Science.gov

Sample records for gamma dalam dosis

  1. Dos dosis de vacuna contra los VPH pueden proteger

    Cancer.gov

    Dos dosis de Cervarix, la vacuna contra virus del papiloma humano (VPH), fueron tan efectivas como la pauta normal actual de tres dosis después de cuatro años de seguimiento. El estudio de vacuna en Costa Rica, patrocinado por el NCI, fue diseñado para ev

  2. Applications of Diffusion Ordered Spectroscopy (DOSY-NMR)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diffusion-ordered NMR (DOSY-NMR) is a powerful, but under-utilized, technique for the investigation of mixtures based on translational diffusion rates. DOSY spectra allow for determination by NMR of components that may differ in molecular weight, geometry or complexation. Typical applications coul...

  3. Amyloïdosis, sarcoidosis and systemic lupus erythematosus

    PubMed Central

    Rezgui, Amel; Hassine, Imene Ben; Karmani, Monia; Fredj, Fatma Ben; Laouani, Chadia

    2016-01-01

    The occurrence of renal and multiple organ Amyloïdosis is currently considered exceptional in the course of systemic lupus erythematosus. We report a case of a concomitant SLE and Amyloïdosis in a 57 year old female patient with hypothyroidism history, who presented with erythema nodosum, fever, arthralgia and sicca syndrome. Biological findings showed an inflammatory syndrome, renal failure, proteinuria (1g / 24h), positive auto antibodies and anti DNA. Lung radiology revealed medistinal lymphadenopathy, pleural nodules, ground glass infiltrates and pleuritis. Bronchial biopsy showed non specific inflammation. The salivary gland biopsy showed amyloïd deposits. This case report reminds us that lupus and Amyloïdosis association, although exceptional remains possible. The occurrence of Lofgren syndrome in this situation make the originality of this report. PMID:27583087

  4. Amyloïdosis, sarcoidosis and systemic lupus erythematosus.

    PubMed

    Rezgui, Amel; Hassine, Imene Ben; Karmani, Monia; Fredj, Fatma Ben; Laouani, Chadia

    2016-01-01

    The occurrence of renal and multiple organ Amyloïdosis is currently considered exceptional in the course of systemic lupus erythematosus. We report a case of a concomitant SLE and Amyloïdosis in a 57 year old female patient with hypothyroidism history, who presented with erythema nodosum, fever, arthralgia and sicca syndrome. Biological findings showed an inflammatory syndrome, renal failure, proteinuria (1g / 24h), positive auto antibodies and anti DNA. Lung radiology revealed medistinal lymphadenopathy, pleural nodules, ground glass infiltrates and pleuritis. Bronchial biopsy showed non specific inflammation. The salivary gland biopsy showed amyloïd deposits. This case report reminds us that lupus and Amyloïdosis association, although exceptional remains possible. The occurrence of Lofgren syndrome in this situation make the originality of this report. PMID:27583087

  5. The DOSIS and DOSIS 3D Experiments onboard the International Space Station - Results from the Active DOSTEL Instruments

    NASA Astrophysics Data System (ADS)

    Burmeister, Soenke; Berger, Thomas; Reitz, Guenther; Beaujean, Rudolf; Boehme, Matthias; Haumann, Lutz; Labrenz, Johannes; Kortmann, Onno

    2012-07-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems experienced in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones present on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European COLUMBUS module the experiment DOSIS (Dose Distribution Inside the ISS) under the lead of DLR was launched on July 15th 2009 with STS-127 to the ISS. The experimental package was transferred from the Space Shuttle into COLUMBUS on July 18th. It consists of a combination of passive detector packages (PDP) distributed at 11 locations inside the European Columbus Laboratory and two active radiation detectors (DOSTELs) with a DDPU (DOSTEL Data and Power Unit) in a nomex pouch (DOSIS MAIN BOX) mounted at a fixed location beneath the European Physiology Module rack (EPM) inside COLUMBUS. The DOSTELs measured during the lowest solar minimum conditions in the space age from July 18th 2009 to June 16th 2011. In July 2011 the active hardware was transferred to ground for refurbishment and preparation for the DOSIS-3D experiment. The hardware will be launched with the Soyuz 30S flight to the ISS on May 15th 2012 and activated approximately ten days later. Data will be transferred from the DOSTEL units to ground via the EPM rack which is activated approximately every four weeks for this action. First Results for the active DOSIS-3D measurements such as count rate profiles

  6. Long term dose monitoring onboard the European Columbus module of the International Space Station (ISS) in the frame of the DOSIS and DOSIS 3D project

    NASA Astrophysics Data System (ADS)

    Berger, Thomas

    The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones present on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station (ISS) is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European Columbus module the experiment “Dose Distribution Inside the ISS” (DOSIS), under the project and science lead of the German Aerospace Center (DLR), was launched on July 15th 2009 with STS-127 to the ISS. The DOSIS experiment consists of a combination of “Passive Detector Packages” (PDP) distributed at eleven locations inside Columbus for the measurement of the spatial variation of the radiation field and two active Dosimetry Telescopes (DOSTELs) with a Data and Power Unit (DDPU) in a dedicated nomex pouch mounted at a fixed location beneath the European Physiology Module rack (EPM) for the measurement of the temporal variation of the radiation field parameters. The DOSIS experiment suite measured during the lowest solar minimum conditions in the space age from July 2009 to June 2011. In July 2011 the active hardware was transferred to ground for refurbishment and preparation for the follow up DOSIS 3D experiment. The hardware for DOSIS 3D was launched with Soyuz 30S to the ISS on May 15th 2012. The PDPs are replaced with each even number Soyuz flight starting with Soyuz 30S. Data from the active detectors is transferred to ground via the EPM rack which is activated once a month for this action. The presentation will give an overview of the DOSIS and DOSIS 3D experiment and focus on the results from the passive radiation detectors from the DOSIS 3D experiment

  7. Characterization of reactive intermediates by multinuclear diffusion-ordered NMR spectroscopy (DOSY).

    PubMed

    Li, Deyu; Keresztes, Ivan; Hopson, Russell; Williard, Paul G

    2009-02-17

    Nuclear magnetic resonance (NMR) is the most powerful and widely utilized technique for determining molecular structure. Although traditional NMR data analysis involves the correlation of chemical shift, coupling constant, and NOE interactions to specific structural features, a largely overlooked method introduced more than 40 years ago, pulsed gradient spin-echo (PGSE), measures diffusion coefficients of molecules in solution, thus providing their relative particle sizes. In the early 1990s, the PGSE sequence was incorporated into a two-dimensional experiment, dubbed diffusion-ordered NMR spectroscopy (DOSY), in which one dimension represents chemical shift data while the second dimension resolves species by their diffusion properties. This combination provides a powerful tool for identifying individual species in a multicomponent solution, earning the nickname "chromatography by NMR". In this Account, we describe our efforts to utilize DOSY techniques to characterize organometallic reactive intermediates in solution in order to correlate structural data to solid-state crystal structures determined by X-ray diffraction and to discover the role of aggregate formation and solvation states in reaction mechanisms. In 2000, we reported our initial efforts to employ DOSY techniques in the characterization of reactive intermediates such as organolithium aggregates. Since then, we have explored DOSY experiments with various nuclei beyond (1)H, including (6)Li, (7)Li, (11)B, (13)C, and (29)Si. Additionally, we proposed a diffusion coefficient-formula weight relationship to determine formula weight, aggregation number, and solvation state of reactive intermediates. We also introduced an internal reference system to correlate the diffusion properties of unknown reactive intermediates with known inert molecular standards, such as aromatic compounds, terminal olefins, cycloolefins, and tetraalkylsilanes. Furthermore, we utilized DOSY to interpret the role of aggregation number

  8. Long term dose monitoring onboard the European Columbus module of the international space station (ISS) in the frame of DOSIS and DOSIS 3D project - results from the active instruments

    NASA Astrophysics Data System (ADS)

    Burmeister, Soenke; Berger, Thomas; Reitz, Guenther; Boehme, Matthias; Haumann, Lutz; Labrenz, Johannes

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European COLUMBUS module the experiment DOSIS (Dose Distribution Inside the ISS) under the lead of DLR has been launched on July 15 (th) 2009 with STS-127 to the ISS. The experimental package was transferred from the Space Shuttle into COLUMBUS on July 18 (th) . It consists of a combination of passive detector packages (PDP) distributed at 11 locations inside the European Columbus Laboratory and two active radiation detectors (Dosimetry Telescopes = DOSTELs) with a DDPU (DOSTEL Data and Power Unit) in a Nomex pouch (DOSIS MAIN BOX) mounted at a fixed location beneath the European Physiology Module rack (EPM) inside COLUMBUS. The active components of the DOSIS experiment were operational from July 18 (th) 2009 to June 16 (th) 2011. After refurbishment the hardware has been reactivated on May 15 (th) 2012 as active part of the DOSIS 3D experiment and provides continuous data since this activation. The presentation will focus on the latest results from the two DOSTEL instruments as absorbed dose, dose equivalent and the related LET spectra gathered within the DOSIS (2009 - 2011) and DOSIS 3D (2012 - 2014) experiment. The CAU contributions to DOSIS and DOSIS 3D are

  9. Diffusion Coefficient-Formula Weight (D-FW) Analysis of (2)H Diffusion-Ordered NMR Spectroscopy (DOSY).

    PubMed

    Guang, Jie; Hopson, Russell; Williard, Paul G

    2015-09-18

    We report extension of the D-FW analysis using referenced (2)H DOSY. This technique was developed in response to limitations due to peak overlay in (1)H DOSY spectra. We find a corresponding linear relationship (R(2) > 0.99) between log D and log FW as the basis of the D-FW analysis. The solution-state structure of THF solvated lithium diisopropyl amide (LDA) in hydrocarbon solvent was chosen to demonstrate the reliability of the methodology. We observe an equilibrium between monosolvated and disolvated dimeric LDA complexes at room temperature. Additionally we demonstrate the application of the (2)H D-FW analysis using a compound with an exchangeable proton that is readily labeled with (2)H. Hence, the (2)H DOSY D-FW analysis is shown to provide results consistent with the (1)H DOSY method, thereby greatly extending the applicability of the D-FW analysis. PMID:26318438

  10. Improving accuracy in DOSY and diffusion measurements using triaxial field gradients

    NASA Astrophysics Data System (ADS)

    Kiraly, Peter; Swan, Iain; Nilsson, Mathias; Morris, Gareth A.

    2016-09-01

    NMR measurements of diffusion in solution, whether primarily quantitative, or, (as in DOSY, Diffusion-Ordered Spectroscopy) qualitative, can be particularly demanding. Here we show how the use of appropriate transverse (x, y) pulsed field gradients, orthogonal to the more usual z axis pulsed field gradient applied along the long axis of the sample, can greatly reduce two important sources of systematic error in diffusion experiments. These are the extra signal attenuation caused by sample convection, and gradient-dependent signal phase shifts caused by the magnetic field and field-frequency lock disturbances generated by field gradient pulses.

  11. Improving accuracy in DOSY and diffusion measurements using triaxial field gradients.

    PubMed

    Kiraly, Peter; Swan, Iain; Nilsson, Mathias; Morris, Gareth A

    2016-09-01

    NMR measurements of diffusion in solution, whether primarily quantitative, or, (as in DOSY, Diffusion-Ordered Spectroscopy) qualitative, can be particularly demanding. Here we show how the use of appropriate transverse (x, y) pulsed field gradients, orthogonal to the more usual z axis pulsed field gradient applied along the long axis of the sample, can greatly reduce two important sources of systematic error in diffusion experiments. These are the extra signal attenuation caused by sample convection, and gradient-dependent signal phase shifts caused by the magnetic field and field-frequency lock disturbances generated by field gradient pulses. PMID:27389639

  12. Two-dimensional DOSY experiment with Excitation Sculpting water suppression for the analysis of natural and biological media

    NASA Astrophysics Data System (ADS)

    Balayssac, Stéphane; Delsuc, Marc-André; Gilard, Véronique; Prigent, Yann; Malet-Martino, Myriam

    2009-01-01

    The Bipolar Pulse Pair Stimulated Echo NMR pulse sequence was modified to blend the original Excitation Sculpting water signal suppression. The sequence is a powerful tool to generate rapidly, with a good spectrum quality, bidimensional DOSY experiments without solvent signal, thus allowing the analysis of complex mixtures such as plant extracts or biofluids. The sequence has also been successfully implemented for a protein at very-low concentration in interaction with a small ligand, namely the salivary IB5 protein binding the polyphenol epigallocatechine gallate. The artifacts created by this sequence can be observed, checked and removed thanks to NPK and NMRnotebook softwares to give a perfect bidimensional DOSY spectrum.

  13. Quality control and assurance for validation of DOS/I measurements

    NASA Astrophysics Data System (ADS)

    Cerussi, Albert; Durkin, Amanda; Kwong, Richard; Quang, Timothy; Hill, Brian; Tromberg, Bruce J.; MacKinnon, Nick; Mantulin, William W.

    2010-02-01

    Ongoing multi-center clinical trials are crucial for Biophotonics to gain acceptance in medical imaging. In these trials, quality control (QC) and assurance (QA) are key to success and provide "data insurance". Quality control and assurance deal with standardization, validation, and compliance of procedures, materials and instrumentation. Specifically, QC/QA involves systematic assessment of testing materials, instrumentation performance, standard operating procedures, data logging, analysis, and reporting. QC and QA are important for FDA accreditation and acceptance by the clinical community. Our Biophotonics research in the Network for Translational Research in Optical Imaging (NTROI) program for breast cancer characterization focuses on QA/QC issues primarily related to the broadband Diffuse Optical Spectroscopy and Imaging (DOS/I) instrumentation, because this is an emerging technology with limited standardized QC/QA in place. In the multi-center trial environment, we implement QA/QC procedures: 1. Standardize and validate calibration standards and procedures. (DOS/I technology requires both frequency domain and spectral calibration procedures using tissue simulating phantoms and reflectance standards, respectively.) 2. Standardize and validate data acquisition, processing and visualization (optimize instrument software-EZDOS; centralize data processing) 3. Monitor, catalog and maintain instrument performance (document performance; modularize maintenance; integrate new technology) 4. Standardize and coordinate trial data entry (from individual sites) into centralized database 5. Monitor, audit and communicate all research procedures (database, teleconferences, training sessions) between participants ensuring "calibration". This manuscript describes our ongoing efforts, successes and challenges implementing these strategies.

  14. Application of 1H DOSY for Facile Measurement of Polymer Molecular Weights

    PubMed Central

    Li, Weibin; Chung, Hoyong; Daeffler, Christopher; Johnson, Jeremiah A.; Grubbs, Robert H.

    2012-01-01

    To address the practical issues of polymer molecular weight determination, the first accurate polymer weight-average molecular weight determination method in diverse living/controlled polymerization via DOSY (diffusion-ordered NMR spectroscopy) is reported. Based on the linear correlation between the logarithm of diffusion coefficient (log D) and the molecular weights (log Mw), external calibration curves were created to give predictions of molecular weights of narrowly-dispersed polymers. This method was successfully applied to atom transfer radical polymerization (ATRP), reversible addition–fragmentation chain transfer (RAFT), and ring-opening metathesis polymerization (ROMP), with weight-average molecular weights given by this method closely correlated to those obtained from GPC measurement. PMID:23335819

  15. The Donor-Base-Free Aggregation of Lithium Diisopropyl Amide in Hydrocarbons Revealed by a DOSY Method.

    PubMed

    Neufeld, Roman; John, Michael; Stalke, Dietmar

    2015-06-01

    Lithium diisopropyl amide (LDA) is a very prominent reagent that plays a key role in organic synthesis, serving as a base par excellence for a broad range of deprotonation reactions. However, the state of aggregation in solution in the absence of donor bases was unclear. In this paper we solved this problem by employing DOSY NMR experiments based on a newly elaborated external calibration curve (ECC) approach with normalized diffusion coefficients. PMID:26014367

  16. Physically separated references for diffusion coefficient-formula weight (D-FW) analysis of diffusion-ordered NMR spectroscopy (DOSY) in water.

    PubMed

    Li, Weibin; Kagan, Gerald; Yang, Huan; Cai, Chen; Hopson, Russell; Sweigart, Dwight A; Williard, Paul G

    2010-06-18

    Development and application of physically separated references for aqueous (1)H DOSY diffusion coefficient-formula weight (D-FW) correlation analysis is reported. Commercially available biological buffers (Tris and HEPES) and a water-soluble alcohol (tert-butanol) were used as physically separated references for a Ru and a Mn complex in D(2)O. This extension of DOSY D-FW analysis expands its applicability to a wide variety of water-soluble molecules or metal complexes, with particular application to green chemistry. PMID:20481557

  17. Stable isotope-enhanced two- and three-dimensional diffusion ordered 13C-NMR spectroscopy (SIE-DOSY 13C-NMR)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable Isotope-Enhanced Diffusion Ordered (SIE-DOSY) 13C-NMR has been applied to 13C-enriched carbohydrates and has been used to determine diffusion coefficients for pentose and hexose monosaccharides, a disaccharide and a trisaccharide. These 2D spectra were obtained with as little as 8 min of acq...

  18. The DOSIS -Experiment onboard the Columbus Laboratory of the International Space Station -First Mission Results from the Active DOSTEL Instruments

    NASA Astrophysics Data System (ADS)

    Burmeister, Soenke; Berger, Thomas; Beaujean, Rudolf; Boehme, Matthias; Haumann, Lutz; Kortmann, Onno; Labrenz, Johannes; Reitz, Guenther

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long dura-tion human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European COLUMBUS module the DLR experiment DOSIS (Dose Distribution Inside the ISS) was launched on July 15th 2009 with STS-127 to the ISS. The experimental package was transferred from the Space Shuttle into COLUMBUS on July 18th. It consists in a first part of a combination of passive detector packages (PDP) distributed at 11 locations inside the European Columbus Laboratory. The second part are two active radiation detectors (DOSTELs) with a DDPU (DOSIS Data and Power Unit) in a nomex pouch (DOSIS MAIN BOX) mounted at a fixed location beneath the European Physiology Module (EPM) inside COLUMBUS. After the successful installation the active part has been activated on the 18th July 2009. Each of the DOSTEL units consists of two 6.93 cm PIPS silicon detectors forming a telescope with an opening angle of 120. The two DOSTELs are mounted with their telescope axis perpendicular to each other to investigate anisotropies of the radiation field inside the COLUMBUS module especially during the passes through the South Atlantic Anomaly (SAA) and during Solar Particle Events (SPEs). The data from the DOSTEL units are transferred to ground via the EPM rack which is activated

  19. The DOSIS -Experiment onboard the Columbus Laboratory of the International Space Station -Overview and first mission results

    NASA Astrophysics Data System (ADS)

    Reitz, Guenther; Berger, Thomas; Kürner, Christine; Burmeister, Sünke; Hajek, Michael; Bilski, Pawel; Horwacik, Tomasz; Vanhavere, Filip; Spurny, Frantisek; Jadrnickova, Iva; Pálfalvi, József K.; O'Sullivan, Denis; Yasuda, Nakahiro; Uchihori, Yukio; Kitamura, Hisashi; Kodaira, Satoshi; Yukihara, Eduardo; Benton, Eric; Zapp, Neal; Gaza, Ramona; Zhou, Dazhuang; Semones, Edward; Roed, Yvonne; Boehme, Matthias; Haumann, Lutz

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long dura-tion human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. The DOSIS (Dose Distribution inside the ISS) experiment, under the project and science lead of DLR, aims for the spatial and tempo-ral measurement of the radiation field parameters inside the European Columbus laboratory onboard the International Space Station. This goal is achieved by applying a combination of passive (Thermo-and Optical luminescence detectors and Nuclear track etch detectors) and active (silicon telescope) radiation detectors. The passive radiation detectors -so called pas-sive detector packages (PDP) are mounted at eleven positions within the Columbus laboratory -aiming for a spatial dose distribution measurement of the absorbed dose, the linear energy transfer spectra and the dose equivalent with an average exposure time of six months. Two active silicon telescopes -so called Dosimetry Telescopes (DOSTEL 1 and DOSTEL 2) together with a Data and Power Unit (DDPU) are mounted within the DOSIS Main Box at a fixed loca-tion beneath the European Physiology Module (EPM) rack. The DOSTEL 1 and DOSTEL 2 detectors are positioned at a 90 angle to each other for a precise measurement of the temporal and spatial variation of the radiation field, especially during crossing of the South Atlantic Anomaly (SAA). The DOSIS hardware was launched with the

  20. Gamma Knife

    MedlinePlus

    ... results are sent to the Gamma Knife®'s planning computer system. Together, physicians ( radiation oncologists and neurosurgeons) and medical physicists delineate targets and normal anatomical structures. They use a planning computer program to determine the exact spatial relationship between ...

  1. Gamma watermarking

    DOEpatents

    Ishikawa, Muriel Y.; Wood, Lowell L.; Lougheed, Ronald W.; Moody, Kenton J.; Wang, Tzu-Fang

    2004-05-25

    A covert, gamma-ray "signature" is used as a "watermark" for property identification. This new watermarking technology is based on a unique steganographic or "hidden writing" digital signature, implemented in tiny quantities of gamma-ray-emitting radioisotopic material combinations, generally covertly emplaced on or within an object. This digital signature may be readily recovered at distant future times, by placing a sensitive, high energy-resolution gamma-ray detecting instrument reasonably precisely over the location of the watermark, which location may be known only to the object's owner; however, the signature is concealed from all ordinary detection means because its exceedingly low level of activity is obscured by the natural radiation background (including the gamma radiation naturally emanating from the object itself, from cosmic radiation and material surroundings, from human bodies, etc.). The "watermark" is used in object-tagging for establishing object identity, history or ownership. It thus may serve as an aid to law enforcement officials in identifying stolen property and prosecuting theft thereof. Highly effective, potentially very low cost identification-on demand of items of most all types is thus made possible.

  2. Stable isotope-enhanced two- and three-dimensional diffusion ordered 13C NMR spectroscopy (SIE-DOSY 13C NMR)

    NASA Astrophysics Data System (ADS)

    Vermillion, Karl; Price, Neil P. J.

    2009-06-01

    The feasibility of obtaining high quality homonuclear or heteronuclear diffusion-ordered 13C NMR data is shown to be greatly improved by using 13C isotopically-enriched samples. Stable isotope-enhanced diffusion ordered (SIE-DOSY) 13C NMR has been applied to 13C-enriched carbohydrates, and has been used to determine diffusion coefficients for pentose and hexose monosaccharides, and a disaccharide and trisaccharide. These 2D spectra were obtained with as little as 8 min of acquisition time. Fully resolved 3D DOSY-HMQC NMR spectra of [U- 13C]xylose, [U- 13C]glucose, and [1- 13C gal]lactose were obtained in 5 h. Sample derivatization with [ carbonyl- 13C]acetate (peracetylation) extends the usefulness of the technique to included non-labeled sugars; the 13C-carbonyl - carbohydrate ring proton 1H- 13C correlations also provide additional structural information, as shown for the 3-D DOSY-HMQC analysis of a mixture of maltotriose and lactose per-[ carbonyl- 13C]acetates.

  3. Induction of sterility in Anastrepha Fraterculus (Diptera: Tephritidae) by gamma radiation

    SciTech Connect

    Allinghi, A.; Gramajo, C.; Willink, E.; Vilardi, J.

    2007-03-15

    In relation to the application of the sterile insect technique (SIT) for the South American fruit fly Anastrepha fraterculus (Wiedemann), we analyzed the effect on adult fertility of different doses of gamma irradiation and the age of pupae at the time of irradiation. In a first experiment, we applied doses of 50, 70, and 90 Gy to pupae at 24, 48, 72, and 96 h before adult emergence. In a second experiment we irradiated pupae 48 h before emergence with 20, 40, and 60 Gy and estimated male and female fertility and sperm transfer by irradiated males. The results indicated pupal age at irradiation does not significantly affect male fertility. If males irradiated with 60 Gy are crossed to non-irradiated females the fertility is about 1%. Females irradiated with 40 Gy did not lay eggs independently of the male to which they mated. No significant effects of radiation were observed with respect to the ability of males to transfer sperm. A dose of 70 Gy applied 48 h before adult emergence induces 100% sterility in both males and females. (author) [Spanish] Para la aplicacion de la tecnica del insecto esteril (TIE) en Anastrepha fraterculus (Wiedemann), en este trabajo analizamos el efecto de diferentes dosis de irradiacion gamma y la edad optima de la pupa al momento de la irradiacion. En el primer experimento se evaluaron las dosis de 50, 70, y 90 Gy en pupas de 24, 48, 72, y 96 h antes de la emergencia del adulto. En el segundo experimento se irradiaron pupas 48 h antes de la emergencia con dosis de 20, 40, 60 Gy y se estimo la fertilidad de los machos y las hembras, y la transferencia de espermas por los machos irradiados. Los resultados indicaron que la irradiacion no modifico significativamente la fertilidad de los machos. En las cruzas de machos irradiados a 60 Gy con hembras no irradiadas se observo 1% de eclosion larvaria, mientras que las hembras irradiadas a 40 Gy no pusieron huevos. La irradiacion no afecto significativamente la transferencia de espermas de los

  4. Solvation chemistry of water-soluble thiol-protected gold nanocluster Au₁₀₂ from DOSY NMR spectroscopy and DFT calculations.

    PubMed

    Salorinne, Kirsi; Lahtinen, Tanja; Malola, Sami; Koivisto, Jaakko; Häkkinen, Hannu

    2014-07-21

    The hydrodynamic diameter of Aum(pMBA)n [(m, n) = (102, 44) and (144, 60)] clusters in aqueous media was determined via DOSY NMR spectroscopy. The apparent size of the same (n, m) cluster depends on the counter ion of the deprotonated pMBA(-) ligand as explained by the competing ion-pair strength and hydrogen bonding interactions studied in DFT calculations. The choice of the counter ion affects the surface chemistry and molecular structure at the organic/water interface, which is relevant for biological applications. PMID:24910110

  5. Gamma ray generator

    DOEpatents

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  6. The gamma-ray telescope Gamma-1

    NASA Technical Reports Server (NTRS)

    Akimov, V. V.; Nesterov, V. E.; Rodin, V. G.; Kalinkin, L. F.; Balibanov, V. M.; Prilutsky, O. F.; Leikov, N. G.; Bielaoussov, A. S.; Dobrian, L. B.; Poluektov, V. P.

    1985-01-01

    French and Soviet specialists have designed and built the gamma-ray telescope GAMMA-1 to detect cosmic gamma rays above 50 MeV. The sensitive area of the detector is 1400 sq cm, energy resolution is 30% at 300 MeV, and angular resolution 1.2 deg at 300 MeV (and less than 20' arc when a coded aperture mask is used). Results on calibration of the qualification model and Monte-Carlo calculations are presented.

  7. gamma-Hexachlorocyclohexane (gamma-HCH)

    Integrated Risk Information System (IRIS)

    gamma - Hexachlorocyclohexane ( gamma - HCH ) ; CASRN 58 - 89 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Asse

  8. Gamma ray detector shield

    DOEpatents

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  9. Rehabilitation of gamma

    NASA Astrophysics Data System (ADS)

    Poynton, Charles A.

    1998-07-01

    Gamma characterizes the reproduction of tone scale in an imaging system. Gamma summarizes, in a single numerical parameter, the nonlinear relationship between code value--in an 8-bit system, from 0 through 255--and physical intensity. Nearly all image coding systems are nonlinear, and so involve values of gamma different from unity. Owing to poor understanding of tone scale reproduction, and to misconceptions about nonlinear coding, gamma has acquired a terrible reputation in computer graphics and image processing. In addition, the world-wide web suffers from poor reproduction of grayscale and color images, due to poor handling of nonlinear image coding. This paper aims to make gamma respectable again.

  10. Resonance production in. gamma gamma. collisions

    SciTech Connect

    Renard, F.M.

    1983-04-01

    The processes ..gamma gamma.. ..-->.. hadrons can be depicted as follows. One photon creates a q anti q pair which starts to evolve; the other photon can either (A) make its own q anti q pair and the (q anti q q anti q) system continue to evolve or (B) interact with the quarks of the first pair and lead to a modified (q anti q) system in interaction with C = +1 quantum numbers. A review of the recent theoretical activity concerning resonance production and related problems is given under the following headings: hadronic C = +1 spectroscopy (q anti q, qq anti q anti q, q anti q g, gg, ggg bound states and mixing effects); exclusive ..gamma gamma.. processes (generalities, unitarized Born method, VDM and QCD); total cross section (soft and hard contributions); q/sup 2/ dependence of soft processes (soft/hard separation, 1/sup +- +/ resonances); and polarization effects. (WHK)

  11. Gamma ray transients

    NASA Technical Reports Server (NTRS)

    Cline, Thomas L.

    1987-01-01

    The discovery of cosmic gamma ray bursts was made with systems designed at Los Alamos Laboratory for the detection of nuclear explosions beyond the atmosphere. HELIOS-2 was the first gamma ray burst instrument launched; its initial results in 1976, seemed to deepen the mystery around gamma ray transients. Interplanetary spacecraft data were reviewed in terms of explaining the behavior and source of the transients.

  12. Gamma Oscillation in Schizophrenia

    PubMed Central

    O'Donnell, Brian F.; Youn, Soyoung; Kwon, Jun Soo

    2011-01-01

    Dysfunctional neural circuitry has been found to be involved in abnormalities of perception and cognition in patients with schizophrenia. Gamma oscillations are essential for integrating information within neural circuits and have therefore been associated with many perceptual and cognitive processes in healthy human subjects and animals. This review presents an overview of the neural basis of gamma oscillations and the abnormalities in the GABAergic interneuronal system thought to be responsible for gamma-range deficits in schizophrenia. We also review studies of gamma activity in sensory and cognitive processes, including auditory steady state response, attention, object representation, and working memory, in animals, healthy humans and patients with schizophrenia. PMID:22216037

  13. {gamma} production at CDF

    SciTech Connect

    Abe, F.

    1995-07-01

    We report on preliminary measurements of the {gamma}(1S), {gamma}(2S) and {gamma}(3S) differential and integrated cross sections in p{bar p} at {radical}s = 1.8 TeV using a sample of 16.6 {+-} 0.6 pb{sup -1} collected by the Collider Detector at Fermilab. The three resonances were reconstructed through the decay {gamma} {yields} {mu}{sup +}{mu}{sup -} in the rapidity region {vert_bar}y{vert_bar} < 0.4. The cross section results are compared to theoretical models of direct bottomonium production.

  14. Quality assessment of fluoxetine and fluvoxamine pharmaceutical formulations purchased in different countries or via the Internet by 19F and 2D DOSY 1H NMR.

    PubMed

    Trefi, Saleh; Gilard, Véronique; Balayssac, Stéphane; Malet-Martino, Myriam; Martino, Robert

    2008-03-13

    A simple and selective (19)F NMR method has been validated for the quantitation of fluoxetine (FLX) and fluvoxamine (FLV) in methanol solutions and in human plasma and urine. The regression equations for FLX and FLV showed a good linearity in the range of 1.4-620 microg mL(-1) (3.3 x 10(-6)-1.8 x 10(-3) mol L(-1)) with a limit of detection of approximately 0.5 microg mL(-1) (1.3 x 10(-6) mol L(-1)) and a limit of quantification of approximately 2 microg mL(-1) (4.6 x 10(-6) mol L(-1)). The precision of the assay depends on the concentrations and is comprised between 1.5 and 9.5% for a range of concentrations between 1.2 x 10(-3) and 3.2 x 10(-6) mol L(-1). The accuracy evaluated through recovery studies ranged from approximately 96 to 103% in methanol solutions and in urine, and from approximately 93 to 104% in plasma, with standard deviations <7.5%. The low sensitivity of the method precludes its use for the assay of these antidepressants in biofluids at least at therapeutic doses as the ranges of FLX and FLV plasma levels are 0.15-0.5 microg mL(-1) and 0.15-0.25 microg mL(-1), respectively. The method was applied successfully to the determination of FLX and FLV contents in pharmaceutical samples (brand-named and generic) purchased in several countries or via the Internet. All the commercial formulations contain the active ingredient in the range 94-103% of stated concentration. A "signature" of the formulations (solid and liquid) was obtained with 2D Diffusion-Ordered SpectroscopY (DOSY) (1)H NMR which allowed the characterisation of the active ingredient and excipients present in the formulations studied. Finally, the DOSY separation of FLX and FLV whose molecular weights are very close was obtained by using beta-cyclodextrin as host-guest complexing agent. PMID:18206329

  15. Muons in gamma showers

    NASA Technical Reports Server (NTRS)

    Stanev, T.; Vankov, C. P.; Halzen, F.

    1985-01-01

    Muon production in gamma-induced air showers, accounting for all major processes. For muon energies in the GeV region the photoproduction is by far the most important process, while the contribution of micron + micron pair creation is not negligible for TeV muons. The total rate of muons in gamma showers is, however, very low.

  16. Directional gamma detector

    DOEpatents

    LeVert, Francis E.; Cox, Samson A.

    1981-01-01

    An improved directional gamma radiation detector has a collector sandwiched etween two layers of insulation of varying thicknesses. The collector and insulation layers are contained within an evacuated casing, or emitter, which releases electrons upon exposure to gamma radiation. Delayed electrons and electrons entering the collector at oblique angles are attenuated as they pass through the insulation layers on route to the collector.

  17. Gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stecker, F. W. (Editor); Trombka, J. I. (Editor)

    1973-01-01

    Conference papers on gamma ray astrophysics are summarized. Data cover the energy region from about 0.3 MeV to a few hundred GeV and theoretical models of production mechanisms that give rise to both galactic and extragalactic gamma rays.

  18. Gamma-Ray Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2011-01-01

    The Fermi Gamma-Ray Space Telescope has revolutionized the study of pulsar physics with the detection of over 80 gamma-ray pulsars. Several new populations have been discovered, including 24 radio quiet pulsars found through gamma-ray pulsations alone and about 20 millisecond gamma-ray pulsars. The gamma-ray pulsations from millisecond pulsars were discovered by both folding at periods of known radio millisecond pulsars or by detecting them as gamma-ray sources that are followed up by radio pulsar searches. The second method has resulted in a phenomenally successful synergy, with -35 new radio MSPs (to date) having been discovered at Fermi unidentified source locations and the gamma-ray pulsations having then been detected in a number of these using the radio timing solutions. The higher sensitivity and larger energy range of the Fermi Large Area Telescope has produced detailed energy-dependent light curves and phase-resolved spectroscopy on brighter pulsars, that have ruled out polar cap models as the major source of the emission in favor of outer magnetosphere accelerators. The large number of gamma-ray pulsars now allows for the first time meaningful population and sub-population studies that are revealing surprising properties of these fascinating sources.

  19. Optical gamma thermometer

    DOEpatents

    Koster, Glen Peter; Xia, Hua; Lee, Boon Kwee

    2013-08-06

    An optical gamma thermometer includes a metal mass having a temperature proportional to a gamma flux within a core of a nuclear reactor, and an optical fiber cable for measuring the temperature of the heated metal mass. The temperature of the heated mass may be measured by using one or more fiber grating structures and/or by using scattering techniques, such as Raman, Brillouin, and the like. The optical gamma thermometer may be used in conjunction with a conventional reactor heat balance to calibrate the local power range monitors over their useful in-service life. The optical gamma thermometer occupies much less space within the in-core instrument tube and costs much less than the conventional gamma thermometer.

  20. LASER-PLASMA-ACCELERATOR-BASED GAMMA GAMMA COLLIDERS

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Toth, Cs.; Geddes, C. G. R.; Leemans, W. P.

    2009-05-04

    Design considerations for a next-generation linear collider based on laser-plasma-accelerators are discussed, and a laser-plasma-accelerator-based gamma-gamma collider is considered. An example of the parameters for a 0.5 TeV laser-plasma-accelerator gamma gamma collider is presented.

  1. Prospects for gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Solar Maximum Mission and the Gamma Ray Experiment aboard the SMM spacecraft are discussed. Mission plans for interplanetary probes are also discussed. The Gamma Ray observatory and its role in future gamma ray astronomy is highlighted. It is concluded that gamma ray astronomy will be of major importance in the development of astronomical models and in the development of comsological theory.

  2. THE {gamma}SF METHOD

    SciTech Connect

    Utsunomiya, H.; Akimune, H.; Yamagata, T.; Kondo, T.; Iwamoto, C.; Okamoto, A.; Goriely, S.; Harada, H.; Kitatani, F.; Goko, S.; Toyokawa, H.; Yamada, K.; Lui, Y.-W.; Hilaire, S.; Koning, A. J.

    2011-10-28

    The {gamma}-ray strength function ({gamma}SF) interconnects radiative neutron capture and photoneutron emission as a common ingredient in the statistical model. Outlined here is an indirect method of determining radiative neutron-capture cross sections for unstable nuclei based on the {gamma}-ray strength function. Application examples of the {gamma}SF method are demonstrated.

  3. The gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An overview is given of the Gamma Ray Observatory (GRO) mission. Detection of gamma rays and gamma ray sources, operations using the Space Shuttle, and instruments aboard the GRO, including the Burst and Transient Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma Ray Experiment Telescope (EGRET) are among the topics surveyed.

  4. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1991-01-01

    Miscellaneous tasks related to the development of the Bursts and Transient Source Experiment on the Gamma Ray Observatory and to analysis of archival data from balloon flight experiments were performed. The results are summarized and relevant references are included.

  5. Gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1982-01-01

    Cosmic gamma rays, the physical processes responsible for their production and the astrophysical sites from which they were seen are reported. The bulk of the observed gamma ray emission is in the photon energy range from about 0.1 MeV to 1 GeV, where observations are carried out above the atmosphere. There are also, however, gamma ray observations at higher energies obtained by detecting the Cerenkov light produced by the high energy photons in the atmosphere. Gamma ray emission was observed from sources as close as the Sun and the Moon and as distant as the quasar 3C273, as well as from various other galactic and extragalactic sites. The radiation processes also range from the well understood, e.g. energetic particle interactions with matter, to the still incompletely researched, such as radiation transfer in optically thick electron positron plasmas in intense neutron star magnetic fields.

  6. Gamma ray line astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.

    1984-01-01

    The interpretations and implications of the astrophysical observations of gamma-ray lines are reviewed. At the Galactic Center e(+)-e(-) pairs from a compact object produce an annihilation line that shows no redshift, indicating an annihilation site far removed from this object. In the jets of SS433, gamma-ray lines are produced by inelastic excitations, probably in dust grains, although line emission from fusion reactions has also been considered. Observations of diffuse galactic line emission reveal recently synthesized radioactive aluminum in the interstellar medium. In gamma-ray bursts, redshifted pair annihilation lines are consistent with a neutron star origin for the bursts. In solar flares, gamma-ray line emission reveals the prompt acceleration of protons and nuclei, in close association with the flare energy release mechanism.

  7. Gamma Ray Pulsars: Observations

    NASA Technical Reports Server (NTRS)

    Thompson, David J.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    High-energy gamma rays are a valuable tool for studying particle acceleration and radiation in the magnetospheres of energetic pulsars. The six or more pulsars seen by CGRO/EGRET show that: the light curves usually have double-peak structures (suggesting a broad cone of emission); gamma rays are frequently the dominant component of the radiated power; and all the spectra show evidence of a high-energy turnover. Unless a new pulsed component appears at higher energies, progress in gamma-ray pulsar studies will be greatest in the 1-20 GeV range. Ground-based telescopes whose energy ranges extend downward toward 10 GeV should make important measurements of the spectral cutoffs. The Gamma-ray Large Area Space Telescope (GLAST), now in planning for a launch in 2005, will provide a major advance in sensitivity, energy range, and sky coverage.

  8. Dynamic gamma knife radiosurgery

    NASA Astrophysics Data System (ADS)

    Luan, Shuang; Swanson, Nathan; Chen, Zhe; Ma, Lijun

    2009-03-01

    Gamma knife has been the treatment of choice for various brain tumors and functional disorders. Current gamma knife radiosurgery is planned in a 'ball-packing' approach and delivered in a 'step-and-shoot' manner, i.e. it aims to 'pack' the different sized spherical high-dose volumes (called 'shots') into a tumor volume. We have developed a dynamic scheme for gamma knife radiosurgery based on the concept of 'dose-painting' to take advantage of the new robotic patient positioning system on the latest Gamma Knife C™ and Perfexion™ units. In our scheme, the spherical high dose volume created by the gamma knife unit will be viewed as a 3D spherical 'paintbrush', and treatment planning reduces to finding the best route of this 'paintbrush' to 'paint' a 3D tumor volume. Under our dose-painting concept, gamma knife radiosurgery becomes dynamic, where the patient moves continuously under the robotic positioning system. We have implemented a fully automatic dynamic gamma knife radiosurgery treatment planning system, where the inverse planning problem is solved as a traveling salesman problem combined with constrained least-square optimizations. We have also carried out experimental studies of dynamic gamma knife radiosurgery and showed the following. (1) Dynamic gamma knife radiosurgery is ideally suited for fully automatic inverse planning, where high quality radiosurgery plans can be obtained in minutes of computation. (2) Dynamic radiosurgery plans are more conformal than step-and-shoot plans and can maintain a steep dose gradient (around 13% per mm) between the target tumor volume and the surrounding critical structures. (3) It is possible to prescribe multiple isodose lines with dynamic gamma knife radiosurgery, so that the treatment can cover the periphery of the target volume while escalating the dose for high tumor burden regions. (4) With dynamic gamma knife radiosurgery, one can obtain a family of plans representing a tradeoff between the delivery time and the

  9. Gamma ray camera

    SciTech Connect

    Robbins, C.D.; Wang, S.

    1980-09-09

    An anger gamma ray camera is improved by the substitution of a gamma ray sensitive, proximity type image intensifier tube for the scintillator screen in the anger camera, the image intensifier tube having a negatively charged flat scintillator screen and a flat photocathode layer and a grounded, flat output phosphor display screen all of the same dimension (Unity image magnification) and all within a grounded metallic tube envelope and having a metallic, inwardly concaved input window between the scintillator screen and the collimator.

  10. Gamma ray optics

    SciTech Connect

    Jentschel, M.; Guenther, M. M.; Habs, D.; Thirolf, P. G.

    2012-07-09

    Via refractive or diffractive scattering one can shape {gamma} ray beams in terms of beam divergence, spot size and monochromaticity. These concepts might be particular important in combination with future highly brilliant gamma ray sources and might push the sensibility of planned experiments by several orders of magnitude. We will demonstrate the experimental feasibility of gamma ray monochromatization on a ppm level and the creation of a gamma ray beam with nanoradian divergence. The results are obtained using the inpile target position of the High Flux Reactor of the ILL Grenoble and the crystal spectrometer GAMS. Since the refractive index is believed to vanish to zero with 1/E{sup 2}, the concept of refractive optics has never been considered for gamma rays. The combination of refractive optics with monochromator crystals is proposed to be a promising design. Using the crystal spectrometer GAMS, we have measured for the first time the refractive index at energies in the energy range of 180 - 2000 keV. The results indicate a deviation from simple 1/E{sup 2} extrapolation of X-ray results towards higher energies. A first interpretation of these new results will be presented. We will discuss the consequences of these results on the construction of refractive optics such as lenses or refracting prisms for gamma rays and their combination with single crystal monochromators.

  11. Nano {gamma}'/{gamma}'' composite precipitates in Alloy 718

    SciTech Connect

    Phillips, P. J.; McAllister, D.; Gao, Y.; Lv, D.; Williams, R. E. A.; Wang, Y.; Mills, M. J.; Peterson, B.

    2012-05-21

    Nanoscale composite precipitates of Alloy 718 have been investigated with both high-resolution scanning transmission electron microscopy and phase field modeling. Chemical analysis via energy-dispersive x-ray spectroscopy allowed for the differentiation of {gamma}' and {gamma}'' particles, which is not otherwise possible through traditional Z-contrast methods. Phase field modeling was applied to determine the stress distribution and elastic interaction around and between the particles, respectively, and it was determined that a composite particle (of both {gamma}' and {gamma}'') has an elastic energy that is significantly lower than, for example, single {gamma}' and {gamma}'' precipitates which are non-interacting.

  12. Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The project has progressed successfully during this period of performance. The highlights of the Gamma Ray Astronomy teams efforts are: (1) Support daily BATSE data operations, including receipt, archival and dissemination of data, quick-look science analysis, rapid gamma-ray burst and transient monitoring and response efforts, instrument state-of-health monitoring, and instrument commanding and configuration; (2) On-going scientific analysis, including production and maintenance of gamma-ray burst, pulsed source and occultation source catalogs, gamma-ray burst spectroscopy, studies of the properties of pulsars and black holes, and long-term monitoring of hard x-ray sources; (3) Maintenance and continuous improvement of BATSE instrument response and calibration data bases; (4) Investigation of the use of solid state detectors for eventual application and instrument to perform all sky monitoring of X-Ray and Gamma sources with high sensitivity; and (5) Support of BATSE outreach activities, including seminars, colloquia and World Wide Web pages. The highlights of this efforts can be summarized in the publications and presentation list.

  13. Gamma ray camera

    DOEpatents

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  14. Gamma ray camera

    DOEpatents

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  15. Gamma-ray bursts.

    PubMed

    Gehrels, Neil; Mészáros, Péter

    2012-08-24

    Gamma-ray bursts (GRBs) are bright flashes of gamma rays coming from the cosmos. They occur roughly once per day, typically last for tens of seconds, and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this Review, we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglow. PMID:22923573

  16. Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Meszaros, Peter

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma-rays coming from the cosmos. They occur roughly once per day ,last typically lOs of seconds and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  17. Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Gehrels, Neil; Mészáros, Péter

    2012-08-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma rays coming from the cosmos. They occur roughly once per day, typically last for tens of seconds, and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this Review, we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglow.

  18. Measurement of the gamma gamma* --> eta and gamma gamma* --> eta' transition form factors

    SciTech Connect

    del Amo Sanchez et al, P.

    2011-02-07

    We study the reactions e{sup +}e{sup -} {yields} e{sup +}e{sup -} {eta}{sup (/)} in the single-tag mode and measure the {gamma}{gamma}* {yields} {eta}{sup (/)} transition form factors in the momentum transfer range from 4 to 40 GeV{sup 2}. The analysis is based on 469 fb{sup -1} of integrated luminosity collected at PEP-II with the BABAR detector at e{sup +}e{sup -} center-of-mass energies near 10.6 GeV.

  19. Interferon Gamma-1b Injection

    MedlinePlus

    Interferon gamma-1b injection is used to reduce the frequency and severity of serious infections in people ... with severe, malignant osteopetrosis (an inherited bone disease). Interferon gamma-1b is in a class of medications ...

  20. SYNTH - Gamma Ray Spectrum Synthesizer

    Energy Science and Technology Software Center (ESTSC)

    2009-05-18

    SYNTH was designed to synthesize the results of typical gamma-ray spectroscopy experiments. The code allows a user to specify the physical characteristics of a gamma-ray source, the quantity of radionuclides emitting gamma radiation, the source-to-detector distance and the presence and type of any intervening absorbers, the size and type of the gamma-ray detector, and the electronic set-up used to gather the data.

  1. Celestial gamma ray study

    NASA Technical Reports Server (NTRS)

    Michelson, Peter F.

    1995-01-01

    This report documents the research activities performed by Stanford University investigators as part of the data reduction effort and overall support of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Observatory. This report is arranged chronologically, with each subsection detailing activities during roughly a one year period of time, beginning in June 1991.

  2. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1991-01-01

    Miscellaneous tasks related to the development of the Burst and Transient Source Experiment on the Gamma Ray Observatory and to collection, analysis, and interpretation of data from the MSFC Very Low Frequency transient monitoring program were performed. The results are summarized and relevant references are included.

  3. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1992-01-01

    Miscellaneous tasks related to mission operations and data analysis for the Burst and Transient Source Experiment on the Gamma Ray Observatory, to collection, analysis, and interpretation of data from the Marshall Space Flight Center Very Low Frequency transient monitoring program, and to compilation and analysis of induced radioactivity data were performed. The results are summarized and relevant references are included.

  4. Gamma ray astronomy in perspective

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A brief overview of the development of gamma ray astronomy is presented. Gamma ray telescopes and other optical measuring instruments are highlighted. Emphasis is placed on findings that were unobtainable before gamma ray astronomy. Information on evolution of the solar system, the relationship of the solar system to the galaxy, and the composition of interstellar matter is discussed.

  5. The GAMMA-400 gamma-ray telescope for precision gamma-ray emission investigations

    NASA Astrophysics Data System (ADS)

    Topchiev, N. P.; Galper, A. M.; Bonvicini, V.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bakaldin, A. V.; Bergstrom, L.; Berti, E.; Bigongiari, G.; Bobkov, S. G.; Boezio, M.; Bogomolov, E. A.; Bonechi, L.; Bongi, M.; Bottai, S.; Castellini, G.; Cattaneo, P. W.; Cumani, P.; Dalkarov, O. D.; Dedenko, G. L.; De Donato, C.; Dogiel, V. A.; Finetti, N.; Gascon, D.; Gorbunov, M. S.; Gusakov, Yu V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kaplun, A. A.; Kheymits, M. D.; Korepanov, V. E.; Larsson, J.; Leonov, A. A.; Loginov, V. A.; Longo, F.; Maestro, P.; Marrocchesi, P. S.; Martinez, M.; Men'shenin, A. L.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu; Papini, P.; Paredes, J. M.; Pearce, M.; Picozza, P.; Rappoldi, A.; Ricciarini, S.; Runtso, M. F.; Ryde, F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Suchkov, S. I.; Taraskin, A. A.; Tavani, M.; Tiberio, A.; Tyurin, E. M.; Ulanov, M. V.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Ward, J. E.; Yurkin, Yu T.; Zampa, N.; Zirakashvili, V. N.; Zverev, V. G.

    2016-02-01

    The GAMMA-400 gamma-ray telescope with excellent angular and energy resolutions is designed to search for signatures of dark matter in the fluxes of gamma-ray emission and electrons + positrons. Precision investigations of gamma-ray emission from Galactic Center, Crab, Vela, Cygnus, Geminga, and other regions will be performed, as well as diffuse gamma-ray emission, along with measurements of high-energy electron + positron and nuclei fluxes. Furthermore, it will study gamma-ray bursts and gamma-ray emission from the Sun during periods of solar activity. The GAMMA-400 energy range is expected to be from ∼20 MeV up to TeV energies for gamma rays, up to 10 TeV for electrons + positrons, and up to 1015 eV for cosmic-ray nuclei. For 100-GeV gamma rays, the GAMMA-400 angular resolution is ∼0.01° and energy resolution is ∼1% the proton rejection factor is ∼5x105. GAMMA-400 will be installed onboard the Russian space observatory.

  6. Topics in gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1986-01-01

    Observations of gamma rays from solar flares, gamma ray bursts, the Galactic center, galactic nucleosynthesis, SS433, and Cygnus X-3, and their effects on astrophysical problems are discussed. It is observed that gamma ray spectra from solar flares are applicable to the study of particle acceleration and confinement and the determination of chemical abundances in the solar atmosphere. The gamma ray lines from the compact galactic object SS433 are utilized to examine the acceleration of jets, and analysis of the gamma ray lines of Cygnus X-3 reveal that particles can be accelerated in compact sources to ultrahigh energies.

  7. Topics in gamma ray astronomy

    NASA Astrophysics Data System (ADS)

    Ramaty, R.; Lingenfelter, R. E.

    Observations of gamma rays from solar flares, gamma ray bursts, the Galactic center, galactic nucleosynthesis, SS433, and Cygnus X-3, and their effects on astrophysical problems are discussed. It is observed that gamma ray spectra from solar flares are applicable to the study of particle acceleration and confinement and the determination of chemical abundances in the solar atmosphere. The gamma ray lines from the compact galactic object SS433 are utilized to examine the acceleration of jets, and analysis of the gamma ray lines of Cygnus X-3 reveal that particles can be accelerated in compact sources to ultrahigh energies.

  8. Unidentified Gamma-Ray Sources: Hunting Gamma-Ray Blazars

    SciTech Connect

    Massaro, F.; D'Abrusco, R.; Tosti, G.; Ajello, M.; Gasparrini, A.Paggi.D.

    2012-04-02

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of the unidentified {gamma}-ray sources (UGSs). Despite the large improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one third of the Fermi-detected objects are still not associated to low energy counterparts. Recently, using the Wide-field Infrared Survey Explorer (WISE) survey, we discovered that blazars, the rarest class of Active Galactic Nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated to the UGS sample of the second Fermi {gamma}-ray catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated to {gamma}-ray sources in the 2FGL catalog.

