Science.gov

Sample records for gamma irradiation testing

  1. TEST RESULTS FROM GAMMA IRRADIATION OF ALUMINUM OXYHYDROXIDES

    SciTech Connect

    Fisher, D.; Westbrook, M.; Sindelar, R.

    2012-02-01

    Hydrated metal oxides or oxyhydroxides boehmite and gibbsite that can form on spent aluminum-clad nuclear fuel assemblies during in-core and post-discharge wet storage were exposed as granular powders to gamma irradiation in a {sup 60}Co irradiator in closed laboratory test vessels with air and with argon as separate cover gases. The results show that boehmite readily evolves hydrogen with exposure up to a dose of 1.8 x 10{sup 8} rad, the maximum tested, in both a full-dried and moist condition of the powder, whereas only a very small measurable quantity of hydrogen was generated from the granular powder of gibbsite. Specific information on the test setup, sample characteristics, sample preparation, irradiation, and gas analysis are described.

  2. Mutagenicity test of gamma-irradiated humus in aqueous solution for the safety evaluation of irradiated water

    NASA Astrophysics Data System (ADS)

    Furuta, Masakazu; Hosokawa, Yasushi; Fujita, Shin'ichi; Nagata, Yoshio; Katayama, Tadashi; Shiomi, Nobuyuki; Toratani, Hirokazu; Takeda, Atsuhiko

    Fulvic acid and humic acid which are difficult to be removed from water by ordinary purification processes were degraded by 60Co gamma-irradiation and the partially degraded samples were examined for the mutagenetic activity using Salmonella mutagenicity test. No mutagenic activity was detected even in 1000-fold concentrated samples. Addition of S9 mix did not stimulate mutagenicity either. These results revealed that 60Co gamma irradiation did not produce mutagenetic substances from the partially degraded fulvic and humic acids at detectable quantities.

  3. Irradiation tests of prototype self-powered gamma and neutron detectors

    SciTech Connect

    Vermeeren, L.; Carcreff, H.

    2011-07-01

    In the framework of the SCK.CEN-CEA Joint Instrumentation Laboratory, we are developing and optimizing a self-powered detector for selective in-core monitoring of the gamma field. Several prototypes with bismuth emitters were developed and tested in a pure gamma field (the PAGURE gamma irradiation facility at CEA) and in mixed neutron and gamma fields (in the OSIRIS reactor at CEA and in the BR2 reactor at SCK.CEN). Detailed MCNP modelling was performed to calculate the gamma and neutron sensitivities. Apart from a few failing prototypes, all detectors showed equilibrium signals proportional to the gamma field with a good long-term stability (under irradiation during several weeks). A tubular geometry design was finally selected as the most appropriate for in-core gamma detection, coupling a larger sensitivity with better response characteristics. In the same experiment in BR2 six prototype Self-Powered Neutron Detectors (SPNDs) with continuous sheaths (i.e. without any weld between the sensitive part and the cable) were extensively tested: two SPNDs with Co emitter, two with V emitter and two with Rh emitters, with varying geometries. All detector responses were verified to be proportional to the reactor power. The prompt and delayed response contributions were quantified. The signal contributions due to the impact of gamma rays were experimentally determined. The evolution of the signals was continuously followed during the full irradiation period. The signal-to-noise level was observed to be well below 1% in typical irradiation conditions. The absolute neutron and gamma responses for all SPNDs are consistent. (authors)

  4. Gamma-irradiation tests of IR optical fibres for ITER thermography--a case study

    SciTech Connect

    Reichle, R.; Pocheau, C.; Jouve, M.

    2008-03-12

    In the course of the development of a concept for a spectrally resolving infrared thermography diagnostic for the ITER divertor we have tested 3 types of infrared (IR) fibres in Co{sup 60} irradiation facilities under {gamma} irradiation. The fibres were ZrF{sub 4} (and HfF{sub 4}) fibres from different manufacturers, hollow fibres (silica capillaries with internal Ag/AgJ coating) and a sapphire fibre. For the IR range, only the latter fibre type encourages to go further for neutron tests in a reactor. If one restricted the interest onto the near infrared range, high purity core silica fibres could be used. This study might be seen as a typical example of the relation between diagnostic development for a nuclear environment and irradiation experiments.

  5. Microbial analysis and survey test of gamma-irradiated freeze-dried fruits for patient's food

    NASA Astrophysics Data System (ADS)

    Park, Jae-Nam; Sung, Nak-Yun; Byun, Eui-Hong; Byun, Eui-Baek; Song, Beom-Seok; Kim, Jae-Hun; Lee, Kyung-A.; Son, Eun-Joo; Lyu, Eun-Soon

    2015-06-01

    This study examined the microbiological and organoleptic qualities of gamma-irradiated freeze-dried apples, pears, strawberries, pineapples, and grapes, and evaluated the organoleptic acceptability of the sterilized freeze-dried fruits for hospitalized patients. The freeze-dried fruits were gamma-irradiated at 0, 1, 2, 3, 4, 5, 10, 12, and 15 kGy, and their quality was evaluated. Microorganisms were not detected in apples after 1 kGy, in strawberries and pears after 4 kGy, in pineapples after 5 kGy, and in grapes after 12 kGy of gamma irradiation. The overall acceptance score, of the irradiated freeze-dried fruits on a 7-point scale at the sterilization doses was 5.5, 4.2, 4.0, 4.1, and 5.1 points for apples, strawberries, pears, pineapples, and grapes, respectively. The sensory survey of the hospitalized cancer patients (N=102) resulted in scores of 3.8, 3.7, 3.9, 3.9, and 3.7 on a 5-point scale for the gamma-irradiated freeze-dried apples, strawberries, pears, pineapples, and grapes, respectively. The results suggest that freeze-dried fruits can be sterilized with a dose of 5 kGy, except for grapes, which require a dose of 12 kGy, and that the organoleptic quality of the fruits is acceptable to immuno-compromised patients. However, to clarify the microbiological quality and safety of freeze-dried fruits should be verified by plating for both aerobic and anaerobic microorganisms.

  6. Production of modified starches by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Kang, Il-Jun; Byun, Myung-Woo; Yook, Hong-Sun; Bae, Chun-Ho; Lee, Hyun-Soo; Kwon, Joong-Ho; Chung, Cha-Kwon

    1999-04-01

    As a new processing method for the production of modified starch, gamma irradiation and four kinds of inorganic peroxides were applied to commercial corn starch. The addition of inorganic peroxides without gamma irradiation or gamma irradiation without the addition of inorganic peroxides effectively decreased initial viscosity, but did not sufficiently keep viscosity stable. The combination of adding ammonium persulfate (APS) and gamma irradiation showed the lowest initial viscosity and the best stability out of the tested four kinds of inorganic peroxides. Among the tested mixing methods of APS, soaking was found to be more effective than dry blending or spraying. Therefore, the production of modified starch with low viscosity as well as with sufficient viscosity stability became feasible by the control of gamma irradiation dose levels and the amount of added APS to starch.

  7. Gamma irradiation test report of simulated grout specimens for gas generation/liquid advection

    SciTech Connect

    Hinman, C.A.

    1994-10-14

    This report presents the results from an irradiation test performed on four specimens of grout that were fabricated from synthetic Double Shell Slurry Feed (DSSF) liquid waste. The objective was to investigate the radiolytic generation of gases and the potential for advective rejection of waste liquids from the grout matrix and to provide experimental information for the validation of the C-Cubed calculated model. It has been demonstrated that a number of gases can be formed within the grout due to radiolytic decomposition of various chemical components that make up the grout. This observation leads to the conjecture that the potential exists for the rejection of a portion of the 60 vol% free liquid from the grout matrix driven by pressurization by these gases. It was found that, for the specimen geometries used in this test series, and for peak radiation dose accumulation rates on the order of 4 to 60 times of the initial rate expected in the grout vaults (300 Rads/hr), no liquid rejection was observed from 2% to 35% of the target exposure expected in the grout vaults (1E+08 Rads). When the irradiation rate exceeded the projected grout vault dose rate by a factor of 200 a small amount of liquid rejection was observed from one of two specimens that had received 20% more than the goal exposure. Because of the differences in the magnitudes of the relative radiation field strengths between this study and an actual grout vault, it is concluded that the potential for liquid rejection by internal gas pressurization from presently configured grout waste forms is very low for the expected conditions.

  8. Bremsstrahlung {gamma}-ray generation by electrons from gas jets irradiated by laser pulses for radiographic testing

    SciTech Connect

    Oishi, Yuji; Nayuki, Takuya; Zhidkov, Alexei; Fujii, Takashi; Nemoto, Koshichi

    2012-07-11

    Electron generation from a gas jet irradiated by low energy femtosecond laser pulses is studied experimentally as a promising source of radiation for radioisotope-free {gamma}-ray imaging systems. The calculated yield of {gamma}-rays in the 0.5-2 MeV range, produced by low-average-power lasers and gas targets, exceeds the yields from solid tape targets up to 60 times. In addition, an effect of quasi-mono energetic electrons on {gamma}-ray imaging is also discussed.

  9. Stability of an injectable disulfiram formulation sterilized by gamma irradiation

    SciTech Connect

    Phillips, M.; Agarwal, R.P.; Brodeur, R.J.; Garagusi, V.F.; Mossman, K.L.

    1985-02-01

    Stability of an injectable disulfiram suspension sterilized by gamma(gamma) irradiation was tested. Single doses of disulfiram powder in plastic syringes were subjected to 50,000 rads of gamma radiation. Culture media were inoculated with the irradiated drug to test for growth of bacteria, fungi, and mycobacteria. The irradiated drug and nonirradiated controls were analyzed by high-performance liquid chromatography (HPLC) for disulfiram and its major degradation product, diethyldithiocarbamate (DDC). Ultraviolet absorption spectra of irradiated and nonirradiated disulfiram were obtained. No organisms grew in any of the culture media. HPLC analysis indicated that disulfiram content of the irradiated specimens was not reduced, and DDC was not detected. There were no important differences between the ultraviolet spectra of the irradiated and nonirradiated samples. Disulfiram can be sterilized by gamma irradiation without chemical degradation.

  10. Stability of an injectable disulfiram formulation sterilized by gamma irradiation.

    PubMed

    Phillips, M; Agarwal, R P; Brodeur, R J; Garagusi, V F; Mossman, K L

    1985-02-01

    Stability of an injectable disulfiram suspension sterilized by gamma(gamma) irradiation was tested. Single doses of disulfiram powder in plastic syringes were subjected to 50,000 rads of gamma radiation. Culture media were inoculated with the irradiated drug to test for growth of bacteria, fungi, and mycobacteria. The irradiated drug and nonirradiated controls were analyzed by high-performance liquid chromatography (HPLC) for disulfiram and its major degradation product, diethyldithiocarbamate (DDC). Ultraviolet absorption spectra of irradiated and nonirradiated disulfiram were obtained. No organisms grew in any of the culture media. HPLC analysis indicated that disulfiram content of the irradiated specimens was not reduced, and DDC was not detected. There were no important differences between the ultraviolet spectra of the irradiated and nonirradiated samples. Disulfiram can be sterilized by gamma irradiation without chemical degradation. PMID:2983546

  11. Gamma irradiation testing of montan wax barrier materials for in-situ waste containment

    SciTech Connect

    Soo, P.; Heiser, J.

    1996-02-01

    A scoping study was carried out to quantify the potential use of a montan wax as a barrier material for subsurface use. If it possesses resistance to chemical and structural change, it could be used in a barrier to minimize the migration of contaminants from their storage or disposal locations. Properties that were evaluated included hardness, melting point, molecular weight, and biodegradation as a function of gamma radiation dose. The main emphasis was to quantify the wax`s long-term ability to withstand radiation-induced mechanical, chemical, and microbial degradation.

  12. GAMMA IRRADIATION TESTING OF MONTAN WAX FOR USE IN WASTE MANAGEMENT SYSTEMS

    SciTech Connect

    SOO,P.; HEISER,J.; HART,A.

    1996-09-08

    A field demonstration was funded by the US Department of Energy (DOE) to quantify the potential use of montan wax as a subsurface barrier material for nuclear waste management applications. As part of that demonstration, a study was completed to address some of the characteristics of the wax. Of particular interest is its resistance to chemical and structural changes that would influence its integrity as a barrier to minimize the migration of contaminants from their storage or disposal locations. Properties that were evaluated included hardness, melting point, molecular weight, and biodegradation as a function of gamma radiation dose. Based on the data obtained to date the wax is extremely resistant to radiation-induced change. Coupled with low permeability, the material shows promise as a subsurface barrier material.

  13. Effects of gamma irradiation on deteriorated paper

    NASA Astrophysics Data System (ADS)

    Bicchieri, Marina; Monti, Michela; Piantanida, Giovanna; Sodo, Armida

    2016-08-01

    Even though gamma radiation application, also at the minimum dosage required for disinfection, causes depolymerization and degradation of the paper substrate, recently published papers seemed, instead, to suggest that γ-rays application could be envisaged in some conditions for Cultural Heritage original documents and books. In some of the published papers, the possible application of γ-rays was evaluated mainly by using mechanical tests that scarcely reflect the chemical modifications induced in the cellulosic support. In the present article the effect of low dosage γ-irradiation on cellulosic substrates was studied and monitored applying different techniques: colorimetry, spectroscopic measurements, carbonyl content and average viscometric degree of polymerization. Two different papers were investigated, a non-sized, non-filled cotton paper, and a commercial permanent paper. To simulate a real deteriorated document, which could need γ-rays irradiation, some samples were submitted to a hydrolysis treatment. We developed a treatment based on the exposition of paper to hydrochloric acid vapors, avoiding any contact of the samples with water. This method induces a degradation similar to that observed on original documents. The samples were then irradiated with 3 kGy γ-rays at a 5258 Gy/h rate. The aforementioned analyses were performed on the samples just irradiated and after artificial ageing. All tests showed negative effects of gamma irradiation on paper. Non-irradiated paper preserves better its appearance and chemical properties both in the short term and after ageing, while the irradiated samples show appreciable color change and higher oxidation extent. Since the Istituto centrale restauro e conservazione patrimonio archivistico e librario is responsible for the choice of all restoration treatments that could be applied on library and archival materials under the protection of the Italian State (http://www.icpal.beniculturali.it/allegati/DM-7

  14. Tests of the radiation hardness of VLSI Integrated Circuits and Silicon Strip Detectors for the SSC (Superconducting Super Collider) under neutron, proton, and gamma irradiation

    SciTech Connect

    Ziock, H.J.; Milner, C.; Sommer, W.F. ); Carteglia, N.; DeWitt, J.; Dorfan, D.; Hubbard, B.; Leslie, J.; O'Shaughnessy, K.F.; Pitzl, D.; Rowe, W.A.; Sadrozinski, H.F.W.; Seiden, A.; Spencer, E. . Inst. for Particle Physics); Ellison, J.A. ); Ferguson, P. ); Giubellino

    1990-01-01

    As part of a program to develop a silicon strip central tracking detector system for the Superconducting Super Collider (SSC) we are studying the effects of radiation damage in silicon detectors and their associated front-end readout electronics. We report on the results of neutron and proton irradiations at the Los Alamos National Laboratory (LANL) and {gamma}-ray irradiations at UC Santa Cruz (UCSC). Individual components on single-sided AC-coupled silicon strip detectors and on test structures were tested. Circuits fabricated in a radiation hard CMOS process and individual transistors fabricated using dielectric isolation bipolar technology were also studied. Results indicate that a silicon strip tracking detector system should have a lifetime of at least one decade at the SSC. 17 refs., 17 figs.

  15. Tests of the radiation hardness of VLSI integrated circuits and silicon strip detectors for the SSC under neutron, proton, and gamma irradiation

    SciTech Connect

    Ziock, H.J.; Milner, C.; Sommer, W.F. ); Cartiglia, N.; DeWitt, J.; Dorfan, D.; Hubbard, B.; Leslie, J.; O'Shaughnesy, K.F.; Pitzl, D.; Rowe, W.A.; Sadrozinski, H.F.W.; Seiden, A.; Spencer, E.; Tennenbaum, P. . Inst. for Particle Physics); Ellison, J.; Jerger, S.; Lietzke, C.; Wimpenny, S.J. ); Ferguson, P. ); Giubellino, P. )

    1991-04-01

    As part of a program to develop a silicon strip central tracking detector system for the Superconducting Super Collider (SSC) we are studying the effects of radiation damage in silicon detectors and their associated front-end readout electronics. In this paper, the authors report on the results of neutron and proton irradiations at the Los Alamos National Laboratory (LANL) and {gamma}-ray irradiations at U.C. Santa Cruz (UCSC). Individual components on single-sided AC-coupled silicon strip detectors and on test structures were tested. Circuits fabricated in a radiation hard CMOS process and individual transistors fabricated using dielectric isolation bipolar technology were also studied. Results indicate that a silicon strip tracking detector system should have a lifetime of at least one decade at the SSC.

  16. Hardness Evolution of Gamma-Irradiated Polyoxymethylene

    NASA Astrophysics Data System (ADS)

    Hung, Chuan-Hao; Harmon, Julie P.; Lee, Sanboh

    2016-04-01

    This study focuses on analyzing hardness evolution in gamma-irradiated polyoxymethylene (POM) exposed to elevated temperatures after irradiation. Hardness increases with increasing annealing temperature and time, but decreases with increasing gamma ray dose. Hardness changes are attributed to defects generated in the microstructure and molecular structure. Gamma irradiation causes a decrease in the glass transition temperature, melting point, and extent of crystallinity. The kinetics of defects resulting in hardness changes follow a first-order structure relaxation. The rate constant adheres to an Arrhenius equation, and the corresponding activation energy decreases with increasing dose due to chain scission during gamma irradiation. The structure relaxation of POM has a lower energy barrier in crystalline regions than in amorphous ones. The hardness evolution in POM is an endothermic process due to the semi-crystalline nature of this polymer.

  17. EFFECTS OF GAMMA IRRADIATION ON EPDM ELASTOMERS

    SciTech Connect

    Clark, E.

    2011-09-22

    Two formulations of EPDM elastomer, one substituting a UV stabilizer for the normal antioxidant in this polymer, and the other the normal formulation, were synthesized and samples of each were exposed to gamma irradiation in initially pure deuterium gas to compare their radiation stability. Stainless steel containers having rupture disks were designed for this task. After 130 MRad dose of cobalt-60 radiation in the SRNL Gamma Irradiation Facility, a significant amount of gas was created by radiolysis; however the composition indicated by mass spectroscopy indicated an unexpected increase in the total amount deuterium in both formulations. The irradiated samples retained their ductility in a bend test. No change of sample weight, dimensions, or density was observed. No change of the glass transition temperature as measured by dynamic mechanical analysis was observed, and most of the other dynamic mechanical properties remained unchanged. There appeared to be an increase in the storage modulus of the irradiated samples containing the UV stabilizer above the glass transition, which may indicate hardening of the material by radiation damage. Polymeric materials become damaged by exposure over time to ionizing radiation. Despite the limited lifetime, polymers have unique engineering material properties and polymers continue to be used in tritium handling systems. In tritium handling systems, polymers are employed mainly in joining applications such as valve sealing surfaces (eg. Stem tips, valve packing, and O-rings). Because of the continued need to employ polymers in tritium systems, over the past several years, programs at the Savannah River National Laboratory have been studying the effect of tritium on various polymers of interest. In these studies, samples of materials of interest to the SRS Tritium Facilities (ultra-high molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE, Teflon{reg_sign}), Vespel{reg_sign} polyimide, and the elastomer

  18. Dielectric relaxation of gamma irradiated muscovite mica

    SciTech Connect

    Kaur, Navjeet; Singh, Mohan; Singh, Lakhwant; Awasthi, A.M.; Lochab, S.P.

    2015-03-15

    Highlights: • The present article reports the effect of gamma irradiation on the dielectric relaxation characteristics of muscovite mica. • Dielectric and electrical relaxations have been analyzed in the framework of dielectric permittivity, electric modulus and Cole–Cole formalisms. • The frequency dependent electrical conductivity has been rationalized using Johnsher’s universal power law. • The experimentally measured electric modulus and conductivity data have been fitted using Havriliak–Negami dielectric relaxation function. - Abstract: In the present research, the dielectric relaxation of gamma irradiated muscovite mica was studied in the frequency range of 0.1 Hz–10 MHz and temperature range of 653–853 K, using the dielectric permittivity, electric modulus and conductivity formalisms. The dielectric constants (ϵ′ and ϵ′′) are found to be high for gamma irradiated muscovite mica as compared to the pristine sample. The frequency dependence of the imaginary part of complex electric modulus (M′′) and dc conductivity data conforms Arrhenius law with single value of activation energy for pristine sample and two values of activation energy for gamma irradiated mica sample. The experimentally assessed electric modulus and conductivity information have been interpreted by the Havriliak–Negami dielectric relaxation explanation. Using the Cole–Cole framework, an analysis of real and imaginary characters of the electric modulus for pristine and gamma irradiated sample was executed which reflects the non-Debye relaxation mechanism.

  19. Gamma irradiation effects in W films

    SciTech Connect

    Claro, Luiz H.; Santos, Ingrid A.; Silva, Cassia F.

    2013-05-06

    Using the van Der Pauw methodology, the surface resistivity of irradiated tungsten films deposited on Silicon substrate was measured. The films were exposed to {gamma} radiation using a isotopic {sup 60}Co source in three irradiation stages attaining 40.35 kGy in total dose. The obtained results for superficial resistivity display a time annealing features and their values are proportional to the total dose.

  20. Test reactor irradiation coordination

    SciTech Connect

    Heartherly, D.W.; Siman Tov, I.I.; Sparks, D.W.

    1995-10-01

    This task was established to supply and coordinate irradiation services needed by NRC contractors other than ORNL. These services include the design and assembly of irradiation capsules as well as arranging for their exposure, disassembly, and return of specimens. During this period, the final design of the facility and specimen baskets was determined through an iterative process involving the designers and thermal analysts. The resulting design should permit the irradiation of all test specimens to within 5{degrees}C of their desired temperature. Detailing of all parts is ongoing and should be completed during the next reporting period. Procurement of the facility will also be initiated during the next review period.

  1. Investigations on fiberoptic behaviour during gamma irradiation

    NASA Astrophysics Data System (ADS)

    Siehs, J.

    1980-12-01

    The behavior of bulk glasses and fiber optics under gamma irradiation and two types of annealing processes (thermal and optical) were investigated. The samples were irradiated in the thermal column of the TRIGA Mark II reactor. The irradiation induced losses of transmission were measured in a dual beam spectrophotometer. The transmission was measured one hour after reactor shut-down. Thermal annealing was done at 300, 400 and 500 C. Photo bleaching was investigated with a quartz-lamp, an arc-lamp and an UV-laser light.

  2. Ultrasonic Transducer Irradiation Test Results

    SciTech Connect

    Daw, Joshua; Palmer, Joe; Ramuhalli, Pradeep; Keller, Paul; Montgomery, Robert; Chien, Hual-Te; Kohse, Gordon; Tittmann, Bernhard; Reinhardt, Brian; Rempe, Joy

    2015-02-01

    Ultrasonic technologies offer the potential for high-accuracy and -resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other ongoing efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. For this reason, the Pennsylvania State University (PSU) was awarded an ATR NSUF project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The goal of this research is to characterize and demonstrate magnetostrictive and piezoelectric transducer operation during irradiation, enabling the development of novel radiation-tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, one piezoelectric

  3. Mobile gamma-irradiation robot

    NASA Astrophysics Data System (ADS)

    Teply, J.; Franek, C.; Vocilka, J.; Stetka, R.; Vins, J.; Krotil, J.; Garba, A.

    1993-07-01

    The source container with 98 TBq of 137Cs and shielding made from depleted uranium has the total weight of 264 kg, height of 0.370 and diameter 0.272 m. The container is joined to accessories allowing movment of the radiation beam. The dose rate at a distance of 0.4 m in the beam axis is 50 Gy/h. Various technical means are available for manipulation and transport. The irradiation process proceeds according to a precalculated program. The safety measures have been taken to secure the possible application in historical buildings and similar objects. The licence from health physics authorities has been obtained. The first irradiation process performed is described.

  4. EFFECTS OF GAMMA IRRADIATION ON EPDM ELASTOMERS (REVISION 1)

    SciTech Connect

    Clark, E.

    2013-09-13

    Two formulations of EPDM elastomer, one substituting a UV stabilizer for the normal antioxidant in this polymer, and the other the normal formulation, were synthesized and samples of each were exposed to gamma irradiation in initially pure deuterium gas to compare their radiation stability. Stainless steel containers having rupture disks were designed for this task. After 130 MRad dose of cobalt-60 radiation in the SRNL Gamma Irradiation Facility, a significant amount of gas was created by radiolysis; however the composition indicated by mass spectroscopy indicated an unexpected increase in the total amount deuterium in both formulations. The irradiated samples retained their ductility in a bend test. No change of sample weight, dimensions, or density was observed. No change of the glass transition temperature as measured by dynamic mechanical analysis was observed, and most of the other dynamic mechanical properties remained unchanged. There appeared to be an increase in the storage modulus of the irradiated samples containing the UV stabilizer above the glass transition, which may indicate hardening of the material by radiation damage. Revision 1 adds a comparison with results of a study of tritium exposed EPDM. The amount of gas produced by the gamma irradiation was found to be equivalent to about 280 days exposure to initially pure tritium gas at one atmosphere. The glass transition temperature of the tritium exposed EPDM rose about 10 �C. over 280 days, while no glass transition temperature change was observed for gamma irradiated EPDM. This means that gamma irradiation in deuterium cannot be used as a surrogate for tritium exposure.

  5. ESR identification of gamma-irradiated albendazole

    NASA Astrophysics Data System (ADS)

    Çolak, Seyda

    2010-01-01

    The use of ionizing radiation for sterilization of pharmaceuticals is a well-established technology. In the present work, the spectroscopic and kinetic features of the radicals induced in gamma-irradiated solid albendazole samples is investigated at different temperatures in the dose range of 3-34 kGy by electron spin resonance (ESR) spectroscopy. Irradiation with gamma radiation produced two different radical species in albendazole. They were fairly stable at room temperature but relatively unstable above room temperature, giving rise to an unresolved ESR spectrum consisting of three resonance peaks centered at g=2.0057. Decay activation energies of the contributing radical species were calculated to be 47.8 (±13.5) and 50.5 (±9.7) kJ/mol using the signal intensity decay data derived from annealing studies performed at high temperatures. A linear function of the applied dose was found to best describe the experimental dose-response data. Albendazole does not present the characteristics of good dosimetric materials. However, the discrimination of irradiated albendazole from its unirradiated form was possible even 6 months after storage in normal conditions. Based on these findings, it is concluded that albendazole and albendazole-containing drugs can be safely sterilized by gamma radiation and that ESR spectroscopy could be successfully used as a potential technique for monitoring their radiosterilization.

  6. Silicon/HfO2 interface: Effects of gamma irradiation

    NASA Astrophysics Data System (ADS)

    Maurya, Savita

    2016-05-01

    Quality of MOS devices is a strong function of substrate and oxide interface. In this work we have studied how gamma photon irradiation affects the interface of a 13 nm thick, atomic layer deposited hafnium dioxide deposited on silicon wafer. CV and GV measurements have been done for pristine and irradiated samples to quantify the effect of gamma photon irradiation. Gamma photon irradiation not only introduces positive charge in the oxide and at the interface of Si/HfO2 interface but also induce phase change of oxide layer. Maximum oxide capacitances are affected by gamma photon irradiation.

  7. Influence of gamma ray irradiation on metakaolin based sodium geopolymer

    NASA Astrophysics Data System (ADS)

    Lambertin, D.; Boher, C.; Dannoux-Papin, A.; Galliez, K.; Rooses, A.; Frizon, F.

    2013-11-01

    Effects of gamma irradiation on metakaolin based Na-geopolymer have been investigated by external irradiation. The experiments were carried out in a gamma irradiator with 60Co sources up to 1000 kGy. Various Na-geopolymer with three H2O/Na2O ratios have been studied in terms of hydrogen radiolytic yield. The results show that hydrogen production increases linearly with water content. Gamma irradiation effects on Na-geopolymer microstructure have been investigated with porosity measurements and X-ray pair distribution function analysis. A change of pore size distribution and a structural relaxation have been found after gamma ray irradiation.

  8. Irradiation Testing of Ultrasonic Transducers

    SciTech Connect

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian; Kohse, Gordon E.; Ramuhalli, Pradeep; Montgomery, Robert O.; Chien, Hual-Te; Villard, Jean-Francois; Palmer, Joe; Rempe, Joy

    2014-07-30

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.

  9. Irradiation Testing of Ultrasonic Transducers

    SciTech Connect

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian; Kohse, Gordon E.; Ramuhalli, Pradeep; Montgomery, Robert O.; Chien, Hual-Te; Villard, Jean-Francois; Palmer, Joe; Rempe, Joy

    2013-12-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.

  10. COBALT-60 Gamma Irradiation of Shrimp.

    NASA Astrophysics Data System (ADS)

    Sullivan, Nancy L. B.

    Meta- and ortho-tyrosine were measured using high performance liquid chromatography (HPLC) in conjunction with electrochemical detection in shrimp irradiated using cobalt-60 gamma radiation in the absorbed dose range 0.8 to 6.0 kGy, in nonirradiated shrimp, and in bovine serum albumin (BSA) irradiated in dilute aqueous solution at 25.0 kGy. Ortho-tyrosine was measured in nonirradiated BSA. Para-, meta-, and ortho-tyrosine were measured using HPLC in conjunction with uv-absorption detection in dilute aqueous solutions of phenylalanine irradiated in the absorbed dose range 16.0 to 195.0 kGy. The measured yields of tyrosine isomers were approximately linear as a function of absorbed dose in shrimp, and in irradiated solutions of phenylalanine up to 37.0 kGy. The occurrence of meta- and ortho-tyrosine, which had formerly been considered unique radiolytic products, has not previously been reported in nonirradiated shrimp or BSA. The conventional hydrolyzation and analytical techniques used in the present study to measure meta- and ortho-tyrosine may provide the basis for a method to detect and determine the dose used in food irradiation.

  11. Cobalt-60 gamma irradiation of shrimp

    SciTech Connect

    Sullivan, N.L.B.

    1993-01-01

    Meta- and ortho-tyrosine were measured using high performance liquid chromatography (HPLC) in conjunction with electrochemical detection in shrimp irradiated using cobalt-60 gamma radiation in the absorbed dose range 0.8 to 6.0 kGy, in nonirradiated shrimp, and in bovine serum albumin (BSA) irradiated in dilute aqueous solution at 25.0 kGy. Ortho-tyrosine was measured in nonirradiated BSA. Para-, meta-, and ortho-tyrosine was measured using HPLC in conjunction with uv-absorption detection in dilute aqueous solutions of phenylalanine irradiated in the absorbed dose range 16.0 to 195.0 kGy. The measured yields of tyrosine isomers were approximately linear as a function of absorbed dose in shrimp, and in irradiated solutions of phenylalanine up to 37.0 kGy. The occurrence of meta- and ortho-tyrosine, which had formerly been considered unique radiolytic products, has not previously been reported in nonirradiated shrimp or BSA. The conventional hydrolyzation and analytical techniques used in the present study to measure meta- and ortho-tyrosine may provide the basis for a method to detect and determine the dose used in food irradiation.

  12. ESR response of gamma-irradiated sulfamethazine

    NASA Astrophysics Data System (ADS)

    Çolak, Seyda; Korkmaz, Mustafa

    In the present work, characteristic features of the radiolytical intermediates produced in gamma-irradiated solid sulfamethazine (SMH) were investigated by electron spin resonance (ESR) spectroscopy. The heights of the resonance peaks, measured with respect to the spectrum baseline, were used to monitor microwave saturation, temperature and time-dependent kinetic features of the radical species contributing to the formation of recorded experimental ESR spectra. Three species having different spectroscopic and kinetic features were observed to be produced in gamma-irradiated SMH. SO2, which is the most sensitive group of radiation in the SMH molecule, was found to be at the origin of radiation-produced ionic radical species. Based on the experimental results derived from the present study, the applicability of ESR spectroscopy to radiosterilization of SMH was discussed. In the dose range of interest (0.5-10 kGy), the radiation yield of solid SMH was calculated to be very low (G=0.45) compared with those obtained for sulfonamide aqueous solutions (G=3.5-5.1). Based on these findings, it was concluded that SMH and SMH-containing drugs could be safely sterilized by gamma radiation and that ESR spectroscopy could be successfully used as a potential technique for monitoring their radiosterilization.

  13. Effect of gamma irradiation on antinutritional factors in broad bean

    NASA Astrophysics Data System (ADS)

    Al-Kaisey, Mahdi T.; Alwan, Abdul-Kader H.; Mohammad, Manal H.; Saeed, Amjed H.

    2003-06-01

    The effect of gamma irradiation on the level of antinutritional factors (trypsin inhibitor (TI), phytic acid and oligosaccharides) of broad bean was investigated. The seeds were subjected to gamma irradiation at 0, 2.5, 5, 7.5 and 10 kGy, respectively using cobalt-60 gamma radiation with a dose rate 2.37 kGy/h. TI activity was reduced by 4.5%, 6.7%, 8.5% and 9.2% at 2.5, 5, 7.5 and 10 kGy, respectively. Meanwhile, irradiation at 10.2, 12.3, 15.4 and 18.2 kGy reduced the phytic acid content. The flatulence causing oligosaccharides were decreased as the radiation dose increased. The chemical composition (protein, oil, ash and total carbohydrates) of the tested seeds was determined. Gamma radiation seems to be a good procedure to improve the quality of broad bean from the nutritional point of view.

  14. Inactivation of fungal contaminants on Korean traditional cashbox by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Choi, Jong-il; Lim, Sangyong

    2016-01-01

    In this study, gamma irradiation was applied to decontaminate a Korean cultural artifact, a wooden cashbox stored in local museum. Fungi isolated from the wooden cashbox were identified by 18S rDNA sequencing methods. It was observed that the isolated fungi exhibited high similarity to Aspergillus niger, Penicillium verruculosum, and Trichoderma viride. Each strain was tested for sensitivity to gamma irradiation, and was inactivated by the irradiation at a dose of 5 kGy. The wooden cashbox was thus gamma-irradiated at this dose (5 kGy), and consequently decontaminated. Two months after the irradiation, when the wooden cashbox was retested to detect biological contamination, no fungi were found. Therefore, these results suggest that gamma irradiation at a low dose of 5 kGy can be applied for successful decontamination of wooden artifacts.

  15. Effect of gamma irradiation on the conversion of ginsenoside Rb1 to Rg3

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Hun; Kwon, Sun-Kyu; Sung, Nak-Yun; Jung, Pil-Mun; Choi, Jong-il; Kim, Jae-Kyung; Sharma, Arun K.; Lee, Ju-Woon

    2012-08-01

    Ginsenosides, the most important secondary metabolites in ginseng, have various biological activities. Many studies have focused on the conversion of one of the major ginsenosides, Rb1, to the more active minor ginsenoside, Rg3. This study was carried out to investigate the effect of gamma irradiation on the conversion of Rb1 to Rg3. Rb1 solutions were gamma-irradiated at doses of 10 and 30 kGy and analyzed by high performance liquid chromatography (HPLC). HPLC chromatograms showed a decreased content of Rb1 with increasing irradiation dose, but the content of Rg3 was increased. The highest content of Rg3 was present in the 30 kGy-irradiated Rb1 sample. The cytotoxic effects tested in cancer cell lines were increased in the gamma-irradiated group. Therefore, these results suggest that gamma irradiation can be an effective method for the conversion of the ginsenoside Rb1 to Rg3.

  16. Effect of gamma irradiation on Korean traditional multicolored paintwork

    NASA Astrophysics Data System (ADS)

    Yoon, Minchul; Kim, Dae-Woon; Choi, Jong-il; Chung, Yong-Jae; Kang, Dai-Ill; Hoon Kim, Gwang; Son, Kwang-Tae; Park, Hae-Jun; Lee, Ju-Woon

    2015-10-01

    Gamma irradiation can destroy fungi and insects involved in the bio-deterioration of organic cultural heritages. However, this irradiation procedure can alter optical and structural properties of historical pigments used in wooden cultural heritage paintings. The crystal structure and color centers of these paintings must be maintained after application of the irradiation procedure. In this study, we investigated the effects of gamma irradiation on Korean traditional multicolored paintwork (Dancheong) for the preservation of wooden cultural heritages. The main pigments in Korean traditional wooden cultural heritages, Sukganju (Hematite; Fe2O3), Jangdan (Minium; Pb3O4), Whangyun (Crocoite; PbCrO4), and Jidang (Rutile; TiO2), were irradiated by gamma radiation at doses of 1, 5, and 20 kGy. After irradiation, changes in Commision Internationale d'Eclairage (CIE) color values (L*, a*, b*) were measured using the color difference meter, and their structural changes were analyzed using X-ray diffraction (XRD) analysis. The slightly change in less than 1 dE* unit by gamma irradiation was observed, and structural changes in the Dancheong were stable after exposure to 20 kGy gamma irradiation. In addition, gamma irradiation could be applied to painted wooden cultural properties from the Korean Temple. Based on the color values, gamma irradiation of 20 kGy did not affect the Dancheong and stability was maintained for five months. In addition, the fungicidal and insecticidal effect by less than 5 kGy gamma irradiation was conformed. Therefore, the optical and structural properties of Dancheong were maintained after gamma irradiation, which suggested that gamma irradiation can be used for the preservation of wooden cultural heritages painted with Dancheong.

  17. Degradation of poly(carbonate urethane) by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Özdemir, T.; Usanmaz, A.

    2007-06-01

    Poly(carbonate urethane) (PCU), is a valuable commercial engineering polymer. In order to understand the possible use of PCU in radioactive waste management as a solidifying agent or as a disposal container, radiation stability of the PCU is studied by Co-60 gamma irradiations at two different dose rates of 1540 and 82.8 Gy/h. The total dose of irradiation was up to 6.24 MGy. Degradation nature was tested by studying the changes in mechanical and thermal properties with rate and total dose of irradiation. Ultimate tensile strength and toughness first increased and then decreased with the irradiation dose. Half value dose (HVD) for elongation was 4010 kGy and for tensile strength 6010 kGy at the dose rate of 1540 Gy/h. The non-irradiated PCU transparent color changed to yellow and then brown with increased irradiation dose. The FTIR spectral analysis showed a random scission of polymer with irradiation. From the experimental observation, it was shown that PCU can be used for embedding radioactive waste for about 300 years.

  18. EPR investigation of some gamma-irradiated excipients

    NASA Astrophysics Data System (ADS)

    Aleksieva, Katerina; Yordanov, Nicola D.

    2012-09-01

    The results of electron paramagnetic resonance (EPR) studies on some excipients: lactose, microcrystalline cellulose (avicel), starch, dioxosilane (aerosil), talc and magnesium stearate before and after gamma-irradiation are reported. Before irradiation, all samples are EPR silent except talc. After gamma-irradiation, they show complex spectra except magnesium stearate, which is EPR silent. Studies show the influence of gamma-irradiation on EPR spectra and stability of gamma-induced radicals. Analysis of the EPR spectrum of gamma-irradiated talc shows that this material is radiation insensitive. Only lactose forms stable-free radicals upon gamma sterilization and can be used for identification of radiation processing for a long time period thereafter.

  19. Reduction of pathogenic bacteria in organic compost using gamma irradiation

    NASA Astrophysics Data System (ADS)

    Yun, Hye-Jeong; Lim, Sang-Yong; Song, Hyun-Pa; Kim, Byung-Keun; Chung, Byung-Yeoup; Kim, Dong-Ho

    2007-11-01

    Organic compost is a useful fertilizer for organic farming. However, it poses a microbiological hazard to the farm products because most of the composts are originated from excremental matters of domestic animals. In this study, the radiation treatment was performed to improve microbiological safety of organic compost and the effectiveness of gamma irradiation for inactivating Salmonella Typhimurium and Escherichia coli was investigated. The total aerobic and coliform bacteria in the 16 commercial composts were ranged from 10 5 to 10 7 CFU/ml and 0 to 10 3 CFU/ml, respectively. All coliform bacteria in the composts were eliminated by irradiation at a dose of 3 kGy, while about 10 2 CFU/ml of the total aerobic bacteria were survived up to 10 kGy. In the artificial inoculation test, the test organisms (inoculated at 10 7 CFU/g) were eliminated by irradiation at 3 kGy. Approximate D10 values of Salmonella Typhimurium and E. coli in the compost were 0.40 and 0.25 kGy, respectively. In the cultivation test, the test organisms of the compost had transfer a lettuce leaves. The growth pattern of lettuce was not different between irradiated and non-irradiated composts.

  20. The effect of gamma irradiation on injectable human amnion collagen

    SciTech Connect

    Liu, B.C.; Harrell, R.; Davis, R.H.; Dresden, M.H.; Spira, M. )

    1989-08-01

    The effect of gamma irradiation on the physicochemical properties of injectable human amnion collagen was investigated. Pepsin-extracted human amnion collagen was purified, reconstituted, and irradiated with varying doses of gamma irradiation (0.25 Mrads to 2.5 Mrads). Gamma irradiation had a significant impact on the physical characteristics of the collagen. The neutral solubility of collagen in PBS at 45{degrees}C was decreased from 100% for the nonirradiated control sample to 16% for the 2.5 Mrads irradiated sample. SDS polyacrylamide gel electrophoresis also demonstrated the dose-dependent effect of gamma irradiation on collagen cross-links. Electron microscopic observation revealed that even at low irradiation dose (0.25 Mrads), collagen fibril diameter increased. The average diameter was 50 nm for nonirradiated control fibrils, while 4.4% of the irradiated collagen fibrils had a diameter greater than 100 nm. Irradiated collagen showed little evidence of damage. Well-preserved cross-striations were found in collagen fibrils at all doses of irradiation. Native amnion collagen irradiated with gamma rays demonstrated a slight increase in resistance to collagenase degradation compared with nonirradiated native collagen samples. Increased resistance to collagenase did not correlate with increasing irradiation dose. After 30 min of incubation at 37{degrees}C, both irradiated and nonirradiated collagen was completely digested by collagenase. However, gamma-irradiated collagen did become more sensitive to hydrolysis by trypsin. The higher the irradiation doses used, the greater sensitivity to trypsin was observed. At 0.25 Mrads irradiation only a slight increase was found. No marked differences in amino acid composition were noted among the high dose irradiated, low dose irradiated and control amnion collagen.

  1. Gamma-ray irradiation of ohmic MEMS switches

    NASA Astrophysics Data System (ADS)

    Maciel, John J.; Lampen, James L.; Taylor, Edward W.

    2012-10-01

    Radio Frequency (RF) Microelectromechanical System (MEMS) switches are becoming important building blocks for a variety of military and commercial applications including switch matrices, phase shifters, electronically scanned antennas, switched filters, Automatic Test Equipment, instrumentation, cell phones and smart antennas. Low power consumption, large ratio of off-impedance to on-impedance, extreme linearity, low mass, small volume and the ability to be integrated with other electronics makes MEMS switches an attractive alternative to other mechanical and solid-state switches for a variety of space applications. Radant MEMS, Inc. has developed an electrostatically actuated broadband ohmic microswitch that has applications from DC through the microwave region. Despite the extensive earth based testing, little is known about the performance and reliability of these devices in space environments. To help fill this void, we have irradiated our commercial-off-the-shelf SPST, DC to 40 GHz MEMS switches with gamma-rays as an initial step to assessing static impact on RF performance. Results of Co-60 gamma-ray irradiation of the MEMS switches at photon energies ≥ 1.0 MeV to a total dose of ~ 118 krad(Si) did not show a statistically significant post-irradiation change in measured broadband, RF insertion loss, insertion phase, return loss and isolation.

  2. Effect of gamma irradiation on viscosity reduction of cereal porridges for improving energy density

    NASA Astrophysics Data System (ADS)

    Lee, Ju-Woon; Kim, Jae-Hun; Oh, Sang-Hee; Byun, Eui-Hong; Yook, Hong-Sun; Kim, Mee-Ree; Kim, Kwan-Soo; Byun, Myung-Woo

    2008-03-01

    Cereal porridges have low energy and nutrient density because of its viscosity. The objective of the present study was to evaluate the effect of irradiation on the reduction of viscosity and on the increasing solid content of cereal porridge. Four cereals, wheat, rice, maize (the normal starchy type) and waxy rice, were used in this study. The porridge with 3000 cP was individually prepared from cereal flour, gamma-irradiated at 20 kGy and tested. Gamma irradiation of 20 kGy was allowed that the high viscous and rigid cereal porridges turned into semi-liquid consistencies. The solid contents of all porridges could increase by irradiation, compared with non-irradiated ones. No significant differences of starch digestibility were observed in all cereal porridge samples. The results indicated that gamma irradiation might be helpful for improving energy density of cereal porridge with acceptable consistency.

  3. Gamma Irradiation of Magnetoresistive Sensors for Planetary Exploration

    PubMed Central

    Sanz, Ruy; Fernández, Ana B.; Dominguez, Jose A.; Martín, Boris; Michelena, Marina D.

    2012-01-01

    A limited number of Anisotropic Magnetoresistive (AMR) commercial-off-the-shelf (COTS) magnetic sensors of the HMC series by Honeywell, with and without integrated front-end electronics, were irradiated with gamma rays up to a total irradiation dose of 200 krad (Si), following the ESCC Basic Specification No. 22900. Due to the magnetic cleanliness required for these tests a special set-up was designed and successfully employed. Several parameters of the sensors were monitored during testing and the results are reported in this paper. The authors conclude that AMR sensors without front-end electronics seem to be robust against radiation doses of up to 200 krad (Si) with a dose rate of 5 krad (Si)/hour and up to a resolution of tens of nT, but sensors with an integrated front-end seem to be more vulnerable to radiation. PMID:22666039

  4. Application of gamma irradiation for inhibition of food allergy

    NASA Astrophysics Data System (ADS)

    Byun, Myung-Woo; Lee, Ju-Woon; Yook, Hong-Sun; Jo, Cheorun; Kim, Hee-Yun

    2002-03-01

    This study was carried out to evaluate the application of food irradiation technology as a method for reducing food allergy. Milk β-lactoglobulin, chicken egg albumin, and shrimp tropomyosin were used as model food allergens for experiments on allergenic and molecular properties by gamma irradiation. The amount of intact allergens in an irradiated solution was reduced by gamma irradiation depending upon the dose. These results showed that epitopes on the allergens were structurally altered by radiation treatment and that the irradiation technology can be applied to reduce allergenicity of allergic foods.

  5. Influence of gamma irradiation on carbon nanotube-reinforced polypropylene.

    PubMed

    Castell, P; Medel, F J; Martinez, M T; Puértolas, J A

    2009-10-01

    Single walled carbon nanotubes (SWNT) have been incorporated into a polypropylene (PP) matrix in different concentrations (range: 0.25-2.5 wt%). The nanotubes were blended with PP particles (approximately 500 microm in size) before mixing in an extruder. Finally, rectangular plates were obtained by compression moulding. PP-SWNT composites were gamma irradiated at different doses, 10 and 20 kGy, to promote crosslinking in the matrix and potentially enhance the interaction between nanotubes and PP. Extensive thermal, structural and mechanical characterization was conducted by means of DSC, X-ray diffraction, Raman spectroscopy, uniaxial tensile tests and dynamic mechanical thermal (DMTA) techniques. DSC thermograms reflected higher crystallinity with increasing nanotube concentration. XRD analysis confirmed the only presence of a monoclinic crystals and proved unambiguously that CNTs generated a preferred orientation. Raman spectroscopy confirmed that the intercalation of the polymer between bundles is favored at low CNTs contents. Elastic modulus results confirmed the reinforcement of the polypropylene matrix with increasing SWNT concentration, although stiffness saturation was observed at the highest concentration. Loss tangent DMTA curves showed three transitions for raw polypropylene. While gamma relaxation remained practically unchanged in all the samples, beta relaxation temperatures showed an increase with increasing CNT content due to the reduced mobility of the system. Gamma-irradiated PP exhibited an increase in the beta relaxation temperature, associated with changes in glass transition due to radiation-induced crosslinking. On the contrary, gamma-irradiated nanocomposites did not show this effect probably due to the reaction of radiative free radicals with CNTs. PMID:19908494

  6. Effect of gamma irradiation on HPMC/ZnO nanocomposite films

    SciTech Connect

    Rao, B. Lakshmeesha; Asha, S.; Madhukumar, R.; Latha, S.; Gowda, Mahadeva; Shivananda, C. S.; Harish, K. V.; Sangappa; Shetty, G. Rajesha

    2015-06-24

    The present work looks into the structural and mechanical properties modification in ZnO nanoparticle incorporated Hydroxypropyl methylcellulose (HPMC) polymer films, induced by gamma irradiation. The irradiation process was performed in gamma chamber at room temperature by use of Cobalt-60 source (Average energy of 1.25MeV) at different doses: 0, 50, 100, 150 and 200 kGy respectively. The changes in structural parameters and mechanical properties in pure and gamma irradiated HPMC/ZnO nanocomposite films have been studied using X-ray scattering (XRD) data and universal testing machine (UTM). It is found that gamma irradiation decreases the structural parameters and improves the mechanical properties of nanocomposite films.

  7. Effect of gamma irradiation on HPMC/ZnO nanocomposite films

    NASA Astrophysics Data System (ADS)

    Rao, B. Lakshmeesha; Asha, S.; Madhukumar, R.; Latha, S.; Gowda, Mahadeva; Shetty, G. Rajesha; Shivananda, C. S.; Harish, K. V.; Sangappa

    2015-06-01

    The present work looks into the structural and mechanical properties modification in ZnO nanoparticle incorporated Hydroxypropyl methylcellulose (HPMC) polymer films, induced by gamma irradiation. The irradiation process was performed in gamma chamber at room temperature by use of Cobalt-60 source (Average energy of 1.25MeV) at different doses: 0, 50, 100, 150 and 200 kGy respectively. The changes in structural parameters and mechanical properties in pure and gamma irradiated HPMC/ZnO nanocomposite films have been studied using X-ray scattering (XRD) data and universal testing machine (UTM). It is found that gamma irradiation decreases the structural parameters and improves the mechanical properties of nanocomposite films.

  8. Characterization of LWRS Hybrid SiC-CMC-Zircaloy-4 Fuel Cladding after Gamma Irradiation

    SciTech Connect

    Isabella J van Rooyen

    2012-09-01

    The purpose of the gamma irradiation tests conducted at the Idaho National Laboratory (INL) was to obtain a better understanding of chemical interactions and potential changes in microstructural properties of a mock-up hybrid nuclear fuel cladding rodlet design (unfueled) in a simulated PWR water environment under irradiation conditions. The hybrid fuel rodlet design is being investigated under the Light Water Reactor Sustainability (LWRS) program for further development and testing of one of the possible advanced LWR nuclear fuel cladding designs. The gamma irradiation tests were performed in preparation for neutron irradiation tests planned for a silicon carbide (SiC) ceramic matrix composite (CMC) zircaloy-4 (Zr-4) hybrid fuel rodlet that may be tested in the INL Advanced Test Reactor (ATR) if the design is selected for further development and testing

  9. Gamma irradiation influence on physical properties of milk proteins

    NASA Astrophysics Data System (ADS)

    Cieśla, K.; Salmieri, S.; Lacroix, M.; Tien, C. Le

    2004-09-01

    Gamma irradiation was found to be an effective method for the improvement of both barrier and mechanical properties of the edible films and coatings based on calcium and sodium caseinates alone or combined with some globular proteins. Our current studies concern gamma irradiation influence on the physical properties of calcium caseinate-whey protein isolate-glycerol (1:1:1) solutions and gels, used for films preparation. Irradiation of solutions was carried out with Co-60 gamma rays applying 0 and 32 kGy dose. The increase in viscosity of solutions was found after irradiation connected to induced crosslinking. Lower viscosity values were detected, however, after heating of the solutions irradiated with a 32 kGy dose than after heating of the non-irradiated ones regarding differences in the structure of gels and resulting in different temperature-viscosity curves that were recorded for the irradiated and the non-irradiated samples during heating and cooling. Creation of less stiff but better ordered gels after irradiation arises probably from reorganisation of aperiodic helical phase and β-sheets, in particular from increase of β-strands, detected by FTIR. Films obtained from these gels are characterised by improved barrier properties and mechanical resistance and are more rigid than those prepared from the non-irradiated gels. The route of gel creation was investigated for the control and the irradiated samples during heating and the subsequent cooling.

  10. Gamma irradiation reduces the immunological toxicity of doxorubicin, anticancer drug

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Hun; Sung, Nak-Yun; Raghavendran, H. Balaji; Yoon, Yohan; Song, Beom-Seok; Choi, Jong-il; Yoo, Young-Choon; Byun, Myung-Woo; Hwang, Young-Jeong; Lee, Ju-Woon

    2009-07-01

    Doxorubicin (DOX) is a widely used anticancer agent, but exhibits some immunological toxicity to patients during chemotherapy. The present study was conducted to evaluate the effect of gamma irradiation on the immunological response and the inhibition activity on in vivo tumor mass of DOX. The results showed that DOX irradiated at 10 and 20 kGy reduce the inhibition of mouse peritoneal macrophage proliferation and induce the release of cytokines (TNF-α and IL-6) when compared with non-irradiated DOX. The cytotoxicity against human breast (MCF-7), murine colon adenocarcinoma (Colon 26) and human monocytic (THP-1) tumor cell were not significantly different between non-irradiated and irradiated DOX ( P<0.05). In vivo study on the tumor mass inhibition, gamma-irradiated DOX showed a considerable inhibition of tumor mass and this effect was statistically non-significant as compared with non-irradiated DOX. In conclusion, gamma irradiation could be regarded as a potential method for reducing the immunological toxicity of DOX. Further researches is needed to reveal the formation and activity of radiolysis products by gamma irradiation.

  11. Thermoluminescence and dielectric response of gamma irradiated muscovite mica

    SciTech Connect

    Kaur, Sukhnandan Singh, Surinder Singh, Lakhwant; Lochab, S. P.

    2014-04-24

    The effect of gamma radiation dose on the thermoluminescence (TL) and dielectric properties of muscovite mica was studied. TL glow curves exhibited a single peak around 141 {sup 0}C and its activation energy was estimated to be about 0.89 eV. Different dielectric parameters like dielectric constant, dielectric loss and ac conductivity have been calculated in both pristine and gamma irradiated samples. These dielectric parameters have been studied as a function of irradiation dose.

  12. Effect of gamma ray irradiation on sodium borate single crystals

    NASA Astrophysics Data System (ADS)

    Kalidasan, M.; Asokan, K.; Baskar, K.; Dhanasekaran, R.

    2015-12-01

    In this work, the effects of 5 kGy, 10 kGy and 20 kGy doses of gamma ray irradiation on sodium borate, Na2[B4O5(OH)4]·(H2O)8 single crystals have been studied. Initially these crystals were grown by solution growth technique and identified as monoclinic using X-ray diffraction analysis. X-ray rocking curves confirm the formation of crystalline defects due to gamma rays in sodium borate single crystals. The electron paramagnetic resonance spectra have been recorded to identify the radicals created due to gamma ray irradiation in sodium borate single crystals. The thermoluminescence glow curves due to the defects created by gamma rays in this crystal have been observed and their kinetic parameters were calculated using Chen's peak shape method. The optical absorption increases and photoluminescence spectral intensity decreases for 5 kGy and 20 kGy doses gamma ray irradiated crystals compared to pristine and 10 kGy dose irradiated one. The effect of various doses of gamma rays on vibrational modes of the sodium borate single crystals was studied using FT-Raman and ATR-FTIR spectral analysis. The dielectric permittivity, conductance and dielectric loss versus frequency graphs of these crystals have been analyzed to know the effect of gamma ray irradiation on these parameters.

  13. Effect of gamma irradiation on mistletoe (Viscum album) lectin-mediated toxicity and immunomodulatory activity☆

    PubMed Central

    Sung, Nak-Yun; Byun, Eui-Baek; Song, Du-Sup; Jin, Yeung-Bae; Kim, Jae-Kyung; Park, Jong-Heum; Song, Beom-Seok; Jung, Pil-Mun; Byun, Myung-Woo; Lee, Ju-Woon; Park, Sang-Hyun; Kim, Jae-Hun

    2013-01-01

    This study evaluated the effect of gamma irradiation on the reduction of the toxicity of mistletoe lectin using both in vitro and in vivo models. To extract the lectin from mistletoe, an (NH4)2SO4 precipitation method was employed and the precipitant purified using a Sepharose 4B column to obtain the pure lectin fraction. Purified lectin was then gamma-irradiated at doses of 0, 5, 10, 15, and 20 kGy, or heated at 100 °C for 30 min. Toxic effects of non-irradiated, irradiated, and heat-treated lectins were tested using hemagglutination assays, cytotoxicity assays, hepatotoxicity, and a mouse survival test and immunological response was tested using cytokine production activity. Hemagglutination of lectin was remarkably decreased (P < 0.05) by irradiation at doses exceeding 10 kGy and with heat treatment. However, lectin irradiated with 5 kGy maintained its hemagglutination activity. The cytotoxicity of lectin was decreased by irradiation at doses over 5 kGy and with heat treatment. In experiments using mouse model, glutamate oxaloacetate transaminase (GOT) and glutamic pyruvic transaminase (GPT) levels were decreased in the group treated with the 5 kGy irradiated and heat-treated lectins as compared to the intact lectin, and it was also shown that 5 kGy irradiated and heat-treated lectins did not cause damage in liver tissue or mortality. In the result of immunological response, tumor necrosis factor (TNF-α) and interleukin (IL-6) levels were significantly (P < 0.05) increased in the 5 kGy gamma-irradiated lectin treated group. These results indicate that 5 kGy irradiated lectin still maintained the immunological response with reduction of toxicity. Therefore, gamma-irradiation may be an effective method for reducing the toxicity of lectin maintaining the immune response. PMID:23847758

  14. Radiation Sterilization and Food Irradiation Using Gamma Radiation

    NASA Astrophysics Data System (ADS)

    O'Hara, Kevin

    2003-03-01

    Since the introduction of MDS Nordion's first irradiator in the early 1960's, a variety of gamma-processing systems has been developed. Each design is suited to a particular set of requirements - from high-throughput operations of diverse product lots to full automation or batch processing, all using gamma radiation. Gamma irradiator designs include the Centurion irradiator for temperature-sensitive food products like hamburgers and poultry; the Brevion, a compact batch irradiator providing flexibility, timeliness and simplicity on a whole new scale; a JS-10000 irradiator that operates in either automatic or batch mode to enable multipurpose product scheduling and optimum throughput; and, an irradiator that processes full pallets and is ideal for processing high-density products requiring excellent dose uniformity. These innovative irradiator designs help facilities to be more efficient, maximize operating time, improve product turnaround and minimize inventory levels. MDS Nordion's development of improved Point Kernel and Monte Carlo techniques is discussed, including their application in radiation source optimization, production irradiator design and process control. Absorbed-dose calculations also provide insight into the critical areas for dose mapping and routine monitoring, allowing for the optimum placement of dosimeters. Calculations may also be used to determine the absorbed-dose distribution within product, especially in areas of complex geometry such as material interfaces. The use of easily accessible, accurate and validated dose-calculation programs can be used to optimize the irradiation process. Key Words: dosimetry, irradiator design, dose calculation, modelling, modeling, process control, radiation source optimization.

  15. Some Radiation Techniques Used in the GU-3 Gamma Irradiator

    SciTech Connect

    Dodbiba, Andon; Ylli, Ariana; Stamo, Iliriana; Kongjika, Efigjeni

    2007-04-23

    Different radiation techniques, measurement of dose and its distibution throughout the irradiated materials are the main problems treated in this paper. The oscillometry method combined with the ionization chamber, as an absolute dosimeter, is used for calibration of routine ECB dosimeters. The dose uniformity, for the used radiation techniques in our GU-3 Gamma Irradiator with Cs-137, is from 93% up to 99%.

  16. Degradation of 2-mercaptobenzothiazole in aqueous solution by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Bao, Qiburi; Chen, Lujun; Tian, Jinping; Wang, Jianlong

    2014-10-01

    Industrial wastewaters containing 2-mercaptobenzothiazole (MBT), a widely used chemical additive, usually cannot be treated properly by conventional biological methods, thus cause an environmental risk. Ionizing radiation was proposed as a method for abatement of several refractory pollutants from water. The paper investigated MBT degradation using irradiation technology. The decomposition kinetics was described, and the transformation and the change of biodegradability were discussed. The results of gamma radiation experiments on MBT-containing aqueous solutions indicated that reactive radicals resulting from water radiolysis effectively degrade MBT and improve the biodegradability of the solutions. At a 20 mg/L MBT concentration, the removal of 82% was achieved at the absorbed dose of 1.2 kGy. The results of specific oxygen uptake rate (SOUR) test showed that MBT was decomposed into biodegradable products, after irradiation at 20 kGy. Radicals attacked the sulfur atoms of the studied molecule leading to the release of sulfate ions, but the mineralization of organic carbons was rather weak. Initial concentration significantly affected the degradation efficacy of MBT by gamma radiation.

  17. Selection of Novel Cowpea Genotypes Derived through Gamma Irradiation

    PubMed Central

    Horn, Lydia N.; Ghebrehiwot, Habteab M.; Shimelis, Hussein A.

    2016-01-01

    Cowpea (Vigna unguiculata [L.] Walp.) yields are considerably low in Namibia due to lack of improved varieties and biotic and abiotic stresses, notably, recurrent drought. Thus, genetic improvement in cowpea aims to develop cultivars with improved grain yield and tolerance to abiotic and biotic stress factors. The objective of this study was to identify agronomically desirable cowpea genotypes after mutagenesis using gamma irradiation. Seeds of three traditional cowpea varieties widely grown in Namibia including Nakare (IT81D-985), Shindimba (IT89KD-245-1), and Bira (IT87D-453-2) were gamma irradiated with varied doses and desirable mutants were selected from M2 through M6 generations. Substantial genetic variability was detected among cowpea genotypes after mutagenesis across generations including in flowering ability, maturity, flower and seed colors and grain yields. Ten phenotypically and agronomically stable novel mutants were isolated at the M6 each from the genetic background of the above three varieties. The selected promising mutants’ lines are recommended for adaptability and stability tests across representative agro-ecologies for large-scale production or breeding in Namibia or similar environments. The novel cowpea genotypes selected through the study are valuable genetic resources for genetic enhancement and breeding. PMID:27148275

  18. Selection of Novel Cowpea Genotypes Derived through Gamma Irradiation.

    PubMed

    Horn, Lydia N; Ghebrehiwot, Habteab M; Shimelis, Hussein A

    2016-01-01

    Cowpea (Vigna unguiculata [L.] Walp.) yields are considerably low in Namibia due to lack of improved varieties and biotic and abiotic stresses, notably, recurrent drought. Thus, genetic improvement in cowpea aims to develop cultivars with improved grain yield and tolerance to abiotic and biotic stress factors. The objective of this study was to identify agronomically desirable cowpea genotypes after mutagenesis using gamma irradiation. Seeds of three traditional cowpea varieties widely grown in Namibia including Nakare (IT81D-985), Shindimba (IT89KD-245-1), and Bira (IT87D-453-2) were gamma irradiated with varied doses and desirable mutants were selected from M2 through M6 generations. Substantial genetic variability was detected among cowpea genotypes after mutagenesis across generations including in flowering ability, maturity, flower and seed colors and grain yields. Ten phenotypically and agronomically stable novel mutants were isolated at the M6 each from the genetic background of the above three varieties. The selected promising mutants' lines are recommended for adaptability and stability tests across representative agro-ecologies for large-scale production or breeding in Namibia or similar environments. The novel cowpea genotypes selected through the study are valuable genetic resources for genetic enhancement and breeding. PMID:27148275

  19. Raman and AFM study of gamma irradiated plastic bottle sheets

    SciTech Connect

    Ali, Yasir; Kumar, Vijay; Dhaliwal, A. S.; Sonkawade, R. G.

    2013-02-05

    In this investigation, the effects of gamma irradiation on the structural properties of plastic bottle sheet are studied. The Plastic sheets were exposed with 1.25MeV {sup 60}Co gamma rays source at various dose levels within the range from 0-670 kGy. The induced modifications were followed by micro-Raman and atomic force microscopy (AFM). The Raman spectrum shows the decrease in Raman intensity and formation of unsaturated bonds with an increase in the gamma dose. AFM image displays rough surface morphology after irradiation. The detailed Raman analysis of plastic bottle sheets is presented here, and the results are correlated with the AFM observations.

  20. Effect of gamma irradiation on rice and its food products

    NASA Astrophysics Data System (ADS)

    Sung, Wen-Chieh

    2005-07-01

    Two milled indica rice varieties were exposed to gamma radiation with doses ranging from 0 to 1.0 kGy. The effects of gamma irradiation on rice flour pasting properties and the qualities of its food product, rice curd, were compared to the effects of storage. A dose of 1 kGy can decrease the flour paste viscosity and tenderize the texture of the rice curd to similar levels as those obtained after 12 months of storage. It was thus shown that gamma irradiation could shorten the indica rice aging time and improve the processing stability and quality of rice products.

  1. Corrosion of stainless steel for HLW containers under gamma irradiation

    SciTech Connect

    Osada, K.; Muraoka, S.

    1993-12-31

    The corrosion behavior of type 304 stainless steel was studied under gamma irradiation as part of the evaluation for the long-term durability of high-level radioactive waste (HLW) disposal containers. Gamma rays, generated from fission products in high-level radioactive waste, are considered to change the environment around the canisters and overpacks. The redox potentials for NaCl solutions and corrosion potentials of stainless steel were measured to consider the effects of gamma irradiation, by using an electrochemical method. The pitting potentials of stainless steel for NaCl solutions were also measured to examine the pitting corrosion under gamma irradiation. As a result of this experiment, it is concluded that the oxidizing properties as a result of the formation of H{sub 2}O{sub 2} and H{sub 2} produced by gamma irradiation depended on the concentration of Cl{sup -}, and that the strength of oxidizing properties of 1M (mol{center_dot}dm{sup -3}) NaCl solution was particularly high, and the pitting corrosion as found for 1M NaCl solution under gamma irradiation at the dose rate of 2.6{times}10{sup 2} C/kg{center_dot}h (1.0{times}10{sup 6} R/h) at 60{degrees}C, by using an electrochemical method.

  2. Fluorescence diagnostics for foods subjected to gamma irradiation

    NASA Astrophysics Data System (ADS)

    Kulawansa, Digala M.; Menzel, E. R.; Banford, H. M.

    1996-03-01

    We have examined the inherent fluorescence of pepper and cinnamon samples exposed to radiation from a 60Co gamma source. We find that in the pepper the fluorescence intensity increases with radiation dose and the ratio of fluorescence intensity at two specific wavelengths, 566 and 674 nm, increases with radiation dose. In contrast, in the cinnamon the distinction between unirradiated and irradiated is not clear. Our preliminary work on gamma ray irradiated pepper indicates that laser-induced fluorescence may be utilized to detect the absorbed dose of irradiation of food samples.

  3. Neutron and gamma irradiation damage to organic materials.

    SciTech Connect

    White, Gregory Von, II; Bernstein, Robert

    2012-04-01

    This document discusses open literature reports which investigate the damage effects of neutron and gamma irradiation on polymers and/or epoxies - damage refers to reduced physical chemical, and electrical properties. Based on the literature, correlations are made for an SNL developed epoxy (Epon 828-1031/DDS) with an expected total fast-neutron fluence of {approx}10{sup 12} n/cm{sup 2} and a {gamma} dosage of {approx}500 Gy received over {approx}30 years at < 200 C. In short, there are no gamma and neutron irradiation concerns for Epon 828-1031/DDS. To enhance the fidelity of our hypotheses, in regards to radiation damage, we propose future work consisting of simultaneous thermal/irradiation (neutron and gamma) experiments that will help elucidate any damage concerns at these specified environmental conditions.

  4. Neutron and gamma irradiation effects on power semiconductor switches

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.; Frasca, A. J.

    1990-01-01

    The performance characteristics of high power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.

  5. Neutron and gamma irradiation effects on power semiconductor switches

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.; Frasca, A. J.

    1990-01-01

    The performance characteristics of high-power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.

  6. Neutron and gamma irradiation effects on power semiconductor switches

    SciTech Connect

    Schwarze, G.E.; Frasca, A.J.

    1994-09-01

    The performance characteristics of high power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.

  7. Effect of. gamma. -ray irradiation on alcohol production from corn

    SciTech Connect

    Han, Y.W.; Cho, Y.K.; Ciegler, A.

    1983-11-01

    Cracked corn was irradiated with ..gamma.. rays at 0-100 Mrad and the effects of the irradiation on sugar yield, susceptibility to enzymatic hydrolysis of starch, yeast growth, and alcohol production were studied. Gamma irradiation at 50 Mrad or greater produced a considerable amount of reducing sugar but little glucose. At lower dosages, ..gamma.. irradiation significantly increased the susceptibility of corn starch to enzymatic hydrolysis, but dosages of 50 Mrad or greater decomposed the starch molecules as indicated by the reduction in iodine uptake. About 12.5% reducing sugar was produced by amylase treatment of uncooked, irradiated corn. This amount exceeded the level of sugar produced from cooked (gelatinized) corn by the same enzyme treatment. The yeast numbers in submerged cultivation were lower on a corn substrate that was irradiated at 50 Mrad or greater compared to that on an unirradiated control. About the same level of alcohol was produced on uncooked, irradiated (10/sup 5/ - 10/sup 6/ rad) corn as from cooked (121 degrees C for 30 min) corn. Therefore, the conventional cooking process for gelatinization of starch prior to its saccharification can be eliminated by irradiation. Irradiation also eliminated the necessity of sterilization of the medium and reduced the viscosity of high levels of substrate in the fermentation broth. (Refs. 10).

  8. Effect of gamma irradiation on ethylene-octene copolymers

    NASA Astrophysics Data System (ADS)

    Li, Jiuqiang; Peng, Jing; Qiao, Jinliang; Jin, Dongbin; Wei, Genshuan

    2002-03-01

    Two ethylene-octene copolymers (POE) were irradiated with 60Co gamma radiation and influence of irradiation atmosphere, absorbed dose and heat treatment of samples on the crosslinking were studied. Thermal properties and crystalline morphology of non-irradiated and irradiated POE were determined by using differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXS), respectively. The Charlesby-Pinner equation was used to describe the relationship between absorbed dose and sol fraction. The gel fraction of irradiated POE was lower and decreased with the increase of octene content when irradiated in oxygen, compared to irradiation in nitrogen atmosphere. The gel fraction increased significantly with the increasing of absorbed dose for the two copolymers. Heat treatment of samples prohibited the crosslinking of irradiated POE. The DSC results indicated that a subtle change of thermal properties of POE was observed before and after gamma irradiation at low dose. No change was found from the WAXS spectra of non-irradiated and irradiated POE. For heat-treating samples, the Charlesby-Pinner equation can not fit perfectly with the relationship between the sol fraction and absorbed dose, but it fits well with the crosslinking reaction of POE pellets.

