Science.gov

Sample records for gallon water storage

  1. Upgrade of 400,000 gallon water storage tank at Argonne National Laboratory-West to UCRL-15910 high hazard seismic requirements

    SciTech Connect

    Griffin, M.J.; Harris, B.G.

    1993-10-01

    As part of the Integral Fast Reactor (IFR) Project at Argonne National Laboratory West (ANL-W), it was necessary to strengthen an existing 400,000 gallon flat-bottom water storage tank to meet UCRL-15910 (currently formulated as DOE Standard DOE-STD-1020-92, Draft) high hazard natural phenomena requirements. The tank was constructed in 1988 and preliminary calculations indicated that the existing base anchorage was insufficient to prevent buckling and potential failure during a high hazard seismic event. General design criteria, including ground motion input, load combinations, etc., were based upon the requirements of UCRL-15910 for high hazard facilities. The analysis and capacity assessment criteria were based on the Generic Implementation Procedure developed by the Seismic Qualification Utilities Group (SQUG). Upgrade modifications, consisting of increasing the size of the Generic Implementation Procedure developed by the Seismic Qualification Utilities Group (SQUG). Upgrade modifications, consisting of increasing the size of the foundation and installing additional anchor bolts and chairs, were necessary to increase the capacity of the tank anchorage/support system. The construction of the upgrades took place in 1992 while the tank remained in service to allow continued operation of the EBR-II reactor. The major phases of construction included the installation and testing of 144 1/14in. {times} 15in., and 366 1in. {times} 16in. epoxied concrete anchors, placement of 220 cubic yards of concrete heavily reinforced, and installation of 24 1-1/2in. {times} 60in. tank anchor bolts and chairs. A follow-up inspection of the tank interior by a diver was conducted to determine if the interior tank coating had been damaged by the chair welding. The project was completed on schedule and within budget.

  2. ONE MILLION GALLON WATER TANK, PUMP HEADER PIPE (AT LEFT), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ONE MILLION GALLON WATER TANK, PUMP HEADER PIPE (AT LEFT), HEADER BYPASS PIPE (AT RIGHT), AND PUMPHOUSE FOUNDATIONS. Looking northeast - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Flame Deflector Water System, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  3. CSER 96-027: storage of cemented plutonium residue containers in 55 gallon drums

    SciTech Connect

    Watson, W.T.

    1997-01-20

    A nuclear criticality safety analysis has been performed for the storage of residual plutonium cementation containers, produced at the Plutonium Finishing Plant, in 55 gallon drums. This CSER increases the limit of total plutonium stored in each 55 gallon drum from 100 to 200 grams.

  4. Fire testing of 55 gallon metal waste drums for dry waste storage

    SciTech Connect

    Hasegawa, H.K.; Staggs, K.J.; Doughty, S.M.

    1993-07-01

    The primary goal of this test program was to conduct a series of fire test to provide information on the fire performance of 55 gallon metal waste drums used for solid waste disposal at Department Of Energy (DOE) facilities. This program was limited in focus to three different types of 55 gallon drums, one radiant heat source, and one specific fire size. The initial test was a single empty 55 gallon drum exposed to a standard ASTME-119 time temperature curve for over 10 minutes. The full scale tests involved metal drums exposed to a 6{prime} diameter flammable liquid fire for a prescribed period of time. The drums contained simulated dry waste materials of primarily class A combustibles. The test results showed that a conventional 55 gallon drum with a 1in. bung would blow its lid consistently.

  5. CSER 00-006 Storage of Plutonium Residue Containers in 55 Gallon Drums at the PFP

    SciTech Connect

    DOBBIN, K.D.

    2000-05-24

    This criticality safety evaluation report (CSER) provides the required limit set and controls for safe transit and storage of these drums in the 234-5Z Building at the PFP. A mass limit of 200 g of plutonium or fissile equivalent per drum is acceptable

  6. Cold water aquifer storage. [air conditioning

    NASA Technical Reports Server (NTRS)

    Reddell, D. L.; Davison, R. R.; Harris, W. B.

    1980-01-01

    A working prototype system is described in which water is pumped from an aquifer at 70 F in the winter time, chilled to a temperature of less than 50 F, injected into a ground-water aquifer, stored for a period of several months, pumped back to the surface in the summer time. A total of 8.1 million gallons of chilled water at an average temperature of 48 F were injected. This was followed by a storage period of 100 days. The recovery cycle was completed a year later with a total of 8.1 million gallons recovered. Approximately 20 percent of the chill energy was recovered.

  7. ASME Section VIII Recertification of a 33,000 Gallon Vacuum-jacketed LH2 Storage Vessel for Densified Hydrogen Testing at NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Swanger, Adam M.; Notardonato, William U.; Jumper, Kevin M.

    2015-01-01

    The Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) has been developed at NASA Kennedy Space Center in Florida. GODU-LH2 has three main objectives: zero-loss storage and transfer, liquefaction, and densification of liquid hydrogen. A cryogenic refrigerator has been integrated into an existing, previously certified, 33,000 gallon vacuum-jacketed storage vessel built by Minnesota Valley Engineering in 1991 for the Titan program. The dewar has an inner diameter of 9.5 and a length of 71.5; original design temperature and pressure ranges are -423 F to 100 F and 0 to 95 psig respectively. During densification operations the liquid temperature will be decreased below the normal boiling point by the refrigerator, and consequently the pressure inside the inner vessel will be sub-atmospheric. These new operational conditions rendered the original certification invalid, so an effort was undertaken to recertify the tank to the new pressure and temperature requirements (-12.7 to 95 psig and -433 F to 100 F respectively) per ASME Boiler and Pressure Vessel Code, Section VIII, Division 1. This paper will discuss the unique design, analysis and implementation issues encountered during the vessel recertification process.

  8. Motel solar-hot-water system with nonpressurized storage--Jacksonville, Florida

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Modular roof-mounted copper-plated arrays collect solar energy; heated water drains from them into 1,000 gallon nonpressurized storage tank which supplies energy to existing pressurized motel hot water lines. System provides 65 percent of hot water demand. Report described systems parts and operation, maintenance, and performance and provides warranty information.

  9. Water Conservation and Water Storage

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2014-12-01

    Water storage can be a viable part of the solution to water conservation. This means that we should include reservoirs. Regardless, one should evaluate all aspects of water conservation principles. Recent drought in California indicates that there is an urgent need to re-visit the techniques used to maintain the water supply-chain mechanism in the entire state. We all recognize the fact that fish and wildlife depend on the streams, rivers and wetlands for survival. It is a well-known fact that there is an immediate need to provide solid protection to all these resources. Laws and regulations should help meet the needs of natural systems. Farmers may be forced to drilling wells deeper than ever. But, they will be eventually depleting groundwater reserves. Needless to say that birds, fish and wildlife cannot access these groundwater table. California is talking a lot about conservation. Unfortunately, the conservation efforts have not established a strong visible hold. The Environmental Protection Agency has a plan called E2PLAN (Narayanan, 2012). It is EPA's plan for achieving energy and environmental performance, leadership, accountability, and carbon neutrality. In June 2011, the EPA published a comprehensive, multi-year planning document called Strategic Sustainability Performance Plan. The author has previously reported these in detail at the 2012 AGU fall meeting. References: Ziegler, Jay (15 JUNE 2014). The Conversation: Water conservation efforts aren't taking hold, but there are encouraging signs. THE SACRAMENTO BEE. California. Narayanan, Mysore. (2012). The Importance of Water Conservation in the 21st Century. 72nd AGU International Conference. Eos Transactions: American Geophysical Union, Vol. 92, No. 56, Fall Meeting Supplement, 2012. H31I - 1255.http://www.sacbee.com/2014/06/15/6479862/jay-ziegler-water-conservation.html#storylink=cpy

  10. Groundwater and Terrestrial Water Storage

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2012-01-01

    Groundwater is a vital resource and also a dynamic component of the water cycle. Unconfined aquifer storage is less responsive to short term weather conditions than the near surface terrestrial water storage (TWS) components (soil moisture, surface water, and snow). However, save for the permanently frozen regions, it typically exhibits a larger range of variability over multi-annual periods than the other components. Groundwater is poorly monitored at the global scale, but terrestrial water storage (TWS) change data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are a reasonable proxy for unconfined groundwater at climatic scales.

  11. Artificial recharge of ground water by well injection for storage and recovery, Cape May County, New Jersey, 1958-92

    USGS Publications Warehouse

    Lacombe, P.J.

    1996-01-01

    Artificial recharge is used for storage and recovery of ground water in the estuarine sand and Cohansey aquifers in southern Cape May County and in the Kirkwood-Cohansey aquifer system in northern Cape May County, New Jersey. Wildwood Water Utility has injected ground water for public-supply storage since 1967 and in 1992 had four injection wells. The storage and recovery program began as a way to ensure an adequate supply of water for the summer tourist season. From 1967 through 1992 about 3.8 billion gallons was injected and about 3.3 billion gallons (about 85 percent of the injected water) was recovered. An electric company in Cape May County has used ground water for industrial-supply storage since 1965 and in 1992 had one injection well. The purpose of the storage and recovery program is to prevent saltwater encroachment and to ensure sufficient supply during times of peak demand. From 1967 through 1988 the company injected 100.0 million gallons and withdrew 60.6 million gallons, or about 61 percent of the injected water.

  12. 1. GENERAL VIEW OF WATER STORAGE/TREATMENT AREA; OPEN AREA IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF WATER STORAGE/TREATMENT AREA; OPEN AREA IN FOREGROUND IS TOP OF ONE-MILLION-GALLON UNDERGROUND RESERVOIR (BUILDING 190); TWO-STORY BUILDING AT CENTER OF PHOTO (BUILDING 190 ADDITION) CONTAINS WATER SOFTENING EQUIPMENT; EAST SIDE OF BUILDING 27 VISIBLE AT RIGHT; BUILDINGS 181 AND 149 AT LEFT BACKGROUND; NORTHWEST CORNER OF BUILDING 166 AT EXTREME LEFT - Rath Packing Company, Reservoir-Water Softener Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  13. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect

    Bryant, J.W.; Nenni, J.A.; Yoder, T.S.

    2003-04-22

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, ''Radioactive Waste Management Manual.'' This equipment is known collectively as the Tank Farm Facility. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  14. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect

    Bryant, Jeffrey W.

    2010-08-12

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, “Radioactive Waste Management Manual.” This equipment is known collectively as the Tank Farm Facility. This report is an update, and replaces the previous report by the same title issued April 2003. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  15. Groundwater and Terrestrial Water Storage

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2014-01-01

    Terrestrial water storage (TWS) comprises groundwater, soil moisture, surface water, snow,and ice. Groundwater typically varies more slowly than the other TWS components because itis not in direct contact with the atmosphere, but often it has a larger range of variability onmultiannual timescales (Rodell and Famiglietti, 2001; Alley et al., 2002). In situ groundwaterdata are only archived and made available by a few countries. However, monthly TWSvariations observed by the Gravity Recovery and Climate Experiment (GRACE; Tapley et al.,2004) satellite mission, which launched in 2002, are a reasonable proxy for unconfinedgroundwater at climatic scales.

  16. 124. ARAI Reservoir (ARA727), later named water storage tank. Shows ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    124. ARA-I Reservoir (ARA-727), later named water storage tank. Shows plan of 100,000-gallon tank, elevation, image of "danger radiation hazard" sign, and other details. Norman Engineering Company 961-area/SF-727-S-1. Date: January 1959. Ineel index code no. 068-0727-60-613-102779. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  17. Fatal accident circumstances and epidemiology (FACE) report: 27 year-old dies inside of a six million gallon storage tank, June 7, 1985

    SciTech Connect

    Not Available

    1985-06-14

    On June 7, 1985, a father and son inspection team, under contract to a petroleum company, were inspecting the seals between the internal panels of a floating roof and the sides of 150,000 barrel storage tank containing regular gasoline (8006619). The victim entered the tank through the access hatch at the top of the tank and proceeded down the access ladder to the floating panel inside the tank. The victim then walked around the tank on top of the floating panel inspecting the rubber seals between the walls of the tank and the floating panel. The father remained on the outside, on top of the tank. He called the rescue squad when his son was 7 minutes overdue. Two hours after the father reported the victim was overdue, the body was located on the opposite side of the tank, approximately 150 feet from the ladder. An additional two hours were needed to retrieve the victim. The victim was wearing an open circuit, self contained breathing apparatus in the demand mode, but the face mask was found on top of his head, not over his face. The only system of communication between the two men was tapping on the wall of the tank with a small rock. A tape recorder was being used by the victim to record the condition of the tank walls. The victims voice on the tape suggested that the respirator face piece was not in place. Recommendations included developing written procedures for working in confined spaces, constant communication should be maintained between the worker and the standby person, and the use of pressure demand self contained breathing apparatus in dangerous environments.

  18. Groundwater and Terrestrial Water Storage

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2011-01-01

    Most people think of groundwater as a resource, but it is also a useful indicator of climate variability and human impacts on the environment. Groundwater storage varies slowly relative to other non-frozen components of the water cycle, encapsulating long period variations and trends in surface meteorology. On seasonal to interannual timescales, groundwater is as dynamic as soil moisture, and it has been shown that groundwater storage changes have contributed to sea level variations. Groundwater monitoring well measurements are too sporadic and poorly assembled outside of the United States and a few other nations to permit direct global assessment of groundwater variability. However, observational estimates of terrestrial water storage (TWS) variations from the GRACE satellites largely represent groundwater storage variations on an interannual basis, save for high latitude/altitude (dominated by snow and ice) and wet tropical (surface water) regions. A figure maps changes in mean annual TWS from 2009 to 2010, based on GRACE, reflecting hydroclimatic conditions in 2010. Severe droughts impacted Russia and the Amazon, and drier than normal weather also affected the Indochinese peninsula, parts of central and southern Africa, and western Australia. Groundwater depletion continued in northern India, while heavy rains in California helped to replenish aquifers that have been depleted by drought and withdrawals for irrigation, though they are still below normal levels. Droughts in northern Argentina and western China similarly abated. Wet weather raised aquifer levels broadly across western Europe. Rains in eastern Australia caused flooding to the north and helped to mitigate a decade long drought in the south. Significant reductions in TWS seen in the coast of Alaska and the Patagonian Andes represent ongoing glacier melt, not groundwater depletion. Figures plot time series of zonal mean and global GRACE derived non-seasonal TWS anomalies (deviation from the mean of

  19. Water Catchment and Storage Monitoring

    NASA Astrophysics Data System (ADS)

    Bruenig, Michael; Dunbabin, Matt; Moore, Darren

    2010-05-01

    Sensors and Sensor Networks technologies provide the means for comprehensive understanding of natural processes in the environment by radically increasing the availability of empirical data about the natural world. This step change is achieved through a dramatic reduction in the cost of data acquisition and many orders of magnitude increase in the spatial and temporal granularity of measurements. Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) is undertaking a strategic research program developing wireless sensor network technology for environmental monitoring. As part of this research initiative, we are engaging with government agencies to densely monitor water catchments and storages, thereby enhancing understanding of the environmental processes that affect water quality. In the Gold Coast hinterland in Queensland, Australia, we are building sensor networks to monitor restoration of rainforest within the catchment, and to monitor methane flux release and water quality in the water storages. This poster will present our ongoing work in this region of eastern Australia. The Springbrook plateau in the Gold Coast hinterland lies within a World Heritage listed area, has uniquely high rainfall, hosts a wide range of environmental gradients, and forms part of the catchment for Gold Coast's water storages. Parts of the plateau are being restored from agricultural grassland to native rainforest vegetation. Since April 2008, we have had a 10-node, multi-hop sensor network deployed there to monitor microclimate variables. This network will be expanded to 50-nodes in February 2010, and to around 200-nodes and 1000 sensors by mid-2011, spread over an area of approximately 0.8 square kilometers. The extremely dense microclimate sensing will enhance knowledge of the environmental factors that enhance or inhibit the regeneration of native rainforest. The final network will also include nodes with acoustic and image sensing capability for

  20. RAW WATER STORAGE TANK ON NORTH SIDE OF WATER PUMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    RAW WATER STORAGE TANK ON NORTH SIDE OF WATER PUMP HOUSE, TRA-619. INTERIOR. INL NEGATIVE NO. 2489. Unknown Photographer, 6/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  1. FIFTY-FIVE GALLON DRUM STANDARD STUDY

    SciTech Connect

    PUIGH RJ

    2009-05-14

    Fifty-five gallon drums are routinely used within the U.S. for the storage and eventual disposal of fissionable materials as Transuranic or low-level waste. To support these operations, criticality safety evaluations are required. A questionnaire was developed and sent to selected Endusers at Hanford, Idaho National Laboratory, Lawrence Livermore National Laboratory, Oak Ridge and the Savannah River Site to solicit current practices. This questionnaire was used to gather information on the kinds of fissionable materials packaged into drums, the models used in performing criticality safety evaluations in support of operations involving these drums, and the limits and controls established for the handling and storage of these drums. The completed questionnaires were reviewed and clarifications solicited through individual communications with each Enduser to obtain more complete and consistent responses. All five sites have similar drum operations involving thousands to tens of thousands of fissionable material waste drums. The primary sources for these drums are legacy (prior operations) and decontamination and decommissioning wastes at all sites except Lawrence Livermore National Laboratory. The results from this survey and our review are discussed in this paper.

  2. 75 FR 20111 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ..., electric resistance technologies. 74 FR 65852, 65680-81 (Dec. 11, 2009). As the December 2009 NOPR also... conservation standards for residential water heaters (other than tabletop and electric instantaneous models... Rated Storage x Rated Storage Volume in gallons). Volume in gallons). Electric Storage For tanks with...

  3. Catchment water storage: Models vs Measurements

    NASA Astrophysics Data System (ADS)

    McMillan, Hilary

    2016-04-01

    Recent years have seen a great deal of progress in development of hydrological models that can simulate both the dynamic streamflow response and the hydrochemical flux response of a catchment. In general terms, streamflow response is driven by water deficit in the catchment, whereas hydrochemical response is driven by water storage. Therefore, models that can simultaneously predict both responses must succeed in representing these two related, but different, quantities. This presentation will consider how much information we can gain from field studies to quantify the joint deficit/storage state of a catchment. In particular, examples from two New Zealand experimental catchments in lowland and high country locations will be used to link typical measurements available with the information required by hydrological - hydrochemical models. I will then use the example catchments to assess how well the structure of a typical hydrological-hydrochemical model is supported by field measurements. In particular, can we quantify catchment storage and link this to flow response? Can we incorporate our knowledge of plant water use into such a model, including timing and depth of water withdrawn by the plant? What can field measurements tell us about spatial variability in hydrological-hydrochemical response and can this be represented in the model? I will conclude by discussing what we can learn from field data about the major challenges ahead in catchment storage modelling.

  4. Tunnels and dikes of the Koolau Range, Oahu, Hawaii, and their effect on storage depletion and movement of ground water

    USGS Publications Warehouse

    Hirashima, George Tokusuke

    1971-01-01

    Ground water impounded by dikes in the Koolau Range is a major source of water for the island of Oahu, Hawaii, and many tunnels have been bored into the range to develop it. All water-development tunnels, except Waihee tunnel, have depleted storage in the rocks they penetrate and are now discharging at rates that are but fractions of the rates possible at full storage. Rocks above the floor of the water-development part of Waihee tunnel have never been completely dewatered, and storage can be manipulated by regulating outflow. Thus, storage for this tunnel can be increased during periods of low demand and discharged at high rates during periods of high demand. A measure of the rate of drainage or depletion of storage is the recession constant b in the recession-curve equation Qt=Q0e-b t. The higher the value of b, the faster water can be drawn from storage or returned to storage through artificial recharge. Mathematical analysis of the flow-recession curve of Waihee tunnel shows that (1) its recession constant is 0.00401, (2) net storage (exclusive of recharge) is 2,200 million gallons (6,800 acre-feet), and (8) initial discharge from full storage would be about 19 million gallons per day. Analysis of flow-recession curves for Waiahole ditch tunnel (main bore) and Haiku tunnel shows that these tunnels have drainage characteristics that are similar to those of Waihee tunnel. The composite recession constant computed for the four tunnels north of Waiahole is about one-third as large as that computed for the Waiahole ditch tunnel (main bore) and the tunnels to the south. The difference is due to an abrupt change in spacing of dikes north of Waiahole. At and south of Waiahole Stream, dikes are spaced tens or hundreds of feet apart; north of Waiahole, they are spaced inches or a few feet apart. Storage could be restored by bulkheading at the controlling dike or dikes after an analysis is made of the flow-recession curve for each tunnel. Such analyses will show which

  5. 1. WATER TREATMENT PUMPING AND STORAGE BUILDING, FRONT AND LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. WATER TREATMENT PUMPING AND STORAGE BUILDING, FRONT AND LEFT SIDES, LOOKING NORTHEAST. - NIKE Missile Base SL-40, Water Treatment & Storage Building, Southern portion of launch area, southeast of Ready Building, Hecker, Monroe County, IL

  6. 2. WATER TREATMENT PUMPING AND STORAGE BUILDING, REAR AND RIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. WATER TREATMENT PUMPING AND STORAGE BUILDING, REAR AND RIGHT SIDES, LOOKING SOUTHWEST. - NIKE Missile Base SL-40, Water Treatment & Storage Building, Southern portion of launch area, southeast of Ready Building, Hecker, Monroe County, IL

  7. 4. PHOTOCOPY, ARCHITECTURAL DETAILS FOR WATER TREATMENT PUMPING AND STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. PHOTOCOPY, ARCHITECTURAL DETAILS FOR WATER TREATMENT PUMPING AND STORAGE BUILDING. - NIKE Missile Base SL-40, Water Treatment & Storage Building, Southern portion of launch area, southeast of Ready Building, Hecker, Monroe County, IL

  8. Beyond peak water storage? A global estimate of declining water storage in reservoirs and snow packs

    NASA Astrophysics Data System (ADS)

    Wisser, D.; Frolking, S.; Wada, Y.; Bierkens, M. F.

    2012-12-01

    Water storage is one of the primary mechanisms for coping with increasing variability of water supply and demand that can be expected with growing population and a changing climate. Man-made reservoirs can currently store about 15% of the global annual runoff. A similar amount of water is stored in one of the most important natural storage components - seasonal snow packs. The amount of water stored in each of those man-made and natural systems is roughly equivalent to the total annual anthropogenic water withdrawals. Storage in seasonal snow packs is declining as a result of climate-driven changes in snowfall and snowmelt. At the same time, reservoir storage is declining as a result of sedimentation and limited construction of new reservoirs. We use a global hydrological model, combined with a global data set of ~6000 large reservoirs to simulate changes in reservoir and snow pack water storage and analyze impacts of those changes on seasonal water availability using a set of scenarios for changing climate conditions. Reservoir sedimentation is simulated using global erosion and sedimentation data sets and validated with observed reservoir storage loss. Results indicate annual loss rates between 0.5 and 1.0% of the installed capacity for most reservoirs, outpacing the storage increases through the construction of new reservoirs for the last decades so that reservoir storage is declining globally. With most reservoirs being about 50 years old, these losses threaten the sustainability of reservoir operation and can pose significant challenges to water resources management. Similarly, seasonal snow storage is declining at about 0.5% per year for the last 20 years. Even without changes in the magnitude of total precipitation, there can be significant changes in basin hydrology if there are climate-driven changes in snowfall and snowmelt, potentially away from the period (summer) when demand for irrigation, water supply, or hydropower production is high. These shifts

  9. WATSTORE: NATIONAL WATER DATA STORAGE AND RETRIEVAL SYSTEM

    EPA Science Inventory

    The US Geological Survey (USGS) National Water Data Storage and Retrieval System (WATSTORE) consists of several files in which water data are grouped and stored by common characteristics and data-collection frequencies. Files are maintained for the storage of (1) surface-water, q...

  10. 40 CFR 141.714 - Requirements for uncovered finished water storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... water storage facilities. 141.714 Section 141.714 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced... water storage facilities. (a) Systems using uncovered finished water storage facilities must comply...

  11. Chilled Water Thermal Storage System and Demand Response at the University of California at Merced

    SciTech Connect

    Granderson, Jessica; Dudley, Junqiao Han; Kiliccote, Sila; Piette, Mary Ann

    2009-10-08

    The University of California at Merced is a unique campus that has benefited from intensive efforts to maximize energy efficiency, and has participated in a demand response program for the past two years. Campus demand response evaluations are often difficult because of the complexities introduced by central heating and cooling, non-coincident and diverse building loads, and existence of a single electrical meter for the entire campus. At the University of California at Merced, a two million gallon chilled water storage system is charged daily during off-peak price periods and used to flatten the load profile during peak demand periods. This makes demand response more subtle and challenges typical evaluation protocols. The goal of this research is to study demand response savings in the presence of storage systems in a campus setting. First, University of California at Merced summer electric loads are characterized; second, its participation in two demand response events is detailed. In each event a set of strategies were pre-programmed into the campus control system to enable semi-automated response. Finally, demand savings results are applied to the utility's DR incentives structure to calculate the financial savings under various DR programs and tariffs. A key conclusion to this research is that there is significant demand reduction using a zone temperature set point change event with the full off peak storage cooling in use.

  12. Beyond peak reservoir storage? A global estimate of declining water storage capacity in large reservoirs

    NASA Astrophysics Data System (ADS)

    Wisser, Dominik; Frolking, Steve; Hagen, Stephen; Bierkens, Marc F. P.

    2013-09-01

    Water storage is an important way to cope with temporal variation in water supply and demand. The storage capacity and the lifetime of water storage reservoirs can be significantly reduced by the inflow of sediments. A global, spatially explicit assessment of reservoir storage loss in conjunction with vulnerability to storage loss has not been done. We estimated the loss in reservoir capacity for a global data set of large reservoirs from 1901 to 2010, using modeled sediment flux data. We use spatially explicit population data sets as a proxy for storage demand and calculate storage capacity for all river basins globally. Simulations suggest that the net reservoir capacity is declining as a result of sedimentation (˜5% compared to the installed capacity). Combined with increasing need for storage, these losses challenge the sustainable management of reservoir operation and water resources management in many regions. River basins that are most vulnerable include those with a strong seasonal flow pattern and high population growth rates such as the major river basins in India and China. Decreasing storage capacity globally suggests that the role of reservoir water storage in offsetting sea-level rise is likely weakening and may be changing sign.

  13. 41. PATTERN STORAGE, GRIND STONE, WATER TANK, SHAFTING, AND TABLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. PATTERN STORAGE, GRIND STONE, WATER TANK, SHAFTING, AND TABLE SAW (L TO R)-LOOKING WEST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA

  14. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations

    NASA Technical Reports Server (NTRS)

    Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil

    2011-01-01

    Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on

  15. General view of Sector Four Compound looking northwest. Water Storage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of Sector Four Compound looking northwest. Water Storage Tank is at right, Receiver Building in center, and Communications Antennas at left - Over-the-Horizon Backscatter Radar Network, Tulelake Radar Site Receive Sector Four Water Storage Facility, Unnamed Road West of Double Head Road, Tulelake, Siskiyou County, CA

  16. General view of Sector Six Compound, looking east. Water Storage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of Sector Six Compound, looking east. Water Storage Tank is at left - Over-the-Horizon Backscatter Radar Network, Tulelake Radar Site Receive Sector Six Water Storage Plant, Unnamed Road West of Double Head Road, Tulelake, Siskiyou County, CA

  17. Oblique view of Sector Four Compound, looking southwest. Water Storage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique view of Sector Four Compound, looking southwest. Water Storage Tank in center behind fence, in front of Receiver Building - Over-the-Horizon Backscatter Radar Network, Tulelake Radar Site Receive Sector Four Water Storage Facility, Unnamed Road West of Double Head Road, Tulelake, Siskiyou County, CA

  18. Estimation of water withdrawal and distribution, water use, and wastewater collection and return flow in Cumberland, Rhode Island, 1988

    USGS Publications Warehouse

    Horn, M.A.; Craft, P.A.; Bratton, Lisa

    1994-01-01

    Water-use data collected in Rhode Island by different State agencies or maintained by different public suppliers and wastewater- treatment facilities need to be integrated if these data are to be used in making water- resource management decisions. Water-use data for the town of Cumberland, a small area in northeastern Rhode Island, were compiled and integrated to provide an example of how the procedure could be applied. Integration and reliability assessment of water-use data could be facilitated if public suppliers, wastewater- treatment facilities, and State agencies used a number of standardized procedures for data collection and computer storage. The total surface water and ground water withdrawn in the town of Cumberland during 1988 is estimated to be 15.39 million gallons per day, of which 11.20 million gallons per day was exported to other towns. Water use in Cumberland included 2.51 million gallons per day for domestic use, 0.68 million gallons per day for industrial use, 0.27 million gallons per day for commercial use, and 0.73 million gallons per day for other use, most of which were unmetered use. Disposal of waste- water in Cumberland included 2.03 million gallons per day returned to the hydrologic system and 1.73 million gallons per day exported from Cumberland for wastewater treatment. Consumptive use during 1988 is estimated to be 0.43 million gallons per day.

  19. Economic performance of water storage capacity expansion for food security

    NASA Astrophysics Data System (ADS)

    Gohar, Abdelaziz A.; Ward, Frank A.; Amer, Saud A.

    2013-03-01

    SummaryContinued climate variability, population growth, and rising food prices present ongoing challenges for achieving food and water security in poor countries that lack adequate water infrastructure. Undeveloped storage infrastructure presents a special challenge in northern Afghanistan, where food security is undermined by highly variable water supplies, inefficient water allocation rules, and a damaged irrigation system due three decades of war and conflict. Little peer-reviewed research to date has analyzed the economic benefits of water storage capacity expansions as a mechanism to sustain food security over long periods of variable climate and growing food demands needed to feed growing populations. This paper develops and applies an integrated water resources management framework that analyzes impacts of storage capacity expansions for sustaining farm income and food security in the face of highly fluctuating water supplies. Findings illustrate that in Afghanistan's Balkh Basin, total farm income and food security from crop irrigation increase, but at a declining rate as water storage capacity increases from zero to an amount equal to six times the basin's long term water supply. Total farm income increases by 21%, 41%, and 42% for small, medium, and large reservoir capacity, respectively, compared to the existing irrigation system unassisted by reservoir storage capacity. Results provide a framework to target water infrastructure investments that improve food security for river basins in the world's dry regions with low existing storage capacity that face ongoing climate variability and increased demands for food security for growing populations.