  9. UNIDENTIFIED {gamma}-RAY SOURCES: HUNTING {gamma}-RAY BLAZARS

    SciTech Connect

    Massaro, F.; Ajello, M.; D'Abrusco, R.; Paggi, A.; Tosti, G.; Gasparrini, D.

    2012-06-10

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of unidentified {gamma}-ray sources (UGSs). Despite the major improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one-third of the Fermi-detected objects are still not associated with low-energy counterparts. Recently, using the Wide-field Infrared Survey Explorer survey, we discovered that blazars, the rarest class of active galactic nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated with the UGS sample of the second Fermi {gamma}-ray LAT catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart to each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated with {gamma}-ray sources in the 2FGL catalog.

  10. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1994-01-01

    The Burst and Transient Source Experiment (BATSE) is one of four instruments on the Compton observatory which was launched by the space shuttle Atlantis on April 5, 1991. As of mid-March, 1994, BATSE detected more than 925 cosmic gamma-ray bursts and more than 725 solar flares. Pulsed gamma rays have been detected from at least 16 sources and emission from at least 28 sources (including most of the pulsed sources) has been detected by the earth occultation technique. UAH participation in BATSE is extensive but can be divided into two main areas, operations and data analysis. The daily BATSE operations tasks represent a substantial level of effort and involve a large team composed of MSFC personnel as well as contractors such as UAH. The scientific data reduction and analysis of BATSE data is also a substantial level of effort in which UAH personnel have made significant contributions.

  11. Gamma ray collimator

    NASA Technical Reports Server (NTRS)

    Casanova, Edgar J. (Inventor)

    1991-01-01

    A gamma ray collimator including a housing having first and second sections is disclosed. The first section encloses a first section of depleted uranium which is disposed for receiving and supporting a radiation emitting component such as cobalt 60. The second section encloses a depleted uranium member which is provided with a conical cut out focusing portion disposed in communication with the radiation emitting element for focusing the emitted radiation to the target.

  12. Gamma ray collimator

    NASA Technical Reports Server (NTRS)

    Casanova, Edgar J. (Inventor)

    1993-01-01

    A gamma ray collimator including a housing having first and second sections. The first section encloses a first section of depleted uranium which is disposed for receiving and supporting a radiation emitting component such as cobalt 60. The second section encloses a depleted uranium member which is provided with a conical cut-out focusing portion disposed in communication with the radiation emitting element for focusing the emitted radiation to the target.

  13. Probing anomalous quartic couplings in e{gamma} and {gamma}{gamma} colliders

    SciTech Connect

    Eboli, O. J. P.; Mizukoshi, J. K.

    2001-10-01

    We analyze the potential of the e{sup +}e{sup -} linear colliders, operating in the e{gamma} and {gamma}{gamma} modes, to probe anomalous quartic vector-boson interactions through the multiple production of W's and Z's. We examine all SU(2){sub L}(circle times)U(1){sub Y} chiral operators of order p{sup 4} that lead to new four-gauge-boson interactions but do not alter trilinear vertices. We show that the e{gamma} and {gamma}{gamma} modes are able not only to establish the existence of a strongly interacting symmetry breaking sector but also to probe for anomalous quartic couplings of the order of 10{sup -2} at 90% C.L. Moreover, the information gathered in the e{gamma} mode can be used to reduce the ambiguities of the e{sup +}e{sup -} mode.

  14. gamma. -hexachlorocyclohexane (. gamma. -HCH) activates washed rabbit platelets

    SciTech Connect

    Lalau-Keraly, C.; Delautier, D.; Benveniste, J.; Puiseux-Dao, S.

    1986-03-01

    In guinea-pig macrophages, ..gamma..-HCH triggers activation of the phosphatidylinositol cycle and Ca/sup 2 +/ mobilization. Since these two biochemical events are also involved in platelet activation, the authors examined the effects of ..gamma..-HCH on washed rabbit platelets. Release of /sup 14/C-serotonin (/sup 14/C-5HT) and ATP from platelets prelabelled with /sup 14/C-5HT was measured simultaneously with aggregation. ..gamma..-HCH induced shape-change, aggregation and release reaction of platelets. Maximal aggregation (89 arbitrary units, AU), was observed using 170 ..mu..M ..gamma..-HCH, and was associated with 38.1 +/- 6.9% and 161 +/- 48 nM for /sup 14/C-5HT and ATP release respectively (mean +/- 1 SD, n=3). Using 80 ..mu..M ..gamma..-HCH yielded 18 AU, 12.8 +/- 1.0% and 27 +/- 14 nM for aggregation, C-5HT and ATP release respectively (n=3). No effect was observed with 40 ..mu.. M ..gamma..-HCH. Aspirin (ASA), a cyclooxygenase blocker, did not affect ..gamma..-HCH-induced platelet activation. Apyrase (APY), an ADP scavenger, inhibited by 90% aggregation induced by 170 ..mu..M ..gamma..-HCH and slightly inhibited (15%) the /sup 14/C-5HT release. In the presence of both ASA and APY, 96% inhibition of aggregation and 48% inhibition of /sup 14/C-5HT release were observed. Thus, ..gamma..-HCH induced platelet activation in a dose-dependent manner ADP, but not cyclooxygenase-dependent arachidonate metabolites, is involved in ..gamma..-HCH-induced aggregation, whereas, both appear to play a role in ..gamma..-HCH-induced release reaction.

  15. Simultaneous beta and gamma spectroscopy

    DOEpatents

    Farsoni, Abdollah T.; Hamby, David M.

    2010-03-23

    A phoswich radiation detector for simultaneous spectroscopy of beta rays and gamma rays includes three scintillators with different decay time characteristics. Two of the three scintillators are used for beta detection and the third scintillator is used for gamma detection. A pulse induced by an interaction of radiation with the detector is digitally analyzed to classify the type of event as beta, gamma, or unknown. A pulse is classified as a beta event if the pulse originated from just the first scintillator alone or from just the first and the second scintillator. A pulse from just the third scintillator is recorded as gamma event. Other pulses are rejected as unknown events.

  16. E6 Gamma Decay

    SciTech Connect

    Brown, B. Alex; Rae, W. D. M.

    2011-05-06

    Rare electric hexacontatetrapole (E6) transitions are studied in the full (f{sub 7/2},f{sub 5/2},p{sub 3/2},p{sub 1/2}) shell-model basis. Comparison of theory to the results from the gamma decay in {sup 53}Fe and from inelastic electron scattering on {sup 52}Cr provides unique and interesting tests of the valence wavefunctions, the models used for energy density functionals and into the origin of effective charge.

  17. Gamma rays for pedestrians

    SciTech Connect

    Lipkin, H.J.

    1987-05-07

    Nuclear gamma radiation does not have many of the properties taken for granted in atomic or molecular radiation and necessary for lasers. The basic science and technology underlying these differences and the proposed methods of overcoming difficulties resulting from them are not properly understood. Considerable illumination in this interdisciplinary problem could be provided by some back-of-the-envelope calculations and simple experimental surveys by small groups of students and postdocs with an elementary knowledge of the nuclear and solid state physics which is evidently not familiar these days to laser physicists. 3 refs.

  18. Metallography of gamma titanium aluminides

    SciTech Connect

    Baeslack, W.A. III . Dept. of Welding Engineering); McQuay, P.A.; Lee, D.S. ); Fletcher, E.D. )

    1993-12-01

    The microstructures of forged and heat treated Ti-48A1-2Nb-2Mn (at.%) and Ti-48A1-2Nb-2Cr (at.%) gamma titanium aluminides have been revealed by the application of selected metallographic preparation techniques and characterized using light microscopy. Examination of the as-polished specimen surface under polarized light was highly effective in revealing the equiaxed gamma grain structure and twins within the gamma grains, but it did not delineate alpha-two phase present at gamma grain boundaries or within a lamellar gamma/alpha-two constituent. Bright-field and differential-interference contrast light microscopy analyses of specimens chemically etched with Kroll's reagent (100mL H[sub 2]O + 4mL HNO[sub 3] + 2mL HF) were marginally effective in characterizing the equiaxed gamma grain structure and likewise did not reveal the alpha-two phase. Furthermore, the application of Kroll's reagent resulted in localized dissolution in the form of fine grooves or microcracks oriented in preferred directions within the equiaxed gamma grains. Under light microscopy, gamma grains that experienced this attack resembled the lamellar gamma/alpha-two constituent. The alpha-two phase was most clearly revealed using an etching solution comprised of 30mL lactic acid + 30mL HNO[sub 3] + 3mL HF, while the gamma grain and twin boundaries were most effectively revealed using an etching solution comprised of 30mL HCL + 10mL HNO[sub 3] + 5mL H[sub 2]O[sub 2] + 3mL HF. An etching solution of 25 mL H[sub 2]O + 50mL glycerol + 25mL HNO[sub 3] + 2mL HF was very effective in simultaneously revealing both the gamma and alpha-two phase morphologies.

  19. New data on ({gamma}, n), ({gamma}, 2n), and ({gamma}, 3n) partial photoneutron reactions

    SciTech Connect

    Varlamov, V. V. Ishkhanov, B. S.; Orlin, V. N.; Peskov, N. N.; Stepanov, M. E.

    2013-11-15

    Systematic discrepancies between the results of various experiments devoted to determining cross sections for total and partial photoneutron reactions are analyzed by using objective criteria of reliability of data in terms of the transitional photoneutron-multiplicity function F{sub i} = {sigma}({gamma}, in)/{sigma}({gamma}, xn), whose values for i = 1, 2, 3, ... cannot exceed by definition 1.00, 0.50, 0.33, ..., respectively. It was found that the majority of experimental data on the cross sections obtained for ({gamma}, n), ({gamma}, 2n), and ({gamma}, 3n) reactions with the aid of methods of photoneutron multiplicity sorting do not meet objective criteria (in particular, F{sub 2} > 0.50 for a vast body of data). New data on the cross sections for partial reactions on {sup 181}Ta and {sup 208}Pb nuclei were obtained within a new experimental-theoretical method that was proposed for the evaluation of cross sections for partial reactions and in which the experimental neutron yield cross section {sigma}{sup expt}({gamma}, xn) = {sigma}({gamma}, n) + 2{sigma}({gamma}, 2n) + 3{sigma}({gamma}, 3n) + ..., which is free from problems associated with determining neutron multiplicities, is used simultaneously with the functions F{sub i}{sup theor} calculated within a combined model of photonuclear reactions.

  20. Generalized gamma frailty model.

    PubMed

    Balakrishnan, N; Peng, Yingwei

    2006-08-30

    In this article, we present a frailty model using the generalized gamma distribution as the frailty distribution. It is a power generalization of the popular gamma frailty model. It also includes other frailty models such as the lognormal and Weibull frailty models as special cases. The flexibility of this frailty distribution makes it possible to detect a complex frailty distribution structure which may otherwise be missed. Due to the intractable integrals in the likelihood function and its derivatives, we propose to approximate the integrals either by Monte Carlo simulation or by a quadrature method and then determine the maximum likelihood estimates of the parameters in the model. We explore the properties of the proposed frailty model and the computation method through a simulation study. The study shows that the proposed model can potentially reduce errors in the estimation, and that it provides a viable alternative for correlated data. The merits of proposed model are demonstrated in analysing the effects of sublingual nitroglycerin and oral isosorbide dinitrate on angina pectoris of coronary heart disease patients based on the data set in Danahy et al. (sustained hemodynamic and antianginal effect of high dose oral isosorbide dinitrate. Circulation 1977; 55:381-387). PMID:16220516

  1. Diffuse gamma radiation

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Simpson, G. A.; Thompson, D. J.

    1977-01-01

    An examination of the intensity, energy spectrum, and spatial distribution of the diffuse gamma-radiation observed by SAS-2 satellite away from the galactic plane in the energy range above 35 MeV has shown that it consists of two components. One component is generally correlated with galactic latitudes, the atomic hydrogen column density was deduced from 21 cm measurements, and the continuum radio emission, believed to be synchrotron emission. It has an energy spectrum similar to that in the plane and joins smoothly to the intense radiation from the plane. It is therefore presumed to be of galactic origin. The other component is apparently isotropic, at least on a coarse scale, and has a steep energy spectrum. No evidence is found for a cosmic ray halo surrounding the galaxy in the shape of a sphere or oblate spheroid with galactic dimensions. Constraints for a halo model with significantly larger dimensions are set on the basis of an upper limit to the gamma-ray anisotropy.

  2. Gamma-hadron families and scaling violation

    NASA Technical Reports Server (NTRS)

    Gaisser, T. K.; Stanev, T.; Wrotniak, J. A.

    1985-01-01

    For three different interaction models we have simulated gamma-hadron families, including the detector (Pamir emulsion chamber) response. Rates of gamma families, hadrons, and hadron-gamma ratios were compared with experiments.

  3. High energy gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.

    1987-01-01

    High energy gamma ray astronomy has evolved with the space age. Nonexistent twenty-five years ago, there is now a general sketch of the gamma ray sky which should develop into a detailed picture with the results expected to be forthcoming over the next decade. The galactic plane is the dominant feature of the gamma ray sky, the longitude and latitude distribution being generally correlated with galactic structural features including the spiral arms. Two molecular clouds were already seen. Two of the three strongest gamma ray sources are pulsars. The highly variable X-ray source Cygnus X-3 was seen at one time, but not another in the 100 MeV region, and it was also observed at very high energies. Beyond the Milky Way Galaxy, there is seen a diffuse radiation, whose origin remains uncertain, as well as at least one quasar, 3C 273. Looking to the future, the satellite opportunities for high energy gamma ray astronomy in the near term are the GAMMA-I planned to be launched in late 1987 and the Gamma Ray Observatory, scheduled for launch in 1990. The Gamma Ray Observatory will carry a total of four instruments covering the entire energy range from 30,000 eV to 3 x 10 to the 10th eV with over an order of magnitude increase in sensitivity relative to previous satellite instruments.

  4. Cyclic oxidation behavior of beta+gamma overlay coatings on gamma and gamma+gamma-prime alloys

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Pilsner, B. H.; Carol, L. A.; Heckel, R. W.

    1984-01-01

    Detailed experimental studies of the cyclic oxidation behavior of low-pressure plasma sprayed beta+gamma coasting on gamma-phase Ni-Cr-Al alloys have shown the correlation of weight change, oxide type, and Cr and Al concentration-distance profiles as a function of oxidation time. Of special interest was the transition to breakway oxidation due to the loss of the Al flux to the oxide and the failure of the coated alloy to form an Al2O3-rich oxide scale. The experimental results on beta+gamma/gamma coating systems were used as the basis of a numerical model (ternary, semi-infinite, finite-difference analysis) which accurately predicted changes in Cr and Al concentration-distance profiles. The model was used to study parameters critical to enhancing the life of coatings which fail by a combination of Al loss in forming the oxide scale and Al loss via interdiffusion with the substrate alloy. Comparisons of beta+gamma/gamma coating behavior are made to the oxidation of coated gamma+gamma-prime substrates, both ternary Ni-Cr-Al alloys and Mar-M 247-type alloys.

  5. The Compton Gamma Ray Observatory

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Chipman, E.; Kniffen, D.

    1994-06-01

    The Arthur Holly Compton Gamma Ray Observatory Compton) is the second in NASA's series of great Observatories. Launched on 1991 April 5, Compton represents a dramatic increase in capability over previous gamma-ray missions. The spacecraft and scientific instruments are all in good health, and many significant discoveries have already been made. We describe the capabilities of the four scientific instruments, and the observing program of the first 2 years of the mission. Examples of early discoveries by Compton are enumerated, including the discovery that gamma-ray bursts are isotropic but spatially inhomogeneous in their distribution; the discovery of a new class of high-energy extragalacatic gamma-ray sources, the gamma-ray AGNs; the discovery of emission from SN 1987A in the nuclear line of Co-57; and the mapping of emission from Al-26 in the interstellar medium (ISM) near the Galactic center. Future observations will include deep surveys of selected regions of the sky, long-tem studies of individual objects, correlative studies of objects at gamma-ray and other energies, a Galactic plane survey at intermediate gamma-ray energies, and improved statistics on gamma-ray bursts to search for small anisotropies. After completion of the all-sky survey, a Guest Investigator program is in progress with guest observers' time share increasing from 30% upward for the late mission phases.

  6. Gamma spectroscopy of environmental samples

    NASA Astrophysics Data System (ADS)

    Siegel, P. B.

    2013-05-01

    We describe experiments for the undergraduate laboratory that use a high-resolution gamma detector to measure radiation in environmental samples. The experiments are designed to instruct the students in the quantitative analysis of gamma spectra and secular equilibrium. Experiments include the radioactive dating of Brazil nuts, determining radioisotope concentrations in natural samples, and measurement of the 235U abundance in uranium rich rocks.

  7. Gamma-ray line astrophysics

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Ramaty, R.

    1986-01-01

    Recent observations of gamma-ray line emission from solar flares, gamma-ray bursts, the galactic center, the interstellar medium and the jets of SS433 are reviewed. The implications of these observations on high energy processes in these sources are discussed.

  8. The Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Chipman, E.; Kniffen, D.

    1994-01-01

    The Arthur Holly Compton Gamma Ray Observatory Compton) is the second in NASA's series of great Observatories. Launched on 1991 April 5, Compton represents a dramatic increase in capability over previous gamma-ray missions. The spacecraft and scientific instruments are all in good health, and many significant discoveries have already been made. We describe the capabilities of the four scientific instruments, and the observing program of the first 2 years of the mission. Examples of early discoveries by Compton are enumerated, including the discovery that gamma-ray bursts are isotropic but spatially inhomogeneous in their distribution; the discovery of a new class of high-energy extragalacatic gamma-ray sources, the gamma-ray AGNs; the discovery of emission from SN 1987A in the nuclear line of Co-57; and the mapping of emission from Al-26 in the interstellar medium (ISM) near the Galactic center. Future observations will include deep surveys of selected regions of the sky, long-tem studies of individual objects, correlative studies of objects at gamma-ray and other energies, a Galactic plane survey at intermediate gamma-ray energies, and improved statistics on gamma-ray bursts to search for small anisotropies. After completion of the all-sky survey, a Guest Investigator program is in progress with guest observers' time share increasing from 30% upward for the late mission phases.

  9. Astrophysical gamma-ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.; Kozlovsky, B.

    1979-01-01

    Observations of gamma-ray lines from solar flares, the Galactic Center, and transient celestial events are reviewed. The lines observed in each case are identified, and possible emission sources are considered. Future prospects for gamma-ray line astronomy are briefly discussed.

  10. Gamma Ray Pulsars: Multiwavelength Observations

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2004-01-01

    High-energy gamma rays are a valuable tool for studying particle acceleration and radiation in the magnetospheres of energetic pulsars. The seven or more pulsars seen by instruments on the Compton Gamma Ray Observatory (CGRO) show that: the light curves usually have double-peak structures (suggesting a broad cone of emission); gamma rays are frequently the dominant component of the radiated power; and all the spectra show evidence of a high-energy turnover. For all the known gamma-ray pulsars, multiwavelength observations and theoretical models based on such observations offer the prospect of gaining a broad understanding of these rotating neutron stars. The Gamma-ray Large Area Space Telescope (GLAST), now in planning for a launch in 2006, will provide a major advance in sensitivity, energy range, and sky coverage.

  11. Gamma rays from Centaurus A

    SciTech Connect

    Gupta, Nayantara

    2008-06-15

    Centaurus A, the cosmic ray accelerator a few Mpc away from us, is possibly one of the nearest sources of extremely high energy cosmic rays. We investigate whether the gamma ray data currently available from Centaurus A in the GeV-TeV energy band can be explained with only proton-proton interactions. We show that for a single power law proton spectrum, mechanisms of {gamma}-ray production other than proton-proton interactions are needed inside this radio-galaxy to explain the gamma ray flux observed by EGRET, upper limits from HESS/CANGAROO-III and the correlated extremely energetic cosmic ray events observed by the Pierre Auger experiment. In future, with better {gamma}-ray data, and simultaneous observation with {gamma}-ray and cosmic ray detectors, it will be possible to carry out such studies on different sources in more detail.

  12. Planetary gamma-ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.

    1978-01-01

    The measured intensities of certain gamma rays of specific energies escaping from a planetary surface can be used to determine the abundances of a number of elements. The fluxes of the more intense gamma-ray lines emitted from 32 elements were calculated using current nuclear data and existing models for the source processes. The source strengths for neutron-capture reactions were modified from those previously used. The fluxes emitted form a surface of average lunar composition are reported for 292 gamma-ray lines. These theoretical fluxes were used elsewhere to convert the data from the Apollo gamma-ray spectrometers to elemental abundances and can be used with measurements from future missions to map the concentrations of a number of elements over a planet's surface. Detection sensitivities for these elements are examined and applications of gamma-ray spectroscopy for future orbiters to Mars and other solar-system objects are discussed.

  13. Gamma Ray Bursts - Observations

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cannizzo, J. K.

    2010-01-01

    We are in an exciting period of discovery for gamma-ray bursts. The Swift observatory is detecting 100 bursts per year, providing arcsecond localizations and sensitive observations of the prompt and afterglow emission. The Fermi observatory is observing 250 bursts per year with its medium-energy GRB instrument and about 10 bursts per year with its high-energy LAT instrument. In addition, rapid-response telescopes on the ground are providing new capabilities to study optical emission during the prompt phase and spectral signatures of the host galaxies. The combined data set is enabling great advances in our understanding of GRBs including afterglow physics, short burst origin, and high energy emission.

  14. Interferon Gamma in Leishmaniasis

    PubMed Central

    Kima, Peter E.; Soong, Lynn

    2013-01-01

    Leishmaniasis is a complex disease that is caused by parasites of the Leishmania genus. Leishmania are further classified into several complexes, each of which can engage in distinct interactions with mammalian hosts resulting in differing disease presentations. It is therefore not unexpected that host immune responses to Leishmania are variable. The induction of interferon gamma (IFN-γ) and response to it in these infections has received considerable attention. In this review, we summarize our current understanding of some of the host responses during Leishmania infections that are regulated by IFN-γ. In addition, studies that explore the nature of parasite-derived molecular mediators that might affect the host response to IFN-γ are also discussed. PMID:23801993

  15. Directionally solidified eutectic gamma-gamma nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Jackson, M. R. (Inventor)

    1977-01-01

    A directionally solidified multivariant eutectic gamma-gamma prime nickel-base superalloy casting having improved high temperature properties was developed. The alloy is comprised of a two phase eutectic structure consisting essentially of on a weight percent base, 6.0 to 9.0 aluminum, 5.0 to 17.0 tantalum, 0-10 cobalt, 0-6 vanadium, 0-6 rhenium, 2.0-6.0 tungsten, and the balance being nickel, subject to the proviso that the sum of the atomic percentages of aluminum plus tantalum is within the range of from 19-22, and the ratio of atomic percentages of tantalum to aluminum plus tantalum is within the range of from 0.12 to 0.23. Embedded within the gamma nickel-base matrix are aligned eutectic gamma prime phase (primarily nickel-aluminum-tantalum) reinforcing fibers.

  16. Jet Shockwaves Produce Gamma Rays

    NASA Video Gallery

    Theorists believe that GRB jets produce gamma rays by two processes involving shock waves. Shells of material within the jet move at different speeds and collide, generating internal shock waves th...

  17. Gamma rays at airplane altitudes

    SciTech Connect

    Iwai, J.; Koss, T.; Lord, J.; Strausz, S.; Wilkes, J.; Woosley, J. )

    1990-03-20

    An examination of the gamma ray flux above 1 TeV in the atmosphere is needed to better understand the anomalous showers from point sources. Suggestions are made for future experiments on board airplanes.

  18. Gamma Astrometric Measurement Experiment

    NASA Astrophysics Data System (ADS)

    Gai, M.; Lattanzi, M. G.; Ligori, S.; Loreggia, D.; Vecchiato, A.

    GAME aims at the measurement of gravitational deflection of the light by the Sun, by an optimised telescope on board a small class satellite. The targeted precision on the gamma parameter of the Parametrised Post-Newtonian formulation of General Relativity is below 10-6, i.e. one to two orders of magnitude better than the best current results. Such precision is suitable to detect possible deviations from the unity value, associated to generalised Einstein models for gravitation, with potentially huge impacts on the cosmological distribution of dark matter and dark energy. The measurement principle is based on differential astrometry. The observations also allow additional scientific objectives related to tests of General Relativity and to the study of exo-planetary systems. The instrument concept is based on a dual field, multiple aperture Fizeau interferometer, observing simultaneously two regions close to the Solar limb. The diluted optics achieves efficient rejection of the solar radiation, with good angular resolution on the science targets. We describe the science motivation, the proposed mission implementation and the expected performance.

  19. Directional detector of gamma rays

    DOEpatents

    Cox, Samson A.; Levert, Francis E.

    1979-01-01

    A directional detector of gamma rays comprises a strip of an electrical cuctor of high atomic number backed with a strip of a second electrical conductor of low atomic number. These elements are enclosed within an electrical conductor that establishes an electrical ground, maintains a vacuum enclosure and screens out low-energy gamma rays. The detector exhibits a directional sensitivity marked by an increased output in the favored direction by a factor of ten over the output in the unfavored direction.

  20. Gamma-ray line astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1979-01-01

    Gamma-ray astronomy is a valuable source of information on solar activity, supernovae, and nucleosynthesis. Cosmic gamma-ray lines were first observed from solar flares and more recently from the galactic center and a transient event. The latter may give an important insight into nuclear reactions taking place near neutron stars and black holes and a measure of the gravitational redshifts of such objects.

  1. Gamma radiation field intensity meter

    DOEpatents

    Thacker, L.H.

    1994-08-16

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  2. Gamma radiation field intensity meter

    DOEpatents

    Thacker, Louis H.

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  3. Gamma radiation field intensity meter

    DOEpatents

    Thacker, Louis H.

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  4. Gamma-ray spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Arnold, J. R.; Peterson, L. E.; Metzger, A. E.; Trombka, J. I.

    1972-01-01

    The experiments in gamma-ray spectrometry to determine the geochemical composition of the lunar surface are reported. The theory is discussed of discrete energy lines of natural radioactivity, and the lines resulting from the bombardment of the lunar surface by high energy cosmic rays. The gamma-ray spectrometer used in lunar orbit and during transearth coast is described, and a preliminary analysis of the results is presented.

  5. Gamma radiation field intensity meter

    DOEpatents

    Thacker, L.H.

    1995-10-17

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  6. Image enhancement based on gamma map processing

    NASA Astrophysics Data System (ADS)

    Tseng, Chen-Yu; Wang, Sheng-Jyh; Chen, Yi-An

    2010-05-01

    This paper proposes a novel image enhancement technique based on Gamma Map Processing (GMP). In this approach, a base gamma map is directly generated according to the intensity image. After that, a sequence of gamma map processing is performed to generate a channel-wise gamma map. Mapping through the estimated gamma, image details, colorfulness, and sharpness of the original image are automatically improved. Besides, the dynamic range of the images can be virtually expanded.

  7. Application of conventional laser technology to gamma-gamma colliders

    SciTech Connect

    Clayton, C.E.; Kurnit, N.A.; Meyerhofer, D.D.

    1995-02-01

    A future e{sup {minus}}e{sup +} (electron-positron) linear collider can be configured with perhaps minimal modification to serve as an {gamma}-{gamma} (gamma-gamma) or a e{sup {minus}}-{gamma} collider. This is accomplished by Compton-backscattering low energy photons (from a laser source) off of the high-energy electron beams prior to the crossing of the electron beams. However, to be competitive with the e{sup {minus}}e{sup +} configuration, the luminosity cannot be compromised in the process. This requires that the laser source deliver a sufficient number of photons per pulse with a pulse format and rate matching that of the electron beams. As it turns out, this requires an average optical power of 5 to 15 kW from the laser which is beyond the current state of the art. In this paper, the authors address how to generate the required pulse format and how the high average power requirement can be met with conventional laser technology. They also address concerns about the survivability of mirrors located near the interaction point. Finally, they list a program of research and development which addresses some of the unknowns in such a system.

  8. The Compton Gamma Ray Observatory

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Chipman, E.; Kniffen, D. A.

    1993-01-01

    The Arthur Holly Compton Gamma Ray Observatory (Compton) was launched by the Space Shuttle Atlantis on 5 April 1991. The spacecraft and instruments are in good health and returning exciting results. The mission provides nearly six orders of magnitude in spectral coverage, from 30 keV to 30 GeV, with sensitivity over the entire range an order of magnitude better than that of previous observations. The 16,000 kilogram observatory contains four instruments on a stabilized platform. The mission began normal operations on 16 May 1991 and is now over half-way through a full-sky survey. The mission duration is expected to be from six to ten years. A Science Support Center has been established at Goddard Space Flight Center for the purpose of supporting a vigorous Guest Investigator Program. New scientific results to date include: (1) the establishment of the isotropy, combined with spatial inhomogeneity, of the distribution of gamma-ray bursts in the sky; (2) the discovery of intense high energy (100 MeV) gamma-ray emission from 3C 279 and other quasars and BL Lac objects, making these the most distant and luminous gamma-ray sources ever detected; (3) one of the first images of a gamma-ray burst; (4) the observation of intense nuclear and position-annihilation gamma-ray lines and neutrons from several large solar flares; and (5) the detection of a third gamma-ray pulsar, plus several other transient and pulsing hard X-ray sources.

  9. Implications of final L3 measurement of {sigma}{sub tot}({gamma}{gamma}{yields}bb)

    SciTech Connect

    Chyla, Jiri

    2006-02-01

    The excess of data on the total cross section of bb production in {gamma}{gamma} collisions over QCD predictions, observed by L3, OPAL and DELPHI Collaborations at LEP2, has so far defied explanation. The recent final analysis of L3 data has brought important new information concerning the dependence of the observed excess on the {gamma}{gamma} collisions energy W{sub {gamma}}{sub {gamma}}. The implications of this dependence are discussed.

  10. The Gamma-ray Sky with Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David

    2012-01-01

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  11. Quality assurance for gamma knives

    SciTech Connect

    Jones, E.D.; Banks, W.W.; Fischer, L.E.

    1995-09-01

    This report describes and summarizes the results of a quality assurance (QA) study of the Gamma Knife, a nuclear medical device used for the gamma irradiation of intracranial lesions. Focus was on the physical aspects of QA and did not address issues that are essentially medical, such as patient selection or prescription of dose. A risk-based QA assessment approach was used. Sample programs for quality control and assurance are included. The use of the Gamma Knife was found to conform to existing standards and guidelines concerning radiation safety and quality control of external beam therapies (shielding, safety reviews, radiation surveys, interlock systems, exposure monitoring, good medical physics practices, etc.) and to be compliant with NRC teletherapy regulations. There are, however, current practices for the Gamma Knife not covered by existing, formalized regulations, standards, or guidelines. These practices have been adopted by Gamma Knife users and continue to be developed with further experience. Some of these have appeared in publications or presentations and are slowly finding their way into recommendations of professional organizations.

  12. The neutron-gamma Feynman variance to mean approach: Gamma detection and total neutron-gamma detection (theory and practice)

    NASA Astrophysics Data System (ADS)

    Chernikova, Dina; Axell, Kåre; Avdic, Senada; Pázsit, Imre; Nordlund, Anders; Allard, Stefan

    2015-05-01

    Two versions of the neutron-gamma variance to mean (Feynman-alpha method or Feynman-Y function) formula for either gamma detection only or total neutron-gamma detection, respectively, are derived and compared in this paper. The new formulas have particular importance for detectors of either gamma photons or detectors sensitive to both neutron and gamma radiation. If applied to a plastic or liquid scintillation detector, the total neutron-gamma detection Feynman-Y expression corresponds to a situation where no discrimination is made between neutrons and gamma particles. The gamma variance to mean formulas are useful when a detector of only gamma radiation is used or when working with a combined neutron-gamma detector at high count rates. The theoretical derivation is based on the Chapman-Kolmogorov equation with the inclusion of general reactions and corresponding intensities for neutrons and gammas, but with the inclusion of prompt reactions only. A one energy group approximation is considered. The comparison of the two different theories is made by using reaction intensities obtained in MCNPX simulations with a simplified geometry for two scintillation detectors and a 252Cf-source. In addition, the variance to mean ratios, neutron, gamma and total neutron-gamma are evaluated experimentally for a weak 252Cf neutron-gamma source, a 137Cs random gamma source and a 22Na correlated gamma source. Due to the focus being on the possibility of using neutron-gamma variance to mean theories for both reactor and safeguards applications, we limited the present study to the general analytical expressions for Feynman-alpha formulas.

  13. Gamma Ray Astronomy with LHAASO

    NASA Astrophysics Data System (ADS)

    Vernetto, S.; LHAASO Collaboration

    2016-05-01

    The aim of LHAASO is the development of an air shower experiment able to monitor with unprecedented sensitivity the gamma ray sky at energies from ~200 GeV to 1 PeV, and at the same time be an instrument able to measure the cosmic ray spectrum, composition and anisotropy in a wide energy range (~1 TeV to 1 EeV). LHAASO, thanks to the large area and the high capability of background rejection, can reach sensitivities to gamma ray fluxes above 30 TeV that are about 100 times higher than that of current instruments, offering the possibility to monitor for the first time the gamma ray sky up to PeV energies and to discover the long sought “Pevatrons”.

  14. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  15. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A.M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A.I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Moiseev, A. A.; Mocchiutti, E.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Picozza, P.; Rodin, V. G.; Runtso, M. F.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Topchiev, N. P.; Vacchi, A.

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approx. 0.01 deg (E(sub gamma) > 100 GeV), the energy resolution approx. 1% (E(sub gamma) > 10 GeV), and the proton rejection factor approx 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  16. BETA-GAMMA PERSONNEL DOSIMETER

    DOEpatents

    Davis, D.M.; Gupton, E.D.; Hart, J.C.; Hull, A.P.

    1961-01-17

    A personnel dosimeter is offered which is sensitive to both gamma and soft beta radiations from all directions within a hemisphere. The device is in the shape of a small pill box which is worn on a worker-s wrist. The top and sides of the device are provided with 50 per cent void areas to give 50 per cent response to the beta rays and complete response to the gamma rays. The device is so constructed as to have a response which will approximate the dose received by the basal layer of the human epidermis.

  17. Nuclear fuel microsphere gamma analyzer

    DOEpatents

    Valentine, Kenneth H.; Long, Jr., Ernest L.; Willey, Melvin G.

    1977-01-01

    A gamma analyzer system is provided for the analysis of nuclear fuel microspheres and other radioactive particles. The system consists of an analysis turntable with means for loading, in sequence, a plurality of stations within the turntable; a gamma ray detector for determining the spectrum of a sample in one section; means for analyzing the spectrum; and a receiver turntable to collect the analyzed material in stations according to the spectrum analysis. Accordingly, particles may be sorted according to their quality; e.g., fuel particles with fractured coatings may be separated from those that are not fractured, or according to other properties.

  18. Gamma source for active interrogation

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui; Barletta, William A.

    2009-09-29

    A cylindrical gamma generator includes a coaxial RF-driven plasma ion source and target. A hydrogen plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical gamma generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which has many openings. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired.

  19. Towed seabed gamma ray spectrometer

    SciTech Connect

    Jones, D.G. )

    1994-08-01

    For more than 50 years, the measurement of radioactivity has been used for onshore geological surveys and in laboratories. The British Geological Survey (BGS) has extended the use of this type of equipment to the marine environment with the development of seabed gamma ray spectrometer systems. The present seabed gamma ray spectrometer, known as the Eel, has been successfully used for sediment and solid rock mapping, mineral exploration, and radioactive pollution studies. The range of applications for the system continues to expand. This paper examines the technological aspects of the Eel and some of the applications for which it has been used.

  20. Gamma-ray Imaging Methods

    SciTech Connect

    Vetter, K; Mihailescu, L; Nelson, K; Valentine, J; Wright, D

    2006-10-05

    In this document we discuss specific implementations for gamma-ray imaging instruments including the principle of operation and describe systems which have been built and demonstrated as well as systems currently under development. There are several fundamentally different technologies each with specific operational requirements and performance trade offs. We provide an overview of the different gamma-ray imaging techniques and briefly discuss challenges and limitations associated with each modality (in the appendix we give detailed descriptions of specific implementations for many of these technologies). In Section 3 we summarize the performance and operational aspects in tabular form as an aid for comparing technologies and mapping technologies to potential applications.

  1. Gamma source for active interrogation

    SciTech Connect

    Leung, Ka-Ngo; Lou, Tak Pui; Barletta, William A.

    2012-10-02

    A cylindrical gamma generator includes a coaxial RF-driven plasma ion source and target. A hydrogen plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical gamma generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which has many openings. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired.

  2. Recombinant interferon-gamma (rIFN-gamma) in dermatology.

    PubMed

    Mahrle, G; Schulze, H J

    1990-12-01

    This paper gives a short review on the function, pharmacokinetics, and therapeutic application of recombinant interferon-gamma (rIFN-gamma) in dermatology. Simultaneously, our own experiences are presented for 57 patients (phase II study) suffering from genital warts (21 patients), psoriatic arthritis (10 patients), psoriasis vulgaris (three patients), malignant melanoma (six patients), bowenoid papulosis (four patients), Behcet's disease (four patients), basal cell carcinoma (six patients), as well as herpes simplex recidivans, epidermodysplasia verruciformis, and mycosis fungoides (one patient each). We conclude that there might be an indication for treatment with rIFN-gamma in genital warts, bowenoid papulosis, Behcet's disease, and microbial infections, such as leprosy and cutaneous leishmaniasis. Even though there are reports of a limited beneficial effect of rIFN-gamma on arthritis and skin lesions in psoriasis, we failed to observe any in 10 patients. The main side effects in our low-dose study (50-100 micrograms/d) were mild fever (78%), fatigue (78%), and myalgia (65%). Laboratory tests revealed an increase in the serum triglyceride level, in particular, in psoriatic patients. PMID:2124242

  3. Gamma radiation characteristics of plutonium dioxide fuel

    NASA Technical Reports Server (NTRS)

    Gingo, P. J.

    1969-01-01

    Investigation of plutonium dioxide as an isotopic fuel for Radioisotope Thermoelectric Generators yielded the isotopic composition of production-grade plutonium dioxide fuel, sources of gamma radiation produced by plutonium isotopes, and the gamma flux at the surface.

  4. Advances in gamma-ray line astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1983-01-01

    Gamma ray line observations of solar flares, gamma ray transients, and the galactic center are reviewed and interpreted. Prospects of future line detections are discussed. Previously announced in STAR as N82-27200

  5. Swift's 500th Gamma Ray Burst

    NASA Video Gallery

    On April 13, 2010, NASA's Swift Gamma-ray Burst Explorer satellite discovered its 500th burst. Swift's main job is to quickly localize each gamma-ray burst (GRB), report its position so that others...

  6. The Gamma-ray Universe through Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2012-01-01

    Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  7. Gamma-Ray Pulsar Studies with GLAST

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2007-01-01

    This viewgraph presentation reviews the prospects of extending the understanding of gamma ray pulsars, and answering the open questions left from the limited observations that are available from current observatories. There are 2 new gamma ray observatories that are either on orbit or will be shortly launched: (1) Astro-rivelatore Gamma a Immagini LEggero (AGILE), and Gamma-ray Large Area Space Telescope (GLAST). On board GLAST there will be two instruments Large Area Telescope (LAT), and GLAST Burst Monitor (GBM).

  8. The Andromeda galaxy in gamma-rays

    NASA Technical Reports Server (NTRS)

    Oezel, M. E.; Berkhuijsen, E. M.

    1987-01-01

    Implications of high-energy gamma-ray observations of the Andromeda galaxy with the next generation of satellites Gamma-1 and GRO are discussed in the context of the origin of cosmic rays and gamma-ray processes. The present estimate of the total gamma-ray flux of this galaxy at energies above 100 MeV is a factor of about three less than previous estimates.

  9. Portable compton gamma-ray detection system

    DOEpatents

    Rowland, Mark S.; Oldaker, Mark E.

    2008-03-04

    A Compton scattered gamma-ray detector system. The system comprises a gamma-ray spectrometer and an annular array of individual scintillators. The scintillators are positioned so that they are arrayed around the gamma-ray spectrometer. The annular array of individual scintillators includes a first scintillator. A radiation shield is positioned around the first scintillator. A multi-channel analyzer is operatively connected to the gamma-ray spectrometer and the annular array of individual scintillators.

  10. Gamma-ray camera flyby

    SciTech Connect

    2010-01-01

    Animation based on an actual classroom demonstration of the prototype CCI-2 gamma-ray camera's ability to image a hidden radioactive source, a cesium-137 line source, in three dimensions. For more information see http://newscenter.lbl.gov/feature-stories/2010/06/02/applied-nuclear-physics/.

  11. Gamma ray slush hydrogen monitor

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Shen, Chih-Peng; Sprinkle, Danny R.

    1992-01-01

    Mass attenuation for 109Cd radiation have been measured in mixtures of phases and in single phases of five chemical compounds. As anticipated, the mass attenuation coefficients are independent of the phases of the test chemicals. It is recommended that a slush hydrogen monitoring system based on low energy gamma ray attenuation be developed for utilization aboard the NASP.

  12. Observational Gamma-ray Cosmology

    NASA Astrophysics Data System (ADS)

    Primack, Joel R.; Bullock, James S.; Somerville, Rachel S.

    2005-02-01

    We discuss how measurements of the absorption of gamma-rays from GeV to TeV energies via pair production on the extragalactic background light (EBL) can probe important issues in galaxy formation. Semi-analytic models (SAMs) of galaxy formation, based on the flat LCDM hierarchical structure formation scenario, are used to make predictions of the EBL from 0.1 to 1000 microns. SAMs incorporate simplified physical treatments of the key processes of galaxy formation - including gravitational collapse and merging of dark matter halos, gas cooling and dissipation, star formation, supernova feedback and metal production. We will summarize SAM successes and failures in accounting for observations at low and high redshift. New ground- and space-based gamma ray telescopes will help to determine the EBL, and also help to explain its origin by constraining some of the most uncertain features of galaxy formation theory, including the stellar initial mass function, the history of star formation, and the reprocessing of light by dust. On a separate topic concerning gamma ray cosmology, we discuss a new theoretical insight into the distribution of dark matter at the center of the Milky Way, and its implications concerning the high energy gamma rays observed from the Galactic center.

  13. Cosmological gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Paczynski, Bohdan

    1991-01-01

    The distribution in angle and flux of gamma-ray bursts indicates that the majority of gamma-ray bursters are at cosmological distances, i.e., at z of about 1. The rate is then about 10 exp -8/yr in a galaxy like the Milky Way, i.e., orders of magnitude lower than the estimated rate for collisions between neutron stars in close binary systems. The energy per burst is about 10 exp 51 ergs, assuming isotropic emission. The events appear to be less energetic and more frequent if their emission is strongly beamed. Some tests for the distance scale are discussed: a correlation between the burst's strength and its spectrum; the absorption by the Galactic gas below about 2 keV; the X-ray tails caused by forward scattering by the Galactic dust; about 1 month recurrence of some bursts caused by gravitational lensing by foreground galaxies; and a search for gamma-ray bursts in M31. The bursts appear to be a manifestation of something exotic, but conventional compact objects can provide an explanation. The best possibility is offered by a decay of a bindary composed of a spinning-stellar-mass black-hole primary and a neutron or a strange-quark star secondary. In the final phase the secondary is tidally disrupted, forms an accretion disk, and up to 10 exp 54 ergs are released. A very small fraction of this energy powers the gamma-ray burst.

  14. Gamma and Related Functions Generalized for Sequences

    ERIC Educational Resources Information Center

    Ollerton, R. L.

    2008-01-01

    Given a sequence g[subscript k] greater than 0, the "g-factorial" product [big product][superscript k] [subscript i=1] g[subscript i] is extended from integer k to real x by generalizing properties of the gamma function [Gamma](x). The Euler-Mascheroni constant [gamma] and the beta and zeta functions are also generalized. Specific examples include…

  15. Gamma ray astrophysics. [emphasizing processes and absorption

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1974-01-01

    Gamma ray production processes are reviewed, including Compton scattering, synchrotron radiation, bremsstrahlung interactions, meson decay, nucleon-antinucleon annihilations, and pion production. Gamma ray absorption mechanisms through interactions with radiation and with matter are discussed, along with redshifts and gamma ray fluxes.

  16. Observations of diffuse galactic gamma rays

    NASA Technical Reports Server (NTRS)

    Simpson, G. A.

    1979-01-01

    The observations of galactic diffuse gamma radiation are reviewed. The connections of the gamma ray observations with galactic structure and cosmic rays are discussed. The high latitude galactic component and the low latitude emission from the galactic plane are examined. The observations in other regions of the gamma ray spectrum are discussed.

  17. On some problems of gamma-astronomy

    NASA Technical Reports Server (NTRS)

    Ptuskin, V. S.; Berezinsky, V. S.; Ginzburg, V. L.

    1985-01-01

    Gamma ray emissions from young supernova remnants are discussed and calculated. The positron annihilation line is also calculated. Decay of charged pions in remnants cause generation of high energy neutrinos. This emission of neutrinos is reviewed. The CR origin and gamma emission from Magellanic clouds help to establish the intensity gradient in the galaxy. This gamma astronomical data is briefly discussed.

  18. Gamma ray spectroscopy in astrophysics. [conferences

    NASA Technical Reports Server (NTRS)

    Cline, T. L. (Editor); Ramaty, R. (Editor)

    1978-01-01

    Experimental and theoretical aspects of gamma ray spectroscopy in high energy astrophysics are discussed. Line spectra from solar, stellar, planetary, and cosmic gamma rays are examined as well as HEAO investigations, the prospects of a gamma ray observatory, and follow-on X-ray experiments in space.

  19. Attrition resistant gamma-alumina catalyst support

    DOEpatents

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2006-03-14

    A .gamma.-alumina catalyst support having improved attrition resistance produced by a method comprising the steps of treating a particulate .gamma.-alumina material with an acidic aqueous solution comprising water and nitric acid and then, prior to adding any catalytic material thereto, calcining the treated .gamma.-alumina.

  20. Nuclear gamma rays from energetic particle interactions

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.

    1978-01-01

    Gamma ray line emission from nuclear deexcitation following energetic particle reactions is evaluated. The compiled nuclear data and the calculated gamma ray spectra and intensities can be used for the study of astrophysical sites which contain large fluxes of energetic protons and nuclei. A detailed evaluation of gamma ray line production in the interstellar medium is made.

  1. Terrestrial Gamma-Ray Flashes (TGFs)

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2010-01-01

    This slide presentation reviews the observation of Terrestrial Gamma Ray Flashes (TGFs) by Gamma-Ray Telescopes. These were: (1) BATSE /Compton Observatory, (2) Solar Spectroscopic Imager, (3) AGILE Gamma-ray Telescope, and (4) Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope. It contains charts which display the counts over time, a map or the TGFs observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). and a map showing the latitude and longitude of 85 of the TGFs observed by the Fermi GBM.

  2. Future prospects for gamma-ray

    NASA Technical Reports Server (NTRS)

    Fichtel, C.

    1980-01-01

    Astrophysical phenomena discussed are: the very energetic and nuclear processes associated with compact objects; astrophysical nucleo-synthesis; solar particle acceleration; the chemical composition of the planets and other bodies of the solar system; the structure of our galaxy; the origin and dynamic pressure effects of the cosmic rays; the high energy particles and energetic processes in other galaxies, especially active ones; and the degree of matter antimater symmetry of the universe. The gamma ray results of GAMMA-I, the gamma ray observatory, the gamma ray burst network, solar polar, and very high energy gamma ray telescopes on the ground provide justification for more sophisticated telescopes.

  3. Compton Gamma Ray Observatory Guest Investigator Program

    NASA Technical Reports Server (NTRS)

    Lingenfelter, Richard E.

    1997-01-01

    This paper presents a final report for the Compton Gamma Ray Observatory Guest Investigator Program from 06/01/91-07/31/97. The topics include: 1) Solar Flare Neutron Spectra and Accelerated Ions; 2) Gamma Ray Lines From The Orion Complex; 3) Implications of Nuclear Line Emission From The Orion Complex; 4) Possible Sites of Nuclear Line Emission From Massive OB Associations; 5) Gamma-Ray Burst Repitition and BATSE Position Uncertainties; 6) Effects of Compton Scattering on BATSE Gamma-Ray Burst Spectra; and 7) Selection Biases on the Spectral and Temporal Distribution of Gamma Ray Bursts.

  4. Gamma ray astronomy. [source mechanisms review

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D.

    1974-01-01

    The various source mechanisms for celestial gamma rays are reviewed. The gamma-ray data are examined as a source of information about the processes and source locations for the production of charged particle cosmic rays, galactic structure, explosive nucleosynthesis in supernovae, regions of confinement for cosmic rays, regions where matter-antimatter annihilation occurs, and the general condition in cosmological space both in the past and present. Topics include gamma rays from pi mesons by nuclear interactions, nuclear and supernovae lines, diffuse emission and discrete sources, interstellar absorption and detection of gamma rays, and others. A brief view of the available gamma-ray detection systems and techniques is presented.

  5. Measurement of the gamma gamma* -> pi0 transition form factor

    SciTech Connect

    Aubert, B.

    2009-06-02

    We study the reaction e{sup +}e{sup -} {yields} e{sup +}e{sup -}{pi}{sup 0} in the single tag mode and measure the differential cross section d{sigma}/dQ{sup 2} and the {gamma}{gamma}* {yields} {pi}{sup 0} transition form factor in the mometum transfer range from 4 to 40 GeV{sup 2}. At Q{sup 2} > 10 GeV{sup 2} the measured form factor exceeds the asymptotic limit predicted by perturbative QCD. The analysis is based on 442 fb{sup -1} of integrated luminosity collected at PEP-II with the BABAR detector at e{sup +}e{sup -} center-of-mass energies near 10.6 GeV.

  6. Gamma-ray burster recurrence timescales

    NASA Technical Reports Server (NTRS)

    Schaefer, B. E.; Cline, T. L.

    1984-01-01

    Three optical transients have been found which are associated with gamma-ray bursters (GRBs). The deduced recurrence timescale for these optical transients (tau sub opt) will depend on the minimum brightness for which a flash would be detected. A detailed analysis using all available data of tau sub opt as a function of E(gamma)/E(opt) is given. For flashes similar to those found in the Harvard archives, the best estimate of tau sub opt is 0.74 years, with a 99% confidence interval from 0.23 years to 4.7 years. It is currently unclear whether the optical transients from GRBs also give rise to gamma-ray events. One way to test this association is to measure the recurrence timescale of gamma-ray events tau sub gamma. A total of 210 gamma-ray error boxes were examined and it was found that the number of observed overlaps is not significantly different from the number expected from chance coincidence. This observation can be used to place limits on tau sub gamma for an assumed luminosity function. It was found that tau sub gamma is approx. 10 yr if bursts are monoenergetic. However, if GRBs have a power law luminosity function with a wide dynamic range, then the limit is tau sub gamma 0.5 yr. Hence, the gamma-ray data do not require tau sub gamma and tau sub opt to be different.

  7. Distance Indicators of Gamma-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2013-01-01

    Distance measurements of gamma-ray pulsars are challenging questions in present pulsar studies. The Large Area Telescope (LAT) aboard the Fermi gamma-ray observatory discovered more than 100 gamma-ray pulsars including 24 new gamma-selected pulsars which nearly have no distance information. We study the relation between gamma-ray emission efficiency (η = Lγ/Ė) and pulsar parameters for young radio-selected gamma-ray pulsars with known distance information in the first gamma-ray pulsar catalog reported by Fermi/LAT. We have introduced three generation order parameters to describe gamma-ray emission properties of pulsars, and find the strong correlation of η - ζ3 a generation order parameter which reflects γ-ray photon generations in pair cascade processes induced by magnetic field absorption in pulsar magnetosphere. A good correlation of η - BLC the magnetic field at the light cylinder radius is also found. These correlations would be the distance indicators in gamma-ray pulsars to evaluate distances for gamma-selected pulsars. Distances of 25 gamma-selected pulsars are estimated, which could be tested by other distance measurement methods. Physical origin of the correlations may be also interesting for pulsar studies.

  8. Status of the GAMMA-400 Project

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Gusakov, Yu. V.; Farber, M. O.; Fradkin, M. I.; Kachanov, V. A.; Kaplin, V. A.; Kheymits, M. D.; Leoniv, A. A.; Longo, F.; Maestro, P.; Marrocchesi, P.; Mazets, E. P.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I.; Naumov, P. Yu.; Papini, P.

