvery metallic element with an atomic number of 31 and the chemical symbol Ga. The French chemist Paul-Emile Lecoq de Boisbaudran discovered gallium in sphalerite (a zinc-sulfide mineral) in 1875 using spectroscopy. He named the element "gallia" after his native land of France (formerly Gaul; in Latin, Gallia). The existence of gallium had been predicted in 1871 by Dmitri Mendeleev, the Russian chemist who published the first periodic table of the elements. Mendeleev noted a gap in his table and named the missing element "eka-aluminum" because he determined that its location was one place away from aluminum in the table. Mendeleev thought that the missing element (gallium) would be very much like aluminum in its chemical properties, and he was right. Solid gallium has a low melting temperature (~29 degrees Celsius, or °C) and an unusually high boiling point (~2,204 °C). Because of these properties, the earliest uses of gallium were in high-temperature thermometers and in designing metal alloys that melt easily. The development of a gallium-based direct band-gap semiconductor in the 1960s led to what is now one of the most well-known applications for gallium-based products--the manufacture of smartphones and data-centric networks.

  9. Gallium phosphide energy converters

    NASA Technical Reports Server (NTRS)

    Sims, P. E.; DiNetta, Louis C.; DuganCavanagh, K.; Goetz, M. A.

    1996-01-01

    Betavoltaic power supplies based on gallium phosphide can supply long term low-level power with high reliability. Results are presented for GaP devices powered by Ni-63 and tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/cm(exp 2) have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. A small demonstration system has been assembled that generates and stores enough electricity to light up an LED.

  10. Gallium nitride nanotube lasers

    SciTech Connect

    Li, Changyi; Liu, Sheng; Hurtado, Antonio; Wright, Jeremy Benjamin; Xu, Huiwen; Luk, Ting Shan; Figiel, Jeffrey J.; Brener, Igal; Brueck, Steven R. J.; Wang, George T.

    2015-01-01

    Lasing is demonstrated from gallium nitride nanotubes fabricated using a two-step top-down technique. By optically pumping, we observed characteristics of lasing: a clear threshold, a narrow spectral, and guided emission from the nanotubes. In addition, annular lasing emission from the GaN nanotube is also observed, indicating that cross-sectional shape control can be employed to manipulate the properties of nanolasers. The nanotube lasers could be of interest for optical nanofluidic applications or application benefitting from a hollow beam shape.

  11. Gallium Arsenide Domino Circuit

    NASA Technical Reports Server (NTRS)

    Yang, Long; Long, Stephen I.

    1990-01-01

    Advantages include reduced power and high speed. Experimental gallium arsenide field-effect-transistor (FET) domino circuit replicated in large numbers for use in dynamic-logic systems. Name of circuit denotes mode of operation, which logic signals propagate from each stage to next when successive stages operated at slightly staggered clock cycles, in manner reminiscent of dominoes falling in a row. Building block of domino circuit includes input, inverter, and level-shifting substages. Combinational logic executed in input substage. During low half of clock cycle, result of logic operation transmitted to following stage.

  12. Electrospun Gallium Nitride Nanofibers

    SciTech Connect

    Melendez, Anamaris; Morales, Kristle; Ramos, Idalia; Campo, Eva; Santiago, Jorge J.

    2009-04-19

    The high thermal conductivity and wide bandgap of gallium nitride (GaN) are desirable characteristics in optoelectronics and sensing applications. In comparison to thin films and powders, in the nanofiber morphology the sensitivity of GaN is expected to increase as the exposed area (proportional to the length) increases. In this work we present electrospinning as a novel technique in the fabrication of GaN nanofibers. Electrospinning, invented in the 1930s, is a simple, inexpensive, and rapid technique to produce microscopically long ultrafine fibers. GaN nanofibers are produced using gallium nitrate and dimethyl-acetamide as precursors. After electrospinning, thermal decomposition under an inert atmosphere is used to pyrolyze the polymer. To complete the preparation, the nanofibers are sintered in a tube furnace under a NH{sub 3} flow. Both scanning electron microscopy and profilometry show that the process produces continuous and uniform fibers with diameters ranging from 20 to a few hundred nanometers, and lengths of up to a few centimeters. X-ray diffraction (XRD) analysis shows the development of GaN nanofibers with hexagonal wurtzite structure. Future work includes additional characterization using transmission electron microscopy and XRD to understand the role of precursors and nitridation in nanofiber synthesis, and the use of single nanofibers for the construction of optical and gas sensing devices.

  13. IODIDE DEFICIENCY, THYROID HORMONES, AND NEURODEVELOPMENT

    EPA Science Inventory

    ABSTRACT BODY: Iodide is an essential nutrient for thyroid hormone synthesis. Severe iodide insufficiency during early development is associated with cognitive deficits. Environmental contaminants can perturb the thyroid axis and this perturbation may be more acute under conditio...

  14. Gallium Safety in the Laboratory

    SciTech Connect

    Cadwallader, L.C.

    2003-05-07

    A university laboratory experiment for the US Department of Energy magnetic fusion research program required a simulant for liquid lithium. The simulant choices were narrowed to liquid gallium and galinstan (Ga-In-Sn) alloy. Safety information on liquid gallium and galinstan were compiled, and the choice was made to use galinstan. A laboratory safety walkthrough was performed in the fall of 2002 to support the galinstan experiment. The experiment has been operating successfully since early 2002.

  15. Gallium Safety in the Laboratory

    SciTech Connect

    Lee C. Cadwallader

    2003-06-01

    A university laboratory experiment for the US Department of Energy magnetic fusion research program required a simulant for liquid lithium. The simulant choices were narrowed to liquid gallium and galinstan (Ga-In-Sn) alloy. Safety information on liquid gallium and galinstan were compiled, and the choice was made to use galinstan. A laboratory safety walkthrough was performed in the fall of 2002 to support the galinstan experiment. The experiment has been operating successfully since early 2002.

  16. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent....

  17. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent....

  18. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  19. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium... reacting hydriodic acid (HI) with potassium bicarbonate (KHCO3). (b) The ingredient meets...

  20. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent....

  1. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent....

  2. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  3. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent....

  4. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  5. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  6. Electrodeposition of Epitaxial Lead Iodide and Conversion to Textured Methylammonium Lead Iodide Perovskite.

    PubMed

    Hill, James C; Koza, Jakub A; Switzer, Jay A

    2015-12-01

    Applications for lead iodide, such as lasing, luminescence, radiation detection, and as a precursor for methylammonium lead iodide perovskite photovoltaic cells, require highly ordered crystalline thin films. Here, an electrochemical synthesis route is introduced that yields textured and epitaxial films of lead iodide at room temperature by reducing molecular iodine to iodide ions in the presence of lead ions. Lead iodide grows with a [0001] fiber texture on polycrystalline substrates such as fluorine-doped tin oxide. On single-crystal Au(100), Au(111), and Au(110) the out-of-plane orientation of lead iodide is also [0001], but the in-plane orientation is controlled by the single-crystal substrate. The epitaxial lead iodide on single-crystal gold is converted to textured methylammonium lead iodide perovskite with a preferred [110] orientation via methylammonium iodide vapor-assisted chemical transformation of the solid. PMID:26565593

  7. Gallium phosphide energy converters

    NASA Technical Reports Server (NTRS)

    Sims, P. E.; Dinetta, L. C.; Goetz, M. A.

    1995-01-01

    Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/sq cm have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.

  8. 49 CFR 173.162 - Gallium.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Gallium. 173.162 Section 173.162 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.162 Gallium. (a) Except when packaged in cylinders or steel flasks, gallium must be packaged in packagings which meet...

  9. 49 CFR 173.162 - Gallium.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Gallium. 173.162 Section 173.162 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.162 Gallium. (a) Except when packaged in cylinders or steel flasks, gallium must be packaged in packagings which meet...

  10. 49 CFR 173.162 - Gallium.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Gallium. 173.162 Section 173.162 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.162 Gallium. (a) Except when packaged in cylinders or steel flasks, gallium must be packaged in packagings which meet...

  11. 49 CFR 173.162 - Gallium.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Gallium. 173.162 Section 173.162 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.162 Gallium. (a) Except when packaged in cylinders or steel flasks, gallium must be packaged in packagings which meet...

  12. 49 CFR 173.162 - Gallium.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Gallium. 173.162 Section 173.162 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.162 Gallium. (a) Except when packaged in cylinders or steel flasks, gallium must be packaged in packagings which meet...

  13. Iodide uptake by negatively charged clay interlayers?

    PubMed

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-09-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. PMID:26057987

  14. Mineral resource of the month: gallium

    USGS Publications Warehouse

    Jaskula, Brian

    2009-01-01

    The metal element gallium occurs in very small concentrations in rocks and ores of other metals — native gallium is not known. As society gets more and more high-tech, gallium becomes more useful. Gallium is one of only five metals that are liquid at or close to room temperature. It has one of the longest liquid ranges of any metal (29.8 degrees Celsius to 2204 degrees Celsius) and has a low vapor pressure even at high temperatures. Ultra-pure gallium has a brilliant silvery appearance, and the solid metal exhibits conchoidal fracture similar to glass.

  15. Potential effects of gallium on cladding materials

    SciTech Connect

    Wilson, D.F.; Beahm, E.C.; Besmann, T.M.; DeVan, J.H.; DiStefano, J.R.; Gat, U.; Greene, S.R.; Rittenhouse, P.L.; Worley, B.A.

    1997-10-01

    This paper identifies and examines issues concerning the incorporation of gallium in weapons derived plutonium in light water reactor (LWR) MOX fuels. Particular attention is given to the more likely effects of the gallium on the behavior of the cladding material. The chemistry of weapons grade (WG) MOX, including possible consequences of gallium within plutonium agglomerates, was assessed. Based on the calculated oxidation potentials of MOX fuel, the effect that gallium may have on reactions involving fission products and possible impact on cladding performance were postulated. Gallium transport mechanisms are discussed. With an understanding of oxidation potentials and assumptions of mechanisms for gallium transport, possible effects of gallium on corrosion of cladding were evaluated. Potential and unresolved issues and suggested research and development (R and D) required to provide missing information are presented.

  16. P-type gallium nitride

    DOEpatents

    Rubin, M.; Newman, N.; Fu, T.; Ross, J.; Chan, J.

    1997-08-12

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5{times}10{sup 11} /cm{sup 3} and hole mobilities of about 500 cm{sup 2} /V-sec, measured at 250 K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al. 9 figs.

  17. P-type gallium nitride

    DOEpatents

    Rubin, Michael; Newman, Nathan; Fu, Tracy; Ross, Jennifer; Chan, James

    1997-01-01

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5.times.10.sup.11 /cm.sup.3 and hole mobilities of about 500 cm.sup.2 /V-sec, measured at 250.degree. K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al.

  18. Liquid gallium rotary electric contract

    NASA Technical Reports Server (NTRS)

    Przybyszewski, J. S.

    1969-01-01

    Due to its low vapor pressure, gallium, when substituted for mercury in a liquid slip ring system, transmits substantial amounts of electrical current to rotating components in an ultrahigh vacuum. It features low electrical loss, little or no wear, and long maintenance-free life.

  19. Gallium scan in intracerebral sarcoidosis

    SciTech Connect

    Makhija, M.C.; Anayiotos, C.P.

    1981-07-01

    Sarcoidosis involving the nervous system probably occurs in about 4% of patients. The usefulness of brain scintigraphy in these cases has been suggested. In this case of cerebral sarcoid granuloma, gallium imaging demonstrated the lesion before treatment and showed disappearance of the lesion after corticosteroid treatment, which correlated with the patient's clinical improvement.

  20. Gallium nitride electronics

    NASA Astrophysics Data System (ADS)

    Rajan, Siddharth; Jena, Debdeep

    2013-07-01

    In the past two decades, there has been increasing research and industrial activity in the area of gallium nitride (GaN) electronics, stimulated first by the successful demonstration of GaN LEDs. While the promise of wide band gap semiconductors for power electronics was recognized many years before this by one of the contributors to this issue (J Baliga), the success in the area of LEDs acted as a catalyst. It set the field of GaN electronics in motion, and today the technology is improving the performance of several applications including RF cell phone base stations and military radar. GaN could also play a very important role in reducing worldwide energy consumption by enabling high efficiency compact power converters operating at high voltages and lower frequencies. While GaN electronics is a rapidly evolving area with active research worldwide, this special issue provides an opportunity to capture some of the great advances that have been made in the last 15 years. The issue begins with a section on epitaxy and processing, followed by an overview of high-frequency HEMTs, which have been the most commercially successful application of III-nitride electronics to date. This is followed by review and research articles on power-switching transistors, which are currently of great interest to the III-nitride community. A section of this issue is devoted to the reliability of III-nitride devices, an area that is of increasing significance as the research focus has moved from not just high performance but also production-worthiness and long-term usage of these devices. Finally, a group of papers on new and relatively less studied ideas for III-nitride electronics, such as interband tunneling, heterojunction bipolar transistors, and high-temperature electronics is included. These areas point to new areas of research and technological innovation going beyond the state of the art into the future. We hope that the breadth and quality of articles in this issue will make it

  1. Neutron Detection with Mercuric Iodide

    SciTech Connect

    Bell, Z.A.

    2003-06-17

    Mercuric iodide is a high-density, high-Z semiconducting material useful for gamma ray detection. This makes it convertible to a thermal neutron detector by covering it with a boron rich material and detecting the 478 keV gamma rays resulting from the {sup 10}B(n, {alpha}){sup 7}Li* reaction. However, the 374 barn thermal capture cross section of {sup nat}Hg, makes the detector itself an attractive absorber, and this has been exploited previously. Since previous work indicates that there are no low-energy gamma rays emitted in coincidence with the 368 keV capture gamma from the dominant {sup 199}Hg(n, {gamma}){sup 200}Hg reaction, only the 368 keV capture gamma is seen with any efficiency a relatively thin (few mm) detector. In this paper we report preliminary measurements of neutrons via capture reactions in a bare mercuric iodide crystal and a crystal covered in {sup 10}B-loaded epoxy. The covered detector is an improvement over the bare detector because the presence of both the 478 and 368 keV gamma rays removes the ambiguity associated with the observation of only one of them. Pulse height spectra, obtained with and without lead and cadmium absorbers, showed the expected gamma rays and demonstrated that they were caused by neutrons.

  2. Epitaxial Deposition Of Germanium Doped With Gallium

    NASA Technical Reports Server (NTRS)

    Huffman, James E.

    1994-01-01

    Epitaxial layers of germanium doped with gallium made by chemical vapor deposition. Method involves combination of techniques and materials used in chemical vapor deposition with GeH4 or GeCl4 as source of germanium and GaCl3 as source of gallium. Resulting epitaxial layers of germanium doped with gallium expected to be highly pure, with high crystalline quality. High-quality material useful in infrared sensors.

  3. Tuberculosis peritonitis: gallium-67 scintigraphic appearance.

    PubMed

    Sumi, Y; Ozaki, Y; Hasegawa, H; Shindoh, N; Katayama, H; Tamamoto, F

    1999-06-01

    Tuberculosis peritonitis is a rare manifestation of extrapulmonary tuberculosis. The results of gallium-67 scintigraphy of three patients with tuberculosis peritonitis were reviewed to assess its usefulness in the diagnosis of this condition. Tuberculosis peritonitis was associated with diffuse or focal abdominal localization and decreased hepatic accumulation of gallium-67. These gallium-67 scan features of tuberculosis peritonitis may help to optimize the diagnosis and management of this disease. PMID:10435380

  4. Thermal oxidation of gallium arsenide

    SciTech Connect

    Monteiro, O.R.; Evans, J.W.

    1989-01-01

    Here we present some results of transmission electron microscopy and secondary ion mass spectroscopy of thermally oxidized gallium arsenide with different types of dopants. At temperatures below 400 /sup 0/C an amorphous oxide is formed. Oxidation at temperatures between 500 and 600 /sup 0/C initially produces an epitaxial film of ..gamma..-Ga/sub 2/O/sub 3/. As the reaction proceeds, this film becomes polycrystalline and then transforms to ..beta..-Ga/sub 2/O/sub 3/. This film contains small crystallites of As/sub 2/O/sub 5/ and As/sub 2/O/sub 3/ in the case of the chromium doped samples, whereas only the former was detected in the case of silicon and tellurium doped samples. Elemental arsenic was always found at the interface between the oxide and GaAs. Chromium doped gallium also exhibited a slower oxidation kinetics than the other materials.

  5. Recovering gallium from residual bayer process liquor

    NASA Astrophysics Data System (ADS)

    Afonso de Magalhães, Maria Elizabeth; Tubino, Matthieu

    1991-06-01

    Gallium is normally obtained by direct electrolysis as a by-product from Bayer process residual liquor at an aluminum processing plant. However, to permit any net accumulation of the metal, the gallium concentration must be at least about 0.3 g/l in the liquor. This article describes a continuous process of extraction with organic solvents and rhodamine-B, followed by a re-extraction step into aqueous media. The final product is a solid containing up to 18 wt.% Ga in a solid mixture of hydroxides and oxides of gallium and aluminum. This final product can then be electrolyzed to recover the gallium more efficiently.

  6. Predissociation dynamics of lithium iodide

    SciTech Connect

    Schmidt, H.; Vangerow, J. von; Stienkemeier, F.; Mudrich, M.; Bogomolov, A. S.; Baklanov, A. V.; Reich, D. M.; Skomorowski, W.; Koch, C. P.

    2015-01-28

    The predissociation dynamics of lithium iodide (LiI) in the first excited A-state is investigated for molecules in the gas phase and embedded in helium nanodroplets, using femtosecond pump-probe photoionization spectroscopy. In the gas phase, the transient Li{sup +} and LiI{sup +} ion signals feature damped oscillations due to the excitation and decay of a vibrational wave packet. Based on high-level ab initio calculations of the electronic structure of LiI and simulations of the wave packet dynamics, the exponential signal decay is found to result from predissociation predominantly at the lowest avoided X-A potential curve crossing, for which we infer a coupling constant V{sub XA} = 650(20) cm{sup −1}. The lack of a pump-probe delay dependence for the case of LiI embedded in helium nanodroplets indicates fast droplet-induced relaxation of the vibrational excitation.

  7. Iodide Protects Heart Tissue from Reperfusion Injury

    PubMed Central

    Iwata, Akiko; Morrison, Michael L.; Roth, Mark B.

    2014-01-01

    Iodine is an elemental nutrient that is essential for mammals. Here we provide evidence for an acute therapeutic role for iodine in ischemia reperfusion injury. Infusion of the reduced form, iodide, but not the oxidized form iodate, reduces heart damage by as much as 75% when delivered intravenously following temporary loss of blood flow but prior to reperfusion of the heart in a mouse model of acute myocardial infarction. Normal thyroid function may be required because loss of thyroid activity abrogates the iodide benefit. Given the high degree of protection and the high degree of safety, iodide should be explored further as a therapy for reperfusion injury. PMID:25379708

  8. Mercuric iodide light detector and related method

    DOEpatents

    Iwanczyk, J.S.; Barton, J.B.; Dabrowski, A.J.; Schnepple, W.F.

    1986-09-23

    Apparatus and method for detecting light involve applying a substantially uniform electrical potential difference between first and second spaced surfaces of a body of mercuric iodide, exposing the first surface to light and measuring an electrical current passed through the body in response to the light. The mercuric iodide may be substantially monocrystalline and the potential may be applied between a substantially transparent conductive layer at the first surface and a second conductive layer at the second surface. In a preferred embodiment, the detector is coupled to a scintillator for passage of light to the mercuric iodide in response to ionizing radiation incident on the scintillator. 7 figs.

  9. Mercuric iodide light detector and related method

    DOEpatents

    Iwanczyk, Jan S.; Barton, Jeff B.; Dabrowski, Andrzej J.; Schnepple, Wayne F.

    1986-01-01

    Apparatus and method for detecting light involve applying a substantially uniform electrical potential difference between first and second spaced surfaces of a body of mercuric iodide, exposing the first surface to light and measuring an electrical current passed through the body in response to the light. The mercuric iodide may be substantially monocrystalline and the potential may be applied between a substantially transparent conductive layer at the first surface and a second conductive layer at the second surface. In a preferred embodiment, the detector is coupled to a scintillator for passage of light to the mercuric iodide in response to ionizing radiation incident on the scintillator.

  10. Lithium iodide cardiac pacemakers: initial clinical experience.

    PubMed Central

    Burr, L. H.

    1976-01-01

    A new long-life cardiac pacemaker pulse generator powered by a lithium iodide fuel cell was introduced in Canada in 1973. The compact, hermetically sealed unit is easily implanted and reliable, has excellent patient acceptance and has an anticipated battery life of almost 14 years. Among 105 patients who received a lithium iodide pacemaker, complications occurred in 18. The lithium iodide pacemaker represents a significant advance in pacemaker generator technology and is recommended for long-term cardiac pacing; the manufacturer guarantees the pulse generator for 6 years. Images FIG. 1 PMID:974965

  11. 21 CFR 520.763b - Dithiazanine iodide powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dithiazanine iodide powder. 520.763b Section 520... iodide powder. (a) Chemical name. 3-Ethyl-2- -benzothiazoliumiodide. (b) Specifications. Dithiazanine iodide powder contains 200 milligrams of dithiazanine iodide per level standard tablespoon. (c)...

  12. 21 CFR 520.763b - Dithiazanine iodide powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Dithiazanine iodide powder. 520.763b Section 520... iodide powder. (a) Chemical name. 3-Ethyl-2- -benzothiazoliumiodide. (b) Specifications. Dithiazanine iodide powder contains 200 milligrams of dithiazanine iodide per level standard tablespoon. (c)...