  9. Induction of Oral Tolerance by Gamma-Irradiated Ovalbumin Administration

    PubMed Central

    Yang, Hui; Lee, Junglim; Seo, Ji Hyun; Oh, Kwang Hoon; Cho, Young Ho; Yoo, Yung Choon

    2016-01-01

    Oral administration of soluble antigen can induce peripheral tolerance to the antigen. This study was conducted to evaluate whether gamma-irradiated ovalbumin (OVA) can induce oral tolerance. To investigate this, we administrated intact or irradiated OVA to mice, induced allergic response using intact OVA and alum, then compared humoral and cellular immune responses. Mice treated with gammairradiated OVA had less OVA-specific IgE compared with those who were administered intact OVA. There was no difference in levels of OVA-specific IgG+A+M, IgG1, and IgG2a. Splenocytes of mice administered irradiated OVA showed similar OVA-specific T cell proliferation and secretion of IFN-γ and IL-4. However, there was an increase in IL-2 and a decrease of IL-6 secretion in mice treated with irradiated OVA. These results indicate that gamma-irradiated OVA have similar effects to intact OVA on antigen tolerance. PMID:27499658

  10. Thermal and crystallization behaviour of gamma irradiated PLLA

    NASA Astrophysics Data System (ADS)

    Milicevic, D.; Trifunovic, S.; Galovic, S.; Suljovrujic, E.

    2007-08-01

    Structure, crystallization behaviour and some thermal properties of poly- L-lactide (PLLA), gamma irradiated up to 300 kGy, have been studied. Through differential scanning calorimetry measurements, radiation-induced changes were evident in the enthalpy of melting and cold crystallization, as well as in the degree of crystallinity. Decay of the glass transition, cold crystallization and melting temperatures with irradiation dose was observed in all cases. The annealing treatment, which can substantially reduce the concentration of free radicals, also had a great impact on thermal/crystallization behaviour of irradiated PLLA. Extensive chain scission, as a dominant effect of gamma irradiation, confirmed by gel permeation chromatography, has as a consequence a growth of new thin crystal lamellae and occurrence of the second low-temperature melting peak. Thermogravimetric analyses have shown that irradiation lowered the thermal stability of PLLA.

  11. Health protection and food preservation by gamma irradiation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Results of several major studies on food systems for space missions beginning with Apollo 12 through Apollo-Soyuz and investigations of the application of irradiation to food for manned space flight are reported. The study of flight food systems involved the application of radurization (pasteurizing levels) doses of gamma irradiation to flour and bread supplied by Pepperidge Farms in advance of the missions. All flights from Apollo 12 through 17 carried irradiated fresh bread. On Apollo 17, cooperation with Natick Laboratories permitted the introduction of a ham sandwich using irradiated bread and irradiated sterile ham. Investigations centered on irradiated bread were conducted during the course of these missions. Studies were applied to the concept of improving fresh bread from the point of view of mold inhibition. The studies considered how irradiation could best be applied at what levels and on a variety of bread types. Throughout the studies of the application of gamma irradiation the emphasis was placed upon using low levels of irradiation in the pasteurizing or radurizing doses--under a Megarad. The primary goal was to determine if a public health benefit could be demonstrated using radurization along with food preservation and food quality improvements. The public health benefit would be parallel to that of pasteurization of milk as a concept. Publications are included providing the details of these observations, one dealing with the flour characteristics and the other dealing with the influence on fresh bread types. These demonstrate the major findings noted during the period of the studies examining bread.

  12. The pros and cons of polyethylene sterilization with gamma irradiation.

    PubMed

    Hopper, Robert H; Engh, C Anderson; Fowlkes, LaTonya B; Engh, Charles A

    2004-12-01

    This retrospective study evaluated the implant, patient and surgical factors associated with polyethylene wear for one type of porous-coated hemispheric total hip arthroplasty cup. Radiographic wear measurements among 567 Duraloc cups (512 patients) revealed that liners sterilized by gamma-irradiation wore 0.085 mm/year less than those that were sterilized by gas-plasma, a noncross-linking chemical surface treatment. The substantially decreased wear rate associated with gamma-irradiation was attributed to sterilization-induced polyethylene cross-linking. Shelf-aging adversely affected liners that were gamma irradiated in air. On average, highly crystalline Hylamer liners showed a 0.064 mm/year increase in wear rates for each year of shelf storage after terminal sterilization with gamma-irradiation in air. Among conventional Enduron liners, the effect of shelf aging after gamma-irradiation in air was more modest, increasing wear rates by 0.014 mm/year for each year of shelf storage. Because Hylamer's wear performance degraded at about five times the rate of Enduron's, the improved wear resistance associated with gamma-irradiation in air would be lost after 1.3 years of shelf aging for Hylamer compared with 6.1 years for Enduron. For every additional year of age at the time of surgery, the wear rate decreased by 0.003 mm/year. Increased body mass index, a preoperative diagnosis of inflammatory arthritis, and a ceramic femoral head also were associated with decreased wear rates. PMID:15577466

  13. Effects of aeration on gamma irradiation of sewage sludge

    NASA Astrophysics Data System (ADS)

    Chu, Libing; Wang, Jianlong; Wang, Bo

    2010-08-01

    In this paper the effect of aeration on gamma irradiation of sewage sludge was investigated to examine the potential solubilization of solids in sewage sludge to ultimately reduce the solids volume for disposal. Results showed that aeration increased the effectiveness of gamma radiation. The efficiency of sludge solubilization with aeration was increased by around 25% compared to that without aeration at an irradiation dose of 2.5-9 kGy. The soluble protein, polysaccharide and humic (like) substance concentrations were higher under aerated conditions. With aeration the overall reaction appears to be oxidative as evidenced by the higher nitrate and nitrite ion concentrations in solution.

  14. Physicochemical, thermal and pasting characteristics of gamma irradiated rice starches.

    PubMed

    Gul, Khalid; Singh, A K; Sonkawade, R G

    2016-04-01

    Starches isolated from two recently released rice cultivars (PR 121 and PR 116) grown in sub-tropical climates of Punjab, India were subjected to gamma irradiation at 0, 2, and 10kGy doses using a Co(60) irradiator source. Physicochemical, thermal, pasting, and morphological properties were studied. Irradiation resulted in a significant decrease in apparent amylose content, swelling power and pasting properties. Carboxyl content and solubility increased with irradiation. The granule morphology was evaluated using scanning electron microscope, particle size analyzer and light microscope. Irradiation resulted in formation of small size granules. Granules were irregular and polyhedral in shape. The granule morphology and A-type X-ray diffraction pattern were not altered by irradiation. PMID:26778155

  15. Effects of gamma irradiation on solid and lyophilised phospholipids

    NASA Astrophysics Data System (ADS)

    Stensrud, G.; Redford, K.; Smistad, G.; Karlsen, J.

    1999-11-01

    The effects of gamma irradiation (25 kGy) as a sterilisation method for phospholipids (distearoylphosphatidylcholine and distearoylphosphatidylglycerol) were investigated. 31P-NMR revealed minor chemical degradation of the phospholipids but lower dynamic viscosity and pseudoplasticity, lower turbidity, higher diffusion constant, smaller size, more negative zeta potential and changes in the phase transition behaviour of the subsequently produced liposomes were observed. The observed changes could to some extent be explained by the irradiation-induced degradation products (distearoylphosphatidic acid, fatty acids, lysophospholipids).

  16. Gamma irradiation effect on the chemical composition and the antioxidant activity of Ipomoea batatas L

    SciTech Connect

    Tahir, D. Halide, H. Kurniawan, D.; Wahab, A. W.

    2014-09-25

    The chemical composition and antioxidant activity of Ipomoea batatas L. (sweet potato) were studied by x-ray fluorescence (XRF) spectroscopy, Fourier transform infrared spectroscopy, and by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity. The irradiation treatment was performed by using Cs-137 as a gamma sources in experimental equipment. Treatment by irradiation emerges as a possible conservation technique that has been tested successfully in several food products. The amount of chemical composition was changed and resulting new chemical for absorbed dose 40 mSv. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by DPPH radical scavenging capacity. The antioxidant activity of Ipomoea batatas L. extract was dramatically increased in the non-irradiated sample to the sample irradiated at 40 mSv. These results indicate that gamma irradiation of Ipomoea batatas L. extract can enhance its antioxidant activity through the formation of a new chemical compound. Based on these results, increased antioxidant activity of Ipomoea batatas L. extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  17. Gamma irradiation effect on the chemical composition and the antioxidant activity of Ipomoea batatas L.

    NASA Astrophysics Data System (ADS)

    Tahir, D.; Halide, H.; Wahab, A. W.; Kurniawan, D.

    2014-09-01

    The chemical composition and antioxidant activity of Ipomoea batatas L. (sweet potato) were studied by x-ray fluorescence (XRF) spectroscopy, Fourier transform infrared spectroscopy, and by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity. The irradiation treatment was performed by using Cs-137 as a gamma sources in experimental equipment. Treatment by irradiation emerges as a possible conservation technique that has been tested successfully in several food products. The amount of chemical composition was changed and resulting new chemical for absorbed dose 40 mSv. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by DPPH radical scavenging capacity. The antioxidant activity of Ipomoea batatas L. extract was dramatically increased in the non-irradiated sample to the sample irradiated at 40 mSv. These results indicate that gamma irradiation of Ipomoea batatas L. extract can enhance its antioxidant activity through the formation of a new chemical compound. Based on these results, increased antioxidant activity of Ipomoea batatas L. extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  18. Physical properties of gamma irradiated poly(vinyl alcohol) hydrogel preparations

    NASA Astrophysics Data System (ADS)

    Mondino, A. V.; González, M. E.; Romero, G. R.; Smolko, E. E.

    1999-08-01

    Poly(vinyl alcohol) films from 15% w/w aqueous solutions and a thickness of 0.2 mm were selected for this study. The films were first humidified and then acetalized and/or gamma irradiated. Then, their physical properties were tested. Tensile strength of the hydrogel films reached its maximum value in samples irradiated with a 80 kGy dose, in the case of acetalized films the dose necessary for maximum tensile strength was only 40 kGy. The combination of acetalization with formaldehyde and gamma radiation produced an elastic hydrogel with good tackiness and excellent mechanical and thermal strength.

  19. Gamma irradiation treatment of cereal grains for chick diets

    SciTech Connect

    Campbell, G.L.; Classen, H.L.; Ballance, G.M.

    1986-04-01

    Wheat (W), triticale (T), hulled barley (HB), hull-less barley (HLB), hulled oats (HO), and hull-less oats (HLO) were gamma irradiated (/sup 60/Co) at 0, 3, 6 and 9 Mrad to study the effect of irradiation on the nutritional value of cereal grains for chicks. A significant curvilinear relationship between radiation dose and 3-wk body weight of chicks fed irradiated cereals was noted for T, HB, HLB, HO and HLO. Chicks fed W or T showed no effect or lower body weight, respectively, while body weights of chicks fed barley or oat samples were higher with irradiation. The improvement tended to be maximal at the 6 Mrad level. Irradiation significantly improved the gain-to-feed ratio for chicks fed either HO or HLO. Apparent fat retention and tibia ash were higher in chicks fed irradiated HLO than in those fed untreated HLO. In a second experiment chick body weight, apparent amino acid and fat retention, tibia ash, and gain-to-feed ratios were lower in chicks fed autoclaved (121 degrees C for 20 min) barley than in those fed untreated barley. Irradiation (6 Mrad) subsequent to autoclaving barley samples eliminated these effects. Irradiation appears to benefit cereals containing soluble or mucilagenous fiber types as typified by beta-glucan of barley and oats. These fibers appear prone to irradiation-induced depolymerization, as suggested by increased beta-glucan solubility and reduced extract viscosity for irradiated barley and oat samples.

  20. Influence of a single gamma-irradiation on rat microflora.

    PubMed

    Benová, K; Falis, M; Toropila, M; Sehnalková, H; Pastvová, L

    2002-01-01

    Changes in leukocyte counts and in the gut microflora of laboratory rats irradiated with single whole-body dose of gamma rays (5.0 Gy) were determined. The number of leukocytes was lower especially 1 and 2 weeks after irradiation. A significant decrease in lymphocytes was observed 1 week and in monocytes 1 and 2 weeks after irradiation. In parallel with these changes, an increase in common microflora was observed; some microorganisms, which normally are not present in duodenum, liver and mouth cavity, were detected in these organs. PMID:12422530

  1. The dissociation of histone from deoxyribonucleohistone by gamma-irradiation.

    PubMed

    Lloyd, P H; Peacocke, A R

    1968-09-01

    1. Experiments were carried out to determine the extent of dissociation of histone from deoxyribonucleohistone as a result of irradiation with gamma-rays from (60)Co. 2. The bulk of the nucleohistone was removed from the irradiated solutions either by sedimentation or by precipitation with dilute sodium chloride solution. The supernatants were then analysed for DNA and histone. 3. The ratios of histone to DNA in these supernatants were less than for the original nucleohistone. This indicated that histone was dissociated by the irradiation, and then aggregated either with itself or with other nucleohistone molecules, and so was removed with the bulk of the nucleohistone during sedimentation or precipitation. PMID:5685855

  2. Elimination of coliforms and Salmonella spp. in sheep meat by gamma irradiation treatment

    PubMed Central

    Henriques, Luciana Salles Vasconcelos; da Costa Henry, Fábio; Barbosa, João Batista; Ladeira, Silvania Alves; de Faria Pereira, Silvia Menezes; da Silva Antonio, Isabela Maria; Teixeira, Gina Nunes; Martins, Meire Lelis Leal; de Carvalho Vital, Helio; dos Prazeres Rodrigues, Dália; dos Reis, Eliane Moura Falavina

    2013-01-01

    This study aimed at evaluating the bacteriological effects of the treatment of sheep meat contaminated with total coliforms, coliforms at 45 °C and Salmonella spp. by using irradiation at doses of 3 kGy and 5 kGy. Thirty sheep meat samples were collected from animals located in Rio de Janeiro State, Brazil, and then grouped in three lots including 10 samples: non-irradiated (control); irradiated with 3 kGy; and irradiated with 5 kGy. Exposure to gamma radiation in a 137Cs source-driven irradiating facility was perfomed at the Nuclear Defense Section of the Brazilian Army Technological Center (CTEx) in Rio de Janeiro. The samples were kept under freezing temperature (−18 °C) until the analyses, which occurred in two and four months after irradiation. The results were interpreted by comparison with the standards of the current legislation and demonstrated that non-irradiated samples were outside the parameters established by law for all groups of bacteria studied. Gamma irradiation was effective in inactivating those microorganisms at both doses tested and the optimal dose was achieved at 3 kGy. The results have shown not only the need for sanitary conditions improvements in slaughter and processing of sheep meat but also the irradiation effectiveness to eliminate coliform bacteria and Salmonella spp. PMID:24688504

  3. Developmental inhibition of gamma irradiation on the peach fruit moth Carposina sasakii (Lepidoptera: Carposinidae)

    NASA Astrophysics Data System (ADS)

    Ryu, Jihoon; Ahn, Jun-Young; Sik Lee, Seung; Lee, Ju-Woon; Lee, Kyeong-Yeoll

    2015-01-01

    Ionizing irradiation is a useful technique for disinfestation under plant quarantine as well as post-harvest management. Effects of gamma irradiation treatment were tested on different developmental events of Carposina sasakii, which is a serious pest of various orchard crops. Apple fruits infested by C. sasakii were irradiated by gamma rays ranging from 0 to 300 Gy. Inhibition rates were determined on behavioral events related to development, including larval exit from apples, cocoon formation, adult eclosion, and oviposition. Failure rates of all these developmental events increased with increasing doses of irradiation. Rates of larval exit from apples and cocoon formation decreased to 13.2% and 1.7%, respectively, at 300 Gy. However, the adult eclosion rate decreased to 5.4% at 100 Gy and was completely inhibited at doses greater than 150 Gy. LD99 values for the inhibition of cocoon formation and adult emergence was estimated into 313.4 and 191.0 Gy. Furthermore, adults developed from irradiated larvae completely failed to lay eggs. Thus, irradiation of infested apples at doses of 200 Gy and higher completely inhibited the next generation of C. sasakii. Our results suggest that gamma irradiation treatment would be a promising technique for the control of C. sasakii.

  4. Survival Study of Zebrafish Embryos Under Gamma Irradiation

    NASA Astrophysics Data System (ADS)

    Mena, Pamela; Allende, Miguel; Morales, José Roberto

    2010-08-01

    Zebrafish embryos have interesting biological properties for the study of human diseases. The present work uses zebrafish embryos in a particular development state, to study biological effects due to gamma radiation, arising from a calibrated 60Co source. Initially, the lethal dose for fish embryos was determined and subsequent irradiations were performed at sub-lethal doses, in order to study more subtle effects.

  5. Effect of gamma irradiation on commercial eggs experimentally inoculated with Salmonella enteritidis

    NASA Astrophysics Data System (ADS)

    Tellez, I. G.; Trejo, R. M.; Sanchez, R. E.; Ceniceros, R. M.; Luna, Q. P.; Zazua, P.; Hargis, B. M.

    1995-02-01

    Using intact, fresh shell eggs, inoculated with 10 8 colony-forming units (cfu) of S. enteritidis, the effect of three doses of gamma irradiation on bacteriologic population and physical characteristics (Haugh units and yolk color) of the eggs was determinated. Penetration test area was picked at random just off the air cell of each egg. Aluminum cylinders were attached to the egg surface with a rim of molten paraffin, and 10 8S. enteritidis was then applied to inoculate the egg. Eggs were then irradiated within 2 hours using a Cobalt-60 gamma source at either 1, 2, or 3 kGy. A second set of inoculated, non-irradiated was used as controls. Following irradiation, eggs were maintained at 4°C for 42 hours prior culture. Irradiation with 1 kGy resulted in a significant (P < .05), 3.9 log reduction in detectable S. enteritidis in the shell and a higly significant (P < .025) 95% reduction in detectable S. enteritidis in the internal shell membranes. Irradiation of eggs with either 2 or 3 kGy reduced bacterial contamination to non-detectable levels in both the shell and internal membranes. However, irradiation at either 1, 2 or 3 kGy resulted in a significant (P <- .05) decrease (approximately 50%) in Haugh units. Additionally, irradiation of intact shell eggs at 2 or 3 Kgy significantly (P ≤ .05) reduced yolk color regardless of the level of irradiation exposure implemented. This data indicates that gamma irradiation of intact raw eggs is effective in reducing (1 kGy) or eliminating (2 or more kGy) S. enteritidis contamination. However, each of the levels of irradiation used in the present experiments caused marked reduction of selected measures of egg quality.

  6. Sucrose synthesis in gamma irradiated sweet potato

    SciTech Connect

    Ailouni, S.; Hamdy, M.K.; Toledo, R.T.

    1987-01-01

    Effect of ..cap alpha..-irradiation carbohydrate metabolism was examined to elucidate mechanism of sucrose accumulation in sweet potato (SP). Enzymes examined were: ..beta..-amylase, phosphorylase, phosphoglucomutase, phosphoglucose isomerase, sucrose phosphate synthetase and sucrose synthetase. Irradiated SP (Red Jewell) sucrose was synthesized to yield 10.7% after 4 d PI. Activities of sugar synthesizing enzymes in irradiated SP were enhanced to different degrees using 100-200 Krad and 3 d PI at 24/sup 0/C. Phosphorylase and phosphoglucomutases specific activities reached 2.4 and 1.8 folds, respectively compared to control SP. ..beta..-amylase, phosphoglucose isomerase, sucrose synthetase and sucrose phosphate synthetase were also affected to yield 1.2, 1.3, 1.3 and 1.2 folds, respectively compared to controls. It is believed that amylase hydrolyzed starch to glucose which is converted to fructose by phosphoglucose isomerase. Sucrose is then formed by sucrose phosphate synthetase and/or sucrose synthetase leading to its accumulation. The irradiated SP was used for alcohol fermentation leading to 500 gal. of 200 proof ethanol/acre (from 500-600 bushels tuber/acre).

  7. Prenatal exposure to gamma/neutron irradiation: Sensorimotor alterations and paradoxical effects on learning

    SciTech Connect

    Di Cicco, D.; Antal, S.; Ammassari-Teule, M. )

    1991-01-01

    The effects of prenatal exposure on gamma/neutron radiations (0.5 Gy at about the 18th day of fetal life) were studied in a hybrid strain of mice (DBA/Cne males x C57BL/Cne females). During ontogeny, measurements of sensorimotor reflexes revealed in prenatally irradiated mice (1) a delay in sensorial development, (2) deficits in tests involving body motor control, and (3) a reduction of both motility and locomotor activity scores. In adulthood, the behaviour of prenatally irradiated and control mice was examined in the open field test and in reactivity to novelty. Moreover, their learning performance was compared in several situations. The results show that, in the open field test, only rearings were more frequent in irradiated mice. In the presence of a novel object, significant sex x treatment interactions were observed since ambulation and leaning against the novel object increased in irradiated females but decreased in irradiated males. Finally, when submitted to different learning tasks, irradiated mice were impaired in the radial maze, but paradoxically exhibited higher avoidance scores than control mice, possibly because of their low pain thresholds. Taken together, these observations indicate that late prenatal gamma/neutron irradiation induces long lasting alterations at the sensorimotor level which, in turn, can influence learning abilities of adult mice.

  8. Stability of Grafted Polymer Nanoscale Films toward Gamma Irradiation.

    PubMed

    Borodinov, Nikolay; Giammarco, James; Patel, Neil; Agarwal, Anuradha; O'Donnell, Katie R; Kucera, Courtney J; Jacobsohn, Luiz G; Luzinov, Igor

    2015-09-01

    The present article focuses on the influence of gamma irradiation on nanoscale polymer grafted films and explores avenues for improvements in their stability toward the ionizing radiation. In terms of applications, we concentrate on enrichment polymer layers (EPLs), which are polymer thin films employed in sensor devices for the detection of chemical and biological substances. Specifically, we have studied the influence of gamma irradiation on nanoscale poly(glycidyl methacrylate) (PGMA) grafted EPL films. First, it was determined that a significant level of cross-linking was caused by irradiation in pure PGMA films. The cross-linking is accompanied by the formation of conjugated ester, carbon double bonds, hydroxyl groups, ketone carbonyls, and the elimination of epoxy groups as determined by FTIR. Polystyrene, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl, dimethylphenylsilanol, BaF2, and gold nanoparticles were incorporated into the films and were found to mitigate different aspects of the radiation damage. PMID:26259102

  9. Effect of gamma irradiation on starch viscosity and physicochemical properties of different rice

    NASA Astrophysics Data System (ADS)

    Wu, Dianxing; Shu, Qingyao; Wang, Zhonghua; Xia, Yingwu

    2002-08-01

    Three types of rice cultivars (indica, japonica and hybrid rice) with similar intermediate apparent amylose content (AAC) as well as early indica rice cultivars with different amounts of AAC were selected for studying the effects of gamma irradiation on starch viscosity, physicochemical properties and starch granule structure. Four major parameters of RVA profile, that was determined by a rapid visco analyser (RVA, Model-3D), peak viscosity, hot pasting viscosity, cool pasting viscosity, and setback viscosity, were considerably decreased with increasing dose levels. Gamma irradiation reduced the amylose contents in the cultivars with low AAC, intermediate AAC, and glutinous rice, but had no effects on the high AAC cultivar. No visible changes in gelatinization temperature were detected after irradiation, but the peak time was reduced with the dose levels. Gel consistency was significantly increased in the tested cultivars, especially in the high AAC indica rice. The starch granules were somewhat deformed by gamma irradiation. These results suggested that it is promising to use gamma irradiation to improve rice eating or cooking quality.

  10. Rapid differentiation between gamma-irradiated and non irradiated potato tubers

    NASA Astrophysics Data System (ADS)

    Jona, Roberto; Fronda, Anna

    The use of gamma irradiation as commercial method for the preservation of fruits and vegetables calls for methods of differentiation between irradiated and non-irradiated foodstuffs. In a previous research, the polysaccharidic content of cell walls of irradiated tissue has been investigated, but it required rather long time to reach the result. A method devised to ascertain the vitality of cells has been applied to distinguish irradiated from non-irradiated potato tubers. 500 mg of tissue excised from tubers have been infiltrated with tetrazolium chloride 0.6% in phosphate buffer, pH 7.4. After 15 hrs of incubation at 30°C the treated tissues have been extracted with 95% ethanol whose O.D. has been measured at 530 mμ wavelength. The colour intensity of the alcohol allowed a very clearcut recognition of the irradiated tubers.

  11. Inhibitory effect of gamma irradiation and its application for control of postharvest green mold decay of Satsuma mandarins.

    PubMed

    Jeong, Rae-Dong; Chu, Eun-Hee; Lee, Gun Woong; Cho, Chuloh; Park, Hae-Jun

    2016-10-01

    Gamma irradiation has been shown to be effective for the control of postharvest fungi in vitro, but little is known regarding antifungal action, responses to gamma irradiation, and its application to fresh produce. Gamma irradiation was evaluated for its in vitro and in vivo antifungal activity against Penicillium digitatum on Satsuma mandarin fruits. Green mold was inhibited in a dose-dependent manner. Gamma irradiation showed a complete inhibition of spore germination, germ tube elongation, and mycelial growth of P. digitatum, particularly at 1.0kGy. To further investigate the mechanisms by which gamma irradiation inhibits fungal growth, the membrane integrity and cellular leakage of conidia were tested, indicating that gamma irradiation results in the loss of plasma membrane integrity, causing the release of intracellular contents such as soluble proteins. In vivo assays demonstrated that established doses can completely inhibit the growth of fungal pathogens, but such high doses cause severe fruit damage. Thus, to eliminate the negative impact on fruit quality, gamma irradiation at lower doses was evaluated for inhibition of P. digitatum, in combination with a chlorine donor, sodium dichloro-s-triazinetrione (NaDCC). Interestingly, only a combined treatment with 0.4kGy of gamma irradiation and 10ppm of NaDCC exhibited significant synergistic antifungal activity against green mold decay. The mechanisms by which the combined treatment decreased the green mold decay of mandarin fruits can be directly associated with the disruption of cell membrane of the fungal pathogen, which resulted in a loss of cytoplasmic material from the hyphae. These findings suggest that a synergistic effect of combining treatment with gamma irradiation with NaDCC has potential as an antifungal approach to reduce the severity of green mold in mandarin fruits. PMID:27356109

  12. Experimental qualification of a code for optimizing gamma irradiation facilities

    NASA Astrophysics Data System (ADS)

    Mosse, D. C.; Leizier, J. J. M.; Keraron, Y.; Lallemant, T. F.; Perdriau, P. D. M.

    Dose computation codes are a prerequisite for the design of gamma irradiation facilities. Code quality is a basic factor in the achievement of sound economic and technical performance by the facility. This paper covers the validation of a code by reference dosimetry experiments. Developed by the "Société Générale pour les Techniques Nouvelles" (SGN), a supplier of irradiation facilities and member of the CEA Group, the code is currently used by that company. (ERHART, KERARON, 1986) Experimental data were obtained under conditions representative of those prevailing in the gamma irradiation of foodstuffs. Irradiation was performed in POSEIDON, a Cobalt 60 cell of ORIS-I. Several Cobalt 60 rods of known activity are arranged in a planar array typical of industrial irradiation facilities. Pallet density is uniform, ranging from 0 (air) to 0.6. Reference dosimetry measurements were performed by the "Laboratoire de Métrologie des Rayonnements Ionisants" (LMRI) of the "Bureau National de Métrologie" (BNM). The procedure is based on the positioning of more than 300 ESR/alanine dosemeters throughout the various target volumes used. The reference quantity was the absorbed dose in water. The code was validated by a comparison of experimental and computed data. It has proved to be an effective tool for the design of facilities meeting the specific requirements applicable to foodstuff irradiation, which are frequently found difficult to meet.

  13. Biochemical composition and antioxidant activities of Arthrospira (Spirulina) platensis in response to gamma irradiation.

    PubMed

    Shabana, Effat Fahmy; Gabr, Mahmoud Ali; Moussa, Helal Ragab; El-Shaer, Enas Ali; Ismaiel, Mostafa M S

    2017-01-01

    Arthrospira (Spirulina) platensis is a blue-green alga, rich with bioactive components and nutrients. To evaluate effect of gamma irradiation, A. platensis was exposed to different doses of 0.0, 0.5, 1.0, 1.5, 2.0 and 2.5kGy. The data showed that the phenolic and proline contents significantly increased with the increase of gamma irradiation doses up to 2.0kGy, above which a reduction was observed. The soluble proteins and malondialdehyde (MDA) contents were stimulated by all tested irradiation doses. Furthermore, the vitamins (A, K and B group) and mineral contents (N, P, Na, K, Ca, Mg and Fe) were stimulated by the irradiation doses compared with the control. The activities of some N-assimilating and antioxidant enzymes were significantly increased with the irradiation doses up to 2.0kGy. This study suggests the possible use of gamma irradiation as a stimulatory agent to raise the nutritive value and antioxidant activity of A. platensis. PMID:27507509

  14. Antioxidant activity potential of gamma irradiated carrageenan.

    PubMed

    Abad, Lucille V; Relleve, Lorna S; Racadio, Charles Darwin T; Aranilla, Charito T; De la Rosa, Alumanda M

    2013-09-01

    The antioxidant capacity of irradiated κ-, ι-, λ-carrageenans were investigated using the hydroxyl radical scavenging assay, reducing power assay and DPPH radical scavenging capacity assay. The degree of oxidative inhibition increased with increasing concentration and dose. The type of carrageenan had also an influence on its antioxidant activity which followed the order of lambda

  15. EPR investigations of gamma-irradiated novolacs

    NASA Astrophysics Data System (ADS)

    Schrödner, M.; Wünsche, P.; Lampe, I. v.

    EPR investigations of γ-irradiated phenol, p-chlorophenol, o-chlorophenol, 3,5-dichlorophenol and p-cresol novolac are presented. The elimination of a chlorine atom from the phenolic ring must be assumed in the case of chlorinated novolacs. The corresponding aryl radical could only be detected in the case of 3,5-dichlorophenol novolac in a large amount. Furthermore phenoxy and cyclohexadienyl radicals were found in the spectra. The radiation chemical as well as the resist sensitivity are enhanced by chlorination but there is no definite correlation between them.

  16. Variation in electrical properties of gamma irradiated cadmium selenate nanowires

    NASA Astrophysics Data System (ADS)

    Chauhan, R. P.; Rana, Pallavi; Narula, Chetna; Panchal, Suresh; Choudhary, Ritika

    2016-07-01

    Preparation of low-dimensional materials attracts more and more interest in the last few years, mainly due to the wide field of potential commercial applications ranging from life sciences, medicine and biotechnology to communication and electronics. One-dimensional systems are the smallest dimension structures that can be used for efficient transport of electrons and thus expected to be critical to the function and integration of nanoscale devices. Nanowires with well controlled morphology and extremely high aspect ratio can be obtained by replicating a nanoporous polymer ion-track membrane with cylindrical pores of controlled dimensions. With this technique, materials can be deposited within the pores of the membrane by electrochemical reduction of the desired ion. In the present study, cadmium selenate nanowires were synthesized potentiostatically via template method. These synthesized nanowires were then exposed to gamma rays by using a 60Co source at the Inter University Accelerator Centre, New Delhi, India. Structural, morphological, electrical and elemental characterizations were made in order to analyze the effect of gamma irradiation on the synthesized nanowires. I-V measurements of cadmium selenate nanowires, before and after irradiation were made with the help of Keithley 2400 source meter and Ecopia probe station. A significant change in the electrical conductivity of cadmium selenate nanowires was found after gamma irradiation. The crystallography of the synthesized nanowires was also studied using a Rigaku X-ray diffractrometer equipped with Cu-Kα radiation. XRD patterns of irradiated samples showed no variation in the peak positions or phase change.

  17. Inactivation of Coxiella burnetti by gamma irradiation

    SciTech Connect

    Scott, G.H.; McCaul, T.F.; Williams, J.C.

    1989-01-01

    The gamma radiation inactivation kinetics for Coxiella burnetii at - 79 C were exponential. The radiation dose needed to reduce the number of infective C. burnetii by 90% varied from 0-64 to 1.2 kGy depending on the phase of hte micro-organism, purity of the culture and composition of suspending menstruum. The viability of preparations containing C. burnetti was completely abolished by 10 kGy without diminishing antigenicity or ability to elicit a protective immune response in vaccinated mice. Immunocytochemical examinations using monoclonal antibodies and electron microscopy demonstrated that radiation doses of 20 kGy did not alter cell-wall morphology or cell-surface antigenic epitopes.

  18. Total integrated dose testing of solid-state scientific CD4011, CD4013, and CD4060 devices by irradiation with CO-60 gamma rays

    NASA Technical Reports Server (NTRS)

    Dantas, A. R. V.; Gauthier, M. K.; Coss, J. R.

    1985-01-01

    The total integrated dose response of three CMOS devices manufactured by Solid State Scientific has been measured using CO-60 gamma rays. Key parameter measurements were made and compared for each device type. The data show that the CD4011, CD4013, and CD4060 produced by this manufacturers should not be used in any environments where radiation levels might exceed 1,000 rad(Si).

  19. Total integrated dose testing of solid-state scientific CD4011, CD4013, and CD4060 devices by irradiation with CO-60 gamma rays

    SciTech Connect

    Dantas, A.R.V.; Gauthier, M.K.; Coss, J.R.

    1985-05-01

    The total integrated dose response of three CMOS devices manufactured by Solid State Scientific has been measured using CO-60 gamma rays. Key parameter measurements were made and compared for each device type. The data show that the CD4011, CD4013, and CD4060 produced by this manufacturers should not be used in any environments where radiation levels might exceed 1,000 rad(Si).

  20. Effect of gamma irradiation on the strength of Climax stock quartz monzonite

    SciTech Connect

    Durham, W.B.

    1982-03-31

    A laboratory study was made of the effects of a massive dose of {gamma} irradiation upon the mechanical properties of Climax stock quartz monzonite. Twenty-nine cylinders of rocks were tested using the Brazilian method and 26 strain gauged cylinders were tested to failure in uniaxial compression. One-half the cylinders in each group were subjected to a {gamma} ray dose of 13.2 MGy (1.32 x 10{sup 9} rads), or six times the maximum five-year dose to rock at the Spent Fuel Test-Climax, Nevada Test Site. The irradiation treatment lowered the ultimate compressional strength and lowered Young`s modulus under uniaxial loads greater than 20 MPa. The treatment did not measurable affect the elastic behavior of the rock in compression, nor did it affect the Brazilian tensile strength. These trends suggest that the {gamma} irradiation lowered the threshold stress at which microfractures begin to form. The irradiation has apparently not directly induced microfracturing in the rock, so a direct degrading effect on thermal and fluid transport properties is not expected.

  1. X-ray versus gamma irradiation effects on polymers

    NASA Astrophysics Data System (ADS)

    Croonenborghs, B.; Smith, M. A.; Strain, P.

    2007-11-01

    Today, the most common methods used for medical device sterilisation are by gaseous ethylene oxide and by electron beam or gamma irradiation. With X-ray sterilisation about to enter the market, its material compatibility needs to be assessed at doses typically encountered during a sterilisation process. This paper reports on a study that compares the effects of exposing different types of plastics that are commonly used in medical devices to 60Co or to 5 MeV X-rays. The dose rate for both irradiation modalities was of the same order of magnitude. Under these conditions, both types of radiation are found to have similar effects on polymer properties.

  2. Identification of gamma-irradiated papaya, melon and watermelon

    NASA Astrophysics Data System (ADS)

    Marín-Huachaca, Nélida S.; Mancini-Filho, Jorge; Delincée, Henry; Villavicencio, Anna Lúcia C. H.

    2004-09-01

    Ionizing radiation can be used to control spoilage microorganisms and to increase the shelf life of fresh fruits and vegetables in replacement for the treatment with chemical fumigants. In order to enforce labelling regulations, methods for detecting the irradiation treatment directly in the produce are required. Recently, a number of detection methods for irradiated food have been adopted by the Codex Comission. A rapid screening method for qualitative detection of irradiation is the DNA Comet Assay. The applicability of the DNA Comet Assay for distinguishing irradiated papaya, melon, and watermelon was evaluated. The samples were treated in a 60Co facility at dose levels of 0.0, 0.5, 0.75, and 1.0kGy. The irradiated samples showed typical DNA fragmentation whereas cells from non-irradiated ones appeared intact. In addition to the DNA Comet Assay also the half-embryo test was applied in melon and watermelon to detect the irradiation treatment.

  3. Enhanced release of bone morphogenetic proteins from demineralized bone matrix by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Sung, Nak-Yun; Choi, Jong-il

    2015-06-01

    Gamma irradiation is a useful method for sterilizing demineralized bone matrix (DBM), but its effect on the osteoinductivity of DBM is still controversial. In this study, the osteoinductive activity of gamma-irradiated DBM was examined using a mouse myoblastic cell line (C2C12). DBM was extracted from adult bovine bone and was irradiated at a dose of 25 kGy using a 60cobalt gamma-irradiator. Cell proliferation with DBM was not affected by gamma-irradiation, but alkaline phosphatase and osteocalcin productions were significantly increased in C2C12 cell groups treated with gamma-irradiated DBM. It was reasoned that bone morphogenetic proteins were more efficiently released from gamma-irradiated DBM than from the non-irradiated control. This result suggests the effectiveness of radiation sterilization of bone implants

  4. Evaluation of gamma-irradiation in cocoa husk.

    PubMed

    Bonvehí, J S; Isal, D G

    2000-06-01

    gamma-Irradiation was investigated as a technique to improve the hygienic quality of cocoa husk. Cocoa husk is a byproduct of cocoa bean processing industry. It contains approximately 57.5% (w/w) dietary fiber (nonstarch polysaccharides plus lignin), 15% (w/w) crude protein, 10.7% (w/w) mineral elements, 2.32% (w/w) cocoa butter, and 2.8% (w/w) carbohydrates (free sugars plus starch). The effect of irradiation on the growth rates of microorganisms are reported. Total counts, enterobacteriaceae, coliforms, Staphylococcus aureus, Streptococcus "D" of Lancefield, and yeast and mold counts before and after irradiation at 5, 8, and 10 kGy were determined. Cocoa husk was irradiated in open containers. An irradiation dose of 5 kGy was already sufficient to decrease the microbial counts to a very low level. No alteration in dietary fiber was measured in the irradiated product and no significant differences were detected between irradiated and nonirradiated cocoa husk. PMID:10888573

  5. Effects of. gamma. irradiation on cartilage matrix calcification

    SciTech Connect

    Nijweide, P.J.; Burger, E.H.; van Delft, J.L.; Kawilarange-de Haas, E.W.M.; Wassenaar, A.M.; Mellink, J.H.

    1980-10-01

    The effect of ..gamma.. irradiation on cartilage matrix calcification was studied in vitro. Metatarsal bones of 14- to 17-day-old embryonic mice were dissected and cultured under various conditions. Prior to culture, half of the metatarsal bones received absorbed doses of 1.0 to 30.0 Gy ..gamma.. radiation. Their paired counterparts served as controls. Irradiation inhibited longitudinal growth and calcification of the cartilage matrix during culture. In addition, a number of histological changes were noted. The inhibition of matrix calcification appeared to be due to an inhibition of the intracellular calcium accumulation. The formation of extracellular calcification foci and the growth of the calcified area already present at the moment of explanation were not inhibited during culture.

  6. Enhancement of Antioxidant and Isoflavones Concentration in Gamma Irradiated Soybean

    PubMed Central

    Popović, Boris M.; Štajner, Dubravka; Mandić, Anamarija; Čanadanović-Brunet, Jasna; Kevrešan, Slavko

    2013-01-01

    Serbian soybean genotype Ana was gamma irradiated at doses of 1, 2, 4, and 10 kGy in order to evaluate the influence of gamma irradiation on isoflavone (genistein, daidzein, and their glycosides genistin and daidzin) contents and hydroxyl radical scavenging effect (HRSE). The increase in genistin and daidzin contents as well as antioxidant activities was observed especially at doses of 4 and 10 kGy. Results were also compared with our previous results relating to total phenol content (TPC), DPPH radical scavenger capacity (DPPH RSC), and ferric reducing antioxidant power (FRAP). Our results indicated that doses up to 10 kGy improve the antioxidant activities of soybean and also nutritional quality with respect to isoflavone content. All results were analyzed by multivariate techniques (correlation matrix calculation and autoscaling transformation of data). Significant positive correlations were observed between genistin, daidzin, DPPH RSC, and HRSE. PMID:24298214

  7. Laboratory longevity and competitiveness of Dacus ciliatus Loew (Diptera: Tephritidae) following sub-sterilizing gamma irradiation.

    PubMed

    Nemny-Lavy, E; Nestel, D; Rempoulakis, P

    2016-06-01

    The effect of a sub-sterilizing gamma radiation dose on Dacus ciliatus adults was investigated to assess the suitability of the sterile insect technique (SIT) as an alternative method to control this pest. Late pupae (48 h prior to adult emergence) from a laboratory strain were irradiated with 120 Gy of gamma rays emitted by a 60Co source. Following adult emergence, the mortality of irradiated and non-irradiated cohorts was recorded. Over a period of 50 days after emergence, no significant negative effects of irradiation upon the longevity of male or female laboratory flies were observed. A laboratory competitiveness study (Fried test), using irradiated laboratory and wild males at a ratio of 3:1 was conducted to assess the ability of irradiated males to reduce the egg hatch rates of a wild population. The overall competitiveness was found to be ca. 0.32, suggesting a reduced, but satisfactory, quality of irradiated laboratory as compared with wild males. Based on the above findings, we calculated and proposed effective male release ratios for field application of SIT against D. ciliatus. PMID:26898660

  8. Evaluation of some selected vaccines and other biological products irradiated by gamma rays, electron beams and X-rays

    NASA Astrophysics Data System (ADS)

    May, J. C.; Rey, L.; Lee, Chi-Jen

    2002-03-01

    Molecular sizing potency results are presented for irradiated samples of one lot of Haemophilus b conjugate vaccine, pneumococcal polysaccharide type 6B and typhoid vi polysaccharide vaccine. The samples were irradiated (25 kGy) by gamma rays, electron beams and X-rays. IgG and IgM antibody response in mice test results (ELISA) are given for the Hib conjugate vaccine irradiated at 0°C or frozen in liquid nitrogen.

  9. Effects of gamma irradiation on the colour of pigments

    NASA Astrophysics Data System (ADS)

    Negut, D. C.; Ponta, C. C.; Georgescu, Rodica M.; Moise, I. V.; Niculescu, Gh.; Lupu, A. I. M.

    2007-07-01

    The aim of this paper is to investigate the influence of gamma irradiation process on the colour of painted wood panels. Insects and micro-organisms are frequently identified enemies of cultural objects from museums and archives. Based on its biocide effect, gamma radiation could be used for decontamination and conservation purposes. Important advantages can be mentioned in its favour: no toxic or radioactive residues remained in the treated item; large amount of objects can be treated quickly; excellent reliability; attractive cost. In case of emergency radiation treatment in industrial facilities is probably the only method that can be used. There is also a potential side-effect. Interaction of gamma rays with any substance may change its chemical and physical properties. The change is proportional with the irradiation dose. In the case of paintings, eventually colour changes have to be evaluated. Such an approach actually establishes irradiation treatment limitations. A portable integrating sphere spectrophotometer was used for colour measurements. The results of colour analysis before and after the radiation treatment of the painted wood panels are reported and discussed.

  10. Feeding preference of Coptotermes formosanus (Isoptera: Rhinotermitidae) for gamma-irradiated wood impregnated with benzoylphenylurea compounds under laboratory conditions.

    PubMed

    Katsumata, Noriaki; Tsunoda, Kunio; Toyoumi, Aya; Yoshimura, Tsuyoshi; Imamura, Yuji

    2008-06-01

    The feeding preference of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) for 200-kGy gamma-irradiated Cryptomeria japonica D. Don (Japanese cedar) sapwood impregnated with benzoylphenylurea compounds such as hexaflumuron and noviflumuron was examined by three laboratory tests. Although termites were not deterred from feeding on gamma-irradiated wood samples that had been impregnated with hexaflumuron or noviflumuron, termite mortality was significantly higher compared with solvent controls in the no-choice test. All live termites were transferred to paper disks immediately after the no-choice test to investigate changes in mortality with time, and this test also confirmed the effects of hexaflumuron and noviflumuron on worker termites, which showed a significant feeding preference for gamma-irradiated wood. Only the 1480 ppm noviflumuron-impregnated gamma-irradiated wood specimens showed significant differences in mortality in the two-choice test. These results suggest that gamma-irradiated C. japonica wood, which is locally abundant in Japan, may have potential as a bait substrate for benzoylphenylurea compounds. PMID:18613590

  11. White spot syndrome virus inactivation study by using gamma irradiation

    NASA Astrophysics Data System (ADS)

    Heidareh, Marzieh; Sedeh, Farahnaz Motamedi; Soltani, Mehdi; Rajabifar, Saeed; Afsharnasab, Mohammad; Dashtiannasab, Aghil

    2014-09-01

    The present study was conducted to investigate the effect of gamma irradiation on white spot syndrome virus (WSSV). White spot syndrome virus is a pathogen of major economic importance in cultured penaeid shrimp industries. White spot disease can cause mortalities reaching 100% within 3-10 days of gross signs appearing. During the period of culture, immunostimulant agents and vaccines may provide potential methods to protect shrimps from opportunistic and pathogenic microrganisms. In this study, firstly, WSSV was isolated from infected shrimp and then multiplied in crayfish. WSSV was purified from the infected crayfish haemolymph by sucrose gradient and confirmed by transmission electron microscopy. In vivo virus titration was performed in shrimp, Penaeus semisulcatus. The LD50 of live virus stock was calculated 10 5.4/mL. Shrimp post-larvae (1-2 g) were treated with gamma-irradiated (different doses) WSSV (100 to 10-4 dilutions) for a period of 10 days. The dose/survival curve for irradiated and un-irradiated WSSV was drawn; the optimum dose range for inactivation of WSSV and unaltered antigenicity was obtained 14-15 kGy. This preliminary information suggests that shrimp appear to benefit from treatment with gammairradiated WSSV especially at 14-15 KGy.

  12. gamma-Irradiation of PEGd,lPLA and PEG-PLGA multiblock copolymers. I. Effect of irradiation doses.

    PubMed

    Dorati, R; Colonna, C; Serra, M; Genta, I; Modena, T; Pavanetto, F; Perugini, P; Conti, B

    2008-01-01

    To evaluate the effects of different gamma irradiation doses on PEGd,lPLA and PEG-PLGA multiblock copolymers. The behaviour of the multiblock copolymers to irradiation was compared to that of PLA, PLGA polymers. PEGd,lPLA, PEG-PLGA, PLA and PLGA polymers were irradiated by using a (60)Co irradiation source at 5, 15, 25 and 50 kGy total dose. Characterization was performed on all samples before and after irradiation, by nuclear magnetic resonance (NMR), infrared absorption spectrophotometry (FTIR) and gel permeation chromatography (GPC). The effect of gamma irradiation on polymer stability was also evaluated. Results of NMR and FTIR suggest an increase in -OH and -COOH groups, attributed to scission reactions induced by irradiation treatment. Data of GPC analysis showed that the weight average molecular weight (Mw) of polymer samples decreased with increasing irradiation dose. The extent of Mw degradation expressed as percentage of Mw reduction was more prominent for polymers with high molecular weight as PEGd,lPLA and PLA. The dominant effect of gamma-irradiation on both polymer samples was chain scission. The multiblock copolymer PEGd,lPLA presented higher sensitivity to irradiation treatment with respect to PLA, likely due to the presence of PEG in the matrix. The effect of gamma irradiation continues over a much longer period of time after gamma irradiation has been performed. It is suggested that the material reacts with oxygen to form peroxyl free radicals, which may further undergo degradation reactions during storage after irradiation. PMID:18528761

  13. Retinal functional changes after whole body gamma-irradiation

    NASA Astrophysics Data System (ADS)

    Talaat, M. S.; Sallam, S.; Abd El-Salaam, S.

    1996-05-01

    Retinal functional changes were evaluated, after gamma-irradiation of rabbits, at doses 1-5 Gy, by studying the electroretinogram (ERG) and retinal impedance. Records were immediately carried out after irradiation and at 7 days post irradiation. Results indicated that, at all of the doses used, radiation damage to the retina appeared as changes in electrical impedance and alterations of latency, amplitude and duration of ERG components. These changes appeared at 1 and 2 Gy and progressively increased at 3 and 5 Gy, after 7 days of exposure. The changes indicated a functional alteration of photoreceptors (significant decrease or complete disappearance of the a-wave accompanied by an increase in its latency), an impairment in Müller's and bipolars cells (decrease of the b-wave amplitude with an increase in its duration) and also in the pigment epithelium cells (a decrease in the c-wave amplitude with a significant increase in its duration).

  14. Improvement of saccharification process for bioethanol production from Undaria sp. by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Yoon, Minchul; Choi, Jong-il; Lee, Ju-Woon; Park, Don-Hee

    2012-08-01

    Recently, many research works have reported on improvements to the saccharification process that increase bioethanol production from cellulosic materials. Gamma irradiation has been studied as an effective method for the depolymerization of complex polysaccharides. In this study, the effect of gamma irradiation on saccharification of Undaria biomass for bioethanol production was investigated. The Undaria biomass was irradiated at doses of 0, 10, 50, 100, 200 and 500 kGy and then hydrolyzed using sulfuric acid. The effects of gamma irradiation were measured through microscopic analysis to determine morphological changes and concentration of the reducing sugar of hydrolysates. Microscopic images show that gamma irradiation causes structure breakage of the Undaria cell wall. The concentration of reducing sugar of hydrolysates significantly increased as a result of gamma irradiation, with or without acid hydrolysis. These results indicate that the combined method of gamma irradiation with acid hydrolysis can significantly improve the saccharification process for bioethanol production from marine algae materials.

  15. Chemometric characterization of gamma irradiated chestnuts from Turkey

    NASA Astrophysics Data System (ADS)

    Barreira, João C. M.; Antonio, Amilcar L.; Günaydi, Tugba; Alkan, Hasan; Bento, Albino; Luisa Botelho, M.; Ferreira, Isabel C. F. R.

    2012-09-01

    Chestnut (Castanea sativa Miller) is a valuable natural resource, with high exportation levels. Due to their water content, chestnuts are susceptible to storage problems like dehydration or development of insects and microorganisms. Irradiation has been revealing interesting features to be considered as an alternative conservation technology, increasing food products shelf-life. Any conservation methodology should have a wide application range. Hence, and after evaluating Portuguese cultivars, the assessment of irradiation effects in foreign cultivars might act as an important indicator of the versatility of this technology. In this work, the effects of gamma irradiation (0.0, 0.5 and 3.0 kGy) on proximate composition, sugars, fatty acids (FA) and tocopherols composition of Turkish chestnuts stored at 4 °C for different periods (0, 15 and 30 days) were evaluated. Regarding proximate composition, the storage time (ST) had higher influence than the irradiation dose (ID), especially on fat, ash, carbohydrates and energetic value. Sucrose exhibited similar behavior in response to the assayed ST and ID. The prevalence of ST influence was also verified for FA, tocopherols and sucrose. Lauric, palmitoleic and linolenic acids were the only FA that underwent some differences with ID. Saturated, monounsaturated and polyunsaturated fatty acids levels were not affected either by storage or irradiation. α-Tocopherol was the only vitamer with significant differences among the assayed ST and ID. Overall, Turkish cultivars showed a compositional profile closely related with Portuguese cultivars, and seemed to confirm that gamma irradiation in the applied doses did not change chestnut chemical and nutritional composition.

  16. HRB-22 irradiation phase test data report

    SciTech Connect

    Montgomery, F.C.; Acharya, R.T.; Baldwin, C.A.; Rittenhouse, P.L.; Thoms, K.R.; Wallace, R.L.

    1995-03-01

    Irradiation capsule HRB-22 was a test capsule containing advanced Japanese fuel for the High Temperature Test Reactor (HTTR). Its function was to obtain fuel performance data at HTTR operating temperatures in an accelerated irradiation environment. The irradiation was performed in the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL). The capsule was irradiated for 88.8 effective full power days in position RB-3B of the removable beryllium (RB) facility. The maximum fuel compact temperature was maintained at or below the allowable limit of 1300{degrees}C for a majority of the irradiation. This report presents the data collected during the irradiation test. Included are test thermocouple and gas flow data, the calculated maximum and volume average temperatures based on the measured graphite temperatures, measured gaseous fission product activity in the purge gas, and associated release rate-to-birth rate (R/B) results. Also included are quality assurance data obtained during the test.

  17. Improvement of colour strength and colourfastness properties of gamma irradiated cotton using reactive black-5

    NASA Astrophysics Data System (ADS)

    Ahmad Bhatti, Ijaz; Adeel, Shahid; Nadeem, Raziya; Asghar, Toheed

    2012-03-01

    The dyeing behaviour of gamma irradiated cotton fabric using Reactive Black-5 dye powder has been investigated. The mercerized, bleached and plain weaved cotton fabric was irradiated to different absorbed doses of 100, 200, 300, 400, 500 and 600 Gy using Co-60 gamma irradiator. Dyeing was performed using irradiated and un-irradiated cotton with dye solutions. The dyeing parameters such as temperature of dyeing, time of dyeing and pH of dyeing solutions were optimised. The colour strength values of dyed fabrics were evaluated by comparing irradiated and un-irradiated cotton in CIE Lab system using Spectra flash SF650. Methods suggested by International Standard Organisation (ISO) were employed to study the effect of gamma irradiation on the colourfastness properties of dyed fabric. It is found that gamma irradiated cotton dyed with Reactive Black-5 has not only improved the colour strength but also enhanced the rating of fastness properties.

  18. Disinfection of sewage sludge cake by gamma-irradiation

    NASA Astrophysics Data System (ADS)

    Watanabe, Hiroshi; Takehisa, Masaaki

    Disinfection of municipal sewage sludge cake by gamma-irradiation was reviewed. Total bacterial count in the sludge cake did not vary markedly throughout all four seasons in Japan, and it was in the range of 1.6 × 10 8/g to 4.1 × 10 9/g. Coliform count in aerobically activated sludge was form 1.8 × 10 7/g to 4.8 × 10 8/g, while in anaerobically digested sludge it was less than 8.3 × 10 7/g. The dose to reduce the coliforms to undetectable levels ranged from 0.3 to 0.5 Mrad, depending on the season. In addition, it was observed that no coliforms reappeared in 0.5 Mrad irradiated sludge cake during storage at room temperature (6 - 16°C) and at 30°C. The adequate disinfection dose is therefore considered to be 0.5 Mrad. Pseudomonas cepacia was a predominant bacterium in non-irradiated sludge cake. In a range of 0.5 to 0.7 Mrad, the residual flora consisted of Bacillus species, and radioresistant Deinococcus proteolyticus, Deinococcus radiodurans and Pseudomonas radiora were isolated from sludge cake irradiated at dose levels of more than 1 Mrad. Bacterial regrowth and the growth of Escherichia coli K-12 seeded in irradiated sludge cake are discussed.

  19. Identification of gamma-irradiated fruit juices by EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    Aleksieva, K. I.; Dimov, K. G.; Yordanov, N. D.

    2014-10-01

    The results of electron paramagnetic resonance (EPR) study on commercially available juices from various fruits and different fruit contents: 25%, 40%, 50%, and 100%, homemade juices, nectars and concentrated fruit syrups, before and after gamma-irradiation are reported. In order to remove water from non- and irradiated samples all juices and nectars were filtered; the solid residue was washed with alcohol and dried at room temperature. Only concentrated fruit syrups were dried for 60 min at 40 °C in a standard laboratory oven. All samples under study show a singlet EPR line with g=2.0025 before irradiation with exception of concentrated fruit syrups, which are EPR silent. Irradiation of juice samples gives rise to complex EPR spectra which gradually transferred to “cellulose-like” EPR spectrum from 25% to 100% fruit content. Concentrated fruit syrups show typical “sugar-like“ spectra due to added saccharides. All EPR spectra are characteristic and can prove radiation treatment. The fading kinetics of radiation-induced EPR signals were studied for a period of 60 days after irradiation.

  20. Gamma irradiation: a method to produce an abiotic control for biological activated carbon.

    PubMed

    Stoquart, C; Vázquez-Rodríguez, G A; Servais, P; Barbeau, B

    2013-01-01

    The aim of this paper was to investigate the feasibility of using gamma irradiation to inhibit the microbial activity of biological powder activated carbon (PAC) without impacting its adsorptive properties. First of all, the range of dose of gamma rays required to produce abiotic PAC was selected on the basis of heterotrophic plate counts (HPC) inactivation and methylene blue (MB) adsorption kinetics. Doses inferior to 10 kGy were not sufficient to inhibit the culture of heterotrophic bacteria. On the other hand, doses superior to 15 kGy were demonstrated to affect the adsorption rate of MB. Consequently, a dose comprised between 10 and 15 kGy was selected for further investigation. In order to validate the adequacy of the range of dose (i.e. 10-15 kGy), adsorption characteristics were tested by monitoring the removal kinetics of refractory dissolved organic carbon (RDOC). No significant differences were observed between irradiated and non-irradiated biological PAC for the adsorption of RDOC. Irradiated, non-irradiated and virgin PAC were also evaluated in terms of abundance of viable (using the LIVE/DEAD BacLight method) bacteria and in terms of heterotrophic biomass activity. The results of the BacLight method demonstrated that attachment of the biofilm on the PAC was not impacted by the irradiation and heterotrophic activity measurements demonstrated that the latter could be radically reduced in the range of dose selected. In conclusion, when using a proper dose, the gamma irradiation of colonized activated carbon drastically reduced the heterotrophic activity on activated carbon without significantly impacting its adsorptive behaviour. PMID:24617066

  1. Influence of sterilization by gamma irradiation and of thermal annealing on creep of hydroxyapatite-reinforced polyethylene composites.

    PubMed

    Suwanprateeb, J; Tanner, K E; Turner, S; Bonfield, W

    1998-01-01

    Sterilization of medical devices by gamma (gamma)-irradiation is common. The effect of irradiation on a bone replacement material, HAPEX (hydroxyapatite-reinforced polyethylene composite), was investigated. Unfilled and hydroxyapatite-filled polyethylene at 0.20 and 0.40 filler volume fractions were gamma-irradiated at 2.5 Mrad, and the modified properties were studied by differential scanning calorimetery, isochronous experiments, and creep tests. The effect of thermal annealing of the samples from 140 degrees C also was examined. The results suggest that both irradiation and annealing increase creep resistance of the materials. These are associated with the formation of crosslinks and an increase in crystallinity, respectively. PMID:9429092

  2. Detection of irradiated fresh fruits treated by e-beam or gamma rays

    NASA Astrophysics Data System (ADS)

    Marin-Huachaca, Nélida Simona; Lamy-Freund, Maria Tereza; Mancini-Filho, Jorge; Delincée, Henry; Villavicencio, Anna Lúcia C. H.

    2002-03-01

    Since about 1990, the amount of commercially irradiated food products available worldwide has increased. Commercial irradiation of foods has been allowed in Brazil since 1973 and now more than 20 different food products are approved. Among these products are a number of fresh fruits which may be irradiated for insect disinfestation, to delay ripening and to extend shelf-life. Today, there is a growing interest to apply radiation for the treatment of fruits instead of using fumigation or e.g. vapour-heat treatments, and an increased international trade in irradiated fruits is expected. To ensure free consumer choice, methods to identify irradiated foods are highly desirable. In this work, three detection methods for irradiated fruits have been employed: DNA Comet Assay, the half-embryo test and ESR. Both electron-beam (e-beam) and gamma rays were applied in order to compare the response with these two different kinds of radiation. Fresh fruits such as oranges, lemons, apples, watermelons and tomatoes were irradiated with doses in the range 0, 0.50, 0.75, 1.0, 2.0 and 4.0kGy. For analysis, the seeds of the fruits were utilized. Both DNA Comet Assay and the half-embryo test enabled an easy identification of the radiation treatment. However, under our conditions, ESR measurements were not satisfactory.

  3. Optical fiber sensor for low dose gamma irradiation monitoring

    NASA Astrophysics Data System (ADS)

    de Andrés, Ana I.; Esteban, Ã.`scar; Embid, Miguel

    2016-05-01

    An optical fiber gamma ray detector is presented in this work. It is based on a Terbium doped Gadolinium Oxysulfide (Gd2O2S:Tb) scintillating powder which cover a chemically etched polymer fiber tip. This etching improves the fluorescence gathering by the optical fiber. The final diameter has been selected to fulfill the trade-off between light gathering and mechanical strength. Powder has been encapsulated inside a microtube where the fiber tip is immersed. The sensor has been irradiated with different air Kerma doses up to 2 Gy/h with a 137Cs source, and the spectral distribution of the fluorescence intensity has been recorded in a commercial grade CCD spectrometer. The obtained signal-to-noise ratio is good enough even for low doses, which has allowed to reduce the integration time in the spectrometer. The presented results show the feasibility for using low cost equipment to detect/measure ionizing radiation as gamma rays are.

  4. Brevion: the new small-scale industrial gamma irradiator

    NASA Astrophysics Data System (ADS)

    McKinney, Dan; Perrins, Robert; Gibson, Wayne; Levesque, Daniel

    2002-03-01

    The economical processing of low-volume products has been a challenge to the gamma industry since inception, influencing customers to send their products to contractors or choose alternative technologies. With the introduction of the Brevion irradiator (patent pending), economical gamma processing of low annual volume product lines is now possible. This innovative design is specifically targeted at plants processing product volumes of up to 20,000 m 3/yr. Brevion provides good cobalt efficiency and good dose uniformity, thus processing these volumes efficiently and economically. The Brevion facility has the distinct advantage of a low capital cost, compared to medium-sized automatic tote plants, while maintaining similar performance. Lead-time for the construction phase is also considerably shorter, resulting in significantly lower start-up costs. Companies with low-volume product lines can now achieve the control provided by in-house processing, and eliminate transportation time and costs associated with shipping products off-site.

  5. EPR studies of gamma-irradiated taurine single crystals

    NASA Astrophysics Data System (ADS)

    Bulut, A.; Karabulut, B.; Tapramaz, R.; Köksal, F.

    2000-04-01

    An EPR study of gamma-irradiated taurine [C 2H 7NO 3S] single crystal was carried out at room temperature. The EPR spectra were recorded in the three at mutually perpendicular planes. There are two magnetically distinct sites in monoclinic lattice. The principle values of g and hyperfine constants for both sites were calculated. The results have indicated the presence of 32ṠO -2 and 33ṠO -2 radicals. The hyperfine values of 33ṠO -2 radical were used to obtain O-S-O bond angle for both sites.

  6. Chemical constituents of Panax ginseng exposed to. gamma. irradiation

    SciTech Connect

    Kwon, Joongho; Belanger, J.M.R.; Sigouin, M.; Lanthier, J.; Willemot, C.; Pare, J.R.J. )

    1990-03-01

    Chemical constituents were monitored to assess the biochemical and nutritional safety of Panax ginseng powders that were irradiated at doses of 1-10 kGy. Quantitative analysis has shown that the main effective components - saponins - are not altered by {sup 60}Co {gamma} irradiation. Ginsenoside-Rg{sub 1} was not affected by the treatment. Negligible changes were observed in the free carbohydrate contents. Doses of more than 5 kGy caused significant decreases in sulfur-containing amino acids and in tyrosine. At doses of 10 kGy, free amino acids, such as proline and lysine, showed an appreciable increase. The composition in minerals was not altered irrespective of the applied doses.

  7. gamma-Irradiation effects on the thermal decomposition behaviour and IR absorption spectra of piperacillin

    NASA Astrophysics Data System (ADS)

    Mahfouz, R. M.; Gaffar, M. A.; Abu El-Fadl, A.; Hamad, Ar. G. K.

    2003-11-01

    The thermal decomposition behaviour of unirradiated and pre-gamma-irradiated piperacillin (pipril) as a semi-synthetic penicillin antibiotic has been studied in the temperature range of (273-1072 K). The decomposition was found to proceed through three major steps both for unirradiated and gamma-irradiated samples. Neither appearance nor disappearance of new bands in the IR spectrum of piperacillin was recorded as a result of gamma-irradiation but only a decrease in the intensity of most bands was observed. A degradation mechanism was suggested to explain the bond rupture and the decrease in the intensities of IR bands of gamma-irradiated piperacillin.

  8. Influence of irradiation upon few-layered graphene using electron-beams and gamma-rays

    SciTech Connect

    Wang, Yuqing; Feng, Yi Mo, Fei; Qian, Gang; Chen, Yangming; Yu, Dongbo; Wang, Yang; Zhang, Xuebin

    2014-07-14

    Few-layered graphene (FLG) is irradiated by electron beams and gamma rays. After 100 keV electron irradiation, the edges of FLG start bending, shrinking, and finally generate gaps and carbon onions due to sputtering and knock-on damage mechanism. When the electron beam energy is increased further to 200 keV, FLG suffers rapid and catastrophic destruction. Unlike electron irradiation, Compton effect is the dominant damage mechanism in gamma irradiation. The irradiation results indicate the crystallinity of FLG decreases first, then restores as increasing irradiation doses, additionally, the ratio (O/C) of FLG surface and the relative content of oxygen groups increases after irradiation.

  9. Effect of gamma irradiation on lipoxygenases, trypsin inhibitor, raffinose family oligosaccharides and nutritional factors of different seed coat colored soybean (Glycine max L.)

    NASA Astrophysics Data System (ADS)

    Kumar Dixit, Amit; Kumar, Vineet; Rani, Anita; Manjaya, J. G.; Bhatnagar, Deepak

    2011-04-01

    Three soybean genotypes Kalitur, Hara soya and NRC37 with black, green and yellow seed coat color, respectively, were gamma irradiated at 0.5, 2.0 and 5.0 kGy and tested for antinutritional and nutritional factors. Gamma irradiation at all doses reduced the level of lipoxygenase isomers, trypsin inhibitor (TI) and ascorbic acid in all the 3 soybean genotypes as compared to the unirradiated control. However, irradiation dose of 5.0 kGy increased the sucrose content of the soybean genotypes. No significant change was observed in oil, protein fatty acids and total tocopherol content of the 3 genotypes at any irradiation dose. It is suggested that inhibition of lipoxygenase, reduction in TI and ascorbic acid may be due to the breakage or oxidation of protein structure by the gamma irradiation. Similarly, gamma irradiation at higher doses may break glycosidic linkages in oligosaccharides to produce more sucrose and decrease the content of flatulence causing oligosaccharides.

  10. Recovery of the Brookhaven gamma forest following 18 years' irradiation

    SciTech Connect

    Kroot, I.B.

    1987-07-01

    Vegetative growth at the oak-pine forest at Brookhaven National Laboratory was examined 2-5 years following cessation of chronic irradiation from a 9500 Ci Cesium-137 gamma source. Zonation of vegetation, first seen early in the irradiation period, remains strongly evident. Unusual patterns of vegetative recovery include: a failure of a dense Carex (sedge) zone to spread into the adjacent devastated zone; a decrease in lichen density from that seen during irradiation, with no discernible cause; and significant persistent changes in soil P levels in the devastated zone, correlated with differential growth of an annual composite species. Recovery is marked by a rapid vegative spread of Rubus alleghenensis and Populus tremuloides into the devastated zone; almost complete dominance by Carex and Rubus with the former Carex zone; and a slow reinvasion by the late successional oak and pine species. Comparisons with data from surveys taken during the irradiation period show ( in all zones except the devastated zone) a significant decrease in species diversity during the recovery period.

  11. EPR study on non- and gamma-irradiated herbal pills

    NASA Astrophysics Data System (ADS)

    Aleksieva, K.; Lagunov, O.; Dimov, K.; Yordanov, N. D.

    2011-06-01

    The results of EPR studies on herbal pills of marigold, hawthorn, yarrow, common balm, tutsan, nettle and thyme before and after gamma-irradiation are reported. Before irradiation all samples exhibit one weak singlet EPR line with a g-factor of 2.0048±0.0005. After irradiation herbal pills could be separated in two groups according to their EPR spectra. Radiation-induced free radicals in pills of marigold, yarrow, nettle, tutsan and thyme could be attributed mainly to saccharide excipients. Tablets of hawthorn and common balm show "cellulose-like" EPR spectrum, superimposed on partly resolved carbohydrate spectrum, due to the active part (herb) and inulin, which is present in the pills as an excipient. Fading study of the radiation-induced EPR signals confirms that sugar radicals are more stable than cellulose species. The reported results show that the presence of characteristic EPR spectra of herbal pills due to excipients or active part can be used as unambiguous proof of radiation processing within 35 or more days after irradiation.

  12. Modification of the microstructure of the films formed by gamma irradiated starch examined by SEM

    NASA Astrophysics Data System (ADS)

    Cieśla, K.; Sartowska, B.

    2016-01-01

    The paper concerns the effect of gamma irradiation carried out for starch on the microstructure of the films prepared using the starch and its composition with sodium laurate (NaLau) and cetyltrimethylammonium bromide (CTAB) studied by scanning electron microscopy (SEM). Potato starch was irradiated with 60Co gamma rays applying a dose of 30 kGy. Films were prepared by the solution casting method with the addition of 30 wt% glycerol as a plasticizer. Films containing NaLau and CTAB were prepared after performing the procedure, leading to starch-surfactant complexes. Mechanical tests and wetting angle measurements were performed for the films. SEM observations were carried out for the surfaces, fractures and/or sections of the films subjected to chemical fixation and for the dried films. The films obtained using irradiated starch are characterized by a smoother and more homogeneous structure as compared to those based on the non-irradiated starch. Besides, a number of small precipitates were observed on the films surfaces after drying and the number of those precipitates seemed to be higher after irradiation. The results can be related to differences in the microstructure of gels formed on the intermediate step of the films preparation and to the presence of two phases in the system and might serve for explanation of the radiation induced improvement of the hydrophilic/hydrophobic properties, a modification of the mechanical properties of the films, as well as for the changes of those properties resulting after storage.