    2013-01-01

    The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV-3 TeV is presented. The angular resolution of the instrument, 1-2 deg at E(gamma) approximately 100 MeV and approximately 0.01 at E(gamma) greater than 100 GeV, its energy resolution is approximately 1% at E(gamma) greater than 100 GeV, and the proton rejection factor is approximately 10(exp 6) are optimized to address a broad range of science topics, such as search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts, as well as high-precision measurements of spectra of cosmic-ray electrons, positrons, and nuclei.

  9. Observations of Soft Gamma Repeaters

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2004-01-01

    Magnetars (Soft Gamma Repeaters and Anomalous X-ray Pulsars) are a subclass of neutron stars characterized by their recurrent X-ray bursts. While in an active (bursting) state (lasting anywhere between days and years), they are emit&ng hundreds of predominantly soft (kT=30 kev), short (0.1-100 ms long) events. Their quiescent source x-ray light ewes exhibit puhlions rotational period rate changes (spin-down) indicate that their magnetic fields are extremely high, of the order of 10^14- 10^l5 G. Such high B-field objects, dubbed "magnetars", had been predicted to exist in 1992, but the first concrete observational evidence were obtained in 1998 for two of these sources. I will discuss here the history of Soft Gamma Repeaters, and their spectral, timing and flux characteristics both in the persistent and their burst emission.

  10. Gamma radiolysis of chlorinated hydrocarbons

    SciTech Connect

    Arbon, R.E.; Mincher, B.J.; Meikrantz, D.H.

    1992-08-01

    This program is the Idaho National Engineering Laboratory (INEL) component of a joint collarborative effort with Lawrence Livermore National Laboratory (LLNL). The purpose of this effort is to demonstrate a viable process for breaking down hazardous halogenated organic wastes to simpler, non-hazardous waste using high energy ionizing radiation. The INEL effort focuses on the use of spent reactor fuel gamma radiation sources to decompose complex wastes such as PCBs. At LLNL, halogenated solvents such as carbon tetrachloride and trichloroethylene are being studied using accelerator radiation sources. The INEL irradiation experiments concentrated on a single PCB congener so that a limited set of decomposition reactions could be studied. The congener 2,2{prime}, 3,3{prime},4,5{prime},6,6{prime} - octachlorobiphenyl was examined following exposure to various gamma doses at the Advanced Test Reactor (AIR) spent fuel pool. The decomposition rates and products in several solvents are discussed. 3 refs.

  11. Gamma radiolysis of chlorinated hydrocarbons

    SciTech Connect

    Arbon, R.E.; Mincher, B.J.; Meikrantz, D.H.

    1992-01-01

    This program is the Idaho National Engineering Laboratory (INEL) component of a joint collarborative effort with Lawrence Livermore National Laboratory (LLNL). The purpose of this effort is to demonstrate a viable process for breaking down hazardous halogenated organic wastes to simpler, non-hazardous waste using high energy ionizing radiation. The INEL effort focuses on the use of spent reactor fuel gamma radiation sources to decompose complex wastes such as PCBs. At LLNL, halogenated solvents such as carbon tetrachloride and trichloroethylene are being studied using accelerator radiation sources. The INEL irradiation experiments concentrated on a single PCB congener so that a limited set of decomposition reactions could be studied. The congener 2,2{prime}, 3,3{prime},4,5{prime},6,6{prime} - octachlorobiphenyl was examined following exposure to various gamma doses at the Advanced Test Reactor (AIR) spent fuel pool. The decomposition rates and products in several solvents are discussed. 3 refs.

  12. Cosmic gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Vedrenne, G.

    1981-06-01

    The general characteristics of gamma-ray bursts are considered. During the period from 1967 to 1977 62 gamma-ray bursts were discovered. Between September 1978 and December 1980 more than 40 bursts were observed with the aid of interplanetary spacecraft, including the Pioneer Venus Orbiter, ISEE-C, Helios B, Vela, Prognoz 7, Venera 11, and Venera 12. The time structures are discussed along with the spectra, and the burst intensity distribution. Attention is given to events observed on March 5, April 6, November 4, and November 19, 1979, taking into account the location of each event. The implications of the more recent results are discussed. It is pointed out that for a better understanding of the origin of the emissions, it is necessary to have a coordinated observation program with several satellites separated by large distances.

  13. Solar gamma-ray lines

    NASA Technical Reports Server (NTRS)

    Forrest, D. J.

    1983-01-01

    The gamma-ray spectrometer on the Solar Maximum Mission satellite has observed emissions produced by nuclear reactions in over 20 separate solar flares. The observed intensity from different flares ranges over a factor of 100, and the time scale for their production ranges from 10-s pulses to complete events lasting over 1000 s. The emissions include narrow and broadened prompt gamma-ray lines from numerous isotopes from Li-7 to Fe-56 and cover the energy range from 0.431 MeV (Be-7) to 7.12 MeV (O-16). The instrument has also observed emissions at energies greater than 10 MeV from the decay of pi0 mesons, from electron bremsstrahlung, and from the direct observation of greater-than-100-MeV solar neutrons. The intensity, temporal and spectral properties of these emissions are reviewed from the point of view that solar flares represent an astrophysical particle-acceleration site.

  14. Gamma Radiation Doses In Sweden

    NASA Astrophysics Data System (ADS)

    Almgren, Sara; Barregârd, Lars; Isaksson, Mats

    2008-08-01

    Gamma dose rate measurements were performed in one urban and one rural area using thermoluminescence dosimeters (TLD) worn by 46 participants and placed in their dwellings. The personal effective dose rates were 0.096±0.019(1 SD) and 0.092±0.016(1 SD)μSv/h in the urban and rural area, respectively. The corresponding dose rates in the dwellings were 0.11±0.042(1 SD) and 0.091±0.026(1 SD)μSv/h. However, the differences between the areas were not significant. The values were higher in buildings made of concrete than of wood and higher in apartments than in detached houses. Also, 222Rn measurements were performed in each dwelling, which showed no correlation with the gamma dose rates in the dwellings.

  15. Gamma Radiation Doses In Sweden

    SciTech Connect

    Almgren, Sara; Isaksson, Mats; Barregaard, Lars

    2008-08-07

    Gamma dose rate measurements were performed in one urban and one rural area using thermoluminescence dosimeters (TLD) worn by 46 participants and placed in their dwellings. The personal effective dose rates were 0.096{+-}0.019(1 SD) and 0.092{+-}0.016(1 SD){mu}Sv/h in the urban and rural area, respectively. The corresponding dose rates in the dwellings were 0.11{+-}0.042(1 SD) and 0.091{+-}0.026(1 SD){mu}Sv/h. However, the differences between the areas were not significant. The values were higher in buildings made of concrete than of wood and higher in apartments than in detached houses. Also, {sup 222}Rn measurements were performed in each dwelling, which showed no correlation with the gamma dose rates in the dwellings.

  16. Gamma-400 Science Objectives Built on the Current HE Gamma-Ray and CR Results

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander; Mitchell, John; Thompson, David

    2012-01-01

    The main scientific interest of the Russian Gamma-400 team: Observe gamma-rays above approximately 50 GeV with excellent energy and angular resolution with the goals of: (1) Studying the fine spectral structure of the isotropic high-energy gamma-radiation, (2) Attempting to identify the many still-unidentified Fermi-LAT gamma-ray sources. Gamma-400 will likely be the only space-based gamma-ray observatory operating at the end of the decade. In our proposed Gamma-400-LE version, it will substantially improve upon the capabilities of Fermi LAT and AGILE in both LE and HE energy range. Measuring gamma-rays from approx 20 MeV to approx 1 TeV for at least 7 years, Gamma-400-LE will address the topics of dark matter, cosmic ray origin and propagation, neutron stars, flaring pulsars, black holes, AGNs, GRBs, and actively participate in multiwavelength campaigns.

  17. Temperature dependence of gamma-gamma prime lattice mismatch in nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.; Mackay, R. A.; Garlick, R. G.

    1985-01-01

    High temperature X-ray diffraction techniques were used to determine the gamma-gamma prime lattice mismatch of three different nickel-base superalloys at temperatures between 18 and 1000 C. The measurements were performed on oriented single-crystal disks which had been aged to produce a semicoherent gamma-gamma prime structure. The thermal expansion of the lattice parameters of the gamma and gamma-prime phases was described by a second-order polynomial expression. The expansion of the gamma-prime phase was consistently smaller than that of the gamma phase, which caused the lattice mismatch to become more negative at higher temperatures. It was also shown that high values of lattice mismatch resulted in increased rates of directional gamma-prime coarsening during elevated temperature creep exposure.

  18. Design and performance of the GAMMA-400 gamma-ray telescope for dark matter searches

    NASA Astrophysics Data System (ADS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Moiseev, A. A.; Mocchiutti, E.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Picozza, P.; Rodin, V. G.; Runtso, M. F.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Topchiev, N. P.; Vacchi, A.; Vannuccini, E.; Yurkin, Yu. T.; Zampa, N.; Zverev, V. G.; Zirakashvili, V. N.

    2013-02-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is ~0.01° (Eγ > 100 GeV), the energy resolution ~1% (Eγ > 10 GeV), and the proton rejection factor ~106. GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  19. CARTOGAM: a portable gamma camera

    NASA Astrophysics Data System (ADS)

    Gal, O.; Izac, C.; Lainé, F.; Nguyen, A.

    1997-02-01

    The gamma camera is devised to establish the cartography of radioactive sources against a visible background in quasi real time. This device is designed to spot sources from a distance during the preparation of interventions on active areas of nuclear installations. This implement will permit to optimize interventions especially on the dosimetric level. The camera consists of a double cone collimator, a scintillator and an intensified CCD camera. This chain of detection provides the formation of both gamma images and visible images. Even though it is wrapped in a denal shield, the camera is still portable (mass < 15 kg) and compact (external diameter = 8 cm). The angular resolution is of the order of one degree for gamma rays of 1 MeV. In a few minutes, the device is able to measure a dose rate of 10 μGy/h delivered for instance by a source of 60Co of 90 mCi located at 10 m from the detector. The first images recorded in the laboratory will be presented and will illustrate the performances obtained with this camera.

  20. High temperature creep behavior of single crystal gamma prime and gamma alloys

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.; Diaz, J. O.; Miner, R. V.

    1989-01-01

    The creep behavior of single crystals of gamma-prime and gamma alloys were investigated and compared to the response of two-phase superalloys tested previously. High temperature deformation in the gamma alloys was characteristic of a climb-controlled mechanism, whereas the gamma-prime based materials exhibited glide-controlled creep behavior. The superalloys were much more creep resistant than their constituent phases, which indicates the importance of the gamma/gamma-prime interface as a barrier for dislocation motion during creep.

  1. {eta} Prime {yields}{pi}{sup 0}{gamma}{gamma} and {eta} Prime {yields}{eta}{gamma}{gamma}: A primer analysis

    SciTech Connect

    Escribano, Rafel

    2012-10-23

    The electromagnetic rare decays {eta} Prime {yields}{pi}{sup 0}{gamma}{gamma} and {eta} Prime {yields}{pi}{sup 0}{gamma}{gamma} are analysed for the first time and their predicted branching ratios given. The vector meson exchange dominant contribution is treated using Vector Meson Dominance and the scalar component is estimated by means of the Linear Sigma Model. The agreement between our calculation and the measurement of the related process {eta} Prime {yields}{pi}{sup 0}{gamma}{gamma} is a check of the procedure. Scalar meson effects are seen to be irrelevant for {eta} Prime {yields}{pi}{sup 0}{gamma}{gamma}, while a significant scalar contribution due to the {sigma}(500) resonance seems to emerge in the case of {eta} Prime {yields}{pi}{sup 0}{gamma}{gamma}. Future measurements coming from KLOE-2, Crystal Ball, WASA, and BES-III will elucidate if any of these processes carry an important scalar contribution or they are simply driven by the exchange of vector mesons.

  2. Growth kinetics of gamma-prime precipitates in a directionally solidified eutectic, gamma/gamma-prime-delta

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1976-01-01

    A directionally solidified eutectic alloy (DSEA), of those viewed as potential candidates for the next generation of aircraft gas turbine blade materials, is studied for the gamma-prime growth kinetics, in the system Ni-Nb-Cr-Al, specifically: Ni-20 w/o Nb-6 w/o Cr-2.5 w/o Al gamma/gamma-prime-delta DSEA. Heat treatment, polishing and etching, and preparation for electron micrography are described, and the size distribution of gamma-prime phase following various anneals is plotted, along with gamma-prime growth kinetics in this specific DSEA, and the cube of gamma-prime particle size vs anneal time. Activation energies and coarsening kinetics are studied.

  3. Analysis of High-Fold Gamma Data

    SciTech Connect

    Beyer, C.J.; Cromaz, M.; Radford, D.C.

    1998-08-10

    Historically, {gamma}-{gamma} and {gamma}-{gamma}-{gamma} coincidence spectra were utilized to build nuclear level schemes. With the development of large detector arrays, it has became possible to analyze higher fold coincidence data sets. This paper briefly reports on software to analyze 4-fold coincidence data sets that allows creation of 4-fold histograms (hypercubes) of at least 1024 channels per side (corresponding to a 43 gigachannel data space) that will fit onto a few gigabytes of disk space, and extraction of triple-gated spectra in a few seconds. Future detector arrays may have even higher efficiencies, and detect an many as 15 or 20 {gamma} rays simultaneously; such data will require very different algorithms for storage and analysis. Difficulties inherent in the analysis of such data are discussed, and two possible new solutions are presented, namely adaptive list-mode systems and list-list-mode storage.

  4. Instrumentation for gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Bertsch, David L.; Fichtel, Carl E.; Trombka, Jacob I.

    1988-01-01

    The current status of gamma-ray-telescope technology for ground, airborne, and space observations is surveyed and illustrated with drawings, diagrams, and graphs and tables of typical data. For the low- and medium-energy ranges, consideration is given to detectors and detector cooling systems, background-rejection methods, radiation damage, large-area detectors, gamma-ray imaging, data analysis, and the Compton-interaction region. Also discussed are the gamma-ray interaction process at high energies; multilevel automated spark-chamber gamma-ray telescopes; the Soviet Gamma-1 telescope; the EGRET instrument for the NASA Gamma-Ray Observatory; and Cerenkov, air-shower, and particle-detector instruments for the TeV and PeV ranges. Significant improvements in resolution and sensitivity are predicted for the near future.

  5. The Fermi Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    Thompson, Dave; McEnery, Julie

    2011-01-01

    This slide presentation reviews the Gamma Ray Astronomy as enhanced by the Fermi Gamma Ray Space Telescope and Radio Astronomy as a synergistic relationship. Gamma rays often represent a significant part of the energy budget of a source; therefore, gamma-ray studies can be critical to understanding physical processes in such sources. Radio observations offer timing and spatial resolutions vastly superior to anything possible with gamma-ray telescopes; therefore radio is often the key to understanding source structure. Gamma-ray and radio observations can complement each other, making a great team. It reviews the Fermi Guest Investigator (GI) program, and calls for more cooperative work that involves Fermi and the Very Long Baseline Array (VLBA), a system of ten radio telescopes.

  6. Pulsed pyroelectric crystal-powered gamma source

    SciTech Connect

    Chen, A. X.; Antolak, A. J.; Leung, K.-N.; Raber, T. N.; Morse, D. H.

    2013-04-19

    A compact pulsed gamma generator is being developed to replace radiological sources used in commercial, industrial and medical applications. Mono-energetic gammas are produced in the 0.4 - 1.0 MeV energy range using nuclear reactions such as {sup 9}Be(d,n{gamma}){sup 10}B. The gamma generator employs an RF-driven inductively coupled plasma ion source to produce deuterium ion current densities up to 2 mA/mm{sup 2} and ampere-level current pulses can be attained by utilizing an array extraction grid. The extracted deuterium ions are accelerated to approximately 300 keV via a compact stacked pyroelectric crystal system and then bombard the beryllium target to generate gammas. The resulting microsecond pulse of gammas is equivalent to a radiological source with curie-level activity.

  7. Instrumentation for gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Bertsch, David L.; Fichtel, Carl E.; Trombka, Jacob I.

    1988-03-01

    The current status of gamma-ray-telescope technology for ground, airborne, and space observations is surveyed and illustrated with drawings, diagrams, and graphs and tables of typical data. For the low- and medium-energy ranges, consideration is given to detectors and detector cooling systems, background-rejection methods, radiation damage, large-area detectors, gamma-ray imaging, data analysis, and the Compton-interaction region. Also discussed are the gamma-ray interaction process at high energies; multilevel automated spark-chamber gamma-ray telescopes; the Soviet Gamma-1 telescope; the EGRET instrument for the NASA Gamma-Ray Observatory; and Cerenkov, air-shower, and particle-detector instruments for the TeV and PeV ranges. Significant improvements in resolution and sensitivity are predicted for the near future.

  8. Understanding Doppler Broadening of Gamma Rays

    SciTech Connect

    Rawool-Sullivan, Mohini; Sullivan, John P.

    2014-07-03

    Doppler-broadened gamma ray peaks are observed routinely in the collection and analysis of gamma-ray spectra. If not recognized and understood, the appearance of Doppler broadening can complicate the interpretation of a spectrum and the correct identification of the gamma ray-emitting material. We have conducted a study using a simulation code to demonstrate how Doppler broadening arises and provide a real-world example in which Doppler broadening is found. This report describes that study and its results.

  9. Gamma-Ray Astronomy Technology Needs

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cannizzo, J. K.

    2012-01-01

    In recent decades gamma-ray observations have become a valuable tool for studying the universe. Progress made in diverse 8re1lS such as gamma-ray bursts (GRBs), nucleosynthesis, and active galactic nuclei (AGNs) has complimented and enriched our astrophysical understanding in many ways. We present an overview of current and future planned space y-ray missions and discussion technology needs for- the next generation of space gamma-ray instruments.

  10. Gamma rays produce superior seedless citrus

    SciTech Connect

    Pyrah, D.

    1984-10-01

    Using gamma radiation, seedless forms of some varieties of oranges and grapefruit are being produced. Since it has long been known that radiation causes mutations in plants and animals, experiments were conducted to determine if seediness could be altered by exposing seeds or budwood to higher than natural doses of gamma radiation. Orange and grapefruit seeds and cuttings exposed to gamma rays in the early 1970's have produced trees that bear fruit superior to that now on the market.

  11. Telescope Would Image X And Gamma Rays

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    1991-01-01

    Proposed telescope forms images of sources of gamma rays, hard x rays, and soft x rays. Contains reflecting, grazing-incidence reflectors. Multiple coaxial nested pairs used to form images simultaneously at multiple gamma-ray or hard x-ray energies or enhance collection area at single photon energy. Conceived for use in astrophysical studies in outer space. With modifications, used in terrestrial laboratory vaccum systems to image x or gamma rays from pulsed plasmas.

  12. A search for the rare decay. mu. /sup +/. -->. e/sup +/. gamma gamma

    SciTech Connect

    Grosnick, D.P.

    1987-02-01

    An experimental search for the lepton-family number nonconserving decay, ..mu../sup +/ ..-->.. e/sup +/..gamma gamma.., has been conducted at the Clinton P. Anderson Meson Physics Facility (LAMPF) using the Crystal Box detector. The detector consists of a modular NaI(Tl) calorimeter, scintillator hodoscope, and a high-resolution, cylindrical drift chamber. It provides a large solid-angle for detecting three-body decays and has good resolutions in the time, position, and energy measurements to eliminate unwanted backgrounds. No evidence for ..mu../sup +/ ..-->.. e/sup +/..gamma gamma.. is found, giving an upper limit for the branching ratio of GAMMA(..mu.. ..-->.. e..gamma gamma..)/GAMMA(..mu.. ..-->.. e nu anti nu) less than or equal to 7.2 x 10/sup -11/ (90% C.L.). This result is an improvement of more than two orders of magnitude in the existing limit. 109 refs., 39 figs.

  13. Gamma ray pulsars: Models and observations

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    1990-01-01

    The two known gamma ray pulsars, the Crab and Vela, were used as guides for the development of models of high-energy radiation from spinning neutron stars. Two general classes of models were developed: those with the gamma radiation originating in the pulsar magnetosphere far from the neutron star surface (outer gap models) and those with the gamma radiation coming from above the polar cap (polar cap models). The goal is to indicate how EGRET can contribute to understanding gamma-ray pulsars, and especially how it can help distinguish between models for emission.

  14. Gamma ray astronomy and black hole astrophysics

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1990-01-01

    The study of soft gamma emissions from black-hole candidates is identified as an important element in understanding black-hole phenomena ranging from stellar-mass black holes to AGNs. The spectra of Cyg X-1 and observations of the Galactic Center are emphasized, since thermal origins and MeV gamma-ray bumps are evident and suggest a thermal-pair cloud picture. MeV gamma-ray observations are suggested for studying black hole astrophysics such as the theorized escaping pair wind, the anticorrelation between the MeV gamma bump and the soft continuum, and the relationship between source compactness and temperature.

  15. Hard gamma ray emission from blazars

    NASA Technical Reports Server (NTRS)

    Marscher, Alan P.; Bloom, Steven D.

    1992-01-01

    The gamma-ray emission expected from compact extragalactic sources of nonthermal radiation is examined. The highly variable objects in this class should produce copious amounts of self-Compton gamma-rays in the compact relativistic jet. This is shown to be a likely interpretation of the hard gamma-ray emission recently detected from the quasar 3C 279 during a period of strong nonthermal flaring at lower frequencies. Ways of discriminating between the self-Compton model and other possible gamma-ray emission mechanisms are discussed.

  16. Top pair production in e+e- and {gamma}{gamma} processes

    SciTech Connect

    Hori, M.; Kiyo, Y.; Kodaira, J.; Nasuno, T.; Parke, S.

    1998-02-01

    We analyze spin correlations between top quark and anti-top quark produced at polarized e{sup +} e{sup -} and {gamma}{gamma} colliders. We consider a generic spin basis to find a strong spin correlation. Optimal spin decompositions for top quark pair are presented for e{sup +}e{sup -} and {gamma}{gamma} colliders. We show the cross- section in these bases and discuss the characteristics of results.

  17. Diffusion welding of a directionally solidified gamma/gamma prime - delta eutectic alloy

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1977-01-01

    Hot-press diffusion welding parameters were developed for a directionally solidified, gamma/gamma prime-delta eutectic alloy. Based on metallography, a good diffusion weld was achieved at 1100 C under 34.5 MPa (5 ksi) pressure for 1 hour. In addition, a dissimilar metal weld between gamma/gamma prime-delta and IN-100 was successfully made at 1100 C under 20.7 MPa (3 ksi) pressure for 1 hour.

  18. Rare decay {eta}{r_arrow}{pi}{pi}{gamma}{gamma} in chiral perturbation theory

    SciTech Connect

    Knoechlein, G.; Scherer, S.; Drechsel, D.

    1996-04-01

    We investigate the rare radiative {eta} decay modes {eta}{r_arrow}{pi}{sup +}{pi}{sup {minus}}{gamma}{gamma} and {eta}{r_arrow}{pi}{sup 0}{pi}{sup 0}{gamma}{gamma} within the framework of chiral perturbation theory at {ital O}({ital p}{sup 4}). We present photon spectra and partial decay rates for both processes as well as a Dalitz contour plot for the charged decay. {copyright} {ital 1996 The American Physical Society.}

  19. Apollo orbital geochemistry: Gamma rays

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.

    1973-01-01

    Lunar gamma ray spectra obtained during Apollo-15 and -16 flights show a natural radioactivity due to potassium, thorium, and uranium as well as a cosmic ray induced activity in the lunar surface due to high neutron interactions produced by (p,n) reaction in the lunar surface. The radioactivity is at a low in the highlands on the backside of the moon; most of the radioactivity is confined to the Oceanus Procellarum/Mare Imbrium region and to the Van de Graff area on the lunar backside.

  20. The earliest gamma unit patients.

    PubMed

    Ganz, Jeremy C

    2014-01-01

    The inventors were very excited and drove the first patient from Stockholm over 100 km for the first treatment. The treatment was a technical success. The new machine was transported to Sophiahemmet (a private Stockholm hospital) and installed. A further eight patients were treated and assessed. At the start, there was no computerized treatment planning program, but this was soon developed and named KULA after the Swedish word for a sphere, since the actual treatment unit was spherical. The term Gamma Knife was first used later by the Pittsburgh group. PMID:25376571

  1. The status of low-energy gamma-ray astronomy and the Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1985-01-01

    A brief sketch of the objectives and status of the various subdisciplines in gamma-ray astronomy (below 10 GeV) are presented. The Gamma-Ray Observatory planned for launch in 1988 is described. This NASA observatory and several planned French-Soviet spacecraft are expected to elevate gamma-ray astronomy into a mature observational science for the Space Station era.

  2. Using (d,p{gamma}) as a surrogate reaction for (n,{gamma})

    SciTech Connect

    Hatarik, R.; Cizewski, J. A.; Hatarik, A. M.; O'Malley, P. D.; Bernstein, L. A.; Burke, J. T.; Bleuel, D. L.; Lesher, S. R.; Gibelin, J.; Phair, L.; Swan, T.

    2009-01-28

    To benchmark the validity of using the (d,p{gamma}) reaction as a surrogate for (n,{gamma}), the {sup 171,173}Yb(d,p{gamma}) reactions were measured with the goal to reproduce the known neutron capture cross section ratio of these nuclei. Preliminary surrogate results reproduced the measured values within 15%.

  3. Production and secretion of interferon-gamma (IFN-gamma) in children with atopic dermatitis.

    PubMed Central

    Tang, M; Kemp, A

    1994-01-01

    IFN-gamma is known to be a major inhibitor of IgE synthesis in vitro. Recent studies demonstrating reduced production of IFN-gamma in children and adults with atopic dermatitis and elevated serum IgE suggest a similar role for this cytokine in vivo. The reasons for this reduced IFN-gamma production are not known. One possibility is that atopic individuals have a reduced population of cells producing IFN-gamma in vivo. Using a fluorescence-labelled antibody to detect intracellular IFN-gamma, the percentage of IFN-gamma-producing cells was determined in children with atopic dermatitis and in non-atopic controls. Children with atopic dermatitis had a greater percentage of IFN-gamma-producing cells in unstimulated cultures compared with controls, indicating in vivo activation of lymphocytes in the atopic group. This could reflect the significant degree of inflammation present in these children, or the presence of bacterial infection or colonization. Although secretion of IFN-gamma after stimulation with phorbol myristate acetate (PMA)/Ca was significantly lower in children with atopic dermatitis compared with controls, the percentage of IFN-gamma-producing cells in the stimulated cultures from this group was equivalent to controls. This demonstrates that the reduced ability of atopic children to secrete IFN-gamma in vitro does not relate to a lack of IFN-gamma-producing cells, but to a difference in the regulation of IFN-gamma production beyond the stage of signal transduction. PMID:8287610

  4. Implications of Gamma-Ray Transparency Constraints in Blazars: Minimum Distances and Gamma-Ray Collimation

    NASA Technical Reports Server (NTRS)

    Becker, Peter A.; Kafatos, Menas

    1995-01-01

    We develop a general expression for the gamma - gamma absorption coefficient, alpha(sub gamma(gamma)) for gamma-rays propagating in an arbitrary direction at an arbitrary point in space above an X-ray-emitting accretion disk. The X-ray intensity is assumed to vary as a power law in energy and radius between the outer disk radius, R(sub 0), and the inner radius, R(sub ms) which is the radius of marginal stability for a Schwarzschild black hole. We use our result for alpha(sub gamma(gamma)) to calculate the gamma - gamma optical depth, tau(sub gamma(gamma)) for gamma - rays created at height z and propagating at angle Phi relative to the disk axis, and we show that for Phi = 0 and z greater than or approx equal to R(sub 0), tau(sub gamma(gamma)) proportional to Epsilon(sup alpha)z(sup -2(alpha) - 3), where alpha is the X-ray spectral index and Epsilon is the gamma - ray energy. As an application, we use our formalism to compute the minimum distance between the central black hole and the site of production of the gamma-rays detected by EGRET during the 1991 June flare of 3C 279. In order to obtain an upper limit, we assume that all of the X-rays observed contemporaneously by Ginga were emitted by the disk. Our results suggest that the observed gamma - rays may have originated within less than or approx equal to 45 GM/sq c from a black hole of mass greater than or approx equal to 10(exp 9) solar mass, perhaps in active plasma located above the central funnel of the accretion disk. This raises the possibility of establishing a direct connection between the production of the observed gamma - rays and the accretion of material onto the black hole. We also consider the variation of the optical depth as a function of the angle of propagation Phi. Our results indicate that the "focusing" of the gamma - rays along the disk axis due to pair production is strong enough to explain the observed degree of alignment in blazar sources. If the gamma - rays are produced isotropically

  5. Measurements of Branching Fractions for B+ -> rho+ gamma, B0 -> rho0 gamma, and B0 -> omega gamma

    SciTech Connect

    Aubert, B

    2008-08-15

    The authors present branching fraction measurements for the radiative decays B{sup +} {yields} {rho}{sup +}{gamma}, B{sup 0} {yields} {rho}{sup 0}{gamma}, and B{sup 0} {yields} {omega}{gamma}. The analysis is based on a data sample of 465 million B{bar B} events collected with the BABAR detector at the PEP-II asymmetric-energy B Factory located at the Stanford Linear Accelerator Center (SLAC). They find {Beta}(B{sup +} {yields} {rho}{sup +}{gamma}) = (1.20{sub -0.37}{sup +0.42} {+-} 0.20) x 10{sup -6}, {Beta}(B{sup 0} {yields} {rho}{sup 0}{gamma}) = (0.97{sub -0.22}{sup +0.24} {+-} 0.06) x 10{sup -6}, and a 90% C.L. upper limit {Beta}(B{sup 0} {yields} {omega}{gamma}) < 0.9 x 10{sup -6}, where the first error is statistical and the second is systematic. They also measure the isospin-violating quantity {Lambda}(B{sup +} {yields} {rho}{sup +}{gamma})/2{Lambda}(B{sup 0} {yields} {rho}{sup 0}{gamma}) - 1 = -0.43{sub -0.22}{sup +0.25} {+-} 0.10.

  6. Gamma-ray burst populations

    NASA Astrophysics Data System (ADS)

    Virgili, Francisco Javier

    Over the last fifty years the field of gamma-ray bursts has shown incredible growth, but the amassing of data has also left observers and theorists alike wondering about some of the basic questions surrounding these phenomena. Additionally, these events show remarkable individuality and extrema, ranging in redshift throughout the observable universe and over ten orders of magnitude in energy. This work focuses on analyzing groups of bursts that are different from the general trend and trying to understand whether these bursts are from different intrinsic populations and if so, what can be said about their progenitors. This is achieved through numerical Monte Carlo simulations and statistical inference in conjunction with current GRB observations. Chapter 1 gives a general introduction of gamma-ray burst theory and observations in a semi-historical context. Chapter 2 provides an introduction to the theory and practical issues surrounding the numerical simulations and statistics. Chapters 3--5 are each dedicated to a specific problem relating to a different type of GRB population: high-luminosity v. low-luminosity bursts, constraints from high-redshift bursts, and Type I v. Type II bursts. Chapter 6 follows with concluding remarks.

  7. Gamma-ray burst models.

    PubMed

    King, Andrew

    2007-05-15

    I consider various possibilities for making gamma-ray bursts, particularly from close binaries. In addition to the much-studied neutron star+neutron star and black hole+neutron star cases usually considered good candidates for short-duration bursts, there are also other possibilities. In particular, neutron star+massive white dwarf has several desirable features. These systems are likely to produce long-duration gamma-ray bursts (GRBs), in some cases definitely without an accompanying supernova, as observed recently. This class of burst would have a strong correlation with star formation and occur close to the host galaxy. However, rare members of the class need not be near star-forming regions and could have any type of host galaxy. Thus, a long-duration burst far from any star-forming region would also be a signature of this class. Estimates based on the existence of a known progenitor suggest that this type of GRB may be quite common, in agreement with the fact that the absence of a supernova can only be established in nearby bursts. PMID:17293332

  8. The virtual gamma camera room.

    PubMed

    Penrose, J M; Trowbridge, E A; Tindale, W B

    1996-05-01

    The installation of a gamma camera is time-consuming and costly and, once installed, the camera position is unlikely to be altered during its working life. Poor choice of camera position therefore has long-term consequences. Additional equipment such as collimators and carts, the operator's workstation and wall-mounted display monitors must also be situated to maximize access and ease of use. The layout of a gamma camera room can be optimized prior to installation by creating a virtual environment. Super-Scape VRT software running on an upgraded 486 PC microprocessor was used to create a 'virtual camera room'. The simulation included an operator's viewpoint and a controlled tour of the room. Equipment could be repositioned as required, allowing potential problems to be identified at the design stage. Access for bed-ridden patients, operator ergonomics, operator and patient visibility were addressed. The display can also be used for patient education. Creation of a virtual environment is a valuable tool which allows different camera systems to be compared interactively in terms of dimensions, extent of movement and use of a defined space. Such a system also has applications in radiopharmacy design and simulation. PMID:8736511

  9. Supervised Gamma Process Poisson Factorization

    SciTech Connect

    Anderson, Dylan Zachary

    2015-05-01

    This thesis develops the supervised gamma process Poisson factorization (S- GPPF) framework, a novel supervised topic model for joint modeling of count matrices and document labels. S-GPPF is fully generative and nonparametric: document labels and count matrices are modeled under a uni ed probabilistic framework and the number of latent topics is controlled automatically via a gamma process prior. The framework provides for multi-class classification of documents using a generative max-margin classifier. Several recent data augmentation techniques are leveraged to provide for exact inference using a Gibbs sampling scheme. The first portion of this thesis reviews supervised topic modeling and several key mathematical devices used in the formulation of S-GPPF. The thesis then introduces the S-GPPF generative model and derives the conditional posterior distributions of the latent variables for posterior inference via Gibbs sampling. The S-GPPF is shown to exhibit state-of-the-art performance for joint topic modeling and document classification on a dataset of conference abstracts, beating out competing supervised topic models. The unique properties of S-GPPF along with its competitive performance make it a novel contribution to supervised topic modeling.

  10. Very high-energy gamma rays from gamma-ray bursts.

    PubMed

    Chadwick, Paula M

    2007-05-15

    Very high-energy (VHE) gamma-ray astronomy has undergone a transformation in the last few years, with telescopes of unprecedented sensitivity having greatly expanded the source catalogue. Such progress makes the detection of a gamma-ray burst at the highest energies much more likely than previously. This paper describes the facilities currently operating and their chances for detecting gamma-ray bursts, and reviews predictions for VHE gamma-ray emission from gamma-ray bursts. Results to date are summarized. PMID:17293337

  11. Optical search for gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Ceplecha, Z.; Ehrlich, J.; Borovicka, J.; Hurley, K.; Ateia, J.-L.; Barat, C.; Niel, M.; Vedrenne, G.; Estulin, I. V.

    Preliminary results from an optical search for light pulses associated with gamma-ray bursts by means of the Czechoslovak Fireball Network plate collection at the Ondřejov Observatory are given. Optical monitoring represents more than 7700 hours, but no real optical counterpart was found. Problems associated with the optical search for gamma-ray bursts are discussed.

  12. Gamma spectrometric assessment of nuclear fuel

    NASA Astrophysics Data System (ADS)

    Krištof, Edvard; Pregl, Gvido

    1990-12-01

    A description is given of a gamma spectrometric technique which has been developed with the aim of determining the amount of a certain radioactive fission product taking into consideration local variations of the linear attenuation coefficient of gamma rays. Also, an experiment using a fuel element of the TRIGA Mark II reactor in Ljubljana is presented.

  13. Gamma-Ray Pulsar Candidates for GLAST

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    2008-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) will be launched this year, and its Large Area Telescope (LAT) is expected to discover scores to hundreds of gamma-ray pulsars. This poster discusses which of the over 1700 known pulsars, mostly visible only at radio frequencies, are likely to emit greater than 100 MeV gamma rays with intensities detectable by the LAT. The main figure of merit used to select gamma-ray pulsar candidates is sqrt(E-dot)/d2, where E-dot is the energy loss due to rotational spin-down, and d is the distance to the pulsar. The figure of merit incorporates spin-down flux at earth (proportional to E-dot/d2) times efficiency, assumed proportional to l/sqrt(E-dot). A few individual objects are cited to illustrate the issues. Since large E-dot pulsars also tend to have large timing noise and occasional glitches, their ephemerides can become inaccurate in weeks to months. To detect and study the gamma-ray emission the photons must be accurately tagged with the pulse phase. With hours to days between gamma-ray photon arrival times from a pulsar and months to years of LAT exposure needed for good detections, GLAST will rely on radio and X-ray timing measurements throughout the continuous gamma-ray observations. The poster will describe efforts to coordinate pulsar timing of the candidate gamma-ray pulsars.

  14. Gamma-Ray Pulsar Candidates for GLAST

    NASA Technical Reports Server (NTRS)

    Thompson, David J.; Smith, D. A.; Dumora, D.; Guillemot, L.; Parent, D.; Reposeur, T.; Grove, E.; Romani, R. W.; Thorsett, S. E.

    2007-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) will be launched less than a year from now, and its Large Area Telescope (LAT) is expected to discover scores to hundreds of gamma-ray pulsars. This poster discusses which of the over 1700 known pulsars, mostly visible only at radio Erequencies, are likely to emit greater than l00 MeV gamma rays with intensities detectable by the LAT. The main figure of merit used to select gamma-ray pulsar candidates is sqrt(E-dot)/d^2, where E-dot is the energy loss due to rotational spindown, and d is the distance to the pulsar. The figure of merit incorporates spin-down flux at earth (proportional to E-dot/d^2) times efficiency, assumed proportional to 1/sqrt(E-dot). A few individual objects are cited to illustrate the issues. Since large E-dot pulsars also tend to have large timing noise and occasional glitches, their ephemerides can become inaccurate in weeks to months. To detect and study the gamma-ray emission the photons must be accurately tagged with the pulse phase. With hours to days between gamma-ray photon arrival times from a pulsar and months to years of LAT exposure needed for good detections, GLAST will need timing measurements throughout the continuous gamma-ray observations. The poster will describe efforts to coordinate pulsar timing of the candidate gamma-ray pulsars.

  15. Future prospects for gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Fichtel, C.

    1981-01-01

    As gamma-ray astronomy moves from the discovery to the exploratory phase, the promise of gamma-ray astrophysics noted by theorists in the late 1940s and 1950s is beginning to be realized. In the future, satellites should carry instruments that will have over an order of magnitude greater sensitivity than those flown thus far, and, for at least some portions of the gamma-ray energy range, these detectors will also have substantially improved energy and angular resolution. The information to be obtained from these experiments should greatly enhance our knowledge of several astrophysical phenomena including the very energetic and nuclear processes associated with compact objects, astrophysical nucleosynthesis, solar particle acceleration, the chemical composition of the planets and other bodies of the solar system, the structure of our galaxy, the origin and dynamic pressure effects of the cosmic rays, high energy particles and energetic processes in other galaxies especially active ones, and the degree of matter-antimatter symmetry of the universe. The gamma-ray results of the forthcoming programs such as Gamma-I, the Gamma Ray Observatory, the gamma-ray burst network, Solar Polar, and very high energy gamma-ray telescopes on the ground will almost certainly provide justification for more sophisticated telescopes. These advanced instruments might be placed on the Space Platform currently under study by N.A.S.A.

  16. Gamma ray astronomy from satellites and balloons

    NASA Technical Reports Server (NTRS)

    Schoenfelder, V.

    1986-01-01

    A survey is given of gamma ray astronomy topics presented at the Cosmic Ray Conference. The major conclusions at the Cosmic Ray Conference in the field of gamma ray astronomy are given. (1) MeV-emission of gamma-ray bursts is a common feature. Variations in duration and energy spectra from burst to burst may explain the discrepancy between the measured log N - log S dependence and the observed isotropy of bursts. (2) The gamma-ray line at 1.809 MeV from Al(26) is the first detected line from a radioactive nucleosynthesis product. In order to understand its origin it will be necessary to measure its longitude distribution in the Milky Way. (3) The indications of a gamma-ray excess found from the direction of Loop I is consistent with the picture that the bulk of cosmic rays below 100 GeV is produced in galactic supernova remnants. (4) The interpretation of the large scale distribution of gamma rays in the Milky Way is controversial. At present an extragalactic origin of the cosmic ray nuclei in the GeV-range cannot be excluded from the gamma ray data. (5) The detection of MeV-emission from Cen A is a promising step towards the interesting field of extragalactic gamma ray astronomy.

  17. Gamma-ray spectral analysis algorithm library

    Energy Science and Technology Software Center (ESTSC)

    2013-05-06

    The routines of the Gauss Algorithms library are used to implement special purpose products that need to analyze gamma-ray spectra from Ge semiconductor detectors as a part of their function. These routines provide the ability to calibrate energy, calibrate peakwidth, search for peaks, search for regions, and fit the spectral data in a given region to locate gamma rays.

  18. Gamma-ray Spectral Analysis Algorithm Library

    Energy Science and Technology Software Center (ESTSC)

    1997-09-25

    The routines of the Gauss Algorithm library are used to implement special purpose products that need to analyze gamma-ray spectra from GE semiconductor detectors as a part of their function. These routines provide the ability to calibrate energy, calibrate peakwidth, search for peaks, search for regions, and fit the spectral data in a given region to locate gamma rays.

  19. Gamma ray lines from dark matter annihilation

    SciTech Connect

    Giudice, G.F.

    1989-08-01

    If direct annihilation of dark matter particles into a pair of photons occurs in the galactic halo, a narrow {gamma}-ray line can be discovered at future {gamma}-ray detectors sensitive to the GeV region. The signals predicted by different dark matter candidates are analyzed. 16 refs., 3 figs.

  20. A 16N gamma-ray facility

    NASA Astrophysics Data System (ADS)

    Hull, Ethan L.; Pehl, Richard H.; Stanley, Michelle R.; Foster, Charles C.; Komisarcik, Kevin; East, Gary W.; Vanderwerp, John D.; Friesel, Dennis L.

    1997-02-01

    A practical 16N gamma-ray source is created in a medium-energy cyclotron environment. A 16N source emits 6129 and 7115 keV gamma rays. The viability of this several μCi source for detector calibration and studying detector physics is established.

  1. High temperature spectral gamma well logging

    SciTech Connect

    Normann, R.A.; Henfling, J.A.

    1997-01-01

    A high temperature spectral gamma tool has been designed and built for use in small-diameter geothermal exploration wells. Several engineering judgments are discussed regarding operating parameters, well model selection, and signal processing. An actual well log at elevated temperatures is given with spectral gamma reading showing repeatability.

  2. [Gamma glutamly transpeptidase in chronic anicteric hepatopathies].

    PubMed

    Magris, D; Mian, G; Minutillo, S; D'Agnolo, B

    1975-09-01

    Serum levels of gammaGT were determined in 51 patients suffering from bioptically verified chronic anictereric liber disease. GammaGT proved to be much more sensitive than the other enzymes studied and presented a significant increase particularly in cases of steatosis and chronic "alcoholic" liver disease with a markedly steatosic character. PMID:241034

  3. Gamma rays from hidden millisecond pulsars

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1992-01-01

    The properties were studied of a new class of gamma ray sources consisting of millisecond pulsars totally or partially surrounded by evaporating material from irradiated companion stars. Hidden millisecond pulsars offer a unique possibility to study gamma ray, optical and radio emission from vaporizing binaries. The relevance of this class of binaries for GRO observations and interpretation of COS-B data is emphasized.

  4. HIGGS PHYSICS WITH A GAMMA GAMMA COLLIDER BASED ON CLIC 1*.

    SciTech Connect

    ASNER,D.; BURKHARDT,H.; DE ROECK,A.; ELLIS,J.; GRONBERG,J.; HEINEMEYER,S.; SCHMITT,M.; SCHULTE,D.; VELASCO,M.; ZIMMERMAN,F.

    2001-11-01

    We present the machine parameters and physics capabilities of the CLIC Higgs Experiment (CLICHE), a low-energy {gamma}{gamma} collider based on CLIC 1, the demonstration project for the higher-energy two-beam accelerator CLIC. CLICHE is conceived as a factory capable of producing around 20,000 light Higgs bosons per year. We discuss the requirements for the CLIC 1 beams and a laser backscattering system capable of producing a {gamma}{gamma} total (peak) luminosity of 2.0 (0.36) x 10{sup 34} cm{sup -2} s{sup -1} with E{sub CM}({gamma}{gamma}) 115 GeV. We show how CLICHE could be used to measure accurately the mass, {bar b}b, WW and {gamma}{gamma} decays of a light Higgs boson. We illustrate how these measurements may distinguish between the Standard Model Higgs boson and those in supersymmetric and more general two-Higgs-doublet models, complementing the measurements to be made with other accelerators. We also comment on other prospects in {gamma}{gamma} and e{sup -}{gamma} physics with CLICHE.

  5. Software tool for xenon gamma-ray spectrometer control

    NASA Astrophysics Data System (ADS)

    Chernysheva, I. V.; Novikov, A. S.; Shustov, A. E.; Dmitrenko, V. V.; Pyae Nyein, Sone; Petrenko, D.; Ulin, S. E.; Uteshev, Z. M.; Vlasik, K. F.

    2016-02-01

    Software tool "Acquisition and processing of gamma-ray spectra" for xenon gamma-ray spectrometers control was developed. It supports the multi-windows interface. Software tool has the possibilities for acquisition of gamma-ray spectra from xenon gamma-ray detector via USB or RS-485 interfaces, directly or via TCP-IP protocol, energy calibration of gamma-ray spectra, saving gamma-ray spectra on a disk.

  6. Neutron monitoring systems including gamma thermometers and methods of calibrating nuclear instruments using gamma thermometers

    SciTech Connect

    Moen, Stephan Craig; Meyers, Craig Glenn; Petzen, John Alexander; Foard, Adam Muhling

    2012-08-07

    A method of calibrating a nuclear instrument using a gamma thermometer may include: measuring, in the instrument, local neutron flux; generating, from the instrument, a first signal proportional to the neutron flux; measuring, in the gamma thermometer, local gamma flux; generating, from the gamma thermometer, a second signal proportional to the gamma flux; compensating the second signal; and calibrating a gain of the instrument based on the compensated second signal. Compensating the second signal may include: calculating selected yield fractions for specific groups of delayed gamma sources; calculating time constants for the specific groups; calculating a third signal that corresponds to delayed local gamma flux based on the selected yield fractions and time constants; and calculating the compensated second signal by subtracting the third signal from the second signal. The specific groups may have decay time constants greater than 5.times.10.sup.-1 seconds and less than 5.times.10.sup.5 seconds.

  7. Visual awareness, emotion, and gamma band synchronization.

    PubMed

    Luo, Qian; Mitchell, Derek; Cheng, Xi; Mondillo, Krystal; Mccaffrey, Daniel; Holroyd, Tom; Carver, Frederick; Coppola, Richard; Blair, James

    2009-08-01

    What makes us become aware? A popular hypothesis is that if cortical neurons fire in synchrony at a certain frequency band (gamma), we become aware of what they are representing. We tested this hypothesis adopting brain-imaging techniques with good spatiotemporal resolution and frequency-specific information. Specifically, we examined the degree to which increases in event-related synchronization (ERS) in the gamma band were associated with awareness of a stimulus (its detectability) and/or the emotional content of the stimulus. We observed increases in gamma band ERS within prefrontal-anterior cingulate, visual, parietal, posterior cingulate, and superior temporal cortices to stimuli available to conscious awareness. However, we also observed increases in gamma band ERS within the amygdala, visual, prefrontal, parietal, and posterior cingulate cortices to emotional relative to neutral stimuli, irrespective of their availability to conscious access. This suggests that increased gamma band ERS is related to, but not sufficient for, consciousness. PMID:19047574

  8. Gamma-ray astrophysics with AGILE

    NASA Astrophysics Data System (ADS)

    Tavani, M.

    2003-09-01

    Gamma-ray astrophysics above 30 MeV will soon be revitalized by a new generation of high-energy detectors in space. We discuss here the AGILE Mission that will be dedicated to gamma-ray astrophysics above 30 MeV during the period 2005-2006. The main characteristics of AGILE are: (1) excellent imaging and monitoring capabilities both in the γ-ray (30 MeV - 30 GeV) and hard X-ray (10-40 keV) energy ranges (reaching an arcminute source positioning), (2) very good timing (improving by three orders of magnitude the instrumental deadtime for γ-ray detection compared to previous instruments), and (3) excellent imaging and triggering capability for Gamma-Ray Bursts. The AGILE scientific program will emphasize a quick response to gamma-ray transients and multiwavelength studies of gamma-ray sources.

  9. Gamma-Ray Bursts: An Overview

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    1995-01-01

    A history and overview of the observed properties of gamma-ray bursts are presented. The phenomenon of gamma-ray bursts is without precedent in astronomy, having no observed property that would be a direct indicator of their distance and no counterpart object in another wavelength region. Their brief, random appearance only in the gamma-ray region has made their study difficult. The observed time profiles, spectral properties, and durations of gamma-ray bursts cover a wide range. All proposed models for their origin must be considered speculative. It is humbling to think that even after 25 years since their discovery, the distance scale of gamma-ray bursts is still very much debatable.

  10. Thermal neutron capture gamma-rays

    SciTech Connect

    Tuli, J.K.

    1983-01-01

    The energy and intensity of gamma rays as seen in thermal neutron capture are presented. Only those (n,..cap alpha..), E = thermal, reactions for which the residual nucleus mass number is greater than or equal to 45 are included. These correspond to evaluations published in Nuclear Data Sheets. The publication source data are contained in the Evaluated Nuclear Structure Data File (ENSDF). The data presented here do not involve any additional evaluation. Appendix I lists all the residual nuclides for which the data are included here. Appendix II gives a cumulated index to A-chain evaluations including the year of publication. The capture gamma ray data are given in two tables - the Table 1 is the list of all gamma rays seen in (n,..gamma..) reaction given in the order of increasing energy; the Table II lists the gamma rays according to the nuclide.

  11. Characteristics of gamma-ray line flares

    NASA Technical Reports Server (NTRS)

    Bai, T.; Dennis, B.

    1983-01-01

    Observations of solar gamma rays by the Solar Maximum Mission (SMM) demonstrate that energetic protons and ions are rapidly accelerated during the impulsive phase. To understand the acceleration mechanisms for these particles, the characteristics of the gamma ray line flares observed by SMM were studied. Some very intense hard X-ray flares without detectable gamma ray lines were also investigated. Gamma ray line flares are distinguished from other flares by: (1) intense hard X-ray and microwave emissions; (2) delay of high energy hard X-rays; (3) emission of type 2 and/or type 4 radio bursts; and (4) flat hard X-ray spectra (average power law index: 3.1). The majority of the gamma ray line flares shared all these characteristics, and the remainder shared at least three of them. Positive correlations were found between durations of spike bursts and spatial sizes of flare loops as well as between delay times and durations of spike bursts.

  12. Production of modified starches by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Kang, Il-Jun; Byun, Myung-Woo; Yook, Hong-Sun; Bae, Chun-Ho; Lee, Hyun-Soo; Kwon, Joong-Ho; Chung, Cha-Kwon

    1999-04-01

    As a new processing method for the production of modified starch, gamma irradiation and four kinds of inorganic peroxides were applied to commercial corn starch. The addition of inorganic peroxides without gamma irradiation or gamma irradiation without the addition of inorganic peroxides effectively decreased initial viscosity, but did not sufficiently keep viscosity stable. The combination of adding ammonium persulfate (APS) and gamma irradiation showed the lowest initial viscosity and the best stability out of the tested four kinds of inorganic peroxides. Among the tested mixing methods of APS, soaking was found to be more effective than dry blending or spraying. Therefore, the production of modified starch with low viscosity as well as with sufficient viscosity stability became feasible by the control of gamma irradiation dose levels and the amount of added APS to starch.

  13. Gamma-Ray Astronomy from the Ground

    NASA Astrophysics Data System (ADS)

    Horns, Dieter

    2016-05-01

    The observation of cosmic gamma-rays from the ground is based upon the detection of gamma-ray initiated air showers. At energies between approximately 1011 eV and 1013 eV, the imaging air Cherenkov technique is a particularly successful approach to observe gamma-ray sources with energy fluxes as low as ≈ 10-13 erg cm-2 s-1. The observations of gamma-rays in this energy band probe particle acceleration in astrophysical plasma conditions and are sensitive to high energy phenomena beyond the standard model of particle physics (e.g., self-annihilating or decaying dark matter, violation of Lorentz invariance, mixing of photons with light pseudoscalars). The current standing of the field and its major instruments are summarized briefly by presenting selected highlights. A new generation of ground based gamma-ray instruments is currently under development. The perspectives and opportunities of these future facilities will be discussed.

