Science.gov

Sample records for gamma dalam dosis

  1. Dos dosis de vacuna contra los VPH pueden proteger

    Cancer.gov

    Dos dosis de Cervarix, la vacuna contra virus del papiloma humano (VPH), fueron tan efectivas como la pauta normal actual de tres dosis después de cuatro años de seguimiento. El estudio de vacuna en Costa Rica, patrocinado por el NCI, fue diseñado para ev

  2. Applications of Diffusion Ordered Spectroscopy (DOSY-NMR)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diffusion-ordered NMR (DOSY-NMR) is a powerful, but under-utilized, technique for the investigation of mixtures based on translational diffusion rates. DOSY spectra allow for determination by NMR of components that may differ in molecular weight, geometry or complexation. Typical applications coul...

  3. Amyloïdosis, sarcoidosis and systemic lupus erythematosus

    PubMed Central

    Rezgui, Amel; Hassine, Imene Ben; Karmani, Monia; Fredj, Fatma Ben; Laouani, Chadia

    2016-01-01

    The occurrence of renal and multiple organ Amyloïdosis is currently considered exceptional in the course of systemic lupus erythematosus. We report a case of a concomitant SLE and Amyloïdosis in a 57 year old female patient with hypothyroidism history, who presented with erythema nodosum, fever, arthralgia and sicca syndrome. Biological findings showed an inflammatory syndrome, renal failure, proteinuria (1g / 24h), positive auto antibodies and anti DNA. Lung radiology revealed medistinal lymphadenopathy, pleural nodules, ground glass infiltrates and pleuritis. Bronchial biopsy showed non specific inflammation. The salivary gland biopsy showed amyloïd deposits. This case report reminds us that lupus and Amyloïdosis association, although exceptional remains possible. The occurrence of Lofgren syndrome in this situation make the originality of this report. PMID:27583087

  4. Amyloïdosis, sarcoidosis and systemic lupus erythematosus.

    PubMed

    Rezgui, Amel; Hassine, Imene Ben; Karmani, Monia; Fredj, Fatma Ben; Laouani, Chadia

    2016-01-01

    The occurrence of renal and multiple organ Amyloïdosis is currently considered exceptional in the course of systemic lupus erythematosus. We report a case of a concomitant SLE and Amyloïdosis in a 57 year old female patient with hypothyroidism history, who presented with erythema nodosum, fever, arthralgia and sicca syndrome. Biological findings showed an inflammatory syndrome, renal failure, proteinuria (1g / 24h), positive auto antibodies and anti DNA. Lung radiology revealed medistinal lymphadenopathy, pleural nodules, ground glass infiltrates and pleuritis. Bronchial biopsy showed non specific inflammation. The salivary gland biopsy showed amyloïd deposits. This case report reminds us that lupus and Amyloïdosis association, although exceptional remains possible. The occurrence of Lofgren syndrome in this situation make the originality of this report. PMID:27583087

  5. The DOSIS and DOSIS 3D Experiments onboard the International Space Station - Results from the Active DOSTEL Instruments

    NASA Astrophysics Data System (ADS)

    Burmeister, Soenke; Berger, Thomas; Reitz, Guenther; Beaujean, Rudolf; Boehme, Matthias; Haumann, Lutz; Labrenz, Johannes; Kortmann, Onno

    2012-07-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems experienced in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones present on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European COLUMBUS module the experiment DOSIS (Dose Distribution Inside the ISS) under the lead of DLR was launched on July 15th 2009 with STS-127 to the ISS. The experimental package was transferred from the Space Shuttle into COLUMBUS on July 18th. It consists of a combination of passive detector packages (PDP) distributed at 11 locations inside the European Columbus Laboratory and two active radiation detectors (DOSTELs) with a DDPU (DOSTEL Data and Power Unit) in a nomex pouch (DOSIS MAIN BOX) mounted at a fixed location beneath the European Physiology Module rack (EPM) inside COLUMBUS. The DOSTELs measured during the lowest solar minimum conditions in the space age from July 18th 2009 to June 16th 2011. In July 2011 the active hardware was transferred to ground for refurbishment and preparation for the DOSIS-3D experiment. The hardware will be launched with the Soyuz 30S flight to the ISS on May 15th 2012 and activated approximately ten days later. Data will be transferred from the DOSTEL units to ground via the EPM rack which is activated approximately every four weeks for this action. First Results for the active DOSIS-3D measurements such as count rate profiles

  6. Long term dose monitoring onboard the European Columbus module of the International Space Station (ISS) in the frame of the DOSIS and DOSIS 3D project

    NASA Astrophysics Data System (ADS)

    Berger, Thomas

    The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones present on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station (ISS) is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European Columbus module the experiment “Dose Distribution Inside the ISS” (DOSIS), under the project and science lead of the German Aerospace Center (DLR), was launched on July 15th 2009 with STS-127 to the ISS. The DOSIS experiment consists of a combination of “Passive Detector Packages” (PDP) distributed at eleven locations inside Columbus for the measurement of the spatial variation of the radiation field and two active Dosimetry Telescopes (DOSTELs) with a Data and Power Unit (DDPU) in a dedicated nomex pouch mounted at a fixed location beneath the European Physiology Module rack (EPM) for the measurement of the temporal variation of the radiation field parameters. The DOSIS experiment suite measured during the lowest solar minimum conditions in the space age from July 2009 to June 2011. In July 2011 the active hardware was transferred to ground for refurbishment and preparation for the follow up DOSIS 3D experiment. The hardware for DOSIS 3D was launched with Soyuz 30S to the ISS on May 15th 2012. The PDPs are replaced with each even number Soyuz flight starting with Soyuz 30S. Data from the active detectors is transferred to ground via the EPM rack which is activated once a month for this action. The presentation will give an overview of the DOSIS and DOSIS 3D experiment and focus on the results from the passive radiation detectors from the DOSIS 3D experiment

  7. Characterization of reactive intermediates by multinuclear diffusion-ordered NMR spectroscopy (DOSY).

    PubMed

    Li, Deyu; Keresztes, Ivan; Hopson, Russell; Williard, Paul G

    2009-02-17

    Nuclear magnetic resonance (NMR) is the most powerful and widely utilized technique for determining molecular structure. Although traditional NMR data analysis involves the correlation of chemical shift, coupling constant, and NOE interactions to specific structural features, a largely overlooked method introduced more than 40 years ago, pulsed gradient spin-echo (PGSE), measures diffusion coefficients of molecules in solution, thus providing their relative particle sizes. In the early 1990s, the PGSE sequence was incorporated into a two-dimensional experiment, dubbed diffusion-ordered NMR spectroscopy (DOSY), in which one dimension represents chemical shift data while the second dimension resolves species by their diffusion properties. This combination provides a powerful tool for identifying individual species in a multicomponent solution, earning the nickname "chromatography by NMR". In this Account, we describe our efforts to utilize DOSY techniques to characterize organometallic reactive intermediates in solution in order to correlate structural data to solid-state crystal structures determined by X-ray diffraction and to discover the role of aggregate formation and solvation states in reaction mechanisms. In 2000, we reported our initial efforts to employ DOSY techniques in the characterization of reactive intermediates such as organolithium aggregates. Since then, we have explored DOSY experiments with various nuclei beyond (1)H, including (6)Li, (7)Li, (11)B, (13)C, and (29)Si. Additionally, we proposed a diffusion coefficient-formula weight relationship to determine formula weight, aggregation number, and solvation state of reactive intermediates. We also introduced an internal reference system to correlate the diffusion properties of unknown reactive intermediates with known inert molecular standards, such as aromatic compounds, terminal olefins, cycloolefins, and tetraalkylsilanes. Furthermore, we utilized DOSY to interpret the role of aggregation number

  8. Long term dose monitoring onboard the European Columbus module of the international space station (ISS) in the frame of DOSIS and DOSIS 3D project - results from the active instruments

    NASA Astrophysics Data System (ADS)

    Burmeister, Soenke; Berger, Thomas; Reitz, Guenther; Boehme, Matthias; Haumann, Lutz; Labrenz, Johannes

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European COLUMBUS module the experiment DOSIS (Dose Distribution Inside the ISS) under the lead of DLR has been launched on July 15 (th) 2009 with STS-127 to the ISS. The experimental package was transferred from the Space Shuttle into COLUMBUS on July 18 (th) . It consists of a combination of passive detector packages (PDP) distributed at 11 locations inside the European Columbus Laboratory and two active radiation detectors (Dosimetry Telescopes = DOSTELs) with a DDPU (DOSTEL Data and Power Unit) in a Nomex pouch (DOSIS MAIN BOX) mounted at a fixed location beneath the European Physiology Module rack (EPM) inside COLUMBUS. The active components of the DOSIS experiment were operational from July 18 (th) 2009 to June 16 (th) 2011. After refurbishment the hardware has been reactivated on May 15 (th) 2012 as active part of the DOSIS 3D experiment and provides continuous data since this activation. The presentation will focus on the latest results from the two DOSTEL instruments as absorbed dose, dose equivalent and the related LET spectra gathered within the DOSIS (2009 - 2011) and DOSIS 3D (2012 - 2014) experiment. The CAU contributions to DOSIS and DOSIS 3D are

  9. Diffusion Coefficient-Formula Weight (D-FW) Analysis of (2)H Diffusion-Ordered NMR Spectroscopy (DOSY).

    PubMed

    Guang, Jie; Hopson, Russell; Williard, Paul G

    2015-09-18

    We report extension of the D-FW analysis using referenced (2)H DOSY. This technique was developed in response to limitations due to peak overlay in (1)H DOSY spectra. We find a corresponding linear relationship (R(2) > 0.99) between log D and log FW as the basis of the D-FW analysis. The solution-state structure of THF solvated lithium diisopropyl amide (LDA) in hydrocarbon solvent was chosen to demonstrate the reliability of the methodology. We observe an equilibrium between monosolvated and disolvated dimeric LDA complexes at room temperature. Additionally we demonstrate the application of the (2)H D-FW analysis using a compound with an exchangeable proton that is readily labeled with (2)H. Hence, the (2)H DOSY D-FW analysis is shown to provide results consistent with the (1)H DOSY method, thereby greatly extending the applicability of the D-FW analysis. PMID:26318438

  10. Improving accuracy in DOSY and diffusion measurements using triaxial field gradients

    NASA Astrophysics Data System (ADS)

    Kiraly, Peter; Swan, Iain; Nilsson, Mathias; Morris, Gareth A.

    2016-09-01

    NMR measurements of diffusion in solution, whether primarily quantitative, or, (as in DOSY, Diffusion-Ordered Spectroscopy) qualitative, can be particularly demanding. Here we show how the use of appropriate transverse (x, y) pulsed field gradients, orthogonal to the more usual z axis pulsed field gradient applied along the long axis of the sample, can greatly reduce two important sources of systematic error in diffusion experiments. These are the extra signal attenuation caused by sample convection, and gradient-dependent signal phase shifts caused by the magnetic field and field-frequency lock disturbances generated by field gradient pulses.

  11. Improving accuracy in DOSY and diffusion measurements using triaxial field gradients.

    PubMed

    Kiraly, Peter; Swan, Iain; Nilsson, Mathias; Morris, Gareth A

    2016-09-01

    NMR measurements of diffusion in solution, whether primarily quantitative, or, (as in DOSY, Diffusion-Ordered Spectroscopy) qualitative, can be particularly demanding. Here we show how the use of appropriate transverse (x, y) pulsed field gradients, orthogonal to the more usual z axis pulsed field gradient applied along the long axis of the sample, can greatly reduce two important sources of systematic error in diffusion experiments. These are the extra signal attenuation caused by sample convection, and gradient-dependent signal phase shifts caused by the magnetic field and field-frequency lock disturbances generated by field gradient pulses. PMID:27389639

  12. Two-dimensional DOSY experiment with Excitation Sculpting water suppression for the analysis of natural and biological media

    NASA Astrophysics Data System (ADS)

    Balayssac, Stéphane; Delsuc, Marc-André; Gilard, Véronique; Prigent, Yann; Malet-Martino, Myriam

    2009-01-01

    The Bipolar Pulse Pair Stimulated Echo NMR pulse sequence was modified to blend the original Excitation Sculpting water signal suppression. The sequence is a powerful tool to generate rapidly, with a good spectrum quality, bidimensional DOSY experiments without solvent signal, thus allowing the analysis of complex mixtures such as plant extracts or biofluids. The sequence has also been successfully implemented for a protein at very-low concentration in interaction with a small ligand, namely the salivary IB5 protein binding the polyphenol epigallocatechine gallate. The artifacts created by this sequence can be observed, checked and removed thanks to NPK and NMRnotebook softwares to give a perfect bidimensional DOSY spectrum.

  13. Quality control and assurance for validation of DOS/I measurements

    NASA Astrophysics Data System (ADS)

    Cerussi, Albert; Durkin, Amanda; Kwong, Richard; Quang, Timothy; Hill, Brian; Tromberg, Bruce J.; MacKinnon, Nick; Mantulin, William W.

    2010-02-01

    Ongoing multi-center clinical trials are crucial for Biophotonics to gain acceptance in medical imaging. In these trials, quality control (QC) and assurance (QA) are key to success and provide "data insurance". Quality control and assurance deal with standardization, validation, and compliance of procedures, materials and instrumentation. Specifically, QC/QA involves systematic assessment of testing materials, instrumentation performance, standard operating procedures, data logging, analysis, and reporting. QC and QA are important for FDA accreditation and acceptance by the clinical community. Our Biophotonics research in the Network for Translational Research in Optical Imaging (NTROI) program for breast cancer characterization focuses on QA/QC issues primarily related to the broadband Diffuse Optical Spectroscopy and Imaging (DOS/I) instrumentation, because this is an emerging technology with limited standardized QC/QA in place. In the multi-center trial environment, we implement QA/QC procedures: 1. Standardize and validate calibration standards and procedures. (DOS/I technology requires both frequency domain and spectral calibration procedures using tissue simulating phantoms and reflectance standards, respectively.) 2. Standardize and validate data acquisition, processing and visualization (optimize instrument software-EZDOS; centralize data processing) 3. Monitor, catalog and maintain instrument performance (document performance; modularize maintenance; integrate new technology) 4. Standardize and coordinate trial data entry (from individual sites) into centralized database 5. Monitor, audit and communicate all research procedures (database, teleconferences, training sessions) between participants ensuring "calibration". This manuscript describes our ongoing efforts, successes and challenges implementing these strategies.

  14. Application of 1H DOSY for Facile Measurement of Polymer Molecular Weights

    PubMed Central

    Li, Weibin; Chung, Hoyong; Daeffler, Christopher; Johnson, Jeremiah A.; Grubbs, Robert H.

    2012-01-01

    To address the practical issues of polymer molecular weight determination, the first accurate polymer weight-average molecular weight determination method in diverse living/controlled polymerization via DOSY (diffusion-ordered NMR spectroscopy) is reported. Based on the linear correlation between the logarithm of diffusion coefficient (log D) and the molecular weights (log Mw), external calibration curves were created to give predictions of molecular weights of narrowly-dispersed polymers. This method was successfully applied to atom transfer radical polymerization (ATRP), reversible addition–fragmentation chain transfer (RAFT), and ring-opening metathesis polymerization (ROMP), with weight-average molecular weights given by this method closely correlated to those obtained from GPC measurement. PMID:23335819

  15. The Donor-Base-Free Aggregation of Lithium Diisopropyl Amide in Hydrocarbons Revealed by a DOSY Method.

    PubMed

    Neufeld, Roman; John, Michael; Stalke, Dietmar

    2015-06-01

    Lithium diisopropyl amide (LDA) is a very prominent reagent that plays a key role in organic synthesis, serving as a base par excellence for a broad range of deprotonation reactions. However, the state of aggregation in solution in the absence of donor bases was unclear. In this paper we solved this problem by employing DOSY NMR experiments based on a newly elaborated external calibration curve (ECC) approach with normalized diffusion coefficients. PMID:26014367

  16. Physically separated references for diffusion coefficient-formula weight (D-FW) analysis of diffusion-ordered NMR spectroscopy (DOSY) in water.

    PubMed

    Li, Weibin; Kagan, Gerald; Yang, Huan; Cai, Chen; Hopson, Russell; Sweigart, Dwight A; Williard, Paul G

    2010-06-18

    Development and application of physically separated references for aqueous (1)H DOSY diffusion coefficient-formula weight (D-FW) correlation analysis is reported. Commercially available biological buffers (Tris and HEPES) and a water-soluble alcohol (tert-butanol) were used as physically separated references for a Ru and a Mn complex in D(2)O. This extension of DOSY D-FW analysis expands its applicability to a wide variety of water-soluble molecules or metal complexes, with particular application to green chemistry. PMID:20481557

  17. Stable isotope-enhanced two- and three-dimensional diffusion ordered 13C-NMR spectroscopy (SIE-DOSY 13C-NMR)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable Isotope-Enhanced Diffusion Ordered (SIE-DOSY) 13C-NMR has been applied to 13C-enriched carbohydrates and has been used to determine diffusion coefficients for pentose and hexose monosaccharides, a disaccharide and a trisaccharide. These 2D spectra were obtained with as little as 8 min of acq...

  18. The DOSIS -Experiment onboard the Columbus Laboratory of the International Space Station -First Mission Results from the Active DOSTEL Instruments

    NASA Astrophysics Data System (ADS)

    Burmeister, Soenke; Berger, Thomas; Beaujean, Rudolf; Boehme, Matthias; Haumann, Lutz; Kortmann, Onno; Labrenz, Johannes; Reitz, Guenther

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long dura-tion human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European COLUMBUS module the DLR experiment DOSIS (Dose Distribution Inside the ISS) was launched on July 15th 2009 with STS-127 to the ISS. The experimental package was transferred from the Space Shuttle into COLUMBUS on July 18th. It consists in a first part of a combination of passive detector packages (PDP) distributed at 11 locations inside the European Columbus Laboratory. The second part are two active radiation detectors (DOSTELs) with a DDPU (DOSIS Data and Power Unit) in a nomex pouch (DOSIS MAIN BOX) mounted at a fixed location beneath the European Physiology Module (EPM) inside COLUMBUS. After the successful installation the active part has been activated on the 18th July 2009. Each of the DOSTEL units consists of two 6.93 cm PIPS silicon detectors forming a telescope with an opening angle of 120. The two DOSTELs are mounted with their telescope axis perpendicular to each other to investigate anisotropies of the radiation field inside the COLUMBUS module especially during the passes through the South Atlantic Anomaly (SAA) and during Solar Particle Events (SPEs). The data from the DOSTEL units are transferred to ground via the EPM rack which is activated

  19. The DOSIS -Experiment onboard the Columbus Laboratory of the International Space Station -Overview and first mission results

    NASA Astrophysics Data System (ADS)

    Reitz, Guenther; Berger, Thomas; Kürner, Christine; Burmeister, Sünke; Hajek, Michael; Bilski, Pawel; Horwacik, Tomasz; Vanhavere, Filip; Spurny, Frantisek; Jadrnickova, Iva; Pálfalvi, József K.; O'Sullivan, Denis; Yasuda, Nakahiro; Uchihori, Yukio; Kitamura, Hisashi; Kodaira, Satoshi; Yukihara, Eduardo; Benton, Eric; Zapp, Neal; Gaza, Ramona; Zhou, Dazhuang; Semones, Edward; Roed, Yvonne; Boehme, Matthias; Haumann, Lutz

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long dura-tion human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. The DOSIS (Dose Distribution inside the ISS) experiment, under the project and science lead of DLR, aims for the spatial and tempo-ral measurement of the radiation field parameters inside the European Columbus laboratory onboard the International Space Station. This goal is achieved by applying a combination of passive (Thermo-and Optical luminescence detectors and Nuclear track etch detectors) and active (silicon telescope) radiation detectors. The passive radiation detectors -so called pas-sive detector packages (PDP) are mounted at eleven positions within the Columbus laboratory -aiming for a spatial dose distribution measurement of the absorbed dose, the linear energy transfer spectra and the dose equivalent with an average exposure time of six months. Two active silicon telescopes -so called Dosimetry Telescopes (DOSTEL 1 and DOSTEL 2) together with a Data and Power Unit (DDPU) are mounted within the DOSIS Main Box at a fixed loca-tion beneath the European Physiology Module (EPM) rack. The DOSTEL 1 and DOSTEL 2 detectors are positioned at a 90 angle to each other for a precise measurement of the temporal and spatial variation of the radiation field, especially during crossing of the South Atlantic Anomaly (SAA). The DOSIS hardware was launched with the

  20. Gamma watermarking

    DOEpatents

    Ishikawa, Muriel Y.; Wood, Lowell L.; Lougheed, Ronald W.; Moody, Kenton J.; Wang, Tzu-Fang

    2004-05-25

    A covert, gamma-ray "signature" is used as a "watermark" for property identification. This new watermarking technology is based on a unique steganographic or "hidden writing" digital signature, implemented in tiny quantities of gamma-ray-emitting radioisotopic material combinations, generally covertly emplaced on or within an object. This digital signature may be readily recovered at distant future times, by placing a sensitive, high energy-resolution gamma-ray detecting instrument reasonably precisely over the location of the watermark, which location may be known only to the object's owner; however, the signature is concealed from all ordinary detection means because its exceedingly low level of activity is obscured by the natural radiation background (including the gamma radiation naturally emanating from the object itself, from cosmic radiation and material surroundings, from human bodies, etc.). The "watermark" is used in object-tagging for establishing object identity, history or ownership. It thus may serve as an aid to law enforcement officials in identifying stolen property and prosecuting theft thereof. Highly effective, potentially very low cost identification-on demand of items of most all types is thus made possible.

  1. Gamma Knife

    MedlinePlus

    ... results are sent to the Gamma Knife®'s planning computer system. Together, physicians ( radiation oncologists and neurosurgeons) and medical physicists delineate targets and normal anatomical structures. They use a planning computer program to determine the exact spatial relationship between ...

  2. Stable isotope-enhanced two- and three-dimensional diffusion ordered 13C NMR spectroscopy (SIE-DOSY 13C NMR)

    NASA Astrophysics Data System (ADS)

    Vermillion, Karl; Price, Neil P. J.

    2009-06-01

    The feasibility of obtaining high quality homonuclear or heteronuclear diffusion-ordered 13C NMR data is shown to be greatly improved by using 13C isotopically-enriched samples. Stable isotope-enhanced diffusion ordered (SIE-DOSY) 13C NMR has been applied to 13C-enriched carbohydrates, and has been used to determine diffusion coefficients for pentose and hexose monosaccharides, and a disaccharide and trisaccharide. These 2D spectra were obtained with as little as 8 min of acquisition time. Fully resolved 3D DOSY-HMQC NMR spectra of [U- 13C]xylose, [U- 13C]glucose, and [1- 13C gal]lactose were obtained in 5 h. Sample derivatization with [ carbonyl- 13C]acetate (peracetylation) extends the usefulness of the technique to included non-labeled sugars; the 13C-carbonyl - carbohydrate ring proton 1H- 13C correlations also provide additional structural information, as shown for the 3-D DOSY-HMQC analysis of a mixture of maltotriose and lactose per-[ carbonyl- 13C]acetates.

  3. Induction of sterility in Anastrepha Fraterculus (Diptera: Tephritidae) by gamma radiation

    SciTech Connect

    Allinghi, A.; Gramajo, C.; Willink, E.; Vilardi, J.