  13. Mechanisms of an increased level of serum iron in gamma-irradiated mice.

    PubMed

    Xie, Li-hua; Zhang, Xiao-hong; Hu, Xiao-dan; Min, Xuan-yu; Zhou, Qi-fu; Zhang, Hai-qian

    2016-03-01

    The potential mechanisms underlying the increase in serum iron concentration in gamma-irradiated mice were studied. The gamma irradiation dose used was 4 Gy, and cobalt-60 ((60)Co) source was used for the irradiation. The dose rate was 0.25 Gy/min. In the serum of irradiated mice, the concentration of ferrous ions decreased, whereas the serum iron concentration increased. The concentration of ferrous ions in irradiated mice returned to normal at 21 day post-exposure. The concentration of reactive oxygen species in irradiated mice increased immediately following irradiation but returned to normal at 7 day post-exposure. Serum iron concentration in gamma-irradiated mice that were pretreated with reduced glutathione was significant lower (p < 0.01) than that in mice exposed to gamma radiation only. However, the serum iron concentration was still higher than that in normal mice (p < 0.01). This change was biphasic, characterized by a maximal decrease phase occurring immediately after gamma irradiation (relative to the irradiated mice) and a recovery plateau observed during the 7th and 21st day post-irradiation, but serum iron recovery was still less than that in the gamma-irradiated mice (4 Gy). In gamma-irradiated mice, ceruloplasmin activity increased and serum copper concentration decreased immediately after irradiation, and both of them were constant during the 7th and 21st day post-irradiation. It was concluded that ferrous ions in irradiated mice were oxidized to ferric ions by ionizing radiation. Free radicals induced by gamma radiation and ceruloplasmin mutually participated in this oxidation process. The ferroxidase effect of ceruloplasmin was achieved by transfer of electrons from ferrous ions to cupric ions. PMID:26511140

  14. Effect of gamma irradiation on the wear behaviour of human tooth enamel

    NASA Astrophysics Data System (ADS)

    Qing, Ping; Huang, Shengbin; Gao, Shanshan; Qian, Linmao; Yu, Haiyang

    2015-06-01

    Radiotherapy is a frequently used treatment for oral cancer. Extensive research has been conducted to detect the mechanical properties of dental hard tissues after irradiation at the macroscale. However, little is known about the influence of irradiation on the tribological properties of enamel at the micro- or nanoscale. Therefore, this study aimed to investigate the effect of gamma irradiation on the wear behaviour of human tooth enamel in relation to prism orientation. Nanoscratch tests, surface profilometer and scanning electron microscope (SEM) analysis were used to evaluate the friction behaviour of enamel slabs before and after treatment with identical irradiation procedures. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were performed to analyse the changes in crystallography and chemical composition induced by irradiation. Surface microhardness (SMH) alteration was also evaluated. The results showed that irradiation resulted in different scratch morphologies, friction coefficients and remnant depth and width at different loads. An inferior nanoscratch resistance was observed independent of prism orientation. Moreover, the variation of wear behaviours was closely related to changes in the crystallography, chemical composition and SMH of the enamel. Together, these measures indicated that irradiation had a direct deleterious effect on the wear behaviour of human tooth enamel.

  15. Effect of gamma irradiation on the wear behaviour of human tooth enamel

    PubMed Central

    Qing, Ping; Huang, Shengbin; Gao, ShanShan; Qian, LinMao; Yu, HaiYang

    2015-01-01

    Radiotherapy is a frequently used treatment for oral cancer. Extensive research has been conducted to detect the mechanical properties of dental hard tissues after irradiation at the macroscale. However, little is known about the influence of irradiation on the tribological properties of enamel at the micro- or nanoscale. Therefore, this study aimed to investigate the effect of gamma irradiation on the wear behaviour of human tooth enamel in relation to prism orientation. Nanoscratch tests, surface profilometer and scanning electron microscope (SEM) analysis were used to evaluate the friction behaviour of enamel slabs before and after treatment with identical irradiation procedures. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were performed to analyse the changes in crystallography and chemical composition induced by irradiation. Surface microhardness (SMH) alteration was also evaluated. The results showed that irradiation resulted in different scratch morphologies, friction coefficients and remnant depth and width at different loads. An inferior nanoscratch resistance was observed independent of prism orientation. Moreover, the variation of wear behaviours was closely related to changes in the crystallography, chemical composition and SMH of the enamel. Together, these measures indicated that irradiation had a direct deleterious effect on the wear behaviour of human tooth enamel. PMID:26099692

  16. Observation of Gamma Irradiation-Induced Suppression of Reversed Annealing in Neutron Irradiated MCZ Si Detectors

    SciTech Connect

    Li, Z.; Gul, R.; Harkonen, J.; Kierstead, J.; Metcalfe, J.; Seidel, S.

    2009-02-06

    For the development of radiation-hard Si detectors for the SiD BeamCal program for the future ILC (International Linear Collider), n-type MCZ Si detectors have been irradiated first by fast neutrons to flueneces of 1.5 x 1014 and 3 x 1014 neq/cm2, and then by gamma up to 500 Mrad. The motivation of this mixed radiation project is to develop a Si detector that can utilize the gamma/electron radiation that exists in the ICL radiation environment, which also includes neutrons. By using the positive space charge (SC) created by gamma radiation in MCZ Si detectors, one can cancel the negative space charge created by neutrons, thus reducing the overall/net space charge density and therefore the full depletion voltage of the detector.

  17. Effects of gamma irradiation on physicochemical properties of Korean red ginseng powder

    NASA Astrophysics Data System (ADS)

    Byun, Myung-Woo; Yook, Hong-Sun; Kwon, Oh-Jin; Kang, Il-Jun

    1997-04-01

    Gamma irradiation was applied to Korean red ginseng powder to improve its quality. Major physicochemical properties (approximate composition, pH, acidity, browning pigment, hydrogen donating activity, fatty acids, minerals and saponin) were not significantly changed by gamma irradiation up to 10 kGy. The TBA value was increased depending on the increment of irradiation dose level. In free amino acids, threonine was increased while, serine and glutamic acid were decreased by gamma irradiation. In total amino acids, total contents were not significantly changed by gamma irradiation though tyrosine was slightly decreased P ⩽ 0.05. In free sugar, glucose, sucrose and maltose were significantly increased by 7.5 and 10 kGy gamma irradiation P ⩽ 0.05

  18. Albumin grafting on biomaterial surfaces using gamma-irradiation

    SciTech Connect

    Kamath, K.R.

    1993-01-01

    Surface modification has been used extensively in various fields to introduce desirable surface properties without affecting the bulk properties of the material. In the area of biomaterials, the approach of surface modification offers an effective alternative to the synthesis of new biomaterials. The specific objective of this study was to modify different biomaterial surfaces by albumin grafting to improve their blood compatibility. The modified surfaces were characterized for surface-induced platelet activation and thrombus formation. This behavior was correlated with the conditions used for grafting. In particular, albumin was functionalized to introduce pendant double bonds into the molecule. The functionalized albumin was covalently attached to various surfaces, such as dimethyldichlorosilane-coated glass, polypropylene, polycarbonate, poly(vinyl chloride), and polyethylene by gamma-irradiation. Platelet adhesion and activation on these surfaces was examined using video microscopy and scanning electron microscopy. The extent of grafting was found to be dependent on the albumin concentration used for adsorption and the gamma-irradiation time. Release of the grafted albumin during exposure to blood was minimal. The albumin-grafted fibers maintained their thromboresistant properties even after storage at elevated temperatures for prolonged time periods. Finally, the approach was used to graft albumin on the PLEXUS Adult Hollow Fiber Oxygenators (Shiley). The blood compatibility of the grafted oxygenators improved significantly when compared to controls.

  19. Adsorption of odorous sulfur compounds onto activated carbons modified by gamma irradiation.

    PubMed

    Vega, Esther; Sánchez-Polo, Manuel; Gonzalez-Olmos, Rafael; Martin, María J

    2015-11-01

    A commercial activated carbon (AC) was modified by gamma irradiation and was tested as adsorbent for the removal of ethyl mercaptan, dimethyl disulfide and dimethyl disulfide in wet conditions. Modifications were carried out under five different conditions: irradiation in absence of water, in presence of ultrapure water, in ultrapure water at pH=1.0 and 1000 mg L(-1) Cl(-), in ultrapure water at pH=7.5 and 1000 mg L(-1) Br(-), and in ultrapure water at pH=12.5 and 1000 mg L(-1) NO3(-). The chemical properties of each AC were characterized by elemental analysis, temperature programmed desorption and X-ray photoelectron spectroscopy. Outcomes show that a large number of oxygen functional groups were incorporated in the AC surface by gamma irradiation, especially in the AC irradiated in the presence of ultrapure water. The dynamic adsorption test results reveal that the incorporation of oxygen functional groups did not enhance the adsorption capacities for dimethyl sulfide and dimethyl disulfide. A significant improvement in the ethyl mercaptan adsorption capacity was correlated with the incorporation of phenolic groups in the AC surface. Moreover, diethyl disulfide was detected as by-product of ethyl mercaptan oxidation process under wet conditions and its formation depended on the chemical properties of ACs. PMID:26160734

  20. Detection of gamma irradiated pepper and papain by chemiluminescence

    NASA Astrophysics Data System (ADS)

    Sattar, Abdus; Delincée, H.; Diehl, J. F.

    Chemiluminescence (CL) measurements of black pepper and of papain using luminol and lucigenin reactions were studied. Effects of grinding, irradiation (5-20 kGy) and particle size (750-140 μm) on CL of pepper, and of irradiation (10-30 kGy) on CL of papain, were investigated. All the tested treatments affected the luminescence response in both the luminol and lucigenin reactions; however, the pattern of changes in each case, was inconsistent. Optimum pepper size for maximum luminescence was 560 μm, and optimum irradiation doses were >15 kGy for pepper and >20 kGy for papain. Chemiluminescence may possibly be used as an indicator or irradiation treatment for pepper and papain at a dose of 10 kGy or higher, but further research is needed to establish the reliability of this method.

  1. AGR-1 Irradiation Experiment Test Plan

    SciTech Connect

    John T. Maki

    2009-10-01

    This document presents the current state of planning for the AGR-1 irradiation experiment, the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel process development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment will be irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). The test will contain six independently controlled and monitored capsules. Each capsule will contain a single type, or variant, of the AGR coated fuel. The irradiation is planned for about 700 effective full power days (approximately 2.4 calendar years) with a time-averaged, volume-average temperature of approximately 1050 °C. Average fuel burnup, for the entire test, will be greater than 17.7 % FIMA, and the fuel will experience fast neutron fluences between 2.4 and 4.5 x 1025 n/m2 (E>0.18 MeV).

  2. Influence of gamma irradiation on structural, thermal and antibacterial properties of HPMC/ZnO nanocomposites

    NASA Astrophysics Data System (ADS)

    Rao, B. Lakshmeesha; Madhukumar, R.; Latha, S.; Shetty, G. Rajesha; Shivananda, C. S.; Chandra, K. Sharath; Sangappa, Y.

    2016-05-01

    This work was carried out to evaluate the effect of gamma irradiation on the structural, thermal and antibacterial properties of HPMC/ZnO nanocomposite films exposed to Cobalt-60 (Average energy: 1.25MeV). The X-ray diffraction study revealed that the crystallite size (L in Å) decreased as irradiation dose increased. The crystallinity (Xc) of the nanocomposites initially increased and at higher doses it was decreased. The thermal stability of the nanocomposites increased up to 50 kGy and after that decreased as the irradiation dose increased. But, HPMC/ZnO nanocomposite films, showed a promising range of antimicrobial activity against tested micro-organisms making nanocomposites suitable for food packing and other biomedical applications.

  3. Modification of LDPE molecular structure by gamma irradiation for bioapplications

    NASA Astrophysics Data System (ADS)

    Ferreira, L. M.; Falcão, A. N.; Gil, M. H.

    2005-07-01

    The surface properties of low-density polyethylene (LDPE) can be modified by the grafting of 2-hydroxyethyl methacrylate (HEMA). This was done aiming at the production of new materials suitable for bioapplications. Samples with different monomer concentrations were prepared from LDPE particles by gamma irradiation, following different irradiation protocols, including irradiation in presence and absence of air. The samples were characterized by thermal analysis techniques (DSC and TGA) and by Fourier transform infrared spectroscopy (FTIR). The results obtained show a decrease in the crystallinity of the supporting matrix for copolymers with high yields of grafting. However, the new materials prepared maintain good structural order resulting from the protective effect of polyHEMA grafted onto LDPE backbone. These effects can improve the diffusion of other species deeper inside the matrix and increase the material hydrophilicity. The studies performed made possible the selection of experimental protocols adequate for the production of new copolymeric materials with high grafting yield. These were used in the production of new LDPE films with enhanced hydrophilic properties.

  4. Monitoring of gamma-irradiated Yb-doped optical fibers through the pump induced refractive index change effect

    SciTech Connect

    Pekukhova, I.; Fotiadi, A. A.; Shubin, A. V.; Tomashuk, A. L.; Novikov, S. G.; Zolotovskiy, I. O.; Antipov, O. L.; Panajotov, K.; Thienpont, H.; Megret, P.

    2011-07-01

    We report on the method for monitoring of the modifications in Yb-doped optical fibers irradiated by gamma-rays with the doses 1, 2, 4 and 8 kGy. This method is based on the refractive index change (RIC) effect induced in the tested fibers by square modulated optical pump pulses of 1 ms duration at 980 nm with the power up to 100 mW. The applied in-situ monitoring is based on interferometric technique and highlights the key parameters of the RIC effect that allows to characterize quantitatively the degree of the fiber degradation under the gamma irradiation. (authors)

  5. Gamma irradiation of corn starches with different amylose-to-amylopectin ratio.

    PubMed

    Chung, Kok-Heung; Othman, Zainon; Lee, Jau-Shya

    2015-10-01

    Corn starches with different amylose-to-amylopectin ratio (waxy, normal, Hylon V, and Hylon VII) were treated with five doses of gamma irradiation (1, 5, 10, 25, and 50 kGy). The effects of gamma irradiation on the physicochemical properties of starch samples were investigated. Waxy samples showed an increase of amylose-like fractions when irradiated at 10 kGy. The reduction in apparent amylose content increased with amylose content when underwent irradiation at 25 and 50 kGy. Low amylose starches lost their pasting ability when irradiated at 25 and 50 kGy. Results from thermal behavior and pasting profile suggested that low level of cross-linking occurred in Hylon VII samples irradiated at 5 kGy. Severe reduction in pasting properties, gelatinization temperatures and relative crystallinity with increasing irradiation intensity revealed that waxy samples were affected more by gamma irradiation; this also indicated amylopectin was the starch fraction most affected by gamma irradiation. Alteration level was portrayed differently when different kind of physicochemical properties were investigated, in which the pasting properties and crystallinity of starches were more immensely influenced by gamma irradiation while thermal behavior was less affected. Despite the irradiation level, the morphology and crystal pattern of starch granules were found remain unchanged by irradiation. PMID:26396368

  6. Change in the enzymatic dual function of the peroxiredoxin protein by gamma irradiation

    NASA Astrophysics Data System (ADS)

    An, Byung Chull; Lee, Seung Sik; Lee, Jae Taek; Park, Chul-Hong; Lee, Sang Yeol; Chung, Byung Yeoup

    2012-08-01

    PP1084 protein was exposed to gamma irradiation ranging from 5 to 500 kGy. Native PAGE showed minor structural changes in PP1084 at 5 kGy, and major structural changes at >15 kGy. Size-exclusion chromatography (SEC) showed the formation of a new shoulder peak when the protein was irradiated with 15 and 30 kGy, and a double peak appeared at 100 kGy. The results of PAGE and SEC imply that PP1084 protein is degraded by gamma irradiation, with simultaneous oligomerization. PP1084 chaperone activity reached the highest level at 30 kGy of gamma irradiation, and then, decreased in a dose-dependent manner with increasing gamma irradiation. However, the peroxidase activity significantly decreased following exposure to all intensities of gamma irradiation. The improvement of chaperone activity using gamma irradiation might be promoted by the oligomeric structures containing covalently cross-linked amino acids. Consequently, PP1084 modification using gamma irradiation could elevate chaperone activity by about 3-4 folds compared to the non-irradiated protein.

  7. Effect of gamma irradiation on MnO2/Ag2O hydrogen getter

    NASA Astrophysics Data System (ADS)

    Chlique, Christophe; Lambertin, David; Galliez, Kévin; Labed, Véronique; Dannoux-Papin, Adeline; Jobic, Stéphane; Deniard, Philippe; Leoni, Elisa

    2015-03-01

    This study aims to show the stability of γ-MnO2/Ag2O hydrogen getter under gamma irradiation in order to be suitable for decreasing the hydrogen risk during the nuclear waste transportation. The chemical and the structural properties of the getter were barely unchanged for irradiated doses up to 4 MGy. The pair distribution function (PDF) analysis showed that the γ-MnO2, which can be describe as an intergrowth of the ramsdellite phase (R-MnO2) and the pyrolusite phase (β-MnO2), had the same intergrowth rate (around 60% for β-MnO2 and 40% for R-MnO2) after irradiation and the silver containing promoter was also unchanged. The getter remains therefore efficient for hydrogen trapping. Furthermore, γ-MnO2/Ag2O was tested in a closed environment in the presence of hydrogen released by organic technological waste radiolysis, such as polyvinyl chloride, ion exchange resins, polyethylene and silicone. Over 80% of the hydrogen, generated by organic radiolysis, was trapped under a 1.5 MGy gamma irradiation.

  8. Application of gamma irradiation for inactivation of three pathogenic bacteria inoculated into meatballs

    NASA Astrophysics Data System (ADS)

    Gumus, Tuncay; Şukru Demirci, A.; Murat Velioglu, H.; Velioglu, Serap D.; Yilmaz, Ismail; Sagdic, Osman

    2008-09-01

    In this research, the effect of gamma irradiation on the inactivation of Escherichia coli O157:H7 (ATCC 33150), Staphylococcus aureus (ATCC 2392) and Salmonella typhimurium (NRRL 4463) inoculated into Tekirdag meatballs was investigated. The meatball samples were inoculated with pathogens and irradiated at the absorbed doses of 1, 2.2, 3.2, 4.5 and 5.2 kGy. E. coli O157:H7 count in 1 kGy irradiated meatballs stored in the refrigerator for 7 days was detected to be 4 log cfu/g lower than the count in nonirradiated samples ( p<0.05). S. aureus counts were decreased to 4 log cfu/g after being exposed to irradiation at a dose of 1 kGy. Although it was ineffective on elimination of S. typhimurium, irradiation at a dose of 3.2 kGy reduced E. coli O157:H7 and S. aureus counts under detectable values in the meatballs. However, none of the test organisms were detected in the samples after irradiation with 4.5 kGy doses.

  9. Complete suppression of reverse annealing of neutron radiation damage during active gamma irradiation in MCZ Si detectors

    NASA Astrophysics Data System (ADS)

    Li, Z.; Verbitskaya, E.; Chen, W.; Eremin, V.; Gul, R.; Härkönen, J.; Hoeferkamp, M.; Kierstead, J.; Metcalfe, J.; Seidel, S.

    2013-01-01

    For the development of radiation-hard Si detectors for the SiD BeamCal (Si Detector Beam Calorimeter) program for International Linear Collider (ILC), n-type Magnetic Czochralski Si detectors have been irradiated first by fast neutrons to fluences of 1.5×1014 and 3×1014 neq/cm2, and then by gamma up to 500 Mrad. The motivation of this mixed radiation project is to test the radiation hardness of MCZ detectors that may utilize the gamma/electron radiation to compensate the negative effects caused by neutron irradiation, all of which exists in the ILC radiation environment. By using the positive space charge created by gamma radiation in MCZ Si detectors, one can cancel the negative space charge created by neutrons, thus reducing the overall net space charge density and therefore the full depletion voltage of the detector. It has been found that gamma radiation has suppressed the room temperature reverse annealing in neutron-irradiated detectors during the 5.5 month of time needed to reach a radiation dose of 500 Mrad. The room temperature annealing (RTA) was verified in control samples (irradiated to the same neutron fluences, but going through this 5.5 month RTA without gamma radiation). This suppression is in agreement with our previous predictions, since negative space charge generated during the reverse annealing was suppressed by positive space charge induced by gamma radiation. The effect is that regardless of the received neutron fluence the reverse annealing is totally suppressed by the same dose of gamma rays (500 Mrad). It has been found that the full depletion voltage for the two detectors irradiated to two different neutron fluences stays the same before and after gamma radiation. Meanwhile, for the control samples also irradiated to two different neutron fluences, full depletion voltages have gone up during this period. The increase in full depletion voltage in the control samples corresponds to the generation of negative space charge, and this

  10. Decoloration and degradation of some textile dyes by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Şolpan, Dilek; Güven, Olgun

    2002-11-01

    The textile industry has long been one of the largest water users and polluters. Wastewater released by textile industries contains toxic refractory dye stuff at high concentration. Most of the dyes in the textile industry are non-degradable, therefore, effective treatment of dye waste effluent has not been achieved by ordinary processes. Ionizing radiation has been considered a promising process for the treatment of textile dye waste effluents. In this study, the possibility of using gamma rays to degrade or decolorize reactive dyes in water was investigated. Two different reactive dyes (Reactive Blue 15 and Reactive Black 5) in aqueous solutions were irradiated at doses of 0.1-15 kGy, at 2.87 and 0.14 kGy/h dose rates. The change of absorption spectra, pH, chemical oxygen demand (COD), and the degree of decoloration (percent reduction in optical density) were examined in the presence of air and H 2O 2. The absorption bands at 664, 640, 340, 260 nm and 596, 392, 312 nm for RB15 and RB5 decreased rapidly with increasing irradiation dose. The degree of decoloration of each dye solution with irradiation dose appeared to be 100 percent for the lower concentration (50 ppm) dye solutions. The complete decoloration was observed after 1 and 15 kGy doses for RB5 and RB15, respectively. pH of RB5 and RB15 solutions was decreased from 6.15 and 6.98 to 3.40 and 3.68 with the irradiation dose. The COD reduction for all the dye solutions was approximately 76-80% at 1 and 15 kGy for RB5 and RB15. The COD reduction and the change of pH for all the dye solutions were examined similar to each other.

  11. Gamma irradiation and red cell haemolysis: a study at the Universiti Kebangsaan Malaysia Medical Centre.

    PubMed

    Yousuf, Rabeya; Mobin, Mohd Herman; Leong, Chooi Fun

    2015-08-01

    Gamma-irradiation of blood components is regarded a safe procedure used for prevention of transfusion associated graft-versus-host disease. However, reports showed that irradiation can cause erythrocyte haemolysis and damage to the RBC membrane. In University Kebangsaan Malaysia Medical Centre (UKMMC), a number of suspected transfusion reactions (TR) featured unusual isolated episodes of red-coloured-urine or haemoglobinuria among paediatric patients without clinical features of acute haemolytic TR. Haemolysis of irradiated red cells was suspected as a cause. This study was conducted to evaluate haemolytic changes of RBC components following irradiation. A prospective, pre- and post- irradiation comparative study was conducted on 36 paired RBC-components in the blood-bank, UKMMC in the year 2013. Samples were tested for plasma-Hb, percent-haemolysis, plasma-potassium (K⁺) and lactate dehydrogenase (LDH) level. Post-irradiation mean plasma-Hb and percent-haemolysis were significantly higher than pre-irradiation values at 0.09 ±0.06g/dl VS 0.10 ± 0.06g/dl and 0.19 ± 0.13% VS 0.22 ± .13% respectively, while plasma-K⁺ and LDH values did not show significant difference. However, the mean percent-haemolysis level was still within recommended acceptable levels for clinical use, supporting that irradiated RBC units were safe and of acceptable quality for transfusion. There was no conclusive reason for isolated haemoglobinuria following transfusion of irradiated red-cell products. Further research is suggested to investigate the other possible causes. PMID:26277664

  12. Gamma-Irradiated Sterile Cornea for Use in Corneal Transplants in a Rabbit Model

    PubMed Central

    Yoshida, Junko; Heflin, Thomas; Zambrano, Andrea; Pan, Qing; Meng, Huan; Wang, Jiangxia; Stark, Walter J.; Daoud, Yassine J.

    2015-01-01

    Purpose: Gamma irradiated corneas in which the donor keratocytes and endothelial cells are eliminated are effective as corneal lamellar and glaucoma patch grafts. In addition, gamma irradiation causes collagen cross inking, which stiffens collagen fibrils. This study evaluated gamma irradiated corneas for use in corneal transplantations in a rabbit model comparing graft clarity, corneal neovascularization, and edema. Methods: Penetrating keratoplasty was performed on rabbits using four types of corneal grafts: Fresh cornea with endothelium, gamma irradiated cornea, cryopreserved cornea, and fresh cornea without endothelium. Slit lamp examination was performed at postoperative week (POW) one, two, and four. Corneal clarity, edema, and vascularization were graded. Confocal microscopy and histopathological evaluation were performed. A P < 0.05 was statistically significant. Results: For all postoperative examinations, the corneal clarity and edema were statistically significantly better in eyes that received fresh cornea with endothelium compared to the other three groups (P < 0.05). At POW 1, gamma irradiated cornea scored better than the cryopreserved and fresh cornea without endothelium groups in clarity (0.9 vs. 1.5 and 2.6, respectively), and edema (0.6 vs. 0.8 and 2.0, respectively). The gamma irradiated corneas, cryopreserved corneas and the fresh corneas without endothelium, developed haze and edema after POW 2. Gamma irradiated cornea remained statistically significantly clearer than cryopreserved and fresh cornea without endothelium during the observation period (P < 0.05). Histopathology indicated an absence of keratocytes in gamma irradiated cornea. Conclusion: Gamma irradiated corneas remained clearer and thinner than the cryopreserved cornea and fresh cornea without endothelium. However, this outcome is transient. Gamma irradiated corneas are useful for lamellar and patch grafts, but cannot be used for penetrating keratoplasty. PMID:26180475

  13. The gamma irradiation effects on structural and optical properties of silk fibroin/HPMC blend films

    NASA Astrophysics Data System (ADS)

    Shetty, G. Rajesha; Rao, B. Lakshmeesha; Gowda, Mahadeva; Shivananda, C. S.; Asha, S.; Byrappa, K.; Sangappa, Y.

    2016-05-01

    In this paper the structural, chemical and optical properties of gamma irradiated silk fibroin/Hydroxypropyl methyl cellulose (SF-HPMC) blend films were studied using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV-visible spectroscopy. The results indicate that the gamma radiation did not affect significantly the primary structure of polypeptide arrangement in the blend films. But the optical properties of the blends changed with gamma irradiation dosage.

  14. Application of nondestructive gamma-ray and neutron techniques for the safeguarding of irradiated fuel materials

    SciTech Connect

    Phillips, J.R.; Halbig, J.K.; Lee, D.M.; Beach, S.E.; Bement, T.R.; Dermendjiev, E.; Hatcher, C.R.; Kaieda, K.; Medina, E.G.

    1980-05-01

    Nondestructive gamma-ray and neutron techniques were used to characterize the irradiation exposures of irradiated fuel assemblies. Techniques for the rapid measurement of the axial-activity profiles of fuel assemblies have been developed using ion chambers and Be(..gamma..,n) detectors. Detailed measurements using high-resolution gamma-ray spectrometry and passive neutron techniques were correlated with operator-declared values of cooling times and burnup.

  15. Degradation and annealing studies on gamma rays irradiated COTS PPD CISs at different dose rates

    NASA Astrophysics Data System (ADS)

    Wang, Zujun; Ma, Yingwu; Liu, Jing; Xue, Yuan; He, Baoping; Yao, Zhibin; Huang, Shaoyan; Liu, Minbo; Sheng, Jiangkun

    2016-06-01

    The degradation and annealing studies on Colbalt-60 gamma-rays irradiated commercial-off-the-shelf (COTS) pinned photodiode (PPD) CMOS image sensors (CISs) at the various dose rates are presented. The irradiation experiments of COTS PPD CISs are carried out at 0.3, 3.0 and 30.0 rad(Si)/s. The COTS PPD CISs are manufactured using a standard 0.18-μm CMOS technology with four-transistor pixel PPD architecture. The behavior of the tested CISs shows a remarkable degradation after irradiation and differs in the dose rates. The dark current, dark signal non-uniformity (DSNU), random noise, saturation output, signal to noise ratio (SNR), and dynamic range (DR) versus the total ionizing dose (TID) at the various dose rates are investigated. The tendency of dark current, DSNU, and random noise increase and saturation output, SNR, and DR to decrease at 3.0 rad(Si)/s are far greater than those at 0.3 and 30.0 rad(Si)/s. The damage mechanisms caused by TID irradiation at the various dose rates are also analyzed. The annealing tests are carried out at room temperature with unbiased conditions after irradiation.

  16. Formation of uranium based nanoparticles via gamma-irradiation

    NASA Astrophysics Data System (ADS)

    Nenoff, Tina M.; Ferriera, Summer R.; Huang, Jianyu; Hanson, Donald J.

    2013-11-01

    The ability to fabricate nuclear fuels at low temperatures allows for the production of complex Uranium metal and alloys with minimum volatility of alloy components in the process. Gamma irradiation is a valuable method for the synthesis of a wide range of metal-based nanoparticles. We report on the synthesis via room temperature radiolysis and characterization of uranium (depleted, d-U) metal and uranium-lathanide (d-ULn, Ln = lanthanide surrogates) alloy nanoparticles from aqueous acidic salt solutions. The lanthanide surrogates chosen include La and Eu due to their similarity in ionic size and charge in solution. Detailed characterization results including UV-vis, TEM/HR-TEM, and single particle EDX (elemental analyses) are presented for the room temperature formed nanoparticle products.

  17. Electrical Characteristics of Mid-wavelength HgCdTe Photovoltaic Detectors Exposed to Gamma Irradiation

    NASA Astrophysics Data System (ADS)

    Qiao, H.; Hu, W. D.; Li, T.; Li, X. Y.; Chang, Y.

    2016-09-01

    The study of electrical characteristics of mid-wavelength HgCdTe photodiodes irradiated by steady-state gamma rays has been carried out. The measurement of the current-voltage curves during irradiation revealed an abnormal variation of zero biased resistance R 0, and it didn't tend to change monotonically as observed in the case of post irradiation measurement. The irradiation effect was dominated by bulk effect inferred from the fitting calculations, and the generation-recombination current in the depletion region was drastically affected by gamma irradiation. Another irradiation effect was the linear increase of the series resistance with irradiation dosage which was related with the change of transportation parameters of carriers. The influence of hydrogenation on the gamma irradiation effects was also studied for comparison with the same batch of HgCdTe photodiodes, and it was found that R 0 for the hydrogenated devices showed similar change to those without hydrogenation. The series resistance, however, gave a totally different irradiation effect from the non-hydrogenated detectors and showed little change up to nearly 1 Mrad(Si) of gamma irradiation, which may be explained by the annihilation of hydrogen radicals with the defects caused by gamma irradiation.

  18. Electrical Characteristics of Mid-wavelength HgCdTe Photovoltaic Detectors Exposed to Gamma Irradiation

    NASA Astrophysics Data System (ADS)

    Qiao, H.; Hu, W. D.; Li, T.; Li, X. Y.; Chang, Y.

    2016-03-01

    The study of electrical characteristics of mid-wavelength HgCdTe photodiodes irradiated by steady-state gamma rays has been carried out. The measurement of the current-voltage curves during irradiation revealed an abnormal variation of zero biased resistance R 0, and it didn't tend to change monotonically as observed in the case of post irradiation measurement. The irradiation effect was dominated by bulk effect inferred from the fitting calculations, and the generation-recombination current in the depletion region was drastically affected by gamma irradiation. Another irradiation effect was the linear increase of the series resistance with irradiation dosage which was related with the change of transportation parameters of carriers. The influence of hydrogenation on the gamma irradiation effects was also studied for comparison with the same batch of HgCdTe photodiodes, and it was found that R 0 for the hydrogenated devices showed similar change to those without hydrogenation. The series resistance, however, gave a totally different irradiation effect from the non-hydrogenated detectors and showed little change up to nearly 1 Mrad(Si) of gamma irradiation, which may be explained by the annihilation of hydrogen radicals with the defects caused by gamma irradiation.

  19. Effect of Gamma Irradiation on Structural and Biological Properties of a PLGA-PEG-Hydroxyapatite Composite

    PubMed Central

    Shahabi, Sima; Najafi, Farhood; Majdabadi, Abbas; Hooshmand, Tabassom; Haghbin Nazarpak, Masoumeh; Karimi, Batool

    2014-01-01

    Gamma irradiation is able to affect various structural and biological properties of biomaterials In this study, a composite of Hap/PLGA-PEG and their ingredients were submitted to gamma irradiation doses of 25 and 50 KGy. Various properties such as molecular weight (GPC), thermal behavior (DSC), wettability (contact angle), cell viability (MTT assay), and alkaline phosphatase activity were studied for the composites and each of their ingredients. The results showed a decrease in molecular weight of copolymer with no change in the glass transition and melting temperatures after gamma irradiation. In general gamma irradiation can increase the activation energy ΔH of the composites and their ingredients. While gamma irradiation had no effect on the wettability of copolymer samples, there was a significant decrease in contact angle of hydroxyapatite and composites with increase in gamma irradiation dose. This study showed an increase in biocompatibility of hydroxyapatite with gamma irradiation with no significant effect on cell viability in copolymer and composite samples. In spite of the fact that no change occurred in alkaline phosphatase activity of composite samples, results indicated a decrease in alkaline phosphatase activity in irradiated hydroxyapatites. These effects on the properties of PLGA-PEG-hydroxyapatite can enhance the composite application as a biomaterial. PMID:25574485

  20. Effect of gamma irradiation on structural and biological properties of a PLGA-PEG-hydroxyapatite composite.

    PubMed

    Shahabi, Sima; Najafi, Farhood; Majdabadi, Abbas; Hooshmand, Tabassom; Haghbin Nazarpak, Masoumeh; Karimi, Batool; Fatemi, Seyyed Mostafa

    2014-01-01

    Gamma irradiation is able to affect various structural and biological properties of biomaterials In this study, a composite of Hap/PLGA-PEG and their ingredients were submitted to gamma irradiation doses of 25 and 50 KGy. Various properties such as molecular weight (GPC), thermal behavior (DSC), wettability (contact angle), cell viability (MTT assay), and alkaline phosphatase activity were studied for the composites and each of their ingredients. The results showed a decrease in molecular weight of copolymer with no change in the glass transition and melting temperatures after gamma irradiation. In general gamma irradiation can increase the activation energy ΔH of the composites and their ingredients. While gamma irradiation had no effect on the wettability of copolymer samples, there was a significant decrease in contact angle of hydroxyapatite and composites with increase in gamma irradiation dose. This study showed an increase in biocompatibility of hydroxyapatite with gamma irradiation with no significant effect on cell viability in copolymer and composite samples. In spite of the fact that no change occurred in alkaline phosphatase activity of composite samples, results indicated a decrease in alkaline phosphatase activity in irradiated hydroxyapatites. These effects on the properties of PLGA-PEG-hydroxyapatite can enhance the composite application as a biomaterial. PMID:25574485

  1. Irradiation with low-dose gamma ray enhances tolerance to heat stress in Arabidopsis seedlings.

    PubMed

    Zhang, Liang; Zheng, Fengxia; Qi, Wencai; Wang, Tianqi; Ma, Lingyu; Qiu, Zongbo; Li, Jingyuan

    2016-06-01

    Gamma irradiation at low doses can stimulate the tolerance to environmental stress in plants. However, the knowledge regarding the mechanisms underlying the enhanced tolerance induced by low-dose gamma irradiation is far from fully understood. In this study, to investigate the physiological and molecular mechanisms of heat stress alleviated by low-dose gamma irradiation, the Arabidopsis seeds were exposed to a range of doses before subjected to heat treatment. Our results showed that 50-Gy gamma irradiation maximally promoted seedling growth in response to heat stress. The production rate of superoxide radical and contents of hydrogen peroxide and malondialdehyde in the seedlings irradiated with 50-Gy dose under heat stress were significantly lower than those of controls. The activities of antioxidant enzymes, glutathione (GSH) content and proline level in the gamma-irradiated seedlings were significantly increased compared with the controls. Furthermore, transcriptional expression analysis of selected genes revealed that some components related to heat tolerance were stimulated by low-dose gamma irradiation under heat shock. Our results suggest that low-dose gamma irradiation can modulate the physiological responses as well as gene expression related to heat tolerance, thus alleviating the stress damage in Arabidopsis seedlings. PMID:26945467

  2. AGC-1 Irradiation Experiment Test Plan

    SciTech Connect

    R. L. Bratton

    2006-05-01

    The Advanced Graphite Capsule (AGC) irradiation test program supports the acquisition of irradiated graphite performance data to assist in the selection of the technology to be used for the VHTR. Six irradiations are planned to investigate compressive creep in graphite subjected to a neutron field and obtain irradiated mechanical properties of vibrationally molded, extruded, and iso-molded graphites for comparison. The experiments will be conducted at three temperatures: 600, 900, and 1200°C. At each temperature, two different capsules will be irradiated to different fluence levels, the first from 0.5 to 4 dpa and the second from 4 to 7 dpa. AGC-1 is the first of the six capsules designed for ATR and will focus on the prismatic fluence range.

  3. Gamma irradiation assisted fungal degradation of the polypropylene/biomass composites

    NASA Astrophysics Data System (ADS)

    Butnaru, Elena; Darie-Niţă, Raluca Nicoleta; Zaharescu, Traian; Balaeş, Tiberius; Tănase, Cătălin; Hitruc, Gabriela; Doroftei, Florica; Vasile, Cornelia

    2016-08-01

    White-rot fungus Bjerkandera adusta has been tested for its ability to degrade some biocomposites materials based on polypropylene and biomass (Eucalyptus globulus, pine cones, and Brassica rapa). γ-irradiation was applied to initiate the degradation of relatively inert polypropylene matrix. The degradation process has been studied by scanning electron microscopy, atomic force microscopy, infrared spectroscopy, contact angle measurements, rheological and chemiluminescence tests. These analyses showed that the polypropylene/biomass composites properties are worsen under the action of the selected microorganism. The formation of cracks and scrap particles over the entire matrix surface and the decrease of the complex viscosity values, as well as the dynamic moduli of gamma irradiated PP/biomass composite and exposed to Bjerkandera adusta fungus, indicate fungal efficiency in composite degradation.

  4. Imaging of gamma-Irradiated Regions of a Crystal

    NASA Technical Reports Server (NTRS)

    Dragoi, Danut; McClure, Steven; Johnston, Allan; Chao, Tien-Hsin

    2004-01-01

    A holographic technique has been devised for generating a visible display of the effect of exposure of a photorefractive crystal to gamma rays. The technique exploits the space charge that results from trapping of electrons in defects induced by gamma rays. The technique involves a three-stage process. In the first stage, one writes a holographic pattern in the crystal by use of the apparatus shown in Figure 1. A laser beam of 532-nm wavelength is collimated and split into signal and reference beams by use of a polarizing beam splitter. On its way to the crystal, the reference beam goes through a two-dimensional optical scanner that contains two pairs of lenses (L1y, L2y and L1x,L2x) and mirrors M1 and M2, which can be rotated by use of micrometer drives to make fine adjustments. The signal beam is sent through a spatial light modulator that imposes the holographic pattern, then through two imaging lenses L(sub img) on its way to the crystal. An aperture is placed at the common focus of lenses Limg to suppress high-order diffraction from the spatial light modulator. The hologram is formed by interference between the signal and reference beams. A camera lens focuses an image of the interior of the crystal onto a charge-coupled device (CCD). If the crystal is illuminated by only the reference beam once the hologram has been formed, then an image of the hologram is formed on the CCD: this phenomenon is exploited to make visible the pattern of gamma irradiation of the crystal, as described next. In the second stage of the process, the crystal is removed from the holographic apparatus and irradiated with rays at a dose of about 100 krad. In the third stage of the process, the crystal is remounted in the holographic apparatus in the same position as in the first stage and illuminated with only the reference beam to obtain the image of the hologram as modified by the effect of the rays. The orientations of M1 and M2 can be adjusted slightly, if necessary, to maximize the

  5. The aging process of optical couplers by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Bednarek, Lukas; Marcinka, Ondrej; Perecar, Frantisek; Papes, Martin; Hajek, Lukas; Nedoma, Jan; Vasinek, Vladimir

    2015-08-01

    Scientists have recently discovered that the ageing process of optical elements is faster than it was originally anticipated. It is mostly due to the multiple increases of the optical power in optical components, the introduction of wavelength division multiplexers and, overall, the increased flow of traffic in optical communications. This article examines the ageing process of optical couplers and it focuses on their performance parameters. It describes the measurement procedure followed by the evaluation of the measurement results. To accelerate the ageing process, gamma irradiation from 60Co was used. The results of the measurements of the optical coupler with one input and eight outputs (1:8) were summarized. The results gained by measuring of the optical coupler with one input and four outputs (1:4) as well as of the optical couplers with one input and two outputs (1:2) with different split ratios were also processed. The optical powers were measured on the input and the outputs of each branch of each optical coupler at the wavelengths of 1310 nm and 1550 nm. The parameters of the optical couplers were subsequently calculated according to the appropriate formulas. These parameters were the insertion loss of the individual branches, split ratio, total losses, homogeneity of the losses and directionalities alias cross-talk between the individual output branches. The gathered data were summarized before and after the first irradiation when the configuration of the couplers was 1:8 and 1:4. The data were summarized after the third irradiation when the configuration of the couplers was 1:2.

  6. Inert matrix fuel behaviour in test irradiations

    NASA Astrophysics Data System (ADS)

    Hellwig, Ch.; Streit, M.; Blair, P.; Tverberg, T.; Klaassen, F. C.; Schram, R. P. C.; Vettraino, F.; Yamashita, T.

    2006-06-01

    Among others, three large irradiation tests on inert matrix fuels have been performed during the last five years: the two irradiation tests IFA-651 and IFA-652 in the OECD Halden Material Test Reactor and the OTTO irradiation in the High Flux Reactor in Petten. While the OTTO irradiation is already completed, the other two irradiations are still ongoing. The objectives of the experiments differ: for OTTO, the focus was on the comparison of different concepts of IMF, i.e. homogeneous fuel versus different types of heterogeneous fuel. In IFA-651, single phase yttria stabilized zirconia (YSZ) doped with Pu is compared with MOX. In IFA-652, the potential of calcia stabilized zirconia (CSZ) as a matrix with and without thoria is evaluated. The design of the three experiments is explained and the current status is reviewed. The experiments show that the homogeneous, single phase YSZ-based or CSZ-based fuel show good and stable irradiation behaviour. It can be said that homogeneous stabilized zirconia based fuel is the most promising IMF concept for an LWR environment. Nevertheless, the fuel temperatures were relatively high due to the low thermal conductivity, potentially leading to high fission gas release, and must be taken into account in the fuel design.

  7. Effect of gamma irradiation on the friction and wear of ultrahigh molecular weight polyethylene

    NASA Technical Reports Server (NTRS)

    Jones, W. R.; Hady, W. F.; Crugnola, A.

    1981-01-01

    The effect of sterilization gamma irradiation on the friction and wear properties of ultrahigh molecular weight polyethylene (UHMWPE) sliding against stainless steel 316L in dry air at 23 C is investigated, the results to be used in the development of artificial joints which are to surgically replace diseased human joints. A pin-on-disk sliding friction apparatus is used, a constant sliding speed in the range 0.061-0.27 m/s is maintained, a normal load of 1 kgf is applied with dead weight, and the irradiation dose levels are: 0, 2.5, and 5.0 Mrad. Wear and friction data and conditions for each of the ten tests are summarized, and include: (1) wear volume as a function of the sliding distance for the irradiation levels, (2) incremental wear rate, and (3) coefficient of friction as a function of the sliding distance. It is shown that (1) the friction and wear properties of UHMWPE are not significantly changed by the irradiation doses of 2.5 and 5.0 Mrad, (2) the irradiation increases the amount of insoluble gel as well as the amount of low molecular weight material, and (3) after run-in the wear rate is either steady or gradually decreases as a function of the sliding distance.

  8. Manufacture of ice cream with improved microbiological safety by using gamma irradiation

    NASA Astrophysics Data System (ADS)

    Lee, Ju-Woon; Kim, Hyun-Joo; Yoon, Yohan; Kim, Jae-Hun; Ham, Jun-Sang; Byun, Myung-Woo; Baek, Min; Jo, Cheorun; Shin, Myung-Gon

    2009-07-01

    Children suffered from leukemia want to eat delicious dishes, such as cake and ice cream. However, it is very difficult to serve these foods to immune-compromised patients without application of any adequate sanitary measures. This study was conducted to evaluate application of irradiation to frozen ready-to-eat food, ice cream. Three ice creams with flavors of vanilla, chocolate and strawberry were manufactured and gamma irradiated at the absorbed doses of 1, 3, and 5 kGy at -70 °C. Total microflora and coliform bacteria were determined, and Listeria spp., Escherichia coli and Salmonella spp. were also tested by the use of API 20E Kit. Aerobic bacteria, yeast/mold and coliforms were contaminated in the levels of 2.3 to 3.3, 2.3 to 2.7 and 1.7 to 2.4 log CFU/g, respectively. In samples irradiated at 5 kGy, the growth of any microorganisms could not be observed. Listeria spp. and E. coli were detected at non-irradiated samples, but S. spp. was not existed. D10 values of L. ivanovii and E. coli were 0.75 and 0.31 kGy, respectively, in ice cream. From these results, irradiation technology can reduce the risk by the food-borne pathogens of ice cream.

  9. Effects of thermal annealing of power BJTs, MOSFETs, and SITs following neutron and gamma irradiation

    NASA Astrophysics Data System (ADS)

    Frasca, Albert J.; Schwarze, Gene E.

    1991-01-01

    The electrical and switching characteristics of high power semiconductor switches subjected to high levels of neutron fluences and gamma doses must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect switch performance are briefly discussed. The effects of post-irradiation thermal anneals at 300 K and up to 425 K for NPN Bipolar Junction Transistors (BJTs), N-channel Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs), and N-channel Static Induction Transistors (SITs) are discussed in terms of recovery of degraded electrical and switching parameters caused by either neutron or gamma irradiation. The important experimental results from these annealing tests show that BJTs have very good recovery to leakage current degradation but poor recovery to current gain degradation; MOSFETs show some recovery in gate-source threshold voltage degradation but no significant recovery in drain-source on-resistance degradation; and likewise, SITs show no significant recovery in drain-source on-resistance degradation.

  10. Effects of thermal annealing of power BJTs, MOSFETs, and SITs following neutron and gamma irradiation

    SciTech Connect

    Frasca, A.J. ); Schwarze, G.E. )

    1991-01-10

    The electrical and switching characteristics of high power semiconductor switches subjected to high levels of neutron fluences and gamma doses must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect switch performance are briefly discussed. The effects of post-irradiation thermal anneals at 300 K and up to 425 K for NPN Bipolar Junction Transistors (BJTs), N-channel Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs), and N-channel Static Induction Transistors (SITs) are discussed in terms of recovery of degraded electrical and switching parameters caused by either neutron or gamma irradiation. The important experimental results from these annealing tests show that BJTs have very good recovery to leakage current degradation but poor recovery to current gain degradation; MOSFETs show some recovery in gate-source threshold voltage degradation but no significant recovery in drain-source on-resistance degradation; and likewise, SITs show no significant recovery in drain-source on-resistance degradation.

  11. Effect of gamma-irradiation on serum samples on the diagnostic performance of ELISA methods for the detection of trypanosomal antibodies.

    PubMed

    Rebeski, D E; Winger, E M; Gabler, C M; Dwinger, R H; Crowther, J R

    2001-08-01

    The study investigated the effect of gamma-irradiation on bovine serum samples on the ability of enzyme-linked immunosorbent assay (ELISA) methods to detect trypanosomal antibodies. The serum samples were analysed using two standardised indirect ELISA systems. Higher measurement values were observed for most gamma-irradiated antibody positive and negative test samples. Using cut-off points, determined from the analysis of a non-irradiated trypanosomal antibody-negative population, the gamma-irradiated sera data showed that there was an increased risk of misclassifying samples as false positive or cross-reactive due to increased analytical sensitivity and decreased analytical specificity. The intraplate precision and agreement between tested and expected values of measurements were not altered throughout. The impact on the assays' diagnostic performance was estimated by analysing diagnostic sensitivity, diagnostic specificity and related parameters. The data demonstrated that although there was a bias of higher measurement values after gamma-irradiation, this could be compensated after readjustment of the cut-off points to obtain best separation of antibody-positive and -negative samples. Thus, for each assay, no significant difference of the diagnostic proficiency was found before and after gamma-irradiation. The practical implications are discussed of a serum sterilisation procedure using (60)Co gamma-rays for routine sample testing, assay validation and trypanosomosis monitoring and tsetse-fly control and eradication programmes. PMID:11470177

  12. Gamma irradiation improves the antioxidant activity of Aloe vera (Aloe barbadensis miller) extracts

    NASA Astrophysics Data System (ADS)

    Mi Lee, Eun; Bai, Hyoung-Woo; Sik Lee, Seung; Hyun Hong, Sung; Cho, Jae-Young; Yeoup Chung, Byung

    2012-08-01

    Aloe has been widely used in food products, pharmaceuticals, and cosmetics because of its aromatic and therapeutic properties. In the present study, the ethanolic extracts of aloe gel were gamma-irradiated from 10 to 100 kGy. After gamma irradiation, the color of the ethanolic extracts of aloe gel changed to red; this color persisted up to 40 kGy but disappeared above 50 kGy. Liquid chromatography/mass spectrometry analysis demonstrated the production of a new, unknown compound (m/z=132) after gamma irradiation of the ethanolic extracts of aloe gel. The amount of this unknown compound increased with increasing irradiation up to 80 kGy, and it was degraded at 100 kGy. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by the 1,1-diphenyl-2-picrylhydrazyl-radical scavenging capacity. The antioxidant activity of aloe extract was dramatically increased from 53.9% in the non-irradiated sample to 92.8% in the sample irradiated at 40 kGy. This strong antioxidant activity was retained even at 100 kGy. These results indicate that gamma irradiation of aloe extract can enhance its antioxidant activity through the formation of a new compound. Based on these results, increased antioxidant activity of aloe extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  13. Effect of gamma-irradiation on the survival of Listeria monocytogenes and allergenicity of cherry tomatoes

    NASA Astrophysics Data System (ADS)

    Todoriki, Setsuko; Bari, Latiful; Kitta, Kazumi; Ohba, Mika; Ito, Yasuhiro; Tsujimoto, Yuka; Kanamori, Norihito; Yano, Erika; Moriyama, Tatsuya; Kawamura, Yukio; Kawamoto, Shinichi

    2009-07-01

    The presence of Listeria monocytogenes in fresh produce is a growing concern because of the possibility of food-borne illness. Ionizing radiation is an effective non-thermal means of eliminating pathogenic bacteria in fresh produce; however, the effect of ionizing irradiation on the allergenic properties of the host commodities remains unknown. This study aimed (i) to determine the effective dose of gamma-irradiation in eliminating L. monocytogenes on whole cherry tomatoes and (ii) to evaluate the effect of gamma-irradiation on the allergenic properties of tomato proteins. Cherry tomatoes that were inoculated with a mixture of five L. monocytogenes strains were treated with gamma-rays from a 60Co source. A 1.25 kGy dose of gamma-irradiation was found to be sufficient to eliminate L. monocytogenes on whole cherry tomatoes. The immunoblot profile of serum samples obtained from two patients with tomato allergy revealed that gamma-irradiation did not affect the allergenicity of tomato proteins for up to 7 days after irradiation when the tomatoes were stored at 20 °C. Additionally, the m-RNA levels of β-fructofuranosidase, polygalacturonase, pectin esterase, and superoxide dismutase, the main allergenic proteins in tomato, were not affected by the applied irradiation dose. Thus, this study demonstrated that a 1.25 kGy dose of gamma-irradiation effectively eliminates L. monocytogenes on cherry tomatoes without affecting the expression of allergenic proteins in the fruits.

  14. Improvement of color and physiological properties of tuna-processing by-product by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Choi, Jong-il; Kim, Hyun-Joo; Kim, Jae-Hun; Song, Beom-Seok; Chun, Byeong-Soo; Ahn, Dong-Hyun; Byun, Myung-Woo; Lee, Ju-Woon

    2009-07-01

    Although the by-products from fishery industry had many nutrients, it is being wasted or only used as bacteria media. In this study, the effect of a gamma irradiation on the cooking drips of Thunnus thynnus (CDT) was investigated to examine the possible use of the cooking drips as a functional material for food and cosmetic composition. Total aerobic bacteria, and yeasts/molds from CDT were detected at the level of 2.79 and 2.58 Log CFU/mL, respectively. But, CDT was efficiently sterilized by a gamma irradiation at a low dose of 1 kGy. The Hunter L* value of the gamma-irradiated ethanol extract of CDT was increased, and the a* and b* values were decreased compared to the non-irradiated extract, showing color improvement. Antioxidant activity of the ethanol extract of CDT was increased by a gamma irradiation depending on the irradiation dose. The increased contents of polyphenolic compounds and proteins in CDT extract by gamma irradiation may be the reason of the increased biological activity. These results suggested that the wasted cooking drips can be successfully used as functional components with gamma irradiation treatment.

  15. Effects of gamma irradiation on the radiation-resistant bacteria and polyphenol oxidase activity in fresh kale juice

    NASA Astrophysics Data System (ADS)

    Kim, Dongho; Song, Hyunpa; Lim, Sangyong; Yun, Hyejeong; Chung, Jinwoo

    2007-07-01

    Gamma radiation was performed to prolong the shelf life of natural kale juice. The total aerobic bacteria in fresh kale juice, prepared by a general kitchen process, was detected in the range of 10 6 cfu/ml, and about 10 2 cfu/ml of the bacteria survived in the juice in spite of gamma irradiation treatment with a dose of 5 kGy. Two typical radiation-resistant bacteria, Bacillus megaterium and Exiguobacterium acetylicum were isolated and identified from the 5 kGy-irradiated kale juices. The D10 values of the vegetative cell and endospore of the B. megaterium in peptone water were 0.63±0.05 and 1.52±0.05 kGy, respectively. The D10 value of the E. acetylicum was calculated as 0.65±0.06 kGy. In the inoculation test, the growth of the surviving B. megaterium and E. acetylicum in the 3-5 kGy-irradiated kale juice retarded and/or decreased significantly during a 3 d post-irradiation storage period. However, there were no significant differences in the residual polyphenol oxidase activity and browning index between the nonirradiated control and the gamma irradiated kale juice during a post-irradiation period.

  16. Effect of gamma irradiation on the physicochemical properties of alkali-extracted rice starch

    NASA Astrophysics Data System (ADS)

    Ashwar, Bilal Ahmad; Shah, Asima; Gani, Asir; Rather, Sajad Ahmad; Wani, Sajad Mohd.; Wani, Idrees Ahmed; Masoodi, Farooq Ahmad; Gani, Adil

    2014-06-01

    Starches isolated from two newly released rice varieties (K-322 and K-448) were subject to irradiation at 0, 5, 10, and 20 kGy doses. Comparative study between native (not irradiated) and irradiated starch samples was carried out to evaluate the changes in physicochemical, morphological and pasting properties due to gamma irradiation. Significant decrease was found in apparent amylose content, pH, swelling power, syneresis, and pasting properties, whereas carboxyl content, water absorption capacity, and transmittance were found to increase with the increase in irradiation dose. Granule morphology of native and irradiated starches under scanning electron microscope revealed that granules were polygonal or irregular in shape. The starch granules were somewhat deformed by gamma irradiation. X-ray diffraction pattern showed A type of pattern in native as well as irradiated starches.

  17. Measurement of Diameter Changes during Irradiation Testing

    SciTech Connect

    Davis, K. L.; Knudson, D. L.; Crepeau, J. C.; Solstad, S.

    2015-03-01

    New materials are being considered for fuel, cladding, and structures in advanced and existing nuclear reactors. Such materials can experience significant dimensional and physical changes during irradiation. Currently in the US, such changes are measured by repeatedly irradiating a specimen for a specified period of time and then removing it from the reactor for evaluation. The time and labor to remove, examine, and return irradiated samples for each measurement makes this approach very expensive. In addition, such techniques provide limited data and handling may disturb the phenomena of interest. In-pile detection of changes in geometry is sorely needed to understand real-time behavior during irradiation testing of fuels and materials in high flux US Material and Test Reactors (MTRs). This paper presents development results of an advanced Linear Variable Differential Transformer-based test rig capable of detecting real-time changes in diameter of fuel rods or material samples during irradiation in US MTRs. This test rig is being developed at the Idaho National Laboratory and will provide experimenters with a unique capability to measure diameter changes associated with fuel and cladding swelling, pellet-clad interaction, and crud buildup.

  18. Effect of gamma irradiation on curcuminoids and volatile oils of fresh turmeric ( Curcuma longa)

    NASA Astrophysics Data System (ADS)

    Dhanya, R.; Mishra, B. B.; Khaleel, K. M.

    2011-11-01

    In our earlier study a radiation dose of 5 kGy was reported to be suitable for microbial decontamination and shelf life extension of fresh turmeric ( Curcuma longa), while maintaining its quality attributes. In continuation of that work, the effect of gamma radiation on curcuminoids and volatile oil constituents in fresh turmeric was studied. Fresh peeled turmeric rhizomes were gamma irradiated at doses of 1, 3 and 5 kGy. Curcuminoid content and volatile oils were analyzed by reverse phase HPLC and GC-MS, respectively. The curcuminoid content was slightly increased by gamma irradiation. No statistically significant changes were observed due to irradiation in majority of the volatile oil constituents.

  19. Wastewater treatment using gamma irradiation: Tétouan pilot station, Morocco

    NASA Astrophysics Data System (ADS)

    Tahri, Loubna; Elgarrouj, Driss; Zantar, Said; Mouhib, Mohamed; Azmani, Amina; Sayah, Fouad

    2010-04-01

    The increasing demand on limited water supplies has accelerated the wastewater reuse and reclamation. We investigated gamma irradiation effects on wastewater by measuring differences in the legislated parameters, aiming to reuse the wastewater. Effluents samples were collected at the urban wastewater treatment station of Tetouan and were irradiated at different doses ranging from 0 to 14 kGy using a Co 60 gamma source. The results showed an elimination of bacterial flora, a decrease of biochemical and chemical oxygen demand, and higher conservation of nutritious elements. The results of this study indicated that gamma irradiation might be a good choice for the reuse of wastewater for agricultural activities.

  20. Effect of gamma irradiation on DC electrical conductivity of ZnO nanoparticles

    SciTech Connect

    Swaroop, K.; Somashekarappa, H. M.; Naveen, C. S.; Jayanna, H. S.

    2015-06-24

    The temperature dependent dc electrical conductivity of gamma irradiated Zinc oxide (ZnO) nanoparticles is presented in this paper. The X-ray diffraction (XRD) pattern shows hexagonal wurtzite structure of ZnO. Fourier Transform Infrared Spectroscopy (FTIR) confirms Zn-O stretching vibrations. UV-Visible spectroscopy studies show that the energy band gap (E{sub g}) of the prepared ZnO nanoparticles increases with respect to gamma irradiation dose, which can be related to room temperature dc electrical conductivity. The result shows significant variation in the high temperature dc electrical conductivity of ZnO nanoparticles due to gamma irradiation.

  1. Changes in microbial community during biohydrogen production using gamma irradiated sludge as inoculum.

    PubMed

    Yin, Yanan; Wang, Jianlong

    2016-01-01

    The changes in microbial community structures during fermentative hydrogen production process were investigated by analyzing 16S rDNA gene sequences using gamma irradiated sludge as inoculum. The experimental results showed that the microbial community structure of untreated sludge was very rich in diversity. After gamma irradiation, lots of species were inhibited, and species with high survival rates under radiation conditions became dominant. After fermentation, Clostridium butyrium and a sequence closely related to Clostridium perfringens ATCC 13124(T) (CP000246) became predominant, which were all common hydrogen producers. Microbial distribution analysis indicated that gamma irradiation was a good pretreatment method for enriching hydrogen-producing strains from digested sludge. PMID:26492174

  2. Dyeing behaviour of gamma irradiated cotton fabric using Lawson dye extracted from henna leaves (Lawsonia inermis)

    NASA Astrophysics Data System (ADS)

    Rehman, Fazal-ur; Adeel, Shahid; Qaiser, Summia; Ahmad Bhatti, Ijaz; Shahid, Muhammad; Zuber, Mohammad

    2012-11-01

    Dyeing behavior of gamma irradiated cotton fabric using Lawson dye extracted from henna leaves has been investigated. Cotton and dye powder are irradiated to different absorbed doses of 2, 4, 6, 8 and 10 kGy using Cs-137 gamma irradiator. The dyeing parameters such as dyeing time, electrolyte (salt) concentration and mordant concentrations using copper and iron as mordants are optimized. Dyeing is performed using un-irradiated and irradiated cotton with dye solutions and their color strength values are evaluated in CIE Lab system using Spectraflash -SF650. Methods suggested by International Standard Organization (ISO) have been employed to investigate the colourfastness properties such as colourfastness to light, washing and rubbing of irradiated dyed fabric. It is found that gamma ray treatment of cotton dyed with extracts of henna leaves has significantly improved the color strength as well as enhanced the rating of fastness properties.

  3. Effect of gamma irradiation on high temperature hardness of low-density polyethylene

    NASA Astrophysics Data System (ADS)

    Chen, Pei-Yun; Yang, Fuqian; Lee, Sanboh

    2015-11-01

    Gamma irradiation can cause the change of microstructure and molecular structure of polymer, resulting in the change of mechanical properties of polymers. Using the hardness measurement, the effect of gamma irradiation on the high temperature hardness of low-density polyethylene (LDPE) was investigated. The gamma irradiation caused the increase in the melting point, the enthalpy of fusion, and the portion of crystallinity of LDPE. The Vickers hardness of the irradiated LDPE increases with increasing the irradiation dose, annealing temperature, and annealing time. The activation energy for the rate process controlling the reaction between defects linearly decreases with the irradiation dose. The process controlling the hardness evolution in LDPE is endothermic because LDPE is semi-crystalline.

  4. Effects of gamma irradiation on physicochemical properties of native and acetylated wheat starches.

    PubMed

    Kong, Xiangli; Zhou, Xin; Sui, Zhongquan; Bao, Jinsong

    2016-10-01

    Effects of gamma irradiation on the physicochemical and crystalline properties of the native and acetylated wheat starches were investigated. Peak, hot paste, cool paste and setback viscosities of both native and acetylated wheat starches decreased continuously and significantly with the increase of the irradiation dose, whereas breakdown viscosity increased after irradiation. However, gamma irradiation only exerted slight effects on thermal and retrogradation properties of both native and acetylated wheat starches. X-ray diffraction and fourier transform infrared spectroscopy revealed that acetylation modification had considerable effects on the molecular structure of wheat starch, and the crystallinity of both untreated and acetylated starches increased slightly with the increase of irradiation dose. However, the V-type crystallinity of amylose-lipid complex was not affected by gamma irradiation treatments with doses up to 9kGy. PMID:27344953

  5. Effect of gamma irradiation on the thermal and rheological properties of grain amaranth starch

    NASA Astrophysics Data System (ADS)

    Kong, Xiangli; Kasapis, Stefan; Bao, Jinsong; Corke, Harold

    2009-11-01

    Physical properties of starch from two cultivars of gamma-irradiated grain amaranth with different amylose content were investigated. Pasting viscosities decreased continuously with the increase in dosages of irradiation. Furthermore, different irradiation dosages resulted in modification of the thermal properties and crystallinity of starch. Dynamic oscillation on shear was also employed, temperature and frequency sweeps showed that changes in storage modulus and loss modulus were significant, with Tibet Yellow producing more elastic gels as compared to Hy030 at different irradiation dosages.

  6. Gamma Irradiation Facility at Sandia National Laboratories, Albuquerque, New Mexico. Final environmental assessment

    SciTech Connect

    1995-11-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed construction and operation of a new Gamma Irradiation Facility (GIF) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to: enhance capabilities to assure technical excellence in nuclear weapon radiation environments testing, component development, and certification; comply with all applicable ES and H safeguards, standards, policies, and regulations; reduce personnel radiological exposure to comply with ALARA limits in accordance with DOE orders and standards; consolidate major gamma ray sources into a central, secured area; and reduce operational risks associated with operation of the GIF and LICA in their present locations. This proposed action provides for the design, construction, and operation of a new GIF located within TA V and the removal of the existing GIF and Low Intensity Cobalt Array (LICA). The proposed action includes potential demolition of the gamma shield walls and removal of equipment in the existing GIF and LICA. The shielding pool used by the existing GIF will remain as part of the ACRR facility. Transportation of the existing {sup 60}Co sources from the existing LICA and GIF to the new facility is also included in the proposed action. Relocation of the gamma sources to the new GIF will be accomplished by similar techniques to those used to install the sources originally.

  7. Neutron, gamma ray and post-irradiation thermal annealing effects on power semiconductor switches

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.; Frasca, A. J.

    1991-01-01

    The effects of neutron and gamma rays on the electrical and switching characteristics of power semiconductor switches must be known and understood by the designer of the power conditioning, control, and transmission subsystem of space nuclear power systems. The SP-100 radiation requirements at 25 m from the nuclear source are a neutron fluence of 10(exp 13) n/sq cm and a gamma dose of 0.5 Mrads. Experimental data showing the effects of neutrons and gamma rays on the performance characteristics of power-type NPN Bipolar Junction Transistors (BJTs), Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs), and Static Induction Transistors (SITs) are presented. These three types of devices were tested at radiation levels which met or exceeded the SP-100 requirements. For the SP-100 radiation requirements, the BJTs were found to be most sensitive to neutrons, the MOSFETs were most sensitive to gamma rays, and the SITs were only slightly sensitive to neutrons. Post-irradiation thermal anneals at 300 K and up to 425 K were done on these devices and the effectiveness of these anneals are also discussed.

  8. Neutron, gamma ray and post-irradiation thermal annealing effects on power semiconductor switches

    SciTech Connect

    Schwarze, G.E.; Frasca, A.J.

    1994-09-01

    The effects of neutrons and gamma rays on the electrical and switching characteristics of power semiconductor switches must be known and understood by the designer of the power conditioning, control, and transmission subsystem of space nuclear power systems. The SP-100 radiation requirements at 25 m from the nuclear source are a neutron fluence of 10{sup 13} n/cm {sup 2} and a gamma dose of 0.5 Mrads. Experimental data showing the effects of neutrons and gamma rays on the performance characteristics of power-type NPN Bipolar Junction Transistors (BJTs), Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs), and Static Induction Transistors (SITs) are given in this paper. These three types of devices were tested at radiation levels which met or exceeded the SP-100 requirements. For the SP-100 radiation requirements, the BJTs were found to be most sensitive to neutrons, the MOSFETs were most sensitive to gamma rays, and the SITs were only slightly sensitive to neutrons. Post-irradiation thermal anneals at 300 K and up to 425 K were done on these devices and the effectiveness of these anneals are also discussed.

  9. Color changes in CR-39 nuclear track detector by gamma and laser irradiation

    NASA Astrophysics Data System (ADS)

    Nouh, S. A.; Said, A. F.; Atta, M. R.; El-Melleegy, W. M.; El-Meniawy, S.

    2006-07-01

    A study of the effect of gamma and laser irradiation on the color changes of polyallyl diglycol (CR-39) solid-state nuclear track detector was performed. CR-39 detector samples were classified into two main groups. The first group was irradiated with gamma doses at levels between 20 and 300 kGy, whereas the second group was exposed to infrared laser radiation with energy fluences at levels between 0.71 and 8.53 J/cm(2) . The transmission of these samples in the wavelength range 300-2500 nm, as well as any color changes, was studied. Using the transmission data, both the tristimulus and the coordinate values of the Commission Internationale de l'Eclairage (CIE) LAB were calculated. Also, the color differences between the non-irradiated samples and those irradiated with different gamma or laser doses were calculated. The results indicate that the CR-39 detector acquires color changes under gamma or laser irradiation, but it has more response to color changes by gamma irradiation. In addition, structural property studies using infrared spectroscopy were performed. The results indicate that the irradiation of a CR-39 detector with gamma or laser radiations causes the cleavage of the carbonate linkage that can be attributed to the H abstraction from the backbone of the polymer, associated with the formation of CO 2 and OH with varying intensities.

  10. Control of Postharvest Bacterial Soft Rot by Gamma Irradiation and its Potential Modes of Action

    PubMed Central

    Jeong, Rae-Dong; Chu, Eun-Hee; Park, Duck Hwan; Park, Hae-Jun

    2016-01-01

    Gamma irradiation was evaluated for its in vitro and in vivo antibacterial activity against a postharvest bacterial pathogen, Erwinia carotovora subsp. carotovora (Ecc). Gamma irradiation in a bacteria cell suspension resulted in a dramatic reduction of the viable counts as well as an increase in the amounts of DNA and protein released from the cells. Gamma irradiation showed complete inactivation of Ecc, especially at a dose of 0.6 kGy. In addition, scanning electron microscopy of irradiated cells revealed severe damage on the surface of most bacterial cells. Along with the morphological changes of cells by gamma irradiation, it also affected the membrane integrity in a dose-dependent manner. The mechanisms by which the gamma irradiation decreased the bacterial soft rot can be directly associated with the disruption of the cell membrane of the bacterial pathogen, along with DNA fragmentation, results in dose-dependent cell inactivation. These findings suggest that gamma irradiation has potential as an antibacterial approach to reduce the severity of the soft rot of paprika. PMID:27147935

  11. Control of Postharvest Bacterial Soft Rot by Gamma Irradiation and its Potential Modes of Action.

    PubMed

    Jeong, Rae-Dong; Chu, Eun-Hee; Park, Duck Hwan; Park, Hae-Jun

    2016-04-01

    Gamma irradiation was evaluated for its in vitro and in vivo antibacterial activity against a postharvest bacterial pathogen, Erwinia carotovora subsp. carotovora (Ecc). Gamma irradiation in a bacteria cell suspension resulted in a dramatic reduction of the viable counts as well as an increase in the amounts of DNA and protein released from the cells. Gamma irradiation showed complete inactivation of Ecc, especially at a dose of 0.6 kGy. In addition, scanning electron microscopy of irradiated cells revealed severe damage on the surface of most bacterial cells. Along with the morphological changes of cells by gamma irradiation, it also affected the membrane integrity in a dose-dependent manner. The mechanisms by which the gamma irradiation decreased the bacterial soft rot can be directly associated with the disruption of the cell membrane of the bacterial pathogen, along with DNA fragmentation, results in dose-dependent cell inactivation. These findings suggest that gamma irradiation has potential as an antibacterial approach to reduce the severity of the soft rot of paprika. PMID:27147935

  12. Semiconductor quantum dot scintillation under gamma-ray irradiation

    SciTech Connect

    Letant, S E; Wang, T

    2006-08-23

    We recently demonstrated the ability of semiconductor quantum dots to convert alpha radiation into visible photons. In this letter, we report on the scintillation of quantum dots under gamma-ray irradiation, and compare the energy resolution of the 59 keV line of Americium 241 obtained with our quantum dot-glass nanocomposite material to that of a standard sodium iodide scintillator. A factor 2 improvement is demonstrated experimentally and interpreted theoretically using a combination of energy-loss and photon transport models. These results demonstrate the potential of quantum dots for room-temperature gamma-ray detection, which has applications in medical imaging, environmental monitoring, as well as security and defense. Present technology in gamma radiation detection suffers from flexibility and scalability issues. For example, bulk Germanium provides fine energy resolution (0.2% energy resolution at 1.33 MeV) but requires operation at liquid nitrogen temperature. On the other hand, Cadmium-Zinc-Telluride is a good room temperature detector ( 1% at 662 keV) but the size of the crystals that can be grown is limited to a few centimeters in each direction. Finally, the most commonly used scintillator, Sodium Iodide (NaI), can be grown as large crystals but suffers from a lack of energy resolution (7% energy resolution at 662 keV). Recent advancements in nanotechnology6-10 have provided the possibility of controlling materials synthesis at the molecular level. Both morphology and chemical composition can now be manipulated, leading to radically new material properties due to a combination of quantum confinement and surface to volume ratio effects. One of the main consequences of reducing the size of semiconductors down to nanometer dimensions is to increase the energy band gap, leading to visible luminescence, which suggests that these materials could be used as scintillators. The visible band gap of quantum dots would also ensure both efficient photon counting

  13. [Effect of gamma-linolenic acid on microsomal oxidation in the rat liver following gamma-irradiation].