  20. Where Did the Water Go?: Boyle's Law and Pressurized Diaphragm Water Tanks

    ERIC Educational Resources Information Center

    Brimhall, James; Naga, Sundar

    2007-01-01

    Many homes use pressurized diaphragm tanks for storage of water pumped from an underground well. These tanks are very carefully constructed to have separate internal chambers for the storage of water and for the air that provides the pressure. One might expect that the amount of water available for use from, for example, a 50-gallon tank would be…

  1. Streamflow sensitivity to water storage changes across Europe

    NASA Astrophysics Data System (ADS)

    Berghuijs, Wouter R.; Hartmann, Andreas; Woods, Ross A.

    2016-03-01

    Terrestrial water storage is the primary source of river flow. We introduce storage sensitivity of streamflow (ɛS), which for a given flow rate indicates the relative change in streamflow per change in catchment water storage. ɛS can be directly derived from streamflow observations. Analysis of 725 catchments in Europe reveals that ɛS is high in, e.g., parts of Spain, England, Germany, and Denmark, whereas flow regimes in parts of the Alps are more resilient (that is, less sensitive) to storage changes. A regional comparison of ɛS with observations indicates that ɛS is significantly correlated with variability of low (R2 = 0.41), median (R2 = 0.27), and high flow conditions (R2 = 0.35). Streamflow sensitivity provides new guidance for a changing hydrosphere where groundwater abstraction and climatic changes are altering water storage and flow regimes.

  2. Water-storage-tube systems. Final report

    SciTech Connect

    Hemker, P.

    1981-12-24

    Passive solar collection/storage/distribution systems were surveyed, designed, fabricated, and mechanically and thermally tested. The types studied were clear and opaque fiberglass tubes, metal tubes with plastic liners, and thermosyphoning tubes. (MHR)

  3. Analysis of Terrestrial Water Storage Changes from GRACE and GLDAS

    NASA Technical Reports Server (NTRS)

    Syed, Tajdarul H.; Famiglietti, James S.; Rodell, Matthew; Chen, Jianli; Wilson, Clark R.

    2008-01-01

    Since March 2002, the Gravity Recovery and Climate Experiment (GRACE) has provided first estimates of land water storage variations by monitoring the time-variable component of Earth's gravity field. Here we characterize spatial-temporal variations in terrestrial water storage changes (TWSC) from GRACE and compare them to those simulated with the Global Land Data Assimilation System (GLDAS). Additionally, we use GLDAS simulations to infer how TWSC is partitioned into snow, canopy water and soil water components, and to understand how variations in the hydrologic fluxes act to enhance or dissipate the stores. Results quantify the range of GRACE-derived storage changes during the studied period and place them in the context of seasonal variations in global climate and hydrologic extremes including drought and flood, by impacting land memory processes. The role of the largest continental river basins as major locations for freshwater redistribution is highlighted. GRACE-based storage changes are in good agreement with those obtained from GLDAS simulations. Analysis of GLDAS-simulated TWSC illustrates several key characteristics of spatial and temporal land water storage variations. Global averages of TWSC were partitioned nearly equally between soil moisture and snow water equivalent, while zonal averages of TWSC revealed the importance of soil moisture storage at low latitudes and snow storage at high latitudes. Evapotranspiration plays a key role in dissipating globally averaged terrestrial water storage. Latitudinal averages showed how precipitation dominates TWSC variations in the tropics, evapotranspiration is most effective in the midlatitudes, and snowmelt runoff is a key dissipating flux at high latitudes. Results have implications for monitoring water storage response to climate variability and change, and for constraining land model hydrology simulations.

  4. Nitrogen sparging and blanketing of water storage tanks

    SciTech Connect

    Jonas, O.

    2000-04-01

    In many industrial processes, including most utility and industrial steam systems, good deaerated makeup and condensate water is stored in open-to-air storage tanks where it is contaminated by oxygen, carbon dioxide (CO{sub 2}), and dirt before it is used. This contamination can be prevented by nitrogen sparging and blanketing of storage tanks.

  5. 29. Overall view taken from top of water storage mound ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Overall view taken from top of water storage mound showing building 104, mess hall in lower left, building 101, administration, recreation, and storage building in center, and building 103, non-commissioned officers quarters and enlisted men barracks on far right, looking northeast - Nike Missile Battery MS-40, County Road No. 260, Farmington, Dakota County, MN

  6. Evolution of Forest Precipitation Water Storage Monitoring Methodologies

    NASA Astrophysics Data System (ADS)

    Friesen, J.; Lundquist, J. D.; Van Stan, J. T., II

    2014-12-01

    Precipitation intercepted by forests plays a major role in the hydrologic cycle for more than one fourth of the global land area. Direct in situ measurement of intercepted precipitation is a challenging task. We discuss and compare measurement methods for forest precipitation interception beyond classical budgeting methods, with an emphasis on estimating the critical water storage component for rain and snow, then recommend future directions for the improvement of water storage estimation and monitoring. Comparison of techniques estimating water storage shows that methods submerging tree components produce the largest storage capacity values. Indirect methods typically result in the lowest water storage estimates. Whole tree lysimeters have been used with great success, yet are unable to separate trunk vs. canopy storage components. Remote sensing technologies, particularly signal attenuation, may permit this separation. Mechanical displacement methods show great promise and, perhaps as a result, have the greatest variety of techniques. Relating wind sway to canopy water storage via accelerometers also shows great promise, yet is in the proof-of-concept stage at present. Recommended future directions for forest water storage estimation are, to (1) apply these methods individually under different conditions to identify further strengths/weaknesses, (2) apply methods in tandem to identify complimentary strengths and limitations, (3) improve scaling techniques for element- and tree-specific techniques, (4) increase temporal monitoring resolution to capture intrastorm processes that may drive interception loss, and (5) foster synergies between communities developing methodologies for specific precipitation types as differing methods often rely on similar underlying measurement principles. Through addressing these research needs, we hope the scientific community can develop an "integrated" monitoring plan incorporating multiple measurement techniques to characterize

  7. 16. STORAGE SHED DOOR DETAIL, SOUTH FRONT. Hondius Water ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. STORAGE SHED DOOR DETAIL, SOUTH FRONT. - Hondius Water Line, 1.6 miles Northwest of Park headquarters building & 1 mile Northwest of Beaver Meadows entrance station, Estes Park, Larimer County, CO

  8. VIEW OF SOUTHERNMOST OF TWO HEAVY WATER STORAGE TANKS, LOCATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF SOUTHERN-MOST OF TWO HEAVY WATER STORAGE TANKS, LOCATED BEHIND SUPPORT COLUMN, WITH ADJACENT PIPING, LEVEL -27’, LOOKING WEST - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  9. VIEW OF TWO HEAVY WATER STORAGE TANKS (BEHIND SUPPORT COLUMNS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF TWO HEAVY WATER STORAGE TANKS (BEHIND SUPPORT COLUMNS AND STEEL BEAMS), SUB-BASEMENT LEVEL -27’, LOOKING SOUTHWEST - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  10. 6. PHOTOCOPY, WATER TREATMENT PUMPING AND STORAGE BUILDING, MISSILE TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. PHOTOCOPY, WATER TREATMENT PUMPING AND STORAGE BUILDING, MISSILE TEST AND ASSEMBLY BUILDING, GENERATOR BUILDING No. 3, AND WARHEADING BUILDING OF LAUNCH AREA. - NIKE Missile Base SL-40, Beck Road between Nike & M Roads, Hecker, Monroe County, IL

  11. Nondestructive testing methods for 55-gallon, waste storage drums

    SciTech Connect

    Ferris, R.H.; Hildebrand, B.P.; Hockey, R.L.; Riechers, D.M.; Spanner, J.C.; Duncan, D.R.

    1993-06-01

    The Westinghouse Hanford Company (WHC) authorized Pacific Northwest Laboratory (PNL) to conduct a feasibility study to identify promising nondestructive testing (NDT) methods for detecting general and localized (both pitting and pinhole) corrosion in the 55-gal drums that are used to store solid waste materials at the Hanford Site. This document presents results obtained during a literature survey, identifies the relevant reference materials that were reviewed, provides a technical description of the methods that were evaluated, describes the laboratory tests that were conducted and their results, identifies the most promising candidate methods along with the rationale for these selections, and includes a work plan for recommended follow-on activities. This report contains a brief overview and technical description for each of the following NDT methods: magnetic testing techniques; eddy current testing; shearography; ultrasonic testing; radiographic computed tomography; thermography; and leak testing with acoustic detection.

  12. Waste streams that preferentially corrode 55-gallon steel storage drums

    SciTech Connect

    Zirker, L.R.; Beitel, G.A.; Reece, C.M.

    1995-06-01

    When 55-gal steel drum waste containers fail in service, i.e., leak, corrode or breach, the standard fix has been to overpack the drum. When a drum fails and is overpacked into an 83-gal overpack drum, there are several negative consequences. Identifying waste streams that preferentially corrode steel drums is essential to the pollution prevention philosophy that ``an ounce of prevention is worth a pound of cure.`` It is essential that facilities perform pollution prevention measures at the front end of processes to reduce pollution on the back end. If these waste streams can be identified before they are packaged, the initial drum packaging system could be fortified or increased to eliminate future drum failures, breaches, clean-ups, and the plethora of other consequences. Therefore, a survey was conducted throughout the US Department of Energy complex for information concerning waste streams that have demonstrated preferential corrosion of 55-gal steel drums. From 21 site contacts, 21 waste streams were so identified. The major components of these waste streams include acids, salts, and solvent liquids, sludges, and still bottoms. The solvent-based waste streams typically had the shortest time to failure, 0.5 to 2 years. This report provides the results of this survey and research.

  13. Rethinking Water Scarcity: The Role of Storage

    NASA Astrophysics Data System (ADS)

    Taylor, Richard

    2009-07-01

    Water scarcity, in its simplest sense, can be defined as a shortage in the availability of freshwater relative to demand. Freshwater shortages directly affect food security, access to safe drinking water, hygiene and public health, and environmental well-being. Water scarcity can also retard economic development and promote civil strife. Robust measures of water scarcity are therefore required to inform water policy and help allocate resources to mitigate these effects.

  14. Do Heat Waves have an Impact on Terrestrial Water Storage?

    NASA Astrophysics Data System (ADS)

    Brena-Naranjo, A.; Teuling, R.; Pedrozo-Acuña, A.

    2014-12-01

    Recent works have investigated the impact of heat waves on the surface energy and carbon balance. However, less attention has been given to the impacts on terrestrial hydrology. During the summer of 2010, the occurrence of an exceptional heat wave affected severely the Northern Hemisphere. The extension (more than 2 million km2) and severity of this extreme event caused substantial ecosystem damage (more than 1 million ha of forest fires), economic and human losses (~500 billion USD and more than 17 million of indirect deaths, respectively). This work investigates for the first time the impacts of the 2010 summer heat wave on terrestrial water storage. Our study area comprises three different regions where air temperature records were established or almost established during the summer: Western Russia, the Middle East and Eastern Sahel. Anomalies of terrestrial water storage derived from the Gravity Recovery and Climate Experiment (GRACE) were used to infer water storage deficits during the 2003-2013 period. Our analysis shows that Russia experienced the most severe water storage decline, followed by the Middle East, whereas Eastern Sahel was not significantly affected. The impact of the heat wave was spatially uniform in Russia but highly variable in the Middle East, with the Northern part substantially more affected than the Southern region. Lag times between maxima air temperatures and lower water storage deficits for Russia and the Middle East were approximately two and seven months, respectively. The results suggest that the response of terrestrial water storage to heat waves is stronger in energy-limited environments than in water-limited regions. Such differences in the magnitude and timing between meteorological and hydrological extremes can be explained by the propagation time between atmospheric water demand and natural or anthropogenic sources of water storage.

  15. Chilled water storage system reduces energy costs

    SciTech Connect

    Fiorino, D.P. )

    1993-04-01

    This article describes the conversion of an industrial central chiller plant from conventional live-load operation to full-shift thermal energy storage. The topics of the article include project design, project implementation, interactive pressure/temperature control, energy efficiency, operations and maintenance and cost effectiveness.

  16. Ecohydrology of dry regions: storage versus pulse soil water dynamics

    USGS Publications Warehouse

    Lauenroth, William K.; Schlaepfer, Daniel R.; Bradford, John B.

    2014-01-01

    Although arid and semiarid regions are defined by low precipitation, the seasonal timing of temperature and precipitation can influence net primary production and plant functional type composition. The importance of precipitation seasonality is evident in semiarid areas of the western U.S., which comprise the Intermountain (IM) zone, a region that receives important winter precipitation and is dominated by woody plants and the Great Plains (GP), a region that receives primarily summer precipitation and is dominated by perennial grasses. Although these general relationships are well recognized, specific differences in water cycling between these regions have not been well characterized. We used a daily time step soil water simulation model and twenty sites from each region to analyze differences in soil water dynamics and ecosystem water balance. IM soil water patterns are characterized by storage of water during fall, winter, and spring resulting in relatively reliable available water during spring and early summer, particularly in deep soil layers. By contrast, GP soil water patterns are driven by pulse precipitation events during the warm season, resulting in fluctuating water availability in all soil layers. These contrasting patterns of soil water—storage versus pulse dynamics—explain important differences between the two regions. Notably, the storage dynamics of the IN sites increases water availability in deep soil layers, favoring the deeper rooted woody plants in that region, whereas the pulse dynamics of the Great Plains sites provide water primarily in surface layers, favoring the shallow-rooted grasses in that region. In addition, because water received when plants are either not active or only partially so is more vulnerable to evaporation and sublimation than water delivered during the growing season, IM ecosystems use a smaller fraction of precipitation for transpiration (47%) than GP ecosystems (49%). Recognizing the pulse-storage dichotomy in

  17. Microbial Condition of Water Samples from Foreign Fuel Storage Facilities

    SciTech Connect

    Berry, C.J.; Fliermans, C.B.; Santo Domingo, J.

    1997-10-30

    In order to assess the microbial condition of foreign nuclear fuel storage facilities, fourteen different water samples were received from facilities outside the United States that have sent spent nuclear fuel to SRS for wet storage. Each water sample was analyzed for microbial content and activity as determined by total bacteria, viable aerobic bacteria, viable anaerobic bacteria, viable sulfate- reducing bacteria, viable acid-producing bacteria and enzyme diversity. The results for each water sample were then compared to other foreign samples and to data from the receiving basin for off- site fuel (RBOF) at SRS.

  18. 49 CFR 538.8 - Gallon Equivalents for Gaseous Fuels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION MANUFACTURING INCENTIVES FOR ALTERNATIVE FUEL... Measurements for Gaseous Fuels per 100 Standard Cubic Feet Fuel Gallon equivalent measurement...

  19. 49 CFR 538.8 - Gallon Equivalents for Gaseous Fuels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION MANUFACTURING INCENTIVES FOR ALTERNATIVE FUEL... Measurements for Gaseous Fuels per 100 Standard Cubic Feet Fuel Gallon equivalent measurement...

  20. 49 CFR 538.8 - Gallon Equivalents for Gaseous Fuels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION MANUFACTURING INCENTIVES FOR ALTERNATIVE FUEL... Measurements for Gaseous Fuels per 100 Standard Cubic Feet Fuel Gallon equivalent measurement...

  1. 49 CFR 538.8 - Gallon Equivalents for Gaseous Fuels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION MANUFACTURING INCENTIVES FOR ALTERNATIVE FUEL... Measurements for Gaseous Fuels per 100 Standard Cubic Feet Fuel Gallon equivalent measurement...

  2. 49 CFR 538.8 - Gallon Equivalents for Gaseous Fuels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION MANUFACTURING INCENTIVES FOR ALTERNATIVE FUEL... Measurements for Gaseous Fuels per 100 Standard Cubic Feet Fuel Gallon equivalent measurement...

  3. Energy conservation with chilled-water storage

    SciTech Connect

    Fiorino, D.

    1993-05-01

    Thermal energy storage (TES) is widely recognized as a demand-side management technology for shifting cooling electrical demand from peak daytime periods to off-peak nighttime and weekend periods when utilities have reserve generating capacity. TES has enabled users to significantly reduce their electricity costs by reducing peak demand and taking advantage of lower off-peak usage rates, often with large utility incentive payments and sometimes with reduced capital costs. It has also enabled utilities to reduce peaks and fill valleys, thereby improving system load factors, reducing reliance on peaking units, increasing utilization of base load units and postponing the construction of additional generating units. Because TES has been so strongly categorized as a demand-shifting technology, its potential for energy conservation has received little recognition. And, certainly, there are many existing TES systems that use more electricity than conventional cooling systems and are beneficial only for shifting demand. However, recent advances in the technology have produced more efficient and better integrated TES systems that use less electricity and natural gas than conventional cooling/heating systems. To apprise engineers of thermal energy storage's potential for energy conservation, this article will study the design and operation of a TES system in one industrial retrofit application.

  4. Expanding the potential for saline formations : modeling carbon dioxide storage, water extraction and treatment for power plant cooling.

    SciTech Connect

    Not Available

    2011-04-01

    The National Water, Energy and Carbon Sequestration simulation model (WECSsim) is being developed to address the question, 'Where in the current and future U.S. fossil fuel based electricity generation fleet are there opportunities to couple CO{sub 2} storage and extracted water use, and what are the economic and water demand-related impacts of these systems compared to traditional power systems?' The WECSsim collaborative team initially applied this framework to a test case region in the San Juan Basin, New Mexico. Recently, the model has been expanded to incorporate the lower 48 states of the U.S. Significant effort has been spent characterizing locations throughout the U.S. where CO{sub 2} might be stored in saline formations including substantial data collection and analysis efforts to supplement the incomplete brine data offered in the NatCarb database. WECSsim calculates costs associated with CO{sub 2} capture and storage (CCS) for the power plant to saline formation combinations including parasitic energy costs of CO{sub 2} capture, CO{sub 2} pipelines, water treatment options, and the net benefit of water treatment for power plant cooling. Currently, the model can identify the least-cost deep saline formation CO{sub 2} storage option for any current or proposed coal or natural gas-fired power plant in the lower 48 states. Initial results suggest that additional, cumulative water withdrawals resulting from national scale CCS may range from 676 million gallons per day (MGD) to 30,155 MGD depending on the makeup power and cooling technologies being utilized. These demands represent 0.20% to 8.7% of the U.S. total fresh water withdrawals in the year 2000, respectively. These regional and ultimately nation-wide, bottom-up scenarios coupling power plants and saline formations throughout the U.S. can be used to support state or national energy development plans and strategies.

  5. Fluid Latent Heat Storage Material Using Ethanol Water Mixture

    NASA Astrophysics Data System (ADS)

    Ohkubo, Hidetoshi; Yasunari, Yuki

    Ethanol water mixture has a liquidus line ( or crystallizing line) and a solidus line (or melting line) that are separated, and therefore it can have both liquid and solid phases existing together. With advances in low temperature technology in recent days, ethanol water mixture is attaching more and more attention as an environment-friendly coolant or as a thermal storage material. In the present study, we observed the crystallization process in the mixture and carried out experiments to evaluate fluidity of the mixture, with the objective of utilizing an ethanol water mixture as a coolant or a thermal energy storage material. Crystal formation and growing process within a minute droplet of a binary mixture was modeled. As a result, we found a novel method to produce a fluid latent heat storage material continuously and an apparent coefficient of viscosity show that rotational speed and solid phase fraction have a strong effect on the fluidity of the mixture.

  6. 27 CFR 30.65 - Table 5, showing the weight per wine gallon (at 60 degrees Fahrenheit) and proof gallon at each...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... weight per wine gallon (at 60 degrees Fahrenheit) and proof gallon at each percent of proof of spirituous... weight per wine gallon (at 60 degrees Fahrenheit) and proof gallon at each percent of proof of spirituous liquor. This table may be used to ascertain the weight of any given number of wine gallons (at 60...

  7. Characteristic mega-basin water storage behavior using GRACE

    PubMed Central

    Reager, J T; Famiglietti, James S

    2013-01-01

    [1] A long-standing challenge for hydrologists has been a lack of observational data on global-scale basin hydrological behavior. With observations from NASA’s Gravity Recovery and Climate Experiment (GRACE) mission, hydrologists are now able to study terrestrial water storage for large river basins (>200,000 km2), with monthly time resolution. Here we provide results of a time series model of basin-averaged GRACE terrestrial water storage anomaly and Global Precipitation Climatology Project precipitation for the world’s largest basins. We address the short (10 year) length of the GRACE record by adopting a parametric spectral method to calculate frequency-domain transfer functions of storage response to precipitation forcing and then generalize these transfer functions based on large-scale basin characteristics, such as percent forest cover and basin temperature. Among the parameters tested, results show that temperature, soil water-holding capacity, and percent forest cover are important controls on relative storage variability, while basin area and mean terrain slope are less important. The derived empirical relationships were accurate (0.54 ≤ Ef ≤ 0.84) in modeling global-scale water storage anomaly time series for the study basins using only precipitation, average basin temperature, and two land-surface variables, offering the potential for synthesis of basin storage time series beyond the GRACE observational period. Such an approach could be applied toward gap filling between current and future GRACE missions and for predicting basin storage given predictions of future precipitation. PMID:24563556

  8. Water storage at the Panola Mountain Research Watershed, Georgia, USA

    USGS Publications Warehouse

    Peters, N.E.; Aulenbach, Brent T.

    2011-01-01

    Storage is a major component of a catchment water balance particularly when the water balance components are evaluated on short time scales, that is, less than annual. We propose a method of determining the storage-discharge relation using an exponential function and daily precipitation, potential evapotranspiration (PET) and baseflow during the dormant season when evapotranspiration (ET) is low. The method was applied to the 22-year data series of the 0.41-ha forested Panola Mountain Research Watershed, Georgia. The relation of cumulative daily precipitation minus daily runoff and PET versus baseflow was highly significant (r2=0.92, p<0.0001), but the initial storage for each year varied markedly. For the 22-year study period, annual precipitation and runoff averaged 1240 and 380mm, respectively, whereas the absolute catchment storage range was ~400mm, averaging 219mm annually, which is attributed to contributions of soil water and groundwater. The soil moisture of a catchment average 1-m soil depth was evaluated and suggests that there was an active (changes in soil storage during stormflow) and passive (a longer-term seasonal cycle) soil water storage with ranges of 40-70 and 100-120mm, respectively. The active soil water storage was short term on the order of days during and immediately after rainstorms, and the passive or seasonal soil storage was highest during winter when ET was lowest and lowest during summer when ET was highest. An estimate of ET from daily changes in soil moisture (ETSM) during recessions was comparable with PET during the dormant season (1.5mmday-1) but was much lower during the growing season (June through August); monthly average SMET and PET ranged from 2.8 to 4.0mmday-1 and from 4.5 to 5.5mmday-1, respectively. The growing season difference is attributed to the overestimation of PET. ETSM estimates were comparable with those derived from hillslope water balances during sprinkling experiments. Master recession curves derived from the

  9. Criticality safety evaluation of Rocky Flats Plant one-gallon shipping containers

    SciTech Connect

    Shaw, M.E.

    1991-12-01

    Criticality safety calculations have been performed to provide an analytical basis for handling, storage and transport of Rocky Flats Plant (RFP) one-gallon shipping containers. A mass limit was establish for metal (solid uranium or plutonium) and slurries (undissolved U or Pu solids in a ``mud,`` ``sludge,`` or ``slurry``). A separate volume limit was developed for plutonium solutions (liquids, either aqueous or organic, containing no visible undissolved solids).

  10. Criticality safety evaluation of Rocky Flats Plant one-gallon shipping containers

    SciTech Connect

    Shaw, M.E.

    1991-12-01

    Criticality safety calculations have been performed to provide an analytical basis for handling, storage and transport of Rocky Flats Plant (RFP) one-gallon shipping containers. A mass limit was establish for metal (solid uranium or plutonium) and slurries (undissolved U or Pu solids in a mud,'' sludge,'' or slurry''). A separate volume limit was developed for plutonium solutions (liquids, either aqueous or organic, containing no visible undissolved solids).

  11. Arctic hillslope hydrologic response to changing water storage conditions

    NASA Astrophysics Data System (ADS)

    Rushlow, C. R.; Godsey, S.

    2013-12-01

    Solute transport from terrestrial to aquatic environments depends on dynamics of water storage and flux. In the arctic, these dynamics are related to changes in permafrost and hydrological conditions that vary with climate across multiple scales. In order to predict the continued trajectory of arctic landscape and ecosystem evolution, observed changes to the hydrologic regime and riverine nutrient fluxes require properly scaled, mechanistic explanations. We address this issue at the hillslope scale by quantifying hydrologic response to changing storage as part of a collaborative effort to understand the coupled hydrology and biogeochemistry of arctic hillslopes. Hillslopes underlain by continuous permafrost experience gradual, summer-season increases in potential water storage through active layer thaw, as well as stochastic changes in available water storage as soil moisture conditions change due to storm events, evapotranspiration, and subsurface flow. Preferential flowpaths called water tracks are ubiquitous features draining arctic hillslopes and are the focus of our study. We predict that water track hydrologic response to precipitation is a function of snowmelt or storm characteristics and available storage. We hypothesize that ¬the ratio of runoff to precipitation will decrease as available storage increases, whether due to the seasonal increase in active layer thaw, or an extended dry period. Intensive snow and thaw depth surveys on a water track on the hillslopes of the Upper Kuparuk River watershed in northern Alaska during May to June 2013 reveal that snow persisted one week longer in a water track than the adjacent hillslope, and thus active layer thaw initiated earlier on the adjacent hillslope. Despite this earlier thaw timing, thaw depth in the water track exceeded that on the non-track hillslope within five days of being uncovered. Thaw, and thus subsurface storage, in water tracks remained greater than the rest of the hillslope for at least the

  12. Geologic Water Storage in Pre-Columbian Peru

    SciTech Connect

    Fairley Jr., Jerry P.

    1997-07-14

    Agriculture in the arid and semi-arid regions that comprise much of present-day Peru, Bolivia, and Northern Chile is heavily dependent on irrigation; however, obtaining a dependable water supply in these areas is often difficult. The precolumbian peoples of Andean South America adapted to this situation by devising many strategies for transporting, storing, and retrieving water to insure consistent supply. I propose that the ''elaborated springs'' found at several Inka sites near Cuzco, Peru, are the visible expression of a simple and effective system of groundwater control and storage. I call this system ''geologic water storage'' because the water is stored in the pore spaces of sands, soils, and other near-surface geologic materials. I present two examples of sites in the Cuzco area that use this technology (Tambomachay and Tipon) and discuss the potential for identification of similar systems developed by other ancient Latin American cultures.

  13. Effects of plumbing attachments on heat losses from solar domestic hot water storage tanks. Final report, Part 2

    SciTech Connect

    Song, J.; Wood, B.D.; Ji, L.J.

    1998-03-01

    The Solar Rating and Certification Corporation (SRCC) has established a standardized methodology for determining the performance rating of the Solar Domestic Hot Water (SDHW) systems it certifies under OG-300. Measured performance data for the solar collector component(s) of the system are used along with numerical models for the balance of the system to calculate the system`s thermal performance under a standard set of rating conditions. SRCC uses TRNSYS to model each of the components that comprise the system. The majority of the SRCC certified systems include a thermal storage tank with an auxiliary electrical heater. The most common being a conventional fifty gallon electric tank water heater. Presently, the thermal losses from these tanks are calculated using Q = U {center_dot} A {center_dot} {Delta}T. Unfortunately, this generalized formula does not adequately address temperature stratification both within the tank as well as in the ambient air surrounding the tank, non-uniform insulation jacket, thermal siphoning in the fluid lines attached to the tank, and plumbing fittings attached to the tank. This study is intended to address only that part of the problem that deals with the plumbing fittings attached to the tank. Heat losses from a storage tank and its plumbing fittings involve three different operating modes: charging, discharging and standby. In the charging mode, the tank receives energy from the solar collector. In the discharge mode, water flows from the storage tank through the distribution pipes to the faucets and cold city water enters the tank. In the standby mode, there is no forced water flow into or out of the tank. In this experimental study, only the standby mode was considered.

  14. EFFECTS OF LOG HANDLING AND STORAGE ON WATER QUALITY

    EPA Science Inventory

    The biological and chemical effects of three types of log storage on water quality were investigated. Three flow-through log ponds, two wet deck operations, and five log rafting areas were studied. Both biological and chemical aspects of stream quality can be adversely affected b...

  15. MODELING DISINFECTANT RESIDUALS IN DRINKING-WATER STORAGE TANKS

    EPA Science Inventory

    The factors leading to the loss of disinfectant residual in well-mixed drinking-water storage tanks are studied. quations relating disinfectant residual to the disinfectant's reaction rate, the tank volume, and the fill and drain rates are presented. n analytical solution for the...

  16. Residue management to improve precipitation storage and water use efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Successful dryland crop production in semiarid environments is dependent upon efficient storage of precipitation and use of stored soil water supplies. The objectives of this presentation are to: 1. Summarize information regarding the effects of time of year; environmental parameters; residue orient...

  17. 32. Overall view taken from top of water storage mound ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. Overall view taken from top of water storage mound showing building 154, missile assembly building in center, and building 161, fallout shelter in lower right corner, looking west - Nike Missile Battery MS-40, County Road No. 260, Farmington, Dakota County, MN

  18. MODELING DISINFECTANT RESIDUALS IN DRINKING-WATER STORAGE TANKS

    EPA Science Inventory

    The factors leading to the loss of disinfectant residual in well-mixed drinking-water storage tanks are studied. Equations relating disinfectant residual to the disinfectant's reation rate, the tank volume, and the fill and drain rates are presented. An analytical solution for ...