    2007-03-15

    In relation to the application of the sterile insect technique (SIT) for the South American fruit fly Anastrepha fraterculus (Wiedemann), we analyzed the effect on adult fertility of different doses of gamma irradiation and the age of pupae at the time of irradiation. In a first experiment, we applied doses of 50, 70, and 90 Gy to pupae at 24, 48, 72, and 96 h before adult emergence. In a second experiment we irradiated pupae 48 h before emergence with 20, 40, and 60 Gy and estimated male and female fertility and sperm transfer by irradiated males. The results indicated pupal age at irradiation does not significantly affect male fertility. If males irradiated with 60 Gy are crossed to non-irradiated females the fertility is about 1%. Females irradiated with 40 Gy did not lay eggs independently of the male to which they mated. No significant effects of radiation were observed with respect to the ability of males to transfer sperm. A dose of 70 Gy applied 48 h before adult emergence induces 100% sterility in both males and females. (author) [Spanish] Para la aplicacion de la tecnica del insecto esteril (TIE) en Anastrepha fraterculus (Wiedemann), en este trabajo analizamos el efecto de diferentes dosis de irradiacion gamma y la edad optima de la pupa al momento de la irradiacion. En el primer experimento se evaluaron las dosis de 50, 70, y 90 Gy en pupas de 24, 48, 72, y 96 h antes de la emergencia del adulto. En el segundo experimento se irradiaron pupas 48 h antes de la emergencia con dosis de 20, 40, 60 Gy y se estimo la fertilidad de los machos y las hembras, y la transferencia de espermas por los machos irradiados. Los resultados indicaron que la irradiacion no modifico significativamente la fertilidad de los machos. En las cruzas de machos irradiados a 60 Gy con hembras no irradiadas se observo 1% de eclosion larvaria, mientras que las hembras irradiadas a 40 Gy no pusieron huevos. La irradiacion no afecto significativamente la transferencia de espermas de los

  4. Solvation chemistry of water-soluble thiol-protected gold nanocluster Au₁₀₂ from DOSY NMR spectroscopy and DFT calculations.

    PubMed

    Salorinne, Kirsi; Lahtinen, Tanja; Malola, Sami; Koivisto, Jaakko; Häkkinen, Hannu

    2014-07-21

    The hydrodynamic diameter of Aum(pMBA)n [(m, n) = (102, 44) and (144, 60)] clusters in aqueous media was determined via DOSY NMR spectroscopy. The apparent size of the same (n, m) cluster depends on the counter ion of the deprotonated pMBA(-) ligand as explained by the competing ion-pair strength and hydrogen bonding interactions studied in DFT calculations. The choice of the counter ion affects the surface chemistry and molecular structure at the organic/water interface, which is relevant for biological applications. PMID:24910110

  5. Gamma ray generator

    DOEpatents

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  6. The gamma-ray telescope Gamma-1

    NASA Technical Reports Server (NTRS)

    Akimov, V. V.; Nesterov, V. E.; Rodin, V. G.; Kalinkin, L. F.; Balibanov, V. M.; Prilutsky, O. F.; Leikov, N. G.; Bielaoussov, A. S.; Dobrian, L. B.; Poluektov, V. P.

    1985-01-01

    French and Soviet specialists have designed and built the gamma-ray telescope GAMMA-1 to detect cosmic gamma rays above 50 MeV. The sensitive area of the detector is 1400 sq cm, energy resolution is 30% at 300 MeV, and angular resolution 1.2 deg at 300 MeV (and less than 20' arc when a coded aperture mask is used). Results on calibration of the qualification model and Monte-Carlo calculations are presented.

  7. gamma-Hexachlorocyclohexane (gamma-HCH)

    Integrated Risk Information System (IRIS)

    gamma - Hexachlorocyclohexane ( gamma - HCH ) ; CASRN 58 - 89 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Asse

  8. Gamma ray detector shield

    DOEpatents

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  9. Rehabilitation of gamma

    NASA Astrophysics Data System (ADS)

    Poynton, Charles A.

    1998-07-01

    Gamma characterizes the reproduction of tone scale in an imaging system. Gamma summarizes, in a single numerical parameter, the nonlinear relationship between code value--in an 8-bit system, from 0 through 255--and physical intensity. Nearly all image coding systems are nonlinear, and so involve values of gamma different from unity. Owing to poor understanding of tone scale reproduction, and to misconceptions about nonlinear coding, gamma has acquired a terrible reputation in computer graphics and image processing. In addition, the world-wide web suffers from poor reproduction of grayscale and color images, due to poor handling of nonlinear image coding. This paper aims to make gamma respectable again.

  10. Resonance production in. gamma gamma. collisions

    SciTech Connect

    Renard, F.M.

    1983-04-01

    The processes ..gamma gamma.. ..-->.. hadrons can be depicted as follows. One photon creates a q anti q pair which starts to evolve; the other photon can either (A) make its own q anti q pair and the (q anti q q anti q) system continue to evolve or (B) interact with the quarks of the first pair and lead to a modified (q anti q) system in interaction with C = +1 quantum numbers. A review of the recent theoretical activity concerning resonance production and related problems is given under the following headings: hadronic C = +1 spectroscopy (q anti q, qq anti q anti q, q anti q g, gg, ggg bound states and mixing effects); exclusive ..gamma gamma.. processes (generalities, unitarized Born method, VDM and QCD); total cross section (soft and hard contributions); q/sup 2/ dependence of soft processes (soft/hard separation, 1/sup +- +/ resonances); and polarization effects. (WHK)

  11. Gamma ray transients

    NASA Technical Reports Server (NTRS)

    Cline, Thomas L.

    1987-01-01

    The discovery of cosmic gamma ray bursts was made with systems designed at Los Alamos Laboratory for the detection of nuclear explosions beyond the atmosphere. HELIOS-2 was the first gamma ray burst instrument launched; its initial results in 1976, seemed to deepen the mystery around gamma ray transients. Interplanetary spacecraft data were reviewed in terms of explaining the behavior and source of the transients.

  12. Gamma Oscillation in Schizophrenia

    PubMed Central

    O'Donnell, Brian F.; Youn, Soyoung; Kwon, Jun Soo

    2011-01-01

    Dysfunctional neural circuitry has been found to be involved in abnormalities of perception and cognition in patients with schizophrenia. Gamma oscillations are essential for integrating information within neural circuits and have therefore been associated with many perceptual and cognitive processes in healthy human subjects and animals. This review presents an overview of the neural basis of gamma oscillations and the abnormalities in the GABAergic interneuronal system thought to be responsible for gamma-range deficits in schizophrenia. We also review studies of gamma activity in sensory and cognitive processes, including auditory steady state response, attention, object representation, and working memory, in animals, healthy humans and patients with schizophrenia. PMID:22216037

  13. {gamma} production at CDF

    SciTech Connect

    Abe, F.

    1995-07-01

    We report on preliminary measurements of the {gamma}(1S), {gamma}(2S) and {gamma}(3S) differential and integrated cross sections in p{bar p} at {radical}s = 1.8 TeV using a sample of 16.6 {+-} 0.6 pb{sup -1} collected by the Collider Detector at Fermilab. The three resonances were reconstructed through the decay {gamma} {yields} {mu}{sup +}{mu}{sup -} in the rapidity region {vert_bar}y{vert_bar} < 0.4. The cross section results are compared to theoretical models of direct bottomonium production.

  14. Gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stecker, F. W. (Editor); Trombka, J. I. (Editor)

    1973-01-01

    Conference papers on gamma ray astrophysics are summarized. Data cover the energy region from about 0.3 MeV to a few hundred GeV and theoretical models of production mechanisms that give rise to both galactic and extragalactic gamma rays.

  15. Muons in gamma showers

    NASA Technical Reports Server (NTRS)

    Stanev, T.; Vankov, C. P.; Halzen, F.

    1985-01-01

    Muon production in gamma-induced air showers, accounting for all major processes. For muon energies in the GeV region the photoproduction is by far the most important process, while the contribution of micron + micron pair creation is not negligible for TeV muons. The total rate of muons in gamma showers is, however, very low.

  16. Directional gamma detector

    DOEpatents

    LeVert, Francis E.; Cox, Samson A.

    1981-01-01

    An improved directional gamma radiation detector has a collector sandwiched etween two layers of insulation of varying thicknesses. The collector and insulation layers are contained within an evacuated casing, or emitter, which releases electrons upon exposure to gamma radiation. Delayed electrons and electrons entering the collector at oblique angles are attenuated as they pass through the insulation layers on route to the collector.

  17. Gamma-Ray Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2011-01-01

    The Fermi Gamma-Ray Space Telescope has revolutionized the study of pulsar physics with the detection of over 80 gamma-ray pulsars. Several new populations have been discovered, including 24 radio quiet pulsars found through gamma-ray pulsations alone and about 20 millisecond gamma-ray pulsars. The gamma-ray pulsations from millisecond pulsars were discovered by both folding at periods of known radio millisecond pulsars or by detecting them as gamma-ray sources that are followed up by radio pulsar searches. The second method has resulted in a phenomenally successful synergy, with -35 new radio MSPs (to date) having been discovered at Fermi unidentified source locations and the gamma-ray pulsations having then been detected in a number of these using the radio timing solutions. The higher sensitivity and larger energy range of the Fermi Large Area Telescope has produced detailed energy-dependent light curves and phase-resolved spectroscopy on brighter pulsars, that have ruled out polar cap models as the major source of the emission in favor of outer magnetosphere accelerators. The large number of gamma-ray pulsars now allows for the first time meaningful population and sub-population studies that are revealing surprising properties of these fascinating sources.

  18. Quality assessment of fluoxetine and fluvoxamine pharmaceutical formulations purchased in different countries or via the Internet by 19F and 2D DOSY 1H NMR.

    PubMed

    Trefi, Saleh; Gilard, Véronique; Balayssac, Stéphane; Malet-Martino, Myriam; Martino, Robert

    2008-03-13

    A simple and selective (19)F NMR method has been validated for the quantitation of fluoxetine (FLX) and fluvoxamine (FLV) in methanol solutions and in human plasma and urine. The regression equations for FLX and FLV showed a good linearity in the range of 1.4-620 microg mL(-1) (3.3 x 10(-6)-1.8 x 10(-3) mol L(-1)) with a limit of detection of approximately 0.5 microg mL(-1) (1.3 x 10(-6) mol L(-1)) and a limit of quantification of approximately 2 microg mL(-1) (4.6 x 10(-6) mol L(-1)). The precision of the assay depends on the concentrations and is comprised between 1.5 and 9.5% for a range of concentrations between 1.2 x 10(-3) and 3.2 x 10(-6) mol L(-1). The accuracy evaluated through recovery studies ranged from approximately 96 to 103% in methanol solutions and in urine, and from approximately 93 to 104% in plasma, with standard deviations <7.5%. The low sensitivity of the method precludes its use for the assay of these antidepressants in biofluids at least at therapeutic doses as the ranges of FLX and FLV plasma levels are 0.15-0.5 microg mL(-1) and 0.15-0.25 microg mL(-1), respectively. The method was applied successfully to the determination of FLX and FLV contents in pharmaceutical samples (brand-named and generic) purchased in several countries or via the Internet. All the commercial formulations contain the active ingredient in the range 94-103% of stated concentration. A "signature" of the formulations (solid and liquid) was obtained with 2D Diffusion-Ordered SpectroscopY (DOSY) (1)H NMR which allowed the characterisation of the active ingredient and excipients present in the formulations studied. Finally, the DOSY separation of FLX and FLV whose molecular weights are very close was obtained by using beta-cyclodextrin as host-guest complexing agent. PMID:18206329

  19. Optical gamma thermometer

    DOEpatents

    Koster, Glen Peter; Xia, Hua; Lee, Boon Kwee

    2013-08-06

    An optical gamma thermometer includes a metal mass having a temperature proportional to a gamma flux within a core of a nuclear reactor, and an optical fiber cable for measuring the temperature of the heated metal mass. The temperature of the heated mass may be measured by using one or more fiber grating structures and/or by using scattering techniques, such as Raman, Brillouin, and the like. The optical gamma thermometer may be used in conjunction with a conventional reactor heat balance to calibrate the local power range monitors over their useful in-service life. The optical gamma thermometer occupies much less space within the in-core instrument tube and costs much less than the conventional gamma thermometer.

  20. LASER-PLASMA-ACCELERATOR-BASED GAMMA GAMMA COLLIDERS

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Toth, Cs.; Geddes, C. G. R.; Leemans, W. P.

    2009-05-04

    Design considerations for a next-generation linear collider based on laser-plasma-accelerators are discussed, and a laser-plasma-accelerator-based gamma-gamma collider is considered. An example of the parameters for a 0.5 TeV laser-plasma-accelerator gamma gamma collider is presented.

  1. Prospects for gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Solar Maximum Mission and the Gamma Ray Experiment aboard the SMM spacecraft are discussed. Mission plans for interplanetary probes are also discussed. The Gamma Ray observatory and its role in future gamma ray astronomy is highlighted. It is concluded that gamma ray astronomy will be of major importance in the development of astronomical models and in the development of comsological theory.

  2. THE {gamma}SF METHOD

    SciTech Connect

    Utsunomiya, H.; Akimune, H.; Yamagata, T.; Kondo, T.; Iwamoto, C.; Okamoto, A.; Goriely, S.; Harada, H.; Kitatani, F.; Goko, S.; Toyokawa, H.; Yamada, K.; Lui, Y.-W.; Hilaire, S.; Koning, A. J.

    2011-10-28

    The {gamma}-ray strength function ({gamma}SF) interconnects radiative neutron capture and photoneutron emission as a common ingredient in the statistical model. Outlined here is an indirect method of determining radiative neutron-capture cross sections for unstable nuclei based on the {gamma}-ray strength function. Application examples of the {gamma}SF method are demonstrated.

  3. The gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An overview is given of the Gamma Ray Observatory (GRO) mission. Detection of gamma rays and gamma ray sources, operations using the Space Shuttle, and instruments aboard the GRO, including the Burst and Transient Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma Ray Experiment Telescope (EGRET) are among the topics surveyed.

  4. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1991-01-01

    Miscellaneous tasks related to the development of the Bursts and Transient Source Experiment on the Gamma Ray Observatory and to analysis of archival data from balloon flight experiments were performed. The results are summarized and relevant references are included.

  5. Gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1982-01-01

    Cosmic gamma rays, the physical processes responsible for their production and the astrophysical sites from which they were seen are reported. The bulk of the observed gamma ray emission is in the photon energy range from about 0.1 MeV to 1 GeV, where observations are carried out above the atmosphere. There are also, however, gamma ray observations at higher energies obtained by detecting the Cerenkov light produced by the high energy photons in the atmosphere. Gamma ray emission was observed from sources as close as the Sun and the Moon and as distant as the quasar 3C273, as well as from various other galactic and extragalactic sites. The radiation processes also range from the well understood, e.g. energetic particle interactions with matter, to the still incompletely researched, such as radiation transfer in optically thick electron positron plasmas in intense neutron star magnetic fields.

  6. Gamma ray line astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.

    1984-01-01

    The interpretations and implications of the astrophysical observations of gamma-ray lines are reviewed. At the Galactic Center e(+)-e(-) pairs from a compact object produce an annihilation line that shows no redshift, indicating an annihilation site far removed from this object. In the jets of SS433, gamma-ray lines are produced by inelastic excitations, probably in dust grains, although line emission from fusion reactions has also been considered. Observations of diffuse galactic line emission reveal recently synthesized radioactive aluminum in the interstellar medium. In gamma-ray bursts, redshifted pair annihilation lines are consistent with a neutron star origin for the bursts. In solar flares, gamma-ray line emission reveals the prompt acceleration of protons and nuclei, in close association with the flare energy release mechanism.

  7. Gamma Ray Pulsars: Observations

    NASA Technical Reports Server (NTRS)

    Thompson, David J.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    High-energy gamma rays are a valuable tool for studying particle acceleration and radiation in the magnetospheres of energetic pulsars. The six or more pulsars seen by CGRO/EGRET show that: the light curves usually have double-peak structures (suggesting a broad cone of emission); gamma rays are frequently the dominant component of the radiated power; and all the spectra show evidence of a high-energy turnover. Unless a new pulsed component appears at higher energies, progress in gamma-ray pulsar studies will be greatest in the 1-20 GeV range. Ground-based telescopes whose energy ranges extend downward toward 10 GeV should make important measurements of the spectral cutoffs. The Gamma-ray Large Area Space Telescope (GLAST), now in planning for a launch in 2005, will provide a major advance in sensitivity, energy range, and sky coverage.

  8. Dynamic gamma knife radiosurgery

    NASA Astrophysics Data System (ADS)

    Luan, Shuang; Swanson, Nathan; Chen, Zhe; Ma, Lijun

    2009-03-01

    Gamma knife has been the treatment of choice for various brain tumors and functional disorders. Current gamma knife radiosurgery is planned in a 'ball-packing' approach and delivered in a 'step-and-shoot' manner, i.e. it aims to 'pack' the different sized spherical high-dose volumes (called 'shots') into a tumor volume. We have developed a dynamic scheme for gamma knife radiosurgery based on the concept of 'dose-painting' to take advantage of the new robotic patient positioning system on the latest Gamma Knife C™ and Perfexion™ units. In our scheme, the spherical high dose volume created by the gamma knife unit will be viewed as a 3D spherical 'paintbrush', and treatment planning reduces to finding the best route of this 'paintbrush' to 'paint' a 3D tumor volume. Under our dose-painting concept, gamma knife radiosurgery becomes dynamic, where the patient moves continuously under the robotic positioning system. We have implemented a fully automatic dynamic gamma knife radiosurgery treatment planning system, where the inverse planning problem is solved as a traveling salesman problem combined with constrained least-square optimizations. We have also carried out experimental studies of dynamic gamma knife radiosurgery and showed the following. (1) Dynamic gamma knife radiosurgery is ideally suited for fully automatic inverse planning, where high quality radiosurgery plans can be obtained in minutes of computation. (2) Dynamic radiosurgery plans are more conformal than step-and-shoot plans and can maintain a steep dose gradient (around 13% per mm) between the target tumor volume and the surrounding critical structures. (3) It is possible to prescribe multiple isodose lines with dynamic gamma knife radiosurgery, so that the treatment can cover the periphery of the target volume while escalating the dose for high tumor burden regions. (4) With dynamic gamma knife radiosurgery, one can obtain a family of plans representing a tradeoff between the delivery time and the

  9. Gamma ray camera

    SciTech Connect

    Robbins, C.D.; Wang, S.

    1980-09-09

    An anger gamma ray camera is improved by the substitution of a gamma ray sensitive, proximity type image intensifier tube for the scintillator screen in the anger camera, the image intensifier tube having a negatively charged flat scintillator screen and a flat photocathode layer and a grounded, flat output phosphor display screen all of the same dimension (Unity image magnification) and all within a grounded metallic tube envelope and having a metallic, inwardly concaved input window between the scintillator screen and the collimator.

  10. Gamma ray optics

    SciTech Connect

    Jentschel, M.; Guenther, M. M.; Habs, D.; Thirolf, P. G.

    2012-07-09

    Via refractive or diffractive scattering one can shape {gamma} ray beams in terms of beam divergence, spot size and monochromaticity. These concepts might be particular important in combination with future highly brilliant gamma ray sources and might push the sensibility of planned experiments by several orders of magnitude. We will demonstrate the experimental feasibility of gamma ray monochromatization on a ppm level and the creation of a gamma ray beam with nanoradian divergence. The results are obtained using the inpile target position of the High Flux Reactor of the ILL Grenoble and the crystal spectrometer GAMS. Since the refractive index is believed to vanish to zero with 1/E{sup 2}, the concept of refractive optics has never been considered for gamma rays. The combination of refractive optics with monochromator crystals is proposed to be a promising design. Using the crystal spectrometer GAMS, we have measured for the first time the refractive index at energies in the energy range of 180 - 2000 keV. The results indicate a deviation from simple 1/E{sup 2} extrapolation of X-ray results towards higher energies. A first interpretation of these new results will be presented. We will discuss the consequences of these results on the construction of refractive optics such as lenses or refracting prisms for gamma rays and their combination with single crystal monochromators.

  11. Nano {gamma}'/{gamma}'' composite precipitates in Alloy 718

    SciTech Connect

    Phillips, P. J.; McAllister, D.; Gao, Y.; Lv, D.; Williams, R. E. A.; Wang, Y.; Mills, M. J.; Peterson, B.

    2012-05-21

    Nanoscale composite precipitates of Alloy 718 have been investigated with both high-resolution scanning transmission electron microscopy and phase field modeling. Chemical analysis via energy-dispersive x-ray spectroscopy allowed for the differentiation of {gamma}' and {gamma}'' particles, which is not otherwise possible through traditional Z-contrast methods. Phase field modeling was applied to determine the stress distribution and elastic interaction around and between the particles, respectively, and it was determined that a composite particle (of both {gamma}' and {gamma}'') has an elastic energy that is significantly lower than, for example, single {gamma}' and {gamma}'' precipitates which are non-interacting.

  12. Gamma ray camera

    DOEpatents

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  13. Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The project has progressed successfully during this period of performance. The highlights of the Gamma Ray Astronomy teams efforts are: (1) Support daily BATSE data operations, including receipt, archival and dissemination of data, quick-look science analysis, rapid gamma-ray burst and transient monitoring and response efforts, instrument state-of-health monitoring, and instrument commanding and configuration; (2) On-going scientific analysis, including production and maintenance of gamma-ray burst, pulsed source and occultation source catalogs, gamma-ray burst spectroscopy, studies of the properties of pulsars and black holes, and long-term monitoring of hard x-ray sources; (3) Maintenance and continuous improvement of BATSE instrument response and calibration data bases; (4) Investigation of the use of solid state detectors for eventual application and instrument to perform all sky monitoring of X-Ray and Gamma sources with high sensitivity; and (5) Support of BATSE outreach activities, including seminars, colloquia and World Wide Web pages. The highlights of this efforts can be summarized in the publications and presentation list.

  14. Gamma ray camera

    DOEpatents

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  15. Gamma-ray bursts.

    PubMed

    Gehrels, Neil; Mészáros, Péter

    2012-08-24

    Gamma-ray bursts (GRBs) are bright flashes of gamma rays coming from the cosmos. They occur roughly once per day, typically last for tens of seconds, and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this Review, we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglow. PMID:22923573

  16. Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Meszaros, Peter

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma-rays coming from the cosmos. They occur roughly once per day ,last typically lOs of seconds and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  17. Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Gehrels, Neil; Mészáros, Péter

    2012-08-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma rays coming from the cosmos. They occur roughly once per day, typically last for tens of seconds, and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this Review, we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglow.

  18. Measurement of the gamma gamma* --> eta and gamma gamma* --> eta' transition form factors

    SciTech Connect

    del Amo Sanchez et al, P.

    2011-02-07

    We study the reactions e{sup +}e{sup -} {yields} e{sup +}e{sup -} {eta}{sup (/)} in the single-tag mode and measure the {gamma}{gamma}* {yields} {eta}{sup (/)} transition form factors in the momentum transfer range from 4 to 40 GeV{sup 2}. The analysis is based on 469 fb{sup -1} of integrated luminosity collected at PEP-II with the BABAR detector at e{sup +}e{sup -} center-of-mass energies near 10.6 GeV.

  19. Interferon Gamma-1b Injection

    MedlinePlus

    Interferon gamma-1b injection is used to reduce the frequency and severity of serious infections in people ... with severe, malignant osteopetrosis (an inherited bone disease). Interferon gamma-1b is in a class of medications ...

  20. SYNTH - Gamma Ray Spectrum Synthesizer

    Energy Science and Technology Software Center (ESTSC)

    2009-05-18

    SYNTH was designed to synthesize the results of typical gamma-ray spectroscopy experiments. The code allows a user to specify the physical characteristics of a gamma-ray source, the quantity of radionuclides emitting gamma radiation, the source-to-detector distance and the presence and type of any intervening absorbers, the size and type of the gamma-ray detector, and the electronic set-up used to gather the data.

  1. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1991-01-01

    Miscellaneous tasks related to the development of the Burst and Transient Source Experiment on the Gamma Ray Observatory and to collection, analysis, and interpretation of data from the MSFC Very Low Frequency transient monitoring program were performed. The results are summarized and relevant references are included.

  2. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1992-01-01

    Miscellaneous tasks related to mission operations and data analysis for the Burst and Transient Source Experiment on the Gamma Ray Observatory, to collection, analysis, and interpretation of data from the Marshall Space Flight Center Very Low Frequency transient monitoring program, and to compilation and analysis of induced radioactivity data were performed. The results are summarized and relevant references are included.

  3. Celestial gamma ray study

    NASA Technical Reports Server (NTRS)

    Michelson, Peter F.

    1995-01-01

    This report documents the research activities performed by Stanford University investigators as part of the data reduction effort and overall support of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Observatory. This report is arranged chronologically, with each subsection detailing activities during roughly a one year period of time, beginning in June 1991.

  4. Gamma ray astronomy in perspective

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A brief overview of the development of gamma ray astronomy is presented. Gamma ray telescopes and other optical measuring instruments are highlighted. Emphasis is placed on findings that were unobtainable before gamma ray astronomy. Information on evolution of the solar system, the relationship of the solar system to the galaxy, and the composition of interstellar matter is discussed.