  14. Future Missions for Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Meegan, Charles; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Gamma-ray astronomy has made great advances in recent years, due largely to the recently completed 9-year mission of the Compton Gamma Ray Observatory. In this talk I will give an overview of what advances we may expect in the near future, with particular emphasis on earth-orbiting missions scheduled for flight within the next 5 years. Two missions, the High Energy Transient Explorer and Swift, will provide important new information on the sources of gamma-ray bursts. The Gamma-Ray Large Area Space Telescope will investigate high energy emission from a wide variety of sources, including active galaxies and gamma-ray pulsars. The contributions of ground-based and multiwavelength observations will also be addressed.

  15. Regulation of interferon-gamma gene expression.

    PubMed

    Young, H A

    1996-08-01

    Interferon-gamma (IFN-gamma), also known as type II interferon, is an important immunoregulatory gene that has multiple effects on the development, maturation, and function of the immune system. IFN-gamma mRNA and protein are expressed predominantly by T cells and large granular lymphocytes. The IFN-gamma mRNA is induced/inhibited in these cell types by a wide variety of extracellular signals, thus implicating a number of diverse, yet convergent signal transduction pathways in its transcriptional control. In this review, I describe how DNA methylation and specific DNA binding proteins may regulate transcription of the IFN-gamma gene in response to extracellular signals. PMID:8877725

  16. Zapping Mars Rocks with Gamma Rays

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    1999-12-01

    Because we do not know what deadly microorganisms might be lurking inside samples returned from Mars, the samples will either have to be sterilized before release or kept in isolation until biological studies declare them safe. One way to execute microorganisms is with radiation, such as gamma rays. Although quite effective in snuffing out bacteria and viruses, gamma rays might also affect the mineralogical, chemical, and isotopic compositions of the zapped rocks and soils. Carl Allen (Lockheed Martin Space Operations, Houston) and a team of 18 other analysts tested the effect of gamma rays on rock and mineral samples like those we expect on Mars. Except for some darkening of some minerals, high doses of gamma rays had no significant effect on the rocks, making gamma radiation a feasible option for sterilizing samples returned from Mars.

  17. Simultaneous beta/gamma digital spectroscopy

    NASA Astrophysics Data System (ADS)

    Farsoni, Abdollah T.

    A state-of-the-art radiation detection system for simultaneous spectroscopy of beta-particles and gamma-rays has been developed. The system utilizes a triple-layer phoswich detector and a customized Digital Pulse Processor (DPP) built in our laboratory. The DPP board was designed to digitally capture the analog signal pulses and, following several digital preprocessing steps, transfer valid pulses to the host computer for further digital processing. A MATLAB algorithm was developed to digitally discriminate beta and gamma events and reconstruct separate beta and gamma-ray energy spectra with minimum crosstalk. The spectrometer proved to be an effective tool for recording separate beta and gamma-ray spectra from mixed radiation fields. The system as a beta-gamma spectrometer will have broad-ranging applications in nuclear non-proliferation, radioactive waste management, worker safety, systems reliability, dose assessment, and risk analysis.

  18. Cloaked Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Eichler, David

    2014-06-01

    It is suggested that many gamma-ray bursts (GRBs) are cloaked by an ultrarelativistic baryonic shell that has high optical depth when the photons are manufactured. Such a shell would not fully block photons reflected or emitted from its inner surface, because the radial velocity of the photons can be less than that of the shell. This avoids the standard problem associated with GRBs that the thermal component should be produced where the flow is still obscured by high optical depth. The radiation that escapes high optical depth obeys the Amati relation. Observational implications may include (1) anomalously high ratios of afterglow to prompt emission, such as may have been the case in the recently discovered PTF 11agg, and (2) ultrahigh-energy neutrino pulses that are non-coincident with detectable GRB. It is suggested that GRB 090510, a short, very hard GRB with very little afterglow, was an exposed GRB, in contrast to those cloaked by baryonic shells.

  19. Gamma-insensitive optical sensor

    DOEpatents

    Kruger, H.W.

    1994-03-15

    An ultraviolet/visible/infrared gamma-insensitive gas avalanche focal plane array is described comprising a planar photocathode and a planar anode pad array separated by a gas-filled gap and across which is applied an electric potential. Electrons ejected from the photocathode are accelerated sufficiently between collisions with the gas molecules to ionize them, forming an electron avalanche. The gap acts like a proportional counter. The array of anode pad are mounted on the front of an anode plate and are connected to matching contact pads on the back of the anode via feed through wires. Connection of the anode to signal processing electronics is made from the contact pads using standard indium bump techniques, for example. 6 figures.

  20. Gamma Rays from Classical Novae

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA at the University of Chicago, provided support for a program of theoretical research into the nature of the thermonuclear outbursts of the classical novae and their implications for gamma ray astronomy. In particular, problems which have been addressed include the role of convection in the earliest stages of nova runaway, the influence of opacity on the characteristics of novae, and the nucleosynthesis expected to accompany nova outbursts on massive Oxygen-Neon-Magnesium (ONeMg) white dwarfs. In the following report, I will identify several critical projects on which considerable progress has been achieved and provide brief summaries of the results obtained:(1) two dimensional simulation of nova runaway; (2) nucleosynthesis of nova modeling; and (3) a quasi-analytic study of nucleosynthesis in ONeMg novae.

  1. CLOAKED GAMMA-RAY BURSTS

    SciTech Connect

    Eichler, David

    2014-06-01

    It is suggested that many gamma-ray bursts (GRBs) are cloaked by an ultrarelativistic baryonic shell that has high optical depth when the photons are manufactured. Such a shell would not fully block photons reflected or emitted from its inner surface, because the radial velocity of the photons can be less than that of the shell. This avoids the standard problem associated with GRBs that the thermal component should be produced where the flow is still obscured by high optical depth. The radiation that escapes high optical depth obeys the Amati relation. Observational implications may include (1) anomalously high ratios of afterglow to prompt emission, such as may have been the case in the recently discovered PTF 11agg, and (2) ultrahigh-energy neutrino pulses that are non-coincident with detectable GRB. It is suggested that GRB 090510, a short, very hard GRB with very little afterglow, was an exposed GRB, in contrast to those cloaked by baryonic shells.

  2. Gamma-4 electrophysical facility project

    NASA Astrophysics Data System (ADS)

    Zavyalov, N. V.; Gordeev, V. S.; Punin, V. T.; Grishin, A. V.; Nazarenko, S. T.; Pavlov, V. S.; Demanov, V. A.; Shikhanova, T. F.; Kalashnikov, D. A.; Kozachek, A. V.; Glushkov, S. L.; Strabykin, K. V.; Puchagin, S. Yu.; Mansurov, D. O.; Mironychev, B. P.; Maiorov, R. A.; Maiornikova, V. L.

    2015-01-01

    The paper presents the Gamma-4 four-module electrophysical facility project developed for radiation physics research. For this facility, we have developed and tested a typical module which, with a matched load, generates an electrical pulse with voltage and current amplitudes of up to 2 MV and 750 kA, respectively, and with a half-height duration of 60 ns. 700 shots were performed which conformed the operating parameters and reliability of the module. Layouts of the facility for the modes of synchronous (with accuracy of ±3 ns) operation of the modules with vacuum electron diodes and with a current summator to generate soft x-ray pulses have been developed.

  3. Gamma-insensitive optical sensor

    DOEpatents

    Kruger, Hans W.

    1994-01-01

    An ultra-violet/visible/infra-red gamma-insensitive gas avalanche focal plane array comprising a planar photocathode and a planar anode pad array separated by a gas-filled gap and across which is applied an electric potential. Electrons ejected from the photocathode are accelerated sufficiently between collisions with the gas molecules to ionize them, forming an electron avalanche. The gap acts like a proportional counter. The array of anode pad are mounted on the front of an anode plate and are connected to matching contact pads on the back of the anode via feed through wires. Connection of the anode to signal processing electronics is made from the contact pads using standard indium bump techniques, for example.

  4. Durability Assessment of Gamma Tial

    NASA Technical Reports Server (NTRS)

    Draper, Susan L.; Lerch, Bradley A.; Pereira, J. Michael; Miyoshi, Kazuhisa; Arya, Vinod K.; Zhuang, Wyman

    2004-01-01

    Gamma TiAl was evaluated as a candidate alloy for low-pressure turbine blades in aeroengines. The durability of g-TiAl was studied by examining the effects of impact or fretting on its fatigue strength. Cast-to-size Ti-48Al-2Cr-2Nb was studied in impact testing with different size projectiles at various impact energies as the reference alloy and subsequently fatigue tested. Impacting degraded the residual fatigue life. However, under the ballistic impact conditions studied, it was concluded that the impacts expected in an aeroengine would not result in catastrophic damage, nor would the damage be severe enough to result in a fatigue failure under the anticipated design loads. In addition, other gamma alloys were investigated including another cast-to-size alloy, several cast and machined specimens, and a forged alloy. Within this Ti-48-2-2 family of alloys aluminum content was also varied. The cracking patterns as a result of impacting were documented and correlated with impact variables. The cracking type and severity was reasonably predicted using finite element models. Mean stress affects were also studied on impact-damaged fatigue samples. The fatigue strength was accurately predicted based on the flaw size using a threshold-based, fracture mechanics approach. To study the effects of wear due to potential applications in a blade-disk dovetail arrangement, the machined Ti-47-2-2 alloy was fretted against In-718 using pin-on-disk experiments. Wear mechanisms were documented and compared to those of Ti-6Al-4V. A few fatigue samples were also fretted and subsequently fatigue tested. It was found that under the conditions studied, the fretting was not severe enough to affect the fatigue strength of g-TiAl.

  5. A new measurement of the rare decay eta -> pi^0 gamma gamma with the Crystal Ball/TAPS detectors at the Mainz Microtron

    SciTech Connect

    Nefkens, B M; Prakhov, S; Aguar-Bartolom��, P; Annand, J R; Arends, H J; Bantawa, K; Beck, R; Bekrenev, V; Bergh��user, H; Braghieri, A; Briscoe, W J; Brudvik, J; Cherepnya, S; Codling, R F; Collicott, C; Costanza, S; Danilkin, I V; Denig, A; Demissie, B; Dieterle, M; Downie, E J; Drexler, P; Fil'kov, L V; Fix, A; Garni, S; Glazier, D I; Gregor, R; Hamilton, D; Heid, E; Hornidge, D; Howdle, D; Jahn, O; Jude, T C; Kashevarov, V L; K��ser, A; Keshelashvili, I; Kondratiev, R; Korolija, M; Kotulla, M; Koulbardis, A; Kruglov, S; Krusche, B; Lisin, V; Livingston, K; MacGregor, I J; Maghrbi, Y; Mancel, J; Manley, D M; McNicoll, E F; Mekterovic, D; Metag, V; Mushkarenkov, A; Nikolaev, A; Novotny, R; Oberle, M; Ortega, H; Ostrick, M; Ott, P; Otte, P B; Oussena, B; Pedroni, P; Polonski, A; Robinson, J; Rosner, G; Rostomyan, T; Schumann, S; Sikora, M H; Starostin, A; Strakovsky, I I; Strub, T; Suarez, I M; Supek, I; Tarbert, C M; Thiel, M; Thomas, A; Unverzagt, M; Watts, D P; Werthmueller, D; Witthauer, L

    2014-08-01

    A new measurement of the rare, doubly radiative decay eta->pi^0 gamma gamma was conducted with the Crystal Ball and TAPS multiphoton spectrometers together with the photon tagging facility at the Mainz Microtron MAMI. New data on the dependence of the partial decay width, Gamma(eta->pi^0 gamma gamma), on the two-photon invariant mass squared, m^2(gamma gamma), as well as a new, more precise value for the decay width, Gamma(eta->pi^0 gamma gamma) = (0.33+/-0.03_tot) eV, are based on analysis of 1.2 x 10^3 eta->pi^0 gamma gamma decays from a total of 6 x 10^7 eta mesons produced in the gamma p -> eta p reaction. The present results for dGamma(eta->pi^0 gamma gamma)/dm^2(gamma gamma) are in good agreement with previous measurements and recent theoretical calculations for this dependence.

  6. Interpretations and implications of gamma ray lines from solar flares, the galactic center in gamma ray transients

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1980-01-01

    Observations and theories of astrophysical gamma ray line emission are reviewed and prospects for future observations by the spectroscopy experiments on the planned Gamma Ray Observatory are discussed.

  7. Comparison of gamma-gamma Phase Coarsening Responses of Three Powder Metal Disk Superalloys

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Gayda, J.; Johnson, D. F.; MacKay, R. A.; Rogers, R. B.; Sudbrack, C. K.; Garg, A.; Locci, I. E.; Semiatin, S. L.; Kang, E.

    2016-01-01

    The phase microstructures of several powder metal (PM) disk superalloys were quantitatively evaluated. Contents, chemistries, and lattice parameters of gamma and gamma strengthening phase were determined for conventionally heat treated Alloy 10, LSHR, and ME3 superalloys, after electrolytic phase extractions. Several of long term heat treatments were then performed, to allow quantification of the precipitation, content, and size distribution of gamma at a long time interval to approximate equilibrium conditions. Additional coarsening heat treatments were performed at multiple temperatures and shorter time intervals, to allow quantification of the precipitation, contents and size distributions of gamma at conditions diverging from equilibrium. Modest differences in gamma and gamma lattice parameters and their mismatch were observed among the alloys, which varied with heat treatment. Yet, gamma coarsening rates were very similar for all three alloys in the heat treatment conditions examined. Alloy 10 had higher gamma dissolution and formation temperatures than LSHR and ME3, but a lower lattice mismatch, which was slightly positive for all three alloys at room temperature. The gamma precipitates of Alloy 10 appeared to remain coherent at higher temperatures than for LSHR and ME3. Higher coarsening rates were observed for gamma precipitates residing along grain boundaries than for those within grains in all three alloys, during slow-moderate quenching from supersolvus solution heat treatments, and during aging at temperatures of 843 C and higher.

  8. Study of the single neutral top pion production process at {gamma}{gamma} collider

    SciTech Connect

    Wang Xuelei; Wang Xiaoxue

    2005-11-01

    {gamma}{gamma}{yields}{pi}{sub t}{sup 0} is the major production mechanism of the neutral top pion at the linear colliders. In this paper, we calculate the cross section of the process {gamma}{gamma}{yields}{pi}{sub t}{sup 0} and discuss the potential to observe the neutral top pion via its various decay modes at the planned International Linear Collider. The study shows that, among the various neutral top-pion production processes at the linear colliders, the cross section of {gamma}{gamma}{yields}{pi}{sub t}{sup 0} is the largest one which can reach the level of 10{sup 1}-10{sup 2} fb. Because of the existence of the tree-level flavor-changing coupling {pi}{sub t}{sup 0}tc, {gamma}{gamma}{yields}{pi}{sub t}{sup 0}{yields}tc can provide enough number of typical signals to identify the neutral top pion with the clean SM background. Therefore, the process {gamma}{gamma}{yields}{pi}{sub t}{sup 0} plays an important role in searching for the neutral top pion and tests the TC2 model.

  9. Gamma-Ray Burst Physics with GLAST

    SciTech Connect

    Omodei, N.; /INFN, Pisa

    2006-10-06

    The Gamma-ray Large Area Space Telescope (GLAST) is an international space mission that will study the cosmos in the energy range 10 keV-300 GeV, the upper end of which is one of the last poorly observed region of the celestial electromagnetic spectrum. The ancestor of the GLAST/LAT was the Energetic Gamma Ray Experiment Telescope (EGRET) detector, which flew onboard the Compton Gamma Ray Observatory (CGRO). The amount of information and the step forward that the high energy astrophysics made thanks to its 9 years of observations are impressive. Nevertheless, EGRET uncovered the tip of the iceberg, raising many questions, and it is in the light of EGRET's results that the great potential of the next generation gamma-ray telescope can be appreciated. GLAST will have an imaging gamma-ray telescope, the Large Area Telescope (LAT) vastly more capable than instruments own previously, as well as a secondary instrument, the GLAST Bursts Monitor, or GBM, to augment the study of gamma-ray bursts. Gamma-Ray Bursts (GRBs) science is one of the most exciting challenges for the GLAST mission, exploring the high energy emission of one of the most intense phenomena in the sky, shading light on various problems: from the acceleration of particles to the emission processes, to more exotic physics like Quantum Gravity effect. In this paper we report the work done so far in the simulation development as well as the study of the LAT sensitivity to GRB.

  10. Python in gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Deil, Christoph Deil

    2016-03-01

    Gamma-ray astronomy is a relatively new window on the cosmos. The first source detected from the ground was the Crab nebula, seen by the Whipple telescope in Arizona in 1989. Today, about 150 sources have been detected at TeV energies using gamma-ray telescopes from the ground such as H.E.S.S. in Namibia or VERITAS in Arizona, and about 3000 sources at GeV energies using the Fermi Gamma-ray Space Telescope. Soon construction will start for the Cherenkov Telescope Array (CTA), which will be the first ground-based gamma-ray telescope array operated as an open observatory, with a site in the southern and a second site in the northern hemisphere. In this presentation I will give a very brief introduction to gamma-ray astronomy and data analysis, as well as a short overview of the software used for the various missions. The main focus will be on recent attempts to build open-source gamma-ray software on the scientific Python stack and Astropy: ctapipe as a CTA Python pipeline prototype, Fermipy and the Fermi Science Tools for Fermi-LAT analysis, Gammapy as a community-developed gamma-ray Python package and naima as a non-thermal spectral modeling and fitting package.

  11. Gamma-ray Astronomy and GLAST

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2007-01-01

    The high energy gamma-ray (30 MeV to 100 GeV) sky has been relatively poorly studied. Most of our current knowledge comes from observations made by the Energetic Gamma Ray Experiment Telescope (EGRET) detector on the Compton Gamma Ray Observatory (CGRO), which revealed that the GeV gamma-ray sky is rich and vibrant. Studies of astrophysical objects at GeV energies are interesting for several reasons: The high energy gamma-rays are often produced by a different physical process than the better studied X-ray and optical emission, thus providing a unique information for understanding these sources. Production of such high-energy photons requires that charged particles are accelerated to equally high energies, or much greater. Thus gamma-ray astronomy is the study of extreme environments, with natural and fundamental connections to cosmic-ray and neutrino astrophysics. The launch of GLAST in 2008 will herald a watershed in our understanding of the high energy gamma-ray sky, providing dramatic improvements in sensitivity, angular resolution and energy range. GLAST will open a new avenue to study our Universe as well as to answer scientific questions EGRET observations have raised. In this talk, I will describe the GLAST instruments and capabilities and highlight some of the science we expect to address.

  12. Observations of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1995-01-01

    Some basic observed properties of gamma-ray bursts are reviewed. Although some properties were known 25 years ago, new and more detailed observations have been made by the Compton Observatory in the past three years. The new observation with the greatest impact has been the observed isotropic distribution of bursts along with a deficiency of weak bursts which would be expected from a homogeneous burst distribution. This is not compatible with any known Galactic population of objects. Gamma-ray bursts show an enormous variety of burst morphologies and a wide spread in burst durations. The spectra of gamma-ray bursts are characterized by rapid variations and peak power which is almost entirely in the gamma-ray energy range. Delayed gamma-ray burst photons extending to GeV energies have been detected for the first time. A time dilation effect has also been reported to be observed in gamma-ray, bursts. The observation of a gamma-ray burst counterpart in another wavelength region has yet to be made.

  13. Sex differences, gamma activity and schizophrenia.

    PubMed

    Slewa-Younan, S; Gordon, E; Williams, L; Haig, A R; Goldberg, E

    2001-03-01

    This study explores the possibility that the more favourable clinical prognosis in females with schizophrenia may be associated with their greater network interconnectedness, which is possibly reflected in enhanced "Gamma" (40 Hz) electrical brain activity. An auditory "oddball" task was administered to 35 patients with schizophrenia and 35 age and sex matched controls (25 males and 10 females). Peak Gamma amplitude (from a time series of Gamma activity averaged for 40 target stimuli, as well as the immediately preceding 40 background tones) was examined across 19 sites. Peak Gamma activity occurred 250 to 450 ms in targets and 350 to 550 ms in backgrounds. Multiple within and between group MANOVAs were undertaken analysing both Peak Gamma amplitude (microvolts) and latency (milliseconds). Within-group, the control males showed a pattern of earlier Gamma latency in the right compared with the left hemisphere (F(1, 33)=3.70, p<.06), while control females exhibited delayed latency frontally compared with the posterior region (F(1, 33)=6.25, p<.04). This male lateralization finding and the anterior/posterior gradient in females is consistent with Goldberg's model. The patient group however, failed to show this male lateralized and female frontal-posterior pattern of Gamma activity, suggesting suboptimal network integration in the patient group, in both males and females. PMID:11328687

  14. Fermi Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie E.; Michelson, Peter F.; Paclesas, William S.; Ritz, Steven

    2012-01-01

    The Fermi Gamma-ray Space Telescope, launched in June 2008, is an observatory designed to survey the high-energy gamma-ray sky. The primary instrument, the Large Area Telescope (LAT), provides observations from 20 MeV to greater than 300 GeV. A second instrument, the Gamma-ray Burst Monitor (GBM), provides observations of transients from less than 10 keV to 40 MeV. We describe the design and performance of the instruments and their subsystems, the spacecraft and the ground system.

  15. Combination neutron-gamma ray detector

    DOEpatents

    Stuart, Travis P.; Tipton, Wilbur J.

    1976-10-26

    A radiation detection system capable of detecting neutron and gamma events and distinguishing therebetween. The system includes a detector for a photomultiplier which utilizes a combination of two phosphor materials, the first of which is in the form of small glass beads which scintillate primarily in response to neutrons and the second of which is a plastic matrix which scintillates in response to gammas. A combination of pulse shape and pulse height discrimination techniques is utilized to provide an essentially complete separation of the neutron and gamma events.

  16. NEAR Gamma Ray Spectrometer Characterization and Repair

    NASA Technical Reports Server (NTRS)

    Groves, Joel Lee; Vajda, Stefan

    1998-01-01

    This report covers the work completed in the third year of the contract. The principle activities during this period were (1) the characterization of the NEAR 2 Gamma Ray Spectrometer using a neutron generator to generate complex gamma ray spectra and a large Ge Detecter to identify all the major peaks in the spectra; (2) the evaluation and repair of the Engineering Model Unit of the Gamma Ray Spectrometer for the NEAR mission; (3) the investigation of polycapillary x-ray optics for x-ray detection; and (4) technology transfer from NASA to forensic science.

  17. Detecting axionlike particles with gamma ray telescopes.

    PubMed

    Hooper, Dan; Serpico, Pasquale D

    2007-12-01

    We propose that axionlike particles (ALPs) with a two-photon vertex, consistent with all astrophysical and laboratory bounds, may lead to a detectable signature in the spectra of high-energy gamma-ray sources. This occurs as a result of gamma rays being converted into ALPs in the magnetic fields of efficient astrophysical accelerators according to the "Hillas criterion", such as jets of active galactic nuclei or hot spots of radio galaxies. The discovery of such an effect is possible by GLAST in the 1-100 GeV range and by ground-based gamma-ray telescopes in the TeV range. PMID:18233353

  18. Cosmic gamma-ray lines - Theory

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Ramaty, R.

    1980-01-01

    The various processes that lead to gamma-ray line emission and the possible astrophysical sources of such emission are reviewed. The processes of nuclear excitation, radiative capture, positron annihilation, and cyclotron radiation, which may produce gamma-ray line emission from such diverse sources as the interstellar medium, novas, supernovas, pulsars, accreting compact objects, the galactic nucleus and the nuclei of active galaxies are considered. The significance of the relative intensities, widths, and frequency shifts of the lines are also discussed. Particular emphasis is placed on understanding those gamma-ray lines that have already been observed from astrophysical sources.

  19. Modeling gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Maxham, Amanda

    Discovered serendipitously in the late 1960s, gamma-ray bursts (GRBs) are huge explosions of energy that happen at cosmological distances. They provide a grand physical playground to those who study them, from relativistic effects such as beaming, jets, shocks and blastwaves to radiation mechanisms such as synchrotron radiation to galatic and stellar populations and history. Through the Swift and Fermi space telescopes dedicated to observing GRBs over a wide range of energies (from keV to GeV), combined with accurate pinpointing that allows ground based follow-up observations in the optical, infrared and radio, a rich tapestry of GRB observations has emerged. The general picture is of a mysterious central engine (CE) probably composed of a black hole or neutron star that ejects relativistic shells of matter into intense magnetic fields. These shells collide and combine, releasing energy in "internal shocks" accounting for the prompt emission and flaring we see and the "external shock" or plowing of the first blastwave into the ambient surrounding medium has well-explained the afterglow radiation. We have developed a shell model code to address the question of how X-ray flares are produced within the framework of the internal shock model. The shell model creates randomized GRB explosions from a central engine with multiple shells and follows those shells as they collide, merge and spread, producing prompt emission and X-ray flares. We have also included a blastwave model, which can constrain X-ray flares and explain the origin of high energy (GeV) emission seen by the Fermi telescope. Evidence suggests that gamma-ray prompt emission and X-ray flares share a common origin and that at least some flares can only be explained by long-lasting central engine activity. We pay special attention to the time history of central engine activity, internal shocks, and observed flares. We calculate the gamma-ray (Swift/BAT band) and X-ray (Swift/XRT band) lightcurves for arbitrary

  20. Deformation of a gamma/gamma' WASPALOY after laser shock

    NASA Astrophysics Data System (ADS)

    Bourda, C.; Puig, Thierry T.; Decamps, B.; Condat, M.

    1991-10-01

    Nickel-base superalloys have important applications in industry (i.e., aeronautic and nuclear), so deformation mechanisms of these superalloys have been extensively studied. Most of the results are coming from typical experiments at low-strain rates of deformation. Laser shock hardening provides a high amount of deformation. The purpose of the present study is to compare a high-rate deformed WASPALOY to what is known about deformation mechanisms of this alloy and some other nickel-base superalloys. Oriented single crystals of a nickel-base superalloy, strongly hardened by (gamma) phase, were exposed along the [001] axis to a laser shock (1.06 micrometers , 60 J, 25 ns, confined plasma configuration) at power densities of 3 and 9.5 X 109 W/cm2. Then, thin foils taken at depths of 50 and 700 micrometers below the impacted surface of the specimens were observed by T.E.M. All following observations have been made in areas submitted to plastic deformation. At the surface, deformation bands with planar walls (small size approximately equals 350 nm +/- 100 nm) and pairs of a /2 [110] dislocation have been observed. At the depth of 700 micrometers , deformation bands disappear, but pairs of a /2 < 100 > dislocation remain. In both cases, superlattice stacking faults have been brought into evidence and the deformation is inhomogeneous.

  1. Study of the Rare Decay K(L) ---> pi0 gamma gamma at KTeV

    SciTech Connect

    Wang, Jianbo; /Arizona U.

    2007-08-01

    The authors study on the rare decay K{sub L} {yields} {pi}{sup 0}{gamma}{gamma}, measure a{sub V}, and branching ratio by analyzing 96, 97 and 99 data. The measurements were taken by KTeV at Fermi National Accelerator Laboratory. After all cuts, they have 1982 K{sub L} {yields} {pi}{sup 0}{gamma}{gamma} candidate. The background level is estimated as 30%. K{sub L} {yields} {pi}{sup 0}{gamma}{gamma} branching ratio is measured as (1.29 {+-} 0.03(stat) {+-} 0.04(sys)) x 10{sup -6}. By using D'Ambrosio's theory to fit a{sub V}, a{sub V} = -(-0.31 {+-} 0.05(stat) {+-} 0.07(sys)).

  2. High-energy gamma rays from the intense 1993 January 31 gamma-ray burst

    NASA Technical Reports Server (NTRS)

    Sommer, M.; Bertsch, D. L.; Dingus, B. L.; Fichtel, C. E.; Fishman, G. J.; Harding, A. K.; Hartman, R. C.; Hunter, S. D.; Hurley, K.; Kanbach, G.

    1994-01-01

    The intense gamma-ray burst of 1993 January 31 was detected by the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Observatory. Sixteen gamma rays above 30 MeV were imaged in the telescope when only 0.04 gamma rays were expected by chance. Two of these gamma rays have energies of approximately 1 GeV, and the five bin spectrum of the 16 events is fitted by a power law of photon spectral index -2.0 +/- 0.4. The high-energy emission extends for at least 25 s. The most probable direction for this burst is determined from the directions of the 16 gamma rays observed by Egret and also by requiring the position to lie on annulus derived by the Interplanetary Network.

  3. A Search for the Rare Decay $B\\rightarrow\\gamma\\gamma$

    SciTech Connect

    del Amo Sanchez, P.; Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D.N.; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; Tanabe, T.; /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Indian Inst. Tech., Guwahati /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Southern Methodist U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas Nuclear Corp., Austin /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

    2011-06-02

    We report the result of a search for the rare decay B{sup 0} {yields} {gamma}{gamma} in 426 fb{sup -1} of data, corresponding to 226 million B{sup 0}{bar B}{sup 0} pairs, collected on the {Upsilon}(4S) resonance at the PEP-II asymmetric-energy e{sup +}e{sup -} collider using the BABAR detector. We use a maximum likelihood fit to extract the signal yield and observe 21{sub -12}{sup +13} signal events with a statistical signficance of 1.9 {sigma}. This corresponds to a branching fraction {Beta}(B{sup 0} {yields} {gamma}{gamma}) = (1.7 {+-} 1.1(stat.) {+-} 0.2(syst.)) x 10{sup -7}. Based on this result, we set a 90% confidence level upper limit of {Beta}(B{sup 0} {yields} {gamma}{gamma}) < 3.2 x 10{sup -7}.

  4. Method of incident low-energy gamma-ray direction reconstruction in the GAMMA-400 gamma-ray space telescope

    NASA Astrophysics Data System (ADS)

    Kheymits, M. D.; Leonov, A. A.; Zverev, V. G.; Galper, A. M.; Arkhangelskaya, I. V.; Arkhangelskiy, A. I.; Suchkov, S. I.; Topchiev, N. P.; Yurkin, Yu T.; Bakaldin, A. V.; Dalkarov, O. D.

    2016-02-01

    The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work.

  5. Interleukin-4 enhances interferon-gamma synthesis but inhibits development of interferon-gamma-producing cells.

    PubMed Central

    Noble, A; Kemeny, D M

    1995-01-01

    Interleukin-4 (IL-4) is antagonistic for many of the activities of interferon-gamma (IFN-gamma) and, as well as suppressing the development of T-helper type-1 (Th1) cells, has been reported to block directly the synthesis of IFN-gamma in human lymphocytes. However, IL-4 transgenic mice produce increased amounts of IFN-gamma as well as IL-4. We have compared the ability of rat IL-4 to regulate IFN-gamma secretion in short-term cultures of spleen cells with its effect on the differentiation of T lymphocytes into IFN-gamma-producing, or Th1-type, cells. Normal rat spleen cells were stimulated using a variety of mitogens and ovalbumin antigen, with or without IL-4, for 12-24 hr and the levels of IFN-gamma in the supernatants measured by enzyme-linked immunosorbent assay (ELISA). The results show that when normal rat splenocytes were stimulated with phytohaemagglutinin (PHA) or concavalin A (Con A), IL-4 enhanced secretion of IFN-gamma after 12-24 hr. This enhancement was also apparent when splenocytes from animals immunized 10 days previously with alum-precipitated ovalbumin were stimulated with ovalbumin in vitro, and appeared to be mediated primarily via CD+ T cells. In contrast, when spleen cells were maximally stimulated with phorbol myristate acetate (PMA) and ionomycin, addition of IL-4 had no effect on the amount of IFN-gamma secreted. When splenocytes were stimulated with Con A for 4 days in the presence of IL-4, and restimulated with PMA and ionomycin, IFN-gamma secretion was greatly suppressed. Our results indicate that IL-4 exerts differential effects on IFN-gamma secretion and on the development of IFN-gamma-producing lymphocytes. PMID:7558122

  6. Tests of quantum chromodynamics in exclusive e sup + e sup minus and. gamma. gamma. processes

    SciTech Connect

    Brodsky, S.J.

    1989-09-01

    This paper discusses the following topics: Factorization theorem for exclusive processes; Electromagnetic form factors of baryons; Suppression of final state interactions; The {gamma}{pi}{sub 0} Transition form factor; Exclusive charmonium decays; The {pi}-{rho} puzzle; Time-like compton processes; Multi-hadron production; Heavy Quark exclusive states and form factor zeros in QCD; Exclusive {gamma}{gamma} reactions; Higher twist effects; and Tauonium and threshold {tau}{sup +}{tau}{sup {minus}} production. 41 refs., 15 figs. (LSP)

  7. Overview Animation of Gamma-ray Burst

    NASA Video Gallery

    Gamma-ray bursts are the most luminous explosions in the cosmos. Astronomers think most occur when the core of a massive star runs out of nuclear fuel, collapses under its own weight, and forms a b...

  8. Gamma beam system at ELI-NP

    SciTech Connect

    Ur, Calin Alexandru

    2015-02-24

    The Gamma Beam System of ELI-NP will produce brilliant, quasi-monochromatic gamma-ray beams via Inverse Compton Scattering of short laser pulses on relativistic electron beam pulses. The scattered radiation is Doppler upshifted by more than 1,000,000 times and is forward focused in a narrow, polarized, tunable, laser-like beam. The gamma-ray beam at ELI-NP will be characterized by large spectral density of about 10{sup 4} photons/s/eV, narrow bandwidth (< 0.5%) and tunable energy from 200 keV up to about 20 MeV. The Gamma Beam System is a state-of-the-art equipment employing techniques and technologies at the limits of the present-day's knowledge.

  9. Gamma-Ray Pulsar Studies with GLAST

    NASA Astrophysics Data System (ADS)

    Thompson, D. J.

    2008-02-01

    Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

  10. Hardness Evolution of Gamma-Irradiated Polyoxymethylene

    NASA Astrophysics Data System (ADS)

    Hung, Chuan-Hao; Harmon, Julie P.; Lee, Sanboh

    2016-04-01

    This study focuses on analyzing hardness evolution in gamma-irradiated polyoxymethylene (POM) exposed to elevated temperatures after irradiation. Hardness increases with increasing annealing temperature and time, but decreases with increasing gamma ray dose. Hardness changes are attributed to defects generated in the microstructure and molecular structure. Gamma irradiation causes a decrease in the glass transition temperature, melting point, and extent of crystallinity. The kinetics of defects resulting in hardness changes follow a first-order structure relaxation. The rate constant adheres to an Arrhenius equation, and the corresponding activation energy decreases with increasing dose due to chain scission during gamma irradiation. The structure relaxation of POM has a lower energy barrier in crystalline regions than in amorphous ones. The hardness evolution in POM is an endothermic process due to the semi-crystalline nature of this polymer.

  11. Gamma-Ray Pulsar Studies With GLAST

    SciTech Connect

    Thompson, D.J.; /NASA, Goddard

    2011-11-23

    Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

  12. Method for induced gamma ray logging

    SciTech Connect

    Randall, R.R.

    1987-04-07

    In a nuclear well logging operation, a method is described for indicating the presence of gas in a fluid filled zone of a subsurface earth formation, comprising the steps of: cyclically irradiating the subsurface earth formation with bursts of high energy neutrons; detecting for one or more burst cycles the impingement of gamma radiation upon a first gamma radiation detector means during and between each of the burst; determining a first parameter indicative of the count of detected impingements of primarily inelastic gamma radiation upon the first detector means; determining a second parameter indicative of the count of detected impingements of primarily capture gamma radiation upon the first detector means; and comparing the first and second parameters to determine the presence of gas.

  13. A Compton scatter attenuation gamma ray spectrometer

    NASA Technical Reports Server (NTRS)

    Austin, W. E.

    1972-01-01

    A Compton scatter attenuation gamma ray spectrometer conceptual design is discussed for performing gamma spectral measurements in monodirectional gamma fields from 100 R per hour to 1,000,000 R per hour. Selectable Compton targets are used to scatter gamma photons onto an otherwise heavily shielded detector with changeable scattering efficiencies such that the count rate is maintained between 500 and 10,000 per second. Use of two sum-Compton coincident detectors, one for energies up to 1.5 MeV and the other for 600 keV to 10 MeV, will allow good peak to tail pulse height ratios to be obtained over the entire spectrum and reduces the neutron recoil background rate.

  14. Scintimammography (Breast Specific Gamma Imaging-BSGI)

    MedlinePlus

    ... computer to help investigate an abnormality discovered on mammography. Its ability to detect cancer is not limited ... a breast abnormality that has been discovered on mammography. Scintimammography is also known as Breast Specific Gamma ...

  15. Airborne Gamma-Spectrometry in Switzerland

    SciTech Connect

    Butterweck, Gernot; Bucher, Benno; Rybach, Ladislaus

    2008-08-07

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of {sup 137}Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  16. Gamma rays from giant molecular clouds

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; Kanbach, Gottfried

    1990-01-01

    Giant Molecular Clouds (GMCs) are massive, bounded, cool, dense regions containing mostly H2, but also H I, CO, and other molecules. These clouds occupy less than 1 percent of the galactic volume, but are a substantial part of the interstellar mass. They are irradiated by the high energy cosmic rays which are possibly modulated by the matter and magnetic fields within the clouds. The product of cosmic-ray flux and matter density is traced by the emission of high energy gamma-rays. A spherical cloud model is considered and the gamma ray flux from several GMCs within 1 kpc of the sun which should be detectable by the EGRET (Energetic Gamma-Ray Experimental Telescope) instrument on GRO (Gamma Ray Observatory).

  17. Gamma-Ray Pulsar Studies with GLAST

    SciTech Connect

    Thompson, D. J.

    2008-02-27

    Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

  18. POPULATION SYNTHESIS AND GAMMA RAY BURST PROGENITORS

    SciTech Connect

    C. L. FREYER

    2000-12-11

    Population synthesis studies of binaries are always limited by a myriad of uncertainties from the poorly understood effects of binary mass transfer and common envelope evolution to the many uncertainties that still remain in stellar evolution. But the importance of these uncertainties depends both upon the objects being studied and the questions asked about these objects. Here I review the most critical uncertainties in the population synthesis of gamma-ray burst progenitors. With a better understanding of these uncertainties, binary population synthesis can become a powerful tool in understanding, and constraining, gamma-ray burst models. In turn, as gamma-ray bursts become more important as cosmological probes, binary population synthesis of gamma-ray burst progenitors becomes an important tool in cosmology.

  19. GAMMA: a high performance dataflow database machine

    SciTech Connect

    DeWitt, D.J.; Gerber, R.H.; Graefe, G.; Heytens, M.L.; Kumar, K.B.; Muralikrishna, M.

    1986-03-01

    In this paper, the design, implementation techniques, and initial performance evaluation of Gamma are presented. Gamma is a new relational database machine that exploits dataflow query processing techniques. Ganma is a fully operational prototype consisting of 20 VAX 11/750 computers. The design of Gamma is based on an earlier multiprocessor database machine prototype (DIRECT) and several years of subsequent research on the problems raised by the DIRECT prototype. In addition to demonstrating that parallelism can really be made to work in a database machine context, the Gamma prototype shows how parallelism can be controlled with minimal control overhead through a combination of the use of algorithms based on hashing and the pipelining of data between processes. Except for 2 messages to initiate each operator of a query tree and 1 message when the operator terminates, the execution of a query is entirely self-scheduling. 52 refs., 12 figs.

  20. Positron annihilation gamma rays from novae

    NASA Technical Reports Server (NTRS)

    Leising, Mark D.; Clayton, Donald D.

    1987-01-01

    The potential for observing annihilation gamma rays from novae is investigated. These gamma rays, a unique signature of the thermonuclear runaway models of novae, would result from the annihilation of positrons emitted by beta(+)-unstable nuclei produced near the peak of the runaway and carried by rapid convection to the surface of the nova envelope. Simple models, which are extensions of detailed published models, of the expansion of the nova atmospheres are evolved. These models serve as input into investigations of the fate of nearby Galactic fast novae could yield detectable fluxes of electron-positron annihilation gamma rays produced by the decay of N-13 and F-18. Although nuclear gamma-ray lines are produced by other nuclei, it is unlikely that the fluxes at typical nova distances would be detectable to present and near-future instruments.

  1. Measurements of Gamma in BaBar

    SciTech Connect

    Marchiori, G.; /INFN, Pisa

    2006-08-30

    We report on the first measurements to the angle {gamma} of the Unitarity Triangle in B meson decays collected by the BABAR detector at the SLAC PEP-II asymmetric-energy B factory in the years 1999-2004.

  2. Gamma-ray spectroscopy - Requirements and prospects

    NASA Technical Reports Server (NTRS)

    Matteson, James L.

    1991-01-01

    The only previous space instrument which had sufficient spectral resolution and directionality for the resolution of astrophysical sources was the Gamma-Ray Spectrometer carried by HEAO-3. A broad variety of astrophysical investigations entail gamma-ray spectroscopy of E/Delta-E resolving power of the order of 500 at 1 MeV; it is presently argued that a sensitivity to narrow gamma-ray lines of a few millionths ph/sq cm, from about 10 keV to about 10 MeV, should typify the gamma-ray spectrometers of prospective missions. This performance is achievable with technology currently under development, and could be applied to the NASA's planned Nuclear Astrophysics Explorer.

  3. Gamma-Rays from Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Madejski, Greg

    2016-07-01

    In this presentation, I will overview the properties of radio galaxies gleaned from observations of their gamma-ray emission, including that arising from the nuclear, and extended components. The gamma-ray spectra of radio galaxies measured by the Fermi-LAT and ground based Air Cerenkov telescopes will be considered in the context of their broad-band emission. The presentation will cover the most compelling models for emission processes, and will attempt to constrain the location of the nuclear gamma-ray emission. This will be compared to the observational properties of blazars, which are believed to be radio galaxies with jets pointing along our line of sight. Finally, I will discuss our best estimates for the contribution of unresolved radio galaxies to the diffuse gamma-ray emission.

  4. Some problems of gamma-astronomy

    NASA Astrophysics Data System (ADS)

    Dogiel, V. A.; Ginzburg, V. L.

    1989-04-01

    Recent observational and theoretical investigations of gamma-ray emission (GRE) from astronomical objects are reviewed. Topics addressed include the basic observational parameters, bremsstrahlung GRE, the Compton effect, synchrotron and curvature radiation, pi0-meson and analogous decays, gamma line generation, gamma-ray absorption, and the Galactic GRE band. Consideration is given to discrete sources of soft GRE, gamma-ray bursts, the annihilation GRE line from the Galactic center, the Al-26 decay line, GRE lines from SN, diffuse GRE from the Galactic disk and halo, discrete GRE sources at 30-5000 MeV, and sources of GRE at energies greater than 1 TeV or 1 PeV. Diagrams, maps, graphs, and tables of numerical data are provided.

  5. Phase separation in aqueous solutions of lens gamma-crystallins: special role of gamma s.

    PubMed Central

    Liu, C; Asherie, N; Lomakin, A; Pande, J; Ogun, O; Benedek, G B

    1996-01-01

    We have studied liquid-liquid phase separation in aqueous ternary solutions of calf lens gamma-crystallin proteins. Specifically, we have examined two ternary systems containing gamma s--namely, gamma IVa with gamma s in water and gamma II with gamma s in water. For each system, the phase-separation temperatures (Tph (phi)) alpha as a function of the overall protein volume fraction phi at various fixed compositions alpha (the "cloud-point curves") were measured. For the gamma IVa, gamma s, and water ternary solution, a binodal curve composed of pairs of coexisting points, (phi I, alpha 1) and (phi II, alpha II), at a fixed temperature (20 degrees C) was also determined. We observe that on the cloud-point curve the critical point is at a higher volume fraction than the maximum phase-separation temperature point. We also find that typically the difference in composition between the coexisting phases is at least as significant as the difference in volume fraction. We show that the asymmetric shape of the cloud-point curve is a consequence of this significant composition difference. Our observation that the phase-separation temperature of the mixtures in the high volume fraction region is strongly suppressed suggests that gamma s-crystallin may play an important role in maintaining the transparency of the lens. PMID:8552642

  6. Observations of Soft Gamma Repeaters

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2005-01-01

    Magnetars (Soft Gamma Repeaters and Anomalous X-ray Pulsars) are a subclass of neutron stars characterized by their recurrent X-ray bursts. While in an active (bursting) state (lasting anywhere between days and years), they are emitting hundreds of predominantly soft (kl'=30 kev), short (0.1 - 100 ms long) events. Their quiescent source X-ray light curves exhibit pulsations in the narrow range of 5-1 1 s; estimates of these rotational period rate changes (spin-down) indicate that their magnetic fields are extremely high, of the order of 10A14-10A15 G. Such high B-field objects, dubbed "magnetars", had been predicted to exist in 1992, but the first concrete observational evidence was obtained in 1998 for two of these sources. Very recently, SGR1806-20 emitted a giant flare, which was detected in the radio with a multitude of telescopes under an extensive international campaign. These observations have revealed exciting new results, never seen before in any of the other magnetar sources. I will discuss here these results and their relevance to our understanding of the nature of magnetars.

  7. Gamma-ray burst cosmology

    NASA Astrophysics Data System (ADS)

    Wang, F. Y.; Dai, Z. G.; Liang, E. W.

    2015-08-01

    Gamma-ray bursts (GRBs) are the most luminous electromagnetic explosions in the Universe, which emit up to 8.8 × 1054 erg isotropic equivalent energy in the hard X-ray band. The high luminosity makes them detectable out to the largest distances yet explored in the Universe. GRBs, as bright beacons in the deep Universe, would be the ideal tool to probe the properties of high-redshift universe: including the cosmic expansion and dark energy, star formation rate, the reionization epoch and the metal enrichment history of the Universe. In this article, we review the luminosity correlations of GRBs, and implications for constraining the cosmological parameters and dark energy. Observations show that the progenitors of long GRBs are massive stars. So it is expected that long GRBs are tracers of star formation rate. We also review the high-redshift star formation rate derived from GRBs, and implications for the cosmic reionization history. The afterglows of GRBs generally have broken power-law spectra, so it is possible to extract intergalactic medium (IGM) absorption features. We also present the capability of high-redshift GRBs to probe the pre-galactic metal enrichment and the first stars.

  8. Gamma-ray binaries and related systems

    NASA Astrophysics Data System (ADS)

    Dubus, Guillaume

    2013-08-01

    After initial claims and a long hiatus, it is now established that several binary stars emit high- (0.1-100 GeV) and very high-energy (>100 GeV) gamma rays. A new class has emerged called "gamma-ray binaries", since most of their radiated power is emitted beyond 1 MeV. Accreting X-ray binaries, novae and a colliding wind binary ( η Car) have also been detected—"related systems" that confirm the ubiquity of particle acceleration in astrophysical sources. Do these systems have anything in common? What drives their high-energy emission? How do the processes involved compare to those in other sources of gamma rays: pulsars, active galactic nuclei, supernova remnants? I review the wealth of observational and theoretical work that have followed these detections, with an emphasis on gamma-ray binaries. I present the current evidence that gamma-ray binaries are driven by rotation-powered pulsars. Binaries are laboratories giving access to different vantage points or physical conditions on a regular timescale as the components revolve on their orbit. I explain the basic ingredients that models of gamma-ray binaries use, the challenges that they currently face, and how they can bring insights into the physics of pulsars. I discuss how gamma-ray emission from microquasars provides a window into the connection between accretion-ejection and acceleration, while η Car and novae raise new questions on the physics of these objects—or on the theory of diffusive shock acceleration. Indeed, explaining the gamma-ray emission from binaries strains our theories of high-energy astrophysical processes, by testing them on scales and in environments that were generally not foreseen, and this is how these detections are most valuable.

  9. Gamma-ray detected radio galaxies

    NASA Astrophysics Data System (ADS)

    Beckmann, Volker; Soldi, Simona; De Jong, Sandra; Kretschmer, Karsten; Savchenko, Volodymyr

    2016-07-01

    So far 15 radio galaxies have been detected in the gamma-ray domain by CGRO/EGRET and Fermi/LAT, with a few detections also in the VHE range. We search for distinguishing parameters and estimate the total number of gamma-ray emitting radio galaxies that are potentially detectable by Fermi/LAT. We use Fermi/LAT data in comparison with X-ray and hard X-ray data in order to constrain basic parameters such as the total power of the inverse Compton branch and the position of its peak. We search for possible correlations between the radio, UV, X-ray, and gamma-ray domain and derive the number counts distribution. We then compare their properties with those of the radio galaxies in the 3CRR and SMS4 catalogues. The data show no correlation between the peak of the inverse Compton emission and its luminosity. For the gamma-ray detected radio galaxies the luminosities in the various bands are correlated, except for the UV band, but there is no indication of a correlation of peak frequency or luminosity with the spectral slopes in the X-ray or gamma-ray band. The comparison with other bright radio galaxies shows that the gamma-ray detected objects are among those that have the largest X-ray but rather moderate radio fluxes. Their UV and X-ray luminosities are similar, but gamma-ray detected radio galaxies are predominantly of type FR-I, while the 3CRR sample contains mainly FR-II objects. The number counts of the so far gamma-ray detected radio galaxies shows a very shallow slope, indicating that potentially a fraction of radio galaxies has been missed so far or has not been identified as such, although the predicted number of 22 ± 7 is consistent with the observed 15 objects.

  10. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.

    1989-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are covered. The activities are divided into sections and described, followed by a bibliography. The astrophysical aspects of cosmic rays, gamma rays, and of the radiation and electromagnetic field environment of the Earth and other planets are investigated. These investigations are performed by means of energetic particle and photon detector systems flown on spacecraft and balloons.

  11. Supernovae and gamma-ray bursts connection

    SciTech Connect

    Valle, Massimo Della

    2015-12-17

    I’ll review the status of the Supernova/Gamma-Ray Burst connection. Several pieces of evidence suggest that long duration Gamma-ray Bursts are associated with bright SNe-Ic. However recent works suggest that GRBs might be produced in tight binary systems composed of a massive carbon-oxygen cores and a neutron star companion. Current estimates of the SN and GRB rates yield a ratio GRB/SNe-Ibc in the range ∼ 0.4% − 3%.

  12. Supernovae and gamma-ray bursts connection

    NASA Astrophysics Data System (ADS)

    Valle, Massimo Della

    2015-12-01

    I'll review the status of the Supernova/Gamma-Ray Burst connection. Several pieces of evidence suggest that long duration Gamma-ray Bursts are associated with bright SNe-Ic. However recent works suggest that GRBs might be produced in tight binary systems composed of a massive carbon-oxygen cores and a neutron star companion. Current estimates of the SN and GRB rates yield a ratio GRB/SNe-Ibc in the range ˜ 0.4% - 3%.

  13. Ballerina - pirouettes in search of gamma bursts

    NASA Astrophysics Data System (ADS)

    Brandt, S.; Lund, N.; Pedersen, H.; Hjorth, J.; BALLERINA Collaboration

    1999-09-01

    The cosmological origin of gamma ray bursts has now been established with reasonable certainty. Many more bursts will need to be studied to establish the typical distance scale, and to map out the large diversity in properties which have been indicated by the first handful of events. We are proposing Ballerina, a small satellite to provide accurate positions and new data on the gamma-ray bursts. We anticipate a detection rate an order of magnitude larger than obtained from Beppo-SAX.

  14. Solar flare gamma-ray line spectroscopy

    NASA Technical Reports Server (NTRS)

    Murphy, R. J.; Forrest, D. J.; Ramaty, R.; Kozlovsky, B.

    1985-01-01

    The techniques and the results of solar elemental abundance determinations using observations of gamma ray lines from the April 27 1981 olar flare were outlined. The techniques are elaborated on and observed and the best-fitting theoretical spectra are presented. Numerical values for the photon fluences and the total number of protons involved in the thick-target production of these gamma rays are derived.