  19. View of Water Storage Tank off entrance tunnel. Tunnel at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Water Storage Tank off entrance tunnel. Tunnel at left of image to Launch Silos - Titan One Missile Complex 2A, .3 miles west of 129 Road and 1.5 miles north of County Line Road, Aurora, Adams County, CO

  20. 28. Overall view taken from top of water storage mound ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Overall view taken from top of water storage mound showing building 154, missile assembly building on right, Minnesota Department of Transportation communication tower in center, and Minnesota Bureau of Mines wind tunnel on left, looking southwest toward launch pad area - Nike Missile Battery MS-40, County Road No. 260, Farmington, Dakota County, MN

  1. 25. WATER TOWER WITH SODA ASH STORAGE BUILDING ON RIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. WATER TOWER WITH SODA ASH STORAGE BUILDING ON RIGHT AND PUMP HOUSE No. 1 ON THE LEFT. THE HOT METAL BRIDGE IS IN THE FAR BACKGROUND. Jet Lowe, Photographer, 1989. - U.S. Steel Homestead Works, Auxiliary Buildings & Shops, Along Monongahela River, Homestead, Allegheny County, PA

  2. Augmenting soil water storage using uncharred switchgrass and pyrolyzed biochars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar is an amendment that can augment soil water storage; however, its projected cost per ton could be financially limiting at field application scales. It may be more monetarily convenient if an alternate amendment were available that could deliver similar soil enhancements. We compared two swi...

  3. Hot-water aquifer storage: A field test

    NASA Technical Reports Server (NTRS)

    Parr, A. D.; Molz, F. J.; Andersen, P. F.

    1980-01-01

    The basic water injection cycle used in a large-scale field study of heat storage in a confined aquifer near Mobile, Alabama is described. Water was pumped from an upper semi-confined aquifer, passed through a boiler where it was heated to a temperature of about 55 C, and injected into a medium sand confined aquifer. The injection well has a 6-inch (15-cm) partially-penetrating steel screen. The top of the storage formation is about 40 meters below the surface and the formation thickness is about 21 meters. In the first cycle, after a storage period of 51 days, the injection well was pumped until the temperature of the recovered water dropped to 33 c. At that point 55,300 cubic meters of water had been withdrawn and 66 percent of the injected energy had been recovered. The recovery period for the second cycle continued until the water temperature was 27.5 C and 100,100 cubic meters of water was recovered. At the end of the cycle about 90 percent of the energy injected during the cycle had been recovered.

  4. Collection, storage, retrieval, and publication of water-resources data

    USGS Publications Warehouse

    Showen, C. R., (compiler)

    1978-01-01

    This publication represents a series of papers devoted to the subject of collection, storage, retrieval, and publication of hydrologic data. The papers were presented by members of the U.S. Geological Survey at the International Seminar on Organization and Operation of Hydrologic Services, Ottawa, Canada, July 15-16, 1976, sponsored by the World Meteorological Organization. The first paper, ' Standardization of Hydrologic Measurements, ' by George F. Smoot discusses the need for standardization of the methods and instruments used in measuring hydrologic data. The second paper, ' Use of Earth Satellites for Automation of Hydrologic Data Collection, ' by Richard W. Paulson discusses the use of inexpensive battery-operated radios to transmit realtime hydrologic data to earth satellites and back to ground receiving stations for computer processing. The third paper, ' Operation Hydrometeorological Data-Collection System for the Columbia River, ' by Nicholas A. Kallio discusses the operation of a complex water-management system for a large river basin utilizing the latest automatic telemetry and processing devices. The fourth paper, ' Storage and Retrieval of Water-Resources Data, ' by Charles R. Showen discusses the U.S. Geological Survey 's National Water Data Storage and Retrieval System (WATSTORE) and its use in processing water resources data. The final paper, ' Publication of Water Resources Data, ' by S. M. Lang and C. B. Ham discusses the requirement for publication of water-resources data to meet the needs of a widespread audience and for archival purposes. (See W78-09324 thru W78-09328) (Woodard-USGS)

  5. Cost effective closure of five 1,500,000 gallons underground tanks

    SciTech Connect

    Meuse, R.J.; Balco, J.J.

    1994-12-31

    Tank closure may be considered routine -- unless they are five 1.5 million-gallon bomb proof underground storage tanks and are located adjacent to a 14-story hotel and under an operating trucking terminal! The site is the former US Navy Fuel Storage Annex in East Boston, Massachusetts. This 4.2-million dollar program was implemented under the US Army Corps of Engineers Defense Environmental Restoration Program (DERP). The project demonstrated that intensive site study is not required to begin site closure, non-conventional approaches can be cost-effective and unanticipated events can be addressed without jeopardizing project objectives.

  6. Continued utilization of ground-water storage basins

    USGS Publications Warehouse

    Thomas, H.E.

    1957-01-01

    Doubtless most of you are more familiar with surface reservoirs, their capabilities and limitations, than you are with ground-water reservoirs. I believe that this is true of people in general, even the experts. And because of our inadequate knowledge of ground-water reservoirs, our use of them creates problems that are rarely if ever encountered in the operation of surface reservoirs. Nevertheless there are many similarities between these two basic forms of water storage, and I should like to point out some of these similarities, was well as some important contrasts.

  7. Sizing a water softener for aquifer thermal energy storage

    SciTech Connect

    Hall, S.H.; Jenne, E.A.

    1993-03-01

    In aquifer thermal energy storage (ATES) installations, ground water is circulated between an aquifer and heat exchangers via a well field. It is often necessary to soften the water to prevent carbonate scaling in pipes, heat exchangers, and well screens. Most ATES projects requiring water softening will be best served by using synthetic ion-exchange resins. The size of the resin beds, the resin regeneration cycle, and the amount of NaCl brine used in each regeneration depend on several factors. These are (1) the chemistry of the native ground water, (2) allowable residual hardness after softening, (3) the maximum flow rate of water through the ATES plant, and (4) exchange characteristics of the resin. Example calculations are given for a three-bed water softening system.

  8. Fresh Water Generation from Aquifer-Pressured Carbon Storage

    SciTech Connect

    Aines, R D; Wolery, T J; Bourcier, W L; Wolfe, T; Haussmann, C

    2010-02-19

    Can we use the pressure associated with sequestration to make brine into fresh water? This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). Possible products are: Drinking water, Cooling water, and Extra aquifer space for CO{sub 2} storage. The conclusions are: (1) Many saline formation waters appear to be amenable to largely conventional RO treatment; (2) Thermodynamic modeling indicates that osmotic pressure is more limiting on water recovery than mineral scaling; (3) The use of thermodynamic modeling with Pitzer's equations (or Extended UNIQUAC) allows accurate estimation of osmotic pressure limits; (4) A general categorization of treatment feasibility is based on TDS has been proposed, in which brines with 10,000-85,000 mg/L are the most attractive targets; (5) Brines in this TDS range appear to be abundant (geographically and with depth) and could be targeted in planning future CCS operations (including site selection and choice of injection formation); and (6) The estimated cost of treating waters in the 10,000-85,000 mg/L TDS range is about half that for conventional seawater desalination, due to the anticipated pressure recovery.

  9. False cyanide formation during drinking water sample preservation and storage.

    PubMed

    Delaney, Michael F; Blodget, Charles; Hoey, Corinna E; McSweeney, Nancy E; Epelman, Polina A; Rhode, Steven F

    2007-12-15

    Carefully controlled bench-scale and on-site experiments demonstrated that cyanide can form in the treated drinking water sample container during preservation and storage. In the bench-scale experiment, treated tap water samples were collected on 20 days over six months. The tap water samples were split and some of the splits were spiked with formaldehyde, a known ozone disinfection byproduct, held for three hours and tested for cyanide. Then they were preserved and held for 2-10 days. None of the 69 initial samples had cyanide detects, but 22 of 49 formaldehyde-spiked samples and three of the 20 unspiked samples developed detectable cyanide concentrations during storage. In the on-site experiment, six samples were collected at a finished water tap at an ozone/chloramination treatment plant over three days. Each sample was split, and a portion was spiked with formaldehyde. Each portion was analyzed in triplicate after three different procedures: (1) immediately distilled on-site, (2) stabilized on-site in a distillation tube and distilled back at the laboratory several days later, or (3) following the conventional procedure of preserving the sample to pH > 12 in a container and distilling the sample back at the laboratory. Only the samples handled in the conventional way had detectable amounts of cyanide. Both experiments demonstrated that cyanide can form during conventional preservation and storage, and it is likely that the cyanide detected for this treated drinking water was formed in the sample container as a consequence of the preservation and storage conditions. PMID:18200867

  10. Multi-objective optimization of water quality, pumps operation, and storage sizing of water distribution systems.

    PubMed

    Kurek, Wojciech; Ostfeld, Avi

    2013-01-30

    A multi-objective methodology utilizing the Strength Pareto Evolutionary Algorithm (SPEA2) linked to EPANET for trading-off pumping costs, water quality, and tanks sizing of water distribution systems is developed and demonstrated. The model integrates variable speed pumps for modeling the pumps operation, two water quality objectives (one based on chlorine disinfectant concentrations and one on water age), and tanks sizing cost which are assumed to vary with location and diameter. The water distribution system is subject to extended period simulations, variable energy tariffs, Kirchhoff's laws 1 and 2 for continuity of flow and pressure, tanks water level closure constraints, and storage-reliability requirements. EPANET Example 3 is employed for demonstrating the methodology on two multi-objective models, which differ in the imposed water quality objective (i.e., either with disinfectant or water age considerations). Three-fold Pareto optimal fronts are presented. Sensitivity analysis on the storage-reliability constraint, its influence on pumping cost, water quality, and tank sizing are explored. The contribution of this study is in tailoring design (tank sizing), pumps operational costs, water quality of two types, and reliability through residual storage requirements, in a single multi-objective framework. The model was found to be stable in generating multi-objective three-fold Pareto fronts, while producing explainable engineering outcomes. The model can be used as a decision tool for both pumps operation, water quality, required storage for reliability considerations, and tank sizing decision-making. PMID:23262407

  11. 21 CFR 1250.83 - Storage of water prior to treatment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Storage of water prior to treatment. 1250.83... CONVEYANCE SANITATION Sanitation Facilities and Conditions on Vessels § 1250.83 Storage of water prior to treatment. The following requirements with respect to the storage of water on vessels prior to...

  12. 21 CFR 1250.83 - Storage of water prior to treatment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Storage of water prior to treatment. 1250.83... CONVEYANCE SANITATION Sanitation Facilities and Conditions on Vessels § 1250.83 Storage of water prior to treatment. The following requirements with respect to the storage of water on vessels prior to...

  13. 21 CFR 1250.83 - Storage of water prior to treatment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Storage of water prior to treatment. 1250.83... CONVEYANCE SANITATION Sanitation Facilities and Conditions on Vessels § 1250.83 Storage of water prior to treatment. The following requirements with respect to the storage of water on vessels prior to...

  14. Ground-water storage in the Johnson Valley area, San Bernardino, California

    USGS Publications Warehouse

    French, James J.

    1978-01-01

    The Mojave Water Agency includes several desert basins where ground water in storage is many times as great as the average annual recharge. The Johnson Valley area in San Bernardino County, Calif., was evaluated for (1) the quantity of ground water in storage, (2) the chemical quality of the ground water, and (3) the potential for storage of recharge water in the unsaturated zone. Johnson Valley contains about 250,000 acre-feet of water in storage, of which about half can be considered recoverable. About 250,000 acre-feet of void space in the unsaturated alluvium is available for storage of imported water, but not all of the recharged water could be recovered. The quality of the water in storage is satisfactory for public consumption, although water from some areas has high floride concentrations and should be mixed with water of low fluoride concentration. (Woodard-USGS)

  15. Replacement of tritiated water from irradiated fuel storage bay

    SciTech Connect

    Castillo, I.; Boniface, H.; Suppiah, S.; Kennedy, B.; Minichilli, A.; Mitchell, T.

    2015-03-15

    Recently, AECL developed a novel method to reduce tritium emissions (to groundwater) and personnel doses at the NRU (National Research Universal) reactor irradiated fuel storage bay (also known as rod or spent fuel bay) through a water swap process. The light water in the fuel bay had built up tritium that had been transferred from the heavy water moderator through normal fuel transfers. The major advantage of the thermal stratification method was that a very effective tritium reduction could be achieved by swapping a minimal volume of bay water and warm tritiated water would be skimmed off the bay surface. A demonstration of the method was done that involved Computational Fluid Dynamics (CFD) modeling of the swap process and a test program that showed excellent agreement with model prediction for the effective removal of almost all the tritium with a minimal water volume. Building on the successful demonstration, AECL fabricated, installed, commissioned and operated a full-scale system to perform a water swap. This full-scale water swap operation achieved a tritium removal efficiency of about 96%.

  16. Solar water-heating performance evaluation-San Diego, California

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Report describes energy saved by replacing domestic, conventional natural gas heater with solar-energy subsystem in single-family residence near San Diego, California. Energy savings for 6 month test period averaged 1.089 million Btu. Collector array covered 65 square feet and supplied hot water to both 66-gallon solar storage tank and 40-gallon tank for domestic use. Natural gas supplied house's auxiliary energy.

  17. SOLAR POWERED WATER COLLECTION, CONTAINMENT, AND SELF REGULATING DISTRIBUTION SYSTEM

    EPA Science Inventory

    In 2009, over 40 million pounds of Carbon Dioxide were released annually in an effort to water large planters. In addition, over 364 million gallons of water are used to maintain their health. By implementing a system within the planters that allows for onsite water storage wi...

  18. Storage and recycling of water in the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Bolfan-Casanova, N.

    2015-12-01

    Most natural samples originating from the mantle contain traces of water. It can be observed that water content varies laterally as a function of the geodynamic context, but also with depth in cratons. Basalts from mid-ocean ridges, which sample the convecting upper mantle, contain generally below 0.6 wt% H2O leading to 50-330 parts per million by weight in the source. Oceanic Islands Basalts are more hydrated with contents ranging from 0.6 to 1.1 wt%, leading to 350-1100 ppm wt H2O in the source. Arc basalts are even more hydrated with water contents ranging from 0.2 to 5-6 wt% H2O testifying of the recycling of water by subduction. Kimberlite magmas are also the proof that local saturation in volatiles is possible. Among xenoliths, the samples from cratons are very interesting because they may provide a depth profile of water. However, the variation of water content in olivine with depth differs from craton to craton, and is the result of a complex geological history. Also, olivine inclusions in diamond and olivine from peridotite xenoliths do not give the same message regarding to water activity. The water storage capacity of the mantle is defined as the maximum water or hydroxyl that can be incorporated in its constitutive minerals before a free fluid phase appears. It can be determined experimentally and confronted to geophysical observations, such as low seismic velocities, and electrical conductivity. In this talk we will review our current knowledge of water incorporation in NAMs as determined experimentally and compare it with available observations. New data concerning clinopyroxenes will be shown. The aim being to understand the deep water cycle.

  19. Criticality Safety Controls for 55-Gallon Drums with a Mass Limit of 200 grams Pu-239

    SciTech Connect

    Chou, P

    2011-12-14

    The following 200-gram Pu drum criticality safety controls are applicable to RHWM drum storage operations: (1) Mass (Fissile/Pu) - each 55-gallon drum or its equivalent shall be limited to 200 gram Pu or Pu equivalent; (2) Moderation - Hydrogen materials with a hydrogen density greater than that (0.133 g H/cc) of polyethylene and paraffin are not allowed and hydrogen materials with a hydrogen density no greater than that of polyethylene and paraffin are allowed with unlimited amounts; (3) Interaction - a spacing of 30-inches (76 cm) is required between arrays and 200-gram Pu drums shall be placed in arrays for 200-gram Pu drums only (no mingling of 200-gram Pu drums with other drums not meeting the drum controls associated with the 200-gram limit); (4) Reflection - no beryllium and carbon/graphite (other than the 50-gram waiver amount) is allowed, (note that Nat-U exceeding the waiver amount is allowed when its U-235 content is included in the fissile mass limit of 200 grams); and (5) Geometry - drum geometry, only 55-gallon drum or its equivalent shall be used and array geometry, 55-gallon drums are allowed for 2-high stacking. Steel waste boxes may be stacked 3-high if constraint.

  20. Climate, interseasonal storage of soil water, and the annual water balance

    USGS Publications Warehouse

    Milly, P.C.D.

    1994-01-01

    The effects of annual totals and seasonal variations of precipitation and potential evaporation on the annual water balance are explored. It is assumed that the only other factor of significance to annual water balance is a simple process of water storage, and that the relevant storage capacity is the plant-available water-holding capacity of the soil. Under the assumption that precipitation and potential evaporation vary sinusoidally through the year, it is possible to derive an analytic solution of the storage problem, and this yields an expression for the fraction of precipitation that evaporates (and the fraction that runs off) as a function of three dimensionless numbers: the ratio of annual potential evaporation to annual precipitation (index of dryness); an index of the seasonality of the difference between precipitation and potential evaporation; and the ratio of plant-available water-holding capacity to annual precipitation. The solution is applied to the area of the United States east of 105??W, using published information on precipitation, potential evaporation, and plant-available water-holding capacity as inputs, and using an independent analysis of observed river runoff for model evaluation. The model generates an areal mean annual runoff of only 187 mm, which is about 30% less than the observed runoff (263 mm). The discrepancy is suggestive of the importance of runoff-generating mechanisms neglected in the model. These include intraseasonal variability (storminess) of precipitation, spatial variability of storage capacity, and finite infiltration capacity of land. ?? 1994.

  1. Arctic terrestrial water storage changes from GRACE satellite estimates and a land surface hydrology model

    NASA Astrophysics Data System (ADS)

    Su, F.; Alsdorf, D.; Shumb, C.; Lettenmaier, D.

    2008-12-01

    Continental water storage plays a key role in the global hydrological cycle. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) satellite mission has provided a basis for estimating spatial and temporal variations of terrestrial water storage over areas order of 105 km2. These estimates show strong interseasonal and interannual variations in terrestrial water storage at high latitudes, which are attributable at least in part to the important role of snow water storage on the seasonal water cycle. Evaluation of the accuracy of the GRACE terrestrial water storage is complicated by the absence of direct observations of terrestrial water storage. Land surface hydrology models, forced with observations, provide an opportunity for evaluating GRACE estimates regionally and globally. In this study, the Variable Infiltration Capacity (VIC) land surface hydrology model, which calculates the land surface water and energy balance, is used to evaluate the GRACE over the pan-Arctic region. The VIC model is driven by ECMWF analysis fields, which have been shown to give comparable hydrologic results to gridded observations at high latitudes, and are available in near-real time. The VIC runs cover the GRACE period 2002-2007. The VIC calculated total terrestrial water storage changes over major Arctic river basins are compared with GRACE estimates. Storage components simulated by VIC including snow, soil moisture, lake/wetland storage, and stream storage changes are segregated from the VIC simulations, and the contributions of each of these components to seasonal and interannual variations in GRACE terrestrial water storage are analyzed.

  2. Heat pump water heater and storage tank assembly

    DOEpatents

    Dieckmann, John T.; Nowicki, Brian J.; Teagan, W. Peter; Zogg, Robert

    1999-09-07

    A water heater and storage tank assembly comprises a housing defining a chamber, an inlet for admitting cold water to the chamber, and an outlet for permitting flow of hot water from the chamber. A compressor is mounted on the housing and is removed from the chamber. A condenser comprises a tube adapted to receive refrigerant from the compressor, and winding around the chamber to impart heat to water in the chamber. An evaporator is mounted on the housing and removed from the chamber, the evaporator being adapted to receive refrigerant from the condenser and to discharge refrigerant to conduits in communication with the compressor. An electric resistance element extends into the chamber, and a thermostat is disposed in the chamber and is operative to sense water temperature and to actuate the resistance element upon the water temperature dropping to a selected level. The assembly includes a first connection at an external end of the inlet, a second connection at an external end of the outlet, and a third connection for connecting the resistance element, compressor and evaporator to an electrical power source.

  3. Hydrologic modeling of soil water storage in landfill cover systems

    SciTech Connect

    Barnes, F.J.; Rodgers, J.C.

    1987-01-01

    The accuracy of modeling soil water storage by two hydrologic models, CREAMS and HELP, was tested by comparing simulation results with field measurements of soil moisture in eight experimental landfill cover systems having a range of well-defined soil profiles and vegetative covers. Regression analysis showed that CREAMS generally represented soil moisture more accurately than HELP simulations. Soil profiles that more closely resembled natural agricultural soils were more accurately modeled than highly artificial layered soil profiles. Precautions for determining parameter values for model input and for interpreting simulation results are discussed.

  4. Large >60 gallon/day ‘pulse-tube’ oxygen liquefier for aircraft carriers

    NASA Astrophysics Data System (ADS)

    Spoor, P. S.

    2015-12-01

    An oxygen liquefier using a large ‘pulse-tube’ or acoustic-Stirling cryocooler is described, which has a liquefaction rate in excess of 60 gallons per day (227 liters per day) as measured by the increase in weight of a storage dewar, from <20 kWe input. Several of these systems will be deployed on U.S. Navy aircraft carriers to provide shipboard liquid oxygen. Paths to improvement in future systems are identified, although it is noted that since the present system exceeds the required specifications, these improvements may not be implemented in the near term.

  5. Assessment of economically optimal water management and geospatial potential for large-scale water storage

    NASA Astrophysics Data System (ADS)

    Weerasinghe, Harshi; Schneider, Uwe A.

    2010-05-01

    Assessment of economically optimal water management and geospatial potential for large-scale water storage Weerasinghe, Harshi; Schneider, Uwe A Water is an essential but limited and vulnerable resource for all socio-economic development and for maintaining healthy ecosystems. Water scarcity accelerated due to population expansion, improved living standards, and rapid growth in economic activities, has profound environmental and social implications. These include severe environmental degradation, declining groundwater levels, and increasing problems of water conflicts. Water scarcity is predicted to be one of the key factors limiting development in the 21st century. Climate scientists have projected spatial and temporal changes in precipitation and changes in the probability of intense floods and droughts in the future. As scarcity of accessible and usable water increases, demand for efficient water management and adaptation strategies increases as well. Addressing water scarcity requires an intersectoral and multidisciplinary approach in managing water resources. This would in return safeguard the social welfare and the economical benefit to be at their optimal balance without compromising the sustainability of ecosystems. This paper presents a geographically explicit method to assess the potential for water storage with reservoirs and a dynamic model that identifies the dimensions and material requirements under an economically optimal water management plan. The methodology is applied to the Elbe and Nile river basins. Input data for geospatial analysis at watershed level are taken from global data repositories and include data on elevation, rainfall, soil texture, soil depth, drainage, land use and land cover; which are then downscaled to 1km spatial resolution. Runoff potential for different combinations of land use and hydraulic soil groups and for mean annual precipitation levels are derived by the SCS-CN method. Using the overlay and decision tree algorithms

  6. Neutron Screening Measurements of 110 gallon drums at T Plant

    SciTech Connect

    Mozhayev, Andrey V.; Hilliard, James R.; Berg, Randal K.

    2011-01-14

    The Pacific Northwest National Laboratory (PNNL) Nondestructive Assay (NDA) Service Center was contracted to develop and demonstrate a simple and inexpensive method of assaying 110 gallon drums at the Hanford Site’s T-Plant. The drums contained pucks of crushed old drums used for storage of transuranic (TRU) waste. The drums were to be assayed to determine if they meet the criteria for TRU or Low Level Waste (LLW). Because of the dense matrix (crushed steel drums) gamma measurement techniques were excluded and a mobile, configurable neutron system, consisting of four sequentially connected slab detectors was chosen to be used for this application. An optimum measurement configuration was determined through multiple test measurements with californium source. Based on these measurements the initial calibration of the system was performed applying the isotopic composition for aged weapon-grade plutonium. A series of background and blank puck drum measurements allowed estimating detection limits for both total (singles) and coincidence (doubles) counting techniques. It was found that even conservative estimates for minimum detection concentration using singles count rate were lower than the essential threshold of 100 nCi/g. Whereas the detection limit of coincidence counting appeared to be about as twice as high of the threshold. A series of measurements intended to verify the technique and revise the initial calibration obtained were performed at the Waste Receiving and Processing (WRAP) facility with plutonium standards. Standards with a total mass of 0.3 g of plutonium (which is estimated to be equivalent of 100 nCi/g for net waste weight of 300 kg) loaded in the test puck drum were clearly detected. The following measurements of higher plutonium loadings verified the calibration factors obtained in the initial exercise. The revised and established calibration factors were also confirmed within established uncertainties by additional measurements of plutonium

  7. Following the Water: A Controlled Study of Drinking Water Storage in Northern Coastal Ecuador

    PubMed Central

    Levy, Karen; Nelson, Kara L.; Hubbard, Alan; Eisenberg, Joseph N.S.

    2008-01-01

    Background To design the most appropriate interventions to improve water quality and supply, information is needed to assess water contamination in a variety of community settings, including those that rely primarily on unimproved surface sources of drinking water. Objectives We explored the role of initial source water conditions as well as household factors in determining household water quality, and how levels of contamination of drinking water change over time, in a rural setting in northern coastal Ecuador. Methods We sampled source waters concurrently with water collection by household members and followed this water over time, comparing Escherichia coli and enterococci concentrations in water stored in households with water stored under controlled conditions. Results We observed significant natural attenuation of indicator organisms in control containers and significant, although less pronounced, reductions of indicators between the source of drinking water and its point of use through the third day of sampling. These reductions were followed by recontamination in approximately half of the households. Conclusions Water quality improved after water was transferred from the source to household storage containers, but then declined because of recontamination in the home. Our experimental design allowed us to observe these dynamics by controlling for initial source water quality and following changes in water quality over time. These data, because of our controlled experimental design, may explain why recontamination has been reported in the literature as less prominent in areas or households with highly contaminated source waters. Our results also suggest that efforts to improve source water quality and sanitation remain important. PMID:19057707

  8. Fractal behavior of soil water storage at multiple depths

    NASA Astrophysics Data System (ADS)

    Ji, Wenjun; Lin, Mi; Biswas, Asim; Si, Bing C.; Chau, Henry W.; Cresswell, Hamish P.

    2016-08-01

    Spatiotemporal behavior of soil water is essential to understand the science of hydrodynamics. Data intensive measurement of surface soil water using remote sensing has established that the spatial variability of soil water can be described using the principle of self-similarity (scaling properties) or fractal theory. This information can be used in determining land management practices provided the surface scaling properties are kept at deep layers. The current study examined the scaling properties of sub-surface soil water and their relationship to surface soil water, thereby serving as supporting information for plant root and vadose zone models. Soil water storage (SWS) down to 1.4 m depth at seven equal intervals was measured along a transect of 576 m for 5 years in Saskatchewan. The surface SWS showed multifractal nature only during the wet period (from snowmelt until mid- to late June) indicating the need for multiple scaling indices in transferring soil water variability information over multiple scales. However, with increasing depth, the SWS became monofractal in nature indicating the need for a single scaling index to upscale/downscale soil water variability information. In contrast, all soil layers during the dry period (from late June to the end of the growing season in early November) were monofractal in nature, probably resulting from the high evapotranspirative demand of the growing vegetation that surpassed other effects. This strong similarity between the scaling properties at the surface layer and deep layers provides the possibility of inferring about the whole profile soil water dynamics using the scaling properties of the easy-to-measure surface SWS data.

  9. Evaluation of power generation operations in response to changes in surface water reservoir storage

    NASA Astrophysics Data System (ADS)

    Stillwell, Ashlynn S.; Webber, Michael E.

    2013-06-01

    We used a customized, river basin-based model of surface water rights to evaluate the response of power plants to drought via simulated changes in reservoir storage. Our methodology models surface water rights in 11 river basins in Texas using five cases: (1) storage decrease of existing capacity of 10%, (2) storage decrease of 50%, (3) complete elimination of storage, (4) storage increase of 10% (all at existing locations), and (5) construction of new reservoirs (at new locations) with a total increase in baseline reservoir capacity for power plant cooling of 9%. Using the Brazos River basin as a sample, we evaluated power generation operations in terms of reliability, resiliency, and vulnerability. As simulated water storage decreases, reliability generally decreases and resiliency and vulnerability remain relatively constant. All three metrics remain relatively constant with increasing reservoir storage, with the exception of one power plant. As reservoir storage changes at power plants, other water users in the basin are also affected. In general, decreasing water storage is beneficial to other water users in the basin, and increasing storage is detrimental for many other users. Our analysis reveals basin-wide and individual power plant-level impacts of changing reservoir storage, demonstrating a methodology for evaluation of the sustainability and feasibility of constructing new reservoir storage as a water and energy management approach.

  10. Acceleration of terrestrial water storage changes from GRACE data

    NASA Astrophysics Data System (ADS)

    Ogawa, R.; Chao, B. F.; Heki, K.

    2008-12-01

    Gravity Recovery and Climate Experiment (GRACE) satellite has been producing scientific results on mass variations since its launch in 2002, particularly land water storage on seasonal and inter-annual timescales as the soil moisture reflects the time integration of fluxes of precipitation, evapo-transpiration and runoff. For example, in Amazon Basin (e.g. Tapley et al., 2004), Alaska glacial melting (e.g. Tamisiea et al., 2005), ENSO precipitation anomalies (Morishita and Heki, 2008), and seasonal land water storage with global hydrological model (Syed et al., 2008). If climate changes have trends of time scale longer than inter-annual, we can expect to see quadratic trends in land water time series now that over six years have passed since GRACE"fs launch and the time span is becoming long enough to study such trends, which signify the temporal acceleration in gravity, and hence climatic, changes. To look for such accelerations, we compute time series of equivalent water thicknesses in global land regions from monthly GRACE data of gravity anomaly, and model the changes with quadratic functions in addition to seasonal components. We repeat similar calculations for the GLDAS global hydrological model data as well. We found that the geographic distribution of the quadratic trends shows good agreement between GRACE and GLDAS, prominent in East Africa, East Europe, Ural Mountains, eastern North America and southern South America. Amplitudes of the signals are generally larger in GRACE than the corresponding GLDAS model. We also compare and verify such acceleration terms with trends in meteorological data of precipitation and evapo-transpiration.