  5. The GAMMA-400 gamma-ray telescope for precision gamma-ray emission investigations

    NASA Astrophysics Data System (ADS)

    Topchiev, N. P.; Galper, A. M.; Bonvicini, V.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bakaldin, A. V.; Bergstrom, L.; Berti, E.; Bigongiari, G.; Bobkov, S. G.; Boezio, M.; Bogomolov, E. A.; Bonechi, L.; Bongi, M.; Bottai, S.; Castellini, G.; Cattaneo, P. W.; Cumani, P.; Dalkarov, O. D.; Dedenko, G. L.; De Donato, C.; Dogiel, V. A.; Finetti, N.; Gascon, D.; Gorbunov, M. S.; Gusakov, Yu V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kaplun, A. A.; Kheymits, M. D.; Korepanov, V. E.; Larsson, J.; Leonov, A. A.; Loginov, V. A.; Longo, F.; Maestro, P.; Marrocchesi, P. S.; Martinez, M.; Men'shenin, A. L.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu; Papini, P.; Paredes, J. M.; Pearce, M.; Picozza, P.; Rappoldi, A.; Ricciarini, S.; Runtso, M. F.; Ryde, F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Suchkov, S. I.; Taraskin, A. A.; Tavani, M.; Tiberio, A.; Tyurin, E. M.; Ulanov, M. V.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Ward, J. E.; Yurkin, Yu T.; Zampa, N.; Zirakashvili, V. N.; Zverev, V. G.

    2016-02-01

    The GAMMA-400 gamma-ray telescope with excellent angular and energy resolutions is designed to search for signatures of dark matter in the fluxes of gamma-ray emission and electrons + positrons. Precision investigations of gamma-ray emission from Galactic Center, Crab, Vela, Cygnus, Geminga, and other regions will be performed, as well as diffuse gamma-ray emission, along with measurements of high-energy electron + positron and nuclei fluxes. Furthermore, it will study gamma-ray bursts and gamma-ray emission from the Sun during periods of solar activity. The GAMMA-400 energy range is expected to be from ∼20 MeV up to TeV energies for gamma rays, up to 10 TeV for electrons + positrons, and up to 1015 eV for cosmic-ray nuclei. For 100-GeV gamma rays, the GAMMA-400 angular resolution is ∼0.01° and energy resolution is ∼1% the proton rejection factor is ∼5x105. GAMMA-400 will be installed onboard the Russian space observatory.

  6. Topics in gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1986-01-01

    Observations of gamma rays from solar flares, gamma ray bursts, the Galactic center, galactic nucleosynthesis, SS433, and Cygnus X-3, and their effects on astrophysical problems are discussed. It is observed that gamma ray spectra from solar flares are applicable to the study of particle acceleration and confinement and the determination of chemical abundances in the solar atmosphere. The gamma ray lines from the compact galactic object SS433 are utilized to examine the acceleration of jets, and analysis of the gamma ray lines of Cygnus X-3 reveal that particles can be accelerated in compact sources to ultrahigh energies.

  7. Topics in gamma ray astronomy

    NASA Astrophysics Data System (ADS)

    Ramaty, R.; Lingenfelter, R. E.

    Observations of gamma rays from solar flares, gamma ray bursts, the Galactic center, galactic nucleosynthesis, SS433, and Cygnus X-3, and their effects on astrophysical problems are discussed. It is observed that gamma ray spectra from solar flares are applicable to the study of particle acceleration and confinement and the determination of chemical abundances in the solar atmosphere. The gamma ray lines from the compact galactic object SS433 are utilized to examine the acceleration of jets, and analysis of the gamma ray lines of Cygnus X-3 reveal that particles can be accelerated in compact sources to ultrahigh energies.

  8. UNIDENTIFIED {gamma}-RAY SOURCES: HUNTING {gamma}-RAY BLAZARS

    SciTech Connect

    Massaro, F.; Ajello, M.; D'Abrusco, R.; Paggi, A.; Tosti, G.; Gasparrini, D.

    2012-06-10

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of unidentified {gamma}-ray sources (UGSs). Despite the major improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one-third of the Fermi-detected objects are still not associated with low-energy counterparts. Recently, using the Wide-field Infrared Survey Explorer survey, we discovered that blazars, the rarest class of active galactic nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated with the UGS sample of the second Fermi {gamma}-ray LAT catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart to each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated with {gamma}-ray sources in the 2FGL catalog.

  9. Unidentified Gamma-Ray Sources: Hunting Gamma-Ray Blazars

    SciTech Connect

    Massaro, F.; D'Abrusco, R.; Tosti, G.; Ajello, M.; Gasparrini, A.Paggi.D.

    2012-04-02

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of the unidentified {gamma}-ray sources (UGSs). Despite the large improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one third of the Fermi-detected objects are still not associated to low energy counterparts. Recently, using the Wide-field Infrared Survey Explorer (WISE) survey, we discovered that blazars, the rarest class of Active Galactic Nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated to the UGS sample of the second Fermi {gamma}-ray catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated to {gamma}-ray sources in the 2FGL catalog.

  10. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1994-01-01

    The Burst and Transient Source Experiment (BATSE) is one of four instruments on the Compton observatory which was launched by the space shuttle Atlantis on April 5, 1991. As of mid-March, 1994, BATSE detected more than 925 cosmic gamma-ray bursts and more than 725 solar flares. Pulsed gamma rays have been detected from at least 16 sources and emission from at least 28 sources (including most of the pulsed sources) has been detected by the earth occultation technique. UAH participation in BATSE is extensive but can be divided into two main areas, operations and data analysis. The daily BATSE operations tasks represent a substantial level of effort and involve a large team composed of MSFC personnel as well as contractors such as UAH. The scientific data reduction and analysis of BATSE data is also a substantial level of effort in which UAH personnel have made significant contributions.

  11. Gamma ray collimator

    NASA Technical Reports Server (NTRS)

    Casanova, Edgar J. (Inventor)

    1991-01-01

    A gamma ray collimator including a housing having first and second sections is disclosed. The first section encloses a first section of depleted uranium which is disposed for receiving and supporting a radiation emitting component such as cobalt 60. The second section encloses a depleted uranium member which is provided with a conical cut out focusing portion disposed in communication with the radiation emitting element for focusing the emitted radiation to the target.

  12. Gamma ray collimator

    NASA Technical Reports Server (NTRS)

    Casanova, Edgar J. (Inventor)

    1993-01-01

    A gamma ray collimator including a housing having first and second sections. The first section encloses a first section of depleted uranium which is disposed for receiving and supporting a radiation emitting component such as cobalt 60. The second section encloses a depleted uranium member which is provided with a conical cut-out focusing portion disposed in communication with the radiation emitting element for focusing the emitted radiation to the target.

  13. Probing anomalous quartic couplings in e{gamma} and {gamma}{gamma} colliders

    SciTech Connect

    Eboli, O. J. P.; Mizukoshi, J. K.

    2001-10-01

    We analyze the potential of the e{sup +}e{sup -} linear colliders, operating in the e{gamma} and {gamma}{gamma} modes, to probe anomalous quartic vector-boson interactions through the multiple production of W's and Z's. We examine all SU(2){sub L}(circle times)U(1){sub Y} chiral operators of order p{sup 4} that lead to new four-gauge-boson interactions but do not alter trilinear vertices. We show that the e{gamma} and {gamma}{gamma} modes are able not only to establish the existence of a strongly interacting symmetry breaking sector but also to probe for anomalous quartic couplings of the order of 10{sup -2} at 90% C.L. Moreover, the information gathered in the e{gamma} mode can be used to reduce the ambiguities of the e{sup +}e{sup -} mode.

  14. gamma. -hexachlorocyclohexane (. gamma. -HCH) activates washed rabbit platelets

    SciTech Connect

    Lalau-Keraly, C.; Delautier, D.; Benveniste, J.; Puiseux-Dao, S.

    1986-03-01

    In guinea-pig macrophages, ..gamma..-HCH triggers activation of the phosphatidylinositol cycle and Ca/sup 2 +/ mobilization. Since these two biochemical events are also involved in platelet activation, the authors examined the effects of ..gamma..-HCH on washed rabbit platelets. Release of /sup 14/C-serotonin (/sup 14/C-5HT) and ATP from platelets prelabelled with /sup 14/C-5HT was measured simultaneously with aggregation. ..gamma..-HCH induced shape-change, aggregation and release reaction of platelets. Maximal aggregation (89 arbitrary units, AU), was observed using 170 ..mu..M ..gamma..-HCH, and was associated with 38.1 +/- 6.9% and 161 +/- 48 nM for /sup 14/C-5HT and ATP release respectively (mean +/- 1 SD, n=3). Using 80 ..mu..M ..gamma..-HCH yielded 18 AU, 12.8 +/- 1.0% and 27 +/- 14 nM for aggregation, C-5HT and ATP release respectively (n=3). No effect was observed with 40 ..mu.. M ..gamma..-HCH. Aspirin (ASA), a cyclooxygenase blocker, did not affect ..gamma..-HCH-induced platelet activation. Apyrase (APY), an ADP scavenger, inhibited by 90% aggregation induced by 170 ..mu..M ..gamma..-HCH and slightly inhibited (15%) the /sup 14/C-5HT release. In the presence of both ASA and APY, 96% inhibition of aggregation and 48% inhibition of /sup 14/C-5HT release were observed. Thus, ..gamma..-HCH induced platelet activation in a dose-dependent manner ADP, but not cyclooxygenase-dependent arachidonate metabolites, is involved in ..gamma..-HCH-induced aggregation, whereas, both appear to play a role in ..gamma..-HCH-induced release reaction.

  15. Simultaneous beta and gamma spectroscopy

    DOEpatents

    Farsoni, Abdollah T.; Hamby, David M.

    2010-03-23

    A phoswich radiation detector for simultaneous spectroscopy of beta rays and gamma rays includes three scintillators with different decay time characteristics. Two of the three scintillators are used for beta detection and the third scintillator is used for gamma detection. A pulse induced by an interaction of radiation with the detector is digitally analyzed to classify the type of event as beta, gamma, or unknown. A pulse is classified as a beta event if the pulse originated from just the first scintillator alone or from just the first and the second scintillator. A pulse from just the third scintillator is recorded as gamma event. Other pulses are rejected as unknown events.

  16. E6 Gamma Decay

    SciTech Connect

    Brown, B. Alex; Rae, W. D. M.

    2011-05-06

    Rare electric hexacontatetrapole (E6) transitions are studied in the full (f{sub 7/2},f{sub 5/2},p{sub 3/2},p{sub 1/2}) shell-model basis. Comparison of theory to the results from the gamma decay in {sup 53}Fe and from inelastic electron scattering on {sup 52}Cr provides unique and interesting tests of the valence wavefunctions, the models used for energy density functionals and into the origin of effective charge.

  17. Gamma rays for pedestrians

    SciTech Connect

    Lipkin, H.J.

    1987-05-07

    Nuclear gamma radiation does not have many of the properties taken for granted in atomic or molecular radiation and necessary for lasers. The basic science and technology underlying these differences and the proposed methods of overcoming difficulties resulting from them are not properly understood. Considerable illumination in this interdisciplinary problem could be provided by some back-of-the-envelope calculations and simple experimental surveys by small groups of students and postdocs with an elementary knowledge of the nuclear and solid state physics which is evidently not familiar these days to laser physicists. 3 refs.

  18. Metallography of gamma titanium aluminides

    SciTech Connect

    Baeslack, W.A. III . Dept. of Welding Engineering); McQuay, P.A.; Lee, D.S. ); Fletcher, E.D. )

    1993-12-01

    The microstructures of forged and heat treated Ti-48A1-2Nb-2Mn (at.%) and Ti-48A1-2Nb-2Cr (at.%) gamma titanium aluminides have been revealed by the application of selected metallographic preparation techniques and characterized using light microscopy. Examination of the as-polished specimen surface under polarized light was highly effective in revealing the equiaxed gamma grain structure and twins within the gamma grains, but it did not delineate alpha-two phase present at gamma grain boundaries or within a lamellar gamma/alpha-two constituent. Bright-field and differential-interference contrast light microscopy analyses of specimens chemically etched with Kroll's reagent (100mL H[sub 2]O + 4mL HNO[sub 3] + 2mL HF) were marginally effective in characterizing the equiaxed gamma grain structure and likewise did not reveal the alpha-two phase. Furthermore, the application of Kroll's reagent resulted in localized dissolution in the form of fine grooves or microcracks oriented in preferred directions within the equiaxed gamma grains. Under light microscopy, gamma grains that experienced this attack resembled the lamellar gamma/alpha-two constituent. The alpha-two phase was most clearly revealed using an etching solution comprised of 30mL lactic acid + 30mL HNO[sub 3] + 3mL HF, while the gamma grain and twin boundaries were most effectively revealed using an etching solution comprised of 30mL HCL + 10mL HNO[sub 3] + 5mL H[sub 2]O[sub 2] + 3mL HF. An etching solution of 25 mL H[sub 2]O + 50mL glycerol + 25mL HNO[sub 3] + 2mL HF was very effective in simultaneously revealing both the gamma and alpha-two phase morphologies.

  19. New data on ({gamma}, n), ({gamma}, 2n), and ({gamma}, 3n) partial photoneutron reactions

    SciTech Connect

    Varlamov, V. V. Ishkhanov, B. S.; Orlin, V. N.; Peskov, N. N.; Stepanov, M. E.

    2013-11-15

    Systematic discrepancies between the results of various experiments devoted to determining cross sections for total and partial photoneutron reactions are analyzed by using objective criteria of reliability of data in terms of the transitional photoneutron-multiplicity function F{sub i} = {sigma}({gamma}, in)/{sigma}({gamma}, xn), whose values for i = 1, 2, 3, ... cannot exceed by definition 1.00, 0.50, 0.33, ..., respectively. It was found that the majority of experimental data on the cross sections obtained for ({gamma}, n), ({gamma}, 2n), and ({gamma}, 3n) reactions with the aid of methods of photoneutron multiplicity sorting do not meet objective criteria (in particular, F{sub 2} > 0.50 for a vast body of data). New data on the cross sections for partial reactions on {sup 181}Ta and {sup 208}Pb nuclei were obtained within a new experimental-theoretical method that was proposed for the evaluation of cross sections for partial reactions and in which the experimental neutron yield cross section {sigma}{sup expt}({gamma}, xn) = {sigma}({gamma}, n) + 2{sigma}({gamma}, 2n) + 3{sigma}({gamma}, 3n) + ..., which is free from problems associated with determining neutron multiplicities, is used simultaneously with the functions F{sub i}{sup theor} calculated within a combined model of photonuclear reactions.

  20. Generalized gamma frailty model.

    PubMed

    Balakrishnan, N; Peng, Yingwei

    2006-08-30

    In this article, we present a frailty model using the generalized gamma distribution as the frailty distribution. It is a power generalization of the popular gamma frailty model. It also includes other frailty models such as the lognormal and Weibull frailty models as special cases. The flexibility of this frailty distribution makes it possible to detect a complex frailty distribution structure which may otherwise be missed. Due to the intractable integrals in the likelihood function and its derivatives, we propose to approximate the integrals either by Monte Carlo simulation or by a quadrature method and then determine the maximum likelihood estimates of the parameters in the model. We explore the properties of the proposed frailty model and the computation method through a simulation study. The study shows that the proposed model can potentially reduce errors in the estimation, and that it provides a viable alternative for correlated data. The merits of proposed model are demonstrated in analysing the effects of sublingual nitroglycerin and oral isosorbide dinitrate on angina pectoris of coronary heart disease patients based on the data set in Danahy et al. (sustained hemodynamic and antianginal effect of high dose oral isosorbide dinitrate. Circulation 1977; 55:381-387). PMID:16220516

  1. Diffuse gamma radiation

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Simpson, G. A.; Thompson, D. J.

    1977-01-01

    An examination of the intensity, energy spectrum, and spatial distribution of the diffuse gamma-radiation observed by SAS-2 satellite away from the galactic plane in the energy range above 35 MeV has shown that it consists of two components. One component is generally correlated with galactic latitudes, the atomic hydrogen column density was deduced from 21 cm measurements, and the continuum radio emission, believed to be synchrotron emission. It has an energy spectrum similar to that in the plane and joins smoothly to the intense radiation from the plane. It is therefore presumed to be of galactic origin. The other component is apparently isotropic, at least on a coarse scale, and has a steep energy spectrum. No evidence is found for a cosmic ray halo surrounding the galaxy in the shape of a sphere or oblate spheroid with galactic dimensions. Constraints for a halo model with significantly larger dimensions are set on the basis of an upper limit to the gamma-ray anisotropy.

  2. Gamma-hadron families and scaling violation

    NASA Technical Reports Server (NTRS)

    Gaisser, T. K.; Stanev, T.; Wrotniak, J. A.

    1985-01-01

    For three different interaction models we have simulated gamma-hadron families, including the detector (Pamir emulsion chamber) response. Rates of gamma families, hadrons, and hadron-gamma ratios were compared with experiments.

  3. The Compton Gamma Ray Observatory

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Chipman, E.; Kniffen, D.

    1994-06-01

    The Arthur Holly Compton Gamma Ray Observatory Compton) is the second in NASA's series of great Observatories. Launched on 1991 April 5, Compton represents a dramatic increase in capability over previous gamma-ray missions. The spacecraft and scientific instruments are all in good health, and many significant discoveries have already been made. We describe the capabilities of the four scientific instruments, and the observing program of the first 2 years of the mission. Examples of early discoveries by Compton are enumerated, including the discovery that gamma-ray bursts are isotropic but spatially inhomogeneous in their distribution; the discovery of a new class of high-energy extragalacatic gamma-ray sources, the gamma-ray AGNs; the discovery of emission from SN 1987A in the nuclear line of Co-57; and the mapping of emission from Al-26 in the interstellar medium (ISM) near the Galactic center. Future observations will include deep surveys of selected regions of the sky, long-tem studies of individual objects, correlative studies of objects at gamma-ray and other energies, a Galactic plane survey at intermediate gamma-ray energies, and improved statistics on gamma-ray bursts to search for small anisotropies. After completion of the all-sky survey, a Guest Investigator program is in progress with guest observers' time share increasing from 30% upward for the late mission phases.

  4. High energy gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.

    1987-01-01

    High energy gamma ray astronomy has evolved with the space age. Nonexistent twenty-five years ago, there is now a general sketch of the gamma ray sky which should develop into a detailed picture with the results expected to be forthcoming over the next decade. The galactic plane is the dominant feature of the gamma ray sky, the longitude and latitude distribution being generally correlated with galactic structural features including the spiral arms. Two molecular clouds were already seen. Two of the three strongest gamma ray sources are pulsars. The highly variable X-ray source Cygnus X-3 was seen at one time, but not another in the 100 MeV region, and it was also observed at very high energies. Beyond the Milky Way Galaxy, there is seen a diffuse radiation, whose origin remains uncertain, as well as at least one quasar, 3C 273. Looking to the future, the satellite opportunities for high energy gamma ray astronomy in the near term are the GAMMA-I planned to be launched in late 1987 and the Gamma Ray Observatory, scheduled for launch in 1990. The Gamma Ray Observatory will carry a total of four instruments covering the entire energy range from 30,000 eV to 3 x 10 to the 10th eV with over an order of magnitude increase in sensitivity relative to previous satellite instruments.

  5. Cyclic oxidation behavior of beta+gamma overlay coatings on gamma and gamma+gamma-prime alloys

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Pilsner, B. H.; Carol, L. A.; Heckel, R. W.

    1984-01-01

    Detailed experimental studies of the cyclic oxidation behavior of low-pressure plasma sprayed beta+gamma coasting on gamma-phase Ni-Cr-Al alloys have shown the correlation of weight change, oxide type, and Cr and Al concentration-distance profiles as a function of oxidation time. Of special interest was the transition to breakway oxidation due to the loss of the Al flux to the oxide and the failure of the coated alloy to form an Al2O3-rich oxide scale. The experimental results on beta+gamma/gamma coating systems were used as the basis of a numerical model (ternary, semi-infinite, finite-difference analysis) which accurately predicted changes in Cr and Al concentration-distance profiles. The model was used to study parameters critical to enhancing the life of coatings which fail by a combination of Al loss in forming the oxide scale and Al loss via interdiffusion with the substrate alloy. Comparisons of beta+gamma/gamma coating behavior are made to the oxidation of coated gamma+gamma-prime substrates, both ternary Ni-Cr-Al alloys and Mar-M 247-type alloys.

  6. The Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Chipman, E.; Kniffen, D.

    1994-01-01

    The Arthur Holly Compton Gamma Ray Observatory Compton) is the second in NASA's series of great Observatories. Launched on 1991 April 5, Compton represents a dramatic increase in capability over previous gamma-ray missions. The spacecraft and scientific instruments are all in good health, and many significant discoveries have already been made. We describe the capabilities of the four scientific instruments, and the observing program of the first 2 years of the mission. Examples of early discoveries by Compton are enumerated, including the discovery that gamma-ray bursts are isotropic but spatially inhomogeneous in their distribution; the discovery of a new class of high-energy extragalacatic gamma-ray sources, the gamma-ray AGNs; the discovery of emission from SN 1987A in the nuclear line of Co-57; and the mapping of emission from Al-26 in the interstellar medium (ISM) near the Galactic center. Future observations will include deep surveys of selected regions of the sky, long-tem studies of individual objects, correlative studies of objects at gamma-ray and other energies, a Galactic plane survey at intermediate gamma-ray energies, and improved statistics on gamma-ray bursts to search for small anisotropies. After completion of the all-sky survey, a Guest Investigator program is in progress with guest observers' time share increasing from 30% upward for the late mission phases.

  7. Astrophysical gamma-ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.; Kozlovsky, B.

    1979-01-01

    Observations of gamma-ray lines from solar flares, the Galactic Center, and transient celestial events are reviewed. The lines observed in each case are identified, and possible emission sources are considered. Future prospects for gamma-ray line astronomy are briefly discussed.

  8. Gamma spectroscopy of environmental samples

    NASA Astrophysics Data System (ADS)

    Siegel, P. B.

    2013-05-01

    We describe experiments for the undergraduate laboratory that use a high-resolution gamma detector to measure radiation in environmental samples. The experiments are designed to instruct the students in the quantitative analysis of gamma spectra and secular equilibrium. Experiments include the radioactive dating of Brazil nuts, determining radioisotope concentrations in natural samples, and measurement of the 235U abundance in uranium rich rocks.

  9. Gamma-ray line astrophysics

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Ramaty, R.

    1986-01-01

    Recent observations of gamma-ray line emission from solar flares, gamma-ray bursts, the galactic center, the interstellar medium and the jets of SS433 are reviewed. The implications of these observations on high energy processes in these sources are discussed.

  10. Gamma Ray Pulsars: Multiwavelength Observations

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2004-01-01

    High-energy gamma rays are a valuable tool for studying particle acceleration and radiation in the magnetospheres of energetic pulsars. The seven or more pulsars seen by instruments on the Compton Gamma Ray Observatory (CGRO) show that: the light curves usually have double-peak structures (suggesting a broad cone of emission); gamma rays are frequently the dominant component of the radiated power; and all the spectra show evidence of a high-energy turnover. For all the known gamma-ray pulsars, multiwavelength observations and theoretical models based on such observations offer the prospect of gaining a broad understanding of these rotating neutron stars. The Gamma-ray Large Area Space Telescope (GLAST), now in planning for a launch in 2006, will provide a major advance in sensitivity, energy range, and sky coverage.

  11. Planetary gamma-ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.

    1978-01-01

    The measured intensities of certain gamma rays of specific energies escaping from a planetary surface can be used to determine the abundances of a number of elements. The fluxes of the more intense gamma-ray lines emitted from 32 elements were calculated using current nuclear data and existing models for the source processes. The source strengths for neutron-capture reactions were modified from those previously used. The fluxes emitted form a surface of average lunar composition are reported for 292 gamma-ray lines. These theoretical fluxes were used elsewhere to convert the data from the Apollo gamma-ray spectrometers to elemental abundances and can be used with measurements from future missions to map the concentrations of a number of elements over a planet's surface. Detection sensitivities for these elements are examined and applications of gamma-ray spectroscopy for future orbiters to Mars and other solar-system objects are discussed.