  15. Gamma-ray constraints on supernova nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Leising, Mark D.

    1994-01-01

    Gamma-ray spectroscopy holds great promise for probing nucleosynthesis in individual supernova explosions via short-lived radioactivity, and for measuring current global Galactic supernova nucleosynthesis with longer-lived radioactivity. It was somewhat surprising that the former case was realized first for a Type II supernova, when both Co-56 and Co-57 were detected in SN 1987A. These provide unprecedented constraints on models of Type II explosions and nucleosynthesis. Live Al-26 in the Galaxy might come from Type II supernovae, and if it is eventually shown to be so, can constrain massive star evolution, supernova nucleosynthesis, and the Galactic Type II supernova rate. Type Ia supernovae, thought to be thermonuclear explosions, have not yet been detected in gamma-rays. This is somewhat surprising given current models and recent Co-56 detection attempts. Ultimately, gamma-ray measurements can confirm their thermonuclear nature, probe the nuclear burning conditions, and help evaluate their contributions to Galactic nucleosynthesis. Type Ib/c supernovae are poorly understood. Whether they are core collapse or thermonuclear events might be ultimately settled by gamma-ray observations. Depending on details of the nuclear processing, any of these supernova types might contribute to a detectable diffuse glow of Fe-60 gamma-ray lines. Previous attempts at detection have come very close to expected emission levels. Remnants of any type of age less that a few centuries might be detectable as individual spots of Ti-44 gamma-ray line emission. It is in fact quite surprising that previous surveys have not discovered such spots, and the constraints on the combination of nucleosynthesis yields and supernova rates are very interesting. All of these interesting limits and possibilities mean that the next mission, International Gamma-Ray Astrophysics Laboratory (INTEGRAL), if it has sufficient sensitivity, is very likely to lead to the realization of much of the great potential

  16. Gamma-ray pulsar studies with COMPTEL

    NASA Astrophysics Data System (ADS)

    Hermsen, W.; Kuiper, L.; Diehl, R.; Lichti, G.; Schoenfelder, V.; Strong, A. W.; Connors, A.; Ryan, J.; Bennett, K.; Busetta, M.; Carraminana, A.; Buccheri, R.; Grenier, I. A.

    1994-06-01

    Since the launch of the Compton Gamma-Ray Observatory (CGRO) the number of detected gamma-ray pulsars increased from two to six. COMPTEL, on-board CGRO and sensitive to gamma-rays with energies between approximately 0.7 and 30 MeV, detected three of these unambiguously. The classical Crab and Vela pulsars have been observed on several occasions and detailed pulse patterns and spectral parameters have been derived. The new CGRO gamma-ray pulsar PSR B1509-58 has been detected by COMPTEL at a significance level above 4 sigma, consistently in a timing and spatial analysis. A likely detection of Geminga has been obtained at an approximately 3 sigma level. This indication is found in a phase interval in which COS B data showed the presence of a new variable component, Interpeak 2, exhibiting a very soft spectrum above 50 MeV. The diversities in light-curve sphapes and spectral distributions, the apparent time variabilities, and the significant differences in the fractions of the spin-down power radiated at gamma-ray energies in this small sample of gamma-ray pulsars pose important constraints to pulsar modeling.

  17. Gamma-ray Albedo of the Moon

    SciTech Connect

    Moskalenko, Igor V.; Porter, Troy A.

    2007-06-14

    We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma-rays from the Moon is very steep with an effective cutoff around 3 GeV (600 MeV for the inner part of the Moon disc). Since it is the only (almost) black spot in the gamma-ray sky, it provides a unique opportunity for calibration of gamma-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). The albedo flux depends on the incident CR spectrum which changes over the solar cycle. Therefore, it is possible to monitor the CR spectrum using the albedo gamma-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo -rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the GLAST LAT to monitor the CR spectrum near the Earth beyond the lifetime of PAMELA.

  18. Gamma-Ray Bursts: The End Game

    NASA Astrophysics Data System (ADS)

    Lamb, Don

    1997-11-01

    The nature of gamma-ray bursts has been one of the greatest unsolved mysteries in astrophysics for more than a quarter century. A major reason for this is that no definite counterparts to the bursts could be found at other wavelengths, despite intense efforts spanning more than two decades. Consequently, the study of gamma-ray bursts has been isolated from the rest of astronomy. Scientists studying them have had only the laws of physics and the bursts themselves to guide them in attempting to solve the burst mystery. All of this changed dramatically with the discovery earlier this year of fading X-ray and optical sources in the arcminute-sized positional error boxes of several gamma-ray bursts. For the first time, temporal, as well as spatial, coincidence could be used to associate these X-ray and optical sources with the gamma-ray bursts. As a result, the odds are great that the fading X-ray and optical sources are counterparts of the bursts, and that the study of gamma-ray bursts has finally been connected with the rest of astronomy. In this talk, we describe the dramatic new information about the nature of gamma-ray bursts that the X-ray, optical, and radio observations of the fading sources have provided, and emphasize the implications that this information has for the distance scale to the bursts.

  19. Molecular recognition of nitrated fatty acids by PPAR[gamma

    SciTech Connect

    Li, Yong; Zhang, Jifeng; Schopfer, Francisco J.; Martynowski, Dariusz; Garcia-Barrio, Minerva T.; Kovach, Amanda; Suino-Powell, Kelly; Baker, Paul R.S.; Freeman, Bruce A.; Chen, Y. Eugene; Xu, H. Eric

    2010-03-08

    Peroxisome proliferator activated receptor-{gamma} (PPAR{gamma}) regulates metabolic homeostasis and adipocyte differentiation, and it is activated by oxidized and nitrated fatty acids. Here we report the crystal structure of the PPAR{gamma} ligand binding domain bound to nitrated linoleic acid, a potent endogenous ligand of PPAR{gamma}. Structural and functional studies of receptor-ligand interactions reveal the molecular basis of PPAR{gamma} discrimination of various naturally occurring fatty acid derivatives.

  20. Mercuric iodine room temperature gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Patt, Bradley E.; Markakis, Jeffrey M.; Gerrish, Vernon M.; Haymes, Robert C.; Trombka, Jacob I.

    1990-01-01

    high resolution mercuric iodide room temperature gamma-ray detectors have excellent potential as an essential component of space instruments to be used for high energy astrophysics. Mercuric iodide detectors are being developed both as photodetectors used in combination with scintillation crystals to detect gamma-rays, and as direct gamma-ray detectors. These detectors are highly radiation damage resistant. The list of applications includes gamma-ray burst detection, gamma-ray line astronomy, solar flare studies, and elemental analysis.

  1. Globin chain synthesis in single erythroid bursts from cord blood: studies on gamma leads to beta and G gamma leads to A gamma switches.

    PubMed

    Comi, P; Giglioni, B; Ottolenghi, S; Gianni, A M; Polli, E; Barba, P; Covelli, A; Migliaccio, G; Condorelli, M; Peschle, C

    1980-01-01

    Erythroid bursts from cord or adult blood were grown in methylcellulose cultures (3 international units of erythropoietin per plate). On day 13, single bursts were picked up and reincubated for 16-24 hr with [3H]leucine. Radioactive globin chains [alpha,beta,G gamma, and A gamma (Ala-136)] were analyzed by either isoelectric focusing on polyacrylamide gels and fluorography or carboxymethylcellulose chromatography. In all cases, alpha to non-alpha globin radioactivity ratios were close to 1. In single cord blood bursts, the values of both gamma-to-beta and G gamma-to-A gamma ratios were spread over a large spectrum and further characterized by a continuous rather than a bimodal distribution. Morever, the G gamma-to-A gamma ratios demonstrated in single bursts appeared to be directly correlated with the respective gamma-to-beta ratios. These data suggest that both the gamma leads to beta and the G gamma leads to A gamma switches are mediated via mechanisms modulating the relative activities of the different genes in the non-alpha globin gene cluster rather than via selection of clones committed to the preferential synthesis of beta and A gamma globins. In contrast with the results obtained with cord blood, individual adult blood bursts synthesize a lower and hence relatively more uniform amount of gamma globin chains. PMID:6153796

  2. Predicting diffusion paths and interface motion in gamma/gamma + beta, Ni-Cr-Al diffusion couples

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1987-01-01

    A simplified model has been developed to predict Beta recession and diffusion paths in ternary gamma/gamma + beta diffusion couples (gamma:fcc, beta: NiAl structure). The model was tested by predicting beta recession and diffusion paths for four gamma/gamma + beta, Ni-Cr-Al couples annealed for 100 hours at 1200 C. The model predicted beta recession within 20 percent of that measured for each of the couples. The model also predicted shifts in the concentration of the gamma phase at the gamma/gamma + beta interface within 2 at. pct Al and 6 at. pct Cr of that measured in each of the couples. A qualitative explanation based on simple kinetic and mass balance arguments has been given which demonstrates the necessity for diffusion in the two-phase region of certain gamma/gamma + beta, Ni-Cr-Al couples.

  3. Gamma ray astrophysics to the year 2000. Report of the NASA Gamma Ray Program Working Group

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Important developments in gamma-ray astrophysics up to energies of 100 GeV during the last decade are reviewed. Also, the report seeks to define the major current scientific goals of the field and proposes a vigorous program to pursue them, extending to the year 2000. The goals of gamma-ray astronomy include the study of gamma rays which provide the most direct means of studying many important problems in high energy astrophysics including explosive nucleosynthesis, accelerated particle interactions and sources, and high-energy processes around compact objects. The current research program in gamma-ray astronomy in the U.S. including the space program, balloon program and foreign programs in gamma-ray astronomy is described. The high priority recommendations for future study include an Explorer-class high resolution gamma-ray spectroscopy mission and a Get Away Special cannister (GAS-can) or Scout class multiwavelength experiment for the study of gamma-ray bursts. Continuing programs include an extended Gamma Ray Observatory mission, continuation of the vigorous program of balloon observations of the nearby Supernova 1987A, augmentation of the balloon program to provide for new instruments and rapid scientific results, and continuation of support for theoretical research. Long term recommendations include new space missions using advanced detectors to better study gamma-ray sources, the development of these detectors, continued study for the assembly of large detectors in space, collaboration with the gamma-ray astronomy missions initiated by other countries, and consideration of the Space Station attached payloads for gamma-ray experiments.

  4. Supernovae and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Panagia, Nino; Sahu, Kailash

    2001-07-01

    Participants; Preface; Gamma-ray burst-supernova relation B. Paczynski; Observations of gamma-ray bursts G. Fishman; Fireballs T. Piran; Gamma-ray mechanisms M. Rees; Prompt optical emission from gamma-ray bursts R. Kehoe, C. Akerlof, R. Balsano, S. Barthelmy, J. Bloch, P. Butterworth, D. Casperson, T. Cline, S. Fletcher, F. Frontera, G. Gisler, J. Heise, J. Hills, K. Hurley, B. Lee, S. Marshall, T. McKay, A. Pawl, L. Piro, B. Priedhorsky, J. Szymanski and J. Wren; X-ray afterglows of gamma-ray bursts L. Piro; The first year of optical-IR observations of SN1998bw I. Danziger, T. Augusteijn, J. Brewer, E. Cappellaro, V. Doublier, T. Galama, J. Gonzalez, O. Hainaut, B. Leibundgut, C. Lidman, P. Mazzali, K. Nomoto, F. Patat, J. Spyromilio, M. Turatto, J. Van Paradijs, P. Vreeswijk and J. Walsh; X-ray emission of Supernova 1998bw in the error box of GRB980425 E. Pian; Direct analysis of spectra of type Ic supernovae D. Branch; The interaction of supernovae and gamma-ray bursts with their surroundings R. Chevalier; Magnetars, soft gamma-ray repeaters and gamma-ray bursts A. Harding; Super-luminous supernova remnants Y. -H. Chu, C. -H. Chen and S. -P. Lai; The properties of hypernovae: SNe Ic 1998bw, 1997ef, and SN IIn 1997cy K. Nomoto, P. Mazzali, T. Nakamura, K. Iwanmoto, K. Maeda, T. Suzuki, M. Turatto, I. Danziger and F. Patat; Collapsars, Gamma-Ray Bursts, and Supernovae S. Woosley, A. MacFadyen and A. Heger; Pre-supernova evolution of massive stars N. Panagia and G. Bono; Radio supernovae and GRB 980425 K. Weiler, N. Panagia, R. Sramek, S. Van Dyk, M. Montes and C. Lacey; Models for Ia supernovae and evolutionary effects P. Hoflich and I. Dominguez; Deflagration to detonation A. Khokhlov; Universality in SN Iae and the Phillips relation D. Arnett; Abundances from supernovae F. -K. Thielemann, F. Brachwitz, C. Freiburghaus, S. Rosswog, K. Iwamoto, T. Nakamura, K. Nomoto, H. Umeda, K. Langanke, G. Martinez-Pinedo, D. Dean, W. Hix and M. Strayer; Sne, GRBs, and the

  5. High energy gamma ray imaging

    NASA Astrophysics Data System (ADS)

    Doherty, Michael Richard

    This thesis presents a design study into gamma ray collimation techniques for use in high energy radiation imaging devices for the nuclear industry. Such technology is required to provide information on the nature and location of isotopes within nuclear facilities that have reached the end of their useful life. The work has concentrated on the use of two different techniques, namely mechanical collimation using the Anger camera and electronic collimation using a Compton camera. The work has used computational models to evaluate the performance of such systems and thereby suggest optimal design parameters for use in prototype devices. Ray tracing models have been constructed to simulate both parallel hole and tapered bore diverging collimators. Investigations have been carried out to measure the effects on the spatial resolution of changing various design parameters of the collimators. The effects of varying the hole size, septal thickness and collimator length over a range of source to collimator distances likely to be encountered in an industrial scenario have been examined. Some new insight into the nature of the point spread function of mechanical collimators has been gained and the limitations of the conventional analytical approach to collimator evaluation have been highlighted. Modifications to the standard equations used in collimator design have subsequently been suggested. An analytical description of tapered bore collimators has been derived. Monte Carlo models have been developed to model a single scatter Compton camera. Germanium, silicon and sodium iodide have been investigated as candidates for the scattering detector in such a device. A model of a complete ring array Compton camera system has been used to evaluate performance. The data from the Monte Carlo model has been reconstructed to form images. The quality of the images generated have then been compared with images obtained from parallel hole and focusing mechanical collimators.

  6. Hardening anisotropy of {gamma}/{gamma}{prime} superalloy single crystals. 2: Numerical analysis of heterogeneity effects

    SciTech Connect

    Estevez, R.; Hoinard, G.; Franciosi, P.

    1997-04-01

    In the first part of this study, the {gamma}/{gamma}{prime} superalloy single crystals yield stress and hardening anisotropy were experimentally estimated at 650 C, assuming homogeneous plasticity, G. Hoinard, R. Estevez and P. Franciosi, Acta Metall. 43, 1593 (1995). Here alloy morphology is regarded in two different ways: first as a two-phase anisotropic material with a uniform {gamma} matrix, describing the {gamma}{prime} precipitates arrangement with the help of an elementary pattern of inclusions; then treating the {gamma} matrix as a three (geometrical) phase medium, i.e., the three families of orthogonal {gamma} layers separating the precipitates, to estimate the matrix behavior heterogeneity in a 4-phase modelling of the alloy. Both {gamma} and {gamma}{prime} phases are treated as elastic-plastic crystalline media deforming by octahedral and cubic slip, and the models are based on the self consistent approximation. The alloy elasticity limit, internal stresses and hardening anisotropy are discussed with regard to the chosen behavior description for each phase, and behavior simulations are compared to experimental information.

  7. /sup 232/Th(. gamma. ,f) and (. gamma. ,n) reactions between 5 and 10 MeV

    SciTech Connect

    Findlay, D.J.S.; Edwards, G.; Hawkes, N.P.; Sene, M.R.

    1985-01-15

    Cross sections for the photofission /sup 232/Th(..gamma..,f) and photoproduction /sup 232/Th(..gamma..,n) reactions have been measured with a photon energy resolution of 130, 200, 390 keV for data points taken in intervals of 100, 200, and 400 keV. (AIP)

  8. Gamma butyrolactone poisoning and its similarities to gamma hydroxybutyric acid: two case reports.

    PubMed

    Rambourg-Schepens, M O; Buffet, M; Durak, C; Mathieu-Nolf, M

    1997-08-01

    Clinical experience with toxicity induced by products containing gamma butyrolactone is limited. We report here 2 cases of gamma butyrolactone poisoning with a nail polish remover labelled "acetone-free". Rapid onset of coma, respiratory depression and bradycardia occurred in both patients. After supportive care, they fully recovered within a few hours. PMID:9251175

  9. Determination of the gamma-ray spectrum in a strong neutron/gamma-ray mixed field

    NASA Astrophysics Data System (ADS)

    Liu, Yuan-Hao; Lin, Yi-Chun; Nievaart, Sander; Chou, Wen-Tsae; Liu, Hong-Ming; Jiang, Shiang-Huei

    2011-10-01

    The knowledge of gamma-ray spectrum highly affects the accuracy of the correspondingly derived gamma-ray dose and the correctness of calculated neutron dose in the neutron/gamma-ray mixed field dosimetry when using the paired ionization chambers technique. It is of our interest to develop a method to determine the gamma-ray spectrum in a strong neutron/gamma-ray mixed field. The current type detector, Mg(Ar) ionization chamber with 6 different thick caps incorporated with the unfolding technique, was used to determine the gamma-ray spectrum in the THOR epithermal neutron beam, which contains intense neutrons and gamma rays. The applied caps had nominal thicknesses from 1 to 6 mm. Detector response functions of the applied Mg(Ar) chamber with different caps were calculated using MCNP5 with a validated chamber model. The spectrum unfolding process was performed using the well-known SAND-II algorithm. The unfolded result was found much softer than the originally calculated spectrum at the design stage. A large portion of low energy continuum was shown in the adjusted spectrum. This work gave us a much deeper insight into the THOR epithermal neutron beam and also showed a way to determine the gamma-ray spectrum.

  10. Development of a Second Generation Bovigam Interferon Gamma (IFN-gamma) Assay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In search for better tools to control bovine tuberculosis, the development of diagnostic tests with improved performance and enhanced ease-of-use has a high priority. BOVIGAM®, a rapid laboratory assay, measures gamma interferon (IFN-gamma) production in whole blood samples after induction of a ce...

  11. Perspectives of the GAMMA-400 space observatory for high-energy gamma rays and cosmic rays measurements

    NASA Astrophysics Data System (ADS)

    Topchiev, N. P.; Galper, A. M.; Bonvicini, V.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bakaldin, A. V.; Bergstrom, L.; Berti, E.; Bigongiari, G.; Bobkov, S. G.; Boezio, M.; Bogomolov, E. A.; Bonechi, S.; Bongi, M.; Bottai, S.; Castellini, G.; Cattaneo, P. W.; Cumani, P.; Dalkarov, O. D.; Dedenko, G. L.; De Donato, C.; Dogiel, V. A.; Finetti, N.; Gorbunov, M. S.; Gusakov, Yu V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kaplun, A. A.; Kheymits, M. D.; Korepanov, V. E.; Larsson, J.; Leonov, A. A.; Loginov, V. A.; Longo, F.; Maestro, P.; Marrocchesi, P. S.; Men'shenin, A. L.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu; Papini, P.; Pearce, M.; Picozza, P.; Rappoldi, A.; Ricciarini, S.; Runtso, M. F.; Ryde, F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Suchkov, S. I.; Taraskin, A. A.; Tavani, M.; Tiberio, A.; Tyurin, E. M.; Ulanov, M. V.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Yurkin, Yu T.; Zampa, N.; Zirakashvili, V. N.; Zverev, V. G.

    2016-02-01

    The GAMMA-400 gamma-ray telescope is intended to measure the fluxes of gamma-rays and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV. Such measurements concern the following scientific tasks: investigation of point sources of gamma-rays, studies of the energy spectra of Galactic and extragalactic diffuse emission, studies of gamma-ray bursts and gamma-ray emission from the Sun, as well as high precision measurements of spectra of high-energy electrons and positrons. Also the GAMMA- 400 instrument provides the possibility for protons and nuclei measurements up to knee. But the main goal for the GAMMA-400 mission is to perform a sensitive search for signatures of dark matter particles in high-energy gamma-ray emission. To fulfill these measurements the GAMMA-400 gamma-ray telescope possesses unique physical characteristics in comparison with previous and present experiments. The major advantage of the GAMMA-400 instrument is excellent angular and energy resolution for gamma-rays above 10 GeV. The GAMMA-400 experiment will be installed onboard of the Navigator space platform, manufactured by the NPO Lavochkin Association. The expected orbit will be a highly elliptical orbit (with apogee 300.000 km and perigee 500 km) with 7 days orbital period. An important profit of such an orbit is the fact that the full sky coverage will always be available for gamma ray astronomy.

  12. New insights from cosmic gamma rays

    NASA Astrophysics Data System (ADS)

    Roland, Diehl

    2016-04-01

    The measurement of gamma rays from cosmic sources at ~MeV energies is one of the key tools for nuclear astrophysics, in its study of nuclear reactions and their impacts on objects and phenomena throughout the universe. Gamma rays trace nuclear processes most directly, as they originate from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. Additionally, the unique gamma-ray signature from the annihilation of positrons falls into this astronomical window and is discussed here: Cosmic positrons are often produced from β-decays, thus also of nuclear physics origins. The nuclear reactions leading to radioactive isotopes occur inside stars and stellar explosions, which therefore constitute the main objects of such studies. In recent years, both thermonuclear and core-collapse supernova radioactivities have been measured though 56Ni, 56Co, and 44Ti lines, and a beginning has thus been made to complement conventional supernova observations with such measurements of the prime energy sources of supernova light created in their deep interiors. The diffuse radioactive afterglow of massive-star nucleosynthesis in gamma rays is now being exploited towards astrophysical studies on how massive stars feed back their energy and ejecta into interstellar gas, as part of the cosmic cycle of matter through generations of stars enriching the interstellar gas and stars with metals. Large interstellar cavities and superbubbles have been recognised to be the dominating structures where new massive-star ejecta are injected, from 26Al gamma-ray spectroscopy. Also, constraints on the complex interiors of stars derive from the ratio of 60Fe/26Al gamma rays. Finally, the puzzling bulge-dominated intensity distribution of positron annihilation gamma rays is measured in greater detail, but still not understood; a recent microquasar flare provided evidence that such objects may be prime sources for positrons in interstellar space, rather than

  13. Human Gamma Oscillations during Slow Wave Sleep

    PubMed Central

    Valderrama, Mario; Crépon, Benoît; Botella-Soler, Vicente; Martinerie, Jacques; Hasboun, Dominique; Alvarado-Rojas, Catalina; Baulac, Michel; Adam, Claude; Navarro, Vincent; Le Van Quyen, Michel

    2012-01-01

    Neocortical local field potentials have shown that gamma oscillations occur spontaneously during slow-wave sleep (SWS). At the macroscopic EEG level in the human brain, no evidences were reported so far. In this study, by using simultaneous scalp and intracranial EEG recordings in 20 epileptic subjects, we examined gamma oscillations in cerebral cortex during SWS. We report that gamma oscillations in low (30–50 Hz) and high (60–120 Hz) frequency bands recurrently emerged in all investigated regions and their amplitudes coincided with specific phases of the cortical slow wave. In most of the cases, multiple oscillatory bursts in different frequency bands from 30 to 120 Hz were correlated with positive peaks of scalp slow waves (“IN-phase” pattern), confirming previous animal findings. In addition, we report another gamma pattern that appears preferentially during the negative phase of the slow wave (“ANTI-phase” pattern). This new pattern presented dominant peaks in the high gamma range and was preferentially expressed in the temporal cortex. Finally, we found that the spatial coherence between cortical sites exhibiting gamma activities was local and fell off quickly when computed between distant sites. Overall, these results provide the first human evidences that gamma oscillations can be observed in macroscopic EEG recordings during sleep. They support the concept that these high-frequency activities might be associated with phasic increases of neural activity during slow oscillations. Such patterned activity in the sleeping brain could play a role in off-line processing of cortical networks. PMID:22496749

  14. Dual Gamma Neutron Directional Elpasolite Detector

    SciTech Connect

    Guss, P. P.; Mukhopadhyay, S.

    2013-09-01

    Some applications, particularly in homeland security, require detection of both neutron and gamma radiation. Typically, this is accomplished with a combination of two detectors registering neutrons and gammas separately. We have investigated a new type of neutron/gamma (n/γ) directional detection capability. We explored a new class of scintillator, cerium (Ce)-doped Elpasolites such as Cs2LiYCl6:Ce (CLYC), Cs2LiLaCl6 (CLLC), Cs2LiLaBr6:Ce (CLLB), or Cs2LiYBr6:Ce (CLYB). These materials are capable of providing energy resolution as good as 2.9% at 662 keV (FWHM), which is better than that of NaI:Tl. Because they contain 6Li, Elpasolites can also detect thermal neutrons. In the energy spectra, the full energy thermal neutron peak appears near or above 3 GEEn MeV. Thus, very effective pulse height discrimination is possible. In addition, the core-to-valence luminescence (CVL) provides Elpasolites with different temporal responses under gamma and neutron excitation, and, therefore, may be exploited for effective pulse shape discrimination. For instance, the CLLC emission consists of two main components: (1) CVL spanning from 220 nm to 320 nm and (2) Ce emission found in the range of 350 to 500 nm. The former emission is of particular interest because it appears only under gamma excitation. It is also very fast, decaying with a 2 ns time constant. The n/γ discrimination capability of Elpasolite detectors may be optimized by tuning the cerium doping content for maximum effect on n/γ pulse shape differences. The resulting Elpasolite detectors have the ability to collect neutron and gamma data simultaneously, with excellent discrimination. Further, an array of four of these Elpasolites detectors will perform directional detection in both the neutron and gamma channels simultaneously.

  15. Neutron and Gamma-ray Measurements

    NASA Astrophysics Data System (ADS)

    Krasilnikov, Anatoly V.; Sasao, Mamiko; Kaschuck, Yuri A.; Kiptily, Vasily G.; Nishitani, Takeo; Popovichev, Sergey V.; Bertalot, Luciano

    2008-03-01

    Due to high neutron and gamma-ray yields and large size plasmas many future fusion reactor plasma parameters such as fusion power, fusion power density, ion temperature, fuel mixture, fast ion energy and spatial distributions can be well measured by various fusion product diagnostics. Neutron diagnostics provide information on fusion reaction rate, which indicates how close is the plasma to the ultimate goal of nuclear fusion and fusion power distribution in the plasma core, which is crucial for optimization of plasma breakeven and burn. Depending on the plasma conditions neutron and gamma-ray diagnostics can provide important information, namely about dynamics of fast ion energy and spatial distributions during neutral beam injection, ion cyclotron heating and generated by fast ions MHD instabilities. The influence of the fast particle population on the 2-D neutron source profile was clearly demonstrated in JET experiments. 2-D neutron and gamma-ray source measurements could be important for driven plasma heating profile optimization in fusion reactors. To meat the measurement requirements in ITER the planned set of neutron and gamma ray diagnostics includes radial and vertical neutron and gamma cameras, neutron flux monitors, neutron activation systems and neutron spectrometers. The necessity of using massive radiation shielding strongly influences the diagnostic designs in fusion reactor, determines angular fields of view of neutron and gamma-ray cameras and spectrometers and gives rise to unavoidable difficulties in the absolute calibration. The development, testing in existing tokomaks and a possible engineering integration of neuron and gamma-ray diagnostic systems into ITER are presented.

  16. Gamma response study of radiation sensitive MOSFETs for their use as gamma radiation sensor

    NASA Astrophysics Data System (ADS)

    Srivastava, Saurabh; Aggarwal, Bharti; Singh, Arvind; Kumar, A. Vinod; Topkar, Anita

    2016-05-01

    Continuous monitoring of gamma dose is important in various fields like radiation therapy, space-related research, nuclear energy programs and high energy physics experiment facilities. The present work is focused on utilization of radiation-sensitive Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) to monitor gamma radiation doses. Static characterization of these detectors was performed to check their expected current-voltage relationship. Threshold voltage and transconductance per unit gate to source voltage (K factor) were calculated from the experimental data. The detector was exposed to gamma radiation in both, with and without gate bias voltage conditions, and change in threshold voltage was monitored at different gamma doses. The experimental data was fitted to obtain equation for dependence of threshold voltage on gamma dose. More than ten times increase in sensitivity was observed in biased condition (+3 V) compared to the unbiased case.

  17. Evaluation of gamma interferon (IFN-gamma)-induced protein 10 (IP-10) responses for detection of cattle infected with Mycobacterium bovis: comparisons to IFN-gamma responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gamma interferon (IFN-gamma)-induced protein 10 (IP-10) has recently shown promise as a diagnostic biomarker of Mycobacterium tuberculosis infection of humans. The aim of the current study was to compare IP-10 and IFN-gamma responses upon Mycobacterium bovis infection in cattle using archived sample...

  18. Gamma-ray Output Spectra from 239 Pu Fission

    DOE PAGESBeta

    Ullmann, John

    2015-05-25

    Gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. A dependence of the gamma-ray spectrum on the gamma-raymore » multplicity was also observed. Global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.« less

  19. Gamma-ray Output Spectra from 239Pu Fission

    NASA Astrophysics Data System (ADS)

    Ullmann, John

    2015-05-01

    Gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. A dependence of the gamma-ray spectrum on the gamma-ray multplicity was also observed. Global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.

  20. Future Prospects for Space-Based Gamma Ray Astronomy

    NASA Astrophysics Data System (ADS)

    McConnell, Mark

    2015-04-01

    The gamma-ray sky offers a unique view into broad range of astrophysical phenomena, from nearby solar flares, to galactic pulsars, to gamma-ray bursts at the furthest reaches of the Universe. The Fermi mission has dramatically demonstrated the broad range of topics that can be addressed by gamma-ray observations. The full range of gamma-ray energies is quite broad, covering the electromagnetic spectrum at energies above about 100 keV. The energy range below several hundred GeV is the domain of space-based gamma-ray observatories, a range that is not completely covered by the Fermi LAT instrument. The gamma ray community has recently embarked on an effort to define the next steps for space-based gamma ray astronomy. These discussions are being facilitated through the Gamma-ray Science Interest Group (GammaSIG), which exists to provide community input to NASA in regards to current and future needs of the gamma-ray astrophysics community. The GammaSIG, as a part of the Physics of the Cosmos Program Analysis Group, provides a forum open to all members of the gamma-ray community. The GammaSIG is currently working to bring the community together with a common vision that will be expressed in the form of a community roadmap. This talk will summarize some of the latest results from active gamma ray observatories, including both Fermi and INTEGRAL, and will summarize the status of the community roadmap effort.

  1. Observing Gamma-ray Bursts with GLAST

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2008-01-01

    The Gamma-ray Large Area Telescope (GLAST) is a satellite-based observatory to study the high-energy gamma-ray sky. The Large Area Telescope, the main instrument, is a pair-conversion telescope which will survey the sky in the energy range 20 MeV to greater than 300 GeV. The LAT's wide field of view (greater than 2 sr), large effective area and low deadtime combine to provide excellent high-energy gamma-ray observations of GRB. To tie these frontier high-energy observations to the better-known properties at lower energies, a second instrument, the GLAST Burst Monitor (GBM) will provide important spectra and timing in the 8 keV to 30 MeV range. Upon detection of a GRB by the LAT or the GBM, the spacecraft can autonomously repoint to keep the GRB location within the LAT field of view, allowing high-energy afterglow observations. We describe how the instruments, spacecraft, and ground system work together to provide observations of gamma-ray bursts from 8 keV to over 300 GeV and provide rapid notification of these observations to the wider gamma-ray burst community. Analysis and simulation tools dedicated to the GRB science have been developed. In this contribution we show the expected LAT sensitivity obtained with such simulations, and illustrate the results we expect from GLAST observations with spectral and temporal analysis of simulated GRB.

  2. Gamma Radiation Effects on Peanut Skin Antioxidants

    PubMed Central

    de Camargo, Adriano Costa; de Souza Vieira, Thais Maria Ferreira; Regitano-D’Arce, Marisa Aparecida Bismara; Calori-Domingues, Maria Antonia; Canniatti-Brazaca, Solange Guidolin

    2012-01-01

    Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached-deodorized (RBD) soybean oil. The oxidative stability of the oil samples was determined using the Oil Stability Index method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. All extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Oil Stability Index method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT. The present study confirmed that gamma radiation did not affect the peanut skin extracts’ antioxidative properties when added to soybean oil. PMID:22489142

  3. Stellar Photon Archaeology with Gamma-Rays

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2009-01-01

    Ongoing deep surveys of galaxy luminosity distribution functions, spectral energy distributions and backwards evolution models of star formation rates can be used to calculate the past history of intergalactic photon densities and, from them, the present and past optical depth of the Universe to gamma-rays from pair production interactions with these photons. The energy-redshift dependence of the optical depth of the Universe to gamma-rays has become known as the Fazio-Stecker relation (Fazio & Stecker 1970). Stecker, Malkan & Scully have calculated the densities of intergalactic background light (IBL) photons of energies from 0.03 eV to the Lyman limit at 13.6 eV and for 0$ < z < $6, using deep survey galaxy observations from Spitzer, Hubble and GALEX and have consequently predicted spectral absorption features for extragalactic gamma-ray sources. This procedure can also be reversed. Determining the cutoff energies of gamma-ray sources with known redshifts using the recently launched Fermi gamma-ray space telescope may enable a more precise determination of the IBL photon densities in the past, i.e., the "archaeo-IBL.", and therefore allow a better measure of the past history of the total star formation rate, including that from galaxies too faint to be observed.

  4. Gamma Reaction History for the NIF

    SciTech Connect

    Herrmann, H W; Evans, S C; Kim, Y; Mack, J M; Young, C S; Cox, B C; Frogget, B C; Kaufman, M I; Malone, R M; Tunnell, T W; Stoeffl, W; Horsfield, C J

    2009-06-05

    Bang time and reaction history measurements are fundamental components of diagnosing ICF implosions and will be essential contributors to diagnosing attempts at ignition on the National Ignition Facility (NIF). Fusion gammas provide a direct measure of fusion interaction rate without being compromised by Doppler spreading. Gamma-based gas Cherenkov detectors that convert fusion gamma rays to optical Cherenkov photons for collection by fast recording systems have been developed and fielded at Omega. These systems have established their usefulness in illuminating ICF physics in several experimental campaigns. Bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF System Design Requirements. A staged approach of implementing Gamma Reaction History (GRH) diagnostics on the NIF has been initiated. In the early stage, multiple detectors located close to target chamber center (at 2 and 6 m) and coupled to photomultiplier tubes are geared toward the loweryield THD campaign. In the later stage, streak camera–coupled instruments will be used for improved temporal resolution at the higher yields expected from the DT ignition campaign. Multiple detectors will allow for increased dynamic range and gamma energy spectral information.

  5. GAMPIX: A new generation of gamma camera

    NASA Astrophysics Data System (ADS)

    Gmar, M.; Agelou, M.; Carrel, F.; Schoepff, V.

    2011-10-01

    Gamma imaging is a technique of great interest in several fields such as homeland security or decommissioning/dismantling of nuclear facilities in order to localize hot spots of radioactivity. In the nineties, previous works led by CEA LIST resulted in the development of a first generation of gamma camera called CARTOGAM, now commercialized by AREVA CANBERRA. Even if its performances can be adapted to many applications, its weight of 15 kg can be an issue. For several years, CEA LIST has been developing a new generation of gamma camera, called GAMPIX. This system is mainly based on the Medipix2 chip, hybridized to a 1 mm thick CdTe substrate. A coded mask replaces the pinhole collimator in order to increase the sensitivity of the gamma camera. Hence, we obtained a very compact device (global weight less than 1 kg without any shielding), which is easy to handle and to use. In this article, we present the main characteristics of GAMPIX and we expose the first experimental results illustrating the performances of this new generation of gamma camera.

  6. Uncertainties in gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Lépy, M. C.; Pearce, A.; Sima, O.

    2015-06-01

    High resolution gamma-ray spectrometry is a well-established metrological technique that can be applied to a large number of photon-emitting radionuclides, activity levels and sample shapes and compositions. Three kinds of quantitative information can be derived using this technique: detection efficiency calibration, radionuclide activity and photon emission intensities. In contrast to other radionuclide measurement techniques gamma-ray spectrometry provides unambiguous identification of gamma-ray emitting radionuclides in addition to activity values. This extra information comes at a cost of increased complexity and inherently higher uncertainties when compared with other secondary techniques. The relative combined standard uncertainty associated with any result obtained by gamma-ray spectrometry depends not only on the uncertainties of the main input parameters but also on different correction factors. To reduce the uncertainties, the experimental conditions must be optimized in terms of the signal processing electronics and the physical parameters of the measured sample should be accurately characterized. Measurement results and detailed examination of the associated uncertainties are presented with a specific focus on the efficiency calibration, peak area determination and correction factors. It must be noted that some of the input values used in quantitative analysis calculation can be correlated, which should be taken into account in fitting procedures or calculation of the uncertainties associated with quantitative results. It is shown that relative combined standard uncertainties are rarely lower than 1% in gamma-ray spectrometry measurements.

  7. Oligomerization of L-gamma-carboxyglutamic acid

    NASA Technical Reports Server (NTRS)

    Hill, A. R. Jr; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1999-01-01

    Unlike glutamic acid, L-gamma-carboxyglutamic acid does not oligomerize efficiently when treated with carbonyldiimidazole in aqueous solution. However, divalent ions such as Mg2+ catalyze the reaction, and lead to the formation of oligomers in good yield. In the presence of hydroxylapatite, L-gamma-carboxyglutamic acid oligomerizes efficiently in a reaction that proceeds in the absence of divalent ions but is further catalyzed when they are present. After 'feeding' 50 times with activated amino acid in the presence of the Mg2+ ion, oligomers longer than the 20-mer could be detected. The effect of hydroxylapatite on peptide elongation is very sensitive to the nature of the activated amino acid and the acceptor peptide. Glutamic acid oligomerizes more efficiently than L-gamma-carboxyglutamic acid on hydroxylapatite and adds more efficiently to decaglutamic acid in solution. One might, therefore, expect that glutamic acid would add more efficiently than L-gamma-carboxyglutamic acid to decaglutamic acid on hydroxylapatite. The contrary is true--the addition of L-gamma-carboxyglutamic acid is substantially more efficient. This suggests that oligomerization on the surface of hydroxylapatite depends on the detailed match between the structure of the surface of the mineral and the structure of the oligomer.

  8. Gamma radiation effects on peanut skin antioxidants.

    PubMed

    de Camargo, Adriano Costa; de Souza Vieira, Thais Maria Ferreira; Regitano-D'Arce, Marisa Aparecida Bismara; Calori-Domingues, Maria Antonia; Canniatti-Brazaca, Solange Guidolin

    2012-01-01

    Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached-deodorized (RBD) soybean oil. The oxidative stability of the oil samples was determined using the Oil Stability Index method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. All extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Oil Stability Index method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT. The present study confirmed that gamma radiation did not affect the peanut skin extracts' antioxidative properties when added to soybean oil. PMID:22489142

  9. ADP study of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Lamb, Don Q.; Wang, John C. L.; Heuter, Geoffry J.; Graziani, Carlo; Loredo, Tom; Freeman, Peter

    This grant supported study of cyclotron scattering lines in the spectra of gamma-ray bursts through analysis of Ginga and HEAO-1 archival data, and modeling of the results in terms of radiation transfer calculations of cyclotron scattering in a strong magnetic field. A Monte Carlo radiation transfer code with which we are able to calculate the expected properties of cyclotron scattering lines in the spectra of gamma-ray bursts was developed. The extensive software necessary in order to carry out fits of these model spectra to gamma-ray burst spectral data, including folding of the model spectra through the detector response functions was also developed. Fits to Ginga satellite data on burst GB880205 were completed and fits to Ginga satellite data on burst GB870303 are being carried out. These fits have allowed us to test our software, as well as to garner new scientific results. This work has demonstrated that cyclotron resonant scattering successfully accounts for the locations, strengths, and widths of the observed line features in GB870303 and GB880205. The success of the model provides compelling evidence that these gamma-ray bursts come from strongly magnetic neutron stars and are galactic in origin, resolving longstanding controversies about the nature and distance of the burst sources. These results were reported in two papers which are in press in the proceedings of the Taos Workshop on Gamma-Ray Bursts, and in a paper submitted for publication.

  10. The Pulsing Gamma-ray Sky

    NASA Astrophysics Data System (ADS)

    Romani, Roger W.

    2014-01-01

    The Fermi Space Telescope, with its discovery of nearly 150 gamma-ray pulsars has solidified and extended the suspicions of the EGRET era: energetic spin-powered pulsars are fantastic particle accelerators, they emit most of their photon energy in the GeV range and they paint their gamma-ray beams over much of the sky. I summarize here the suite of gamma-ray discoveries and what it has taught us about pulsar populations. Young, classical radio-detectable pulsars, gamma-ray only `Gemingas' and energetic millisecond pulsars are equally represented in the Fermi sky. This sample certainly reveals much about magnetospheric physics. However, by chasing down the pulsars responsible for Fermi sources we continue to discover exotic systems whose study impacts a wide range of high energy astrophysics. Gamma-ray pulsars are revealing details of close binary evolution, testing the equation of state of ultra-dense matter, helping us understand the cosmic ray positrons, and aiding in the search for ultra-low frequency gravitational radiation. I summarize recent progress on these fronts and the prospects for more exciting discoveries to come.

  11. Dielectric relaxation of gamma irradiated muscovite mica

    SciTech Connect

    Kaur, Navjeet; Singh, Mohan; Singh, Lakhwant; Awasthi, A.M.; Lochab, S.P.

    2015-03-15

    Highlights: • The present article reports the effect of gamma irradiation on the dielectric relaxation characteristics of muscovite mica. • Dielectric and electrical relaxations have been analyzed in the framework of dielectric permittivity, electric modulus and Cole–Cole formalisms. • The frequency dependent electrical conductivity has been rationalized using Johnsher’s universal power law. • The experimentally measured electric modulus and conductivity data have been fitted using Havriliak–Negami dielectric relaxation function. - Abstract: In the present research, the dielectric relaxation of gamma irradiated muscovite mica was studied in the frequency range of 0.1 Hz–10 MHz and temperature range of 653–853 K, using the dielectric permittivity, electric modulus and conductivity formalisms. The dielectric constants (ϵ′ and ϵ′′) are found to be high for gamma irradiated muscovite mica as compared to the pristine sample. The frequency dependence of the imaginary part of complex electric modulus (M′′) and dc conductivity data conforms Arrhenius law with single value of activation energy for pristine sample and two values of activation energy for gamma irradiated mica sample. The experimentally assessed electric modulus and conductivity information have been interpreted by the Havriliak–Negami dielectric relaxation explanation. Using the Cole–Cole framework, an analysis of real and imaginary characters of the electric modulus for pristine and gamma irradiated sample was executed which reflects the non-Debye relaxation mechanism.

  12. Gamma-ray limits on neutrino lines

    NASA Astrophysics Data System (ADS)

    Queiroz, Farinaldo S.; Yaguna, Carlos E.; Weniger, Christoph

    2016-05-01

    Monochromatic neutrinos from dark matter annihilations (χχ→ νbar nu) are always produced in association with a gamma-ray spectrum generated by electroweak bremsstrahlung. Consequently, these neutrino lines can be searched for not only with neutrino detectors but also indirectly with gamma-ray telescopes. Here, we derive limits on the dark matter annihilation cross section into neutrinos based on recent Fermi-LAT and HESS data. We find that, for dark matter masses above 200 GeV, gamma-ray data actually set the most stringent constraints on neutrino lines from dark matter annihilation and, therefore, an upper bound on the dark matter total annihilation cross section. In addition, we point out that gamma-ray telescopes, unlike neutrino detectors, have the potential to distinguish the flavor of the final state neutrino. Our results indicate that we have already entered into a new era where gamma-ray telescopes are more sensitive than neutrino detectors to neutrino lines from dark matter annihilation.

  13. Lightning: Ground observations of gamma radiation

    NASA Astrophysics Data System (ADS)

    Jayanthi, U. B.; Gusev, A. A.; Neri, J. A. C.; Pugacheva, G. I.; Talavera, K. C.

    Recent satellite and ground observations of emissions in x and gamma-rays ascribing association with lightning phenomena have triggered interest in this natural phenomena The incentive for this Ground Gamma Radiation GGR experiment in the Brazilian Geomagnetic Anomaly BGA region is due to the absence of satellite data As a first step we want to test and calibrate the system with rocket triggered lightning flashes in the International Lightning facility in our Campus The lightning associated gamma rays can be inferred as due to bremsstrahlung associated with electrons released moments after the return stroke and the likely radiation associated with radioactive decay products in the interactions of protons generated in the lightning with the atmospheric constituents Initially in 2005 to observe the later phenomena a very large area NaI Tl detector of 40 cm diameter with a PHA system monitoring every 10 s was set up near the two rocket launchers for the induced lightning In few months of operation in 2005 increases in gamma-rays above the ground radiation flux are observed due to many rain precipitation events and in one lightning event coincident with the rocket launch To identify the association of emission due to the lightning we investigated both the decay period and the spectral information of these gamma rays The radon progeny in rain has an associated decay period of sim 30 min but however the decay time associated with the lightning is different Although the spectral information indicates a power law index for both

  14. ADP study of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Lamb, Don Q.; Wang, John C. L.; Heuter, Geoffry J.; Graziani, Carlo; Loredo, Tom; Freeman, Peter

    1991-01-01

    This grant supported study of cyclotron scattering lines in the spectra of gamma-ray bursts through analysis of Ginga and HEAO-1 archival data, and modeling of the results in terms of radiation transfer calculations of cyclotron scattering in a strong magnetic field. A Monte Carlo radiation transfer code with which we are able to calculate the expected properties of cyclotron scattering lines in the spectra of gamma-ray bursts was developed. The extensive software necessary in order to carry out fits of these model spectra to gamma-ray burst spectral data, including folding of the model spectra through the detector response functions was also developed. Fits to Ginga satellite data on burst GB880205 were completed and fits to Ginga satellite data on burst GB870303 are being carried out. These fits have allowed us to test our software, as well as to garner new scientific results. This work has demonstrated that cyclotron resonant scattering successfully accounts for the locations, strengths, and widths of the observed line features in GB870303 and GB880205. The success of the model provides compelling evidence that these gamma-ray bursts come from strongly magnetic neutron stars and are galactic in origin, resolving longstanding controversies about the nature and distance of the burst sources. These results were reported in two papers which are in press in the proceedings of the Taos Workshop on Gamma-Ray Bursts, and in a paper submitted for publication.

  15. LUMINOSITY EVOLUTION OF GAMMA-RAY PULSARS

    SciTech Connect

    Hirotani, Kouichi

    2013-04-01

    We investigate the electrodynamic structure of a pulsar outer-magnetospheric particle accelerator and the resulting gamma-ray emission. By considering the condition for the accelerator to be self-sustained, we derive how the trans-magnetic-field thickness of the accelerator evolves with the pulsar age. It is found that the thickness is small but increases steadily if the neutron-star envelope is contaminated by sufficient light elements. For such a light element envelope, the gamma-ray luminosity of the accelerator is kept approximately constant as a function of age in the initial 10,000 yr, forming the lower bound of the observed distribution of the gamma-ray luminosity of rotation-powered pulsars. If the envelope consists of only heavy elements, on the other hand, the thickness is greater, but it increases less rapidly than a light element envelope. For such a heavy element envelope, the gamma-ray luminosity decreases relatively rapidly, forming the upper bound of the observed distribution. The gamma-ray luminosity of a general pulsar resides between these two extreme cases, reflecting the envelope composition and the magnetic inclination angle with respect to the rotation axis. The cutoff energy of the primary curvature emission is regulated below several GeV even for young pulsars because the gap thickness, and hence the acceleration electric field, is suppressed by the polarization of the produced pairs.

  16. Gamma Radiation Damage in Silicon

    NASA Astrophysics Data System (ADS)

    Chang, Chensen

    A theory for interpreting carrier removal in terms of trap production has been derived from the carrier distribution function, which provides a relationship between the carrier removal rate and trap production rates due to the radiation damage. The carrier removal rate is a function of trap production as well as Fermi level position. Also, the carrier removal rate depends on many parameters, which are the density of states of the valance band as well as the conduction band, density of doping impurities, temperature, location of donor and acceptor energy levels and location of trap energy levels. P-type and n-type silicon Schottky diodes are irradiated by cobalt 60 gamma rays. The experimental results show that the carrier removal rate is dependent on the initial carrier concentration. Carrier concentrations are determined by room temperature C-V measurements while the trap production rates are determined by DLTS from measurements from 50 K to room temperature. A model presented by Williams, et al. for the carrier concentration vs. fluence, has been rederived from simple semiconductor carrier statistical mechanics. This model has then been extended to yield an expression for the initial carrier removal rate which depends on the production rate of each defect trap level in the band gap. We have tested these models thoroughly for the first time by measuring the trap production rates by DLTS, and then, using this information to calculate carrier removal rate and carrier concentration vs. fluence, we have verified that the results of the model can explain these same relationships obtained experimentally by C-V measurements. We believe that this is the first time that DLTS results have been linked directly to such simple and useful measurements as carrier removal rate and carrier concentration vs. fluence in a convincing manner. The success of this procedure also suggests that there are no "hidden" levels or traps which contribute to carrier removal rate but which do not

  17. (n,{gamma}) Experiments on tin isotopes

    SciTech Connect

    Baramsai, B.; Mitchell, G. E.; Walker, C. L.; Rusev, G.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Becvar, F.; Krticka, M.; Kroll, J.; Agvaanluvsan, U.; Dashdorj, D.; Erdenehuluun, B.; Tsend-Ayush, T.

    2013-04-19

    Neutron capture experiments on highly enriched {sup 117,119}Sn isotopes were performed with the DANCE detector array located at the Los Alamos Neutron Science Center. The DANCE detector provides detailed information about the multi-step {gamma}-ray cascade following neutron capture. Analysis of the experimental data provides important information to improve understanding of the neutron capture reaction, including a test of the statistical model, the assignment of spins and parities of neutron resonances, and information concerning the Photon Strength Function (PSF) and Level Density (LD) below the neutron separation energy. Preliminary results for the (n,{gamma}) reaction on {sup 117,119}Sn are presented. Resonance spins of the odd-A tin isotopes were almost completely unknown. Resonance spins and parities have been assigned via analysis of the multi-step {gamma}-ray spectra and directional correlations.

  18. Gamma ray lines from buried supernovae

    NASA Technical Reports Server (NTRS)

    Morfill, G. E.; Meyer, P.

    1982-01-01

    An investigation is conducted concerning the possibility that supernovae (SN), located in dense interstellar clouds, might become the sources of gamma ray lines. The SN progenitor, in such a case, has to be an O or B star so that its evolutionary lifetime is short, and an explosion inside the cloud is still possible. It is shown that, in principle, a measurement of the abundances in the ejecta is possible. Attention is given to the characteristics of a model, the expected luminosity of gamma-ray lines, and the study of specific numerical examples for testing the feasibility of the considered mechanism. On the basis of the obtained results, it is concluded that gamma-ray line production by collisional excitation in confined supernovae remnants may be quite important.

  19. Plasma driven neutron/gamma generator

    DOEpatents

    Leung, Ka-Ngo; Antolak, Arlyn

    2015-03-03

    An apparatus for the generation of neutron/gamma rays is described including a chamber which defines an ion source, said apparatus including an RF antenna positioned outside of or within the chamber. Positioned within the chamber is a target material. One or more sets of confining magnets are also provided to create a cross B magnetic field directly above the target. To generate neutrons/gamma rays, the appropriate source gas is first introduced into the chamber, the RF antenna energized and a plasma formed. A series of high voltage pulses are then applied to the target. A plasma sheath, which serves as an accelerating gap, is formed upon application of the high voltage pulse to the target. Depending upon the selected combination of source gas and target material, either neutrons or gamma rays are generated, which may be used for cargo inspection, and the like.

  20. Apparatus and method for detecting gamma radiation

    DOEpatents

    Sigg, Raymond A.

    1994-01-01

    A high efficiency radiation detector for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data.

  1. Method for induced gamma ray logging

    SciTech Connect

    Randall, R.R.

    1987-02-24

    This patent describes a nuclear well logging operation. A method is described for determining a parameter responsive to the condition of a borehole transversing a subsurface earth formation, comprising the steps of: cyclically irradiating the subsurface earth formation with bursts of high energy neutrons; detecting for one or more burst cycles the impingement of gamma radiation upon a first gamma radiation detector means during and between each of the bursts; determining first count of detected impingements of primarily inelastic gamma radiation upon the first detection means; and normalizing the first count to remove the effects upon the first count of variations in the bursts of high energy neutrons, the normalized first count producing the parameter responsive to the condition of the borehole.

  2. Dosimetry in mixed neutron-gamma fields

    SciTech Connect

    Remec, I.