  13. Decreased gallium uptake in acute hematogenous osteomyelitis

    SciTech Connect

    Ang, J.G.; Gelfand, M.J.

    1983-07-01

    Decreased radiopharmaceutical uptake was noted on both bone and gallium scans in the case of acute hematogenous osteomyelitis of the right ilium (acetabular roof). This combination of findings is probably rare. The mechanism of decreased gallium uptake is unknown, but may be related to decreased blood flow.

  14. Myocardial gallium-67 imaging in dilated cardiomyopathy

    PubMed Central

    O'Connell, John B.; Henkin, Robert E.

    1985-01-01

    The use of gallium-67, an isotope that is avid for areas of inflammation in patients with dilated cardiomyopathy, is described and compared with endomyocardial biopsy in 68 consecutive patients with dilated cardiomyopathy. Myocarditis was diagnosed in 8% on biopsy and the likelihood of a positive biopsy when the gallium scan was positive for inflammation, rose to 36%. It is concluded that gallium scanning is a useful adjunct to biopsy in detecting myocarditis in patients with dilated cardiomyopathy and in following patients with evidence of myocarditis on biopsy. Disadvantages of gallium-67 imaging include the radiation dose accumulated with multiple scans and 72h delay from initial injection of the isotope to imaging. It is suggested that definitive conclusions regarding the technique should await the results of a large multicentre trial evaluating gallium in comparison with endomyocardial biopsy in the diagnosis of myocarditis. ImagesFigure 1Figure 2

  15. Gallium Electromagnetic (GEM) Thrustor Concept and Design

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.

    2006-01-01

    We describe the design of a new type of two-stage pulsed electromagnetic accelerator, the gallium electromagnetic (GEM) thruster. A schematic illustration of the GEM thruster concept is given in Fig. 1. In this concept, liquid gallium propellant is pumped into the first stage through a porous metal electrode using an electromagneticpump[l]. At a designated time, a pulsed discharge (approx.10-50 J) is initiated in the first stage, ablating the liquid gallium from the porous electrode surface and ejecting a dense thermal gallium plasma into the second state. The presence of the gallium plasma in the second stage serves to trigger the high-energy (approx.500 I), send-stage puke which provides the primary electromagnetic (j x B) acceleration.

  16. Processing to obtain high-purity gallium

    NASA Astrophysics Data System (ADS)

    Bautista, Renato G.

    2003-03-01

    Gallium has become increasingly popular as a substrate material for electronic devices. Aside from ore, gallium can be obtained from such industrial sources as the Bayer process caustic liquor that is a byproduct of bauxite processing, flue dust removed from the fume-collection system in plants that produce aluminum by the electrolytic process, zinc refinery residues, gallium scrap materials, and coal fly ash. The purification process for gallium can start with solvent-extraction processes where the concentrations of impurities, especially metals, are reduced to the ppm range. This article describes how ultra-purification techniques can be employed to reduce the undesirable impurities to the low ppb range. The various procedures described give an idea as to the extent of work needed to obtain and prepare high-purity gallium for electronic application.

  17. A perchlorate sensitive iodide transporter in frogs

    PubMed Central

    Carr, Deborah L.; Carr, James A.; Willis, Ray E.; Pressley, Thomas A.

    2008-01-01

    Nucleotide sequence comparisons have identified a gene product in the genome database of African clawed frogs (Xenopus laevis) as a probable member of the solute carrier family of membrane transporters. To confirm its identity as a putative iodide transporter, we examined the function of this sequence after heterologous expression in mammalian cells. A green monkey kidney cell line transfected with the Xenopus nucleotide sequence had significantly greater 125I uptake than sham-transfected control cells. The uptake in carrier-transfected cells was significantly inhibited in the presence of perchlorate, a competitive inhibitor of mammalian Na+/iodide symporter. Tissue distributions of the sequence were also consistent with a role in iodide uptake. The mRNA encoding the carrier was found to be expressed in the thyroid gland, stomach, and kidney of tadpoles from X. laevis, as well as the bullfrog Rana catesbeiana. The ovaries of adult X. laevis also were found to express the carrier. Phylogenetic analysis suggested that the putative X. laevis iodide transporter is orthologous to vertebrate Na+-dependent iodide symporters. We conclude that the amphibian sequence encodes a protein that is indeed a functional Na+/iodide symporter in Xenopus laevis, as well as Rana catesbeiana. PMID:18275962

  18. Iodide transport: implications for health and disease.

    PubMed

    Pesce, Liuska; Kopp, Peter

    2014-01-01

    Disorders of the thyroid gland are among the most common conditions diagnosed and managed by pediatric endocrinologists. Thyroid hormone synthesis depends on normal iodide transport and knowledge of its regulation is fundamental to understand the etiology and management of congenital and acquired thyroid conditions such as hypothyroidism and hyperthyroidism. The ability of the thyroid to concentrate iodine is also widely used as a tool for the diagnosis of thyroid diseases and in the management and follow up of the most common type of endocrine cancers: papillary and follicular thyroid cancer. More recently, the regulation of iodide transport has also been the center of attention to improve the management of poorly differentiated thyroid cancer. Iodine deficiency disorders (goiter, impaired mental development) due to insufficient nutritional intake remain a universal public health problem. Thyroid function can also be influenced by medications that contain iodide or interfere with iodide metabolism such as iodinated contrast agents, povidone, lithium and amiodarone. In addition, some environmental pollutants such as perchlorate, thiocyanate and nitrates may affect iodide transport. Furthermore, nuclear accidents increase the risk of developing thyroid cancer and the therapy used to prevent exposure to these isotopes relies on the ability of the thyroid to concentrate iodine. The array of disorders involving iodide transport affect individuals during the whole life span and, if undiagnosed or improperly managed, they can have a profound impact on growth, metabolism, cognitive development and quality of life. PMID:25009573

  19. Recovery of anhydrous hydrogen iodide

    DOEpatents

    O'Keefe, Dennis R.; McCorkle, Jr., Kenneth H.; de Graaf, Johannes D.

    1982-01-01

    Relatively dry hydrogen iodide can be recovered from a mixture of HI, I.sub.2 and H.sub.2 O. After the composition of the mixture is adjusted so that the amounts of H.sub.2 O and I.sub.2 do not exceed certain maximum limits, subjection of the mixture to superatmospheric pressure in an amount equal to about the vapor pressure of HI at the temperature in question causes distinct liquid phases to appear. One of the liquid phases contains HI and not more than about 1 weight percent water. Often the adjustment in the composition will include the step of vaporization, and the distinct layers appear following the increase in pressure of the vapor mixture. Adjustment in the composition may also include the addition of an extraction agent, such as H.sub.3 PO.sub.4, and even though the adjusted composition mixture contains a significant amount of such an agent, the creation of the distinct liquid phases is not adversely affected.

  20. Isoelectronic Traps in Gallium Phosphide

    NASA Astrophysics Data System (ADS)

    Christian, Theresa; Alberi, Kirstin; Beaton, Daniel; Fluegel, Brian; Mascarenhas, Angelo

    2015-03-01

    Isoelectronic substitutional dopants can result in strongly localized exciton traps within a host bandstructure such as gallium arsenide (GaAs) or gallium phosphide (GaP). These traps have received great attention for their role in the anomalous bandgap bowing of nitrogen or bismuth-doped GaAs, creating the dramatic bandgap tunability of these unusual dilute alloys. In the wider, indirect-bandgap host material GaP, these same isoelectronic dopants create bound states within the gap that can have very high radiative efficiency and a wealth of discrete spectral transitions illuminating the symmetry of the localized excitonic trap state. We will present a comparative study of nitrogen and bismuth isoelectronic traps in GaP. Research was supported by the U. S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division under contract DE-AC36-08GO28308 and by the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under contract no. DE-AC05-06OR23100.

  1. Electrospun Gallium Nitride Nanofibers (abstract)

    NASA Astrophysics Data System (ADS)

    Meléndez, Anamaris; Morales, Kristle; Ramos, Idalia; Campo, Eva; Santiago, Jorge J.

    2009-04-01

    The high thermal conductivity and wide bandgap of gallium nitride (GaN) are desirable characteristics in optoelectronics and sensing applications. In comparison to thin films and powders, in the nanofiber morphology the sensitivity of GaN is expected to increase as the exposed area (proportional to the length) increases. In this work we present electrospinning as a novel technique in the fabrication of GaN nanofibers. Electrospinning, invented in the 1930s, is a simple, inexpensive, and rapid technique to produce microscopically long ultrafine fibers. GaN nanofibers are produced using gallium nitrate and dimethyl-acetamide as precursors. After electrospinning, thermal decomposition under an inert atmosphere is used to pyrolyze the polymer. To complete the preparation, the nanofibers are sintered in a tube furnace under a NH3 flow. Both scanning electron microscopy and profilometry show that the process produces continuous and uniform fibers with diameters ranging from 20 to a few hundred nanometers, and lengths of up to a few centimeters. X-ray diffraction (XRD) analysis shows the development of GaN nanofibers with hexagonal wurtzite structure. Future work includes additional characterization using transmission electron microscopy and XRD to understand the role of precursors and nitridation in nanofiber synthesis, and the use of single nanofibers for the construction of optical and gas sensing devices.

  2. Formation of methyl iodide on a natural manganese oxide.

    PubMed

    Allard, Sébastien; Gallard, Hervé; Fontaine, Claude; Croué, Jean-Philippe

    2010-08-01

    This paper demonstrates that manganese oxides can initiate the formation of methyl iodide, a volatile compound that participates to the input of iodine into the atmosphere. The formation of methyl iodide was investigated using a natural manganese oxide in batch experiments for different conditions and concentrations of iodide, natural organic matter (NOM) and manganese oxide. Methyl iodide was formed at concentrations iodide concentrations ranging from 0.8 to 38.0 mg L(-1). The production of methyl iodide increased with increasing initial concentrations of iodide ion and Mn sand and when pH decreased from 7 to 5. The hydrophilic NOM isolate exhibited the lowest yield of methyl iodide whereas hydrophobic NOM isolates such as Suwannee River HPOA fraction produced the highest concentration of methyl iodide. The formation of methyl iodide could take place through the oxidation of NOM on manganese dioxide in the presence of iodide. However, the implication of elemental iodine cannot be excluded at acidic pH. Manganese oxides can then participate with ferric oxides to the formation of methyl iodide in soils and sediments. The formation of methyl iodide is unlikely in technical systems such as drinking water treatment i.e. for ppt levels of iodide and low contact times with manganese oxides. PMID:20580399

  3. Status of gallium-67 in tumor detector

    SciTech Connect

    Hoffer, P.

    1980-04-01

    The efficacy of gallium-67 citrate in detecting specific tumors is discussed. Tumors in which gallium-67 imaging is useful as a diagnostic tool include Hodgkin's disease, histiocystic lymphoma, Burkitt's lymphoma, hepatoma melanoma, and leukemia. It has not been found to be effective in diagnosing head and neck tumors, gastrointestinal tumors, genitourinary tract tumors, breast tumors, and pediatric tumors. Gallium may be useful in the evaluation of non-Hodgkin's lymphoma, testicular carcinoma, mesothelioma, and carcinoma of the lung. It may also be useful for determining response to treatment and prognosis in some neoplasms.

  4. The surface tension of liquid gallium

    NASA Technical Reports Server (NTRS)

    Hardy, S. C.

    1985-01-01

    The surface tension of liquid gallium has been measured using the sessile drop technique in an Auger spectrometer. The experimental method is described. The surface tension in mJ/sq m is found to decrease linearly with increasing temperature and may be represented as 708-0.66(T-29.8), where T is the temperature in centigrade. This result is of interest because gallium has been suggested as a model fluid for Marangoni flow experiments. In addition, the surface tension is of technological significance in the processing of compound semiconductors involving gallium.

  5. Gallium and its competing roles with iron in biological systems.

    PubMed

    Chitambar, Christopher R

    2016-08-01

    Gallium, a group IIIa metal, shares chemical properties with iron. Studies have shown that gallium-based compounds have potential therapeutic activity against certain cancers and infectious microorganisms. By functioning as an iron mimetic, gallium perturbs iron-dependent proliferation processes in tumor cells. Gallium's action on iron homeostasis leads to disruption of ribonucleotide reductase, mitochondrial function, and the regulation of transferrin receptor and ferritin. In addition, gallium nitrate stimulates an increase in mitochondrial reactive oxygen species in cells which triggers downstream upregulation of metallothionein and hemoxygenase-1. Gallium's anti-infective activity against bacteria and fungi results from disruption of microbial iron utilization through mechanisms which include gallium binding to siderophores and downregulation of bacterial iron uptake. Gallium compounds lack cross-resistance to conventional chemotherapeutic drugs and antibiotics thus making them attractive agents for drug development. This review will focus on the mechanisms of action of gallium with emphasis on its interaction with iron and iron proteins. PMID:27150508

  6. Gallium-67 activity in bronchoalveolar lavage fluid in sarcoidosis

    SciTech Connect

    Trauth, H.A.; Heimes, K.; Schubotz, R.; von Wichert, P.

    1986-01-01

    Roentgenograms and gallium-67 scans and gallium-67 counts of BAL fluid samples, together with differential cell counts, have proved to be useful in assessing activity and lung involvement in sarcoidosis. In active pulmonary sarcoidosis gallium-67 scans are usually positive. Quantitation of gallium-67 uptake in lung scans, however, may be difficult. Because gallium-67 uptake and cell counts in BAL fluid may be correlated, we set out to investigate gallium-67 activity in BAL fluid recovered from patient of different groups. Sixteen patients with recently diagnosed and untreated sarcoidosis, nine patients with healthy lungs, and five patients with CFA were studied. Gallium-67 uptake of the lung, gallium-67 activity in the lavage fluid, SACE and LACE levels, and alpha 1-AT activity were measured. Significantly more gallium-67 activity was found in BAL fluid from sarcoidosis patients than in that from CFA patients (alpha = .001) or patients with healthy lungs (alpha = .001). Gallium-67 activity in BAL fluid could be well correlated with the number of lymphocytes in BAL fluid, but poorly with the number of macrophages. Subjects with increased levels of SACE or serum alpha 1-AT showed higher lavage gallium-67 activity than did normals, but no correlation could be established. High gallium-67 activity in lavage fluid may be correlated with acute sarcoidosis or physiological deterioration; low activity denotes change for the better. The results show that gallium-67 counts in BAL fluid reflects the intensity of gallium-67 uptake and thus of activity of pulmonary sarcoidosis.

  7. Radiochemical separation of gallium by amalgam exchange

    USGS Publications Warehouse

    Ruch, R.R.

    1969-01-01

    An amalgam-exchange separation of radioactive gallium from a number of interfering radioisotopes has been developed. A dilute (ca. 0.3%) gallium amalgam is agitated with a slightly acidic solution of 72Ga3+ containing concentrations of sodium thiocyanate and either perchlorate or chloride. The amalgam is then removed and the radioactive gallium stripped by agitation with dilute nitric acid. The combined exchange yield of the perchlorate-thiocyanate system is 90??4% and that of the chloride-thiocyanate system is 75??4%. Decontamination yields of most of the 11 interfering isotopes studied were less than 0.02%. The technique is applicable for use with activation analysis for the determination of trace amounts of gallium. ?? 1969.

  8. NIM Realization of the Gallium Triple Point

    NASA Astrophysics Data System (ADS)

    Xiaoke, Yan; Ping, Qiu; Yuning, Duan; Yongmei, Qu

    2003-09-01

    In the last three years (1999 to 2001), the gallium triple-point cell has been successfully developed, and much corresponding research has been carried out at the National Institute of Metrology (NIM), Beijing, China. This paper presents the cell design, apparatus and procedure for realizing the gallium triple point, and presents studies on the different freezing methods. The reproducibility is 0.03 mK, and the expanded uncertainty of realization of the gallium triple point is evaluated to be 0.17 mK (p=0.99, k=2.9). Also, the reproducibility of the gallium triple point was compared with that of the triple point of water.

  9. Recovery of gallium from aluminum industry residues

    SciTech Connect

    Carvalho, M.S.; Neto, K.C.M.; Nobrega, A.W.; Medeiros, J.A.

    2000-01-01

    A procedure is proposed to recover gallium from flue dust aluminum residues produced in plants by using solid-phase extraction with a commercial polyether-type polyurethane foam (PUF). Gallium can be separated from high concentrations of aluminum, iron, nickel, titanium, vanadium, copper, zinc, sulfate, fluoride, and chloride by extraction with PUF from 3 M sulfuric acid and 3 M sodium chloride concentration medium with at least a 92% efficiency. Gallium backextraction was fast and quantitative with ethanol solution. In all recovery steps commercial-grade reagents could be used, including tap water. The recovered gallium was precipitated with sodium hydroxide solution, purified by dissolution and precipitation, calcinated, and the final oxide was 98.6% pure.

  10. Development of gallium arsenide solar cells

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The potential of ion implantation as a means of developing gallium arsenide solar cells with high efficiency performance was investigated. Computer calculations on gallium arsenide cell characteristics are presented to show the effects of surface recombination, junction space-charge recombination, and built-in fields produced by nonuniform doping of the surface region. The fabrication technology is summarized. Electrical and optical measurements on samples of solar cells are included.

  11. Generator for gallium-68 and compositions obtained therefrom

    DOEpatents

    Neirinckx, Rudi D.; Davis, Michael A.

    1981-01-01

    A generator for obtaining radioactive gallium-68 from germanium-68 bound in a resin containing unsubstituted phenolic hydroxyl groups. The germanium-68 is loaded into the resin from an aqueous solution of the germanium-68. A physiologically acceptable solution of gallium-68 having an activity of 0.1 to 50 millicuries per milliliter of gallium-68 solution is obtained. The solution is obtained from the bound germanium-68 which forms gallium-68 in situ by eluting the column with a hydrochloric acid solution to form an acidic solution of gallium-68. The acidic solution of gallium-68 can be neutralized.

  12. Energy resolution enhancement of mercuric iodide detectors

    NASA Technical Reports Server (NTRS)

    Finger, M.; Prince, T. A.; Padgett, L.; Prickett, B.; Schnepple, W.

    1984-01-01

    A pulse processing technique has been developed which improves the gamma-ray energy resolution of mercuric iodide detectors. The technique employs a fast (100 ns) and a slow (6.4 microsec) pulse height analysis to correct for signal variations due to variations in charge trapping. The capabilities of the technique for energy resolution enhancement are discussed as well as the utility of the technique for examining the trapping characteristics of individual detectors. An energy resolution of 2.6 percent FWHM at 662 keV was achieved with an acceptance efficiency of 100 percent from a mercuric iodide detector which gives 8.3 percent FWHM using standard techniques.

  13. Simplest Formula of Copper Iodide: A Stoichiometry Experiment.

    ERIC Educational Resources Information Center

    MacDonald, D. J.

    1983-01-01

    Describes an experiment presented to students as a problem in determining the stoichiometry of "copper iodide" to decide whether it is cuprous iodide or cupric iodide. The experiment illustrates stoichiometry principles, providing experiences with laboratory techniques and numerical computation. Detailed outline (written for student use) is…

  14. Barium iodide and strontium iodide crystals andd scintillators implementing the same

    DOEpatents

    Payne, Stephen A; Cherepy, Nerine J; Hull, Giulia E; Drobshoff, Alexander D; Burger, Arnold

    2013-11-12

    In one embodiment, a material comprises a crystal comprising strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector according to another embodiment includes a scintillator optic comprising europium-doped strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector in yet another embodiment includes a scintillator optic comprising SrI.sub.2 and BaI.sub.2, wherein a ratio of SrI.sub.2 to BaI.sub.2 is in a range of between 0:1 A method for manufacturing a crystal suitable for use in a scintillator includes mixing strontium iodide-containing crystals with a source of Eu.sup.2+, heating the mixture above a melting point of the strontium iodide-containing crystals, and cooling the heated mixture near the seed crystal for growing a crystal. Additional materials, systems, and methods are presented.

  15. Scintillator handbook with emphasis on cesium iodide

    NASA Technical Reports Server (NTRS)

    Tidd, J. L.; Dabbs, J. R.; Levine, N.

    1973-01-01

    This report provides a background of reasonable depth and reference material on scintillators in general. Particular attention is paid to the cesium iodide scintillators as used in the High Energy Astronomy Observatory (HEAO) experiments. It is intended especially for use by persons such as laboratory test personnel who need to obtain a working knowledge of these materials and their characteristics in a short time.

  16. 21 CFR 184.1265 - Cuprous iodide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Cuprous iodide. 184.1265 Section 184.1265 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS §...

  17. 21 CFR 184.1265 - Cuprous iodide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the following specific limitations: Category of food Maximum treatment level in food Functional use... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cuprous iodide. 184.1265 Section 184.1265 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...

  18. Developments in mercuric iodide gamma ray imaging

    NASA Astrophysics Data System (ADS)

    Patt, B. E.; Beyerle, A. G.; Dolin, R. C.; Ortale, C.

    A mercuric iodide gamma-ray imaging array and camera system previously described has been characterized for spatial and energy resolution. Based on this data a new camera is being developed to more fully exploit the potential of the array. Characterization results and design criterion for the new camera will be presented.

  19. Developments in mercuric iodide gamma ray imaging

    NASA Astrophysics Data System (ADS)

    Patt, B. E.; Beyerle, A. G.; Dolin, R. C.; Ortale, C.

    1989-11-01

    A mercuric iodide (HgI2) gamma ray imaging array and camera system previously described have been characterized for spatial and energy resolution. Based on these data a new camera is being developed to more fully exploit the potential of the array. Characterization results and design criteria for the new camera will be presented.