    PubMed

    Zavodnik, L B; Sushko, L I; Tarasov, Iu A; Ignatenko, K V; Chumachenko, S S; Ovchinnikov, V A; Brzosko, V; Buko, V U

    2001-01-01

    The antioxidant and radioprotector properties of gamma-linolenic acid isolated from the seeds of Borago officialis were studied on rats gamma-irradiated to a dose of 1 Gy. The irradiation caused an increase in the content of malonaldehyde in microsomal liver fraction and disturbed the metabolism of xenobiotics. The administration of gamma-linolenic acid in the form of a commercial drug Neoglandin (daily dose, 150 mg/kg, p.o.; over 1, 3, or 7 days after irradiation reduced the level of lipid peroxidation (for all treatment schedules), normalized the activity of NADPH-oxidase, NADH-oxidase, and NADPH-reductase, and increased the content of cytochromes P-450 and b5 as compared to bothirradiated and control animals. PMID:11589114

  14. Gamma irradiation effect on Rayleigh scattering in low water peak single-mode optical fibers.

    PubMed

    Wen, Jianxiang; Peng, Gang-Ding; Luo, Wenyun; Xiao, Zhongyin; Chen, Zhenyi; Wang, Tingyun

    2011-11-01

    The Rayleigh scattering loss in low water peak single-mode optical fibers under varying Gamma rays irradiation has been investigated. We observed that the Rayleigh scattering coefficient (CR) of the fiber is almost linearly increased with the increase of Gamma irradiation in the low-dose range (< 500 Gy). Based on the electron spin resonance (ESR) spectra analysis, we confirmed that the Rayleigh scattering mainly results from the irradiation-induced defect centers associated with electron transfer or charge density redistribution around Ge and O atoms. This work provides a new interpretation of the optical loss and reveals a new mechanism on irradiation influence on Rayleigh scattering. PMID:22109205

  15. Effect of gamma irradiation on stress corrosion behavior of austenitic stainless steel under ITER-relevant conditions

    NASA Astrophysics Data System (ADS)

    Jones, R. H.; Henager, C. H.

    1992-09-01

    Stress corrosion crack growth tests were conducted on Type 316 SS and PCA sensitized to 5 C/cm2 at 100°C in deionized water with 10 ppm Cl-. A constant K test specimen was cylically loaded at 1 Hz with an R of 0.5 and a δK of 11 MPa√m in an autoclave immersed in a 60Co source. Tests were conducted at 0, 2.3 × 102, and 6.5 × 105 rad/h. The average crack velocities were found to be 2.0 and 1.5×105 mm/cycle for the Type 316 SS and PCA, respectively, in the absence of gamma irradiation and 1.3 and 0.74×10-5 mm/cycle, respectively, at both gamma fluxes. Gamma irradiation may have shifted the potential to more reducing rather than more oxidizing, as observed by others in high-temperature water with low O2 activity. This study suggests that there is no significant detrimental effect of gamma irradiation on the subcritical crack growth behavior of unirradiated Type 316 SS and PCA at ITER-relevant conditions.

  16. Gamma irradiation as a biological decontaminant and its effect on common fingermark detection techniques and DNA profiling.

    PubMed

    Hoile, Rebecca; Banos, Connie; Colella, Michael; Walsh, Simon J; Roux, Claude

    2010-01-01

    The use of disease-causing organisms and their toxins against the civilian population has defined bioterrorism and opened forensic science up to the challenges of processing contaminated evidence. This study sought to determine the use of gamma irradiation as an effective biological decontaminant and its effect on the recovery of latent fingermarks from both porous and nonporous items. Test items were contaminated with viable spores marked with latent prints and then decontaminated using a cobalt 60 gamma irradiator. Fingermark detection was the focus with standard methods including 1,2-indanedione, ninhydrin, diazafluoren-9-one, and physical developer used during this study. DNA recovery using 20% Chelex extraction and quantitative real-time polymerase chain reaction was also explored. Gamma irradiation proved effective as a bacterial decontaminant with D-values ranging from 458 to 500 Gy for nonporous items and 797-808 Gy for porous ones. The results demonstrated the successful recovery of latent marks and DNA establishing gamma irradiation as a viable decontamination option. PMID:20002271

  17. DECOMMISSIONING THE BROOKHAVEN NATIONAL LABORATORY BUILDING 830 GAMMA IRRADIATION FACILITY.

    SciTech Connect

    BOWERMAN, B.S.; SULLIVAN, P.T.

    2001-08-13

    The Building 830 Gamma Irradiation Facility (GIF) at Brookhaven National Laboratory (BNL) was decommissioned because its design was not in compliance with current hazardous tank standards and its cobalt-60 sources were approaching the end of their useful life. The facility contained 354 stainless steel encapsulated cobalt-60 sources in a pool, which provided shielding. Total cobalt-60 inventory amounted to 24,000 Curies when the sources were shipped for disposal. The decommissioning project included packaging, transport, and disposal of the sources and dismantling and disposing of all other equipment associated with the facility. Worker exposure was a major concern in planning for the packaging and disposal of the sources. These activities were planned carefully according to ALARA (As Low As Reasonably Achievable) principles. As a result, the actual occupational exposures experienced during the work were within the planned levels. Disposal of the pool water required addressing environmental concerns, since the planned method was to discharge the slightly contaminated water to the BNL sewage treatment plant. After the BNL evaluation procedure for discharge to the sewage treatment plant was revised and reviewed by regulators and BNL's Community Advisory Council, the pool water was discharged to the Building 830 sanitary system. Because the sources were sealed and the pool water contamination levels were low, most of the remaining equipment was not contaminated; therefore disposal was straightforward, as scrap metal and construction debris.

  18. Effect of gamma irradiation on nutrient digestibility in SPF mini-pig

    NASA Astrophysics Data System (ADS)

    Lee, Jun-Yeob; Cho, Sung-Back; Kim, Yoo-Yong; Ohh, Sang-Jip

    2011-01-01

    This study was carried out to evaluate the effect of gamma irradiation on nutrient digestibility of either soy-based or milk-based diet for specific pathogen-free (SPF) mini-pigs. Gamma irradiation of the diets was done at dosage of 10 kGy with 60Co whereas autoclaving was executed at 121 °C for 20 min. Apparent crude protein digestibilities of gamma irradiated diets were higher ( p<0.05) than those of autoclaved diets regardless of diet type. Digestibilities of dry matter, gross energy and total carbohydrate in the irradiated diet were higher than those of the autoclaved diet. From the results of nutrient digestibility of mini-pig diets in this study, 10 kGy gamma radiation was suggested as a convenient diet radicidation method that can minimize the decrease in nutrient digestibility on feeding to SPF mini-pigs.

  19. Gamma irradiation effects on the luminescence properties of SrBPO5: Sm

    NASA Astrophysics Data System (ADS)

    Mohapatra, M.; Kumar, M.; Natarajan, V.; Godbole, S. V.

    2014-10-01

    Samarium doped SrBPO5 phosphor was synthesized by a high temperature solid state reaction route and its luminescence properties were investigated before and after gamma irradiation. A photo-acoustic spectroscopic technique was used to record the excitation/absorption spectrum of the sample. Photoluminescence studies on the sample prior to gamma irradiation confirmed the presence of Sm3+ at an asymmetric site. After 2 kGy of gamma irradiation, the sample showed strong afterglow without any external source that lasted for several minutes. Thermoluminescence (TSL) studies revealed the presence of glow peak at 323 K for the system. Electron spin resonance (ESR) studies suggested the formation of borate and oxygen based radical centers in the gamma irradiated system. Detailed ESR-TSL correlation study confirmed the destruction of the oxygen radical to be responsible for the observed glow peak. Based on the findings, a probable mechanism was proposed for the glow peak and observed afterglow.

  20. Comparative Effects of Gamma Irradiation and Ozone Treatment on Hygienic Quality of Korean Red Ginseng Powder

    NASA Astrophysics Data System (ADS)

    Byun, Myung-Woo; Yook, Hong-Sun; Kang, Il-Jun; Chung, Cha-Kwon; Kwon, Joong-Ho; Choi, Kang-Ju

    1998-06-01

    For the purpose of improving hygienic quality of Korean red ginseng powder, the comparative effects of gamma irradiation and ozone treatment on the microbial and physicochemical properties were investigated. Gamma irradiation at 7.5 kGy resulted in sterilization of total aerobic bacteria, molds and coliforms below detective levels, while ozone treatment for 8 hours up to 18 ppm did not sufficiently eliminate the microorganisms of the red ginseng powder. Physicochemical properties including compositions of the red ginseng saponin (ginsenosides) and fatty acids, pH and hydrogen doanting activity were not significantly changed by gamma irradiation, whereas, ozone treatment caused significant changes in fatty acid compositions, TBA value, pH, acidity and hydrogen donating activity. The results from this study led us to conclude that gamma irradiation was more effective than ozone treatment both for the improvement of hygienic quality and for the maintenance of physicochemical quality of red ginseng powder.

  1. The effects of gamma irradiation on diclofenac sodium, liposome and niosome ingredients for rheumatoid arthritis

    PubMed Central

    Turker, Selcan; Çolak, Seyda; Korkmaz, Mustafa; Kiliç, Ekrem; Özalp, Meral

    2013-01-01

    The use of gamma rays for the sterilization of pharmaceutical raw materials and dosage forms is an alternative method for sterilization. However, one of the major problems of the radiosterilization is the production of new radiolytic products during the irradiation process. Therefore, the principal problem in radiosterilization is to determine and to characterize these physical and chemical changes originating from high-energy radiation. Parenteral drug delivery systems were prepared and in vitro characterization, biodistribution and treatment studies were done in our previous studies. Drug delivery systems (liposomes, niosomes, lipogelosomes and niogelosomes) encapsulating diclofenac sodium (DFNa) were prepared for the treatment of rheumatoid arthritis (RA). This work complies information about the studies developed in order to find out if gamma radiation could be applied as a sterilization method to DFNa, and the raw materials as dimyristoyl phosphatidylcholine (DMPC), surfactant I [polyglyceryl-3-cethyl ether (SUR I)], dicethyl phosphate (DCP) and cholesterol (CHOL) that are used to prepare those systems. The raw materials were irradiated with different radiation doses (5, 10, 25 and 50 kGy) and physicochemical changes (organoleptic properties pH, UV and melting point), microbiological evaluation [sterility assurance level (SAL), sterility and pyrogen test] and electron spin resonance (ESR) characteristics were studied at normal (25 °C, 60% relative humidity) and accelerated (40 °C, 75% relative humidity) stability test conditions. PMID:24265902

  2. Role of gamma irradiation on the natural antioxidants in cumin seeds

    NASA Astrophysics Data System (ADS)

    Kim, Jae Hun; Shin, Mee-Hye; Hwang, Young-Jeong; Srinivasan, Periasamy; Kim, Jae Kyung; Park, Hyun Jin; Byun, Myung Woo; Lee, Ju Woon

    2009-02-01

    Antioxidants quench oxidation by transferring hydrogen atoms to free radicals. In the present investigation, the effect of gamma irradiation on the natural antioxidants of irradiated cumin was studied. Cumin samples were purchased from retailers and then irradiated in a cobalt-60 irradiator to 0, 1, 3, 5 and 10 kGy at ambient temperature. The effect of irradiation on the antioxidant properties of the cumin seed were investigated by evaluating the radical-scavenging effect on the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, determination of ferric reducing antioxidant power (FRAP), total polyphenol content (TPC) and the antioxidant index by β-carotene/linoleic acid co-oxidation. Electron spin resonance (ESR) was performed to assess ionization of cumin seeds by gamma irradiation. Irradiation was found to nonsignificantly increase and/or maintain all antioxidant parameters, TPC and the ESR signal intensity was found to be increased in cumin seeds.

  3. Recovery of damage in rad-hard MOS devices during and after irradiation by electrons, protons, alphas, and gamma rays

    NASA Technical Reports Server (NTRS)

    Brucker, G. J.; Van Gunten, O.; Stassinopoulos, E. G.; Shapiro, P.; August, L. S.; Jordan, T. M.

    1983-01-01

    This paper reports on the recovery properties of rad-hard MOS devices during and after irradiation by electrons, protons, alphas, and gamma rays. The results indicated that complex recovery properties controlled the damage sensitivities of the tested parts. The results also indicated that damage sensitivities depended on dose rate, total dose, supply bias, gate bias, transistor type, radiation source, and particle energy. The complex nature of these dependencies make interpretation of LSI device performance in space (exposure to entire electron and proton spectra) difficult, if not impossible, without respective ground tests and analyses. Complete recovery of n-channel shifts was observed, in some cases within hours after irradiation, with equilibrium values of threshold voltages greater than their pre-irradiation values. This effect depended on total dose, radiation source, and gate bias during exposure. In contrast, the p-channel shifts recovered only 20 percent within 30 days after irradiation.

  4. Increase of onion yield through low dose of gamma irradiation of its seeds

    NASA Astrophysics Data System (ADS)

    Wiendl, F. M.; Wiendl, F. W.; Wiendl, J. A.; Vedovatto, A.; Arthur, V.

    1995-02-01

    The increase of onions' yield could be achieved by the common farmer through the use of nuclear techniques. This report describes the results obtained with the irradiation of onion seeds, with low doses of gamma radiations (Cobalt-60), at doses of 0 (control), 150, 400 and 700 Gy. Beyond the proper onion's variety also the use of low dose rates of 13.1, 39.2 and 52.3 Gy per hour were of the great importance during irradiation. The results showed to be promising, both in laboratory studies and in the field, resulting in an increase of onions production: A greater number of seedlings, bulbs and a higher yield in weight per hectar were planted. In the field the most promising dose and dose rate to the variety "Super-X" were respectively 150 Gy and 13.1 Gy per hour, yielding an 24.9 percent heavier weight of onions than the control. The other tested variety was "Granex-33", which did not respond so favorable to irradiation. However, also with this variety we harvested a 2.1 percent heavier weight than its control, if the onion seeds were irradiated with the dose of 700 Gy at a dose dose rate of 13.1 Gy per hour.

  5. Effect of gamma-ray irradiation on the unloaded animal model

    NASA Astrophysics Data System (ADS)

    Choi, Jong-Il; Yoon, Min-Chul; Sung, Nak-Yoon; Kim, Jae-Hun; Jong Lee, Yun; Lee, Ki-Soo; Choi, In-Ho; Nam, Gung Uk; Lee, Ju-Woon

    During the space flight, human beings encountered the extreme conditions such as the cosmic ray irradiation and microgravity. There have been developed the animal models to simulate the microgravity condition in laboratory, but no study was carried out to investigate the combined effect of microgravity and exposure to irradiation. In this study, it was examined the effect of gamma irradiation on the suspension model. Rats were divided into four groups, Group I was loaded and not exposed to gamma irradiation, Group 2 was unloaded and not exposed, Group 3 was loaded and exposed to gamma irradiation at the dose of 50 mSV, and Group 4 was unloaded and exposed to gamma irradiation at the same dose. It was measured body, muscles and tissues weights and the biological analysis and the hematological response in blood samples were conducted. Anti-gravity tissue weight was only changed between loading and un-loading condition. However, there was no difference between irradiation exposed and not exposed unloaded groups. To know the difference of protein expression in anti-gravity tissues, 2 dimensional electrophoresis was performed. It has been found that the expression levels of several proteins were different by unloading condition and by irradiation exposed condition, respectively. These results provided the information on the combined effect of irradiation and microgravity to simulate space flight, and could be useful to search the candidate material for the countermeasure against space environment.

  6. Postharvest Control of Botrytis cinerea and Monilinia fructigena in Apples by Gamma Irradiation Combined with Fumigation.

    PubMed

    Cheon, Wonsu; Kim, Young Soo; Balaraju, Kotnala; Kim, Bong-Su; Lee, Byeong-Ho; Jeon, Yongho

    2016-08-01

    To extend the shelf life of apples in South Korea, we evaluated the effect of gamma irradiation alone or gamma irradiation combined with fumigation on the control of postharvest decay caused by Botrytis cinerea and Monilinia fructigena. An irradiation dose of 1.0 kGy caused the maximal inhibition of B. cinerea and M. fructigena spore germination. The gamma irradiation dose required to reduce the spore germination by 90% was 0.76 and 0.78 kGy for B. cinerea and M. fructigena, respectively. Inhibition of conidial germination of both fungal pathogens occurred at a greater level at the doses of 0.2 to 1.0 kGy compared with the nontreated control; 0.2 kGy caused 90.5 and 73.9% inhibition of B. cinerea and M. fructigena, respectively. Treatment in vitro with the ecofriendly fumigant ethanedinitrile had a greater effect compared with the nontreated control. The in vitro antifungal effects of the gamma irradiation and fumigation treatments allowed us to further study the effects of the combined treatments. Interestingly, when irradiation was combined with fumigation, the percentage of disease inhibition increased more at lower (<0.4 kGy) than at higher doses of irradiation, suggesting that the combined treatments reduced the necessary irradiation dose in phytosanitary irradiation processing under storage conditions. PMID:27497129

  7. Effects of gamma irradiation as a quarantine treatment on development of codling moth larvae

    SciTech Connect

    Burditt, A.K. Jr.; Moffitt, H.R.; Hungate, F.P.

    1985-03-01

    Codling moth, Cydia pomonella (L.), larvae were exposed to gamma radiation at doses upto 160 Gy. Following irradiation the larvae were permited further development, pupation and adult emergence. The number of adults emerging, mature larvae and pupae present were determined. Data from these studies will be used to predict doses of gamma irradiation required as a quarantine treatment to prevent emergence of codling moth adults from fruit infested by larvae. 5 refs., 1 tab.

  8. Modifications induced by gamma irradiation to Makrofol polymer nuclear track detector

    PubMed Central

    Tayel, A.; Zaki, M.F.; El Basaty, A.B.; Hegazy, Tarek M.

    2014-01-01

    The aim of the present study was extended from obtaining information about the interaction of gamma rays with Makrofol DE 7-2 track detector to introduce the basis that can be used in concerning simple sensor for gamma irradiation and bio-engineering applications. Makrofol polymer samples were irradiated with 1.25 MeV 60Co gamma radiations at doses ranging from 20 to 1000 kG y. The modifications of irradiated samples so induced were analyzed using UV–vis spectrometry, photoluminescence spectroscopy, and the measurements of Vickers’ hardness. Moreover, the change in wettability of irradiated Makrofol was investigated by the contact angle determination of the distilled water. UV–vis spectroscopy shows a noticeable decrease in the energy band gap due to gamma irradiation. This decrease could be attributed to the appearance of a shift to UV spectra toward higher wavelength region after irradiation. Photoluminescence spectra reveal a remarkable change in the integrated photoluminescence intensity with increasing gamma doses, which may be resulted from some matrix disorder through the creation of some defected states in the irradiated polymer. The hardness was found to increase from 4.78 MPa for the unirradiated sample to 23.67 MPa for the highest gamma dose. The contact angle investigations show that the wettability of the modified samples increases with increasing the gamma doses. The result obtained from present investigation furnishes evidence that the gamma irradiations are a successful technique to modify the Makrofol DE 7-2 polymer properties to use it in suitable applications. PMID:25750755

  9. Gamma-irradiation improves the color and antioxidant properties of Chaga mushroom (Inonotus obliquus) extract.

    PubMed

    Kim, Jae-Hun; Sung, Nak-Yun; Kwon, Sun-Kyu; Srinivasan, Periasamy; Song, Beom-Seok; Choi, Jong-Il; Yoon, Yohan; Kim, Jin Kyu; Byun, Myung-Woo; Kim, Mee-Ree; Lee, Ju-Woon

    2009-12-01

    The objective of this study was to evaluate the effect of ionizing radiation on color and antioxidative properties of Chaga mushroom (Inonotus obliquus) extract (CME). CME (10 mg/mL) was gamma-irradiated at 0, 3, 5, 7, and 10 kGy, and color, antioxidant activity, and total phenolic compound levels were then determined. The lightness and yellowness were increased (P < .05), and the redness was decreased (P < .05), as irradiation dose increased. The antioxidant parameters such as the 2-diphenyl-1-picrylhydrazyl, superoxide, and hydroxyl radical scavenging activities, ferric reducing/antioxidant power, and inhibition of lipid peroxidation increased as the irradiation dose increased. Also, the total phenolic compound levels of CME were increased (P < .05) by gamma-irradiation. These results suggest that gamma-irradiation could be considered a means for improving the antioxidant properties and the color of CME. PMID:20041791

  10. Improvement of shelf stability and processing properties of meat products by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Byun, Myung-Woo; Lee, Ju-Woon; Yook, Hong-Sun; Lee, Kyong-Haeng; Kim, Hee-Yun

    2002-03-01

    To evaluate the effects of gamma irradiation on the processing properties of meat products, emulsion-type sausage, beef patties and pork loin ham were manufactured. Most contaminated bacteria were killed by 3 kGy-irradiation to raw ground beef, and sausage can be manufactured with desirable flavor, a reduction of NaCl and phosphate, and extension of shelf life using gamma irradiation on the raw meat. The beef patties were manufactured with the addition of antioxidants (200 ppm), BHA, ascorbyl palmitate, α-tocopherol, or β-carotene, and gamma-irradiation. Retardation of lipid oxidation appeared at the patties with an antioxidant. A dose of 5 kGy was observed to be as effective as the use of 200 ppm NaNO 2 to provide and maintain the desired color of the product during storage. After curing, irradiation, heating and smoking could extensively prolong the shelf life of the hams.

  11. Goodness of fit tests for generalized gamma distribution

    NASA Astrophysics Data System (ADS)

    Karadaǧ, Özge; Aktaş, Serpil

    2016-06-01

    Gamma distribution is used to model the right skewed data. The goodness of fit tests determine how well the data fit to the underlying distribution. This paper compares the performances of goodness of fit tests for generalized gamma distribution. Kolmogrov Smirnov, Cramer-von Mises and Anderson-Darling tests are considered for testing the goodness of fit between the distribution of sample data and generalized gamma distribution under some different parametric scenarios.

  12. Gamma ray irradiated AgFeO{sub 2} nanoparticles with enhanced gas sensor properties

    SciTech Connect

    Wang, Xiuhua; Shi, Zhijie; Yao, Shangwu; Liao, Fan; Ding, Juanjuan; Shao, Mingwang

    2014-11-15

    AgFeO{sub 2} nanoparticles were synthesized via a facile hydrothermal method and irradiated by various doses of gamma ray. The products were characterized with X-ray powder diffraction, UV–vis absorption spectrum and transmission electron microscope. The results revealed that the crystal structure, morphology and size of the samples remained unchanged after irradiation, while the intensity of UV–Vis spectra increased with irradiation dose increasing. In addition, gamma ray irradiation improved the performance of gas sensor based on the AgFeO{sub 2} nanoparticles including the optimum operating temperature and sensitivity, which might be ascribed to the generation of defects. - Graphical abstract: Gamma ray irradiation improved the performance of gas sensor based on the AgFeO{sub 2} nanoparticles including sensitivity and optimum operating temperature, which might be ascribed to the generation of defects. - Highlights: • AgFeO{sub 2} nanoparticles were synthesized and irradiated with gamma ray. • AgFeO{sub 2} nanoparticles were employed to fabricate gas sensors to detect ethanol. • Gamma ray irradiation improved the sensitivity and optimum operating temperature.

  13. Sterilisation of canine anterior cruciate allografts by gamma irradiation in argon. Mechanical and neurohistological properties retained one year after transplantation.

    PubMed

    Goertzen, M J; Clahsen, H; Bürrig, K F; Schulitz, K P

    1995-03-01

    Bone-ACL-bone allograft transplantation is a potential solution to the problem of reconstruction of the anterior cruciate ligament (ACL), but sterilisation by gamma irradiation or ethylene oxide causes degradation of the graft. We have studied the biomechanical and histological properties of deep-frozen canine bone-ACL-bone allografts sterilised by gamma irradiation (2.5 Mrad) under argon gas protection. Particular attention was paid to their collagen structure and neuroanatomy compared with those of non-irradiated allografts. We used 60 skeletally mature foxhounds. In 30 animals one ACL was replaced by an irradiated allograft and in the other 30 a non-irradiated graft was used. In both groups the graft was augmented by a Kennedy Ligament Augmentation Device. Examination of the allografts at 3, 6 and 12 months after implantation included mechanical testing, histology, collagen morphometry, neuroanatomical morphology (silver and gold chloride stain) and studies of the microvasculature (modified Spalteholz technique). At 12 months the irradiated ACL allografts failed at a mean maximum load of 718.3 N, 63.8% of the strength of the normal canine ACL. The non-irradiated allografts failed at 780.1 N, 69.1% of normal. All the allografts showed a well-orientated collagen structure one year after transplantation and there was no difference between the irradiated grafts and the others. The silver staining technique demonstrated Golgi tendon organs and free nerve endings within both groups of allografts. As in the normal ACL these structures were most commonly found near the surface of the graft and at its bony attachments. At 12 months the irradiated allografts showed slight hypervascularity compared with the non-irradiated grafts.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7706332

  14. Some microbial, chemical and sensorial properties of gamma irradiated sesame (Sesamum indicum L.) seeds.

    PubMed

    Al-Bachir, Mahfouz

    2016-04-15

    The effect on microbial, chemical and sensorial properties of sesame seeds was determined after irradiation and storage. The sesame seeds were analyzed before and after irradiation with 3, 6 and 9 kGy of gamma irradiation, and after 6 and 12 months of storage. The results showed that gamma irradiation had no significant (p>0.05) effect on the moisture, ash and fat content on sesame seeds. While, small differences, but sometimes significant (p<0.05), on protein and sugar contents were recorded between irradiated and non-irradiated samples. Total acidity percentage decreased significantly (p<0.05), while total volatile basic nitrogen (TVBN) increased significantly (p<0.05) due to irradiation. During storage, total acidity increased (p<0.05) and TVBN decreased (p<0.05). Gamma irradiation reduced the microorganisms of sesame seeds. Samples treated with 3 kGy or more remained completely free of fungi throughout the storage. While, only the samples treated with 9 kGy remained completely free of bacteria at the end of storage period (after 12 months). The scores for taste, flavor, color and texture of irradiated samples were higher, but not significantly (p>0.05) than those of non-irradiated samples. PMID:26616940

  15. Characterization of blends of PP and SBS vulcanized with gamma irradiation

    NASA Astrophysics Data System (ADS)

    González, J.; Albano, C.; Candal, M. V.; Ichazo, M. N.; Hernández, M.

    2005-07-01

    The present work has the objective of analyzing blends of PP with 30 wt% SBS vulcanized with gamma irradiation. In order to do so, SBS was irradiated at 10, 25 and 50 kGy with gamma rays. Results indicate that the gel fraction increases with irradiation dose, varying from 0.3% to 13.0% for the doses employed. Concerning tensile properties, it can be seen that the incorporation of SBS non-irradiated or irradiated decreases Young's modulus, while increasing elongation at break. Respect to thermal studies, it was detected that SBS decreases melting enthalpy of blends, fact that implies a decrease on crystallinity degree, being this effect more noticeable when SBS is irradiated at doses higher than 10 kGy. On the other hand, melting temperature diminishes slightly when adding SBS to PP, but does not show significant variations when SBS is irradiated. PPs MFI decreased with the addition of SBS, being the effect more notorious with irradiation dose. Finally, it can be concluded that SBS can be vulcanized by gamma irradiation, and that the crosslinking degree increases with irradiation dose.

  16. Nutritional quality evaluation of velvet bean seeds (Mucuna pruriens) exposed to gamma irradiation.

    PubMed

    Bhat, Rajeev; Sridhar, Kandikere R; Seena, Sahadevan

    2008-06-01

    Effects of gamma irradiation on Mucuna pruriens seeds at various doses (0, 2.5, 5, 7.5, 10, 15 and 30 kGy) on the proximate composition, mineral constituents, amino acids, fatty acids and functional properties were investigated. Gamma irradiation resulted in a significant increase of crude protein at all doses, while the crude lipid, crude fibre and ash showed a dose-dependent decrease. Raw Mucuna seeds were rich in minerals (potassium, phosphorus, calcium, magnesium, iron and selenium). Sodium, copper and manganese were significantly decreased on irradiation at all the doses, while magnesium and iron showed a significant decrease only above 10 kGy. The essential amino acids of raw and gamma-irradiated Mucuna seeds were comparable with the FAO/WHO recommended pattern. A significant increase of in vitro protein digestibility was seen in seeds irradiated at 30 kGy. High amounts of unsaturated fatty acids in Mucuna seeds decreased significantly after irradiation. However, linoleic acid was not present in raw seeds but detected after irradiation and it was elevated to high level at 30 kGy. Behenic acid, a major anti-nutritional factor, was reduced significantly on irradiation, indicating the positive effect of gamma irradiation on Mucuna seeds. Significant enhancement in the water absorption and oil absorption capacities, protein solubility, emulsion activity and improvement in the gelation capacity was recorded after irradiation. Results of the present investigation reveal that application of gamma irradiation does not affect the overall nutritional composition and can be used as an effective method of preservation of Mucuna seed and their products. PMID:17852489

  17. Effects of gamma and electron beam irradiation on the microbial quality of steamed tofu rolls

    NASA Astrophysics Data System (ADS)

    Jia, Qian; Gao, Meixu; Li, Shurong; Wang, Zhidong

    2013-01-01

    The effectiveness of two kinds of radiation processing, gamma and electron beam (ebeam) irradiation, for the inactivation of Staphylococcus aureus, Salmonella enteritidis and Listeria innocua which were inoculated in pre-sterilised steamed tofu rolls was studied. The corresponding effects of both irradiation types on total bacterial counts (TBCs) in commercial steamed tofu rolls available in the market were also examined. The microbiological results demonstrated that gamma irradiation yielded D10 values of 0.20, 0.24 and 0.22 kGy for S. aureus, S. enteritidis and L. innocua, respectively. The respective D10 values for ebeam irradiation were 0.31, 0.35 and 0.27 kGy. Gamma and ebeam irradiation yielded D10 values of 0.48 and 0.43 kGy for total bacterial counts in commercial steamed tofu rolls, respectively. The results suggest that ebeam irradiation has similar effect on decreasing TBCs in steamed tofu rolls, and gamma irradiation is slightly more effective than ebeam irradiation in reducing the populations of pathogenic bacteria. The observed differences in D10-values between them might be due to the significant differences in dose rate applied, and radiation processing of soybean products to improve their microbial quality could be available for other sources of protein.

  18. Using gamma irradiation for the recovery of anthocyanins from grape pomace

    NASA Astrophysics Data System (ADS)

    Ayed, N.; Yu, H.-L.; Lacroix, M.

    2000-03-01

    This research investigated the effect of gamma irradiation from 0 to 9 kGy, packaging in air or under vacuum, or in combination with other treatments for enhancing anthocyanin extraction from grape pomace. Results indicate that the irradiation at 6 kGy and packaging in the presence of a low concentration of sodium metabisulfite yielded the highest value of anthocyanin extraction.

  19. Sensitivity of Pseudomonas fluorescens to gamma irradiation following surface inoculations on romaine lettuce and baby spinach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irradiation of fresh fruits and vegetables is a post-harvest intervention measure often used to inactivate pathogenic food-borne microbes. We evaluated the sensitivity of Pseudomonas fluorescens strains (2-79, Q8R1, Q287) to gamma irradiation following surface inoculations on romaine lettuce and spi...

  20. Study on antibacterial activity of silver nanoparticles synthesized by gamma irradiation method using different stabilizers

    NASA Astrophysics Data System (ADS)

    Van Phu, Dang; Quoc, Le Anh; Duy, Nguyen Ngoc; Lan, Nguyen Thi Kim; Du, Bui Duy; Luan, Le Quang; Hien, Nguyen Quoc

    2014-04-01

    Colloidal solutions of silver nanoparticles (AgNPs) were synthesized by gamma Co-60 irradiation using different stabilizers, namely polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), alginate, and sericin. The particle size measured from TEM images was 4.3, 6.1, 7.6, and 10.2 nm for AgNPs/PVP, AgNPs/PVA, AgNPs/alginate, and AgNPs/sericin, respectively. The influence of different stabilizers on the antibacterial activity of AgNPs was investigated. Results showed that AgNPs/alginate exhibited the highest antibacterial activity against Escherichia coli ( E. coli) among the as-synthesized AgNPs. Handwash solution has been prepared using Na lauryl sulfate as surfactant, hydroxyethyl cellulose as binder, and 15 mg/L of AgNPs/alginate as antimicrobial agent. The obtained results on the antibacterial test of handwash for the dilution to 3 mg AgNPs/L showed that the antibacterial efficiency against E. coli was of 74.6%, 89.8%, and 99.0% for the contacted time of 1, 3, and 5 min, respectively. Thus, due to the biocompatibility of alginate extracted from seaweed and highly antimicrobial activity of AgNPs synthesized by gamma Co-60 irradiation, AgNPs/alginate is promising to use as an antimicrobial agent in biomedicine, cosmetic, and in other fields.

  1. Critical evaluation of gamma-irradiated serum used as feeder in the culture and demonstration of putative nanobacteria and calcifying nanoparticles.

    PubMed

    Martel, Jan; Wu, Cheng-Yeu; Young, John D

    2010-01-01

    The culture and demonstration of putative nanobacteria (NB) and calcifying nanoparticles (CNP) from human and animal tissues has relied primarily on the use of a culture supplement consisting of FBS that had been gamma-irradiated at a dose of 30 kGy (gamma-FBS). The use of gamma-FBS is based on the assumption that this sterilized fluid has been rid entirely of any residual NB/CNP, while it continues to promote the slow growth in culture of NB/CNP from human/animal tissues. We show here that gamma-irradiation (5-50 kGy) produces extensive dose-dependent serum protein breakdown as demonstrated through UV and visible light spectrophotometry, fluorometry, Fourier-transformed infrared spectroscopy, and gel electrophoresis. Yet, both gamma-FBS and gamma-irradiated human serum (gamma-HS) produce NB/CNP in cell culture conditions that are morphologically and chemically indistinguishable from their normal serum counterparts. Contrary to earlier claims, gamma-FBS does not enhance the formation of NB/CNP from several human body fluids (saliva, urine, ascites, and synovial fluid) tested. In the presence of additional precipitating ions, both gamma-irradiated serum (FBS and HS) and gamma-irradiated proteins (albumin and fetuin-A) retain the inherent dual NB inhibitory and seeding capabilities seen also with their untreated counterparts. By gel electrophoresis, the particles formed from both gamma-FBS and gamma-HS are seen to have assimilated into their scaffold the same smeared protein profiles found in the gamma-irradiated sera. However, their protein compositions as identified by proteomics are virtually identical to those seen with particles formed from untreated serum. Moreover, particles derived from human fluids and cultured in the presence of gamma-FBS contain proteins derived from both gamma-FBS and the human fluid under investigation-a confusing and unprecedented scenario indicating that these particles harbor proteins from both the host tissue and the FBS used as

  2. Structural ordering of multi-walled carbon nanotubes (MWCNTs) caused by gamma (γ)-ray irradiation

    SciTech Connect

    Silambarasan, D. Vasu, V.; Iyakutti, K.; Asokan, K.

    2015-06-24

    Multi-walled carbon nanotubes (MWCNTs) were irradiated by Gamma (γ)-rays in air with absorbed doses of 25 and 50 kGy. As a result of γ-ray irradiation, the inter-wall distance of MWCNTs was decreased and their graphitic order was improved. The reduction in inter-wall distance and structural ordering was improved with the increasing dosage of irradiation. Experimental evidences are provided by powder XRD and micro-Raman analyses.

  3. Photorecovery of gamma irradiated cultures of blue-green alga, Anacystis nidulans.

    NASA Technical Reports Server (NTRS)

    Asato, Y.

    1971-01-01

    Evidence is given for photorecovery of Anacystis nidulans after exposures to Co 60 gamma radiation. After irradiation the levels of viable cells were higher in cultures kept in white light than in cultures kept dark for 24 hr. The post-irradiation survival rate increase after 30-min exposures to visible light is demonstrated in cultures irradiated with 35 krad. An increase in survival rates was not observed after exposures to ?red' light.

  4. Effect of gamma irradiation on the physiological activity of Korean soybean fermented foods, Chungkookjang and Doenjang

    NASA Astrophysics Data System (ADS)

    Byun, Myung-Woo; Son, Jun-Ho; Yook, Hong-Sun; Jo, Cheorun; Kim, Dong-Ho

    2002-06-01

    Effects of gamma irradiation on the physiological activity of Korean soybean fermented foods were investigated. Chungkookjang, the whole cooked soybean product and Doenjang, soybean paste were purchased and irradiated at 5, 10 and 20 kGy of absorbed doses. The physiological activity was evaluated by angiotensin converting enzyme inhibition, xanthine oxidase inhibition, tyrosinase inhibition and radical scavenging ability and results indicated that at 10 kGy or below did not show any significant change on physiological activities by irradiation.

  5. Performance degradation of QAM based inter-satellite optical communication system under gamma irradiation

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Zhao, Shanghong; Gong, Zizheng; Zhao, Jing; Li, Xuan

    2016-01-01

    Main devices in quadrature amplitude modulation (QAM) based inter-satellite optical communication system were irradiated to a total dose of 20 krad with the dose rate of 5 rad/s using a Co60 radiation source. Gamma irradiation impacts on devices were analyzed and on the basis, system performance degradation was simulated. Variety of system BER along with onboard working time for different inter-satellite links was presented. In addition, some adaption methods were proposed to reduce gamma irradiation induced degradation.

  6. Preliminary investigations into the bioconversion of gamma irradiated agricultural waste by Pleurotus spp.

    NASA Astrophysics Data System (ADS)

    Gbedemah, C. M.; Obodai, M.; Sawyerr, L. C.

    1998-06-01

    The application of gamma irradiation for pretreatment of lignocellulosic materials for their hydrolysis and to increase their digestibility for rumen animal have been reported in the literature. Gamma irradiation of corn stover in combination with sodium hydroxide for bioconversion of polysaccharide into protein by Pleurotus spp has also been reported. In this study experiments were designed to find out whether gamma radiation could serve both as a decontaminating agent as well as hydrolytic agent of sawdust for the bioconversion of four varieties of Pleurotus spp. Preliminary results indicate that a dose of 20kGy of gamma irradiation increase the yield of Pleurotus eous var ET-8 whilst decreasing the yield of other varieties.

  7. Efficiency of gamma irradiation to inactivate growth and fumonisin production of Fusarium moniliforme on corn grains.

    PubMed

    Mansur, Ahmad Rois; Yu, Chun-Cheol; Oh, Deog-Hwan

    2014-02-28

    The efficiency of gamma irradiation (0, 1, 5, 10, 15, 20, and 30 kGy) as a sterilization method of corn samples (30 g) artificially contaminated with Fusarium moniliforme stored at normal condition (25ºC with approximate relative humidity (RH) of 55%) and optimal condition (25ºC with a controlled RH of 97%) was studied. The results showed that the fungal growth and the amount of fumonisin were decreased as the dose of gamma irradiation increased. Gamma irradiation at 1-5 kGy treatment significantly inhibited the growth of F. moniliforme by 1-2 log reduction on corn samples (P < 0.05). Sublethal effect of gamma irradiation was observed at 10-20 kGy doses after storage, and a complete inactivation required 30 kGy. Fungal growth and fumonisin production increased with higher humidity and longer storage time in all corn samples. This study also demonstrated that there was no strict correlation between fungal growth and fumonisin production. Storage at normal condition significantly resulted in lower growth and fumonisin production of F. moniliforme as compared with those stored at optimal condition (P < 0.05). Gamma irradiation with the dose of ≥ 5 kGy followed by storage at normal condition successfully prolonged the shelf life of irradiated corns, intended for human and animal consumptions, up to 7 weeks. PMID:24169453

  8. Influence of gamma irradiation on productivity indices of the edible Emperor moth caterpillar, Cirina forda (Lepidoptera: Saturniidae).

    PubMed

    Odeyemi, M O; Fasoranti, J O; Ande, A T; Olayemi, I K

    2013-08-01

    This study was aimed at generating baseline information for sustainable genetic improvement of Cirana forda larvae for entomophagy, through the use of gamma irradiation. Eggs of C. forda were irradiated with increasing doses of gamma rays from 0 to 200 Gy and raised through larval instal stages under laboratory conditions. The Body Weight (BW) and Head Capsule Width (HCW) of the larval instar stages were monitored as indices of productivity. Successful larval emergence was recorded for all irradiation doses tested and BW of the 1st and 2nd instar larvae were not significantly (p > 0.05) different between the control and treated groups (range = 0.021 +/- 0.003 g/larva in the 200 Gy treatment to 0.028 +/- 0.003 g/larva in the control group and 0.105 +/- 0.003 g/larva in 20 Gy treatment to 0.172 +/- 0.009 g/larva in the control group, respectively). On the other hand, BW during the 3rd and 4th larval instars were significantly (p < 0.05) lower among the irradiated treatments than control. Pattern of distribution of HCW was different from that of BW; as HCW increased with irradiation dose from 10-50 Gy during the 3rd and 4th larval instars. Also, HCW during the 5th instar larvae among the irradiated treatments (range = 5.256 +/- 0.012 to 5.662 +/- 0.026 mm) were not higher than that of the 6th instar in the control group (6.065 +/- 0.010 mm). These results suggest promising potentials of the use of gamma irradiation in sustainably improving the productivity of C. forda larvae for entomophagy. PMID:24506002

  9. Preparation of plasmid DNA by gamma-irradiation of recA cells

    SciTech Connect

    Radford, A.J.; MacPhee, D.G.; Reanney, D.C.

    1983-11-01

    If recA bacteria are exposed to appropriate doses of gamma-irradiation, nondividing cells which can sustain the multiplication of ''small'' plasmids are produced. The gamma-irradiation technique has a number of advantages over other methods for preparing pure plasmid DNA: (1) there is little, if any, contamination of DNA preparations by chromosomal DNA owing to extensive degradation of the irradiated DNA by endogenous nucleases, (2) there is no need to introduce a uvr mutation to the host bacteria (there is when UV is used to inactivate the chromosome), (3) the method is extremely simple to work with since operations are not limited by considerations of volume and cell density, and (4) there is no need to transfer material from container to container. Yields of plasmid DNA obtained by the gamma-irradiation technique compare favorably with those obtained by other methods.

  10. Techniques for the separation of neutron and gamma irradiations in thermoluminescent LiF

    SciTech Connect

    Abhold, M.E.

    1987-01-01

    The light emission spectra from thermoluminescent LiF in the form of TLD-100 is investigated for irradiations from Cs-137 gammas, thermal neutrons, and Am-241 alphas. The light emission spectra for thermal neutron and Cs-137 gamma irradiations is observed to be identical over the spectral range from 300 nm to 660 nm. The spectral observed for Am-241 alpha irradiations exhibit an enhancement in the spectral region from 520 nm to 600 nm with respect to the gamma and thermal neutron irradiations. This enhancement is shown to be due to contaminants on the surface of the TLD most likely introduced by the standard cleansing rinse in Methanol. The design of a carbon dioxide laser heated TLD reader developed to observe the light emission spectrum of LiF is presented. The TLD reader is shown to exhibit excellent reproducibility in the heating rate, which allows for a repeatability in radiation dose measurements of less than two percent.

  11. Effect of low dose gamma irradiation on plant and grain nutrition of wheat

    NASA Astrophysics Data System (ADS)

    Singh, Bhupinder; Datta, Partha Sarathi

    2010-08-01

    We recently reported the use of low dose gamma irradiation to improve plant vigor, grain development and yield attributes of wheat ( Singh and Datta, 2010). Further, we report here the results of a field experiment conducted to assess the effect of gamma irradiation at 0, 0.01, 0.03, 0.05, 0.07 and 0.1 kGy on flag leaf area, stomatal conductance, transpiration and photosynthetic rate and plant and grain nutritional quality. Gamma irradiation improved plant nutrition but did not improve the nutritional quality of grains particularly relating to micronutrients. Grain carotene, a precursor for vitamin A, was higher in irradiated grains. Low grain micronutrients seem to be caused by a limitation in the source to sink nutrient translocation rather than in the nutrient uptake capacity of the plant root.

  12. Recycling of gamma irradiated inner tubes in butyl based rubber compounds

    NASA Astrophysics Data System (ADS)

    Karaağaç, Bağdagül; Şen, Murat; Deniz, Veli; Güven, Olgun

    2007-12-01

    Recycling of gamma irradiated inner tubes made of butyl rubber in butyl based rubber compounds was studied. Gamma irradiated inner tube wastes and commercial butyl rubber crumbs devulcanized by conventional methods were replaced with butyl rubber up to 15 phr in the compound recipe. The rheological and mechanical properties and carbon black dispersion degree for both types of compounds were measured and then compared to those of virgin butyl rubber compound. It is well known that mechanical properties are deteriorated when rubber crumb is added to the virgin compound. The deterioration in the mechanical properties for the compounds prepared by recycling of irradiated inner tubes at 120 kGy is much lower than the compounds prepared by using commercial butyl crumbs. It has been observed that gamma irradiated used inner tubes were compatible with butyl rubber and could be recycled within butyl based rubber compounds.

  13. Comparison of the efficacy of gamma and UV irradiation in sanitization of fresh carrot juice

    NASA Astrophysics Data System (ADS)

    Jo, Cheorun; Lee, Kyung Haeng

    2012-08-01

    As there is no pasteurization procedure for the manufacture of fresh vegetable juice, both industry and consumers have sought a method for improving the storage stability and shelf-life of this category of products. In this study, the effects of commercially available, non-thermal pasteurization processes, such as gamma and UV irradiation, were compared for their efficacy in sanitizing fresh carrot juice (FCJ). FCJ was manufactured, packaged, and gamma irradiated with doses of 0, 1, 3, and 5 kGy. The manufactured FCJ was also passed through 4 UV light lamps at doses of 3.67, 4.69, and 6.50 kGy. The total aerobic bacterial count of the FCJ approached the legal limit (105 CFU/mL) after manufacturing. Both treatments were effective in reducing the number of total aerobic bacteria, and the reduced number was maintained during storage for 7 days. Gamma irradiation was more effective in suppressing microbial growth during storage. When the doses for UV treatment and gamma irradiation were higher, the inactivation effects were higher. The reduction of ascorbic acid content was greater upon gamma irradiation than UV treatment. No difference was found in the contents of flavonoids and polyphenols in FCJ after either treatment. After 3 days of refrigerated storage, the sensory scores of gamma- or UV-irradiated FCJ were superior to those of the control. The results indicate that both non-thermal treatments were effective in improving storage stability and extending shelf-life, but gamma irradiation was slightly better in suppressing microbial growth after treatment.

  14. Irradiation Environment of the Materials Test Station

    SciTech Connect

    Pitcher, Eric John

    2012-06-21

    Conceptual design of the proposed Materials Test Station (MTS) at the Los Alamos Neutron Science Center (LANSCE) is now complete. The principal mission is the irradiation testing of advanced fuels and materials for fast-spectrum nuclear reactor applications. The neutron spectrum in the fuel irradiation region of MTS is sufficiently close to that of fast reactor that MTS can match the fast reactor fuel centerline temperature and temperature profile across a fuel pellet. This is an important characteristic since temperature and temperature gradients drive many phenomena related to fuel performance, such as phase stability, stoichiometry, and fission product transport. The MTS irradiation environment is also suitable in many respects for fusion materials testing. In particular, the rate of helium production relative to atomic displacements at the peak flux position in MTS matches well that of fusion reactor first wall. Nuclear transmutation of the elemental composition of the fusion alloy EUROFER97 in MTS is similar to that expected in the first wall of a fusion reactor.

  15. The effects of gamma irradiation on micro-hotplates with integrated temperature sensing diodes

    NASA Astrophysics Data System (ADS)

    Francis, Laurent A.; André, Nicolas; Boufouss, El Hafed; Gérard, Pierre; Ali, Zeeshan; Udrea, Florin; Flandre, Denis

    2014-06-01

    Micro-hotplates are MEMS structures of interest for low-power gas sensing, lab-on-chips and space applications, such as micro-thrusters. Micro-hotplates usually consist in a Joule heater suspended on a thin-film membrane while thermopiles or thermodiodes are added as temperature sensors and for feedback control. The implementation of micro-hotplates using a Silicon-On-Insulator technology makes them suited for co-integration with analog integrated circuits and operation at elevated environmental temperatures in a range from 200 to 300 °C, while the heater allows thermal cycling in the kHz regime up to 700 °C, e.g. necessary for the activation of gas sensitive metal-oxide on top of the membrane, with mWrange electrical power. The demonstrated resistance of micro-hotplates to gamma radiations can extend their use in nuclear plants, biomedical sterilization and space applications. In this work, we present results from electrical tests on micro-hotplates during their irradiation by Cobalt-60 gamma rays with total doses up to 18.90 kGy. The micro-hotplates are fabricated using a commercial 1.0 μm Silicon-On-Insulator technology with a tungsten Joule heater, which allows power-controlled operation above 600 °C with less than 60 mW, and temperature sensing silicon diodes located on the membrane and on the bulk. We show the immunity of the sensing platform to the harsh radiation environment. Beside the good tolerance of the thermodiodes and the membrane materials to the total radiation dose, the thermodiode located on the heating membrane is constantly annealed during irradiation and keeps a constant sensitivity while post-irradiation annealing can restore the thermodiode.

  16. Low and moderate dose gamma-irradiation and annealing impact on electronic and electrical properties of AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Yadav, Anupama; Flitsiyan, Elena; Chernyak, Leonid; Hwang, Ya-Hsi; Hsieh, Yueh-Ling; Lei, Lei; Ren, Fan; Pearton, Stephen J.; Lubomirsky, Igor

    2015-05-01

    To understand the effects of 60Co gamma-irradiation, systematic studies were carried out on n-channel AlGaN/GaN high electron mobility transistors. Electrical testing, combined with electron beam-induced current measurements, was able to provide critical information on defects induced in the material as a result of gamma-irradiation. It was shown that at low gamma-irradiation doses, the minority carrier diffusion length in AlGaN/GaN exhibits an increase up to ∼300 Gy. The observed effect is due to longer minority carrier (hole) life time in the material's valence band as a result of an internal electron irradiation by Compton electrons. However, for larger doses of gamma irradiation (above 400 Gy), deteriorations in transport properties and device characteristics were observed. This is consistent with the higher density of deep traps in the material's forbidden gap induced by a larger dose of gamma-irradiation. Moderate annealing of device structures at 200°C for 25 min resulted in partial recovery of transport properties and device performance.

  17. Quantitative Evaluation of Infectivity Change of Cryptosporidium parvum after Gamma Irradiation

    PubMed Central

    Lee, Soo-Ung; Joung, Mikyo; Nam, Taekyoung; Park, Woo-Yoon

    2009-01-01

    Cryptosporidium parvum is a well-known waterborne and opportunistic intracellular protozoan parasite that causes diarrheal illness. In this study, we quantitatively investigated reduction of the infectivity of C. parvum after gamma irradiation and repair of the infectivity during incubation time after irradiation. C. parvum oocysts were subjected to gamma irradiation at various doses (1, 5, 10, and 25 kGy), and the in vitro infectivity was measured by real-time PCR every day up to 7 days after irradiation. The in vitro infectivity of C. parvum on human ileocecal adenocarcinoma cells (HCT-8) was effectively reduced (> 2 log10) by irradiation at 10 kGy or more. However, in the experiment to find out repair of the infectivity, recovery was not noted until day 7 post-incubation. PMID:19290085

  18. Studies on the physicochemical characteristics of oil extracted from gamma irradiated pistachio (Pistacia vera L.).

    PubMed

    Al-Bachir, Mahfouz

    2015-01-15

    The present study evaluated the quality of pistachio oil, as a function of irradiation, to determine the dose level causing undesirable changes to pistachio oil. Physicochemical fatty acid composition, acidity value, peroxide value, iodine value specification number, thiobarbituric acid (TBA) value and colour of pistachio oil extracted from samples treated with 0, 1, 2 and 3 kGy doses of gamma irradiation were determined. Gamma irradiation caused the alteration of fatty acids of pistachio oil which showed a decrease in oleic acid (C18:1) and an increase in linoleic acid (C18:2). All other fatty acids remained unaffected after irradiation. The higher used doses (2 and 3 kGy) decreased acidity value, peroxide value and iodine value, and increased specification number, with no effect on TBA value. Irradiation had a significant effect on colour values of pistachio oil. Parameters L, a and b increased at doses of 1 and 2 kGy. PMID:25148975

  19. Effect of gamma irradiation on the hemocyte-mediated immune response of Aedes aegypti against microfilariae

    SciTech Connect

    Christensen, B.M.; Huff, B.M.; Li, J. )

    1990-07-01

    The effect of gamma irradiation on the melanotic encapsulation response of Aedes aegypti black eye Liverpool strain against inoculated Dirofilaria immitis microfilariae (mff) was assessed at 1, 2, 3, and 6 days postinoculation (PI). Mosquitoes received 6000 rad from a 137Cs source (Shepard Mark I irradiator) at 3 days postemergence and were inoculated with 15-20 mff 24 hr later. These mosquitoes were compared to nonirradiated controls that also were inoculated with 15-20 mff at 3 days postemergence. The immune response was significantly reduced in irradiated mosquitoes as compared with controls at all days PI. Although the response was significantly inhibited compared with controls, irradiated mosquitoes were still capable of eliciting a response against 69% of recovered mff at 6 days PI. External gamma irradiation did not significantly affect the proliferation of hemocytes associated with the melanotic encapsulation response of A. aegypti. The number of circulating hemocytes increased in irradiated mosquitoes in response to inoculated mff in a manner similar to nonirradiated, inoculated controls. Hemocyte monophenol oxidase activity, however, was significantly reduced in gamma-irradiated mosquitoes at 12 hr PI as compared with controls. The reduced immunological capacity of irradiated mosquitoes might be related to an interference with gene activity required for the synthesis or activation of enzymes that are directly or indirectly involved in the biochemical processes associated with the production of melanotic substances that sequester mff.

  20. Texture, color, lipid oxidation and sensory acceptability of gamma-irradiated marinated anchovy fillets

    NASA Astrophysics Data System (ADS)

    Tomac, Alejandra; Cova, María C.; Narvaiz, Patricia; Yeannes, María I.

    2015-01-01

    The effect of gamma irradiation (0, 2, 3 and 4 kGy) on vacuum-packed marinated anchovy fillets was analyzed for their texture, color, lipid oxidation and sensory acceptability after 10 months under refrigeration. Marinated (3% acetic acid, 10% sodium chloride and 0.2% citric acid) Engraulis anchoita fillets were vacuum-packed and irradiated with a cobalt-60 source at a semi-industrial irradiation facility. The irradiation caused a slight increase in hardness values regardless of the applied dose but maintained a consistent texture over the 10 months, even though the control samples softened, most likely due to degradation. This hardness increase did not affect the textural sensory acceptability. Irradiation did not modify the color but still reduced color changes during storage, benefitting the product's quality. TBARS was increased in every sample throughout storage, but irradiation decreased these values. Sensory acceptability was not affected by gamma irradiation. Therefore, gamma irradiation could be successfully applied to this type of product for the purpose of shelf-life extension.

  1. Poly(ADP-ribose) polymerase inhibition reverses vascular dysfunction after {gamma}-irradiation

    SciTech Connect

    Beller, Carsten J. . E-mail: Carsten.Beller@urz.uni-heidelberg.de; Radovits, Tamas; Seres, Leila; Kosse, Jens; Krempien, Robert; Gross, Marie-Luise; Penzel, Roland; Berger, Irina; Huber, Peter E.; Hagl, Siegfried; Szabo, Csaba; Szabo, Gabor

    2006-08-01

    Purpose: The generation of reactive oxygen species during {gamma}-irradiation may induce DNA damage, leading to activation of the nuclear enzyme poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) culminating in endothelial dysfunction. In the present study, we assessed the effect of PARP inhibition on changes in vascular function after acute and short-term irradiation. Methods and Materials: In the acute experiments, aortic rings were exposed to 20 Gy of {gamma}-irradiation. The aortae were harvested after 1 or 7 days. Two additional groups received the ultrapotent PARP inhibitor, INO-1001, for 1 or 7 days after irradiation. The aortic rings were precontracted by phenylephrine and relaxation to acetylcholine and sodium nitroprusside were studied. Results: The vasoconstrictor response to phenylephrine was significantly lower both acutely and 1 and 7 days after irradiation. Vasorelaxation to acetylcholine and sodium nitroprusside was not impaired acutely after irradiation. One and seven days after irradiation, vasorelaxation to acetylcholine and sodium nitroprusside was significantly enhanced. Treatment with INO-1001 reversed vascular dysfunction after irradiation. Conclusion: Vascular dysfunction was observed 1 and 7 days after irradiation, as evidenced by reduced vasoconstriction, coupled with endothelium-dependent and -independent hyperrelaxation. PARP inhibition restored vascular function and may, therefore, be suitable to reverse vascular dysfunction after irradiation.

  2. Irradiation Facilities at the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2005-12-01

    The Advanced Test Reactor (ATR) is the third generation and largest test reactor built in the Reactor Technology Complex (RTC – formerly known as the Test Reactor Area), located at the Idaho National Laboratory (INL), to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The RTC was established in the early 1950s with the development of the Materials Testing Reactor (MTR), which operated until 1970. The second major reactor was the Engineering Test Reactor (ETR), which operated from 1957 to 1981, and finally the ATR, which began operation in 1967 and will continue operation well into the future. These reactors have produced a significant portion of the world’s data on materials response to reactor environments. The wide range of experiment facilities in the ATR and the unique ability to vary the neutron flux in different areas of the core allow numerous experiment conditions to co-exist during the same reactor operating cycle. Simple experiments may involve a non-instrumented capsule containing test specimens with no real-time monitoring or control capabilities1. More sophisticated testing facilities include inert gas temperature control systems and pressurized water loops that have continuous chemistry, pressure, temperature, and flow control as well as numerous test specimen monitoring capabilities. There are also apparatus that allow for the simulation of reactor transients on test specimens.

  3. Effect of Gamma-irradiation and Heat on Root-knot Nematode, Meloidogyne javanica

    PubMed Central

    Chinnasri, B.; Moy, J. H.; Sipes, B. S.; Schmitt, D. P.

    1997-01-01

    Effects of gamma-irradiation on the root-knot nematode Meloidogyne javanica were investigated. A dose of 7.5 kGy killed all second-stage juveniles (J2) within 1 day after treatment. Egg hatch was completely inhibited at 6.25 kGy. A bioassay on tomato measuring galling and egg production was used to determine the infectivity of irradiated J2 and J2 hatched from irradiated eggs. The J2 and eggs irradiated with a dose of 4.25 kGy did not induce galls or reproduce on tomato plants. When nematodes were exposed to combined irradiation and heat treatment, no synergistic effect on J2 or eggs was measured. Heat treatment at 49° C for 10 minutes or 20 minutes without irradiation immobilized J2 and prevented egg development. Irradiation rates needed to kill or incapacitate M. javanica were high and may be impractical as a quarantine measure. PMID:19274131

  4. Effects of gamma and electron beam irradiation on the survival of pathogens inoculated into sliced and pizza cheeses

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Joo; Ham, Jun-Sang; Lee, Ju-Woon; Kim, Keehyuk; Ha, Sang-Do; Jo, Cheorun

    2010-06-01

    The objective of this study was to identify the efficacy of gamma and electron beam irradiation of the food-borne pathogens ( Listeria monocytogenes and Staphylococcus aureus) in sliced and pizza cheeses commercially available in the Korean market. Total aerobic bacteria and yeast/mold in the cheeses ranged from 10 2 to 10 3 Log CFU/g. Irradiation of 1 kGy for sliced cheese and 3 kGy for pizza cheese were sufficient to lower the total aerobic bacteria to undetectable levels (10 1 CFU/g). Pathogen inoculation test revealed that gamma irradiation was more effective than electron beam irradiation at the same absorbed dose, and the ranges of the D 10 values were from 0.84 to 0.93 kGy for L. monocytogenes and from 0.60 to 0.63 kGy for S. aureus. Results suggest that a low dose irradiation can improve significantly the microbial quality and reduce the risk of contamination of sliced and pizza cheeses by the food-borne pathogens which can potentially occur during processing.

  5. EPR study on gamma-irradiated fruits dehydrated via osmosis

    NASA Astrophysics Data System (ADS)

    Yordanov, N. D.; Aleksieva, K.

    2007-06-01

    The shape and time stability of the electron paramagnetic resonance (EPR) spectra of non- and γ-irradiated papaya, melon, cherry and fig samples dehydrated via osmosis are reported. It is shown that non-irradiated samples are generally EPR silent whereas γ-irradiated exhibit "sugar-like" EPR spectra. The recorded EPR spectra are monitored for a period of 7 months after irradiation (stored at low humidity and in the dark). The results suggest longer period of unambiguous identification of the radiation processing of osmose dehydrated fruits. Therefore, the Protocol EN 13708,2001 issued by CEN is fully applicable for the studied fruit samples.

  6. Validation of gamma irradiator controls for quality and regulatory compliance

    NASA Astrophysics Data System (ADS)

    Harding, Rorry B.; Pinteric, Francis J. A.

    1995-09-01

    Since 1978 the U.S. Food and Drug Administration (FDA) has had both the legal authority and the Current Good Manufacturing Practice (CGMP) regulations in place to require irradiator owners who process medical devices to produce evidence of Irradiation Process Validation. One of the key components of Irradiation Process Validation is the validation of the irradiator controls. However, it is only recently that FDA audits have focused on this component of the process validation. What is Irradiator Control System Validation? What constitutes evidence of control? How do owners obtain evidence? What is the irradiator supplier's role in validation? How does the ISO 9000 Quality Standard relate to the FDA's CGMP requirement for evidence of Control System Validation? This paper presents answers to these questions based on the recent experiences of Nordion's engineering and product management staff who have worked with several US-based irradiator owners. This topic — Validation of Irradiator Controls — is a significant regulatory compliance and operations issue within the irradiator suppliers' and users' community.

  7. ATM is required for rapid degradation of cyclin D1 in response to {gamma}-irradiation

    SciTech Connect

    Choo, Dong Wan; Baek, Hye Jung; Motoyama, Noboru; Cho, Kwan Ho; Kim, Hye Sun; Kim, Sang Soo

    2009-01-23

    The cellular response to DNA damage induced by {gamma}-irradiation activates cell-cycle arrest to permit DNA repair and to prevent replication. Cyclin D1 is the key molecule for transition between the G1 and S phases of the cell-cycle, and amplification or overexpression of cyclin D1 plays pivotal roles in the development of several human cancers. To study the regulation of cyclin D1 in the DNA-damaged condition, we analyzed the proteolytic regulation of cyclin D1 expression upon {gamma}-irradiation. Upon {gamma}-irradiation, a rapid reduction in cyclin D1 levels was observed prior to p53 stabilization, indicating that the stability of cyclin D1 is controlled in a p53-independent manner. Further analysis revealed that irradiation facilitated ubiquitination of cyclin D1 and that a proteasome inhibitor blocked cyclin D1 degradation under the same conditions. Interestingly, after mutation of threonine residue 286 of cyclin D1, which is reported to be the GSK-3{beta} phosphorylation site, the mutant protein showed resistance to irradiation-induced proteolysis although inhibitors of GSK-3{beta} failed to prevent cyclin D1 degradation. Rather, ATM inhibition markedly prevented cyclin D1 degradation induced by {gamma}-irradiation. Our data indicate that communication between ATM and cyclin D1 may be required for maintenance of genomic integrity achieved by rapid arrest of the cell-cycle, and that disruption of this crosstalk may increase susceptibility to cancer.

  8. Evaluating the Effects of Gamma-Irradiation for Decontamination of Medicinal Cannabis

    PubMed Central

    Hazekamp, Arno

    2016-01-01

    In several countries with a National medicinal cannabis program, pharmaceutical regulations specify that herbal cannabis products must adhere to strict safety standards regarding microbial contamination. Treatment by gamma irradiation currently seems the only method available to meet these requirements. We evaluated the effects of irradiation treatment of four different cannabis varieties covering different chemical compositions. Samples were compared before and after standard gamma-irradiation treatment by performing quantitative UPLC analysis of major cannabinoids, as well as qualitative GC analysis of full cannabinoid and terpene profiles. In addition, water content and microscopic appearance of the cannabis flowers was evaluated. This study found that treatment did not cause changes in the content of THC and CBD, generally considered as the most important therapeutically active components of medicinal cannabis. Likewise, the water content and the microscopic structure of the dried cannabis flowers were not altered by standard irradiation protocol in the cannabis varieties studied. The effect of gamma-irradiation was limited to a reduction of some terpenes present in the cannabis, but keeping the terpene profile qualitatively the same. Based on the results presented in this report, gamma irradiation of herbal cannabis remains the recommended method of decontamination, at least until other more generally accepted methods have been developed and validated. PMID:27199751

  9. Evaluating the Effects of Gamma-Irradiation for Decontamination of Medicinal Cannabis.

    PubMed

    Hazekamp, Arno

    2016-01-01

    In several countries with a National medicinal cannabis program, pharmaceutical regulations specify that herbal cannabis products must adhere to strict safety standards regarding microbial contamination. Treatment by gamma irradiation currently seems the only method available to meet these requirements. We evaluated the effects of irradiation treatment of four different cannabis varieties covering different chemical compositions. Samples were compared before and after standard gamma-irradiation treatment by performing quantitative UPLC analysis of major cannabinoids, as well as qualitative GC analysis of full cannabinoid and terpene profiles. In addition, water content and microscopic appearance of the cannabis flowers was evaluated. This study found that treatment did not cause changes in the content of THC and CBD, generally considered as the most important therapeutically active components of medicinal cannabis. Likewise, the water content and the microscopic structure of the dried cannabis flowers were not altered by standard irradiation protocol in the cannabis varieties studied. The effect of gamma-irradiation was limited to a reduction of some terpenes present in the cannabis, but keeping the terpene profile qualitatively the same. Based on the results presented in this report, gamma irradiation of herbal cannabis remains the recommended method of decontamination, at least until other more generally accepted methods have been developed and validated. PMID:27199751

  10. External gamma irradiation-induced effects in early-life stages of zebrafish, Danio rerio.

    PubMed

    Gagnaire, B; Cavalié, I; Pereira, S; Floriani, M; Dubourg, N; Camilleri, V; Adam-Guillermin, C

    2015-12-01

    In the general context of validation of tools useful for the characterization of ecological risk linked to ionizing radiation, the effects of an external gamma irradiation were studied in zebrafish larvae irradiated for 96 h with two dose rates: 0.8 mGy/d, which is close to the level recommended to protect ecosystems from adverse effects of ionizing radiation (0.24 mGy/d) and a higher dose rate of 570 mGy/d. Several endpoints were investigated, such as mortality, hatching, and some parameters of embryo-larval development, immunotoxicity, apoptosis, genotoxicity, neurotoxicity and histological alterations. Results showed that an exposure to gamma rays induced an acceleration of hatching for both doses and a decrease of yolk bag diameter for the highest dose, which could indicate an increase of global metabolism. AChE activity decreased with the low dose rate of gamma irradiation and alterations were also shown in muscles of irradiated larvae. These results suggest that gamma irradiation can induce damages on larval neurotransmission, which could have repercussions on locomotion. DNA damages, basal ROS production and apoptosis were also induced by irradiation, while ROS stimulation index and EROD biotransformation activity were decreased and gene expression of acetylcholinesterase, choline acetyltransferase, cytochrome p450 and myeloperoxidase increased. These results showed that ionizing radiation induced an oxidative stress conducting to DNA damages. This study characterized further the modes of action of ionizing radiation in fish. PMID:26517177

  11. Protective effect of ginseng against gamma-irradiation-induced oxidative stress and endothelial dysfunction in rats

    PubMed Central

    Mansour, Heba Hosny

    2013-01-01

    This study investigated the potential protective effects of ginseng on gamma-irradiation-induced oxidative stress and endothelial dysfunction in rats. Twenty four male albino rats were divided into four groups. In the control group, rats were administered vehicle by tube for 7 consecutive days. The second group was administered ginseng extract (100 mg/kg, by gavage) for 7 consecutive days. Animals in the third group were administered vehicle by tube for 7 consecutive days, then exposed to single dose gamma-irradiation (6 Gy). The Fourth group received ginseng extract for 7 consecutive days, one hour later rats were exposed to gamma-irradiation. Oral administration of ginseng extract prior to irradiation produced a significant protection which was evidenced by a significant reduction in serum creatine kinase (CPK) and lactate dehydrogenase (LDH) activities and asymmetric dimethylarginine (ADMA), urea and creatinine levels with significant increase in serum total nitrate/nitrite (NO(x)) level. Moreover, ginseng significantly increased cardiac and renal superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) activities, and reduced glutathione (GSH) content, associated with a significant depletion in malondialdehyde (MDA) and NO(x) levels compared to irradiated group. This study suggests that ginseng may serve as a potential protective agent against gamma-irradiation-induced cardio-nephrotoxicity via enhancing the antioxidant activity and inhibition of endothelial dysfunction. PMID:26622217

  12. The change in dielectric constant, AC conductivity and optical band gaps of polymer electrolyte film: Gamma irradiation

    SciTech Connect

    Raghu, S. Subramanya, K. Sharanappa, C. Mini, V. Archana, K. Sanjeev, Ganesh Devendrappa, H.