  12. Gamma rays from Centaurus A

    SciTech Connect

    Gupta, Nayantara

    2008-06-15

    Centaurus A, the cosmic ray accelerator a few Mpc away from us, is possibly one of the nearest sources of extremely high energy cosmic rays. We investigate whether the gamma ray data currently available from Centaurus A in the GeV-TeV energy band can be explained with only proton-proton interactions. We show that for a single power law proton spectrum, mechanisms of {gamma}-ray production other than proton-proton interactions are needed inside this radio-galaxy to explain the gamma ray flux observed by EGRET, upper limits from HESS/CANGAROO-III and the correlated extremely energetic cosmic ray events observed by the Pierre Auger experiment. In future, with better {gamma}-ray data, and simultaneous observation with {gamma}-ray and cosmic ray detectors, it will be possible to carry out such studies on different sources in more detail.

  13. Gamma Ray Bursts - Observations

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cannizzo, J. K.

    2010-01-01

    We are in an exciting period of discovery for gamma-ray bursts. The Swift observatory is detecting 100 bursts per year, providing arcsecond localizations and sensitive observations of the prompt and afterglow emission. The Fermi observatory is observing 250 bursts per year with its medium-energy GRB instrument and about 10 bursts per year with its high-energy LAT instrument. In addition, rapid-response telescopes on the ground are providing new capabilities to study optical emission during the prompt phase and spectral signatures of the host galaxies. The combined data set is enabling great advances in our understanding of GRBs including afterglow physics, short burst origin, and high energy emission.

  14. Interferon Gamma in Leishmaniasis

    PubMed Central

    Kima, Peter E.; Soong, Lynn

    2013-01-01

    Leishmaniasis is a complex disease that is caused by parasites of the Leishmania genus. Leishmania are further classified into several complexes, each of which can engage in distinct interactions with mammalian hosts resulting in differing disease presentations. It is therefore not unexpected that host immune responses to Leishmania are variable. The induction of interferon gamma (IFN-γ) and response to it in these infections has received considerable attention. In this review, we summarize our current understanding of some of the host responses during Leishmania infections that are regulated by IFN-γ. In addition, studies that explore the nature of parasite-derived molecular mediators that might affect the host response to IFN-γ are also discussed. PMID:23801993

  15. Directionally solidified eutectic gamma-gamma nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Jackson, M. R. (Inventor)

    1977-01-01

    A directionally solidified multivariant eutectic gamma-gamma prime nickel-base superalloy casting having improved high temperature properties was developed. The alloy is comprised of a two phase eutectic structure consisting essentially of on a weight percent base, 6.0 to 9.0 aluminum, 5.0 to 17.0 tantalum, 0-10 cobalt, 0-6 vanadium, 0-6 rhenium, 2.0-6.0 tungsten, and the balance being nickel, subject to the proviso that the sum of the atomic percentages of aluminum plus tantalum is within the range of from 19-22, and the ratio of atomic percentages of tantalum to aluminum plus tantalum is within the range of from 0.12 to 0.23. Embedded within the gamma nickel-base matrix are aligned eutectic gamma prime phase (primarily nickel-aluminum-tantalum) reinforcing fibers.

  16. Jet Shockwaves Produce Gamma Rays

    NASA Video Gallery

    Theorists believe that GRB jets produce gamma rays by two processes involving shock waves. Shells of material within the jet move at different speeds and collide, generating internal shock waves th...

  17. Gamma rays at airplane altitudes

    SciTech Connect

    Iwai, J.; Koss, T.; Lord, J.; Strausz, S.; Wilkes, J.; Woosley, J. )

    1990-03-20

    An examination of the gamma ray flux above 1 TeV in the atmosphere is needed to better understand the anomalous showers from point sources. Suggestions are made for future experiments on board airplanes.

  18. Gamma Astrometric Measurement Experiment

    NASA Astrophysics Data System (ADS)

    Gai, M.; Lattanzi, M. G.; Ligori, S.; Loreggia, D.; Vecchiato, A.

    GAME aims at the measurement of gravitational deflection of the light by the Sun, by an optimised telescope on board a small class satellite. The targeted precision on the gamma parameter of the Parametrised Post-Newtonian formulation of General Relativity is below 10-6, i.e. one to two orders of magnitude better than the best current results. Such precision is suitable to detect possible deviations from the unity value, associated to generalised Einstein models for gravitation, with potentially huge impacts on the cosmological distribution of dark matter and dark energy. The measurement principle is based on differential astrometry. The observations also allow additional scientific objectives related to tests of General Relativity and to the study of exo-planetary systems. The instrument concept is based on a dual field, multiple aperture Fizeau interferometer, observing simultaneously two regions close to the Solar limb. The diluted optics achieves efficient rejection of the solar radiation, with good angular resolution on the science targets. We describe the science motivation, the proposed mission implementation and the expected performance.

  19. Gamma-ray line astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1979-01-01

    Gamma-ray astronomy is a valuable source of information on solar activity, supernovae, and nucleosynthesis. Cosmic gamma-ray lines were first observed from solar flares and more recently from the galactic center and a transient event. The latter may give an important insight into nuclear reactions taking place near neutron stars and black holes and a measure of the gravitational redshifts of such objects.

  20. Gamma radiation field intensity meter

    DOEpatents

    Thacker, L.H.

    1994-08-16

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  1. Gamma radiation field intensity meter

    DOEpatents

    Thacker, Louis H.

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  2. Gamma radiation field intensity meter

    DOEpatents

    Thacker, Louis H.

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  3. Gamma-ray spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Arnold, J. R.; Peterson, L. E.; Metzger, A. E.; Trombka, J. I.

    1972-01-01

    The experiments in gamma-ray spectrometry to determine the geochemical composition of the lunar surface are reported. The theory is discussed of discrete energy lines of natural radioactivity, and the lines resulting from the bombardment of the lunar surface by high energy cosmic rays. The gamma-ray spectrometer used in lunar orbit and during transearth coast is described, and a preliminary analysis of the results is presented.

  4. Gamma radiation field intensity meter

    DOEpatents

    Thacker, L.H.

    1995-10-17

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  5. Directional detector of gamma rays

    DOEpatents

    Cox, Samson A.; Levert, Francis E.

    1979-01-01

    A directional detector of gamma rays comprises a strip of an electrical cuctor of high atomic number backed with a strip of a second electrical conductor of low atomic number. These elements are enclosed within an electrical conductor that establishes an electrical ground, maintains a vacuum enclosure and screens out low-energy gamma rays. The detector exhibits a directional sensitivity marked by an increased output in the favored direction by a factor of ten over the output in the unfavored direction.

  6. Image enhancement based on gamma map processing

    NASA Astrophysics Data System (ADS)

    Tseng, Chen-Yu; Wang, Sheng-Jyh; Chen, Yi-An

    2010-05-01

    This paper proposes a novel image enhancement technique based on Gamma Map Processing (GMP). In this approach, a base gamma map is directly generated according to the intensity image. After that, a sequence of gamma map processing is performed to generate a channel-wise gamma map. Mapping through the estimated gamma, image details, colorfulness, and sharpness of the original image are automatically improved. Besides, the dynamic range of the images can be virtually expanded.

  7. Application of conventional laser technology to gamma-gamma colliders

    SciTech Connect

    Clayton, C.E.; Kurnit, N.A.; Meyerhofer, D.D.

    1995-02-01

    A future e{sup {minus}}e{sup +} (electron-positron) linear collider can be configured with perhaps minimal modification to serve as an {gamma}-{gamma} (gamma-gamma) or a e{sup {minus}}-{gamma} collider. This is accomplished by Compton-backscattering low energy photons (from a laser source) off of the high-energy electron beams prior to the crossing of the electron beams. However, to be competitive with the e{sup {minus}}e{sup +} configuration, the luminosity cannot be compromised in the process. This requires that the laser source deliver a sufficient number of photons per pulse with a pulse format and rate matching that of the electron beams. As it turns out, this requires an average optical power of 5 to 15 kW from the laser which is beyond the current state of the art. In this paper, the authors address how to generate the required pulse format and how the high average power requirement can be met with conventional laser technology. They also address concerns about the survivability of mirrors located near the interaction point. Finally, they list a program of research and development which addresses some of the unknowns in such a system.

  8. The Compton Gamma Ray Observatory

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Chipman, E.; Kniffen, D. A.

    1993-01-01

    The Arthur Holly Compton Gamma Ray Observatory (Compton) was launched by the Space Shuttle Atlantis on 5 April 1991. The spacecraft and instruments are in good health and returning exciting results. The mission provides nearly six orders of magnitude in spectral coverage, from 30 keV to 30 GeV, with sensitivity over the entire range an order of magnitude better than that of previous observations. The 16,000 kilogram observatory contains four instruments on a stabilized platform. The mission began normal operations on 16 May 1991 and is now over half-way through a full-sky survey. The mission duration is expected to be from six to ten years. A Science Support Center has been established at Goddard Space Flight Center for the purpose of supporting a vigorous Guest Investigator Program. New scientific results to date include: (1) the establishment of the isotropy, combined with spatial inhomogeneity, of the distribution of gamma-ray bursts in the sky; (2) the discovery of intense high energy (100 MeV) gamma-ray emission from 3C 279 and other quasars and BL Lac objects, making these the most distant and luminous gamma-ray sources ever detected; (3) one of the first images of a gamma-ray burst; (4) the observation of intense nuclear and position-annihilation gamma-ray lines and neutrons from several large solar flares; and (5) the detection of a third gamma-ray pulsar, plus several other transient and pulsing hard X-ray sources.

  9. Implications of final L3 measurement of {sigma}{sub tot}({gamma}{gamma}{yields}bb)

    SciTech Connect

    Chyla, Jiri

    2006-02-01

    The excess of data on the total cross section of bb production in {gamma}{gamma} collisions over QCD predictions, observed by L3, OPAL and DELPHI Collaborations at LEP2, has so far defied explanation. The recent final analysis of L3 data has brought important new information concerning the dependence of the observed excess on the {gamma}{gamma} collisions energy W{sub {gamma}}{sub {gamma}}. The implications of this dependence are discussed.

  10. The Gamma-ray Sky with Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David

    2012-01-01

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  11. Quality assurance for gamma knives

    SciTech Connect

    Jones, E.D.; Banks, W.W.; Fischer, L.E.

    1995-09-01

    This report describes and summarizes the results of a quality assurance (QA) study of the Gamma Knife, a nuclear medical device used for the gamma irradiation of intracranial lesions. Focus was on the physical aspects of QA and did not address issues that are essentially medical, such as patient selection or prescription of dose. A risk-based QA assessment approach was used. Sample programs for quality control and assurance are included. The use of the Gamma Knife was found to conform to existing standards and guidelines concerning radiation safety and quality control of external beam therapies (shielding, safety reviews, radiation surveys, interlock systems, exposure monitoring, good medical physics practices, etc.) and to be compliant with NRC teletherapy regulations. There are, however, current practices for the Gamma Knife not covered by existing, formalized regulations, standards, or guidelines. These practices have been adopted by Gamma Knife users and continue to be developed with further experience. Some of these have appeared in publications or presentations and are slowly finding their way into recommendations of professional organizations.

  12. The neutron-gamma Feynman variance to mean approach: Gamma detection and total neutron-gamma detection (theory and practice)

    NASA Astrophysics Data System (ADS)

    Chernikova, Dina; Axell, Kåre; Avdic, Senada; Pázsit, Imre; Nordlund, Anders; Allard, Stefan

    2015-05-01

    Two versions of the neutron-gamma variance to mean (Feynman-alpha method or Feynman-Y function) formula for either gamma detection only or total neutron-gamma detection, respectively, are derived and compared in this paper. The new formulas have particular importance for detectors of either gamma photons or detectors sensitive to both neutron and gamma radiation. If applied to a plastic or liquid scintillation detector, the total neutron-gamma detection Feynman-Y expression corresponds to a situation where no discrimination is made between neutrons and gamma particles. The gamma variance to mean formulas are useful when a detector of only gamma radiation is used or when working with a combined neutron-gamma detector at high count rates. The theoretical derivation is based on the Chapman-Kolmogorov equation with the inclusion of general reactions and corresponding intensities for neutrons and gammas, but with the inclusion of prompt reactions only. A one energy group approximation is considered. The comparison of the two different theories is made by using reaction intensities obtained in MCNPX simulations with a simplified geometry for two scintillation detectors and a 252Cf-source. In addition, the variance to mean ratios, neutron, gamma and total neutron-gamma are evaluated experimentally for a weak 252Cf neutron-gamma source, a 137Cs random gamma source and a 22Na correlated gamma source. Due to the focus being on the possibility of using neutron-gamma variance to mean theories for both reactor and safeguards applications, we limited the present study to the general analytical expressions for Feynman-alpha formulas.

  13. Gamma Ray Astronomy with LHAASO

    NASA Astrophysics Data System (ADS)

    Vernetto, S.; LHAASO Collaboration

    2016-05-01

    The aim of LHAASO is the development of an air shower experiment able to monitor with unprecedented sensitivity the gamma ray sky at energies from ~200 GeV to 1 PeV, and at the same time be an instrument able to measure the cosmic ray spectrum, composition and anisotropy in a wide energy range (~1 TeV to 1 EeV). LHAASO, thanks to the large area and the high capability of background rejection, can reach sensitivities to gamma ray fluxes above 30 TeV that are about 100 times higher than that of current instruments, offering the possibility to monitor for the first time the gamma ray sky up to PeV energies and to discover the long sought “Pevatrons”.

  14. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  15. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A.M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A.I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Moiseev, A. A.; Mocchiutti, E.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Picozza, P.; Rodin, V. G.; Runtso, M. F.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Topchiev, N. P.; Vacchi, A.

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approx. 0.01 deg (E(sub gamma) > 100 GeV), the energy resolution approx. 1% (E(sub gamma) > 10 GeV), and the proton rejection factor approx 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  16. Gamma-ray Imaging Methods

    SciTech Connect

    Vetter, K; Mihailescu, L; Nelson, K; Valentine, J; Wright, D

    2006-10-05

    In this document we discuss specific implementations for gamma-ray imaging instruments including the principle of operation and describe systems which have been built and demonstrated as well as systems currently under development. There are several fundamentally different technologies each with specific operational requirements and performance trade offs. We provide an overview of the different gamma-ray imaging techniques and briefly discuss challenges and limitations associated with each modality (in the appendix we give detailed descriptions of specific implementations for many of these technologies). In Section 3 we summarize the performance and operational aspects in tabular form as an aid for comparing technologies and mapping technologies to potential applications.

  17. Gamma source for active interrogation

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui; Barletta, William A.

    2009-09-29

    A cylindrical gamma generator includes a coaxial RF-driven plasma ion source and target. A hydrogen plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical gamma generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which has many openings. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired.

  18. Towed seabed gamma ray spectrometer

    SciTech Connect

    Jones, D.G. )

    1994-08-01

    For more than 50 years, the measurement of radioactivity has been used for onshore geological surveys and in laboratories. The British Geological Survey (BGS) has extended the use of this type of equipment to the marine environment with the development of seabed gamma ray spectrometer systems. The present seabed gamma ray spectrometer, known as the Eel, has been successfully used for sediment and solid rock mapping, mineral exploration, and radioactive pollution studies. The range of applications for the system continues to expand. This paper examines the technological aspects of the Eel and some of the applications for which it has been used.

  19. BETA-GAMMA PERSONNEL DOSIMETER

    DOEpatents

    Davis, D.M.; Gupton, E.D.; Hart, J.C.; Hull, A.P.

    1961-01-17

    A personnel dosimeter is offered which is sensitive to both gamma and soft beta radiations from all directions within a hemisphere. The device is in the shape of a small pill box which is worn on a worker-s wrist. The top and sides of the device are provided with 50 per cent void areas to give 50 per cent response to the beta rays and complete response to the gamma rays. The device is so constructed as to have a response which will approximate the dose received by the basal layer of the human epidermis.

  20. Nuclear fuel microsphere gamma analyzer

    DOEpatents

    Valentine, Kenneth H.; Long, Jr., Ernest L.; Willey, Melvin G.

    1977-01-01

    A gamma analyzer system is provided for the analysis of nuclear fuel microspheres and other radioactive particles. The system consists of an analysis turntable with means for loading, in sequence, a plurality of stations within the turntable; a gamma ray detector for determining the spectrum of a sample in one section; means for analyzing the spectrum; and a receiver turntable to collect the analyzed material in stations according to the spectrum analysis. Accordingly, particles may be sorted according to their quality; e.g., fuel particles with fractured coatings may be separated from those that are not fractured, or according to other properties.

  1. Gamma source for active interrogation

    SciTech Connect

    Leung, Ka-Ngo; Lou, Tak Pui; Barletta, William A.

    2012-10-02

    A cylindrical gamma generator includes a coaxial RF-driven plasma ion source and target. A hydrogen plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical gamma generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which has many openings. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired.

  2. Recombinant interferon-gamma (rIFN-gamma) in dermatology.

    PubMed

    Mahrle, G; Schulze, H J

    1990-12-01

    This paper gives a short review on the function, pharmacokinetics, and therapeutic application of recombinant interferon-gamma (rIFN-gamma) in dermatology. Simultaneously, our own experiences are presented for 57 patients (phase II study) suffering from genital warts (21 patients), psoriatic arthritis (10 patients), psoriasis vulgaris (three patients), malignant melanoma (six patients), bowenoid papulosis (four patients), Behcet's disease (four patients), basal cell carcinoma (six patients), as well as herpes simplex recidivans, epidermodysplasia verruciformis, and mycosis fungoides (one patient each). We conclude that there might be an indication for treatment with rIFN-gamma in genital warts, bowenoid papulosis, Behcet's disease, and microbial infections, such as leprosy and cutaneous leishmaniasis. Even though there are reports of a limited beneficial effect of rIFN-gamma on arthritis and skin lesions in psoriasis, we failed to observe any in 10 patients. The main side effects in our low-dose study (50-100 micrograms/d) were mild fever (78%), fatigue (78%), and myalgia (65%). Laboratory tests revealed an increase in the serum triglyceride level, in particular, in psoriatic patients. PMID:2124242

  3. Advances in gamma-ray line astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1983-01-01

    Gamma ray line observations of solar flares, gamma ray transients, and the galactic center are reviewed and interpreted. Prospects of future line detections are discussed. Previously announced in STAR as N82-27200

  4. Swift's 500th Gamma Ray Burst

    NASA Video Gallery

    On April 13, 2010, NASA's Swift Gamma-ray Burst Explorer satellite discovered its 500th burst. Swift's main job is to quickly localize each gamma-ray burst (GRB), report its position so that others...

  5. Gamma radiation characteristics of plutonium dioxide fuel

    NASA Technical Reports Server (NTRS)

    Gingo, P. J.

    1969-01-01

    Investigation of plutonium dioxide as an isotopic fuel for Radioisotope Thermoelectric Generators yielded the isotopic composition of production-grade plutonium dioxide fuel, sources of gamma radiation produced by plutonium isotopes, and the gamma flux at the surface.

  6. The Gamma-ray Universe through Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2012-01-01

    Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  7. Portable compton gamma-ray detection system

    DOEpatents

    Rowland, Mark S.; Oldaker, Mark E.

    2008-03-04

    A Compton scattered gamma-ray detector system. The system comprises a gamma-ray spectrometer and an annular array of individual scintillators. The scintillators are positioned so that they are arrayed around the gamma-ray spectrometer. The annular array of individual scintillators includes a first scintillator. A radiation shield is positioned around the first scintillator. A multi-channel analyzer is operatively connected to the gamma-ray spectrometer and the annular array of individual scintillators.

  8. Gamma-Ray Pulsar Studies with GLAST

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2007-01-01

    This viewgraph presentation reviews the prospects of extending the understanding of gamma ray pulsars, and answering the open questions left from the limited observations that are available from current observatories. There are 2 new gamma ray observatories that are either on orbit or will be shortly launched: (1) Astro-rivelatore Gamma a Immagini LEggero (AGILE), and Gamma-ray Large Area Space Telescope (GLAST). On board GLAST there will be two instruments Large Area Telescope (LAT), and GLAST Burst Monitor (GBM).

  9. The Andromeda galaxy in gamma-rays

    NASA Technical Reports Server (NTRS)

    Oezel, M. E.; Berkhuijsen, E. M.

    1987-01-01

    Implications of high-energy gamma-ray observations of the Andromeda galaxy with the next generation of satellites Gamma-1 and GRO are discussed in the context of the origin of cosmic rays and gamma-ray processes. The present estimate of the total gamma-ray flux of this galaxy at energies above 100 MeV is a factor of about three less than previous estimates.

  10. Gamma-ray camera flyby

    SciTech Connect

    2010-01-01

    Animation based on an actual classroom demonstration of the prototype CCI-2 gamma-ray camera's ability to image a hidden radioactive source, a cesium-137 line source, in three dimensions. For more information see http://newscenter.lbl.gov/feature-stories/2010/06/02/applied-nuclear-physics/.

  11. Gamma ray slush hydrogen monitor

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Shen, Chih-Peng; Sprinkle, Danny R.

    1992-01-01

    Mass attenuation for 109Cd radiation have been measured in mixtures of phases and in single phases of five chemical compounds. As anticipated, the mass attenuation coefficients are independent of the phases of the test chemicals. It is recommended that a slush hydrogen monitoring system based on low energy gamma ray attenuation be developed for utilization aboard the NASP.

  12. Cosmological gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Paczynski, Bohdan

    1991-01-01

    The distribution in angle and flux of gamma-ray bursts indicates that the majority of gamma-ray bursters are at cosmological distances, i.e., at z of about 1. The rate is then about 10 exp -8/yr in a galaxy like the Milky Way, i.e., orders of magnitude lower than the estimated rate for collisions between neutron stars in close binary systems. The energy per burst is about 10 exp 51 ergs, assuming isotropic emission. The events appear to be less energetic and more frequent if their emission is strongly beamed. Some tests for the distance scale are discussed: a correlation between the burst's strength and its spectrum; the absorption by the Galactic gas below about 2 keV; the X-ray tails caused by forward scattering by the Galactic dust; about 1 month recurrence of some bursts caused by gravitational lensing by foreground galaxies; and a search for gamma-ray bursts in M31. The bursts appear to be a manifestation of something exotic, but conventional compact objects can provide an explanation. The best possibility is offered by a decay of a bindary composed of a spinning-stellar-mass black-hole primary and a neutron or a strange-quark star secondary. In the final phase the secondary is tidally disrupted, forms an accretion disk, and up to 10 exp 54 ergs are released. A very small fraction of this energy powers the gamma-ray burst.

  13. Observational Gamma-ray Cosmology

    NASA Astrophysics Data System (ADS)

    Primack, Joel R.; Bullock, James S.; Somerville, Rachel S.

    2005-02-01

    We discuss how measurements of the absorption of gamma-rays from GeV to TeV energies via pair production on the extragalactic background light (EBL) can probe important issues in galaxy formation. Semi-analytic models (SAMs) of galaxy formation, based on the flat LCDM hierarchical structure formation scenario, are used to make predictions of the EBL from 0.1 to 1000 microns. SAMs incorporate simplified physical treatments of the key processes of galaxy formation - including gravitational collapse and merging of dark matter halos, gas cooling and dissipation, star formation, supernova feedback and metal production. We will summarize SAM successes and failures in accounting for observations at low and high redshift. New ground- and space-based gamma ray telescopes will help to determine the EBL, and also help to explain its origin by constraining some of the most uncertain features of galaxy formation theory, including the stellar initial mass function, the history of star formation, and the reprocessing of light by dust. On a separate topic concerning gamma ray cosmology, we discuss a new theoretical insight into the distribution of dark matter at the center of the Milky Way, and its implications concerning the high energy gamma rays observed from the Galactic center.

  14. Observations of diffuse galactic gamma rays

    NASA Technical Reports Server (NTRS)

    Simpson, G. A.

    1979-01-01

    The observations of galactic diffuse gamma radiation are reviewed. The connections of the gamma ray observations with galactic structure and cosmic rays are discussed. The high latitude galactic component and the low latitude emission from the galactic plane are examined. The observations in other regions of the gamma ray spectrum are discussed.

  15. On some problems of gamma-astronomy

    NASA Technical Reports Server (NTRS)

    Ptuskin, V. S.; Berezinsky, V. S.; Ginzburg, V. L.