  20. Iodide effects in transition metal catalyzed reactions.

    PubMed

    Maitlis, Peter M; Haynes, Anthony; James, Brian R; Catellani, Marta; Chiusoli, Gian Paolo

    2004-11-01

    The unique properties of I(-) allow it to be involved in several different ways in reactions catalyzed by the late transition metals: in the oxidative addition, the migration, and the coupling/reductive elimination steps, as well as in substrate activation. Most steps are accelerated by I(-)(for example through an increased nucleophilicity of the metal center), but some are retarded, because a coordination site is blocked. The "soft" iodide ligand binds more strongly to soft metals (low oxidation state, electron rich, and polarizable) such as the later and heavier transition metals, than do the other halides, or N- and O-centered ligands. Hence in a catalytic cycle that includes the metal in a formally low oxidation state there will be less tendency for the metal to precipitate (and be removed from the cycle) in the presence of I(-) than most other ligands. Iodide is a good nucleophile and is also easily and reversibly oxidized to I(2). In addition, I(-) can play key roles in purely organic reactions that occur as part of a catalytic cycle. Thus to understand the function of iodide requires careful analysis, since two or sometimes more effects occur in different steps of one single cycle. Each of these topics is illustrated with examples of the influence of iodide from homogeneous catalytic reactions in the literature: methanol carbonylation to acetic acid and related reactions; CO hydrogenation; imine hydrogenation; and C-C and C-N coupling reactions. General features are summarised in the Conclusions. PMID:15510253

  1. Methyl Iodide Fumigation of Bacillus anthracis Spores.

    PubMed

    Sutton, Mark; Kane, Staci R; Wollard, Jessica R

    2015-09-01

    Fumigation techniques such as chlorine dioxide, vaporous hydrogen peroxide, and paraformaldehyde previously used to decontaminate items, rooms, and buildings following contamination with Bacillus anthracis spores are often incompatible with materials (e.g., porous surfaces, organics, and metals), causing damage or residue. Alternative fumigation with methyl bromide is subject to U.S. and international restrictions due to its ozone-depleting properties. Methyl iodide, however, does not pose a risk to the ozone layer and has previously been demonstrated as a fumigant for fungi, insects, and nematodes. Until now, methyl iodide has not been evaluated against Bacillus anthracis. Sterne strain Bacillus anthracis spores were subjected to methyl iodide fumigation at room temperature and at 550C. Efficacy was measured on a log-scale with a 6-log reduction in CFUs being considered successful compared to the U.S. Environmental Protection Agency biocide standard. Such efficacies were obtained after just one hour at 55 °C and after 12 hours at room temperature. No detrimental effects were observed on glassware, PTFE O-rings, or stainless steel. This is the first reported efficacy of methyl iodide in the reduction of Bacillus anthracis spore contamination at ambient and elevated temperatures. PMID:26502561

  2. Window structure for passivating solar cells based on gallium arsenide

    NASA Technical Reports Server (NTRS)

    Barnett, Allen M. (Inventor)

    1985-01-01

    Passivated gallium arsenide solar photovoltaic cells with high resistance to moisture and oxygen are provided by means of a gallium arsenide phosphide window graded through its thickness from arsenic rich to phosphorus rich.

  3. Controlled Electrochemical Deformation of Liquid-Phase Gallium.

    PubMed

    Chrimes, Adam F; Berean, Kyle J; Mitchell, Arnan; Rosengarten, Gary; Kalantar-zadeh, Kourosh

    2016-02-17

    Pure gallium is a soft metal with a low temperature melting point of 29.8 °C. This low melting temperature can potentially be employed for creating optical components with changeable configurations on demand by manipulating gallium in its liquid state. Gallium is a smooth and highly reflective metal that can be readily maneuvered using electric fields. These features allow gallium to be used as a reconfigurable optical reflector. This work demonstrates the use of gallium for creating reconfigurable optical reflectors manipulated through the use of electric fields when gallium is in a liquid state. The use of gallium allows the formed structures to be frozen and preserved as long as the temperature of the metal remains below its melting temperature. The lens can be readily reshaped by raising the temperature above the melting point and reapplying an electric field to produce a different curvature of the gallium reflector. PMID:26820807

  4. Magnetohydrodynamic convection in liquid gallium.

    NASA Astrophysics Data System (ADS)

    Juel, Anne; Mullin, Tom

    1996-11-01

    Results are presented from a study of convective flow of liquid gallium confined in a rectangular cavity of length/depth ratio 4, subject to a horizontal temperature gradient. The origin of the problem lies in the area of crystal growth, where it is known that the dynamics of the fluid flow in semiconductor geometries are of vital importance in determining the quality of the crystal. Application of a magnetic field, for instance, damps out the time-dependent convection in the liquid phase that creates striations in the crystal and reduces its quality. Prior to the study of dynamical phenomena, the nature of the steady flow is investigated. In the absence of a magnetic field, a direct comparison between experimental results, the Hadley cell model and two and three-dimensional numerical simulations clearly shows that the flow is three-dimensional in nature. The effect of a uniform transverse magnetic field is then examined. Direct comparison between experimental results and three dimensional simulations shows identical damping of the convective circulation. Numerically, it is found that the magnetic field restricts the flow to 2d motion. Experimentally, this is confirmed from the measurement of isotherms. Hence, the detailed knowledge of the steady flow provides us with a robust basis for studies of time dependent behaviour.

  5. Single gallium nitride nanowire lasers.

    PubMed

    Johnson, Justin C; Choi, Heon-Jin; Knutsen, Kelly P; Schaller, Richard D; Yang, Peidong; Saykally, Richard J

    2002-10-01

    There is much current interest in the optical properties of semiconductor nanowires, because the cylindrical geometry and strong two-dimensional confinement of electrons, holes and photons make them particularly attractive as potential building blocks for nanoscale electronics and optoelectronic devices, including lasersand nonlinear optical frequency converters. Gallium nitride (GaN) is a wide-bandgap semiconductor of much practical interest, because it is widely used in electrically pumped ultraviolet-blue light-emitting diodes, lasers and photodetectors. Recent progress in microfabrication techniques has allowed stimulated emission to be observed from a variety of GaN microstructures and films. Here we report the observation of ultraviolet-blue laser action in single monocrystalline GaN nanowires, using both near-field and far-field optical microscopy to characterize the waveguide mode structure and spectral properties of the radiation at room temperature. The optical microscope images reveal radiation patterns that correlate with axial Fabry-Perot modes (Q approximately 10(3)) observed in the laser spectrum, which result from the cylindrical cavity geometry of the monocrystalline nanowires. A redshift that is strongly dependent on pump power (45 meV microJ x cm(-2)) supports the idea that the electron-hole plasma mechanism is primarily responsible for the gain at room temperature. This study is a considerable advance towards the realization of electron-injected, nanowire-based ultraviolet-blue coherent light sources. PMID:12618824

  6. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN...

  7. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN...

  8. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN...

  9. Phase Change of Gallium Enables Highly Reversible and Switchable Adhesion.

    PubMed

    Ye, Zhou; Lum, Guo Zhan; Song, Sukho; Rich, Steven; Sitti, Metin

    2016-07-01

    Gallium exhibits highly reversible and switchable adhesion when it undergoes a solid-liquid phase transition. The robustness of gallium is notable as it exhibits strong performance on a wide range of smooth and rough surfaces, under both dry and wet conditions. Gallium may therefore find numerous applications in transfer printing, robotics, electronic packaging, and biomedicine. PMID:27146217

  10. Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control.

    PubMed

    Sarkar, Sujoy; Sampath, S

    2016-05-11

    A ternary, ionically conducting, deep eutectic solvent based on acetamide, urea and gallium nitrate is reported for the electrodeposition of gallium nitride/gallium indium nitride under ambient conditions; blue and white light emitting photoluminescent deposits are obtained under potential control. PMID:27074315

  11. Radiation damage of gallium arsenide production cells

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Joslin, D.; Garlick, J.; Lillington, D.; Gillanders, M.; Cavicchi, B.; Scott-Monck, J.; Kachare, R.; Anspaugh, B.

    1987-01-01

    High efficiency liquid phase epitaxy (LPE) gallium arsenide cells were irradiated with 1 Mev electrons up to fluences of 1 times 10 to the 16th power cm-2. Measurements of spectral response and dark and illuminated I-V data were made at each fluence and then, using computer codes, the experimental data was fitted to gallium arsenide cell models. In this way it was possible to determine the extent of the damage, and hence damage coefficients in both the emitter and base of the cell.

  12. /sup 67/Gallium lung scans in progressive systemic sclerosis

    SciTech Connect

    Baron, M.; Feiglin, D.; Hyland, R.; Urowitz, M.B.; Shiff, B.

    1983-08-01

    /sup 67/Gallium lung scans were performed in 19 patients with progressive systemic sclerosis (scleroderma). Results were expressed quantitatively as the /sup 67/Gallium Uptake Index. The mean total pulmonary /sup 67/Gallium Uptake Index in patients was significantly higher than that in controls (41 versus 25), and 4 patients (21%) fell outside the normal range. There were no clinical or laboratory variables that correlated with the /sup 56/Gallium uptake. Increased pulmonary /sup 67/Gallium uptake in scleroderma may prove useful as an index of pulmonary disease activity.

  13. Four Terminal Gallium Nitride MOSFETs

    NASA Astrophysics Data System (ADS)

    Veety, Matthew Thomas

    All reported gallium nitride (GaN) transistors to date have been three-terminal devices with source, drain, and gate electrodes. In the case of GaN MOSFETs, this leaves the bulk of the device at a floating potential which can impact device threshold voltage. In more traditional silicon-based MOSFET fabrication a bulk contact can be made on the back side of the silicon wafer. For GaN grown on sapphire substrates, however, this is not possible and an alternate, front-side bulk contact must be investigated. GaN is a III-V, wide band gap semiconductor that as promising material parameters for use in high frequency and high power applications. Possible applications are in the 1 to 10 GHz frequency band and power inverters for next generation grid solid state transformers and inverters. GaN has seen significant academic and commercial research for use in Heterojunction Field Effect Transistors (HFETs). These devices however are depletion-mode, meaning the device is considered "on" at zero gate bias. A MOSFET structure allows for enhancement mode operation, which is normally off. This mode is preferrable in high power applications as the device has lower off-state power consumption and is easier to implement in circuits. Proper surface passivation of seminconductor surface interface states is an important processing step for any device. Preliminary research on surface treatments using GaN wet etches and depletion-mode GaN devices utilizing this process are discussed. Devices pretreated with potassium pursulfate prior to gate dielectric deposition show significant device improvements. This process can be applied to any current GaN FET. Enhancement-mode GaN MOSFETs were fabricated on magnesium doped p-type Wurtzite gallium nitride grown by Metal Organic Chemical Vapor Deposition (MOCVD) on c-plane sapphire substrates. Devices utilized ion implant source and drain which was activated under NH3 overpressure in MOCVD. Also, devices were fabricated with a SiO2 gate dielectric

  14. Mechanical Properties Of Large Sodium Iodide Crystals

    NASA Technical Reports Server (NTRS)

    Lee, Henry M.

    1988-01-01

    Report presents data on mechanical properties of large crystals of thallium-doped sodium iodide. Five specimens in shape of circular flat plates subjected to mechanical tests. Presents test results for each specimen as plots of differential pressure versus center displacement and differential pressure versus stress at center. Also tabulates raw data. Test program also developed procedure for screening candidate crystals for gamma-ray sensor. Procedure eliminates potentially weak crystals before installed and ensures material yielding kept to minimum.

  15. Mercuric iodide X-ray camera

    NASA Astrophysics Data System (ADS)

    Patt, B. E.; del Duca, A.; Dolin, R.; Ortale, C.

    1986-02-01

    A prototype X-ray camera utilizing a 1.5- by 1.5-in., 1024-element, thin mercuric iodide detector array has been tested and evaluated. The microprocessor-based camera is portable and operates at room temperature. Events can be localized within 1-2 mm at energies below 60 keV and within 5-6 mm at energies on the order of 600 keV.

  16. Mercuric iodide X-ray camera

    NASA Astrophysics Data System (ADS)

    Patt, B. E.; Delduca, A.; Dolin, R.; Ortale, C.

    A prototype X-ray camera utilizing a 1.5- by 1.5-in., 1024-element, thin mercuric iodide detector array has been tested and evaluated. The microprocessor-based camera is portable and operates at room temperature. Events can be localized within 1 to 2 mm at energies below 60 keV and within 5 to 6 mm at energies on the order of 600 keV.

  17. Formulation and optimization of potassium iodide tablets.

    PubMed

    Al-Achi, Antoine; Patel, Binit

    2015-01-01

    The use of potassium iodide (KI) as a protective agent against accidental radioactive exposure is well established. In this study, we aimed to prepare a KI tablet formulation using a direct compression method. We utilized Design of Experiment (DoE)/mixture design to define the best formulation with predetermined physical qualities as to its dissolution, hardness, assay, disintegration, and angle of repose. Based on the results from the DoE, the formulation had the following components (%w/w): Avicel 48.70%, silicon dioxide 0.27%, stearic acid (1.00%), magnesium stearate 2.45%, and dicalcium phosphate 18.69%, in addition to potassium iodide 28.89% (130 mg/tablet). This formulation was scaled-up using two tablet presses, a single-punch press and a rotary mini tablet press. The final scaled-up formulation was subjected to a variety of quality control tests, including photo-stability testing. The results indicate that potassium iodide tablets prepared by a rotary mini tablet press had good pharmaceutical characteristics and a shelf-life of 25 days when stored at room temperature protected from light. PMID:25685048

  18. Formation of cyanogen iodide by lactoperoxidase.

    PubMed

    Schlorke, Denise; Flemmig, Jörg; Birkemeyer, Claudia; Arnhold, Jürgen

    2016-01-01

    The haem protein lactoperoxidase (LPO) is an important component of the anti-microbial immune defence in external secretions and is also applied as preservative in food, oral care and cosmetic products. Upon oxidation of SCN(-) and I(-) by the LPO-hydrogen peroxide system, oxidised species are formed with bacteriostatic and/or bactericidal activity. Here we describe the formation of the inter(pseudo)halogen cyanogen iodide (ICN) by LPO. This product is formed when both, thiocyanate and iodide, are present together in the reaction mixture. Using (13)C nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry we could identify this inter(pseudo)halogen after applying iodide in slight excess over thiocyanate. The formation of ICN is based on the reaction of oxidised iodine species with thiocyanate. Further, we could demonstrate that ICN is also formed by the related haem enzyme myeloperoxidase and, in lower amounts, in the enzyme-free system. As I(-) is not competitive for SCN(-) under physiologically relevant conditions, the formation of ICN is not expected in secretions but may be relevant for LPO-containing products. PMID:26580225

  19. Composition and properties of thallium mercury iodide

    NASA Astrophysics Data System (ADS)

    Kennedy, John H.; Schaupp, Christopher; Yang, Yuan; Zhang, Zhengming; Novinson, Thomas; Hoffard, Theresa

    1990-10-01

    Conflicting reports exist in the literature concerning the composition of thallium mercury iodide. Solid state synthesis with HgI 2 and TlI has been reported to give Tl 4HgI 6 while synthesis from solution has been reported to give Tl 2HgI 4. In this report we show that the "orange compound" precipitating from solution is actually a 1:1 mole ratio mixture of Tl 4HgI 6 and HgI 2. Pure Tl 4HgI 6, which is yellow, can be produced by heating the mixture at 100°C for several days to volatilize HgI 2 or more simply, by adding Tl(I) to a solution containing 2:1 KI:K 2HgI 4 to provide the additional iodide ions needed for Tl 4HgI 6. Tl 4HgI 6, unlike Ag 2HgI 4 and Cu 2HgI 4, has no sharp thermochromic changes and has no measurable ionic conductivity. This provides another example of the significant role the metal ion plans in determining structure and properties of metal mercury iodide compounds.

  20. Formulation and optimization of potassium iodide tablets

    PubMed Central

    Al-Achi, Antoine; Patel, Binit

    2014-01-01

    The use of potassium iodide (KI) as a protective agent against accidental radioactive exposure is well established. In this study, we aimed to prepare a KI tablet formulation using a direct compression method. We utilized Design of Experiment (DoE)/mixture design to define the best formulation with predetermined physical qualities as to its dissolution, hardness, assay, disintegration, and angle of repose. Based on the results from the DoE, the formulation had the following components (%w/w): Avicel 48.70%, silicon dioxide 0.27%, stearic acid (1.00%), magnesium stearate 2.45%, and dicalcium phosphate 18.69%, in addition to potassium iodide 28.89% (130 mg/tablet). This formulation was scaled-up using two tablet presses, a single-punch press and a rotary mini tablet press. The final scaled-up formulation was subjected to a variety of quality control tests, including photo-stability testing. The results indicate that potassium iodide tablets prepared by a rotary mini tablet press had good pharmaceutical characteristics and a shelf-life of 25 days when stored at room temperature protected from light. PMID:25685048

  1. Ultrafast Extreme Ultraviolet Spectroscopy of Lead Iodide and Methylammonium Lead Iodide

    NASA Astrophysics Data System (ADS)

    Verkamp, Max; Lin, Ming-Fu; Ryland, Elizabeth; Vura-Weis, Josh

    Methylammonium lead iodide (perovskite) is a leading candidate for use in next-generation solar cell devices. However, the photophysics of perovskite responsible for its strong photovoltaic qualities are not fully understood. Ultrafast extreme ultraviolet (XUV) spectroscopy was used to investigate relaxation dynamics in perovskite and its precursor, lead iodide, with carrier-specific signals arising from transitions from a common inner-shell level (I 4d) to the valence and conduction bands. Ultrashort (30 fs) pulses of XUV radiation in a broad spectrum (40-70 eV) were obtained using high-harmonic generation in a tabletop instrument. Transient absorption measurements with visible pump (3.1 eV) and XUV probe directly observed the relaxation of charge carriers after above band excitation for both perovskite and lead iodide in the femtosecond and picosecond time ranges.

  2. Long-chain amine-templated synthesis of gallium sulfide and gallium selenide nanotubes

    NASA Astrophysics Data System (ADS)

    Seral-Ascaso, A.; Metel, S.; Pokle, A.; Backes, C.; Zhang, C. J.; Nerl, H. C.; Rode, K.; Berner, N. C.; Downing, C.; McEvoy, N.; Muñoz, E.; Harvey, A.; Gholamvand, Z.; Duesberg, G. S.; Coleman, J. N.; Nicolosi, V.

    2016-06-01

    We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization.We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01663d

  3. In-situ Observation of Surface Graphitization of Gallium Droplet and Concentration of Carbon in Liquid Gallium

    NASA Astrophysics Data System (ADS)

    Ueki, Ryuichi; Nishijima, Takuya; Hikata, Takeshi; Ookubo, Soichiro; Utsunomiya, Risa; Matsuba, Teruaki; Fujita, Jun-ichi

    2012-06-01

    Although carbon has been recognized to be insoluble in gallium, we found that the outermost surface of gallium has unexpectedly high carbon solubility, particularly the limited region of about a few nanometers in depth. Our in-situ transmission electron microscope observations revealed that a graphene layer was precipitated at the surface of a gallium droplet simultaneously with gallium evaporation, and some of the droplets created an internal graphitic layer. On the basis of these experimental data, we evaluated a substantial carbon solubility that seemed to exceed about 50 at. %, but was realized in a very thin surface region of about 4 nm in depth. We believe that this high carbon solubility at the gallium surface is the key mechanism for the catalytic ability of gallium that was observed at the interface between liquid gallium and solid amorphous carbon.

  4. Thermodynamic binding constants for gallium transferrin

    SciTech Connect

    Harris, W.R.; Pecoraro, V.L.

    1983-01-18

    Gallium-67 is widely used as an imaging agent for tumors and inflammatory abscesses. It is well stablished that Ga/sup 3 +/ travels through the circulatory system bound to the serum iron transport protein transferrin and that this protein binding is an essential step in tumor localization. However, there have been conflicting reports on the magnitude of the gallium-transferrin binding constants. Therefore, thermodynamic binding constants for gallium complexation at the two specific metal binding sites of human serum transferrin at pH 7.4 and 5 mM NaHCO/sub 3/ have been determined by UV difference spectroscopy. The conditional constants calculated for 27 mM NaHCO/sub 3/ are log K/sub 1/* = 20.3 and log K/sub 2/* = 19.3. These results are discussed in relation to the thermodynamics of transferrin binding of Fe/sup 3 +/ and to previous reports on gallium binding. The strength of transferrin complexation is also compared to that of a series of low molecular weight ligands by using calculated pM values (pM = -log (Ga(H/sub 2/O)/sub 6/)) to express the effective binding strength at pH 7.4.

  5. Solar cell with a gallium nitride electrode

    DOEpatents

    Pankove, Jacques I.

    1979-01-01

    A solar cell which comprises a body of silicon having a P-N junction therein with a transparent conducting N-type gallium nitride layer as an ohmic contact on the N-type side of the semiconductor exposed to solar radiation.

  6. Development of gallium aluminum phosphide electroluminescent diodes

    NASA Technical Reports Server (NTRS)

    Chicotka, R. J.; Lorenz, M. R.; Nethercot, A. H.; Pettit, G. D.

    1972-01-01

    Work done on the development of gallium aluminum phosphide alloys for electroluminescent light sources is described. The preparation of this wide band gap semiconductor alloy, its physical properties (particularly the band structure, the electrical characteristics, and the light emitting properties) and work done on the fabrication of diode structures from these alloys are broadly covered.

  7. Gallium Nitride Crystals: Novel Supercapacitor Electrode Materials.

    PubMed

    Wang, Shouzhi; Zhang, Lei; Sun, Changlong; Shao, Yongliang; Wu, Yongzhong; Lv, Jiaxin; Hao, Xiaopeng

    2016-05-01

    A type of single-crystal gallium nitride mesoporous membrane is fabricated and its supercapacitor properties are demonstrated for the first time. The supercapacitors exhibit high-rate capability, stable cycling life at high rates, and ultrahigh power density. This study may expand the range of crystals as high-performance electrode materials in the field of energy storage. PMID:27007502

  8. Gallium Electromagnetic (GEM) Thruster Performance Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Burton, Rodney L.; Polzin, K. A.