    2014-04-24

    The effects of gamma (γ) irradiation on dielectric and optical properties of polymer electrolyte film were investigated. The dielectric constant and ac conductivity increases with γ dose. Also optical band gap decreased from 4.23 to 3.78ev after irradiation. A large dependence of the polymer properties on the irradiation dose was noticed. This suggests that there is a possibility of improving polymer electrolyte properties on gamma irradiation.

  13. gamma. -ray and neutron irradiation characteristics of pure silica core single mode fiber and its life time estimation

    SciTech Connect

    Chigusa, Y.; Watanabe, M.; Kyoto, M.; Ooe, M.; Matsubara, T.; Okamoto, S.; Yamamoto, T.; Iida, T.; Sumita, K.

    1988-02-01

    The investigation of the induced loss for a single mode (SM) optical fiber under ..gamma..-ray irradiation and neutron irradiation are described and the estimation method for induced loss with low dose rate and long-term ..gamma..-ray irradiation is proposed. The induced loss of pure silica core SM fiber was estimated to be 50 times lower than that of germanium containing silica core SM fiber after irradiation with 1 R/Hr for 25 years.

  14. Fusion materials irradiation test facility test-cell instrumentation

    NASA Astrophysics Data System (ADS)

    Fuller, J. L.; Burke, R. J.

    1982-05-01

    Many of the facility instrumentation components and systems currently under development, though specifically designed for FMIT purposes, are similar to those useful for fusion reactors. Various ceramic-insulated signal-cable components are being evaluated for 14-MeV neutron tolerance. Thermocouples are shown to decalibrate in high energy fields. Nondestructive optical viewing of deuteron-induced residual gas flow is planned for beam profiling in real space and phase space. Various optics were irradiated to 10(18) n/cm(2) at 14 MeV with good results. Feasibility of neutron and gamma field imaging was demonstrated using pinhole collimator and microchannel plate devices. Infrared thermography and optical monitoring of the target surface is being investigated. Considerable experience on the compatibility of optical and insulator materials with (highly reactive) lithium was obtained.

  15. Feasibility studies into the production of gamma-irradiated oyster tissue reference materials for paralytic shellfish poisoning toxins.

    PubMed

    Turner, Andrew D; Lewis, Adam M; Hatfield, Robert G; Powell, Andy L; Higman, Wendy A

    2013-09-01

    A study was conducted to assess the feasibility for the production of sterile, stable and homogenous shellfish reference materials containing known concentrations of paralytic shellfish poisoning (PSP) toxins. Pacific oysters were contaminated with toxins following mass culturing of toxic algae and shellfish feeding experiments. Live oysters were shucked and tissues homogenised, before measuring into multiple aliquots, with one batch subjected to gamma irradiation treatment and the other remaining untreated. The homogeneity of both batches of samples was assessed using a pre-column oxidation liquid chromatography with fluorescence detection (Pre-COX LC-FLD) method and shown to be within the limits of normal within-batch repeatability. A twelve-month stability experiment was conducted for both untreated and gamma irradiated batches, specifically examining the effects of long term storage at -20 °C, +4 °C and +40 °C. Results indicated mostly good stability of PSP toxins in both materials when stored frozen at -20 °C, but with the instability of GTX2&3 concentrations in the untreated tissues eliminated in the irradiated tissues. Analysis using a post-column oxidation (PCOX) LC-FLD method also showed epimerisation in both GTX1&4 and GTX2&3 epimeric pairs in untreated samples after only 6 months frozen storage. This issue was not present in the tissues irradiated before long term storage. Biological activity testing confirmed the absence of bacteria in the irradiated samples throughout the 12 month study period. With such results there was clear evidence for the potential of increasing the scale of the mass culturing and shellfish feeding for the production of large batches of tissue suitable for the preparation of a certified matrix reference material. Overall results demonstrated the feasibility for production of oyster reference materials for PSTs, with evidence for prolonged stability following gamma irradiation treatment and storage at -20 °C. PMID

  16. Low Dose Gamma Irradiation Potentiates Secondary Exposure to Gamma Rays or Protons in Thyroid Tissue Analogs

    SciTech Connect

    Green, Lora M

    2006-05-25

    We have utilized our unique bioreactor model to produce three-dimensional thyroid tissue analogs that we believe better represent the effects of radiation in vivo than two-dimensional cultures. Our thyroid model has been characterized at multiple levels, including: cell-cell exchanges (bystander), signal transduction, functional changes and modulation of gene expression. We have significant preliminary data on structural, functional, signal transduction and gene expression responses from acute exposures at high doses (50-1000 rads) of gamma, protons and iron (Green et al., 2001a; 2001b; 2002a; 2002b; 2005). More recently, we used our DOE funding (ending Feb 06) to characterize the pattern of radiation modulated gene expression in rat thyroid tissue analogs using low-dose/low-dose rate radiation, plus/minus acute challenge exposures. Findings from these studies show that the low-dose/low-dose rate “priming” exposures to radiation invoked changes in gene expression profiles that varied with dose and time. The thyrocytes transitioned to a “primed” state, so that when the tissue analogs were challenged with an acute exposure to radiation they had a muted response (or an increased resistance) to cytopathological changes relative to “un-primed” cells. We measured dramatic differences in the primed tissue analogs, showing that our original hypothesis was correct: that low dose gamma irradiation will potentiate the repair/adaptation response to a secondary exposure. Implications from these findings are that risk assessments based on classical in vitro tissue culture assays will overestimate risk, and that low dose rate priming results in a reduced response in gene expression to a secondary challenge exposure, which implies that a priming dose provides enhanced protection to thyroid cells grown as tissue analogs. If we can determine that the effects of radiation on our tissue analogs more closely resemble the effects of radiation in vivo, then we can better

  17. Gamma irradiation induces acetylcholine-evoked, endothelium-independent relaxation and activatesk-channels of isolated pulmonary artery of rats

    SciTech Connect

    Eder, Veronique . E-mail: eder@med.univ-tours.fr; Gautier, Mathieu; Boissiere, Julien; Girardin, Catherine; Rebocho, Manuel; Bonnet, Pierre

    2004-12-01

    Purpose: To test the effects of irradiation (R*) on the pulmonary artery (PA). Methods and materials: Isolated PA rings were submitted to gamma irradiation (cesium, 8 Gy/min{sup -1}) at doses of 20 Gy-140 Gy. Rings were placed in an organ chamber, contracted with serotonin (10{sup -4} M 5-hydroxytryptamine [5-HT]), then exposed to acetylcholine (ACh) in incremental concentrations. Smooth muscle cell (SMC) membrane potential was measured with microelectrodes. Results: A high dose of irradiation (60 Gy) increased 5HT contraction by 20%, whereas lower (20 Gy) doses slightly decreased it compared with control. In the absence of the endothelium, 5-HT precontracted rings exposed to 20 Gy irradiation developed a dose-dependent relaxation induced by acetylcholine (EI-ACh) with maximal relaxation of 60 {+-} 17% (n = 13). This was totally blocked by L-NAME (10{sup -4} M), partly by 7-nitro indazole; it was abolished by hypoxia and iberiotoxin, decreased by tetra-ethyl-ammonium, and not affected by free radical scavengers. In irradiated rings, hypoxia induced a slight contraction which was never observed in control rings. No differences in SMC membrane potential were observed between irradiated and nonirradiated PA rings. Conclusion: Irradiation mediates endothelium independent relaxation by a mechanism involving the nitric oxide pathway and K-channels.

  18. Royal jelly modulates oxidative stress and tissue injury in gamma irradiated male Wister Albino rats

    PubMed Central

    Azab, Khaled Shaaban; Bashandy, Mohamed; Salem, Mahmoud; Ahmed, Osama; Tawfik, Zaki; Helal, Hamed

    2011-01-01

    Background: Royal jelly is a nutritive secretion produced by the worker bees, rich in proteins, carbohydrates, vitamins and minerals. Aim: The present study was designed to determine the possible protective effects of royal jelly against radiation induced oxidative stress, hematological, biochemical and histological alterations in male Wister albino rats. Materials and Methods: Male Wister albino rats were exposed to a fractionated dose of gamma radiation (2 Gy every 3 days up to 8 Gy total doses). Royal jelly was administrated (g/Kg/day) by gavages 14 days before exposure to the 1st radiation fraction and the treatment was continued for 15 days after the 1st irradiation fraction till the end of the experiment. The rats were sacrificed 3rd, equivalent to 3rd post 2nd irradiation fraction, and equivalent to 3rd day post last irradiation fraction. Results: In the present study, gamma- irradiation induced hematological, biochemical and histological effects in male Wister albino rats. In royal jelly treated irradiated group, there was a noticeable decrease recorded in thiobarbituric reactive substances concentration when compared to γ-irradiated group. Also, the serum nitric oxide concentration was significantly improved. The administration of royal jelly to irradiated rats according to the current experimental design significantly ameliorates the changes induced in serum lipid profile. Moreover, in royal jelly treated irradiated group, there was a noticeable amelioration recorded in all hematological parameters along the three experimental intervals. The microscopic examination of cardiac muscle of royal jelly treated irradiated rats demonstrated structural amelioration, improved nuclei and normal features of capillaries and veins in endomysium when compared to gamma-irradiated rats. Conclusion: It was suggested that the biochemical, hematological and histological amelioration observed in royal jelly (g/Kg/day) treated irradiated rats might be due to the antioxidant

  19. Physiological and molecular characterization of the enhanced salt tolerance induced by low-dose gamma irradiation in Arabidopsis seedlings

    SciTech Connect

    Qi, Wencai; Zhang, Liang; Xu, Hangbo; Wang, Lin; Jiao, Zhen

    2014-07-25

    Highlights: • 50-Gy gamma irradiation markedly promotes the seedling growth under salt stress in Arabidopsis. • The contents of H{sub 2}O{sub 2} and MDA are obviously reduced by low-dose gamma irradiation under salt stress. • Low-dose gamma irradiation stimulates the activities of antioxidant enzymes under salt stress. • Proline accumulation is required for the low-gamma-ray-induced salt tolerance. • Low gamma rays differentially regulate the expression of genes related to salt stress. - Abstract: It has been established that gamma rays at low doses stimulate the tolerance to salt stress in plants. However, our knowledge regarding the molecular mechanism underlying the enhanced salt tolerance remains limited. In this study, we found that 50-Gy gamma irradiation presented maximal beneficial effects on germination index and root length in response to salt stress in Arabidopsis seedlings. The contents of H{sub 2}O{sub 2} and MDA in irradiated seedlings under salt stress were significantly lower than those of controls. The activities of antioxidant enzymes and proline levels in the irradiated seedlings were markedly increased compared with the controls. Furthermore, transcriptional expression analysis of selected genes revealed that some components of salt stress signaling pathways were stimulated by low-dose gamma irradiation under salt stress. Our results suggest that gamma irradiation at low doses alleviates the salt stress probably by modulating the physiological responses as well as stimulating the stress signal transduction in Arabidopsis seedlings.

  20. Effect of gamma irradiation on physicochemical properties of stored pigeon pea (Cajanus cajan) flour

    PubMed Central

    Bamidele, Oluwaseun P; Akanbi, Charles T

    2013-01-01

    The effect of gamma irradiation at various doses (5, 10, 15, 20 kGy) was observed on pigeon pea flour stored for 3 months on proximate composition, functional properties, and peroxide value. Sensory evaluation was also carried out on bean cake (moinmoin) made from nonirradiated and irradiated pigeon pea flour. The results showed that stored gamma-irradiated samples had significantly lower (P < 0.05) value of protein and little or no effect on moisture content. There were slight decreases in crude fiber and ash content of the irradiated samples compared with the control sample. The result of functional properties of the irradiated flours showed slight increase in water absorption capacity, swelling capacity and bulk density. The peroxide value of crude oil increased significantly with dose increases for the period of storage. The sensory evaluation of moinmoin samples prepared from irradiated pigeon pea flour showed no significant difference from the moinmoin sample prepared from nonirradiated flour. It can be concluded that gamma irradiation can extend the shelf life of pigeon pea flour. PMID:24804044

  1. ESR studies of some. gamma. -irradiated organic crystals. [N-tert-butylacrylamide, propionamide

    SciTech Connect

    Kilic, S.; Baysal, B.M.

    1981-12-01

    Acrylamide, N-tert-butylacrylamide, and propionamide crystals were irradiated at -196/sup 0/C and the structures of radicals studied by ESR spectroscopy at various temperatures. The ..gamma..-irradiated acrylamide crystals show a five-line spectrum which is similar in shape to the signal obtained from the ..gamma..-irradiated propionamide crystals. Two types of radicals are produced in irradiated acrylamide and propionamide crystals at -196/sup 0/C. When the irradiated samples are kept at -78/sup 0/C the spectrum of propionamide remains the same, except in intensity. In contrast to this, the acrylamide spectrum changes to a triplet because of dimerization. Upon warming the irradiated acrylamide sample to between -50 and -30/sup 0/C, some small new peaks become apparent on either side of the triplet. These new peaks disappear above -20/sup 0/C and the spectrum changes to a triplet because of polymerization. To observe the changes in the ESR spectra of ..gamma..-irradiated N-tert-butylacrylamide we kept the sample at various temperatures from -196 to 100/sup 0/C. From -196/sup 0/C to about room temperature the spectrum is a quintet. At and above 35/sup 0/C, the spectrum changes to a triplet with shoulders on either side of the main peaks. With further warming above 80/sup 0/C the spectrum changes to a broad triplet.

  2. Effects of gamma and electron beam irradiation on the properties of calendered cord fabrics

    NASA Astrophysics Data System (ADS)

    Aytaç, Ayşe; Deniz, Veli; Şen, Murat; Hegazy, El-Sayed; Güven, Olgun

    2010-03-01

    The effects of gamma and e-beam irradiation on mechanical and structural properties of nylon 66 (Ny 66), nylon 6 (Ny 6) and poly(ethylene terephthalate) (PET) fabrics used in tyres were investigated. The untreated (greige), treated cords and calendered fabrics were irradiated at different doses. It is found that the effects of high energy irradiation on greige, treated cords and calendered fabrics are similar. No protective effect of compounds used in calendering was observed against radiation-induced oxidative degradation. The deterioration effect of gamma irradiation on mechanical properties is much higher than that of e-beam irradiation for all types of samples. Limiting viscosity numbers of both gamma and e-beam irradiated nylon 6 and nylon 66 cords were found to decrease with increasing dose. It is concluded that PET calendered fabric has higher resistance to ionizing radiation. Ny 6 and Ny 66 calendered fabrics are more sensitive even at low doses. Therefore, the effects of high energy irradiation on tyre cords have to be taken into consideration during tyre design reinforced with particularly Ny fabrics if pre-vulcanization with high energy radiation is to be applied.

  3. Effect of mercerization and gamma irradiation on the dyeing behaviour of cotton using stilbene based direct dye

    NASA Astrophysics Data System (ADS)

    Bhatti, Ijaz Ahmad; Adeel, Shahid; Fazal-ur-Rehman; Irshad, Misbah; Abbas, Muhammad

    2012-07-01

    The dyeing behaviour of mercerized and gamma irradiated cotton fabric using stilbene based direct dye has been investigated. The fabric was treated with different concentrations of alkali to optimize the mercerization. The optimum mercerized cotton fabric was irradiated to absorbed doses of 2, 4, 6, 8 and 10 kGy using Cs-137 gamma irradiator. Dyeing was performed using irradiated and un-irradiated cotton with dye solutions. The dyeing parameters such as temperature, time of dyeing, pH of dyeing solutions and salt concentration were optimized. The colour strength values of dyed fabrics were evaluated by comparing irradiated and un-irradiated cotton in CIE Lab system using Spectra flash SF650. Methods suggested by International Standard Organization (ISO) were employed to study the effect of gamma irradiation on the colourfastness properties of dyed fabric. It was found that mercerized and irradiated cotton have not only improved the colour strength but enhanced the rating of fastness properties also.

  4. X-ray absorption studies of gamma irradiated Nd doped phosphate glass

    SciTech Connect

    Rai, V. N.; Rajput, Parasmani; Jha, S. N.; Bhattacharyya, D.

    2015-06-24

    This paper presents the X-ray absorption near edge structure (XANES) studies of Nd doped phosphate glasses before and after gamma irradiation. The intensity and location of L{sub III} edge white line peak of Nd changes depending on its concentration as well as on the ratio of O/Nd in the glass matrix. The decrease in the peak intensity of white line after gamma irradiation indicates towards reduction of Nd{sup 3+} to Nd{sup 2+} in the glass matrix, which increases with an increase in the doses of gamma irradiation. Similarity in the XANES spectra of Nd doped phosphate glasses and Nd{sub 2}O{sub 3} suggests that coordination geometry around Nd{sup 3+} in glass samples may be identical to that of Nd{sub 2}O{sub 3}.

  5. Functionalization and magnetization of carbon nanotubes using Co-60 gamma-ray irradiation

    NASA Astrophysics Data System (ADS)

    Chen, C. Y.; Fu, M. J.; Tsai, C. Y.; Lin, F. H.; Chen, K. Y.

    2014-10-01

    Functionalized magnetic carbon nanotubes (CNTs) can be used in the biological and biomedical fields as biosensors, drug delivery systems, etc., which makes research into processes for manufacturing modified CNTs quite important. In this paper, Co-60 gamma irradiation is shown to be an effective tool for fabricating functionalized and magnetized CNTs. After the Co-60 gamma irradiation, the presence of carboxylic functional groups on the CNT walls was confirmed by their Fourier transform infrared spectra, and the presence of Fe3O4 was verified by the X-ray diffraction patterns. The functionalized and magnetized CNTs produced using Co-60 gamma irradiation have excellent dispersion properties. The techniques for functionalizing and magnetizing CNTs are introduced in this paper, and applications of the modified CNTs will be reported after more data are gathered.

  6. LWRS ATR Irradiation Testing Readiness Status

    SciTech Connect

    Kristine Barrett

    2012-09-01

    The Light Water Reactor Sustainability (LWRS) Program was established by the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors. The LWRS Program is divided into four R&D Pathways: (1) Materials Aging and Degradation; (2) Advanced Light Water Reactor Nuclear Fuels; (3) Advanced Instrumentation, Information and Control Systems; and (4) Risk-Informed Safety Margin Characterization. This report describes an irradiation testing readiness analysis in preparation of LWRS experiments for irradiation testing at the Idaho National Laboratory (INL) Advanced Test Reactor (ATR) under Pathway (2). The focus of the Advanced LWR Nuclear Fuels Pathway is to improve the scientific knowledge basis for understanding and predicting fundamental performance of advanced nuclear fuel and cladding in nuclear power plants during both nominal and off-nominal conditions. This information will be applied in the design and development of high-performance, high burn-up fuels with improved safety, cladding integrity, and improved nuclear fuel cycle economics

  7. Studies on the methods of identification of irradiated food I. Seedling growth test

    NASA Astrophysics Data System (ADS)

    Qiongying, Liu; Yanhua, Kuang; Yuemei, Zheng

    1993-07-01

    A seedling growth test for the identification of gamma irradiated edible vegetable seeds was described. The identification of gamma irradiated grape and the other seeds has been investigated. The purpose of this study was to develop an easy, rapid and practical technique for the identification of irradiated edible vegetable seeds. Seven different irradiated edible vegetable seeds as: rice ( Oryza sativa), peanut ( Arachis hypogaea), maize ( Zeamays), soybean ( Glycine max), red bean ( Phaseolus angularis), mung bean ( Phaseolus aureus) and catjang cowpea ( Vigna cylindrica) were tested by using the method of seedling growth. All of the edible vegetable seeds were exposed to gamma radiation on different doses, O(CK), 0.5, 1.0, 1.5, 2.0, 3.0, 5.0 kGy. After treatment with above 1.0 kGy dose to the seeds, the seedling rate was less than 50% compared with the control. Although the seedling rate of rice seeds can reached 58%, the seedling growth was not normal and the seedling leaves appeared deformed. The results by this method were helpful to identify gamma treatment of the edible vegetable seeds with above 1.0 kGy dose.

  8. Monitoring of gamma-irradiated Yb-doped optical fibers through pump induced refractive index changes effect

    NASA Astrophysics Data System (ADS)

    Fotiadi, Andrei A.; Petukhova, Irina; Mégret, Patrice; Shubin, Alexey V.; Tomashuk, Alexander L.; Novikov, Sergey G.; Borisova, Christina V.; Zolotovskiy, Igor O.; Antipov, Oleg L.; Panajotov, Krassimir; Thienpont, Hugo

    2012-04-01

    We discuss a radioactivity sensing based on monitoring of color centers formation in Yb-doped fiber under gamma irradiation. New method exploits the dynamic effect of refractive index changes (RIC) induced by laser pumping into the fiber absorption band. In our experiment four identical samples of the single-mode aluminum silicate Yb-doped optical fiber have been γ-irradiated with different doses from a 60Co source. All fibers passed the test in the intereferometric setup for the purpose of the pump induced RIC effect. During the test the phase shifts induced in the fiber by 1-mssquare pump pulses at 980 nm were recorded with a probe signal at eleven different wavelengths ranging from ~1.46 to ~1.61 μm. The phase traces have been normalized to their maximum values and averaged over 100 traces for each probe wavelength and also over all probe wavelengths. The averaged phase traces highlight the differences in their growing and decaying parts in respect to the case of non-irradiated fibers. These differences are found to be in correlation with the fiber irradiation dose. For non-irradiated fibers decay parts are perfectly fitted by one exponential function with the relaxation time constant equal to the Yb-ion excited state life-time ~750 μs, to be the same for all fiber samples. However, for irradiated fibers the similar fitting gives a triple exponential decay with time constants estimated as ~750, ~500 and 40μs. For higher irradiation dose the difference with one exponential fitting is more pronounced. Having in mind that the obtained difference in phase shift dynamics could be associated with excitation of some color centers induced in the fiber matrix by gamma irradiation, we represent the normalized phase shifts as a superposition of two contributions. The first contribution is due to excitation of Yb-ion, the same for all fiber samples. The second is due to excitation of color centers. The amplitude of the second part highlights a degree of fiber

  9. Effects of high-dose gamma irradiation on tensile properties of human cortical bone: Comparison of different radioprotective treatment methods.

    PubMed

    Allaveisi, Farzaneh; Mirzaei, Majid

    2016-08-01

    There are growing interests in the radioprotective methods that can reduce the damaging effects of ionizing radiation on sterilized bone allografts. The aim of this study was to investigate the effects of 50kGy (single dose, and fractionated) gamma irradiation, in presence and absence of l-Cysteine (LC) free radical scavenger, on tensile properties of human femoral cortical bone. A total of 48 standard tensile test specimens was prepared from diaphysis of femurs of three male cadavers (age: 52, 52, and 54 years). The specimens were assigned to six groups (n=8) according to different irradiation schemes, i.e.; Control (Non-irradiated), LC-treated control, a single dose of 50kGy (sole irradiation), a single dose of 50kGy in presence of LC, 10 fractions of 5kGy (sole irradiation), and 10 fractions of 5kGy in presence of LC. Uniaxial tensile tests were carried out to evaluate the variations in tensile properties of the specimens. Fractographic analysis was performed to examine the microstructural features of the fracture surfaces. The results of multivariate analysis showed that fractionation of the radiation dose, as well as the LC treatment of the 50kGy irradiated specimens, significantly reduced the radiation-induced impairment of the tensile properties of the specimens (P<0.05). The fractographic observations were consistent with the mechanical test results. In summary, this study showed that the detrimental effects of gamma sterilization on tensile properties of human cortical bone can be substantially reduced by free radical scavenger treatment, dose fractionation, and the combined treatment of these two methods. PMID:27124804

  10. Polymerization of calcium caseinates solutions induced by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Lacroix, M.; Jobin, M.; Mezgheni, E.; Srour, M.; Boileau, S.

    1998-06-01

    Solutions of calcium caseinate (5%) combined with propylene glycol (PG) or triethylene glycol(TEG) (0, 2.5% and 5%) and used for the development of edible films and coatings, were irradiated at doses between 0 to 128 kGy. Solutions were chromatographed through toyopearl HW 55F resin to observe the effect of irradiation on cross-link reactions. In unirradiated calcium caseinate solutions, two peaks could be observed (fractions 30 and 37) while samples irradiated at 64 kGy and 128 kGy showed one shifted peak at fraction 32 and 29 respectively. No effect of the plasticizers was observed. According to proteins standards of knowed molecular weights, the molecular weight of calcium caseinate increased approximately 10 times when irradiated at 128 kGy and 5 times when irradiated at 64 kGy. The physico-chemical properties of bio-films prepared with the irradiated solutions, demonstrated that tensile strength at break increased with increase of irradiation dose. A maximum dose was obtained at 16 kGy.

  11. A Mitochondria-Targeted Nitroxide/Hemigramicidin S Conjugate Protects Mouse Embryonic Cells Against Gamma Irradiation

    SciTech Connect

    Jiang Jianfei; Belikova, Natalia A.; Hoye, Adam T.; Zhao Qing; Epperly, Michael W.; Greenberger, Joel S.; Wipf, Peter; Kagan, Valerian E.

    2008-03-01

    Purpose: To evaluate the in vitro radioprotective effect of the mitochondria-targeted hemigramicidin S-conjugated 4-amino-2,2,6,6-tetramethyl-piperidine-N-oxyl (hemi-GS-TEMPO) 5-125 in {gamma}-irradiated mouse embryonic cells and adenovirus-12 SV40 hybrid virus transformed human bronchial epithelial cells BEAS-2B and explore the mechanisms involved in its radioprotective effect. Methods and Materials: Cells were incubated with 5-125 before (10 minutes) or after (1 hour) {gamma}-irradiation. Superoxide generation was determined by using dihydroethidium assay, and lipid oxidation was quantitated by using a fluorescence high-performance liquid chromatography-based Amplex Red assay. Apoptosis was characterized by evaluating the accumulation of cytochrome c in the cytosol and externalization of phosphatidylserine on the cell surface. Cell survival was measured by means of a clonogenic assay. Results: Treatment (before and after irradiation) of cells with 5-125 at low concentrations (5, 10, and 20 {mu}M) effectively suppressed {gamma}-irradiation-induced superoxide generation, cardiolipin oxidation, and delayed irradiation-induced apoptosis, evaluated by using cytochrome c release and phosphatidylserine externalization. Importantly, treatment with 5-125 increased the clonogenic survival rate of {gamma}-irradiated cells. In addition, 5-125 enhanced and prolonged {gamma}-irradiation-induced G{sub 2}/M phase arrest. Conclusions: Radioprotection/mitigation by hemi-GS-TEMPO likely is caused by its ability to act as an electron scavenger and prevent superoxide generation, attenuate cardiolipin oxidation in mitochondria, and hence prevent the release of proapoptotic factors from mitochondria. Other mechanisms, including cell-cycle arrest at the G{sub 2}/M phase, may contribute to the protection.

  12. Biodegradable zein-based films: influence of gamma-irradiation on structural and functional properties.

    PubMed

    Soliman, Emad A; Mohy Eldin, Mohamed S; Furuta, Masakazu

    2009-03-25

    Zein, a predominant corn protein, is an alcohol-soluble protein extracted from corn and is characterized by unique film-forming properties. The characteristic brittleness of zein diminishes its usefulness as a structural material. The objective of this work was to study the effect of gamma-irradiation on improving the performance of zein films in packaging applications. This goal has been achieved by irradiating zein film-forming solutions with various doses of gamma-rays, namely, 10, 20, 30, and 40 kGy at dose rate of 10.5 kGy/h, using a Co(60) gamma-radiation source. The impact of radiation process on the structural properties has been explored through far-UV CD spectral analysis and scanning electron microscopy. Additionally, viscosity changes that reflect the effect of radiation treatment on degradation and/or cross-linking of protein chains have been measured. However, improvements in the performance of zein films as packaging materials that can be accomplished by radiation treatment have been investigated via monitoring of the color, surface density, roughness, mechanical properties (tensile strength and elongation percentage), water uptake, and water barrier properties. The results indicated that gamma-irradiation treatment of the film-forming solution can be used to improve the water barrier properties, as well as color and appearance of the zein films. Moreover, a sterilization effect is considered to be an additional advantage for applying gamma- irradiation. PMID:19292471

  13. Effects of gamma irradiation on chemical composition and ruminal protein degradation of canola meal

    NASA Astrophysics Data System (ADS)

    Shawrang, P.; Nikkhah, A.; Zare-Shahneh, A.; Sadeghi, A. A.; Raisali, G.; Moradi-Shahrebabak, M.

    2008-07-01

    Gamma irradiation of canola meal (at doses of 25, 50 and 75 kGy) could alter its ruminal protein degradation characteristics by cross-linking of the polypeptide chains. This processing resulted in decrease (linear effect, P<0.001) of ruminal protein degradation and increase (linear effect, P<0.001) of intestinal protein digestibility. The results showed that gamma irradiation at doses higher than 25 kGy can be used as a cross-linking agent to improve protein properties of supplements in ruminant nutrition.

  14. Facility for gamma irradiations of cultured cells at low dose rates: design, physical characteristics and functioning.

    PubMed

    Esposito, Giuseppe; Anello, Pasquale; Pecchia, Ilaria; Tabocchini, Maria Antonella; Campa, Alessandro

    2016-09-01

    We describe a low dose/dose rate gamma irradiation facility (called LIBIS) for in vitro biological systems, for the exposure, inside a CO2 cell culture incubator, of cells at a dose rate ranging from few μGy/h to some tens of mGy/h. Three different (137)Cs sources are used, depending on the desired dose rate. The sample is irradiated with a gamma ray beam with a dose rate uniformity of at least 92% and a percentage of primary 662keV photons greater than 80%. LIBIS complies with high safety standards. PMID:27423023

  15. Spirogyra varians mutant generated by high dose gamma-irradiation shows increased antioxidant properties

    NASA Astrophysics Data System (ADS)

    Lee, Hak-Jyung; Yoon, Minchul; Sung, Nak-Yun; Choi, Jong-il

    2012-08-01

    The aim of this study was to evaluate the antioxidant properties of a Spirogyra varians mutant (Mut) produced by gamma irradiation. Methanol extracts were prepared from Spirogyra varians wild-type and Mut plants, and their antioxidant activities and total phenolic content (TPC) were determined. Antioxidant parameters, including the 2-diphenyl-1-picrylhydrazyl radical-scavenging activity and ferric-reducing/antioxidant power, were higher in the Mut extract. Moreover, the TPC level was higher (P<0.05) in the Mut methanol extract. Therefore, these results suggest that gamma irradiation-induced S. varians Mut has superior antioxidant properties.

  16. Lipase inactivation in wheat germ by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Jha, Pankaj Kumar; Kudachikar, V. B.; Kumar, Sourav

    2013-05-01

    An attempt was made to improve the shelf life of wheat germ by optimizing processing conditions involving γ-irradiation. Studies were carried out to investigate the effect of γ-irradiation (0-30 kGy doses) on the chemical composition of wheat germ with respect to variation in moisture, total ash, crude fat, free fatty acid, protein and lipase activity. The results demonstrate that shelf stability of wheat germ was achieved by inactivation of lipase at doses of γ-irradiation greater than 12 kGy.

  17. Sterilization of ready-to-cook Bibimbap by combined treatment with gamma irradiation for space food

    NASA Astrophysics Data System (ADS)

    Park, Jae-Nam; Song, Beom-Seok; Kim, Jae-Hun; Choi, Jong-il; Sung, Nak-Yun; Han, In-Jun; Lee, Ju-Woon

    2012-08-01

    Bibimbap, Korean traditional cooked rice mixed with various kinds of vegetables, together with mushrooms and a ground meat, and seasoned with red pepper paste, was developed as a ready-to-cook food by combined treatment with irradiation for the use in space. By gamma irradiation of 25 kGy, the total aerobic bacteria of Bibimbap that was initial by 6.3 log CFU/g decreased to below detection limit, but its sensory qualities were drastically decreased. To enhance the sensory quality, the effects of antioxidant in Bibimbap were evaluated. A treatment with 0.1% of vitamin C, vacuum packaging and gamma-irradiated at 25 kGy and -70 °C showed higher sensory scores than only the irradiation process. This result indicates that the radiation technology may be useful to produce a variety of space foods with high quality of taste and flavor, when combined with other methods.

  18. Enhancement of enzymatic hydrolysis of wheat straw by gamma irradiation-alkaline pretreatment

    NASA Astrophysics Data System (ADS)

    Yin, Yanan; Wang, Jianlong

    2016-06-01

    Pretreatment of wheat straw with gamma irradiation and NaOH was performed to enhance the enzymatic hydrolysis of wheat straw for production of reducing sugar. The results showed that the irradiation of wheat straw at 50 kGy decreased the yield of reducing sugar, however, the reducing sugar yield increased with increasing dose from 50 kGy to 400 kGy. The irradiation of wheat straw at 100 kGy can significantly decrease NaOH consumption and treatment time. The reducing sugar yield could reach 72.67% after irradiation at 100 kGy and 2% NaOH treatment for 1 h. The combined pretreatment of wheat straw by gamma radiation and NaOH immersion can increase the solubilization of hemicellulose and lignin as well as the accessible surface area for enzyme molecules.

  19. Chemical composition and lipoxygenase activity in soybeans (Glycine max L. Merr.) submitted to gamma irradiation

    NASA Astrophysics Data System (ADS)

    Barros, Érica Amanda de; Broetto, Fernando; Bressan, Dayanne F.; Sartori, Maria M. P.; Costa, Vladimir E.

    2014-05-01

    Soybeans are an important food due to their functional and nutritional characteristics. However, consumption by western populations is limited by the astringent taste of soybeans and their derivatives which results from the action of lipoxygenase, an enzyme activated during product processing. The aim of this study was to evaluate the effect of gamma irradiation on the chemical composition and specific activity of lipoxygenase in different soybean cultivars. Soybeans were stored in plastic bags and irradiated with doses of 2.5, 5 and 10 kGy. The chemical composition (moisture, protein, lipids, ashes, crude fiber, and carbohydrates) and lipoxygenase specific activity were determined for each sample. Gamma irradiation induced a small increase of protein and lipid content in some soybean cultivars, which did not exceed the highest content of 5% and 26%, respectively, when compared to control. Lipoxygenase specific activity decreased in the three cultivars with increasing gamma irradiation dose. In conclusion, the gamma irradiation doses used are suitable to inactivate part of lipoxygenase while not causing expressive changes in the chemical composition of the cultivars studied.

  20. Study of the effect of gamma irradiation on a commercial polycyclooctene I. Thermal and mechanical properties

    NASA Astrophysics Data System (ADS)

    García-Huete, N.; Laza, J. M.; Cuevas, J. M.; Vilas, J. L.; Bilbao, E.; León, L. M.

    2014-09-01

    A gamma radiation process for modification of commercial polymers is a widely applied technique to promote new physical, chemical and mechanical properties. Gamma irradiation originates free radicals able to induce chain scission or recombination of radicals, which induces annihilation, branching or crosslinking processes. The aim of this work is to research the structural, thermal and mechanical changes induced on a commercial polycyclooctene (PCO) when it is irradiated with a gamma source of 60Co at different doses (25-200 kGy). After gamma irradiation, gel content was determined by Soxhlet extraction in cyclohexane. Furthermore, thermal properties were evaluated before and after Soxhlet extraction by means of Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC), as well as mechanical properties were measured by Dynamic Mechanical Thermal Analysis (DMTA). The results showed the variations of the properties depending on the irradiation dose. Finally, a first approach to evaluate qualitatively the shape memory behaviour of all irradiated PCO samples was performed by a visually monitoring shape recovery process.

  1. Effect of gamma irradiation on physical characteristics of Jordanian durum wheat and quality of semolina and lasagna products

    NASA Astrophysics Data System (ADS)

    Azzeh, F. S.; Amr, A. S.

    2009-09-01

    This study was conducted to determine the effect of using varying gamma irradiation doses on the physiochemical and rheological properties of semolina and its products. Ash, protein and water content were not influenced with gamma irradiation, while falling number and fungi counts decreased with increasing irradiation dose. Irradiation adversely affected wet gluten at 5 kGy dose. Dough stability was deteriorated vigorously with increasing irradiation dose. Sensory evaluation showed that lasagna produced from 0.25- and 1 kGy-irradiated semolina did not show any significant differences as compared with the control sample.

  2. Gamma irradiation effect on optical and dielectric properties of potassium dihydrogen phosphate crystals

    NASA Astrophysics Data System (ADS)

    Guo, Decheng; Zu, Xiaotao; Yang, Guixia; Huang, Jin; Wang, Fengrui; Liu, Hongjie; Xiang, Xia; Jiang, Xiaodong

    2016-04-01

    The effect of Co60 gamma-ray irradiation on potassium dihydrogen phosphate crystals is investigated at doses ranging from 1 kGy to 100 kGy with different diagnostics, including UV-Vis absorption spectroscopy, fluorescence spectroscopy, DC electrical conductivity, positron annihilation lifetime spectroscopy and Doppler-broadening spectroscopy. The optical absorption spectra show a wide absorption band between 250 and 400 nm after γ-irradiation and its intensity increases with the increasing irradiation dose. The simulation of radiation defects show that this absorption is assigned to the formation of substitutional impurity defects due to Al, Mg ions substituting for K ions. The fluorescence peak at 355 nm blue shifts after irradiation. The fluorescence intensity is observed to increase with the increasing irradiation dose. The positron annihilation lifetime spectroscopy is used to probe the evolution of vacancy-type defects in potassium dihydrogen phosphate crystal. The variation of size and concentration of vacancy-type defects with the different irradiation dose is investigated. The Doppler-broadening spectroscopy gives direct evidence of the formation of irradiation-induced defects. The dc electrical conductivity of γ-irradiated potassium dihydrogen phosphate crystals increases with the increasing irradiation dose when the dose is less than 10 kGy, whereas keeps constant at high irradiation dose of 100 kGy. The increase of electrical conductivity is associated with the increase of the proton defect concentration in the crystal. A possible explanation about the change of proton defect concentration with irradiation dose is presented.

  3. The morphological changes of Ascaris lumbricoides ova in sewage sludge water treated by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Shamma, M.; Al-Adawi, M. A.

    2002-10-01

    Untreated wastewater sampled from Damascus sewage water treatment plant containing nematode Ascaris lumbricoides ova were treated using gamma irradiation (doses between 1.5 and 8 kGy), immediately after irradiation the morphological and developmental status of eggs was examined microscopically. Major morphological changes of the contents of the eggs were detected. These eggs were incubated for 8 weeks, after this period no larvae "inside the eggs" were observed. Thus the morphological changes can be used as a viable parameter.

  4. Electron spin resonance of gamma-irradiated poly/ethylene 2,6-naphthalene dicarboxylate/.

    NASA Technical Reports Server (NTRS)

    Rogowski, R. S.; Pezdirtz, G. F.

    1971-01-01

    The two types of radicals trapped in gamma-irradiated PEN 2,6 are identified by ESR as - O - CH - CH2 - O - (radical I) and a radical located on the naphthalene ring (radical II). The concentrations of the radicals in the gross polyer are 10 to 20% of I and 80 to 90% of II. Similar trapped radicals are established in beta-irradiated PET, a structurally related polymer.

  5. Time course of lipolytic activity and lipid peroxidation after whole-body gamma irradiation of rats

    SciTech Connect

    Rejholcova, M.; Wilhelm, J.

    1989-01-01

    The content of fluorescing products of lipid peroxidation (LFP) and hormone-stimulated lipolytic activity were determined in rat epididymal adipose tissue during a 29-day interval after whole-body gamma irradiation. An increase in LFP was accompanied by a decrease in lipolytic activity. It is suggested that these effects are interrelated and that the decrease in lipolysis in irradiated, semi fasting rats is an additional deteriorating factor leading to death in some animals.

  6. Instrumentation to Enhance Advanced Test Reactor Irradiations

    SciTech Connect

    J. L. Rempe; D. L. Knudson; K. G. Condie; J. E. Daw; S. C. Taylor

    2009-09-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

  7. Antibacterial Activity of Gamma-irradiated Chitosan Against Denitrifying Bacteria

    NASA Astrophysics Data System (ADS)

    Vilcáez, Javier; Watanabe, Tomohide

    2010-11-01

    In order to find an environmentally benign substitute to hazardous inhibitory agents, the inhibitory effect of γ-irradiated chitosans against a mixed culture of denitrifying bacteria was experimentally evaluated. Unlike other studies using pure aerobic cultures, the observed effect was not a complete inhibition but a transient inhibition reflected by prolonged lag phases and reduced growth rates. Raw chitosan under acid conditions (pH 6.3) exerted the strongest inhibition followed by the 100 kGy and 500 kGy irradiated chitosans respectively. Therefore because the molecular weight of chitosan decreases with the degree of γ-irradiation, the inhibitory properties of chitosan due to its high molecular weight were more relevant than the inhibitory properties gained due to the modification of the surface charge and/or chemical structure by γ-irradiation. High dosage of γ-irradiated appeared to increase the growth of mixed denitrifying bacteria in acid pH media. However, in neutral pH media, high dosage of γ-irradiation appeared to enhance the inhibitory effect of chitosan.

  8. Synergistic effect of the combined treatment with gamma irradiation and sodium dichloroisocyanurate to control gray mold (Botrytis cinerea) on paprika

    NASA Astrophysics Data System (ADS)

    Yoon, Minchul; Jung, Koo; Lee, Kwang-Youll; Jeong, Je-Yong; Lee, Ju-Woon; Park, Hae-Jun

    2014-05-01

    Gray mold (Botrytis cinerea) is one of the most major fungal pathogens in paprika. Generally, gamma irradiation over 1 kGy is effective for the control of fungal pathogens; however, a significant change in fruit quality (physical properties) on paprika was shown from gamma irradiation at over 0.6 kGy (p<0.05). Therefore, in this study, the synergistic disinfection effect of the combined treatment with gamma irradiation and sodium dichloroisocyanurate (NaDCC) was investigated to reduce the gamma irradiation dose. In an artificial inoculation experiment of B. cinerea isolated from naturally-infected postharvest paprika, fungal symptoms were observed in the stem and exocarp of paprika after conidial inoculation. From the sensitivity of gamma irradiation and NaDCC, B. cinerea conidia were fully inactivated by 4 kGy of gamma irradiation (D10 value 0.99 kGy), and were fully inactivated by 50 ppm NaDCC treatment. The fungal symptoms were not detected by the dose-dependent gamma irradiation (>4 kGy) and NaDCC (>50 ppm). As a result of the combined treatment of gamma irradiation and NaDCC, the D10 value was significantly reduced by 1.06, 0.88, 0.77, and 0.58 kGy (p<0.05). Moreover, fungal symptoms were more significantly reduced in combined treatment groups (gamma irradiation and NaDCC) than single treatment groups (gamma irradiation or NaDCC). These results suggest that combined treatment with irradiation and NaDCC treatment can be applied to preserve quality of postharvest paprika or other fruits.

  9. Gamma irradiation to improve plant vigour, grain development, and yield attributes of wheat

    NASA Astrophysics Data System (ADS)

    Singh, Bhupinder; Datta, P. S.

    2010-02-01

    Utilizing low dose gamma radiation holds promise for physiological crop improvement. Seed treatment of low dose gamma radiation 0.01-0.10 kGy reduced plant height, improved plant vigour, flag leaf area, total and number of EBT. Gamma irradiation increased grain yield due to an increase in number of EBT and grain number while 1000 grain weight was negatively affected. Further uniformity in low dose radiation response in wheat in the field suggests that the affect is essentially at physiological than at genetic level and that role of growth hormones could be crucial.

  10. Effect of gamma irradiation on microbial load, physicochemical and sensory characteristics of soybeans (Glycine max L. Merrill)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gamma irradiation is highly effective in inactivating microorganisms in various foods and offers a safe alternative method of food decontamination. In the present study, soybeans (Glycine max L. Merrill) were treated with 0, 1.0, 3.0, 5.0 and 10.0 KGy of gamma irradiation. Microbial populations on s...

  11. Preparation and properties of a biomaterial: HEMA grafted SBS by gamma-ray irradiation.

    PubMed

    Hsiue, G H; Yang, J M; Wu, R L

    1988-05-01

    Solvent-cast films of styrene-butadiene-styrene triblock copolymer (SBS) were synthesized and a poly(2-hydroxyethyl methacrylate) (PHEMA) layer was grafted onto these films using Co 60 gamma-ray irradiation. The IR absorption spectrum of the graft copolymer was taken and its surface morphology studied by a scanning electron microscope. The degree of grafting and the mechanical properties of SBS, SBS-g-HEMA, and PHEMA were measured. In order to study its biocompatibility, contact angle and blood clotting time experiments were performed. The degree of grafting was related to the soaking time, film thickness and total irradiation dosage. However, it levelled off at 7% when the total dosage reached 1 Mrad. It was found that the mechanical properties of SBS-g-HEMA were the same as those of SBS and were superior to those of PHEMA. The blood compatibility of SBS-g-HEMA as measured by the Lee-White clotting test was better than that of SBS and polystyrene and was quite similar to that of PHEMA. PMID:3397379

  12. Caffeine enhanced measurement of mutagenesis by low levels of [gamma]-irradiation in human lymphocytes

    SciTech Connect

    Puck, T.P.; Johnson, R.; Waldren, C.A. ); Morse, H. )

    1993-09-01

    The well-known action of caffeine in synergizing mutagenesis (including chromosome aberrations) of agents like ionizing radiation by inhibition of cellular repair processes has been incorporated into a rapid procedure for detection of mutagenicity with high sensitivity. Effects of 5-10 rads of [gamma]-irradiation, which approximate the human lifetime dose accumulation from background radiation, can be detected in a two-day procedure using an immortalized human WBC culture. Chromosomally visible lesions are scored on cells incubated for 2 h after irradiation in the presence and absence of 1.0 mg/ml of caffeine. An eightfold amplification of scorable lesions is achieved over the action of radiation alone. This approach provides a closer approximation to absolute mutagenicity unmitigated by repair processes, which can vary in different situations. It is proposed that mutagenesis testing of this kind, using caffiene or other repair-inhibitory agents, be employed to identify mutagens in their effective concentrations to which human populations may be exposed; to detect agents such as caffeine that may synergize mutagenic actions and pose epidemiologic threats; and to discover effective anti-mutagens. Information derived from the use of such procedures may help prevent cancer and newly acquired genetic disease.

  13. Gamma-irradiated bacterial preparation having anti-tumor activity

    SciTech Connect

    Vass, A.A.; Tyndall, R.L.; Terzaghi-Howe, P.

    1999-11-16

    This application describes a bacterial preparation from Pseudomonas species isolated {number{underscore}sign}15 ATCC 55638 that has been exposed to gamma radiation exhibits cytotoxicity that is specific for neoplastic carcinoma cells. A method for obtaining a bacterial preparation having antitumor activity consists of suspending a bacterial isolate in media and exposing the suspension to gamma radiation. A bacterial preparation of an aged culture of an amoeba-associated bacteria exhibits anti-reverse transcriptase activity. A method for obtaining a bacterial preparation having anti-reverse transcriptase activity from an amoeba-associated bacterial isolate grown to stationary phase is disclosed.

  14. Gamma-irradiated bacterial preparation having anti-tumor activity

    DOEpatents

    Vass, Arpad A.; Tyndall, Richard L.; Terzaghi-Howe, Peggy

    1999-01-01

    A bacterial preparation from Pseudomonas species isolated #15 ATCC 55638 that has been exposed to gamma radiation exhibits cytotoxicity that is specific for neoplastic carcinoma cells. A method for obtaining a bacterial preparation having antitumor activity consists of suspending a bacterial isolate in media and exposing the suspension to gamma radiation. A bacterial preparation of an aged culture of an amoeba-associated bacteria exhibits anti-reverse transcriptase activity. A method for obtaining a bacterial preparation having anti-reverse transcriptase activity from an amoeba-associated bacterial isolate grown to stationary phase is disclosed.

  15. LIDT test coupled with gamma radiation degraded optics

    NASA Astrophysics Data System (ADS)

    IOAN, M.-R.

    2016-06-01

    A laser can operate in regular but also in nuclear ionizing radiation environments. This paper presents the results of a real time measuring method used to detect the laser induced damage threshold (LIDT) in the optical surfaces/volumes of TEMPAX borosilicate glasses operating in high gamma rays fields. The laser damage quantification technique is applied by using of an automated station intended to measure the damage threshold of optical components, according to the International Standard ISO 21254. Single and multiple pulses laser damage thresholds were determined. For an optical material, life time when it is subjected to multiple pulses of high power laser radiation can be predicted. A few ns pulses shooting laser, operating in regular conditions, inflects damage to a target by its intense electrical component but also in a lower manner by local absorption of its transported thermal energy. When the beam is passing thru optical glass elements affected by ionizing radiation fields, the thermal component is starting to have a more important role, because of the increased thermal absorption in the material's volume caused by the radiation induced color centers. LIDT results on TEMPAX optical glass windows, with the contribution due to the gamma radiation effects (ionization mainly by Compton effect in this case), are presented. This contribution was highlighted and quantified. Energetic, temporal and spatial beam characterizations (according to ISO 11554 standards) and LIDT tests were performed using a high power Nd: YAG laser (1064 nm), before passing the beam through each irradiated glass sample (0 kGy, 1.3 kGy and 21.2 kGy).

  16. Effects of Platinum Nanocolloid in Combination with Gamma Irradiation on Normal Human Esophageal Epithelial Cells.

    PubMed

    Li, Qiang; Tanaka, Yoshiharu; Saitoh, Yasukazu; Miwa, Nobuhiko

    2016-05-01

    Our previous study demonstrated that platinum nanocolloid (Pt-nc), combined with lower-dose gamma irradiation at 3, 5, and 7 Gy significantly decreased proliferation and accelerated apoptosis of the human esophageal squamous cell carcinoma-derived cell line KYSE-70. The aim of the present study was to determine, under the same conditions as our previous study where gamma rays combined with Pt-nc were carcinostatic to KYSE-70 cells, if we could induce a radioprotective or the radiation-sensitizing effect on the human normal esophageal epithelial cells (HEEpiC). HEEpiC were treated with various Pt-nc concentrations and then irradiated with various gamma-ray doses. The proliferative status of HEEpiC was evaluated using trypan blue dye-exclusion and WST-8 assays. The cellular and nucleic morphological features were determined using crystal violet and Hoechst 33342 stainings, respectively. The intracellular level of reactive oxygen species (ROS) in HEEpiC was evaluated with a nitro blue tetrazolium (NBT) assay. The apoptotic status was detected with caspase-3, Bax, and Bcl-2 by Western blotting. Either Pt-nc or gamma irradiation could inhibit the growth of HEEpiC; however, their combined use exerted a significant proliferation-inhibitory effect in a Pt-nc dose-dependent manner than gamma irradiation alone. Pt-nc resulted in radiation sensitization rather than radiation protection on HEEpiC in vitro similar to KYSE-70 cells, when Pt-nc was administrated alone or combined with gamma irradiation. Thus, Pt-nc has an inhibitory effect on cell proliferation, a facilitative effect on apoptosis, and a certain degree of toxicity against HEEpiC. PMID:27483929

  17. Initiate test loop irradiations of ALSEP process solvent

    SciTech Connect

    Peterman, Dean R.; Olson, Lonnie G.; McDowell, Rocklan G.

    2014-09-01

    This report describes the initial results of the study of the impacts of gamma radiolysis upon the efficacy of the ALSEP process and is written in completion of milestone M3FT-14IN030202. Initial irradiations, up to 100 kGy absorbed dose, of the extraction section of the ALSEP process have been completed. The organic solvent used for these experiments contained 0.05 M TODGA and 0.75 M HEH[EHP] dissolved in n-dodecane. The ALSEP solvent was irradiated while in contact with 3 M nitric acid and the solutions were sparged with compressed air in order to maintain aerated conditions. The irradiated phases were used for the determination of americium and europium distribution ratios as a function of absorbed dose for the extraction and stripping conditions. Analysis of the irradiated phases in order to determine solvent composition as a function of absorbed dose is ongoing. Unfortunately, the failure of analytical equipment necessary for the analysis of the irradiated samples has made the consistent interpretation of the analytical results difficult. Continuing work will include study of the impacts of gamma radiolysis upon the extraction of actinides and lanthanides by the ALSEP solvent and the stripping of the extracted metals from the loaded solvent. The irradiated aqueous and organic phases will be analyzed in order to determine the variation in concentration of solvent components with absorbed gamma dose. Where possible, radiolysis degradation product will be identified.

  18. Change in Ion Beam Induced Current from Si Metal-Oxide-Semiconductor Capacitors after Gamma-Ray Irradiation

    SciTech Connect

    Ohshima, T.; Onoda, S.; Hirao, T.; Takahashi, Y.; Vizkelethy, G.; Doyle, B. L.

    2009-03-10

    To investigate the effects of gamma-ray irradiation on transient current induced in MOS capacitors by heavy ion incidence, Si MOS capacitors were irradiated with gamma-rays up to 60.9 kGy(SiO2). The change in Transient Ion Beam Induced Current (TIBIC) signals due to gamma-ray irradiation was investigated using 15 MeV-oxygen ion microbeams. After gamma-ray irradiation, the peak current of the TIBIC signal vs. bias voltage curve shifted toward negative voltages. This shift can be interpreted in terms of the charge trapped in the oxide. In this dose range, no significant effects of the interface traps induced by gamma-ray irradiation on the TIBIC signals were observed.

  19. Gamma ray irradiated silicon nanowires: An effective model to investigate defects at the interface of Si/SiOx

    SciTech Connect

    Yin, Kui; Zhao, Yi; Liu, Liangbin; Lee, Shuit-Tong; Shao, Mingwang E-mail: xuegi@nju.edu.cn; Wang, Xiaoliang E-mail: xuegi@nju.edu.cn Xue, Gi E-mail: xuegi@nju.edu.cn

    2014-01-20

    The effect of gamma ray irradiation on silicon nanowires was investigated. Here, an additional defect emerged in the gamma-ray-irradiated silicon nanowires and was confirmed with electron spin resonance spectra. {sup 29}Si nuclear magnetic resonance spectroscopy showed that irradiation doses had influence on the Q{sup 4} unit structure. This phenomenon indicated that the unique core/shell structure of silicon nanowires might contribute to induce metastable defects under gamma ray irradiation, which served as a satisfactory model to investigate defects at the interface of Si/SiOx.

  20. Effects of gamma irradiation on the yields of volatile extracts of Angelica gigas Nakai

    NASA Astrophysics Data System (ADS)

    Seo, Hye-Young; Kim, Jun-Hyoung; Song, Hyun-Pa; Kim, Dong-Ho; Byun, Myung-Woo; Kwon, Joog-Ho; Kim, Kyong-Su

    2007-11-01

    The study was carried out to determine the effects of gamma irradiation on the volatile flavor components including essential oils, of Angelica gigas Nakai. The volatile organic compounds from non- and irradiated A. gigas Nakai at doses of 1, 3, 5, 10 and 20 kGy were extracted by a simultaneous steam distillation and extraction (SDE) method and identified by GC/MS analysis. A total of 116 compounds were identified and quantified from non- and irradiated A. gigas Nakai. The major volatile compounds were identified 2,4,6-trimethyl heptane, α-pinene, camphene, α-limonene, β-eudesmol, α-murrolene and sphatulenol. Among these compounds, the amount of essential oils in non-irradiated sample were 77.13%, and the irradiated samples at doses of 1, 3, 5, 10 and 20 kGy were 84.98%, 83.70%, 83.94%, 82.84% and 82.58%, respectively. Oxygenated terpenes such as β-eudesmol, α-eudesmol, and verbenone were increased after irradiation but did not correlate with the irradiation dose. The yields of active substances such as essential oil were increased after irradiation; however, the yields of essential oils and the irradiation dose were not correlated. Thus, the profile of composition volatiles of A. gigas Nakai did not change with irradiation.

  1. Effects of gamma irradiation on chemical, microbial quality and shelf life of shrimp

    NASA Astrophysics Data System (ADS)

    Hocaoğlu, Aslı; Sükrü Demirci, Ahmet; Gümüs, Tuncay; Demirci, Mehmet

    2012-12-01

    In the present study the combined effect of gamma irradiation (1, 3 and 5 kGy) and storage at two temperatures: refrigeration (+4 °C) and frozen (-18 °C), on the shelf-life extension of fresh shrimp meat was investigated. The study was based on microbiological and physicochemical changes occuring in the shrimp samples. Total volatile base nitrogen values and trimethylamine values for irradiated shrimp samples were significantly lower than non-irradiated samples at both storage temperatures, and the rate of decrease was more pronounced in samples irradiated at the higher dose (p<0.05). Thiobarbituric acid values for irradiated shrimp samples were significantly higher than non-irradiated samples at both storage temperatures (p<0.05). pH values of shrimp samples were affected significantly by both irradiating dose and storage temperatures (p<0.05). Microbial counts for non-irradiated shrimp samples were higher than the respective irradiated samples at both storage temperatures (p<0.05). The results revealed that irradiation at high dose (5 kGy) might enhance lipid oxidation, although the growth of microorganisms and protein oxidation was inhibited.

  2. Crosslinking of metallocenic α-olefin propylene copolymers by vacuum gamma irradiation

    NASA Astrophysics Data System (ADS)

    Satti, A. J.; Andreucetti, N. A.; Quijada, R.; Vallés, E. M.

    2012-12-01

    Metallocenic polypropylene and copolymers with 3.7, and 9.2 mol% of hexene and 3.0 mol% of octadecene comonomer content were synthesized without the presence of additives and irradiated with 60Co gamma radiation under vacuum at room temperature. Size Exclusion Cromatography and gel extraction data showed that scission reactions predominate over crosslinking in the homopolymer and that there is a dose from where crosslinking started to increase considerably, in the irradiated copolymers. Rheology also showed evidence of chain-enlargements on the copolymers by means of an increase in the viscoelastic properties of the irradiated material.

  3. Parotid gland pathophysiology after mixed gamma and neutron irradiation of cancer patients

    SciTech Connect

    Anderson, M.W.; Izutsu, K.T.; Rice, J.C.

    1981-11-01

    Electrolyte and protein concentrations were measured in parotid saliva samples obtained from patients receiving localized, fractionated, neutron and gamma irradiation for the treatment of cancer. Salivary sodium chloride concentration increased transiently but then usually decreased to preirradiation values after 2 weeks of therapy. There were concurrent decreases in salivary flow rate, pH, and bicarbonate concentration. The decreases in sodium chloride concentration and flow rate are inconsistent with a previously suggested, irradiation-induced ductal sodium resorption defect. The findings contribute toward understanding how salivary gland physiology is altered in irradiation injury.

  4. Sulfur-containing components of gamma-irradiated garlic bulbs

    NASA Astrophysics Data System (ADS)

    Kwon, Joong-Ho; Choi, Jong-Uck; Yoon, Hyung-Sik

    Sulfur-containing components associated with garlic flavors were investigated to determine the effect of γ-irradiation at 0.1 kGy on the quality of garlic bulbs ( Allium sativum L.) during storage at 3±1°C and 80±5% RH for 10 months. Irradiation treatment had no influence on the amount of total sulfur and thiosulfinate of stored garlic for 10 months, while the storage period brought about a significant reduction ( P<0.05) in the content of both components after the 6-8th month of storage compared with that at the beginning of storage period. The identity of irradiated alliin ( S-allyl- L-cysteine sulfoxide) at sprout-inhibition dose was confirmed according to thin-layer chromatography, i.r. and NMR spectroscopy data.

  5. Spin-trap-radical chromatography of spin adducts produced from L-valine by. gamma. -irradiation

    SciTech Connect

    Makiino, K.; Suzuki, N.; Moriya, F.; Rokushika, S.; Hatano, H.

    1980-01-01

    Diastereomeric spin adducts produced by reaction of 2-methyl-2-nitrosopropane with the short-lived radicals from L-valine by ..gamma..-irradiation could be separated and identified by means of high performance liquid chromatography and ESR spectroscopy. 6 figures.

  6. The effect of cryogenic freezing and gamma irradiation on the survival of Salmonella on frozen shrimp

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unfortunately, contraction of foodborne illness due to consumption of contaminated seafood, including shrimp, is an occasional occurrence. Cryogenic freezing and gamma irradiation are safe and effective technologies that can be used to control and inactivate pathogenic bacteria in foods. In this stu...

  7. Immunization of Baboons with Schistosoma mansoni Cercariae attenuated by gamma irradiation

    SciTech Connect

    Stek, M.; Minard, P.; Dean, D.A.; Hall, J.E.

    1981-06-01

    Studies on the efficacy of a vaccine against schistosomiasis in young baboons (Papio anubis) disclosed that immunization with Schistosoma mansoni cercariae attenuated by gamma irradiation induced significant protection against subsequent infection with normal, viable S. mansoni cercariae. Such immunization resulted in reduced worm burdens (70 percent) and egg excretion rates (82 percent). These results support immunization as a potential method for schistosomiasis control.

  8. Immunization of baboons with Schistosoma mansoni cercariae attenuated by gamma irradiation

    SciTech Connect

    Stek, M. Jr.; Minard, P.; Dean, D.A.; Hall, J.E.

    1981-06-26

    Studies on the efficacy of a vaccine against schistosomiasis in young baboons (Papio anubis) disclosed that immunization with Schistosoma mansoni cercariae attenuated by gamma irradiation induced significant protection against subsequent infection with normal, viable S. mansoni cercariae. Such immunization resulted in reduced worm burdens (70%) and egg excretion rates (82%). These results support immunization as a potential method for schistosomiasis control.

  9. Enhanced mass transfer during solid liquid extraction of gamma-irradiated red beetroot

    NASA Astrophysics Data System (ADS)

    Nayak, Chetan A.; Chethana, S.; Rastogi, N. K.; Raghavarao, K. S. M. S.

    2006-01-01

    The exposure to gamma-irradiation pretreatment increases cell wall permeabilization, resulting in loss of turgor pressure, which led to the increase of extractability of betanin from red beetroot. The degree of extraction of betanin was investigated using gamma irradiation as a pretreatment prior to the solid-liquid extraction process and compared with control beetroot samples. The beetroot subjected to different doses of gamma irradiation (2.5, 5.0, 7.5, 10.0 kGy) and control was dipped in an acetic acid medium (1% v/v) to extract the betanin. The diffusion coefficients for betanin as well as ionic component were estimated considering Fickian diffusion. The results indicated an increase in the diffusion coefficient of betanin (0.302×10 -9-0.463×10 -9 m 2/s) and ionic component (0.248×10 -9-0.453×10 -9 m 2/s) as the dose rate increased (from 2.5 to 10.0 kGy). The degradation constant was found to increase (0.050-0.079 min -1) with an increase gamma-irradiation doses (2.5-10.0 kGy), indicating lower stability of the betanin as compared to control sample at 65 °C.

  10. Gamma irradiation of Cryptosporidium parvum oocysts affects intracelluar levels of the viral symbiont CPV

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have shown a dose-dependent effect of gamma irradiation on Cryptosporidium parvum development in neonatal mice and newborn calves. In mice, C. parvum oocysts exposed to 200 Gy showed nearly complete inability to develop as measured by C. parvum-specific quantitative PCR of ileal ti...

  11. Electrical Properties of Gamma Irradiated PVdF Based Polymer Electrolytes

    SciTech Connect

    Ayoub, N.; Amin, Y. M.; Arof, A. K.

    2010-07-07

    The effect of different doses of {gamma}-irradiation on the conductivity of PVdF-LiPF{sub 6} solid polymer electrolyte (SPE) was investigated at room temperature. The dielectric constant and loss are seen to increase with increasing radiation doses.

  12. Neutralization of pathophysiological manifestations of Russell's viper envenoming by antivenom raised against gamma-irradiated toxoid.

    PubMed

    Mandal, M; Hati, R N; Hati, A K

    1993-02-01

    Rabbits were immunized against gamma-irradiated (100 krads) Russell's viper venom toxoid adsorbed to aluminium phosphate gel. The antivenom (0.1 ml) neutralized 5 LD50, 8 minimum hemorrhagic doses (MHD) and 14 minimum necrotic doses (MND) of venom. The coagulant and protease activities of the viper venom were neutralized more effectively than phospholipase A activity, by the toxoid antivenom. PMID:8456449

  13. Degradation of 3-chloro-4-hydroxybenzoic acid in biological treated effluent by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Chu, Libing; Wang, Jianlong

    2016-02-01

    Gamma irradiation-induced degradation of a chlorinated aromatic compound, 3-chloro-4-hydroxybenzoic acid (CHBA) in biological treated effluent was studied and the results were compared with those obtained in deionized water. Gamma irradiation led to a complete decomposition of CHBA and a partial mineralization in the treated effluent. The removal of CHBA followed the pseudo first-order reaction kinetic model and the rate constant in the treated effluent was 1.7-3.5 times lower than that in deionized water. The CHBA degradation rate was higher at acidic condition than at neutral and alkaline conditions. The radiolytic yield, G-value for CHBA degradation was lower in the treated effluent, which decreased with increase in absorbed doses and increased with increase in initial concentrations of CHBA. The degradation mechanism of CHBA using gamma irradiation was proposed through the oxidation by -OH and reduction by eaq- and H- radicals. As exposed to gamma irradiation, dechlorination takes place rapidly and combines with the oxidation and cleavage of the aromatic ring, producing chloride ions, small carboxylic acids, acetaldehyde and other intermediates into the solution.

  14. Effect of gamma irradiation on thermophysical properties of plasticized starch and starch surfactant films

    NASA Astrophysics Data System (ADS)

    Cieśla, Krystyna; Watzeels, Nick; Rahier, Hubert

    2014-06-01

    In this work the influence of gamma irradiation on the thermomechanical properties of the films formed in potato starch-glycerol and potato starch-glycerol-surfactant systems were examined by Dynamic Mechanical Analysis, DMA, and Differential Scanning Calorimetry, DSC, and the results were correlated to the amount of the volatile fraction in the films.

  15. Formation of biologically relevant carboxylic acids during the gamma irradiation of acetic acid

    NASA Technical Reports Server (NTRS)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1976-01-01

    Irradiation of aqueous solutions of acetic acid with gamma rays produced several carboxylic acids in small yield. Their identification was based on the technique of gas chromatography combined with mass spectrometry. Some of these acids are Krebs Cycle intermediates. Their simultaneous formation in experiments simulating the primitive conditions on the earth suggests that metabolic pathways may have had their origin in prebiotic chemical processes.

  16. Effects of gamma irradiation on microbial load and quality characteristics of veal

    PubMed Central

    Rahimi, Ebrahim; Faghihi, Reza; Baradaran-Ghahfarokhi, Milad; Alavaian-Ghavanini, Ali; Baradaran-Ghahfarokhi, Hamid Reza; Siavashpour, Zahra; Farshadi, Afrouz; Rafie, Farzad

    2013-01-01

    Background: Veal is a rich nutrient medium that provides a suitable environment for proliferation of veal spoiling microorganisms and common food-borne pathogens. In this study, the effects of irradiation on the veal microbiological quality and half life of minced beef during chilled storage was investigated. Materials and Methods: Twenty samples of minced veal were irradiated with doses of 2, 5, 7, and 10 kGy (Cobalt-60, gamma cell 220) and evaluated for their microbiological quality up to 10 days. Results: The results showed that gamma irradiation reduced the number of microorganisms in all the irradiated minced veal samples, with 2, 5, 7, and 10 kGy (P < 0.01). Moreover, the half life of the samples were increased considerably (P < 0.01). In addition, the results indicated that there was a significant difference in the number of coliformes between untreated and irradiated samples (P < 0.05). While, Staphylococcus aureus could not be detected in the irradiated samples with doses of 7 and 10 kGy. Conclusion: These results indicated that irradiation could be employed as an effective mean to inactivate common food-borne pathogens namely S. aureus and increases the half life of veal. PMID:23930256

  17. Influence of gamma irradiation on conductivity of YBa2Cu3O7

    NASA Astrophysics Data System (ADS)

    Manjunatha, H. C.

    2015-08-01

    We report a study on influence of gamma irradiation on conductivity of YBa2Cu3O7. We have measured the mass attenuation coefficient, effective atomic number, electron density and electrical conductivity for various gamma sources of energy ranging from 0.084 MeV to 1.330 MeV (170Tm, 57Co, 141Ce, 203Hg, 51Cr, 113Sn, 22Na, 137Cs, 60Co, 22Na and 60Co). The measured values agree with the theoretical values. The values of these parameters have been found to change with energy and interaction of gamma. We find evidence for a variation of the electrical conductivity of YBa2Cu3O7 with the irradiated photon energy and this variation is shown in figures up to 105 MeV. The variations of effective atomic number and electron density with energy are shown graphically for all photon interactions. Conductivity found to vary with the energy of the irradiated gamma radiation and interaction process of gamma. This kind of studies is important in the field of superconductivity.