    1998-04-01

    The gamma field accompanying neutrons may, in certain circumstances, play an important role in the analysis of neutron dosimetry and even in the interpretation of radiation induced steel embrittlement. At the High Flux Isotope Reactor pressure vessel the gamma induced reactions dominate the responses of {sup 237}Np and {sup 238}U dosimeters, and {sup 9}Be helium accumulation fluence monitors. The gamma induced atom displacement rate in steel is higher than corresponding neutron rate, and is the cause of ``accelerated embrittlement`` of HFIR materials. In a large body of water, adjacent to a fission plate, photofissions contribute significantly to the responses of fission monitors and need to be taken into account if the measurements are used for the qualification of the transport codes and cross-section libraries.

  3. Gamma-Ray Imaging for Explosives Detection

    NASA Technical Reports Server (NTRS)

    deNolfo, G. A.; Hunter, S. D.; Barbier, L. M.; Link, J. T.; Son, S.; Floyd, S. R.; Guardala, N.; Skopec, M.; Stark, B.

    2008-01-01

    We describe a gamma-ray imaging camera (GIC) for active interrogation of explosives being developed by NASA/GSFC and NSWCICarderock. The GIC is based on the Three-dimensional Track Imager (3-DTI) technology developed at GSFC for gamma-ray astrophysics. The 3-DTI, a large volume time-projection chamber, provides accurate, approx.0.4 mm resolution, 3-D tracking of charged particles. The incident direction of gamma rays, E, > 6 MeV, are reconstructed from the momenta and energies of the electron-positron pair resulting from interactions in the 3-DTI volume. The optimization of the 3-DTI technology for this specific application and the performance of the GIC from laboratory tests is presented.

  4. Galaxies and gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Bignami, G. F.; Fichtel, C. E.; Hartman, R. C.; Thompson, D. J.

    1979-01-01

    The nature of the high-energy spectra of several types of active galaxies and their contribution to the measured diffuse gamma-ray emission between 1 and 150 MeV are considered, using X-ray spectra of active galaxies and SAS 2 data regarding the intensity upper limits to the gamma-ray emission above 35 MeV. It is found that a substantial increase in slope of the photon energy spectrum must occur in the low energy gamma-ray region for Seyfert galaxies, BL Lac objects, and emission line galaxies; the power-law spectra observed in the X-ray range must steepen substantially between 50 keV and 50 MeV. In addition, a cosmological integration shows that Seyfert galaxies, BL Lac objects, and quasars may account for most of the 1-150 MeV diffuse background, even without significant evolution.

  5. Solar gamma rays and neutron observations

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.; Forrest, D. J.; Suri, A. N.

    1972-01-01

    The present status of knowledge concerning the impulsive and the continuous emission of solar gamma rays and neutrons is reviewed in the light of the recent solar activity in early August 1972. The gamma ray spectrometer on OSO-7 has observed the sun continuously for most of the activity period except for occultation by the earth. In association with the 2B flare on 4 August 1972 and the 3B flare on 7 August 1972, the monitor provides evidence for solar gamma ray line emission in the energy range from 300 keV to 10 MeV. A summary of all the results available from preliminary analysis of the data will be given. Significant improvements in future experiments can be made with more sensitive instruments and more extensive time coverage of the sun.

  6. Apparatus and method for detecting gamma radiation

    DOEpatents

    Sigg, R.A.

    1994-12-13

    A high efficiency radiation detector is disclosed for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data. 4 figures.

  7. Form factors of the transitions {gamma}{sup *}{pi}{sup 0} {r_arrow} {gamma} and {gamma}{sup *}{eta}{r_arrow}{gamma}

    SciTech Connect

    Afanasev, A.

    1994-04-01

    The author discusses possibilities to study {gamma}*{pi}{sup 0} and {gamma}*{eta} {r_arrow} {gamma} transition form factors at CEBAF energies. The author shows that for 4 GeV electron beam, these form factors can be measured at CEBAF for the 4-momentum transfers Q{sup 2} {le} 2.5 (GeV/c){sup 2} using virtual Compton scattering on the proton and nuclear target in the kinematic regime of low momentum transfers to the target. These measurements can be extended to Q{sup 2} {le} 4.0 (GeV/c){sup 2} using the electron beam with the energy 6 GeV.

  8. Gamma rays from pulsar wind shock acceleration

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    1990-01-01

    A shock forming in the wind of relativistic electron-positron pairs from a pulsar, as a result of confinement by surrounding material, could convert part of the pulsar spin-down luminosity to high energy particles through first order Fermi acceleration. High energy protons could be produced by this mechanism both in supernova remnants and in binary systems containing pulsars. The pion-decay gamma-rays resulting from interaction of accelerated protons with surrounding target material in such sources might be observable above 70 MeV with EGRET (Energetic Gamma-Ray Experimental Telescope) and above 100 GeV with ground-based detectors. Acceleration of protons and expected gamma-ray fluxes from SN1987A, Cyg X-3 type sources and binary pulsars are discussed.

  9. Ground-Based Gamma Ray Astronomy

    NASA Astrophysics Data System (ADS)

    Holder, Jamie

    2014-10-01

    This paper is the write-up of a rapporteur talk given by the author at the 33rd International Cosmic Ray Conference in Rio de Janeiro, Brazil, in 2013. It attempts to summarize results and developments in ground-based gamma-ray observations and instrumentation from among the ˜300 submissions to the gamma-ray sessions of the meeting. Satellite observations and theoretical developments were covered by a companion rapporteur (Stawarz, L., 33rd ICRC, Rio de Janeiro, Brazil, Rapporteur talk: Space-based Gamma-Ray Astronomy, 2013). Any review of this nature is unavoidably subjective and incomplete. Nevertheless, the article should provide a useful status report for those seeking an overview of this exciting and fast-moving field.

  10. Gamma-ray bursters at cosmological distances

    NASA Technical Reports Server (NTRS)

    Paczynski, B.

    1986-01-01

    It is proposed that some, perhaps most, gamma-ray bursters are at cosmological distances, like quasars, with a redshift of about 1 or 2. This proposition requires a release of supernova-like energy of about 10 to the 51st ergs within less than 1 s, making gamma-ray bursters the brightest objects known in the universe, many orders of magnitude brighter than any quasars. This power must drive a highly relativistic outflow of electron-positron plasma and radiation from the source. It is proposed that three gamma-ray bursts, all with identical spectra, detected from B1900 + 14 by Mazets, Golenetskii, and Gur'yan and reported in 1979, were all due to a single event multiply imaged by a gravitational lens. The time intervals between the successive bursts, 10 hr to 3 days, were due to differences in the light travel time for different images.

  11. Gamma rays, cosmic rays, and galactic structure

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1977-01-01

    Observations of cosmic and gamma radiation by SAS-2 satellite are summarized and analyzed to determine processes responsible for producing observed galactic radiation. In addition to the production of gamma rays in discrete galactic objects such as pulsars, there are three main mechanisms by which high-energy (greater than 100 MeV) radiation is produced by high-energy interactions involving cosmic rays in interstellar space. These processes, which produce what may be called diffuse galactic gamma-rays, are: (1) the decay of pi mesons produced by interactions of cosmic ray nucleons with interstellar gas nuclei; (2) the bremsstrahlung radiation produced by cosmic ray electrons interacting in the Coulomb fields of nuclei of interstellar gas atoms; and (3) Compton interactions between cosmic ray electrons and low-energy photons in interstellar space.

  12. Gamma and Beta Bursts Underlie Working Memory.

    PubMed

    Lundqvist, Mikael; Rose, Jonas; Herman, Pawel; Brincat, Scott L; Buschman, Timothy J; Miller, Earl K

    2016-04-01

    Working memory is thought to result from sustained neuron spiking. However, computational models suggest complex dynamics with discrete oscillatory bursts. We analyzed local field potential (LFP) and spiking from the prefrontal cortex (PFC) of monkeys performing a working memory task. There were brief bursts of narrow-band gamma oscillations (45-100 Hz), varied in time and frequency, accompanying encoding and re-activation of sensory information. They appeared at a minority of recording sites associated with spiking reflecting the to-be-remembered items. Beta oscillations (20-35 Hz) also occurred in brief, variable bursts but reflected a default state interrupted by encoding and decoding. Only activity of neurons reflecting encoding/decoding correlated with changes in gamma burst rate. Thus, gamma bursts could gate access to, and prevent sensory interference with, working memory. This supports the hypothesis that working memory is manifested by discrete oscillatory dynamics and spiking, not sustained activity. PMID:26996084

  13. Gamma-ray spectroscopy - Status and prospects

    NASA Technical Reports Server (NTRS)

    Matteson, J. L.

    1983-01-01

    Contemporary gamma-ray spectroscopy instruments and their results are reviewed. Sensitivities of 10 to the -4th to 10 to the -3rd ph/sq cm-sec have been achieved for steady sources and 10 to the -2nd to 1 ph/sq cm-sec for transient sources. This has led to the detection of gamma-ray lines from more than 40 objects representing 6 classes of astrophysical phenomena. The lines carry model-independent information and are of fundamental importance to theoretical modeling and our understanding of the objects. The objectives and anticipated results of future instruments are discussed. Several instruments in development will have a factor of 10 sensitivity improvement to certain phenomena over contemporary instruments. A factor of 100 improvement in sensitivity will allow the full potential of gamma-ray spectroscopy to be realized. Instrument concepts which would achieve this with both present and advanced techniques are discussed.

  14. Technology Needs for Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2011-01-01

    Gamma ray astronomy is currently in an exciting period of multiple missions and a wealth of data. Results from INTEGRAL, Fermi, AGILE, Suzaku and Swift are making large contributions to our knowledge of high energy processes in the universe. The advances are due to new detector and imaging technologies. The steps to date have been from scintillators to solid state detectors for sensors and from light buckets to coded aperture masks and pair telescopes for imagers. A key direction for the future is toward focusing telescopes pushing into the hard X-ray regime and Compton telescopes and pair telescopes with fine spatial resolution for medium and high energy gamma rays. These technologies will provide finer imaging of gamma-ray sources. Importantly, they will also enable large steps forward in sensitivity by reducing background.

  15. Delayed gamma technique for fissile material assay

    SciTech Connect

    Mozin, Vladimir; Tobin, Stephen; Vujie, Jasmina; Hunt, Alan

    2010-01-01

    Research sponsored by the Next Generation Safeguards Initiative are investigating several non-destructive assay techniques for the quantification of fissile plutonium mass in spent nuclear fuel assemblies. AppHcation of the delayed gamma signatures is investigated in this context. The objective of the research is to assess whether the delayed gamma assay instrument can provide sufficient sensitivity, isotope specificity and accuracy as required in nuclear material safeguards. This effort includes theoretical and experimental components for the optimal combination of interrogation parameters. A new modeling algorithm offering a high level of detail was developed specifically for this purpose and was validated in series of benchmark experiments. Preliminary modeling of the delayed gamma response from spent fuel assemblies was accomplished offering a future direction for the design process.

  16. Low radioactivity spectral gamma calibration facility

    SciTech Connect

    Mathews, M.A.; Bowman, H.R.; Huang, L., H.; Lavelle, M.J.; Smith, A.R.; Hearst, J.R.; Wollenberg, H.A.; Flexser, S.

    1986-01-01

    A low radioactivity calibration facility has been constructed at the Nevada Test Site (NTS). This facility has four calibration models of natural stone that are 3 ft in diameter and 6 ft long, with a 12 in. cored borehole in the center of each model and a lead-shielded run pipe below each model. These models have been analyzed by laboratory natural gamma ray spectroscopy (NGRS) and neutron activation analysis (NAA) for their K, U, and Th content. Also, 42 other elements were analyzed in the NAA. The /sup 222/Rn emanation data were collected. Calibrating the spectral gamma tool in this low radioactivity calibration facility allows the spectral gamma log to accurately aid in the recognition and mapping of subsurface stratigraphic units and alteration features associated with unusual concentrations of these radioactive elements, such as clay-rich zones.

  17. Nuclear isomer suitable for gamma ray laser

    NASA Technical Reports Server (NTRS)

    Jha, S.

    1979-01-01

    The operation of gamma ray lasers (gasers) are studied. It is assumed that the nuclear isomers mentioned in previously published papers have inherent limitations. It is further assumed that the judicious use of Bormann effect or the application of the total external reflection of low energy gamma radiation at grazing angle of incidence may permit the use of a gaser crystal sufficiently long to achieve observable stimulated emission. It is suggested that a long lived 0(+) isomer decaying by low energy gamma ray emission to a short lived 2(+) excited nuclear state would be an attractive gaser candidate. It is also suggested that the nuclear isomer be incorporated in a matrix of refractory material having an electrostatic field gradient whose principal axis lies along the length of the medium. This results in the preferential transmission of electric quadrupole radiation along the length of the medium.

  18. Separation of electrons and protons in the GAMMA-400 gamma-ray telescope

    NASA Astrophysics Data System (ADS)

    Leonov, A. A.; Galper, A. M.; Bonvicini, V.; Topchiev, N. P.; Adriaini, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bergstrom, L.; Berti, E.; Bigongiari, G.; Bobkov, S. G.; Boezio, M.; Bogomolov, E. A.; Bonechi, S.; Bongi, M.; Bottai, S.; Castellini, G.; Cattaneo, P. W.; Cumani, P.; Dedenko, G. L.; De Donato, C.; Dogiel, V. A.; Gorbunov, M. S.; Gusakov, Yu. V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kaplun, A. A.; Kheymits, M. D.; Korepanov, V. E.; Larsson, J.; Loginov, V. A.; Longo, F.; Maestro, P.; Marrocchesi, P. S.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Pearce, M.; Picozza, P.; Rappoldi, A.; Ricciarini, S.; Runtso, M. F.; Ryde, F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Taraskin, A. A.; Tavani, M.; Tiberio, A.; Tyurin, E. M.; Ulanov, M. V.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Yurkin, Yu. T.; Zampa, N.; Zirakashvili, V. N.; Zverev, V. G.

    2015-10-01

    The GAMMA-400 telescope will measure the fluxes of gamma rays and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV. These measurements will allow it to achieve the following scientific objectives: search for signatures of dark matter, investigation of gamma-ray point-like and extended sources, study of the energy spectrum of the Galactic and extragalactic diffuse emission, study of gamma-ray bursts and gamma-ray emission from the active Sun, together with high-precision measurements of the high-energy electrons and positrons spectra, protons and nuclei up to the knee. The bulk of cosmic rays are protons and helium nuclei, whereas the lepton component in the total flux is ∼10-3 at high energy. In the present paper, the simulated capability of the GAMMA-400 telescope to distinguish electrons and positrons from protons in cosmic rays is addressed. The individual contribution to the proton rejection from each detector system of GAMMA-400 is studied separately. The use of the combined information from all detectors allows us to reach a proton rejection of the order of ∼4 × 105 for vertical incident particles and ∼3 × 105 for particles with initial inclination of 30° in the electron energy range from 50 GeV to 1 TeV.

  19. Anomalous {ital g}{sub 5}{sup {ital Z}} coupling at {gamma}{gamma} colliders

    SciTech Connect

    Eboli, O.J.P.; Magro, M.B.; Mercadante, P.G.

    1995-10-01

    We study the constraints on the anomalous coupling {ital g}{sub 5}{sup {ital Z}} that can be obtained from the analysis of the reaction {gamma}{gamma}{r_arrow}{ital W}{sup +}{ital W}{sup {minus}}{ital Z} at future linear {ital e}{sup +}{ital e}{sup {minus}} colliders. We find out that a 0.5 (1) TeV {ital e}{sup +}{ital e}{sup {minus}} collider operating in the {gamma}{gamma} mode can probe values of {ital g}{sub 5}{sup {ital Z}} of the order of 0.15 (4.5{times}10{sup {minus}2}) for an integrated luminosity of 10 fb{sup {minus}1}. This shows that the ability to search for this anomalous interaction of the {gamma}{gamma} mode is better than the one of the usual {ital e}{sup +}{ital e}{sup {minus}} mode, and it is similar to the ability of the {ital e}{gamma} mode.

  20. Statistics of cosmological gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Dermer, Charles D.

    1992-01-01

    A phenomenological model of gamma-ray burst spectra is used to calculate the statistics of gamma-ray bursts originating at cosmological distances. A model of bursters with no source evolution in a q sub 0 = 1/2 Friedmann cosmology is in accord with recent observations of the differential V/Vmax distribution. The data are best fit with an average peak-burst luminosity of (4 +/- 2) x 10 exp 51 ergs/s and a present-day source emissivity of 940 +/- 440 bursts/(10 exp 10 yr) cu Mpc. A spectral test of the cosmological hypothesis is proposed.

  1. Gamma Knife Surgery in Trigeminal Neuralgia.

    PubMed

    Wolf, Amparo; Kondziolka, Douglas

    2016-07-01

    Gamma knife surgery (GKS) represents a safe, effective, and relatively durable noninvasive treatment option for patients with trigeminal neuralgia (TN) and recurrent TN. By one year's time, 75% to 90% of patients will have obtained pain relief, defined as Barrow Neurological Institute grades I to IIIB. Similar rates have been demonstrated for patients undergoing a second GKS for recurrent TN. Predictors of durability of GKS in TN include type I TN, post-GKS Barrow Neurological Institute score, and the presence of post-Gamma Knife facial numbness. PMID:27324996

  2. Gamma ray spectrometer for Lunar Scout 2

    NASA Technical Reports Server (NTRS)

    Moss, C. E.; Burt, W. W.; Edwards, B. C.; Martin, R. A.; Nakano, George H.; Reedy, R. C.

    1993-01-01

    We review the current status of the Los Alamos program to develop a high-resolution gamma-ray spectrometer for the Lunar Scout-II mission, which is the second of two Space Exploration Initiative robotic precursor missions to study the Moon. This instrument will measure gamma rays in the energy range of approximately 0.1 - 10 MeV to determine the composition of the lunar surface. The instrument is a high-purity germanium crystal surrounded by an CsI anticoincidence shield and cooled by a split Stirling cycle cryocooler. It will provide the abundance of many elements over the entire lunar surface.

  3. VHE Gamma-ray Supernova Remnants

    SciTech Connect

    Funk, Stefan; /KIPAC, Menlo Park

    2007-01-22

    Increasing observational evidence gathered especially in X-rays and {gamma}-rays during the course of the last few years support the notion that Supernova remnants (SNRs) are Galactic particle accelerators up to energies close to the ''knee'' in the energy spectrum of Cosmic rays. This review summarizes the current status of {gamma}-ray observations of SNRs. Shell-type as well as plerionic type SNRs are addressed and prospect for observations of these two source classes with the upcoming GLAST satellite in the energy regime above 100 MeV are given.

  4. Fermi GBM Observations of Terrestrial Gamma Flashes

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Briggs, M. S.; Connaughton, V.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R. D.; Kippen, R. M.; vonKienlin, A.; Dwyer, J. R.; Smith, D. M.; Holzworth, R.

    2010-01-01

    In its first two years of operation, the Fermi Gamma Ray Burst Monitor (GBM) has observed 79 Terrestrial Gamma Flashes (TGFs). The thick Bismuth Germanate (BGO) detectors are excellent for TGF spectroscopy, having a high probability of recording the full energy of an incident photon, spanning a broad energy range from 150 keV to 40 MeV, and recording a large number of photons per TGF. Correlations between GBM TGF triggers and lightning sferics detected with the World-Wide Lightning Location Network indicate that TGFs and lightning are simultaneous to within tens of microseconds.

  5. Gamma compensated, self powered neutron detector

    DOEpatents

    Brown, Donald P.

    1977-01-01

    An improved, self-powered, gamma compensated, neutron detector having two electrically conductive concentric cylindrical electrodes and a central rod emitter formed from a material which emits beta particles when bombarded by neutrons. The outer electrode and emitter are maintained at a common potential and the neutron representative current is furnished at the inner cylindrical electrode which serves as a collector. The two concentric cylindrical electrodes are designed to exhibit substantially equal electron emission induced by Compton scattering under neutron bombardment to supply the desired gamma compensation.

  6. Radioactivities and gamma-rays from supernovae

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.

    1991-01-01

    An account is given of the implications of several calculations relevant to the estimation of gamma-ray signals from various explosive astronomical phenomena. After discussing efforts to constrain the amounts of Ni-57 and Ti-44 produced in SN 1987A, attention is given to the production of Al-27 in massive stars and SNs. A 'delayed detonation' model of type Ia SNs is proposed, and the gamma-ray signal which may be expected when a bare white dwarf collapses directly into a neutron star is discussed.

  7. High Energy Neutron Induced Gamma Production

    SciTech Connect

    Brown, D A; Johnson, M; Navratil, P

    2007-09-28

    N Division has an interest in improving the physics and accuracy of the gamma data it provides to its customers. It was asked to look into major gamma producing reactions for 14 MeV incident neutrons for several low-Z materials and determine whether LLNL's processed data files faithfully represent the current state of experimental and theoretical knowledge for these reactions. To address this, we surveyed the evaluations of the requested materials, made recommendations for the next ENDL release and noted isotopes that will require further experimental study. This process uncovered several major problems in our translation and processing of the ENDF formatted evaluations, most of which have been resolved.

  8. On Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Ruffini, R.; Bernardini, M. G.; Bianco, C. L.; Caito, L.; Chardonnet, P.; Cherubini, C.; Dainotti, M. G.; Fraschetti, F.; Geralico, A.; Guida, R.; Patricelli, B.; Rotondo, M.; Rueda Hernandez, J. A.; Vereshchagin, G.; Xue, S.-S.

    2008-09-01

    We show by example how the uncoding of Gamma-Ray Bursts (GRBs) offers unprecedented possibilities to foster new knowledge in fundamental physics and in astrophysics. After recalling some of the classic work on vacuum polarization in uniform electric fields by Klein, Sauter, Heisenberg, Euler and Schwinger, we summarize some of the efforts to observe these effects in heavy ions and high energy ion collisions. We then turn to the theory of vacuum polarization around a Kerr-Newman black hole, leading to the extraction of the blackholic energy, to the concept of dyadosphere and dyadotorus, and to the creation of an electron-positron-photon plasma. We then present a new theoretical approach encompassing the physics of neutron stars and heavy nuclei. It is shown that configurations of nuclear matter in bulk with global charge neutrality can exist on macroscopic scales and with electric fields close to the critical value near their surfaces. These configurations may represent an initial condition for the process of gravitational collapse, leading to the creation of an electron-positron-photon plasma: the basic self-accelerating system explaining both the energetics and the high energy Lorentz factor observed in GRBs. We then turn to recall the two basic interpretational paradigms of our GRB model: 1) the Relative Space-Time Transformation (RSTT) paradigm and 2) the Interpretation of the Burst Structure (IBS) paradigm. These paradigms lead to a "canonical" GRB light curve formed from two different components: a Proper-GRB (P-GRB) and an extended afterglow comprising a raising part, a peak, and a decaying tail. When the P-GRB is energetically predominant we have a "genuine" short GRB, while when the afterglow is energetically predominant we have a so-called long GRB or a "fake" short GRB. We compare and contrast the description of the relativistic expansion of the electron-positron plasma within our approach and within the other ones in the current literature. We then turn

  9. Gamma emission in precompound reactions: 1, Statistical model and collective gamma decay

    SciTech Connect

    Hoering, A. Washington Univ., Seattle, WA . Inst. for Nuclear Theory); Weidenmueller, H.A. )

    1992-01-01

    We extend the theory of particle-induced precompound reactions by including gamma decay. We use the Brink-Axel hypothesis and consider the gamma emission of giant dipole resonances built on the ground state and on the excited states of the composite system. The latter are modeled as multiparticle multi-hole excitations. In this way, we combine the statistical ansatz and the chaining hypothesis typical for precompound reaction theories, with the collective aspects of gamma decay. Formulas for average S-matrix and average cross section are derived in this framework.

  10. Gamma emission in precompound reactions: 1, Statistical model and collective gamma decay

    SciTech Connect

    Hoering, A. |; Weidenmueller, H.A.

    1992-09-01

    We extend the theory of particle-induced precompound reactions by including gamma decay. We use the Brink-Axel hypothesis and consider the gamma emission of giant dipole resonances built on the ground state and on the excited states of the composite system. The latter are modeled as multiparticle multi-hole excitations. In this way, we combine the statistical ansatz and the chaining hypothesis typical for precompound reaction theories, with the collective aspects of gamma decay. Formulas for average S-matrix and average cross section are derived in this framework.

  11. Relativistic feedback models of terrestrial gamma-ray flashes and gamma-ray glows

    NASA Astrophysics Data System (ADS)

    Dwyer, J. R.

    2015-12-01

    Relativistic feedback discharges, also known as dark lightning, are capable of explaining many of the observed properties of terrestrial gamma-ray flashes (TGFs) and gamma-ray glows, both created within thunderstorms. During relativistic feedback discharges, the generation of energetic electrons is self-sustained via the production of backward propagating positrons and back-scattered x-rays, resulting in very larges fluxes of energetic radiation. In addition, ionization produces large electric currents that generate LF/VLF radio emissions and eventually discharge the electric field, terminating the gamma-ray production. In this presentation, new relativistic feedback model results will be presented and compared to recent observations.

  12. Observation of a Charmoniumlike Enhancement in the {gamma}{gamma}->{omega}J/{psi} Process

    SciTech Connect

    Uehara, S.; Haba, J.; Itoh, R.; Iwasaki, Y.; Krokovny, P.; Nakao, M.; Nishida, S.; Sakai, Y.; Trabelsi, K.; Uno, S.; Aushev, T.; Bakich, A. M.; McOnie, S.; Yabsley, B. D.; Belous, K.; Shapkin, M.; Bhardwaj, V.; Singh, J. B.; Bischofberger, M.; Hayashii, H.

    2010-03-05

    We report the results of a search for a charmoniumlike state produced in the process {gamma}{gamma}->{omega}J/{psi} in the 3.9-4.2 GeV/c{sup 2} mass region. We observe a significant enhancement, which is well described by a resonant shape with mass M=(3915+-3+-2) MeV/c{sup 2} and total width {Gamma}=(17+-10+-3) MeV. This enhancement may be related to one or more of the three charmoniumlike states so far reported in the 3.90-3.95 GeV/c{sup 2} mass region.

  13. The gamma interferon (IFN-gamma) mimetic peptide IFN-gamma (95-133) prevents encephalomyocarditis virus infection both in tissue culture and in mice.

    PubMed

    Mujtaba, Mustafa G; Patel, Chintak B; Patel, Ravi A; Flowers, Lawrence O; Burkhart, Marjorie A; Waiboci, Lilian W; Martin, James; Haider, Mohammad I; Ahmed, Chulbul M; Johnson, Howard M

    2006-08-01

    We have demonstrated previously that the C-terminal gamma interferon (IFN-gamma) mimetic peptide consisting of residues 95 to 133 [IFN-gamma(95-133)], which contains the crucial IFN-gamma nuclear localization sequence (NLS), has antiviral activity in tissue culture. Here we evaluate the efficacy of this peptide and its derivatives first in vitro and then in an animal model of lethal viral infection with the encephalomyocarditis (EMC) virus. Deletion of the NLS region from the IFN-gamma mimetic peptide IFN-gamma(95-133) resulted in loss of antiviral activity. However, the NLS region does not have antiviral activity in itself. Replacing the NLS region of IFN-gamma(95-133) with the NLS region of the simian virus 40 large T antigen retains the antiviral activity in tissue culture. IFN-gamma(95-133) prevented EMC virus-induced lethality in mice in a dose-dependent manner compared to controls. Mice treated with IFN-gamma(95-133) had no or low EMC virus titers in their internal organs, whereas control mice had consistently high viral titers, especially in the heart tissues. Injection of B8R protein, which is encoded by poxviruses as a defense mechanism to neutralize host IFN-gamma, did not inhibit IFN-gamma(95-133) protection against a lethal dose of EMC virus, whereas mice treated with rat IFN-gamma were not protected. The data presented here show that the IFN-gamma mimetic peptide IFN-gamma(95-133) prevents EMC virus infection in vivo and in vitro and may have potential against other lethal viruses, such as the smallpox virus, which encodes the B8R protein. PMID:16893996

  14. Found: A Galaxy's Missing Gamma Rays

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Recent reanalysis of data from the Fermi Gamma-ray Space Telescope has resulted in the first detection of high-energy gamma rays emitted from a nearby galaxy. This discovery reveals more about how supernovae interact with their environments.Colliding Supernova RemnantAfter a stellar explosion, the supernovas ejecta expand, eventually encountering the ambient interstellar medium. According to models, this generates a strong shock, and a fraction of the kinetic energy of the ejecta is transferred into cosmic rays high-energy radiation composed primarily of protons and atomic nuclei. Much is still unknown about this process, however. One open question is: what fraction of the supernovas explosion power goes into accelerating these cosmic rays?In theory, one way to answer this is by looking for gamma rays. In a starburst galaxy, the collision of the supernova-accelerated cosmic rays with the dense interstellar medium is predicted to produce high-energy gamma rays. That radiation should then escape the galaxy and be visible to us.Pass 8 to the RescueObservational tests of this model, however, have beenstumped by Arp 220. This nearby ultraluminous infrared galaxy is the product of a galaxy merger ~700 million years ago that fueled a frenzy of starbirth. Due to its dusty interior and extreme levels of star formation, Arp 220 has long been predicted to emit the gamma rays produced by supernova-accelerated cosmic rays. But though weve looked, gamma-ray emission has never been detected from this galaxy until now.In a recent study, a team of scientists led by Fang-Kun Peng (Nanjing University) reprocessed 7.5 years of Fermi observations using the new Pass 8 analysis software. The resulting increase in resolution revealed the first detection of GeV emission from Arp 220!Acceleration EfficiencyGamma-ray luminosity vs. total infrared luminosity for LAT-detected star-forming galaxies and Seyferts. Arp 220s luminosities are consistent with the scaling relation. [Peng et al. 2016

  15. Study of Z gamma events and limits on anomalous Z Z gamma and Z gamma gamma couplings in p anti-p collisions at s**(1/2) = 1.96-TeV

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, S.; Andrieu, B.; Arnoud, Y.; Askew, A.; /Buenos Aires U. /Rio de Janeiro, CBPF /Rio de Janeiro State U. /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Beijing, Inst. High Energy Phys. /Hefei, CUST /Andes U., Bogota /Charles U. /Prague, Tech. U. /Prague, Inst. Phys. /San Francisco de Quito U. /Clermont-Ferrand U. /LPSC, Grenoble /Marseille, CPPM /Orsay, LAL /Paris U., VI-VII /DAPNIA, Saclay

    2005-02-01

    The authors present a measurement of the Z{gamma} production cross section and limits on anomalous ZZ{gamma} and Z{gamma}{gamma} couplings for form-factor scales of {Lambda} = 750 and 1000 GeV. The measurement is based on 138 (152) candidate events in the ee{gamma} ({mu}{mu}{gamma}) final state using 320 (290) pb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV. The 95% C.L. limits on real and imaginary parts of individual anomalous couplings are |h{sub 10,30}{sup Z}| < 0.23, |h{sub 20,40}{sup Z}| < 0.020, |h{sub 10,30}{gamma}| < 0.23, and |h{sub 20,40}{gamma}| < 0.019 for {Lambda} = 1000 GeV.

  16. Regulation of PPAR{gamma} function by TNF-{alpha}

    SciTech Connect

    Ye Jianping

    2008-09-26

    The nuclear receptor PPAR{gamma} is a lipid sensor that regulates lipid metabolism through gene transcription. Inhibition of PPAR{gamma} activity by TNF-{alpha} is involved in pathogenesis of insulin resistance, atherosclerosis, inflammation, and cancer cachexia. PPAR{gamma} activity is regulated by TNF-{alpha} at pre-translational and post-translational levels. Activation of serine kinases including IKK, ERK, JNK, and p38 may be involved in the TNF-regulation of PPAR{gamma}. Of the four kinases, IKK is a dominant signaling molecule in the TNF-regulation of PPAR{gamma}. IKK acts through at least two mechanisms: inhibition of PPAR{gamma} expression and activation of PPAR{gamma} corepressor. In this review article, literature is reviewed with a focus on the mechanisms of PPAR{gamma} inhibition by TNF-{alpha}.

  17. Anti-gamma globulins and chronic infection: comparative studies of the immune response to various bacteria and gamma globulin preparations.

    PubMed

    Williams, R C; Mellbye, O J; Kronvall, G

    1972-09-01

    A study of the relationship of clinical states associated with prolonged infection (bacterial endocarditis and osteomyelitis) and generation of serum anti-gamma globulins was made with particular reference to quantitative amounts of staphylococcal protein A in various infecting strains. No correlation between individual strain amounts of protein A and presence of anti-gamma globulins was detected. Thirty-eight rabbits were immunized intravenously with various strains of bacteria (Staphylococcus aureus, enterococci, Streptomyces viridans, pneumococci, pseudomonas, and Escherichia coli) for periods of 6 weeks, and antibacterial as well as anti-gamma globulin antibodies were assayed. No single group or strain of bacteria stood out as being more prone to produce anti-gamma globulins than others tested. Most rabbits developed anti-gamma globulins reacting with human gamma globulins, whereas the specificity for rabbit gamma globulin appeared more restricted. In 16 rabbits immunized with eight different strains of S. aureus, quantitative elevation of serum gamma globulin above 2.5 g per 100 ml often seemed to be correlated with presence of detectable serum anti-gamma globulins. By contrast 15 rabbits immunized with autologous or isologous rabbit gamma globulins in many instances developed extremely high titers of anti-gamma globulins showing primary specificity for human rather than rabbit gamma globulin. These studies further amplify the remarkably heterogeneous anti-gamma globulin reactivity associated with various types of immune response. PMID:4404684

  18. Simultaneous optical/gamma-ray observations of GRBs

    NASA Technical Reports Server (NTRS)

    Greiner, J.; Wenzel, W.; Hudec, R.; Moskalenko, E. I.; Metlov, V.; Chernych, N. S.; Getman, V. S.; Ziener, Rainer; Birkle, K.; Bade, N.

    1994-01-01

    Details on the project to search for serendipitous time correlated optical photographic observations of Gamma Ray Bursters (GRB's) are presented. The ongoing photographic observations at nine observatories are used to look for plates which were exposed simultaneously with a gamma ray burst detected by the gamma ray instrument team (BATSE) and contain the burst position. The results for the first two years of the gamma ray instrument team operation are presented.

  19. Gamma-ray astronomy--A status report

    NASA Technical Reports Server (NTRS)

    Holt, Stephen S.

    1994-01-01

    Gamma-rays provide us with powerful insight into the highest energy processes occurring in the cosmos. This review highlights some of the progress in our understanding of gamma-ray astronomy that has been enabled by new data from GRANAT and the Compton Gamma-Ray Observaatory, and suggests requirements for future progress. In particular, the unique role of the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) mission and concurrent multiwavelength observations is highlighted.

  20. The origin and implications of gamma rays from solar flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.

    1975-01-01

    Solar flares studied in the gamma ray region provide essential information on accelerated nuclei that can be obtained in no other way. A multitude of physical processes, such as particle acceleration, nuclear reactions, positron and neutron physics, and kinematical line broadening, come into consideration at gamma ray energies. Gamma ray observations are complementary to hard X ray observations, since both provide information on accelerated particles. It appears that only in the gamma ray region do these particles produce distinct spectral lines.

  1. Baseline measurements of terrestrial gamma radioactivity at the CEBAF site

    SciTech Connect

    Wollenberg, H.A.; Smith, A.R.

    1991-10-01

    A survey of the gamma radiation background from terrestrial sources was conducted at the CEBAF site, Newport News, Virginia, on November 12--16, 1990, to provide a gamma radiation baseline for the site prior to the startup of the accelerator. The concentrations and distributions of the natural radioelements in exposed soil were measured, and the results of the measurements were converted into gamma-ray exposure rates. Concurrently, samples were collected for laboratory gamma spectral analyses.

  2. Gamma ray constraints on the Galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, Donald D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1991-01-01

    We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission.

  3. Gamma-Ray Telescope and Uncertainty Principle

    ERIC Educational Resources Information Center

    Shivalingaswamy, T.; Kagali, B. A.

    2012-01-01

    Heisenberg's Uncertainty Principle is one of the important basic principles of quantum mechanics. In most of the books on quantum mechanics, this uncertainty principle is generally illustrated with the help of a gamma ray microscope, wherein neither the image formation criterion nor the lens properties are taken into account. Thus a better…

  4. Developments in mercuric iodide gamma ray imaging

    NASA Astrophysics Data System (ADS)

    Patt, B. E.; Beyerle, A. G.; Dolin, R. C.; Ortale, C.

    A mercuric iodide gamma-ray imaging array and camera system previously described has been characterized for spatial and energy resolution. Based on this data a new camera is being developed to more fully exploit the potential of the array. Characterization results and design criterion for the new camera will be presented.

  5. Developments in mercuric iodide gamma ray imaging

    NASA Astrophysics Data System (ADS)

    Patt, B. E.; Beyerle, A. G.; Dolin, R. C.; Ortale, C.

    1989-11-01

    A mercuric iodide (HgI2) gamma ray imaging array and camera system previously described have been characterized for spatial and energy resolution. Based on these data a new camera is being developed to more fully exploit the potential of the array. Characterization results and design criteria for the new camera will be presented.

  6. Gamma Ray Imaging for Environmental Remediation

    SciTech Connect

    B.F. Philips; R.A. Kroeger: J.D. Kurfess: W.N. Johnson; E.A. Wulf; E. I. Novikova

    2004-11-12

    This program is the development of germanium strip detectors for environmental remediation. It is a collaboration between the Naval Research Laboratory and Lawrence Berkeley National Lab. The goal is to develop detectors that are simultaneously capable of excellent spectroscopy and imaging of gamma radiation.

  7. New shield for gamma-ray spectrometry

    NASA Technical Reports Server (NTRS)

    Brar, S. S.; Gustafson, P. F.; Nelson, D. M.

    1969-01-01

    Gamma-ray shield that can be evacuated, refilled with a clean gas, and pressurized for exclusion of airborne radioactive contaminants effectively lowers background noise. Under working conditions, repeated evacuation and filling procedures have not adversely affected the sensitivity and resolution of the crystal detector.

  8. Spectroscopic mode identification in gamma Doradus stars

    NASA Astrophysics Data System (ADS)

    Rylvia Pollard, Karen

    2015-08-01

    The MUSICIAN programme at the University of Canterbury has been successfully identifying frequencies and pulsation modes in many gamma Doradus stars using hundreds of precise, high resolution spectroscopic observations. This paper describes some of these frequency and mode identifications and the emerging patterns of the programme.

  9. Physics issues of gamma ray burst emissions

    NASA Technical Reports Server (NTRS)

    Liang, Edison

    1987-01-01

    The critical physics issues in the interpretation of gamma-ray-burst spectra are reviewed. An attempt is made to define the emission-region parameter space satisfying the maximum number of observational and theoretical constraints. Also discussed are the physical mechanisms responsible for the bursts that are most consistent with the above parameter space.

  10. IUS guidance algorithm gamma guide assessment

    NASA Technical Reports Server (NTRS)

    Bray, R. E.; Dauro, V. A.

    1980-01-01

    The Gamma Guidance Algorithm which controls the inertial upper stage is described. The results of an independent assessment of the algorithm's performance in satisfying the NASA missions' targeting objectives are presented. The results of a launch window analysis for a Galileo mission, and suggested improvements are included.

  11. Gamma function to Beck-Cohen superstatistics

    NASA Astrophysics Data System (ADS)

    Han, Jung Hun

    2013-10-01

    In this paper, we show a mathematical construction of Beck-Cohen superstatistics in the Bayesian point of view with the help of the two representations of a gamma function. Furthermore, it is shown how some results for superstatistics are related to each other.

  12. Tomographic Gamma Scanner Experience: Three Cases

    SciTech Connect

    Mercer, David J.

    2014-06-30

    This is a summary of field applications of tomographic gamma scanning (TGS). Three cases are shown: enriched uranium scanning at Rocky Flats, heat-source plutonium at LANL, and plutonium-bearing pyrochemical salts at Rocky Flats. Materials are taken from the references shown below.

  13. Gamma-ray Emission from Globular Clusters

    NASA Astrophysics Data System (ADS)

    Tam, Pak-Hin T.; Hui, Chung Y.; Kong, Albert K. H.

    2016-03-01

    Over the last few years, the data obtained using the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope has provided new insights on high-energy processes in globular clusters, particularly those involving compact objects such as MilliSecond Pulsars (MSPs). Gamma-ray emission in the 100 MeV to 10 GeV range has been detected from more than a dozen globular clusters in our galaxy, including 47 Tucanae and Terzan 5. Based on a sample of known gammaray globular clusters, the empirical relations between gamma-ray luminosity and properties of globular clusters such as their stellar encounter rate, metallicity, and possible optical and infrared photon energy densities, have been derived. The measured gamma-ray spectra are generally described by a power law with a cut-off at a few gigaelectronvolts. Together with the detection of pulsed γ-rays from two MSPs in two different globular clusters, such spectral signature lends support to the hypothesis that γ-rays from globular clusters represent collective curvature emission from magnetospheres of MSPs in the clusters. Alternative models, involving Inverse-Compton (IC) emission of relativistic electrons that are accelerated close to MSPs or pulsar wind nebula shocks, have also been suggested. Observations at >100 GeV by using Fermi/LAT and atmospheric Cherenkov telescopes such as H.E.S.S.-II, MAGIC-II, VERITAS, and CTA will help to settle some questions unanswered by current data.

  14. Gamma-ray Astrophysics with AGILE

    SciTech Connect

    Longo, Francesco |; Tavani, M.; Barbiellini, G.; Argan, A.; Basset, M.; Boffelli, F.; Bulgarelli, A.; Caraveo, P.; Cattaneo, P.; Chen, A.; Costa, E.; Del Monte, E.; Di Cocco, G.; Di Persio, G.; Donnarumma, I.; Feroci, M.; Fiorini, M.; Foggetta, L.; Froysland, T.; Frutti, M.

    2007-07-12

    AGILE will explore the gamma-ray Universe with a very innovative instrument combining for the first time a gamma-ray imager and a hard X-ray imager. AGILE will be operational in spring 2007 and it will provide crucial data for the study of Active Galactic Nuclei, Gamma-Ray Bursts, unidentified gamma-ray sources. Galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing. The AGILE instrument is designed to simultaneously detect and image photons in the 30 MeV - 50 GeV and 15 - 45 keV energy bands with excellent imaging and timing capabilities, and a large field of view covering {approx} 1/5 of the entire sky at energies above 30 MeV. A CsI calorimeter is capable of GRB triggering in the energy band 0.3-50 MeV AGILE is now (March 2007) undergoing launcher integration and testing. The PLSV launch is planned in spring 2007. AGILE is then foreseen to be fully operational during the summer of 2007.

  15. Inspection of cargo containers using gamma radiation

    NASA Astrophysics Data System (ADS)

    Hussein, Esam M. A.; Gokhale, Prasad; Arendtsz, Nina V.; Lawrence, Andre H.

    1997-02-01

    This paper investigate, with the aid of Monte Carlo simulations and laboratory experiments, a technique for the detection of narcotics in large cargo containers using gamma-radiation. The transmission and back-scattering of photons, at different energies, is used to provide information useful for identifying the presence of bulk quantities of commonly encountered narcotics.

  16. YAP multi-crystal gamma camera prototype

    SciTech Connect

    Blazek, K.; Maly, P.; Notaristefani, F. de |; Pani, R.; Pellegrini, R.; Pergola, A.; Scopinaro, F.; Soluri, A.

    1995-10-01

    The Anger camera principle has shown a practical limit of a few millimeters spatial resolution. To overcome this limit, a new gamma camera prototype has been developed, based on a position-sensitive photomultiplier tue (PSPMT) coupled with a new scintillation crystal. The Hamamatsu R2486 PSPMT is a 76-mm diameter photomultiplier tube in which the electrons produced in the conventional bi-alkali photocathode are multiplied by proximity mesh dynodes and form a charge cloud around the original coordinates of the light photon striking the photocathode. A crossed wire anode array collects the charge and detects the original position. The intrinsic spatial resolution of PSPMT is better than 0.3 mm. The scintillation crystal consists of yttrium aluminum perovskit (YAP:Ce or YAlO{sub 3}:Ce). This crystal has a light efficient of about 38% relative to NaI, no hygroscopicity and a good gamma radiation absorption. To match the characteristics of the PSPMT, a special crystal assembly was produced by the Preciosa Company, consisting of a bundle of YAP:Ce pillars where single crystals have 0.6 {times} 0.6 mm{sup 2} cross section and 3 mm to 18 mm length. Preliminary results from such gamma camera prototypes show spatial resolution values ranging between 0.7 mm and 1 mm with an intrinsic detection efficiency of 37 {divided_by} 65% for 140 keV gamma energy.

  17. Polymerase Gamma Disease through the Ages

    ERIC Educational Resources Information Center

    Saneto, Russell P.; Naviaux, Robert K.

    2010-01-01

    The most common group of mitochondrial disease is due to mutations within the mitochondrial DNA polymerase, polymerase gamma 1 ("POLG"). This gene product is responsible for replication and repair of the small mitochondrial DNA genome. The structure-function relationship of this gene product produces a wide variety of diseases that at times, seems…

  18. In sync: gamma oscillations and emotional memory

    PubMed Central

    Headley, Drew B.; Paré, Denis

    2013-01-01

    Emotional experiences leave vivid memories that can last a lifetime. The emotional facilitation of memory has been attributed to the engagement of diffusely projecting neuromodulatory systems that enhance the consolidation of synaptic plasticity in regions activated by the experience. This process requires the propagation of signals between brain regions, and for those signals to induce long-lasting synaptic plasticity. Both of these demands are met by gamma oscillations, which reflect synchronous population activity on a fast timescale (35–120 Hz). Regions known to participate in the formation of emotional memories, such as the basolateral amygdala, also promote gamma-band activation throughout cortical and subcortical circuits. Recent studies have demonstrated that gamma oscillations are enhanced during emotional situations, coherent between regions engaged by salient stimuli, and predict subsequent memory for cues associated with aversive stimuli. Furthermore, neutral stimuli that come to predict emotional events develop enhanced gamma oscillations, reflecting altered processing in the brain, which may underpin how past emotional experiences color future learning and memory. PMID:24319416

  19. The new gamma-ray observatory: CTA

    NASA Astrophysics Data System (ADS)

    Carr, John

    2016-07-01

    CTA is the next generation gamma-ray observatory and will have a factor 10 better sensitivity compared to existing facilities, as well as many other superior parameters. Aspects of array layout, performance and sites are presented. The broad range of forefront science which will be studied is described.

  20. COMPUTER ANALYSIS OF PLANAR GAMMA CAMERA IMAGES

    EPA Science Inventory



    COMPUTER ANALYSIS OF PLANAR GAMMA CAMERA IMAGES

    T Martonen1 and J Schroeter2

    1Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, NC 27711 USA and 2Curriculum in Toxicology, Unive...

  1. GAMMA RAY IMAGING FOR ENVIRONMENTAL REMEDIATION

    EPA Science Inventory

    The research is a three year development program to apply high resolution gamma-ray imaging technologies to environmental remediation of radioactive hazards. High resolution, position-sensitive germanium detectors are being developed at the Naval Research Laboratory for space app...

  2. Gamma line radiation from supernovae. [nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Arnett, W. D.

    1978-01-01

    Recent calculations of core collapse or massive stars result in explosive ejection of the mantle by a reflected shock. These hydrodynamic results are important for predictions of explosive nucleosynthesis and gamma-ray line emission from supernovae. Previous estimates, based on simple parameterized models or the nucleosynthesis in an average supernova, are compared with these latest results.

  3. Gamma-ray Pulsars: Models and Predictions

    NASA Technical Reports Server (NTRS)

    Harding Alice K.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is, dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10(exp 12) - 10(exp 13) G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers of the primary curvature emission around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. Next-generation gamma-ray telescopes sensitive to GeV-TeV emission will provide critical tests of pulsar acceleration and emission mechanisms.

  4. Toward standardising gamma camera quality control procedures

    NASA Astrophysics Data System (ADS)

    Alkhorayef, M. A.; Alnaaimi, M. A.; Alduaij, M. A.; Mohamed, M. O.; Ibahim, S. Y.; Alkandari, F. A.; Bradley, D. A.

    2015-11-01

    Attaining high standards of efficiency and reliability in the practice of nuclear medicine requires appropriate quality control (QC) programs. For instance, the regular evaluation and comparison of extrinsic and intrinsic flood-field uniformity enables the quick correction of many gamma camera problems. Whereas QC tests for uniformity are usually performed by exposing the gamma camera crystal to a uniform flux of gamma radiation from a source of known activity, such protocols can vary significantly. Thus, there is a need for optimization and standardization, in part to allow direct comparison between gamma cameras from different vendors. In the present study, intrinsic uniformity was examined as a function of source distance, source activity, source volume and number of counts. The extrinsic uniformity and spatial resolution were also examined. Proper standard QC procedures need to be implemented because of the continual development of nuclear medicine imaging technology and the rapid expansion and increasing complexity of hybrid imaging system data. The present work seeks to promote a set of standard testing procedures to contribute to the delivery of safe and effective nuclear medicine services.

  5. HYPERNUCLEAR STRUCTURE FROM GAMMA-RAY SPECTROSCOPY.

    SciTech Connect

    MILLENER,D.J.

    2003-10-14

    The energies of p-shell hypernuclear {gamma} rays obtained from recent experiments using the Hyperball at BNL and KEK are used to constrain the YN interaction which enters into shell-model calculations which include both {Lambda} and {Sigma} configurations.

  6. Interdiffusion Behavior of Pt-Diffused gamma+gamma' Coatings on Ni-Based Superalloys

    SciTech Connect

    Zhang, Ying; Stacy, J P; Pint, Bruce A; Haynes, James A; Hazel, Brian T; Nagaraj, Ben

    2008-01-01

    Platinum-diffused {gamma} + {gamma}{prime} coatings ({approx} 20 at.% Al, {approx} 22 at.% Pt) were synthesized on Rene 142 and Rene N5 Ni-based superalloys by electroplating the substrates with {approx} 7 {micro}m of Pt, followed by an annealing treatment in vacuum at 1175 C. In order to study the compositional and microstructural evolution of these coatings at elevated temperatures, interdiffusion experiments were carried out on coated specimens in the temperature range of 900-1050 C for various durations. Composition profiles of the alloying elements in the {gamma} + {gamma}{prime} coatings before and after diffusion experiments were determined by electron probe microanalysis. Although the change of the Al content in the coatings was minimal under these interdiffusion conditions, the decrease of the Pt content and increase of the diffusion depth of Pt into the substrate alloys were significant. A preliminary diffusion model was used to estimate the Pt penetration depth after diffusion.

  7. Studying the High Energy Gamma Ray Sky with Gamma Ray Large Area Space Telescope (GLAST)

    NASA Technical Reports Server (NTRS)

    Kamae, T.; Ohsugi, T.; Thompson, D. J.; Watanabe, K.

    1998-01-01

    Building on the success of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory, the Gamma Ray Large Area Space Telescope (GLAST) will make a major step in the study of such subjects as blazars, gamma Ray bursts, the search for dark matter, supernova remnants, pulsars, diffuse radiation, and unidentified high energy sources. The instrument will be built on new and mature detector technologies such as silicon strip detectors, low-power low-noise LSI, and a multilevel data acquisition system. GLAST is in the research and development phase, and one full tower (of 25 total) is now being built in collaborating institutes. The prototype tower will be tested thoroughly at Stanford Linear Accelerator Center (SLAC) in the fall of 1999.

  8. Structure and creep rupture properties of directionally solidified eutectic gamma/gamma-prime-alpha alloy

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Wirth, G.

    1982-01-01

    A simple ternary gamma/gamma-prime-alpha alloy of nominal composition (wt-%) Ni-32Mo-6Al has been directionally solidified at 17 mm/h and tested in creep rupture at 1073, 1173, and 1273 K. A uniform microstructure consisting of square-shaped Mo fibers in a gamma + gamma-prime matrix was found despite some variation in the molybdenum and aluminum concentrations along the growth direction. Although the steady-state creep rate is well described by the normal stress temperature equation, the stress exponent (12) and the activation energy (580 kJ/mol) are high. The rupture behavior is best characterized by the Larson-Miller parameter where the constant equals 20.

  9. Measuring the charged pion polarizability in the gamma gamma -> pi+pi- reaction

    SciTech Connect

    Lawrence, David W.; Miskimen, Rory A.; Mushkarenkov, Alexander Nikolaevich; Smith, Elton S.