    2009-01-01

    Discharge current, terminal voltage, and mass bit measurements are performed on a coaxial gallium electromagnetic thruster at discharge currents in the range of 7-23 kA. It is found that the mass bit varies quadratically with the discharge current which yields a constant exhaust velocity of 20 km/s. Increasing the electrode radius ratio of the thruster from to 2.6 to 3.4 increases the thruster efficiency from 21% to 30%. When operating with a central gallium anode, macroparticles are ejected at all energy levels tested. A central gallium cathode ejects macroparticles when the current density exceeds 3.7 10(exp 8) A/square m . A spatially and temporally broad spectroscopic survey in the 220-520 nm range is used to determine which species are present in the plasma. The spectra show that neutral, singly, and doubly ionized gallium species are present in the discharge, as well as annular electrode species at higher energy levels. Axial Langmuir triple probe measurements yield electron temperatures in the range of 0.8-3.8 eV and electron densities in the range of 8 x 10(exp )20 to 1.6 x 10(exp 21) m(exp -3) . Triple probe measurements suggest an exhaust plume with a divergence angle of 9 , and a completely doubly ionized plasma at the ablating thruster cathode.

  9. Extrapulmonary localization of gallium in sarcoidosis

    SciTech Connect

    Rohatgi, P.K.; Singh, R.; Vieras, F.

    1987-01-01

    This paper describes the spectrum of extrapulmonary localization of gallium in patients with sarcoidosis. The usefulness of Ga-67 scintiscans in detecting clinically occult lesions, in directing clinicians to accessible sites for biopsy, and in following the course of extrapulmonary sites of involvement with therapy is emphasized.

  10. Gallium nitride junction field-effect transistor

    DOEpatents

    Zolper, J.C.; Shul, R.J.

    1999-02-02

    An ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same are disclosed. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorus co-implantation, in selected III-V semiconductor materials. 19 figs.

  11. Gallium nitride junction field-effect transistor

    DOEpatents

    Zolper, John C.; Shul, Randy J.

    1999-01-01

    An all-ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorous co-implantation, in selected III-V semiconductor materials.

  12. Anisotropy of the magnetic susceptibility of gallium

    USGS Publications Warehouse

    Pankey, T., Jr.

    1960-01-01

    The bulk magnetic susceptibilities of single gallium crystals and polycrystalline gallium spheres were measured at 25??C. The following anisotropic diamagnetic susceptibilities were found: a axis (-0.119??0. 001)??10-6 emu/g, b axis (-0.416??0.002)??10 -6 emu/g, and c axis (-0.229??0.001) emu/g. The susceptibility of the polycrystalline spheres, assumed to be the average value for the bulk susceptibility of gallium, was (-0.257??0.003)??10-6 emu/g at 25??C, and (-0.299??0.003)??10-6 emu/g at -196??C. The susceptibility of liquid gallium was (0.0031??0.001) ??10-6 emu/g at 30??C and 100??C. Rotational diagrams of the susceptibilities in the three orthogonal planes of the unit cell were not sinusoidal. The anisotropy in the single crystals was presumably caused by the partial overlap of Brillouin zone boundaries by the Fermi-energy surface. The large change in susceptibility associated with the change in state was attributed to the absence of effective mass influence in the liquid state. ?? 1960 The American Institute of Physics.

  13. Gallium-positive Lyme disease myocarditis

    SciTech Connect

    Alpert, L.I.; Welch, P.; Fisher, N.

    1985-09-01

    In the course of a work-up for fever of unknown origin associated with intermittent arrhythmias, a gallium scan was performed which revealed diffuse myocardial uptake. The diagnosis of Lyme disease myocarditis subsequently was confirmed by serologic titers. One month following recovery from the acute illness, the abnormal myocardial uptake completely resolved.

  14. Ammonothermal Growth of Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Pimputkar, Siddha

    Bulk, single crystal Gallium Nitride (GaN) crystals are essential for enabling high performance electronic and optoelectronic devices by providing arbitrarily oriented, high quality, large, single crystal GaN substrates. Methods of producing single crystals of sufficient size and quality at a rate that would enable successful commercialization has been a major focus for research groups and companies worldwide. Recent advances have demonstrated remarkable improvements, though high cost and lack of high volume production remain key challenges. Major investments in bulk GaN growth were made at UCSB with particular focus on the ammonothermal method. The existing lab was upgraded and a new facility was designed and built with improved experimental setups for ammonothermal growth of GaN. The facilities can simultaneously operate up to 15 reactors of differing designs and capabilities with the ability to grow crystals up to 2 inches in diameter. A novel in-situ technique was devised to investigate the growth chemistry which occurs at typical operating conditions of 3,000 atm and 600 °C. Improvements in ammonothermal GaN include improved growth rates for c-plane by a factor of four to 344 μm/day with an overall record growth rate of 544 μm/day achieved for the (112¯2) plane. Crystal qualities comparable to that of the seed crystal were achieved. Impurity concentrations for transition metals were consistently reduced by a factor of 100 to concentrations below 1017 atoms/cm3. Optical transparency was improved by significantly reducing the yellow coloration typically seen for ammonothermal GaN. Single crystal GaN was successfully grown on large seeds and a 1 inch x ½ inch x ½ inch GaN crystal was demonstrated. To better understand the growth chemistry, models were created for the decomposition of ammonia under growth conditions, with initial experiments performed using the designed in-situ setup to verify the model's accuracy. To investigate the surface morphology and

  15. Copper-Catalyzed Carboxylation of Aryl Iodides with Carbon Dioxide.

    PubMed

    Tran-Vu, Hung; Daugulis, Olafs

    2013-10-01

    A method for carboxylation of aryl iodides with carbon dioxide has been developed. The reaction employs low loadings of copper iodide/TMEDA or DMEDA catalyst, 1 atm of CO2, DMSO or DMA solvent, and proceeds at 25-70 °C. Good functional group tolerance is observed, with ester, bromide, chloride, fluoride, ether, hydroxy, amino, and ketone functionalities tolerated. Additionally, hindered aryl iodides such as iodomesitylene can also be carboxylated. PMID:24288654

  16. Gallium 67 scintigraphy in glomerular disease

    SciTech Connect

    Bakir, A.A.; Lopez-Majano, V.; Levy, P.S.; Rhee, H.L.; Dunea, G.

    1988-12-01

    To evaluate the diagnostic usefulness of gallium 67 scintigraphy in glomerular disease, 45 patients with various glomerulopathies, excluding lupus nephritis and renal vasculitis, were studied. Persistent renal visualization 48 hours after the gallium injection, a positive scintigram, was graded as + (less than), ++ (equal to), and +++ (greater than) the hepatic uptake. Positive scintigrams were seen in ten of 16 cases of focal segmental glomerulosclerosis, six of 11 cases of proliferative glomerulonephritis, and one case of minimal change, and one of two cases of membranous nephropathy; also in three of six cases of sickle glomerulopathy, two cases of diabetic neuropathy, one of two cases of amyloidosis, and one case of mild chronic allograft rejection. The 25 patients with positive scans were younger than the 20 with negative scans (31 +/- 12 v 42 +/- 17 years; P less than 0.01), and exhibited greater proteinuria (8.19 +/- 7.96 v 2.9 +/- 2.3 S/d; P less than 0.01) and lower serum creatinine values (2 +/- 2 v 4.1 +/- 2.8 mg/dL; P less than 0.01). The amount of proteinuria correlated directly with the intensity grade of the gallium image (P less than 0.02), but there was no correlation between the biopsy diagnosis and the outcome of the gallium scan. It was concluded that gallium scintigraphy is not useful in the differential diagnosis of the glomerular diseases under discussion. Younger patients with good renal function and heavy proteinuria are likely to have a positive renal scintigram regardless of the underlying glomerulopathy.

  17. Iodide transport and its regulation in the thyroid gland

    SciTech Connect

    Price, D.J.

    1987-01-01

    This study was undertaken to examine the autoregulatory mechanism of iodide induced suppression of subsequently determined iodide transport activity in the thyroid gland. Two model systems were developed to identify the putative, transport-related, iodine-containing, inhibitory factor responsible for autoregulation. The first system was a maternal and fetal rabbit thyroid tissue slice preparation in which iodide pretreatment inhibited the maternal /sup 125/I-T/M ratio by 30% and had no significant effect on fetal iodide transport. In the second system, the role of protein synthesis in the autoregulatory phenomenon was studied. Cat thyroid slices pretreated with0.1 mM cycloheximide for 60 min prior to preexposure to excess iodide demonstrated a significant reduction in the degree of iodide included autoregulation. In both of these systems iodide induced suppression of cAMP accumulation remained intact. These findings suggest (1) fetal rabbit thyroid lacks the autoregulatory mechanism of iodide transport and (2) protein synthesis is involved in the mechanism of thyroid autoregulation of iodide transport.

  18. Indium gallium nitride/gallium nitride quantum wells grown on polar and nonpolar gallium nitride substrates

    NASA Astrophysics Data System (ADS)

    Lai, Kun-Yu

    Nonpolar (m-plane or a-plane) gallium nitride (GaN) is predicted to be a potential substrate material to improve luminous efficiencies of nitride-based quantum wells (QWs). Numerical calculations indicated that the spontaneous emission rate in a single In0.15Ga0.85N/GaN QW could be improved by ˜2.2 times if the polarization-induced internal field was avoided by epitaxial deposition on nonpolar substrates. A challenge for nonpolar GaN is the limited size (less than 10x10 mm2) of substrates, which was addressed by expansion during the regrowth by Hydride Vapor Phase Epitaxy (HVPE). Subsurface damage in GaN substrates were reduced by annealing with NH3 and N2 at 950°C for 60 minutes. It was additionally found that the variation of m-plane QWs' emission properties was significantly increased when the substrate miscut toward a-axis was increased from 0° to 0.1°. InGaN/GaN QWs were grown by Metalorganic Chemical Vapor Deposition (MOCVD) on c-plane and m-plane GaN substrates. The QWs were studied by cathodoluminescence spectroscopy with different incident electron beam probe currents (0.1 nA ˜ 1000 nA). Lower emission intensities and longer peak wavelengths from c-plane QWs were attributed to the Quantum-confined Stark Effect (QCSE). The emission intensity ratios of m-plane QWs to c-plane QWs decreased from 3.04 at 1 nA to 1.53 at 1000 nA. This was identified as the stronger screening effects of QCSE at higher current densities in c-plane QWs. To further investigate these effects in a fabricated structure, biased photoluminescence measurements were performed on m-plane InGaN/GaN QWs. The purpose was to detect the possible internal fields induced by the dot-like structure in the InGaN layer through the response of these internal fields under externally applied fields. No energy shifts of the QWs were observed, which was attributed to strong surface leakage currents.

  19. Antimicrobial characteristic of insoluble alkylpyridinium iodide.

    PubMed Central

    Nakagawa, Y; Yamano, Y; Tawaratani, T; Kourai, H; Horie, T; Shibasaki, I

    1982-01-01

    Insoluble and soluble alkylpyridinium iodides (C8 to C18) were synthesized. The insoluble agents were quaternized 4-vinylpyridine-divinylbenzene copolymers. The insoluble agent [C12(50)] that contained 50% divinylbenzene and had a C12 alkyl chain was selected as the most suitable insoluble agent. C12(50) showed poor durability of the antibacterial activity, but C12(50), which had lost the activity, was refreshed by washing with ethanol. This washing became ineffective after a few cycles of antibacterial treatment and refreshment. Such C12(50) recovered the activity upon 1.0 N NaOH treatment. The antibacterial activity of C12(50) depended on its surface area. It showed high antimicrobial activity against gram-positive bacteria and also showed activity against gram-negative bacteria and yeasts. But the activities of C12(50) and laurylpyridinium iodide solution were different against some microbes. The antibacterial activities of the agents were investigated against Escherichia coli and Micrococcus luteus under various conditions. The activity of C12(50) was higher at a higher temperature or at a lower cell concentration. The activity of C12(50) decreased on addition of NaCl, glucose, or bovine albumin to the cell suspension or in 0.01 M sodium-potassium phosphate buffer. C12(50) showed less activity when cells were mixed with dead cells or the supernatant of dead cells killed in an autoclave. The mode of action of the laurylpyridinium iodide solution against E. coli and M. luteus was similar to that of C12(50) except for the influence of E. coli cell concentration. PMID:6808918

  20. Taming the Reactivity of Glycosyl Iodides To Achieve Stereoselective Glycosidation.

    PubMed

    Gervay-Hague, Jacquelyn

    2016-01-19

    Although glycosyl iodides have been known for more than 100 years, it was not until the 21st century that their full potential began to be harnessed for complex glycoconjugate synthesis. Mechanistic studies in the late 1990s probed glycosyl iodide formation by NMR spectroscopy and revealed important reactivity features embedded in protecting-group stereoelectronics. Differentially protected sugars having an anomeric acetate were reacted with trimethylsilyl iodide (TMSI) to generate the glycosyl iodides. In the absence of C-2 participation, generation of the glycosyl iodide proceeded by inversion of the starting anomeric acetate stereochemistry. Once formed, the glycosyl iodide readily underwent in situ anomerization, and in the presence of excess iodide, equilibrium concentrations of α- and β-iodides were established. Reactivity profiles depended upon the identity of the sugar and the protecting groups adorning it. Consistent with the modern idea of disarmed versus armed sugars, ester protecting groups diminished the reactivity of glycosyl iodides and ether protecting groups enhanced the reactivity. Thus, acetylated sugars were slower to form the iodide and anomerize than their benzylated analogues, and these disarmed glycosyl iodides could be isolated and purified, whereas armed ether-protected iodides could only be generated and reacted in situ. All other things being equal, the β-iodide was orders of magnitude more reactive than the thermodynamically more stable α-iodide, consistent with the idea of in situ anomerization introduced by Lemieux in the mid-20th century. Glycosyl iodides are far more reactive than the corresponding bromides, and with the increased reactivity comes increased stereocontrol, particularly when forming α-linked linear and branched oligosaccharides. Reactions with per-O-silylated glycosyl iodides are especially useful for the synthesis of α-linked glycoconjugates. Silyl ether protecting groups make the glycosyl iodide so reactive

  1. Production of Molecular Iodine and Tri-iodide in the Frozen Solution of Iodide: Implication for Polar Atmosphere.

    PubMed

    Kim, Kitae; Yabushita, Akihiro; Okumura, Masanori; Saiz-Lopez, Alfonso; Cuevas, Carlos A; Blaszczak-Boxe, Christopher S; Min, Dae Wi; Yoon, Ho-Il; Choi, Wonyong

    2016-02-01

    The chemistry of reactive halogens in the polar atmosphere plays important roles in ozone and mercury depletion events, oxidizing capacity, and dimethylsulfide oxidation to form cloud-condensation nuclei. Among halogen species, the sources and emission mechanisms of inorganic iodine compounds in the polar boundary layer remain unknown. Here, we demonstrate that the production of tri-iodide (I3(-)) via iodide oxidation, which is negligible in aqueous solution, is significantly accelerated in frozen solution, both in the presence and the absence of solar irradiation. Field experiments carried out in the Antarctic region (King George Island, 62°13'S, 58°47'W) also showed that the generation of tri-iodide via solar photo-oxidation was enhanced when iodide was added to various ice media. The emission of gaseous I2 from the irradiated frozen solution of iodide to the gas phase was detected by using cavity ring-down spectroscopy, which was observed both in the frozen state at 253 K and after thawing the ice at 298 K. The accelerated (photo-)oxidation of iodide and the subsequent formation of tri-iodide and I2 in ice appear to be related with the freeze concentration of iodide and dissolved O2 trapped in the ice crystal grain boundaries. We propose that an accelerated abiotic transformation of iodide to gaseous I2 in ice media provides a previously unrecognized formation pathway of active iodine species in the polar atmosphere. PMID:26745029

  2. The addition of iodine to tetramethylammonium iodide

    USGS Publications Warehouse

    Foote, H.W.; Fleischer, M.

    1953-01-01

    The system tetramethylammonium iodide-iodine-toluene has been studied by the solubility method at 6 and at 25??. The compounds (CH3)4NI3, (CH3)4NI5 and (CH3)4NI11 were found to be stable phases at both temperatures. In addition, the compound (CH3)4NI10 was found at 6?? and the compound (CH3)4NI9 at 25??. The dissociation pressures of the compounds at these temperatures were calculated from the solubility data.

  3. Large-area mercuric iodide photodectors

    NASA Astrophysics Data System (ADS)

    Markakis, J.; Ortale, C.; Schnepple, W.; Iwanczyk, J.; Dabrowski, A.

    1983-07-01

    The limits of the active area of mercuric iodide photodetectors imposed by the size of available crystals, electronic noise, and the uniformity of charge carrier collection are discussed. Theoretical calculations of the photodetector electronic noise are compared with the experimental results. Different entrance contacts were studied including semitransparent palladium films and conductive liquids. HgI2 photodetectors with active area up to 4 sq cm are matched with NaI(Tl) and CsI(Tl) scintillation crystals and are evaluated as gamma radiation spectrometers.

  4. Recent developments in thick mercuric iodide spectrometers

    NASA Astrophysics Data System (ADS)

    Hull, K.; Beyerle, A.; Lopez, B.; Markakis, J.; Ortale, C.; Schnepple, W.; Vandenberg, L.

    Thick (approx. 1 cm) mercuric iodide gamma-ray detectors have been produced which show spectroscopic qualities at moderate detector biases (approx. 5 kV) comparable to those of thin spectrometers. Efficiency measurements indicate that the entire volume of the detectors is active. Spectra resolutions of less than 10% have been obtained for gamma-ray energies above 1 MeV. Short charge collection times have produced the best results. Measurement of crystal charge transport properties is discussed. A small amount of bias conditioning is necessary for best performance. Operating parameters of the detectors have been investigated.

  5. Mechanochromic luminescence of copper iodide clusters.

    PubMed

    Benito, Quentin; Maurin, Isabelle; Cheisson, Thibaut; Nocton, Gregory; Fargues, Alexandre; Garcia, Alain; Martineau, Charlotte; Gacoin, Thierry; Boilot, Jean-Pierre; Perruchas, Sandrine

    2015-04-01

    Luminescent mechanochromic materials are particularly appealing for the development of stimuli-responsive materials. Establishing the mechanism responsible for the mechanochromism is always an issue owing to the difficulty in characterizing the ground phase. Herein, the study of real crystalline polymorphs of a mechanochromic and thermochromic luminescent copper iodide cluster permits us to clearly establish the mechanism involved. The local disruption of the crystal packing induces changes in the cluster geometry and in particular the modification of the cuprophilic interactions, which consequently modify the emissive states. This study constitutes a step further toward the understanding of the mechanism involved in the mechanochromic luminescent properties of multimetallic coordination complexes. PMID:25755012

  6. Europium-doped barium bromide iodide

    SciTech Connect

    Gundiah, Gautam; Hanrahan, Stephen M.; Hollander, Fredrick J.; Bourret-Courchesne, Edith D.

    2009-10-21

    Single crystals of Ba0.96Eu0.04BrI (barium europium bromide iodide) were grown by the Bridgman technique. The title compound adopts the ordered PbCl2 structure [Braekken (1932). Z. Kristallogr. 83, 222-282]. All atoms occupy the fourfold special positions (4c, site symmetry m) of the space group Pnma with a statistical distribution of Ba and Eu. They lie on the mirror planes, perpendicular to the b axis at y = +-0.25. Each cation is coordinated by nine anions in a tricapped trigonal prismatic arrangement.

  7. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    SciTech Connect

    Soelberg, Nick; Watson, Tony

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  8. Light Elements in the Core: Constraints from Gallium Partitioning

    NASA Astrophysics Data System (ADS)

    Blanchard, I.; Badro, J.; Siebert, J.; Ryerson, F. J.

    2014-12-01

    The formation of Earth's core has left a compositional imprint on the mantle, depleting and fractionating most of its siderophile (iron-loving) elements. Gallium is a moderately siderophile, hence it should be strongly depleted in the mantle. However, gallium concentration in the mantle matches that of lithophile (silicate-loving) elements having the same volatility. That is to say that either gallium behaves as a lithophile element during core formation, or a large influx of gallium was brought to the Earth after the core had formed. Geochemical evidence does not support the latter hypothesis, as it would require all other lithophile elements with similar volatility to be enriched in the mantle, or for late accretion to be composed of anomalously gallium-rich objects. In order to mitigate this issue, experimental studies have tried to understand how gallium behaves during core segregation by gauging the effects of pressure, temperature and oxygen fugacity on the partitioning of gallium between metal and silicate. None of these parameters provided the first-order change required to match the observation. We investigated the influence of core composition on gallium partitioning. The core in known to contain light-elements (oxygen, silicon sulfur and carbon), and those can change the activity of gallium in the metal, and strongly affect the behavior of gallium during core formation. We performed a series of metal-silicate partitioning experiments (2 GPa, 1673-2073 K) in a piston-cylinder press. We varied the light-element composition of the metal and observed that Si and O have a very strong influence on the activity of gallium, making it more lithophile. We then modeled terrestrial accretion as a continuous process and tested different accretion histories; we can reproduce the mantle concentration of gallium if the core segregates in a deep magma ocean (>40 GPa) and contains large amounts of silicon or oxygen.

  9. Survey of the market, supply and availability of gallium

    SciTech Connect

    Rosi, F.D.