  11. GRACE water storage estimates for the Middle East and other regions with significant reservoir and lake storage

    NASA Astrophysics Data System (ADS)

    Longuevergne, L.; Wilson, C. R.; Scanlon, B. R.; Crétaux, J. F.

    2013-12-01

    While GRACE (Gravity Recovery and Climate Experiment) satellites are increasingly being used to monitor total water storage (TWS) changes globally, the impact of spatial distribution of water storage within a basin is generally ignored but may be substantial. In many basins, water is often stored in reservoirs or lakes, flooded areas, small aquifer systems, and other localized regions with areas typically below GRACE resolution (~200 000 km2). The objective of this study was to assess the impact of nonuniform water storage distribution on GRACE estimates of TWS changes as basin-wide averages, focusing on surface water reservoirs and using a priori information on reservoir storage from radar altimetry. Analysis included numerical experiments testing effects of location and areal extent of the localized mass (reservoirs) within a basin on basin-wide average water storage changes, and application to the lower Nile (Lake Nasser) and Tigris-Euphrates basins as examples. Numerical experiments show that by assuming uniform mass distribution, GRACE estimates may under- or overestimate basin-wide average water storage by up to a factor of ~2, depending on reservoir location and areal extent. Although reservoirs generally cover less than 1% of the basin area, and their spatial extent may be unresolved by GRACE, reservoir storage may dominate water storage changes in some basins. For example, reservoir storage accounts for ~95% of seasonal water storage changes in the lower Nile and 10% in the Tigris-Euphrates. Because reservoirs are used to mitigate droughts and buffer against climate extremes, their influence on interannual timescales can be large. For example, TWS decline during the 2007-2009 drought in the Tigris-Euphrates basin measured by GRACE was ~93 km3. Actual reservoir storage from satellite altimetry was limited to 27 km3, but their apparent impact on GRACE reached 45 km3, i.e., 50% of GRACE trend. Therefore, the actual impact of reservoirs would have been greatly

  12. 40 CFR 141.714 - Requirements for uncovered finished water storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... water storage facilities. 141.714 Section 141.714 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Treatment for Cryptosporidium Treatment Technique Requirements § 141.714 Requirements for uncovered...

  13. 40 CFR 141.714 - Requirements for uncovered finished water storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... water storage facilities. 141.714 Section 141.714 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Treatment for Cryptosporidium Treatment Technique Requirements § 141.714 Requirements for uncovered...

  14. 27 CFR 30.65 - Table 5, showing the weight per wine gallon (at 60 degrees Fahrenheit) and proof gallon at each...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...: 6.79434×100 equals 679.43 pounds, net weight of 100 wine gallons of 190 proofs spirits. Example. It....60 pounds, net weight of 100 proof gallons of 190 proof spirits. The slight variation between...

  15. WATER PUMP HOUSE, TRA619, AND TWO WATER STORAGE RESERVOIRS. INDUSTRIAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WATER PUMP HOUSE, TRA-619, AND TWO WATER STORAGE RESERVOIRS. INDUSTRIAL WINDOWS AND COPING STRIPS AT TOP OF WALLS AND ENTRY VESTIBULE. BOLLARDS PROTECT UNDERGROUND FACILITIES. SWITCHYARD AT RIGHT EDGE OF VIEW. CARD IN LOWER RIGHT WAS INSERTED BY INL PHOTOGRAPHER TO COVER AN OBSOLETE SECURITY RESTRICTION PRINTED ON ORIGINAL NEGATIVE. INL NEGATIVE NO. 3816. Unknown Photographer, 11/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  16. Relationship of regional water quality to aquifer thermal energy storage

    SciTech Connect

    Allen, R.D.

    1983-11-01

    Ground-water quality and associated geologic characteristics may affect the feasibility of aquifer thermal energy storage (ATES) system development in any hydrologic region. This study sought to determine the relationship between ground-water quality parameters and the regional potential for ATES system development. Information was collected from available literature to identify chemical and physical mechanisms that could adversely affect an ATES system. Appropriate beneficiation techniques to counter these potential geochemical and lithologic problems were also identified through the literature search. Regional hydrology summaries and other sources were used in reviewing aquifers of 19 drainage regions in the US to determine generic geochemical characteristics for analysis. Numerical modeling techniques were used to perform geochemical analyses of water quality from 67 selected aquifers. Candidate water resources regions were then identified for exploration and development of ATES. This study identified six principal mechanisms by which ATES reservoir permeability may be impaired: (1) particulate plugging, (2) chemical precipitation, (3) liquid-solid reactions, (4) formation disaggregation, (5) oxidation reactions, and (6) biological activity. Specific proven countermeasures to reduce or eliminate these effects were found. Of the hydrologic regions reviewed, 10 were identified as having the characteristics necessary for ATES development: (1) Mid-Atlantic, (2) South-Atlantic Gulf, (3) Ohio, (4) Upper Mississippi, (5) Lower Mississippi, (6) Souris-Red-Rainy, (7) Missouri Basin, (8) Arkansas-White-Red, (9) Texas-Gulf, and (10) California.

  17. Evaluation of potential sources of water in Crater Lake Natonal Park, Oregon

    USGS Publications Warehouse

    Hampton, E.R.

    1967-01-01

    In the northern part of the park, where there are no springs or streams, artificial catchment aprons and storage facilities could be constructed to provide water to points of use. A 100- by 100-foot catchment apron and suitably sized storage tank could provide as much as 1,850 gallons per day for 120 days.

  18. Ground-water recharge to and storage in the regolith-fractured crystalline rock aquifer system, Guilford County, North Carolina

    USGS Publications Warehouse

    Daniel, C. C., III; Harned, D.A.

    1998-01-01

    Quantitative information concerning recharge rates to aquifers and ground water in storage is needed to manage the development of ground- water resources. The amount of ground water available from the regolith-fractured crystalline rock aquifer system in Guilford County, North Carolina, is largely unknown. If historical patterns seen throughout the Piedmont continue into the future, the number of ground- water users in the county can be expected to increase. In order to determine the maximum population that can be supplied by ground water, planners and managers of suburban development must know the amount of ground water that can be withdrawn without exceeding recharge and(or) overdrafting water in long-term storage. Results of the study described in this report help provide this information. Estimates of seasonal and long-term recharge rates were estimated for 15 selected drainage basins and subbasins using streamflow data and an anlytical technique known as hydrograph separation. Methods for determining the quantity of ground water in storage also are described. Guilford County covers approximately 658 square miles in the central part of the Piedmont Province. The population of the county in 1990 was about 347,420; approximately 21 percent of the population depends on ground water as a source of potable supplies. Ground water is obtained from wells tapping the regolith-fractured crystalline rock aquifer system that underlies all of the county. Under natural conditions, recharge to the ground-water system in the county is derived from infiltration of precipitation. Ground-water recharge from precipitation cannot be measured directly; however, an estimate of the amount of precipitation that infiltrates into the ground and ultimately reaches the streams of the region can be determined by the technique of hydrograph separation. Data from 19 gaging stations that measure streamflow within or from Guilford County were analyzed to produce daily estimates of ground-water

  19. Informing Hydrological Drought Response in Headwater Catchments Using Water Storage Estimated From GRACE: Storage-Flow Dynamics

    NASA Astrophysics Data System (ADS)

    Gaffney, R.; Tyler, S. W.; Harpold, A. A.; Volk, J. M.

    2015-12-01

    Quantifying the relationship between subsurface water storage and streamflow is challenging due to heterogeneity of surface-groundwater interactions in space and time. Hence, point measurements of storage from wells are insufficient to characterize the storage across a catchment, especially in mountainous environments with complex geology. Here, we present a novel approach to quantify the storage-flow relationship for catchments in the Sierra Nevada Mountains. For 23 gages in the Hydro-Climatic Data Network, the 7-day average annual minimum flow (drought flow) was computed for years 2003 to 2015. We then aggregated, for each gage, the associated storage time-series dataset from 1o gridded measurements of monthly Terrestrial Water Storage (TWS) derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. Despite the significant mismatch between the spatial scales and temporal resolution, we found a strong empirical correlation between TWS and drought flow. From these relationships, we examined how physical characteristics of each catchment (such as size and geology) impact the observed nonlinear relationship between TWS and drought flow. Furthermore, we show how physical characteristics, such as geology/storage capacity, of catchments affect the sensitivity of decreasing flows to multi-year droughts. This research has the potential to help better quantify the streamflow-storage relationship in small mountainous catchments, as well as, classify catchments that may be more vulnerable to decreasing flows with multi-year droughts.

  20. Experimentally determined water storage capacity in the Earth's upper mantle

    NASA Astrophysics Data System (ADS)

    Ferot, A.; Bolfan-Casanova, N.

    2010-12-01

    Trace amounts of hydrogen dissolved as defects in nominally anhydrous minerals (NAMs) in the mantle are believed to play a key role in physical and chemical processes in the Earth’s upper mantle. Hence, the estimation of water storage in mantle phases and solubility mechanisms are important in order to better understand the effect of water. Experimental data on water solubility in NAMs are available for upper mantle minerals such as olivine, pyroxenes and garnet. However, the majority of studies are based on the study of single phases, and at temperatures or pressures that are too low for the Earth’s upper mantle. The aim of this study is to constrain the combined effects of pressure, temperature and composition on water solubility in olivine and orthopyroxene under upper mantle conditions. The solubility of water in coexisting orthopyroxene and olivine was investigated by simultaneously synthesizing the two phases at high pressure and high temperature in a multi-anvil press. Experiments were performed under water-saturated conditions in the MSH systems with Fe and Al at 2.5, 5, 7.5 and 9 GPa and temperatures between 1175 and 1400°C. Integrated OH absorbances were determined using polarized infrared spectroscopy on doubly polished thin sections of randomly oriented crystals. Water solubility in olivine increases with pressure and decreases with temperature as has been described previously (Bali et al., 2008). The aluminum content strongly decreases in olivine with pressure from 0.09 wt% at 2.5 GPa and 1250°C to 0.04 wt% at 9 GPa and 1175°C. The incorporation of this trivalent cation in the system enhances water solubility in olivine even if present in trace amounts, however this behavior appears to reverse at high pressure. The effect of temperature on water solubility follows a bell-shaped curve with a maximum solubility in olivine and orthopyroxene at 1250°C. Aluminum is incorporated in orthopyroxene following the Tschermak substitution and strongly

  1. GRACE water storage estimates for the Middle East and other regions with significant reservoir and lake storage

    NASA Astrophysics Data System (ADS)

    Longuevergne, L.; Wilson, C. R.; Scanlon, B. R.; Crétaux, J. F.

    2012-10-01

    While GRACE (Gravity Recovery and Climate Experiment) satellites are increasingly being used to monitor water storage changes globally, the impact of spatial distribution of water storage within a basin is generally ignored but may be substantial. In many basins, water may be stored in reservoirs, lakes, flooded areas, small aquifer systems, and other localized regions with sizes typically below GRACE resolution. The objective of this study was to assess the impact of non-uniform water storage distribution on GRACE estimates as basin-wide averages, focusing on surface water reservoirs. Analysis included numerical experiments testing the effect of mass size and position within a basin, and application to the Lower Nile (Lake Nasser) and Tigri-Euphrates (TE) basins as examples. Numerical experiments show that by assuming uniform mass distribution, GRACE estimates may under- or over-estimate basin-average water storage by up to a factor of two, depending on reservoir location and extent. Although their spatial extent may be unresolved by GRACE, reservoir storage may dominate in some basins. For example, it accounts for 95% of seasonal variations in the Lower Nile and 10% in the TE basins. Because reservoirs are used to mitigate droughts and buffer against climate extremes, their influence on interannual time scales can be large, for example accounting for 50% of total water storage decline during the 2007-2009 drought in the TE basin. Effects on GRACE estimates are not easily accounted for via simple multiplicative scaling, but in many cases independent information may be available to improve estimates. Accurate estimation of the reservoir contribution is critical, especially when separating groundwater from GRACE total water storage changes. Because the influence of spatially concentrated water storage - and more generally water distribution - is significant, GRACE estimates will be improved when it is possible to combine independent spatial distribution information

  2. Solar Space and Water Heating for Hospital --Charlottesville, Virginia

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Solar heating system described in an 86-page report consists of 88 single-glazed selectively-coated baseplate collector modules, hot-water coils in air ducts, domestic-hot-water preheat tank, 3,000 Gallon (11,350-1) concrete urethane-insulated storage tank and other components.

  3. Water depression storage under different tillage conditions: measuring and modelling

    NASA Astrophysics Data System (ADS)

    Giménez, R.; Campo, M. A.; González-Audicana, M.; Álvarez-Mozos, J.; Casalí, J.

    2012-04-01

    Water storage in surface depressions (DS) is an important process which affects infiltration, runoff and erosion. Since DS is driven by micro relief, in agricultural soils DS is much affected by tillage and by the direction of tillage rows in relation to the main slope. A direct and accurate measurement of DS requires making the soil surface waterproof -soil is very permeable especially under tillage- but preserving all details of the soil roughness including aggregates over the soil surface (micro-roughness). All this is a very laborious and time-consuming task. That is why hydrological and erosion models for DS estimation normally use either empirical relationships based on some roughness index or numerical approaches. The aim of this work was (i) to measure directly in the field the DS of a soil under different tillage conditions and (ii) to assess the performance of existing empirical 2D models and of a numerical 2D algorithm for DS estimation. Three types of tillage classes (mouldbard+roller, roller compacted and chisel) in 2 tillage directions (parallel and perpendicular to the main slope) were assessed in an experimental hillslope (10% slope) which defines then 6 treatments. Experiments were carried out in 12, 1-m2 micro-plots delimited by metal sheets; that is, a pair of repetitions for each treatment. In each plot, soil surface was gently impregnated with a waterproof, white paint but without altering micro-roughness. A known amount of water (stained with a blue dye) was poured all over the surface with a measuring cup. The excess water was captured in a gutter and measured. Soon after finishing the experiment, pictures of the surface was taken in order to analyze water storage pattern (from stained water) by image processing. Besides, longitudinal height profiles were measured using a laser profilemeter. Finally, infiltration rate was measured near the plot using a double ring infiltrometer. For all the treatments, DS ranged from 2 mm to 17 mm. For the

  4. Linking Nitrate Uptake and Water Storage in an Antarctic Stream

    NASA Astrophysics Data System (ADS)

    Koch, J. C.; McKnight, D. M.; Baeseman, J.

    2007-12-01

    A nitrate enrichment experiment was performed in Huey Creek, a glacial meltwater stream in the McMurdo Dry Valleys of Antarctica, to determine processes responsible for nitrate loss in a polar desert stream with no visible vegetation. Streamflow in Huey follows a diel cycle, resulting in temporal and spatial variability in two separate storage areas - a near-stream and far-lateral hyporheic zone. Near-stream hyporheic exchange occurred in only one of four monitored stream reaches, with a mean uptake rate of 0.042 umol N/m2/hr. Uptake rates could not be balanced by nitrite, ammonium, and nitrous oxide production, suggesting the importance of biomass as a source and sink of nitrogen. During high flows, nitrate loss is accompanied by a pulse of ammonium that accounts for an average of 42% of the total nitrate loss. Ammonium production is 4.4 times greater than nitrate loss during one hour of the flood, providing further evidence that nitrogen has been stored in the subsurface biomass, and is mineralized as a result of the fresh water penetrating the hyporheic zone. Properties of the far-lateral hyporheic zone were also flow-dependent. Exchange from stream to subsurface occurred during floods, when anabranches moved water laterally across the channel banks. Exchange back to the stream occurred with the recession of flood stage. Pulses of nitrate species downstream of this storage zone suggest significant denitrification in this far-lateral hyporheic zone. The first flood recession plume consisted mainly of nitrite, while the second was dominated by ammonium, suggesting a greater amount of denitrification in the second pulse. Both pulses were accompanied by high quantities of DOC (121 and 287% of mean background mass, respectively) - an unexpected result in this carbon-limited system. These results highlight the linkage between water and desert ecosystems, and challenge researchers to understand both spatial and temporal variability in potential ecological hotspots and

  5. Tree invasion effects on peat water storage capacity (La Guette peatland, France)

    NASA Astrophysics Data System (ADS)

    Binet, Stephane; Viel, Emelie; Gogo, Sebastien; Le Moing, Franck; Laggoun-Defarge, Fatima

    2015-04-01

    In peatlands, carbon fluxes are mainly controlled by peat water saturation state, and this saturation state is an equilibrium between recharge/drainage fluxes and the peat storage capacity. The invasion of Sphagnum peatlands by vascular plants is a current problem in many peat-accumulating systems, raising the question of the relationships between vegetation changes and water storage capacity of peat horizons. To investigate this question, the water storage capacity of the "La Guette" peatland (France), invaded by Betula spp was monitored at the watershed scale since 2008 using a water balance approach and was estimated during the 20th century using historical photographs showing the drainage network and the land cover change. During this period, the site clearly experienced a vegetation change as the site was treeless in 1944. Two main results arise from this experimental device: (1) In this disturbed peatland, tree consumption amplifies the summer drought and the resulting water table drawdown allows an increase of air entrapment in the peat. Even if runoff flows occurred after this drought, the water storage capacity is affected, with about 30% of air that remains trapped in the peat porosity 6 months after the drought period. The effects of a single drought on peat water storage capacity are observed over more than a single hydrological cycle, suggesting a possible cumulative effect of droughts decreasing the peat water storage capacity. (2) Tree invasion is found to drive the drainage network morphology. Hydrological model calibrated for the study site suggested that the development of drainage network had reduced the water storage capacity of the peatland. These observations evidenced a positive feedback between vegetation dynamics and water storage capacity: tree invasion changes the drainage network geometry that decreases the peat water storage capacity, which in return may favor tree development. These two results highlight that the peat water storage

  6. Analysis of Large- Capacity Water Heaters in Electric Thermal Storage Programs

    SciTech Connect

    Cooke, Alan L.; Anderson, David M.; Winiarski, David W.; Carmichael, Robert T.; Mayhorn, Ebony T.; Fisher, Andrew R.

    2015-03-17

    This report documents a national impact analysis of large tank heat pump water heaters (HPWH) in electric thermal storage (ETS) programs and conveys the findings related to concerns raised by utilities regarding the ability of large-tank heat pump water heaters to provide electric thermal storage services.

  7. Variability in land water storage from GRACE and ENVISAT, and rainfall in South American river basins

    NASA Astrophysics Data System (ADS)

    Xavier, L.; Cazenave, A.; Bonnet, M.; Rotunno, O.

    2008-12-01

    Previous work has demonstrated the capability of GRACE to capture important aspects of the hydrological cycle, in particular seasonal and interannual fluctuations in land water storage of large river basins. Part of this behaviour can be immediately assigned to seasonal/interannual fluctuations of precipitation. In this study, we investigate existing correlations between GRACE water storage (two GRACE products are used and compared, the GRGS and GSFC/Mascons solutions), ENVISAT-based surface water levels and precipitation data over four large river basins of South America (Orinoco, Amazon, Tocantins and Parana). At the seasonal time scale, precipitation and total water storage correlate well in the Parana basin, with a few weeks lag of storage with respect to forcing. Over the Amazon, Tocantins and Orinoco, the two variables also correlate well. But in some years, storage response to forcing is enhanced, suggesting that other terms of the water balance (e.g., runoff) play a significant role. To investigate this, discharge data at the most downstream stations in these river basins are analysed, while the water balance is studied using outputs of global hydrological models available over the same time span as GRACE data. We also analyse water level data from ENVISAT altimetry over the main rivers. Finally, we study the interannual connection between rainfall and water storage, using among others, Empirical Orthogonal Functions (EOF). Compared to the seasonal cycle, the interannual signal displays larger regional variability both in precipitation and water storage.

  8. Solar process water heat for the IRIS images custom color photo lab

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar facility located at a custom photo laboratory in Mill Valley, California is described. It was designed to provide 59 percent of the hot water requirements for developing photographic film and domestic hot water use. The design load is to provide 6 gallons of hot water per minute for 8 hours per working day at 100 F. It has 640 square feet of flat plate collectors and 360 gallons of hot water storage. The auxillary back up system is a conventional gas-fired water heater. Site and building description, subsystem description, as-built drawings, cost breakdown and analysis, performance analysis, lessons learned, and the operation and maintenance manual are presented.

  9. GRACE, GLDAS and measured groundwater data products show water storage loss in Western Jilin, China.

    PubMed

    Moiwo, Juana Paul; Lu, Wenxi; Tao, Fulu

    2012-01-01

    Water storage depletion is a worsening hydrological problem that limits agricultural production in especially arid/semi-arid regions across the globe. Quantifying water storage dynamics is critical for developing water resources management strategies that are sustainable and protective of the environment. This study uses GRACE (Gravity Recovery and Climate Experiment), GLDAS (Global Land Data Assimilation System) and measured groundwater data products to quantify water storage in Western Jilin (a proxy for semi-arid wetland ecosystems) for the period from January 2002 to December 2009. Uncertainty/bias analysis shows that the data products have an average error <10% (p < 0.05). Comparisons of the storage variables show favorable agreements at various temporal cycles, with R(2) = 0.92 and RMSE = 7.43 mm at the average seasonal cycle. There is a narrowing soil moisture storage change, a widening groundwater storage loss, and an overall storage depletion of 0.85 mm/month in the region. There is possible soil-pore collapse, and land subsidence due to storage depletion in the study area. Invariably, storage depletion in this semi-arid region could have negative implications for agriculture, valuable/fragile wetland ecosystems and people's livelihoods. For sustainable restoration and preservation of wetland ecosystems in the region, it is critical to develop water resources management strategies that limit groundwater extraction rate to that of recharge rate. PMID:22508123

  10. Heat transfer characteristics of a high temperature sensible heat storage water heater using cast iron as a storage material

    SciTech Connect

    Jotshi, C.K.; Goswami, D.Y.; Klausner, J.F.; Hsieh, C.K.; Leung, M.; Li, H.; Malakar, S.; Colacino, F.

    1996-12-31

    This paper describes the heat transfer characteristics of high temperature sensible heat storage in cast iron for water heating applications. An experimental setup consisting of a cast iron cylinder and a tube running through its center was fabricated and tested. The experimental data were compared with the theoretical model. It was observed that the contact resistance between the cast iron and the tube plays a dominant role in extracting the heat. An approximate contact resistance prediction was obtained by assuming the resistance due to the air gap modulated by a correction factor, which accounts for the contacting surface area. Based on the results from the experimental setup and theoretical modeling a prototype storage water heater using cast iron blocks as the storage material was designed, fabricated and tested.

  11. Measuring water storage fluctuations in lake Dongting, China, by Topex/Poseidon satellite altimetry.

    PubMed

    Zhang, Jiqun; Xu, Kaiqin; Yang, Yonghui; Qi, Lianhui; Hayashi, Seiji; Watanabe, Masataka

    2006-04-01

    Although satellite radar altimetry was developed and optimized for open oceans, it has been used to monitor variations in the level of inland water-bodies such as lakes and rivers. Here, for the first time, we have further used the altimetry-derived variation of water level for estimating the fluctuation of water storage as an addition to the present in situ water storage estimation systems to be used in remote areas and in emergency situation such as in the events flooding monitoring and for studying the effect of climate change. Lake Dongting, the second largest lake in China, influenced frequently by flooding, was, therefore, chosen to demonstrate the potential of the technique. By using the concept of an "assumed reference point", we converted Topex/Poseidon satellite altimetry data on water level variations in Lake Dongting to "water level" data. The "water level" time-series data and in situ water storage were used to establish a rating curve. From the rating curve, we converted data on "water level" derived from seven years (1993-1999) of Topex/Poseidon data to actual water storage in Lake Dongting. The result reveals that the seasonal and annual fluctuations of water storage occurred during the 1990s with a more frequent flooding at the late 1990s' especially the flooding in whole catchment level in 1998 and 1999. The study supports the usefulness of satellite altimetry for dense and continuous monitoring of the temporal variations in water dynamic in moderate to large lakes. PMID:16502025

  12. 27 CFR 31.36 - Sales of 20 wine gallons (75.7 liters) or more.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Sales of 20 wine gallons... to This Part Dealers Classified § 31.36 Sales of 20 wine gallons (75.7 liters) or more. Any person who sells or offers for sale distilled spirits, wines, or beer, in quantities of 20 wine gallons...

  13. Toxicity testing results on increased supernate treatment rate of 3700 gallons/batch. Revision 1

    SciTech Connect

    Pickett, J.B.; Martin, H.L.; Diener, G.A.

    1992-07-06

    In July, 1991, Reactor Materials increased the supernate treatment concentration in the M-Area Dilute Effluent Treatment Facility from 2700 gallons of supernate per 36000 gallon dilute wastewater batch to 3700 gallons/batch. This report summarizes the toxicity testing on the effluents of the increased treatment rate.(JL)

  14. Toxicity testing results on increased supernate treatment rate of 3700 gallons/batch

    SciTech Connect

    Pickett, J.B.; Martin, H.L.; Diener, G.A.

    1992-07-06

    In July, 1991, Reactor Materials increased the supernate treatment concentration in the M-Area Dilute Effluent Treatment Facility from 2700 gallons of supernate per 36000 gallon dilute wastewater batch to 3700 gallons/batch. This report summarizes the toxicity testing on the effluents of the increased treatment rate.(JL)

  15. 7 CFR 160.92 - Meaning of word “gallon.”

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Meaning of word âgallon.â 160.92 Section 160.92... STANDARDS FOR NAVAL STORES Labeling, Advertising and Packing § 160.92 Meaning of word “gallon.” The word... invoice referring to spirits of turpentine in containers of 10 gallons content or less, shall mean...

  16. 7 CFR 160.92 - Meaning of word “gallon.”

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Meaning of word âgallon.â 160.92 Section 160.92... STANDARDS FOR NAVAL STORES Labeling, Advertising and Packing § 160.92 Meaning of word “gallon.” The word... invoice referring to spirits of turpentine in containers of 10 gallons content or less, shall mean...

  17. Relating GRACE terrestrial water storage variations to global fields of atmospheric forcing

    NASA Astrophysics Data System (ADS)

    Humphrey, Vincent; Gudmundsson, Lukas; Isabelle Seneviratne, Sonia

    2015-04-01

    Synoptic, seasonal and inter-annual fluctuations in atmospheric dynamics all influence terrestrial water storage, with impacts on ecosystems functions, human activities and land-climate interactions. Here we explore to which degree atmospheric variables can explain GRACE estimates of terrestrial water storage on different time scales. Since 2012, the most recent GRACE gravity field solutions (Release 05) can be used to monitor global changes in terrestrial water storage with an unprecedented level of accuracy over more than a decade. In addition, the release of associated gridded and post-processed products facilitates comparisons with other global datasets such as land surface model outputs or satellite observations. We investigate how decadal trends, inter-annual fluctuations as well as monthly anomalies of the seasonal cycle of terrestrial water storage can be related to fields of atmospheric forcing, including e.g. precipitation and temperature as estimated in global reanalysis products using statistical techniques. In the majority of the locations with high signal to noise ratio, both short and long-term fluctuations of total terrestrial water storage can be reconstructed to a large degree based on available atmospheric forcing. However, in some locations atmospheric forcing alone is not sufficient to explain the total change in water storage, suggesting strong influence of other processes. Within that framework, the question of an amplification or attenuation of atmospheric forcing through land-surface feedbacks and changes in long term water storage is discussed, also with respect to uncertainties and potential systematic biases in the results.

  18. Potential for using the Upper Coachella Valley ground-water basin, California, for storage of artificially recharged water

    USGS Publications Warehouse

    Mallory, Michael J.; Swain, Lindsay A.; Tyley, Stephen J.

    1980-01-01

    This report presents a preliminary evaluation of the geohydrologic factors affecting storage of water by artificial recharge in the upper Coachella Valley, Calif. The ground-water basin of the upper Coachella Valley seems to be geologically suitable for large-scale artificial recharge. A minimum of 900 ,000 acre-feet of water could probably be stored in the basin without raising basinwide water levels above those that existed in 1945. Preliminary tests indicate that a long-term artificial recharge rate of 5 feet per day may be feasible for spreading grounds in the basin if such factors as sediment and bacterial clogging can be controlled. The California Department of Water Resources, through the Future Water Supply Program, is investigating the use of ground-water basins for storage of State Water Project water in order to help meet maximum annual entitlements to water project contractors. (USGS)

  19. Water-quality monitoring and studies of the formation and fate of trihalomethanes during the third injection, storage and recovery test at Lancaster, Antelope Valley, California, March 1998 through April 1999

    USGS Publications Warehouse

    Fram, Miranda S.; Berghouse, Joshua K.; Bergamaschi, Brian A.; Fujii, Roger; Goodwin, Kelly D.; Clark, Jordan F.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Los Angeles County Department of Public Works and the Antelope Valley-East Kern Water Agency, conducted three cycles of injection, storage, and recovery tests to evaluate the feasibility of artificially recharging ground water in the Lancaster area of Antelope Valley, California. During the third cycle (March 1998 through April 1999), the tests included investigations of the formation and fate of trihalomethanes in the aquifer. Trihalomethanes are disinfection by-products formed by reaction between natural dissolved organic carbon that is present in water and chlorine that is added during the drinking-water-treatment process. This report includes a discussion of the design of the investigation; descriptions of the sampling, analytical, and experimental methods used in the investigation; and a presentation of the data collected. During the third cycle, 60 million gallons of chlorinated water was injected into the aquifer through well 7N/12W-27P2 in the Los Angeles County Department of Public Works well field in Lancaster between April 15 and June 16, 1998. One hundred fifty million gallons of water was extracted from the same well between June 30, 1998, and April 29, 1999. Water-quality samples were collected during the entire cycle from the well and from a nearby set of nested piezometers, and were analyzed for residual chlorine, dissolved organic carbon, trihalomethane, major anion, and dissolved solid concentrations; ultraviolet absorbance spectra; and a number of field water-quality parameters. A statistical analysis was done to evaluate the analytical precision of the residual chlorine, dissolved organic carbon, trihalomethane, and ultraviolet absorbance measurements on these samples. The formation of trihalomethanes in the injection water was examined in laboratory experiments: Trihalomethane concentrations in samples of injection water were monitored during a storage period, and trihalomethane formation

  20. A New Global Metric of Water Scarcity Accounting for the Role of Storage

    NASA Astrophysics Data System (ADS)

    Hall, J. W.; Gaupp, F.; Dadson, S. J.