    1985-01-01

    Gamma ray emissions from young supernova remnants are discussed and calculated. The positron annihilation line is also calculated. Decay of charged pions in remnants cause generation of high energy neutrinos. This emission of neutrinos is reviewed. The CR origin and gamma emission from Magellanic clouds help to establish the intensity gradient in the galaxy. This gamma astronomical data is briefly discussed.

  16. Gamma and Related Functions Generalized for Sequences

    ERIC Educational Resources Information Center

    Ollerton, R. L.

    2008-01-01

    Given a sequence g[subscript k] greater than 0, the "g-factorial" product [big product][superscript k] [subscript i=1] g[subscript i] is extended from integer k to real x by generalizing properties of the gamma function [Gamma](x). The Euler-Mascheroni constant [gamma] and the beta and zeta functions are also generalized. Specific examples include…

  17. Gamma ray astrophysics. [emphasizing processes and absorption

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1974-01-01

    Gamma ray production processes are reviewed, including Compton scattering, synchrotron radiation, bremsstrahlung interactions, meson decay, nucleon-antinucleon annihilations, and pion production. Gamma ray absorption mechanisms through interactions with radiation and with matter are discussed, along with redshifts and gamma ray fluxes.

  18. Nuclear gamma rays from energetic particle interactions

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.

    1978-01-01

    Gamma ray line emission from nuclear deexcitation following energetic particle reactions is evaluated. The compiled nuclear data and the calculated gamma ray spectra and intensities can be used for the study of astrophysical sites which contain large fluxes of energetic protons and nuclei. A detailed evaluation of gamma ray line production in the interstellar medium is made.

  19. Gamma ray spectroscopy in astrophysics. [conferences

    NASA Technical Reports Server (NTRS)

    Cline, T. L. (Editor); Ramaty, R. (Editor)

    1978-01-01

    Experimental and theoretical aspects of gamma ray spectroscopy in high energy astrophysics are discussed. Line spectra from solar, stellar, planetary, and cosmic gamma rays are examined as well as HEAO investigations, the prospects of a gamma ray observatory, and follow-on X-ray experiments in space.

  20. Attrition resistant gamma-alumina catalyst support

    DOEpatents

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2006-03-14

    A .gamma.-alumina catalyst support having improved attrition resistance produced by a method comprising the steps of treating a particulate .gamma.-alumina material with an acidic aqueous solution comprising water and nitric acid and then, prior to adding any catalytic material thereto, calcining the treated .gamma.-alumina.

  1. Future prospects for gamma-ray

    NASA Technical Reports Server (NTRS)

    Fichtel, C.

    1980-01-01

    Astrophysical phenomena discussed are: the very energetic and nuclear processes associated with compact objects; astrophysical nucleo-synthesis; solar particle acceleration; the chemical composition of the planets and other bodies of the solar system; the structure of our galaxy; the origin and dynamic pressure effects of the cosmic rays; the high energy particles and energetic processes in other galaxies, especially active ones; and the degree of matter antimater symmetry of the universe. The gamma ray results of GAMMA-I, the gamma ray observatory, the gamma ray burst network, solar polar, and very high energy gamma ray telescopes on the ground provide justification for more sophisticated telescopes.

  2. Compton Gamma Ray Observatory Guest Investigator Program

    NASA Technical Reports Server (NTRS)

    Lingenfelter, Richard E.

    1997-01-01

    This paper presents a final report for the Compton Gamma Ray Observatory Guest Investigator Program from 06/01/91-07/31/97. The topics include: 1) Solar Flare Neutron Spectra and Accelerated Ions; 2) Gamma Ray Lines From The Orion Complex; 3) Implications of Nuclear Line Emission From The Orion Complex; 4) Possible Sites of Nuclear Line Emission From Massive OB Associations; 5) Gamma-Ray Burst Repitition and BATSE Position Uncertainties; 6) Effects of Compton Scattering on BATSE Gamma-Ray Burst Spectra; and 7) Selection Biases on the Spectral and Temporal Distribution of Gamma Ray Bursts.

  3. Terrestrial Gamma-Ray Flashes (TGFs)

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2010-01-01

    This slide presentation reviews the observation of Terrestrial Gamma Ray Flashes (TGFs) by Gamma-Ray Telescopes. These were: (1) BATSE /Compton Observatory, (2) Solar Spectroscopic Imager, (3) AGILE Gamma-ray Telescope, and (4) Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope. It contains charts which display the counts over time, a map or the TGFs observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). and a map showing the latitude and longitude of 85 of the TGFs observed by the Fermi GBM.

  4. Gamma ray astronomy. [source mechanisms review

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D.

    1974-01-01

    The various source mechanisms for celestial gamma rays are reviewed. The gamma-ray data are examined as a source of information about the processes and source locations for the production of charged particle cosmic rays, galactic structure, explosive nucleosynthesis in supernovae, regions of confinement for cosmic rays, regions where matter-antimatter annihilation occurs, and the general condition in cosmological space both in the past and present. Topics include gamma rays from pi mesons by nuclear interactions, nuclear and supernovae lines, diffuse emission and discrete sources, interstellar absorption and detection of gamma rays, and others. A brief view of the available gamma-ray detection systems and techniques is presented.

  5. Measurement of the gamma gamma* -> pi0 transition form factor

    SciTech Connect

    Aubert, B.

    2009-06-02

    We study the reaction e{sup +}e{sup -} {yields} e{sup +}e{sup -}{pi}{sup 0} in the single tag mode and measure the differential cross section d{sigma}/dQ{sup 2} and the {gamma}{gamma}* {yields} {pi}{sup 0} transition form factor in the mometum transfer range from 4 to 40 GeV{sup 2}. At Q{sup 2} > 10 GeV{sup 2} the measured form factor exceeds the asymptotic limit predicted by perturbative QCD. The analysis is based on 442 fb{sup -1} of integrated luminosity collected at PEP-II with the BABAR detector at e{sup +}e{sup -} center-of-mass energies near 10.6 GeV.

  6. Distance Indicators of Gamma-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2013-01-01

    Distance measurements of gamma-ray pulsars are challenging questions in present pulsar studies. The Large Area Telescope (LAT) aboard the Fermi gamma-ray observatory discovered more than 100 gamma-ray pulsars including 24 new gamma-selected pulsars which nearly have no distance information. We study the relation between gamma-ray emission efficiency (η = Lγ/Ė) and pulsar parameters for young radio-selected gamma-ray pulsars with known distance information in the first gamma-ray pulsar catalog reported by Fermi/LAT. We have introduced three generation order parameters to describe gamma-ray emission properties of pulsars, and find the strong correlation of η - ζ3 a generation order parameter which reflects γ-ray photon generations in pair cascade processes induced by magnetic field absorption in pulsar magnetosphere. A good correlation of η - BLC the magnetic field at the light cylinder radius is also found. These correlations would be the distance indicators in gamma-ray pulsars to evaluate distances for gamma-selected pulsars. Distances of 25 gamma-selected pulsars are estimated, which could be tested by other distance measurement methods. Physical origin of the correlations may be also interesting for pulsar studies.

  7. Gamma-ray burster recurrence timescales

    NASA Technical Reports Server (NTRS)

    Schaefer, B. E.; Cline, T. L.

    1984-01-01

    Three optical transients have been found which are associated with gamma-ray bursters (GRBs). The deduced recurrence timescale for these optical transients (tau sub opt) will depend on the minimum brightness for which a flash would be detected. A detailed analysis using all available data of tau sub opt as a function of E(gamma)/E(opt) is given. For flashes similar to those found in the Harvard archives, the best estimate of tau sub opt is 0.74 years, with a 99% confidence interval from 0.23 years to 4.7 years. It is currently unclear whether the optical transients from GRBs also give rise to gamma-ray events. One way to test this association is to measure the recurrence timescale of gamma-ray events tau sub gamma. A total of 210 gamma-ray error boxes were examined and it was found that the number of observed overlaps is not significantly different from the number expected from chance coincidence. This observation can be used to place limits on tau sub gamma for an assumed luminosity function. It was found that tau sub gamma is approx. 10 yr if bursts are monoenergetic. However, if GRBs have a power law luminosity function with a wide dynamic range, then the limit is tau sub gamma 0.5 yr. Hence, the gamma-ray data do not require tau sub gamma and tau sub opt to be different.

  8. Status of the GAMMA-400 Project

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Gusakov, Yu. V.; Farber, M. O.; Fradkin, M. I.; Kachanov, V. A.; Kaplin, V. A.; Kheymits, M. D.; Leoniv, A. A.; Longo, F.; Maestro, P.; Marrocchesi, P.; Mazets, E. P.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I.; Naumov, P. Yu.; Papini, P.

    2013-01-01

    The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV-3 TeV is presented. The angular resolution of the instrument, 1-2 deg at E(gamma) approximately 100 MeV and approximately 0.01 at E(gamma) greater than 100 GeV, its energy resolution is approximately 1% at E(gamma) greater than 100 GeV, and the proton rejection factor is approximately 10(exp 6) are optimized to address a broad range of science topics, such as search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts, as well as high-precision measurements of spectra of cosmic-ray electrons, positrons, and nuclei.

  9. Gamma radiolysis of chlorinated hydrocarbons

    SciTech Connect

    Arbon, R.E.; Mincher, B.J.; Meikrantz, D.H.

    1992-08-01

    This program is the Idaho National Engineering Laboratory (INEL) component of a joint collarborative effort with Lawrence Livermore National Laboratory (LLNL). The purpose of this effort is to demonstrate a viable process for breaking down hazardous halogenated organic wastes to simpler, non-hazardous waste using high energy ionizing radiation. The INEL effort focuses on the use of spent reactor fuel gamma radiation sources to decompose complex wastes such as PCBs. At LLNL, halogenated solvents such as carbon tetrachloride and trichloroethylene are being studied using accelerator radiation sources. The INEL irradiation experiments concentrated on a single PCB congener so that a limited set of decomposition reactions could be studied. The congener 2,2{prime}, 3,3{prime},4,5{prime},6,6{prime} - octachlorobiphenyl was examined following exposure to various gamma doses at the Advanced Test Reactor (AIR) spent fuel pool. The decomposition rates and products in several solvents are discussed. 3 refs.

  10. Gamma radiolysis of chlorinated hydrocarbons

    SciTech Connect

    Arbon, R.E.; Mincher, B.J.; Meikrantz, D.H.

    1992-01-01

    This program is the Idaho National Engineering Laboratory (INEL) component of a joint collarborative effort with Lawrence Livermore National Laboratory (LLNL). The purpose of this effort is to demonstrate a viable process for breaking down hazardous halogenated organic wastes to simpler, non-hazardous waste using high energy ionizing radiation. The INEL effort focuses on the use of spent reactor fuel gamma radiation sources to decompose complex wastes such as PCBs. At LLNL, halogenated solvents such as carbon tetrachloride and trichloroethylene are being studied using accelerator radiation sources. The INEL irradiation experiments concentrated on a single PCB congener so that a limited set of decomposition reactions could be studied. The congener 2,2{prime}, 3,3{prime},4,5{prime},6,6{prime} - octachlorobiphenyl was examined following exposure to various gamma doses at the Advanced Test Reactor (AIR) spent fuel pool. The decomposition rates and products in several solvents are discussed. 3 refs.

  11. Cosmic gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Vedrenne, G.

    1981-06-01

    The general characteristics of gamma-ray bursts are considered. During the period from 1967 to 1977 62 gamma-ray bursts were discovered. Between September 1978 and December 1980 more than 40 bursts were observed with the aid of interplanetary spacecraft, including the Pioneer Venus Orbiter, ISEE-C, Helios B, Vela, Prognoz 7, Venera 11, and Venera 12. The time structures are discussed along with the spectra, and the burst intensity distribution. Attention is given to events observed on March 5, April 6, November 4, and November 19, 1979, taking into account the location of each event. The implications of the more recent results are discussed. It is pointed out that for a better understanding of the origin of the emissions, it is necessary to have a coordinated observation program with several satellites separated by large distances.

  12. Observations of Soft Gamma Repeaters

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2004-01-01

    Magnetars (Soft Gamma Repeaters and Anomalous X-ray Pulsars) are a subclass of neutron stars characterized by their recurrent X-ray bursts. While in an active (bursting) state (lasting anywhere between days and years), they are emit&ng hundreds of predominantly soft (kT=30 kev), short (0.1-100 ms long) events. Their quiescent source x-ray light ewes exhibit puhlions rotational period rate changes (spin-down) indicate that their magnetic fields are extremely high, of the order of 10^14- 10^l5 G. Such high B-field objects, dubbed "magnetars", had been predicted to exist in 1992, but the first concrete observational evidence were obtained in 1998 for two of these sources. I will discuss here the history of Soft Gamma Repeaters, and their spectral, timing and flux characteristics both in the persistent and their burst emission.

  13. Gamma Radiation Doses In Sweden

    NASA Astrophysics Data System (ADS)

    Almgren, Sara; Barregârd, Lars; Isaksson, Mats

    2008-08-01

    Gamma dose rate measurements were performed in one urban and one rural area using thermoluminescence dosimeters (TLD) worn by 46 participants and placed in their dwellings. The personal effective dose rates were 0.096±0.019(1 SD) and 0.092±0.016(1 SD)μSv/h in the urban and rural area, respectively. The corresponding dose rates in the dwellings were 0.11±0.042(1 SD) and 0.091±0.026(1 SD)μSv/h. However, the differences between the areas were not significant. The values were higher in buildings made of concrete than of wood and higher in apartments than in detached houses. Also, 222Rn measurements were performed in each dwelling, which showed no correlation with the gamma dose rates in the dwellings.

  14. Gamma Radiation Doses In Sweden

    SciTech Connect

    Almgren, Sara; Isaksson, Mats; Barregaard, Lars

    2008-08-07

    Gamma dose rate measurements were performed in one urban and one rural area using thermoluminescence dosimeters (TLD) worn by 46 participants and placed in their dwellings. The personal effective dose rates were 0.096{+-}0.019(1 SD) and 0.092{+-}0.016(1 SD){mu}Sv/h in the urban and rural area, respectively. The corresponding dose rates in the dwellings were 0.11{+-}0.042(1 SD) and 0.091{+-}0.026(1 SD){mu}Sv/h. However, the differences between the areas were not significant. The values were higher in buildings made of concrete than of wood and higher in apartments than in detached houses. Also, {sup 222}Rn measurements were performed in each dwelling, which showed no correlation with the gamma dose rates in the dwellings.

  15. Solar gamma-ray lines

    NASA Technical Reports Server (NTRS)

    Forrest, D. J.

    1983-01-01

    The gamma-ray spectrometer on the Solar Maximum Mission satellite has observed emissions produced by nuclear reactions in over 20 separate solar flares. The observed intensity from different flares ranges over a factor of 100, and the time scale for their production ranges from 10-s pulses to complete events lasting over 1000 s. The emissions include narrow and broadened prompt gamma-ray lines from numerous isotopes from Li-7 to Fe-56 and cover the energy range from 0.431 MeV (Be-7) to 7.12 MeV (O-16). The instrument has also observed emissions at energies greater than 10 MeV from the decay of pi0 mesons, from electron bremsstrahlung, and from the direct observation of greater-than-100-MeV solar neutrons. The intensity, temporal and spectral properties of these emissions are reviewed from the point of view that solar flares represent an astrophysical particle-acceleration site.

  16. Temperature dependence of gamma-gamma prime lattice mismatch in nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.; Mackay, R. A.; Garlick, R. G.

    1985-01-01

    High temperature X-ray diffraction techniques were used to determine the gamma-gamma prime lattice mismatch of three different nickel-base superalloys at temperatures between 18 and 1000 C. The measurements were performed on oriented single-crystal disks which had been aged to produce a semicoherent gamma-gamma prime structure. The thermal expansion of the lattice parameters of the gamma and gamma-prime phases was described by a second-order polynomial expression. The expansion of the gamma-prime phase was consistently smaller than that of the gamma phase, which caused the lattice mismatch to become more negative at higher temperatures. It was also shown that high values of lattice mismatch resulted in increased rates of directional gamma-prime coarsening during elevated temperature creep exposure.

  17. Design and performance of the GAMMA-400 gamma-ray telescope for dark matter searches

    NASA Astrophysics Data System (ADS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Moiseev, A. A.; Mocchiutti, E.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Picozza, P.; Rodin, V. G.; Runtso, M. F.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Topchiev, N. P.; Vacchi, A.; Vannuccini, E.; Yurkin, Yu. T.; Zampa, N.; Zverev, V. G.; Zirakashvili, V. N.

    2013-02-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is ~0.01° (Eγ > 100 GeV), the energy resolution ~1% (Eγ > 10 GeV), and the proton rejection factor ~106. GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  18. Gamma-400 Science Objectives Built on the Current HE Gamma-Ray and CR Results

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander; Mitchell, John; Thompson, David

    2012-01-01

    The main scientific interest of the Russian Gamma-400 team: Observe gamma-rays above approximately 50 GeV with excellent energy and angular resolution with the goals of: (1) Studying the fine spectral structure of the isotropic high-energy gamma-radiation, (2) Attempting to identify the many still-unidentified Fermi-LAT gamma-ray sources. Gamma-400 will likely be the only space-based gamma-ray observatory operating at the end of the decade. In our proposed Gamma-400-LE version, it will substantially improve upon the capabilities of Fermi LAT and AGILE in both LE and HE energy range. Measuring gamma-rays from approx 20 MeV to approx 1 TeV for at least 7 years, Gamma-400-LE will address the topics of dark matter, cosmic ray origin and propagation, neutron stars, flaring pulsars, black holes, AGNs, GRBs, and actively participate in multiwavelength campaigns.

  19. CARTOGAM: a portable gamma camera

    NASA Astrophysics Data System (ADS)

    Gal, O.; Izac, C.; Lainé, F.; Nguyen, A.

    1997-02-01

    The gamma camera is devised to establish the cartography of radioactive sources against a visible background in quasi real time. This device is designed to spot sources from a distance during the preparation of interventions on active areas of nuclear installations. This implement will permit to optimize interventions especially on the dosimetric level. The camera consists of a double cone collimator, a scintillator and an intensified CCD camera. This chain of detection provides the formation of both gamma images and visible images. Even though it is wrapped in a denal shield, the camera is still portable (mass < 15 kg) and compact (external diameter = 8 cm). The angular resolution is of the order of one degree for gamma rays of 1 MeV. In a few minutes, the device is able to measure a dose rate of 10 μGy/h delivered for instance by a source of 60Co of 90 mCi located at 10 m from the detector. The first images recorded in the laboratory will be presented and will illustrate the performances obtained with this camera.

  20. High temperature creep behavior of single crystal gamma prime and gamma alloys

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.; Diaz, J. O.; Miner, R. V.

    1989-01-01

    The creep behavior of single crystals of gamma-prime and gamma alloys were investigated and compared to the response of two-phase superalloys tested previously. High temperature deformation in the gamma alloys was characteristic of a climb-controlled mechanism, whereas the gamma-prime based materials exhibited glide-controlled creep behavior. The superalloys were much more creep resistant than their constituent phases, which indicates the importance of the gamma/gamma-prime interface as a barrier for dislocation motion during creep.

  1. {eta} Prime {yields}{pi}{sup 0}{gamma}{gamma} and {eta} Prime {yields}{eta}{gamma}{gamma}: A primer analysis

    SciTech Connect

    Escribano, Rafel

    2012-10-23

    The electromagnetic rare decays {eta} Prime {yields}{pi}{sup 0}{gamma}{gamma} and {eta} Prime {yields}{pi}{sup 0}{gamma}{gamma} are analysed for the first time and their predicted branching ratios given. The vector meson exchange dominant contribution is treated using Vector Meson Dominance and the scalar component is estimated by means of the Linear Sigma Model. The agreement between our calculation and the measurement of the related process {eta} Prime {yields}{pi}{sup 0}{gamma}{gamma} is a check of the procedure. Scalar meson effects are seen to be irrelevant for {eta} Prime {yields}{pi}{sup 0}{gamma}{gamma}, while a significant scalar contribution due to the {sigma}(500) resonance seems to emerge in the case of {eta} Prime {yields}{pi}{sup 0}{gamma}{gamma}. Future measurements coming from KLOE-2, Crystal Ball, WASA, and BES-III will elucidate if any of these processes carry an important scalar contribution or they are simply driven by the exchange of vector mesons.

  2. Growth kinetics of gamma-prime precipitates in a directionally solidified eutectic, gamma/gamma-prime-delta

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1976-01-01

    A directionally solidified eutectic alloy (DSEA), of those viewed as potential candidates for the next generation of aircraft gas turbine blade materials, is studied for the gamma-prime growth kinetics, in the system Ni-Nb-Cr-Al, specifically: Ni-20 w/o Nb-6 w/o Cr-2.5 w/o Al gamma/gamma-prime-delta DSEA. Heat treatment, polishing and etching, and preparation for electron micrography are described, and the size distribution of gamma-prime phase following various anneals is plotted, along with gamma-prime growth kinetics in this specific DSEA, and the cube of gamma-prime particle size vs anneal time. Activation energies and coarsening kinetics are studied.

  3. Instrumentation for gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Bertsch, David L.; Fichtel, Carl E.; Trombka, Jacob I.

    1988-01-01

    The current status of gamma-ray-telescope technology for ground, airborne, and space observations is surveyed and illustrated with drawings, diagrams, and graphs and tables of typical data. For the low- and medium-energy ranges, consideration is given to detectors and detector cooling systems, background-rejection methods, radiation damage, large-area detectors, gamma-ray imaging, data analysis, and the Compton-interaction region. Also discussed are the gamma-ray interaction process at high energies; multilevel automated spark-chamber gamma-ray telescopes; the Soviet Gamma-1 telescope; the EGRET instrument for the NASA Gamma-Ray Observatory; and Cerenkov, air-shower, and particle-detector instruments for the TeV and PeV ranges. Significant improvements in resolution and sensitivity are predicted for the near future.

  4. The Fermi Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    Thompson, Dave; McEnery, Julie

    2011-01-01

    This slide presentation reviews the Gamma Ray Astronomy as enhanced by the Fermi Gamma Ray Space Telescope and Radio Astronomy as a synergistic relationship. Gamma rays often represent a significant part of the energy budget of a source; therefore, gamma-ray studies can be critical to understanding physical processes in such sources. Radio observations offer timing and spatial resolutions vastly superior to anything possible with gamma-ray telescopes; therefore radio is often the key to understanding source structure. Gamma-ray and radio observations can complement each other, making a great team. It reviews the Fermi Guest Investigator (GI) program, and calls for more cooperative work that involves Fermi and the Very Long Baseline Array (VLBA), a system of ten radio telescopes.

  5. Analysis of High-Fold Gamma Data

    SciTech Connect

    Beyer, C.J.; Cromaz, M.; Radford, D.C.

    1998-08-10

    Historically, {gamma}-{gamma} and {gamma}-{gamma}-{gamma} coincidence spectra were utilized to build nuclear level schemes. With the development of large detector arrays, it has became possible to analyze higher fold coincidence data sets. This paper briefly reports on software to analyze 4-fold coincidence data sets that allows creation of 4-fold histograms (hypercubes) of at least 1024 channels per side (corresponding to a 43 gigachannel data space) that will fit onto a few gigabytes of disk space, and extraction of triple-gated spectra in a few seconds. Future detector arrays may have even higher efficiencies, and detect an many as 15 or 20 {gamma} rays simultaneously; such data will require very different algorithms for storage and analysis. Difficulties inherent in the analysis of such data are discussed, and two possible new solutions are presented, namely adaptive list-mode systems and list-list-mode storage.

  6. Instrumentation for gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Bertsch, David L.; Fichtel, Carl E.; Trombka, Jacob I.

    1988-03-01

    The current status of gamma-ray-telescope technology for ground, airborne, and space observations is surveyed and illustrated with drawings, diagrams, and graphs and tables of typical data. For the low- and medium-energy ranges, consideration is given to detectors and detector cooling systems, background-rejection methods, radiation damage, large-area detectors, gamma-ray imaging, data analysis, and the Compton-interaction region. Also discussed are the gamma-ray interaction process at high energies; multilevel automated spark-chamber gamma-ray telescopes; the Soviet Gamma-1 telescope; the EGRET instrument for the NASA Gamma-Ray Observatory; and Cerenkov, air-shower, and particle-detector instruments for the TeV and PeV ranges. Significant improvements in resolution and sensitivity are predicted for the near future.