    1980-07-01

    The objective of this study was to assess the present consumption and supply of gallium, its potential availability in the satellite power system (SPS) implementation time frame, and commercial and new processing methods for increasing the production of gallium. Findings are reported in detail. The findings strongly suggest that with proper long range planning adequate gallium would be available from free-enterprise world supplies of bauxite for SPS implementation.

  10. Inflammatory pseudotumor: A gallium-avid mobile mesenteric mass

    SciTech Connect

    Auringer, S.T.; Scott, M.D.; Sumner, T.E. )

    1991-08-01

    An 8-yr-old boy with a 1-mo history of culture-negative fever and anemia underwent gallium, ultrasound, and computed tomography studies as part of the evaluation of a fever of unknown origin. These studies revealed a mobile gallium-avid solid abdominal mass subsequently proven to be an inflammatory pseudotumor of the mesentery, a rare benign mass. This report documents the gallium-avid nature of this rare lesion and discusses associated characteristic clinical, pathologic, and radiographic features.

  11. 21 CFR 520.763 - Dithiazanine iodide oral dosage forms.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dithiazanine iodide oral dosage forms. 520.763 Section 520.763 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Dithiazanine iodide oral dosage forms....

  12. Efficient water reduction with gallium phosphide nanowires

    PubMed Central

    Standing, Anthony; Assali, Simone; Gao, Lu; Verheijen, Marcel A.; van Dam, Dick; Cui, Yingchao; Notten, Peter H. L.; Haverkort, Jos E. M.; Bakkers, Erik P. A. M.

    2015-01-01

    Photoelectrochemical hydrogen production from solar energy and water offers a clean and sustainable fuel option for the future. Planar III/V material systems have shown the highest efficiencies, but are expensive. By moving to the nanowire regime the demand on material quantity is reduced, and new materials can be uncovered, such as wurtzite gallium phosphide, featuring a direct bandgap. This is one of the few materials combining large solar light absorption and (close to) ideal band-edge positions for full water splitting. Here we report the photoelectrochemical reduction of water, on a p-type wurtzite gallium phosphide nanowire photocathode. By modifying geometry to reduce electrical resistance and enhance optical absorption, and modifying the surface with a multistep platinum deposition, high current densities and open circuit potentials were achieved. Our results demonstrate the capabilities of this material, even when used in such low quantities, as in nanowires. PMID:26183949

  13. Efficient water reduction with gallium phosphide nanowires

    NASA Astrophysics Data System (ADS)

    Standing, Anthony; Assali, Simone; Gao, Lu; Verheijen, Marcel A.; van Dam, Dick; Cui, Yingchao; Notten, Peter H. L.; Haverkort, Jos E. M.; Bakkers, Erik P. A. M.

    2015-07-01

    Photoelectrochemical hydrogen production from solar energy and water offers a clean and sustainable fuel option for the future. Planar III/V material systems have shown the highest efficiencies, but are expensive. By moving to the nanowire regime the demand on material quantity is reduced, and new materials can be uncovered, such as wurtzite gallium phosphide, featuring a direct bandgap. This is one of the few materials combining large solar light absorption and (close to) ideal band-edge positions for full water splitting. Here we report the photoelectrochemical reduction of water, on a p-type wurtzite gallium phosphide nanowire photocathode. By modifying geometry to reduce electrical resistance and enhance optical absorption, and modifying the surface with a multistep platinum deposition, high current densities and open circuit potentials were achieved. Our results demonstrate the capabilities of this material, even when used in such low quantities, as in nanowires.

  14. Gallium-67 imaging in muscular sarcoidosis

    SciTech Connect

    Edan, G.; Bourguet, P.; Delaval, P.; Herry, J.Y.

    1984-07-01

    A case is presented of sarcoid myopathy in which radiogallium was seen to accumulate in the sites of muscle involvement. Uptake of the radiotracer disappeared following institution of corticosteroid therapy. The exceptional nature of this case contrasts with the high frequency of biopsy evidence of sarcoid granulomas in muscle. Gallium-67 imaging can be used to determine the extent of muscle involvement and, through evaluation of uptake intensity, the degree of disease activity before and after treatment.

  15. A Gallium multiphase equation of state

    SciTech Connect

    Crockett, Scott D; Greeff, Carl

    2009-01-01

    A new SESAME multiphase Gallium equation of state (EOS) has been developed. The equation of state includes three of the solid phases (Ga I, Ga II, Ga III) and a fluid phase (liquid/gas). The EOS includes consistent latent heat between the phases. We compare the results to the liquid Hugoniol data. We also explore the possibility of re-freezing via dynamic means such as isentropic and shock compression.

  16. Iodide sensing via electrochemical etching of ultrathin gold films

    NASA Astrophysics Data System (ADS)

    Dielacher, Bernd; Tiefenauer, Raphael F.; Junesch, Juliane; Vörös, János

    2015-01-01

    Iodide is an essential element for humans and animals and insufficient intake is still a major problem. Affordable and accurate methods are required to quantify iodide concentrations in biological and environmental fluids. A simple and low cost sensing device is presented which is based on iodide induced electrochemical etching of ultrathin gold films. The sensitivity of resistance measurements to film thickness changes is increased by using films with a thickness smaller than the electron mean free path. The underlying mechanism is demonstrated by simultaneous cyclic voltammetry experiments and resistance change measurements in a buffer solution. Iodide sensing is conducted in buffer solutions as well as in lake water with limits of detection in the range of 1 μM (127 μg L-1) and 2 μM (254 μg L-1), respectively. In addition, nanoholes embedded in the thin films are tested for suitability of optical iodide sensing based on localized surface plasmon resonance.

  17. GaN growth using gallium hydride generated by hydrogenation of liquid gallium

    NASA Astrophysics Data System (ADS)

    Nagayoshi, H.; Nishimura, S.; Takeuchi, T.; Hirai, M.; Terashima, K.

    2005-02-01

    The novel growth method of GaN using hydrogen radicals has been investigated. This paper is the first report of gallium hydrogenation reaction and deposition of GaN using hydrogenated gallium. We found that gallium (Ga) could be volatilized at low temperature by hydrogenation reaction with hydrogen radicals. In this reaction, Ga assumed to be volatilized as GaH 3. The GaN deposition was attempted by using gas phase reaction of NH 3 and GaH 3 generated by the reaction between liquid Ga and hydrogen radicals. Hydrogen radicals were generated by hot tungsten filament, which works as a catalyst during hydrogen cracking, whose temperature was 1600 °C. Surface morphology, deposition rate, and film structure were investigated. It was confirmed that GaN could be deposited by this method. The source materials of this method are safe and of low cost compared to the conventional methods.

  18. Long-chain amine-templated synthesis of gallium sulfide and gallium selenide nanotubes.

    PubMed

    Seral-Ascaso, A; Metel, S; Pokle, A; Backes, C; Zhang, C J; Nerl, H C; Rode, K; Berner, N C; Downing, C; McEvoy, N; Muñoz, E; Harvey, A; Gholamvand, Z; Duesberg, G S; Coleman, J N; Nicolosi, V

    2016-06-01

    We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization. PMID:27221399

  19. High-dose gallium imaging in lymphoma

    SciTech Connect

    Anderson, K.C.; Leonard, R.C.; Canellos, G.P.; Skarin, A.T.; Kaplan, W.D.

    1983-08-01

    The role of gallium-67 imaging in the management of patients with lymphoma, traditionally assessed using low tracer doses and the rectilinear scanner, was assessed when using larger doses (7 to 10 mCi) and a triple-peak Anger camera. Gallium scan results in 51 patients with non-Hodgkin's lymphoma and 21 patients with Hodgkin's disease were compared with simultaneous radiologic, clinical, and histopathologic reports. Subsequent disease course was also evaluated in light of radionuclide findings. Sensitivity and specificity of the scans were 0.90 or greater for both non-Hodgkin's lymphoma and Hodgkin's disease, and overall accuracy by site was 96 percent. Although there are insufficient numbers of pretreatment scans to allow any conclusions, our data suggest that newer approaches to gallium scanning in treated patients are (1) highly specific in all lymphomas and most sensitive in high-grade non-Hodgkin's lymphoma and Hodgkin's disease; (2) valuable in assessing the mediastinum in both non-Hodgkin's lymphoma and Hodgkin's disease; and (3) helpful adjuncts to computed tomographic scanning and ultrasonography in assessing abdominal node disease.

  20. Carrier traps and transport in mercuric iodide

    NASA Astrophysics Data System (ADS)

    Schlesinger, T. E.; Bao, X. J.; James, R. B.; Cheng, A. Y.; Ortale, C.; van den Berg, L.

    1992-11-01

    Thermally stimulated current spectroscopy (TSC) was performed on a variety of mercuric iodide samples and detectors to determine the nature and origin of deep traps in this material. It is shown that the trap type and concentration is a function of the metal overlayer employed as a contact material. The energy barrier height as well as the type (electron or hole) of barrier at the metal/semiconductor interface has also been determined by internal photoemission measurements. When polarization effects are not present, as is the case in most Pd contacted samples, the barrier height can be accurately determined by this technique. A value of 1.05 eV was measured for a hole barrier at the Pd/Hgl 2 interface.

  1. P-n junctions formed in gallium antimonide

    NASA Technical Reports Server (NTRS)

    Clough, R.; Richman, D.; Tietjen, J.

    1970-01-01

    Vapor phase deposition process forms a heavily doped n-region on a melt-grown p-type gallium antimonide substrate. HCl transports gallium to the reaction zone, where it combines with antimony hydride and the dopant carrier, hydrogen telluride. Temperatures as low as 400 degrees C are required.

  2. Gallium scintigraphy in bone infarction. Correlation with bone imaging

    SciTech Connect

    Armas, R.R.; Goldsmith, S.J.

    1984-01-01

    The appearance of gallium-67 images in bone infarction was studied in nine patients with sickle cell disease and correlated with the bone scan findings. Gallium uptake in acute infarction was decreased or absent with a variable bone scan uptake, and normal in healing infarcts, which showed increased uptake on bone scan. The significance of these findings is discussed.

  3. Flavonoid Rutin Increases Thyroid Iodide Uptake in Rats

    PubMed Central

    Lima Gonçalves, Carlos Frederico; de Souza dos Santos, Maria Carolina; Ginabreda, Maria Gloria; Soares Fortunato, Rodrigo; Pires de Carvalho, Denise; Freitas Ferreira, Andrea Claudia

    2013-01-01

    Thyroid iodide uptake through the sodium-iodide symporter (NIS) is not only an essential step for thyroid hormones biosynthesis, but also fundamental for the diagnosis and treatment of different thyroid diseases. However, part of patients with thyroid cancer is refractory to radioiodine therapy, due to reduced ability to uptake iodide, which greatly reduces the chances of survival. Therefore, compounds able to increase thyroid iodide uptake are of great interest. It has been shown that some flavonoids are able to increase iodide uptake and NIS expression in vitro, however, data in vivo are lacking. Flavonoids are polyhydroxyphenolic compounds, found in vegetables present in human diet, and have been shown not only to modulate NIS, but also thyroperoxidase (TPO), the key enzyme in thyroid hormones biosynthesis, besides having antiproliferative effect in thyroid cancer cell lines. Therefore, we aimed to evaluate the effect of some flavonoids on thyroid iodide uptake in Wistar rats in vivo. Among the flavonoids tested, rutin was the only one able to increase thyroid iodide uptake, so we decided to evaluate the effect of this flavonoid on some aspects of thyroid hormones synthesis and metabolism. Rutin led to a slight reduction of serum T4 and T3 without changes in serum thyrotropin (TSH), and significantly increased hypothalamic, pituitary and brown adipose tissue type 2 deiodinase and decreased liver type 1 deiodinase activities. Moreover, rutin treatment increased thyroid iodide uptake probably due to the increment of NIS expression, which might be secondary to increased response to TSH, since TSH receptor expression was increased. Thus, rutin might be useful as an adjuvant in radioiodine therapy, since this flavonoid increased thyroid iodide uptake without greatly affecting thyroid function. PMID:24023911

  4. Laser photochemistry of gallium-containing compounds. [Trimethylgallium

    SciTech Connect

    Baughcum, S.L.; Oldenborg, R.C.

    1986-01-01

    The production of gas-phase gallium atoms in the photolysis of trimethylgallium has been investigated at 193 nm and at other laser wavelengths. Ground state (4 /sup 2/P/sup 0//sub 1/2) and metastable (4 /sup 2/P/sup 0//sub 3/2/) gallium atoms are detected using laser-induced fluorescence techniques. Our results indicate that gallium atoms continue to be produced at long times after the laser pulse. The observed dependence on photolysis laser fluence, trimethylgallium pressure, and buffer gas pressure are consistent with a mechanism in which highly excited gallium methyl radicals undergo unimolecular decomposition to produce gallium atoms. Since this process is observed to happen on the time scale of hundreds of microseconds, these results have important implications for studies of metal deposition and direct laser writing by laser photolysis of organometallic compounds. 31 refs., 5 figs.

  5. The Effect on Sodium/Iodide Symporter and Pendrin in Thyroid Colloid Retention Developed by Excess Iodide Intake.

    PubMed

    Chen, Xiao-Yi; Lin, Chu-Hui; Yang, Li-Hua; Li, Wang-Gen; Zhang, Jin-Wei; Zheng, Wen-Wei; Wang, Xiang; Qian, Jiang; Huang, Jia-Luan; Lei, Yi-Xiong

    2016-07-01

    It is well known that excess iodide can lead to thyroid colloid retention, a classic characteristic of iodide-induced goiter. However, the mechanism has not been fully unrevealed. Iodide plays an important role in thyroid function at multiple steps of thyroid colloid synthesis and transport among which sodium/iodide symporter (NIS) and pendrin are essential. In our study, we fed female BALB/c mice with different concentrations of high-iodine water including group A (control group, 0 μg/L), group B (1500 μg/L), group C (3000 μg/L), group D (6000 μg/L), and group E (12,000 μg/L). After 7 months of feeding, we found that excess iodide could lead to different degrees of thyroid colloid retention. Besides, NIS and pendrin expression were downregulated in the highest dose group. The thyroid iodide intake function detected by urine iodine assay and thyroidal (125)I experiments showed that the urine level of iodine increased, while the iodine intake rate decreased when the concentration of iodide used in feeding water increased (all p < 0.05 vs. control group). In addition, transmission electron microscopy (TEM) indicated a reduction in the number of intracellular mitochondria of thyroid cells. Based on these findings, we concluded that the occurrence of thyroid colloid retention exacerbated by excess iodide was associated with the suppression of NIS and pendrin expression, providing an additional insight of the potential mechanism of action of excess iodide on thyroid gland. PMID:26660892

  6. Gallium scintigraphic pattern in lung CMV infections

    SciTech Connect

    Ganz, W.I.; Cohen, D.; Mallin, W.

    1994-05-01

    Due to extensive use of prophylactic therapy for Pneumonitis Carinii Pneumonia (PCP), Cytomegalic Viral (CMV) infection may now be the most common lung infection in AIDS patients. This study was performed to determine Gallium-67 patterns in AIDS patients with CMV. Pathology reports were reviewed in AIDS patients who had a dose of 5 to 10 mCi of Gallium-67 citrate. Analysis of images were obtained 48-72 hours later of the entire body was performed. Gallium-67 scans in 14 AIDS patients with biopsy proven CMV, were evaluated for eye, colon, adrenal, lung and renal uptake. These were compared to 40 AIDS patients without CMV. These controls had infections including PCP, Mycobacterial infections, and lymphocytic interstitial pneumonitis. 100% of CMV patients had bowel uptake greater than or equal to liver. Similar bowel activity was seen in 50% of AIDS patients without CMV. 71% had intense eye uptake which was seen in only 10% of patients without CMV. 50% of CMV patients had renal uptake compared to 5% of non-CMV cases. Adrenal uptake was suggested in 50%, however, SPECT imaging is needed for confirmation. 85% had low grade lung uptake. The low grade lung had perihilar prominence. The remaining 15% had high grade lung uptake (greater than sternum) due to superimposed PCP infection. Colon uptake is very sensitive indicator for CMV infection. However, observing eye, renal, and or adrenal uptake improved the diagnostic specificity. SPECT imaging is needed to confirm renal or adrenal abnormalities due to intense bowel activity present in 100% of cases. When high grade lung uptake is seen superimposed PCP is suggested.

  7. Resonant cavity modes in gallium oxide microwires

    NASA Astrophysics Data System (ADS)

    López, Iñaki; Nogales, Emilio; Méndez, Bianchi; Piqueras, Javier

    2012-06-01

    Fabry Perot resonant modes in the optical range 660-770 nm have been detected from single and coupled Cr doped gallium oxide microwires at room temperature. The luminescence is due to chromium ions and dominated by the broad band involving the 4T2-4A2 transition, strongly coupled to phonons, which could be of interest in tunable lasers. The confinement of the emitted photons leads to resonant modes detected at both ends of the wires. The separation wavelength between maxima follows the Fabry-Perot dependence on the wire length and the group refractive index for the Ga2O3 microwires.

  8. Gallium-67 imaging in muscular sarcoidosis

    SciTech Connect

    Edan, G.; Bourguet, P.; Delaval, P.; Herry, J.Y.

    1984-07-01

    A case is presented of sarcoid myopathy in which radiogallium was seen to accumulate in the sites of muscle involvement. Uptake of the radiotracer disappeared following institution of corticosteroid therapy. The exceptional nature of this case contrasts with the high frequency of biopsy evidence of sarcoid muscle disease but is consistent with the rarity of clinical evidence of sarcoid granulomas in muscle. Gallium-67 imaging can be used to determine the extent of muscle involvement and, through evaluation of uptake intensity, the degree of disease activity before and after treatment.

  9. The Preparation and Structural Characterization of Three Structural Types of Gallium Compounds Derived from Gallium (II) Chloride

    NASA Technical Reports Server (NTRS)

    Gordon, Edward M.; Hepp, Aloysius F.; Duraj. Stan A.; Habash, Tuhfeh S.; Fanwick, Phillip E.; Schupp, John D.; Eckles, William E.; Long, Shawn

    1997-01-01

    The three compounds Ga2Cl4(4-mepy)2 (1),[GaCl2(4-mepy)4]GaCl4x1/2(4-mepy); (2) and GaCl2(4-mepy)2(S2CNEt2); (3) (4-mepy= 4-methylpyridine) have been prepared from reactions of gallium (II) chloride in 4-methylpyridine and characterized by single-crystal X-ray analysis. Small variations in the reaction conditions for gallium(II) chloride can produce crystals with substantially different structural properties. The three compounds described here encompass a neutral gallium(II) dimer in which each gallium is four-coordinate, an ionic compound containing both anionic and cationic gallium complex ions with different coordination numbers and a neutral six-coordinate heteroleptic

  10. Cesium iodide crystals fused to vacuum tube faceplates

    NASA Technical Reports Server (NTRS)

    Fleck, H. G.

    1964-01-01

    A cesium iodide crystal is fused to the lithium fluoride faceplate of a photon scintillator image tube. The conventional silver chloride solder is then used to attach the faceplate to the metal support.

  11. Laboratory measurements of parameters affecting wet deposition of methyl iodide

    SciTech Connect

    Maeck, W.J.; Honkus, R.J.; Keller, J.H.; Voilleque, P.G.

    1984-09-01

    The transfer of gaseous methyl iodide (CH/sub 3/I) to raindrops and the initial retention by vegetation of CH/sub 3/I in raindrops have been studied in a laboratory experimental program. The measured air-to-drop transfer parameters and initial retention factors both affect the wet deposition of methyl iodide onto vegetation. No large effects on the air-to-drop transfer due to methyl iodide concentration, temperature, acidity, or rain type were observed. Differences between laboratory measurements and theoretical values of the mass transfer coefficient were found. Pasture grass, lettuce, and alfalfa were used to study the initial retention of methyl iodide by vegetation. Only a small fraction of the incident CH/sub 3/I in raindrops was held by any of the three vegetation types.

  12. Preparation and evaluation of mercuric iodide for crystal growth

    NASA Astrophysics Data System (ADS)

    Skinner, N. L.; Ortale, C.; Schieber, M. M.; Vandenberg, L.

    Large quantities, on the order of several hundred, of consistent, high quality mercuric iodide for crystal growth have not been commercially available. The hydrocarbon, anion, and cation impurity levels varied considerably, occasionally preventing crystal growth. This occurred even though the starting materials was from the same vendor and was subjected to the same purification treatment. This paper will describe an aqueous precipitation process of mercuric iodide preparation in batches of 3 kg using Hg(NO sub 3) sub 2, or HgCl and KI. Since these salts are produced in much larger quantities than mercuric iodide, more consistent quality is available. The impurity content of these batched and single crystals are compared. Some of the single crystals grown using the in-house prepared mercuric iodide have yielded a large number of spectroscopy grade nuclear radiation detectors. The influence of the major impurities are discussed.

  13. Structural diversity in hybrid organic-inorganic lead iodide materials.

    PubMed

    Weber, Oliver J; Marshall, Kayleigh L; Dyson, Lewis M; Weller, Mark T

    2015-12-01

    The structural chemistry of hybrid organic-inorganic lead iodide materials has become of increasing significance for energy applications since the discovery and development of perovskite solar cells based on methylammonium lead iodide. Seven new hybrid lead iodide compounds have been synthesized and structurally characterized using single-crystal X-ray diffraction. The lead iodide units in materials templated with bipyridyl, 1,2-bis(4-pyridyl)ethane, 1,2-di(4-pyridyl)ethylene and imidazole adopt one-dimensional chain structures, while crystallization from solutions containing piperazinium cations generates a salt containing isolated [PbI6](4-) octahedral anions. Templating with 4-chlorobenzylammonium lead iodide adopts the well known two-dimensional layered perovskite structure with vertex shared sheets of composition [PbI4](2-) separated by double layers of organic cations. The relationships between the various structures determined, their compositions, stability and hydrogen bonding between the protonated amine and the iodide ions of the PbI6 octahedra are described. PMID:26634723

  14. Compatibility of ITER candidate structural materials with static gallium

    SciTech Connect

    Luebbers, P.R.; Michaud, W.F.; Chopra, O.K.