    2015-12-01

    Societies and economies are challenged by variable water supplies. Water storage infrastructure, on a range of scales, can help to mitigate hydrological variability. This study uses a water balance model to investigate how storage capacity can improve water security in the world's 403 most important river basins, by substituting water from wet months to dry months. We construct a new water balance model for 680 'basin-country units' (BCUs), which simulates runoff, water use (from surface and groundwater), evaporation and trans-boundary discharges. We find that, so far, storage capacity in most basins is able to buffer inter- and intra-annual water variability . However, when hydrological variability and net withdrawals are taken into account, along with existing storage capacity, we find risks of water shortages in the Indian subcontinent, Northern China, Spain, the West of the US, Australia and several basins in Africa. Dividing basins into basin-country units enabled assessment of upstream dependency in trans-boundary rivers. Including Environmental Water Requirements into the model, we find that in many basins in India, Northern China, South Africa, the US West Coast, the East of Brazil, Spain and in the Murray basin in Australia human water demand leads to over-abstraction of water resources important to the ecosystem. Then, a Sequent Peak Analysis is conducted to estimate how much storage would be needed to satisfy human water demand whilst not jeopardising environmental flows. The results are consistent with the water balance model in that basins in India, Northern China, Western Australia, Spain, the US West Coast and several basins in Africa would need more storage to mitigate water supply variability and to meet water demand.

  1. Assessing soil water storage distribution under sprinkler irrigation by coupling 3D simulations and field observations

    NASA Astrophysics Data System (ADS)

    Taha, Uday; Shabeeb, Ahmed; dragonetti, giovanna; Lamaddalena, Nicola; Coppola, Antonio

    2016-04-01

    This work analyzed the variability of sprinkler irrigation application over a bare soil, both in terms of water application efficiency and uniformity, by integrating and comparing the information on the irrigation depth data (ID), as measured by catch cans, soil water storage in the upper root zone, as measured by TDR probes, and a 3D simulations of water flow in soils. Three irrigation tests were performed at three different pressures (2, 3 and 4 bar). A lateral water redistribution was observed and simulated after each irrigation event by comparing spatial distributions of site-specific water application efficiency (AEs), as well as ratios of site-specific actual water storage increase (SWEs) and irrigation depth (IDs) to the water content before irrigation. Because of soil water redistribution processes, distribution uniformity based on soil storages was systematically higher than the catch can uniformity. The obvious consequence of lateral water redistribution processes was that the soil smoothing action on non-uniformity observed at the surface increased both with depth and over time. At a given depth the uniformity of soil water storages always attained the same value, whatever the pressure considered and the catch can-based uniformity coefficient. It was concluded that, for the case of random distribution of ID, the uniformity of water storages is driven by the soil behavior rather than by the irrigation system.

  2. 76 FR 30936 - West Maui Pumped Storage Water Supply, LLC; Notice of Preliminary Permit Application Accepted for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ... Maui Pumped Storage Project, which would use effluent water from the existing West Maui sewage... Energy Regulatory Commission West Maui Pumped Storage Water Supply, LLC; Notice of Preliminary Permit... April 1, 2011, West Maui Pumped Storage Water Supply, LLC, filed an application for a preliminary...

  3. Estimation of local water storage change by space- and ground-based gravimetry

    NASA Astrophysics Data System (ADS)

    Zhou, Jiangcun; Sun, Heping; Xu, Jianqiao; Zhang, Weimin

    2016-08-01

    We estimated local water storage change by combining space- and ground-based gravimetry in this paper. The gravity change from GRACE was first divided into local and global parts according to potential theory. We then subtracted the GRACE-derived global field from ground gravimeter results to obtain local gravity change which is directly induced by the local water storage. Finally we inferred the local water storage change. We used superconducting gravimeter (SG) data recorded from June 2008 to June 2012 at Wuhan station and GRACE satellite gravimetric data to estimate the local water storage change. To validate the inferred local water storage change, the water table records of a well which is several meters away from SG station were compared. Furthermore, the equivalent water heights from hydrological models and GRACE were used also for comparisons. The comparisons show that the results from combining SG and GRACE data are better than those from either GRACE data alone or hydrological models, which demonstrates the efficiency of the combination method to derive local water storage.

  4. Total water storage dynamics derived from tree-ring records and terrestrial gravity observations

    NASA Astrophysics Data System (ADS)

    Creutzfeldt, Benjamin; Heinrich, Ingo; Merz, Bruno

    2015-10-01

    For both societal and ecological reasons, it is important to understand past and future subsurface water dynamics but estimating subsurface water storage is notoriously difficult. In this pilot study, we suggest the reconstruction of subsurface water dynamics by a multi-disciplinary approach combining hydrology, dendrochronology and geodesy. In a first step, nine complete years of high-precision gravimeter observations are used to estimate water storage changes in the subsurface at the Geodetic Observatory Wettzell in the Bavarian Forest, Germany. The record is extended to 63 years by calibrating a hydrological model against the 9 years of gravimeter observations. The relationship between tree-ring growth and water storage changes is evaluated as well as that between tree-ring growth and supplementary hydro-meteorological data. Results suggest that tree-ring growth is influenced primarily by subsurface water storage. Other variables related to the overall moisture status (e.g., Standardized Precipitation Index, Palmer Drought Severity Index, streamflow) are also strongly correlated with tree-ring width. While these indices are all indicators of water stored in the landscape, water storage changes of the subsurface estimated by depth-integral measurements give us the unique opportunity to directly reconstruct subsurface water storage dynamics from records of tree-ring width. Such long reconstructions will improve our knowledge of past water storage variations and our ability to predict future developments. Finally, knowing the relationship between subsurface storage dynamics and tree-ring growth improves the understanding of the different signal components contained in tree-ring chronologies.

  5. Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A solar heating system designed to supply a major portion of the space and water heating requirements for a restaurant is described. The restaurant has a floor space of approximately 4,650 square feet and requires approximate 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10 to the 6th power Btu/Yr (specified) building heating and hot water heating.

  6. Where Did the Water Go? Boyle's Law and Pressurized Diaphragm Water Tanks

    NASA Astrophysics Data System (ADS)

    Brimhall, James; Naga, Sundar

    2007-03-01

    Many homes use pressurized diaphragm tanks for storage of water pumped from an underground well. These tanks are very carefully constructed to have separate internal chambers for the storage of water and for the air that provides the pressure. One might expect that the amount of water available for use from, for example, a 50-gallon tank would be close to 50 gallons. However, only a surprisingly small percentage of the total tank volume is available to provide water that can be drawn from the tank before the pump must cycle back on. Boyle's law ( PV is constant) provides mathematical insight into the workings of this type of tank, including predictions of the quantities of available water resulting from different initial conditions of the water tank system.

  7. Thermal analysis of the 10-gallon and the 55-gallon DOT-6M containers with thermal boundary conditions corresponding to 10CFR71 normal transport and accident conditions

    SciTech Connect

    Sanchez, L.C.; Longenbaugh, R.S.; Moss, M.; Haseman, G.M.; Fowler, W.E.; Roth, E.P.

    1988-03-01

    This report describes the heat transfer analysis of the 10-gallon and 55-gallon 6M containers. The analysis was performed with boundary conditions corresponding to a normal transport condition and a hypothetical accident condition. Computational results indicated that the insulation material in the 6M containers will adequately protect the payload region of the 6M containers. 26 refs., 26 figs., 8 tabs.

  8. 27 CFR 30.65 - Table 5, showing the weight per wine gallon (at 60 degrees Fahrenheit) and proof gallon at each...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Table 5, showing the weight per wine gallon (at 60 degrees Fahrenheit) and proof gallon at each percent of proof of spirituous liquor. 30.65 Section 30.65 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY...

  9. MIXING IN DISTRIBUTION SYSTEM STORAGE TANKS: ITS EFFECT ON WATER QUALITY

    EPA Science Inventory

    Nearly all distribution systems in the US include storage tanks and reservoirs. They are the most visible components of a wate distribution system but are generally the least understood in terms of their impact on water quality. Long residence times in storage tanks can have nega...

  10. Monitoring gravity and water storage changes in northern Benin

    NASA Astrophysics Data System (ADS)

    Hector, B.; Hinderer, J.; Boy, J.; Calvo, M.; Séguis, L.; Descloitres, M.; Cohard, J.; Rosat, S.; Riccardi, U.; Galle, S.

    2013-12-01

    The humid sudanian zone of West-Africa undergoes a monsoon climate, implying a strong seasonality in water storage changes (WSC). The GHYRAF (Gravity and Hydrology in Africa) project aims at monitoring both these local and non-local hydrological contributions with the main gravity sensors available today (FG5 absolute gravimeter, superconducting gravimeter -SG- and CG5 micro-gravimeter). The study area is located in hard-rock basement context in Djougou, northern Benin, and is also part of the long-term observing system AMMA-Catch, and thus under intense hydro-meteorological monitoring (rainfall, soil moisture, water table, evapotranspiration, ...). Gravity-derived WSC are compared to hydrological data and to physically-based or conceptual hydrological models calibrated on these data. This presentation shows the results and limitations of each gravimeter in the context of WSC retrieval. This site was first measured with a FG5 absolute gravimeter four times a year from 2008 to 2013. This can be considered as a high sampling rate, given the remote location and the complexity of FG5 carriage and installation. It allowed to derive an average specific yield for the local aquifer, and preliminary estimates of seasonal WSC (up to 120 nm/s2 - 270mm). Yet the lack of continuity in the data avoids further investigations. The SG-060 superconducting gravimeter has been installed in 2010 in order to monitor gravity response to WSC in a continuous way. A strong drift is present (230nm/s2/yr), and FG5 data together with a-priori information on WSC are needed for estimating its effect. Also, frequent power-failures lead to some significant gaps and offsets during which fast WSC may occur (e.g. rain), yielding to a challenging correction for these events. The retrieval of inter-annual WSC suffers from these strong and limiting instrumental effects. At higher frequencies, up to a few days, continuous gravity monitoring may help to quantify evapotranspiration (ET), a poorly

  11. Energy Storage.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…

  12. Integrated Modeling Approach for Verifying Water Storage Services for a Payment for Environmental Service Programs

    NASA Astrophysics Data System (ADS)

    Hendricks, G.; Shukla, S.; Guzha, A. C.

    2013-12-01

    Hydrologic models have been used for improved understanding of how an ecosystem's hydrologic response to human intervention and may provide substantial insight into the viability of payment for environmental services (PES) programs. Little is currently known about how hydrologic models can contribute to the design and evaluation of PES programs. Increased water storage is a desired environmental service (ES) for the Florida Everglades' watershed to reduce nutrient loads and excessive flows to lakes and estuaries in the region. We present monitoring and modeling results to verify the water storage PES for two ranch sites (wetland and watershed scales) located in the Northern Everglades region located north of the Lake Okeechobee (LO). Verification of the water storage PES using at least 3 years of hydrologic data was inconclusive due to variable rainfall during pre- and post-PES periods. An integrated surface and groundwater model, MIKE-SHE/MIKE11, was used to help verify the water storage service as well as predict ecological responses for different water storage scenarios (different levels of storage). The hydrological model was calibrated and validated using field measurements and was able to effectively simulate the surface and groundwater levels for the watershed (Nash Sutcliffe Efficiency, NSE = 0.54 to 0.82) and for surface water levels within wetlands (NSE = 0.54 to 0.84). Scenario analyses for storage levels showed an inverse relationship between board heights for water control structures and flows at the watershed outlet. Changes in flow were marginal when board heights approached a maximum indicating movement of water into subsurface storage. Combining simulation results with field measurements showed reduced flows and increased subsurface storage (2 cm/yr.), a desired outcome for protecting LO and estuarine systems from excessive flows. Simulated wetland water levels were combined with LIDAR-based topography to predict inundation for wetlands at the two

  13. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    SciTech Connect

    Kingston, T.; Scott, S.

    2013-03-01

    Homebuilders are exploring more cost-effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads and found that the tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system, among other key findings.

  14. Soil-Water Storage Predictions for Cultivated Crops on the Záhorská Lowlands

    NASA Astrophysics Data System (ADS)

    Jarabicová, Miroslava; Minarič, Peter

    2016-06-01

    The main objective of this paper is to evaluate the impact of climate change on the soil-water regime of the Záhorská lowlands. The consequences of climate change on soil-water storage were analyzed for two crops: spring barley and maize. We analyzed the consequences of climate change on soil-water storage for two crops: spring barley and maize. The soil-water storage was simulated with the GLOBAL mathematical model. The data entered into the model as upper boundary conditions were established by the SRES A2 and SRES B1 climate scenarios and the KNMI regional climate model for the years from 2071 to 2100 (in the text called the time horizon 2085 which is in the middle this period). For the reference period the data from the years 1961-1990 was used. The results of this paper predict soil-water storage until the end of this century for the crops evaluated, as well as a comparison of the soil-water storage predictions with the course of the soil-water storage during the reference period.

  15. DYNAMICS OF WATER TRANSPORT AND STORAGE IN CONIFERS STUDIED WITH DEUTERIUM AND HEAT TRACING TECHNIQUES

    EPA Science Inventory

    The volume and complexity of their vascular systems make the dynamics of long-distance water transport difficult to study. We used heat and deuterated water (D2O) as tracers to characterize whole-tree water transport and storage properties in individual trees belonging to the co...

  16. 40 CFR 141.714 - Requirements for uncovered finished water storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Requirements for uncovered finished water storage facilities. 141.714 Section 141.714 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Treatment for Cryptosporidium Treatment...

  17. EFFECTS OF MIXING AND AGING ON WATER QUALITY IN DISTRIBUTION SYSTEM STORAGE FACILITIES

    EPA Science Inventory

    Aging of water in distribution system storage facilities can lead to deterioration of the water quality due to loss of disinfectant residual and bacterial regrowth. Facilities should be operated to insure that the age of the water is not excessive taking into account the quality...

  18. 40 CFR 141.714 - Requirements for uncovered finished water storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Requirements for uncovered finished water storage facilities. 141.714 Section 141.714 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Treatment for Cryptosporidium Treatment...

  19. SCALE-MODEL STUDIES OF MIXING IN DRINKING WATER STORAGE TANKS

    EPA Science Inventory

    Storage tanks and reservoirs are commonly used in drinking water distribution systems to equalize pumping requirements and operating pressures, and to provide emergency water for fire-fighting and pumping outages. Poor mixing in these structures can create pockets of older water...

  20. Estimation of groundwater recharge from water storage structures in a semi-arid climate of India

    NASA Astrophysics Data System (ADS)

    Sharda, V. N.; Kurothe, R. S.; Sena, D. R.; Pande, V. C.; Tiwari, S. P.

    2006-09-01

    SummaryGroundwater recharge from water storage structures under semi-arid conditions of western India has been estimated by employing water table fluctuation (WTF) and chloride mass balance (CMB) methods. Groundwater recharge was estimated as 7.3% and 9.7% of the annual rainfall by WTF method for the years 2003 and 2004, respectively while the two years average recharge was estimated as 7.5% using CMB method. A Recharge function depicting the relationship between potential recharge from storage structures and successive day averaged storage depths was better exhibited by a power function. A diagnostic relationship correlating the rainfall to the potential recharge from water storage structures has been developed to explain the characteristics of the storage structures for a given geographical location. The study has revealed that a minimum of 104.3 mm cumulative rainfall is required to generate 1 mm of recharge from the water storage structures. It was also inferred that the storage structures have limited capacity to induce maximum recharge irrespective of the amount of rainfall and maximum recharge to rainfall ratio is achieved at a lower rainfall than the average annual rainfall of the area. An empirical linear relationship was found to reasonably correlate the changes in chloride concentration with water table rise or fall in the study area.

  1. 43. ARAIII Water storage tank ARA709. Camera facing northwest. Shadow ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. ARA-III Water storage tank ARA-709. Camera facing northwest. Shadow of ARA-611 at lower right corner of view. Ineel photo no. 3-18. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  2. Lake Storage Measurements For Water Resources Management: Combining Remotely Sensed Water Levels and Surface Areas

    NASA Astrophysics Data System (ADS)

    Brakenridge, G. R.; Birkett, C. M.

    2013-12-01

    Presently operating satellite-based radar altimeters have the ability to monitor variations in surface water height for large lakes and reservoirs, and future sensors will expand observational capabilities to many smaller water bodies. Such remote sensing provides objective, independent information where in situ data are lacking or access is restricted. A USDA/NASA (http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/) program is performing operational altimetric monitoring of the largest lakes and reservoirs around the world using data from the NASA/CNES, NRL, and ESA missions. Public lake-level products from the Global Reservoir and Lake Monitor (GRLM) are a combination of archived and near real time information. The USDA/FAS utilizes the products for assessing international irrigation potential and for crop production estimates; other end-users study climate trends, observe anthropogenic effects, and/or are are involved in other water resources management and regional water security issues. At the same time, the Dartmouth Flood Observatory (http://floodobservatory.colorado.edu/), its NASA GSFC partners (http://oas.gsfc.nasa.gov/floodmap/home.html), and associated MODIS data and automated processing algorithms are providing public access to a growing GIS record of the Earth's changing surface water extent, including changes related to floods and droughts. The Observatory's web site also provide both archival and near real time information, and is based mainly on the highest spatial resolution (250 m) MODIS bands. Therefore, it is now possible to provide on an international basis reservoir and lake storage change measurements entirely from remote sensing, on a frequently updating basis. The volume change values are based on standard numerical procedures used for many decades for analysis of coeval lake area and height data. We provide first results of this combination, including prototype displays for public access and data retrieval of water storage

  3. Effect of natural gas exsolution on specific storage in a confined aquifer undergoing water level decline

    USGS Publications Warehouse

    Yager, R.M.; Fountain, J.C.

    2001-01-01

    The specific storage of a porous medium, a function of the compressibility of the aquifer material and the fluid within it, is essentially constant under normal hydrologic conditions. Gases dissolved in ground water can increase the effective specific storage of a confined aquifer, however, during water level declines. This causes a reduction in pore pressure that lowers the gas solubility and results in exsolution. The exsolved gas then displaces water from storage, and the specific storage increases because gas compressibility is typically much greater than that of water or aquifer material. This work describes the effective specific storage of a confined aquifer exsolving dissolved gas as a function of hydraulic head and the dimensionless Henry's law constant for the gas. This relation is applied in a transient simulation of ground water discharge from a confined aquifer system to a collapsed salt mine in the Genesee Valley in western New York. Results indicate that exsolution of gas significantly increased the effective specific storage in the aquifer system, thereby decreasing the water level drawdown.

  4. [Water storage capacity of qinghai spruce (Picea crassifolia) forest canopy in Qilian Mountains].

    PubMed

    Peng, Huan-hua; Zhao, Chuan-yan; Xu, Zhong-lin; Peng, Shou-zhang; Wang, Yao

    2011-09-01

    By the methods of direct measurement and regression analysis, this paper estimated the water storage capacity of Picea crassifolia forest canopy in Guantan in Qilianshan Mountains, based on the observed throughfall and the laboratory experimental data about the water storage capacity of various canopy components in 2008. Due to the impacts of various factors, differences existed in the canopy water storage capacity estimated by the two methods. The regression analysis was mainly impacted by the measurement approaches of the throughfall, the maximum water storage capacity estimated being 0.69 mm, whereas the direct measurement was mainly impacted by tree height, diameter at breast height, plant density, and leaf area index, with the estimated maximum water storage capacity being 0.77 mm. The direct measurement showed that the maximum water storage capacity per unit area of the canopy components of the forest was in the order of barks (0.31 mm) > branches (0.28 mm) > leaves (0.08 mm). PMID:22126029

  5. Study of Disinfection By-Products and Long Term Storage of Drinking Water.

    NASA Astrophysics Data System (ADS)

    McGee, G.; White, D.; Garland, S.

    2002-12-01

    One of the challenges facing many of Alaska's communities is providing safe and reliable drinking water from sources containing high concentrations of natural organic material (NOM). These highly colored waters, locally referred to as "tundra tea," often result in the formation of disinfectant byproducts during treatment. Since surface water sources in the Arctic are often frozen for 6-9 months per year, communities are often forced to either store raw water for treatment during the winter or treat and store enough drinking water during the summer to last through the winter. Because long-term storage practices are somewhat unique to water treatment in the rural Northern communities, the practice has not been thoroughly studied and there is limited published information on how water quality is affected by extended storage. Anecdotal evidence and data collected by field engineers indicate that significant changes are occurring and that the quality of the treated water can be adversely impacted. The University of Alaska Small Drinking Water System Technical Assistance Center (ATTAC) is conducting fundamental and applied research to help Alaska's small communities provide safe and reliable drinking water. One research focus area is the formation of disinfection by-products (DBPs) in small drinking water systems. Studies to characterize the NOM present in Alaskan surface waters and demonstrations of NOM removal technologies have been have been conducted over the past several years. The study presented here examined the formation of disinfection by-products during long-term storage of water from five small Alaskan water systems. Results from this research suggest that long-term storage has a significant impact on DBP formation. The results suggest that the NOM escaping treatment is likely to react in the storage tank resulting in DBP concentrations that are well above the estimated DBP formation potential.

  6. Using GRACE Total Water Storage Changes to constrain River Routing Models in the Amazon River basin

    NASA Astrophysics Data System (ADS)

    de Linage, C.; Lo, M.; Famiglietti, J. S.; Ray, R. L.; Beighley, R. E.

    2010-12-01

    The GRACE mission provides monthly to 10-day maps of Total Water Storage Anomalies corresponding to the vertically integrated land water storage (soil moisture and groundwater) as well as storage in river channels and floodplains (surface waters). The surface water component is an important contributor to total water storage in the Amazon River basin as shown by improved agreement between GRACE observations and model simulations when runoff is routed through the river network as compared to no river routing. We use the Community Land Model version 3.5 to model land water storage along with runoff by accounting for a simple ground water model. Surface and subsurface runoff predictions are then routed using two different routing models: a simple cell-to-cell routing scheme (e.g. Branstetter and Famiglietti, 1999) and the Hillslope River Routing (Beighley et al. 2010). We evaluate model performances against the spatio-temporal variations of GRACE data by carrying out a Singular Value Decomposition of the cross-covariance matrix. We also compare the two models in the light of their respective intrinsic capabilities. We finally investigate the impact of the precipitation data on model outputs by using TRMM products instead of GLDAS (CMAP) products.

  7. The impact of impervious water-storage parametrization on urban climate modelling

    NASA Astrophysics Data System (ADS)

    Wouters, Hendrik; Demuzere, Matthias; De Ridder, Koen; van Lipzig, Nicole

    2015-04-01

    In order to improve the representation of the water balance in urban land-surface models, we present a new impervious water-storage parametrization that assumes a distribution of water reservoirs. It has been implemented in TERRA-URB, a new urban parametrization for COSMO-CLM's standard land-surface module TERRA-ML. The water-storage capacity and the maximal wet surface fraction of the urban impervious land cover consisting of streets and buildings are estimated for Toulouse centre by matching the modelled and observed evapotranspiration (ET) rates. They amount to 1.31 ± 0.20 kg m-2} and 12 ± 4%, respectively. The model successfully reproduces the timespan and magnitude of increased ET for both urban observations campaigns CAPITOUL and BUBBLE. Our sensitivity study reveals that water-storage parametrization largely affects the performance of modelled ET rates. Hereby, the simulation employing the new water-storage parametrization is improved compared to arbitrary or existing water-storage parametrizations. The ET, surface sensible heat exchange and upwelling infra-red radiation are all affected until 12 day-time hours after rainfall on average. The modelled annual-mean ET during the CAPITOUL campaign from the urban land in Toulouse is an order of magnitude lower than that observed for the natural surroundings.

  8. Effect of Lactic Acid Etching on Bonding Effectiveness of Orthodontic Bracket after Water Storage

    PubMed Central

    Alsulaimani, Fahad F.

    2014-01-01

    Objective. To determine the effect of lactic acid at various concentrations on the shear bond strength of orthodontic brackets bonded with the resin adhesive system before and after water storage. Materials and Methods. Hundred extracted human premolars were divided into 5 treatment groups and etched for 30 seconds with one of the following agents: lactic acid solution with (A) 10%, (B) 20%, (C) 30%, and (D) 50%; group E, 37% phosphoric acid (control). Metal brackets were bonded using a Transbond XT. Bonding effectiveness was assessed by shear bond strength after 24 hours and 6 months of water storage at 37°C. The data were analyzed with 2-way analysis of variance and Tukey's Honestly Significant Difference (HSD) test (α = .001). Results. Lactic acid concentration and water storage resulted in significant differences for brackets bond strength (P < .001). 20% lactic acid had significantly higher mean bond strength values (SD) for all conditions: 24 hours [12.2 (.7) MPa] and 6 months [10.1 (.6) MPa] of water storage. 37% phosphoric acid had intermediate bond strength values for all conditions: 24 hours [8.2 (.6) MPa] and 6 months [6.2 (.6) MPa] of water storage. Also, there were differences in bond strength between storage time, with a reduction in values from 24 hours and 6 months for all experimental groups (P < .001). Conclusion. Lactic acid could be used in place of phosphoric acid as an enamel etchant for bonding of orthodontic brackets. PMID:25006465

  9. Melton Valley Storage Tanks Capacity Increase Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1995-04-01

    The US Department of Energy (DOE) proposes to construct and maintain additional storage capacity at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, for liquid low-level radioactive waste (LLLW). New capacity would be provided by a facility partitioned into six individual tank vaults containing one 100,000 gallon LLLW storage tank each. The storage tanks would be located within the existing Melton Valley Storage Tank (MVST) facility. This action would require the extension of a potable water line approximately one mile from the High Flux Isotope Reactor (HFIR) area to the proposed site to provide the necessary potable water for the facility including fire protection. Alternatives considered include no-action, cease generation, storage at other ORR storage facilities, source treatment, pretreatment, and storage at other DOE facilities.

  10. Changes in water levels and storage in the High Plains Aquifer, predevelopment to 2009

    USGS Publications Warehouse

    McGuire, V.L.

    2011-01-01

    The High Plains aquifer underlies 111.8 million acres (175,000 square miles) in parts of eight States - Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The area overlying the High Plains aquifer is one of the primary agricultural regions in the Nation. Water-level declines began in parts of the High Plains aquifer soon after the onset of substantial irrigation with groundwater from the aquifer (about 1950 and termed "predevelopment" in this fact sheet). By 1980, water levels in the High Plains aquifer in parts of Texas, Oklahoma, and southwestern Kansas had declined more than 100 feet (ft) (Luckey and others, 1981). In 1987, in response to declining water levels, Congress directed the U.S. Geological Survey (USGS), in collaboration with numerous Federal, State, and local water-resources entities, to assess and track water-level changes in the aquifer. This fact sheet summarizes changes in water levels and drainable water in storage in the High Plains aquifer from predevelopment to 2009. Drainable water in storage is the fraction of water in the aquifer that will drain by gravity and can be withdrawn by wells. The remaining water in the aquifer is held to the aquifer material by capillary forces and generally cannot be withdrawn by wells. Drainable water in storage is termed "water in storage" in this report. A companion USGS report presents more detailed and technical information about water-level and storage changes in the High Plains aquifer during this period (McGuire, 2011).

  11. Seasonal patterns of water storage as signatures of the climatological equilibrium between resource and demand

    NASA Astrophysics Data System (ADS)

    François, B.; Hingray, B.; Hendrickx, F.; Creutin, J. D.

    2014-09-01

    Water is accumulated in reservoirs to adapt in time the availability of the resource to various demands like hydropower production, irrigation, water supply or ecological constraints. Deterministic dynamic programming retrospectively optimizes the use of the resource during a given time period. One of its by-products is the estimation of the marginal storage water value (MSWV), defined by the marginal value of the future goods and benefits obtained from an additional unit of storage water volume. Knowledge of the MSWV makes it possible to determine a posteriori the storage requirement scheme that would have led to the best equilibrium between the resource and the demand. The MSWV depends on the water level in the reservoir and shows seasonal as well as inter-annual variations. This study uses the inter-annual average of both the storage requirement scheme and the MSWV cycle as signatures of the best temporal equilibrium that is achievable in a given resource/demand context (the climatological equilibrium). For a simplified water resource system in a French mountainous region, we characterize how and why these signatures change should the climate and/or the demand change, mainly if changes are projected in the mean regional temperature (increase) and/or precipitation (decrease) as well as in the water demand for energy production and/or maintenance of a minimum reservoir level. Results show that the temporal equilibrium between water resource and demand either improves or degrades depending on the considered future scenario. In all scenarios, the seasonality of MSWV changes when, for example, earlier water storage is required to efficiently satisfy increasing summer water demand. Finally, understanding how MSWV signatures change helps to understand changes in the storage requirement scheme.

  12. Small-Scale Experiments.10-gallon drum experiment summary

    SciTech Connect

    Rosenberg, David M.

    2015-02-05

    A series of sub-scale (10-gallon) drum experiments were conducted to characterize the reactivity, heat generation, and gas generation of mixtures of chemicals believed to be present in the drum (68660) known to have breached in association with the radiation release event at the Waste Isolation Pilot Plant (WIPP) on February 14, 2014, at a scale expected to be large enough to replicate the environment in that drum but small enough to be practical, safe, and cost effective. These tests were not intended to replicate all the properties of drum 68660 or the event that led to its breach, or to validate a particular hypothesis of the release event. They were intended to observe, in a controlled environment and with suitable diagnostics, the behavior of simple mixtures of chemicals in order to determine if they could support reactivity that could result in ignition or if some other ingredient or event would be necessary. There is a significant amount of uncertainty into the exact composition of the barrel; a limited sub-set of known components was identified, reviewed with Technical Assessment Team (TAT) members, and used in these tests. This set of experiments was intended to provide a framework to postulate realistic, data-supported hypotheses for processes that occur in a “68660-like” configuration, not definitively prove what actually occurred in 68660.

  13. Estimated water use in the Southwest Florida Water Management District and adjacent areas, 1980

    USGS Publications Warehouse

    Duerr, A.D.; Trommer, J.T.