  18. Phototherapeutic Effect of Low-Level Laser on Thyroid Gland of Gamma-Irradiated Rats.

    PubMed

    Morcos, Nadia; Omran, Manar; Ghanem, Hala; Elahdal, Mahmoud; Kamel, Nashwa; Attia, Elbatoul

    2015-01-01

    One inescapable feature of life on the earth is exposure to ionizing radiation. The thyroid gland is one of the most sensitive organs to gamma-radiation and endocrine disrupters. Low-level laser therapy (LLLT) has been used to stimulate tissue repair, and reduce inflammation. The aim of this study was to gauge the value of using Helium-Neon laser to repair the damaged tissues of thyroid gland after gamma-irradiation. Albino rats were used in this study (144 rats), divided into control, gamma, laser, and gamma plus laser-irradiated groups, each group was divided into six subgroups according to time of treatment (total six sessions). Rats were irradiated once with gamma radiation (6 Gy), and an external dose of laser (Wavelength 632.8 nm, 12 mW, CW, Illuminated area 5.73 cm(2), 2.1 mW cm(-2) 120 s, 1.4 J, 0.252 J cm(-2)) twice weekly localized on thyroid region of the neck, for a total of six sessions. Animals were sacrificed after each session. Analysis included thyroid function, oxidative stress markers, liver function and blood picture. Results revealed improvement in thyroid function, liver function and antioxidant levels, and the blood cells count after LLLT. PMID:25975382

  19. RNA and DNA changes in the bone marrow and blood of rats after neutron and continuous gamma irradiation.

    PubMed

    Misúrová, E; Gábor, J; Kropácová, K; Pado, D

    1989-01-01

    Quantitative changes in nucleic acids and DNA synthesis in the bone marrow and blood were followed after a single neutron irradiation with the dose of 2 Gy alone and combined with subsequent continuous gamma irradiation up to accumulated dose of 6 Gy. The pattern of changes after neutron exposure was similar as after other kinds of ionizing radiation. Additional continuous gamma irradiation affected mainly the rate of regenerative processes. PMID:2479958

  20. Evaluation of the efficiency and throughput of a gamma irradiator treating municipal sewage sludge.

    PubMed

    Benny, P G; Shah, M R; Sabharwal, S

    2011-03-01

    Sludge Hygienisation Research Irradiator (SHRI) Facility at Vadodara (India) has been disinfecting liquid sewage sludge with (60)Co gamma rays since 1992. At some point, the radiation process was modified from its originally designed closed-loop system to an open-loop system. Dosimetry experiments were performed to estimate absorbed doses to the sludge for different periods of irradiation of a 15m(3) batch in an open-loop irradiation process. The paper reports the dosimetry results and evaluated operational parameters of the irradiator, namely, effective dose rate in the open-loop system, irradiation efficiency, and throughput. Also, the open-loop system and the closed-loop system are compared in terms of the effective dose rate. PMID:21215648

  1. Tuning the grade of graphene: Gamma ray irradiation of free-standing graphene oxide films in gaseous phase

    NASA Astrophysics Data System (ADS)

    Dumée, Ludovic F.; Feng, Chunfang; He, Li; Allioux, Francois-Marie; Yi, Zhifeng; Gao, Weimin; Banos, Connie; Davies, Justin B.; Kong, Lingxue

    2014-12-01

    A direct approach to functionalize and reduce pre-shaped graphene oxide 3D architectures is demonstrated by gamma ray irradiation in gaseous phase under analytical grade air, N2 or H2. The formation of radicals upon gamma ray irradiation is shown to lead to surface functionalization of the graphene oxide sheets. The reduction degree of graphene oxide, which can be controlled through varying the γ-ray total dose irradiation, leads to the synthesis of highly crystalline and near defect-free graphene based materials. The crystalline structure of the graphene oxide and γ-ray reduced graphene oxide was investigated by x-ray diffraction and Raman spectroscopy. The results reveal no noticeable changes in the size of sp2 graphitic structures for the range of tested gases and total exposure doses suggesting that the irradiation in gaseous phase does not damage the graphene crystalline domains. As confirmed by X-ray photoemission spectroscopy, the C/O ratio of γ-ray reduced graphene oxide is increasing from 2.37 for graphene oxide to 6.25 upon irradiation in hydrogen gas. The removal of oxygen atoms with this reduction process in hydrogen results in a sharp 400 times increase of the electrical conductivity of γ-ray reduced graphene oxide from 0.05 S cm-1 to as high as 23 S cm-1. A significant increase of the contact angle of the γ-ray reduced graphene oxide bucky-papers and weakened oxygen rich groups characteristic peaks across the Fourier transform infrared spectra further illustrate the efficacy of the γ-ray reduction process. A mechanism correlating the interaction between hydrogen radicals formed upon γ-ray irradiation of hydrogen gas and the oxygen rich groups on the surface of the graphene oxide bucky-papers is proposed, in order to contribute to the synthesis of reduced graphene materials through solution-free chemistry routes.

  2. Environmental application of gamma technology: Update on the Canadian sludge irradiator

    NASA Astrophysics Data System (ADS)

    Swinwood, Jean F.; Fraser, Frank M.

    1993-10-01

    Waste treatment and disposal technologies have recently been subjected to increasing public and regulatory scrutiny. Concern for the environment and a heightened awareness of potential health hazards that could result from insufficient or inappropriate waste handling methods have combined to push waste generators in their search for new treatment alternatives. Gamma technology can offer a new option for the treatment of potentially infectious wastes, including municipal sewage sludge. Sewage sludge contains beneficial plant nutrients and a high organic component that make it ideal as a soil conditioning agent or fertilizer bulking material. It also carries potentially infectious microorganisms which limit opportunities for beneficial recycling of sludges. Gamma irradiation-disinfection of these sludges offers a reliable, fast and efficient method for safe sludge recycling. Nordion International's Market Development Division was created in 1987 as part of a broad corporate reorganization. It was given an exclusive mandate to develop new applications of gamma irradiation technology and markets for these new applications. Nordion has since explored and developed opportunities in food irradiation, pharmaceutical/cosmetic products irradiation, biomedical waste sterilization, airline waste disinfection, and sludge disinfection for recycling. This paper focuses on the last of these -a proposed sludge recycling facility that incorporates a cobalt 60 sludge irradiator.

  3. Effects of gamma-ray irradiation on leaching of simulated 133Cs+ radionuclides from geopolymer wasteforms

    NASA Astrophysics Data System (ADS)

    Deng, Ning; An, Hao; Cui, Hao; Pan, Yang; Wang, Bing; Mao, Linqiang; Zhai, Jianping

    2015-04-01

    Leaching of simulated 133Cs+ radionuclides from geopolymer wasteforms was examined with regard to effects from gamma-ray irradiation. Specifically, the compressive strengths, microstructures, pore structures, and leaching resistance of geopolymer wasteforms before and after irradiation were characterized. The leaching experiments were performed by immersion of wasteforms in deionized water, ground water, and seawater. It was found that gamma rays did not produce significant morphological changes, except for changes in the pore size distribution. The cumulative leaching fraction of all the leachants from the irradiated samples increased relative to the non-radiated samples, particularly during long leaching periods (11-42 days). These results, and those from a mercury intrusion porosimeter analysis, can be attributed to irradiation-induced changes in pore structure. All the leaching indexes were greater than the minimum acceptable value of 6.0 set by the American Nuclear Society Standards committee, which indicated that the fly-ash geopolymers are suitable for radionuclide immobilization. However, the effects of gamma-ray irradiation on the immobilization of radionuclides cannot be ignored.

  4. Physicochemical, functional and pasting properties of flour produced from gamma irradiated tiger nut (Cyperus esculentus L.)

    NASA Astrophysics Data System (ADS)

    Ocloo, Fidelis C. K.; Okyere, Abenaa A.; Asare, Isaac K.

    2014-10-01

    Tiger nut (Cyperus esculentus L.) has been recognised as one of the best nutritional crops that can be used to augment the Ghanaian diet. The application of gamma irradiation as means of preserving tiger nut could modify the characteristics of resultant flour. The purpose of this study was to determine the physicochemical, functional and pasting characteristics of flour from gamma irradiated tiger nut. The yellow and black types of tiger nut were sorted, washed and dried in an air-oven at 60 oC for 24 h. The dried tiger nut samples were irradiated at 0.0, 2.5, 5.0 and 10.0 kGy and then flours produced from them. Moisture, ash, pH, titratable acidity, water and oil absorption capacities, swelling power, solubility, bulk density and pasting properties of the flours were determined using appropriate analytical methods. Results showed that irradiation did not significantly (P>0.05) affect the moisture and ash contents of the resultant flours. Gamma irradiation significantly (P≤0.05) increased titratable acidity with concomitant decrease in pH of the flours. No significant differences were observed for water and oil absorption capacities, swelling power as well as bulk density. Solubility significantly (P≤0.05) increased generally with irradiation dose. Peak viscosity, viscosities at 92 °C and 55 °C, breakdown and setback viscosities decreased significantly with irradiation dose. Flour produced from irradiated tiger nut has a potential in complementary food formulations due to its low viscosity and increased solubility values.

  5. Gamma irradiated micro system for long-term parenteral contraception: An alternative to synthetic polymers.

    PubMed

    Puthli, S; Vavia, P

    2008-11-15

    An injectable system of levonorgestrel (LNG) was developed using biodegradable polymer of natural origin. The parenteral system was optimized for particle size and higher drug loading. The microparticulate system was characterised by scanning electron microscopy, encapsulation efficiency, moisture content, IR, DSC, XRD, residual solvent content, sterility testing, test of abnormal toxicity and test for pyrogens. The microparticles were sterilised by gamma irradiation (2.5Mrad). The system was injected intramuscularly in rabbits and the blood levels of LNG were determined using radioimmunoassay technique. An optimized drug to polymer ratio of 0.3-1.0 (w/w ratio) gave improved drug loading of about 52%. In vivo studies in rabbits showed that the drug was released in a sustained manner for a period of 1 month. The AUC(0-t) was found to be 9363.6+/-2340pg/mLday(-1) with MRT calculated to be about 16 days and Kel of 0.01day(-1). LNG levels were maintained between 200 and 400pg/mL. In vivo release exhibited an initial burst effect which was not observed in the in vitro dissolution. This promising "Progestin-only" long-term contraceptive with improved user compliance is an alternative to the synthetic expensive polymeric carriers. PMID:18760352

  6. Testing for Local Dependence in Rasch's Multiplicative Gamma Model for Speed Tests

    ERIC Educational Resources Information Center

    Jansen, Margo G. H.

    2007-01-01

    The author considers a latent trait model for the response time on a (set of) pure speed test(s), the multiplicative gamma model (MGM), which is based on the assumption that the test response times are approximately gamma distributed, with known index parameters and scale parameters depending on subject ability and test difficulty parameters. Like…

  7. Gamma-ray irradiation induced bulk photochromism in WO3-P2O5 glass

    NASA Astrophysics Data System (ADS)

    Shen, Wei; Baccaro, Stefania; Cemmi, Alessia; Xu, Xiaoqing; Chen, Guorong

    2015-11-01

    In the present work, photochromism of WO3-P2O5 glass under gamma-ray irradiation was reported. As-prepared glass samples with different WO3 content are all optically transparent in the visible wavelength range thanks to the addition of a small amount of oxidizing couple Sb2O3-NaNO3. The photochromic properties are identified by transmission spectra of the glasses before and after irradiation. The results show that the irradiation induced darkening results from the reduction of W6+ to W5+ or W4+. The existence of WO6 clusters in glasses of high WO3 content is proved by XPS, which is the main reason for the obvious photochromic effects. The WO3-P2O5 glass is a promising candidate in gamma-ray sensitive detector.

  8. Effect of gamma irradiation on antioxidant properties of ber (Zizyphus mauritiana) fruit.

    PubMed

    Kavitha, C; Kuna, Aparna; Supraja, T; Sagar, S Blessy; Padmavathi, T V N; Prabhakar, Neeraja

    2015-05-01

    Effect of gamma irradiation (0.25 to 1.0kGy) on antioxidant properties of ber fruit was studied. Antioxidant properties of ber fruits were determined by Scavenging DPPH radical activity, reducing power assay, super oxide anion radical activity, TBARS, total phenolic content and total flavonoid content. Gamma irradiation treatment up to 1.0kGy elevated the Scavenging DPPH radical activity (9 %), super oxide anion radical activity (26 %) and total flavonoid content (208 %) compared to fresh ber fruit. On the other hand it brought down the reducing power activity (65 %) and total phenolic content (18 %) as compared to raw fruit. The TBARS activity statistically increased upon irradiation of ber fruit. It indicated that total antioxidant activity decreased as TBARS value increased. Therefore 0.25 to 0.5kGy is better dose to retain the natural antioxidant in fruit. PMID:25892819

  9. Quality characteristics of oil extracted from gamma irradiated peanut (Arachis hypogea L.)

    NASA Astrophysics Data System (ADS)

    Al-Bachir, Mahfouz

    2015-01-01

    The effect of gamma radiation and storage on the characteristics of oil extracted from peanut seeds has been investigated in this study. Peanut seeds were undergone gamma irradiation process with the doses of 1, 2 and 3 kGy. The changes in chemical and physical attributes were observed immediately after irradiation and after 12 months of storage. The data obtained from the experiments showed that irradiation process had no effect on the chemical and physical qualities such as, fatty acid composition, peroxide value, iodine value specification number, TBA value and color of oil extracted from peanut seeds. On the contrary, the peroxide, acidity and TBA values of the peanut oil were decreased due to storage time.

  10. [Effect of synthetic tripeptides on hemopoietic stem cells in norm and after gamma-irradiation].

    PubMed

    Luzianina, A A; Goriacheva, A S; Semin, Iu A; Izmest'eva, O S; Deĭgin, V I; Saenko, A S; Zhavoronkov, L P

    2012-01-01

    Our work was aimed at researching into the influence of dipeptide (gamma-dGlu-dTrp) "Timodepressin" and this dipeptide-based tripeptides on the colony-forming ability of the irradiated in vitro bone marrow and hemopoietic stem cells of the normal organism. Also studied was the effect of various doses (1-1000 microg/kg) of one oftripeptides (dAla-gammadGlu-dTrp) on the output of exogenous splenic colonies in the case of its introduction 48 hours before irradiation. It is shown that the mode of influence of the preparations produced on the basis ofdipeptides dGlu-dTrp and gamma-dGlu-dTrp on the initial stages ofa hemopoiesis in the normal and irradiated organism depends on the nature of the additional amino-acid residue and its optical orientation. PMID:22891548

  11. Suitability of gamma irradiation for preserving fresh-cut watercress quality during cold storage.

    PubMed

    Pinela, José; Barreira, João C M; Barros, Lillian; Verde, Sandra Cabo; Antonio, Amilcar L; Carvalho, Ana Maria; Oliveira, M Beatriz P P; Ferreira, Isabel C F R

    2016-09-01

    The suitability of gamma irradiation (1, 2 and 5kGy) for preserving quality parameters of fresh-cut watercress (Nasturtium officinale R. Br.) during storage at 4±1°C for 7d was investigated. The storage time decreased the protein content and the main carbohydrates, and increased the levels of malic and fumaric acids, sucrose and mono- and polyunsaturated fatty acids (MUFA and PUFA). The different irradiation doses did not caused any significant colour change. In general, the 2kGy dose favoured PUFA and was the most suitable to preserve the overall postharvest quality of fresh-cut watercress during cold storage. In turn, the 5kGy dose better preserved the antioxidant activity and total flavonoids and favoured MUFA, tocopherols and total phenolics, thus originating a final product with enhanced functional properties. Therefore, the suitability of gamma irradiation for preserving fresh-cut watercress quality during cold storage was demonstrated. PMID:27041297

  12. Major alteration of the pathological phenotype in gamma irradiated mdx soleus muscles

    SciTech Connect

    Weller, B.; Karpati, G.; Lehnert, S.; Carpenter, S. )

    1991-07-01

    Two thousand rads of gamma irradiation delivered to the lower legs of ten day old normal and x-chromosome linked muscular dystrophy (mdx) mice caused significant inhibition of tibial bone and soleus muscle fiber growth. In the irradiated mdx solei, there was a major loss of muscle fibers, lack of central nucleation, and some endomysial fibrosis. These features were caused by a failure of regeneration of muscle fibers due to impaired proliferative capacity of satellite cells. Gamma irradiation transforms the late pathological phenotype of mdx muscles, so that in one major aspect (muscle fiber loss) they resemble muscles in Duchenne muscular dystrophy. However, extensive endomysial fibrosis which is another characteristic feature of Duchenne muscular dystrophy did not develop. This experimental model could be useful for the functional investigation of possible beneficial effects of therapeutic interventions in mdx dystrophy.

  13. Gamma-irradiation depletes endogenous germ cells and increases donor cell distribution in chimeric chickens.

    PubMed

    Park, Kyung Je; Kang, Seok Jin; Kim, Tae Min; Lee, Young Mok; Lee, Hyung Chul; Song, Gwonhwa; Han, Jae Yong

    2010-12-01

    The production of chimeric birds is an important tool for the investigation of vertebrate development, the conservation of endangered birds, and the development of various biotechnological applications. This study examined whether gamma (γ)-irradiation depletes endogenous primordial germ cells and enhances the efficiency of somatic chimerism in chickens. An optimal irradiation protocol for stage X embryos was determined after irradiation at various doses (0, 100, 300, 500, 600, 700, and 2,000 rad). Exposure to 500 rad of γ-irradiation for 73 s significantly decreased the number of primordial germ cells (P < 0.0001). Somatic chimera hatchlings were then produced by transferring blastodermal cells from a Korean Oge into either an irradiated (at 500 rad) or intact stage X White Leghorn embryo. An analysis of feather color pattern and polymerase chain reaction-based species-specific amplification of various tissues of the hatchlings confirmed chimerism in most organs of the chick produced from the irradiated recipient; a lesser degree of chimerism was observed in the non-irradiated control recipient. In conclusion, the exposure of chick embryos to an optimized dose of γ-irradiation effectively depleted germ cells and yielded greater somatic chimerism than non-irradiated control embryos. This technique can be applied to interspecies reproduction or the production of transgenic birds. PMID:21057980

  14. Incidence and nature of tumors induced in Sprague-Dawley rats by gamma-irradiation

    SciTech Connect

    Gross, L.; Dreyfuss, Y.; Faraggiana, T.

    1988-05-01

    In our previous studies carried out on inbred rats of the Sprague-Dawley strain, the tumor incidence was increased following irradiation (150 rads, 5 times, at weekly intervals), from 22 to 93% in females and from 5 to 59% in males. Experiments here reported suggest that 2 consecutive total-body gamma-irradiations of 150 rads each are sufficient to induce in rats the development of tumors, some malignant; 18 of 19 females (94.7%) developed tumors at an average age of 11.4 mo, and seven of the 14 males in this group (50%) developed tumors at an average age of 10.4 mo. In the second group, which received 3 consecutive gamma-irradiations, 20 of 23 females (86.9%) and 5 of 13 males (38.4%) developed tumors at average ages of 9.1 and 7.5 mo, respectively. In the third group, among rats which received 4 consecutive gamma-irradiations, 17 of 19 females (89.4%) and 4 of 12 males (33.3%) developed tumors at average ages of 9.4 and 10.5 mo, respectively. The etiology of tumors either developing spontaneously or induced by irradiation in rats remains to be clarified. Our attempts to detect virus particles by electron microscopy in such tumors or lymphomas have not been successful. As a working hypothesis, we are tempted to theorize that tumors or lymphomas developing spontaneously or induced by gamma irradiation in rats are caused by latent viral agents which are integrated into the cell genome and are cell associated, i.e., not separable from the rat tumor cells by conventional methods thus far used.

  15. Preservative solution for gamma irradiated chrysanthemum cut flowers

    NASA Astrophysics Data System (ADS)

    Kikuchi, Olivia Kimiko; Del Mastro, Nelida Lucia; Wiendl, Frederico Maximiliano

    1995-09-01

    Yellow mini-chrysanthemums were irradiated in a Cobalt-60 Gammacell at the dose of 900 Gy (467 Gy/h) one day after harvest. Samples of 50 flowers, parcially opened buds were used to estimate the flower viability. Aluminum sulfate and 8-hydroxyquinoline sulfate were used as two preservative solutions aiming to protect the cut flowers. Our results indicated that the stem immersion in the preservative solutions before and after the irradiation treatment was an efficient procedure, stimulating the flowers development and maintaining the vase-life almost as long as the controls. The present work concludes that it would be possible to use preservative solutions to minimize the damaging effects of the ionizing radiation on chysanthemum cut flowers, maintaining at the same time the disinfestation action of radiation processing.

  16. Effect of combination treatment of gamma irradiation and ascorbic acid on physicochemical and microbial quality of minimally processed eggplant (Solanum melongena L.)

    NASA Astrophysics Data System (ADS)

    Hussain, Peerzada R.; Omeera, A.; Suradkar, Prashant P.; Dar, Mohd A.

    2014-10-01

    Gamma irradiation alone and in combination with ascorbic acid was tested for preventing the surface browning and maintaining the quality attributes of minimally processed eggplant. Eggplant samples after preparation were subjected to treatment of gamma irradiation in the dose range of 0.25-1.0 kGy and to combination treatments of ascorbic acid dip at a concentration of 2.0% w/v and gamma irradiation (dose range 0.5-2.0 kGy) followed by storage at 3±1 °C, RH 80%. Studies revealed inverse correlation (r=-0.93) between the polyphenol oxidase (PPO) activity, browning index and the treatments of ascorbic acid and gamma irradiation. Combinatory treatment of 2.0% w/v ascorbic acid and 1.0 kGy gamma irradiation proved to be significantly (p≤0.05) effective in inhibiting the PPO activity, preventing the surface browning and maintaining the creamy white color and other quality attributes of minimally processed eggplant up to 6 days of refrigerated storage. Sensory evaluation revealed that control and 0.25 kGy irradiated samples were unacceptable only after 3 days of storage. Samples irradiated at 0.5 kGy and 0.75 kGy were unacceptable after 6 days of storage. Microbial analysis revealed that radiation processing of minimally processed eggplant at 1.0 kGy with and without ascorbic acid resulted in around 1 and 1.5 log reduction in yeast and mold count as well as bacterial count just after treatment and 6 days of storage therefore, enhances the microbial safety.

  17. EPR investigations of gamma-irradiated ground black pepper

    NASA Astrophysics Data System (ADS)

    Polovka, Martin; Brezová, Vlasta; Staško, Andrej; Mazúr, Milan; Suhaj, Milan; Šimko, Peter

    2006-02-01

    The γ-radiation treatment of ground black pepper samples resulted in the production of three paramagnetic species ( GI- GIII) which arise from a different origin and have different thermal behavior and stability. The axially symmetric spectra can be characterized by the spin Hamiltonian parameters: GI ( g⊥=2.0060, g∥=2.0032; A⊥=0.85 mT, A∥=0.70 mT) and GII ( g⊥=2.0060, g∥=2.0050; A⊥=0.50 mT, A∥=0.40 mT) assigned to carbohydrate radical structures. The parameters of EPR signal GIII ( g⊥=2.0029, g∥=2.0014; A⊥=3.00 mT, A∥=1.80 mT) possessed features characteristic of cellulose radical species. The activation energies, evaluated by Arrhenius analysis, are in order Ea( GI)< Ea( GIII)< Ea( GII). The EPR measurements performed 20 weeks after radiation process confirmed that a temperature increase from 298 to 353 K, caused a significant decrease of integral EPR signal intensity for γ-irradiated samples (˜40%), compared to the reference (non-irradiated) ground black pepper, where a decrease of ˜13% was found. The influence of γ-radiation treatment on the radical-scavenging activities of aqueous and ethanol extracts of black pepper were investigated by both an EPR spin trapping technique and DPPH assay. No changes were detected in either the water or ethanol extracts for a γ-irradiation dose of 10 kGy.

  18. Two CdZnTe Detector-Equipped Gamma-ray Spectrometers for Attribute Measurements on Irradiated Nuclear Fuel

    SciTech Connect

    Hartwell, John Kelvin; Winston, Philip Lon; Marts, Donna Jeanne; Moore-McAteer, Lisa Dawn; Taylor, Steven Cheney

    2003-04-01

    Some United States Department of Energy-owned spent fuel elements from foreign research reactors (FRRs) are presently being shipped from the reactor location to the US for storage at the Idaho National Engineering and Environmental Laboratory (INEEL). Two cadmium zinc telluride detector-based gamma-ray spectrometers have been developed to confirm the irradiation status of these fuels. One spectrometer is configured to operate underwater in the spent fuel pool of the shipping location, while the other is configured to interrogate elements on receipt in the dry transfer cell at the INEEL’s Interim Fuel Storage Facility (IFSF). Both units have been operationally tested at the INEEL.

  19. EPR of gamma-irradiated single crystals of 2-amino-5-nitro pyridinium L-tartrate: a NLO material.

    PubMed

    Manikandan, S; Dhanuskodi, S

    2007-05-01

    Single crystals of a non-linear optical (NLO) material 2-amino-5-nitropyridinum L-tartrate (ANPLT) were grown by solvent evaporation technique and characterized by the measurement of density, FT-IR, FT-Raman and X-ray diffraction techniques. Microhardness study and SHG test were also carried out. The EPR spectra were recorded for gamma-irradiated single crystal of ANPLT. The angular variation studies of the spectra were carried out and the principal values of g- and A-tensors were determined. The site symmetry of the radical formed is axial. PMID:16950648

  20. Wood-Polymer composites obtained by gamma irradiation

    SciTech Connect

    Gago, J.; Lopez, A.; Rodriguez, J.; Santiago, J.; Acevedo, M.

    2007-10-26

    In this work we impregnate three Peruvian woods (Calycophy spruceanum Be, Aniba amazonica Meiz and Hura crepitans L) with styrene-polyester resin and methyl methacrylate. The polymerization of the system was promoted by gamma radiation and the experimental optimal condition was obtained with styrene-polyester 1:1 and 15 kGy. The obtained composites show reduced water absorption and better mechanical properties compared to the original wood. The structure of the wood-polymer composites was studied by light microscopy. Water absorption and hardness were also obtained.

  1. The contract facilities for gamma irradiation at Dagneux, France

    NASA Astrophysics Data System (ADS)

    Pellerin, D.; Kavanagh, M. T.

    CONSERVATOME SA have operated a facility at DAGNEUX near LYON, France since 1961. This operation is among the very first of its kind in the entire world. The process is based on gamma rays from Cobalt 60 of which there are three separate units. In addition there is a small experimental unit using Cesium 137. At present CONSERVATOME is owned by TRANSNUCLEAIRE and EPICEA as principal shareholders and so has the support of the French Atomic Energy Commission. This paper describes the larger D3 unit and reviews some of the products treated at DAGNEUX.

  2. Effects of gamma irradiation on physicochemical properties, antioxidant and microbial activities of sour cherry juice

    NASA Astrophysics Data System (ADS)

    Arjeh, Edris; Barzegar, Mohsen; Ali Sahari, Mohammad

    2015-09-01

    Recently, due to the beneficial effects of bioactive compounds, demand for minimally processed fruits and fruit juices has increased rapidly in the world. In this study, sour cherry juice (SCJ) was exposed to gamma irradiation at 0.0, 0.5, 1.5, 3.0, 4.5, and 6.0 kGy and then stored at 4 °C for 60 days. Total soluble solids (TSS), total acidity (TA), color, total phenolic content (TPC), total monomeric anthocyanin content (TMC), antioxidant activity, organic acid profile, and microbial analysis were evaluated at regular intervals during the storage. Results indicated that irradiation did not have any significant effect on TSS, while level of TA increased significantly at the dose of 6 kGy (p<0.05). Furthermore, irradiation treatment and storage time led to a significant increase in L* and b* values and a decrease in a* values. Total monomeric anthocyanin content of the irradiated SCJ was lower than that of the non-irradiated one (24% at 3.0 kGy) and also changed toward a more negative direction during the storage (63% at 3.0 kGy for 60 days). There was a significant decrease in the antioxidant activity (DPPH radical scavenging and FRAP assay) in both irradiated and stored SCJs. After irradiation (0-6 kGy), the results showed that the concentration of malic and oxalic acid significantly increased; but, the concentration of ascorbic, citric, fumaric, and succinic acids significantly decreased. Gamma irradiation with doses of ≥3 kGy resulted in overall reduction in microbial loads. Based on the results obtained from the changes of physicochemical properties, antioxidant activity, and microbial analysis, irradiation of SCJ at doses of higher than 3.0 kGy is not recommended.

  3. Enhancement of band gap and photoconductivity in gamma indium selenide due to swift heavy ion irradiation

    SciTech Connect

    Sreekumar, R.; Jayakrishnan, R.; Sudha Kartha, C.; Vijayakumar, K. P.; Khan, S. A.; Avasthi, D. K.

    2008-01-15

    {gamma}-In{sub 2}Se{sub 3} thin films prepared at different annealing temperatures ranging from 100 to 400 deg. C were irradiated using 90 MeV Si ions with a fluence of 2x10{sup 13} ions/cm{sup 2}. X-ray diffraction analysis proved that there is no considerable variation in structural properties of the films due to the swift heavy ion irradiation. However, photosensitivity and sheet resistance of the samples increased due to irradiation. It was observed that the sample, which had negative photoconductivity, exhibited positive photoconductivity, after irradiation. The negative photoconductivity was due to the combined effect of trapping of photoexcited electrons, at traps 1.42 and 1.26 eV, above the valence band along with destruction of the minority carriers, created during illumination, through recombination. Photoluminescence study revealed that the emission was due to the transition to a recombination center, which was 180 meV above the valence band. Optical absorption study proved that the defects present at 1.42 and 1.26 eV were annealed out by the ion beam irradiation. This allowed photoexcited carriers to reach conduction band, which resulted in positive photoconductivity. Optical absorption study also revealed that the band gap of the material could be increased by ion beam irradiation. The sample prepared at 400 deg. C had a band gap of 2 eV and this increased to 2.8 eV, after irradiation. The increase in optical band gap was attributed to the annihilation of localized defect bands, near the conduction and valence band edges, on irradiation. Thus, by ion beam irradiation, one could enhance photosensitivity as well as the optical band gap of {gamma}-In{sub 2}Se{sub 3}, making the material suitable for applications such as window layer in solar cells.

  4. Treatment of opium alkaloid containing wastewater in sequencing batch reactor (SBR)—Effect of gamma irradiation

    NASA Astrophysics Data System (ADS)

    Bural, Cavit B.; Demirer, Goksel N.; Kantoglu, Omer; Dilek, Filiz B.

    2010-04-01

    Aerobic biological treatment of opium alkaloid containing wastewater as well as the effect of gamma irradiation as pre-treatment was investigated. Biodegradability of raw wastewater was assessed in aerobic batch reactors and was found highly biodegradable (83-90% degradation). The effect of irradiation (40 and 140 kGy) on biodegradability was also evaluated in terms of BOD 5/COD values and results revealed that irradiation imparted no further enhancement in the biodegradability. Despite the highly biodegradable nature of wastewater, further experiments in sequencing batch reactors (SBR) revealed that the treatment operation was not possible due to sludge settleability problem observed beyond an influent COD value of 2000 mg dm -3. Possible reasons for this problem were investigated, and the high molecular weight, large size and aromatic structure of the organic pollutants present in wastewater was thought to contribute to poor settleability. Initial efforts to solve this problem by modifying the operational conditions, such as SRT reduction, failed. However, further operational modifications including addition of phosphate buffer cured the settleability problem and influent COD was increased up to 5000 mg dm -3. Significant COD removal efficiencies (>70%) were obtained in both SBRs fed with original and irradiated wastewaters (by 40 kGy). However, pre-irradiated wastewater provided complete thebain removal and a better settling sludge, which was thought due to degradation of complex structure by radiation application. Degradation of the structure was observed by GC/MS analyses and enhancement in filterability tests.

  5. The role of gamma irradiation on the extraction of phenolic compounds in onion (Allium cepa L.)

    NASA Astrophysics Data System (ADS)

    Yang, Eun In; Lee, Eun Mi; Kim, Young Soo; Chung, Byung Yeoup

    2012-08-01

    The effect of gamma irradiation on the content of total phenolic compounds, especially quercetin (Q), in onion (Allium cepa L.) skin was investigated. Onion skin extracts contained two predominant flavonoid compounds, Q and quercetin-4'-glucoside (Q4'G). After 10 kGy gamma irradiation, the yield of Q in the extracts increased significantly from 36.8 to 153.9 μg/ml of the extract, and the Q4'G content decreased slightly from 165.0 to 134.1 μg/ml. In addition, the total phenolic compound content also increased after irradiation at 10 kGy, from 228.0 μg/g of fresh weight to 346.6 μg/g; negligible changes (237.1-256.7 μg/g) occurred at doses of up to 5 kGy. As we expected, radical-scavenging activity was enhanced remarkably (by 88.8%) in the 10 kGy irradiated sample. A dose-dependent increase in the peak intensity of the electron paramagnetic resonance (EPR) spectra was observed in all irradiated samples, with a maximum increase at 10 kGy. The intensity relative to that of the control was 0.15, and it increased to 1.10 in 10 kGy irradiated samples. The optimum gamma irradiation dose, which is sufficient to break the chemical or physical bonds and release soluble phenols of low molecular weight in onion skin, is about 10 kGy.

  6. Gamma irradiation of the fetus damages the developing hemopoietic microenvironment rather than the hemopoietic progenitor cells

    SciTech Connect

    Yang, F.T.; Lord, B.I.; Hendry, J.H.

    1995-03-01

    Hemopoiesis is the product of two components: the hemopoietic tissue and the regulatory stromal microenvironment in which it resides. Plutonium-239, incorporated during fetal development in mice, is known to cause deficient hemopoiesis. A predetermined equivalent {gamma}-ray dose has now been used in combination with cross-transplantation experiments to separate these two components and define where the damage arises. It was confirmed that 1.8 Gy {gamma} irradiation at midterm gestation caused a 40% reduction in the hemopoietic stem (spleen colony-forming) cell population of their offspring which persisted to at least 24 weeks of age. Spleen colony formation after sublethal doses of {gamma} rays reflected this reduced complement of endogenous stem cells. The regulatory hemopoietic microenvironment, measured as fibroblastoid colony-forming cells, was similarly depleted. Normal growth of the CFU-S population after transplantation into standard recipients showed that the quality of the stem cell population in the offspring of irradiated mothers was not affected. By contrast, when used as recipients of a bone marrow transplant from either normal or irradiated offspring, the offspring of irradiated mothers were unable to support normal growth: there was a twofold difference in the number of CFU-S per femur for at least 100 days after transplantation. There were 70% fewer CFU-F in the femur 1 month after bone marrow transplantation when the offspring of irradiated mothers were used as transplant recipients compared to when normal offspring were used. This not only confirmed their reduced capacity to host normal stem cells but also indicated that CFU-F in the transplant were unable to compensate for the poor microenvironment in the irradiated offspring hosts. It is concluded that irradiation at midterm gestation damages the developing regulatory microenvironment but not the hemopoietic stem cell population that it hosts. 12 refs., 1 fig., 4 tabs.

  7. Pretreatment with low-dose gamma irradiation enhances tolerance to the stress of cadmium and lead in Arabidopsis thaliana seedlings.

    PubMed

    Qi, Wencai; Zhang, Liang; Wang, Lin; Xu, Hangbo; Jin, Qingsheng; Jiao, Zhen

    2015-05-01

    Heavy metals are important environmental pollutants with negative impact on plant growth and development. To investigate the physiological and molecular mechanisms of heavy metal stress mitigated by low-dose gamma irradiation, the dry seeds of Arabidopsis thaliana were exposed to a Cobalt-60 gamma source at doses ranging from 25 to 150Gy before being subjected to 75µM CdCl2 or 500µM Pb(NO3)2. Then, the growth parameters, and physiological and molecular changes were determined in response to gamma irradiation. Our results showed that 50-Gy gamma irradiation gave maximal beneficial effects on the germination index and root length in response to cadmium/lead stress in Arabidopsis seedlings. The hydrogen peroxide and malondialdehyde contents in seedlings irradiated with 50-Gy gamma rays under stress were significantly lower than those of controls. The antioxidant enzyme activities and proline levels in the irradiated seedlings were significantly increased compared with the controls. Furthermore, a transcriptional expression analysis of selected genes revealed that some components of heavy metal detoxification were stimulated by low-dose gamma irradiation under cadmium/lead stress. Our results suggest that low-dose gamma irradiation alleviates heavy metal stress, probably by modulating the physiological responses and gene expression levels related to heavy metal resistance in Arabidopsis seedlings. PMID:25723134

  8. Response of thyroid follicular cells to gamma irradiation compared to proton irradiation: II. The role of connexin 32

    NASA Technical Reports Server (NTRS)

    Green, L. M.; Tran, D. T.; Murray, D. K.; Rightnar, S. S.; Todd, S.; Nelson, G. A.

    2002-01-01

    The objective of this study was to determine whether connexin 32-type gap junctions contribute to the "contact effect" in follicular thyrocytes and whether the response is influenced by radiation quality. Our previous studies demonstrated that early-passage follicular cultures of Fischer rat thyroid cells express functional connexin 32 gap junctions, with later-passage cultures expressing a truncated nonfunctional form of the protein. This model allowed us to assess the role of connexin 32 in radiation responsiveness without relying solely on chemical manipulation of gap junctions. The survival curves generated after gamma irradiation revealed that early-passage follicular cultures had significantly lower values of alpha (0.04 Gy(-1)) than later-passage cultures (0.11 Gy(-1)) (P < 0.0001, n = 12). As an additional way to determine whether connexin 32 was contributing to the difference in survival, cultures were treated with heptanol, resulting in higher alpha values, with early-passage cultures (0.10 Gy(-1)) nearly equivalent to untreated late-passage cultures (0.11 Gy(-1)) (P > 0.1, n = 9). This strongly suggests that the presence of functional connexin 32-type gap junctions was contributing to radiation resistance in gamma-irradiated thyroid follicles. Survival curves from proton-irradiated cultures had alpha values that were not significantly different whether cells expressed functional connexin 32 (0.10 Gy(-1)), did not express connexin 32 (0.09 Gy(-1)), or were down-regulated (early-passage plus heptanol, 0.09 Gy(-1); late-passage plus heptanol, 0.12 Gy(-1)) (P > 0.1, n = 19). Thus, for proton irradiation, the presence of connexin 32-type gap junctional channels did not influence their radiosensitivity. Collectively, the data support the following conclusions. (1) The lower alpha values from the gamma-ray survival curves of the early-passage cultures suggest greater repair efficiency and/or enhanced resistance to radiation-induced damage, coincident with the

  9. Thermal analysis of the FSP-1RR irradiation test

    SciTech Connect

    Webb, R.H.; Lyon, W.F. III

    1992-10-14

    The thermal analysis of four unirradiated fuel pins to be tested in the FSP-1RR fuels irradiation experiment was completed. This test is a follow-on experiment in the series of fuel pin irradiation tests conducted by the SP-100 Program in the Fast Flux Test Facility. One of the pins contains several meltwire temperature monitors within the fuel and the Li annulus. A post-irradiation examination will verify the accuracy of the pre-irradiation thermal analysis. The purpose of the pre-irradiation analysis was to determine the appropriate insulating gap gas compositions required to provide the design goal cladding operating temperatures and to ensure that the meltwire temperature ranges in the temperature monitored pin bracket peak irradiation temperatures. This paper discusses the methodology and summarizes the results of the analysis.

  10. Quality of gamma ray-irradiated iceberg lettuce and treatments to minimize irradiation-induced disorders

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irradiation of Iceberg lettuce was recently approved by the FDA to enhance microbial safety and to extend shelf-life at doses up to 4 kGy. However, the radiation tolerance of whole head lettuce is unclear. The present study was conducted to investigate the effects of irradiation on the quality of he...

  11. Gamma irradiation of peanut kernel to control mold growth and to diminish aflatoxin contamination

    NASA Astrophysics Data System (ADS)

    Y.-Y. Chiou, R.

    1996-09-01

    Peanut kernel inoculated with Aspergillus parasiticus conidia were gamma irradiated with 0, 2.5, 5.0 and 10 kGy using Co60. Levels higher than 2.5 kGy were effective in retarding the outgrowth of A. parasiticus and reducing the population of natural mold contaminants. However, complete elimination of these molds was not achieved even at the dose of 10 kGy. After 4 wk incubation of the inoculated kernels in a humidified condition, aflatoxins produced by the surviving A. parasiticus were 69.12, 2.42, 57.36 and 22.28 μ/g, corresponding to the original irradiation levels. Peroxide content of peanut oils prepared from the irradiated peanuts increased with increased irradiation dosage. After storage, at each irradiation level, peroxide content in peanuts stored at -14°C was lower than that in peanuts stored at an ambient temperature. TBA values and CDHP contents of the oil increased with increased irradiation dosage and changed slightly after storage. However, fatty acid contents of the peanut oil varied in a limited range as affected by the irradiation dosage and storage temperature. The SDS-PAGE protein pattern of peanuts revealed no noticeable variation of protein subunits resulting from irradiation and storage.

  12. Combined effects of gamma-irradiation and modified atmosphere packaging on quality of some spices.

    PubMed

    Kirkin, Celale; Mitrevski, Blagoj; Gunes, Gurbuz; Marriott, Philip J

    2014-07-01

    Thyme (Thymus vidgaris L.), rosemary (Rosmarinus officinalis L.), black pepper (Piper nigrum L.) and cumin (Cuminum cyminum L.) in ground form were packaged in either air or 100% N2 and γ-irradiated at 3 different irradiation levels (7kGy, 12kGy, 17kGy). Total viable bacterial count, yeast and mould count, colour, essential oil yield and essential oil composition were determined. Microbial load was not detectable after 12kGy irradiation of all samples. Irradiation resulted in significant changes in colour values of rosemary and black pepper. The discolouration of the irradiated black pepper was lower in modified atmosphere packaging (MAP) compared to air packaging. Essential oil yield of irradiated black pepper and cumin was lower in air packaging compared to MAP. Gamma-irradiation generally decreased monoterpenes and increased oxygenated compounds, but the effect was lower in MAP. Overall, spices should be irradiated under an O2-free atmosphere to minimise quality deterioration. PMID:24518340

  13. Effect of gamma irradiation on the antimicrobial and free radical scavenging activities of Glycyrrhiza glabra root

    NASA Astrophysics Data System (ADS)

    Fatima Khattak, Khanzadi; James Simpson, Thomas

    2010-04-01

    The efficacy of gamma irradiation as a method of decontamination for food and herbal materials is well established. In the present study, Glycyrrhiza glabra roots were irradiated at doses 5, 10, 15, 20 and 25 kGy in a cobalt-60 irradiator. The irradiated and un-irradiated control samples were evaluated for phenolic contents, antimicrobial activities and DPPH scavenging properties. The result of the present study showed that radiation treatment up to 20 kGy does not affect the antifungal and antibacterial activity of the plant. While sample irradiated at 25 kGy does showed changes in the antibacterial activity against some selected pathogens. No significant differences in the phenolic contents were observed for control and samples irradiated at 5, 10 and 15 kGy radiation doses. However, phenolic contents increased in samples treated with 20 and 25 kGy doses. The DPPH scavenging activity significantly ( p<0.05) increased in all irradiated samples of the plant.

  14. EPR investigation of gamma irradiated single crystal guaifenesin: A combined experimental and computational study

    NASA Astrophysics Data System (ADS)

    Tasdemir, Halil Ugur; Sayin, Ulku; Türkkan, Ercan; Ozmen, Ayhan

    2016-04-01

    Gamma irradiated single crystal of Guaifenesin (Glyceryl Guaiacolate), an important expectorant drug, were investigated with Electron Paramagnetic Resonance (EPR) spectroscopy between 123 and 333 K temperature at different orientations in the magnetic field. Considering the chemical structure and the experimental spectra of the gamma irradiated single crystal of guaifenesin sample, we assumed that alkoxy or alkyl-type paramagnetic species may be produced by irradiation. Depending on this assumption, eight possible alkoxy and alkyl-type radicals were modeled and EPR parameters of these modeled radicals were calculated using the B3LYP/6-311++G(d,p)-level of density functional theory (DFT). Theoretically calculated values of alkyl-type modeled radical(R3) are in good agreement with experimentally determined EPR parameters of single crystal. Furthermore, simulation spectra which are obtained by using the theoretical initial values are well matched with the experimental spectra. It was determined that a stable Cα •H2αCβHβCγH2γ (R3) alkyl radical was produced in the host crystal as a result of gamma irradiation.

  15. Effect of gamma irradiation on hyperthermal composting microorganisms for feasible application in space

    NASA Astrophysics Data System (ADS)

    Yoon, Minchul; Choi, Jong-il; Yamashita, Masamichi

    2013-05-01

    The composting system is the most efficient method for processing organic waste in space; however, the composting activity of microorganisms can be altered by cosmic rays. In this study, the effect of ionizing irradiation on composting bacteria was investigated. Sequence analyses of amplified 16S rRNA, 18S rRNA, and amoA genes were used to identify hyperthermal composting microorganisms. The viability of microorganisms in compost soil after gamma irradiation was directly determined using LIVE/DEAD BacLight viability kit. The dominant bacterial genera were Weissella cibaria and Leuconostoc sp., and the fungal genera were Metschnikowia bicuspidata and Pichia guilliermondii. Gamma irradiation up to a dose of 10 kGy did not significantly alter the microbial population. Furthermore, amylase and cellulase activities were maintained after high-dose gamma irradiation. Our results show that hyperthermal microorganisms can be used to recycle agricultural and fermented material in space stations and other human-inhabiting facilities on the Moon, Mars, and other planets.

  16. Microstructural evolution and micromechanical properties of gamma-irradiated Au ball bonds

    SciTech Connect

    Yusoff, Wan Yusmawati Wan; Ismail, Roslina; Jalar, Azman; Othman, Norinsan Kamil; Abdul Rahman, Irman

    2014-07-01

    The effect of gamma radiation on the mechanical and structural properties of gold ball bonds was investigated. Gold wires from thermosonic wire bonding were exposed to gamma rays from a Cobalt-60 source at a low dose (5 Gy). The load–depth curve of nanoindentation for the irradiated gold wire bond has an apparent staircase shape during loading compared to the as-received sample. The hardness of the specimens calculated from the nanoindentation shows an increase in value from 0.91 to 1.09 GPa for specimens after exposure. The reduced elastic modulus for irradiated specimens significantly increased as well, with values from 75.18 to 98.55 GPa. The change in intrinsic properties due to gamma radiation was investigated using dual-focused ion beam and high-resolution transmission electron microscope analysis. The dual-focused ion beam and high-resolution transmission electron microscope images confirmed the changes in grain structure and the presence of dislocations. The scanning electron microscope micrographs of focused ion beam cross sections showed that the grain structure of the gold became elongated and smaller after exposure to gamma rays. Meanwhile, high-resolution transmission electron microscopy provided evidence that gamma radiation induced dislocation of the atomic arrangement. - Highlights: • Nanoindentation technique provides a detailed characterisation of Au ball bond. • P–h curve of irradiated Au ball bond shows an apparent pop-in event. • Hardness and reduced modulus increased after exposure. • Elongated and smaller grain structure in irradiated specimens • Prevalent presence of dislocations in the atomic arrangement.

  17. 241-AZ-101 Mixer Pump Demonstration Test Gamma Cart Acceptance Test Procedure and Quality Test Plan (ATP and QTP)

    SciTech Connect

    WHITE, D.A.

    2000-03-01

    Shop Test of the Gamma Cart System to be used in the AZ-101 Mixer Pump Demonstration Test. Tests hardware and software. This procedure involves testing the Instrumentation involved with the Gamma Cart System, local and remote, including: depth indicators, speed controls, interface to data acquisition software and the raising and lowering functions. This Procedure will be performed twice, once for each Gamma Cart System. This procedure does not test the accuracy of the data acquisition software.

  18. Defect formation of gamma irradiated MoO3-doped borophosphate glasses.

    PubMed

    Abdelghany, A M; Ouis, M A; Azooz, M A; Ellbatal, H A

    2013-10-01

    Borophosphate glasses of the basic composition (50P2O5, 30B2O3, 20Na2O mol%) containing different doping molybdenum oxide percents (0.16-0.98) were prepared by melting and annealing method. Infrared and UV-visible absorption spectroscopic measurements before and after gamma irradiation were carried out. The base undoped borophosphate glass reveals strong UV absorption bands but with no visible bands and these UV bands are related to unavoidable trace iron impurities contaminated within the raw materials used for the preparation of this glass. The introduction of MoO3 (in doping ratio) into this glass produces an additional UV band and a broad visible band and their intensities increase with the MoO3 content. These additional bands are related to both Mo(6+) and Mo(5+) ions. The base undoped borophosphate glass shows retardation effect towards gamma irradiation. Gamma irradiation produces marked changes in the UV-visible spectra of Mo-O3-doped glasses. Such changes can be related to the production of induced defects from photochemical reactions and the generation of positive holes. Infrared absorption spectrum of the undoped borophosphate glass reveals complex vibrational bands due to the presence of both phosphate groups beside borate groups with triangular and tetrahedrally coordinated units. The introduction of MoO3 causes some limited variations in the FTIR spectra. Gamma irradiation produces minor changes in the intensities of some IR bands. Such changes are related to the changes in the bond angles and/or bond lengths of few structural groups upon irradiation while the main structural groups remain unchanged in their number and position. PMID:23800775

  19. Stimulatory Effects of Gamma Irradiation on Phytochemical Properties, Mitotic Behaviour, and Nutritional Composition of Sainfoin (Onobrychis viciifolia Scop.)

    PubMed Central

    Mat Taha, Rosna; Lay, Ma Ma; Khalili, Mahsa

    2014-01-01

    Sainfoin (Onobrychis viciifolia Scop. Syn. Onobrychis sativa L.) is a bloat-safe forage crop with high levels of tannins, which is renowned for its medicinal qualities in grazing animals. Mutagenesis technique was applied to investigate the influence of gamma irradiation at 30, 60, 90, and 120 Gy on mitotic behavior, in vitro growth factors, phytochemical and nutritional constituents of sainfoin. Although a percentage of plant necrosis and non-growing seed were enhanced by irradiation increment, the germination speed was significantly decreased. It was observed that gamma irradiated seeds had higher value of crude protein and dry matter digestibility compared to control seeds. Toxicity of copper was reduced in sainfoin irradiated seeds at different doses of gamma rays. Anthocyanin content also decreased in inverse proportion to irradiation intensity. Accumulation of phenolic and flavonoid compounds was enhanced by gamma irradiation exposure in leaf cells. HPLC profiles differed in peak areas of the two important alkaloids, Berberine and Sanguinarine, in 120 Gy irradiated seeds compared to control seeds. There were positive correlations between irradiation dose and some abnormality divisions such as laggard chromosome, micronucleus, binucleated cells, chromosome bridge, and cytomixis. In reality, radiocytological evaluation was proven to be essential in deducing the effectiveness of gamma irradiation to induce somaclonal variation in sainfoin. PMID:25147870

  20. Stimulatory effects of gamma irradiation on phytochemical properties, mitotic behaviour, and nutritional composition of sainfoin (Onobrychis viciifolia Scop.).

    PubMed

    Mohajer, Sadegh; Taha, Rosna Mat; Lay, Ma Ma; Esmaeili, Arash Khorasani; Khalili, Mahsa

    2014-01-01

    Sainfoin (Onobrychis viciifolia Scop. Syn. Onobrychis sativa L.) is a bloat-safe forage crop with high levels of tannins, which is renowned for its medicinal qualities in grazing animals. Mutagenesis technique was applied to investigate the influence of gamma irradiation at 30, 60, 90, and 120 Gy on mitotic behavior, in vitro growth factors, phytochemical and nutritional constituents of sainfoin. Although a percentage of plant necrosis and non-growing seed were enhanced by irradiation increment, the germination speed was significantly decreased. It was observed that gamma irradiated seeds had higher value of crude protein and dry matter digestibility compared to control seeds. Toxicity of copper was reduced in sainfoin irradiated seeds at different doses of gamma rays. Anthocyanin content also decreased in inverse proportion to irradiation intensity. Accumulation of phenolic and flavonoid compounds was enhanced by gamma irradiation exposure in leaf cells. HPLC profiles differed in peak areas of the two important alkaloids, Berberine and Sanguinarine, in 120 Gy irradiated seeds compared to control seeds. There were positive correlations between irradiation dose and some abnormality divisions such as laggard chromosome, micronucleus, binucleated cells, chromosome bridge, and cytomixis. In reality, radiocytological evaluation was proven to be essential in deducing the effectiveness of gamma irradiation to induce somaclonal variation in sainfoin. PMID:25147870

  1. Gamma ray tests of Minimal Dark Matter

    SciTech Connect

    Cirelli, Marco; Hambye, Thomas; Panci, Paolo; Sala, Filippo; Taoso, Marco

    2015-10-12

    We reconsider the model of Minimal Dark Matter (a fermionic, hypercharge-less quintuplet of the EW interactions) and compute its gamma ray signatures. We compare them with a number of gamma ray probes: the galactic halo diffuse measurements, the galactic center line searches and recent dwarf galaxies observations. We find that the original minimal model, whose mass is fixed at 9.4 TeV by the relic abundance requirement, is constrained by the line searches from the Galactic Center: it is ruled out if the Milky Way possesses a cuspy profile such as NFW but it is still allowed if it has a cored one. Observations of dwarf spheroidal galaxies are also relevant (in particular searches for lines), and ongoing astrophysical progresses on these systems have the potential to eventually rule out the model. We also explore a wider mass range, which applies to the case in which the relic abundance requirement is relaxed. Most of our results can be safely extended to the larger class of multi-TeV WIMP DM annihilating into massive gauge bosons.

  2. Gamma ray tests of Minimal Dark Matter

    NASA Astrophysics Data System (ADS)

    Cirelli, Marco; Hambye, Thomas; Panci, Paolo; Sala, Filippo; Taoso, Marco

    2015-10-01

    We reconsider the model of Minimal Dark Matter (a fermionic, hypercharge-less quintuplet of the EW interactions) and compute its gamma ray signatures. We compare them with a number of gamma ray probes: the galactic halo diffuse measurements, the galactic center line searches and recent dwarf galaxies observations. We find that the original minimal model, whose mass is fixed at 9.4 TeV by the relic abundance requirement, is constrained by the line searches from the Galactic Center: it is ruled out if the Milky Way possesses a cuspy profile such as NFW but it is still allowed if it has a cored one. Observations of dwarf spheroidal galaxies are also relevant (in particular searches for lines), and ongoing astrophysical progresses on these systems have the potential to eventually rule out the model. We also explore a wider mass range, which applies to the case in which the relic abundance requirement is relaxed. Most of our results can be safely extended to the larger class of multi-TeV WIMP DM annihilating into massive gauge bosons.

  3. Electrical conduction and photoresponses of gamma-ray-irradiated single-stranded DNA/single-walled carbon nanotube composite systems

    NASA Astrophysics Data System (ADS)

    Hong, W.; Lee, E. M.; Kim, D. W.; Lee, Cheol Eui

    2015-04-01

    Effects of gamma-ray irradiation on the electrical conductivity and photoresponse have been studied for single-stranded DNA (ssDNA)/single-walled carbon nanotube (SWNT) composite films. The temperature-dependent electrical conductivity of the ssDNA/SWNT composite films, well described by a fluctuation-induced tunneling model, indicated modification of the barrier for thermally activated conduction by the gamma-ray irradiation. Besides, the photoresponse measurements indicated modified photoexcited charge carrier generation and oxygen photodesorption in the composite systems due to the gamma-ray irradiation.

  4. Effects of gamma irradiation on physicochemical properties of heat-induced gel prepared with chicken salt-soluble proteins

    NASA Astrophysics Data System (ADS)

    Choi, Yun-Sang; Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Jeong, Tae-Jun; Seo, Kwang-Wook; Kim, Young-Boong; Kim, Cheon-Jei

    2015-01-01

    The technological effects of gamma irradiation (0, 3, 7, and 10 kGy) on chicken salt-soluble meat proteins in a model system were investigated. There were no significant differences in protein, fat, and ash content, and sarcoplasmic protein solubility among all samples. The samples with increasing gamma irradiation levels had higher pH, lightness, yellowness, and apparent viscosity, whereas moisture content, water holding capacity, redness, myofibrillar protein solubility, total protein solubility, hardness, springiness, cohesiveness, gumminess, and chewiness were the highest in the unirradiated control. The result from meat products using gamma irradiation was intended to provide a basic resource processing technology.

  5. Effect of gamma irradiation on the thermal, mechanical and structural properties of chlorinated polyvinyl chloride

    NASA Astrophysics Data System (ADS)

    Nouh, S. A.

    Non isothermal studies were carried out using thermogravimetry (TG) and differential thermogravimetry (DTG) to obtain the activation energy of decomposition for chlorinated polyvinyl chloride (CPVC) before and after exposure to gamma doses at levels between 5.0 and 50.0 KGy. Thermal gravitational analysis (TGA) indicated that the CPVC polymer decomposes in one main breakdown stage and a decrease in activation energies was observed followed by an increase on increasing the gamma dose. The variation of melting temperatures with the gamma dose has been determined using differential thermal analysis (DTA). Also, mechanical and structural property studies were performed on all irradiated and non-irradiated CPVC samples using stress-strain relations and X-ray diffraction. The results indicated that the exposure to gamma doses at levels between 27.5 and 50 KGy leads to further enhancement of the thermal stability, tensile strength and isotropic character of the polymer samples due to the crosslinking phenomenon. This suggests that gamma radiation could be a suitable technique for producing a plastic material with enhanced properties that can be suitable for high temperature applications and might be a suitable candidate for dosimetric applications.

  6. Structural and optical modifications in gamma-irradiated polyimide/silica nanocomposite

    NASA Astrophysics Data System (ADS)

    Nouh, S. A.; Tommalieh, M. J.; El-Shamy, N. T.

    2015-06-01

    The structural and optical properties of thin films of polyimide composites with nanosilica particle content of 15 wt%, prepared via sol-gel process, were studied as a function of the gamma dose. The resultant effect of gamma irradiation on the properties of polyimide/silica nanocomposite has been investigated using X-ray diffraction and UV spectroscopy. Absorption and reflectance spectra were collected by a spectrophotometer giving UV-radiation of wavelength range 200-800 nm. The optical data obtained were analyzed and the calculated values of the optical energy gap exhibited gamma dose dependence. The direct optical energy gap for the nonirradiated polyimide/silica nanocomposite is about 2.41 eV, and increases to a value of 2.65 eV when irradiated with gamma doses up to 300 kGy. It was found that the calculated refractive index of the polyamide/silica increases with the gamma dose in the range 50-300 kGy.

  7. Gamma irradiation induced disintegration of waste activated sludge for biological hydrogen production

    NASA Astrophysics Data System (ADS)

    Yin, Yanan; Wang, Jianlong

    2016-04-01

    In this paper, gamma irradiation was applied for the disintegration and dissolution of waste activated sludge produced during the biological wastewater treatment, and the solubilized sludge was used as substrate for bio-hydrogen production. The experimental results showed that the solubilization of waste activated sludge was 53.7% at 20 kGy and pH=12, and the SCOD, polysaccharides, protein, TN and TP contents in the irradiated sludge solutions was 3789.6 mg/L, 268.3 mg/L, 1881.5 mg/L, 132.3 mg/L and 80.4 mg/L, respectively. The irradiated sludge was used for fermentative hydrogen production, and the hydrogen yield was 10.5±0.7 mL/g SCODconsumed. It can be concluded that the irradiated waste activated sludge could be used as a low-cost substrate for fermentative hydrogen production.

  8. Evaluation using GEANT4 of the transit dose in the Tunisian gamma irradiator for insect sterilization.

    PubMed

    Mannai, K; Askri, B; Loussaief, A; Trabelsi, A

    2007-06-01

    A simulation study of the Tunisian Gamma Irradiation Facility for sterile insects release programs has been realized using the GEANT4 Monte Carlo code of CERN. The dose was calculated and measured for high and low dose values inside the irradiation cell. The calculated high dose was in good agreement with measurements. However, a discrepancy between calculated and measured values occurs at dose levels commonly used for sterilization of insects. We argue that this discrepancy is due to the transit dose absorbed during displacement of targets from their initial position towards their irradiation position and displacement of radiation source pencils from storage towards their irradiation position. The discrepancy is corrected by taking into account the transit dose. PMID:17395474

  9. EPR study of gamma-irradiated single crystal 4-phenylsemicarbazide

    NASA Astrophysics Data System (ADS)

    Sayin, U.; Türkkan, E.; Dereli, Ö.; Yüksel, H.; Birey, M.

    2010-08-01

    Single crystals of 4-phenylsemicarbazide (4PSC) were investigated using an electron paramagnetic resonance (EPR) technique, with γ irradiation of the crystals at different orientations in the magnetic field between temperatures of 120 and 450 K, and the spectra were found to be temperature independent. Taking into consideration the chemical structure and the experimental spectra of the irradiated single crystal 4PSC, we assumed that one or more paramagnetic species were produced, each having an unpaired electron delocalized in the phenyl ring. Pursuant to this assumption, six possible radicals were modeled using the B3LYP/6-311+G(d) level of density-functional theory. EPR parameters were calculated for these modeled radicals using the B3LYP method and TZVP basis set. The calculated hyperfine coupling constants were used as starting points for simulations. The experimental and simulated spectra for each of the three crystallographic axes were well matched for the modeled radical R6. We thus identified the R6 (C 6H 5NH) radical as a paramagnetic species produced in 4PSC. The experimental g-factor and hyperfine coupling constants of the C 6H 5NH radical were found to be anisotropic, with the average values g=2.00431, aNHN(8)=8.85 G, aNHH(9)=16.85 G, ao,pH(14,16,20)=6.47 G, and amH(18,19)=2.80 G.

  10. ADONIS, high count-rate HP-Ge {gamma} spectrometry algorithm: Irradiated fuel assembly measurement

    SciTech Connect

    Pin, P.; Barat, E.; Dautremer, T.; Montagu, T.; Normand, S.

    2011-07-01

    ADONIS is a digital system for gamma-ray spectrometry, developed by CEA. This system achieves high count-rate gamma-ray spectrometry with correct dynamic dead-time correction, up to, at least, more than an incoming count rate of 3.10{sup 6} events per second. An application of such a system at AREVA NC's La Hague plant is the irradiated fuel scanning facility before reprocessing. The ADONIS system is presented, then the measurement set-up and, last, the measurement results with reference measurements. (authors)

  11. The effect of gamma irradiation as a phytosanitary treatment on physicochemical and sensory properties of bartlett pears.

    PubMed

    Abolhassani, Yalda; Caporaso, Fred; Rakovski, Cyril; Prakash, Anuradha

    2013-09-01

    A major concern in exporting agricultural commodities is the introduction or spread of exotic quarantine pests to the new area. To prevent spread of insect pests, various phytosanitary measures are used. Worldwide commercial use of irradiation as a phytosanitary treatment has increased greatly in recent years; however, trade has been limited to tropical fruits. Bartlett pear is a major summer variety of California pears with great potential and market for export. In this study, the effect of gamma irradiation at dose levels of 400, 600, and 800 Gy on physicochemical properties and sensory attributes of early and late harvest Bartlett pears was investigated. Firmness and color changes indicate that irradiation delayed the ripening of pears by 1 d. For the early harvest pears, scarring, bruising, and off flavor were significantly increased at the highest irradiation dose (800 Gy). The appearance of early harvest 800 Gy irradiated pears was the only attribute that received significantly (P ≤ 0.05) lower scores than the control in consumer testing. For the late harvest pears, the 400 Gy fruit had lowest levels of scarring and bruising as rated by trained panelist but consumers did not score the control and 800 Gy fruit differently for any attribute. Titratable acidity, total soluble solids, and chroma were significantly (P ≤ 0.05) decreased and hue increased by irradiation for the early harvest pears. These results suggest that there was a difference in radiotolerance of early and late harvest pears, but in both cases, irradiation at 400 to 600 Gy seemed to maintain best quality. PMID:24024694

  12. Gamma irradiation of sun-dried apricots ( Prunus armeniaca L.) for quality maintenance and quarantine purposes

    NASA Astrophysics Data System (ADS)

    Hussain, Peerzada R.; Meena, Raghuveer S.; Dar, Mohd A.; Wani, Ali M.

    2011-07-01

    The study is aimed at the optimization of gamma irradiation treatment of sun-dried apricots for quality maintenance and quarantine purposes. Sun-dried apricots pre-treated with potassium meta-bisulphite (KMS) at 2.5% w/v were procured from progressive apricot grower of district Kargil, Ladakh region of Jammu and Kashmir state. The sun-dried apricots were packed in 250 gauge polyethylene packs and gamma irradiated in the dose range 1.0-3.0 kGy. The gamma irradiated fruit including control was stored under ambient (15±2-25±2 °C, RH 70-80%) conditions and periodically evaluated for physico-chemical, sensory and microbial quality parameters. Radiation treatment at dose levels of 2.5 and 3.0 kGy proved significantly ( p≤0.05) beneficial in retention of higher levels of β-carotene, ascorbic acid, total sugars and color values without impairing the taste as perceived by the sensory panel analysists. The above optimized doses retained the β-carotene content of sun-dried apricots to the extent of 71.2% and 72.6% compared to 63.9% in control samples after 18 months of storage. Irradiation treatment facilitated the release of residual sulfur dioxide in KMS pre-treated sun-dried apricots significantly ( p≤0.05) below the prescribed limit for dried products. During storage, two-fold decrease in sulfur dioxide content was recorded in irradiated samples (3.0 kGy) as compared to 16.9% in control. The above optimized doses besides maintaining the higher overall acceptability of sun-dried apricots resulted in 5 log reductions in microbial load just after irradiation and 1.0 and 1.3 log reductions in yeast and mold and bacterial count after 18 months of ambient storage.

  13. Resistance of a cultured fish cell line (CAF-MM1) to. gamma. irradiation

    SciTech Connect

    Mitani, H.; Etoh, H.; Egami, N.

    1982-02-01

    Fish are generally more resistant to whole-body ionizing radiation than mammals. To study the radiosensitivity of fish in vitro, CAF-MM1 cells derived from the fin of the goldfish, Carassius auratus, were used. The survival parameters of CAF-MM1 obtained after ..gamma.. irradiation at 26/sup 0/C were 325 rad for D/sub o/, 975 rad for Dq, and 15 for n. No mammalian cell line with such a low sensitivity in the presence of O/sub 2/ has been reported. It was found that the large initial shoulder of the survival curve was paralleled by substantial repair of sublethal damage as evidenced by split-dose experiments. This low sensitivity to ..gamma.. irradiation did not change upon the administration of caffeine or postirradiation illumination, although these treatments were effective after uv irradiation. The decrease in the mitotic index in CAF-MM1 occurred immediately after irradiation, and it recovered within a very short time. This indicated that the duration of G2 arrest was shorter than that observed in mammalian cells. The data also suggest that the resistance of fish to whole-body irradiation is attributable to resistance at the cellular level.

  14. Characterization of the polymer-filler interface in (gamma)-irradiated silica-reinforced polysiloxane composites

    SciTech Connect

    Chien, A T; Balazs, B; LeMay, J

    2000-04-03

    The changes in hydrogen bonding at the interface of silica-reinforced polysiloxane composites due to aging in gamma radiation environments were examined in this study. Solvent swelling was utilized to determine the individual contributions of the matrix polymer and polymer-filler interactions to the overall crosslink density. The results show how the polymer-filler hydrogen bonding dominates the overall crosslink density of the material. Air irradiated samples displayed decreased hydrogen bonding at the polymer-filler interface, while vacuum irradiation revealed the opposite effect.

  15. Inactivation and fragmentation of lectin from Bothrops leucurus snake venom by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Nunes, E. S.; Souza, M. A. A.; Vaz, A. F. M.; Coelho, L. C. B. B.; Aguiar, J. S.; Silva, T. G.; Guarnieri, M. C.; Melo, A. M. M. A.; Oliva, M. L. V.; Correia, M. T. S.

    2012-04-01

    Gamma radiation alters the molecular structure of biomolecules and is able to mitigate the action of snake venoms and their isolated toxins. The effect of γ-radiation on the folding of Bothrops lecurus venom lectin was measured by a hemagglutinating assay, intrinsic and bis-ANS fluorescence. Intrinsic and bis-ANS fluorescence analyses indicated that irradiation caused unfolding followed by aggregation of the lectin. Our results suggest that irradiation can lead to significant changes in the protein structure, which may promote the loss of its binding property and toxic action.

  16. The effects of lipid A on gamma-irradiated human peripheral blood lymphocytes in vitro

    NASA Astrophysics Data System (ADS)

    Dubničková, M.; Kuzmina, E. A.; Chausov, V. N.; Ravnachka, I.; Boreyko, A. V.; Krasavin, E. A.

    2016-03-01

    The modulatory effects of lipid A (diphosphoryl lipid A (DLA) and monophosphoryl lipid A (MLA)) on apoptosis induction and DNA structure damage (single and double-strand breaks (SSBs and DSBs, respectively)) in peripheral human blood lymphocytes are studied for 60Co gamma-irradiation. It is shown that in the presence of these agents the amount of apoptotic cells increases compared with the irradiated control samples. The effect is most strongly pronounced for DLA. In its presence, a significant increase is observed in the number of radiation-induced DNA SSBs and DSBs. Possible mechanisms are discussed of the modifying influence of the used agents on radiation-induced cell reactions

  17. Shellfish depuration by gamma irradiation. Progress report No. 1, October 1, 1985-July 25, 1986

    SciTech Connect

    Beghian, L.; Melnick, J.

    1986-07-25

    Objective is to investigate the feasibility of employing food irradiation technology to reduce or eliminate the threat of viral diseases contracted as a result of consumption of raw or inadequately cooked shellfish. Several recently published studies warn of the health risks associated with eating of raw shellfish - particularly American oysters, Crassostrea virginica, and the hardshelled clam, Mercenaria mercenaria. This study addresses the possibility of reducing the incidence of molluscanborne diseases through the application of /sup 60/Co gamma irradiation processing to effect the inactivation of pathogenic viruses in live, raw shwllfish. Dosimetry, D/sub 10/ doses, and organoleptic effects were studied.

  18. Gamma-irradiated onions as a biological indicator of radiation dose.

    PubMed

    Vaijapurkar, S G; Agarwal, D; Chaudhuri, S K; Senwar, K R; Bhatnagar, P K

    2001-10-01

    Post-irradiation identification and dose estimation are required to assess the radiation-induced effects on living things in any nuclear emergency. In this study, radiation-induced morphological/cytological changes i.e., number of root formation and its length, shooting length, reduction in mitotic index, micronuclei formation and chromosomal aberrations in the root tip cells of gamma-irradiated onions at lower doses (50-2000 cGy) are reported. The capabilities of this biological species to store the radiation-induced information are also studied. PMID:11762393

  19. Study of gamma irradiation effect on positron annihilation mechanism in PFA

    NASA Astrophysics Data System (ADS)

    Yang, J.; Li, Z. X.; Zhao, B. Z.; Zhang, P.; Lu, E. Y.; Zhang, J.; Yuan, D. Q.; Cao, X. Z.; Yu, R. S.; Wang, B. Y.

    2014-03-01

    Gamma irradiation effect on annihilation characteristics of positronium and free positron in tetrafluoroethylene-perluoro (alkoxy vinyl ether) copolymer (PFA) were studied independently by age momentum correlation (AMOC) and the correlation between Doppler broadening S parameter and o-Ps fraction (S-Io-Ps correlation). AMOC results revealed decreases in S parameter of o-Ps, owing to accumulation of polar atoms around free volume. S-Io-Ps correlation indicated a reduced intrinsic S parameter of free positron in irradiated PFA, which was caused by enhanced positron trapping on polar atoms due to densification of local segments and variation in the elemental environment around free volumes.

  20. Effects of gamma ray and electron beam irradiation on the mechanical, thermal, structural and physicochemical properties of poly (ether-block-amide) thermoplastic elastomers.