    1993-12-01

    Tests were conducted on the compatibility of gallium with candidate structural materials for the International Thermonuclear Experimental Reactor, e.g., Type 316 SS, Inconel 625, and Nb-5 Mo-1 Zr alloy, as well as Armco iron, Nickel 270, and pure chromium. Type 316 stainless steel is least resistant to corrosion in static gallium and Nb-5 Mo-1 Zr alloy is most resistant. At 400{degrees}C, corrosion rates are {approx}4.0, 0.5, and 0.03 mm/yr for type 316 SS, Inconel 625, and Nb-5 Mo- 1 Zr alloy, respectively. The pure metals react rapidly with gallium. In contrast to findings in earlier studies, pure iron shows greater corrosion than nickel. The corrosion rates at 400{degrees}C are {ge}88 and 18 mm/yr, respectively, for Armco iron and Nickel 270. The results indicate that at temperatures up to 400{degrees}C, corrosion occurs primarily by dissolution and is accompanied by formation of metal/gallium intermetallic compounds. The solubility data for pure metals and oxygen in gallium are reviewed. The physical, chemical, and radioactive properties of gallium are also presented. The supply and availability of gallium, as well as price predictions through the year 2020, are summarized.

  15. Dispersion of submicron Ni particles into liquid gallium

    NASA Astrophysics Data System (ADS)

    Cao, L. F.; Park, H. S.; Dodbiba, G.; Fujita, T.

    2008-06-01

    In this paper a liquid gallium with a low melting temperature and good thermal conductivity was used as a carrier to develop a new magnetorheological (MR) fluid that can be employed in energy convection devices. Submicron nickel particles, coated with silica, were chosen to be dispersed in the liquid gallium. The silica coating was used to improve the dispersion and prepare the composite particles with a density similar to that of the carrier liquid, i.e., liquid gallium. The supercooling phenomenon of liquid gallium was analyzed to better understand the dispersion of particles. The magnetization behaviours of both the silica-coated nickel particles and the synthesized MR fluids were measured. The results showed that the silica-coated nickel particles exhibited a shell-type structure, and the composite particle with a density same as the one of liquid gallium can be obtained by controlling the thickness of the coating layer to approximately 22 nm. The submicron nickel particles with the help of silica coating can be easily dispersed into liquid gallium. It was found that the supercooling of liquid gallium varied from 13.5 K to 19.3 K depending on the thickness of the coating layer of the dispersed particles. The saturation magnetization of the composite particles was reduced due to the occurrence of a non-magnetic silica layer. Figs 5, Refs 14.

  16. Assessment of gallium-67 scanning in pulmonary and extrapulmonary sarcoidosis

    SciTech Connect

    Israel, H.L.; Gushue, G.F.; Park, C.H.

    1986-01-01

    Gallium-67 scans have been widely employed in patients with sarcoidosis as a means of indicating alveolitis and the need for corticosteroid therapy. Observation of 32 patients followed 3 or more years after gallium scans showed no correlation between findings and later course: of 10 patients with pulmonary uptake, 7 recovered with minor residuals; of 18 patients with mediastinal of extrathoracic uptake, 10 had persistent or progressive disease; of 4 patients with negative initial scans, 2 had later progression. The value of gallium-67 scans as an aid to diagnosis was studied in 40 patients with extrapulmonary sarcoidosis. In 12 patients, abnormal lacrimal, nodal, or pulmonary uptake aided in selection of biopsy sites. Gallium-67 scans and serum ACE levels were compared in 97 patients as indices of clinical activity. Abnormal gallium-67 uptake was observed in 96.3% of the tests in active disease, and ACE level elevation occurred in 56.3%. In 24 patients with inactive or recovered disease, abnormal gallium-67 uptake occurred in 62.5% and ACE level elevation in 37.5%. Gallium-67 scans have a limited but valuable role in the diagnosis and management of sarcoidosis.

  17. Gallium increases bone calcium and crystallite perfection of hydroxyapatite.

    PubMed

    Bockman, R S; Boskey, A L; Blumenthal, N C; Alcock, N W; Warrell, R P

    1986-12-01

    Gallium, a group IIIa metal, is known to interact with hydroxyapatite as well as the cellular components of bone. In recent studies we have found gallium to be a potent inhibitor of bone resorption that is clinically effective in controlling cancer-related hypercalcemia as well as the accelerated bone resorption associated with bone metastases. To begin to elucidate gallium's mechanism of action we have examined its effects on bone mineral properties. After short-term (14 days) administration to rats, gallium nitrate produced measurable changes in bone mineral properties. Using atomic absorption spectroscopy, low levels of gallium were noted to preferentially accumulate in regions of active bone formation, 0.54 +/- .07 microgram/mg bone in the metaphyses versus 0.21 +/- .03 microgram/mg bone in the diaphyses, P less than 0.001. The bones of treated animals had increased calcium content measured spectrophotometrically. Rats injected with radiolabeled calcium during gallium treatment had greater 45-calcium content compared to control animals. By wide-angle X-ray analyses, larger and/or more perfect hydroxyapatite was observed. The combined effects of gallium on bone cell function and bone mineral may explain its clinical efficacy in blocking accelerated bone resorption. PMID:3026592

  18. Gallium induces the production of virulence factors in Pseudomonas aeruginosa.

    PubMed

    García-Contreras, Rodolfo; Pérez-Eretza, Berenice; Lira-Silva, Elizabeth; Jasso-Chávez, Ricardo; Coria-Jiménez, Rafael; Rangel-Vega, Adrián; Maeda, Toshinari; Wood, Thomas K

    2014-02-01

    The novel antimicrobial gallium is a nonredox iron III analogue with bacteriostatic and bactericidal properties, effective for the treatment of Pseudomonas aeruginosa in vitro and in vivo in mouse and rabbit infection models. It interferes with iron metabolism, transport, and presumably its homeostasis. As gallium exerts its antimicrobial effects by competing with iron, we hypothesized that it ultimately will lead cells to an iron deficiency status. As iron deficiency promotes the expression of virulence factors in vitro and promotes the pathogenicity of P. aeruginosa in animal models, it is anticipated that treatment with gallium will also promote the production of virulence factors. To test this hypothesis, the reference strain PA14 and two clinical isolates from patients with cystic fibrosis were exposed to gallium, and their production of pyocyanin, rhamnolipids, elastase, alkaline protease, alginate, pyoverdine, and biofilm was determined. Gallium treatment induced the production of all the virulence factors tested in the three strains except for pyoverdine. In addition, as the Ga-induced virulence factors are quorum sensing controlled, co-administration of Ga and the quorum quencher brominated furanone C-30 was assayed, and it was found that C-30 alleviated growth inhibition from gallium. Hence, adding both C-30 and gallium may be more effective in the treatment of P. aeruginosa infections. PMID:24151196

  19. Potassium Iodide ("KI"): Instructions to Make Potassium Iodide Solution for Use During a Nuclear Emergency (Liquid Form)

    MedlinePlus

    ... make Potassium Iodide Solution for Use During a Nuclear Emergency (Liquid Form) Share Tweet Linkedin Pin it ... Preparation and Dosing Instructions for Use During a Nuclear Emergency To Make KI Solution (Liquid Form), using ...

  20. Posttranscriptional regulation of sodium-iodide symporter mRNA expression in the rat thyroid gland by acute iodide administration.

    PubMed

    Serrano-Nascimento, Caroline; Calil-Silveira, Jamile; Nunes, Maria Tereza

    2010-04-01

    Iodide is an important regulator of thyroid activity. Its excess elicits the Wolff-Chaikoff effect, characterized by an acute suppression of thyroid hormone synthesis, which has been ascribed to serum TSH reduction or TGF-beta increase and production of iodolipids in the thyroid. These alterations take hours/days to occur, contrasting with the promptness of Wolff-Chaikoff effect. We investigated whether acute iodide administration could trigger events that precede those changes, such as reduction of sodium-iodide symporter (NIS) mRNA abundance and adenylation, and if perchlorate treatment could counteract them. Rats subjected or not to methylmercaptoimidazole treatment (0.03%) received NaI (2,000 microg/0.5 ml saline) or saline intraperitoneally and were killed 30 min up to 24 h later. Another set of animals was treated with iodide and perchlorate, in equimolar doses. NIS mRNA content was evaluated by Northern blotting and real-time PCR, and NIS mRNA poly(A) tail length by rapid amplification of cDNA ends-poly(A) test (RACE-PAT). We observed that NIS mRNA abundance and poly(A) tail length were significantly reduced in all periods of iodide treatment. Perchlorate reversed these effects, indicating that iodide was the agent that triggered the modifications observed. Since the poly(A) tail length of mRNAs is directly associated with their stability and translation efficiency, we can assume that the rapid decay of NIS mRNA abundance observed was due to a reduction of its stability, a condition in which its translation could be impaired. Our data show for the first time that iodide regulates NIS mRNA expression at posttranscriptional level, providing a new mechanism by which iodide exerts its autoregulatory effect on thyroid. PMID:20107044

  1. Engineering and design properties of thallium-doped sodium iodide and selected properties of sodium-doped cesium iodide

    NASA Technical Reports Server (NTRS)

    Forrest, K.; Haehner, C.; Heslin, T.; Magida, M.; Uber, J.; Freiman, S.; Hicho, G.; Polvani, R.

    1984-01-01

    Mechanical and thermal properties, not available in the literature but necessary to structural design, using thallium doped sodium iodide and sodium doped cesium iodide were determined to be coefficient of linear thermal expansion, thermal conductivity, thermal shock resistance, heat capacity, elastic constants, ultimate strengths, creep, hardness, susceptibility to subcritical crack growth, and ingot variation of strength. These properties were measured for single and polycrystalline materials at room temperature.

  2. Gallium scanning in lymphoid interstitial pneumonitis of children with AIDS

    SciTech Connect

    Schiff, R.G.; Kabat, L.; Kamani, N.

    1987-12-01

    Lymphoid interstitial pneumonitis (LIP) is a frequent pulmonary complication in the child with the acquired immune deficiency syndrome (AIDS) and human immunodeficiency virus (HIV) infection. We report the gallium scan findings in two children with AIDS and LIP. Gallium scintigraphy in both children demonstrated increased radionuclide concentration throughout the lungs, a pattern indistinguishable scintigraphically from that of Pneumocystis carinii pneumonia (PCP). This should alert nuclear medicine practitioners and referring physicians to another cause of diffusely increased gallium uptake in the lungs of patients with AIDS.

  3. Limiting pump intensity for sulfur-doped gallium selenide crystals

    NASA Astrophysics Data System (ADS)

    Guo, J.; Li, D.-J.; Xie, J.-J.; Zhang, L.-M.; Feng, Z.-S.; Andreev, Yu M.; Kokh, K. A.; Lanskii, G. V.; Potekaev, A. I.; Shaiduko, A. V.; Svetlichnyi, V. A.

    2014-05-01

    High optical quality undoped and sulfur-doped gallium selenide crystals were grown from melts by the modified vertical Bridgman method. Detailed study of the damage produced under femtosecond pulse exposure has shown that evaluation of the damage threshold by visual control is unfounded. Black matter spots produced on crystal surfaces do not noticeably decrease either its transparency or its frequency conversion efficiency as opposed to real damage identified as caked well-cohesive gallium structures. For the first time it was demonstrated that optimally sulfur-doped gallium selenide crystal possesses the highest resistivity to optical emission (about four times higher in comparison with undoped gallium selenide).

  4. Thin Films of Gallium Arsenide and Gallium Aluminum Arsenide by Metalorganic Chemical Vapor Deposition.

    NASA Astrophysics Data System (ADS)

    Look, Edward Gene Lun

    Low pressure metalorganic chemical vapor deposition (LPMOCVD) of thin films of gallium arsenide (GaAs) and gallium aluminum arsenide (GaAlAs) was performed in a horizontal cold wall chemical vapor deposition (CVD) reactor. The organometallic (group III) sources were triethylgallium (TEGa) and triethylaluminum (TEAl), used in conjunction with arsine (AsH_3) as the group V source. It was found that growth parameters such as growth temperature, pressure, source flow rates and temperatures have a profound effect on the film quality and composition. Depending on the particular combination of conditions, both the surface and overall morphologies may be affected. The films were nondestructively analyzed by Raman and photoreflectance spectroscopies, x-ray diffraction and rocking curve studies, scanning electron microscopy, energy dispersive spectroscopy, Hall measurements and film thicknesses were determined with a step profilometer.

  5. Fabrication of Aluminum Gallium Nitride/Gallium Nitride MESFET And It's Applications in Biosensing

    NASA Astrophysics Data System (ADS)

    Alur, Siddharth

    Gallium Nitride has been researched extensively for the past three decades for its application in Light Emitting Diodes (LED's), power devices and UV photodetectors. With the recent developments in crystal growth technology and the ability to control the doping there has been an increased interest in heterostructures formed between Gallium nitride and it's alloy Aluminium Gallium Nitride. These heterostructures due to the combined effect of spontaneous and piezoelectric effect can form a high density and a high mobility electron gas channel without any intentional doping. This high density electron gas makes these heterostructures ideal to be used as sensors. Gallium Nitride is also chemically very stable. Detection of biomolecules in a fast and reliable manner is very important in the areas of food safety and medical research. For biomolecular detection it is paramount to have a robust binding of the probes on the sensor surface. Therefore, in this dissertation, the fabrication and application of the AlGaN/GaN heterostructures as biological sensors for the detection of DNA and Organophosphate hydrolase enzyme is discussed. In order to use these AlGaN/GaN heterostructures as biological sensors capable of working in a liquid environment photodefinable polydimethyl-siloxane is used as an encapsulant. The immobilization conditions for a robust binding of thiolated DNA and the catalytic receptor enzyme organophosphate hydrolase on gold surfaces is developed with the help of X-ray photoelectron spectroscopy. DNA and OPH are detected by measuring the change in the drain current of the device as a function of time.

  6. Iodide iontophoresis as a treatment for dry eye syndrome

    PubMed Central

    Horwath-Winter, J; Schmut, O; Haller-Schober, E-M; Gruber, A; Rieger, G

    2005-01-01

    Background/aims: Among the causes related to the development or perpetuation and aggravation of dry eye disease, oxidative reactions may have a role in the pathogenesis of this disorder. Antioxidants, such as iodide, have shown a strong effect in preventing the oxidative damage to constituents of the anterior part of the eye. In this clinical trial the effectiveness of iodide iontophoresis and iodide application without current in moderate to severe dry eye patients was compared. Methods: 16 patients were treated with iodide iontophoresis and 12 patients with iodide application without current for 10 days. Subjective improvement, frequency of artificial tear application, tear function parameters (break up time, Schirmer test without local anaesthesia), vital staining (fluorescein and rose bengal staining) as well as impression cytology of the bulbar conjunctiva were evaluated before treatment, 1 week, 1 month, and 3 months after treatment. Results: A reduction in subjective symptoms, frequency of artificial tear substitute application, and an improvement in certain tear film and ocular surface factors could be observed in both groups. A stronger positive influence was seen after application of iodide with current (iontophoresis), as observed in a distinct improvement in break up time, fluorescein and rose bengal staining, and in a longer duration of this effect compared with the non-current group. No significant change in Schirmer test results and impression cytology were observed in both groups. Conclusions: Iodide iontophoresis has been demonstrated to be a safe and well tolerated method of improving subjective and objective dry eye factors in patients with ocular surface disease. PMID:15615744

  7. Reversible expansion of gallium-stabilized delta-plutonium

    SciTech Connect

    Wolfer, W; Oudot, B; Baclet, N

    2006-01-26

    The transient expansion of plutonium-gallium alloys observed both in the lattice parameter as well as in the dimension of a sample held at ambient temperature is explained by assuming incipient precipitation of Pu{sub 3}Ga. However, this ordered {zeta}{prime}-phase is also subject to radiation-induced disordering. As a result, the gallium-stabilized {delta}-phase, being metastable at ambient temperature, is both driven towards thermodynamic equilibrium by radiation-enhanced diffusion of gallium and at the same time pushed back to its metastable state by radiation-induced disordering. A steady state is reached in which only a modest fraction of the gallium present is tied up in the {zeta}{prime}-phase.

  8. Reversible expansion of gallium-stabilized (delta)-plutonium

    SciTech Connect

    Wolfer, W G; Oudot, B; Baclet, N

    2006-02-27

    It is shown that the transient expansion of plutonium-gallium alloys observed both in the lattice parameter as well as in the dimension of a sample held at ambient temperature can be explained by assuming incipient precipitation of Pu{sub 3}Ga. However, this ordered {zeta}-phase is also subject to radiation-induced disordering. As a result, the gallium-stabilized {delta}-phase, being metastable at ambient temperature, is driven towards thermodynamic equilibrium by radiation-enhanced diffusion of gallium and at the same time reverted back to its metastable state by radiation-induced disordering. A steady state is reached in which only a modest fraction of the gallium present is arranged in ordered {zeta}-phase regions.

  9. Preliminary Experimental Measurements for a Gallium Electromagnetic (GEM) Thruster

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Burton, Rodney L.; Glumac, Nick G.; Polzin, Kurt A.

    2007-01-01

    A low-energy gallium plasma source is used to perform a spatially and temporally broad spectroscopic survey in the 220-520 nm range. Neutral, singly, and doubly ionized gallium are present in a 20 J, 1.8 kA (peak) arc discharge operating with a central cathode. When the polarity of the inner electrode is reversed the discharge current and arc voltage waveforms remain similar. Utilizing a central anode configuration, multiple Ga lines are absent in the 270-340 nm range. In addition, neutral and singly ionized Fe spectral lines are present, indicating erosion of the outer electrode. With graphite present on the insulator to facilitate breakdown, line emission from the gallium species is further reduced and while emissions from singly and doubly ionized carbon atoms and molecular carbon (C2) radicals are observed. These data indicate that a significant fraction of energy is shifted from the gallium and deposited into the various carbon species.

  10. Usefulness of gallium-67 citrate scanning in testicular seminoma

    SciTech Connect

    Willan, B.D.; Penney, H.; Castor, W.R.; McGowan, D.G.

    1987-10-01

    An analysis of 77 consecutive patients with a histologic diagnosis of seminoma testis, assessed and treated at the Cross Cancer Institute between 1977 and 1982, is presented. Ga-67 citrate was first used in the assessment of patients with malignant testicular tumors in 1973. Following three years of study that supported the observation of the gallium-avid nature of seminoma, gallium scans became routine in the initial staging assessment and were used also when recurrence was suspected. From 1977 through 1982, 72 patients with biopsy-proven seminoma testis were assessed initially for extent of disease by Ga-67 scanning. Comparison with intravenous pyelography and bipedal lymphography was possible for accuracy of tumor assessment. The scan sensitivity was 83%, and the specificity was 95%. During the same period, gallium was studied in nonseminomatous testicular tumors but the results were disappointing and its use was discontinued. The gallium-avid nature of seminoma testis may be useful in determining the extent of disease.

  11. Computer simulation of radiation damage in gallium arsenide

    NASA Technical Reports Server (NTRS)

    Stith, John J.; Davenport, James C.; Copeland, Randolph L.

    1989-01-01

    A version of the binary-collision simulation code MARLOWE was used to study the spatial characteristics of radiation damage in proton and electron irradiated gallium arsenide. Comparisons made with the experimental results proved to be encouraging.

  12. Gallium arsenide solar array subsystem study

    NASA Technical Reports Server (NTRS)

    Miller, F. Q.

    1982-01-01

    The effects on life cycle costs of a number of technology areas are examined for a gallium arsenide space solar array. Four specific configurations were addressed: (1) a 250 KWe LEO mission - planer array; (2) a 250 KWe LEO mission - with concentration; (3) a 50 KWe GEO mission planer array; (4) a 50 KWe GEO mission - with concentration. For each configuration, a baseline system conceptual design was developed and the life cycle costs estimated in detail. The baseline system requirements and design technologies were then varied and their relationships to life cycle costs quantified. For example, the thermal characteristics of the baseline design are determined by the array materials and masses. The thermal characteristics in turn determine configuration, performance, and hence life cycle costs.

  13. Cavity optomechanics in gallium phosphide microdisks

    NASA Astrophysics Data System (ADS)

    Mitchell, Matthew; Hryciw, Aaron C.; Barclay, Paul E.

    2014-04-01

    We demonstrate gallium phosphide (GaP) microdisk optical cavities with intrinsic quality factors >2.8 × 105 and mode volumes <10(λ/n)3, and study their nonlinear and optomechanical properties. For optical intensities up to 8.0 × 104 intracavity photons, we observe optical loss in the microcavity to decrease with increasing intensity, indicating that saturable absorption sites are present in the GaP material, and that two-photon absorption is not significant. We observe optomechanical coupling between optical modes of the microdisk around 1.5 μm and several mechanical resonances, and measure an optical spring effect consistent with a theoretically predicted optomechanical coupling rate g0/2π˜30 kHz for the fundamental mechanical radial breathing mode at 488 MHz.