    1981-01-01

    Water-use data for 1980 are summarized in this report for 16 counties in the Southwest Florida Water Management District. Data include total use of ground water and surface water for each of five water-use categories. The 1980 withdrawals for each category were as follows: 290 million gallons per day for public supply, 63 million gallons per day for rural, 325 million gallons per day for industry, 416 million gallons per day for irrigation, and 6,605 million gallons per day for thermoelectric power generation. Withdrawals totaled 7,699 million gallons per day and included 983 million gallons per day of ground water and 6,716 million gallons per day of surface water. Excluding thermoelectric power generation, all water withdrawn was freshwater except 38 million gallons per day of saline ground water withdrawn for industrial use in Hillsborough County. (USGS)

  14. Decline in recycled water quality during short-term storage in open ponds.

    PubMed

    Higgins, Jennifer; Warnken, Jan; Teasdale, Peter R; Arthur, J Michael

    2009-12-01

    Changes were assessed in urban wastewater treatment plant (WWTP) effluent quality during short-term storage in open surface ponds. Water quality was monitored over five years at the inlets and outlets of open storage ponds located at three biological nutrient removal plants. Pond influent temperature, rainfall and sewage inflow were not found to be major factors. However, there was a trend for water temperature to be correlated negatively with nitrogenous nutrient and positively with faecal coliform values. The observed increases in faecal coliforms, nutrients and chemical oxygen demand were most likely caused through avian faecal contamination. These increases challenge the notion that pond storage has a positive or negligible effect on effluent quality. The observed one to two orders of magnitude increase in faecal coliforms may affect reuse scheme viability by limiting the range of uses under Australian water recycling guidelines. Potential improvements to short-term recycled water storage management at WWTPs could include the integration of monitoring requirements in WWTP discharge licences and recycling guidelines and the monitoring of all water quality parameters, including microbiological ones, at the point of entry into the recycled water distribution system, after WWTP storage, rather than directly post-disinfection. PMID:19590127

  15. Land water storage change from satellite altimetry and GRACE; Inference on sea level

    NASA Astrophysics Data System (ADS)

    Cazenave, A. A.; Llovel, W.; Becker, M.; Cretaux, J.

    2009-12-01

    Global change in land water storage and its effect on sea level is estimated over a 6-year time span (mid-2002 to mid-2008) using satellite altimetry and space gravimetry data from GRACE. Satellite altimetry allows determination of surface water volume change while GRACE data provide vertically-integrated water storage change. The 32 largest river basins are considered as well as lakes not included in the 32 basins (Caspian and Aral seas). We focus on the year to year variability and construct a combined water storage time series that we further express in equivalent sea level time series. The mean trend in total water storage adjusted over this 6-year time span is positive and amounts to 114 +/- 24 km3/yr (net water storage excess). Most of the positive contribution arises from the Amazon and Siberian basins (Lena and Yenisei), followed by the Orinoco, Ob, Nile, Niger, Zambezi, Tocantins and Volga. The largest negative contributions (water deficit) come from the Mississippi, Yukon, Eyre, Brahmaputra, Ganges, Eyre, Murray and Mekong basins. Lakes volume change is slightly negative over the 2002-2008 time span (~ -16 km3/yr). Expressed in terms of equivalent sea level, total water volume change over 2002-2008 leads to a small negative contribution to sea level of -0.27 +/- 0.07 mm/yr. The time series for each basins clearly show that year to year variability dominates so that the value estimated in this study cannot be considered as representative of a long-term trend. Another interesting results of the study is the significant correlation (0.7) between (detrended) year-to- year variability in sea level (corrected for thermal expansion) and GRACE-based land water storage contribution.

  16. Quality testing of autoclaved rodent drinking water during short-term and long-term storage.

    PubMed

    Peveler, Jessica L; Crisler, Robin; Hickman, Deb

    2015-06-01

    All animals need clean water to drink. At the authors' animal facility, drinking water for immunocompromised rodents is filtered by reverse osmosis, acidified during bottling and sterilized in an autoclave. Autoclaved water bottles can be stored in unopened autoclave bags for 7 d or in opened bags for 2 d; if not used during that time, they are emptied, cleaned, refilled and sterilized again. The authors wished to determine whether the storage period of 2-7 d was adequate and necessary to ensure the quality of drinking water. They tested water bottles for pH levels and for the presence of adenosine triphosphate as a measure of organic contamination during short-term and long-term storage. The pH of autoclaved drinking water generally remained stable during storage. Furthermore, no instances of organic contamination were detected in autoclaved water bottles stored for up to 22 d in unopened bags and only one instance was detected in bottles stored for up to 119 d in opened bags in a room with individually ventilated cages. On the basis of these findings, the acceptable storage period for autoclaved water bottles in opened bags at the authors' facility was extended to 21 d. PMID:25989554

  17. Impact of soil water storage and distribution on snowmelt generated streamflow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Snowmelt is the primary source of water generating streamflow in much of the western USA and Canada. The amount and timing of this streamflow, which affects a number of management decisions, is directly related to the amount and timing of snowmelt, soil water storage and transmission. The impact of...

  18. Linking xylem water storage with anatomical parameters in five temperate tree species.

    PubMed

    Jupa, Radek; Plavcová, Lenka; Gloser, Vít; Jansen, Steven

    2016-06-01

    The release of water from storage compartments to the transpiration stream is an important functional mechanism that provides the buffering of sudden fluctuations in water potential. The ability of tissues to release water per change in water potential, referred to as hydraulic capacitance, is assumed to be associated with the anatomy of storage tissues. However, information about how specific anatomical parameters determine capacitance is limited. In this study, we measured sapwood capacitance (C) in terminal branches and roots of five temperate tree species (Fagus sylvatica L., Picea abies L., Quercus robur L., Robinia pseudoacacia L., Tilia cordata Mill.). Capacitance was calculated separately for water released mainly from capillary (CI; open vessels, tracheids, fibres, intercellular spaces and cracks) and elastic storage compartments (CII; living parenchyma cells), corresponding to two distinct phases of the moisture release curve. We found that C was generally higher in roots than branches, with CI being 3-11 times higher than CII Sapwood density and the ratio of dead to living xylem cells were most closely correlated with C In addition, the magnitude of CI was strongly correlated with fibre/tracheid lumen area, whereas CII was highly dependent on the thickness of axial parenchyma cell walls. Our results indicate that water released from capillary compartments predominates over water released from elastic storage in both branches and roots, suggesting the limited importance of parenchyma cells for water storage in juvenile xylem of temperate tree species. Contrary to intact organs, water released from open conduits in our small wood samples significantly increased CI at relatively high water potentials. Linking anatomical parameters with the hydraulic capacitance of a tissue contributes to a better understanding of water release mechanisms and their implications for plant hydraulics. PMID:27083523

  19. Satellite Observations of Drought and Falling Water Storage in the Colorado River Basin and Lake Mead

    NASA Astrophysics Data System (ADS)

    Castle, S.; Famiglietti, J. S.; Reager, J. T.; Thomas, B.

    2012-12-01

    Over the past decade the Western US has experienced extreme drought conditions, which have affected both agricultural and urban areas. An example of water infrastructure being impacted by these droughts is Lake Mead, the largest reservoir in the United States at its full capacity that provides water and energy for several states in the Western US. Once Lake Mead falls below the critical elevation of 1050 feet above sea level, the Hoover Dam, the structure that created Lake Mead by damming flow within the Colorado River, will stop producing energy for Las Vegas. The Gravity Recovery and Climate Experiment (GRACE) satellites, launched in 2002, have proven successful for monitoring changes in water storage over large areas, and give hydrologists a first-ever picture of how total water storage is changing spatially and temporally within large regions. Given the importance of the Colorado River to meet water demands to several neighboring regions, including Southern California, it is vital to understand how water is transported and managed throughout the basin. In this research, we use hydrologic remote sensing to characterize the human and natural water balance of the Colorado River basin and Lake Mead. The research will include quantifying the amount of Colorado River water delivered to Southern California, coupling the GRACE Total Water Storage signal of the Upper and Lower Colorado River with Landsat-TM satellite imagery and areal extent of Lake Mead water storage, and combining these data together to determine the current status of water availability in the Western US. We consider water management and policy changes necessary for sustainable water practices including human water use, hydropower, and ecosystem services in arid regions throughout the Western US.

  20. Is Storage a Solution to End Water Shortage?

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2009-12-01

    Water shortage is a problem of supply and demand. Some authors refer to it as Water Scarcity. The author has discussed this in his previous presentation at the 2008 AGU International Conference. Part of it is reproduced here for purposes of clarification. It is important to recognize that water is essential for the survival of all life on earth. Many water-rich states have thought of water conservation as an art that is practiced mainly in the arid states. But one has to recite the famous quote: “You will never miss water till the well runs dry.” Researchers have also concluded that quantity deficiency experienced by groundwater supplies are affecting many communities around the world. Furthermore federal regulations pertaining to the quality of potable or drinking water have become more stringent (Narayanan, 2008). One must observe that water conservation schemes and efficient utilization practices also benefit the environment to a large extent. These water conservation practicies indeed have a short payback period althought it may seem that there is a heavy initial investment is required. Research scientists have studied MARR (Mean Annual River Runoff) pattern over the years and have arrived at some significant conclusions. Vörsömarty and other scientists have indicated that water scarcity exists when the demand to supply ratio exceeds the number 0.4. (Vörsömarty, 2005). Furthermore other researchers claim to have documented a six-fold increase in water use in the United States during the last century. It is interesting to note that the population of the United States has hardly doubled during the last century. This obviously, is indicative of higher living standards. Nevertheless, it also emphasizes an urgent need for establishing a strong, sound, sensible and sustainable management program for utilizing the available water supplies efficiently (Narayanan, 2008). Author of the 1998 book, Last Oasis: Facing Water Scarcity, Dr. Sandra Postel predicts big

  1. Global land water storage change from GRACE over 2002-2009; Inference on sea level

    NASA Astrophysics Data System (ADS)

    Llovel, William; Becker, Mélanie; Cazenave, Anny; Crétaux, Jean-François; Ramillien, Guillaume

    2010-03-01

    Global change in land water storage and its effect on sea level is estimated over a 7-year time span (August 2002 to July 2009) using space gravimetry data from GRACE. The 33 World largest river basins are considered. We focus on the year-to-year variability and construct a total land water storage time series that we further express in equivalent sea level time series. The short-term trend in total water storage adjusted over this 7-year time span is positive and amounts to 80.6 ± 15.7 km 3/yr (net water storage excess). Most of the positive contribution arises from the Amazon and Siberian basins (Lena and Yenisei), followed by the Zambezi, Orinoco and Ob basins. The largest negative contributions (water deficit) come from the Mississippi, Ganges, Brahmaputra, Aral, Euphrates, Indus and Parana. Expressed in terms of equivalent sea level, total water volume change over 2002-2009 leads to a small negative contribution to sea level of -0.22 ± 0.05 mm/yr. The time series for each basin clearly show that year-to-year variability dominates so that the value estimated in this study cannot be considered as representative of a long-term trend. We also compare the interannual variability of total land water storage (removing the mean trend over the studied time span) with interannual variability in sea level (corrected for thermal expansion). A correlation of ˜0.6 is found. Phasing, in particular, is correct. Thus, at least part of the interannual variability of the global mean sea level can be attributed to land water storage fluctuations.

  2. Climate model biases in seasonally of continental water storage revealed by satellite gravimetry

    USGS Publications Warehouse

    Swenson, S.C.; Milly, P.C.D.

    2006-01-01

    Satellite gravimetric observations of monthly changes in continental water storage are compared with outputs from five climate models. All models qualitatively reproduce the global pattern of annual storage amplitude, and the seasonal cycle of global average storage is reproduced well, consistent with earlier studies. However, global average agreements mask systematic model biases in low latitudes. Seasonal extrema of low-latitude, hemispheric storage generally occur too early in the models, and model-specific errors in amplitude of the low-latitude annual variations are substantial. These errors are potentially explicable in terms of neglected or suboptimally parameterized water stores in the land models and precipitation biases in the climate models. Copyright 2006 by the American Geophysical Union.

  3. Land Water Storage within the Congo Basin Inferred from GRACE Satellite Gravity Data

    NASA Technical Reports Server (NTRS)

    Crowley, John W.; Mitrovica, Jerry X.; Bailey, Richard C.; Tamisiea, Mark E.; Davis, James L.

    2006-01-01

    GRACE satellite gravity data is used to estimate terrestrial (surface plus ground) water storage within the Congo Basin in Africa for the period of April, 2002 - May, 2006. These estimates exhibit significant seasonal (30 +/- 6 mm of equivalent water thickness) and long-term trends, the latter yielding a total loss of approximately 280 km(exp 3) of water over the 50-month span of data. We also combine GRACE and precipitation data set (CMAP, TRMM) to explore the relative contributions of the source term to the seasonal hydrological balance within the Congo Basin. We find that the seasonal water storage tends to saturate for anomalies greater than 30-44 mm of equivalent water thickness. Furthermore, precipitation contributed roughly three times the peak water storage after anomalously rainy seasons, in early 2003 and 2005, implying an approximately 60-70% loss from runoff and evapotranspiration. Finally, a comparison of residual land water storage (monthly estimates minus best-fitting trends) in the Congo and Amazon Basins shows an anticorrelation, in agreement with the 'see-saw' variability inferred by others from runoff data.

  4. Economic potential of market-oriented water storage decisions: Evidence from Australia

    NASA Astrophysics Data System (ADS)

    Brennan, Donna

    2010-08-01

    Significant reforms made to Australian irrigation property rights in recent years have enabled the development of an active seasonal water market. In contrast, decisions regarding the allocation of water across time are typically based on central decisions, with little or no opportunity offered to irrigators to manage risk by physically transferring their water access right between years by leaving it in the public dam. An empirical examination of the economics of water storage is presented using a case study of the Goulburn Valley, a major irrigation region in the state of Victoria. It is shown that, compared to the historically used, centrally determined storage policy, a market-based storage policy would store more water, on average, and would also allocate more water in periods of low rainfall. The analysis indicates that the costs associated with a recent prolonged drought were $100 million more than they would have been if water storage decisions had been guided by the market and prices were 3 times higher.

  5. Water harvest- and storage- location assessment model using GIS and remote sensing

    NASA Astrophysics Data System (ADS)

    Weerasinghe, H.; Schneider, U. A.; Löw, A.

    2011-04-01

    This study describes a globally applicable method to determine the local suitability to implement water supply management strategies within the context of a river catchment. We apply this method, and develop a spatial analysis model named Geographic Water Management Potential (GWAMP). We retrieve input data from global data repositories and rescale these data to 1km spatial resolution to obtain a set of manageable input data. Potential runoff is calculated as an intermediate input using the Soil Conservation Service Curve Number (SCS-CN) equation. Multi Criteria Evaluation techniques are used to determine the suitability levels and relative importance of input parameters for water supply management. Accordingly, the model identifies, potential water harvesting- and storage sites for on-farm water storage, regional dams, and soil moisture conservation. We apply the model to two case-study locations, the Sao-Francisco and Nile catchments, which differ in their geographic and climatic conditions. The model results are validated against existing data on hydrologic networks, reservoir capacities and runoff. On average, GWAMP predictions of sites with high rain water storage suitability correlate well (83%) with the locations of existing regional dams and farm tanks. According to the results from testing and validation of the GWAMP we point out that the GWAMP can be used identify potential sites for rain water harvesting and storage technologies in a given catchment.

  6. Effects of water sample preservation and storage conditions on nitrate concentrations

    SciTech Connect

    Li, Y.C.; Alva, A.K.; Calvert, D.V.; Zhang, M. |

    1995-12-31

    USEPA method 300 requires water samples should be stored at 4 C immediately after collection and NO{sub 3}-N concentration analyzed within 48 hr of sample collection. Many research and commercial laboratories find it is difficult to meet this holding time. Water samples are often stored for several days at 4 C or {minus}20 C until analysis. The objective of this study was to evaluate effects of groundwater sample pretreatment, storage temperatures, and holding times on concentrations of NO{sub 3}-N. The storage of samples at 25 C decreased concentrations of NO{sub 3}-N by 1.7% and 12.5% for 48 hr and 50 days, respectively. No significant changes were observed during the 50 days storage at 4 C or {minus}20 C. Acidification of water samples at 4 C had no significant effect on NO{sub 3}-N concentration up to 50-day holding time.

  7. Two strategies by epiphytic orchids for maintaining water balance: thick cuticles in leaves and water storage in pseudobulbs.

    PubMed

    Yang, Shi-Jian; Sun, Mei; Yang, Qiu-Yun; Ma, Ren-Yi; Zhang, Jiao-Lin; Zhang, Shi-Bao

    2016-01-01

    Epiphytes are an important component of tropical and subtropical flora, and serve vital ecological functions in forest hydrology and nutrient fluxes. However, they often encounter water deficits because there is no direct contact between their roots and the soil. The strategies employed by epiphytes for maintaining water balance in relatively water-limited habitats are not completely understood. In the present study, we investigated the anatomical traits, water loss rates, and physiology of leaves and pseudobulbs of four Dendrobium species with different pseudobulb morphologies to understand the roles of leaf and pseudobulb in maintaining water balance of epiphytic orchids. Our results showed that two species (D. chrysotoxum and D. officinale), with lower rates of water loss, have thicker leaves and upper cuticles, but lower epidermal thickness and leaf dry mass per area. In contrast, the other two species (D. chrysanthum and D. crystallinum) with thinner cuticles and higher rates of water loss, have less tissue density and greater saturated water contents in their pseudobulbs. Therefore, our results indicate that these latter two species may resist drought by storing water in the pseudobulbs to compensate for their thin cuticles and rapid water loss through the leaves. Under the same laboratory conditions, excised pseudobulbs with attached leaves had lower rates of water loss when compared with samples comprising only excised leaves. This implies that epiphytic orchids utilize two different strategies for sustaining water balance: thick cuticles to conserve water in leaves and water storage in pseudobulbs. Our results also show that Dendrobium species with thin cuticles tend to have pseudobulbs with high water storage capacity that compensates for their faster rates of water loss. These outcomes contribute to our understanding of the adaptive water-use strategies in Dendrobium species, which is beneficial for the conservation and cultivation of epiphytic orchids

  8. Two strategies by epiphytic orchids for maintaining water balance: thick cuticles in leaves and water storage in pseudobulbs

    PubMed Central

    Yang, Shi-Jian; Sun, Mei; Yang, Qiu-Yun; Ma, Ren-Yi; Zhang, Jiao-Lin; Zhang, Shi-Bao

    2016-01-01

    Epiphytes are an important component of tropical and subtropical flora, and serve vital ecological functions in forest hydrology and nutrient fluxes. However, they often encounter water deficits because there is no direct contact between their roots and the soil. The strategies employed by epiphytes for maintaining water balance in relatively water-limited habitats are not completely understood. In the present study, we investigated the anatomical traits, water loss rates, and physiology of leaves and pseudobulbs of four Dendrobium species with different pseudobulb morphologies to understand the roles of leaf and pseudobulb in maintaining water balance of epiphytic orchids. Our results showed that two species (D. chrysotoxum and D. officinale), with lower rates of water loss, have thicker leaves and upper cuticles, but lower epidermal thickness and leaf dry mass per area. In contrast, the other two species (D. chrysanthum and D. crystallinum) with thinner cuticles and higher rates of water loss, have less tissue density and greater saturated water contents in their pseudobulbs. Therefore, our results indicate that these latter two species may resist drought by storing water in the pseudobulbs to compensate for their thin cuticles and rapid water loss through the leaves. Under the same laboratory conditions, excised pseudobulbs with attached leaves had lower rates of water loss when compared with samples comprising only excised leaves. This implies that epiphytic orchids utilize two different strategies for sustaining water balance: thick cuticles to conserve water in leaves and water storage in pseudobulbs. Our results also show that Dendrobium species with thin cuticles tend to have pseudobulbs with high water storage capacity that compensates for their faster rates of water loss. These outcomes contribute to our understanding of the adaptive water-use strategies in Dendrobium species, which is beneficial for the conservation and cultivation of epiphytic orchids

  9. Bacterial communities in an ultrapure water containing storage tank of a power plant.

    PubMed

    Bohus, Veronika; Kéki, Zsuzsa; Márialigeti, Károly; Baranyi, Krisztián; Patek, Gábor; Schunk, János; Tóth, Erika M

    2011-12-01

    Ultrapure waters (UPWs) containing low levels of organic and inorganic compounds provide extreme environment. On contrary to that microbes occur in such waters and form biofilms on surfaces, thus may induce corrosion processes in many industrial applications. In our study, refined saltless water (UPW) produced for the boiler of a Hungarian power plant was examined before and after storage (sampling the inlet [TKE] and outlet [TKU] waters of a storage tank) with cultivation and culture independent methods. Our results showed increased CFU and direct cell counts after the storage. Cultivation results showed the dominance of aerobic, chemoorganotrophic α-Proteobacteria in both samples. In case of TKU sample, a more complex bacterial community structure could be detected. The applied molecular method (T-RFLP) indicated the presence of a complex microbial community structure with changes in the taxon composition: while in the inlet water sample (TKE) α-Proteobacteria (Sphingomonas sp., Novosphingobium hassiacum) dominated, in the outlet water sample (TKU) the bacterial community shifted towards the dominance of α-Proteobacteria (Rhodoferax sp., Polynucleobacter sp., Sterolibacter sp.), CFB (Bacteroidetes, formerly Cytophaga-Flavobacterium-Bacteroides group) and Firmicutes. This shift to the direction of fermentative communities suggests that storage could help the development of communities with an increased tendency toward corrosion. PMID:22207294

  10. Stemflow-induced processes of soil water storage

    NASA Astrophysics Data System (ADS)

    Germer, Sonja

    2013-04-01

    Compared to stemflow production studies only few studies deal with the fate of stemflow at the near-stem soil. To investigate stemflow contribution to the root zone soil moisture by young and adult babassu palms (Attalea speciosa Mart.), I studied stemflow generation, subsequent soil water percolation and root distributions. Rainfall, stemflow and perched water tables were monitored on an event basis. Perched water tables were monitored next to adult palms at two depths and three stem distances. Dye tracer experiments monitored stemflow-induced preferential flow paths. Root distributions of fine and coarse roots were related to soil water redistribution. Average rainfall-collecting area per adult palm was 6.4 m², but variability between them was high. Funneling ratios ranged between 16-71 and 4-55 for adult and young palms, respectively. Nonetheless, even very small rainfall events of 1 mm can generate stemflow. On average, 9 liters of adult palm stemflow were intercepted and stemflow tended to decrease for-high intensity rainfall events. Young babassu palms funneled rainfall via their fronds, directly to their subterranean stems. The funneling of rainfall towards adult palm stems, in contrast, led to great stemflow fluxes down to the soil and induced initial horizontal water flows through the soil, leading to perched water tables next to palms, even after small rainfall events. The perched water tables extended, however, only a few decimeters from palm stems. After perched water tables became established, vertical percolation through the soil dominated. To my knowledge, this process has not been described before, and it can be seen as an addition to the two previously described stemflow-induced processes of Horton overland flow and fast, deep percolation along roots. This study has demonstrated that Babassu palms funnel water to their stems and subsequently store it in the soil next to their stems in areas where coarse root length density is very high. This might

  11. Increased Water Storage in the Qaidam Basin, the North Tibet Plateau from GRACE Gravity Data.

    PubMed

    Jiao, Jiu Jimmy; Zhang, Xiaotao; Liu, Yi; Kuang, Xingxing

    2015-01-01

    Groundwater plays a key role in maintaining the ecology and environment in the hyperarid Qaidam Basin (QB). Indirect evidence and data from sparse observation wells suggest that groundwater in the QB is increasing but there has been no regional assessment of the groundwater conditions in the entire basin because of its remoteness and the severity of the arid environment. Here we report changes in the spatial and temporal distribution of terrestrial water storage (TWS) in the northern Tibetan Plateau (NTP) using Gravity Recovery and Climate Experiment (GRACE) data. Our study confirms long-term (2003-2012) TWS increases in the NTP. Between 2003 and 2012 the TWS increased by 88.4 and 20.6 km3 in the NTP and the QB, respectively, which is 225% and 52% of the capacity of the Three Gorges Reservoir, respectively. Soil and water changes from the Global Land Data Assimilation System (GLDAS) were also used to identify groundwater storage in the TWS and to demonstrate a long-term increase in groundwater storage in the QB. We demonstrate that increases in groundwater, not lake water, are dominant in the QB, as observed by groundwater levels. Our study suggests that the TWS increase was likely caused by a regional increase in precipitation and a decrease in evaporation. Degradation of the permafrost increases the thickness of the active layers providing increased storage for infiltrated precipitation and snow and ice melt water, which may also contribute to the increased TWS. The huge increase of water storage in the NTP will have profound effects, not only on local ecology and environment, but also on global water storage and sea level changes. PMID:26506230

  12. Increased Water Storage in the Qaidam Basin, the North Tibet Plateau from GRACE Gravity Data

    PubMed Central

    Jiao, Jiu Jimmy; Zhang, Xiaotao; Liu, Yi; Kuang, Xingxing

    2015-01-01

    Groundwater plays a key role in maintaining the ecology and environment in the hyperarid Qaidam Basin (QB). Indirect evidence and data from sparse observation wells suggest that groundwater in the QB is increasing but there has been no regional assessment of the groundwater conditions in the entire basin because of its remoteness and the severity of the arid environment. Here we report changes in the spatial and temporal distribution of terrestrial water storage (TWS) in the northern Tibetan Plateau (NTP) using Gravity Recovery and Climate Experiment (GRACE) data. Our study confirms long-term (2003–2012) TWS increases in the NTP. Between 2003 and 2012 the TWS increased by 88.4 and 20.6 km3 in the NTP and the QB, respectively, which is 225% and 52% of the capacity of the Three Gorges Reservoir, respectively. Soil and water changes from the Global Land Data Assimilation System (GLDAS) were also used to identify groundwater storage in the TWS and to demonstrate a long-term increase in groundwater storage in the QB. We demonstrate that increases in groundwater, not lake water, are dominant in the QB, as observed by groundwater levels. Our study suggests that the TWS increase was likely caused by a regional increase in precipitation and a decrease in evaporation. Degradation of the permafrost increases the thickness of the active layers providing increased storage for infiltrated precipitation and snow and ice melt water, which may also contribute to the increased TWS. The huge increase of water storage in the NTP will have profound effects, not only on local ecology and environment, but also on global water storage and sea level changes. PMID:26506230

  13. The influence of ENSO on global surface water storage using GRACE

    NASA Astrophysics Data System (ADS)

    Phillips, T. P.; Nerem, R.; Fox-Kemper, B.; Famiglietti, J. S.; Rajagopalan, B.

    2011-12-01

    Gravity Recovery and Climate Experiment (GRACE) monthly time variable gravity data for the period January 2003 to December 2010 were used to study the influence of the El Nino Southern Oscillation (ENSO) on global water storage variations. The datasets were detrended and seasonal variations removed. We corrected for Glacial Isostatic Adjustment [Paulson, 2007] and used the Swenson and Wahr [2006] method to destripe the dataset before the monthly gravity map is smoothed using a 500km half-width. We then studied the relationship between GRACE land water storage and ENSO by correlating with the Multivariate ENSO Index (MEI). Our results indicate that the tropical regions show a strong negative correlation (Borneo: -0.78, Amazon Basin: -0.69) and, arid regions show a strong positive correlation (Patagonia: 0.63). Remote regions such as the south coast of Alaska (0.57) and the Southeast coast of Greenland (0.56) also show a positive correlation. The Amazon Basin shows an increase of 50cm water equivalent per 1 MEI per year, which Please complete the information below correlation. The Amazon Basin shows an increase of 50cm water equivalent per 1 MEI per year, which explains ~15% of its variability. The lower basin of the Indus River experiences an increase of 30cm (water equivalent) per 1 unit MEI per year, which corresponds to ~26% of its variability. ENSO effects the precipitation and water storage in Central and northern South America as well as in Southeast Asia simultaneously. Regions such as the Congo Basin and Greenland show a lag of up to 3 months. Our results demonstrate the strong capability of GRACE to detect ENSO teleconnections in global water storage that has the potential for contributing to projections of short term water storage for resource planning and management.

  14. A 1985-2015 data-driven global reconstruction of GRACE total water storage

    NASA Astrophysics Data System (ADS)

    Humphrey, Vincent; Gudmundsson, Lukas; Isabelle Seneviratne, Sonia

    2016-04-01

    After thirteen years of measurements, the Gravity Recovery and Climate Experiment (GRACE) mission has enabled for an unprecedented view on total water storage (TWS) variability. However, the relatively short record length, irregular time steps and multiple data gaps since 2011 still represent important limitations to a wider use of this dataset within the hydrological and climatological community especially for applications such as model evaluation or assimilation of GRACE in land surface models. To address this issue, we make use of the available GRACE record (2002-2015) to infer local statistical relationships between detrended monthly TWS anomalies and the main controlling atmospheric drivers (e.g. daily precipitation and temperature) at 1 degree resolution (Humphrey et al., in revision). Long-term and homogeneous monthly time series of detrended anomalies in total water storage are then reconstructed for the period 1985-2015. The quality of this reconstruction is evaluated in two different ways. First we perform a cross-validation experiment to assess the performance and robustness of the statistical model. Second we compare with independent basin-scale estimates of TWS anomalies derived by means of combined atmospheric and terrestrial water-balance using atmospheric water vapor flux convergence and change in atmospheric water vapor content (Mueller et al. 2011). The reconstructed time series are shown to provide robust data-driven estimates of global variations in water storage over large regions of the world. Example applications are provided for illustration, including an analysis of some selected major drought events which occurred before the GRACE era. References Humphrey V, Gudmundsson L, Seneviratne SI (in revision) Assessing global water storage variability from GRACE: trends, seasonal cycle, sub-seasonal anomalies and extremes. Surv Geophys Mueller B, Hirschi M, Seneviratne SI (2011) New diagnostic estimates of variations in terrestrial water storage

  15. Spatial variability of the subsurface water storage revealed by relative gravity measurements in Southwest Niger

    NASA Astrophysics Data System (ADS)

    Pfeffer, J.; Champollion, C.; Favreau, G.; Hinderer, J.; Cappelaere, B.; Mouyen, M.; Boucher, M.; Nazoumou, Y.; Oi, M.; Robert, O.; Le Moigne, N.; Deroussi, S.; Demarty, J.; Benarrosh, N.; Charvet, G.; Chazarin, J.