    PubMed

    Murray, Kieran A; Kennedy, James E; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Cowman, Richard; Higginbotham, Clement L

    2013-01-01

    Both gamma ray and electron beam irradiation are widely used as a means of medical device sterilisation. However, it is known that the radiation produced by both processes can lead to undesirable changes within biomedical polymers. The main objective of this research was to conduct a comparative study on the two key radiosterilisation methods (gamma ray and electron beam) in order to identify the more detrimental process in terms of the mechanical, structural, chemical and thermal properties of a common biomedical grade polymer. Poly (ether-block-amide) (PEBA) was prepared by injection moulding ASTM testing specimens and these were exposed to an extensive range of irradiation doses (5-200 kGy) in an air atmosphere. The effect of varying the irradiation dose concentration on the resultant PEBA properties was apparent. For instance, the tensile strength, percentage elongation at break and shore D hardness can be increased/decreased by controlling the aforementioned criteria. In addition, it was observed that the stiffness of the material increased with incremental irradiation doses as anticipated. Melt flow index demonstrated a dramatic increase in the melting strength of the material indicating a sharp increase in molecular weight. Conversely, modulated differential scanning calorimetry established that there were no significant alterations to the thermal transitions. Noteworthy trends were observed for the dynamic frequency sweeps of the material, where the crosslink density increased according to an increase in electron beam irradiation dose. Trans-vinylene unsaturations and the carbonyl group concentration increased with an increment in irradiation dose for both processes when observed by FTIR. The relationship between the irradiation dose rate, mechanical properties and the subsequent surface properties of PEBA material is further elucidated throughout this paper. This study revealed that the gamma irradiation process produced more adverse effects in the PEBA

  1. Gamma-glutamyl transpeptidase (GGT) blood test

    MedlinePlus

    ... GGT) blood test measures the level of the enzyme GGT in the blood. ... tell you to stop taking medicines that can affect the test. Drugs ... can decrease GGT level include: Birth control pills Clofibrate

  2. Increasing the reliability of the GUB-20.000 {gamma}-apparatus for irradiation of large laboratory animals

    SciTech Connect

    Videnskii, V.G.

    1995-03-01

    Experimental results are briefly presented for the strength of ultrastrong high modulus POLYMER SVM fiber cables as a function of the gamma irradiation dose. The lines were placed in water and irradiated to model the operation of the GUB-20.000 apparatus. The fibers exhibited elastic deformation followed by a section of plastic flow, during which the samples stretched by 20%. The strength of fiber line, within the dose limits used, did not depend on the irradiation dose. Therefore, the lines can be used to upgrade the gamma irradiation apparatus currently using Capron fishing line. 5 refs., 1 tab.

  3. Effects of low-level gamma irradiation on the characteristics of fermented pork sausage during storage

    NASA Astrophysics Data System (ADS)

    Kim, I. S.; Jo, C.; Lee, K. H.; Lee, E. J.; Ahn, D. U.; Kang, S. N.

    2012-04-01

    The effect of gamma irradiation (0.5, 1, 2, and 4 kGy) on the quality of vacuum-packaged dry fermented sausages during refrigerated storage was evaluated. At Day 0 of irradiation, the pH, redness (CIE a*), yellowness (CIE b*), 2-thiobarbituric acid-reactive substances (TBARS) and volatile basic nitrogen (VBN) values of samples irradiated at 2 and 4 kGy were higher (p<0.05), but the CIE L* values (lightness) were lower than those of the non-irradiated control (p<0.05). At<1 kGy irradiation, however, the pH, CIE L*, CIE a* and CIE b*-value of samples were not significantly influenced by irradiation. The CIE a*, and CIE b*-values of samples irradiated at 2 and 4 kGy decreased with the increase of storage time. The VBN, TBARS, and CIE L*-values of samples irradiated at 4 kGy were not changed significantly during refrigerated storage for 90 days (p>0.05). The total plate counts (TPC) and lactic acid bacteria (LAB) in the samples irradiated at 4 kGy were significantly lower (p<0.01) than those with lower irradiation doses. At the end of storage, the TPC, coliform, and LAB in the samples were not increased after irradiation at 1, 0.5 and 1 kGy, respectively. TPC and LAB were not detected in samples irradiated at 4 kGy at Day 90. In addition, no coliform bacteria were found in samples irradiated at 1 kGy during refrigerated storage. Sensory evaluation indicated that the rancid flavor of samples irradiated at 4 kGy was significantly higher, but aroma and taste scores were lower than those of the control at Day 3 of storage. Irradiation of dry fermented sausages at 2 kGy was the best conditions to prolong the shelf-life and decrease the rancid flavor without significant quality deterioration.

  4. Status of the irradiation test vehicle for testing fusion materials in the Advanced Test Reactor

    SciTech Connect

    Tsai, H.; Gomes, I.C.; Smith, D.L.; Palmer, A.J.; Ingram, F.W.; Wiffen, F.W.

    1998-09-01

    The design of the irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) has been completed. The main application for the ITV is irradiation testing of candidate fusion structural materials, including vanadium-base alloys, silicon carbide composites, and low-activation steels. Construction of the vehicle is underway at the Lockheed Martin Idaho Technology Company (LMITCO). Dummy test trains are being built for system checkout and fine-tuning. Reactor insertion of the ITV with the dummy test trains is scheduled for fall 1998. Barring unexpected difficulties, the ITV will be available for experiments in early 1999.

  5. Kinetics of hardness evolution during annealing of gamma-irradiated polycarbonate

    SciTech Connect

    Yeh, S. H.; Chen, P. Y.; Lee, Sanboh; Harmon, Julie

    2012-12-01

    This study focuses on the evolution in microhardness values that accompany isothermal annealing in gamma-irradiated polycarbonate (PC). Hardness increases with increasing annealing time, temperature, and gamma radiation dose. A model composed of a mixture of first and zero order structure relaxation is proposed to interpret the hardness data. The rate constant data fit the Arrhenius equation, and the corresponding activation energy decreases with increasing dose. The extent of structural relaxation that controls the hardness in post-annealed PC increases with increasing annealing temperature and dose. The model demonstrates that hardness evolution in PC is an endothermic process. By contrast, when the model is applied to irradiated poly(methyl methacrylate) and hydroxyethyl methacrylate copolymer, hardness evolution is an exothermic process.

  6. Gamma irradiator dose mapping simulation using the MCNP code and benchmarking with dosimetry.

    PubMed

    Sohrabpour, M; Hassanzadeh, M; Shahriari, M; Sharifzadeh, M

    2002-10-01

    The Monte Carlo transport code, MCNP, has been applied in simulating dose rate distribution in the IR-136 gamma irradiator system. Isodose curves, cumulative dose values, and system design data such as throughputs, over-dose-ratios, and efficiencies have been simulated as functions of product density. Simulated isodose curves, and cumulative dose values were compared with dosimetry values obtained using polymethyle-methacrylate, Fricke, ethanol-chlorobenzene, and potassium dichromate dosimeters. The produced system design data were also found to agree quite favorably with those of the system manufacturer's data. MCNP has thus been found to be an effective transport code for handling of various dose mapping excercises for gamma irradiators. PMID:12361333

  7. High energy irradiations simulating cosmic-ray-induced planetary gamma ray production. I - Fe target

    NASA Technical Reports Server (NTRS)

    Metzger, A. E.; Parker, R. H.; Yellin, J.

    1986-01-01

    Two thick Fe targets were bombarded by a series of 6 GeV proton irradiations for the purpose of simulating the cosmic ray bombardment of planetary objects in space. Gamma ray energy spectra were obtained with a germanium solid state detector during the bombardment, and 46 of the gamma ray lines were ascribed to the Fe targets. A comparison between observed and predicted values showed good agreement for Fe lines from neutron inelastic scattering and spallation reactions, and less satisfactory agreement for neutron capture reactions, the latter attributed to the difference in composition between the Fe target and the mean lunar abundance used in the modeling. Through an analysis of the irradiation results together with continuum data obtained in lunar orbit, it was found that 100 hours of measurement with a current instrument should generate a spectrum containing approximately 20 lines due to Fe alone, with a 2-sigma sensitivity for detection of about 0.2 percent.

  8. Optoelectronic studies of boron-doped and gamma-irradiated diamond thin films

    NASA Astrophysics Data System (ADS)

    Chapagain, Puskar; Nemashkalo, Anastasiia; Peters, Raul; Farmer, John; Gupta, Sanju; Strzhemechny, Yuri M.

    2011-10-01

    Elucidation of microscopic properties of a synthetic diamond, such as formation and evolution of bulk and surface defects, chemistry of dopants, etc. is necessary for a reliable quality control and reproducibility in applications. Employing surface photovoltage (SPV) and photoluminescence (PL) spectroscopic probes we studied diamond thin films grown on silicon by microwave plasma-assisted chemical vapor deposition with different levels of boron doping in conjunction with gamma irradiation. SPV measurements showed that while the increase of boron concentration leads to a semiconductor-metal transition, subsequent intense gamma irradiation reverts back the quasi-metallic samples to semiconducting state via compensating electrical activity of boron by hydrogen. One of the most pronounced common transitions in the SPV spectra was observed at ˜3.1 eV, also present in most of the PL spectra. We argue that this is a signature of the sp^2-C clusters/layers in the vicinity of grain boundaries.

  9. Gamma-irradiation of malic acid in aqueous solutions. [prebiotic significance

    NASA Technical Reports Server (NTRS)

    Negron-Mendoza, A.; Graff, R. L.; Ponnamperuma, C.

    1980-01-01

    The gamma-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the nonvolatile products. Thin layer chromatography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the gamma-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.

  10. One-step synthesis of graphene-Pt nanocomposites by gamma-ray irradiation

    NASA Astrophysics Data System (ADS)

    Tokai, Akihiro; Okitsu, Kenji; Hori, Fuminobu; Mizukoshi, Yoshiteru; Iwase, Akihiro

    2016-06-01

    We developed a one-step gamma-ray irradiation method to synthesize nanocomposites composed of graphene and Pt nanoparticles from aqueous solution containing graphene and Pt(IV) complex ions in the presence of 2-propanol (IPA) or sodium dodecyl sulfate (SDS). It was confirmed that gamma-ray irradiation provided carbonyl groups on graphene and Pt nanoparticles formed from the radiolytic reduction of Pt(IV) complex ions were deposited onto the carbonyl modified graphene. In the presence of IPA, small Pt nanoparticles were deposited on graphene, but large Pt nanoparticles were deposited in the presence of SDS: the size of Pt nanoparticles formed was larger in the presence of SDS than IPA. Based on the results, formation and deposition mechanisms of Pt nanoparticles were proposed.

  11. A system for mutation measurement in mammalian cells: application to gamma-irradiation.

    PubMed

    Puck, T T; Johnson, R; Rasumussen, S

    1997-02-18

    Monitoring of mutagenesis by environmental agents for the purpose of preventing genetic disease including cancer must include quantitation of cell killing, sensitive measurement of mutation production by appropriate doses of each agent, and assessment of mutation repair effects in mammalian cells. A four-step procedure, in the presence and absence of a repair suppressor, is proposed: (i) determination of the survival curve; (ii) measurement of the mitotic index in cells collected after treatment with colcemid; (iii) construction of a mutagenesis yield curve in the presence and absence of a repair suppressor, like caffeine; and (iv) assessment of the effect of test agents on the repair of mutations produced by other mutagens. The procedure is quantitative, reproducible, and reasonably rapid. It involves measurement of mutations causing visible chromosomal aberrations. Numerical parameters are proposed defining quantitatively mutation, cell killing, and mutation repair capacity. The procedure is applied to gamma-irradiation and can detect the effects of doses as low as 2-5 cGy. Theoretical analysis of the underlying processes is presented, using the concept of D(0)E, the effective dose of mutagen after repair mechanisms and neutralizing agents have acted. Microscopically visible chromosome aberrations are due to mutations that distort the process of mitotic chromosome condensation, with or without actual chromosome breakage. PMID:9037033

  12. Anticarcinogenic effect of tetrachlorodecaoxide after total-body gamma irradiation in rats

    SciTech Connect

    Kempf, S.R.; Port, R.E.; Ivankovic, S.

    1994-08-01

    Tetrachlorodecaoxygen (TCDO) therapy of acute radiation syndrome was tested for a possible influence on the development of X-ray-induced malignancies. BD IX rats were exposed to total-body irradiation (TBI, {gamma} rays, 9 or 11 Gy) and received daily intravenous injections of either TCDO or physiological saline solution from days 4 through 11 after TBI. The short-term TCDO therapy reduced the acute death rate markedly, but survival rates after 4 months were similar with and without TCDO. The first malignancy after TBI occurred on day 103, and over the lifetime of the animals the tumor incidence in the group given TBI (11 Gy) without TCDO treatment was 73% vs 20% in animals with short-term TCDO therapy after TBI. In particular, there was a highly significant prevention of radiation-induced leukemia [P (one-sided) < 0.001] by TCDO, and a significantly reduced incidence of malignant epithelial tumors [P (one-sided) < 0.05]. The development of sarcomas was not affected by TCDO. Long-term survival was not enhanced by TCDO due to the occurrence of bronchopneumonial infections about 1 year after TBI. In conclusion, TCDO is not only a potent therapeutic agent in acute radiation syndrome, but it also significantly reduced the carcinogenic risk in rats after exposure to ionizing radiation. 18 refs., 3 figs., 4 tabs.

  13. Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation

    SciTech Connect

    Elliott, L.H.; McCormick, J.B.; Johnson, K.M.

    1982-10-01

    Because of the cumbersome conditions experienced in a maximum containment laboratory, methods for inactivating highly pathogenic viruses were investigated. The infectivity of Lassa, Marburg, and Ebola viruses was inactivated without altering the immunological activity after radiation with /sup 60/CO gamma rays. At 4 degrees C, Lassa virus was the most difficult to inactivate with a rate of 5.3 X 10(-6) log 50% tissue culture infective dose per rad of /sup 60/CO radiation, as compared with 6.8 X 10(-6) log 50% tissue culture infective dose per rad for Ebola virus and 8.4 X 10(-6) log 50% tissue culture infective dose per rad for Marburg virus. Experimental inactivation curves, as well as curves giving the total radiation needed to inactivate a given concentration of any of the three viruses, are presented. The authors found this method of inactivation to be superior to UV light or beta-propiolactone inactivation and now routinely use it for preparation of material for protein-chemistry studies or for preparation of immunological reagents.

  14. Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation

    SciTech Connect

    Elliott, L.H.; McCormick, J.B.; Johnson, K.M.

    1982-10-01

    Because of the cumbersome conditions experienced in a maximum containment laboratory, methods for inactivating highly pathogenic viruses were investigated. The infectivity of Lassa, Marburg, and Ebola viruses was inactivated without altering the immunological activity after radiation with /sup 60/Co gamma rays. At 4 degrees C, Lassa virus was the most difficult to inactivate with a rate of 5.3 X 10(-6) log 50% tissue culture infective dose per rad of /sup 60/Co radiation, as compared with 6.8 X 10(-6) log 50% tissue culture infective dose per rad for Ebola virus and 8.4 X 10(-6) log 50% tissue culture infective dose per rad for Marburg virus. Experimental inactivation curves, as well as curves giving the total radiation needed to inactivate a given concentration of any of the three viruses, are presented. We found this method of inactivation to be superior to UV light or beta-propiolactone inactivation and now routinely use it for preparation of material for protein-chemistry studies or for preparation of immunological reagents.

  15. Neutron Flux Characterization of Irradiation Holes for Irradiation Test at HANARO

    NASA Astrophysics Data System (ADS)

    Yang, Seong Woo; Cho, Man Soon; Choo, Kee Nam; Park, Sang Jun

    2016-02-01

    The High flux Advanced Neutron Application ReactOr (HANARO) is a unique research reactor in the Republic of Korea, and has been used for irradiation testing since 1998. To conduct irradiation tests for nuclear materials, the irradiation holes of CT and OR5 have been used due to a high fast-neutron flux. Because the neutron flux must be accurately calculated to evaluate the neutron fluence of irradiated material, it was conducted using MCNP. The neutron flux was measured using fluence monitor wires to verify the calculated result. Some evaluations have been conducted, however, more than 20% errors have frequently occurred at the OR irradiation hole, while a good agreement between the calculated and measured data was shown at the CT irradiation hole.

  16. The impact of hyper-gravity and gamma-irradiation on physiology of wheat seedlings.

    NASA Astrophysics Data System (ADS)

    Singh, Sandhya; Vidyasagar, Pandit

    2016-07-01

    Exposing plants to altered gravity and gamma radiation can provide us with a fundamental knowledge of plant behavior in such conditions, since the mechanisms involved in response of plants to these stresses is still unclear. The more we understand these mechanisms the more we can apply this information to take the journey of life beyond the boundaries of earth. Hence many experiments were performed on pre-imbibed wheat seeds (Lok-1 variety), wherein they were exposed to hyper-gravity stress (300g-1500g) and gamma-irradiation (Dose 20Gy-100Gy) separately. After exposure these seeds were grown in normal conditions and their growth, fluorescence parameters, and total proline content were observed on the 5th day of their growth. A gradual decline in overall growth and fluorescence parameters, with increase in hyper-gravity stress value (300g-1500g) or gamma-irradiation dose (20Gy-100Gy) was observed. Interestingly in the hyper-gravity studies a consistent increase in the total proline content was observed only till 1200g but the total proline content deteriorated thereafter for higher 'g' values. On the other hand gamma irradiation studies revealed that the total proline content continuously increased with increase in the gamma radiation dose (20Gy-100Gy). Later, pre-imbibed seeds were exposed to both stresses (combined as hyper-gravity (300g-1500g) + gamma-irradiation (40Gy)) and same parameters were studied revealing that there was comparatively greater decline in overall growth and fluorescence parameters of wheat seedlings. Also the total proline content gradually increased ( from 300g+40Gy-900g+40Gy) with 900g+40Gy stress value having highest value of total proline content but the total proline content decreased subsequently for higher stress values (1200g+40Gy, 1500g+40Gy). Results obtained in the current research showed that exposing pre-imbibed wheat seeds to hyper-gravity stress, gamma radiation or both combined together may affect the proline biosynthesis and

  17. Estimation of circular DNA size using gamma-irradiation and pulsed-field gel electrophoresis

    SciTech Connect

    Beverley, S.M. )

    1989-02-15

    A method is described for estimating the size of large circular DNAs found within complex chromosomal DNA preparations. DNAs are treated with low levels of gamma-irradiation, sufficient to introduce a single double-stranded break per circle, and the resulting linear DNA is sized by pulsed-field electrophoresis and blot hybridization. The method is fast, reproducible, and very conveniently applied to the agarose-enclosed chromosomal DNA preparations commonly used in pulsed field electrophoresis.

  18. Effects of gamma irradiation on the grape vine moth, Lobesia botrana, eggs

    NASA Astrophysics Data System (ADS)

    Mansour, M.; Al-Attar, J.

    2012-11-01

    Eggs of the grape vine moth, Lobesia botrana (Denis and Schiffermuller), ranging in age from 1-24 to 73-96 h, were exposed, at 24 h intervals, to gamma radiation ranging from 25-600 Gy. The effects of gamma radiation on egg hatch, pupation, adult emergence, sex ratio and rate of development were examined. Results showed that the radiosensitivity of the grape vine moth eggs decreased with increasing age and increased with increasing radiation dose. Egg hatch in 1-24 h old eggs was significantly affected at 25 Gy and completely prevented at 100 Gy. At the age of 25-48 h, radiation sensitivity was only a little lower; egg hatch at 100 Gy was <1% and at 125 Gy no egg hatch was observed. Egg sensitivity to gamma irradiation decreased significantly in the 49-72 h age group; egg hatch was 66% at 100 Gy, and 500 Gy did not completely stop egg hatch (<1%). Eggs irradiated a few hours before egg hatch (73-96 h old) were the most resistant; 150 Gy had no significant effect on egg hatch and at 600 Gy over 33% of the eggs hatched. When pupation or adult emergence was used as a criterion for measuring effectiveness, however, the effects of gamma radiation were very severe. In the most resistant age group (73-96 h old), 150 Gy completely prevented pupation and adult emergence and all larvae resulting from eggs irradiated <49 h old died before pupation. In addition, the rate of development of immature stages resulting from irradiated eggs was negatively affected and sex ratio was skewed in favor of males.

  19. Chemical, sensory and microbiological changes of gamma irradiated coconut cream powder

    NASA Astrophysics Data System (ADS)

    Yusof, Norimah; Ramli, Ros Anita Ahmad; Ali, Foziah

    2007-11-01

    A study was carried out to determine optimum decontamination dose for a locally manufactured coconut cream powder. Samples were gamma irradiated (0-15 kGy) and ageing process was achieved using GEER oven at 60 °C for 7 days, which is equivalent to one-year storage at room temperature. Iodine value (IV), ranging from 4.8 to 6.4, was not affected by radiation doses and storage, however peroxide value and thiobarbituric acid (TBA) generally increased with radiation doses. In most samples, peroxide value (meq/kg) reduced after storage, whilst the TBA (mg malonaldehyde/kg), indicator for product quality, slightly increased. The sensory evaluation conducted using 25 taste panellists indicated that scores on odour, creamy taste and overall acceptance for all irradiated samples at more than 5 kGy were significantly lower ( P<0.05) than the control. However, the panellists could not detect any significant differences among the irradiation doses ( P>0.05). All stored products were significantly different in colour, creamy taste, odour and overall acceptance ( P<0.05) when compared to the non-stored non-irradiated control. Microbiological count of the samples prior to irradiation was in the range of 1×10 2-1.7×10 3 cfu/g with no detection of Salmonella sp. and Escherichia coli. No microbial colonies were detected after irradiation. Based on the TBA and overall sensory acceptance, gamma irradiation of 5 kGy was found to be the optimum dose and lower doses can be considered to decontaminate coconut cream powder.

  20. Gamma Knife irradiation method based on dosimetric controls to target small areas in rat brains

    SciTech Connect

    Constanzo, Julie; Paquette, Benoit; Charest, Gabriel; Masson-Côté, Laurence; Guillot, Mathieu

    2015-05-15

    Purpose: Targeted and whole-brain irradiation in humans can result in significant side effects causing decreased patient quality of life. To adequately investigate structural and functional alterations after stereotactic radiosurgery, preclinical studies are needed. The purpose of this work is to establish a robust standardized method of targeted irradiation on small regions of the rat brain. Methods: Euthanized male Fischer rats were imaged in a stereotactic bed, by computed tomography (CT), to estimate positioning variations relative to the bregma skull reference point. Using a rat brain atlas and the stereotactic bregma coordinates obtained from CT images, different regions of the brain were delimited and a treatment plan was generated. A single isocenter treatment plan delivering ≥100 Gy in 100% of the target volume was produced by Leksell GammaPlan using the 4 mm diameter collimator of sectors 4, 5, 7, and 8 of the Gamma Knife unit. Impact of positioning deviations of the rat brain on dose deposition was simulated by GammaPlan and validated with dosimetric measurements. Results: The authors’ results showed that 90% of the target volume received 100 ± 8 Gy and the maximum of deposited dose was 125 ± 0.7 Gy, which corresponds to an excellent relative standard deviation of 0.6%. This dose deposition calculated with GammaPlan was validated with dosimetric films resulting in a dose-profile agreement within 5%, both in X- and Z-axes. Conclusions: The authors’ results demonstrate the feasibility of standardizing the irradiation procedure of a small volume in the rat brain using a Gamma Knife.

  1. Comparison of gamma ray and electron beam irradiation on extraction yield, morphological and antioxidant properties of polysaccharides from tamarind seed

    NASA Astrophysics Data System (ADS)

    Choi, Jong-il; Kim, Jae-Kyung; Srinivasan, Periasamy; Kim, Jae-Hun; Park, Hyun-Jin; Byun, Myung-Woo; Lee, Ju-Woon

    2009-07-01

    Tamarind ( Tamarindus indica L) seed polysaccharide (TSP) is of great important due to its various biological activities. The present investigation was carried out to compare extraction yield, morphological characteristics, average molecular weights and antioxidant activities of TSP from gamma- and electron beam (EB)-irradiated tamarind kernel powder. The tamarind kernel powder was irradiated with 0, 5 and 10 kGy by gamma ray (GR) and electron beam, respectively. The extraction yield of TSP was increased significantly by EB and GR irradiation, but there was no significant difference between irradiation types. Morphological studies by scanning electron microscope showed that TSP from GR-irradiated tamarind seed had a fibrous structure, different from that of EB irradiated with a particle structures. The average molecular weight of TSP was decreased by the irradiation, and EB treatment degraded more severely than GR. Superoxide radical scavenging ability and total antioxidant capacity of EB-treated TSP showed higher than those of GR-treated TSP.

  2. Thermal, tensile and rheological properties of high density polyethylene (HDPE) processed and irradiated by gamma-ray in different atmospheres

    SciTech Connect

    Ferreto, H. F. R. E-mail: ana-feitoza@yahoo.com.br; Oliveira, A. C. F. E-mail: ana-feitoza@yahoo.com.br; Parra, D. F. E-mail: ablugao@ipen.br; Lugão, A. B. E-mail: ablugao@ipen.br; Gaia, R.

    2014-05-15

    The aim of this paper is to investigate structural changes of high density polyethylene (HDPE) modified by ionizing radiation (gamma rays) in different atmospheres. The gamma radiation process for modification of commercial polymers is a widely applied technique to promote new physical-chemical and mechanical properties. Gamma irradiation originates free radicals which can induce chain scission or recombination, providing its annihilation, branching or crosslinking. This polymer was irradiated with gamma source of {sup 60}Co at doses of 5, 10, 20, 50 or 100 kGy at a dose rate of 5 kGy/h. The changes in molecular structure of HDPE, after gamma irradiations were evaluated using thermogravimetric analysis (TGA) and tensile machine and oscillatory rheology. The results showed the variations of the properties depending on the dose at each atmosphere.

  3. Virus inactivation studies using ion beams, electron and gamma irradiation

    NASA Astrophysics Data System (ADS)

    Smolko, Eduardo E.; Lombardo, Jorge H.

    2005-07-01

    Known methods of virus inactivation are based on the chemical action of some substances such as acetylethylenimine, betapropiolactone, glycidalaldehyde, formaldehyde, etc. In such a process, the viral suspension should be kept at room or higher temperatures for 24-48 h. Under these conditions, physical and chemical agents act to degrade the virus antigenic proteins. On the contrary with ionizing radiations at low temperatures, the treatment does not cause such degradation allowing the study of different viral functions. In this work, particle (α, d and ß) and γ irradiations were used for partial and total inactivation of Foot and Mouth Disease Virus (FMDV), Rauscher Leukemia Virus (RLV) and Herpes Simplex Virus (HSV). Obtention of the D37 dose from survival curves and the application of the target theory, permitted the determination of molecular weight of the nucleic acid genomes, EBR values and useful information for vaccine preparation. For RLV virus, a two target model of the RNA genome was deduced in accordance with biological information while from data from the literature and our own work on the structure of the scrapie prion, considering the molecular weight obtained by application of the theory, a new model for prion replication is presented, based on a trimer molecule.

  4. Inactivation of Alicyclobacillus acidoterrestris spores in apple and orange juice concentrates by gamma irradiation.

    PubMed

    Lee, Su-Yeon; Park, Sang-Hyun; Kang, Dong-Hyun

    2014-02-01

    The objective of this study was to evaluate the effect of different concentrations of reconstituted apple and orange juice on reduction of Alicyclobacillus acidoterrestris spores by gamma irradiation. Spores of A. acidoterrestris were inoculated into three concentrations of apple (18, 36, and 72 °Brix) and orange (11, 33, and 66 °Brix) juice and subjected to five radiation doses (1, 3, 5, 7, and 10 kGy). No significant reductions (P > 0.05) in spores were observed after the 1-kGy treatment for all apple and orange concentrations. Spores in 18, 36, and 72 °Brix apple juice concentrates subjected to 10 kGy were reduced to 4.34, 3.9, and 3.84 log CFU/ml, respectively. Similar results were observed for orange juice. When 10 kGy was applied to 11 °Brix orange juice, populations of spores were reduced by 5 log CFU/ml. The reduction of spores in 33 and 66 °Brix orange juice concentrates exposed to 10-kGy gamma irradiation was 4.54 and 3.85 log CFU/ml, respectively. Juice concentration did not affect (P > 0.05) the number of surviving A. acidoterrestris spores from the same kGy treatment. Gamma irradiation treatment did not change the pH or water activity of the juice (P > 0.05). PMID:24490932

  5. Inactivation of RNA Viruses by Gamma Irradiation: A Study on Mitigating Factors.

    PubMed

    Hume, Adam J; Ames, Joshua; Rennick, Linda J; Duprex, W Paul; Marzi, Andrea; Tonkiss, John; Mühlberger, Elke

    2016-01-01

    Effective inactivation of biosafety level 4 (BSL-4) pathogens is vital in order to study these agents safely. Gamma irradiation is a commonly used method for the inactivation of BSL-4 viruses, which among other advantages, facilitates the study of inactivated yet morphologically intact virions. The reported values for susceptibility of viruses to inactivation by gamma irradiation are sometimes inconsistent, likely due to differences in experimental protocols. We analyzed the effects of common sample attributes on the inactivation of a recombinant vesicular stomatitis virus expressing the Zaire ebolavirus glycoprotein and green fluorescent protein. Using this surrogate virus, we found that sample volume and protein content of the sample modulated viral inactivation by gamma irradiation but that air volume within the sample container and the addition of external disinfectant surrounding the sample did not. These data identify several factors which alter viral susceptibility to inactivation and highlight the usefulness of lower biosafety level surrogate viruses for such studies. Our results underscore the need to validate inactivation protocols of BSL-4 pathogens using "worst-case scenario" procedures to ensure complete sample inactivation. PMID:27455307

  6. Inactivation of RNA Viruses by Gamma Irradiation: A Study on Mitigating Factors

    PubMed Central

    Hume, Adam J.; Ames, Joshua; Rennick, Linda J.; Duprex, W. Paul; Marzi, Andrea; Tonkiss, John; Mühlberger, Elke

    2016-01-01

    Effective inactivation of biosafety level 4 (BSL-4) pathogens is vital in order to study these agents safely. Gamma irradiation is a commonly used method for the inactivation of BSL-4 viruses, which among other advantages, facilitates the study of inactivated yet morphologically intact virions. The reported values for susceptibility of viruses to inactivation by gamma irradiation are sometimes inconsistent, likely due to differences in experimental protocols. We analyzed the effects of common sample attributes on the inactivation of a recombinant vesicular stomatitis virus expressing the Zaire ebolavirus glycoprotein and green fluorescent protein. Using this surrogate virus, we found that sample volume and protein content of the sample modulated viral inactivation by gamma irradiation but that air volume within the sample container and the addition of external disinfectant surrounding the sample did not. These data identify several factors which alter viral susceptibility to inactivation and highlight the usefulness of lower biosafety level surrogate viruses for such studies. Our results underscore the need to validate inactivation protocols of BSL-4 pathogens using “worst-case scenario” procedures to ensure complete sample inactivation. PMID:27455307

  7. Tube shunt coverage with gamma-irradiated cornea allograft (VisionGraft)

    PubMed Central

    Ekici, Feyzahan; Moster, Marlene R; Cvintal, Victor; Hu, Wanda D; Waisbourd, Michael

    2015-01-01

    Purpose To investigate the clinical outcomes of tube shunt coverage using sterile gamma-irradiated cornea allograft. Patients and methods The Wills Eye Hospital Glaucoma Research Center retrospectively reviewed the medical records of 165 patients who underwent glaucoma tube shunt procedures using sterile gamma-irradiated cornea allograft (VisionGraft) between December 2012 and November 2013. Demographic characteristics, type of tube shunt, and position were noted. Complications were recorded at 1 day; 1 week; 1, 3, 6, and 12 months; and on the final postoperative visit. Results One hundred and sixty-nine eyes of 165 patients were included. The mean follow-up time was 4.8±3.5 (ranging from 1 to 16) months. There was no evidence of immunological reaction, infection, or exposure in 166 eyes (98.2%). Three eyes (1.8%) experienced graft or tube exposure within the first 3 postoperative months. Two of the cases had underlying diseases: bullous pemphigoid and chronic allergic conjunctivitis. Conclusion Coverage of tube shunts using gamma-irradiated cornea allograft had a low exposure rate and was well tolerated. The graft can be stored long term at room temperature and has an excellent postoperative cosmetic appearance. PMID:25995612

  8. Characterization of modified PVDF membrane by gamma irradiation for non-potable water reuse.

    PubMed

    Lim, Seung Joo; Kim, Tak-Hyun; Shin, In Hwan

    2015-01-01

    Poly(vinylidene fluorine) (PVDF) membranes were grafted by gamma-ray irradiation and were sulfonated by sodium sulfite to modify the surface of the membranes. The characteristics of the modified PVDF membranes were evaluated by the data of Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscope (FE-SEM), the contact angle of the membrane surface and the water permeability. From the results of FT-IR, XPS and FE-SEM, it was shown that the modified membranes were successfully grafted by gamma-ray irradiation and were sulfonated. The content of oxygen and sulfur increased with the monomer concentration, while the content of fluorine sharply decreased. The pore size of the modified membranes decreased after gamma-ray irradiation. The contact angle and the water permeability showed that the hydrophilicity of the modified membranes played a role in determining the membrane performance. The feasibility study of the modified PVDF membranes for using non-potable water reuse were carried out using a laboratory-scale microfiltration system. Grey wastewater was used as the influent in the filtration unit, and permeate quality satisfied non-potable water reuse guidelines in the Republic of Korea. PMID:25812106

  9. Degradation of quinolone antibiotic, norfloxacin, in aqueous solution using gamma-ray irradiation.

    PubMed

    Sayed, Murtaza; Khan, Javed Ali; Shah, Luqman Ali; Shah, Noor S; Khan, Hasan M; Rehman, Faiza; Khan, Abdur Rahman; Khan, Asad M

    2016-07-01

    This study reports the efficiency of gamma-ray irradiation to degrade quinolone antibiotic, norfloxacin, in aqueous solution. Laboratory batch experiments were conducted to determine the "pseudo-first" order degradation kinetics of norfloxacin in the concentration ranges of 3.4-16.1 mg L(-1) by gamma-ray irradiation. The dose constant was found to be dependent on the initial concentration of norfloxacin and gamma-ray irradiation dose rate (D r). The saturation of norfloxacin sample solutions with N2, air or N2O, and the presence of tert-butanol and 2-propanol showed that (•)OH played more crucial role in the degradation of norfloxacin. The second order rate constants of (•)OH, eaq (-), and (•)H with norfloxacin were calculated to be 8.81 × 10(9), 9.54 × 10(8), and 1.10 × 10(9) M(-1) s(-1), respectively. The effects of various additives including CO3 (2-), HCO3 (-), NO3 (-), NO2 (-), and thiourea and the pH of the medium on the degradation of norfloxacin were also investigated. Norfloxacin degradation was lower in surface water and wastewater than in ultrapure water. Several degradation byproducts of norfloxacin were identified from which the possible degradation pathway was proposed. PMID:27020780

  10. Impairment of lymphocyte adhesion to cultured fibroblasts and endothelial cells by [gamma]-irradiation

    SciTech Connect

    Piela-Smith, T.H.; Aneiro, L.; Nuveen, E.; Korn, J.H. ); Aune, T. )

    1992-01-01

    A critical component of immune responsiveness is the localization of effector cells at sites of inflammatory lesions. Adhesive molecules that may play a role in this process have been described on the surfaces of both lymphocytes and connective tissue cells. Adhesive interactions of T lymphocytes with fibroblasts or endothelial cells can be inhibited by preincubation of the fibroblasts or endothelial cells with antibody to intercellular adhesion molecule 1 (CD54) or by preincubation of the T cells with antibody to lymphocyte function-associated Ag 1 (CD11a/CD18), molecules shown to be important in several other cell-cell adhesion interactions. Here the authors show that [gamma]-irradiation of human T lymphocytes impaired their ability to adhere to both fibroblasts and endothelial cells. This impairment was not associated with a loss of cell viability or of cell surface lymphocyte function-associated Ag 1 expression. [gamma]-Irradiation of T cells is known to result in the activation of ADP-ribosyltransferase, an enzyme involved in DNA strand-break repair, causing subsequent depletion of cellular nicotinamide adenine dinucleotide (NAD) pools by increasing NAD consumption for poly(ADP-ribose) formation. Preincubation of T cells with either nicotinamide or 3-aminobenzamide, both known inhibitors of ADP-ribosyltransferase, completely reversed the suppressive effects of [gamma]-irradiation on T cell adhesion. The maintenance of adhesion was accompanied by inhibition of irradiation-induced depletion of cellular NAD. These experiments suggest that the impairment of cellular immune function after irradiation in vivo may be caused, in part, by defective T cell emigration and localization at inflammatory sites. 44 refs., 5 figs., 3 tabs.

  11. Modification of Structural and Luminescence Properties of Graphene Quantum Dots by Gamma Irradiation and Their Application in a Photodynamic Therapy.

    PubMed

    Jovanović, Svetlana P; Syrgiannis, Zois; Marković, Zoran M; Bonasera, Aurelio; Kepić, Dejan P; Budimir, Milica D; Milivojević, Dušan D; Spasojević, Vuk D; Dramićanin, Miroslav D; Pavlović, Vladimir B; Todorović Marković, Biljana M

    2015-11-25

    Herein, the ability of gamma irradiation to enhance the photoluminescence properties of graphene quantum dots (GQDs) was investigated. Different doses of γ-irradiation were used on GQDs to examine the way in which their structure and optical properties can be affected. The photoluminescence quantum yield was increased six times for the GQDs irradiated with high doses compared to the nonirradiated material. Both photoluminescence lifetime and values of optical band gap were increased with the dose of applied gamma irradiation. In addition, the exploitation of the gamma-irradiated GQDs as photosensitizers was examined by monitoring the production of singlet oxygen under UV illumination. The main outcome was that the GQDs irradiated at lower doses act as better photoproducers than the ones irradiated at higher doses. These results corroborate that the structural changes caused by gamma irradiation have a direct impact on GQD ability to produce singlet oxygen and their photostability under prolonged UV illumination. This makes low-dose irradiated GQDs promising candidates for photodynamic therapy. PMID:26540316

  12. Detection of DNA strand breaks in gamma-irradiated lymphocytes using surface plasmon resonance.

    PubMed

    Zhang, Xiao-hong; Lou, Zhi-chao; Wang, Ai-lian; Zhang, Hai-qian

    2013-10-01

    Surface plasmon resonance (SPR) is a sensitive, rapid, simple and low cost method for detection of biological molecules. In this study, SPR technology with alkaline phosphatase as a probe was utilized to measure DNA strand breaks induced by (60)Co gamma rays. The doses were from 0.01-10 Gy with a dose rate of 0.1 Gy/min. The results demonstrate that the SPR technology can be used to estimate strand breaks of calf thymus DNA. SPR signals of the calf thymus DNA samples increased with increasing gamma ray doses and the relationship of y = sqrt (3297x + 582.6) (r = 0.99) between the SPR signal and gamma dose was obtained. Estimation of DNA strand breaks in irradiated lymphocytes by SPR also demonstrated an increase in SPR signal with increasing dose and the exponential relationship of y = 169.43 × (1 - exp(-0.89x)) (r = 0.93) was obtained. The initial yield of the SPR signal is about 150.79 mdeg · Gy(-1) and compared to the sensitivity of 0.05 Gy achieved by the neutral single cell gel electrophoresis (SCGE), the SPR-based assay of DNA strand breaks was found to be more sensitive (0.02 Gy). We therefore propose that SPR technology with alkaline phosphatase as the probe is a sensitive, simple and quick method for detection of DNA strand breaks in gamma-irradiated lymphocytes. PMID:24010534

  13. Radiation-induced degradation of cyclohexanebutyric acid in aqueous solutions by gamma ray irradiation

    NASA Astrophysics Data System (ADS)

    Jia, Wenbao; He, Yanquan; Ling, Yongsheng; Hei, Daqian; Shan, Qing; Zhang, Yan; Li, Jiatong

    2015-04-01

    The radiation-induced degradation of cyclohexanebutyric acid under gamma ray irradiation was investigated. Degradation experiments were performed with 100 mL sealed Pyrex glass vessels loaded with 80 mL of cyclohexanebutyric acid solutions at various initial concentrations of 10, 20, and 40 mg L-1. The absorbed doses were controlled at 0, 0.65, 1.95, 3.25, 6.5, 9.75, and 13 kGy. The results showed that gamma ray irradiation could effectively degrade cyclohexanebutyric acid in aqueous solutions. The removal rate of cyclohexanebutyric acid increased significantly with the increase of absorbed dose and the decrease of its initial concentration. At the same time, the removal of chemical oxygen demand (COD) was as effective as that of cyclohexanebutyric acid. The kinetic studies showed that the degradation of cyclohexanebutyric acid followed pseudo first-order reaction. Above all, the proposed mechanism obtained when NaNO2, NaNO3 and tert-butanol were added showed that the •OH radical played a major role in the gamma degradation process of cyclohexanebutyric acid, while •H and eaq- played a minor role in the gamma degradation process. The degradation products were identified by Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass spectrometry (GC/MS) during cyclohexanebutyric acid degradation.

  14. Inactivation of a Human Norovirus Surrogate, Human Norovirus Virus-Like Particles, and Vesicular Stomatitis Virus by Gamma Irradiation

    PubMed Central

    Feng, Kurtis; Divers, Erin; Ma, Yuanmei; Li, Jianrong

    2011-01-01

    Gamma irradiation is a nonthermal processing technology that has been used for the preservation of a variety of food products. This technology has been shown to effectively inactivate bacterial pathogens. Currently, the FDA has approved doses of up to 4.0 kGy to control food-borne pathogens in fresh iceberg lettuce and spinach. However, whether this dose range effectively inactivates food-borne viruses is less understood. We have performed a systematic study on the inactivation of a human norovirus surrogate (murine norovirus 1 [MNV-1]), human norovirus virus-like particles (VLPs), and vesicular stomatitis virus (VSV) by gamma irradiation. We demonstrated that MNV-1 and human norovirus VLPs were resistant to gamma irradiation. For MNV-1, only a 1.7- to 2.4-log virus reduction in fresh produce at the dose of 5.6 kGy was observed. However, VSV was more susceptible to gamma irradiation, and a 3.3-log virus reduction at a dose of 5.6 kGy in Dulbecco's modified Eagle medium (DMEM) was achieved. We further demonstrated that gamma irradiation disrupted virion structure and degraded viral proteins and genomic RNA, which resulted in virus inactivation. Using human norovirus VLPs as a model, we provide the first evidence that the capsid of human norovirus has stability similar to that of MNV-1 after exposure to gamma irradiation. Overall, our results suggest that viruses are much more resistant to irradiation than bacterial pathogens. Although gamma irradiation used to eliminate the virus contaminants in fresh produce by the FDA-approved irradiation dose limits seems impractical, this technology may be practical to inactivate viruses for other purposes, such as sterilization of medical equipment. PMID:21441330

  15. Effect of gamma irradiation and its convergent treatment for control of postharvest Botrytis cinerea of cut roses

    NASA Astrophysics Data System (ADS)

    Chu, Eun-Hee; Shin, Eun-Jung; Park, Hae-Jun; Jeong, Rae-Dong

    2015-10-01

    Postharvest diseases cause considerable losses to harvested crops. Among them, gray mold (Botrytis cinerea) is a major problem of exporting to cut rose flowers into Korea. Irradiation treatment is an alternative to phytosanitary purposes and a useful nonchemical approach to the control of postharvest diseases. Gamma irradiation was evaluated for its in vitro and in vivo antifungal activity against B. cinerea on cut rose varieties, 'Shooting Star' and 'Babe'. The irradiating dose required to reduce the population by 90%, D10, was 0.99 kGy. Gamma irradiation showed complete inhibition of spore germination and mycelial growth of B. cinerea, especially 4.0 kGy in vitro. Antifungal activity of gamma irradiation on rose B. cinerea is a dose-dependent manner. A significant phytotoxicity such as bent neck in cut rose quality was shown from gamma irradiation at over 0.4 kGy (p<0.05) in both varieties. Although there is no significant difference in both varieties for fresh weight, in the case of flower rate, 'Babe' shows more sensitivity than 'Shooting Star'. In vivo assays demonstrated that established doses in in vitro, over 4 kGy, could completely inactive fungal pathogens, but such high doses can cause severe flowers damage. Thus, to eliminate negative impact on their quality, gamma irradiation was evaluated at lower doses in combination with an eco-friendly chemical, sodium dichloroisocyanurate (NaDCC) to examine the inhibition of B. cinerea. Intriguingly, only the combined treatment with 0.2 kGy of gamma irradiation and 70 ppm of NaDCC exhibited significant synergistic antifungal activity against blue mold decay in both varieties. Together, these results suggest that a synergistic effect of the combined treatment with gamma irradiation and NaDCC can be efficiently used to control the postharvest diseases in cut rose flowers, and will provide a promising technology for horticulture products for exportation.

  16. GGT (Gamma-Glutamyl Transferase) Test

    MedlinePlus

    ... diseases , but only ALP will be elevated in bone disease. Therefore, if the GGT level is normal in ... cause of the elevated ALP is most likely bone disease. The GGT test is sometimes used to help ...

  17. Aliphatic glucosinolate synthesis and gene expression changes in gamma-irradiated cabbage.

    PubMed

    Banerjee, Aparajita; Rai, Archana N; Penna, Suprasanna; Variyar, Prasad S

    2016-10-15

    Glucosinolates, found principally in the plant order Brassicales, are modulated by different post-harvest processing operations. Among these, ionizing radiation, a non-thermal process, has gained considerable interest for ensuring food security and safety. In gamma-irradiated cabbage, enhanced sinigrin, a major glucosinolate, has been reported. However, the molecular basis of such a radiation induced effect is not known. Herein, the effect of radiation processing on the expression of glucosinolate biosynthetic genes was investigated. RT-PCR based expression analysis of seven glucosinolate biosynthetic pathway genes (MYB28, CYP79F1, CYP83A1, SUR1, UGT74B1, SOT18 and TGG1) showed that CYP83A1, MYB28, UGT74B1, CYP79F1 and SUR1 were up-regulated in irradiated cabbage. The content of jasmonates, signalling molecules involved in glucosinolate induction was, however, unaffected in irradiated cabbage suggesting their non-involvement in glucosinolate induction during radiation processing. This is the first report on the effect of gamma irradiation on the expression of glucosinolate biosynthetic genes in vegetables. PMID:27173540

  18. Neural network modelling of dose distribution and dose uniformity in the Tunisian Gamma Irradiator.

    PubMed

    Manai, K; Trabelsi, A

    2013-11-01

    In this paper an approach to model dose distributions, isodose curves and dose uniformity in the Tunisian Gamma Irradiation Facility using artificial neural networks (ANNs) are described. For this purpose, measurements were carried out at different points in the irradiation cell using polymethyl methacrylate dosemeters. The calculated and experimental results are compared and good agreement is observed showing that ANNs can be used as an efficient tool for modelling dose distribution in the gamma irradiation facility. Monte Carlo (MC) photon-transport simulation techniques have been used to evaluate the spatial dose distribution for extensive benchmarking. ANN approach appears to be a significant advance over the time-consuming MC or the less accurate regression methods for dose mapping. As a second application, a detailed dose mapping using two different product densities was carried out. The minimum and maximum dose locations and dose uniformity as a function of the irradiated volume for each product density were determined. Good agreement between ANN modelling and experimental results was achieved. PMID:23633649

  19. Effect of gamma irradiation on cell lysis and polyhydroxyalkanoate produced by Bacillus flexus

    NASA Astrophysics Data System (ADS)

    Divyashree, M. S.; Shamala, T. R.

    2009-02-01

    Bacillus flexus cultivated on sucrose and sucrose with plant oil such as castor oil produced polyhydroxybutyrate (PHB), a homopolymer of polyhydroxyalkanoate (PHA) and PHA copolymer (containing hydroxybutyrate and hexanoate), respectively. Gamma irradiation of these cells (5-40 kGy) resulted in cell damage and aided in the isolation of 45% and 54% PHA on biomass weight, correspondingly. Molecular weight of PHB increased from 1.5×10 5 to 1.9×10 5 after irradiation (10 kGy), with marginal increase of tensile strength from 18 to 20 MPa. At the same irradiation dosage, PHA copolymer showed higher molecular weight increase from 1.7×10 5 to 2.3×10 5 and tensile strength from 20 to 35 MPa. GC, GC-MS, FTIR and 1H NMR were used for the characterization of PHA. Gamma irradiation seems to be a novel technique, to induce cross-linking and molecular weight increase of PHA copolymer and aid in easy extractability of intracellular PHA, simultaneously.

  20. Recent reactor testing and experience with gamma thermometers

    SciTech Connect

    Waring, J.P.; Smith, R.D.

    1983-02-01

    Recent experience with gamma thermometers for light water reactors has primarily been in the Framatome reactors operated by Electricite de France. Other recent testing has taken place at Oak Ridge National Laboratory and the Otto Hahn ship reactor. Earlier experience with gamma thermometers was in heavy water reactors at Savannah River and Halden. This paper presents recent data from the light water reactor (LWR) programs. The principles of design and operation of the Radcal gamma thermometer were presented in ''Gamma Thermometer Developments for Light Water Reactors'', Leyse and Smith/sup 1/. Observations from LWRs confirm the earlier experience from heavy water reactors that the gamma thermometer units give signals which are proportional to the power of surrounding fuel rods and virtually independent of exposure, surrounding poison and other conditions which affect signals of neutron sensitive devices. After 200 sensor-years in EdF reactors, there has been no change in the sensitivity of the devices. Nonetheless, the Radcal units can be recalibrated in-reactor by the introduction of electrical heating via a heater cable imbedded in the device. Algorithms and signal processing software have been developed to interpret and display the gamma thermometer signals. The results of this processing are illustrated here.

  1. Effects of gamma-irradiation on embryonic development and nucleic acids in trigeminal neurons.

    PubMed

    Savy, C; Tamboise, E

    1980-02-01

    Pregnant rats were exposed to absorbed doses of 0.5, 1, 2, and 4 Gy of 60Co-gamma rays either on day 8 or on day 12 p.c.. The embryos were collected on day 18 p.c.. Irradiations both on day 8 and 12 p.c. result in a dose dependent decrement of weight. The effect is larger for irradiation on day 8 p.c.. Caryometric studies of the neurons in the trigeminal ganglion show, on the other hand, that the reduction of nuclear sizes in this tissue is more substantial for an irradiation on day 12 p.c. when the ganglion is in a stage of formation. Cytophotometric determinations of the Feulgen-DNA content and determination of the RNA content by staining and chromic gallocyanin in combination with ribinuclease digestion lead to the conclusion that the irradiation induces no significant hyperploidy and that the irradiated neurons have the nuclear RNA content that is normal at this stage of gestation. This applies both to the irradiations on day 8 and on day 12 p.c. PMID:6154302

  2. Effect of gamma irradiation on dielectric properties of manganese zinc nanoferrites

    SciTech Connect

    Angadi, V. Jagadeesha Rudraswamy, B.; Melagiriyappa, E.; Somashekarappa, H. M.; Nagabhushana, H.

    2014-04-24

    Naocrystalline ferrites Mn{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (x = 0.00, 0.25, 0.50, 0.75 and 1.00) were prepared by combustion method. The samples were characterized by XRD technique. The dielectric measurements were carried out in the frequency range 40 Hz to 100 MHz at room temperature. All the measurements were performed before and after gamma {sup 60}Co irradiation. The X-ray diffraction patterns revealed the formation of nanocrystalline and single-phase spinel structure. The lattice parameter decrease with zinc ion concentration and increased after the irradiation due to ferric ions of smaller radius converted to ferrous ions of larger radius. The dielectric behavior is attributed to the Maxwell-Wagner type interfacial polarization. The dielctric contant, dielectric loss and AC conductivity enhanced after the irradiation.

  3. Meloxicam, a cyclooxygenase 2 inhibitor, supports hematopoietic recovery in gamma-irradiated mice.

    PubMed

    Hofer, M; Pospísil, M; Znojil, V; Holá, J; Vacek, A; Weiterová, L; Streitová, D; Kozubík, A

    2006-09-01

    Meloxicam, a selective inhibitor of cyclooxygenase 2, a nonsteroidal anti-inflammatory drug with an improved side-effects profile in terms of gastrointestinal toxicity, has been found to stimulate hematopoiesis in whole-body gamma-irradiated mice. A distinct corroboration of this positive action of meloxicam is an enhancement of the recovery of hematopoietic progenitor cells committed to granulocyte-macrophage and erythroid development, which has been demonstrated in sublethally irradiated animals treated with meloxicam at a dose of 20 mg/kg administered intraperitoneally either singly 1 h before irradiation or repeatedly after radiation exposure. The results suggest that meloxicam can be added to the list of biological response modifiers that can be used in the treatment of hematopoietic damage induced by ionizing radiation. PMID:16953674

  4. Electron trapping in rad-hard RCA IC's irradiated with electrons and gamma rays

    NASA Technical Reports Server (NTRS)

    Danchenko, V.; Brashears, S. S.; Fang, P. H.

    1984-01-01

    Enhanced electron trapping has been observed in n-channels of rad-hard CMOS devices due to electron and gamma-ray irradiation. Room-temperature annealing results in a positive shift in the threshold potential far beyond its initial value. The slope of the annealing curve immediately after irradiation was found to depend strongly on the gate bias applied during irradiation. Some dependence was also observed on the electron dose rate. No clear dependence on energy and shielding over a delidded device was observed. The threshold shift is probably due to electron trapping at the radiation-induced interface states and tunneling of electrons through the oxide-silicon energy barrier to fill the radiation-induced electron traps. A mathematical analysis, based on two parallel annealing kinetics, hole annealing and electron trapping, is applied to the data for various electron dose rates.

  5. Studies of dielectric properties of mammalian tissues after gamma-irradiation

    NASA Astrophysics Data System (ADS)

    Abd El-Salaam, S.; Sallam, S.; Talaat, M. S.

    1996-12-01

    In vitro dielectric measurements (relative permeability and conductivity) of excised liver, kidney, cardiac muscle, spleen and eye of rabbits, were carried out at frequencies of 1-250 kHz and at room temperature. These were done before, immediately and 7 days after gamma irradiation at doses 1-5 Gy. The obtained results indicated significant increase in both relative permitivity and conductivity of tissues at higher doses immediately after irradiation. After 7 days, the changes showed some recovery, more obvious at lower doses. These changes in dielectric properties, after irradiation, may reflect the particular biological organization of each tissue and some mechanisms of radiation damage to these tissues particular to cell membrane, counter-ion polarization associated with intrinsic membrane charges and conductive transport in extracellular medium. This may help to elucidate the mechanisms of variation of dielectric properties of different tissues under the effect of radiation.

  6. TL and ESR based identification of gamma-irradiated frozen fish using different hydrolysis techniques

    NASA Astrophysics Data System (ADS)

    Ahn, Jae-Jun; Akram, Kashif; Shahbaz, Hafiz Muhammad; Kwon, Joong-Ho

    2014-12-01

    Frozen fish fillets (walleye Pollack and Japanese Spanish mackerel) were selected as samples for irradiation (0-10 kGy) detection trials using different hydrolysis methods. Photostimulated luminescence (PSL)-based screening analysis for gamma-irradiated frozen fillets showed low sensitivity due to limited silicate mineral contents on the samples. Same limitations were found in the thermoluminescence (TL) analysis on mineral samples isolated by density separation method. However, acid (HCl) and alkali (KOH) hydrolysis methods were effective in getting enough minerals to carry out TL analysis, which was reconfirmed through the normalization step by calculating the TL ratios (TL1/TL2). For improved electron spin resonance (ESR) analysis, alkali and enzyme (alcalase) hydrolysis methods were compared in separating minute-bone fractions. The enzymatic method provided more clear radiation-specific hydroxyapatite radicals than that of the alkaline method. Different hydrolysis methods could extend the application of TL and ESR techniques in identifying the irradiation history of frozen fish fillets.

  7. dl-. cap alpha. -tocopheryl succinate enhances the effect of. gamma. -irradiation on neuroblastoma cells in culture

    SciTech Connect

    Sarri, A.; Prasad, K.N.

    1984-01-01

    The effect of dl-..cap alpha..-tocopheryl (vitamin E) succinate in modifying the radiation response of mouse neuroblastoma (NBP/sub 2/) and mouse fibroblast (L-cells) cells in culture was studied on the criterion of growth inhibition (due to cell death and inhibition of cell division). Results show that vitamin E succinate markedly enhanced the effect of /sub 60/CO-..gamma..-irradiation on NB cells, but it did not significantly modify the effect of irradiation on mouse fibroblasts. Sodium succinate plus ethanol (0.25% final concentration) did not modify the radiation response of NB cells or fibroblasts. Butylated hydroxyanisole, a lipid soluble antioxidant, also enhanced the effect of irradiation on NB cells, indicating that the effect of vitamin E in modifying the radiation response may be mediated, in part, by antioxidation mechanisms.

  8. The design of a gamma-ray irradiation plant—shanghai irradiation center

    NASA Astrophysics Data System (ADS)

    Fugen, Chen; Xiangrong, Xue; Zewu, Yao

    Shanghai Irradiation Center, situated in western suburb of Shanghai, was completed in March, 1986. The intensity of Co 60 is 177 KCuries at present, and untimate loading will be 500 K Curies. The Center is designed mainly for food radiation preservation and sterilization of medical devices and tools. Its processing ability is 10 T/hr for potatoes.

  9. Changes in compartments of hemospoietic and stromal marrow progenitor cells after continuous low dose gamma-irradiation

    NASA Astrophysics Data System (ADS)

    Domaratskaya, E.; Starostin, V.

    The low dose continuous gamma-irradiation chosen corresponded with that affected the organisms onboard a spacecraft (Mitrikas, Tsetlin, 2000). F1 (CBAxC57Bl/6) male and female mice were used at 3 4 months of age. Experimental mice were- irradiated during 10 days to a total dose of 15 mGy (Co60 gamma-sources, mean dose rate of 1.5-2.0 mGy/day). Another group of intact mice served as control. Younger and advanced hemopoietic progenitors measured at day 11 (i.e. CFU -S-11) and day 7 (i.e. CFU-S-7), respectively, after transplantation of test donor cells were assayed by the method of Till and McCulloch (1961). Stromal changes were evaluated by estimation of in vitro fibroblastic colony-forming units (CFU -F ) content and by the ability of ectopically grafted (under renal capsule) stroma to regenerate the new bone marrow organ. CFU-S-11 number increased of 40% as compared with control and almost 2-fold higher than that of CFU-S-7. The CFU-F content increased almost of 3-fold. Size of ectopic marrow transplants was estimated at day 70 following grafting by counting myelokariocyte and CFU -S number that repopulated the newly formed bone marrow organ. It was found more than 2-fold increase of myelokariocytes in transplants produced by marrow stroma of irradiated donors. CFU -S contents in transplants increased strikingly in comparison to control level. CFU-S-7 and CFU-S-11 increased of 7.5- and of 3.7-fold, respectively, i.e. the rate of advanced CFU - S predominated. It should be noted a good correlation between number of stromal progenitor cells (CFU-F) and ectopic transplant sizes evaluated as myelokaryocyte counts when irradiated donors used. In the same time, if sizes of transplants was measured as CFU-S-7 and CFU - S-11 numbers, their increases were more pronounced. Therefore, continuous low dose gamma- irradiation augments significantly both hemopoietic and stromal progenitor cell number in bone marrow. Additionally, the ratio of distinct CFU -S subpopulations

  10. Test procedure for Hasselblad field irradiance

    NASA Technical Reports Server (NTRS)

    George, C.

    1975-01-01

    The procedure is defined for determining the uniformity of film plane illumination (field irradiance) of the Hasselblad cameras. The data source shall consist of photographs, with X-Y scans being taken for indication only. The accuracy requirement is 2.0%.

  11. Gamma-glutamyl transpeptidase (GGT) blood test

    MedlinePlus

    ... RA, Pincus MR, eds. Henry's Clinical Diagnosis and Management by Laboratory Methods . 22nd ed. Philadelphia, PA: Elsevier Saunders; 2011:chap 21. Pratt DS. Liver chemistry and function tests. In: Feldman M, Friedman LS, Brandt LJ, ... 10th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap ...

  12. Fuel Accident Condition Simulator (FACS) Furnace for Post-Irradiation Heating Tests of VHTR Fuel Compacts

    SciTech Connect

    Paul A Demkowicz; Paul Demkowicz; David V Laug

    2010-10-01

    Abstract –Fuel irradiation testing and post-irradiation examination are currently in progress as part of the Next Generation Nuclear Plant Fuels Development and Qualification Program. The PIE campaign will include extensive accident testing of irradiated very high temperature reactor fuel compacts to verify fission product retention characteristics at high temperatures. This work will be carried out at both the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory, beginning with accident tests on irradiated fuel from the AGR-1 experiment in 2010. A new furnace system has been designed, built, and tested at INL to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000°C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, Eu, and I) and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator (FACS) furnace system, as well as preliminary system calibration results.

  13. Antimony leaching in plastics from waste electrical and electronic equipment (WEEE) with various acids and gamma irradiation

    SciTech Connect

    Tostar, Sandra; Stenvall, Erik; Boldizar, Antal; Foreman, Mark R. St. J.

    2013-06-15

    Highlights: • We have proposed a method to recover antimony from electronic plastics. • The most efficient acid solution was sodium hydrogen tartrate in dimethyl sulfoxide. • Gamma irradiation did not influence the antimony leaching ability. - Abstract: There has been a recent interest in antimony since the availability in readily mined areas is decreasing compared to the amounts used. It is important in many applications such as flame retardants and in the production of polyester, which can trigger an investigation of the leachability of antimony from plastics using different acids. In this paper, different types of acids are tested for their ability to leach antimony from a discarded computer housing, made of poly(acrylonitrile butadiene styrene), which is a common plastic type used in electrical and electronic equipment. The acid solutions included sodium hydrogen tartrate (0.5 M) dissolved in either dimethyl sulfoxide or water (at ca. 23 °C and heated to ca. 105 °C). The metal content after leaching was determined by inductively coupled plasma optical emission spectroscopy. The most efficient leaching medium was the heated solution of sodium hydrogen tartrate in dimethyl sulfoxide, which leached almost half of the antimony from the poly(acrylonitrile butadiene styrene). Gamma irradiation, which is proposed to improve the mechanical properties in plastics, was used here to investigate the influence of antimony leaching ability. No significant change in the amount of leached antimony could be observed.

  14. Pseudoloma neurophilia Infection Combined with Gamma Irradiation Causes Increased Mortality in Adult Zebrafish (Danio rerio) Compared to Infection or Irradiation Alone: New Implications for Studies Involving Immunosuppression.

    PubMed

    Spagnoli, Sean T; Sanders, Justin L; Watral, Virginia; Kent, Michael L

    2016-07-01

    Gamma irradiation is commonly used as a bone marrow suppressant in studies of the immune system and hematopoiesis, most commonly in mammals. With the rising utility and popularity of the zebrafish (Danio rerio), gamma irradiation is being used for similar studies in this species. Pseudoloma neurophilia, a microparasite and common contaminant of zebrafish facilities, generally produces subclinical disease. However, like other microsporidia, P. neurophilia is a disease of opportunity and can produce florid infections with high morbidity and mortality, secondary to stress or immune suppression. In this study, we exposed zebrafish to combinations of P. neurophilia infection and gamma irradiation to explore the interaction between this immunosuppressive experimental modality and a normally subclinical infection. Zebrafish infected with P. neurophilia and exposed to gamma irradiation exhibited higher mortality, increased parasite loads, and increased incidences of myositis and extraneural parasite infections than fish exposed either to P. neurophilia or gamma irradiation alone. This experiment highlights the devastating effects of opportunistic diseases on immunosuppressed individuals and should caution researchers utilizing immunosuppressive modalities to carefully monitor their stocks to ensure that their experimental animals are not infected. PMID:27123755

  15. The measurement of gamma heating in a fusion blanket test assembly

    NASA Astrophysics Data System (ADS)

    Chiu, H. K.; Bennett, E. F.; Micklich, B. J.

    Determining the distribution of gamma heating in fusion test assemblies will help guide the construction and operation of future experiments. Currently the dominant technique for spatial characterization of heating is the wide dispersal of thin film TLD's, which are limited to measurement of the total neutron + gamma dose. Heating is measured using calibrated proportional counters, which allows for the rejection of fast pulse rise events characteristic of ionizations produced by neutron induced atomic recoils. A coupled calculational and experimental program designed to demonstrate this capability was initiated at ANL. An irradiation assembly composed of graphite filled 5 x 5 x 61 cm Mg sleeves in cubic geometry was constructed. This assembly was then irradiated in turn with Co-60 gammas and 14.8 MeV neutrons produced by a D-T neutron generator in two sets of measurements with the proportional counter occupying various positions in the central channel of the assembly. Calculation of the expected dose in the assembly due to the sources at the positions of interest were made. These calculations first generated the neutral flux profile in the assembly with either ANISN or MCNP depending on the degree of detail used in the modelling of the counter. The profile is then fed into a charged particle generation model to obtain the charged particle profiles, hence energy deposition in the assembly. A comparison was made between these calculations of the energy deposition and measured energy deposition in the assembly. It is hoped that by understanding this comparison a clear picture of gamma heating in a mixed gamma and neutron environment will be obtained.

  16. Spectral properties and shielding behavior of gamma irradiated MoO3-doped silicophosphate glasses

    NASA Astrophysics Data System (ADS)

    Hamdy, Y. M.; Marzouk, M. A.; ElBatal, H. A.

    2013-11-01

    Combined optical and infrared absorption spectra of prepared molybdenum ions in sodium silicophosphate host glasses were investigated before and after gamma irradiation with a dose of 8 Mrad (8×104 Gy). The undoped base sodium silicophosphate glass reveals strong charge transfer ultraviolet absorption but with no visible bands. This strong UV absorption is related to the presence of contaminated trace iron impurities (mainly Fe3+ ions) within the raw materials used for the preparation of this host glass. The MoO3 doped glasses exhibit extra characteristic absorption bands due to the presence of molybdenum ions in three possible valence states, the trivalent, pentavalent and hexavalent forms. Gamma irradiation of the base undoped glass increases the extension of optical absorption within the UV spectrum and produces an extra broad visible band centered at 520 nm. Such radiation-induced spectra are interpreted by assuming the formation of new induced color centers through the absorption of released electrons and formed positive holes during the irradiation process. Also, the possible formation of induced centers through photochemical transformation of some Fe2+ ions to Fe3+ ions by accepting positive holes. The presence of molybdenum ions is assumed to compete with the suggested irradiation reactions by capturing electrons and positive holes during the irradiation process. Infrared absorption spectra of the undoped and MoO3-doped glasses reveal broad IR vibrational bands which are attributed to the presence of combined characteristic vibrational IR modes due to main phosphate and partner silicate groups. The addition of MoO3 (0.5-1.5%) as dopant level causes no changes in the number and position of the main characteristic absorption bands. Gamma irradiation did not cause any marked changes in the IR spectra and the maintainance of the same main IR bands due to the stability of the network containing dual compact two glass-formers units and the presence of molybdenum

  17. Stabilization of gamma-irradiated poly(vinyl chloride) by epoxy compounds. II. Production of hydroperoxides in gamma-irradiated PVC-stabilizer mixtures

    SciTech Connect

    Lerke, I., Szymanski, W.

    1983-01-01

    The concentration of hydroperoxides,produced in the process of radiolysis, was studied in ..gamma..-irradiated PVC samples with 4% admixture of four epoxy stabilizers: diglycidyl ether of 2.2-bis(4-hydroxy-3-methyl phenyl)propane (I), styrene oxide (1,2-epoxy ethyl benzene) (IV), epoxidized ricinus oil (VI), and epoxidized soybean oil (Drapex 6.8) (VII). The results indicate that the process of radiation oxidation occurs in two stages. Only the stabilizers with benzene ring demonstrate the antioxidative action. The stabilizers VI and VII do not act as the antioxidants, and, moreover, as a consequence of their plasticizing properties, they facilitate the penetration of the oxygen to polymer. The epoxy groups have no influence upon the oxidation process, in the case of compounds VI and VII.

  18. Design and Status of RERTR Irradiation Tests in the Advanced Test Reactor

    SciTech Connect

    Daniel M. Wachs; Richard G. Ambrosek; Gray Chang; Mitchell K. Meyer

    2006-10-01

    Irradiation testing of U-Mo based fuels is the central component of the Reduced Enrichment for Research and Test Reactors (RERTR) program fuel qualification plan. Several RERTR tests have recently been completed or are planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory in Idaho Falls, ID. Four mini-plate experiments in various stages of completion are described in detail, including the irradiation test design, objectives, and irradiation conditions. Observations made during and after the in-reactor RERTR-7A experiment breach are summarized. The irradiation experiment design and planned irradiation conditions for full-size plate test are described. Progress toward element testing will be reviewed.

  19. Korean space food development: Ready-to-eat Kimchi, a traditional Korean fermented vegetable, sterilized with high-dose gamma irradiation

    NASA Astrophysics Data System (ADS)

    Song, Beom-Seok; Park, Jin-Gyu; Park, Jae-Nam; Han, In-Jun; Kim, Jae-Hun; Choi, Jong-Il; Byun, Myung-Woo; Lee, Ju-Woon

    2009-07-01

    Addition of calcium lactate and vitamin C, a mild heating, deep-freezing, and gamma irradiation at 25 kGy were conducted to prepare Kimchi as a ready-to-eat space food. It was confirmed that the space food was sterilized by an irradiation at 25 kGy through incubation at 37 °C for 30 days. The hardness of the Space Kimchi (SK) was lower than the untreated Kimchi (CON), but higher than the irradiated Kimchi (IR). Also, this result was supported by the scanning electron microscopic observation. Sensory attributes of the SK were similar to CON, and maintained during preservation at 35 °C for 30 days. According to the Ames test, Kimchi sterilized with a high-dose irradiation exerted no mutagenic activity in the bacterial strains of Salmonella typhimurium. And, the SK was certificated for use in space flight conditions during 30 days by the Russian Institute of Biomedical Problems.

  20. Effect of cumulated dose on hydrogen emission from polyethylene irradiated under oxidative atmosphere using gamma rays and ion beams

    NASA Astrophysics Data System (ADS)

    Ferry, M.; Pellizzi, E.; Boughattas, I.; Fromentin, E.; Dauvois, V.; de Combarieu, G.; Coignet, P.; Cochin, F.; Ngono-Ravache, Y.; Balanzat, E.; Esnouf, S.

    2016-01-01

    This work reports the effect of very high doses, up to 10 MGy, on the H2 emission from high density polyethylene (HDPE) irradiated with gamma rays and ion beams, in the presence of oxygen. This was obtained through a two-step procedure. First, HDPE films were pre-aged, at different doses, using either gamma rays or ion beams. In the second step, the pre-aged samples were irradiated in closed glass ampoules for gas quantification, using the same beam type as for pre-ageing. The hydrogen emission rate decreases when dose increases for both gamma rays and ion beams. However, the decreasing rate appears higher under gamma rays than under ion beam irradiations and this is assigned to a lesser oxidation level under the latter. Herein, we show the effectiveness of the radiation-induced defects scavenging effect under oxidative atmosphere, under low and high excitation densities.