  14. The interaction of gold with gallium arsenide

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1988-01-01

    Gold and gold-based alloys, commonly used as solar-cell contact materials, are known to react readily with gallium arsenide. Experiments designed to identify the mechanisms involved in these GaAs-metal interactions have yielded several interesting results. It is shown that the reaction of GaAs with gold takes place via a dissociative diffusion process. It is shown further that the GaAs-metal reaction rate is controlled to a very great extent by the condition of the free surface of the contact metal, an interesting example of which is the previously unexplained increase in the reaction rate that has been observed for samples annealed in a vacuum environment as compared to those annealed in a gaseous ambient. A number of other hard-to-explain observations, such as the low-temperature formation of voids in the gold lattice and crystallite growth on the gold surface, are also explained by invoking this mechanism.

  15. Cavity optomechanics in gallium phosphide microdisks

    SciTech Connect

    Mitchell, Matthew; Barclay, Paul E.; Hryciw, Aaron C.

    2014-04-07

    We demonstrate gallium phosphide (GaP) microdisk optical cavities with intrinsic quality factors >2.8 × 10{sup 5} and mode volumes <10(λ/n){sup 3}, and study their nonlinear and optomechanical properties. For optical intensities up to 8.0 × 10{sup 4} intracavity photons, we observe optical loss in the microcavity to decrease with increasing intensity, indicating that saturable absorption sites are present in the GaP material, and that two-photon absorption is not significant. We observe optomechanical coupling between optical modes of the microdisk around 1.5 μm and several mechanical resonances, and measure an optical spring effect consistent with a theoretically predicted optomechanical coupling rate g{sub 0}/2π∼30 kHz for the fundamental mechanical radial breathing mode at 488 MHz.

  16. Gallium Arsenide solar cell radiation damage experiment

    NASA Technical Reports Server (NTRS)

    Maurer, R. H.; Kinnison, J. D.; Herbert, G. A.; Meulenberg, A.

    1991-01-01

    Gallium arsenide (GaAs) solar cells for space applications from three different manufactures were irradiated with 10 MeV protons or 1 MeV electrons. The electrical performance of the cells was measured at several fluence levels and compared. Silicon cells were included for reference and comparison. All the GaAs cell types performed similarly throughout the testing and showed a 36 to 56 percent power areal density advantage over the silicon cells. Thinner (8-mil versus 12-mil) GaAs cells provide a significant weight reduction. The use of germanium (Ge) substrates to improve mechanical integrity can be implemented with little impact on end of life performance in a radiation environment.

  17. Contact formation in gallium arsenide solar cells

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1988-01-01

    Gold and gold-based alloys, commonly used as solar cell contact materials, are known to react readily with gallium arsenide. Experiments were performed to identify the mechanisms involved in these GaAs-metal interactions. It is shown that the reaction of GaAs with gold takes place via a dissociative diffusion process. It is shown further that the GaAs-metal reaction rate is controlled to a very great extent by the condition of the free surface of the contact metal, an interesting example of which is the previously unexplained increase in the reaction rate that has been observed for samples annealed in a vacuum environment as compared to those annealed in a gaseous ambient. A number of other hard-to-explain observations, such as the low-temperature formation of voids in the gold lattice and crystallite growth on the gold surface, are explained by invoking this mechanism.

  18. Producing gallium arsenide crystals in space

    NASA Technical Reports Server (NTRS)

    Randolph, R. L.

    1984-01-01

    The production of high quality crystals in space is a promising near-term application of microgravity processing. Gallium arsenide is the selected material for initial commercial production because of its inherent superior electronic properties, wide range of market applications, and broad base of on-going device development effort. Plausible product prices can absorb the high cost of space transportation for the initial flights provided by the Space Transportation System. The next step for bulk crystal growth, beyond the STS, is planned to come later with the use of free flyers or a space station, where real benefits are foreseen. The use of these vehicles, together with refinement and increasing automation of space-based crystal growth factories, will bring down costs and will support growing demands for high quality GaAs and other specialty electronic and electro-optical crystals grown in space.

  19. Radiation damage of gallium arsenide production cells

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Garlick, G. F. J.

    1987-01-01

    High-efficiency gallium arsenide cells, made by the liquid epitaxy method (LPE), have been irradiated with 1-MeV electrons up to fluences of 10 to the 16th e/sq cm. Measurements have been made of cell spectral response and dark and light-excited current-voltage characteristics and analyzed using computer-based models to determine underlying parameters such as damage coefficients. It is possible to use spectral response to sort out damage effects in the different cell component layers. Damage coefficients are similar to other reported in the literature for the emitter and buffer (base). However, there is also a damage effect in the window layer and possibly at the window emitter interface similar to that found for proton-irradiated liquid-phase epitaxy-grown cells. Depletion layer recombination is found to be less than theoretically expected at high fluence.

  20. Direct Band Gap Wurtzite Gallium Phosphide Nanowires

    PubMed Central

    2013-01-01

    The main challenge for light-emitting diodes is to increase the efficiency in the green part of the spectrum. Gallium phosphide (GaP) with the normal cubic crystal structure has an indirect band gap, which severely limits the green emission efficiency. Band structure calculations have predicted a direct band gap for wurtzite GaP. Here, we report the fabrication of GaP nanowires with pure hexagonal crystal structure and demonstrate the direct nature of the band gap. We observe strong photoluminescence at a wavelength of 594 nm with short lifetime, typical for a direct band gap. Furthermore, by incorporation of aluminum or arsenic in the GaP nanowires, the emitted wavelength is tuned across an important range of the visible light spectrum (555–690 nm). This approach of crystal structure engineering enables new pathways to tailor materials properties enhancing the functionality. PMID:23464761

  1. The Soviet-American Gallium Experiment (SAGE)

    SciTech Connect

    Garvey, G.T.

    1989-01-01

    It is a great pleasure for me to have been asked by Louis Rosen to tell you about the Soviet-American Gallium Experiment (SAGE). This undertaking is a multi-institutional collaboration among scientists from the Institute for Nuclear Research, Moscow (INR), Los Alamos National Laboratory (LANL), and several US universities. Its purpose is to measure the number of low-energy electron neutrinos emitted from the Sun that arrive at this planet. As such, it is an extremely important experiment, touching on fundamental physics issues as well as solar dynamics. In contrast to the strategic overviews, plans, and hopes for international collaboration presented earlier today, SAGE is an ongoing working effort with high hopes of producing the first measurement of the Sun's low-energy neutrino flux. This paper reviews this experiment. 3 refs., 3 figs.

  2. Complexometric determination of gallium with calcein blue as indicator

    USGS Publications Warehouse

    Elsheimer, H.N.

    1967-01-01

    A metalfluorechromic indicator, Calcein Blue, has been used for the back-titration of milligram amounts of EDTA in presence of gallium complexes. The indicator was used in conjunction with an ultraviolet titration assembly equipped with a cadmium sulphide detector cell and a microammeter for enhanced end-point detection. The result is a convenient and rapid method with an accuracy approaching 0.1 % and a relative standard deviation of about 0.4% for 10 mg of gallium. ?? 1967.

  3. Generator for ionic gallium-68 based on column chromatography

    DOEpatents

    Neirinckx, Rudi D.; Davis, Michael A.

    1981-01-01

    A physiologically acceptable solution of gallium-68 fluorides, having an activity of 0.1 to 50 millicuries per milliliter of solution is provided. The solution is obtained from a generator comprising germanium-68 hexafluoride bound to a column of an anion exchange resin which forms gallium-68 in situ by eluting the column with an acid solution to form a solution containing .sup.68 Ga-fluorides. The solution then is neutralized prior to administration.

  4. The effect of copper and gallium compounds on ribonucleotide reductase

    SciTech Connect

    Narasimhan, J.

    1992-01-01

    The mode of action of copper complexes (CuL and CuKTS) and gallium compounds (gallium nitrate and citrate) in cytotoxicity was studied. The effects of these agents on the enzyme ribonucleotide reductase was investigated by monitoring the tyrosyl free radical present in the active site of the enzyme through electron spin resonance (ESR) spectroscopy. Ribonucleotide reductase, a key enzyme in cellular proliferation, consists of two subunits. M1, a dimer of molecular weight 170,000 contains the substrate and effector binding sites. M2, a dimer of molecular weight 88,000, contains non-heme iron and tyrosyl free radical essential for the activity of the enzyme. In studies using copper complexes, the cellular oxidative chemistry was examined by ESR studies on adduct formation with membranes, and oxidation of thiols. Membrane thiols were oxidized through the reduction of the ESR signal of the thiol adduct and the analysis of sulfhydryl content. Using the radiolabel [sup 59]Fe, the inhibitory action of copper thiosemicarbazones on cellular iron uptake was shown. The inhibitory action of CuL on ribonucleotide reductase was shown by the quenching of the tyrosyl free radical on the M2 subunit. The hypothesis that gallium directly interacts with the M2 subunit of the enzyme and displaces the iron from it was proven. The tyrosyl free radical signal from cell lysates was inhibited by the direct addition of gallium compounds. Gallium content in the cells was measured by a fluorimetric method, to ensure the presence of sufficient amounts of gallium to compete with the iron in the M2 subunit. The enzyme activity, measured by the conversion of [sup 14]C-CDP to the labeled deoxy CDP, was inhibited by the addition of gallium nitrate in a cell free assay system. The immunoprecipitation studies of the [sup 59]Fe labeled M2 protein using the monoclonal antibody directed against this subunit suggested that gallium releases iron from the M2 subunit.

  5. Gallium lung scintigraphy in amiodarone pulmonary toxicity

    SciTech Connect

    Zhu, Y.Y.; Botvinick, E.; Dae, M.; Golden, J.; Hattner, R.; Scheinman, M.

    1988-06-01

    We sought to assess the role of gallium-67 lung scintigrams in the evaluation of amiodarone pulmonary toxicity. Images and laboratory studies were evaluated in 54 patients who had chest radiographs and scintigraphic studies during amiodarone treatment of more than one month's duration among 561 patients receiving the medication for refractory arrhythmias. There were 22 patients with pulmonary symptoms and clinical evidence of amiodarone pulmonary toxicity (group 1); 19 patients had other causes for pulmonary symptoms (group 2); and 21 patients were without symptoms or other clinical evidence of pulmonary toxicity (group 3). There was no difference among groups in treatment duration or total amiodarone dose. Symptomatic presentation could not differentiate between group 1 and group 2 patients. However, radiographic findings of isolated pulmonary congestion or a normal radiograph in the presence of symptoms made amiodarone toxicity unlikely, while the appearance of new, dense radiographic infiltrates--often in a nodular distribution--were more frequent among group 1 patients (p less than 0.01). During symptomatic periods, 18 of 22 group 1 patients had abnormal gallium lung uptake, while four revealed more subtle serial changes but there was only one abnormal scintigram among symptomatic group 2 patients. Nonspecific radiographic abnormalities in patients with pulmonary symptoms on amiodarone therapy were rarely attributed to toxicity in the presence of a normal scintigram. One group 3 patient developed scintigraphic abnormalities early during amiodarone treatment, suggesting toxicity in the presence of a normal chest x-ray examination. Comparison of radiographic and scintigraphic studies performed during symptoms with those performed prior to symptom development best indicated the diagnosis, while comparison with later images assessed the efficacy of treatment.

  6. Method of fabricating germanium and gallium arsenide devices

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzban (Inventor)

    1990-01-01

    A method of semiconductor diode fabrication is disclosed which relies on the epitaxial growth of a precisely doped thickness layer of gallium arsenide or germanium on a semi-insulating or intrinsic substrate, respectively, of gallium arsenide or germanium by either molecular beam epitaxy (MBE) or by metal-organic chemical vapor deposition (MOCVD). The method involves: depositing a layer of doped or undoped silicon dioxide on a germanium or gallium arsenide wafer or substrate, selectively removing the silicon dioxide layer to define one or more surface regions for a device to be fabricated thereon, growing a matched epitaxial layer of doped germanium or gallium arsenide of an appropriate thickness using MBE or MOCVD techniques on both the silicon dioxide layer and the defined one or more regions; and etching the silicon dioxide and the epitaxial material on top of the silicon dioxide to leave a matched epitaxial layer of germanium or gallium arsenide on the germanium or gallium arsenide substrate, respectively, and upon which a field effect device can thereafter be formed.

  7. Inhalation developmental toxicology studies: Gallium arsenide in mice and rats

    SciTech Connect

    Mast, T.J.; Greenspan, B.J.; Dill, J.A.; Stoney, K.H.; Evanoff, J.J.; Rommereim, R.L.

    1990-12-01

    Gallium arsenide is a crystalline compound used extensively in the semiconductor industry. Workers preparing solar cells and gallium arsenide ingots and wafers are potentially at risk from the inhalation of gallium arsenide dust. The potential for gallium arsenide to cause developmental toxicity was assessed in Sprague- Dawley rats and CD-1 (Swiss) mice exposed to 0, 10, 37, or 75 mg/m{sup 3} gallium arsenide, 6 h/day, 7 days/week. Each of the four treatment groups consisted of 10 virgin females (for comparison), and {approx}30 positively mated rats or {approx}24 positively mated mice. Mice were exposed on 4--17 days of gestation (dg), and rats on 4--19 dg. The day of plug or sperm detection was designated as 0 dg. Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice (rats, 20 dg; mice, 18 dg). Implants were enumerated and their status recorded. Live fetuses were sexed and examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. Gallium and arsenic concentrations were determined in the maternal blood and uterine contents of the rats (3/group) at 7, 14, and 20 dg. 37 refs., 11 figs., 30 tabs.

  8. THERMALLY-INDUCED GALLIUM REMOVAL FROM PLUTONIUM DIOXIDE FOR MOX FUEL PRODUCTION

    SciTech Connect

    D. KOLMAN; M. GRIEGO; ET AL

    1999-09-01

    A process for the separation of gallium oxide from plutonium dioxide using a ''dry'' process has been developed. The process uses a reducing gas to generate a volatile gallium specie which is collected downstream. The effects of temperature, duration, flow rate, and sample size have been examined. Results indicate that temperature plays a strong role in the efficacy of gallium removal. Other variables have a much smaller effect on gallium removal efficiency. Gallium removal to approximately 1 ppm (atomic) has been observed. Gallium removal to sub-ppm levels appears feasible based on results-to-date.

  9. Gallium Adhesion: Phase Change of Gallium Enables Highly Reversible and Switchable Adhesion (Adv. Mater. 25/2016).

    PubMed

    Ye, Zhou; Lum, Guo Zhan; Song, Sukho; Rich, Steven; Sitti, Metin

    2016-07-01

    M. Sitti and co-workers find that gallium exhibits highly reversible and switchable adhesive characteristics during the liquid-solid phase change. As described on page 5088, this reversible adhesive allows miniature capsule-like robots, which are able to easily pick-and-place objects with irregular geometries and rough surfaces, and thus assemble such objects into a complex structure. The contact interface between gallium and the rough object is illustrated in the magnified image. PMID:27372722

  10. Bismuth tri-iodide radiation detector development

    NASA Astrophysics Data System (ADS)

    Gokhale, Sasmit S.

    Bismuth tri-iodide is an attractive material for room temperature radiation detection. BiI3 demonstrates a number of properties that are apt for semiconductor radiation detection, especially gamma ray spectroscopy. The high atomic number (ZBi = 83 and ZI = 53) and the relatively high density (5.78 g/cm3) cause the material to have good photon stopping power, while the large band-gap (1.67 eV ) allows it to function as a room temperature radiation detector without any cooling mechanism. This work presents the fabrication and characterization of BiI3 radiation detectors. For the purpose of this research detectors were fabricated by cutting BiI3 crystal boules, followed by mechanical and chemical surface treatments. Detectors with various electrode geometries enabling single polarity charge sensing were fabricated. The electrical characteristics and the radiation response of the detectors were measured. The radiation response measurement was performed at room temperature using a 241Am alpha particle source and a 241Am sealed gamma-ray source. The spectral resolutions of the detectors varied from 2.09% - 6.1% for 59.5 keV gamma-rays and between 26% - 40% for 5.48 MeV alpha particles. Charge carrier properties such as the electron and hole mobility and lifetime were also estimated. The electron mobility for an ultrapure BiI 3 detector was estimated to be approximately 433 cm 2/Vs while that for antimony doped BiI3 was estimated to be around 956 cm2/Vs and the mobility-lifetime product for electrons was estimated to be around 5.44 x 10-4 cm 2/V. Detector simulation was performed using the Monte Carlo simulation code MCNP5. A Matlab script which incorporates charge carrier trapping and statistical variation was written to generate a gamma-ray spectrum from the simulated energy deposition spectra. Measured and simulated spectra were compared to extract the charge carrier mobility-lifetime products, which for electrons and holes were estimated to be 5 x 10-3 cm2/V and 1.3 x

  11. Thyroid effects of iodine and iodide in potable water

    NASA Technical Reports Server (NTRS)

    Bull, Richard J.; Thrall, Karla D.; Sherer, Todd T.

    1991-01-01

    Experiments are reviewed which examine the comparative toxicological effects of iodide (I) and iodine (I2) when used to disinfect drinking water. References are made to a subchronic study in rats, a comparison of the distribution of radiolabeled I and I2, and a demonstration of thyroxine formation in the gastrointestinal tract. The results of the study of the rats are examined in detail; the findings show that I and I2 have opposite effects on the concentrations of thyroid hormones in blood. Iodide slightly decreases circulating thyroxine, while I2 significantly increases the thyroxine concentrations, decreases triiodothyronine levels, and does not change the weight of the thyroid gland. The related effects of I2 ingestion are set forth in detail and are shown to be unique to I2 contamination. Iodine can counteract the effects of iodide and should therefore be used as a disinfectant in drinking water.

  12. Phase 1 Methyl Iodide Deep-Bed Adsorption Tests

    SciTech Connect

    Nick Soelberg; Tony Watson

    2014-08-01

    Nuclear fission results in the production of fission products (FPs) and activation products including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent [Jubin 2012b]. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the first phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during Fiscal Year (FY) 2013 and early FY-2014. Testing has been performed to address questions posed in the test plan, and followed the testing outline in the test plan. Tests established detection limits, developed procedures for sample analysis with minimal analytical interferences, and confirmed earlier results that show that the methyl iodide reacts when in contact with the AgZ sorbent, and not significantly in the gas flow upstream of the sorbent. The reaction(s) enable separation of the iodine from the organic moiety, so that the iodine can chemisorb onto the sorbent. The organic moiety can form other compounds, some of which are organic compounds that are detected and can be tentatively identified using GC-FID and GCMS. Test results also show that other gas constituents (NOx and/or H2O) can affect the methyl iodide reactions. With NOx and H2O present in the gas stream, the majority of uncaptured iodine exiting iodine-laden sorbent beds is in the form of I2 or HI, species that

  13. Standard free energy of formation of iron iodide

    NASA Technical Reports Server (NTRS)

    Khandkar, A.; Tare, V. B.; Wagner, J. B., Jr.

    1983-01-01

    An experiment is reported where silver iodide is used to determine the standard free energy of formation of iron iodide. By using silver iodide as a solid electrolyte, a galvanic cell, Ag/AgI/Fe-FeI2, is formulated. The standard free energy of formation of AgI is known, and hence it is possible to estimate the standard free energy of formation of FeI2 by measuring the open-circuit emf of the above cell as a function of temperature. The free standard energy of formation of FeI2 determined by this method is -38784 + 24.165T cal/mol. It is estimated that the maximum error associated with this method is plus or minus 2500 cal/mol.

  14. Modified purification of mercuric iodide for crystal growth

    NASA Astrophysics Data System (ADS)

    Skinner, N. L.; Ortale, C.; Schieber, M. M.; Vandenberg, L.

    The standard procedure used in our laboratory to purify commercially available mercuric iodide consists of a sequence of steps: (1) repeated sublimation under continous evacuation, followed by (2) melting and recrystallization, and (3) a sublimation process in a closed tube. This paper describes a modification of the standard purification sequence by adding recrystallization of the mercuric iodide in hydrochloric acid. Leaching cation impurities out of mercuric iodide powder with hydrochloric acid has been practiced before by Zaletin, (V.M. Zaletin, I.H. Nozhiua, I.N. Fomin, V.T. Shystov, and N.V. Protasov, Atomic Energy 48, 169 (1980)). Our objective for the hydrochloric acid treatment was to remove nitrates and hydrocarbons which were interfering with the vapor transport during crystal growth. Results of the procedure are presented in terms of total carbon and selected ion content of the treated and untreated material.

  15. Introduction of extrinsic defects into mercuric iodide during processing

    NASA Astrophysics Data System (ADS)

    Hung, C.-Y.; Bao, X. J.; Schlesinger, T. E.; James, R. B.; Cheng, A. Y.; Ortale, C.; van den Berg, L.

    1993-05-01

    Low-temperature photoluminescence spectroscopy (PL) measurements were performed on mercuric iodide (HgI2) crystals which were intentionally doped with copper or silver during KI etching. PL spectra obtained after these doping experiments show specific Cu and Ag features similar to those previously observed after deposition of Cu or Ag contacts on mercuric iodide crystals. The in-diffusion of Cu or Ag into bulk HgI2 has also been confirmed a few days after doping. This diffusion introduces new recombination centers in the material. This work suggests that the processing steps used to fabricate mercuric iodide nuclear detectors can lead to the introduction of new defects which are detrimental to detector performance.

  16. The BaBar cesium iodide electromagnetic calorimeter

    SciTech Connect

    Wuest, C.R.

    1994-12-01

    The BABAR Cesium Iodide Electromagnetic Calorimeter is currently in the technical design stage. The calorimeter consists of approximately 10,000 individual thallium-doped cesium iodide crystals arranged in a near-hermetic barrel and endcap structure. Taking previous cesium iodide calorimeters as a benchmark, we hope to build a system with roughly two times better energy resolution. This will be achieved by a combination of high quality crystal growing, precision mechanical processing of crystals and support structure, highly efficient light collection and low noise readout electronics. The calorimeter described here represents the current state of the design and we are undertaking an active period of optimization before this design is finalized. We discuss here the physics motivation, the current design and options for optimization.