    2013-08-01

    Development has begun of a new experiment to measure the charged pion polarizability $\\alpha_{\\pi}-\\beta_{\\pi}$. The charged pion polarizability ranks among the most important tests of low-energy QCD presently unresolved by experiment. Analogous to precision measurements of $\\pi^{\\circ}\\rightarrow\\gamma\\gamma$ that test the intrinsic odd-parity (anomalous) sector of QCD, the pion polarizability tests the intrinsic even-parity sector of QCD. The measurement will be performed using the $\\gamma\\gamma\\rightarrow\\pi^{+{}}\\pi^{-{}}$ cross section accessed via the Primakoff mechanism on nuclear targets using the GlueX detector in Hall D at Jefferson Lab. The linearly polarized photon source in Hall-D will be utilized to separate the Primakoff cross-section from coherent $\\rho^{\\circ}$ production.

  10. Measurement of the {sup 157}Gd(n,{gamma}) reaction with the DANCE {gamma} calorimeter array

    SciTech Connect

    Chyzh, A.; Dashdorj, D.; Baramsai, B.; Mitchell, G. E.; Walker, C. L.; Becker, J. A.; Parker, W.; Wu, C. Y.; Becvar, F.; Kroll, J.; Krticka, M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.

    2011-07-15

    The {sup 157}Gd(n,{gamma}) reaction was measured with the DANCE {gamma} calorimeter (consisting of 160 BaF{sub 2} scintillation detectors) at the Los Alamos Neutron Science Center. The multiplicity distributions of the {gamma} decay were used to determine the resonance spins up to E{sub n}=300 eV. The {gamma}-ray energy spectra for different multiplicities were measured for the s-wave resonances. The shapes of these spectra were compared with simulations based on the use of the DICEBOX statistical model code. Simulations showed that the scissors mode is required not only for the ground-state transitions but also for transitions between excited states.

  11. Future Prospects for Space-Based Gamma Ray Astronomy

    NASA Astrophysics Data System (ADS)

    McConnell, Mark

    2016-03-01

    The gamma-ray sky offers a unique view into broad range of high energy astrophysical phenomena, from nearby solar flares, to galactic pulsars, to gamma-ray bursts at the furthest reaches of the Universe. In recent years, results from the Fermi mission have further demonstrated the broad range of topics that can be addressed by gamma-ray observations. The full range of gamma-ray energies is quite broad, from about 100 keV up to about 100 TeV. The energy range below several hundred GeV is the domain of space-based gamma-ray observatories, a range that is not completely covered by the Fermi LAT instrument. The gamma ray community has embarked on an effort to define the next steps for space-based gamma ray astronomy. These discussions are being facilitated through the Gamma-ray Science Interest Group (GammaSIG), which exists to provide community input to NASA in regards to current and future needs of the gamma-ray astrophysics community. Through a series of workshops and symposia, the GammaSIG is working to bring the community together with one common vision, a vision that will be expressed in the form of a community roadmap. This talk will summarize some of the latest results from active gamma ray observatories and will summarize the status of the community roadmap effort.

  12. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Gamma radiation surveys. 57.5047 Section 57..., Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047 Gamma radiation surveys. (a) Gamma radiation surveys shall be conducted annually in all underground mines...

  13. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Gamma radiation surveys. 57.5047 Section 57..., Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047 Gamma radiation surveys. (a) Gamma radiation surveys shall be conducted annually in all underground mines...

  14. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Gamma radiation surveys. 57.5047 Section 57..., Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047 Gamma radiation surveys. (a) Gamma radiation surveys shall be conducted annually in all underground mines...

  15. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Gamma radiation surveys. 57.5047 Section 57..., Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047 Gamma radiation surveys. (a) Gamma radiation surveys shall be conducted annually in all underground mines...

  16. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Gamma radiation surveys. 57.5047 Section 57..., Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047 Gamma radiation surveys. (a) Gamma radiation surveys shall be conducted annually in all underground mines...

  17. Measuring high-energy {gamma} rays with Ge detectors

    SciTech Connect

    Lipoglavsek, M.; Likar, A.; Vencelj, M.; Vidmar, T.; Bark, R. A.; Gueorguieva, E.; Komati, F.; Lawrie, J. J.; Maliage, S. M.; Mullins, S. M.; Murray, S. H. T.; Ramashidzha, T. M.

    2006-04-26

    Gamma rays with energies up to 21 MeV were measured with Ge detectors. Such {gamma} rays were produced in the 208Pb(p,{gamma})209Bi reaction. The position of the 2g9/2 single proton orbit in 209Bi has been determined indicating the size of the Z=126 shell gap.

  18. Gamma-Ray Telescopes: 400 Years of Astronomical Telescopes

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Cannizzo, John K.

    2010-01-01

    The last half-century has seen dramatic developments in gamma-ray telescopes, from their initial conception and development through to their blossoming into full maturity as a potent research tool in astronomy. Gamma-ray telescopes are leading research in diverse areas such as gamma-ray bursts, blazars, Galactic transients, and the Galactic distribution of Al-26.

  19. Very High-Energy Gamma-Ray Sources.

    ERIC Educational Resources Information Center

    Weekes, Trevor C.

    1986-01-01

    Discusses topics related to high-energy, gamma-ray astronomy (including cosmic radiation, gamma-ray detectors, high-energy gamma-ray sources, and others). Also considers motivation for the development of this field, the principal results to date, and future prospects. (JN)

  20. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Scintillation (gamma) camera. 892.1100 Section 892.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1100 Scintillation (gamma) camera. (a) Identification. A scintillation (gamma) camera...

  1. Atypical Laterality of Resting Gamma Oscillations in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Maxwell, Christina R.; Villalobos, Michele E.; Schultz, Robert T.; Herpertz-Dahlmann, Beate; Konrad, Kerstin; Kohls, Gregor

    2015-01-01

    Abnormal brain oscillatory activity has been found in autism spectrum disorders (ASD) and proposed as a potential biomarker. While several studies have investigated gamma oscillations in ASD, none have examined resting gamma power across multiple brain regions. This study investigated resting gamma power using EEG in 15 boys with ASD and 18 age…

  2. A Note on the Ratio of Positively Correlated Gamma Variates

    NASA Technical Reports Server (NTRS)

    Tubbs, J. D.; Smith, O. E.

    1983-01-01

    The density function and corresponding moments for the ratio of correlated gamma distributed variates were derived. A class of bivariate gamma distributions was also considered, and additional distributional results which use this class of functions were also derived. Similar results, by using a different class of bivariate gamma distributions, are presented.

  3. TEM, HRTEM, electron holography and electron tomography studies of gamma' and gamma'' nanoparticles in Inconel 718 superalloy.

    PubMed

    Dubiel, B; Kruk, A; Stepniowska, E; Cempura, G; Geiger, D; Formanek, P; Hernandez, J; Midgley, P; Czyrska-Filemonowicz, A

    2009-11-01

    The aim of the study was the identification of gamma' and gamma'' strengthening precipitates in a commercial nickel-base superalloy Inconel 718 (Ni-19Fe-18Cr-5Nb-3Mo-1Ti-0.5Al-0.04C, wt %) using TEM dark-field, HRTEM, electron holography and electron tomography imaging. To identify gamma' and gamma'' nanoparticles unambiguously, a systematic analysis of experimental and theoretical diffraction patterns were performed. Using HRTEM method it was possible to analyse small areas of precipitates appearance. Electron holography and electron tomography techniques show new possibilities of visualization of gamma' and gamma'' nanoparticles. The analysis by means of different complementary TEM methods showed that gamma'' particles exhibit a shape of thin plates, while gamma' phase precipitates are almost spherical. PMID:19903242

  4. The development of gamma-gamma-prime lamellar structures in a nickel-base superalloy during elevated temperature mechanical testing

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Ebert, L. J.

    1985-01-01

    The kinetics of the formation and subsequent development of the directional coarsening of the gamma-prime precipitate in model Ni-Al-Mo-Ta superalloy single crystals are examined during tensile creep under various stress levels at 982 and 1038 C. Special attention is given to the gamma and gamma-prime relation to creep time and strain in order to trace the changing gamma-gamma-prime morphology. Directional coarsening of gamma-prime is found to begin during primary creep and its rate is shown to increase with an increase in temperature or stress level. The length of gamma-prime thickness increased linearly with time up to a plateau reached after the onset of steady state creep. The raft thickness, equal to the gamma-prime size, remained constant at this initial value up through the onset of the tertiary creep. The interlaminar spacing indicates the stability of directionally coarsened structure.

  5. Diagnosing ICF gamma-ray physics

    SciTech Connect

    Herrmann, Hans W; Kim, Y H; Mc Evoy, A; Young, C S; Mack, J M; Hoffman, N; Wilson, D C; Langenbrunner, J R; Evans, S; Sedillo, T; Batha, S H; Dauffy, L; Stoeffl, W; Malone, R; Kaufman, M I; Cox, B C; Tunnel, T W; Miller, E K; Rubery, M

    2010-01-01

    Gamma rays produced in an ICF environment open up a host of physics opportunities we are just beginning to explore. A branch of the DT fusion reaction, with a branching ratio on the order of 2e-5 {gamma}/n, produces 16.7 MeV {gamma}-rays. These {gamma}-rays provide a direct measure of fusion reaction rate (unlike x-rays) without being compromised by Doppler spreading (unlike neutrons). Reaction-rate history measurements, such as nuclear bang time and burn width, are fundamental quantities that will be used to optimize ignition on the National Ignition Facility (NIF). Gas Cherenkov Detectors (GCD) that convert fusion {gamma}-rays to UV/visible Cherenkov photons for collection by fast optical recording systems established their usefulness in illuminating ICF physics in several experimental campaigns at OMEGA. Demonstrated absolute timing calibrations allow bang time measurements with accuracy better than 30 ps. System impulse response better than 95 ps fwhm have been made possible by the combination of low temporal dispersion GCDs, ultra-fast microchannel-plate photomultiplier tubes (PMT), and high-bandwidth Mach Zehnder fiber optic data links and digitizers, resulting in burn width measurement accuracy better than 10ps. Inherent variable energy-thresholding capability allows use of GCDs as {gamma}-ray spectrometers to explore other interesting nuclear processes. Recent measurements of the 4.44 MeV {sup 12}C(n,n{prime}) {gamma}-rays produced as 14.1 MeV DT fusion neutrons pass through plastic capsules is paving the way for a new CH ablator areal density measurement. Insertion of various neutron target materials near target chamber center (TCC) producing secondary, neutron-induced {gamma}y-rays are being used to study other nuclear interactions and as in-situ sources to calibrate detector response and DT branching ratio. NIF Gamma Reaction History (GRH) diagnostics, based on the GCD concept, are now being developed based on optimization of sensitivity, bandwidth

  6. Gamma ray spectroscopy in astrophysics: Solar gamma ray astronomy on solar maximum mission. [experimental design

    NASA Technical Reports Server (NTRS)

    Forrest, D. J.

    1978-01-01

    The SMM gamma ray experiment and the important scientific capabilities of the instrument are discussed. The flare size detectable as a function of spectrum integration time was studied. A preliminary estimate indicates that a solar gamma ray line at 4.4 MeV one-fifth the intensity of that believed to have been emitted on 4 August 1972 can be detected in approximately 1000 sec with a confidence level of 99%.

  7. GAMMA FACILITY, TRA641. AERIAL CONTEXTUAL VIEW OF GAMMA FACILITY, UNDER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GAMMA FACILITY, TRA-641. AERIAL CONTEXTUAL VIEW OF GAMMA FACILITY, UNDER CONSTRUCTION NEXT TO CONTROL HOUSE, TRA-620. CAMERA FACING NORTHWEST. CONCRETE SLAB AND BUILDING AT RIGHT EDGE OF VIEW IS TRA-614, IN USE AS A COLD METALLURGICAL LAB. INL NEGATIVE NO. 13187. Unknown Photographer, 11/24/1954 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  8. Gamma ray bursts of black hole universe

    NASA Astrophysics Data System (ADS)

    Zhang, T. X.

    2015-07-01

    Slightly modifying the standard big bang theory, Zhang recently developed a new cosmological model called black hole universe, which has only a single postulate but is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain existing observations of the universe. In the previous studies, we have explained the origin, structure, evolution, expansion, cosmic microwave background radiation, quasar, and acceleration of black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates gamma ray bursts of black hole universe and provides an alternative explanation for the energy and spectrum measurements of gamma ray bursts according to the black hole universe model. The results indicate that gamma ray bursts can be understood as emissions of dynamic star-like black holes. A black hole, when it accretes its star or merges with another black hole, becomes dynamic. A dynamic black hole has a broken event horizon and thus cannot hold the inside hot (or high-frequency) blackbody radiation, which flows or leaks out and produces a GRB. A star when it collapses into its core black hole produces a long GRB and releases the gravitational potential energy of the star as gamma rays. A black hole that merges with another black hole produces a short GRB and releases a part of their blackbody radiation as gamma rays. The amount of energy obtained from the emissions of dynamic star-like black holes are consistent with the measurements of energy from GRBs. The GRB energy spectra derived from this new emission mechanism are also consistent with the measurements.

  9. Measurement and analysis of quadruple ({alpha}{gamma}{gamma}) angular correlations for high spin states of {sup 24}Mg.

    SciTech Connect

    Wiedenhover, I.; Wuosmaa, A. H.; Lister, C. J.; Carpenter, M. P.; Janssens, R. V. F.; Amro, H.; Caggiano, J.; Heinz, A.; Kondev, F. G.; Lauritsen, T.; Siem, S.; Sonzogni, A.; Bhattacharyya, P.; Devlin, M.; Sarantites, D. G.; Sobotka, L. G.

    2000-10-30

    The high-lying, {alpha}-decaying states in {sup 24}Mg have been studied by measuring the complete decay path of {alpha} and {gamma} emissions using five segmented Silicon detectors in conjunction with GAMMASPHERE. The authors analyzed the ({alpha}{gamma}) triple angular correlations and, for the first time, ({alpha}{gamma}{gamma}) quadruple correlations. The data analysis is based on a new Fourier transformation technique. The power of the technique is demonstrated.

  10. Gamma-Glutamyl Compounds: Substrate Specificity of Gamma-Glutamyl Transpeptidase Enzymes

    PubMed Central

    Wickham, Stephanie; West, Matthew B.; Cook, Paul F.; Hanigan, Marie H.

    2011-01-01

    Gamma-glutamyl compounds include antioxidants, inflammatory molecules, drug metabolites and neuroactive compounds. Two cell surface enzymes have been identified that metabolize gamma-glutamyl compounds, gamma-glutamyl transpeptidase (GGT1) and gamma-glutamyl leukotrienase (GGT5). There is controversy in the literature regarding the substrate specificity of these enzymes. To address this issue, we have developed a method for comprehensive kinetics analysis of compounds as substrates for GGT enzymes. Our assay is sensitive, quantitative and is conducted at physiologic pH. We evaluated a series of gamma-glutamyl compounds as substrates for human GGT1 and human GGT5. The Kms for reduced glutathione were 11μM for both GGT1 and GGT5. However, the Km for oxidized glutathione was 9μM for GGT1 and 43μM for GGT5. Our data show that the Kms for leukotriene C4 are equivalent for GGT1 and GGT5 at 10.8μM and 10.2μM, respectively. This assay was also used to evaluate serine-borate, a well-known inhibitor of GGT1, which was 8-fold more potent in inhibiting GGT1 than inhibiting GGT5. These data provide essential information regarding the target enzymes for developing treatments for inflammatory diseases such as asthma and cardiovascular disease in humans. This assay is invaluable for studies of oxidative stress, drug metabolism and other pathways that involve gamma-glutamyl compounds. PMID:21447318

  11. Monte Carlo calibration of the SMM gamma ray spectrometer for high energy gamma rays and neutrons

    NASA Technical Reports Server (NTRS)

    Cooper, J. F.; Reppin, C.; Forrest, D. J.; Chupp, E. L.; Share, G. H.; Kinzer, R. L.

    1985-01-01

    The Gamma Ray Spectrometer (GRS) on the Solar Maximum Mission spacecraft was primarily designed and calibrated for nuclear gamma ray line measurements, but also has a high energy mode which allows the detection of gamma rays at energies above 10 MeV and solar neutrons above 20 MeV. The GRS response has been extrapolated until now for high energy gamma rays from an early design study employing Monte Carlo calculations. The response to 50 to 600 MeV solar neutrons was estimated from a simple model which did not consider secondary charged particles escaping into the veto shields. In view of numerous detections by the GRS of solar flares emitting high energy gamma rays, including at least two emitting directly detectable neutrons, the calibration of the high energy mode in the flight model has been recalculated by the use of more sophisticated Monte Carlo computer codes. New results presented show that the GRS response to gamma rays above 20 MeV and to neutrons above 100 MeV is significantly lower than the earlier estimates.

  12. Gamma1- and gamma2-syntrophins, two novel dystrophin-binding proteins localized in neuronal cells.

    PubMed

    Piluso, G; Mirabella, M; Ricci, E; Belsito, A; Abbondanza, C; Servidei, S; Puca, A A; Tonali, P; Puca, G A; Nigro, V

    2000-05-26

    Dystrophin is the scaffold of a protein complex, disrupted in inherited muscular dystrophies. At the last 3' terminus of the gene, a protein domain is encoded, where syntrophins are tightly bound. These are a family of cytoplasmic peripheral membrane proteins. Three genes have been described encoding one acidic (alpha1) and two basic (beta1 and beta2) proteins of approximately 57-60 kDa. Here, we describe the characterization of two novel putative members of the syntrophin family, named gamma1- and gamma2-syntrophins. The human gamma1-syntrophin gene is composed of 19 exons and encodes a brain-specific protein of 517 amino acids. The human gamma2-syntrophin gene is composed of at least 17 exons, and its transcript is expressed in brain and, to a lesser degree, in other tissues. We mapped the gamma1-syntrophin gene to human chromosome 8q11 and the gamma2-syntrophin gene to chromosome 2p25. Yeast two-hybrid experiments and pull-down studies showed that both proteins can bind the C-terminal region of dystrophin and related proteins. We raised antibodies against these proteins and recognized expression in both rat and human central neurons, coincident with RNA in situ hybridization of adjacent sections. Our present findings suggest a differentiated role of a modified dystrophin-associated complex in the central nervous system. PMID:10747910

  13. Measurement of the Branching Ratios Gamma(D*+s -> D+s pi0)/Gamma(D*+s ->D+s gamma) and Gamma(D*0 ->D0 pi0)/Gamma(D*0 -> D0gamma)

    SciTech Connect

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; Grauges, E.; Palano, A.; Pappagallo, M.; Pompili, A.; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; Eigen, G.; Ofte, I.; Stugu, B. /Bergen U. /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Genoa U. /INFN, Genoa /Harvard U. /Heidelberg U. /Imperial Coll., London /Iowa U. /Iowa State U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /Milan U. /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Naples U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /Perugia U. /INFN, Perugia /Pisa U. /Pisa, Scuola Normale Superiore /INFN, Pisa /Prairie View A-M /Princeton U. /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /INFN, Trieste /Valencia U., IFIC /Vanderbilt U. /Victoria U. /Warwick U. /Wisconsin U., Madison /Yale U.

    2005-08-23

    Data samples corresponding to the isospin-violating decay D*{sub s}{sup +} {yields} D{sub s}{sup +}{pi}{sup 0} and the decays D*{sub s}{sup +} {yields} D{sub s}{sup +}, D*{sup 0} {yields} D{sup 0}{pi}{sup 0} and D*{sup 0} {yields} D{sup 0}{gamma} are reconstructed using 90.4 fb{sup -1} of data recorded by the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider. The following branching ratios are extracted: {Lambda}(D*{sub s}{sup +} {yields} D{sub s}{sup +}{pi}{sup 0})/{Lambda}(D*{sub s}{sup +} {yields} D{sub s}{sup +}{gamma}) = 0.062 {+-} 0.005(stat.) {+-} 0.006(syst.) and {Lambda}(D*{sup 0} {yields} D{sup 0}{pi}{sup 0})/{Lambda}(D*{sup 0} {yields} D{sup 0}{gamma}) = 1.74 {+-} 0.02(stat.) {+-} 0.13(syst.). Both measurements represent significant improvements over present world averages.

  14. Cascaded Gamma Rays as a Probe of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Murase, Kohta

    2014-06-01

    Very-high-energy (VHE) and ultra-high-energy (UHE) gamma rays from extragalactic sources experience electromagnetic cascades during their propagation in intergalactic space. Recent gamma-ray data on TeV blazars and the diffuse gamma-ray background may have hints of the cascade emission, which are especially interesting if it comes from UHE cosmic rays. I show that cosmic-ray-induced cascades can be discriminated from gamma-ray-induced cascades with detailed gamma-ray spectra. I also discuss roles of structured magnetic fields, which suppress inverse-Compton pair halos/echoes but lead to guaranteed signals - synchrotron pair halos/echoes.

  15. Is (d,p{gamma}) a surrogate for neutron capture?

    SciTech Connect

    Hatarik, R.; Cizewski, J. A.; O'Malley, P. D.; Bernstein, L. A.; Burke, J. T.; Lesher, S. R.; Gibelin, J. D.; Phair, L. W.; Swan, T.

    2008-04-17

    To benchmark the validity of using the (d,p{gamma}) reaction as a surrogate for (n,{gamma}), the {sup 171,173}Yb(d,p{gamma}) reactions were measured and compared with the neutron capture cross sections measured by Wisshak et al. The (d,p{gamma}) ratios were measured using an 18.5 MeV deuteron beam from the 88-Inch Cyclotron at LBNL. Preliminary results comparing the surrogate ratios with the known (n,{gamma}) cross sections are discussed.

  16. Registered particles onboard identification in the various apertures of GAMMA-400 space gamma-telescope

    NASA Astrophysics Data System (ADS)

    Arkhangelskaja, Irene

    2016-07-01

    GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) will be the gamma-telescope onboard international satellite gamma-observatory designed for particle registration in the wide energy band. Its parameters are optimized for detection of gamma-quanta with the energy ˜ 100 GeV in the main aperture. The main scientific goals of GAMMA-400 are to investigate fluxes of γ-rays and the electron-positron cosmic ray component possibly generated by dark matter particles decay or annihilation and to search for and study in detail discrete γ-ray sources, to investigate the energy spectra of Galactic and extragalactic diffuse γ-rays, and to study γ-ray bursts and γ-emission from the active Sun. This article presents analysis of detected events identification procedures and energy resolution in three apertures provide particles registration both from upper and lateral directions based on GAMMA-400 modeling due special designed software. Time and segmentation methods are used to reject backsplash (backscattering particles created when high energy γ-rays interact with the calorimeter's matter and move in the opposite direction) in the main aperture while only energy deposition analysis allows to reject this effect in the additional and lateral ones. The main aperture provides the best angular (all strip layers information analysis) and energy (energy deposition in the all detectors studying) resolution in the energy range 0.1 - 3 × 10^{3} GeV. The energy resolution in this band is 1%. Triggers in the main aperture will be formed using information about particle direction provided by time of flight system and presence of charged particle or backsplash signal formed according to analysis of energy deposition in combination of all two-layers anticoincidence systems individual detectors. In the additional aperture gamma-telescope allows to register events in the energy band 10 × 10^{-3} - 3 × 10^{3} GeV. The additional aperture energy resolution provides due to

  17. Radiative Penguin Decays of B Mesons: Measurements of B to K* gamma, B to K2* gamma, and Search for B0 to phi gamma

    SciTech Connect

    Bauer, J.

    2005-01-03

    Electromagnetic radiative penguin decays of the B meson were studied with the BaBar detector at SLAC's PEP-II asymmetric-energy B Factory. Branching fractions and isospin asymmetry of the decay B {yields} K*{gamma}, branching fractions of B {yields} K*{sub 2}(1430){gamma}, and a search for B{sup 0} {yields} {phi}{gamma} are presented. The decay rates may be enhanced by contributions from non-standard model processes.

  18. Gamma ray lines from a universal extra dimension

    SciTech Connect

    Bertone, G.; Jackson, C. B.; Shaughnessy, G.; Tait, T. M.P.; Vallinotto, A.

    2012-03-01

    Indirect Dark Matter searches are based on the observation of secondary particles produced by the annihilation or decay of Dark Matter. Among them, gamma-rays are perhaps the most promising messengers, as they do not suffer deflection or absorption on Galactic scales, so their observation would directly reveal the position and the energy spectrum of the emitting source. Here, we study the detailed gamma-ray energy spectrum of Kaluza--Klein Dark Matter in a theory with 5 Universal Extra Dimensions. We focus in particular on the two body annihilation of Dark Matter particles into a photon and another particle, which produces monochromatic photons, resulting in a line in the energy spectrum of gamma rays. Previous calculations in the context of the five dimensional UED model have computed the line signal from annihilations into \\gamma \\gamma, but we extend these results to include \\gamma Z and \\gamma H final states. We find that these spectral lines are subdominant compared to the predicted \\gamma \\gamma signal, but they would be important as follow-up signals in the event of the observation of the \\gamma \\gamma line, in order to distinguish the 5d UED model from other theoretical scenarios.

  19. Gamma-Ray Bursts: A Mystery Story

    NASA Technical Reports Server (NTRS)

    Parsons, Ann

    2007-01-01

    With the success of the Swift Gamma-Ray Burst Explorer currently in orbit, this is quite an exciting time in the history of Gamma Ray Bursts (GRBs). The study of GRBs is a modern astronomical mystery story that began over 30 years ago with the serendipitous discovery of these astronomical events by military satellites in the late 1960's. Until the launch of BATSE on the Compton Gamma-ray Observatory, astronomers had no clue whether GRBs originated at the edge of our solar system, in our own Milky Way Galaxy or incredibly far away near the edge of the observable Universe. Data from BATSE proved that GRBs are distributed isotropically on the sky and thus could not be the related to objects in the disk of our Galaxy. Given the intensity of the gamma-ray emission, an extragalactic origin would require an astounding amount of energy. Without sufficient data to decide the issue, a great debate continued about whether GRBs were located in the halo of our own galaxy or were at extragalactic - even cosmological distances. This debate continued until 1997 when the BeppoSAX mission discovered a fading X-ray afterglow signal in the same location as a GRB. This discovery enabled other telescopes, to observe afterglow emission at optical and radio wavelengths and prove that GRBs were at cosmological distances by measuring large redshifts in the optical spectra. Like BeppoSAX Swift, slews to new GRB locations to measure afterglow emission. In addition to improved GRB sensitivity, a significant advantage of Swift over BeppoSAX and other missions is its ability to slew very quickly, allowing x-ray and optical follow-up measurements to be made as early as a minute after the gamma-ray burst trigger rather than the previous 6-8 hour delay. Swift afterglow measurements along with follow-up ground-based observations, and theoretical work have allowed astronomers to identify two plausible scenarios for the creation of a GRB: either through core collapse of super massive stars or

  20. Gamma-Ray Library and Uncertainty Analysis: Passively Emitted Gamma Rays Used in Safeguards Technology

    SciTech Connect

    Parker, W

    2009-09-18

    Non-destructive gamma-ray analysis is a fundamental part of nuclear safeguards, including nuclear energy safeguards technology. Developing safeguards capabilities for nuclear energy will certainly benefit from the advanced use of gamma-ray spectroscopy as well as the ability to model various reactor scenarios. There is currently a wide variety of nuclear data that could be used in computer modeling and gamma-ray spectroscopy analysis. The data can be discrepant (with varying uncertainties), and it may difficult for a modeler or software developer to determine the best nuclear data set for a particular situation. To use gamma-ray spectroscopy to determine the relative isotopic composition of nuclear materials, the gamma-ray energies and the branching ratios or intensities of the gamma-rays emitted from the nuclides in the material must be well known. A variety of computer simulation codes will be used during the development of the nuclear energy safeguards, and, to compare the results of various codes, it will be essential to have all the {gamma}-ray libraries agree. Assessing our nuclear data needs allows us to create a prioritized list of desired measurements, and provides uncertainties for energies and especially for branching intensities. Of interest are actinides, fission products, and activation products, and most particularly mixtures of all of these radioactive isotopes, including mixtures of actinides and other products. Recent work includes the development of new detectors with increased energy resolution, and studies of gamma-rays and their lines used in simulation codes. Because new detectors are being developed, there is an increased need for well known nuclear data for radioactive isotopes of some elements. Safeguards technology should take advantage of all types of gamma-ray detectors, including new super cooled detectors, germanium detectors and cadmium zinc telluride detectors. Mixed isotopes, particularly mixed actinides found in nuclear reactor

  1. Highlights of GeV Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2010-01-01

    Because high-energy gamma rays are primarily produced by high-energy particle interactions, the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of sites of cosmic ray production and interactions. Gamma-ray bursts, pulsars, pulsar wind nebulae, binary sources, and Active Galactic Nuclei are all phenomena that reveal particle acceleration through their gamma-ray emission. Diffuse Galactic gamma radiation, Solar System gamma-ray sources, and energetic radiation from supernova remnants are likely tracers of high-energy particle interactions with matter and photon fields. This paper will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.

  2. Atypical laterality of resting gamma oscillations in autism spectrum disorders.

    PubMed

    Maxwell, Christina R; Villalobos, Michele E; Schultz, Robert T; Herpertz-Dahlmann, Beate; Konrad, Kerstin; Kohls, Gregor

    2015-02-01

    Abnormal brain oscillatory activity has been found in autism spectrum disorders (ASD) and proposed as a potential biomarker. While several studies have investigated gamma oscillations in ASD, none have examined resting gamma power across multiple brain regions. This study investigated resting gamma power using EEG in 15 boys with ASD and 18 age and intelligence quotient matched typically developing controls. We found a decrease in resting gamma power at right lateral electrodes in ASD. We further explored associations between gamma and ASD severity as measured by the Social Responsiveness Scale (SRS) and found a negative correlation between SRS and gamma power. We believe that our findings give further support of gamma oscillations as a potential biomarker for ASD. PMID:23624928

  3. Z(gamma) production and limits on anomalous ZZ(gamma) and Z(gamma gamma) couplings in p(p)over-bar collisions at root s 1.96 TeV

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Aoki, M.; Askew, A.; Asman, B.; Atkins, S.; Atramentov, O.; Augsten, K.; Avila, C.; BackusMayes, J.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Belanger-Champagne, C.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besancon, M.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brandt, O.; Brock, R.; Brooijmans, G.; Bross, A.; Brown, D.; Brown, J.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Burnett, T. H.; Buszello, C. P.; Calpas, B.; Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Casey, B. C. K.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Chevalier-Thery, S.; Cho, D. K.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M. -C.; Croc, A.; Cutts, D.; Das, A.; Davies, G.; De, K.; de Jong, S. J.; De La Cruz-Burelo, E.; Deliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dorland, T.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garcia-Bellido, A.; Garcia-Guerra, G. A.; Gavrilov, V.; Gay, P.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grenier, G.; Gris, Ph.; Grivaz, J. -F.; Grohsjean, A.; Gruenendahl, S.; Gruenewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hagopian, S.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffre, M.; Jamin, D.; Jayasinghe, A.; Jesik, R.; Johns, K.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kaadze, K.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kobach, A. C.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kulikov, S.; Kumar, A.; Kupco, A.; Kurca, T.; Kuzmin, V. A.; Kvita, J.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lellouch, J.; Li, L.; Li, Q. Z.; Lietti, S. M.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; de Sa, R. Lopes; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Mackin, D.; Madar, R.; Magana-Villalba, R.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martinez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; et al.

    2012-03-01

    We present a measurement of p{bar p} {yields} Z{sub {gamma}} {yields} {ell}{sup +}{ell}{sup -}{sub {gamma}} ({ell} = e, {mu}) production with a data sample corresponding to an integrated luminosity of 6.2 fb{sup -1} collected by the D0 detector at the Fermilab Tevatron p{bar p} Collider. The results of the electron and muon channels are combined, and we measure the total production cross section and the differential cross section d{sigma}/dp{sub T}{sup {gamma}}, where p{sub T}{sup {gamma}} is the momentum of the photon in the plane transverse to the beam line. The results obtained are consistent with the standard model predictions from next-to-leading order use ttransverse momentum spectrum of the photon to place limits on anomalous ZZ{gamma} and Z{gamma}{gamma} couplings.

  4. Gamma Ray Imaging System (GRIS) GammaCam{trademark}. Final report, January 3, 1994--May 31, 1996

    SciTech Connect

    1996-12-31

    This report describes the activities undertaken during the development of the Gamma Ray Imaging System (GRIS) program now referred to as the GammaCam{trademark}. The purpose of this program is to develop a 2-dimensional imaging system for gamma-ray energy scenes that may be present in nuclear power plants. The report summarizes the overall accomplishments of the program and the most recent GammaCam measurements made at LANL and Estonia. The GammaCam is currently available for sale from AIL Systems as an off-the-shelf instrument.

  5. Optical and Gamma Ray Space Observations

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Results of the first year of data acquired from several Earth observatories concerning the optical counterparts gamma ray bursts (GRB) are presented. From the present statistics, it seems to be obvious that typical GRB's have optical emission at the time of the burst at a level at least below 1/(F(sub gamma)/F(sub opt)) approximately equal to 1/0.5 and optical emission a few hours after the burst is lower by a factor of 10 to 200 than the simultaneous emission. Given the fact that GRB spectra are rather broad over the observed energy range of say 20 keV up to 100 MeV, the observations indicate that the broad spectral shape may not continue into the optical range. After the confirmation of the isotropic distribution of GRB's by the BATSE experiment the interpretation now tends to put the sources at cosmological distances.

  6. Compositions containing poly ([gamma]glutamylcysteinyl)glycines

    DOEpatents

    Jackson, P.J.; Delhaize, E.; Robinson, N.J.; Unkefer, C.J.; Furlong, C.

    1992-02-18

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting the removal, and the apparatus used in effecting the removal are described. One or more of the polypeptides, poly ([gamma]glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly ([gamma]glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form. 1 figs.

  7. Gamma-Ray Burst Progenitors: Merger Model

    NASA Astrophysics Data System (ADS)

    Ruffert, Maximilian

    2002-04-01

    The mergers of neutron stars and black holes remain a viable model for gamma-ray burst central engines, at least for the class of short bursts: their time scales, occurrence rates and energy output seem to be consistent with observations. We will present results of our latest simulations showing how the orbit of a neutron star around a black hole shrinks due to gravitational radiation, how the neutron star's matter gets accreted by the black hole, and how the tidal forces of the black hole finally shred the neutron star into a thick disk. In this process, huge amounts of energy are radiated away by gravitational waves and by neutrinos emitted from the hot disk. The neutrino luminosities are so large that an appreciable fraction (some few percent!) of neutrinos annihilate with antineutrinos creating the clean fireball necessary to power gamma-ray bursts.

  8. Gold analysis by the gamma absorption technique.

    PubMed

    Kurtoglu, Arzu; Tugrul, A Beril

    2003-01-01

    Gold (Au) analyses are generally performed using destructive techniques. In this study, the Gamma Absorption Technique has been employed for gold analysis. A series of different gold alloys of known gold content were analysed and a calibration curve was obtained. This curve was then used for the analysis of unknown samples. Gold analyses can be made non-destructively, easily and quickly by the gamma absorption technique. The mass attenuation coefficients of the alloys were measured around the K-shell absorption edge of Au. Theoretical mass attenuation coefficient values were obtained using the WinXCom program and comparison of the experimental results with the theoretical values showed generally good and acceptable agreement. PMID:12485656

  9. Fissile interrogation using gamma rays from oxygen

    DOEpatents

    Smith, Donald; Micklich, Bradley J.; Fessler, Andreas

    2004-04-20

    The subject apparatus provides a means to identify the presence of fissionable material or other nuclear material contained within an item to be tested. The system employs a portable accelerator to accelerate and direct protons to a fluorine-compound target. The interaction of the protons with the fluorine-compound target produces gamma rays which are directed at the item to be tested. If the item to be tested contains either a fissionable material or other nuclear material the interaction of the gamma rays with the material contained within the test item with result in the production of neutrons. A system of neutron detectors is positioned to intercept any neutrons generated by the test item. The results from the neutron detectors are analyzed to determine the presence of a fissionable material or other nuclear material.

  10. Properties of multiple event gamma ray bursts

    SciTech Connect

    Lochner, J.C.

    1991-01-01

    We present results from a study of 37 multiple event gamma ray bursts found in the monitoring data of the PVO gamma ray burst detector. We define these bursts as those which have two or more distinct emission events separated by a return to the background intensity. Significant correlation exists between the duration of the first event and the duration of the second event, while some correlation exists between the hardness of the events and only weak correlation exists in the intensity of the events. Although the time profiles of events in a burst may be similar, as measured in the phase portrait, there is no general rule about the degree of similarity of the time profiles. Subdividing the data according to the recurrence time, we find a tendency for the strength of the correlation in the hardness to increase with decreasing separation between the events. 2 refs., 2 figs., 1 tab.

  11. Properties of multiple event gamma ray bursts

    SciTech Connect

    Lochner, J.C.

    1991-12-31

    We present results from a study of 37 multiple event gamma ray bursts found in the monitoring data of the PVO gamma ray burst detector. We define these bursts as those which have two or more distinct emission events separated by a return to the background intensity. Significant correlation exists between the duration of the first event and the duration of the second event, while some correlation exists between the hardness of the events and only weak correlation exists in the intensity of the events. Although the time profiles of events in a burst may be similar, as measured in the phase portrait, there is no general rule about the degree of similarity of the time profiles. Subdividing the data according to the recurrence time, we find a tendency for the strength of the correlation in the hardness to increase with decreasing separation between the events. 2 refs., 2 figs., 1 tab.

  12. Real time gamma-ray signature identifier

    DOEpatents

    Rowland, Mark; Gosnell, Tom B.; Ham, Cheryl; Perkins, Dwight; Wong, James

    2012-05-15

    A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

  13. Factorization in B ---> V gamma decays

    SciTech Connect

    Becher, Thomas; Hill, Richard J.; Neubert, Matthias; /Cornell U., LEPP

    2005-03-01

    The factorization properties of the radiative decays B {yields} V{gamma} are analyzed at leading order in 1/m{sub b} using the soft-collinear effective theory. It is shown that the decay amplitudes can be expressed in terms of a B {yields} V form factor evaluated at q{sup 2} = 0, light-cone distribution amplitudes of the B and V mesons, and calculable hard-scattering kernels. The renormalization-group equations in the effective theory are solved to resum perturbative logarithms of the different scales in the decay process. Phenomenological implications for the B {yields} K*{gamma} branching ratio, isospin asymmetry, and CP asymmetries are discussed, with particular emphasis on possible effects from physics beyond the Standard Model.

  14. The future of gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Knödlseder, Jürgen

    2016-06-01

    The field of gamma-ray astronomy has experienced impressive progress over the last decade. Thanks to the advent of a new generation of imaging air Cherenkov telescopes (H.E.S.S., MAGIC, VERITAS) and thanks to the launch of the Fermi-LAT satellite, several thousand gamma-ray sources are known today, revealing an unexpected ubiquity of particle acceleration processes in the Universe. Major scientific challenges are still ahead, such as the identification of the nature of Dark Matter, the discovery and understanding of the sources of cosmic rays, or the comprehension of the particle acceleration processes that are at work in the various objects. This paper presents some of the instruments and mission concepts that will address these challenges over the next decades. xml:lang="fr"

  15. Neutron-driven gamma-ray laser

    DOEpatents

    Bowman, Charles D.

    1990-01-01

    A lasing cylinder emits laser radiation at a gamma-ray wavelength of 0.87 .ANG. when subjected to an intense neutron flux of about 400 eV neutrons. A 250 .ANG. thick layer of Be is provided between two layers of 100 .ANG. thick layer of .sup.57 Co and these layers are supported on a foil substrate. The coated foil is coiled to form the lasing cylinder. Under the neutron flux .sup.57 Co becomes .sup.58 Co by neutron absorption. The .sup.58 Co then decays to .sup.57 Fe by 1.6 MeV proton emission. .sup.57 Fe then transitions by mesne decay to a population inversion for lasing action at 14.4 keV. Recoil from the proton emission separates the .sup.57 Fe from the .sup.57 Co and into the Be, where Mossbauer emission occurs at a gamma-ray wavelength.

  16. Cosmic-Rays and Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Meli, A.

    2013-07-01

    Cosmic-rays are subatomic particles of energies ranging between a few eV to hundreds of TeV. These particles register a power-law spectrum, and it seems that most of them originate from astrophysical galactic and extragalactic sources. The shock acceleration in superalfvenic astrophysical plasmas, is believed to be the main mechanism responsible for the production of the non-thermal cosmic-rays. Especially, the importance of the very high energy cosmic-ray acceleration, with its consequent gamma-ray radiation and neutrino production in the shocks of the relativistic jets of Gamma Ray Bursts, is a favourable theme of study. I will discuss the cosmic-ray shock acceleration mechanism particularly focusing on simulation studies of cosmic-ray acceleration occurring in the relativistic shocks of GRB jets.

  17. Intergalactic thermonuclear gamma-ray line

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1985-01-01

    The possibility of thermonculear reactions occurring in dilute space is briefly considered. X-ray emission from clusters of galaxies demonstrates that perhaps as much as 10 to the 14th solar masses of hot gas (T of about 100 million K) may often surround galaxies in clusters with a density of perhaps 0.004/cu cm. If the ion temperature is 100 million K, the thermonuclear reaction p + d to He-3 + gamma ray should emit gamma rays at a rate of roughly 4 x 10 to the 41st/sec with energy 5.516 + or -0.016 MeV. Such a source in teh virgo cluster at 15.7 Mpc would present a line flux of 1 x 10 to the -11th/sq cm/sec.

  18. Compositions containing poly (.gamma.-glutamylcysteinyl)glycines

    DOEpatents

    Jackson, Paul J.; Delhaize, Emmanuel; Robinson, Nigel J.; Unkefer, Clifford J.; Furlong, Clement

    1992-01-01

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  19. Spectral evolution in gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; Share, G. H.; Messina, D. C.; Matz, M.; Kouveliotou, C.; Dennis, B. R.; Desai, U. D.; Cline, T. L.

    1986-01-01

    The Hard X-ray Burst Spectrometer (HXRBS) and the Gamma-Ray Spectrometer (GRS) on NASA's Solar Maximum Mission satellite have independently monitored cosmic gamma-ray bursts since launch in February 1980. Several bursts with relatively simple pulse structure and sufficient intensity have been analyzed for evidence of spectral variability on time scales shorter than the pulse durations. In many of these bursts pulse structures are found, ranging in duration from 1 to 10 seconds, which exhibit a trend of hard-to-soft spectral evolution. No significant evidence for soft-to-hard evolution has been found. The HXRBS data above 100 keV and the GRS data above 1 MeV indicate that the spectral evolution generally is not due to time-varying absorption features at energies below 100 keV.

  20. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, Edward C.; Mewaldt, Richard A.; Prince, Thomas A.

    1992-01-01

    Discussed here is research in cosmic ray and gamma ray astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology. The primary activities discussed involve the development of new instrumentation and techniques for future space flight. In many cases these instrumentation developments were tested in balloon flight instruments designed to conduct new investigations in cosmic ray and gamma ray astrophysics. The results of these investigations are briefly summarized. Specific topics include a quantitative investigation of the solar modulation of cosmic ray protons and helium nuclei, a study of cosmic ray positron and electron spectra in interplanetary and interstellar space, the solar modulation of cosmic rays, an investigation of techniques for the measurement and interpretation of cosmic ray isotopic abundances, and a balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen.

  1. The Compton Gamma Ray Observatory: mission status.

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Chipman, E.; Kniffen, D. A.

    The Arthur Holly Compton Gamma Ray Observatory (Compton) is the second in NASA's series of Great Observatories. Compton has now been operating for over two and a half years, and has given a dramatic increase in capability over previous gamma-ray missions. The spacecraft and scientific instruments are all in good health, and many significant discoveries have already been made and continue to be made. The authors describe the capabilities of the four scientific instruments and the observing programs for the first three years of the mission. During Phases 2 and 3 of the mission a Guest Investigator program has been in progress with the Guest Observers' time share increasing from 30% to over 50% for the later mission phases.

  2. Welding of gamma titanium aluminide alloys

    NASA Technical Reports Server (NTRS)

    Smashey, Russell W. (Inventor); Kelly, Thomas J. (Inventor); Snyder, John H. (Inventor); Sheranko, Ronald L. (Inventor)

    1998-01-01

    An article made of a gamma titanium aluminide alloy is welded, as for example in the weld repair of surface cracks, by removing foreign matter from the area to be welded, first stress relieving the article, cooling the entire article to a welding temperature of from about 1000.degree. F. to about 1400.degree. F., welding a preselected region in an inert atmosphere at the welding temperature, and second stress relieving the article. Welding is preferably accomplished by striking an arc in the preselected region so as to locally melt the alloy in the preselected region, providing a filler metal having the same composition as the gamma titanium aluminide alloy of the article, and feeding the filler metal into the arc so that the filler metal is melted and fused with the article to form a weldment upon solidification.

  3. Gamma and alpha radiolysis of salt brines

    SciTech Connect

    Gray, W.J.; Simonson, S.A.

    1984-11-01

    Gamma radiolysis of Permian Basin brine leads to equilibrium gas pressure of about 100 atm. at 75/sup 0/C and about 40 atm. at 150/sup 0/C, providing the gas space is very small and/or the total dose is very high. Dose rate dependence is being investigated but is not yet established. Alpha radiolysis of Permian Bsin brine is still being pursued, but it is clear that equilibrium gas pressures will be much higher than with gamma radiolysis. Gas compositions in all cases have been about two parts H/sub 2/ to one part O/sub 2/. Efforts to simulate these results with computer models have been quite successful. 8 references, 6 figures, 1 table.

  4. Gamma Ray Bursts: a 1983 Overview

    NASA Technical Reports Server (NTRS)

    Cline, T. L.

    1983-01-01

    Gamma ray burst observations are reviewed with mention of new gamma-ray and optical transient measurements and with discussions of the controversial, contradictory and unresolved issues that have recently emerged: burst spectra appear to fluctuate in time as rapidly as they are measured, implying that any one spectrum may be incorrect; energy spectra can be obligingly fitted to practically any desired shape, implying, in effect, that no objective spectral resolution exists at all; burst fluxes and temporal quantities, including the total event energy, are characterized very differently with differing instruments, implying that even elementary knowledge of their properties is instrumentally subjective; finally, the log N-log S determinations are deficient in the weak bursts, while there is no detection of a source direction anisotropy, implying that Ptolemy was right or that burst source distance estimates are basically guesswork. These issues may remain unsolved until vastly improved instruments are flown.

  5. Gamma ray bursts: a 1983 overview

    SciTech Connect

    Cline, T.L.

    1983-10-01

    Gamma ray burst observations are reviewed with mention of new gamma-ray and optical transient measurements and with discussions of the controversial, contradictory and unresolved issues that have recently emerged: burst spectra appear to fluctuate in time as rapidly as they are measured, implying that any one spectrum may be incorrect. Energy spectra can be obligingly fitted to practically any desired shape, implying, in effect, that no objective spectral resolution exists at all. Burst fluxes and temporal quantities, including the total event energy, are characterized very differently with differing instruments, implying that even elementary knowledge of their properties is instrumentally subjective. Finally, the log N-log S determinations are deficient in the weak bursts, while there is no detection of a source direction anisotropy, implying that Ptolemy was right or that burst source distance estimates are basically guesswork. These issues may remain unsolved until vastly improved instruments are flown.

  6. SuperAGILE and Gamma Ray Bursts

    SciTech Connect

    Pacciani, Luigi; Costa, Enrico; Del Monte, Ettore; Donnarumma, Immacolata; Evangelista, Yuri; Feroci, Marco; Frutti, Massimo; Lazzarotto, Francesco; Lapshov, Igor; Rubini, Alda; Soffitta, Paolo; Tavani, Marco; Barbiellini, Guido; Mastropietro, Marcello; Morelli, Ennio; Rapisarda, Massimo

    2006-05-19

    The solid-state hard X-ray imager of AGILE gamma-ray mission -- SuperAGILE -- has a six arcmin on-axis angular resolution in the 15-45 keV range, a field of view in excess of 1 steradian. The instrument is very light: 5 kg only. It is equipped with an on-board self triggering logic, image deconvolution, and it is able to transmit the coordinates of a GRB to the ground in real-time through the ORBCOMM constellation of satellites. Photon by photon Scientific Data are sent to the Malindi ground station at every contact. In this paper we review the performance of the SuperAGILE experiment (scheduled for a launch in the middle of 2006), after its first onground calibrations, and show the perspectives for Gamma Ray Bursts.

  7. Stirling Colgate and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Lamb, Donald

    2014-10-01

    Even before the discovery of gamma-ray bursts (GRBs), Stirling Colgate proposed that bursts of x rays and gamma rays might be produced by a relativistic shock created in the supernova explosion of a massive star. We trace the scientific story of GRBs from their detection to the present, highlighting along the way Stirling's interest in them and his efforts to understand them. We summarize our current understanding that short, soft, repeating bursts are produced by magnetic neutron stars; short, hard bursts are produced by the mergers of neutron star-neutron star binaries; and long, hard bursts are produced by the core collapse of massive stars that have lost their hydrogen and helium envelopes. We then discuss some important open questions about GRBs and how they might be answered. We conclude by describing the recent serendipitous discovery of an x-ray burst of exactly the kind he proposed, and the insights into core collapse supernovae and GRBs that it provided.

  8. Fermi GBM Observations of Terrestrial Gamma Flashes

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Briggs, M. S.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R.; Kippen, R. M.; von Kienlin, A.; Dwyer, J. R.; Smith, D. M.; Holzworth, R.

    2010-01-01

    In its first two years of operation, the Fermi Gamma Ray Burst Monitor (GBM) has observed more than 77 Terrestrial Gamma Flashes (TGFs). The thick Bismuth Germanate (BGO) detectors are excellent for TGF spectroscopy, having a high probability of recording the full energy of an incident photon, spanning a broad energy range from 150 keV to 40 MeV, and recording a large number of photons per TGF. Correlations between GBM TGF triggers and lightning sferics detected with the World-Wide Lightning Location Network indicate that TGFs and lightning are simultaneous to within tens of microseconds. The energy spectra of some TGFs have strong 511 keV positron annihilation lines, indicating that these TGFs contain a large fraction of positrons

  9. Nucleosynthesis and astrophysical gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Jacobson, Allan S.

    1987-01-01

    The HEAO-3 gamma ray spectrometer has provided evidence in the quest for the understanding of complex element formation in the universe with the discovery of Al-26 in the interstellar medium. It has demonstrated that the synthesis of intermediate mass nuclei is currently going on in the galaxy. This discovery was confirmed by the Solar Maximum Mission. The flux is peaked near the galactic center and indicates about 3 solar masses of Al-26 in the interstellar medium, with an implied ratio of Al-26/Al-27 = .00001. Several possible distributions were studied but the data gathered thus far do not allow discrimination between them. It is felt that only the spaceflight of a high resolution gamma ray spectrometer with adequate sensitivity will ultimately resolve the issue of the source of this material.

  10. Gamma-ray decomposition of PCBs

    SciTech Connect

    Mincher, B.J.; Meikrantz, D.H.; Arbon, R.E.; Murphy, R.J.

    1991-12-01

    This program is the Idaho National Engineering Laboratory (INEL) component of a joint collaborative effort with Lawrence Livermore National Laboratory (LLNL). The purpose of this effort is to demonstrate a viable process for breaking down hazardous halogenated organic wastes to simpler, non-hazardous wastes using high energy ionizing radiation. The INEL effort focuses on the use of spent reactor fuel gamma radiation sources to decompose complex wastes such as PCBs. At LLNL, halogenated solvents such as carbon tetrachloride and trichloroethylene are being studied using accelerator radiation sources. The INEL irradiation experiments concentrated on a single PCB congener so that a limited set of decomposition reactions could be studied. The congener 2, 2{prime}, 3, 3{prime}, 4, 5{prime}, 6, 6{prime}-octachlorobiphenyl was examined following exposure to various gamma doses at the Advanced Test Reactor (ATR) spent fuel pool. The decomposition rates and products in several solvents. are discussed. 7 refs., 13 figs., 1 tab.

  11. Gamma-ray decomposition of PCBs

    SciTech Connect

    Mincher, B.J.; Meikrantz, D.H.; Arbon, R.E.; Murphy, R.J.