  1. Dosimetry of gamma chamber blood irradiator using PAGAT gel dosimeter and Monte Carlo simulations.

    PubMed

    Mohammadyari, Parvin; Zehtabian, Mehdi; Sina, Sedigheh; Tavasoli, Ali Reza; Faghihi, Reza

    2014-01-01

    Currently, the use of blood irradiation for inactivating pathogenic microbes in infected blood products and preventing graft-versus-host disease (GVHD) in immune suppressed patients is greater than ever before. In these systems, dose distribution and uniformity are two important concepts that should be checked. In this study, dosimetry of the gamma chamber blood irradiator model Gammacell 3000 Elan was performed by several dosimeter methods including thermoluminescence dosimeters (TLD), PAGAT gel dosimetry, and Monte Carlo simulations using MCNP4C code. The gel dosimeter was put inside a glass phantom and the TL dosimeters were placed on its surface, and the phantom was then irradiated for 5 min and 27 sec. The dose values at each point inside the vials were obtained from the magnetic resonance imaging of the phantom. For Monte Carlo simulations, all components of the irradiator were simulated and the dose values in a fine cubical lattice were calculated using tally F6. This study shows that PAGAT gel dosimetry results are in close agreement with the results of TL dosimetry, Monte Carlo simulations, and the results given by the vendor, and the percentage difference between the different methods is less than 4% at different points inside the phantom. According to the results obtained in this study, PAGAT gel dosimetry is a reliable method for dosimetry of the blood irradiator. The major advantage of this kind of dosimetry is that it is capable of 3D dose calculation. PMID:24423829

  2. Effects of gamma irradiation on different stages of mealybug Dysmicoccus neobrevipes (Hemiptera: Pseudococcidae)

    NASA Astrophysics Data System (ADS)

    The, Doan Thi; Khanh, Nguyen Thuy; Lang, Vo Thi Kim; Van Chung, Cao; An, Tran Thi Thien; Thi, Nguyen Hoang Hanh

    2012-01-01

    Utilization of phytosanitary irradiation as a potential treatment to disinfest agricultural commodities in trade has expanded rapidly in the recent years. Cobalt-60 gamma ray target doses of 100, 150, 200 and 250 Gy were used to irradiate immatures and adults of Dysmicoccus neobrevipes (Beardsley) (Hemiptera: Pseudococcidae) infesting dragon fruits to find the most tolerant stage and the most optimal dose range for quarantine treatment. In general, irradiation affected significantly all life stages of D. neobrevipes mortality and adult reproduction. The pattern of tolerance to irradiation in D. neobrevipes was 1st instars<2nd instars<3rd instarsirradiation, predicted doses for 100% mortality of each different development stage in the above mentioned pattern were 224.6, 241.3, 330.9 and 581.5 Gy, respectively. No survived female adult produced offspring at 200 and 250 Gy. Dose range between 200 and 250 Gy could be efficient to prevent the reproduction of this mealybug.

  3. Effect of gamma irradiation and cooking on cowpea bean grains ( Vigna unguiculata L. Walp)

    NASA Astrophysics Data System (ADS)

    Lima, Keila dos Santos Cople; Souza, Luciana Boher e.; Godoy, Ronoel Luiz de Oliveira; França, Tanos Celmar Costa; Lima, Antônio Luís dos Santos

    2011-09-01

    Leguminous plants are important sources of proteins, vitamins, carbohydrates, fibers and minerals. However, some of their non-nutritive elements can present undesirable side effects like flatulence provoked by the anaerobic fermentation of oligosaccharides, such as raffinose and stachyose, in the gut. A way to avoid this inconvenience, without any change in the nutritional value and post-harvesting losses, is an irradiation process. Here, we evaluated the effects of gamma irradiation on the amino acids, thiamine and oligosaccharide contents and on the fungi and their toxin percentages in cowpea bean ( Vigna unguiculata L. Walp) samples. For irradiation doses of 0.0, 0.5, 1.0, 2.5, 5.0 and 10.0 kGy the results showed no significant differences in content for the uncooked samples. However, the combination of irradiation and cooking processes reduced the non-nutritive factors responsible for flatulence. Irradiation also significantly reduced the presence of Aspergillus, Penicilium, Rhizopus and Fusarium fungi and was shown to be efficient in grain conservation for a storage time of 6 months.

  4. Characterization and antioxidant properties of alcoholic extracts from gamma irradiated κ-carrageenan

    NASA Astrophysics Data System (ADS)

    Relleve, Lorna; Abad, Lucille

    2015-07-01

    Different extracts from unirradiated and gamma irradiated κ-carrageenan (solid and 1% w/v aqueous solution) were obtained with isopropyl alcohol (IPA) at concentrations of 40%, 60% and 80% v/v at room temperature. Physical and chemical properties of the different IPA extracts were analyzed by GPC, UV, and FT-IR. The extracts consisted of low molecular weight fragments with an average molecular weight (Mw) ranging from 2300 Da to 5000 Da. UV analyses of extracts from irradiated carrageenan showed varying maximum absorptions in the range of 265-280 nm. FT-IR spectra of all extracts from irradiated carrageenan showed all the important functional groups of carrageenan in the fingerprint region (4000-600 cm-1) and additional carbonyl C=O and C=C double bond peaks. Antioxidant properties of the different extracts were investigated using reducing power assay. The reducing power of extracts from the irradiated solution follows the order of 80%>60%>40% while no trend was observed for all extracts from irradiated solid κ-carrageenan.

  5. Effect of gamma irradiation on Schottky-contacted vertically aligned ZnO nanorod-based hydrogen sensor.

    PubMed

    Ranwa, Sapana; Barala, Surendra Singh; Fanetti, Mattia; Kumar, Mahesh

    2016-08-26

    We report the impact of gamma irradiation on the performance of a gold Schottky-contacted ZnO nanorod-based hydrogen sensor. RF-sputtered vertically aligned highly c-axis-oriented ZnO NRs were grown on Si(100) substrate. X-ray diffraction shows no significant change in crystal structure at low gamma doses from 1 to 5 kGy. As gamma irradiation doses increase to 10 kGy, the single crystalline ZnO structure converts to polycrystalline. The photoluminescence spectra also shows suppression of the near-band emission peak and the huge wide-band spectrum indicates the generation of structural defects at high gamma doses. At 1 kGy, the hydrogen sensor response was enhanced from 67% to 77% for 1% hydrogen in pure argon at a 150 °C operating temperature. However, at 10 kGy, the relative response decreases to 33.5%. High gamma irradiation causes displacement damage and defects in ZnO NRs, and as a result, degrades the sensor's performance as a result. Low gamma irradiation doses activate the ZnO NR surface through ionization, which enhances the sensor performance. The relative response of the hydrogen sensor was enhanced by ∼14.9% with respect to pristine ZnO using 1 kGy gamma ray treatment. PMID:27418478

  6. Effect of gamma irradiation on Schottky-contacted vertically aligned ZnO nanorod-based hydrogen sensor

    NASA Astrophysics Data System (ADS)

    Ranwa, Sapana; Singh Barala, Surendra; Fanetti, Mattia; Kumar, Mahesh

    2016-08-01

    We report the impact of gamma irradiation on the performance of a gold Schottky-contacted ZnO nanorod-based hydrogen sensor. RF-sputtered vertically aligned highly c-axis-oriented ZnO NRs were grown on Si(100) substrate. X-ray diffraction shows no significant change in crystal structure at low gamma doses from 1 to 5 kGy. As gamma irradiation doses increase to 10 kGy, the single crystalline ZnO structure converts to polycrystalline. The photoluminescence spectra also shows suppression of the near-band emission peak and the huge wide-band spectrum indicates the generation of structural defects at high gamma doses. At 1 kGy, the hydrogen sensor response was enhanced from 67% to 77% for 1% hydrogen in pure argon at a 150 °C operating temperature. However, at 10 kGy, the relative response decreases to 33.5%. High gamma irradiation causes displacement damage and defects in ZnO NRs, and as a result, degrades the sensor’s performance as a result. Low gamma irradiation doses activate the ZnO NR surface through ionization, which enhances the sensor performance. The relative response of the hydrogen sensor was enhanced by ∼14.9% with respect to pristine ZnO using 1 kGy gamma ray treatment.

  7. Graphene scavenges free radicals to synergistically enhance structural properties in a gamma-irradiated polyethylene composite through enhanced interfacial interactions.

    PubMed

    Kolanthai, Elayaraja; Bose, Suryasarathi; Bhagyashree, K S; Bhat, S V; Asokan, K; Kanjilal, D; Chatterjee, Kaushik

    2015-09-21

    A unique strategy for scavenging free radicals in situ on exposure to gamma irradiation in polyethylene (PE) nanocomposites is presented. Blends of ultra-high molecular weight PE and linear low-density PE (PEB) and their nanocomposites with graphene (GPEB) were prepared by melt mixing to develop materials for biomedical implants. The effect of gamma irradiation on the microstructure and mechanical properties was systematically investigated. The neat blend and the nanocomposite were subjected to gamma-ray irradiation in order to improve the interfacial adhesion between PE and graphene sheets. Structural and thermal characterization revealed that irradiation induced crosslinking and increased the crystallinity of the polymer blend. The presence of graphene further enhanced the crystallinity via crosslinks between the polymer matrix and the filler on irradiation. Graphene was found to scavenge free radicals as confirmed by electron paramagnetic resonance spectroscopy. Irradiation of graphene-containing polymer composites resulted in the largest increase in modulus and hardness compared to either irradiation or addition of graphene to PEB alone. This study provides new insight into the role of graphene in polymer matrices during irradiation and suggests that irradiated graphene-polymer composites could emerge as promising materials for use as articulating surfaces in biomedical implants. PMID:26266702

  8. Identification of irradiated wheat by germination test, DNA comet assay and electron spin resonance

    NASA Astrophysics Data System (ADS)

    Barros, Adilson C.; Freund, Maria Teresa L.; Villavicencio, Ana Lúcia C. H.; Delincée, Henry; Arthur, Valter

    2002-03-01

    In several countries, there has been an increase in the use of radiation for food processing thus improving the quality and sanitary conditions, inhibiting pathogenic microorganisms, delaying the natural aging process and so extending product lifetime. The need to develop analytical methods to detect these irradiated products is also increasing. The goal of this research was to identify wheat irradiated using different radiation doses. Seeds were irradiated with a gamma 60Co source (Gammacell 220 GC) in the Centro de Energia Nuclear na Agricultura and the Instituto de Pesquisas Energéticas e Nucleares. Dose rate used were 1.6 and 5.8kGy/h. Applied doses were 0.0, 0.10, 0.25, 0.50, 0.75, 1.0, and 2.0kGy. After irradiation, seeds were analysed over a 6 month period. Three different detection methods were employed to determine how irradiation had modified the samples. Screening methods consisted of a germination test measuring the inhibition of shooting and rooting and analysis of DNA fragmentation. The method of electron spin resonance spectroscopy allowed a better dosimetric evaluation. These techniques make the identification of irradiated wheat with different doses possible.

  9. Aging of magnesium stearate under high doses gamma irradiation and oxidative conditions

    NASA Astrophysics Data System (ADS)

    Lebeau, D.; Beuvier, L.; Cornaton, M.; Miserque, F.; Tabarant, M.; Esnouf, S.; Ferry, M.

    2015-05-01

    In nuclear waste packages conditioning processes, magnesium stearate is widely used because of its high lubricating properties. For safety purposes, the radiolytic degradation of these organic materials has to be better understood to be able to predict their aging in repository conditions. This study reports the radiolytic degradation of magnesium stearate, using gamma-rays at room temperature and under air. Modifications were followed using different analytical tools (XPS, ATR-FTIR, ICP-AES, ATG and mass spectrometry). It has been observed that molecules mainly formed up to 1000 kGy of gamma irradiation dose under radio-oxidation are alkanes, hydroperoxides, double bonds in the aliphatic chain, carboxylates with aliphatic chain shorter than the one of stearate and ketones. At a dose of 4000 kGy, dicarboxylic acids are observed: the formation of these molecules needs a dose of at least 1000 kGy to be created under radio-oxidation. These observations allow us to propose a non-exhaustive degradation mechanism of magnesium stearate under gamma-irradiation at room temperature and under air.

  10. Measurement and calculation of characteristic prompt gamma ray spectra emitted during proton irradiation.

    PubMed

    Polf, J C; Peterson, S; McCleskey, M; Roeder, B T; Spiridon, A; Beddar, S; Trache, L

    2009-11-21

    In this paper, we present results of initial measurements and calculations of prompt gamma ray spectra (produced by proton-nucleus interactions) emitted from tissue equivalent phantoms during irradiations with proton beams. Measurements of prompt gamma ray spectra were made using a high-purity germanium detector shielded either with lead (passive shielding), or a Compton suppression system (active shielding). Calculations of the spectra were performed using a model of both the passive and active shielding experimental setups developed using the Geant4 Monte Carlo toolkit. From the measured spectra it was shown that it is possible to distinguish the characteristic emission lines from the major elemental constituent atoms (C, O, Ca) in the irradiated phantoms during delivery of proton doses similar to those delivered during patient treatment. Also, the Monte Carlo spectra were found to be in very good agreement with the measured spectra providing an initial validation of our model for use in further studies of prompt gamma ray emission during proton therapy. PMID:19864704

  11. Identification of estrogenic activity change in sewage, industrial and livestock effluents by gamma-irradiation

    NASA Astrophysics Data System (ADS)

    Ahn, Byeong-Yong; Kang, Sung-Wook; Yoo, Jisu; Kim, Woong-Ki; Bae, Paek-Hyun; Jung, Jinho

    2012-11-01

    In this study, reduction of estrogenic activity in three different types of effluents from sewage, industrial and livestock wastewater treatment plants by gamma-irradiation was investigated using the yeast two-hybrid assay. After gamma-ray treatment at a dose of 10 kGy, estrogenic activities of sewage, industrial and livestock effluents decreased from 4.4 to 3.0, 1.5 to 1.0 and 16 to 9.9 ng-EEQ L-1, respectively. The substantial reduction of estrogenic activity in livestock effluent was attributable to the degradation of 17β-estradiol (E2), estrone (E1) and 17α-ethynylestradiol (EE2). Although bisphenol A (BPA) was found at the highest concentration in all effluents, its contribution to the estrogenic activity was not significant due to its low relative estrogenic potency. Meanwhile, the calculated estrogenic activity based on concentrations of E2, E1, EE2 and BPA in the effluents significantly differed from the measured ones. Overestimation may have resulted by dissolved organic matters in effluents inhibiting the estrogenic activity of E2, E1, EE2 and BPA, whereas underestimation was likely due to estrogenic by-products generated by gamma-irradiation.

  12. Sterilization of allograft bone: is 25 kGy the gold standard for gamma irradiation?

    PubMed

    Nguyen, Huynh; Morgan, David A F; Forwood, Mark R

    2007-01-01

    For several decades, a dose of 25 kGy of gamma irradiation has been recommended for terminal sterilization of medical products, including bone allografts. Practically, the application of a given gamma dose varies from tissue bank to tissue bank. While many banks use 25 kGy, some have adopted a higher dose, while some choose lower doses, and others do not use irradiation for terminal sterilization. A revolution in quality control in the tissue banking industry has occurred in line with development of quality assurance standards. These have resulted in significant reductions in the risk of contamination by microorganisms of final graft products. In light of these developments, there is sufficient rationale to re-establish a new standard dose, sufficient enough to sterilize allograft bone, while minimizing the adverse effects of gamma radiation on tissue properties. Using valid modifications, several authors have applied ISO standards to establish a radiation dose for bone allografts that is specific to systems employed in bone banking. These standards, and their verification, suggest that the actual dose could be significantly reduced from 25 kGy, while maintaining a valid sterility assurance level (SAL) of 10(-6). The current paper reviews the methods that have been used to develop radiation doses for terminal sterilization of medical products, and the current trend for selection of a specific dose for tissue banks. PMID:16821106

  13. Discuss the testing problems of ultraviolet irradiance meters

    NASA Astrophysics Data System (ADS)

    Ye, Jun'an; Lin, Fangsheng

    2014-09-01

    Ultraviolet irradiance meters are widely used in many areas such as medical treatment, epidemic prevention, energy conservation and environment protection, computers, manufacture, electronics, ageing of material and photo-electric effect, for testing ultraviolet irradiance intensity. So the accuracy of value directly affects the sterile control in hospital, treatment, the prevention level of CDC and the control accuracy of curing and aging in manufacturing industry etc. Because the display of ultraviolet irradiance meters is easy to change, in order to ensure the accuracy, it needs to be recalibrated after being used period of time. By the comparison with the standard ultraviolet irradiance meters, which are traceable to national benchmarks, we can acquire the correction factor to ensure that the instruments working under accurate status and giving the accurate measured data. This leads to an important question: what kind of testing device is more accurate and reliable? This article introduces the testing method and problems of the current testing device for ultraviolet irradiance meters. In order to solve these problems, we have developed a new three-dimensional automatic testing device. We introduce structure and working principle of this system and compare the advantages and disadvantages of two devices. In addition, we analyses the errors in the testing of ultraviolet irradiance meters.

  14. Gamma irradiation and ozone treatment for inactivation of Escherichia coli O157:H7 in culture media.

    PubMed

    Byun, M W; Kwon, O J; Yook, H S; Kim, K S

    1998-06-01

    A study was conducted to investigate the reduction and elimination of Escherichia coli O157:H7 by the effects of gamma irradiation and ozone treatment. Log phase cells were found to be more sensitive to gamma irradiation than stationary phase cells. E. coli O157:H7 was found to be considerably more resistant to irradiation at -18 degrees C than at 20 degrees C. The D values for this organism for treatment with ozone in tryptic soy agar were higher than those for treatment with ozone in phosphate buffer. Gamma irradiation at a dose of 1.5 kGy or ozone treatment at a concentration of 3 to 18 ppm for 20 to 50 min was required to assure the elimination of E. coli O157:H7. PMID:9709258

  15. Effect of gamma irradiation on chemical composition, antimicrobial and antioxidant activities of Thymus vulgaris and Mentha pulegium essential oils

    NASA Astrophysics Data System (ADS)

    Zantar, Said; Haouzi, Rachid; Chabbi, Mohamed; Laglaoui, Amin; Mouhib, Mohammed; Mohammed Boujnah; Bakkali, Mohammed; Zerrouk, Mounir Hassani

    2015-10-01

    The effects of gamma irradiation doses (10, 20 and 30 kGy) on chemical composition, antimicrobial and antioxidant activities of Thymus vulgaris and Mentha pulegium essential oils (EOs) have been studied. The chromatographic analysis showed that the studied EOs were constituted mainly by carvacrol for T. vulgaris and pulegone for M. pulegium. Gamma irradiation on the studied doses, affects quantitatively and not qualitatively some components of the investigated oils. This effect was dose dependent. While the antioxidant activity remains stable at any dose applied for the plants studied, the antimicrobial activity increased in the irradiated samples for gram negative bacteria and did not change for gram+bacteria. This study supports that gamma irradiation employed at sterilizing doses did not compromise the biological activities of medicinal and aromatic plants.

  16. Characterization of an in-core irradiator for testing of microelectronics in a mixed radiation environment

    NASA Astrophysics Data System (ADS)

    Aghara, Sukesh K.

    In recent years, the space industry is increasingly in search of easily available commercial and emerging technology devices in order to meet rigorous spacecraft requirements such as weight, power, and cost. Before an electronic device is put in a radiation environment, it is pre-tested and certified for space applications. This process of radiation testing and certification is costly and time intensive. Development of a test methodology and a facility to perform these tests quickly and cost effectively, would facilitate the radiation effects community and NASA to fulfill the "Faster, Better, Cheaper". With the rapid developments in the field of satellite-based telecommunications, the move from analog to digital controls for all electronic devices is imminent; hence, need for radiation-hardened mixed signal processing devices is obvious. Digital-to-Analog Converters (DAC) are of particular interest due to their complex design and performance and their importance in digital signal processing. Limited literature exists for radiation effects on DAC; most of these studies were performed with gamma-ray irradiations (Total Ionization Dose, TID) but the much needed displacement damage data is absent. In the first phase of this work, an in-core mixed radiation (neutron and gamma-ray) test facility at the University of Texas at Austin TRIGA Mark II nuclear research reactor was fully characterized. Further, a test methodology to perform radiation testing on complex "off-the-shelf" semiconductor circuits in a time and cost effective manner was developed. In the second phase, the characterized test facility and the methodology were then employed to successfully assess performance degradation of three commercially available DAC circuits: DAC 0808, MC 1408 (DIP package) and MC 1408 (SOIC package). This research has resulted in the development of a unique in-core fast neutron irradiation facility from a research reactor source. The average fast flux of 1.2E9 n/cm2-s at 1 k

  17. Antibacterial silver nanoparticles in polyvinyl alcohol/sodium alginate blend produced by gamma irradiation.

    PubMed

    Eghbalifam, Naeimeh; Frounchi, Masoud; Dadbin, Susan

    2015-09-01

    Polyvinyl alcohol/sodium alginate/nano silver (PVA/SA/Ag) composite films were made by solution casting method. Gamma irradiation was used to synthesize silver nanoparticles in situ via reduction of silver nitrate without using harmful chemical agents for biomedical applications. UV-vis and XRD results demonstrated that spherical silver nanoparticles were produced even at low irradiation dose of 5 kGy. By increasing irradiation dose, more nanoparticles were synthesized while no PVA hydrogel was formed up to 15 kGy. Also the size of nanoparticles was reduced with increasing gamma dose evidenced by higher release rate of silver nanoparticles in lukewarm water and SEM images. Comparing SEM images with DLS results indicated good performance of PVA/SA as an efficient stabilizer in preventing agglomeration of the silver nanoparticles. Good miscibility of polyvinyl alcohol and sodium alginate observed on the SEM images was supported with FTIR spectroscopy. Upon addition of sodium alginate to polyvinyl alcohol and increasing silver nanoparticles, the melting peak shifted to lower temperature and crystallinity percent was decreased. Addition of sodium alginate led to remarkable increase in rigidity of PVA. The composites exhibited strong antibacterial activity against Staphylococcus aureus and Escherichia coli even at very low level of silver nanoparticles. PMID:26123816

  18. Effect of gamma irradiation on opto-structural, dielectric, and thermoluminescence properties of natural phlogopite mica

    SciTech Connect

    Kaur, Sukhnandan; Singh, Surinder; Singh, Lakhwant; Lochab, S. P.

    2013-09-07

    Gamma ray induced modifications in natural phlogopite mica have been studied in the dose range of 1–2000 kGy. These modifications were monitored using different techniques viz: ultraviolet-visible spectroscopy, Fourier Transform Infrared spectroscopy, dielectric measurements, X-ray diffraction, and thermoluminescence dosimeter. The analysis of the results reveals that the dose of 100 kGy produces significant change in the natural phlogopite mica as compared to pristine and other exposed samples. Ultraviolet-visible analysis provides the value of optical indirect, direct band gap, and Urbach energy. Cody model was used to calculate structural disorder from Urbach energy. Different dielectric parameters such as dielectric constant, dielectric loss, ac conductivity, and real and imaginary parts of electric modulus were calculated for pristine and irradiated samples at room temperature. Williamson Hall analysis was employed to calculate crystallite size and micro-strain of pristine and irradiated sheets. No appreciable changes in characteristic bands were observed after irradiation, indicating that natural phlogopite mica is chemically stable. The natural phlogopite mica may be recommended as a thermoluminescent dosimeter for gamma dose within 1 kGy–300 kGy.

  19. Simulation of synergistic effects on lateral PNP bipolar transistors induced by neutron and gamma irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Chenhui; Bai, Xiaoyan; Chen, Wei; Yang, Shanchao; Liu, Yan; Jin, Xiaoming; Ding, Lili

    2015-10-01

    With semiconductor device simulation software TCAD, numerical simulations of ionizing/displacement synergistic effects on 6 kinds of lateral PNP bipolar transistors induced by the mixed irradiation of neutron and gamma are carried out by means of changing the minority carrier lifetimes, adding charged traps to the oxide layer and increasing the surface recombination velocity in Si/SiO2 interface. The results indicate that ionizing/displacement synergistic effects on the lateral PNP bipolar transistors are not a simple sum of total ionizing dose effects and displacement effects, and total ionizing dose effects can enhance neutron displacement damages, leading to greater gain degradation. The physical mechanisms of ionizing/displacement synergistic effects are analyzed based on the results. The positive charge in the oxide layer and Si/SiO2 interface traps induced by gamma irradiation can enhance the recombination processes of carriers in the bulk defects induced by neutron irradiation, and this is the main cause of ionizing/displacement synergistic effects on the lateral PNP bipolar transistors.

  20. Effect of radiation on solid paracetamol: ESR identification and dosimetric features of gamma-irradiated paracetamol

    NASA Astrophysics Data System (ADS)

    Polat, M.; Korkmaz, M.

    2006-01-01

    In the present work, electron spin resonance (ESR) identification of gamma-irradiated paracetamol and its potential use as a normal and/or accidental dosimetric material were investigated in the dose range of 2.5-25 kGy. Both unirradiated paracetamol and mechanically ground vermidon samples exhibited a weak single resonance line at g = 2.0049 +/- 0.0006 and had Delta H-pp = 0.6 +/- 0.02 mT. Gamma irradiation produced an increase in signal intensity with a small hyperfine splitting in both paracetamol and vermidon and many weak resonance lines on both sides of a central line in the case of vermidon. Dose-response curves associated with central line of paracetamol and vermidon were found to follow polynomial and linear function, respectively. Simulation calculations based on the room temperature ESR intensity data of the paracetamol sample irradiated at 10 kGy were performed to determine the structure and spectral parameters of the radiation-induced radical species involved in the formation of the experimental ESR spectrum of paracetamol.

  1. Effect of gamma irradiation on phenol content, antioxidant activity and biological activity of black maca and red maca extracts (Lepidium meyenii walp).

    PubMed

    Zevallos-Concha, A; Nuñez, D; Gasco, M; Vasquez, C; Quispe, M; Gonzales, G F

    2016-01-01

    This study was performed to determine the effects of gamma irradiation on UV spectrum on maca, total content of polyphenols, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activities and in vivo biological activities of red and black maca extracts (Lepidium meyenii). Adult mice of the strain Swiss aged 3 months and weighing 30-35 g in average were used to determine biological activities. Daily sperm production, effect on testosterone-induced prostate hyperplasia and forced swimming test were used to determine the effect of irradiation on biological activities of maca extracts. Irradiation did not show differences in UV spectrum but improves the amount of total polyphenols in red maca as well as in black maca extracts. In both cases, black maca extract has more content of polyphenols than red maca extract (p < 0.01). Gamma irradiation significantly increased the antioxidant capacity (p < 0.05). No difference was observed in daily sperm production when irradiated and nonirradiated maca extract were administered to mice (p > 0.05). Black maca extract but not red maca extract has more swimming endurance capacity in the forced swimming test. Irradiation of black maca extract increased the swimming time to exhaustion (p < 0.05). This is not observed with red maca extract (p > 0.05). Testosterone enanthate (TE) increased significantly the ventral prostate weight. Administration of red maca extract in animals treated with TE prevented the increase in prostate weight. Irradiation did not modify effect of red maca extract on prostate weight (p > 0.05). In conclusion, irradiation does not alter the biological activities of both black maca and red maca extracts. It prevents the presence of microorganisms in the extracts of black or red maca, but the biological activities were maintained. PMID:26633045

  2. Historical estimates of external gamma exposure and collective external gamma exposure from testing at the Nevada Test Site. I. Test series through HARDTACK II, 1958

    SciTech Connect

    Anspaugh, L.R.; Church, B.W.

    1985-12-01

    In 1959, the Test Manager's Committee to Establish Fallout Doses calculated estimated external gamma exposure at populated locations based upon measurements of external gamma-exposure rate. Using these calculations and estimates of population, we have tabulated the collective estimated external gamma exposures for communities within established fallout patterns. The total collective estimated external gamma exposure is 85,000 person-R. The greatest collective exposures occurred in three general areas: Saint George, Utah; Ely, Nevada; and Las Vegas, Nevada. Three events, HARRY (May 19, 1953), BEE (March 22, 1955), and SMOKY (August 31, 1957), accounted for over half of the total collective estimated external gamma exposure. The bases of the calculational models for external gamma exposure of ''infinite exposure,'' ''estimated exposure,'' and ''one year effective biological exposure'' are explained. 4 figs., 7 tabs.

  3. Historical estimates of external gamma exposure and collective external gamma exposure from testing at the Nevada Test Site. I. Test series through HARDTACK II, 1958.

    PubMed

    Anspaugh, L R; Church, B W

    1986-07-01

    In 1959, the Test Manager's Committee to Establish Fallout Doses calculated estimated external gamma exposure at populated locations based upon measurements of external gamma-exposure rate. Using these calculations and estimates of population, we have tabulated the collective estimated external gamma exposures for communities within established fallout patterns. The total collective estimated external gamma exposure is 85,000 person-R. The greatest collective exposures occurred in three general areas: Saint George, UT; Ely, NV; and Las Vegas, NV. Three events, HARRY (19 May 1953), BEE (22 March 1955), and SMOKY (31 August 1957), accounted for more than half the total collective estimated external gamma exposure. The bases of the calculational models for external gamma exposure of "infinite exposure," "estimated exposure," and "1-yr effective biological exposure" are explained. PMID:3332000

  4. Historical estimates of external gamma exposure and collective external gamma exposure from testing at the Nevada Test Site. I. Test series through HARDTACK II, 1958

    SciTech Connect

    Anspaugh, L.R.; Church, B.W.

    1986-07-01

    In 1959, the Test Manager's Committee to Establish Fallout Doses calculated estimated external gamma exposure at populated locations based upon measurements of external gamma-exposure rate. Using these calculations and estimates of population, we have tabulated the collective estimated external gamma exposures for communities within established fallout patterns. The total collective estimated external gamma exposure is 85,000 person-R. The greatest collective exposures occurred in three general areas: Saint George, UT; Ely, NV; and Las Vegas, NV. Three events, HARRY (19 May 1953), BEE (22 March 1955), and SMOKY (31 August 1957), accounted for more than half the total collective estimated external gamma exposure. The bases of the calculational models for external gamma exposure of infinite exposure, estimated exposure, and 1-yr effective biological exposure are explained.

  5. SP-100 fuel pin performance: Results from irradiation testing

    SciTech Connect

    Makenas, B.J.; Paxton, D.M.; Vaidyanathan, S.; Hoth, C.W.

    1993-09-01

    A total of 86 experimental fuel pins with various fuel, liner, and cladding candidate materials have been irradiated in the Experimental Breeder Reactor-II (EBR-II) and the Fast Flux Test Facility (FFTF) reactor as part of the SP-100 fuel pin irradiation testing program. Postirradiation examination results from these fuel pin are key in establishing performance correlations and demonstrating the lifetime and safety of the reactor fuel system. This paper provides a brief description of the in-reactor fuel pin tests and presents the most recent irradiation data on the performance of wrought rhenium (Re) liner material and high density UN fuel at goal burnup of 6 atom percent (at. %). It also provides an overview of the significant variety of other fuel/liner/cladding combinations which were irradiated as part of this program and which may be of interest to more advanced efforts.

  6. Improving microbiological safety and maintaining sensory and nutritional quality of pre-cut tomato and carrot by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Mohácsi-Farkas, Cs.; Nyirő-Fekete, B.; Daood, H.; Dalmadi, I.; Kiskó, G.

    2014-06-01

    Pre-cut tomato and carrot were irradiated with doses of 1.0, 1.5 and 2 kGy. Unirradiated control and irradiated samples were compared organoleptically by a sensory panel. Microbiological analyses were performed directly after irradiation and during post-irradiation storage for 8 days at 5 °C. Ascorbic acid contents, composition of carotenoids and tocopherols were determined. Statistically significant differences of sensory scores between unirradiated and irradiated samples were observed only in the texture of sliced carrots. Total aerobic viable cell counts have been reduced by about two log cycles with 1.5 kGy dose. Total coliforms and moulds were below the detection limit of 15 CFU/g in the irradiated samples during the refrigerated storage. Yeasts were relatively resistant part of the microbiota of pre-cut tomatoes, but 2 kGy dose reduced them below the detection limit. In pre-cut tomatoes, alpha-tocopherol and some carotenoids seemed to be the most radio-sensitive losing approximately one-third of their original concentrations at the dose of 2 kGy. At this dose tocopherols and the level of ascorbic acid decreased also one-third of the initial level in sliced carrots. Additional experiments were conducted to study the effect of irradiation and storage on the population of Listeria monocytogenes and Listeria innocua artificially inoculated on cut tomato and carrot. Cell numbers of both test organisms decreased by at least two log-cycles as an effect of 1 kGy dose. Our studies confirmed earlier findings on a temporary antilisterial effect of freshly cut carrot tissue. No re-growth of Listeria was observed during the studied storage period. The results of these studies suggest that irradiation with 1 kGy gamma rays could improve sufficiently the microbiological safety of the investigated pre-cut produce to satisfy the requirement of low microbial raw diets with acceptable nutritional quality and without diminishing significantly the organoleptic parameters of the

  7. Irradiation testing of high density uranium alloy dispersion fuels

    SciTech Connect

    Hayes, S.L.; Trybus, C.L.; Meyer, M.K.

    1997-10-01

    Two irradiation test vehicles have been designed, fabricated, and inserted into the Advanced Test Reactor in Idaho. Irradiation of these experiments began in August 1997. These irradiation tests were designed to obtain irradiation performance information on a variety of potential new, high-density dispersion fuels. Each of the two irradiation vehicles contains 32 microplates. Each microplate is aluminum clad, having an aluminum matrix phase and containing one of the following compositions as the fuel phase: U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru, U-10Mo-0.05Sn, U{sub 2}Mo, or U{sub 3}Si{sub 2}. These experiments will be discharged at peak fuel burnups of 40% and 80%. Of particular interest is the fission gas retention/swelling characteristics of these new fuel alloys. This paper presents the design of the irradiation vehicles and the irradiation conditions.

  8. Boswellic acids extract attenuates pulmonary fibrosis induced by bleomycin and oxidative stress from gamma irradiation in rats

    PubMed Central

    2011-01-01

    Background Interstitial pulmonary fibrosis is characterized by an altered cellular composition of the alveolar region with excessive deposition of collagen. Lung inflammation is also common in pulmonary fibrosis. This study aims to test the inhibition of 5-lipooxygenase (5-LOX) by boswellic acid (BA) extract in an experimental model of pulmonary fibrosis using bleomycin (BL). Methods Boswellic acid extract (1 g/kg) was force-fed to rats seven days prior to administration of BL or gamma irradiation or both. BL (0.15 U/rat) in 25 μl of 0.9% normal saline (NS) or 0.9% NS alone was administered intratracheally. Rats were exposed to two fractionated doses of gamma irradiation (0.5 Gy/dose/week) with a gamma cell-40 (Cesium-137 irradiation units, Canada) during the last two weeks of the experiment. BA was administered during BL or irradiation treatment or both. After the animals were sacrificed, bronchoalveolar lavage was performed; lungs were weighed and processed separately for biochemical and histological studies. Results In rats treated with BL, levels of transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α) were significantly elevated (P = 0.05 and P = 0.005). Hydroxyproline was highly and extensively expressed. Immunoreactive compounds were abundantly expressed, represented in the levels of macrophages infiltrate, accumulation of eosinophils and neutrophils in the lung as well as the aggregation of fibroblasts in the fibrotic area. The levels of lipoxygenase enzyme activity were significantly increased (P = 0.005). Antioxidant activities measured in BL-treated rats deteriorated, coupled with the elevation of both levels of plasma lipid peroxide (LP) content and bronchoalveolar lavage lactate dehydrogenase activity. BA-treated rats had reduced number of macrophages, (P = 0.01), neutrophils in bronchoalveolar lavage (P = 0.01) and protein (P = 0.0001). Moreover, the hydroxyproline content was significantly lowered in BA-treated rats (P = 0

  9. Validation of the Physics Analysis used to Characterize the AGR-1 TRISO Fuel Irradiation Test

    SciTech Connect

    Sterbentz, James W.; Harp, Jason M.; Demkowicz, Paul A.; Hawkes, Grant L.; Chang, Gray S.

    2015-05-01

    The results of a detailed physics depletion calculation used to characterize the AGR-1 TRISO-coated particle fuel test irradiated in the Advanced Test Reactor (ATR) at the Idaho National Laboratory are compared to measured data for the purpose of validation. The particle fuel was irradiated for 13 ATR power cycles over three calendar years. The physics analysis predicts compact burnups ranging from 11.30-19.56% FIMA and cumulative neutron fast fluence from 2.21?4.39E+25 n/m2 under simulated high-temperature gas-cooled reactor conditions in the ATR. The physics depletion calculation can provide a full characterization of all 72 irradiated TRISO-coated particle compacts during and post-irradiation, so validation of this physics calculation was a top priority. The validation of the physics analysis was done through comparisons with available measured experimental data which included: 1) high-resolution gamma scans for compact activity and burnup, 2) mass spectrometry for compact burnup, 3) flux wires for cumulative fast fluence, and 4) mass spectrometry for individual actinide and fission product concentrations. The measured data are generally in very good agreement with the calculated results, and therefore provide an adequate validation of the physics analysis and the results used to characterize the irradiated AGR-1 TRISO fuel.

  10. Investigation of the Feasibility of Utilizing Gamma Emission Computed Tomography in Evaluating Fission Product Migration in Irradiated TRISO Fuel Experiments

    SciTech Connect

    Jason M. Harp; Paul A. Demkowicz

    2014-10-01

    In the High Temperature Gas-Cooled Reactor (HTGR) the TRISO particle fuel serves as the primary fission product containment. However the large number of TRISO particles present in proposed HTGRs dictates that there will be a small fraction (~10-4 to 10-5) of as manufactured and in-pile particle failures that will lead to some fission product release. The matrix material surrounding the TRISO particles in fuel compacts and the structural graphite holding the TRISO particles in place can also serve as sinks for containing any released fission products. However data on the migration of solid fission products through these materials is lacking. One of the primary goals of the AGR-3/4 experiment is to study fission product migration from failed TRISO particles in prototypic HTGR components such as structural graphite and compact matrix material. In this work, the potential for a Gamma Emission Computed Tomography (GECT) technique to non-destructively examine the fission product distribution in AGR-3/4 components and other irradiation experiments is explored. Specifically, the feasibility of using the Idaho National Laboratory (INL) Hot Fuels Examination Facility (HFEF) Precision Gamma Scanner (PGS) system for this GECT application is considered. To test the feasibility, the response of the PGS system to idealized fission product distributions has been simulated using Monte Carlo radiation transport simulations. Previous work that applied similar techniques during the AGR-1 experiment will also be discussed as well as planned uses for the GECT technique during the post irradiation examination of the AGR-2 experiment. The GECT technique has also been applied to other irradiated nuclear fuel systems that were currently available in the HFEF hot cell including oxide fuel pins, metallic fuel pins, and monolithic plate fuel.

  11. Two new insoluble polymer composites for the treatment of LLW: 1. polypyrrole doped by UO22+ complexing polyanions 2. UO22+ complexing sol-gel based composites. Stability constants. Leaching tests, alpha and gamma irradiation

    NASA Astrophysics Data System (ADS)

    Leroy, D.; Martinot, L.; Mignonsin, P.; Caprasse, F.; Jérôme, C.; Jérôme, R.

    2000-07-01

    In a previous work, we have demonstrated that polyanions like polyacrylamidoglycolic acid (PAAG) and polyacrylamidomethylpropanesulfonic acid (PAMPS) are capable to complex UO22+ ions. Unless they are crosslinked, these polyanions/UO22+ complexes are soluble when submitted to dynamic leaching tests in a Soxhlet extractor. Considering the feasibility of a new process for the storage or for the concentration of low level activity liquid wastes (LLW), we had to strongly enhance the insolubility of these complexes. We have developed two original insolubilization ways, as compared to the crosslinking of the polymer.

  12. Elimination of Escherichia coli O 157 : H7 and Listeria monocytogenes from raw beef sausage by gamma-irradiation.

    PubMed

    Badr, Hesham M

    2005-04-01

    The effectiveness of low gamma-irradiation doses in the destruction of Escherichia coli O 157 : H7 and Listeria monocytogenes in raw beef sausages was investigated. Raw samples of fresh manufactured beef sausage were subjected to gamma-irradiation at doses of 0, 1, 2, and 3 kGy. Then samples were cold-stored (4 +/- 1 degrees C) for 12 days and the effects of irradiation and storage on the counts of these harmful bacteria were studied. Moreover, the effects of irradiation and storage on the percentages of free fatty acids (FFAs) in lipids, on the p-anisidine values of lipids, solubility of sarcoplasmic and myofibrilar proteins, and water-holding capacity (WHC) were also determined. The results showed that gamma-irradiation at 1 and 2 kGy significantly reduced the counts of E. coli O 157 : H7 and L. monocytogenes, while 3 kGy dose effectively eliminated these bacteria by more than 4 log and 3 log units, respectively, and could keep their counts below the detection level during storage. Gamma-irradiation had no significant effects on the percentages of FFAs in lipids, solubility of sarcoplasmic and myofibrilar proteins, and WHC of samples, while it significantly increased the p-anisidine value of lipids. During storage, significant increases in the percentages of FFAs and p-anisidine values were observed for lipids of irradiated and nonirradiated sausages, while the solubility of sarcoplasmic and myofibrilar proteins showed no significant changes. Moreover, samples of irradiated and nonirradiated sausages showed significant decreases in their WHC during the first 6 days of storage at 4 +/- 1 degrees C, then showed no significant changes. Finally, gamma-irradiation at a dose of 3 kGy appeared to be sufficient to improve the microbiological safety of raw beef sausages without adverse effects on their chemical properties. PMID:15789371

  13. Production of palladium nanoparticles supported on multiwalled carbon nanotubes by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Rojas, J. V.; Castano, C. H.

    2012-01-01

    Palladium nanoparticles were produced and supported on multiwalled carbon nanotubes (MWCNT) by gamma irradiation. A solution with a specific ratio of 2:1 of water-isopropanol was prepared and mixed with palladium chloride and the surfactant sodium dodecyl sulfate (SDS). The gamma radiolysis of water ultimately produces Pd metallic particles that serve as nucleation seeds. Isopropanol is used as an ion scavenger to balance the reaction, and the coalescence of the metal nanoparticles was controlled by the addition of SDS as a stabilizer. The size and distribution of nanoparticles on the carbon nanotubes (CNT) were studied at different surfactant concentrations and radiation doses. SEM, STEM and XPS were used for morphological, chemical and structural characterization of the nanostructure. Nanoparticles obtained for doses between 10 and 40 kGy, ranged in size 5-30 nm. The smaller nanoparticles were obtained at the higher doses and vice versa. Histograms of particle size distributions at different doses are presented.

  14. Apoptosis-promoted tumorigenesis: gamma-irradiation-induced thymic lymphomagenesis requires Puma-driven leukocyte death.

    PubMed

    Michalak, Ewa M; Vandenberg, Cassandra J; Delbridge, Alex R D; Wu, Li; Scott, Clare L; Adams, Jerry M; Strasser, Andreas

    2010-08-01

    Although tumor development requires impaired apoptosis, we describe a novel paradigm of apoptosis-dependent tumorigenesis. Because DNA damage triggers apoptosis through p53-mediated induction of BH3-only proteins Puma and Noxa, we explored their roles in gamma-radiation-induced thymic lymphomagenesis. Surprisingly, whereas Noxa loss accelerated it, Puma loss ablated tumorigenesis. Tumor suppression by Puma deficiency reflected its protection of leukocytes from gamma-irradiation-induced death, because their glucocorticoid-mediated decimation in Puma-deficient mice activated cycling of stem/progenitor cells and restored thymic lymphomagenesis. Our demonstration that cycles of cell attrition and repopulation by stem/progenitor cells can drive tumorigenesis has parallels in human cancers, such as therapy-induced malignancies. PMID:20679396

  15. Gamma dose measurement in a water phantom irradiated with the BNCT facility at THOR.

    PubMed

    Liu, H M; Hsu, P C; Liaw, T F

    2001-01-01

    It has been proposed that a LiF thermoluminescence dosemeter (TLD) is used as a gamma dosemeter in a water phantom irradiated with the BNCT facility at THOR. Based on the TLD neutron sensitivity and neutron fluxes in the water phantom, which were simulated by the MCNP code, TLD-700 was chosen as a gamma dosemeter in this report. For the correction of the neutron influence on TLD-700, the thermal neutron sensitivity to TLD-700 was investigated with MCNP simulation and the thermal neutron flux was measured with gold foils using the cadmium difference technique. The correction to the neutron influence on the TLD was established on the TLD thermal neutron sensitivity. the thermal neutron flux, and the conversion factor from energy deposition in the TLD to the TLD response. By comparing the experimental data with the thermal neutron influence correction, these data are in very good agreement with the MCNP predictions. PMID:11707034

  16. Antioxidant activities of fucoidan degraded by gamma irradiation and acidic hydrolysis

    NASA Astrophysics Data System (ADS)

    Lim, Sangyong; Choi, Jong-il; Park, Hyun

    2015-04-01

    Low molecular weight fucoidan, prepared by radical degradation using gamma ray was investigated for its antioxidant activities with different assay methods. As the molecular weight of fucoidan decreased with a higher absorbed dose, ferric-reducing antioxidant power values increased, but β-carotene bleaching inhibition did not change significantly. The antioxidant activity of acid-degraded fucoidan was also examined to investigate the effect of different degradation methods. At the same molecular weight, fucoidan degraded by gamma irradiation showed higher 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity than that observed with the acidic method. This result reveals that in addition to molecular weight, the degradation method affects the antioxidant activity of fucoidan.

  17. Effect of gamma irradiation on microbial load, physicochemical and sensory characteristics of soybeans (Glycine max L. Merrill)

    NASA Astrophysics Data System (ADS)

    Yun, Juan; Li, Xihong; Fan, Xuetong; Tang, Yao; Xiao, Yao; Wan, Sen

    2012-08-01

    Gamma irradiation is highly effective in inactivating microorganisms in various foods and offers a safe alternative method of food decontamination. In the present study, soybeans (Glycine max L. Merrill) were treated with 0, 1.0, 3.0, 5.0 and 10.0 KGy of gamma irradiation. Microbial populations on soybeans, isoflavone, tocopherol contents, raffinose family oligosaccharides, color and sensory properties were evaluated as a function of irradiation dose. The results indicated that gamma irradiation reduced aerobic bacterial and fungal load. Irradiation at the doses applied did not cause any significant change (p>0.05) in the contents of isoflavone of soybeans, but decreased tocopherol contents. The content of key flatulence-producing raffinose family oligosaccharides in irradiated soybeans (10.0 kGy) decreased by 82.1% compared to the control. Sensory analysis showed that the odor of the soybeans was organoleptically acceptable at doses up to 5.0 kGy and no significant differences were observed between irradiated and nonirradiated samples in flavor, texture and color after irradiation.

  18. USE OF SILICON CARBIDE MONITORS IN ATR IRRADIATION TESTING

    SciTech Connect

    K. L. Davis; B. Chase; T. Unruh; D. Knudson; J. L. Rempe

    2012-07-01

    In April 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) a National Scientific User Facility (NSUF) to advance US leadership in nuclear science and technology. By attracting new users from universities, laboratories, and industry, the ATR will support basic and applied nuclear research and development and help address the nation's energy security needs. In support of this new program, the Idaho National Laboratory (INL) has developed in-house capabilities to fabricate, test, and qualify new and enhanced temperature sensors for irradiation testing. Although most efforts emphasize sensors capable of providing real-time data, selected tasks have been completed to enhance sensors provided in irradiation locations where instrumentation leads cannot be included, such as drop-in capsule and Hydraulic Shuttle Irradiation System (HSIS) or 'rabbit' locations. For example, silicon carbide (SiC) monitors are now available to detect peak irradiation temperatures between 200°C and 800°C. Using a resistance measurement approach, specialized equipment installed at INL's High Temperature Test Laboratory (HTTL) and specialized procedures were developed to ensure that accurate peak irradiation temperature measurements are inferred from SiC monitors irradiated at the ATR. Comparison examinations were completed by INL to demonstrate this capability, and several programs currently rely on SiC monitors for peak temperature detection. This paper discusses the use of SiC monitors at the ATR, the process used to evaluate them at the HTTL, and presents representative measurements taken using SiC monitors.

  19. Effects of gamma irradiation for inactivating Salmonella Typhimurium in peanut butter product during storage.

    PubMed

    Ban, Ga-Hee; Kang, Dong-Hyun

    2014-02-01

    Three types (A, B, and C) of peanut butter product with different water activities (0.18, 0.39, and 0.65 aw) inoculated with a 3-strain mixture of Salmonella Typhimurium were subjected to gamma irradiation (⁶⁰Co) treatment, with doses ranging from 0 to 3 kGy. The inactivation of S. Typhimurium in the 3 types of treated peanut butter product over a 14 day storage period and the influence of storage temperature at 4 (refrigerated) and 25 °C (ambient), and peanut butter product formulation were investigated. Three types of peanut butter product inoculated with S. Typhimurium to a level of ca. 6.6 log CFU/g and subjected to gamma irradiation experienced significant (p<0.05) reductions of 1.3 to 1.9, 2.6 to 2.8, and 3.5 to 4.0 log CFU/g at doses of 1, 2, and 3 kGy, respectively. The time required to reduce S. Typhimurium in peanut butter product to undetectable levels was 14, 5, and 5 days at 25°C after exposure to 3 kGy for products A, B, and C, respectively, and 7 days at 25 °C following exposure to 2 kGy for product C. During storage at 4 and 25 °C, survival of S. Typhimurium was lowest in product C compared to products A and B. Water activity (a(w)) of peanut butter product was likely the most critical factor affecting pathogen survival. When a(w) is reduced, radiolysis of water is reduced, thereby decreasing antimicrobial action. Overall, death was more rapid at 25 °C versus 4 °C for all peanut butter products during 14 day storage. Following gamma irradiation, acid values of peanut butter product were not significantly different from the control, and general observations failed to detect changes in color and aroma, even though lightness observed using a colorimeter was slightly reduced on day 0. The use of gamma irradiation has potential in preventing spoilage of post-packaged food by destroying microorganisms and improving the safety and quality of foods without compromising sensory quality. PMID:24321602

  20. State of synapses of the cortex of cerebral hemispheres on gamma-irradiation

    SciTech Connect

    Gaidamakin, N.A.; Ushakov, I.B.

    1989-11-01

    In adult rats with developing neurological disorders we detected destructive changes in most of the synapses of the brain sensorimotor cortex 1.6-4.3 h after a single dose of gamma-irradiation (200 Gy). All functionally important parts on the axonal and dendritic sides of the synapses had undergone changes: mitochondria, synaptic vesicles, pre- and postsynaptic membranes, synaptic complexes, and subsynaptic consolidations, axonal and dendritic plasma, and their inclusions. These changes possibly cause disconnection of the neurons and provide a structural basis for neurological deficiencies following a high substantial ionizing radiation.

  1. Viruslike particles in the tissues of normal and gamma-irradiated Drosophila melanogaster.

    NASA Technical Reports Server (NTRS)

    Miquel, J.; Bensch, K. G.; Philpott, D. E.

    1972-01-01

    A new finding of viruslike particles in the salivary and accessory glands, muscles, and nerves of normal and gamma-irradiated Drosophila melanogaster is discussed. In morphology and size, the particles seemed identical to those described in earlier reports. On the basis of the available results, it cannot be affirmed that these particles infect only dividing cells, since they are found in all the Drosophila tissues so far examined. Their relation to the aging process is felt to be an interesting subject for further study.

  2. Gamma irradiation of PolyEthyleneTerephthalate and PolyEthyleneNaphthalate

    NASA Astrophysics Data System (ADS)

    Mariani, Mario; Ravasio, Ugo; Consolati, Giovanni; Buttafava, Armando; Giola, Marco; Faucitano, Antonio

    2007-12-01

    The effect of gamma irradiation in air is investigated in two thermoplastic polyesters (PET and PEN), in order to evaluate the influence of aromatic density and the role of oxygen on radiation resistance. EPR measurements were carried out to detect radical stability against oxygen permeation and to provide radical characterization. Viscometric data reveal a different behaviour between films and thick samples. Positron annihilation spectra show a decrease of ortho-positronium intensity, which is more marked in film samples. ortho-positronium lifetime does not depend on the radiation dose.

  3. Inactivation of mildew in rough rice and wheat by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Yu, Yong

    2010-06-01

    Rough rice and wheat were irradiated by gamma ray ( 60Co) with different doses and the mildew inactivation efficacy was investigated after 0, 6 and 12 month storage. Five genera of mildew in rough rice and wheat were detected, including Alternaria, Fusarium, Aspergillus, Penicillium and Rhizopus. For Aspergillus, four genera of mold were detected, including Aspergillus Kawachii, Aspergillus glaucus, Aspergillus niger, Aspergillus flavus. Detection rates of the five genera of mildew and four genera of Aspergillus were all reduced with increasing dose after 0, 6 and 12 months storage. The detection rates of the other four genera of mildew had no significant change during storage.

  4. Comparison of different chlorophenols degradation in aqueous solutions by gamma irradiation under reducing conditions

    NASA Astrophysics Data System (ADS)

    Peng, Yunxia; He, Shijun; Wang, Jianlong; Gong, Wenqi

    2012-10-01

    The reductive degradation of chlorophenols (CPs), including 2-CP, 4-CP and 2,4-DCP by gamma irradiation was investigated and compared. The results showed that the most efficient degradation took place with 2,4-DCP, followed by 2-CP and then 4-CP. This confirmed that the number and position of chlorine atoms existing in the benzene ring have significant impact on dechlorination and decomposition of CPs. The G-values of decomposition of CPs, the formation of intermediate products and chloride ion, and the degradation rate (KCPs and K) were also determined.

  5. The effect of gamma irradiation on the viscosity of two barley cultivars for broiler chicks

    NASA Astrophysics Data System (ADS)

    Al-Kaisey, Mahdi T.; Mohammed, Mahmoud A.; Alwan, Abdul-Kader H.; Mohammed, Manal H.

    2002-03-01

    Seeds of two barley cultivars (Local Black and Shoaa) were gamma irradiated at 0, 10, 50, 100, 150 and 200 kGy doses using Cobalt-60 source to decrease the viscosity. The viscosity was determined in the flour of the seeds using Ostwald U-tube viscometer. The viscosity values were reduced by 25%, 50%, 65%, 72% and 74% in Local Black barley cultivar, while, in Shoaa cultivar the reductions were 15%, 30%, 52%, 69% and 67% at 10, 50, 100, 150 and 200 kGy, respectively. The chemical compositions of the seeds were determined in all treatments.

  6. Sensitivity of light-grown and dark-grown Euglena cells to gamma-irradiation.

    PubMed

    Nair, K A; Netrawali, M S

    1979-09-01

    Light-grown cells which contain fully developed chloroplasts were found to be more resistant to gamma-irradiation than dark-grown cells which are devoid of chloroplasts. The radio-resistance of dark-grown cells progressively increased during light-induced development of chloroplasts and, conversely, radio-resistance of light-grown cells decreased progressively with chloroplast de-development during growth in the dark. The presence of chloroplasts seemed to play a major role in the capacity of cells to recover from radiation damage, the efficiency of cellular recovery being correlatable with the degree of chloroplast development. PMID:315395

  7. Assessment of mutagenic activity in thermally processed, frozen, electron-irradiated, and gamma-irradiated beef using the ames salmonella/mammalian microsome mutagenicity assay. Final report, June 1978-April 1980

    SciTech Connect

    Guthertz, L.S.; Fruin, J.T.

    1981-06-01

    Studies were undertaken to determine the mutagenic activity of beef that had been thermally processed, frozen, electron-irradiated, and gamma-irradiated. The Ames Salmonella/mammalian microsome mutagenicity assay, with several modifications, was used. Considerable difficulties in performing the test and interpreting the results were encountered. Experiments conducted showed that on some occasions up to 80% of the apparent revertants were not true revertants. The meats contained water-soluble growth factors, particularly histidine, which apparently supported greater than normal growth and macrocolony formation. Subsequently, the level of histidine in the media was reduced by an amount equal to that contributed by the meats. Also, extracts of the meat were substituted for whole meats as test material for evaluation. Particulate matter from the whole meats made automated colony counting impossible and complicated manual counting. Data collected failed to demonstrate that any of the meats or processing techniques produced mutagens. It was concluded that the test had limited applicability to whole food items and that the use of thermally, frozen, electron-irradiated, and gamma-irradiated processing does not induce mutagenic potential in beef.

  8. EPR study of gamma irradiated DL-methionine sulfone single crystals

    NASA Astrophysics Data System (ADS)

    Karabulut, Bünyamin; Yıldırım, İlkay

    2015-12-01

    Electron paramagnetic resonance (EPR) study of gamma irradiated dl-2-amino-4-(Methylsulfonyl) butyric acid (dl-methionine sulfone, hereafter dl-ABA) single crystals and powder was performed at room temperature. It has been found that this compound indicates the existence of C. O2- and N. H2 radicals after γ-irradiation. While g and hyperfine splitting values for the N. H2 radical were observed, for the C. O2- radical, only the g factor was measured. The EPR spectra have shown that N. H2 radical has two groups each having two distinct sites and C. O2- radical has one site. The principal g and hyperfine values for all sites were analyzed.

  9. Breeding erect plant type sweetpotato lines using cross breeding and gamma-ray irradiation

    PubMed Central

    Kuranouchi, Toshikazu; Kumazaki, Tadashi; Kumagai, Toru; Nakatani, Makoto

    2016-01-01

    Few sweetpotato (Ipomoea batatas Lam.) cultivars with erect plant type are available despite their advantages over spreading type, such as simplicity of cultivation and ability to adapt to limited space. One of the reasons is insufficiency of their agronomic characteristics for table use. So, it is important to overcome these drawbacks of ER-type lines. We attempted to breed new erect plant type sweetpotato lines having good agronomic traits using cross breeding and mutation breeding with gamma-ray irradiation. With cross breeding we successfully developed new erect plant type lines with almost equal levels of yield as compared to ‘Beniazuma’, one of the leading cultivars in Japan. However, mutation breeding failed to develop any promising lines because we could not obtain distinct erect plant type lines. In the future larger numbers of plants should be used for mutation breeding, and irradiation methods should be improved. PMID:27436957

  10. Effects of gamma irradiation on the shoot length of Cicer seeds [rapid communication

    NASA Astrophysics Data System (ADS)

    Toker, Cengiz; Uzun, Bulent; Canci, Huseyin; Oncu Ceylan, F.

    2005-08-01

    The effects of radiation on the shoot and root lengths of germinated seedling of irradiated seeds of Cicer species, i.e. three kabuli types and four desi types of cultivated chickpea ( Cicer arietinum Ladiz.) and 2 annual wild types ( C. reticulatum Ladiz. and C. bijugum K.H. Rech.) were investigated. The seeds were irradiated with a 60Co gamma source using 0, 200, 300 and 400 Gy doses at 1.66 kGy h -1. At 200 Gy minor effects could be observed, but at 400 Gy an obvious depression of shoot length was observed. The kabuli types were more affected than the desi ones. The critical dose that prevented the shoot and root elongation varied among species and also ranged from genotypes to genotype within species.

  11. Breeding erect plant type sweetpotato lines using cross breeding and gamma-ray irradiation.

    PubMed

    Kuranouchi, Toshikazu; Kumazaki, Tadashi; Kumagai, Toru; Nakatani, Makoto

    2016-06-01

    Few sweetpotato (Ipomoea batatas Lam.) cultivars with erect plant type are available despite their advantages over spreading type, such as simplicity of cultivation and ability to adapt to limited space. One of the reasons is insufficiency of their agronomic characteristics for table use. So, it is important to overcome these drawbacks of ER-type lines. We attempted to breed new erect plant type sweetpotato lines having good agronomic traits using cross breeding and mutation breeding with gamma-ray irradiation. With cross breeding we successfully developed new erect plant type lines with almost equal levels of yield as compared to 'Beniazuma', one of the leading cultivars in Japan. However, mutation breeding failed to develop any promising lines because we could not obtain distinct erect plant type lines. In the future larger numbers of plants should be used for mutation breeding, and irradiation methods should be improved. PMID:27436957

  12. Lymphoid cell kinetics under continuous low dose-rate gamma irradiation: A comparison study

    NASA Technical Reports Server (NTRS)

    Foster, B. R.

    1975-01-01

    A comparison study was conducted of the effects of continuous low dose-rate gamma irradiation on cell population kinetics of lymphoid tissue (white pulp) of the mouse spleen with findings as they relate to the mouse thymus. Experimental techniques employed included autoradiography and specific labeling with tritiated thymidine (TdR-(h-3)). The problem studied involved the mechanism of cell proliferation of lymphoid tissue of the mouse spleen and thymus under the stress of continuous irradiation at a dose rate of 10 roentgens (R) per day for 105 days (15 weeks). The aim was to determine whether or not a steady state or near-steady state of cell population could be established for this period of time, and what compensatory mechanisms of cell population were involved.

  13. Radiation damage of PbWO 4 crystals due to irradiation by 60Co gamma rays

    NASA Astrophysics Data System (ADS)

    Kozma, Peter; Bajgar, Robert; Kozma, Petr

    2002-09-01

    Radiation resistivity of large tungstate crystals PbWO 4 from three suppliers has been studied for doses 10 4 Gy (10 6 rad) and 10 5 Gy (10 7 rad). Radiation resistivity was examined by the measurement of optical transmission through tungstate crystals before and after 60Co gamma-ray irradiations. The absolute degradation of transmission for 10 4 and 10 5 Gy doses at 480 nm wavelength of the peak emission of PbWO 4 doped with La 2+, was found to be lower than 12.3% and 14.2%, respectively. The results have been also compared with radiation hardness measurements for a large volume CeF 3 scintillation crystal. Complete recovery of radiation damage was observed between 10 and 15 days after irradiations.

  14. Facile Synthesis of Silver Nanoparticles Under {gamma}-Irradiation: Effect of Chitosan Concentration

    SciTech Connect

    Huang, N. M.; Radiman, S.; Ahmad, A.; Idris, H.; Lim, H. N.; Khiew, P. S.; Chiu, W. S.; Tan, T. K.

    2009-06-01

    In the present study, a biopolymer, low molecular weight chitosan had been utilized as a 'green' stabilizing agent for the synthesis of silver nanoparticles under {gamma}-irradiation. The as-synthesized silver nanoparticles have particle diameters in the range of 5 nm-30 nm depending on the percentage of chitosan used (0.1 wt%, 0.5 wt%, 1.0 wt% and 2.0 wt%). It was found that the yield of the silver nanoparticles was in accordance with the concentration of chitosan presence in the solution due to the reduction by the chitosan radical during irradiation. The highly stable chitosan encapsulated silver nanoparticles were characterized using transmission electron microscopy (TEM), UV-Visible spectrophotometer (UV-VIS) and X-ray diffraction spectroscopy (XRD)

  15. The effect of gamma irradiation on the thermal behavior of dielectric properties of linear low-density/carbon black semiconductive composites

    NASA Astrophysics Data System (ADS)

    Dudić, D.; Luyt, A. S.; Marinković, F.; Petronijević, I.; Dojčilović, J.; Kostoski, D.

    2015-02-01

    Electrical AC conductivity of semiconducting low-density polyethylene (LDPE)-carbon black (CB) composites has been studied in the frequency range between 24 Hz and 75 kHz and the temperature range from 295 to 355 K. The composites were gamma irradiated at room temperature to different absorbed doses up to 300 kGy. The effects of gamma irradiation on the AC conductivity at room temperature and the conductive temperature coefficients (CTC) were observed. It was found that the effect of gamma irradiation on the stability of AC conductivity at elevated temperature (355 K) is dependent on the carbon black content and the gamma irradiation dose.

  16. Polymerization of SDS-PAGE gel by gamma irradiation and its use for characterization by electrophoresis of a protein [rapid communication

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Ho; Kim, Jin-Hee; Seo, Ji-Hyun; Lee, Ju-Woon; Lim, Sang-Yong; Lee, Ho-Joon; Byun, Myung-Woo

    2005-12-01

    An SDS-PAGE gel strip was polymerized using a gamma irradiation process and used for electrophoresis. The relative mobility (Rf) and resolution of marker proteins were determined. Polymerization was induced by gamma irradiation in an acrylamide and N'-methylene bisacrylamide mixture with and without the polymerization initiators, ammonium persulfate (APS) and N,N,N',N'-tetramethylethylenediamine (TEMED). The calibration curves of log 10 molecular weight of the protein versus the distance of the migration showed higher correlations in the gamma irradiated gel than in that of the APS-TEMED polymerized control. The Rf value of the protein was increased in the gel polymerized by gamma-irradiation.

  17. Fatty acid profile of gamma-irradiated and cooked African oil bean seed (Pentaclethra macrophylla Benth).

    PubMed

    Olotu, Ifeoluwa; Enujiugha, Victor; Obadina, Adewale; Owolabi, Kikelomo

    2014-11-01

    The safety and shelf-life of food products can be, respectively, ensured and extended with important food-processing technologies such as irradiation. The joint effect of cooking and 10 kGy gamma irradiation on the fatty acid composition of the oil of Pentaclethra macrophylla Benth was evaluated. Oils from the raw seed, cooked seeds, irradiated seeds (10 kGy), cooked, and irradiated seeds (10 kGy) were extracted and analyzed for their fatty acid content. An omega-6-fatty acid (linoleic acid) was the principal unsaturated fatty acid in the bean seed oil (24.6%). Cooking significantly (P < 0.05) increased Erucic acid by 3.3% and Linolenic acid by 23.0%. Combined treatment significantly (P < 0.05) increased C18:2, C6:0, C20:2, C18:3, C20:3, C24:0, and C22:6 being linoleic, caproic, eicosadienoic, linolenic, eicosatrienoic, ligoceric, and docosahexaenoic acid, respectively, and this increase made the oil sample to have the highest total fatty acid content (154.9%), unsaturated to saturated fatty acid ratio (109.6), and unsaturated fatty acid content (153.9%). 10 kGy irradiation induces the formation of C20:5 (eicosapentaenoic), while cooking induced the formation of C20:4 (arachidic acid), C22:6 (Heneicosanoic acid), and C22:2 (docosadienoic acid). Combined 10 kGy cooking and irradiation increased the susceptibility of the oil of the African oil bean to rancidity. PMID:25493197

  18. Whole-Genome Sequencing in Microbial Forensic Analysis of Gamma-Irradiated Microbial Materials

    PubMed Central

    Broomall, Stacey M.; Ait Ichou, Mohamed; Krepps, Michael D.; Johnsky, Lauren A.; Karavis, Mark A.; Hubbard, Kyle S.; Insalaco, Joseph M.; Betters, Janet L.; Redmond, Brady W.; Rivers, Bryan A.; Liem, Alvin T.; Hill, Jessica M.; Fochler, Edward T.; Roth, Pierce A.; Rosenzweig, C. Nicole; Skowronski, Evan W.

    2015-01-01

    Effective microbial forensic analysis of materials used in a potential biological attack requires robust methods of morphological and genetic characterization of the attack materials in order to enable the attribution of the materials to potential sources and to exclude other potential sources. The genetic homogeneity and potential intersample variability of many of the category A to C bioterrorism agents offer a particular challenge to the generation of attributive signatures, potentially requiring whole-genome or proteomic approaches to be utilized. Currently, irradiation of mail is standard practice at several government facilities judged to be at particularly high risk. Thus, initial forensic signatures would need to be recovered from inactivated (nonviable) material. In the study described in this report, we determined the effects of high-dose gamma irradiation on forensic markers of bacterial biothreat agent surrogate organisms with a particular emphasis on the suitability of genomic DNA (gDNA) recovered from such sources as a template for whole-genome analysis. While irradiation of spores and vegetative cells affected the retention of Gram and spore stains and sheared gDNA into small fragments, we found that irradiated material could be utilized to generate accurate whole-genome sequence data on the Illumina and Roche 454 sequencing platforms. PMID:26567301

  19. Effect of gamma irradiation on microbial decontamination, and chemical and sensory characteristic of lycium fruit

    NASA Astrophysics Data System (ADS)

    Wen, Hsiao-Wei; Chung, Hsiao-Ping; Chou, Fong-In; Lin, I.-hsin; Hsieh, Po-Chow

    2006-05-01

    Lycium fruit, popular traditional Chinese medicine and food supplement generally is ingested uncooked, was exposed to several doses of gamma irradiation (0-14 kGy) to evaluate decontamination efficiency, changes in chemical composition, and changes in sensory characteristic. In this study, lycium fruit specimens contained microbial counts of 3.1×10 3-1.7×10 5 CFU/g and 14 kGy was sufficient for microbial decontamination. Before irradiation, the main microbe isolated from lycium fruit was identified as a strain of yeast, Cryptococcus laurentii. After 10 kGy of irradiation, a Gram-positive spore-forming bacterium, Bacillus cereus, was the only survivor. The first 90% reduction (LD 90) of C. laurentii and B. cereus was approximately 0.6 and 6.5 kGy, respectively, the D 10 doses of C. laurentii and B. cereus was approximately 0.6 and 1.7 kGy, respectively. After 14 kGy irradiation, except the vitamin C content, other chemical composition (e.g., crude protein, β-carotene, riboflavin, fructose, etc.) and the sensory characteristic of lycium fruit specimens did not have significant changes. In conclusion, 14 kGy is the optimal decontamination dose for lycium fruit for retention of its sensory quality and extension of shelf life.

  20. Effect of gamma irradiation at intermediate doses on the performance of reverse osmosis membranes

    NASA Astrophysics Data System (ADS)

    Combernoux, Nicolas; Labed, Véronique; Schrive, Luc; Wyart, Yvan; Carretier, Emilie; Moulin, Philippe

    2016-07-01

    The goal of this study is to explain the degradation of Polyamide (PA) composite reverse osmosis membrane (RO) in function of the irradiation dose. Irradiations were performed with a gamma 60Co source in wet conditions and under oxygen atmosphere. For different doses of 0.2 and 0.5 MGy with a constant dose rate of 0.5 kGy h-1, RO membranes performances (NaCl retention, permeability) were studied before and after irradiation. ATR-FTIR, ion chromatography and gas chromatography were used to characterize structural modification. Results showed that the permeability of RO membranes irradiated at 0.2 MGy exhibited a small decrease, related to scissions of the PVA coating. However, retention did not change at this dose. At 0.5 MGy, permeability showed a large increase of a factor around 2 and retention began to decrease from 99% to 95%. Chromatography measurements revealed a strong link between permselectivity properties variation, ion leakage and oxygen consumption. Add to ATR-FTIR observations, these results emphasized that the cleavages of amide and ester bonds were observed at 0.5 MGy, more precisely the loss of hydrogen bonds between polyamide chains. By different analysis, modifications of the polysulfone layer occur until a dose of 0.2 MGy.