    2011-12-01

    A major challenge in water resources research is to document the spatial and temporal variability of the hydrological processes over short time and space scales. Indeed, the quality of model predictions for resource assessment is dependent on reliable datasets, representative of the hydrological regime and its variations. This issue is particularly sensitive in Sahelian Africa, where available hydrological datasets are scarce. In this study, the variability of the water storage was investigated at the subcatchment scale (< 1km) by an intensive microgravity field campaign. Weekly microgravity surveys were carried out in a small endoreic catchment in Southwest Niger, during three months of the rainy season in 2009. Gravity measurements were performed at 16 stations located near a temporary pond, where rapid infiltration towards the aquifer occurs. The highest (63 μGal) gravity signal was measured on a station located above the pond and is well explained by the direct effect of the pond water volume changes throughout the wet season. Gravity signals of smaller amplitude (≤ 22 μGal) were measured in the pond surroundings and coupled to hydrodynamic data (pond level, soil moisture and water table level) to evaluate the intraseasonal variability of the water storage in the vicinity of the pond. The gravity signals related to the water storage in the subsurface exhibits a significant spatial variability. The heterogeneity of the water storage in the vadose zone appears as the main reason for the dispersion of the gravity values at local scale. This experiment evidences the ability of time lapse microgravity survey to detect the spatial variations of the water storage at intraseasonal scale in Sahelian Africa. Combined with hydrodynamic data, such a spatially distributed dataset may be a useful tool to calibrate or validate hydrological models and should be taken into account for scaling issue such as satellite gravimetry validation.

  16. A ground-water inventory of the Waialua basal-water body, Island of Oahu, Hawaii

    USGS Publications Warehouse

    Dale, Robert H.

    1978-01-01

    The Waialua basal-water body underlies an area of about 18 square miles on the north shore of the island of Oahu, Hawaii. The basal-water body is a body of fresh ground water that floats on saline ground water in a highly permeable and porous basaltic aquifer. Inflow to the basal-water body is from the deep infiltration of applied irrigation water and from leakage through a low permeability ground-water dam. Outflow from the basal-water body is from basal-water pumpage and leakage through low-permeability boundaries that separate the basal-water body from the ocean. The basal-water flux, computed as either the sum of the inflow terms or the sum of the outflow terms, is about the same value. The basal-water flux is 55 million gallons per day, (206,000 cubic meters per day), based on the sum of the outflow terms. The effective porosity was computed at 0.09 by a time-series analysis of the covariations in deep infiltration, pumpage, and basal-water head. The volume of basal water in storage is estimated to be 1.4 x 1011 gallons (5.4 x 108 cubic meters). Pumpage from the basal-water body can be increased. The most efficient development method is the skimming shaft. If shafts were used, an additional 15 million gallons per day could be pumped on a sustained basis.

  17. Stratified storage economically increases capacity and efficiency of campus chilled water system

    SciTech Connect

    Bahnfleth, W.P.; Joyce, W.S.

    1995-03-01

    This article describes how the addition of stratified chilled water storage to the Cornell University campus chilled water system has increased its capacity and efficiency and reduced its operating costs for less than the cost of a conventional chilled water plant expansion. While chilled water storage is not appropriate for all chilled water systems, the experience at Cornell indicates that it can be very cost effective when favorable conditions exist. It should receive serious consideration by owners of large systems who are investigating alternatives for system expansion. The benefits of variable speed chiller operation were found to be considerable. It is hoped that this successful application will stimulate further interest in the development and application of variable speed drive chillers.

  18. Karstic water storage response to the recent droughts in Southwest China estimated from satellite gravimetry

    NASA Astrophysics Data System (ADS)

    Yao, Chaolong; Luo, Zhicai

    2015-12-01

    The water resources crisis is intensifying in Southwest China (SWC), which includes the world's largest continuous coverage of karst landforms, due to recent severe drought events. However, because of the special properties of karstic water system, such as strong heterogeneity, monitoring the variation of karstic water resources at large scales remains still difficult. Satellite gravimetry has emerged as an effective tool for investigating the global and regional water cycles. In this study, we used GRACE (Gravity Recovery and Climate Experiment) data from January 2003 to January 2013 to investigate karstic water storage variability over the karst region of SWC. We assessed the impacts of the recent severe droughts on karst water resources, including two heavy droughts in September 2010 to May 2010 and August 2011 to January 2012. Results show a slightly water increase tend during the studied period, but these two severe droughts have resulted in significant water depletion in the studied karst region. The latter drought during 2011 and 2012 caused more water deficits than that of the drought in 2010. Strong correlation between the variations of GRACE-based total water storage and precipitation suggests that climate change is the main driving force for the significant water absent over the studied karst region. As the world's largest continuous coverage karst aquifer, the karst region of SWC offers an example of GRACE applications to a karst system incisively and will benefit for water management from a long-term perspective in karst systems throughout the world.

  19. Economic analysis of air-conditioning systems with off-peak chilled-water storage. Master's thesis

    SciTech Connect

    McMullen, B.J.; Papaprokopiou, N.D.

    1981-09-01

    This thesis investigates current methods of chilled-water storage for air conditioning applications and the economics of chilled-water storage with time-of-use electric utility rates. Current methods of chilled-water storage are investigated by comparing costs of construction materials for storage tanks and effectiveness and costs of anti-blending systems. The economics of chilled-water storage are analyzed by computing total life cycle costs of alternative air conditioning systems for two different sized buildings. Computer simulation is used to determine electric consumption for the buildings. The simulation of each building contains three options: no chilled-water storage, chiller operated only at night, and a small chiller supplemented by stored chilled-water. A gunite or Styrofoam tank with a moving partition anti-blending system is the least expensive and most effective storage system. The economics of chilled-water storage are sensitive to the size of the building analyzed. Operating the small chiller with supplemental chilled-water is economical in the smaller building. No chilled-water storage is the most economical option in the larger building. Operation of the chiller only at night was never economical.

  20. How to choose capacity of storage tank to utilize water on windless days

    SciTech Connect

    Jugadeesh, A.

    1983-12-01

    As wind flow is not constant throughout the month or year and varies from season to season and from time to time in a day, a storage tank (or reservoir) is essential to supplement water to the field on calm days. In this paper the storage capacity required at two places, namely, Veeraval and Jamnagar in Gujarat State is discussed. The first prerequisite to know the suitability of the windmill size at particular place is the diameter of the windmill which should match the monthly required energy for lifting water.

  1. Detectability of groundwater storage change within the Great Lakes Water Basin using GRACE

    NASA Astrophysics Data System (ADS)

    Huang, J.; Halpenny, J.; van der Wal, W.; Klatt, C.; James, T. S.; Rivera, A.

    2012-08-01

    Groundwater is a primary hydrological reservoir of the Great Lakes Water Basin (GLB), which is an important region to both Canada and US in terms of culture, society and economy. Due to insufficient observations, there is a knowledge gap about groundwater storage variation and its interaction with the Great Lakes. The objective of this study is to examine the detectability of the groundwater storage change within the GLB using the monthly models from the Gravity Recovery And Climate Experiment (GRACE) satellite mission, auxiliary soil moisture, snow and lake (SMSL) data, and predictions from glacial isostatic adjustment (GIA) models. A two-step filtering method is developed to optimize the extraction of GRACE signal. A two dimensional basin window weight function is also introduced to reduce ringing artifacts caused by the band-limited GRACE models in estimating the water storage change within the GLB. The groundwater storage (GWS) as deviation from a reference mean storage is estimated for the period of 2002 to 2009. The average GWS of the GLB clearly show an annual cycle with an amplitude range from 27 to 91 mm in water thickness equivalent (WTE), and a phase range of about two months. The estimated phases of GWS variations have a half year shift with respect to the phase of SMSL water storage variations which show peaks in March and April. The least squares estimation gives a GWS loss trend of from 2.3 to 9.3 km3/yr within the GLB for the period of study. This wide range of the GRACE GWS results is caused largely by the differences of soil moisture and snow storage from different land surface models (LSMs), and to a lesser extent by the GRACE commission and omission errors, and the GIA model error.

  2. Non-linearities and thresholds in water partitioning, storage and release in different ecohydrological units

    NASA Astrophysics Data System (ADS)

    Geris, Josie; Tetzlaff, Doerthe; McDonnell, Jeffrey; Soulsby, Chris

    2014-05-01

    Water partitioning between transpiration, evaporation and runoff is controlled by climatic and water storage characteristics; yet our current knowledge of varying dominant retention and partitioning mechanisms remains limited. For some forested catchments with clear seasonal distinctions, recent work has revealed the existence of partitioned ecohydrological systems where plant - and stream-water are sourced from different subsurface water stores. It is still unclear what the roles of non-linearities are in different water-energy regimes and how soil and vegetation properties might influence such partitioning of water stores. This study aims to better understand the spatio-temporal controls on water residence times and hydrological responses at the catchment scale in a northern headwater catchment in Scotland. Here, the climate is usually consistently wet with low evapotranspiration rates. Within this context however, the study period involved an exceptionally dry summer. We explored non-linearities and thresholds in catchment input-output relationships and investigated the role of soil-water-vegetation interactions on water partitioning, storage, and release along different hillslopes during contrasting hydro-climatic conditions. Different ecohydrological units included poorly draining soils in riparian zones and freely draining soils on hillslopes, and both forested and non-forested sites were considered. Soil moisture dynamics and stable water isotope signatures of different waters (precipitation, stream-, soil -, and plant xylem-water) were examined throughout the year (winter and during the growing season that included the relatively dry summer) to identify plant water use, assess water movement, and explore vegetation-water linkages. The results indicate that threshold behaviour in runoff responses at the catchment scale can be linked to apparent differences between soil water dynamics and residence times of different hydropedological units. Linear input

  3. Effect of bottling and storage on the migration of plastic constituents in Spanish bottled waters.

    PubMed

    Guart, Albert; Bono-Blay, Francisco; Borrell, Antonio; Lacorte, Silvia

    2014-08-01

    Bottled water is packaged in either glass or, to a large extent, in plastic bottles with metallic or plastic caps of different material, shape and colour. Plastic materials are made of one or more monomers and several additives that can eventually migrate into water, either during bottle manufacturing, water filling or storage. The main objective of the present study was to carry out a comprehensive assessment of the quality of the Spanish bottled water market in terms of (i) migration of plastic components or additives during bottling and during storage and (ii) evaluation of the effect of the packaging material and bottle format on the migration potential. The compounds investigated were 5 phthalates, diethylhexyl adipate, alkylphenols and bisphenol A. A set of 362 bottled water samples corresponding to 131 natural mineral waters and spring waters sources and 3 treated waters of several commercial brands were analysed immediately after bottling and after one-year storage (a total of 724 samples). Target compounds were detected in 5.6% of the data values, with diethyl hexyl phthalate and bisphenol A being the most ubiquitous compounds detected. The total daily intake was estimated and a comparison with reference values was indicated. PMID:24629940

  4. Greenhouse gas implications of a 32 billion gallon bioenergy landscape in the US

    NASA Astrophysics Data System (ADS)

    DeLucia, E. H.; Hudiburg, T. W.; Wang, W.; Khanna, M.; Long, S.; Dwivedi, P.; Parton, W. J.; Hartman, M. D.

    2015-12-01

    Sustainable bioenergy for transportation fuel and greenhouse gas (GHGs) reductions may require considerable changes in land use. Perennial grasses have been proposed because of their potential to yield substantial biomass on marginal lands without displacing food and reduce GHG emissions by storing soil carbon. Here, we implemented an integrated approach to planning bioenergy landscapes by combining spatially-explicit ecosystem and economic models to predict a least-cost land allocation for a 32 billion gallon (121 billion liter) renewable fuel mandate in the US. We find that 2022 GHG transportation emissions are decreased by 7% when 3.9 million hectares of eastern US land are converted to perennial grasses supplemented with corn residue to meet cellulosic ethanol requirements, largely because of gasoline displacement and soil carbon storage. If renewable fuel production is accompanied by a cellulosic biofuel tax credit, CO2 equivalent emissions could be reduced by 12%, because it induces more cellulosic biofuel and land under perennial grasses (10 million hectares) than under the mandate alone. While GHG reducing bioenergy landscapes that meet RFS requirements and do not displace food are possible, the reductions in GHG emissions are 50% less compared to previous estimates that did not account for economically feasible land allocation.

  5. SOURCE ASSESSMENT: WATER POLLUTANTS FROM COAL STORAGE AREAS

    EPA Science Inventory

    This report describes a study of water pollution levels that result from coal stockpiles maintained outdoors. A representative source was defined to characterize the pollution levels. Effluent data was obtained by placing coals, collected from various regions in the U.S., under a...

  6. Water storage and early hydrous melting of the Martian mantle

    NASA Astrophysics Data System (ADS)

    Pommier, A.; Grove, T. L.; Charlier, B.

    2012-06-01

    We report an experimental investigation of the near-solidus phase equilibria of a water-saturated analog of the Martian mantle. Experiments were performed at low temperatures (700-920 °C) and high pressure (4-7 GPa) using multi-anvil apparatus and piston cylinder device (4 GPa). The results of this study are used to explore the role of water during early melting and chemical differentiation of Mars, and to further our understanding of the near-solidus behavior in planetary mantle compositions at high pressure. Water has a significant effect on the temperature of melting and, therefore, on accretion and subsequent differentiation processes. Experiments locate the wet solidus at ∼800 °C, and is isothermal between 4 GPa and 7 GPa. The Martian primitive mantle can store significant amounts of water in hydrous minerals stable near the solidus. Humite-group minerals and phase E represent the most abundant hydrous minerals stable in the 4-7 GPa pressure range. The amount of water that can be stored in the mantle and mobilized during melting ranges from 1 to up to 4 wt% near the wet solidus. We discuss thermal models of Mars accretion where the planet formed very rapidly and early on in solar system history. We incorporate the time constraint of Dauphas and Pourmand (2011) that Mars had accreted to 50% of its present mass in 1.8 Myr and include the effects of 26Al radioactive decay and heat supplied by rapid accretion. When accretion has reached 30% of Mars current mass (∼70% of its present size), melting starts, and extends from 100 to 720 km depth. Below this melt layer, water can still be bound in crystalline solids. The critical stage is at 50% accretion (∼80% of its size), where Mars is above the wet and dry solidi with most of its interior melted. This is earlier in the accretion process than what would be predicted from dry melting. We suggest that water may have promoted early core formation on Mars and rapidly extended melting over a large portion of Mars

  7. Leaf Area and Water Content Changes after Permanent and Temporary Storage

    PubMed Central

    Juneau, Kevyn J.; Tarasoff, Catherine S.

    2012-01-01

    Accurate measurements of leaf morphology must be taken to develop models of ecosystem productivity and climate change projections. Once leaves are removed from a plant they begin to lose water and degrade. If specimens cannot be measured immediately after harvest, it is important to store the leaves in a manner that reduces morphological changes. If preserved specimens are used, estimates that closely match fresh measurements need to be calculated. This study examined the change in leaf area after storage treatments and developed models that can be used to more accurately estimate initial leaf area. Fresh leaf area was measured from ten plant species then stored in one of two common storage treatments. After storage, leaf area was re-measured and comparisons were made between species and growth forms. Leaf area decreased the most after permanent storage treatments and the least after temporary storage. Pressed leaves shrunk over 18% while cold storage leaves shrunk under 4%. The woody dicot growth form shrunk the least in all treatments. Shrinkage was positively correlated with initial water content and dissection index, a measure of leaf shape and complexity. PMID:22880051

  8. Long Term Water Storage Deteriorates Bonding of Composite Resin to Alumina and Zirconia Short Communication

    PubMed Central

    Heikkinen, T.T.; Matinlinna, J.P; Vallittu, P.K.; Lassila, L.V.J.

    2013-01-01

    Objective of this study was to evaluate the effects of long term water storage and ageing on the bond strength of resin composite cement to yttria-stabilized zirconium dioxide (zirconia) and dialuminium trioxide (alumina). Substrate specimens of alumina and zirconia were air particle abraded with dialuminium trioxide before priming and application of composite resin. Priming was made with gamma metharyloxy-trimethoxysilane or acryloxypropyl-trimethoxysilane monomer after which the intermediate dimethacrylate resin was applied and photopolymerized. This was followed by curing particulate composite resin cement (Relyx ARC) to the substrate as a resin stub. The ageing methods of the specimens (n=6) were: (1) they stored four years in 37±1ºC distilled water, (2) thermocycled 8000 times between 55±1ºC and 5±1ºC, (3) stored first in water for four years and then thermocycled. Specimens which were stored dry, were used as controls. Bonding of composite resin was measured by shear-bond strength test set-up. Both thermocycling and long-term water storage decreased significantly shear bond strength values compared to the control group (from the level of 20 MPa to 5 MPa) regardless of the used primer or the type of the substrate. Combination of four years water storage and thermocyling reduced the bond strength even more, to the level of two to three megapascals. In can be concluded that water storage and thermocycling itselves, and especially combination of water storage and thermocycling can cause considerable reduction in the bond strength of composite resin cement to alumina and zirconia. PMID:24167535

  9. Groundwater, Soil Moisture, Snow Water Equivalent, and River Water in the Seasonal Variation of Total Terrestrial Water Storage in Major River Basins

    NASA Astrophysics Data System (ADS)

    Oki, T.; Yoshimura, K.; Kim, H.; Shen, Y.; Thanh, N. D.; Seto, S.; Kanae, S.

    2006-12-01

    Both the combined atmospheric-river basin water balance and the remote sensing by GRACE can estimate the variation of the total terrestrial water storage which consist the changes in ground water, soil moisture, snow water equivalent, and water in rivers, lakes, ponds, etc. What are the major components in the change of the total terrestrial water storage? One hand, the seasonal variation of the total water storage in major continental-scale river basins are estimated by the atmospheric-river basin water balance (AWB) method The global distribution of water vapor flux convergence was estimated using the ECMWF global analysis data for the period from 1986 through 1995. The 10 year mean value of the atmospheric water vapor convergence was adjusted to match with the climatological mean value of river runoff for 1961-1990. Then the seasonal changes of the total terrestrial water storage were estimated by AWB method combining the atmospheric water vapor convergence for major river basins and the runoff from the area. On the other hand, the components in the change of the total terrestrial water storage were investigated using the multi-model products forced by observed surface meteorology. Under the Global Land/Atmosphere Study (GLASS), the Phase 2 of the Global Soil Wetness Project (GSWP-2) produced the first global (excluding Antarctica) 1x1 degree Multi-Model Analysis (MMA) of land-surface variables and fluxes for the 10-year period of 1986 1995 at the daily time scale. Thirteen land-surface models (LSMs) were driven by the best possible forcing data of the atmospheric conditions, such as precipitation, downward radiation, wind speed, air humidity and air temperature with temporal resolution of 3-hourly or higher. Water balance in major continental scale river basins were post-processed and the seasonal changes in ground water, soil moisture, snow water equivalent, and the water in river channel were analyzed using the Total Runoff Integrating Pathways (TRIP) and a

  10. Liquid and Frozen Storage of Agouti (Dasyprocta leporina) Semen Extended with UHT Milk, Unpasteurized Coconut Water, and Pasteurized Coconut Water

    PubMed Central

    Mollineau, W. M.; Adogwa, A. O.; Garcia, G. W.

    2011-01-01

    This study evaluated the effects of semen extension and storage on forward progressive motility % (FPM%) in agouti semen. Three extenders were used; sterilized whole cow's milk (UHT Milk), unpasteurized (CW) and pasteurized coconut water (PCW), and diluted to 50, 100, 150, and 200 × 106 spermatozoa/ml. Experiment 1: 200 ejaculates were extended for liquid storage at 5∘C and evaluated every day for 5 days to determine FPM% and its rate of deterioration. Experiment 2: 150 ejaculates were extended for storage as frozen pellets in liquid nitrogen at −195∘C, thawed at 30∘ to 70∘C for 20 to 50 seconds after 5 days and evaluated for FPM% and its rate of deterioration. Samples treated with UHT milk and storage at concentrations of 100 × 106 spermatozoa/ml produced the highest means for FPM% and the slowest rates of deterioration during Experiment 1. During Experiment 2 samples thawed at 30∘C for 20 seconds exhibited the highest means for FPM% (12.18 ± 1.33%), 85% rate of deterioration. However, samples were incompletely thawed. This was attributed to the diameter of the frozen pellets which was 1 cm. It was concluded that the liquid storage method was better for short term storage. PMID:20871831

  11. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    SciTech Connect

    Johnson, Alissa; Lutz, James; McNeil, Michael A.; Covary, Theo

    2013-11-13

    Water heating is a main consumer of energy in households, especially in temperate and cold climates. In South Africa, where hot water is typically provided by electric resistance storage tank water heaters (geysers), water heating energy consumption exceeds cooking, refrigeration, and lighting to be the most consumptive single electric appliance in the home. A recent analysis for the Department of Trade and Industry (DTI) performed by the authors estimated that standing losses from electric geysers contributed over 1,000 kWh to the annual electricity bill for South African households that used them. In order to reduce this burden, the South African government is currently pursuing a programme of Energy Efficiency Standards and Labelling (EES&L) for electric appliances, including geysers. In addition, Eskom has a history of promoting heat pump water heaters (HPWH) through incentive programs, which can further reduce energy consumption. This paper provides a survey of international electric storage water heater test procedures and efficiency metrics which can serve as a reference for comparison with proposed geyser standards and ratings in South Africa. Additionally it provides a sample of efficiency technologies employed to improve the efficiency of electric storage water heaters, and outlines programs to promote adoption of improved efficiency. Finally, it surveys current programs used to promote HPWH and considers the potential for this technology to address peak demand more effectively than reduction of standby losses alone

  12. Removal plan for Shippingport pressurized water reactor core 2 blanket fuel assemblies form T plant to the canister storage building

    SciTech Connect

    Lata

    1996-09-26

    This document presents the current strategy and path forward for removal of the Shippingport Pressurized Water Reactor Core 2 blanket fuel assemblies from their existing storage configuration (wet storage within the T Plant canyon) and transport to the Canister Storage Building (designed and managed by the Spent Nuclear Fuel. Division). The removal plan identifies all processes, equipment, facility interfaces, and documentation (safety, permitting, procedures, etc.) required to facilitate the PWR Core 2 assembly removal (from T Plant), transport (to the Canister storage Building), and storage to the Canister Storage Building. The plan also provides schedules, associated milestones, and cost estimates for all handling activities.

  13. Satellite measurements of changes in water storage and their impact on vegetation dynamics

    NASA Astrophysics Data System (ADS)

    Hashimoto, H.; Nemani, R. R.

    2013-12-01

    Estimating dynamics of groundwater at regional or global scale is difficult because we cannot directly measure the amount of water under the ground. Currently, ten years data of GRACE equivalent water thickness data are available to study global scale groundwater dynamics. GRACE data is useful to understand change in water storage at global scale, but the mechanisms of the water storage dynamics and its impacts on vegetation are not well understood. In this study, we tried to explain the interannual variations in the GRACE equivalent water thickness in relation to other satellite data, such as TRMM precipitation and MODIS land surface temperature. Then, we assessed the effect of dynamics of ground water on vegetation at both regional and global scale. At first, we decomposed the GRACE equivalent water thickness record into year-to-year variations and ten-year trend. The year-to-year variations in GRACE data are the result of annual water budget, while the ten-year trend in GRACE data can be explained by the trend in annual water storage and additional human water usage, especially irrigation. The year-to-year variation in GRACE data was spatially matched well with TRMM annual precipitation, but the high correlations with LST were found only in a few regions. The most of significant trend in GRACE data can be explained with long-term TRMM annual precipitation trend. The trend that cannot be explained by TRMM precipitation trend can be considered as the human water usage. Finally, we focused on the regional analysis in India to scrutinize the relationship among those satellite data including seasonal analysis. It is well known that irrigation in northwest India is exploiting groundwater and that was observed in GRACE data as decreasing trend in equivalent water thickness. On the other hand, western India showed increasing trend in NDVI for the last decades. TRMM data showed no significant trend in precipitation in India for the last decade. Those inconsistencies were

  14. Water storage variations in Washington, Oregon and California inferred from GPS observation of loading deformation

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Argus, D. F.; Landerer, F. W.; Wiese, D. N.; Watkins, M. M.

    2014-12-01

    The vertical loading deformation in the Pacific mountain system is observed with GPS to be large. The mountains subside up to more than 1 cm in the fall and winter due to the load of snow and rain, and then rise during the spring and summer when the snow melts, rainwater runs off, and soil moisture evaporates. In this study, we invert such GPS measurements of loading deformation for surface water variations in Equivalent Water Thickness (EWT), and study seasonal, interannual and long-term trend water storage variations in Washington, Oregon and California. The resulting GPS determination of the total water thickness change is compared with GRACE and hydrology results. The GPS inversed seasonal mass variation mimics different physiographic provinces of western U.S. The inferred seasonal change in water thickness from April to October is large (up to a half meter in EWT) in the Cascade, Klamath, and Sierra Nevada Mountains. Seasonal water storage decreases sharply east into the Great Basin and Columbia Plateau and west toward the Pacific coast. With GPS monthly time series, we infer surface water variation at higher temporal (monthly) interval. The current California drought since 2011 is precisely quantified with GPS inversed surface water change. In the Sierra Nevada Mountains, our GPS results indicate ~14 Gigaton/year water loss between 2011 to 2014, and this rate is much larger than that of the previous drought event (~9 Gigaton/year) between 2006 to 2009. Our results inferred from GPS show that rapid near-surface water decrease is occurring in Sierra Nevada Mountain, Klamath Mountain. In the Cascade Range of Washington and Oregon, there is no significant water loss there. Because the GPS network in the western U.S. is dense enough and GPS position solutions can be derived very quickly, we conclude that GPS provides an independent determination of water storage in the Pacific mountains system at high spatial resolution in near real time.

  15. Assimilation of GRACE Derived Terrestrial Water Storage Data into a Hydrological Model

    NASA Astrophysics Data System (ADS)

    Rodell, M.; Zaitchik, B. F.; Reichle, R. H.

    2007-12-01

    GRACE has great potential to benefit hydrology, because no other observation system, ground- or space-based, has ever mapped variations in terrestrial water storage (TWS; the sum of groundwater, soil moisture, surface water, and snow). However, because its spatial and temporal resolutions are low relative to other hydrological observing systems and because total terrestrial water storage is a variable unfamiliar to hydrologists, GRACE has yet to become a standard tool for hydrology. Land surface models (LSMs) simulate the redistribution of water and energy incident on the land surface, but their accuracy is limited by the quality of the input data used to parameterize and force the models, the model developers' understanding of the physics involved, and the simplifications necessary to depict the Earth system economically. The advantages of GRACE and LSMs can be harnessed by data assimilation, which synthesizes discontinuous and imperfect observations with our knowledge of physical processes, as represented in a LSM. The model fills observational gaps, provides quality control, and enables data from disparate measurement systems to be merged, while the observations anchor the results in reality. We have assimilated TWS anomalies derived from GRACE into the Catchment LSM. The experimental domain was the Mississippi River Basin. Monthly GRACE estimates were derived for each of the four major sub-basins. Assimilation was performed using an Ensemble Kalman smoother. In addition to simulating soil and snow water storages, the Catchment LSM accounts for variations in the elevation of the water table, making it appropriate for total terrestrial water storage applications. The assimilated results produced groundwater storage time series which more closely resembled piezometer based estimates, relative to the open loop (non-assimilating) simulations. These results emphasize the potential for GRACE to improve the accuracy of hydrologic model output, which will benefit water

  16. Multi-scale hydropedological controls on water storage, mixing and release in upland catchments

    NASA Astrophysics Data System (ADS)

    Geris, Josie; Tetzlaff, Doerthe; Birkel, Christian; Soulsby, Chris

    2015-04-01

    Water storage, mixing and flux processes regulate the generation of stream flow and the time scales for the transport of solutes and contaminants. Understanding the space and time variant dominant mechanisms on these processes in different landscapes and climates remains a key challenge in water resource research. The scope of this presentation is to provide an overview of new insights into the multiscale and integrated spatio-temporal controls of hydropedology on water storage, mixing and release in low energy, humid headwater catchments. We provide some examples from the Bruntland Burn experimental catchment (3.2 km2) in the Scottish Highlands. This area is characterised by high precipitation inputs, low evapotranspiration rates and storage reservoirs which are typically close to the threshold of saturation for most of the time. We explored water storage, mixing, and flow processes in the soil matrix, at different soil-vegetation plots, and along a hillslope transect. Sites included two common soil types (Histosols in the riparian zone and Podzols on hillslopes) and both forested (with Scots Pine (Pinus sylvestris)) and non-forested areas. We also explored the integrated effects of the spatio-temporal dynamics in these processes at the catchment scale, using high resolution hydrometric and stable water isotope analyses. By comparing stable water isotopes of soil water held at different soil water tensions, we found that water held at high tensions (i.e. in the smaller pores) had a longer residence time than that held at lower tensions. However, these variations were small in the context of the differences observed in soil water storage and flow dynamics between soil types and their integrated control at the catchment scale. Storage dynamics in the different hydropedological units controlled hydrological connectivity between hillslopes and the stream network, runoff generation, and the evolution of catchment transit time distributions. It was found that vegetation

  17. Monitoring water storage variations with a superconducting gravimeter in a field enclosure

    NASA Astrophysics Data System (ADS)

    Güntner, Andreas; Mikolaj, Michal; Reich, Marvin; Schröder, Stephan; Wziontek, Hartmut

    2016-04-01

    Water storage dynamics are notoriously difficult to monitor in a comprehensive way beyond the point scale. Superconducting gravimeters (SG) measure temporal variations of the Earth's acceleration of gravity with very high precision and temporal resolution. They have been shown to be sensitive to mass variations induced by hydrological processes in their surroundings, typically within a radius of few 100 meters around the instrument. Thus, in turn, SGs are unique instruments for monitoring water storage variations in the landscape in an integrative way, accounting for soil moisture, vadose zone and groundwater storage, snow, and surface water bodies if existent. Nevertheless, hydrological applications of SGs so far have usually been hindered by the instruments being located in observatory buildings. This infrastructure disturbs the local hydrology and causes many uncertainties due to the often poorly known geometry of the construction, non-natural flow paths of water, and unknown water storage variations below and/or on top of the infrastructure. By deploying the SG in a small enclosure, these disturbances and unknowns are minimized. We report on the first experiences with exposing a SG of the latest generation (iGrav) in a small housing of less than 1 m2 footprint to temperate hydro-meteorological conditions. The system has been set up on a grassland site at the Geodetic Observatory in Wettzell, Bavarian Forest, Germany, in early 2015. We present the technical layout and challenges in running the gravimeter system. Additionally, we report on the quality of data acquired so far and present comparisons to in-situ soil moisture monitoring with TDR and TOMST sensors, a lysimeter, and groundwater observations, and two SGs located in nearby observatory buildings. We discuss the value of SG observations for estimating water storage variations, evapotranspiration and groundwater recharge beyond the point scale.