  7. Pulsed pyroelectric crystal-powered gamma source

    SciTech Connect

    Chen, A. X.; Antolak, A. J.; Leung, K.-N.; Raber, T. N.; Morse, D. H.

    2013-04-19

    A compact pulsed gamma generator is being developed to replace radiological sources used in commercial, industrial and medical applications. Mono-energetic gammas are produced in the 0.4 - 1.0 MeV energy range using nuclear reactions such as {sup 9}Be(d,n{gamma}){sup 10}B. The gamma generator employs an RF-driven inductively coupled plasma ion source to produce deuterium ion current densities up to 2 mA/mm{sup 2} and ampere-level current pulses can be attained by utilizing an array extraction grid. The extracted deuterium ions are accelerated to approximately 300 keV via a compact stacked pyroelectric crystal system and then bombard the beryllium target to generate gammas. The resulting microsecond pulse of gammas is equivalent to a radiological source with curie-level activity.

  8. Telescope Would Image X And Gamma Rays

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    1991-01-01

    Proposed telescope forms images of sources of gamma rays, hard x rays, and soft x rays. Contains reflecting, grazing-incidence reflectors. Multiple coaxial nested pairs used to form images simultaneously at multiple gamma-ray or hard x-ray energies or enhance collection area at single photon energy. Conceived for use in astrophysical studies in outer space. With modifications, used in terrestrial laboratory vaccum systems to image x or gamma rays from pulsed plasmas.

  9. Understanding Doppler Broadening of Gamma Rays

    SciTech Connect

    Rawool-Sullivan, Mohini; Sullivan, John P.

    2014-07-03

    Doppler-broadened gamma ray peaks are observed routinely in the collection and analysis of gamma-ray spectra. If not recognized and understood, the appearance of Doppler broadening can complicate the interpretation of a spectrum and the correct identification of the gamma ray-emitting material. We have conducted a study using a simulation code to demonstrate how Doppler broadening arises and provide a real-world example in which Doppler broadening is found. This report describes that study and its results.

  10. Gamma-Ray Astronomy Technology Needs

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cannizzo, J. K.

    2012-01-01

    In recent decades gamma-ray observations have become a valuable tool for studying the universe. Progress made in diverse 8re1lS such as gamma-ray bursts (GRBs), nucleosynthesis, and active galactic nuclei (AGNs) has complimented and enriched our astrophysical understanding in many ways. We present an overview of current and future planned space y-ray missions and discussion technology needs for- the next generation of space gamma-ray instruments.

  11. Gamma rays produce superior seedless citrus

    SciTech Connect

    Pyrah, D.

    1984-10-01

    Using gamma radiation, seedless forms of some varieties of oranges and grapefruit are being produced. Since it has long been known that radiation causes mutations in plants and animals, experiments were conducted to determine if seediness could be altered by exposing seeds or budwood to higher than natural doses of gamma radiation. Orange and grapefruit seeds and cuttings exposed to gamma rays in the early 1970's have produced trees that bear fruit superior to that now on the market.

  12. A search for the rare decay. mu. /sup +/. -->. e/sup +/. gamma gamma

    SciTech Connect

    Grosnick, D.P.

    1987-02-01

    An experimental search for the lepton-family number nonconserving decay, ..mu../sup +/ ..-->.. e/sup +/..gamma gamma.., has been conducted at the Clinton P. Anderson Meson Physics Facility (LAMPF) using the Crystal Box detector. The detector consists of a modular NaI(Tl) calorimeter, scintillator hodoscope, and a high-resolution, cylindrical drift chamber. It provides a large solid-angle for detecting three-body decays and has good resolutions in the time, position, and energy measurements to eliminate unwanted backgrounds. No evidence for ..mu../sup +/ ..-->.. e/sup +/..gamma gamma.. is found, giving an upper limit for the branching ratio of GAMMA(..mu.. ..-->.. e..gamma gamma..)/GAMMA(..mu.. ..-->.. e nu anti nu) less than or equal to 7.2 x 10/sup -11/ (90% C.L.). This result is an improvement of more than two orders of magnitude in the existing limit. 109 refs., 39 figs.

  13. Gamma ray astronomy and black hole astrophysics

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1990-01-01

    The study of soft gamma emissions from black-hole candidates is identified as an important element in understanding black-hole phenomena ranging from stellar-mass black holes to AGNs. The spectra of Cyg X-1 and observations of the Galactic Center are emphasized, since thermal origins and MeV gamma-ray bumps are evident and suggest a thermal-pair cloud picture. MeV gamma-ray observations are suggested for studying black hole astrophysics such as the theorized escaping pair wind, the anticorrelation between the MeV gamma bump and the soft continuum, and the relationship between source compactness and temperature.

  14. Hard gamma ray emission from blazars

    NASA Technical Reports Server (NTRS)

    Marscher, Alan P.; Bloom, Steven D.

    1992-01-01

    The gamma-ray emission expected from compact extragalactic sources of nonthermal radiation is examined. The highly variable objects in this class should produce copious amounts of self-Compton gamma-rays in the compact relativistic jet. This is shown to be a likely interpretation of the hard gamma-ray emission recently detected from the quasar 3C 279 during a period of strong nonthermal flaring at lower frequencies. Ways of discriminating between the self-Compton model and other possible gamma-ray emission mechanisms are discussed.

  15. Gamma ray pulsars: Models and observations

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    1990-01-01

    The two known gamma ray pulsars, the Crab and Vela, were used as guides for the development of models of high-energy radiation from spinning neutron stars. Two general classes of models were developed: those with the gamma radiation originating in the pulsar magnetosphere far from the neutron star surface (outer gap models) and those with the gamma radiation coming from above the polar cap (polar cap models). The goal is to indicate how EGRET can contribute to understanding gamma-ray pulsars, and especially how it can help distinguish between models for emission.

  16. Top pair production in e+e- and {gamma}{gamma} processes

    SciTech Connect

    Hori, M.; Kiyo, Y.; Kodaira, J.; Nasuno, T.; Parke, S.

    1998-02-01

    We analyze spin correlations between top quark and anti-top quark produced at polarized e{sup +} e{sup -} and {gamma}{gamma} colliders. We consider a generic spin basis to find a strong spin correlation. Optimal spin decompositions for top quark pair are presented for e{sup +}e{sup -} and {gamma}{gamma} colliders. We show the cross- section in these bases and discuss the characteristics of results.

  17. Diffusion welding of a directionally solidified gamma/gamma prime - delta eutectic alloy

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1977-01-01

    Hot-press diffusion welding parameters were developed for a directionally solidified, gamma/gamma prime-delta eutectic alloy. Based on metallography, a good diffusion weld was achieved at 1100 C under 34.5 MPa (5 ksi) pressure for 1 hour. In addition, a dissimilar metal weld between gamma/gamma prime-delta and IN-100 was successfully made at 1100 C under 20.7 MPa (3 ksi) pressure for 1 hour.

  18. Rare decay {eta}{r_arrow}{pi}{pi}{gamma}{gamma} in chiral perturbation theory

    SciTech Connect

    Knoechlein, G.; Scherer, S.; Drechsel, D.

    1996-04-01

    We investigate the rare radiative {eta} decay modes {eta}{r_arrow}{pi}{sup +}{pi}{sup {minus}}{gamma}{gamma} and {eta}{r_arrow}{pi}{sup 0}{pi}{sup 0}{gamma}{gamma} within the framework of chiral perturbation theory at {ital O}({ital p}{sup 4}). We present photon spectra and partial decay rates for both processes as well as a Dalitz contour plot for the charged decay. {copyright} {ital 1996 The American Physical Society.}

  19. Apollo orbital geochemistry: Gamma rays

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.

    1973-01-01

    Lunar gamma ray spectra obtained during Apollo-15 and -16 flights show a natural radioactivity due to potassium, thorium, and uranium as well as a cosmic ray induced activity in the lunar surface due to high neutron interactions produced by (p,n) reaction in the lunar surface. The radioactivity is at a low in the highlands on the backside of the moon; most of the radioactivity is confined to the Oceanus Procellarum/Mare Imbrium region and to the Van de Graff area on the lunar backside.

  20. The earliest gamma unit patients.

    PubMed

    Ganz, Jeremy C

    2014-01-01

    The inventors were very excited and drove the first patient from Stockholm over 100 km for the first treatment. The treatment was a technical success. The new machine was transported to Sophiahemmet (a private Stockholm hospital) and installed. A further eight patients were treated and assessed. At the start, there was no computerized treatment planning program, but this was soon developed and named KULA after the Swedish word for a sphere, since the actual treatment unit was spherical. The term Gamma Knife was first used later by the Pittsburgh group. PMID:25376571

  1. The status of low-energy gamma-ray astronomy and the Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1985-01-01

    A brief sketch of the objectives and status of the various subdisciplines in gamma-ray astronomy (below 10 GeV) are presented. The Gamma-Ray Observatory planned for launch in 1988 is described. This NASA observatory and several planned French-Soviet spacecraft are expected to elevate gamma-ray astronomy into a mature observational science for the Space Station era.

  2. Production and secretion of interferon-gamma (IFN-gamma) in children with atopic dermatitis.

    PubMed Central

    Tang, M; Kemp, A

    1994-01-01

    IFN-gamma is known to be a major inhibitor of IgE synthesis in vitro. Recent studies demonstrating reduced production of IFN-gamma in children and adults with atopic dermatitis and elevated serum IgE suggest a similar role for this cytokine in vivo. The reasons for this reduced IFN-gamma production are not known. One possibility is that atopic individuals have a reduced population of cells producing IFN-gamma in vivo. Using a fluorescence-labelled antibody to detect intracellular IFN-gamma, the percentage of IFN-gamma-producing cells was determined in children with atopic dermatitis and in non-atopic controls. Children with atopic dermatitis had a greater percentage of IFN-gamma-producing cells in unstimulated cultures compared with controls, indicating in vivo activation of lymphocytes in the atopic group. This could reflect the significant degree of inflammation present in these children, or the presence of bacterial infection or colonization. Although secretion of IFN-gamma after stimulation with phorbol myristate acetate (PMA)/Ca was significantly lower in children with atopic dermatitis compared with controls, the percentage of IFN-gamma-producing cells in the stimulated cultures from this group was equivalent to controls. This demonstrates that the reduced ability of atopic children to secrete IFN-gamma in vitro does not relate to a lack of IFN-gamma-producing cells, but to a difference in the regulation of IFN-gamma production beyond the stage of signal transduction. PMID:8287610

  3. Using (d,p{gamma}) as a surrogate reaction for (n,{gamma})

    SciTech Connect

    Hatarik, R.; Cizewski, J. A.; Hatarik, A. M.; O'Malley, P. D.; Bernstein, L. A.; Burke, J. T.; Bleuel, D. L.; Lesher, S. R.; Gibelin, J.; Phair, L.; Swan, T.

    2009-01-28

    To benchmark the validity of using the (d,p{gamma}) reaction as a surrogate for (n,{gamma}), the {sup 171,173}Yb(d,p{gamma}) reactions were measured with the goal to reproduce the known neutron capture cross section ratio of these nuclei. Preliminary surrogate results reproduced the measured values within 15%.

  4. Implications of Gamma-Ray Transparency Constraints in Blazars: Minimum Distances and Gamma-Ray Collimation

    NASA Technical Reports Server (NTRS)

    Becker, Peter A.; Kafatos, Menas

    1995-01-01

    We develop a general expression for the gamma - gamma absorption coefficient, alpha(sub gamma(gamma)) for gamma-rays propagating in an arbitrary direction at an arbitrary point in space above an X-ray-emitting accretion disk. The X-ray intensity is assumed to vary as a power law in energy and radius between the outer disk radius, R(sub 0), and the inner radius, R(sub ms) which is the radius of marginal stability for a Schwarzschild black hole. We use our result for alpha(sub gamma(gamma)) to calculate the gamma - gamma optical depth, tau(sub gamma(gamma)) for gamma - rays created at height z and propagating at angle Phi relative to the disk axis, and we show that for Phi = 0 and z greater than or approx equal to R(sub 0), tau(sub gamma(gamma)) proportional to Epsilon(sup alpha)z(sup -2(alpha) - 3), where alpha is the X-ray spectral index and Epsilon is the gamma - ray energy. As an application, we use our formalism to compute the minimum distance between the central black hole and the site of production of the gamma-rays detected by EGRET during the 1991 June flare of 3C 279. In order to obtain an upper limit, we assume that all of the X-rays observed contemporaneously by Ginga were emitted by the disk. Our results suggest that the observed gamma - rays may have originated within less than or approx equal to 45 GM/sq c from a black hole of mass greater than or approx equal to 10(exp 9) solar mass, perhaps in active plasma located above the central funnel of the accretion disk. This raises the possibility of establishing a direct connection between the production of the observed gamma - rays and the accretion of material onto the black hole. We also consider the variation of the optical depth as a function of the angle of propagation Phi. Our results indicate that the "focusing" of the gamma - rays along the disk axis due to pair production is strong enough to explain the observed degree of alignment in blazar sources. If the gamma - rays are produced isotropically

  5. Measurements of Branching Fractions for B+ -> rho+ gamma, B0 -> rho0 gamma, and B0 -> omega gamma

    SciTech Connect

    Aubert, B

    2008-08-15

    The authors present branching fraction measurements for the radiative decays B{sup +} {yields} {rho}{sup +}{gamma}, B{sup 0} {yields} {rho}{sup 0}{gamma}, and B{sup 0} {yields} {omega}{gamma}. The analysis is based on a data sample of 465 million B{bar B} events collected with the BABAR detector at the PEP-II asymmetric-energy B Factory located at the Stanford Linear Accelerator Center (SLAC). They find {Beta}(B{sup +} {yields} {rho}{sup +}{gamma}) = (1.20{sub -0.37}{sup +0.42} {+-} 0.20) x 10{sup -6}, {Beta}(B{sup 0} {yields} {rho}{sup 0}{gamma}) = (0.97{sub -0.22}{sup +0.24} {+-} 0.06) x 10{sup -6}, and a 90% C.L. upper limit {Beta}(B{sup 0} {yields} {omega}{gamma}) < 0.9 x 10{sup -6}, where the first error is statistical and the second is systematic. They also measure the isospin-violating quantity {Lambda}(B{sup +} {yields} {rho}{sup +}{gamma})/2{Lambda}(B{sup 0} {yields} {rho}{sup 0}{gamma}) - 1 = -0.43{sub -0.22}{sup +0.25} {+-} 0.10.

  6. Gamma-ray burst models.

    PubMed

    King, Andrew

    2007-05-15

    I consider various possibilities for making gamma-ray bursts, particularly from close binaries. In addition to the much-studied neutron star+neutron star and black hole+neutron star cases usually considered good candidates for short-duration bursts, there are also other possibilities. In particular, neutron star+massive white dwarf has several desirable features. These systems are likely to produce long-duration gamma-ray bursts (GRBs), in some cases definitely without an accompanying supernova, as observed recently. This class of burst would have a strong correlation with star formation and occur close to the host galaxy. However, rare members of the class need not be near star-forming regions and could have any type of host galaxy. Thus, a long-duration burst far from any star-forming region would also be a signature of this class. Estimates based on the existence of a known progenitor suggest that this type of GRB may be quite common, in agreement with the fact that the absence of a supernova can only be established in nearby bursts. PMID:17293332

  7. Gamma-ray burst populations

    NASA Astrophysics Data System (ADS)

    Virgili, Francisco Javier

    Over the last fifty years the field of gamma-ray bursts has shown incredible growth, but the amassing of data has also left observers and theorists alike wondering about some of the basic questions surrounding these phenomena. Additionally, these events show remarkable individuality and extrema, ranging in redshift throughout the observable universe and over ten orders of magnitude in energy. This work focuses on analyzing groups of bursts that are different from the general trend and trying to understand whether these bursts are from different intrinsic populations and if so, what can be said about their progenitors. This is achieved through numerical Monte Carlo simulations and statistical inference in conjunction with current GRB observations. Chapter 1 gives a general introduction of gamma-ray burst theory and observations in a semi-historical context. Chapter 2 provides an introduction to the theory and practical issues surrounding the numerical simulations and statistics. Chapters 3--5 are each dedicated to a specific problem relating to a different type of GRB population: high-luminosity v. low-luminosity bursts, constraints from high-redshift bursts, and Type I v. Type II bursts. Chapter 6 follows with concluding remarks.

  8. Supervised Gamma Process Poisson Factorization

    SciTech Connect

    Anderson, Dylan Zachary

    2015-05-01

    This thesis develops the supervised gamma process Poisson factorization (S- GPPF) framework, a novel supervised topic model for joint modeling of count matrices and document labels. S-GPPF is fully generative and nonparametric: document labels and count matrices are modeled under a uni ed probabilistic framework and the number of latent topics is controlled automatically via a gamma process prior. The framework provides for multi-class classification of documents using a generative max-margin classifier. Several recent data augmentation techniques are leveraged to provide for exact inference using a Gibbs sampling scheme. The first portion of this thesis reviews supervised topic modeling and several key mathematical devices used in the formulation of S-GPPF. The thesis then introduces the S-GPPF generative model and derives the conditional posterior distributions of the latent variables for posterior inference via Gibbs sampling. The S-GPPF is shown to exhibit state-of-the-art performance for joint topic modeling and document classification on a dataset of conference abstracts, beating out competing supervised topic models. The unique properties of S-GPPF along with its competitive performance make it a novel contribution to supervised topic modeling.

  9. The virtual gamma camera room.

    PubMed

    Penrose, J M; Trowbridge, E A; Tindale, W B

    1996-05-01

    The installation of a gamma camera is time-consuming and costly and, once installed, the camera position is unlikely to be altered during its working life. Poor choice of camera position therefore has long-term consequences. Additional equipment such as collimators and carts, the operator's workstation and wall-mounted display monitors must also be situated to maximize access and ease of use. The layout of a gamma camera room can be optimized prior to installation by creating a virtual environment. Super-Scape VRT software running on an upgraded 486 PC microprocessor was used to create a 'virtual camera room'. The simulation included an operator's viewpoint and a controlled tour of the room. Equipment could be repositioned as required, allowing potential problems to be identified at the design stage. Access for bed-ridden patients, operator ergonomics, operator and patient visibility were addressed. The display can also be used for patient education. Creation of a virtual environment is a valuable tool which allows different camera systems to be compared interactively in terms of dimensions, extent of movement and use of a defined space. Such a system also has applications in radiopharmacy design and simulation. PMID:8736511

  10. Very high-energy gamma rays from gamma-ray bursts.

    PubMed

    Chadwick, Paula M

    2007-05-15

    Very high-energy (VHE) gamma-ray astronomy has undergone a transformation in the last few years, with telescopes of unprecedented sensitivity having greatly expanded the source catalogue. Such progress makes the detection of a gamma-ray burst at the highest energies much more likely than previously. This paper describes the facilities currently operating and their chances for detecting gamma-ray bursts, and reviews predictions for VHE gamma-ray emission from gamma-ray bursts. Results to date are summarized. PMID:17293337

  11. Gamma rays from hidden millisecond pulsars

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1992-01-01

    The properties were studied of a new class of gamma ray sources consisting of millisecond pulsars totally or partially surrounded by evaporating material from irradiated companion stars. Hidden millisecond pulsars offer a unique possibility to study gamma ray, optical and radio emission from vaporizing binaries. The relevance of this class of binaries for GRO observations and interpretation of COS-B data is emphasized.

  12. A 16N gamma-ray facility

    NASA Astrophysics Data System (ADS)

    Hull, Ethan L.; Pehl, Richard H.; Stanley, Michelle R.; Foster, Charles C.; Komisarcik, Kevin; East, Gary W.; Vanderwerp, John D.; Friesel, Dennis L.

    1997-02-01

    A practical 16N gamma-ray source is created in a medium-energy cyclotron environment. A 16N source emits 6129 and 7115 keV gamma rays. The viability of this several μCi source for detector calibration and studying detector physics is established.

  13. Future prospects for gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Fichtel, C.

    1981-01-01

    As gamma-ray astronomy moves from the discovery to the exploratory phase, the promise of gamma-ray astrophysics noted by theorists in the late 1940s and 1950s is beginning to be realized. In the future, satellites should carry instruments that will have over an order of magnitude greater sensitivity than those flown thus far, and, for at least some portions of the gamma-ray energy range, these detectors will also have substantially improved energy and angular resolution. The information to be obtained from these experiments should greatly enhance our knowledge of several astrophysical phenomena including the very energetic and nuclear processes associated with compact objects, astrophysical nucleosynthesis, solar particle acceleration, the chemical composition of the planets and other bodies of the solar system, the structure of our galaxy, the origin and dynamic pressure effects of the cosmic rays, high energy particles and energetic processes in other galaxies especially active ones, and the degree of matter-antimatter symmetry of the universe. The gamma-ray results of the forthcoming programs such as Gamma-I, the Gamma Ray Observatory, the gamma-ray burst network, Solar Polar, and very high energy gamma-ray telescopes on the ground will almost certainly provide justification for more sophisticated telescopes. These advanced instruments might be placed on the Space Platform currently under study by N.A.S.A.

  14. Gamma ray astronomy from satellites and balloons

    NASA Technical Reports Server (NTRS)

    Schoenfelder, V.

    1986-01-01

    A survey is given of gamma ray astronomy topics presented at the Cosmic Ray Conference. The major conclusions at the Cosmic Ray Conference in the field of gamma ray astronomy are given. (1) MeV-emission of gamma-ray bursts is a common feature. Variations in duration and energy spectra from burst to burst may explain the discrepancy between the measured log N - log S dependence and the observed isotropy of bursts. (2) The gamma-ray line at 1.809 MeV from Al(26) is the first detected line from a radioactive nucleosynthesis product. In order to understand its origin it will be necessary to measure its longitude distribution in the Milky Way. (3) The indications of a gamma-ray excess found from the direction of Loop I is consistent with the picture that the bulk of cosmic rays below 100 GeV is produced in galactic supernova remnants. (4) The interpretation of the large scale distribution of gamma rays in the Milky Way is controversial. At present an extragalactic origin of the cosmic ray nuclei in the GeV-range cannot be excluded from the gamma ray data. (5) The detection of MeV-emission from Cen A is a promising step towards the interesting field of extragalactic gamma ray astronomy.

  15. Gamma-ray spectral analysis algorithm library

    Energy Science and Technology Software Center (ESTSC)

    2013-05-06

    The routines of the Gauss Algorithms library are used to implement special purpose products that need to analyze gamma-ray spectra from Ge semiconductor detectors as a part of their function. These routines provide the ability to calibrate energy, calibrate peakwidth, search for peaks, search for regions, and fit the spectral data in a given region to locate gamma rays.

  16. Gamma-ray Spectral Analysis Algorithm Library

    Energy Science and Technology Software Center (ESTSC)

    1997-09-25

    The routines of the Gauss Algorithm library are used to implement special purpose products that need to analyze gamma-ray spectra from GE semiconductor detectors as a part of their function. These routines provide the ability to calibrate energy, calibrate peakwidth, search for peaks, search for regions, and fit the spectral data in a given region to locate gamma rays.

  17. Optical search for gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Ceplecha, Z.; Ehrlich, J.; Borovicka, J.; Hurley, K.; Ateia, J.-L.; Barat, C.; Niel, M.; Vedrenne, G.; Estulin, I. V.

    Preliminary results from an optical search for light pulses associated with gamma-ray bursts by means of the Czechoslovak Fireball Network plate collection at the Ondřejov Observatory are given. Optical monitoring represents more than 7700 hours, but no real optical counterpart was found. Problems associated with the optical search for gamma-ray bursts are discussed.

  18. Gamma spectrometric assessment of nuclear fuel

    NASA Astrophysics Data System (ADS)

    Krištof, Edvard; Pregl, Gvido

    1990-12-01

    A description is given of a gamma spectrometric technique which has been developed with the aim of determining the amount of a certain radioactive fission product taking into consideration local variations of the linear attenuation coefficient of gamma rays. Also, an experiment using a fuel element of the TRIGA Mark II reactor in Ljubljana is presented.