    1991-01-01

    This program is the Idaho National Engineering Laboratory (INEL) component of a joint collaborative effort with Lawrence Livermore National Laboratory (LLNL). The purpose of this effort is to demonstrate a viable process for breaking down hazardous halogenated organic wastes to simpler, non-hazardous wastes using high energy ionizing radiation. The INEL effort focuses on the use of spent reactor fuel gamma radiation sources to decompose complex wastes such as PCBs. At LLNL, halogenated solvents such as carbon tetrachloride and trichloroethylene are being studied using accelerator radiation sources. The INEL irradiation experiments concentrated on a single PCB congener so that a limited set of decomposition reactions could be studied. The congener 2, 2{prime}, 3, 3{prime}, 4, 5{prime}, 6, 6{prime}-octachlorobiphenyl was examined following exposure to various gamma doses at the Advanced Test Reactor (ATR) spent fuel pool. The decomposition rates and products in several solvents. are discussed. 7 refs., 13 figs., 1 tab.

  12. Gamma Ray Imaging for Environmental Remediation

    SciTech Connect

    Johnson, W. Neil; Luke, Paul N.; Kurfess, J.D.; Phlips, Bernard F.; Kroeger, R.A.; Phillips, G.W.

    1999-06-01

    The goal of this project is the development of field portable gamma-ray detectors that can both image gamma rays from radioactive emission and determine the isotopic composition by the emitted spectrum. Most instruments to date have had either very good imaging with no spectroscopy, or very good spectroscopy with no imaging. The only instruments with both imaging and spectroscopy have had rather poor quality imaging and spectroscopy (e.g. NaI Anger Cameras). The technology would have widespread applications, from laboratory nuclear physics, to breast cancer imaging, to astronomical research. For this project, we focus on the applications in the field of fissile materials, spent nuclear fuels and decontamination and decommissioning.

  13. Plasma Instabilities in Gamma-Ray Bursts

    SciTech Connect

    Tautz, Robert C.

    2008-12-24

    Magnetic fields are important in a variety of astrophysical scenarios, ranging from possible creation mechanisms of cosmological magnetic fields through relativistic jets such as that from Active Galactic Nuclei and gamma-ray bursts to local phenomena in the solar system. Here, the outstanding importance of plasma instabilities to astrophysics is illustrated by applying the so-called neutral point method to gamma-ray bursts (GRBs), which are assumed to have a homogeneous background magnetic field. It is shown how magnetic turbulence, which is a prerequisite for the creation of dissipation and, subsequently, radiation, is created by the highly relativistic particles in the GRB jet. Using the fact that different particle compositions lead to different instability conditions, conclusions can be drawn about the particle composition of the jet, showing that it is more likely of baryonic nature.

  14. The Gamma-Ray Burst Next Door

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    I hesitate to spawn a thousand bad sci-fi flicks, but here it goes: Scientists now say that some gamma-ray bursts, the most powerful explosions in the universe, originate in nearby galaxy clusters. If one were to occur nearby, it could wipe out life on Earth. Fortunately, the chances of mass extinction are slimmer than the Chicago Cubs meeting the Boston Red Sox in the World Series (. . . and the Red Sox winning). But a new analysis of over 1400 archived gamma-ray bursts reveals that about 100 bursts originated within 325 million light-years of Earth, and not billions of light-years away as previously thought. If so, there's no reason why a burst couldn't go off in our galaxy.

  15. Gamma-ray multiplicity measurements using STEFF

    NASA Astrophysics Data System (ADS)

    Pollitt, A. J.; Smith, A. G.; Tsekhanovich, I.; Dare, J. A.

    2012-09-01

    An ongoing investigation into the angular momentum generated during the fission of 252Cf is currently under way using the SpecTrometer for Exotic Fission Fragments (STEFF). Measurements have been made of the fold distribution (measured multiplicity) with STEFF. These have been compared to a Monte-carlo simulation to determine a value for the average angular momentum Jrms = 6hslash which is comparable to previous measurements [1]. Measurements of the gamma-ray multiplicity were performed whilst gating on different fragment mass regions. The result was compared with a sum of the lowest 2+ energies from both fragment and complementary in the mass gate. The results support the view that gamma-ray multiplicity is largely determined by the decay of the nucleus through near yrast transitions that follow the statistical decay.

  16. The diffuse galactic gamma ray emission

    NASA Technical Reports Server (NTRS)

    Bertsch, David L.

    1990-01-01

    The EGRET (Energetic Gamma-Ray Experiment Telescope) detector will provide a much more detailed view of the diffuse galactic gamma ray intensity in terms of higher resolution, greater statistical significance, and broader energy range than earlier missions. These observations will furnish insight into a number of very important questions related to the dynamics and structure of the Galaxy. A diffuse emission model is being developed that incorporates the latest information on matter distribution and source functions. In addition, it is tailored to the EGRET instrument response functions. The analysis code of the model maintains flexibility to accommodate the quality of the data that is anticipated. The discussion here focuses on the issues of the distributions of matter, cosmic rays, and radiation fields, and on the important source functions that enter into the model calculation of diffuse emission.

  17. B{yields}X{sub s}{gamma} constraints on the top quark anomalous t{yields}c{gamma} coupling

    SciTech Connect

    Yuan Xingbo; Hao Yang; Yang Yadng

    2011-01-01

    Observation of the top quark flavor changing neutral process t{yields}c+{gamma} at the LHC would be the signal of physics beyond the standard model. If anomalous t{yields}c{gamma} coupling exists, it will affect the precisely measured B(B{yields}X{sub s}{gamma}). In this paper, we study the effects of a dimension 5 anomalous tc{gamma} operator in B{yields}X{sub s}{gamma} decay to derive constraints on its possible strength. It is found that, for real anomalous t{yields}c{gamma} coupling {kappa}{sub tcR}{sup {gamma}}, the constraints correspond to the upper bounds B(t{yields}c+{gamma})<6.54x10{sup -5} (for {kappa}{sub tcR}{sup {gamma}}>0) and B(t{yields}c+{gamma})<8.52x10{sup -5} (for {kappa}{sub tcR}{sup {gamma}}<0), respectively, which are about the same order as the 5{sigma} discovery potential of ATLAS (9.4x10{sup -5}) and slightly lower than that of CMS (4.1x10{sup -4}) with 10 fb{sup -1} integrated luminosity operating at {radical}(s)=14 TeV.

  18. Design Concept of a Gamma-gamma Higgs Factory Driven by Thin Laser Targets and Energy Recovery Linacs

    SciTech Connect

    Zhang, Yuhong

    2013-06-01

    A gamma-gamma collider has long been considered an option for a Higgs Factory. Such photon colliders usually rely on Compton back-scattering for generating high energy gamma photons and further Higgs bosons through gamma-gamma collisions. The presently existing proposals or design concepts all have chosen a very thick laser target (i.e., high laser photon intensity) for Compton scatterings. In this paper, we present a new design concept of a gamma-gamma collider utilizing a thin laser target (i.e., relatively low photon density), thus leading to a low electron to gamma photon conversion rate. This new concept eliminates most useless and harmful low energy soft gamma photons from multiple Compton scattering so the detector background is improved. It also greatly relaxes the requirement of the high peak power of the laser, a significant technical challenge. A high luminosity for such a gamma-gamma collider can be achieved through an increase of the bunch repetition rate and current of the driven electron beam. Further, multi-pass recirculating linac could greatly reduce the linac cost and energy recovery is required to reduce the needed RF power.

  19. Gamma irradiation effects in W films

    SciTech Connect

    Claro, Luiz H.; Santos, Ingrid A.; Silva, Cassia F.

    2013-05-06

    Using the van Der Pauw methodology, the surface resistivity of irradiated tungsten films deposited on Silicon substrate was measured. The films were exposed to {gamma} radiation using a isotopic {sup 60}Co source in three irradiation stages attaining 40.35 kGy in total dose. The obtained results for superficial resistivity display a time annealing features and their values are proportional to the total dose.

  20. (PCG) Protein Crystal Growth Gamma-Interferon

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Gamma-Interferon. Stimulates the body's immune system and is used clinically in the treatment of cancer. Potential as an anti-tumor agent against solid tumors as well as leukemia's and lymphomas. It has additional utility as an anti-ineffective agent, including antiviral, anti-bacterial, and anti-parasitic activities. Principal Investigator on STS-26 was Charles Bugg.

  1. The identification of gamma ray induced EAS

    NASA Technical Reports Server (NTRS)

    Blake, P. R.; Nash, W. F.

    1985-01-01

    Some of the penetrating particles in gamma-induced EAS from Cygnus X-3 observed by a single layer of flash-bulbs under 880 g cm/2 concrete, may be punched through photons rather than muons. An analysis of the shielded flash-tube response detected from EAS is presented. The penetration of the electro-magnetic component through 20 cm of Pb is observed at core distances approx. 10 m.

  2. Spectrometer of high energy gamma quantums

    NASA Technical Reports Server (NTRS)

    Blokhintsev, I. D.; Melioranskiy, A. S.; Kalinkin, L. F.; Nagornykh, Y. I.; Pryakhin, Y. A.

    1979-01-01

    A detailed description of the apparatus GG-2M is given. The spectrometer contains a Cerenkov and scintillation (including anticoincidence) counter. The energies of the gamma quantums are measured by a shower calorimeter, in which scintillation counters are used in the capacity of detectors. Results are given for tuning the device on mu-mesons of cosmic rays. The data of physical tuning allow more reliable interpretation of the results of measurements which are received on the satellites.

  3. Gamma radiation stability studies of mercury fulminate

    SciTech Connect

    Fondeur, F.F.

    2000-02-17

    Mercury fulminate completely decomposed in a gamma source (0.86 Mrad/h) after a dose of 208 Mrad. This exposure equates to approximately 2.4 years in Tank 15H and 4 years in Tank 12H, one of the vessels of concern. Since the tanks lost the supernatant cover layer more than a decade ago, this study suggests that any mercury fulminate or closely related energetic species decomposed long ago if ever formed.

  4. Gamma rays from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    1990-01-01

    The general properties of Active Galactic Nuclei (AGN) and quasars are reviewed with emphasis on their continuum spectral emission. Two general classes of models for the continuum are outlined and critically reviewed in view of the impending GRO (Gamma Ray Observatory) launch and observations. The importance of GRO in distinguishing between these models and in general in furthering the understanding of AGN is discussed. The very broad terms the status of the current understanding of AGN are discussed.

  5. Multiple gamma lines from semi-annihilation

    SciTech Connect

    D'Eramo, Francesco; McCullough, Matthew; Thaler, Jesse E-mail: mccull@mit.edu

    2013-04-01

    Hints in the Fermi data for a 130 GeV gamma line from the galactic center have ignited interest in potential gamma line signatures of dark matter. Explanations of this line based on dark matter annihilation face a parametric tension since they often rely on large enhancements of loop-suppressed cross sections. In this paper, we pursue an alternative possibility that dark matter gamma lines could arise from ''semi-annihilation'' among multiple dark sector states. The semi-annihilation reaction ψ{sub i}ψ{sub j} → ψ{sub k}γ with a single final state photon is typically enhanced relative to ordinary annihilation ψ{sub i}ψ-bar {sub i} → γγ into photon pairs. Semi-annihilation allows for a wide range of dark matter masses compared to the fixed mass value required by annihilation, opening the possibility to explain potential dark matter signatures at higher energies. The most striking prediction of semi-annihilation is the presence of multiple gamma lines, with as many as order N{sup 3} lines possible for N dark sector states, allowing for dark sector spectroscopy. A smoking gun signature arises in the simplest case of degenerate dark matter, where a strong semi-annihilation line at 130 GeV would be accompanied by a weaker annihilation line at 173 GeV. As a proof of principle, we construct two explicit models of dark matter semi-annihilation, one based on non-Abelian vector dark matter and the other based on retrofitting Rayleigh dark matter.

  6. Common Gamma-ray Glows above Thunderclouds

    NASA Astrophysics Data System (ADS)

    Kelley, Nicole; Smith, David; Dwyer, Joseph; Hazelton, Bryna; Grefenstette, Brian; Lowell, Alex; Splitt, Michael; Lazarus, Steven; Rassoul, Hamid

    2013-04-01

    Gamma-ray glows are continuous, long duration gamma- and x-ray emission seen coming from thunderclouds. The Airborne for Energetic Lightning Emissions (ADELE) observed 12 gamma-ray glows during its summer 2009 flight campaign over the areas of Colorado and Florida in the United States. For these glows we shall present their spectra, relationship to lightning activity and how their duration and size changes as a function of distance. Gamma-ray glows follow the relativistic runaway electron avalanche (RREA) spectrum and have been previously measured from the ground and inside the cloud. ADELE measured most glows as it flew above the screening layer of the cloud. During the brightest glow on August 21, 2009, we can show that we are flying directly into a downward facing relativistic runaway avalanche, indicative of flying between the upper positive and negative screening layer of the cloud. In order to explain the brightness of this glow, RREA with an electric field approaching the limit for relativistic feedback must be occurring. Using all 12 glows, we show that lightning activity diminishes during the onset of the glow. Using this along with the fact that glows occur as the field approaches the level necessary for feedback, we attempt to distinguish between two possibilities: that glows are evidence that RREA with feedback, rather than lightning, is sometimes the primary channel for discharging the cloud, or else that the overall discharging is still controlled by lightning, with glows simply appearing during times when a subsidence of lightning allows the field to rise above the threshold for RREA.

  7. Gamma rays from extragalactic radio sources

    NASA Technical Reports Server (NTRS)

    Dermer, Charles D.; Schlickeiser, Reinhard; Mastichiadis, Apostolos

    1992-01-01

    It is proposed that the important connection between 3C 273 and 3C 279, the first two extragalactic sources detected at greater than 100 MeV energies, is their superluminal nature. In support of this conjecture, we propose a radiation mechanism that focuses gamma rays in the superluminal direction, due to Compton scattering of accretion-disk photons by relativistic nonthermal electrons in the jet.

  8. Accidental gamma dose measurement using commercial glasses.

    PubMed

    Narayan, Pradeep; Vaijapurkar, S G; Senwar, K R; Kumar, D; Bhatnagar, P K

    2008-01-01

    Commercial glasses have been investigated for their application in accidental gamma dose measurement using Thermoluminescent (TL) techniques. Some of the glasses have been found to be sensitive enough that they can be used as TL dating material in radiological accident situation for gamma dosimetry with lower detection limit 1 Gy (the dose significant for the onset of deterministic biological effects). The glasses behave linearly in the dose range 1-25 Gy with measurement uncertainty +/- 10%. The errors in accidental dose measurements using TL technique are estimated to be within +/- 25%. These glasses have shown TL fading in the range of 10-20% in 24 h after irradiation under room conditions; thereafter the fading becomes slower and reaches upto 50% in 15 d. TL fading of gamma-irradiated glasses follows exponential decay pattern, therefore dosimetry even after years is possible. These types of glasses can also be used as lethal dose indicator (3-4 Gy) using TL techniques, which can give valuable inputs to the medical professional for better management of radiation victims. The glasses are easy to use and do not require lengthy sample preparation before reading as in case of other building materials. TL measurement on glasses may give immediate estimation of the doses, which can help in medical triage of the radiation-exposed public. PMID:18285317

  9. Positron annihilation in gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    1990-01-01

    Emission features appear at energies of 350 to 450 keV in the spectra of a number of gamma ray burst sources. These features were interpreted as electron-positron annihilation lines, redshifted by the gravitational field near the surface of a neutron star. Evidence that gamma ray bursts originate at neutron stars with magnetic field strengths of approx. 10(exp 12) Gauss came from recent observations of cyclotron scattering harmonics in the spectra of two bursts. Positrons could be produced in gamma ray burst sources either by photon-photon pair production or by one-photon pair production in a strong magnetic field. The annihilation of positrons is affected by the presence of a strong neutron star magnetic field in several ways. The relaxation of transverse momentum conservation causes an intrinsic broadening of the two-photon annihilation line and there is a decrease in the annihilation cross section below the free-space value. An additional channel for one-photon annihilation also becomes possible in high magnetic fields. The physics of pair production and annihilation near strongly magnetized neutron stars will be reviewed. Results from a self-consistent model for non-thermal synchrotron radiation and pair annihilation are beginning to identify the conditions required to produce observable annihilation features from strongly magnetized plasmas.

  10. Gamma Knife Radiosurgery for Choroidal Hemangioma

    SciTech Connect

    Kim, Yun Taek; Kang, Se Woong; Lee, Jung-Il

    2011-12-01

    Purpose: Patients with choroidal hemangioma (CH), a benign ocular hamartoma, frequently presents with visual disturbance as a result of exudative retinal detachment (RD), which originates in subretinal fluid accumulation. We report our experience using the Leksell Gamma Knife in the management of symptomatic CH. Methods and Materials: Seven patients with symptomatic CH (circumscribed form in 3 patients and diffuse form in 4) were treated with the Leksell Gamma Knife at our institution during a 7-year period. All patients presented with exudative RD involving the macula that resulted in severe visual deterioration. The prescription dose to the target margin was 10 Gy in all cases. The mean tumor volume receiving the prescription dose was 536 mm{sup 3} (range, 151-1,057). The clinical data were analyzed in a retrospective fashion after a mean follow-up of 34.4 months (range, 9-76). Results: The resolution of exudative RD was achieved within 6 months, and the visual acuity of the affected eye had improved at the latest follow-up examination (p = .018) in all patients. No recurrence of exudative RD occurred. Thinning of the CHs was observed in most patients; however, symptomatic radiation toxicity had not developed in any of the patients. Conclusion: Symptomatic CHs can be safely and effectively managed with Gamma Knife radiosurgery using a marginal dose of 10 Gy.

  11. Distribution of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Diaz Rodriguez, Mariangelly; Smith, M.; Tešic, G.

    2014-01-01

    Gamma-Ray Bursts (GRBs) are known to be bright, irregular flashes of gamma rays that typically last just a few seconds, believed to be caused by stellar collapse or the merger of a pair of compact objects. Through previous work, it has been found that GRBs are distributed roughly uniformly over the entire sky, rather than being confined to the relatively narrow band of the Milky Way. Using the Python programming language, we generated a model of GRBs over cosmological distances, based on current empirical GRB distributions. The grbsim python module uses the acceptance-rejection Monte Carlo method to simulate the luminosity and redshift of a large population of GRBs, including cosmological effects such as dark energy and dark matter terms that modify the large-scale structure of space-time. The results of running grbsim are demonstrated to match the distribution of GRBs observed by the Burst Alert Telescope on NASA’s Swift satellite. The grbsim module will subsequently be used to simulate gamma ray and neutrino events for the Astrophysical Multimessenger Observatory Network.

  12. Gamma-Rays from Nucleosynthesis Ejecta

    NASA Astrophysics Data System (ADS)

    Diehl, R.

    2016-01-01

    Gamma-ray lines from radioactive decay of unstable isotopes produced in massive- star and supernova nucleosynthesis have been measured with INTEGRAL over the past ten years, complementing the earlier COMPTEL survey. 26Al has become a tool to study specific source regions, such as massive-star groups and associations in nearby regions which can be discriminated from the galactic-plane background, and the inner Galaxy where Doppler shifted lines add to the astronomical information. Recent findings are that superbubbles show a remarkable asymmetry, on average, in the spiral arms of our galaxy. 60Fe is co-produced by the sources of 26Al, and the isotopic ratio from their nucleosynthesis encodes stellar-structure information. Annihilation gamma-rays from positrons in interstellar space show a puzzling bright and extended source region central to our Galaxy, but also may be partly related to nucleosynthesis. 56Ni and 44Ti isotope gamma-rays have been used to constrain supernova explosion mechanisms. Here we summarize latest results using the accumulated multi-year database of observations, and discuss their astrophysical interpretations. We also add a comparison of isotopic ratios between the ISM of the current Galaxy and the solar vicinity at solar-system formation time.

  13. Cross sections relevant to gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Dyer, P.; Bodansky, D.; Maxson, D. R.

    1978-01-01

    Gamma-ray production cross sections were measured for protons and alpha particles incident on targets consisting of nuclei of high cosmic abundance: C-12, N-14, O-16, Ne-20, Mg-24, Si-28 and Fe-56. Solid or gaseous targets were bombarded by monoenergetic beams of protons and alpha particles, and gamma rays were detected by two Ge(Li) detectors. The proton energy for each target was varied from threshold to about 24 MeV (lab); for alphas the range was from threshold to about 27 MeV. For most transitions, it was possible to measure the total cross section by placing the detectors at 30.5 deg and 109.9 deg where the fourth-order Legendre polynomial is zero. For the case of the 16O (E sub gamma = 6.13 MeV, multipolarity E3) cross sections, yields were measured at four angles. Absolute cross sections were obtained by integrating the beam current and by measuring target thicknesses and detector efficiencies. The Ge(Li) detector resolution was a few keV (although the peak widths were greater, due to Doppler broadening).

  14. Parametric Studies for 233U Gamma Spectrometry

    SciTech Connect

    Scheffing, C.C.; Krichinsky, A.

    2004-01-01

    Quantification of special nuclear material is a necessary aspect to assuring material accountability and is often accomplished using non-destructive gamma spectrometry. For 233U, gamma rays are affected by matrix and packaging attenuation and by a strong Compton continuum from decay products of 232U (inherently found in 233U) that obscure 233U gamma photopeaks. This project, based on current work at the national repository for separated 233U located at Oak Ridge National Laboratory (ORNL), explores the effects of various parameters on the quantification of 233U– including material form and geometry. Using an attenuation correction methodology for calculating the mass of 233U from NDA analysis, a bias of almost 75% less than the actual 233U mass was identified. The source of the bias needs to be understood at a more fundamental level for further use of this quantification method. Therefore, controlled experiments using well characterized packages of 233U were conducted at the repository and are presented in this paper.

  15. The Most Remote Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    2000-10-01

    ESO Telescopes Observe "Lightning" in the Young Universe Summary Observations with telescopes at the ESO La Silla and Paranal observatories (Chile) have enabled an international team of astronomers [1] to measure the distance of a "gamma-ray burst", an extremely violent, cosmic explosion of still unknown physical origin. It turns out to be the most remote gamma-ray burst ever observed . The exceedingly powerful flash of light from this event was emitted when the Universe was very young, less than about 1,500 million years old, or only 10% of its present age. Travelling with the speed of light (300,000 km/sec) during 11,000 million years or more, the signal finally reached the Earth on January 31, 2000. The brightness of the exploding object was enormous, at least 1,000,000,000,000 times that of our Sun, or thousands of times that of the explosion of a single, heavy star (a "supernova"). The ESO Very Large Telescope (VLT) was also involved in trail-blazing observations of another gamma-ray burst in May 1999, cf. ESO PR 08/99. PR Photo 28a/00 : Sky field near GRB 000131 . PR Photo 28b/00 : The fading optical counterpart of GRB 000131 . PR Photo 28c/00 : VLT spectrum of GRB 000131 . What are Gamma-Ray Bursts? One of the currently most active fields of astrophysics is the study of the mysterious events known as "gamma-ray bursts" . They were first detected in the late 1960's by instruments on orbiting satellites. These short flashes of energetic gamma-rays last from less than a second to several minutes. Despite much effort, it is only within the last few years that it has become possible to locate the sites of some of these events (e.g. with the Beppo-Sax satellite ). Since the beginning of 1997, astronomers have identified about twenty optical sources in the sky that are associated with gamma-ray bursts. They have been found to be situated at extremely large (i.e., "cosmological") distances. This implies that the energy release during a gamma-ray burst within a few

  16. Spectra of {gamma} rays feeding superdeformed bands

    SciTech Connect

    Lauritsen, T.; Khoo, T.L.; Henry, R.G.

    1995-08-01

    The spectrum of {gamma}rays coincident with SD transitions contains the transitions which populate the SD band. This spectrum can provide information on the feeding mechanism and on the properties (moment of inertia, collectivity) of excited SD states. We used a model we developed to explain the feeding of SD bands, to calculate the spectrum of feeding {gamma}rays. The Monte Carlo simulations take into account the trigger conditions present in our Eurogam experiment. Both experimental and theoretical spectra contain a statistical component and a broad E2 peak (from transitions occurring between excited states in the SD well). There is good resemblance between the measured and calculated spectra although the calculated multiplicity of an E2 bump is low by {approximately}30%. Work is continuing to improve the quality of the fits, which will result in a better understanding of excited SD states. In addition, a model for the last steps, which cool the {gamma} cascade into the SD yrast line, needs to be developed. A strong M1/E2 low-energy component, which we believe is responsible for this cooling, was observed.

  17. Galactic diffuse gamma rays from galactic plane

    NASA Astrophysics Data System (ADS)

    Tateyama, N.; Nishimura, J.

    2001-08-01

    The dominant part of the diffuse gamma rays from the Galactic plane, with energy greater than 1TeV, has been thought as due to the inverse Compton scattering of the interstellar photons with the high-energy cosmic electrons. In these energy regions, the diffuse gamma-ray observation gives us unique infor-mation on the energy spectrum of the high-energy electrons in the interstellar space, since we cannot observe those electrons directly. This provides us information on the cosmicray source, production mechanism and propagation in the Galaxy. We discuss the implication of our results by comparing with the work of Porter and Protheroe, and also compare with the data observed by the most recent extensive air showers. It is also pointed out that the patchy structure of gammaray distribution will appear at high-energy side, if we observe the distribution with a higher angular resolution of a few arc degrees. This patchy structure will become clear beyond 10TeV of IC gamma rays, where the number of contributing sources of parent decrease and the diffusion distance of the electrons become smaller.

  18. Molecular breast imaging with gamma emitters.

    PubMed

    Schillaci, O; Spanu, A; Danieli, R; Madeddu, G

    2013-12-01

    Following a diagnosis of breast cancer (BC), the early detection of local recurrence is important to define appropriate therapeutic strategies and increase the chances of a cure. In fact, despite major progress in surgical treatment, radiotherapy, and chemotherapy protocols, tumor recurrence is still a major problem. Moreover, the diagnosis of recurrence with conventional imaging methods can be difficult as a result of the presence of scar tissue. Molecular breast imaging (MBI) with gamma-ray emitting radiotracers may be very useful in this clinical setting, because it is not affected by the post-therapy morphologic changes. This review summarises the applications of 99mTc-sestamibi and 99mTc-tetrofosmin, the two most employed gamma emitter radiopharmaceuticals for MBI, in the diagnosis of local disease recurrence in patients with BC. The main limitation of MBI using conventional gamma-cameras is the low sensitivity for small BCs. The recent development of hybrid single photon emission computed tomography/computed tomography devices and especially of high-resolution specific breast cameras can improve the detection rate of sub-centimetric malignant lesions. Nevertheless, probably only the large availability of dedicated cameras will allow the clinical acceptance of MBI as useful complementary diagnostic technique in BC recurrence. The possible role of MBI with specific cameras in monitoring the local response of BC to neoadjuvant chemotherapy is also briefly discussed. PMID:24322791

  19. Boron and beryllium in Gamma Geminorum

    NASA Technical Reports Server (NTRS)

    Boesgaard, A. M.; Praderie, F.

    1981-01-01

    Observations have been made of the B II resonance line at 1362 A in the A0 IV star Gamma Gem with the Princeton spectrometer on the Copernicus satellite at a spectral resolution of 0.05 A. Complementary ground-based observations of the Be II resonance lines at 3130 and 3131 A have been made at Mauna Kea Observatory with a comparable resolution. A model-atmosphere abundance analysis has been done which includes the effects of the lines that blend with the B II and Be II lines. Previous data on Alpha Lyr and Alpha CMa for B II (which blends with a V III feature) have been reanalyzed with the help of new photographic and Reticon data from Mauna Kea which enable the determination of the V abundance. The results show that Gamma Gem is depleted in B by a factor of 5-10 relative to Alpha Lyr and other normal B stars and depleted in Be by at least a factor of four. By comparison, the hot Am star Alpha CMa is B-deficient by about three orders of magnitude and Be-deficient by at least fifteen times. It is suggested that the abundance deficiencies are due to diffusion, and that Alpha CMa is intrinsically a slow rotator, and Gamma Gem is a slightly evolved slow rotator where some, but not all, of the B and Be has resurfaced.

  20. THE FERMI GAMMA-RAY BURST MONITOR

    SciTech Connect

    Meegan, Charles; Lichti, Giselher; Bissaldi, Elisabetta; Diehl, Roland; Greiner, Jochen; Von Kienlin, Andreas; Steinle, Helmut; Bhat, P. N.; Briggs, Michael S.; Connaughton, Valerie; Paciesas, W. S.; Preece, Robert; Wilson, Robert B.; Fishman, Gerald; Kouveliotou, Chryssa; Van der Horst, Alexander J.; McBreen, Sheila

    2009-09-01

    The Gamma-Ray Burst Monitor (GBM) will significantly augment the science return from the Fermi Observatory in the study of gamma-ray bursts (GRBs). The primary objective of GBM is to extend the energy range over which bursts are observed downward from the energy range of the Large Area Telescope (LAT) on Fermi into the hard X-ray range where extensive previous data sets exist. A secondary objective is to compute burst locations onboard to allow re-orienting the spacecraft so that the LAT can observe delayed emission from bright bursts. GBM uses an array of 12 sodium iodide scintillators and two bismuth germanate scintillators to detect gamma rays from {approx}8 keV to {approx}40 MeV over the full unocculted sky. The onboard trigger threshold is {approx}0.7 photons cm{sup -2} s{sup -1} (50-300 keV, 1 s peak). GBM generates onboard triggers for {approx}250 GRBs per year.

  1. [Qualitative and quantitative gamma-hydroxybutyrate analysis].

    PubMed

    Petek, Maja Jelena; Vrdoljak, Ana Lucić

    2006-12-01

    Gamma-hydroxybutyrate (GHB) is a naturally occurring compound present in the brain and peripheral tissues of mammals. It is a minor metabolite and precursor of gamma-aminobutyric acid (GABA). Just as GABA, GHB is believed to play a role in neurotransmission. GHB was first synthesized in vitro in 1960, when it revealed depressive and hypnotic effects on the central nervous system. In 1960s it was used as an anaesthetic and later as an alternative to anabolic steroids, in order to enhance muscle growth. However, after it was shown that it caused strong physical dependence and severe side effects, GHB was banned. For the last fifteen years, GHB has been abused for its intoxicating effects such as euphoria, reduced inhibitions and sedation. Illicitly it is available as white powder or as clear liquid. Paradoxically GHB can easily be manufactured from its precursor gamma-butyrolactone (GBL), which has not yet been banned. Because of many car accidents and criminal acts in which it is involved, GHB has become an important object of forensic laboratory analysis. This paper describes gas and liquid chromatography, infrared spectroscopy, microscopy, colourimetry and nuclear magnetic resonance as methods for detection and quantification of GHB in urine and illicit products. PMID:17265679

  2. Radio Flares from Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Guidorzi, C.; Melandri, A.; Gomboc, A.

    2015-06-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1-1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  3. ESR identification of gamma-irradiated albendazole

    NASA Astrophysics Data System (ADS)

    Çolak, Seyda

    2010-01-01

    The use of ionizing radiation for sterilization of pharmaceuticals is a well-established technology. In the present work, the spectroscopic and kinetic features of the radicals induced in gamma-irradiated solid albendazole samples is investigated at different temperatures in the dose range of 3-34 kGy by electron spin resonance (ESR) spectroscopy. Irradiation with gamma radiation produced two different radical species in albendazole. They were fairly stable at room temperature but relatively unstable above room temperature, giving rise to an unresolved ESR spectrum consisting of three resonance peaks centered at g=2.0057. Decay activation energies of the contributing radical species were calculated to be 47.8 (±13.5) and 50.5 (±9.7) kJ/mol using the signal intensity decay data derived from annealing studies performed at high temperatures. A linear function of the applied dose was found to best describe the experimental dose-response data. Albendazole does not present the characteristics of good dosimetric materials. However, the discrimination of irradiated albendazole from its unirradiated form was possible even 6 months after storage in normal conditions. Based on these findings, it is concluded that albendazole and albendazole-containing drugs can be safely sterilized by gamma radiation and that ESR spectroscopy could be successfully used as a potential technique for monitoring their radiosterilization.

  4. ESR response of gamma-irradiated sulfamethazine

    NASA Astrophysics Data System (ADS)

    Çolak, Seyda; Korkmaz, Mustafa

    In the present work, characteristic features of the radiolytical intermediates produced in gamma-irradiated solid sulfamethazine (SMH) were investigated by electron spin resonance (ESR) spectroscopy. The heights of the resonance peaks, measured with respect to the spectrum baseline, were used to monitor microwave saturation, temperature and time-dependent kinetic features of the radical species contributing to the formation of recorded experimental ESR spectra. Three species having different spectroscopic and kinetic features were observed to be produced in gamma-irradiated SMH. SO2, which is the most sensitive group of radiation in the SMH molecule, was found to be at the origin of radiation-produced ionic radical species. Based on the experimental results derived from the present study, the applicability of ESR spectroscopy to radiosterilization of SMH was discussed. In the dose range of interest (0.5-10 kGy), the radiation yield of solid SMH was calculated to be very low (G=0.45) compared with those obtained for sulfonamide aqueous solutions (G=3.5-5.1). Based on these findings, it was concluded that SMH and SMH-containing drugs could be safely sterilized by gamma radiation and that ESR spectroscopy could be successfully used as a potential technique for monitoring their radiosterilization.

  5. Afterglow Radiation from Gamma Ray Bursts

    SciTech Connect

    Desmond, Hugh; /Leuven U. /SLAC

    2006-08-28

    Gamma-ray bursts (GRB) are huge fluxes of gamma rays that appear randomly in the sky about once a day. It is now commonly accepted that GRBs are caused by a stellar object shooting off a powerful plasma jet along its rotation axis. After the initial outburst of gamma rays, a lower intensity radiation remains, called the afterglow. Using the data from a hydrodynamical numerical simulation that models the dynamics of the jet, we calculated the expected light curve of the afterglow radiation that would be observed on earth. We calculated the light curve and spectrum and compared them to the light curves and spectra predicted by two analytical models of the expansion of the jet (which are based on the Blandford and McKee solution of a relativistic isotropic expansion; see Sari's model [1] and Granot's model [2]). We found that the light curve did not decay as fast as predicted by Sari; the predictions by Granot were largely corroborated. Some results, however, did not match Granot's predictions, and more research is needed to explain these discrepancies.

  6. Near ground gamma radiation associated with lightning

    NASA Astrophysics Data System (ADS)

    Sakuma, K.; Greenfield, M. B.; Ikeda, Y.; Kubo, K.

    2004-03-01

    Increases in the atmospheric gamma radiation of 22 to 82above normal background have been observed after the onset of lightning fifteen times since March 2001[1]. Gamma rays have been observed with up to four 12.9 cm3 NaI detectors and recently with a high resolution Ge detector positioned 6-21 m and 15 m above ground, respectively. The tail of the observed background subtracted gamma ray rates GRR were fitted with exponential decay curves yielding typical correlation coefficients of 0.95 to 0.99 and half-lives of 52.7 +/-4.81 min and 52.8+/-10.95 min, without and with precipitation, respectively. The GRR above 300 KeV from radon progeny due to precipitation were subtracted [2]. The 3x3 Ge detector with 2 KeV resolution positioned about 2 m from one of the NaI detectors observed increases in GRR minutes after the onset of lightning with a delayed 50 min exponential decay which was concurrently observed in the NaI detector. [1] M. B. Greenfield et al., Journal of Applied Physics 93 no. 3 (2003) pp 1839-1844. [2] M. B. Greenfield et al., Journal of Applied Physics 93 no. 9 (2003) pp 5733-5741.

  7. Boron and beryllium in gamma Geminorum

    SciTech Connect

    Boesgaard, A.M.; Praderie, F.

    1981-04-01

    Observations have been made of the B II resonance line at 1362 A inthe A0 IV star ..gamma.. Gem with the Princeton spectrometer on the Copernicus satellite at a spectral resolution of 0.05 A. Complementary ground-based observations of the Be II resonance lines at 3130 and 3131 A have been made at Mauna Kea Observatory with a comparable resolution. A model-atmosphere abundance analysis has been done which includes the effects of the lines that blend with the B II and Be II lines. Previous data on ..cap alpha.. Lyr and ..cap alpha.. CMa for B II (which blends with a V III feature) have been reanalyzed with the help of new photographic and Reticon data from Mauna Kea which enable us to determine the V abundance. The results show that ..gamma.. Gem is depleted in B by a factor of 5--10 relative to ..cap alpha.. Lyr and other normal B stars and depleted in Be by at least a factor of 4. By comparison, the hot Am star ..cap alpha.. CMa is B-deficient by about 3 orders of magnitude and Be-deficient by at least 15 times. It is suggested that the abundance deficiencies are due to diffusion, and that ..cap alpha.. CMa is intrinsically a slow rotator, and ..gamma.. Gem is a slightly evolved slow rotator where some, but not all, of the B and Be has resurfaced.

  8. Imaging of gamma emitters using scintillation cameras

    NASA Astrophysics Data System (ADS)

    Ricard, Marcel

    2004-07-01

    Since their introduction by Hal Anger in the late 1950s, the gamma cameras have been widely used in the field of nuclear medicine. The original concept is based on the association of a large field of view scintillator optically coupled with an array of photomultiplier tubes (PMTs), in order to locate the position of interactions inside the crystal. Using a dedicated accessory, like a parallel hole collimator, to focus the field of view toward a predefined direction, it is possible to built up an image of the radioactive distribution. In terms of imaging performances, three main characteristics are commonly considered: uniformity, spatial resolution and energy resolution. Major improvements were mainly due to progress in terms of industrial process regarding analogical electronic, crystal growing or PMTs manufacturing. Today's gamma camera is highly digital, from the PMTs to the display. All the corrections are applied "on the fly" using up to date signal processing techniques. At the same time some significant progresses have been achieved in the field of collimators. Finally, two new technologies have been implemented, solid detectors like CdTe or CdZnTe, and pixellized scintillators plus photodiodes or position sensitive photomultiplier tubes. These solutions are particularly well adapted to build dedicated gamma camera for breast or intraoperative imaging.

  9. The Gamma-ray Large Area Space Telescope and Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    McEnery, Julie; Ritz, Steve

    2006-01-01

    The Gamma-ray Large Area Telescope (GLAST) is a satellite-based observatory to study the high energy gamma-ray sky. The main instrument on GLAST, the Large Area Telescope (LAT) is a pair-conversion telescope that will survey the sky from 20 MeV to greater than 300 GeV. With the GLAST launch in 2007, the LAT will open a new and important window on a wide variety of high energy phenomena, including supermassive black holes and active galactic nuclei, gamma-ray bursts, supernova remnants and cosmic ray acceleration and dark matter. A second instrument, the GLAST Burst Monitor (GBM), greatly enhances GLAST s capability to study GRB by providing important spectral and timing information in the 10 keV to 30 MeV range. We describe how the instruments, spacecraft and ground system work together to provide observations of gamma-ray bursts from 8 keV - 300 GeV and to provide rapid notification of bursts to the wider gamma-ray burst community.

  10. Precision Measurement of {eta} --> {gamma} {gamma} Decay Width via the Primakoff Effect

    SciTech Connect

    Gan, Liping Gin

    2013-08-01

    A precision measurement of the {eta} --> {gamma} {gamma} decay width via the Primakoff effect is underway in Hall D at Jefferson Lab. The decay width will be extracted from measured differential cross sections at forward angles on two light targets, liquid hydrogen and 4He, using a 11.5 GeV tagged photon beam. Results of this experiment will not only potentially resolve a long standing discrepancy between the Primakoff and the collider measurements, but will also reduce the experimental uncertainty by a factor of two on the average value of previous experimental results listed by the Particle Data Group(PDG). It will directly improve all other eta partial decay widths which rely on the accuracy of the eta radiative decay width. The projected 3% precision on the {Gamma}({eta} --> {gamma} {gamma} ) measurement will have a significant impact on the experimental determination of the fundamental parameters in QCD, such as the ratio of light quark masses (m{sub u},m{sub d},m{sub s}) and the {eta} - {eta}' mixing angle. It will be a sensitive probe for understanding QCD symmetries and the origin and the dynamics of QCD symmetry breaking.

  11. The solar gamma ray and neutron capabilities of COMPTEL on the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Ryan, James M.; Lockwood, John A.

    1989-01-01

    The imaging Compton telescope COMPTEL on the Gamma Ray Observatory (GRO) has unusual spectroscopic capabilities for measuring solar gamma-ray and neutron emission. The launch of the GRO is scheduled for June 1990 near the peak of the sunspot cycle. With a 30 to 40 percent probability for the Sun being in the COMPTEL field-of-view during the sunlit part of an orbit, a large number of flares will be observed above the 800 keV gamma-ray threshold of the telescope. The telescope energy range extends to 30 MeV with high time resolution burst spectra available from 0.1 to 10 MeV. Strong Compton tail suppression of instrumental gamma-ray interactions will facilitate improved spectral analysis of solar flare emissions. In addition, the high signal to noise ratio for neutron detection and measurement will provide new neutron spectroscopic capabilities. Specifically, a flare similar to that of 3 June 1982 will provide spectroscopic data on greater than 1500 individual neutrons, enough to construct an unambiguous spectrum in the energy range of 20 to 200 MeV. Details of the instrument and its response to solar gamma-rays and neutrons will be presented.

  12. Gamma-ray transfer and energy deposition in supernovae

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.; Sutherland, Peter G.; Harkness, Robert P.

    1995-01-01

    Solutions to the energy-independent (gray) radiative transfer equations are compared to results of Monte Carlo simulations of the Ni-56 and Co-56 decay gamma-ray energy deposition in supernovae. The comparison shows that an effective, purely absorptive, gray opacity, kappa(sub gamma) approximately (0. 06 +/- 0.01)Y(sub e) sq cm/g, where Y is the total number of electrons per baryon, accurately describes the interaction of gamma-rays with the cool supernova gas and the local gamma-ray energy deposition within the gas. The nature of the gamma-ray interaction process (dominated by Compton scattering in the relativistic regime) creates a weak dependence of kappa(sub gamma) on the optical thickness of the (spherically symmetric) supernova atmosphere: The maximum value of kappa(sub gamma) applies during optically thick conditions when individual gamma-rays undergo multiple scattering encounters and the lower bound is reached at the phase characterized by a total Thomson optical depth to the center of the atmosphere tau(sub e) approximately less than 1. Gamma-ray deposition for Type Ia supernova models to within 10% for the epoch from maximum light to t = 1200 days. Our results quantitatively confirm that the quick and efficient solution to the gray transfer problem provides an accurate representation of gamma-ray energy deposition for a broad range of supernova conditions.

  13. The distance indicators in gamma-ray pulsars

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2013-03-01

    Distance measurements of gamma-ray pulsars are challenging questions in present pulsar studies. The Large Area Telescope (LAT) aboard the Fermi gamma-ray observatory discovered more than 100 gamma-ray pulsars, including 34 new gamma-selected pulsars which nearly have no distance information. We study the relation between gamma-ray emission efficiency (η=L γ/Ė) and pulsar parameters, for young radio-selected gamma-ray pulsars with known distance information. We have introduced three generation order parameters to describe gamma-ray emission properties of pulsars, and find a strong correlation between η and ζ3, the generation order parameter which reflects γ-ray photon generations in pair cascade processes induced by magnetic field absorption in pulsar magnetosphere. A good correlation between η and B LC, the magnetic field at the light cylinder radius, is also found. These correlations can serve as distance indicators in gamma-ray pulsars, to evaluate distances for gamma-selected pulsars. Distances of 35 gamma-selected pulsars are estimated, which could be tested by other distance measurement methods. The physical origin of the correlations may be also interesting for pulsar studies.

  14. Gravitational waves and short gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Predoi, Valeriu

    2012-07-01

    Short hard gamma-ray bursts (GRB) are believed to be produced by compact binary coalescences (CBC) { either double neutron stars or neutron star{black hole binaries. The same source is expected to emit strong gravitational radiation, detectable with existing and planned gravitational wave observatories. The focus of this work is to describe a series of searches for gravitational waves (GW) from compact binary coalescence (CBC) events triggered by short gamma-ray burst detections. Specifically, we will present the motivation, frameworks, implementations and results of searches for GW associated with short gamma-ray bursts detected by Swift, Fermi{GBM and the InterPlanetary Network (IPN) gamma-ray detectors. We will begin by presenting the main concepts that lay the foundation of gravitational waves emission, as they are formulated in the theory of General Relativity; we will also brie y describe the operational principles of GW detectors, together with explaining the main challenges that the GW detection process is faced with. Further, we will motivate the use of observations in the electromagnetic (EM) band as triggers for GW searches, with an emphasis on possible EM signals from CBC events. We will briefly present the data analysis techniques including concepts as matched{filtering through a collection of theoretical GW waveforms, signal{to{ noise ratio, coincident and coherent analysis approaches, signal{based veto tests and detection candidates' ranking. We will use two different GW{GRB search examples to illustrate the use of the existing coincident and coherent analysis methods. We will also present a series of techniques meant to improve the sensitivity of existing GW triggered searches. These include shifting background data in time in order to obtain extended coincident data and setting a prior on the GRB inclination angle, in accordance with astrophysical observations, in order to restrict the searched parameter space. We will describe the GW data analysis

  15. Nuclear probes and intraoperative gamma cameras.

    PubMed

    Heller, Sherman; Zanzonico, Pat

    2011-05-01

    Gamma probes are now an important, well-established technology in the management of cancer, particularly in the detection of sentinel lymph nodes. Intraoperative sentinel lymph node as well as tumor detection may be improved under some circumstances by the use of beta (negatron or positron), rather than gamma detection, because the very short range (∼ 1 mm or less) of such particulate radiations eliminates the contribution of confounding counts from activity other than in the immediate vicinity of the detector. This has led to the development of intraoperative beta probes. Gamma camera imaging also benefits from short source-to-detector distances and minimal overlying tissue, and intraoperative small field-of-view gamma cameras have therefore been developed as well. Radiation detectors for intraoperative probes can generally be characterized as either scintillation or ionization detectors. Scintillators used in scintillation-detector probes include thallium-doped sodium iodide, thallium- and sodium-doped cesium iodide, and cerium-doped lutecium orthooxysilicate. Alternatives to inorganic scintillators are plastic scintillators, solutions of organic scintillation compounds dissolved in an organic solvent that is subsequently polymerized to form a solid. Their combined high counting efficiency for beta particles and low counting efficiency for 511-keV annihilation γ-rays make plastic scintillators well-suited as intraoperative beta probes in general and positron probes in particular Semiconductors used in ionization-detector probes include cadmium telluride, cadmium zinc telluride, and mercuric iodide. Clinical studies directly comparing scintillation and semiconductor intraoperative probes have not provided a clear choice between scintillation and ionization detector-based probes. The earliest small field-of-view intraoperative gamma camera systems were hand-held devices having fields of view of only 1.5-2.5 cm in diameter that used conventional thallium

  16. EML Gamma Spectrometry Data Evaluation Program

    SciTech Connect

    Decker, Karin M.

    2001-01-01

    This report presents the results of the analyses for the third EML Gamma Spectrometry Data Evaluation Program (October 1999). This program assists laboratories in providing more accurate gamma spectra analysis results and provides a means for users of gamma data to assess how a laboratory performed on various types of gamma spectrometry analyses. This is accomplished through the use of synthetic gamma spectra. A calibration spectrum, a background spectrum, and three sample spectra are sent to each participant in the spectral file format requested by the laboratory. The calibration spectrum contains nuclides covering the energy range from 59.5 keV to 1836 keV. The participants are told fallout and fission product nuclides could be present. The sample spectra are designed to test the ability of the software and user to properly resolve multiplets and to identify and quantify nuclides in a complicated fission product spectrum. The participants were asked to report values and uncertainties as Becquerel per sample with no decay correction. Thirty-one sets of results were reported from a total of 60 laboratories who received the spectra. Six foreign laboratories participated. The percentage of the results within 1 of the expected value was 68, 33, and 46 for samples 1, 2, and 3, respectively. From all three samples, 18% of the results were more than 3 from the expected value. Eighty-three (12%) values out of a total of 682 expected results were not reported for the three samples. Approximately 30% of these false negatives were due the laboratories not reporting 144Pr in sample 2 which was present at the minimum detectable activity level. There were 53 false positives reported with 25% of these responses due to problems with background subtraction. The results show improvement in the ability of the software or user to resolve peaks separated by 1 keV. Improvement is still needed either in the analysis report produced by the software or in the review of these

  17. GAMMA RAYS FROM STAR FORMATION IN CLUSTERS OF GALAXIES

    SciTech Connect

    Storm, Emma M.; Jeltema, Tesla E.; Profumo, Stefano

    2012-08-20

    Star formation in galaxies is observed to be associated with gamma-ray emission, presumably from non-thermal processes connected to the acceleration of cosmic-ray nuclei and electrons. The detection of gamma rays from starburst galaxies by the Fermi Large Area Telescope (LAT) has allowed the determination of a functional relationship between star formation rate and gamma-ray luminosity. Since star formation is known to scale with total infrared (8-1000 {mu}m) and radio (1.4 GHz) luminosity, the observed infrared and radio emission from a star-forming galaxy can be used to quantitatively infer the galaxy's gamma-ray luminosity. Similarly, star-forming galaxies within galaxy clusters allow us to derive lower limits on the gamma-ray emission from clusters, which have not yet been conclusively detected in gamma rays. In this study, we apply the functional relationships between gamma-ray luminosity and radio and IR luminosities of galaxies derived by the Fermi Collaboration to a sample of the best candidate galaxy clusters for detection in gamma rays in order to place lower limits on the gamma-ray emission associated with star formation in galaxy clusters. We find that several clusters have predicted gamma-ray emission from star formation that are within an order of magnitude of the upper limits derived in Ackermann et al. based on non-detection by Fermi-LAT. Given the current gamma-ray limits, star formation likely plays a significant role in the gamma-ray emission in some clusters, especially those with cool cores. We predict that both Fermi-LAT over the course of its lifetime and the future Cerenkov Telescope Array will be able to detect gamma-ray emission from star-forming galaxies in clusters.

  18. Elemental PGNAA analysis using gamma-gamma coincidence counting with the library least-squares approach

    NASA Astrophysics Data System (ADS)

    Metwally, Walid A.; Gardner, Robin P.; Mayo, Charles W.

    2004-01-01

    An accurate method for determining elemental analysis using gamma-gamma coincidence counting is presented. To demonstrate the feasibility of this method for PGNAA, a system of three radioisotopes (Na-24, Co-60 and Cs-134) that emit coincident gamma rays was used. Two HPGe detectors were connected to a system that allowed both singles and coincidences to be collected simultaneously. A known mixture of the three radioisotopes was used and data was deliberately collected at relatively high counting rates to determine the effect of pulse pile-up distortion. The results obtained, with the library least-squares analysis, of both the normal and coincidence counting are presented and compared to the known amounts. The coincidence results are shown to give much better accuracy. It appears that in addition to the expected advantage of reduced background, the coincidence approach is considerably more resistant to pulse pile-up distortion.

  19. Heat treating of a lamellar eutectic alloy /gamma/gamma prime + delta/

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Dreshfield, R. L.

    1976-01-01

    Eutectic superalloys are being developed at several laboratories for application as aircraft gas turbine airfoils. One such alloy gamma/gamma prime + delta was subjected to several heat treatments to determine if its mechanical properties could be improved. It was found that by partially dissolving the gamma prime at 1210 C and then aging at 900 C, the tensile strength can be increased about 12 per cent at temperatures up to 900 C. At 1040 C, no change in tensile strength was observed. Times to rupture were measured between 760 and 1040 C and were essentially the same or greater than for as-grown material. Tensile and rupture ductility of the alloy were reduced by heat treatment.

  20. CdZnTe gamma ray spectrometer for orbital gamma ray spectroscopy.

    SciTech Connect

    Prettyman, T. H.; Feldman, W. C.; Fuller, K. R.; Storms, S. A.; Soldner, S. A.; Lawrence, David J. ,; Browne, M. C.; Moss, C. E.

    2001-01-01

    We present the design and analysis of a new gamma ray spectrometer for planetary science that uses an array of CdZnTe detectors to achieve the detection efficiency needed for orbital measurements. The use of CdZnTe will provide significantly improved pulse height resolution relative to scintillation-based detectors, with commensurate improvement in the accuracy of elemental abundances determined by gamma ray and neutron spectroscopy. The spectrometer can be flown either on the instrument deck of the spacecraft or on a boom. For deck-mounted systems, a BGO anticoincidence shield is included in the design to suppress the response of the CdZnTe detector to gamma rays that originate in the spacecraft. The BGO shield also serves as a backup spectrometer, providing heritage from earlier planetary science missions and reducing the risk associated with the implementation of new technology.