  17. A novel peculiar mutation in the sodium/iodide symporter gene in spanish siblings with iodide transport defect.

    PubMed

    Kosugi, Shinji; Okamoto, Hiroomi; Tamada, Aiko; Sanchez-Franco, F

    2002-08-01

    Previously, we reported two Spanish siblings with congenital hypothyroidism due to total failure of iodide transport. These were the only cases reported to date who received long-term iodide treatment over 10 yr. We examined the sodium/iodide symporter (NIS) gene of these patients. A large deletion was observed by long and accurate PCR using primers derived from introns 2 and 7 of the NIS gene. PCR-direct sequencing revealed a deletion of 6192 bases spanning from exon 3 to intron 7 and an inverted insertion of a 431-base fragment spanning from exon 5 to intron 5 of the NIS gene. The patients were homozygous for the mutation, and their mother was heterozygous. In the mutant, deletion of exons 3-7 was suggested by analysis using programs to predict exon/intron organization, resulting in an in-frame 182-amino acid deletion from Met(142) in the fourth transmembrane domain to Gln(323) in the fourth exoplasmic loop. The mutant showed no iodide uptake activity when transfected into COS-7 cells, confirming that the mutation was the direct cause of the iodide transport defect in these patients. Further, the mutant NIS protein was synthesized, but not properly expressed, on the cell surface, but was mostly accumulated in the cytoplasm, suggesting impaired targeting to the plasma membrane. PMID:12161518

  18. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartsough, Neal; Iwanczyk, Jan

    2009-01-01

    A film-growth process was developed for polycrystalline mercuric iodide that creates cost-effective, large-area detectors for high-energy charged-particle detection. A material, called a barrier film, is introduced onto the substrate before the normal mercuric iodide film growth process. The barrier film improves the quality of the normal film grown and enhances the adhesion between the film and the substrate. The films grown using this improved technique were found to have adequate signal-to-noise properties so that individual high-energy charged -particle interactions could be distinguished from noise, and thus, could be used to provide an anticoincidence veto function as desired.

  19. Gallium Potentiates the Antibacterial Effect of Gentamicin against Francisella tularensis

    PubMed Central

    Lindgren, Helena

    2015-01-01

    The reasons why aminoglycosides are bactericidal have not been not fully elucidated, and evidence indicates that the cidal effects are at least partly dependent on iron. We demonstrate that availability of iron markedly affects the susceptibility of the facultative intracellular bacterium Francisella tularensis strain SCHU S4 to the aminoglycoside gentamicin. Specifically, the intracellular depots of iron were inversely correlated to gentamicin susceptibility, whereas the extracellular iron concentrations were directly correlated to the susceptibility. Further proof of the intimate link between iron availability and antibiotic susceptibility were the findings that a ΔfslA mutant, which is defective for siderophore-dependent uptake of ferric iron, showed enhanced gentamicin susceptibility and that a ΔfeoB mutant, which is defective for uptake of ferrous iron, displayed complete growth arrest in the presence of gentamicin. Based on the aforementioned findings, it was hypothesized that gallium could potentiate the effect of gentamicin, since gallium is sequestered by iron uptake systems. The ferrozine assay demonstrated that the presence of gallium inhibited >70% of the iron uptake. Addition of gentamicin and/or gallium to infected bone marrow-derived macrophages showed that both 100 μM gallium and 10 μg/ml of gentamicin inhibited intracellular growth of SCHU S4 and that the combined treatment acted synergistically. Moreover, treatment of F. tularensis-infected mice with gentamicin and gallium showed an additive effect. Collectively, the data demonstrate that SCHU S4 is dependent on iron to minimize the effects of gentamicin and that gallium, by inhibiting the iron uptake, potentiates the bactericidal effect of gentamicin in vitro and in vivo. PMID:26503658

  20. Application of ultrasound in solvent extraction of nickel and gallium

    SciTech Connect

    Pesic, B.

    1996-07-01

    The effects of ultrasound on the rate of solvent extraction of nickel with Lix 65N and Lix 70, and gallium with Kelex 100 were investigated. These solvent extraction systems are noted by their sluggish nature. Low frequency (20 kHz) ultrasound increased the rates of extraction of nickel by factors of four to seven. The ultrasound had no effect on the final chemical equilibrium. Gallium extraction rates were enhanced with the use of ultrasound by as much as a factor of 15. Again, the ultrasound had no effect on extraction equilibrium. For both nickel and gallium, the enhanced rates were attributed to increased interfacial surface area associated with ultrasonically induced cavitation and microdroplet formation. The stability of the microdroplets permitted intermittent application of ultrasound with corresponding decreases in ultrasonic energy requirements. The lowest energy consumption was observed with short (0.25 to 5 s) bursts of high power (41 to 61 W) ultrasonic inputs. The study also provided insight into the factors that affect the complex extraction of gallium from sodium aluminate solutions. The rate controlling step was found to be the dehydration of the gallate ion, Ga(OH)4, and the first complex formation between gallium and Kelex 100. Sodium was found to enhance the extraction rate up to a point, beyond which increased concentration was detrimental. Increasing aluminum concentration was found to slow extraction rates. Modifiers and diluents were shown to markedly affect extraction rates even without ultrasound. Ketone modifiers, particularly 2-undecanone, when used with Kermac 470B or Escaid 200 diluents enhanced extraction rates of gallium to the point that the use of ultrasound provided no additional benefits. The positive effects of ketone modifiers for the solvent extraction of gallium had not been previously reported.

  1. Gallium based low-interaction anions

    DOEpatents

    King, Wayne A.; Kubas, Gregory J.

    2000-01-01

    The present invention provides: a composition of the formula M.sup.+x (Ga(Y).sub.4.sup.-).sub.x where M is a metal selected from the group consisting of lithium, sodium, potassium, cesium, calcium, strontium, thallium, and silver, x is an integer selected from the group consisting of 1 or 2, each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide; a composition of the formula (R).sub.x Q.sup.+ Ga(Y).sub.4.sup.- where Q is selected from the group consisting of carbon, nitrogen, sulfur, phosphorus and oxygen, each R is a ligand selected from the group consisting of alkyl, aryl, and hydrogen, x is an integer selected from the group consisting of 3 and 4 depending upon Q, and each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide; an ionic polymerization catalyst composition including an active cationic portion and a gallium based weakly coordinating anion; and bridged anion species of the formula M.sup.+x.sub.y [X(Ga(Y.sub.3).sub.z ].sup.-y.sub.x where M is a metal selected from the group consisting of lithium, sodium, potassium, magnesium, cesium, calcium, strontium, thallium, and silver, x is an integer selected from the group consisting of 1 or 2, X is a bridging group between two gallium atoms, y is an integer selected from the group consisting 1 and 2, z is an integer of at least 2, each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide.

  2. γ-Selective Allylation of (E)-Alkenylzinc Iodides Prepared by Reductive Coupling of Arylacetylenes with Alkyl Iodides.

    PubMed

    Zhurkin, Fedor E; Hu, Xile

    2016-07-01

    The first examples of Cu-catalyzed γ-selective allylic alkenylation using organozinc reagents are reported. (E)-Alkenylzinc iodides were prepared by Fe-catalyzed reductive coupling of terminal arylalkynes with alkyl iodides. In the presence of a copper catalyst, these reagents reacted with allylic bromides derived from Morita-Baylis-Hillman alcohols to give 1,4-dienes in high yields. The reactions are highly γ-selective (generally γ/α > 49:1) and tolerate a wide range of functional groups such as ester, cyano, keto, and nitro. PMID:27285459

  3. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to...

  4. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to...

  5. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to...

  6. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to...

  7. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to...

  8. Development of a mercuric iodide solid state spectrometer for X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Vallerga, J.

    1983-01-01

    Mercuric iodide detectors, experimental development for astronomical use, X ray observations of the 1980 Cygnus X-1 High State, astronomical had X ray detectors in current use, detector development, balloon flight of large area (1500 sq cm) Phoswich detectors, had X ray telescope design, shielded mercuric iodide background measurement, Monte Carlo analysis, measurements with a shielded mercuric iodide detector are discussed.

  9. Gallium a unique anti-resorptive agent in bone: Preclinical studies on its mechanisms of action

    SciTech Connect

    Bockman, R.; Adelman, R.; Donnelly, R.; Brody, L.; Warrell, R. ); Jones, K.W. )

    1990-01-01

    The discovery of gallium as a new and unique agent for the treatment of metabolic bone disorders was in part fortuitous. Gallium is an exciting new therapeutic agent for the treatment of pathologic states characterized by accelerated bone resorption. Compared to other therapeutic metal compounds containing platinum or germanium, gallium affects its antiresorptive action without any evidence of a cytotoxic effect on bone cells. Gallium is unique amongst all therapeutically available antiresorptive agents in that it favors bone formation. 18 refs., 1 fig.

  10. Physical property measurements of doped cesium iodide crystals

    NASA Technical Reports Server (NTRS)

    Synder, R. S.; Clotfelter, W. N.

    1974-01-01

    Mechanical and thermal property values are reported for crystalline cesium iodide doped with sodium and thallium. Young's modulus, bulk modulus, shear modulus, and Poisson's ratio were obtained from ultrasonic measurements. Young's modulus and the samples' elastic and plastic behavior were also measured under tension and compression. Thermal expansion and thermal conductivity were the temperature dependent measurements that were made.

  11. Degradation of Methyl Iodide in Soil: Effects of Environmental Factors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl iodide (MeI) is a promising alternative to the phased-out fumigant methyl bromide, and its environmental fate following soil fumigation is of great concern. Experiments were conducted to investigate the effect of various environmental factors on the degradation rate of MeI in soil. The chem...

  12. DEGRADATION OF METHYL IODIDE IN SOIL: EFFECTS OF ENVIRONMENTAL FACTORS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl iodide (MeI) is a promising alternative to the phased-out fumigant methyl bromide; however, there are concerns about its environmental fate following soil fumigation. Laboratory experiments were conducted to investigate the effect of various environmental factors on the degradation rate of ...

  13. Preliminary Spectroscopic Measurements for a Gallium Electromagnetic (GEM) Thruster

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Burton, Rodney L.; Glumac, Nick G.; Polzin, Kurt A.

    2007-01-01

    As a propellant option for electromagnetic thrusters, liquid ,gallium appears to have several advantages relative to other propellants. The merits of using gallium in an electromagnetic thruster (EMT) are discussed and estimates of discharge current levels and mass flow rates yielding efficient operation are given. The gallium atomic weight of 70 predicts high efficiency in the 1500-2000 s specific impulse range, making it ideal for higher-thrust, near-Earth missions. A spatially and temporally broad spectroscopic survey in the 220-520 nm range is used to determine which species are present in the plasma and estimate electron temperature. The spectra show that neutral, singly, and doubly ionized gallium species are present in a 20 J, 1.8 kA (peak) are discharge. With graphite present on the insulator to facilitate breakdown, singly and doubly ionized carbon atoms are also present, and emission is observed from molecular carbon (CZ) radicals. A determination of the electron temperature was attempted using relative emission line data, and while the spatially and temporally averaged, spectra don't fit well to single temperatures, the data and presence of doubly ionized gallium are consistent with distributions in the 1-3 eV range.

  14. Silicon Nitride For Gallium Arsenide Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Nagle, J.; Morgan, David V.

    1987-04-01

    Gallium Arsenide, unlike silicon does not have a natural oxide with the dielectric and interface qualities of SiO2. As a consequence alternative techniques have to be developed for device and IC processing applications. Plasma deposited silicon nitride films are currently being investigated in many laboratories. This paper will deal with the characterization of such films deposited under a range of gas and plasma deposition conditions. The techniques of Infra Red Spectroscopy and Rutherford backscattering have been used for characterization of both "as deposited layers" and layers which have been annealed up to temperatures of 800 °C, after deposition. The use of RBS for silicon nitride on GaAs is limited since the relatively small nitride spectrum is superimposed on much larger GaAs spectrum. The problem can be removed by placing carbon test substrates alongside the GaAs wafers. This separates the silicon and nitrogen spectra from the substrate enabling enhanced accuracy to be obtained. In this paper the range of results obtained will be discussed in the context of the deposition condition in order to identify the optimum conditions for obtaining a stoichiometric compound and a high quality interface.

  15. Gallium-68 PSMA uptake in adrenal adenoma.

    PubMed

    Law, W Phillip; Fiumara, Frank; Fong, William; Miles, Kenneth A

    2016-08-01

    Gallium-68 (Ga-68) labelled prostate-specific membrane antigen (PSMA) imaging by positron emission tomography (PET) has emerged as a promising tool for staging of prostate cancer and restaging of disease in recurrence or biochemical failure after definitive treatment of prostate cancer. Ga-68 PSMA PET produces high target-to-background images of prostate cancer and its metastases which are reflective of the significant overexpression of PSMA in these cells and greatly facilitates tumour detection. However, relatively little is known about the PSMA expression of benign neoplasms and non-prostate epithelial malignancies. This is a case report of PSMA uptake in an adrenal adenoma incidentally discovered on PET performed for restaging of biochemically suspected prostate cancer recurrence. With the increasing use of PSMA PET in the management of prostate cancer - and the not infrequent occurrence of adrenal adenomas - the appearance of low- to moderate-grade PSMA uptake in adrenal adenomas should be one with which reporting clinicians are familiar. PMID:26394552

  16. Investigation on gallium ions impacting monolayer graphene

    SciTech Connect

    Wu, Xin; Zhao, Haiyan Yan, Dong; Pei, Jiayun

    2015-06-15

    In this paper, the physical phenomena of gallium (Ga{sup +}) ion impacting monolayer graphene in the nanosculpting process are investigated experimentally, and the mechanisms are explained by using Monte Carlo (MC) and molecular dynamics (MD) simulations. Firstly, the MC method is employed to clarify the phenomena happened to the monolayer graphene target under Ga{sup +} ion irradiation. It is found that substrate has strong influence on the damage mode of graphene. The mean sputtering yield of graphene under 30 keV Ga{sup +} ion irradiation is 1.77 and the least ion dose to completely remove carbon atoms in graphene is 21.6 ion/nm{sup 2}. Afterwards, the focused ion beam over 21.6 ion/nm{sup 2} is used for the irradiation on a monolayer graphene supported by SiO2 experimentally, resulting in the nanostructures, i.e., nanodot and nanowire array on the graphene. The performances of the nanostructures are characterized by atomic force microscopy and Raman spectrum. A plasma plume shielding model is put forward to explain the nanosculpting results of graphene under different irradiation parameters. In addition, two damage mechanisms are found existing in the fabrication process of the nanostructures by using empirical MD simulations. The results can help us open the possibilities for better control of nanocarbon devices.

  17. Gallium-based avalanche photodiode optical crosstalk

    NASA Astrophysics Data System (ADS)

    Blazej, Josef; Prochazka, Ivan; Hamal, Karel; Sopko, Bruno; Chren, Dominik

    2006-11-01

    Solid-state single photon detectors based on avalanche photodiode are getting more attention in various areas of applied physics: optical sensors, quantum key distribution, optical ranging and Lidar, time-resolved spectroscopy, X-ray laser diagnostics, and turbid media imaging. Avalanche photodiodes specifically designed for single photon counting semiconductor avalanche structures have been developed on the basis of various materials: Si, Ge, GaP, GaAsP, and InGaP/InGaAs at the Czech Technical University in Prague during the last 20 years. They have been tailored for numerous applications. Trends in demand are focused on detection array construction recently. Even extremely small arrays containing a few cells are of great importance for users. Electrical crosstalk between individual gating and quenching circuits and optical crosstalk between individual detecting cells are serious limitation for array design and performance. Optical crosstalk is caused by the parasitic light emission of the avalanche which accompanies the photon detection process. We have studied in detail the optical emission of the avalanche photon counting structure in the silicon- and gallium-based photodiodes. The timing properties and spectral distribution of the emitted light have been measured for different operating conditions to quantify optical crosstalk. We conclude that optical crosstalk is an inherent property of avalanche photodiode operated in Geiger mode. The only way to minimize optical crosstalk in avalanche photodiode array is to build active quenching circuit with minimum response time.

  18. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart...

  19. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart...

  20. Pure silver ohmic contacts to N- and P- type gallium arsenide materials

    DOEpatents

    Hogan, Stephen J.

    1986-01-01

    Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components an n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffused layer and the substrate layer, wherein the n-type layer comprises a substantially low doping carrier concentration.

  1. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart...

  2. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart...

  3. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart...

  4. Process for forming pure silver ohmic contacts to N- and P-type gallium arsenide materials

    DOEpatents

    Hogan, S.J.

    1983-03-13

    Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components a n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffuse layer and the substrate layer wherein the n-type layer comprises a substantially low doping carrier concentration.

  5. Short channel effects on gallium nitride/gallium oxide nanowire transistors

    NASA Astrophysics Data System (ADS)

    Yu, J.-W.; Yeh, P.-C.; Wang, S.-L.; Wu, Y.-R.; Mao, M.-H.; Lin, H.-H.; Peng, L.-H.

    2012-10-01

    Gallium nitride/gallium oxide GaN/Ga2O3 nanowire metal-oxide-semiconductor field-effect-transistors are shown to operate at an average electron velocity of ˜1.24 × 107 cm/s and threshold-voltage roll-off of -0.2 V as the transistor gate length Lg reduced from 500 to 50 nm. Improvement of saturation current to 120 μA and unity current/power-gain cut-off frequency to 150/180 GHz is observed on Lg = 50 nm devices. Our study reveals the advantages of using (i) polarization-induced positive charges and high-k dielectric at the {11¯01¯}GaN/{002}Ga2O3 interface to provide carrier confinement and to shield the drain field, and (ii) polarization-induced negative charges at the (0001)GaN/sapphire interface to form a back-barrier to suppress leakage and improve the short-channel transport properties.

  6. Simulation studies on the evolution of gallium nitride on a liquid gallium surface under plasma bombardment.

    PubMed

    Vasquez, M R; Flauta, R E; Wada, M

    2008-02-01

    Monte Carlo simulations were conducted to study the formation of gallium-nitride (GaN) layer on liquid gallium (Ga) sputtering target immersed in nitrogen (N(2)) plasma. In the simulation model, N ions were assumed to possess energy equal to the bias voltage applied to the sputtering target with respect to the plasma. The results showed the surface morphology of GaN changed from a relatively smooth GaN on Ga surface at 50 eV N ion energy to a rough surface with GaN dendrites on liquid Ga at 500 eV ion energy. Further increase in N ion energy up to 1 keV resulted in smaller density of GaN dendrites on surface. Increasing surface coverage of Ga by GaN substantially reduced the sputtering yield of Ga from the target. These simulation results were correlated with previously reported experimental observations on liquid Ga surface immersed in the nitrogen plasma of a plasma-sputter-type ion source. PMID:18315225

  7. Measuring Nanoscale Heat Transfer for Gold-(Gallium Oxide)-Gallium Nitride Interfaces as a Function

    NASA Astrophysics Data System (ADS)

    Szwejkowski, Chester; Sun, Kai; Constantin, Costel; Giri, Ashutosh; Saltonstall, Christopher; Hopkins, Patrick; NanoSynCh Team; Exsite Team

    2014-03-01

    Gallium nitride (GaN) is considered the most important semiconductor after the discovery of Silicon. Understanding the properties of GaN is imperative in determining the utility and applicability of this class of materials to devices. We present results of time domain thermoreflectance (TDTR) measurements as a function of surface root mean square (RMS) roughness. We used commercially available 5mm x 5mm, single-side polished GaN (3-7 μm)/Sapphire (430 μm) substrates that have a Wurtzite crystal structure and are slightly n-type doped. The GaN substrates were annealed in the open atmosphere for 10 minutes (900-1000 °C). This high-temperature treatment produced RMS values from 1-60 nm and growth of gallium oxide (GaO) as measured with an atomic force microscopy and transmission electron microscopy respectively. A gold film (80nm) was deposited on the GaN surface using electron beam physical vapor deposition which was verified using ellipsometry and profilometry. The TDTR measurements suggest that the thermal conductivity decays exponentially with RMS roughness and that there is a minimum value for thermal boundary conductance at a roughness of 15nm.

  8. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    SciTech Connect

    Soelberg, Nicholas Ray; Watson, Tony Leroy

    2015-09-30

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO3 and increased NO2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reduced silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO2, very low H2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  9. Direct vapor/solid synthesis of mercuric iodide using compounds of mercury and iodine

    DOEpatents

    Skinner, Nathan L.

    1990-01-01

    A process is disclosed for producing high purity mercuric iodide by passing a gaseous source of a mercuric compound through a particulate bed of a low vapor pressure iodide compound which is maintained at an elevated temperature which is the lower of either: (a) just below the melting or volatilization temperature of the iodide compound (which ever is lower); or (b) just below the volatilization point of the other reaction product formed during the reaction; to cause the mercuric compound to react with the iodide compound to form mercuric iodide which then passes as a vapor out of the bed into a cooler condensation region.

  10. Synthesis of (/sup 75/Se)trimethylselenonium iodide from (/sup 75/Se)selenocystine

    SciTech Connect

    Foster, S.J.; Ganther, H.E.

    1984-02-15

    The synthesis of (/sup 75/Se)trimethylselenonium iodide from (/sup 75/)selenocystine is described. The starting compound is reduced to (/sup 75/Se)selenocysteine with borohydride and reacted with methyl iodide to form (/sup 75/Se)Se-methyl-selenocysteine, then treated with methyl iodide in formic acid solution to form Se-dimethyl-selenocysteine selenonium iodide. Over a period of days, the selenonium intermediate undergoes spontaneous elimination to form alanine and dimethyl selenide, which reacts with methyl iodide to give the trimethylselenonium product in over 90% yield. 15 references.