  19. Gamma-Ray Pulsar Candidates for GLAST

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    2008-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) will be launched this year, and its Large Area Telescope (LAT) is expected to discover scores to hundreds of gamma-ray pulsars. This poster discusses which of the over 1700 known pulsars, mostly visible only at radio frequencies, are likely to emit greater than 100 MeV gamma rays with intensities detectable by the LAT. The main figure of merit used to select gamma-ray pulsar candidates is sqrt(E-dot)/d2, where E-dot is the energy loss due to rotational spin-down, and d is the distance to the pulsar. The figure of merit incorporates spin-down flux at earth (proportional to E-dot/d2) times efficiency, assumed proportional to l/sqrt(E-dot). A few individual objects are cited to illustrate the issues. Since large E-dot pulsars also tend to have large timing noise and occasional glitches, their ephemerides can become inaccurate in weeks to months. To detect and study the gamma-ray emission the photons must be accurately tagged with the pulse phase. With hours to days between gamma-ray photon arrival times from a pulsar and months to years of LAT exposure needed for good detections, GLAST will rely on radio and X-ray timing measurements throughout the continuous gamma-ray observations. The poster will describe efforts to coordinate pulsar timing of the candidate gamma-ray pulsars.

  20. Gamma-Ray Pulsar Candidates for GLAST

    NASA Technical Reports Server (NTRS)

    Thompson, David J.; Smith, D. A.; Dumora, D.; Guillemot, L.; Parent, D.; Reposeur, T.; Grove, E.; Romani, R. W.; Thorsett, S. E.

    2007-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) will be launched less than a year from now, and its Large Area Telescope (LAT) is expected to discover scores to hundreds of gamma-ray pulsars. This poster discusses which of the over 1700 known pulsars, mostly visible only at radio Erequencies, are likely to emit greater than l00 MeV gamma rays with intensities detectable by the LAT. The main figure of merit used to select gamma-ray pulsar candidates is sqrt(E-dot)/d^2, where E-dot is the energy loss due to rotational spindown, and d is the distance to the pulsar. The figure of merit incorporates spin-down flux at earth (proportional to E-dot/d^2) times efficiency, assumed proportional to 1/sqrt(E-dot). A few individual objects are cited to illustrate the issues. Since large E-dot pulsars also tend to have large timing noise and occasional glitches, their ephemerides can become inaccurate in weeks to months. To detect and study the gamma-ray emission the photons must be accurately tagged with the pulse phase. With hours to days between gamma-ray photon arrival times from a pulsar and months to years of LAT exposure needed for good detections, GLAST will need timing measurements throughout the continuous gamma-ray observations. The poster will describe efforts to coordinate pulsar timing of the candidate gamma-ray pulsars.

  1. [Gamma glutamly transpeptidase in chronic anicteric hepatopathies].

    PubMed

    Magris, D; Mian, G; Minutillo, S; D'Agnolo, B

    1975-09-01

    Serum levels of gammaGT were determined in 51 patients suffering from bioptically verified chronic anictereric liber disease. GammaGT proved to be much more sensitive than the other enzymes studied and presented a significant increase particularly in cases of steatosis and chronic "alcoholic" liver disease with a markedly steatosic character. PMID:241034

  2. High temperature spectral gamma well logging

    SciTech Connect

    Normann, R.A.; Henfling, J.A.

    1997-01-01

    A high temperature spectral gamma tool has been designed and built for use in small-diameter geothermal exploration wells. Several engineering judgments are discussed regarding operating parameters, well model selection, and signal processing. An actual well log at elevated temperatures is given with spectral gamma reading showing repeatability.

  3. Gamma ray lines from dark matter annihilation

    SciTech Connect

    Giudice, G.F.

    1989-08-01

    If direct annihilation of dark matter particles into a pair of photons occurs in the galactic halo, a narrow {gamma}-ray line can be discovered at future {gamma}-ray detectors sensitive to the GeV region. The signals predicted by different dark matter candidates are analyzed. 16 refs., 3 figs.

  4. HIGGS PHYSICS WITH A GAMMA GAMMA COLLIDER BASED ON CLIC 1*.

    SciTech Connect

    ASNER,D.; BURKHARDT,H.; DE ROECK,A.; ELLIS,J.; GRONBERG,J.; HEINEMEYER,S.; SCHMITT,M.; SCHULTE,D.; VELASCO,M.; ZIMMERMAN,F.

    2001-11-01

    We present the machine parameters and physics capabilities of the CLIC Higgs Experiment (CLICHE), a low-energy {gamma}{gamma} collider based on CLIC 1, the demonstration project for the higher-energy two-beam accelerator CLIC. CLICHE is conceived as a factory capable of producing around 20,000 light Higgs bosons per year. We discuss the requirements for the CLIC 1 beams and a laser backscattering system capable of producing a {gamma}{gamma} total (peak) luminosity of 2.0 (0.36) x 10{sup 34} cm{sup -2} s{sup -1} with E{sub CM}({gamma}{gamma}) 115 GeV. We show how CLICHE could be used to measure accurately the mass, {bar b}b, WW and {gamma}{gamma} decays of a light Higgs boson. We illustrate how these measurements may distinguish between the Standard Model Higgs boson and those in supersymmetric and more general two-Higgs-doublet models, complementing the measurements to be made with other accelerators. We also comment on other prospects in {gamma}{gamma} and e{sup -}{gamma} physics with CLICHE.

  5. Software tool for xenon gamma-ray spectrometer control

    NASA Astrophysics Data System (ADS)

    Chernysheva, I. V.; Novikov, A. S.; Shustov, A. E.; Dmitrenko, V. V.; Pyae Nyein, Sone; Petrenko, D.; Ulin, S. E.; Uteshev, Z. M.; Vlasik, K. F.

    2016-02-01

    Software tool "Acquisition and processing of gamma-ray spectra" for xenon gamma-ray spectrometers control was developed. It supports the multi-windows interface. Software tool has the possibilities for acquisition of gamma-ray spectra from xenon gamma-ray detector via USB or RS-485 interfaces, directly or via TCP-IP protocol, energy calibration of gamma-ray spectra, saving gamma-ray spectra on a disk.

  6. Neutron monitoring systems including gamma thermometers and methods of calibrating nuclear instruments using gamma thermometers

    SciTech Connect

    Moen, Stephan Craig; Meyers, Craig Glenn; Petzen, John Alexander; Foard, Adam Muhling

    2012-08-07

    A method of calibrating a nuclear instrument using a gamma thermometer may include: measuring, in the instrument, local neutron flux; generating, from the instrument, a first signal proportional to the neutron flux; measuring, in the gamma thermometer, local gamma flux; generating, from the gamma thermometer, a second signal proportional to the gamma flux; compensating the second signal; and calibrating a gain of the instrument based on the compensated second signal. Compensating the second signal may include: calculating selected yield fractions for specific groups of delayed gamma sources; calculating time constants for the specific groups; calculating a third signal that corresponds to delayed local gamma flux based on the selected yield fractions and time constants; and calculating the compensated second signal by subtracting the third signal from the second signal. The specific groups may have decay time constants greater than 5.times.10.sup.-1 seconds and less than 5.times.10.sup.5 seconds.

  7. Gamma-Ray Astronomy from the Ground

    NASA Astrophysics Data System (ADS)

    Horns, Dieter

    2016-05-01

    The observation of cosmic gamma-rays from the ground is based upon the detection of gamma-ray initiated air showers. At energies between approximately 1011 eV and 1013 eV, the imaging air Cherenkov technique is a particularly successful approach to observe gamma-ray sources with energy fluxes as low as ≈ 10-13 erg cm-2 s-1. The observations of gamma-rays in this energy band probe particle acceleration in astrophysical plasma conditions and are sensitive to high energy phenomena beyond the standard model of particle physics (e.g., self-annihilating or decaying dark matter, violation of Lorentz invariance, mixing of photons with light pseudoscalars). The current standing of the field and its major instruments are summarized briefly by presenting selected highlights. A new generation of ground based gamma-ray instruments is currently under development. The perspectives and opportunities of these future facilities will be discussed.

  8. Future Missions for Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Meegan, Charles; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Gamma-ray astronomy has made great advances in recent years, due largely to the recently completed 9-year mission of the Compton Gamma Ray Observatory. In this talk I will give an overview of what advances we may expect in the near future, with particular emphasis on earth-orbiting missions scheduled for flight within the next 5 years. Two missions, the High Energy Transient Explorer and Swift, will provide important new information on the sources of gamma-ray bursts. The Gamma-Ray Large Area Space Telescope will investigate high energy emission from a wide variety of sources, including active galaxies and gamma-ray pulsars. The contributions of ground-based and multiwavelength observations will also be addressed.

  9. Regulation of interferon-gamma gene expression.

    PubMed

    Young, H A

    1996-08-01

    Interferon-gamma (IFN-gamma), also known as type II interferon, is an important immunoregulatory gene that has multiple effects on the development, maturation, and function of the immune system. IFN-gamma mRNA and protein are expressed predominantly by T cells and large granular lymphocytes. The IFN-gamma mRNA is induced/inhibited in these cell types by a wide variety of extracellular signals, thus implicating a number of diverse, yet convergent signal transduction pathways in its transcriptional control. In this review, I describe how DNA methylation and specific DNA binding proteins may regulate transcription of the IFN-gamma gene in response to extracellular signals. PMID:8877725

  10. Zapping Mars Rocks with Gamma Rays

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    1999-12-01

    Because we do not know what deadly microorganisms might be lurking inside samples returned from Mars, the samples will either have to be sterilized before release or kept in isolation until biological studies declare them safe. One way to execute microorganisms is with radiation, such as gamma rays. Although quite effective in snuffing out bacteria and viruses, gamma rays might also affect the mineralogical, chemical, and isotopic compositions of the zapped rocks and soils. Carl Allen (Lockheed Martin Space Operations, Houston) and a team of 18 other analysts tested the effect of gamma rays on rock and mineral samples like those we expect on Mars. Except for some darkening of some minerals, high doses of gamma rays had no significant effect on the rocks, making gamma radiation a feasible option for sterilizing samples returned from Mars.

  11. Visual awareness, emotion, and gamma band synchronization.

    PubMed

    Luo, Qian; Mitchell, Derek; Cheng, Xi; Mondillo, Krystal; Mccaffrey, Daniel; Holroyd, Tom; Carver, Frederick; Coppola, Richard; Blair, James

    2009-08-01

    What makes us become aware? A popular hypothesis is that if cortical neurons fire in synchrony at a certain frequency band (gamma), we become aware of what they are representing. We tested this hypothesis adopting brain-imaging techniques with good spatiotemporal resolution and frequency-specific information. Specifically, we examined the degree to which increases in event-related synchronization (ERS) in the gamma band were associated with awareness of a stimulus (its detectability) and/or the emotional content of the stimulus. We observed increases in gamma band ERS within prefrontal-anterior cingulate, visual, parietal, posterior cingulate, and superior temporal cortices to stimuli available to conscious awareness. However, we also observed increases in gamma band ERS within the amygdala, visual, prefrontal, parietal, and posterior cingulate cortices to emotional relative to neutral stimuli, irrespective of their availability to conscious access. This suggests that increased gamma band ERS is related to, but not sufficient for, consciousness. PMID:19047574

  12. Gamma-ray astrophysics with AGILE

    NASA Astrophysics Data System (ADS)

    Tavani, M.

    2003-09-01

    Gamma-ray astrophysics above 30 MeV will soon be revitalized by a new generation of high-energy detectors in space. We discuss here the AGILE Mission that will be dedicated to gamma-ray astrophysics above 30 MeV during the period 2005-2006. The main characteristics of AGILE are: (1) excellent imaging and monitoring capabilities both in the γ-ray (30 MeV - 30 GeV) and hard X-ray (10-40 keV) energy ranges (reaching an arcminute source positioning), (2) very good timing (improving by three orders of magnitude the instrumental deadtime for γ-ray detection compared to previous instruments), and (3) excellent imaging and triggering capability for Gamma-Ray Bursts. The AGILE scientific program will emphasize a quick response to gamma-ray transients and multiwavelength studies of gamma-ray sources.

  13. Gamma-Ray Bursts: An Overview

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    1995-01-01

    A history and overview of the observed properties of gamma-ray bursts are presented. The phenomenon of gamma-ray bursts is without precedent in astronomy, having no observed property that would be a direct indicator of their distance and no counterpart object in another wavelength region. Their brief, random appearance only in the gamma-ray region has made their study difficult. The observed time profiles, spectral properties, and durations of gamma-ray bursts cover a wide range. All proposed models for their origin must be considered speculative. It is humbling to think that even after 25 years since their discovery, the distance scale of gamma-ray bursts is still very much debatable.

  14. Thermal neutron capture gamma-rays

    SciTech Connect

    Tuli, J.K.

    1983-01-01

    The energy and intensity of gamma rays as seen in thermal neutron capture are presented. Only those (n,..cap alpha..), E = thermal, reactions for which the residual nucleus mass number is greater than or equal to 45 are included. These correspond to evaluations published in Nuclear Data Sheets. The publication source data are contained in the Evaluated Nuclear Structure Data File (ENSDF). The data presented here do not involve any additional evaluation. Appendix I lists all the residual nuclides for which the data are included here. Appendix II gives a cumulated index to A-chain evaluations including the year of publication. The capture gamma ray data are given in two tables - the Table 1 is the list of all gamma rays seen in (n,..gamma..) reaction given in the order of increasing energy; the Table II lists the gamma rays according to the nuclide.

  15. Characteristics of gamma-ray line flares

    NASA Technical Reports Server (NTRS)

    Bai, T.; Dennis, B.

    1983-01-01

    Observations of solar gamma rays by the Solar Maximum Mission (SMM) demonstrate that energetic protons and ions are rapidly accelerated during the impulsive phase. To understand the acceleration mechanisms for these particles, the characteristics of the gamma ray line flares observed by SMM were studied. Some very intense hard X-ray flares without detectable gamma ray lines were also investigated. Gamma ray line flares are distinguished from other flares by: (1) intense hard X-ray and microwave emissions; (2) delay of high energy hard X-rays; (3) emission of type 2 and/or type 4 radio bursts; and (4) flat hard X-ray spectra (average power law index: 3.1). The majority of the gamma ray line flares shared all these characteristics, and the remainder shared at least three of them. Positive correlations were found between durations of spike bursts and spatial sizes of flare loops as well as between delay times and durations of spike bursts.

  16. Production of modified starches by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Kang, Il-Jun; Byun, Myung-Woo; Yook, Hong-Sun; Bae, Chun-Ho; Lee, Hyun-Soo; Kwon, Joong-Ho; Chung, Cha-Kwon

    1999-04-01

    As a new processing method for the production of modified starch, gamma irradiation and four kinds of inorganic peroxides were applied to commercial corn starch. The addition of inorganic peroxides without gamma irradiation or gamma irradiation without the addition of inorganic peroxides effectively decreased initial viscosity, but did not sufficiently keep viscosity stable. The combination of adding ammonium persulfate (APS) and gamma irradiation showed the lowest initial viscosity and the best stability out of the tested four kinds of inorganic peroxides. Among the tested mixing methods of APS, soaking was found to be more effective than dry blending or spraying. Therefore, the production of modified starch with low viscosity as well as with sufficient viscosity stability became feasible by the control of gamma irradiation dose levels and the amount of added APS to starch.

  17. Simultaneous beta/gamma digital spectroscopy

    NASA Astrophysics Data System (ADS)

    Farsoni, Abdollah T.

    A state-of-the-art radiation detection system for simultaneous spectroscopy of beta-particles and gamma-rays has been developed. The system utilizes a triple-layer phoswich detector and a customized Digital Pulse Processor (DPP) built in our laboratory. The DPP board was designed to digitally capture the analog signal pulses and, following several digital preprocessing steps, transfer valid pulses to the host computer for further digital processing. A MATLAB algorithm was developed to digitally discriminate beta and gamma events and reconstruct separate beta and gamma-ray energy spectra with minimum crosstalk. The spectrometer proved to be an effective tool for recording separate beta and gamma-ray spectra from mixed radiation fields. The system as a beta-gamma spectrometer will have broad-ranging applications in nuclear non-proliferation, radioactive waste management, worker safety, systems reliability, dose assessment, and risk analysis.

  18. Gamma Rays from Classical Novae

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA at the University of Chicago, provided support for a program of theoretical research into the nature of the thermonuclear outbursts of the classical novae and their implications for gamma ray astronomy. In particular, problems which have been addressed include the role of convection in the earliest stages of nova runaway, the influence of opacity on the characteristics of novae, and the nucleosynthesis expected to accompany nova outbursts on massive Oxygen-Neon-Magnesium (ONeMg) white dwarfs. In the following report, I will identify several critical projects on which considerable progress has been achieved and provide brief summaries of the results obtained:(1) two dimensional simulation of nova runaway; (2) nucleosynthesis of nova modeling; and (3) a quasi-analytic study of nucleosynthesis in ONeMg novae.

  19. Cloaked Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Eichler, David

    2014-06-01

    It is suggested that many gamma-ray bursts (GRBs) are cloaked by an ultrarelativistic baryonic shell that has high optical depth when the photons are manufactured. Such a shell would not fully block photons reflected or emitted from its inner surface, because the radial velocity of the photons can be less than that of the shell. This avoids the standard problem associated with GRBs that the thermal component should be produced where the flow is still obscured by high optical depth. The radiation that escapes high optical depth obeys the Amati relation. Observational implications may include (1) anomalously high ratios of afterglow to prompt emission, such as may have been the case in the recently discovered PTF 11agg, and (2) ultrahigh-energy neutrino pulses that are non-coincident with detectable GRB. It is suggested that GRB 090510, a short, very hard GRB with very little afterglow, was an exposed GRB, in contrast to those cloaked by baryonic shells.

  20. Gamma-insensitive optical sensor

    DOEpatents

    Kruger, H.W.

    1994-03-15

    An ultraviolet/visible/infrared gamma-insensitive gas avalanche focal plane array is described comprising a planar photocathode and a planar anode pad array separated by a gas-filled gap and across which is applied an electric potential. Electrons ejected from the photocathode are accelerated sufficiently between collisions with the gas molecules to ionize them, forming an electron avalanche. The gap acts like a proportional counter. The array of anode pad are mounted on the front of an anode plate and are connected to matching contact pads on the back of the anode via feed through wires. Connection of the anode to signal processing electronics is made from the contact pads using standard indium bump techniques, for example. 6 figures.

  1. Gamma-insensitive optical sensor

    DOEpatents

    Kruger, Hans W.

    1994-01-01

    An ultra-violet/visible/infra-red gamma-insensitive gas avalanche focal plane array comprising a planar photocathode and a planar anode pad array separated by a gas-filled gap and across which is applied an electric potential. Electrons ejected from the photocathode are accelerated sufficiently between collisions with the gas molecules to ionize them, forming an electron avalanche. The gap acts like a proportional counter. The array of anode pad are mounted on the front of an anode plate and are connected to matching contact pads on the back of the anode via feed through wires. Connection of the anode to signal processing electronics is made from the contact pads using standard indium bump techniques, for example.

  2. Gamma-4 electrophysical facility project

    NASA Astrophysics Data System (ADS)

    Zavyalov, N. V.; Gordeev, V. S.; Punin, V. T.; Grishin, A. V.; Nazarenko, S. T.; Pavlov, V. S.; Demanov, V. A.; Shikhanova, T. F.; Kalashnikov, D. A.; Kozachek, A. V.; Glushkov, S. L.; Strabykin, K. V.; Puchagin, S. Yu.; Mansurov, D. O.; Mironychev, B. P.; Maiorov, R. A.; Maiornikova, V. L.

    2015-01-01

    The paper presents the Gamma-4 four-module electrophysical facility project developed for radiation physics research. For this facility, we have developed and tested a typical module which, with a matched load, generates an electrical pulse with voltage and current amplitudes of up to 2 MV and 750 kA, respectively, and with a half-height duration of 60 ns. 700 shots were performed which conformed the operating parameters and reliability of the module. Layouts of the facility for the modes of synchronous (with accuracy of ±3 ns) operation of the modules with vacuum electron diodes and with a current summator to generate soft x-ray pulses have been developed.

  3. CLOAKED GAMMA-RAY BURSTS

    SciTech Connect

    Eichler, David

    2014-06-01

    It is suggested that many gamma-ray bursts (GRBs) are cloaked by an ultrarelativistic baryonic shell that has high optical depth when the photons are manufactured. Such a shell would not fully block photons reflected or emitted from its inner surface, because the radial velocity of the photons can be less than that of the shell. This avoids the standard problem associated with GRBs that the thermal component should be produced where the flow is still obscured by high optical depth. The radiation that escapes high optical depth obeys the Amati relation. Observational implications may include (1) anomalously high ratios of afterglow to prompt emission, such as may have been the case in the recently discovered PTF 11agg, and (2) ultrahigh-energy neutrino pulses that are non-coincident with detectable GRB. It is suggested that GRB 090510, a short, very hard GRB with very little afterglow, was an exposed GRB, in contrast to those cloaked by baryonic shells.

  4. Durability Assessment of Gamma Tial

    NASA Technical Reports Server (NTRS)

    Draper, Susan L.; Lerch, Bradley A.; Pereira, J. Michael; Miyoshi, Kazuhisa; Arya, Vinod K.; Zhuang, Wyman

    2004-01-01

    Gamma TiAl was evaluated as a candidate alloy for low-pressure turbine blades in aeroengines. The durability of g-TiAl was studied by examining the effects of impact or fretting on its fatigue strength. Cast-to-size Ti-48Al-2Cr-2Nb was studied in impact testing with different size projectiles at various impact energies as the reference alloy and subsequently fatigue tested. Impacting degraded the residual fatigue life. However, under the ballistic impact conditions studied, it was concluded that the impacts expected in an aeroengine would not result in catastrophic damage, nor would the damage be severe enough to result in a fatigue failure under the anticipated design loads. In addition, other gamma alloys were investigated including another cast-to-size alloy, several cast and machined specimens, and a forged alloy. Within this Ti-48-2-2 family of alloys aluminum content was also varied. The cracking patterns as a result of impacting were documented and correlated with impact variables. The cracking type and severity was reasonably predicted using finite element models. Mean stress affects were also studied on impact-damaged fatigue samples. The fatigue strength was accurately predicted based on the flaw size using a threshold-based, fracture mechanics approach. To study the effects of wear due to potential applications in a blade-disk dovetail arrangement, the machined Ti-47-2-2 alloy was fretted against In-718 using pin-on-disk experiments. Wear mechanisms were documented and compared to those of Ti-6Al-4V. A few fatigue samples were also fretted and subsequently fatigue tested. It was found that under the conditions studied, the fretting was not severe enough to affect the fatigue strength of g-TiAl.

  5. A new measurement of the rare decay eta -> pi^0 gamma gamma with the Crystal Ball/TAPS detectors at the Mainz Microtron

    SciTech Connect

    Nefkens, B M; Prakhov, S; Aguar-Bartolom��, P; Annand, J R; Arends, H J; Bantawa, K; Beck, R; Bekrenev, V; Bergh��user, H; Braghieri, A; Briscoe, W J; Brudvik, J; Cherepnya, S; Codling, R F; Collicott, C; Costanza, S; Danilkin, I V; Denig, A; Demissie, B; Dieterle, M; Downie, E J; Drexler, P; Fil'kov, L V; Fix, A; Garni, S; Glazier, D I; Gregor, R; Hamilton, D; Heid, E; Hornidge, D; Howdle, D; Jahn, O; Jude, T C; Kashevarov, V L; K��ser, A; Keshelashvili, I; Kondratiev, R; Korolija, M; Kotulla, M; Koulbardis, A; Kruglov, S; Krusche, B; Lisin, V; Livingston, K; MacGregor, I J; Maghrbi, Y; Mancel, J; Manley, D M; McNicoll, E F; Mekterovic, D; Metag, V; Mushkarenkov, A; Nikolaev, A; Novotny, R; Oberle, M; Ortega, H; Ostrick, M; Ott, P; Otte, P B; Oussena, B; Pedroni, P; Polonski, A; Robinson, J; Rosner, G; Rostomyan, T; Schumann, S; Sikora, M H; Starostin, A; Strakovsky, I I; Strub, T; Suarez, I M; Supek, I; Tarbert, C M; Thiel, M; Thomas, A; Unverzagt, M; Watts, D P; Werthmueller, D; Witthauer, L

    2014-08-01

    A new measurement of the rare, doubly radiative decay eta->pi^0 gamma gamma was conducted with the Crystal Ball and TAPS multiphoton spectrometers together with the photon tagging facility at the Mainz Microtron MAMI. New data on the dependence of the partial decay width, Gamma(eta->pi^0 gamma gamma), on the two-photon invariant mass squared, m^2(gamma gamma), as well as a new, more precise value for the decay width, Gamma(eta->pi^0 gamma gamma) = (0.33+/-0.03_tot) eV, are based on analysis of 1.2 x 10^3 eta->pi^0 gamma gamma decays from a total of 6 x 10^7 eta mesons produced in the gamma p -> eta p reaction. The present results for dGamma(eta->pi^0 gamma gamma)/dm^2(gamma gamma) are in good agreement with previous measurements and recent theoretical calculations for this dependence.

  6. Interpretations and implications of gamma ray lines from solar flares, the galactic center in gamma ray transients

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1980-01-01

    Observations and theories of astrophysical gamma ray line emission are reviewed and prospects for future observations by the spectroscopy experiments on the planned Gamma Ray Observatory are discussed.

  7. Study of the single neutral top pion production process at {gamma}{gamma} collider

    SciTech Connect

    Wang Xuelei; Wang Xiaoxue

    2005-11-01

    {gamma}{gamma}{yields}{pi}{sub t}{sup 0} is the major production mechanism of the neutral top pion at the linear colliders. In this paper, we calculate the cross section of the process {gamma}{gamma}{yields}{pi}{sub t}{sup 0} and discuss the potential to observe the neutral top pion via its various decay modes at the planned International Linear Collider. The study shows that, among the various neutral top-pion production processes at the linear colliders, the cross section of {gamma}{gamma}{yields}{pi}{sub t}{sup 0} is the largest one which can reach the level of 10{sup 1}-10{sup 2} fb. Because of the existence of the tree-level flavor-changing coupling {pi}{sub t}{sup 0}tc, {gamma}{gamma}{yields}{pi}{sub t}{sup 0}{yields}tc can provide enough number of typical signals to identify the neutral top pion with the clean SM background. Therefore, the process {gamma}{gamma}{yields}{pi}{sub t}{sup 0} plays an important role in searching for the neutral top pion and tests the TC2 model.

  8. Comparison of gamma-gamma Phase Coarsening Responses of Three Powder Metal Disk Superalloys

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Gayda, J.; Johnson, D. F.; MacKay, R. A.; Rogers, R. B.; Sudbrack, C. K.; Garg, A.; Locci, I. E.; Semiatin, S. L.; Kang, E.

    2016-01-01

    The phase microstructures of several powder metal (PM) disk superalloys were quantitatively evaluated. Contents, chemistries, and lattice parameters of gamma and gamma strengthening phase were determined for conventionally heat treated Alloy 10, LSHR, and ME3 superalloys, after electrolytic phase extractions. Several of long term heat treatments were then performed, to allow quantification of the precipitation, content, and size distribution of gamma at a long time interval to approximate equilibrium conditions. Additional coarsening heat treatments were performed at multiple temperatures and shorter time intervals, to allow quantification of the precipitation, contents and size distributions of gamma at conditions diverging from equilibrium. Modest differences in gamma and gamma lattice parameters and their mismatch were observed among the alloys, which varied with heat treatment. Yet, gamma coarsening rates were very similar for all three alloys in the heat treatment conditions examined. Alloy 10 had higher gamma dissolution and formation temperatures than LSHR and ME3, but a lower lattice mismatch, which was slightly positive for all three alloys at room temperature. The gamma precipitates of Alloy 10 appeared to remain coherent at higher temperatures than for LSHR and ME3. Higher coarsening rates were observed for gamma precipitates residing along grain boundaries than for those within grains in all three alloys, during slow-moderate quenching from supersolvus solution heat treatments, and during aging at temperatures of 843 C and higher.

  9. Sex differences, gamma activity and schizophrenia.

    PubMed

    Slewa-Younan, S; Gordon, E; Williams, L; Haig, A R; Goldberg, E

    2001-03-01

    This study explores the possibility that the more favourable clinical prognosis in females with schizophrenia may be associated with their greater network interconnectedness, which is possibly reflected in enhanced "Gamma" (40 Hz) electrical brain activity. An auditory "oddball" task was administered to 35 patients with schizophrenia and 35 age and sex matched controls (25 males and 10 females). Peak Gamma amplitude (from a time series of Gamma activity averaged for 40 target stimuli, as well as the immediately preceding 40 background tones) was examined across 19 sites. Peak Gamma activity occurred 250 to 450 ms in targets and 350 to 550 ms in backgrounds. Multiple within and between group MANOVAs were undertaken analysing both Peak Gamma amplitude (microvolts) and latency (milliseconds). Within-group, the control males showed a pattern of earlier Gamma latency in the right compared with the left hemisphere (F(1, 33)=3.70, p<.06), while control females exhibited delayed latency frontally compared with the posterior region (F(1, 33)=6.25, p<.04). This male lateralization finding and the anterior/posterior gradient in females is consistent with Goldberg's model. The patient group however, failed to show this male lateralized and female frontal-posterior pattern of Gamma activity, suggesting suboptimal network integration in the patient group, in both males and females. PMID:11328687

  10. Python in gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Deil, Christoph Deil

    2016-03-01

    Gamma-ray astronomy is a relatively new window on the cosmos. The first source detected from the ground was the Crab nebula, seen by the Whipple telescope in Arizona in 1989. Today, about 150 sources have been detected at TeV energies using gamma-ray telescopes from the ground such as H.E.S.S. in Namibia or VERITAS in Arizona, and about 3000 sources at GeV energies using the Fermi Gamma-ray Space Telescope. Soon construction will start for the Cherenkov Telescope Array (CTA), which will be the first ground-based gamma-ray telescope array operated as an open observatory, with a site in the southern and a second site in the northern hemisphere. In this presentation I will give a very brief introduction to gamma-ray astronomy and data analysis, as well as a short overview of the software used for the various missions. The main focus will be on recent attempts to build open-source gamma-ray software on the scientific Python stack and Astropy: ctapipe as a CTA Python pipeline prototype, Fermipy and the Fermi Science Tools for Fermi-LAT analysis, Gammapy as a community-developed gamma-ray Python package and naima as a non-thermal spectral modeling and fitting package.

  11. Gamma-Ray Burst Physics with GLAST

    SciTech Connect

    Omodei, N.; /INFN, Pisa

    2006-10-06

    The Gamma-ray Large Area Space Telescope (GLAST) is an international space mission that will study the cosmos in the energy range 10 keV-300 GeV, the upper end of which is one of the last poorly observed region of the celestial electromagnetic spectrum. The ancestor of the GLAST/LAT was the Energetic Gamma Ray Experiment Telescope (EGRET) detector, which flew onboard the Compton Gamma Ray Observatory (CGRO). The amount of information and the step forward that the high energy astrophysics made thanks to its 9 years of observations are impressive. Nevertheless, EGRET uncovered the tip of the iceberg, raising many questions, and it is in the light of EGRET's results that the great potential of the next generation gamma-ray telescope can be appreciated. GLAST will have an imaging gamma-ray telescope, the Large Area Telescope (LAT) vastly more capable than instruments own previously, as well as a secondary instrument, the GLAST Bursts Monitor, or GBM, to augment the study of gamma-ray bursts. Gamma-Ray Bursts (GRBs) science is one of the most exciting challenges for the GLAST mission, exploring the high energy emission of one of the most intense phenomena in the sky, shading light on various problems: from the acceleration of particles to the emission processes, to more exotic physics like Quantum Gravity effect. In this paper we report the work done so far in the simulation development as well as the study of the LAT sensitivity to GRB.

  12. Observations of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1995-01-01

    Some basic observed properties of gamma-ray bursts are reviewed. Although some properties were known 25 years ago, new and more detailed observations have been made by the Compton Observatory in the past three years. The new observation with the greatest impact has been the observed isotropic distribution of bursts along with a deficiency of weak bursts which would be expected from a homogeneous burst distribution. This is not compatible with any known Galactic population of objects. Gamma-ray bursts show an enormous variety of burst morphologies and a wide spread in burst durations. The spectra of gamma-ray bursts are characterized by rapid variations and peak power which is almost entirely in the gamma-ray energy range. Delayed gamma-ray burst photons extending to GeV energies have been detected for the first time. A time dilation effect has also been reported to be observed in gamma-ray, bursts. The observation of a gamma-ray burst counterpart in another wavelength region has yet to be made.

  13. Gamma-ray Astronomy and GLAST

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2007-01-01

    The high energy gamma-ray (30 MeV to 100 GeV) sky has been relatively poorly studied. Most of our current knowledge comes from observations made by the Energetic Gamma Ray Experiment Telescope (EGRET) detector on the Compton Gamma Ray Observatory (CGRO), which revealed that the GeV gamma-ray sky is rich and vibrant. Studies of astrophysical objects at GeV energies are interesting for several reasons: The high energy gamma-rays are often produced by a different physical process than the better studied X-ray and optical emission, thus providing a unique information for understanding these sources. Production of such high-energy photons requires that charged particles are accelerated to equally high energies, or much greater. Thus gamma-ray astronomy is the study of extreme environments, with natural and fundamental connections to cosmic-ray and neutrino astrophysics. The launch of GLAST in 2008 will herald a watershed in our understanding of the high energy gamma-ray sky, providing dramatic improvements in sensitivity, angular resolution and energy range. GLAST will open a new avenue to study our Universe as well as to answer scientific questions EGRET observations have raised. In this talk, I will describe the GLAST instruments and capabilities and highlight some of the science we expect to address.

  14. Detecting axionlike particles with gamma ray telescopes.

    PubMed

    Hooper, Dan; Serpico, Pasquale D

    2007-12-01

    We propose that axionlike particles (ALPs) with a two-photon vertex, consistent with all astrophysical and laboratory bounds, may lead to a detectable signature in the spectra of high-energy gamma-ray sources. This occurs as a result of gamma rays being converted into ALPs in the magnetic fields of efficient astrophysical accelerators according to the "Hillas criterion", such as jets of active galactic nuclei or hot spots of radio galaxies. The discovery of such an effect is possible by GLAST in the 1-100 GeV range and by ground-based gamma-ray telescopes in the TeV range. PMID:18233353

  15. Cosmic gamma-ray lines - Theory

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Ramaty, R.

    1980-01-01

    The various processes that lead to gamma-ray line emission and the possible astrophysical sources of such emission are reviewed. The processes of nuclear excitation, radiative capture, positron annihilation, and cyclotron radiation, which may produce gamma-ray line emission from such diverse sources as the interstellar medium, novas, supernovas, pulsars, accreting compact objects, the galactic nucleus and the nuclei of active galaxies are considered. The significance of the relative intensities, widths, and frequency shifts of the lines are also discussed. Particular emphasis is placed on understanding those gamma-ray lines that have already been observed from astrophysical sources.

  16. Fermi Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie E.; Michelson, Peter F.; Paclesas, William S.; Ritz, Steven

    2012-01-01

    The Fermi Gamma-ray Space Telescope, launched in June 2008, is an observatory designed to survey the high-energy gamma-ray sky. The primary instrument, the Large Area Telescope (LAT), provides observations from 20 MeV to greater than 300 GeV. A second instrument, the Gamma-ray Burst Monitor (GBM), provides observations of transients from less than 10 keV to 40 MeV. We describe the design and performance of the instruments and their subsystems, the spacecraft and the ground system.

  17. Combination neutron-gamma ray detector

    DOEpatents

    Stuart, Travis P.; Tipton, Wilbur J.

    1976-10-26

    A radiation detection system capable of detecting neutron and gamma events and distinguishing therebetween. The system includes a detector for a photomultiplier which utilizes a combination of two phosphor materials, the first of which is in the form of small glass beads which scintillate primarily in response to neutrons and the second of which is a plastic matrix which scintillates in response to gammas. A combination of pulse shape and pulse height discrimination techniques is utilized to provide an essentially complete separation of the neutron and gamma events.

  18. NEAR Gamma Ray Spectrometer Characterization and Repair

    NASA Technical Reports Server (NTRS)

    Groves, Joel Lee; Vajda, Stefan

    1998-01-01

    This report covers the work completed in the third year of the contract. The principle activities during this period were (1) the characterization of the NEAR 2 Gamma Ray Spectrometer using a neutron generator to generate complex gamma ray spectra and a large Ge Detecter to identify all the major peaks in the spectra; (2) the evaluation and repair of the Engineering Model Unit of the Gamma Ray Spectrometer for the NEAR mission; (3) the investigation of polycapillary x-ray optics for x-ray detection; and (4) technology transfer from NASA to forensic science.

  19. Modeling gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Maxham, Amanda

    Discovered serendipitously in the late 1960s, gamma-ray bursts (GRBs) are huge explosions of energy that happen at cosmological distances. They provide a grand physical playground to those who study them, from relativistic effects such as beaming, jets, shocks and blastwaves to radiation mechanisms such as synchrotron radiation to galatic and stellar populations and history. Through the Swift and Fermi space telescopes dedicated to observing GRBs over a wide range of energies (from keV to GeV), combined with accurate pinpointing that allows ground based follow-up observations in the optical, infrared and radio, a rich tapestry of GRB observations has emerged. The general picture is of a mysterious central engine (CE) probably composed of a black hole or neutron star that ejects relativistic shells of matter into intense magnetic fields. These shells collide and combine, releasing energy in "internal shocks" accounting for the prompt emission and flaring we see and the "external shock" or plowing of the first blastwave into the ambient surrounding medium has well-explained the afterglow radiation. We have developed a shell model code to address the question of how X-ray flares are produced within the framework of the internal shock model. The shell model creates randomized GRB explosions from a central engine with multiple shells and follows those shells as they collide, merge and spread, producing prompt emission and X-ray flares. We have also included a blastwave model, which can constrain X-ray flares and explain the origin of high energy (GeV) emission seen by the Fermi telescope. Evidence suggests that gamma-ray prompt emission and X-ray flares share a common origin and that at least some flares can only be explained by long-lasting central engine activity. We pay special attention to the time history of central engine activity, internal shocks, and observed flares. We calculate the gamma-ray (Swift/BAT band) and X-ray (Swift/XRT band) lightcurves for arbitrary

  20. Deformation of a gamma/gamma' WASPALOY after laser shock

    NASA Astrophysics Data System (ADS)

    Bourda, C.; Puig, Thierry T.; Decamps, B.; Condat, M.

    1991-10-01

    Nickel-base superalloys have important applications in industry (i.e., aeronautic and nuclear), so deformation mechanisms of these superalloys have been extensively studied. Most of the results are coming from typical experiments at low-strain rates of deformation. Laser shock hardening provides a high amount of deformation. The purpose of the present study is to compare a high-rate deformed WASPALOY to what is known about deformation mechanisms of this alloy and some other nickel-base superalloys. Oriented single crystals of a nickel-base superalloy, strongly hardened by (gamma) phase, were exposed along the [001] axis to a laser shock (1.06 micrometers , 60 J, 25 ns, confined plasma configuration) at power densities of 3 and 9.5 X 109 W/cm2. Then, thin foils taken at depths of 50 and 700 micrometers below the impacted surface of the specimens were observed by T.E.M. All following observations have been made in areas submitted to plastic deformation. At the surface, deformation bands with planar walls (small size approximately equals 350 nm +/- 100 nm) and pairs of a /2 [110] dislocation have been observed. At the depth of 700 micrometers , deformation bands disappear, but pairs of a /2 < 100 > dislocation remain. In both cases, superlattice stacking faults have been brought into evidence and the deformation is inhomogeneous.

  1. Study of the Rare Decay K(L) ---> pi0 gamma gamma at KTeV

    SciTech Connect

    Wang, Jianbo; /Arizona U.

    2007-08-01

    The authors study on the rare decay K{sub L} {yields} {pi}{sup 0}{gamma}{gamma}, measure a{sub V}, and branching ratio by analyzing 96, 97 and 99 data. The measurements were taken by KTeV at Fermi National Accelerator Laboratory. After all cuts, they have 1982 K{sub L} {yields} {pi}{sup 0}{gamma}{gamma} candidate. The background level is estimated as 30%. K{sub L} {yields} {pi}{sup 0}{gamma}{gamma} branching ratio is measured as (1.29 {+-} 0.03(stat) {+-} 0.04(sys)) x 10{sup -6}. By using D'Ambrosio's theory to fit a{sub V}, a{sub V} = -(-0.31 {+-} 0.05(stat) {+-} 0.07(sys)).

  2. High-energy gamma rays from the intense 1993 January 31 gamma-ray burst

    NASA Technical Reports Server (NTRS)

    Sommer, M.; Bertsch, D. L.; Dingus, B. L.; Fichtel, C. E.; Fishman, G. J.; Harding, A. K.; Hartman, R. C.; Hunter, S. D.; Hurley, K.; Kanbach, G.

    1994-01-01

    The intense gamma-ray burst of 1993 January 31 was detected by the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Observatory. Sixteen gamma rays above 30 MeV were imaged in the telescope when only 0.04 gamma rays were expected by chance. Two of these gamma rays have energies of approximately 1 GeV, and the five bin spectrum of the 16 events is fitted by a power law of photon spectral index -2.0 +/- 0.4. The high-energy emission extends for at least 25 s. The most probable direction for this burst is determined from the directions of the 16 gamma rays observed by Egret and also by requiring the position to lie on annulus derived by the Interplanetary Network.

  3. A Search for the Rare Decay $B\\rightarrow\\gamma\\gamma$

    SciTech Connect

    del Amo Sanchez, P.; Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D.N.; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; Tanabe, T.; /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Indian Inst. Tech., Guwahati /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Southern Methodist U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas Nuclear Corp., Austin /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

    2011-06-02

    We report the result of a search for the rare decay B{sup 0} {yields} {gamma}{gamma} in 426 fb{sup -1} of data, corresponding to 226 million B{sup 0}{bar B}{sup 0} pairs, collected on the {Upsilon}(4S) resonance at the PEP-II asymmetric-energy e{sup +}e{sup -} collider using the BABAR detector. We use a maximum likelihood fit to extract the signal yield and observe 21{sub -12}{sup +13} signal events with a statistical signficance of 1.9 {sigma}. This corresponds to a branching fraction {Beta}(B{sup 0} {yields} {gamma}{gamma}) = (1.7 {+-} 1.1(stat.) {+-} 0.2(syst.)) x 10{sup -7}. Based on this result, we set a 90% confidence level upper limit of {Beta}(B{sup 0} {yields} {gamma}{gamma}) < 3.2 x 10{sup -7}.

  4. Method of incident low-energy gamma-ray direction reconstruction in the GAMMA-400 gamma-ray space telescope

    NASA Astrophysics Data System (ADS)

    Kheymits, M. D.; Leonov, A. A.; Zverev, V. G.; Galper, A. M.; Arkhangelskaya, I. V.; Arkhangelskiy, A. I.; Suchkov, S. I.; Topchiev, N. P.; Yurkin, Yu T.; Bakaldin, A. V.; Dalkarov, O. D.

    2016-02-01

    The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work.

  5. Interleukin-4 enhances interferon-gamma synthesis but inhibits development of interferon-gamma-producing cells.

    PubMed Central

    Noble, A; Kemeny, D M

    1995-01-01

    Interleukin-4 (IL-4) is antagonistic for many of the activities of interferon-gamma (IFN-gamma) and, as well as suppressing the development of T-helper type-1 (Th1) cells, has been reported to block directly the synthesis of IFN-gamma in human lymphocytes. However, IL-4 transgenic mice produce increased amounts of IFN-gamma as well as IL-4. We have compared the ability of rat IL-4 to regulate IFN-gamma secretion in short-term cultures of spleen cells with its effect on the differentiation of T lymphocytes into IFN-gamma-producing, or Th1-type, cells. Normal rat spleen cells were stimulated using a variety of mitogens and ovalbumin antigen, with or without IL-4, for 12-24 hr and the levels of IFN-gamma in the supernatants measured by enzyme-linked immunosorbent assay (ELISA). The results show that when normal rat splenocytes were stimulated with phytohaemagglutinin (PHA) or concavalin A (Con A), IL-4 enhanced secretion of IFN-gamma after 12-24 hr. This enhancement was also apparent when splenocytes from animals immunized 10 days previously with alum-precipitated ovalbumin were stimulated with ovalbumin in vitro, and appeared to be mediated primarily via CD+ T cells. In contrast, when spleen cells were maximally stimulated with phorbol myristate acetate (PMA) and ionomycin, addition of IL-4 had no effect on the amount of IFN-gamma secreted. When splenocytes were stimulated with Con A for 4 days in the presence of IL-4, and restimulated with PMA and ionomycin, IFN-gamma secretion was greatly suppressed. Our results indicate that IL-4 exerts differential effects on IFN-gamma secretion and on the development of IFN-gamma-producing lymphocytes. PMID:7558122

  6. Tests of quantum chromodynamics in exclusive e sup + e sup minus and. gamma. gamma. processes

    SciTech Connect

    Brodsky, S.J.

    1989-09-01

    This paper discusses the following topics: Factorization theorem for exclusive processes; Electromagnetic form factors of baryons; Suppression of final state interactions; The {gamma}{pi}{sub 0} Transition form factor; Exclusive charmonium decays; The {pi}-{rho} puzzle; Time-like compton processes; Multi-hadron production; Heavy Quark exclusive states and form factor zeros in QCD; Exclusive {gamma}{gamma} reactions; Higher twist effects; and Tauonium and threshold {tau}{sup +}{tau}{sup {minus}} production. 41 refs., 15 figs. (LSP)

  7. POPULATION SYNTHESIS AND GAMMA RAY BURST PROGENITORS

    SciTech Connect

    C. L. FREYER

    2000-12-11

    Population synthesis studies of binaries are always limited by a myriad of uncertainties from the poorly understood effects of binary mass transfer and common envelope evolution to the many uncertainties that still remain in stellar evolution. But the importance of these uncertainties depends both upon the objects being studied and the questions asked about these objects. Here I review the most critical uncertainties in the population synthesis of gamma-ray burst progenitors. With a better understanding of these uncertainties, binary population synthesis can become a powerful tool in understanding, and constraining, gamma-ray burst models. In turn, as gamma-ray bursts become more important as cosmological probes, binary population synthesis of gamma-ray burst progenitors becomes an important tool in cosmology.

  8. GAMMA: a high performance dataflow database machine

    SciTech Connect

    DeWitt, D.J.; Gerber, R.H.; Graefe, G.; Heytens, M.L.; Kumar, K.B.; Muralikrishna, M.

    1986-03-01

    In this paper, the design, implementation techniques, and initial performance evaluation of Gamma are presented. Gamma is a new relational database machine that exploits dataflow query processing techniques. Ganma is a fully operational prototype consisting of 20 VAX 11/750 computers. The design of Gamma is based on an earlier multiprocessor database machine prototype (DIRECT) and several years of subsequent research on the problems raised by the DIRECT prototype. In addition to demonstrating that parallelism can really be made to work in a database machine context, the Gamma prototype shows how parallelism can be controlled with minimal control overhead through a combination of the use of algorithms based on hashing and the pipelining of data between processes. Except for 2 messages to initiate each operator of a query tree and 1 message when the operator terminates, the execution of a query is entirely self-scheduling. 52 refs., 12 figs.

  9. Positron annihilation gamma rays from novae

    NASA Technical Reports Server (NTRS)

    Leising, Mark D.; Clayton, Donald D.

    1987-01-01

    The potential for observing annihilation gamma rays from novae is investigated. These gamma rays, a unique signature of the thermonuclear runaway models of novae, would result from the annihilation of positrons emitted by beta(+)-unstable nuclei produced near the peak of the runaway and carried by rapid convection to the surface of the nova envelope. Simple models, which are extensions of detailed published models, of the expansion of the nova atmospheres are evolved. These models serve as input into investigations of the fate of nearby Galactic fast novae could yield detectable fluxes of electron-positron annihilation gamma rays produced by the decay of N-13 and F-18. Although nuclear gamma-ray lines are produced by other nuclei, it is unlikely that the fluxes at typical nova distances would be detectable to present and near-future instruments.

  10. Overview Animation of Gamma-ray Burst

    NASA Video Gallery

    Gamma-ray bursts are the most luminous explosions in the cosmos. Astronomers think most occur when the core of a massive star runs out of nuclear fuel, collapses under its own weight, and forms a b...