  18. Forecasting drought risks for a water supply storage system using bootstrap position analysis

    USGS Publications Warehouse

    Tasker, Gary; Dunne, Paul

    1997-01-01

    Forecasting the likelihood of drought conditions is an integral part of managing a water supply storage and delivery system. Position analysis uses a large number of possible flow sequences as inputs to a simulation of a water supply storage and delivery system. For a given set of operating rules and water use requirements, water managers can use such a model to forecast the likelihood of specified outcomes such as reservoir levels falling below a specified level or streamflows falling below statutory passing flows a few months ahead conditioned on the current reservoir levels and streamflows. The large number of possible flow sequences are generated using a stochastic streamflow model with a random resampling of innovations. The advantages of this resampling scheme, called bootstrap position analysis, are that it does not rely on the unverifiable assumption of normality and it allows incorporation of long-range weather forecasts into the analysis.

  19. Effective use of household water treatment and safe storage in response to the 2010 Haiti earthquake.

    PubMed

    Lantagne, Daniele; Clasen, Thomas

    2013-09-01

    When water supplies are compromised during an emergency, responders often recommend household water treatment and safe storage (HWTS) methods, such as boiling or chlorination. We evaluated the near- and longer-term impact of chlorine and filter products distributed shortly after the 2010 earthquake in Haiti. HWTS products were deemed as effective to use if they actually improved unsafe household drinking water to internationally accepted microbiological water quality standards. The acute emergency survey (442 households) was conducted within 8 weeks of emergency onset; the recovery survey (218 households) was conducted 10 months after onset. Effective use varied by HWTS product (from 8% to 63% of recipients in the acute phase and from 0% to 46% of recipients in the recovery phase). Higher rates of effective use were associated with programs that were underway in Haiti before the emergency, had a plan at initial distribution for program continuation, and distributed products with community health worker support and a safe storage container. PMID:23836571

  20. Effective Use of Household Water Treatment and Safe Storage in Response to the 2010 Haiti Earthquake

    PubMed Central

    Lantagne, Daniele; Clasen, Thomas

    2013-01-01

    When water supplies are compromised during an emergency, responders often recommend household water treatment and safe storage (HWTS) methods, such as boiling or chlorination. We evaluated the near- and longer-term impact of chlorine and filter products distributed shortly after the 2010 earthquake in Haiti. HWTS products were deemed as effective to use if they actually improved unsafe household drinking water to internationally accepted microbiological water quality standards. The acute emergency survey (442 households) was conducted within 8 weeks of emergency onset; the recovery survey (218 households) was conducted 10 months after onset. Effective use varied by HWTS product (from 8% to 63% of recipients in the acute phase and from 0% to 46% of recipients in the recovery phase). Higher rates of effective use were associated with programs that were underway in Haiti before the emergency, had a plan at initial distribution for program continuation, and distributed products with community health worker support and a safe storage container. PMID:23836571

  1. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    SciTech Connect

    Kingston, T.; Scott, S.

    2013-03-01

    Homebuilders are exploring more cost effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads with the following key findings: 1) The tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system. 2) The tankless combo system consistently achieved better daily efficiencies (i.e. 84%-93%) than the storage combo system (i.e. 81%- 91%) when the air handler was sized adequately and adjusted properly to achieve significant condensing operation. When condensing operation was not achieved, both systems performed with lower (i.e. 75%-88%), but similar efficiencies. 3) Air handlers currently packaged with combo systems are not designed to optimize condensing operation. More research is needed to develop air handlers specifically designed for condensing water heaters. 4) System efficiencies greater than 90% were achieved only on days where continual and steady space heating loads were required with significant condensing operation. For days where heating was more intermittent, the system efficiencies fell below 90%.

  2. Rhizophoraceae Mangrove Saplings Use Hypocotyl and Leaf Water Storage Capacity to Cope with Soil Water Salinity Changes.

    PubMed

    Lechthaler, Silvia; Robert, Elisabeth M R; Tonné, Nathalie; Prusova, Alena; Gerkema, Edo; Van As, Henk; Koedam, Nico; Windt, Carel W

    2016-01-01

    Some of the most striking features of Rhizophoraceae mangrove saplings are their voluminous cylinder-shaped hypocotyls and thickened leaves. The hypocotyls are known to serve as floats during seed dispersal (hydrochory) and store nutrients that allow the seedling to root and settle. In this study we investigate to what degree the hypocotyls and leaves can serve as water reservoirs once seedlings have settled, helping the plant to buffer the rapid water potential changes that are typical for the mangrove environment. We exposed saplings of two Rhizophoraceae species to three levels of salinity (15, 30, and 0-5‰, in that sequence) while non-invasively monitoring changes in hypocotyl and leaf water content by means of mobile NMR sensors. As a proxy for water content, changes in hypocotyl diameter and leaf thickness were monitored by means of dendrometers. Hypocotyl diameter variations were also monitored in the field on a Rhizophora species. The saplings were able to buffer rapid rhizosphere salinity changes using water stored in hypocotyls and leaves, but the largest water storage capacity was found in the leaves. We conclude that in Rhizophora and Bruguiera the hypocotyl offers the bulk of water buffering capacity during the dispersal phase and directly after settlement when only few leaves are present. As saplings develop more leaves, the significance of the leaves as a water storage organ becomes larger than that of the hypocotyl. PMID:27446125

  3. Rhizophoraceae Mangrove Saplings Use Hypocotyl and Leaf Water Storage Capacity to Cope with Soil Water Salinity Changes

    PubMed Central

    Lechthaler, Silvia; Robert, Elisabeth M. R.; Tonné, Nathalie; Prusova, Alena; Gerkema, Edo; Van As, Henk; Koedam, Nico; Windt, Carel W.

    2016-01-01

    Some of the most striking features of Rhizophoraceae mangrove saplings are their voluminous cylinder-shaped hypocotyls and thickened leaves. The hypocotyls are known to serve as floats during seed dispersal (hydrochory) and store nutrients that allow the seedling to root and settle. In this study we investigate to what degree the hypocotyls and leaves can serve as water reservoirs once seedlings have settled, helping the plant to buffer the rapid water potential changes that are typical for the mangrove environment. We exposed saplings of two Rhizophoraceae species to three levels of salinity (15, 30, and 0–5‰, in that sequence) while non-invasively monitoring changes in hypocotyl and leaf water content by means of mobile NMR sensors. As a proxy for water content, changes in hypocotyl diameter and leaf thickness were monitored by means of dendrometers. Hypocotyl diameter variations were also monitored in the field on a Rhizophora species. The saplings were able to buffer rapid rhizosphere salinity changes using water stored in hypocotyls and leaves, but the largest water storage capacity was found in the leaves. We conclude that in Rhizophora and Bruguiera the hypocotyl offers the bulk of water buffering capacity during the dispersal phase and directly after settlement when only few leaves are present. As saplings develop more leaves, the significance of the leaves as a water storage organ becomes larger than that of the hypocotyl. PMID:27446125

  4. GPS as an independent measurement to estimate terrestrial water storage variations in Washington and Oregon

    NASA Astrophysics Data System (ADS)

    Fu, Yuning; Argus, Donald F.; Landerer, Felix W.

    2015-01-01

    The Global Positioning System (GPS) measures elastic ground loading deformation in response to hydrological mass variations on or near Earth's surface. We present a time series of change in terrestrial water storage as a function of position in Washington and Oregon estimated using GPS measurements of vertical displacement of Earth's surface. The distribution of water variation inferred from GPS is highly correlated with physiographic provinces: the seasonal water is mostly located in the mountain areas, such as the Cascade Range and Olympic Mountains, and is much smaller in the basin and valley areas of the Columbia Basin and Harney Basin. GPS is proven to be an independent measurement to distinguish between hydrological models. The drought period of 2008-2010 (maximum in 2010) and the recovery period of 2011-2012 in the Cascade Range are well recovered with GPS-determined time-variable monthly water mass series. The GPS-inferred water storage variation in the Cascade Range is consistent with that derived from JPL's GRACE monthly mass grid solutions. The percentage of RMS reduction is ~62% when we subtract GRACE water series from GPS-derived results. GPS-determined water storage variations can fill gaps in the current GRACE mission, also in the transition period from the current GRACE to the future GRACE Follow-on missions. We demonstrate that the GPS-inferred water storage variations can determine and verify local scaling factors for GRACE measurements; in the Cascade Range, the RMS reduction between GRACE series scaled by GPS and scaled by the hydrological model-based GRACE Tellus gain factors is up to 90.5%.

  5. Contextual and sociopsychological factors in predicting habitual cleaning of water storage containers in rural Benin

    NASA Astrophysics Data System (ADS)

    Stocker, Andrea; Mosler, Hans-Joachim

    2015-04-01

    Recontamination of drinking water occurring between water collection at the source and the point of consumption is a current problem in developing countries. The household drinking water storage container is one source of contamination and should therefore be cleaned regularly. First, the present study investigated contextual factors that stimulate or inhibit the development of habitual cleaning of drinking water storage containers with soap and water. Second, based on the Risk, Attitudes, Norms, Abilities, and Self-regulation (RANAS) Model of behavior, the study aimed to determine which sociopsychological factors should be influenced by an intervention to promote habitual cleaning. In a cross-sectional study, 905 households in rural Benin were interviewed by structured face-to-face interviews. A forced-entry regression analysis was used to determine potential contextual factors related to habitual cleaning. Subsequently, a hierarchical regression was conducted with the only relevant contextual factor entered in the first step (R2 = 6.7%) and the sociopsychological factors added in the second step (R2 = 62.5%). Results showed that households using a clay container for drinking water storage had a significantly weaker habit of cleaning their water storage containers with soap and water than did households using other types of containers (β = -0.10). The most important sociopsychological predictors of habitual cleaning were commitment (β = 0.35), forgetting (β = -0.22), and self-efficacy (β = 0.14). The combined investigation of contextual and sociopsychological factors proved beneficial in terms of developing intervention strategies. Possible interventions based on these findings are recommended.

  6. Dryland crop sequence and tillage influences on soil water storage: First 15 years

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management practices and cropping systems have greatly changed over the past half century. In the northern Great Plains, soil water storage during the non-crop period of annual cropping systems helps to stabilize crop yields. Our objectives were to determine the influences of six crop sequences an...

  7. Combining phosphate and bacteria removal on chemically active filter membranes allows prolonged storage of drinking water.

    PubMed

    Rotzetter, A C C; Kellenberger, C R; Schumacher, C M; Mora, C; Grass, R N; Loepfe, M; Luechinger, N A; Stark, W J

    2013-11-13

    A chemically active filtration membrane with incorporated lanthanum oxide nanoparticles enables the removal of bacteria and phosphate at the same time and thus provides a simple device for preparation of drinking water and subsequent safe storage without using any kind of disinfectants. PMID:23913409

  8. Self-Assembled, Nanostructured Carbon for Energy Storage and Water Treatment

    SciTech Connect

    2009-03-01

    This factsheet describes a research project whose goal is to translate a unique approach for the synthesis of self-assembled nanostructured carbon into industrially viable technologies for two important, large-scale applications: electrochemical double-layer capacitors (also referred to as ultracapacitors) for electrical energy storage, and capacitive deionization (CDI) systems for water treatment and desalination.

  9. 21 CFR 1250.83 - Storage of water prior to treatment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Storage of water prior to treatment. 1250.83 Section 1250.83 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION INTERSTATE CONVEYANCE SANITATION Sanitation...

  10. Improvement of the variable storage coefficient method with water surface gradient as a variable

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The variable storage coefficient (VSC) method has been used for streamflow routing in continuous hydrological simulation models such as the Agricultural Policy/Environmental eXtender (APEX) and the Soil and Water Assessment Tool (SWAT) for more than 30 years. APEX operates on a daily time step and ...

  11. Water quality ramifications of manure storage and daily haul during winter and early spring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Manure storage is supported by the United States Natural Resources Conservation Service (NRCS) as a nutrient management strategy for controlling air and water quality. Daily haul is still a popular practice on the small farms in northeastern USA but receives criticism over the impact of spreading du...

  12. 21 CFR 1250.83 - Storage of water prior to treatment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Storage of water prior to treatment. 1250.83 Section 1250.83 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION INTERSTATE CONVEYANCE SANITATION Sanitation...

  13. Multi-scale analysis of the fluxes between terrestrial water storage, groundwater, and stream discharge in the Columbia River Basin

    EPA Science Inventory

    The temporal relationships between the measurements of terrestrial water storage (TWS), groundwater, and stream discharge were analyzed at three different scales in the Columbia River Basin (CRB) for water years 2004 - 2012. Our nested watershed approach examined the Snake River ...

  14. Solar space and water heating system installed at Charlottesville, Virginia

    NASA Astrophysics Data System (ADS)

    1980-09-01

    The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, is described. The solar energy system consists of 88 single glazed, Sunworks 'Solector' copper base plate collector modules, hot water coils in the hot air ducts, a Domestic Hot Water (DHW) preheat tank, a 3,000 gallon concrete urethane insulated storage tank and other miscellaneous components. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

  15. Solar hot water system installed at Las Vegas, Nevada

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A solar energy hot water system installed in a motor inn at Las Vegas, Nevada is described. The inn is a three story building with a flat roof for installation of the solar panels. The system consists of 1,200 square feet of liquid flat plate collectors, a 2,500 gallon insulated vertical steel storage tank, two heat exchangers, and pumps and controls. The system was designed to supply approximately 74 percent of the total hot water load.

  16. Solar space and water heating system installed at Charlottesville, Virginia

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, is described. The solar energy system consists of 88 single glazed, Sunworks 'Solector' copper base plate collector modules, hot water coils in the hot air ducts, a Domestic Hot Water (DHW) preheat tank, a 3,000 gallon concrete urethane insulated storage tank and other miscellaneous components. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

  17. Motel solar-hot-water system--Dallas, Texas

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Report describes system which meets 64 percent of hot water requirements of 120 room motel. Key system components include 1,000 square foot, roof-mounted collector array, 1,000 gallon storage tank, tube-in-shell heat exchanger, and three domestic hot-water tanks. Report contains calibration instructions for differential temperature controllers, shutdown procedures, and operation guidelines, performance analysis, and manufacturers' maintenance literature.

  18. Solar space and water heating system installed at Charlottesville, Virginia

    SciTech Connect

    Greer, Charles R.

    1980-09-01

    The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, consists of 88 single glazed, Sunworks Solector copper base plate collector modules; hot water coils in the hot air ducts; a domestic hot water (DHW) preheat tank; a 3,000 gallon concrete urethane-insulated storage tank and other miscellaneous components. This report includes extracts from the site files, specifications, drawings, installation, operation and maintenance instructions.

  19. Using Deuterium to trace movement and storage of water in Eucalypt trees

    NASA Astrophysics Data System (ADS)

    Treydte, Kerstin; Wyczesany, Tomasz; Eamus, Derek; Pfautsch, Sebastian

    2015-04-01

    The capacity of trees to release water from storage compartments into the transpiration stream can mitigate damage to hydraulic functioning. However, the location and magnitude of these 'mobile' water sources still remains a topic of research. We conducted an experiment on two tree species that naturally grow in regions of high (Eucalyptus tereticornis) and low (E. sideroxylon) rates of annual precipitation. Deuterium enriched water (1350 ‰ label strength) was introduced into the transpiration stream of three trees per species for four consecutive days. Then the trees were felled and samples of all woody tissues were collected from different heights and positions of the stem. Water was extracted from all samples and the isotopic composition measured. Our results indicate that vertical water transport was more efficient in E. tereticornis while radial water transport was more pronounced in E. sideroxylon. The latter has a larger relative stem water storage capacity than E. tereticornis. This is probably related to differences in the hydraulic architecture across the two species, with a larger resistance of the xylem to cavitation in E. sideroxylon due to smaller vessel diameters, resulting in the trade-off of slower growth and lower tree height. Generally water in the phloem is a larger source for capacitance than water in the heartwood. Further integrative data analyses will improve our understanding of the mechanisms that allow trees to survive and adapt to drought.

  20. Changes in Water Levels and Storage in the High Plains Aquifer, Predevelopment to 2007

    USGS Publications Warehouse

    McGuire, V.L.

    2009-01-01

    The High Plains aquifer underlies 111.6 million acres (174,000 square miles) in parts of eight States - Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The area overlying the High Plains aquifer is one of the primary agricultural regions in the Nation. Water-level declines began in parts of the High Plains aquifer soon after the beginning of substantial irrigation with ground water in the aquifer area. By 1980, water levels in the High Plains aquifer in parts of Texas, Oklahoma, and southwestern Kansas had declined more than 100 feet (Luckey and others, 1981). In response to these water-level declines, the U.S. Geological Survey (USGS), in collaboration with numerous Federal, State, and local water-resources agencies, began monitoring more than 7,000 wells in 1988 to assess annual water-level changes in the aquifer. This fact sheet summarizes changes in water levels and drainable water in storage in the High Plains aquifer from predevelopment (before about 1950) to 2007 and serves as a companion product to a USGS report that presents more detailed and technical information about water-level and storage changes in the High Plains aquifer during this period (McGuire, 2009).

  1. Influence of Water Storage and Bonding Material on Bond Strength of Metallic Brackets to Ceramic.

    PubMed

    Costa, Ana Rosa; Correr, Américo Bortolazzo; Consani, Simonides; Giorgi, Maria Cecília Caldas; Vedovello, Silvia Amélia; Vedovello Filho, Mário; Santos, Eduardo Cesar Almada; Correr-Sobrinho, Lourenço

    2015-10-01

    This study investigated the influence of water storage (24 h and 6 months), and Transbond XT and Fuji Ortho LC bonding materials on the bond strength of metallic brackets bonded to feldspathic ceramic. Four cylinders of feldspathic ceramic were etched with 10% hydrofluoric acid for 60 s. Each cylinder received two layers of silane. Metallic brackets were bonded to the cylinders using Transbond XT or Fuji Ortho LC. Light-activation was carried out with 40 s total exposure time using Bluephase G2. Half the specimens for each bonding materials (n=20) were stored in distilled water at 37 °C for 24 h and the other half for 6 months. Shear bond strength testing was performed after storage times at a crosshead speed of 1 mm/min. The adhesive remnant index (ARI) was used to evaluate the amount of adhesive remaining on the ceramic surface at ×8 magnification. Data were subjected to two-way ANOVA and Tukey's test (p<0.05). Transbond XT showed significantly higher bond strength (p<0.05) than Fuji Ortho LC. Significant differences in bond strength (p<0.05) were found when 24 h and 6 months storage times were compared between materials. ARI showed a predominance of score 0 for all groups, and higher scores at 1, 2 and 3 for 24 h storage time. In conclusion, storage time and bonding materials showed significant influence on the bond strength of brackets to ceramic. PMID:26647936

  2. Estimate of ground water in storage in the Great Lakes basin, United States, 2006

    USGS Publications Warehouse

    Coon, William F.; Sheets, Rodney A.

    2006-01-01

    Hydrogeologic data from Regional Aquifer System Analyses (RASA) studies by the U.S. Geological Survey in the Great Lakes Basin, United States, during 1978-95, were compiled and used to estimate the total volume of water that is stored in the many aquifers of the basin. These studies focused on six regional aquifer systems: the Cambrian-Ordovician aquifer system in Wisconsin, Illinois, and Indiana; the Silurian- Devonian aquifers in Wisconsin, Michigan, Illinois, Indiana, and Ohio; the surficial aquifer system (aquifers of alluvial and glacial origin) found throughout the Great Lakes Basin; and the Pennsylvanian sandstone and carbonate-rock aquifers and the Mississippian sandstone aquifer in Michigan. Except for the surficial aquifers, all of these aquifer systems are capable of yielding substantial quantities of water and are not small aquifers with only local importance. Individual surficial aquifers, although small in comparison to the bedrock aquifers, collectively represent large potential sources of ground water and therefore have been treated as a regional system. Summation of ground-water volumes in the many regional aquifers of the basin indicates that about 1,340 cubic miles of water is in storage; of this, about 984 cubic miles is considered freshwater (that is, water with dissolved-solids concentration less than 1,000 mg/L). These volumes should not be interpreted as available in their entirety to meet water-supply needs; complete dewatering of any aquifer is environmentally undesirable. The amount of water that is considered available on the basis of water quality and environmental, economic, and legal constraints has not been determined. The effect of heavy pumping in the Chicago, Ill., and Milwaukee, Wis., areas, which has caused the regional ground-water divide in the Cambrian-Ordovician aquifer system to shift westward, has been included in the above estimates. This shift in the ground-water divide has increased the amount of water in storage in the

  3. Calculating the ecosystem service of water storage in isolated wetlands using LiDAR in north central Florida, USA (presentation)

    EPA Science Inventory

    This study used remotely-sensed Light Detection and Ranging (LiDAR) data to estimate potential water storage capacity of isolated wetlands in north central Florida. The data were used to calculate the water storage potential of >8500 polygons identified as isolated wetlands. We f...

  4. Calculating the ecosystem service of water storage in isolated wetlands using LIDAR in north central Florida, USA

    EPA Science Inventory

    This study used remotely-sensed Light Detection and Ranging (LiDAR) data to estimate potential water storage capacity of isolated wetlands in north central Florida. The data were used to calculate the water storage potential of >8500 polygons identified as isolated wetlands. We ...

  5. Effects of Thinning Intensities on Soil Infiltration and Water Storage Capacity in a Chinese Pine-Oak Mixed Forest

    PubMed Central

    Chen, Lili; Yuan, Zhiyou; Shao, Hongbo; Wang, Dexiang; Mu, Xingmin

    2014-01-01

    Thinning is a crucial practice in the forest ecosystem management. The soil infiltration rate and water storage capacity of pine-oak mixed forest under three different thinning intensity treatments (15%, 30%, and 60%) were studied in Qinling Mountains of China. The thinning operations had a significant influence on soil infiltration rate and water storage capacity. The soil infiltration rate and water storage capacity in different thinning treatments followed the order of control (nonthinning): <60%, <15%, and <30%. It demonstrated that thinning operation with 30% intensity can substantially improve soil infiltration rate and water storage capacity of pine-oak mixed forest in Qinling Mountains. The soil initial infiltration rate, stable infiltration rate, and average infiltration rate in thinning 30% treatment were significantly increased by 21.1%, 104.6%, and 60.9%, compared with the control. The soil maximal water storage capacity and noncapillary water storage capacity in thinning 30% treatment were significantly improved by 20.1% and 34.3% in contrast to the control. The soil infiltration rate and water storage capacity were significantly higher in the surface layer (0~20 cm) than in the deep layers (20~40 cm and 40~60 cm). We found that the soil property was closely related to soil infiltration rate and water storage capacity. PMID:24883372

  6. Performance of Four Experimental High-btu-per-gallon Fuels in a Single Turbojet Combustor

    NASA Technical Reports Server (NTRS)

    Jonash, Edmund R; Metzler, Allen; Butze, Helmut F

    1955-01-01

    Performance characteristics of four hydrocarbon fuels having high Btu per gallon were determined in a single turbojet combustor. At simulated low-altitude operating conditions, the fuels with high Btu per gallon generally produced more carbon than did JP-4 and JP-5 fuels. The deposits were reduced appreciably with a fuel-oil additive. At high-altitude conditions, the high Btu-per-gallon fuels gave lower efficiencies than did JP-4 or JP-5 fuels. No attempts were made to improve performance by combustor design modification.

  7. Diagnosing Land Water Storage Variations in Major Indian River Basins using GRACE observations

    NASA Astrophysics Data System (ADS)

    Soni, Aarti; Syed, Tajdarul H.

    2015-10-01

    Scarcity of freshwater is one of the most critical resource issue the world is facing today. Due to its finite nature, renewable freshwater reserves are under relentless pressure due to population growth, economic development and rapid industrialization. Assessment of Terrestrial Water Storage (TWS), as an unified measure of freshwater reserve, is vital to understand hydrologic and climatic processes controlling its availability. In this study, TWS variations from Gravity Recovery and Climate Experiment (GRACE) satellites are analyzed in conjuction with multi-platform hydrologic observations for the period of 2003-2012. Here, the primary objective is to quantify and attribute the observed short-term variability of TWS and groundwater storage in the largest river basins of India (Ganga, Godavari, Krishna and Mahanadi). Alongside commendable agreement between TWS variations obtained from GRACE and water balance computation, results highlight some of the important deficiencies between the two. While monthly changes in TWS are highly correlated with precipitation, monthly TWS anomalies reveal a 1-2 month lag in their concurrence. Analysis of groundwater storage estimates demonstrate significant decline in the Ganga basin (- 1.28 ± 0.20 mm/month) but practically no change in the Mahanadi basin. On the contrary, groundwater storage in Godavari and Krishna basins reveal notable increase at the rate of 0.74 ± 0.21 mm/month and 0.97 ± 0.21 mm/month respectively. Subsequently, in order to assess the influence of quasi-periodic, planetary scale, variations in the Earth's climate system, groundwater storage anomalies are evaluated with reference to ENSO variability. Results manifest that in all the basins, with the exception of Ganga, groundwater storage is dominantly influenced by ENSO, with large decrease (increase) during El Niño (La Niña) events. In the Ganga basin, groundwater storage variations refer to possible amalgamation of human intervention and natural climate

  8. Remote Sensing of Soil Water Storage Capacity Using the Landsat and MODIS Image Archives

    NASA Astrophysics Data System (ADS)

    Hendrickx, J. M. H.; Umstot, T.; Wilson, J. L.; Allen, R.; Trezza, R.

    2014-12-01

    We will present a method for the quantitative assessment of the soil water storage capacity of each pixel in a Landsat or MODIS image using the information available in the historic Landsat and MODIS archives. The soil water storage capacity represents the maximum amount of water that can be stored in the soil and/or bedrock so that it is available for release into the atmosphere through transpiration by vegetation and/or evaporation from the land surface. First, the METRIC algorithm is used to convert 15 images representative for growing seasons in wet, dry and normal years into evaporative fraction maps. The evaporative fraction is an expression of the relative evapotranspiration and is strongly correlated to soil moisture conditions in the root zone: high and low evaporative fractions indicate, respectively, high and low root zone soil water contents. We use an experimental relationship to derive a normalized root zone soil moisture value between 0 (dry) to 1 (saturation) from the evaporative fraction. Then, the wetness score for each pixel is calculated as the sum of its 15 "normalized root zone soil moisture" values; it is a relative measure of the overall wetness of a pixel compared to other pixels with values between 0 and 15. Large and small values for the wetness score indicate, respectively, large and small values for the soil water storage capacity. The challenge is to convert the ranking of the wetness scores for each pixel into a quantitative soil water storage capacity. For this operation we use the hydrological Distributed Parameter Watershed Model (DPWM). After construction of seven physically realistic conversion functions between wetness score rank and soil water storage capacity, we evaluate the seven distributions of the differences between the 15 METRIC observed and DPWM simulated "normalized root zone soil moisture" maps. The conversion function that yields the smallest sum of differences is considered the optimal function and is used for

  9. Simplified Volume-Area-Depth Method for Estimating Water Storage of Isolated Prairie Wetlands

    NASA Astrophysics Data System (ADS)

    Minke, A. G.; Westbrook, C. J.; van der Kamp, G.

    2009-05-01

    There are millions of wetlands in shallow depressions on the North American prairies but the quantity of water stored in these depressions remains poorly understood. Hayashi and van der Kamp (2000) used the relationship between volume (V), area (A) and depth (h) to develop an equation for estimating wetland storage. We tested the robustness of their full and simplified V-A-h methods to accurately estimate volume for the range of wetland shapes occurring across the Prairie Pothole Region. These results were contrasted with two commonly implemented V-A regression equations to determine which method estimates volume most accurately. We used detailed topographic data for 27 wetlands in Smith Creek and St. Denis watersheds, Saskatchewan that ranged in surface area and basin shape. The full V-A-h method was found to accurately estimate storage (errors <3%) across wetlands of various shapes, and is therefore suitable for calculating water storage in the variety of wetland surface shapes found in the prairies. Both V-A equations performed poorly, with volume underestimated by an average of 15% and 50% Analysis of the simplified V-A-h method showed that volume errors of <10% can be achieved if the basin and shape coefficients are derived properly. This would involve measuring depth and area twice, with sufficient time between measurements that the natural fluctuations in water storage are reflected. Practically, wetland area and depth should be measured in spring, following snowmelt when water levels are near the peak, and also in late summer prior to water depths dropping below 10 cm. These guidelines for applying the simplified V-A-h method will allow for accurate volume estimations when detailed topographic data are not available. Since the V-A equations were outperformed by the full and simplified V-A-h methods, we conclude that wetland depth and basin morphology should be considered when estimating volume. This will improve storage estimations of natural and human

  10. Blending Of Radioactive Salt Solutions In Million Gallon Tanks

    SciTech Connect

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R.

    2012-12-10

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 ? 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, ?One good experiment fixes a lot of good theory?. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks.