Sample records for gamma spectrometry measurements

  1. Measuring the radium quartet (228Ra, 226Ra, 224Ra, 223Ra) in seawater samples using gamma spectrometry.

    PubMed

    van Beek, P; Souhaut, M; Reyss, J-L

    2010-07-01

    Radium isotopes are widely used in marine studies (eg. to trace water masses, to quantify mixing processes or to study submarine groundwater discharge). While 228Ra and 226Ra are usually measured using gamma spectrometry, short-lived Ra isotopes (224Ra and 223Ra) are usually measured using a Radium Delayed Coincidence Counter (RaDeCC). Here we show that the four radium isotopes can be analyzed using gamma spectrometry. We report 226Ra, 228Ra, 224Ra, 223Ra activities measured using low-background gamma spectrometry in standard samples, in water samples collected in the vicinity of our laboratory (La Palme and Vaccarès lagoons, France) but also in seawater samples collected in the plume of the Amazon river, off French Guyana (AMANDES project). The 223Ra and 224Ra activities determined in these samples using gamma spectrometry were compared to the activities determined using RaDeCC. Activities determined using the two techniques are in good agreement. Uncertainties associated with the 224Ra activities are similar for the two techniques. RaDeCC is more sensitive for the detection of low 223Ra activities. Gamma spectrometry thus constitutes an alternate method for the determination of short-lived Ra isotopes. 2009 Elsevier Ltd. All rights reserved.

  2. Measurement of beta-plus emitters by gamma-ray spectrometry.

    PubMed

    Lépy, Marie-Christine; Cassette, Philippe; Ferreux, Laurent

    2010-01-01

    The activity measurement of beta-plus emitters by gamma-ray spectrometry is studied. Experimental measurements are performed with (22)Na, (65)Zn and (64)Cu with sources included in a lead container. For these nuclides, the activity can be derived both from one photon emission peak and from the 511 keV annihilation peak, including annihilation in-flight correction and geometry correction computed by Monte Carlo simulation. The activity values obtained using the two types of peaks show satisfying agreement. The extension of the method to volume sources is discussed. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Optimal measurement counting time and statistics in gamma spectrometry analysis: The time balance

    NASA Astrophysics Data System (ADS)

    Joel, Guembou Shouop Cebastien; Penabei, Samafou; Maurice, Ndontchueng Moyo; Gregoire, Chene; Jilbert, Nguelem Mekontso Eric; Didier, Takoukam Serge; Werner, Volker; David, Strivay

    2017-01-01

    The optimal measurement counting time for gamma-ray spectrometry analysis using HPGe detectors was determined in our laboratory by comparing twelve hours measurement counting time at day and twelve hours measurement counting time at night. The day spectrum does not fully cover the night spectrum for the same sample. It is observed that the perturbation come to the sun-light. After several investigations became clearer: to remove all effects of radiation from outside (earth, the sun, and universe) our system, it is necessary to measure the background for 24, 48 or 72 hours. In the same way, the samples have to be measured for 24, 48 or 72 hours to be safe to be purified the measurement (equality of day and night measurement). It is also possible to not use the background of the winter in summer. Depend on to the energy of radionuclide we seek, it is clear that the most important steps of a gamma spectrometry measurement are the preparation of the sample and the calibration of the detector.

  4. Study of gamma spectrometry laboratory measurement in various sediment and vulcanic rocks

    NASA Astrophysics Data System (ADS)

    Nurhandoko, Bagus Endar B.; Kurniadi, Rizal; Rizka Asmara Hadi, Muhammad; Rizal Komara, Insan

    2017-01-01

    Gamma-ray spectroscopy is the quantitative study of the energy spectra of gamma-ray sources. This method is powerful to characterize some minerals, especially to differentiate rocks which contains among Potassium, Uranium, dan Thorium. Rock contains radioactive material which produce gamma rays in various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be used as indicator for mineral content of rock. Some sediment and vulcanic rock have been collected from East Java Basin. Samples are ranging from Andesite vulcanics, Tuff, Shale, various vulcanic clay and Alluvial clay. We present some unique characteristics of gamma spectrometry in various sedimentar and vulcanic rocks of East Java Basins. Details contents of gamma ray spectra give enrichments to characterize sample of sediment and vulcanic in East Java. Weathered vulcanic clay has lower counting rate of gamma ray than alluvial deltaic clay counting rate. Therefore, gamma spectrometrometry can be used as tool for characterizing the enviroment of clay whether vulcanic or alluvial-deltaic. This phenomena indicates that gamma ray spectrometry can be as tool for characterizing the clay whether it tends to Smectite or Illite

  5. Determination of the measurement threshold in gamma-ray spectrometry.

    PubMed

    Korun, M; Vodenik, B; Zorko, B

    2017-03-01

    In gamma-ray spectrometry the measurement threshold describes the lover boundary of the interval of peak areas originating in the response of the spectrometer to gamma-rays from the sample measured. In this sense it presents a generalization of the net indication corresponding to the decision threshold, which is the measurement threshold at the quantity value zero for a predetermined probability for making errors of the first kind. Measurement thresholds were determined for peaks appearing in the spectra of radon daughters 214 Pb and 214 Bi by measuring the spectrum 35 times under repeatable conditions. For the calculation of the measurement threshold the probability for detection of the peaks and the mean relative uncertainty of the peak area were used. The relative measurement thresholds, the ratios between the measurement threshold and the mean peak area uncertainty, were determined for 54 peaks where the probability for detection varied between some percent and about 95% and the relative peak area uncertainty between 30% and 80%. The relative measurement thresholds vary considerably from peak to peak, although the nominal value of the sensitivity parameter defining the sensitivity for locating peaks was equal for all peaks. At the value of the sensitivity parameter used, the peak analysis does not locate peaks corresponding to the decision threshold with the probability in excess of 50%. This implies that peaks in the spectrum may not be located, although the true value of the measurand exceeds the decision threshold. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Fluorescence-Assisted Gamma Spectrometry for Surface Contamination Analysis

    NASA Astrophysics Data System (ADS)

    Ihantola, Sakari; Sand, Johan; Perajarvi, Kari; Toivonen, Juha; Toivonen, Harri

    2013-02-01

    A fluorescence-based alpha-gamma coincidence spectrometry approach has been developed for the analysis of alpha-emitting radionuclides. The thermalization of alpha particles in air produces UV light, which in turn can be detected over long distances. The simultaneous detection of UV and gamma photons allows detailed gamma analyses of a single spot of interest even in highly active surroundings. Alpha particles can also be detected indirectly from samples inside sealed plastic bags, which minimizes the risk of cross-contamination. The position-sensitive alpha-UV-gamma coincidence technique reveals the presence of alpha emitters and identifies the nuclides ten times faster than conventional gamma spectrometry.

  7. Initial Gamma Spectrometry Examination of the AGR-3/4 Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Jason M.; Demkowicz, Paul A.; Stempien, John D.

    2016-11-01

    The initial results from gamma spectrometry examination of the different components from the combined third and fourth US Advanced Gas Reactor Fuel Development TRISO-coated particle fuel irradiation tests (AGR-3/4) have been analyzed. This experiment was designed to provide information about in-pile fission product migration. In each of the 12 capsules, a single stack of four compacts with designed-to-fail particles surrounded by two graphitic diffusion rings (inner and outer) and a graphite sink were irradiated in the Idaho National Laboratory’s Advanced Test Reactor. Gamma spectrometry has been used to evaluate the gamma-emitting fission product inventory of compacts from the irradiation andmore » evaluate the burnup of these compacts based on the activity of the radioactive cesium isotopes (Cs-134 and Cs-137) in the compacts. Burnup from gamma spectrometry compares well with predicted burnup from simulations. Additionally, inner and outer rings were also examined by gamma spectrometry both to evaluate the fission product inventory and the distribution of gamma-emitting fission products within the rings using gamma emission computed tomography. The cesium inventory of the scanned rings compares acceptably well with the expected inventory from fission product transport modeling. The inventory of the graphite fission product sinks is also being evaluated by gamma spectrometry.« less

  8. Theoretical study of depth profiling with gamma- and X-ray spectrometry based on measurements of intensity ratios

    NASA Astrophysics Data System (ADS)

    Bártová, H.; Trojek, T.; Johnová, K.

    2017-11-01

    This article describes the method for the estimation of depth distribution of radionuclides in a material with gamma-ray spectrometry, and the identification of a layered structure of a material with X-ray fluorescence analysis. This method is based on the measurement of a ratio of two gamma or X-ray lines of a radionuclide or a chemical element, respectively. Its principle consists in different attenuation coefficient for these two lines in a measured material. The main aim of this investigation was to show how the detected ratio of these two lines depends on depth distribution of an analyte and mainly how this ratio depends on density and chemical composition of measured materials. Several different calculation arrangements were made and a lot of Monte Carlo simulation with the code MCNP - Monte Carlo N-Particle (Briesmeister, 2000) was performed to answer these questions. For X-ray spectrometry, the calculated Kα/Kβ diagrams were found to be almost independent upon matrix density and composition. Thanks to this phenomenon it would be possible to draw only one Kα/Kβ diagram for an element whose depth distribution is examined.

  9. Rapid determination of 237Np in soil samples by multi-collector inductively-coupled plasma mass spectrometry and gamma spectrometry.

    PubMed

    Yi, Xiaowei; Shi, Yanmei; Xu, Jiang; He, Xiaobing; Zhang, Haitao; Lin, Jianfeng

    A radiochemical procedure is developed for the determination of 237 Np in soil with multi-collector inductively-coupled plasma mass spectrometry (MC-ICP-MS) and gamma-spectrometry. 239 Np (milked from 243 Am) was used as an isotopic tracer for chemical yield determination. The neptunium in the soil is separated by thenoyl-trifluoracetone extraction from 1 M HNO 3 solution after reducing Np to Np(IV) with ferrous sulfamate, and then purified with Dowex 1 × 2 anion exchange resin. 239 Np in the resulting solution is measured with gamma-spectrometry for chemical yield determination while the 237 Np is measured with MC-ICP-MS. Measurement results for soil samples are presented together with those for two reference samples. By comparing the determined value with the reference value of the 237 Np activity concentration, the feasibility of the procedure was validated.

  10. MCNPX evaluation of gamma spectrometry results in high radon concentration areas.

    PubMed

    Thinová, L; Solc, J

    2014-07-01

    The radon concentration in underground workplaces may reach tens of thousands of Bq m(-3). A simple MCNPXTM Monte Carlo (MC) model of a cave was developed to estimate the influence of radon on the in situ gamma spectrometry results in various geometries and radon concentrations. The detector total count rate was obtained as the sum of the individual count rates due to 214Bi in the air, radon in the walls and deposition of radon daughters on surfaces. The MC model was then modified and used in the natural conditions of the Mladeč Caves, Czech Republic. The content of 226Ra was calculated from laboratory gamma spectrometry measurements, and the concentrations of unattached and attached 214Bi were measured using the FRITRA4 device (SMM-Prague). We present a comparison of the experimental results with results calculated by the MCNPXTM model of the Gamma Surveyor spectrometry probe (GF Instruments) with a 3″×3″ NaI(Tl) detector and a 2″×2″ BGO detector. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. The on-line characterization of a radium slurry by gamma-ray spectrometry.

    PubMed

    Philips, S; Croft, S

    2005-01-01

    We have developed an in-line monitor to directly measure the (226)Ra concentration in a nuclear waste stream using quantitative gamma-ray spectrometry applied to the 186keV emission. The waste stream is in the form of a slurry composed of the solid waste material mixed with water. The concentration measurement includes a self-attenuation correction factor determined from a transmission measurement using the 122keV gamma from (57)Co. Presented here is the model for the measurement system and results from some initial tests.

  12. Radon gamma-ray spectrometry with YAP:Ce scintillator

    NASA Astrophysics Data System (ADS)

    Plastino, Wolfango; De Felice, Pierino; de Notaristefani, Francesco

    2002-06-01

    The detection properties of a YAP:Ce scintillator (YAlO 3:Ce crystal) optically coupled to a Hamamatsu H5784 photomultiplier with standard bialkali photocathode have been analyzed. In particular, the application to radon and radon-daughters gamma-ray spectrometry was investigated. The crystal response has been studied under severe extreme conditions to simulate environments of geophysical interest, particularly those found in geothermal and volcanic areas. Tests in water up to a temperature of 100°C and in acids solutions such as HCl (37%), H 2SO 4 (48%) and HNO 3 (65%) have been performed. The measurements with standard radon sources provided by the National Institute for Metrology of Ionizing Radiations (ENEA) have emphasized the non-hygroscopic properties of the scintillator and a small dependence of the light yield on temperature and HNO 3. The data collected in this first step of our research have pointed out that the YAP:Ce scintillator can allow high response stability for radon gamma-ray spectrometry in environments with large temperature gradients and high acid concentrations.

  13. Application of mobile gamma-ray spectrometry for soil mapping

    NASA Astrophysics Data System (ADS)

    Werban, Ulrike; Lein, Claudia; Pohle, Marco; Dietrich, Peter

    2017-04-01

    Gamma-ray measurements have a long tradition for geological surveys and deposit exploration using airborne and borehole logging systems. For these applications, the relationships between the measured physical parameter - the concentration of natural gamma emitters 40K, 238U and 232Th - and geological origin or sedimentary developments are well described. Thus, Gamma-ray spectrometry seems a useful tool for carrying out spatial mapping of physical parameters related to soil properties. The isotope concentration in soils depends on different soil parameters (e.g. geochemical composition, grain size fractions), which are a result of source rock properties and processes during soil geneses. There is a rising interest in the method for application in Digital Soil Mapping or as input data for environmental, ecological or hydrological modelling, e.g. as indicator for clay content. However, the gamma-ray measurement is influenced by endogenous factors and processes like soil moisture variation, erosion and deposition of material or cultivation. We will present results from a time series of car borne gamma-ray measurements to observe heterogeneity of soil on a floodplain area in Central Germany. The study area is characterised by high variations in grain size distribution and occurrence of flooding events. For the survey, we used a 4 l NaI(Tl) detector with GPS connection mounted on a sledge, which is towed across the field sites by a four-wheel-vehicle. The comparison of data from different dates shows similar structures with small variation between the data ranges and shape of structures. We will present our experiences concerning the application of gamma-ray measurements under variable field conditions and their impacts on data quality.

  14. An analysis of nuclear fuel burnup in the AGR-1 TRISO fuel experiment using gamma spectrometry, mass spectrometry, and computational simulation techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Jason M.; Demkowicz, Paul A.; Winston, Philip L.

    AGR 1 was the first in a series of experiments designed to test US TRISO fuel under high temperature gas-cooled reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post irradiation examination (PIE) at INL and Oak Ridge National Laboratory. One component of the AGR 1 PIE is the experimental evaluation of the burnup of the fuel by two separate techniques. Gamma spectrometry was used to non destructively evaluate the burnup of all 72 of the TRISO fuel compacts that comprised the AGR 1 experiment. Two methodsmore » for evaluating burnup by gamma spectrometry were developed, one based on the Cs 137 activity and the other based on the ratio of Cs 134 and Cs 137 activities. Burnup values determined from both methods compared well with the values predicted from simulations. The highest measured burnup was 20.1% FIMA for the direct method and 20.0% FIMA for the ratio method (compared to 19.56% FIMA from simulations). An advantage of the ratio method is that the burnup of the cylindrical fuel compacts can determined in small (2.5 mm) axial increments and an axial burnup profile can be produced. Destructive chemical analysis by inductively coupled mass spectrometry (ICP MS) was then performed on selected compacts that were representative of the expected range of fuel burnups in the experiment to compare with the burnup values determined by gamma spectrometry. The compacts analyzed by mass spectrometry had a burnup range of 19.3% FIMA to 10.7% FIMA. The mass spectrometry evaluation of burnup for the four compacts agreed well with the gamma spectrometry burnup evaluations and the expected burnup from simulation. For all four compacts analyzed by mass spectrometry, the maximum range in the three experimentally determined values and the predicted value was 6% or less. Furthermore, the results confirm the accuracy of the nondestructive burnup evaluation from gamma

  15. An analysis of nuclear fuel burnup in the AGR-1 TRISO fuel experiment using gamma spectrometry, mass spectrometry, and computational simulation techniques

    DOE PAGES

    Harp, Jason M.; Demkowicz, Paul A.; Winston, Philip L.; ...

    2014-09-03

    AGR 1 was the first in a series of experiments designed to test US TRISO fuel under high temperature gas-cooled reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post irradiation examination (PIE) at INL and Oak Ridge National Laboratory. One component of the AGR 1 PIE is the experimental evaluation of the burnup of the fuel by two separate techniques. Gamma spectrometry was used to non destructively evaluate the burnup of all 72 of the TRISO fuel compacts that comprised the AGR 1 experiment. Two methodsmore » for evaluating burnup by gamma spectrometry were developed, one based on the Cs 137 activity and the other based on the ratio of Cs 134 and Cs 137 activities. Burnup values determined from both methods compared well with the values predicted from simulations. The highest measured burnup was 20.1% FIMA for the direct method and 20.0% FIMA for the ratio method (compared to 19.56% FIMA from simulations). An advantage of the ratio method is that the burnup of the cylindrical fuel compacts can determined in small (2.5 mm) axial increments and an axial burnup profile can be produced. Destructive chemical analysis by inductively coupled mass spectrometry (ICP MS) was then performed on selected compacts that were representative of the expected range of fuel burnups in the experiment to compare with the burnup values determined by gamma spectrometry. The compacts analyzed by mass spectrometry had a burnup range of 19.3% FIMA to 10.7% FIMA. The mass spectrometry evaluation of burnup for the four compacts agreed well with the gamma spectrometry burnup evaluations and the expected burnup from simulation. For all four compacts analyzed by mass spectrometry, the maximum range in the three experimentally determined values and the predicted value was 6% or less. Furthermore, the results confirm the accuracy of the nondestructive burnup evaluation from gamma

  16. Dating the age of a nuclear event by gamma spectrometry.

    PubMed

    Nir-El, Y

    2004-01-01

    The age of a nuclear event can be determined by measuring the activity of two fission products. The event studied was a short irradiation, of a small sample of uranium, in a nuclear reactor. Two types of a clock were investigated: non-isobaric and isobaric parent-daughter fission products. Measurements of the source by gamma spectrometry yielded very good agreement between true and measured ages. The accuracy of each clock and the upper and lower age limits of applicability were studied.

  17. The influence of exogenous conditions on mobile measured gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Dierke, C.; Werban, U.; Dietrich, P.

    2012-12-01

    In the past, gamma ray measurements have been used for geological surveys and exploration using airborne and borehole logging systems. For these applications, the relationships between the measured physical parameter - the concentration of natural gamma emitters 40K, 238U and 232Th - and geological origin or sedimentary developments are well described. Based on these applications and knowledge in combination with adjusted sensor systems, gamma ray measurements are used to derive soil parameters to create detailed soil maps e.g., in digital soil mapping (DSM) and monitoring of soils. Therefore, not only qualitative but also quantitative comparability is necessary. Grain size distribution, type of clay minerals and organic matter content are soil parameters which directly influence the gamma ray emitter concentration. Additionally, the measured concentration is influenced by endogenous processes like soil moisture variation due to raining events, foggy weather conditions, or erosion and deposition of material. A time series of gamma ray measurements was used to observe changes in gamma ray concentration on a floodplain area in Central Germany. The study area is characterised by high variations in grain size distribution and occurrence of flooding events. For the survey, we used a 4l NaI(Tl) detector with GPS connection mounted on a sledge, which is towed across the field sites by a four-wheel-vehicle. The comparison of data from different time steps shows similar structures with minor variation between the data ranges and shape of structures. However, the data measured during different soil moisture contents differ in absolute value. An average increase of soil moisture of 36% leads to a decrease of Th (by 20%), K (by 29%), and U (by 41%). These differences can be explained by higher attenuation of radiation during higher soil moisture content. The different changes in nuclide concentration will also lead to varying ratios. We will present our experiences concerning

  18. Seabed gamma-ray spectrometry: applications at IAEA-MEL.

    PubMed

    Osvath, I; Povinec, P P

    2001-01-01

    The technique of underwater gamma-ray spectrometry has been developed to complement or replace the traditional sampling-sample analysis approach for applications with space-time constraints, e.g. large areas of investigation, emergency response or long-term monitoring. IAEA-MEL has used both high-efficiency NaI(Tl) and high-resolution HPGe spectrometry to investigate contamination with anthropogenic radionuclides in a variety of marine environments. Surveys at the South Pacific nuclear test sites of Mururoa and Fangataufa have been used to guide sampling in areas of high contamination around ground zero points. In the Irish Sea offshore from the Sellafield nuclear reprocessing plant, a gamma-ray survey of seabed sediment was carried out to obtain estimates of the distribution and subsequently, for the inventory of 137Cs in the investigated area.

  19. Gamma spectrometry in the ITWG CMX-4 exercise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakosi, L.; Zsigrai, J.; Kocsonya, A.

    Low enriched uranium samples of unknown origin were analyzed by 16 laboratories in the context of a Collaborative Materials Exercise (CMX), organized by the Nuclear Forensics International Technical Working Group (ITWG). The purpose was to compare and prioritize nuclear forensic methods and techniques, and to evaluate attribution capabilities among participants. This paper gives a snapshot of the gamma spectrometric capabilities of the participating laboratories and summarizes the results achieved by gamma spectrometry.

  20. Gamma spectrometry in the ITWG CMX-4 exercise

    DOE PAGES

    Lakosi, L.; Zsigrai, J.; Kocsonya, A.; ...

    2018-01-05

    Low enriched uranium samples of unknown origin were analyzed by 16 laboratories in the context of a Collaborative Materials Exercise (CMX), organized by the Nuclear Forensics International Technical Working Group (ITWG). The purpose was to compare and prioritize nuclear forensic methods and techniques, and to evaluate attribution capabilities among participants. This paper gives a snapshot of the gamma spectrometric capabilities of the participating laboratories and summarizes the results achieved by gamma spectrometry.

  1. EML Gamma Spectrometry Data Evaluation Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decker, Karin M.

    2001-01-01

    This report presents the results of the analyses for the third EML Gamma Spectrometry Data Evaluation Program (October 1999). This program assists laboratories in providing more accurate gamma spectra analysis results and provides a means for users of gamma data to assess how a laboratory performed on various types of gamma spectrometry analyses. This is accomplished through the use of synthetic gamma spectra. A calibration spectrum, a background spectrum, and three sample spectra are sent to each participant in the spectral file format requested by the laboratory. The calibration spectrum contains nuclides covering the energy range from 59.5 keV tomore » 1836 keV. The participants are told fallout and fission product nuclides could be present. The sample spectra are designed to test the ability of the software and user to properly resolve multiplets and to identify and quantify nuclides in a complicated fission product spectrum. The participants were asked to report values and uncertainties as Becquerel per sample with no decay correction. Thirty-one sets of results were reported from a total of 60 laboratories who received the spectra. Six foreign laboratories participated. The percentage of the results within 1 of the expected value was 68, 33, and 46 for samples 1, 2, and 3, respectively. From all three samples, 18% of the results were more than 3 from the expected value. Eighty-three (12%) values out of a total of 682 expected results were not reported for the three samples. Approximately 30% of these false negatives were due the laboratories not reporting 144Pr in sample 2 which was present at the minimum detectable activity level. There were 53 false positives reported with 25% of these responses due to problems with background subtraction. The results show improvement in the ability of the software or user to resolve peaks separated by 1 keV. Improvement is still needed either in the analysis report produced by the software or in the review of these

  2. Determination of uranium and thorium using gamma spectrometry: a pilot study

    NASA Astrophysics Data System (ADS)

    Olivares, D. M. M.; Koch, E. S.; Guevara, M. V. M.; Velasco, F. G.

    2018-03-01

    This paper presents the results of a pilot experiment aimed at standardizing procedures for the CPqCTR/UESC Gamma Spectrometry Laboratory (LEG) for the quantification of natural radioactive elements in solid environmental samples. The concentrations of 238U, 232Th and 40K in two sediment matrix belonging to the Caetité region were determined, by using the absolute method with uncertainties about 5%. The results were obtained using gamma spectrometry with a high-resolution p-type HPGe detector. As a closure, the absorbed dose, radium equivalent activity and the annual effective dose were calculated.

  3. A gamma-gamma coincidence/anticoincidence spectrometer for low-level cosmogenic (22)Na/(7)Be activity ratio measurement.

    PubMed

    Zhang, Weihua; Ungar, Kurt; Stukel, Matthew; Mekarski, Pawel

    2014-04-01

    In this study, a digital gamma-gamma coincidence/anticoincidence spectrometer was developed and examined for low-level cosmogenic (22)Na and (7)Be in air-filter sample monitoring. The spectrometer consists of two bismuth germanate scintillators (BGO) and an XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The spectrometer design allows a more selective measurement of (22)Na with a significant background reduction by gamma-gamma coincidence events processing. Hence, the system provides a more sensitive way to quantify trace amounts of (22)Na than normal high resolution gamma spectrometry providing a critical limit of 3 mBq within a 20 h count. The use of a list-mode data acquisition technique enabled simultaneous determination of (22)Na and (7)Be activity concentrations using a single measurement by coincidence and anticoincidence mode respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Comparison of digital signal processing modules in gamma-ray spectrometry.

    PubMed

    Lépy, Marie-Christine; Cissé, Ousmane Ibrahima; Pierre, Sylvie

    2014-05-01

    Commercial digital signal-processing modules have been tested for their applicability to gamma-ray spectrometry. The tests were based on the same n-type high purity germanium detector. The spectrum quality was studied in terms of energy resolution and peak area versus shaping parameters, using a Eu-152 point source. The stability of a reference peak count rate versus the total count rate was also examined. The reliability of the quantitative results is discussed for their use in measurement at the metrological level. © 2013 Published by Elsevier Ltd.

  5. The interference of medical radionuclides with occupational in vivo gamma spectrometry.

    PubMed

    Kol, R; Pelled, O; Canfi, A; Gilad, Y; German, U; Laichter, Y; Lantsberg, S; Fuksbrauner, R; Gold, B

    2003-06-01

    Radiation workers undergo routine monitoring for the evaluation of external and internal radiation exposures. The monitoring of internal exposures involves gamma spectrometry of the whole body (whole body counting) and measurements of excreta samples. Medical procedures involving internal administration of radioactive radionuclides are widely and commonly used. Medical radionuclides are typically short-lived, but high activities are generally administered, whereas occupational radionuclides are mostly long-lived and, if present, are found generally in relatively smaller quantities. The aim of the present work was to study the interference of some common medical radionuclides (201Tl, 9mTc, 57Co, and 131I) with the detection of internal occupational exposures to natural uranium and to 137Cs. Workers having undergone a medical procedure with one of the radionuclides mentioned above were asked to give frequent urine samples and to undergo whole body and thyroid counting with phoswich detectors operated at the Nuclear Research Center Negev. Urine and whole body counting monitoring were continued as long as radioactivity was detectable by gamma spectrometry. The results indicate that the activity of medical radionuclides may interfere with interpretation of occupational intakes for months after administration.

  6. The 124Sb activity standardization by gamma spectrometry for medical applications

    NASA Astrophysics Data System (ADS)

    de Almeida, M. C. M.; Iwahara, A.; Delgado, J. U.; Poledna, R.; da Silva, R. L.

    2010-07-01

    This work describes a metrological activity determination of 124Sb, which can be used as radiotracer, applying gamma spectrometry methods with hyper pure germanium detector and efficiency curves. This isotope with good activity and high radionuclidic purity is employed in the form of meglumine antimoniate (Glucantime) or sodium stibogluconate (Pentostam) to treat leishmaniasis. 124Sb is also applied in animal organ distribution studies to solve some questions in pharmacology. 124Sb decays by β-emission and it produces several photons (X and gamma rays) with energy varying from 27 to 2700 keV. Efficiency curves to measure point 124Sb solid sources were obtained from a 166mHo standard that is a multi-gamma reference source. These curves depend on radiation energy, sample geometry, photon attenuation, dead time and sample-detector position. Results for activity determination of 124Sb samples using efficiency curves and a high purity coaxial germanium detector were consistent in different counting geometries. Also uncertainties of about 2% ( k=2) were obtained.

  7. Cosmic veto gamma-spectrometry for Comprehensive Nuclear-Test-Ban Treaty samples

    NASA Astrophysics Data System (ADS)

    Burnett, J. L.; Davies, A. V.

    2014-05-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) is supported by a global network of monitoring stations that perform high-resolution gamma-spectrometry on air filter samples for the identification of 85 radionuclides. At the UK CTBT Radionuclide Laboratory (GBL15), a novel cosmic veto gamma-spectrometer has been developed to improve the sensitivity of station measurements, providing a mean background reduction of 80.8% with mean MDA improvements of 45.6%. The CTBT laboratory requirement for a 140Ba MDA is achievable after 1.5 days counting compared to 5-7 days using conventional systems. The system consists of plastic scintillation plates that detect coincident cosmic-ray interactions within an HPGe gamma-spectrometer using the Canberra LynxTM multi-channel analyser. The detector is remotely configurable using a TCP/IP interface and requires no dedicated coincidence electronics. It would be especially useful in preventing false-positives at remote station locations (e.g. Halley, Antarctica) where sample transfer to certified laboratories is logistically difficult. The improved sensitivity has been demonstrated for a CTBT air filter sample collected after the Fukushima incident.

  8. Fractionation of uranium isotopes in minerals screened by gamma spectrometry.

    NASA Astrophysics Data System (ADS)

    Geiger, Jeffrey L.; Baldwin, Austin M.; Blatchley, Charles C.

    2008-03-01

    At least two groups have reported finding shifts in the ratio of U-235/U-238 for sandstone, black shale, and other sedimentary samples using precision ICP-MS. These shifts were tentatively attributed to a recently predicted isotope effect based on nuclear volume that causes fractionation for U^IV-U^VI transitions. However, fractionation of high Z elements may be less likely an explanation than U-235 depletion induced by galactic cosmic ray neutrons. Isotope depletion in marine sediments could therefore be an indicator of changes in cosmic ray flux due to nearby supernovae, gamma-ray bursts, or longer term changes during the 62 million year cycle of the Sun above and below the galactic plane. We report using a less precise approach than ICP-MS, but one which can quickly screen samples to look for anomalies in isotope ratios, namely HPGe gamma ray spectrometry. Various levels of depletion were measured for uranium rich minerals, including brannerite, carnotite, and pitchblende, as well as coal and limestone samples.

  9. 241Am (n,gamma) isomer ratio measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, Evelyn M; Vieira, David J; Moody, Walter A

    The objective of this project is to improve the accuracy of the {sup 242}Cm/{sup 241}Am radiochemistry ratio. We have performed an activation experiment to measure the {sup 241}Am(n,{gamma}) cross section leading to either the ground state of {sup 242g}Am (t{sub 1/2} = 16 hr) which decays to {sup 242}Cm (t{sub 1/2} = 163 d) or the long-lived isomer {sup 242m}Am (t{sub 1/2} = 141 yr). This experiment will develop a new set of americium cross section evaluations that can be used with a measured {sup 242}Cm/{sup 241}Am radiochemical measurement for nuclear forensic purposes. This measurement is necessary to interpret themore » {sup 242}Cm/{sup 241}Am ratio because a good measurement of this neutron capture isomer ratio for {sup 241}Am does not exist. The targets were prepared in 2007 from {sup 241}Am purified from LANL stocks. Gold was added to the purified {sup 241}Am as an internal neutron fluence monitor. These targets were placed into a holder, packaged, and shipped to Forschungszentrum Karlsruhe, where they were irradiated at their Van de Graff facility in February 2008. One target was irradiated with {approx}25 keV quasimonoenergetic neutrons produced by the {sup 7}Li(p,n) reaction for 3 days and a second target was also irradiated for 3 days with {approx}500 keV neutrons. Because it will be necessary to separate the {sup 242}Cm from the {sup 241}Am in order to measure the amount of {sup 242}Cm by alpha spectrometry, research into methods for americium/curium separations were conducted concurrently. We found that anion exchange chromatography in methanol/nitric acid solutions produced good separations that could be completed in one day resulting in a sample with no residue. The samples were returned from Germany in July 2009 and were counted by gamma spectrometry. Chemical separations have commenced on the blank sample. Each sample will be spiked with {sup 244}Cm, dissolved and digested in nitric acid solutions. One third of each sample will be processed at a

  10. On the accuracy of gamma spectrometric isotope ratio measurements of uranium

    NASA Astrophysics Data System (ADS)

    Ramebäck, H.; Lagerkvist, P.; Holmgren, S.; Jonsson, S.; Sandström, B.; Tovedal, A.; Vesterlund, A.; Vidmar, T.; Kastlander, J.

    2016-04-01

    The isotopic composition of uranium was measured using high resolution gamma spectrometry. Two acid solutions and two samples in the form of UO2 pellets were measured. The measurements were done in close geometries, i.e. directly on the endcap of the high purity germanium detector (HPGe). Applying no corrections for count losses due to true coincidence summing (TCS) resulted in up to about 40% deviation in the abundance of 235U from the results obtained with mass spectrometry. However, after correction for TCS, excellent agreement was achieved between the results obtained using two different measurement methods, or a certified value. Moreover, after corrections, the fitted relative response curves correlated excellently with simulated responses, for the different geometries, of the HPGe detector.

  11. Measurement of ²²⁶Ra in soil from oil field: advantages of γ-ray spectrometry and application to the IAEA-448 CRM.

    PubMed

    Ceccatelli, A; Katona, R; Kis-Benedek, G; Pitois, A

    2014-05-01

    The analytical performance of gamma-ray spectrometry for the measurement of (226)Ra in TENORM (Technically Enhanced Naturally Occurring Radioactive Material) soil was investigated by the IAEA. Fast results were obtained for characterization and certification of a new TENORM Certified Reference Material (CRM), identified as IAEA-448 (soil from oil field). The combined standard uncertainty of the gamma-ray spectrometry results is of the order of 2-3% for massic activity measurement values ranging from 16500 Bq kg(-1) to 21500 Bq kg(-1). Methodologies used for the production and certification of the IAEA-448 CRM are presented. Analytical results were confirmed by alpha spectrometry. The "t" test showed agreement between alpha and gamma results at 95% confidence level. © 2013 Published by Elsevier Ltd.

  12. Calibration and performance of a real-time gamma-ray spectrometry water monitor using a LaBr3(Ce) detector

    NASA Astrophysics Data System (ADS)

    Prieto, E.; Casanovas, R.; Salvadó, M.

    2018-03-01

    A scintillation gamma-ray spectrometry water monitor with a 2″ × 2″ LaBr3(Ce) detector was characterized in this study. This monitor measures gamma-ray spectra of river water. Energy and resolution calibrations were performed experimentally, whereas the detector efficiency was determined using Monte Carlo simulations with EGS5 code system. Values of the minimum detectable activity concentrations for 131I and 137Cs were calculated for different integration times. As an example of the monitor performance after calibration, a radiological increment during a rainfall episode was studied.

  13. Measurement of natural radionuclides in phosphgypsum using an anti-cosmic gamma-ray spectrometer.

    PubMed

    Ferreux, Laurent; Moutard, Gérard; Branger, Thierry

    2009-05-01

    Gamma-ray spectrometry measurements have been carried out to determine the activity of natural radionuclides in a phosphogypsum sample included in a specific tight container. The gamma spectrometer includes an N-type coaxial high-purity germanium (HPGe) detector equipped with an anti-cosmic system. This measurement required the determination of linear attenuation coefficients of phosphogypsum to calculate self-absorption correction between efficiency calibration conditions and measurement ones. The results are given for the three natural chains and for (40)K, in term of specific activity/g of dry material, ranging from a few Bq kg(-1) to a few hundreds Bq kg(-1). The equilibrium within the different families and the (235)U/(238)U ratio are discussed.

  14. Use of airborne gamma-ray spectrometry for kaolin exploration

    NASA Astrophysics Data System (ADS)

    Tourlière, B.; Perrin, J.; Le Berre, P.; Pasquet, J. F.

    2003-08-01

    Airborne gamma-ray spectrometry was used to define targets with kaolin potential in the Armorican Massif of Brittany, France. This exploration method is based on the principle that kaolinite, an aluminosilicate clay mineral constituting kaolin, is formed by the hydrolysis of potash feldspar with the elimination of potassium. Therefore, potassium contrast between favourable host-rock such as a leucogranite and kaolin occurrence is likely a significant pathfinder. As the relationship between the potassium-40 recorded by an airborne gamma-ray spectrometer and total potassium is constant, such data provide us a direct measurement of the potassium content of the ground flown over. Our study tested this by calculating, for each geological unit, the difference between the measured and average potassium content calculated for a given geological formation. The study was based on (i) a recent (1998) high-definition airborne geophysical survey over the Armorican Massif undertaken on behalf of the French Government, and (ii) new geological compilation maps covering the same region. Depleted zones, where the measured potassium is less than the average potassium content calculated target areas with high potential of containing kaolin, provided that the unit was originally rich in potash feldspar. By applying this method to the entire Armorican Massif, it was possible to identify 150 potassium-depleted zones, including 115 that were subjected to rapid field checks and 36 that contained kaolin (21 new discoveries). This method, which is both safe for the environment and easy to use, is therefore a good tool for rapidly defining targets with kaolin potential at a regional scale. The method may also have possibilities in exploring for other types of deposit characterised by an enrichment or depletion in U, K and/or Th.

  15. Artificial neural network modelling of uncertainty in gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Dragović, S.; Onjia, A.; Stanković, S.; Aničin, I.; Bačić, G.

    2005-03-01

    An artificial neural network (ANN) model for the prediction of measuring uncertainties in gamma-ray spectrometry was developed and optimized. A three-layer feed-forward ANN with back-propagation learning algorithm was used to model uncertainties of measurement of activity levels of eight radionuclides ( 226Ra, 238U, 235U, 40K, 232Th, 134Cs, 137Cs and 7Be) in soil samples as a function of measurement time. It was shown that the neural network provides useful data even from small experimental databases. The performance of the optimized neural network was found to be very good, with correlation coefficients ( R2) between measured and predicted uncertainties ranging from 0.9050 to 0.9915. The correlation coefficients did not significantly deteriorate when the network was tested on samples with greatly different uranium-to-thorium ( 238U/ 232Th) ratios. The differences between measured and predicted uncertainties were not influenced by the absolute values of uncertainties of measured radionuclide activities. Once the ANN is trained, it could be employed in analyzing soil samples regardless of the 238U/ 232Th ratio. It was concluded that a considerable saving in time could be obtained using the trained neural network model for predicting the measurement times needed to attain the desired statistical accuracy.

  16. Determination of the neutron activation profile of core drill samples by gamma-ray spectrometry.

    PubMed

    Gurau, D; Boden, S; Sima, O; Stanga, D

    2018-04-01

    This paper provides guidance for determining the neutron activation profile of core drill samples taken from the biological shield of nuclear reactors using gamma spectrometry measurements. Thus, it provides guidance for selecting a model of the right form to fit data and using least squares methods for model fitting. The activity profiles of two core samples taken from the biological shield of a nuclear reactor were determined. The effective activation depth and the total activity of core samples along with their uncertainties were computed by Monte Carlo simulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Improved detector for the measurement of gamma radiation

    NASA Astrophysics Data System (ADS)

    Zelt, F. B.

    1985-07-01

    The present invention lies in the field of gamma ray spectrometry of geologic deposits and other materials, such as building materials (cement, asphalt, etc.) More specifically, the invention is an improved device for the gamma ray spetcrometery of gelogical deposits as a tool for petroleum exploration, geologic research and monitoring of radio-active materials such as in uranium mill tailings and the like. Improvement consists in enlarging the area of the receptor face and without any necessarily substantial increase in the volume of the receptor crystal over the current cylindrical shapes. The invention also provides, as a corollary of the increase in area receptor crystal face, a reduction in the weight of the amount of material necessary to provide effective shielding of the crystal from atmospheric radiation and radiation from deposits not under examination. The area of the receptor crystal face is increased by forming the crystal as a truncated cone with the shielding shaped as a hollow frustrum of a cone. A photomultiplier device is secured to the smaller face of the crystal. The improved detector shape can also be used in scintillometers which measure total gamma radiation.

  18. Dating of sediments from four Swiss prealpine lakes with (210)Pb determined by gamma-spectrometry: progress and problems.

    PubMed

    Putyrskaya, V; Klemt, E; Röllin, S; Astner, M; Sahli, H

    2015-07-01

    In this paper the most important problems in dating lake sediments with unsupported (210)Pb are summarized and the progress in gamma-spectrometry of the unsupported (210)Pb is discussed. The main topics of these studies concern sediment samples preparation for gamma-spectrometry, measurement techniques and data analysis, as well as understanding of accumulation and sedimentation processes in lakes. The vertical distributions of artificial ((137)Cs, (241)Am, (239)Pu) and natural radionuclides ((40)K, (210,214)Pb, (214)Bi) as well as stable trace elements (Fe, Mn, Pb) in sediment cores from four Swiss lakes were used as examples for the interpretation, inter-comparison and validation of depth-age relations established by three (210)Pb-based models (CF-CSR, CRS and SIT). The identification of turbidite layers and the influence of the turbidity flows on the accuracy of sediment dating is demonstrated. Time-dependent mass sedimentation rates in lakes Brienz, Thun, Biel and Lucerne are discussed and compared with published data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Dosimetric evaluation of lithium carbonate (Li2CO3) as a dosemeter for gamma-radiation dose measurements.

    PubMed

    Popoca, R; Ureña-Núñez, F

    2009-06-01

    This work reports the possibility of using lithium carbonate as a dosimetric material for gamma-radiation measurements. Carboxi-radical ions, CO(2)(-) and CO(3)(-), arise from the gamma irradiation of Li(2)CO(3), and these radical ions can be quantified by electron paramagnetic resonance (EPR) spectrometry. The EPR-signal response of gamma-irradiated lithium carbonate has been investigated to determine some dosimetric characteristics such as: peak-to-peak signal intensity versus gamma dose received, zero-dose response, signal fading, signal repeatability, batch homogeneity, dose rate effect and stability at different environmental conditions. Using the conventional peak-to-peak method of stable ion radicals, it is concluded that lithium carbonate could be used as a gamma dosemeter in the range of 3-100 Gy.

  20. Study of different filtering techniques applied to spectra from airborne gamma spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilhelm, Emilien; Gutierrez, Sebastien; Reboli, Anne

    2015-07-01

    One of the features of spectra obtained by airborne gamma spectrometry is low counting statistics due to the short acquisition time (1 s) and the large source-detector distance (40 m). It leads to considerable uncertainty in radionuclide identification and determination of their respective activities from the windows method recommended by the IAEA, especially for low-level radioactivity. The present work compares the results obtained with filters in terms of errors of the filtered spectra with the window method and over the whole gamma energy range. The results are used to determine which filtering technique is the most suitable in combination withmore » some method for total stripping of the spectrum. (authors)« less

  1. [Radioactive cesium analysis in radiation-tainted beef by gamma-ray spectrometry with germanium semiconductor detector].

    PubMed

    Minatani, Tomiaki; Nagai, Hiroyuki; Nakamura, Masashi; Otsuka, Kimihito; Sakai, Yoshimichi

    2012-01-01

    The detection limit and precision of radioactive cesium measurement in beef by gamma-ray spectrometry with a germanium semiconductor detector were evaluated. Measurement for 2,000 seconds using a U-8 container (100 mL) provided a detection limit of radioactive cesium (the sum of 134Cs and 137Cs) of around 20 Bq/kg. The 99% confidence interval of the measurement of provisional maximum residue limit level (491 Bq/kg) samples ranged from 447 to 535 Bq/kg. Beef is heterogeneous, containing muscle and complex fat layers. Depending on the sampled parts, the measurement value is variable. It was found that radioactive cesium content of the muscle layer was clearly different from that of fat, and slight differences were observed among parts of the sample (SD=16.9 Bq/kg), even though the same region (neck block) of beef sample was analyzed.

  2. Efficiency transfer using the GEANT4 code of CERN for HPGe gamma spectrometry.

    PubMed

    Chagren, S; Tekaya, M Ben; Reguigui, N; Gharbi, F

    2016-01-01

    In this work we apply the GEANT4 code of CERN to calculate the peak efficiency in High Pure Germanium (HPGe) gamma spectrometry using three different procedures. The first is a direct calculation. The second corresponds to the usual case of efficiency transfer between two different configurations at constant emission energy assuming a reference point detection configuration and the third, a new procedure, consists on the transfer of the peak efficiency between two detection configurations emitting the gamma ray in different energies assuming a "virtual" reference point detection configuration. No pre-optimization of the detector geometrical characteristics was performed before the transfer to test the ability of the efficiency transfer to reduce the effect of the ignorance on their real magnitude on the quality of the transferred efficiency. The obtained and measured efficiencies were found in good agreement for the two investigated methods of efficiency transfer. The obtained agreement proves that Monte Carlo method and especially the GEANT4 code constitute an efficient tool to obtain accurate detection efficiency values. The second investigated efficiency transfer procedure is useful to calibrate the HPGe gamma detector for any emission energy value for a voluminous source using one point source detection efficiency emitting in a different energy as a reference efficiency. The calculations preformed in this work were applied to the measurement exercise of the EUROMET428 project. A measurement exercise where an evaluation of the full energy peak efficiencies in the energy range 60-2000 keV for a typical coaxial p-type HpGe detector and several types of source configuration: point sources located at various distances from the detector and a cylindrical box containing three matrices was performed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Fission Product Inventory and Burnup Evaluation of the AGR-2 Irradiation by Gamma Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Jason Michael; Stempien, John Dennis; Demkowicz, Paul Andrew

    Gamma spectrometry has been used to evaluate the burnup and fission product inventory of different components from the US Advanced Gas Reactor Fuel Development and Qualification Program's second TRISO-coated particle fuel irradiation test (AGR-2). TRISO fuel in this irradiation included both uranium carbide / uranium oxide (UCO) kernels and uranium oxide (UO 2) kernels. Four of the 6 capsules contained fuel from the US Advanced Gas Reactor program, and only those capsules will be discussed in this work. The inventories of gamma-emitting fission products from the fuel compacts, graphite compact holders, graphite spacers and test capsule shell were evaluated. Thesemore » data were used to measure the fractional release of fission products such as Cs-137, Cs-134, Eu-154, Ce-144, and Ag-110m from the compacts. The fraction of Ag-110m retained in the compacts ranged from 1.8% to full retention. Additionally, the activities of the radioactive cesium isotopes (Cs-134 and Cs-137) have been used to evaluate the burnup of all US TRISO fuel compacts in the irradiation. The experimental burnup evaluations compare favorably with burnups predicted from physics simulations. Predicted burnups for UCO compacts range from 7.26 to 13.15 % fission per initial metal atom (FIMA) and 9.01 to 10.69 % FIMA for UO 2 compacts. Measured burnup ranged from 7.3 to 13.1 % FIMA for UCO compacts and 8.5 to 10.6 % FIMA for UO 2 compacts. Results from gamma emission computed tomography performed on compacts and graphite holders that reveal the distribution of different fission products in a component will also be discussed. Gamma tomography of graphite holders was also used to locate the position of TRISO fuel particles suspected of having silicon carbide layer failures that lead to in-pile cesium release.« less

  4. Fission Product Inventory and Burnup Evaluation of the AGR-2 Irradiation by Gamma Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Jason M.; Demkowicz, Paul A.; Stempien, John D.

    Gamma spectrometry has been used to evaluate the burnup and fission product inventory of different components from the US Advanced Gas Reactor Fuel Development and Qualification Program's second TRISO-coated particle fuel irradiation test (AGR-2). TRISO fuel in this irradiation included both uranium carbide / uranium oxide (UCO) kernels and uranium oxide (UO2) kernels. Four of the 6 capsules contained fuel from the US Advanced Gas Reactor program, and only those capsules will be discussed in this work. The inventories of gamma-emitting fission products from the fuel compacts, graphite compact holders, graphite spacers and test capsule shell were evaluated. These datamore » were used to measure the fractional release of fission products such as Cs-137, Cs-134, Eu-154, Ce-144, and Ag-110m from the compacts. The fraction of Ag-110m retained in the compacts ranged from 1.8% to full retention. Additionally, the activities of the radioactive cesium isotopes (Cs-134 and Cs-137) have been used to evaluate the burnup of all US TRISO fuel compacts in the irradiation. The experimental burnup evaluations compare favorably with burnups predicted from physics simulations. Predicted burnups for UCO compacts range from 7.26 to 13.15 % fission per initial metal atom (FIMA) and 9.01 to 10.69 % FIMA for UO2 compacts. Measured burnup ranged from 7.3 to 13.1 % FIMA for UCO compacts and 8.5 to 10.6 % FIMA for UO2 compacts. Results from gamma emission computed tomography performed on compacts and graphite holders that reveal the distribution of different fission products in a component will also be discussed. Gamma tomography of graphite holders was also used to locate the position of TRISO fuel particles suspected of having silicon carbide layer failures that lead to in-pile cesium release.« less

  5. Laser ablation inductively coupled plasma mass spectrometry measurement of isotope ratios in depleted uranium contaminated soils.

    PubMed

    Seltzer, Michael D

    2003-09-01

    Laser ablation of pressed soil pellets was examined as a means of direct sample introduction to enable inductively coupled plasma mass spectrometry (ICP-MS) screening of soils for residual depleted uranium (DU) contamination. Differentiation between depleted uranium, an anthropogenic contaminant, and naturally occurring uranium was accomplished on the basis of measured 235U/238U isotope ratios. The amount of sample preparation required for laser ablation is considerably less than that typically required for aqueous sample introduction. The amount of hazardous laboratory waste generated is diminished accordingly. During the present investigation, 235U/238U isotope ratios measured for field samples were in good agreement with those derived from gamma spectrometry measurements. However, substantial compensation was required to mitigate the effects of impaired pulse counting attributed to sample inhomogeneity and sporadic introduction of uranium analyte into the plasma.

  6. Radioactivity Levels and Gamma-Ray Dose Rate in Soil Samples from Kohistan (Pakistan) Using Gamma-Ray Spectrometry

    NASA Astrophysics Data System (ADS)

    Hasan, M. Khan; Ismail, M.; K., Khan; Akhter, P.

    2011-01-01

    The analysis of naturally occurring radionuclides (226Ra, 232Th and 40K) and an anthropogenic radionuclide 137Cs is carried out in some soil samples collected from Kohistan district of N.W.F.P. (Pakistan), using gamma-ray spectrometry. The gamma spectrometry is operated using a high purity Germanium (HPGe) detector coupled with a computer based high resolution multi channel analyzer. The specific activity in soil ranges from 24.72 to 78.48Bq·kg-1 for 226Ra, 21.73 to 75.28Bq·kg-1 for 232Th, 7.06 to 14.9Bq·kg-1 for 137Cs and 298.46 to 570.77Bq·kg-1 for 40K with the mean values of 42.11, 43.27, 9.5 and 418.27Bq·kg-1, respectively. The radium equivalent activity in all the soil samples is lower than the safe limit set in the OECD report (370Bq·kg-1). Man-made radionuclide 137Cs is also present in detectable amount in all soil samples. Presence of 137Cs indicates that the samples in this remote area also receive some fallout from nuclear accident in Chernobyl power plant in 1986. The internal and external hazard indices have the mean values of 0.48 and 0.37 respectively. Absorbed dose rates and effective dose equivalents are also determined for the samples. The concentration of radionuclides found in the soil samples during the present study is nominal and does not pose any potential health hazard to the general public.

  7. Measurement of absolute gamma emission probabilities

    NASA Astrophysics Data System (ADS)

    Sumithrarachchi, Chandana S.; Rengan, Krish; Griffin, Henry C.

    2003-06-01

    The energies and emission probabilities (intensities) of gamma-rays emitted in radioactive decays of particular nuclides are the most important characteristics by which to quantify mixtures of radionuclides. Often, quantification is limited by uncertainties in measured intensities. A technique was developed to reduce these uncertainties. The method involves obtaining a pure sample of a nuclide using radiochemical techniques, and using appropriate fractions for beta and gamma measurements. The beta emission rates were measured using a liquid scintillation counter, and the gamma emission rates were measured with a high-purity germanium detector. Results were combined to obtain absolute gamma emission probabilities. All sources of uncertainties greater than 0.1% were examined. The method was tested with 38Cl and 88Rb.

  8. Low-resolution gamma-ray spectrometry for an information barrier based on a multi-criteria template-matching approach

    NASA Astrophysics Data System (ADS)

    Göttsche, Malte; Schirm, Janet; Glaser, Alexander

    2016-12-01

    Gamma-ray spectrometry has been successfully employed to identify unique items containing special nuclear materials. Template information barriers have been developed in the past to confirm items as warheads by comparing their gamma signature to the signature of true warheads. Their development has, however, not been fully transparent, and they may not be sensitive to some relevant evasion scenarios. We develop a fully open template information barrier concept, based on low-resolution measurements, which, by design, reduces the extent of revealed sensitive information. The concept is based on three signatures of an item to be compared to a recorded template. The similarity of the spectrum is assessed by a modification of the Kolmogorov-Smirnov test to confirm the isotopic composition. The total gamma count rate must agree with the template as a measure of the projected surface of the object. In order to detect the diversion of fissile material from the interior of an item, a polyethylene mask is placed in front of the detector. Neutrons from spontaneous and induced fission events in the item produce 2.223 MeV gamma rays from neutron capture by hydrogen-1 in the mask. This peak is detected and its intensity scales with the item's fissile mass. The analysis based on MCNP Monte Carlo simulations of various plutonium configurations suggests that this concept can distinguish a valid item from a variety of invalid ones. The concept intentionally avoids any assumptions about specific spectral features, such as looking for specific gamma peaks of specific isotopes, thereby facilitating a fully unclassified discussion. By making all aspects public and allowing interested participants to contribute to the development and benchmarking, we enable a more open and inclusive discourse on this matter.

  9. Mapping of radiation anomalies using UAV mini-airborne gamma-ray spectrometry.

    PubMed

    Šálek, Ondřej; Matolín, Milan; Gryc, Lubomír

    2018-02-01

    Localization of size-limited gamma-ray anomalies plays a fundamental role in uranium prospecting and environmental studies. Possibilities of a newly developed mini-airborne gamma-ray spectrometric equipment were tested on a uranium anomaly near the village of Třebsko, Czech Republic. The measurement equipment was based on a scintillation gamma-ray spectrometer specially developed for unmanned aerial vehicles (UAV) mounted on powerful hexacopter. The gamma-ray spectrometer has two 103 cm 3 BGO scintillation detectors of relatively high sensitivity. The tested anomaly, which is 80 m by 40 m in size, was investigated by ground gamma-ray spectrometric measurement in a detail rectangular measurement grid. Average uranium concentration is 25 mg/kg eU attaining 700 mg/kg eU locally. The mini-airborne measurement across the anomaly was carried out on three 100 m long parallel profiles at eight flight altitudes from 5 to 40 m above the ground. The resulting 1 s 1024 channel gamma-ray spectra, recorded in counts per second (cps), were processed to concentration units of K, U and Th, while total count (TC) was reported in cps. Increased gamma ray intensity of the anomaly was indicated by mini-airborne measurement at all profiles and altitudes, including the highest altitude of 40 m, at which the recorded intensity is close to the natural radiation background. The reported instrument is able to record data with comparable quality as standard airborne survey, due to relative sensitive detector, lower flight altitude and relatively low flight speed of 1 m/s. The presented experiment brings new experience with using unmanned semi-autonomous aerial vehicles and the latest mini-airborne radiometric instrument. The experiment has demonstrated the instrument's ability to localize size-limited uranium anomalies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Implementation of gamma-ray spectrometry in two real-time water monitors using NaI(Tl) scintillation detectors.

    PubMed

    Casanovas, R; Morant, J J; Salvadó, M

    2013-10-01

    In this study, the implementation of gamma-ray spectrometry in two real-time water monitors using 2 in. × 2 in. NaI(Tl) scintillation detectors is described. These monitors collect the water from the river through a pump and it is analyzed in a vessel, which is shielded with Pb. The full calibration of the monitors was performed experimentally, except for the efficiency curve, which was set using validated Monte Carlo simulations with the EGS5 code system. After the calibration, the monitors permitted the identification and quantification of the involved isotopes in a possible radioactive increment and made it possible to discard possible leaks in the nuclear plants. As an example, a radiological increment during rain is used to show the advantages of gamma-ray spectrometry. To study the capabilities of the monitor, the minimum detectable activity concentrations for (131)I, (137)Cs and (40)K are presented for different integration times. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Application of gamma-ray spectrometry in a NORM industry for its radiometrical characterization

    NASA Astrophysics Data System (ADS)

    Mantero, J.; Gázquez, M. J.; Hurtado, S.; Bolívar, J. P.; García-Tenorio, R.

    2015-11-01

    Industrial activities involving Naturally Occurring Radioactive Materials (NORM) are found among the most important industrial sectors worldwide as oil/gas facilities, metal production, phosphate Industry, zircon treatment, etc. being really significant the radioactive characterization of the materials involved in their production processes in order to assess the potential radiological risk for workers or natural environment. High resolution gamma spectrometry is a versatile non-destructive radiometric technique that makes simultaneous determination of several radionuclides possible with little sample preparation. However NORM samples cover a wide variety of densities and composition, as opposed to the standards used in gamma efficiency calibration, which are either water-based solutions or standard/reference sources of similar composition. For that reason self-absorption correction effects (especially in the low energy range) must be considered individually in every sample. In this work an experimental and a semi-empirical methodology of self-absorption correction were applied to NORM samples, and the obtained results compared critically, in order to establish the best practice in relation to the circumstances of an individual laboratory. This methodology was applied in samples coming from a TiO2 factory (NORM industry) located in the south-west of Spain where activity concentration of several radionuclides from the Uranium and Thorium series through the production process was measured. These results will be shown in this work.

  12. Measuring the charged pion polarizability in the gamma gamma -> pi+pi- reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, David W.; Miskimen, Rory A.; Mushkarenkov, Alexander Nikolaevich

    2013-08-01

    Development has begun of a new experiment to measure the charged pion polarizabilitymore » $$\\alpha_{\\pi}-\\beta_{\\pi}$$. The charged pion polarizability ranks among the most important tests of low-energy QCD presently unresolved by experiment. Analogous to precision measurements of $$\\pi^{\\circ}\\rightarrow\\gamma\\gamma$$ that test the intrinsic odd-parity (anomalous) sector of QCD, the pion polarizability tests the intrinsic even-parity sector of QCD. The measurement will be performed using the $$\\gamma\\gamma\\rightarrow\\pi^{+{}}\\pi^{-{}}$$ cross section accessed via the Primakoff mechanism on nuclear targets using the GlueX detector in Hall D at Jefferson Lab. The linearly polarized photon source in Hall-D will be utilized to separate the Primakoff cross-section from coherent $$\\rho^{\\circ}$$ production.« less

  13. Nuclear chemistry of returned lunar samples: Nuclide analysis by gamma-ray spectrometry

    NASA Technical Reports Server (NTRS)

    Okelley, G. D.

    1975-01-01

    Primordial and cosmogenic radionuclide concentrations are determined nondestructively by gamma-ray spectrometry in soil and rock samples from the returned Apollo 17 sample collection from Taurus-Littrow and Descartes. Geochemical evidence in support of field geology speculation concerning layering of the subfloor basalt flows is demonstrated along with a possible correlation of magmatic fractionation of K/U as a function of depth. The pattern of radionuclide concentrations observed in these samples is distinct due to proton bombardment by the intense solar flares of August 4-9, 1972. Such radionuclide determinations are used in determining lunar sample orientation and characterizing solar flare activity.

  14. Comparison of optimised germanium gamma spectrometry and multicollector inductively coupled plasma mass spectrometry for the determination of 134Cs, 137Cs and 154Eu single ratios in highly burnt UO 2

    NASA Astrophysics Data System (ADS)

    Caruso, S.; Günther-Leopold, I.; Murphy, M. F.; Jatuff, F.; Chawla, R.

    2008-05-01

    Non-destructive and destructive methods have been compared to validate their corresponding assessed accuracies in the measurement of 134Cs/137Cs and 154Eu/137Cs isotopic concentration ratios in four spent UO2 fuel samples with very high (52 and 71 GWd/t) and ultra-high (91 and 126 GWd/t) burnup values, and about 10 (in the first three samples) and 4 years (in the latter sample) cooling time. The non-destructive technique tested was high-resolution gamma spectrometry using a high-purity germanium detector (HPGe) and a special tomographic station for the handling of highly radioactive 400 mm spent fuel segments that included a tungsten collimator, lead filter (to enhance the signal to Compton background ratio and reduce the dead time) and paraffin wax (to reduce neutron damage). The non-destructive determination of these isotopic concentration ratios has been particularly challenging for these segments because of the need to properly derive non-Gaussian gamma-peak areas and subtract the background from perturbing capture gammas produced by the intrinsic high-intensity neutron emissions from the spent fuel. Additionally, the activity distribution within each pin was determined tomographically to correct appropriately for self-attenuation and geometrical effects. The ratios obtained non-destructively showed a 1σ statistical error in the range 1.9-2.9%. The destructive technique used was a high-performance liquid chromatographic separation system, combined online to a multicollector inductively coupled plasma mass spectrometer (HPLC-MC-ICP-MS), for the analysis of dissolved fuel solutions. During the mass spectrometric analyses, special care was taken in the optimisation of the chromatographic separation for Eu and the interfering element Gd, as also in the mathematical correction of the 154Gd background from the 154Eu signal. The ratios obtained destructively are considerably more precise (1σ statistical error in the range 0.4-0.8% for most of the samples, but up to

  15. Formation of gamma'-Ni3Al via the Peritectoid Reaction: gamma plus beta (+Al2O3) equals gamma'(+Al2O3)

    NASA Technical Reports Server (NTRS)

    Copland, Evan

    2008-01-01

    The activities of Al and Ni were measured using multi-cell Knudsen effusion-cell mass spectrometry (multi-cell KEMS), over the composition range 8 - 32 at.%Al and temperature range T = 1400 - 1750 K in the Ni-Al-O system. These measurements establish that equilibrium solidification of gamma'-Ni3Al-containing alloys occurs by the eutectic reaction, L (+ Al2O3) = gamma + beta (+ Al2O3), at 1640 plus or minus 1 K and a liquid composition of 24.8 plus or minus 0.2 at.%Al (at an unknown oxygen content). The {gamma + beta + Al2O3} phase field is stable over the temperature range 1633 - 1640 K, and gamma'-Ni3Al forms via the peritectiod, gamma + beta (+ Al2O3) = gamma'(+ Al2O3), at 1633 plus or minus 1 K. This behavior is inconsistent with the current Ni-Al phase diagram and a new diagram is proposed. This new Ni-Al phase diagram explains a number of unusual steady state solidification structures reported previously and provides a much simpler reaction scheme in the vicinity of the gamma'-Ni3Al phase field.

  16. Gamma-ray spectrometry of granitic suites of the Paranaguá Terrane, Southern Brazil

    NASA Astrophysics Data System (ADS)

    Weihermann, Jessica Derkacz; Ferreira, Francisco José Fonseca; Cury, Leonardo Fadel; da Silveira, Claudinei Taborda

    2016-09-01

    The Paranaguá Terrane, located in the coastal portion of the states of Santa Catarina, Paraná and São Paulo in Southern Brazil is a crustal segment constituted mainly by an igneous complex, with a variety of granitic rocks inserted into the Serra do Mar ridge. The average altitude is approximately 1200 m above sea level, with peaks of up to 1800 m. Due to the difficulty of accessing the area, a shortage of outcrops and the thick weathering mantle, this terrane is understudied. This research aims to evaluate the gamma-ray spectrometry data of the granitic suites of the Paranaguá Terrane, in correspondence with the geological, petrographical, lithogeochemical, relief and mass movement information available in the literature. Aerogeophysical data were acquired along north-south lines spaced at 500 m, with a mean terrain clearance of 100 m. These data cover potassium (K, %), equivalent in thorium (eTh, ppm) and equivalent in uranium (eU, ppm). After performing a critical analysis of the data, basic (K, eU, eTh) and ternary (R-K/G-eTh/B-eU) maps were generated and then superimposed on the digital elevation model (DEM). The investigation of the radionuclide mobility across the relief and weathering mantle consisted of an analysis of the schematic profiles of elevation related with each radionuclide; a comparison of the K, eU and eTh maps with their 3D correspondents; and the study of mass movements registered in the region. A statistical comparison of lithogeochemical (K, U, Th) and geophysical (K, eU, eTh) data showed consistency in all the granitic suites studied (Morro Inglês, Rio do Poço and Canavieiras-Estrela). Through gamma-ray spectrometry, it was possible to establish relationships between scars (from mass movements) and the gamma-ray responses as well as the radionuclide mobility and the relief and to map the granitic bodies.

  17. Assessment of ambient gamma dose rate around a prospective uranium mining area of South India - A comparative study of dose by direct methods and soil radioactivity measurements

    NASA Astrophysics Data System (ADS)

    Karunakara, N.; Yashodhara, I.; Sudeep Kumara, K.; Tripathi, R. M.; Menon, S. N.; Kadam, S.; Chougaonkar, M. P.

    Indoor and outdoor gamma dose rates were evaluated around a prospective uranium mining region - Gogi, South India through (i) direct measurements using a GM based gamma dose survey meter, (ii) integrated measurement days using CaSO4:Dy based thermo luminescent dosimeters (TLDs), and (iii) analyses of 273 soil samples for 226Ra, 232Th, and 40K activity concentration using HPGe gamma spectrometry. The geometric mean values of indoor and outdoor gamma dose rates were 104 nGy h-1 and 97 nGy h-1, respectively with an indoor to outdoor dose ratio of 1.09. The gamma dose rates and activity concentrations of 226Ra, 232Th, and 40K varied significantly within a small area due to the highly localized mineralization of the elements. Correlation study showed that the dose estimated from the soil radioactivity is better correlated with that measured directly using the portable survey meter, when compared to that obtained from TLDs. This study showed that in a region having localized mineralization in situ measurements using dose survey meter provide better representative values of gamma dose rates.

  18. Basics of Gamma Ray Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinnett, Jacob; Venkataraman, Ram

    The objective of this training is to explain the origin of x-rays and gamma rays, gamma ray interactions with matter, detectors and electronics used in gamma ray-spectrometry, and features of a gamma-ray spectrum for nuclear material that is safeguarded.

  19. Formation of gamma(sup prime)-Ni3Al via the Peritectoid Reaction: gamma + beta (+ Al2O3)=gamma(sup prime)(+ Al2O3)

    NASA Technical Reports Server (NTRS)

    Copeland, Evan

    2008-01-01

    The activities of Al and Ni were measured using multi-cell Knudsen effusion-cell mass spectrometry (multi-cell KEMS), over the composition range 8-32 at.%Al and temperature range T=1400-1750 K in the Ni-Al-O system. These measurements establish that equilibrium solidification of gamma(sup prime)-Ni3Al-containing alloys occurs by the eutectic reaction, L (+ Al2O3)=gamma + Beta(+ Al2O3), at 1640 +/- 1 K and a liquid composition of 24.8 +/- 0.2 at.%al (at an unknown oxygen content). The {gamma + Beta (+Al2O3} phase field is stable over the temperature range 1633-1640 K, and gamma(sup prime)-Ni3Al forms via the peritectoid, gamma + Beta (+ Al2O3)=gamma(sup prime) (+ Al2O3), at 1633 +/- 1 K. This behavior is consistent with the current Ni-Al phase diagram and a new diagram is proposed. This new Ni-Al phase diagram explains a number of unusual steady-state solidification structures reported previously and provides a much simpler reaction scheme in the vicinity of the gamma(sup prime)-Ni2Al phase field.

  20. microPMT-A New Photodetector for Gamma Spectrometry and Fast Timing?

    NASA Astrophysics Data System (ADS)

    Szczęśniak, T.; Grodzicka, M.; Moszyński, M.; Szawłowski, M.; Baszak, J.

    2014-10-01

    A micro photomultiplier (microPMT or μPMT) works like a classic photomultiplier but the whole device is made directly in a silicon wafer sandwiched between two glass layers. A microPMT has dimensions of only 13x10x2 mm and its photocathode has a size of 3x1 mm. The aim of the work is to check usefulness of a microPMT in gamma spectrometry with scintillators and fast timing. In the first part of the study analysis of the energy resolution obtained with 3x3x1 mm LSO, BGO and CsI(Tl) scintillators is made. The recorded values for 662 keV are equal to 22.9% and 13.5% for CsI and LSO, respectively. The light pulse shapes of a single photoelectron and scintillation signal of LSO are also shown. The important part of the study is measurement of the number of photoelectrons and estimation of the excess noise factor. Only 2200 phe/MeV were obtained for LSO coupled with the tested microPMT. The calculated excess noise factor is equal to 1.4. In the second part, measurements of the time jitter and timing resolution with LSO crystal for 511 keV annihilation quanta are reported. The timing characteristics of the tested device is poor. Its time jitter equals to 1.5 ns, whereas timing resolution for 22Na is 620 ps. All the results are compared with data obtained with classic PMTs.

  1. STUDY OF THE U/Th RATIO IN A THORITE FROM KIVU (BELGIAN CONGO) WITH REGARD TO ITS UTILIZATION IN THE PREPARATION OF THORIUM STANDARDS FOR GAMMA SPECTROMETRY (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poulaert, G.

    1958-01-01

    The uranium and thorium contents of a thorite from Kivu were determined. The very low U/Th ratio found makes this mineral a good standard for gamma spectrometry and fer all other direct radiometric measurements of thorium. The mineral was used in the preparation of ThB standards for the determination of the absolute age of rocks and minerals. (tr-auth)

  2. Assay for uranium and determination of disequilibrium by means of in situ high resolution gamma-ray spectrometry

    USGS Publications Warehouse

    Tanner, Allan B.; Moxham, Robert M.; Senftle, F.E.

    1977-01-01

    Two sealed sondes, using germanium gamma-ray detectors cooled by melting propane, have been field tested to depths of 79 m in water-filled boreholes at the Pawnee Uranium Mine in Bee Co., Texas. When, used as total-count devices, the sondes are comparable in logging speed and counting rate with conventional scintillation detectors for locating zones of high radioactivity. When used with a multichannel analyzer, the sondes are detectors with such high resolution that individual lines from the complex spectra of the uranium and thorium series can be distinguished. Gamma rays from each group of the uranium series can be measured in ore zones permitting determination of the state of equilibrium at each measurement point. Series of 10-minute spectra taken at 0.3- to 0.5-m intervals in several holes showed zones where maxima from the uranium group and from the 222Rn group were displaced relative to each other. Apparent excesses of 230Th at some locations suggest that uranium-group concentrations at those locations were severalfold greater some tens of kiloyears, ago. At the current state of development a 10-minute count yields a sensitivity of about 80 ppm U308. Data reduction could in practice be accomplished in about 5 minutes. The result is practically unaffected by disequilibrium or radon contamination. In comparison with core assay, high-resolution spectrometry samples a larger volume; avoids problems due to incomplete core recovery, loss of friable material to drilling fluids, and errors in depth and marking; and permits use of less expensive drilling methods. Because gamma rays from the radionuclides are accumulated simultaneously, it also avoids the problems inherent in trying to correlate logs made in separate runs with different equipment. Continuous-motion delayed-gamma activation by a 163-?g 252Cf neutron source attached to the sonde yielded poor sensitivity. A better neutron-activation method, in which the sonde is moved in steps so as to place the detector

  3. Electrospray ionization tandem mass spectrometry differentiation of N-phosphoryl-[alpha]-, [beta]- and [gamma]-amino acids

    NASA Astrophysics Data System (ADS)

    Qiang, Liming; Cao, Shuxia; Zhao, Xiaoyang; Mao, Xiangju; Guo, Yanchun; Liao, Xincheng; Zhao, Yufen

    2007-10-01

    The fragmentation patterns of N-diisopropyloxyphosphoryl-l-[alpha]-Ala (DIPP-l-[alpha]-Ala), N-diisopropyloxyphosphoryl-d-[alpha]-Ala (DIPP-d-[alpha]-Ala), N-diisopropyloxyphosphoryl-[beta]-Ala (DIPP-[beta]-Ala) and N-diisopropyloxyphosphoryl-[gamma]-amino butyric acid (DIPP-[gamma]-Aba) were investigated by electrospray ionization tandem mass spectrometry (ESI-MS/MS). DIPP-d-[alpha]-Ala showed the same fragmentation pathways as DIPP-l-[alpha]-Ala. In the fragmentation of protonated DIPP-[beta]-Ala, the characteristic fragment ion [M + H - 2C3H6 - H2O - CH2CO]+ appeared and could be used to distinguish [beta]-Ala from l-[alpha]-Ala and d-[alpha]-Ala through tandem mass spectra, even though they possess the same molecular weight. In the fragmentation of protonated DIPP-[gamma]-Aba, the break of PN bond occurred and an interesting protonated lactam ion with five-membered ring was generated. Furthermore, in the MS3 spectrum of [M + Na - 2C3H6]+ ion of DIPP-[gamma]-Aba, a strong intensity of unique fragment ion, namely lactam-sodium adduct with five-membered ring, was observed, which could be considered as a mark for [gamma]-amino acids. The stepwise fragmentations of their [M + Na]+ ions and [M - H]- ions showed that they all underwent a PN to PO bond migration through a five-membered or six-membered or even seven-membered ring transition state, respectively, which supported the great affinity of hydroxyl for phosphoryl group.

  4. Using Gamma ray and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) to Evaluate Elemental Sequences in Cap-carbonates and Cap-like Carbonates of the Death Valley Region

    NASA Astrophysics Data System (ADS)

    Holter, S. A.; Theissen, K. M.; Hickson, T. A.; Bostick, B.

    2004-12-01

    The Snowball Earth theory of Hoffman et al. (1998) proposes dramatic post-glacial chemical weathering as large concentrations of carbon were removed from the atmosphere. This would result in a large input of terrigenous material into the oceans; hence, we might expect that carbonates formed under these conditions would demonstrate elevated K, U, Th levels in comparison to carbonates formed under more typical conditions. In January of 2004 we collected spectral gamma data (K, U, Th) and hand samples from cap carbonates (Noonday Dolomite) and cap-like carbonates (Beck Spring Dolomite) of the Death Valley region in order to explore elemental changes in post-snowball Earth oceans. Based on our spectral gamma results, Th/U ratio trends suggested variations in the oxidation state of the Precambrian ocean. We pursued further investigations of trace elements to ascertain the reliability of these results by using ICP-OES. A suite of 25 trace elements was measured, most notably including U and Th. The ICP-OES data not only allow us to compare elemental changes between cap-carbonates and cap-like carbonates, but they also allow for a comparison of optical emission spectrometry and hand held gamma spectrometry methods. Both methods show similar trends in U and Th values for both the cap-carbonates and cap-like carbonates.

  5. Lunar occultations for gamma-ray source measurements

    NASA Technical Reports Server (NTRS)

    Koch, David G.; Hughes, E. B.; Nolan, Patrick L.

    1990-01-01

    The unambiguous association of discrete gamma-ray sources with objects radiating at other wavelengths, the separation of discrete sources from the extended emission within the Galaxy, the mapping of gamma-ray emission from nearby galaxies and the measurement of structure within a discrete source cannot presently be accomplished at gamma-ray energies. In the past, the detection processes used in high-energy gamma-ray astronomy have not allowed for good angular resolution. This problem can be overcome by placing gamma-ray detectors on the moon and using the horizon as an occulting edge to achieve arcsec resolution. For purposes of discussion, this concept is examined for gamma rays above 100 MeV for which pair production dominates the detection process and locally-generated nuclear gamma rays do not contribute to the background.

  6. Radon potential mapping of the Tralee-Castleisland and Cavan areas (Ireland) based on airborne gamma-ray spectrometry and geology.

    PubMed

    Appleton, J D; Doyle, E; Fenton, D; Organo, C

    2011-06-01

    The probability of homes in Ireland having high indoor radon concentrations is estimated on the basis of known in-house radon measurements averaged over 10 km × 10 km grid squares. The scope for using airborne gamma-ray spectrometer data for the Tralee-Castleisland area of county Kerry and county Cavan to predict the radon potential (RP) in two distinct areas of Ireland is evaluated in this study. Airborne data are compared statistically with in-house radon measurements in conjunction with geological and ground permeability data to establish linear regression models and produce radon potential maps. The best agreement between the percentage of dwellings exceeding the reference level (RL) for radon concentrations in Ireland (% > RL), estimated from indoor radon data, and modelled RP in the Tralee-Castleisland area is produced using models based on airborne gamma-ray spectrometry equivalent uranium (eU) and ground permeability data. Good agreement was obtained between the % > RL from indoor radon data and RP estimated from eU data in the Cavan area using terrain specific models. In both areas, RP maps derived from eU data are spatially more detailed than the published 10 km grid map. The results show the potential for using airborne radiometric data for producing RP maps.

  7. Gamma model and its analysis for phase measuring profilometry.

    PubMed

    Liu, Kai; Wang, Yongchang; Lau, Daniel L; Hao, Qi; Hassebrook, Laurence G

    2010-03-01

    Phase measuring profilometry is a method of structured light illumination whose three-dimensional reconstructions are susceptible to error from nonunitary gamma in the associated optical devices. While the effects of this distortion diminish with an increasing number of employed phase-shifted patterns, gamma distortion may be unavoidable in real-time systems where the number of projected patterns is limited by the presence of target motion. A mathematical model is developed for predicting the effects of nonunitary gamma on phase measuring profilometry, while also introducing an accurate gamma calibration method and two strategies for minimizing gamma's effect on phase determination. These phase correction strategies include phase corrections with and without gamma calibration. With the reduction in noise, for three-step phase measuring profilometry, analysis of the root mean squared error of the corrected phase will show a 60x reduction in phase error when the proposed gamma calibration is performed versus 33x reduction without calibration.

  8. [Determination of exogenous gamma-amylase residue in honey].

    PubMed

    Fei, Xiaoqing; Wu, Bin; Shen, Chongyu; Zhang, Rui; Ding, Tao; Li, Lihua

    2012-08-01

    A novel method for the determination of exogenous gamma-amylase residue in honey using liquid chromatography-isotope ratio mass spectrometry (LC-IRMS) was established. After pre-separation by gel column chromatography, the gamma-amylase in honey samples was separated from the sugars. The gamma-amylase was then used to catalyze maltose into glucose. This enzymatic reaction was under the conditions of 55 degrees C and 0.03 mol/L phosphate buffer solution (pH 4.5) for 48 h. The maltose and glucose in the above enzymatic reaction solution were separated using liquid chromatography. By measuring the content of glucose with isotope ratio mass spectrometry, the gamma-amylase in honey can be determined. The linear range of gamma-amylase was 5 - 200 U/kg with the quantification limit of 5 U/kg. The recoveries were between 89.6% and 108.2% with the relative standard deviations from 3.3% to 4.9%. This method was used to analyze 38 honey and rice syrup samples, and the detection rate of gamma-amylase was 76.3%. To further verify the detection capability of this method, an authentic honey was adulterated with 15% (mass fraction) rice syrup. The gamma-amylase content in this sample was 10.2 U/kg. This method can effectively identify honey adulteration with rice syrups from the perspective of enzymology.

  9. Neutron spectrometry for UF 6 enrichment verification in storage cylinders

    DOE PAGES

    Mengesha, Wondwosen; Kiff, Scott D.

    2015-01-29

    Verification of declared UF 6 enrichment and mass in storage cylinders is of great interest in nuclear material nonproliferation. Nondestructive assay (NDA) techniques are commonly used for safeguards inspections to ensure accountancy of declared nuclear materials. Common NDA techniques used include gamma-ray spectrometry and both passive and active neutron measurements. In the present study, neutron spectrometry was investigated for verification of UF 6 enrichment in 30B storage cylinders based on an unattended and passive measurement approach. MCNP5 and Geant4 simulated neutron spectra, for selected UF 6 enrichments and filling profiles, were used in the investigation. The simulated neutron spectra weremore » analyzed using principal component analysis (PCA). The PCA technique is a well-established technique and has a wide area of application including feature analysis, outlier detection, and gamma-ray spectral analysis. Results obtained demonstrate that neutron spectrometry supported by spectral feature analysis has potential for assaying UF 6 enrichment in storage cylinders. Thus the results from the present study also showed that difficulties associated with the UF 6 filling profile and observed in other unattended passive neutron measurements can possibly be overcome using the approach presented.« less

  10. Natural soil gamma radioactivity levels and resultant population dose in the cities of Zacatecas and Guadalupe, Zacatecas, Mexico.

    PubMed

    Mireles, F; Dávila, J I; Quirino, L L; Lugo, J F; Pinedo, J L; Ríos, C

    2003-03-01

    The study of natural gamma radioactivity was made to determine the concentrations of natural radionuclides in soil. Twenty soil samples collected in the cities of Zacatecas and Guadalupe and their suburban areas in the Mexican state of Zacatecas were analyzed by gamma-ray spectrometry to determine the activity concentrations of 226Ra, 232Th, and 40K. Gamma-spectrometry measurements were made using a hyperpure germanium detector surrounded with shielding material to reduce the background counting rate. The GammaVision-32 MCA emulation software was used for gamma-ray spectrum analysis and the TRUMP card of 2k as a MCA emulator. Conversion factors were used to calculate the dose to the population from outdoor exposure to terrestrial gamma rays. The measured activity concentration of 226Ra varies from 11 to 38 Bq kg(-1), the activity concentration of 232Th varies from 8 to 38 Bq kg(-1). The activity concentration of 40K is in the range 309-1,049 Bq kg(-1). The overall population mean outdoor terrestrial gamma dose rate is 44.94 nGy h(-1).

  11. Measurement of the {sup 157}Gd(n,{gamma}) reaction with the DANCE {gamma} calorimeter array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chyzh, A.; Dashdorj, D.; Lawrence Livermore National Laboratory, Livermore, California 94551

    2011-07-15

    The {sup 157}Gd(n,{gamma}) reaction was measured with the DANCE {gamma} calorimeter (consisting of 160 BaF{sub 2} scintillation detectors) at the Los Alamos Neutron Science Center. The multiplicity distributions of the {gamma} decay were used to determine the resonance spins up to E{sub n}=300 eV. The {gamma}-ray energy spectra for different multiplicities were measured for the s-wave resonances. The shapes of these spectra were compared with simulations based on the use of the DICEBOX statistical model code. Simulations showed that the scissors mode is required not only for the ground-state transitions but also for transitions between excited states.

  12. Depth profiling of Pu, 241Am and 137Cs in soils from southern Belarus measured by ICP-MS and alpha and gamma spectrometry.

    PubMed

    Boulyga, Sergei F; Zoriy, Myroslav; Ketterer, Michael E; Becker, J Sabine

    2003-08-01

    The depth distribution of plutonium, americium, and 137Cs originating from the 1986 accident at the Chernobyl Nuclear Power Plant (NPP) was investigated in several soil profiles in the vicinity from Belarus. The vertical migration of transuranic elements in soils typical of the 30 km relocation area around Chernobyl NPP was studied using inductively coupled plasma mass spectrometry (ICP-MS), alpha spectrometry, and gamma spectrometry. Transuranic concentrations in upper soil layers ranged from 6 x 10(-12) g g(-1) to 6 x 10(-10) g g(-1) for plutonium and from 1.8 x 10(-13) g g(-1) to 1.6 x 10(-11) g g(-1) for americium. These concentrations correspond to specific activities of (239+240)Pu of 24-2400 Bq kg(-1) and specific activity of 241Am of 23-2000 Bq kg(-1), respectively. Transuranics in turf-podzol soil migrate slowly to the deeper soil layers, thus, 80-95%, of radionuclide inventories were present in the 0-3 cm intervals of turf-podzol soils collected in 1994. In peat-marsh soil migration processes occur more rapidly than in turf-podzol and the maximum concentrations are found beneath the soil surface (down to 3-6 cm). The depth distributions of Pu and Am are essentially identical for a given soil profile. (239+240)Pu/137Cs and 241Am/137Cs activity ratios vary by up to a factor of 5 at some sites while smaller variations in these ratios were observed at a site close to Chernobyl, suggesting that 137Cs is dominantly particle associated close to Chernobyl but volatile species of 137Cs are of relatively greater importance at the distant sites.

  13. Neutron flux and gamma dose measurement in the BNCT irradiation facility at the TRIGA reactor of the University of Pavia

    NASA Astrophysics Data System (ADS)

    Bortolussi, S.; Protti, N.; Ferrari, M.; Postuma, I.; Fatemi, S.; Prata, M.; Ballarini, F.; Carante, M. P.; Farias, R.; González, S. J.; Marrale, M.; Gallo, S.; Bartolotta, A.; Iacoviello, G.; Nigg, D.; Altieri, S.

    2018-01-01

    University of Pavia is equipped with a TRIGA Mark II research nuclear reactor, operating at a maximum steady state power of 250 kW. It has been used for many years to support Boron Neutron Capture Therapy (BNCT) research. An irradiation facility was constructed inside the thermal column of the reactor to produce a sufficient thermal neutron flux with low epithermal and fast neutron components, and low gamma dose. In this irradiation position, the liver of two patients affected by hepatic metastases from colon carcinoma were irradiated after borated drug administration. The facility is currently used for cell cultures and small animal irradiation. Measurements campaigns have been carried out, aimed at characterizing the neutron spectrum and the gamma dose component. The neutron spectrum has been measured by means of multifoil neutron activation spectrometry and a least squares unfolding algorithm; gamma dose was measured using alanine dosimeters. Results show that in a reference position the thermal neutron flux is (1.20 ± 0.03) ×1010 cm-2 s-1 when the reactor is working at the maximum power of 250 kW, with the epithermal and fast components, respectively, 2 and 3 orders of magnitude lower than the thermal component. The ratio of the gamma dose with respect to the thermal neutron fluence is 1.2 ×10-13 Gy/(n/cm2).

  14. Determination of gamma-aminobutyric acid in food matrices by isotope dilution hydrophilic interaction chromatography coupled to mass spectrometry.

    PubMed

    Zazzeroni, Raniero; Homan, Andrew; Thain, Emma

    2009-08-01

    The estimation of the dietary intake of gamma-aminobutyric acid (GABA) is dependent upon the knowledge of its concentration values in food matrices. To this end, an isotope dilution liquid chromatography-mass spectrometry method has been developed employing the hydrophilic interaction chromatography technique for analyte separation. This approach enabled accurate quantification of GABA in apple, potato, soybeans, and orange juice without the need of a pre- or post-column derivatization reaction. A selective and precise analytical measurement has been obtained with a triple quadrupole mass spectrometer operating in multiple reaction monitoring using the method of standard additions and GABA-d(6) as an internal standard. The concentrations of GABA found in the matrices tested are 7 microg/g of apple, 342 microg/g of potatoes, 211 microg/g of soybeans, and 344 microg/mL of orange juice.

  15. Gamma spectrometry and chemical characterization of ceramic seeds with samarium-153 and holmium-166 for brachytherapy proposal.

    PubMed

    Valente, Eduardo S; Campos, Tarcísio P R

    2010-12-01

    Ceramic seeds were synthesized by the sol-gel technique with Si:Sm:Ca and Si:Ho:Ca. One set of seeds was irradiated in the TRIGA type nuclear reactor IPR-R1 and submitted to instrumental neutron activation analysis (INAA), K(0) method, to determine mass percentage concentration of natural samarium and holmium in the seed as well as to determine all existing radionuclides and their activities. Attention was paid to discrimination of Si-31, Ca-40, Ca-45, Ca-47, Ca-49, Sm-145, Sm-155, Sm-153 and Ho-166. A second sample was submitted to atomic emission spectrometry (ICP-AES) also to determine samarium and holmium concentrations in weight. A third sample was submitted to X-ray fluorescence spectrometry to qualitatively determine chemical composition. The measured activity was due to Sm-153 and Ho-166 with a well-characterized gamma spectrum. The X-ray fluorescence spectrum demonstrated that there is no discrepancy in seed composition. The maximum ranges in the water of beta particles from Sm-153 and Ho-166 decay were evaluated, as well as the dose rate and total dose delivered within the volume delimited by the range of the beta particles. The results are relevant for investigation of the viability of producing Sm-153 and Ho-166 radioactive seeds for use in brachytherapy. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Accurate Wavelength Measurement of High-Energy Gamma Rays from the 35Cl(n,{gamma}) Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belgya, T.; Molnar, G.L.; Mutti, P.

    2005-05-24

    The energies of eight gamma rays in the 36Cl level scheme have been measured with high precision using the 35Cl(n,{gamma}) reaction and the GAMS4 spectrometer. From these energies, a skeleton decay scheme for 36Cl was constructed, and the binding energy of 36Cl was determined to higher precision than previously. It is shown that using this new information, binding energy determination from Ge detector experiments for other nuclei can also be made with higher precision than now available. The measurement of additional weaker 36Cl gamma rays is continuing.

  17. EML Gamma Spectrometry Data Evaluation Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decker, Karin M.

    1998-02-28

    This report represents the results of the analyses for the second EML Gamma Spectrometry Data Evaluation Program (August 1997). A calibration spectrum, a background spectrum and three sample spectra were included for each software format as part of the evaluation. The calibration spectrum contained nuclides covering the range from 59.5 keV to 1836 keV. The participants were told fallout and fission product nuclides as well as naturally occurring nuclides could be present. The samples were designed to test the detection and quantification of very low levels of nuclides and the ability of the software and user to properly resolve multiplets.more » The participants were asked to report values and uncertainties as Becquerel per sample with no decay correction. Twenty-nine sets of results were reported from a total of 70 laboratories who received the spectra. The percentage of the results within 1 F of the expected value was 76, 67, and 55 for samples 1, 2, and 3, respectively. From all three samples, 12% of the results were more than 3 F from the expected value. Sixty-two nuclides out of a total of 580 expected results were not reported for the three samples. Sixty percent of these false negatives were due to nuclides which were present at the minimum detectable activity level. There were 53 false positives reported with 60% of the responses due to problems with background subtraction. The results indicate that the Program is beneficial to the participating laboratories in that it provides them with analysis problems that are difficult to create with spiked samples due to the unavailability of many nuclides and the short half-lives of others. EML will continue its annual distribution, the third is to be held in March 1999.« less

  18. ICF Gamma-Ray measurements on the NIF

    NASA Astrophysics Data System (ADS)

    Herrmann, Hans; Kim, Y.; Hoffman, N. M.; Batha, S. H.; Stoeffl, W.; Church, J. A.; Sayre, D. B.; Liebman, J. A.; Cerjan, C. J.; Carpenter, A. C.; Grafil, E. M.; Khater, H. Y.; Horsfield, C. J.; Rubery, M.

    2013-10-01

    The primary objective of the NIF Gamma Reaction History (GRH) diagnostic is to provide bang time and burn width information in order to constrain implosion simulation parameters such as shell velocity and confinement time. This is accomplished by measuring DT fusion gamma-rays with energy-thresholded Gas Cherenkov detectors that convert MeV gamma-rays into UV/visible photons for high-bandwidth optical detection. Burn-weighted CH ablator areal density is also inferred based on measurement of the 12C(n,n') gammas emitted at 4.44 MeV from DT neutrons inelastically scattering off carbon nuclei as they pass through the plastic ablator. This requires that the four independent GRH gas cells be set to differing Cherenkov thresholds (e.g., 2.9, 4.5, 8 & 10 MeV) in order to be able to unfold the primary spectral components predicted to be in the gamma ray energy spectrum (i.e., DT γ 27Al & 28Si (n,n') γ from the thermo-mechanical package (TMP); and 12C(n,n' γ from the ablator). The GRH response to 12C(n,n') γ is calibrated in-situ by placing a known areal density of carbon in the form of a puck placed ~6 cm from a DT exploding pusher implosion. Comparisons between inferred gamma fluences and simulations based on the nuclear cross sections databases will be presented. Supported by US DOE NNSA.

  19. Spectral measurements of direct and scattered gamma radiation at a boiling-water reactor site

    NASA Astrophysics Data System (ADS)

    Block, R. C.; Preiss, I. L.; Ryan, R. M.; Vargo, G. J.

    1990-12-01

    Quantitative surveys of direct and scattered gamma radiation emitted from the steam-power conversion systems of a boiling-water reactor and other on-site radiation sources were made using a directionally shielded HPGe gamma spectrometry system. The purpose of this study was to obtain data on the relative contributions and energy distributions of direct and scattered gamma radiation in the site environs. The principal radionuclide of concern in this study is 16N produced by the 16O(n,p) 16N reaction in the reactor coolant. Due to changes in facility operation resulting from the implementation of hydrogen water chemistry (HWC), the amount of 16N transported from the reactor to the main steam system under full power operation is excepted to increase by a factor of 1.2 to 5.0. This increase in the 16N source term in the nuclear steam must be considered in the design of new facilities to be constructed on site as well as the evaluation of existing facilities with repect to ALARA (As Low As Reasonably Achievable) dose limits in unrestricted areas. This study consisted of base-line measurements taken under normal BWR chemistry conditions in October, 1987 and a corresponding set taken under HWC conditions in July, 1988. Ground-level and elevated measurements, corresponding to second-story building height, were obtained. The primary conclusion of this study is that direct radiation from the steam-power conversion system is the predominant source of radiation in the site environs of this reactor and that air scattering (i.e. skyshine) does not appear to be significant.

  20. Gamma-ray spectrometry of ultra low levels of radioactivity within the material screening program for the GERDA experiment.

    PubMed

    Budjás, D; Gangapshev, A M; Gasparro, J; Hampel, W; Heisel, M; Heusser, G; Hult, M; Klimenko, A A; Kuzminov, V V; Laubenstein, M; Maneschg, W; Simgen, H; Smolnikov, A A; Tomei, C; Vasiliev, S I

    2009-05-01

    In present and future experiments in the field of rare events physics a background index of 10(-3) counts/(keV kg a) or better in the region of interest is envisaged. A thorough material screening is mandatory in order to achieve this goal. The results of a systematic study of radioactive trace impurities in selected materials using ultra low-level gamma-ray spectrometry in the framework of the GERDA experiment are reported.

  1. Measurement of low radioactivity background in a high voltage cable by high resolution inductively coupled plasma mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vacri, M. L. di; Nisi, S.; Balata, M.

    2013-08-08

    The measurement of naturally occurring low level radioactivity background in a high voltage (HV) cable by high resolution inductively coupled plasma mass spectrometry (HR ICP MS) is presented in this work. The measurements were performed at the Chemistry Service of the Gran Sasso National Laboratory. The contributions to the radioactive background coming from the different components of the heterogeneous material were separated. Based on the mass fraction of the cable, the whole contamination was calculated. The HR ICP MS results were cross-checked by gamma ray spectroscopy analysis that was performed at the low background facility STELLA (Sub Terranean Low Levelmore » Assay) of the LNGS underground lab using HPGe detectors.« less

  2. Characterisation of imperial college reactor centre legacy waste using gamma-ray spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shuhaimi, Alif Imran Mohd

    Waste characterisation is a principal component in waste management strategy. The characterisation includes identification of chemical, physical and radiochemical parameters of radioactive waste. Failure to determine specific waste properties may result in sentencing waste packages which are not compliant with the regulation of long term storage or disposal. This project involved measurement of intensity and energy of gamma photons which may be emitted by radioactive waste generated during decommissioning of Imperial College Reactor Centre (ICRC). The measurement will use High Purity Germanium (HPGe) as Gamma-ray detector and ISOTOPIC-32 V4.1 as analyser. In order to ensure the measurements provide reliable results,more » two quality control (QC) measurements using difference matrices have been conducted. The results from QC measurements were used to determine the accuracy of the ISOTOPIC software.« less

  3. Neutron/Gamma-ray discrimination through measures of fit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amiri, Moslem; Prenosil, Vaclav; Cvachovec, Frantisek

    2015-07-01

    Statistical tests and their underlying measures of fit can be utilized to separate neutron/gamma-ray pulses in a mixed radiation field. In this article, first the application of a sample statistical test is explained. Fit measurement-based methods require true pulse shapes to be used as reference for discrimination. This requirement makes practical implementation of these methods difficult; typically another discrimination approach should be employed to capture samples of neutrons and gamma-rays before running the fit-based technique. In this article, we also propose a technique to eliminate this requirement. These approaches are applied to several sets of mixed neutron and gamma-ray pulsesmore » obtained through different digitizers using stilbene scintillator in order to analyze them and measure their discrimination quality. (authors)« less

  4. Fission prompt gamma-ray multiplicity distribution measurements and simulations at DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chyzh, A; Wu, C Y; Ullmann, J

    2010-08-24

    The nearly energy independence of the DANCE efficiency and multiplicity response to {gamma} rays makes it possible to measure the prompt {gamma}-ray multiplicity distribution in fission. We demonstrate this unique capability of DANCE through the comparison of {gamma}-ray energy and multiplicity distribution between the measurement and numerical simulation for three radioactive sources {sup 22}Na, {sup 60}Co, and {sup 88}Y. The prospect for measuring the {gamma}-ray multiplicity distribution for both spontaneous and neutron-induced fission is discussed.

  5. Normal-Gamma-Bernoulli Peak Detection for Analysis of Comprehensive Two-Dimensional Gas Chromatography Mass Spectrometry Data.

    PubMed

    Kim, Seongho; Jang, Hyejeong; Koo, Imhoi; Lee, Joohyoung; Zhang, Xiang

    2017-01-01

    Compared to other analytical platforms, comprehensive two-dimensional gas chromatography coupled with mass spectrometry (GC×GC-MS) has much increased separation power for analysis of complex samples and thus is increasingly used in metabolomics for biomarker discovery. However, accurate peak detection remains a bottleneck for wide applications of GC×GC-MS. Therefore, the normal-exponential-Bernoulli (NEB) model is generalized by gamma distribution and a new peak detection algorithm using the normal-gamma-Bernoulli (NGB) model is developed. Unlike the NEB model, the NGB model has no closed-form analytical solution, hampering its practical use in peak detection. To circumvent this difficulty, three numerical approaches, which are fast Fourier transform (FFT), the first-order and the second-order delta methods (D1 and D2), are introduced. The applications to simulated data and two real GC×GC-MS data sets show that the NGB-D1 method performs the best in terms of both computational expense and peak detection performance.

  6. Delayed Gamma Measurements in Different Nuclear Research Reactors Bringing Out the Importance of the Delayed Contribution in Gamma Flux Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fourmentel, D.; Radulovic, V.; Barbot, L.

    Neutron and gamma flux levels are key parameters in nuclear research reactors. In Material Testing Reactors, such as the future Jules Horowitz Reactor, under construction at the French Alternative Energies and Atomic Energy Commission (CEA Cadarache, France), the expected gamma flux levels are very high (nuclear heating is of the order of 20 W/g at 100 MWth). As gamma rays deposit their energy in the reactor structures and structural materials it is important to take them into account when designing irradiation devices. There are only a few sensors which allow measurements of the nuclear heating ; a recent development atmore » the CEA Cadarache allows measurements of the gamma flux using a miniature ionization chamber (MIC). The measured MIC response is often compared with calculation using modern Monte Carlo (MC) neutron and photon transport codes, such as TRIPOLI-4 and MCNP6. In these calculations only the production of prompt gamma rays in the reactor is usually modelled thus neglecting the delayed gamma rays. Hence calculations and measurements are usually in better accordance for the neutron flux than for the gamma flux. In this paper we study the contribution of delayed gamma rays to the total MIC signal in order to estimate the systematic error in gamma flux MC calculations. In order to experimentally determine the delayed gamma flux contributions to the MIC response, we performed gamma flux measurements with CEA developed MIC at three different research reactors: the OSIRIS reactor (MTR - 70 MWth at CEA Saclay, France), the TRIGA MARK II reactor (TRIGA - 250 kWth at the Jozef Stefan Institute, Slovenia) and the MARIA reactor (MTR - 30 MWth at the National Center for Nuclear Research, Poland). In order to experimentally assess the delayed gamma flux contribution to the total gamma flux, several reactor shut down (scram) experiments were performed specifically for the purpose of the measurements. Results show that on average about 30 % of the MIC signal is

  7. Quantification of 235U and 238U activity concentrations for undeclared nuclear materials by a digital gamma-gamma coincidence spectroscopy.

    PubMed

    Zhang, Weihua; Yi, Jing; Mekarski, Pawel; Ungar, Kurt; Hauck, Barry; Kramer, Gary H

    2011-06-01

    The purpose of this study is to investigate the possibility of verifying depleted uranium (DU), natural uranium (NU), low enriched uranium (LEU) and high enriched uranium (HEU) by a developed digital gamma-gamma coincidence spectroscopy. The spectroscopy consists of two NaI(Tl) scintillators and XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The results demonstrate that the spectroscopy provides an effective method of (235)U and (238)U quantification based on the count rate of their gamma-gamma coincidence counting signatures. The main advantages of this approach over the conventional gamma spectrometry include the facts of low background continuum near coincident signatures of (235)U and (238)U, less interference from other radionuclides by the gamma-gamma coincidence counting, and region-of-interest (ROI) imagine analysis for uranium enrichment determination. Compared to conventional gamma spectrometry, the method offers additional advantage of requiring minimal calibrations for (235)U and (238)U quantification at different sample geometries. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  8. Simulated and measured neutron/gamma light output distribution for poly-energetic neutron/gamma sources

    NASA Astrophysics Data System (ADS)

    Hosseini, S. A.; Zangian, M.; Aghabozorgi, S.

    2018-03-01

    In the present paper, the light output distribution due to poly-energetic neutron/gamma (neutron or gamma) source was calculated using the developed MCNPX-ESUT-PE (MCNPX-Energy engineering of Sharif University of Technology-Poly Energetic version) computational code. The simulation of light output distribution includes the modeling of the particle transport, the calculation of scintillation photons induced by charged particles, simulation of the scintillation photon transport and considering the light resolution obtained from the experiment. The developed computational code is able to simulate the light output distribution due to any neutron/gamma source. In the experimental step of the present study, the neutron-gamma discrimination based on the light output distribution was performed using the zero crossing method. As a case study, 241Am-9Be source was considered and the simulated and measured neutron/gamma light output distributions were compared. There is an acceptable agreement between the discriminated neutron/gamma light output distributions obtained from the simulation and experiment.

  9. The Study of Equilibrium factor between Radon-222 and its Daughters in Bangkok Atmosphere by Gamma-ray Spectrometry

    NASA Astrophysics Data System (ADS)

    Rujiwarodom, Rachanee

    2010-05-01

    To study the Equilibrium between radon-222 and its daughters in Bangkok atmosphere by Gamma-ray spectrometry, air sample were collected on 48 activated charcoal canister and 360 glass fiber filters by using a high volume jet-air sampler during December 2007 to November 2008.The Spectra of gamma-ray were measured by using a HPGe (Hyper Pure Germanium Detector). In the condition of secular equilibrium obtaining between Radon-222 and its decay products, radon-222 on activated charcoal canister and its daughters on glass fiber filters collected in the same time interval were calculated. The equilibrium factor (F) in the open air had a value of 0.38 at the minimum ,and 0.75 at the maximum. The average value of equilibrium factor (F) was 0.56±0.12. Based on the results, F had variations with a maximum value in the night to the early morning and decreased in the afternoon. In addition, F was higher in the winter than in the summer. This finding corresponds with the properties of the Earth atmosphere. The equilibrium factor (F) also depended on the concentration of dust in the atmosphere. People living in Bangkok were exposed to average value of 30 Bq/m3 of Radon-222 in the atmosphere. The equilibrium factor (0.56±0.12) and the average value of Radon-222 showed that people were exposed to alpha energy from radon-222 and its daughters decay at 0.005 WL(Working Level) which is lower than the safety standard at 0.02 WL. Keywords: Radon, Radon daughters , equilibrium factor, Gamma -ray spectrum analysis ,Bangkok ,Thailand

  10. Conceptual design of the radial gamma ray spectrometers system for α particle and runaway electron measurements at ITER

    NASA Astrophysics Data System (ADS)

    Nocente, M.; Tardocchi, M.; Barnsley, R.; Bertalot, L.; Brichard, B.; Croci, G.; Brolatti, G.; Di Pace, L.; Fernandes, A.; Giacomelli, L.; Lengar, I.; Moszynski, M.; Krasilnikov, V.; Muraro, A.; Pereira, R. C.; Perelli Cippo, E.; Rigamonti, D.; Rebai, M.; Rzadkiewicz, J.; Salewski, M.; Santosh, P.; Sousa, J.; Zychor, I.; Gorini, G.

    2017-07-01

    We here present the principles and main physics capabilities behind the design of the radial gamma ray spectrometers (RGRS) system for alpha particle and runaway electron measurements at ITER. The diagnostic benefits from recent advances in gamma-ray spectrometry for tokamak plasmas and combines space and high energy resolution in a single device. The RGRS system as designed can provide information on α ~ particles on a time scale of 1/10 of the slowing down time for the ITER 500 MW full power DT scenario. Spectral observations of the 3.21 and 4.44 MeV peaks from the 9\\text{Be}≤ft(α,nγ \\right){{}12}\\text{C} reaction make the measurements sensitive to α ~ particles at characteristic resonant energies and to possible anisotropies of their slowing down distribution function. An independent assessment of the neutron rate by gamma-ray emission is also feasible. In case of runaway electrons born in disruptions with a typical duration of 100 ms, a time resolution of at least 10 ms for runaway electron studies can be achieved depending on the scenario and down to a current of 40 kA by use of external gas injection. We find that the bremsstrahlung spectrum in the MeV range from confined runaways is sensitive to the electron velocity space up to E≈ 30 -40 MeV, which allows for measurements of the energy distribution of the runaway electrons at ITER.

  11. Attributes from NMIS Time Coincidence, Fast-Neutron Imaging, Fission Mapping, And Gamma-Ray Spectrometry Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swift, Alicia L; Grogan, Brandon R; Mullens, James Allen

    This work tests a systematic procedure for analyzing data acquired by the Nuclear Materials Identification System (NMIS) at Oak Ridge National Laboratory with fast-neutron imaging and high-purity germanium (HPGe) gamma spectrometry capabilities. NMIS has been under development by the US Department of Energy Office of Nuclear Verification since the mid-1990s, and prior to that by the National Nuclear Security Administration Y-12 National Security Complex, with NMIS having been used at Y-12 for template matching to confirm inventory and receipts. In this present work, a complete set of NMIS time coincidence, fast-neutron imaging, fission mapping, and HPGe gamma-ray spectrometry data wasmore » obtained from Monte Carlo simulations for a configuration of fissile and nonfissile materials. The data were then presented for analysis to someone who had no prior knowledge of the unknown object to accurately determine the description of the object by applying the previously-mentioned procedure to the simulated data. The best approximation indicated that the unknown object was composed of concentric cylinders: a void inside highly enriched uranium (HEU) (84.7 {+-} 1.9 wt % {sup 235}U), surrounded by depleted uranium, surrounded by polyethylene. The final estimation of the unknown object had the correct materials and geometry, with error in the radius estimates of material regions varying from 1.58% at best and 4.25% at worst; error in the height estimates varied from 2% to 12%. The error in the HEU enrichment estimate was 5.9 wt % (within 2.5{sigma} of the true value). The accuracies of the determinations could be adequate for arms control applications. Future work will apply this iterative reconstructive procedure to other unknown objects to further test and refine it.« less

  12. A new measurement of the rare decay eta -> pi^0 gamma gamma with the Crystal Ball/TAPS detectors at the Mainz Microtron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nefkens, B M; Prakhov, S; Aguar-Bartolom��, P

    2014-08-01

    A new measurement of the rare, doubly radiative decay eta->pi^0 gamma gamma was conducted with the Crystal Ball and TAPS multiphoton spectrometers together with the photon tagging facility at the Mainz Microtron MAMI. New data on the dependence of the partial decay width, Gamma(eta->pi^0 gamma gamma), on the two-photon invariant mass squared, m^2(gamma gamma), as well as a new, more precise value for the decay width, Gamma(eta->pi^0 gamma gamma) = (0.33+/-0.03_tot) eV, are based on analysis of 1.2 x 10^3 eta->pi^0 gamma gamma decays from a total of 6 x 10^7 eta mesons produced in the gamma p -> etamore » p reaction. The present results for dGamma(eta->pi^0 gamma gamma)/dm^2(gamma gamma) are in good agreement with previous measurements and recent theoretical calculations for this dependence.« less

  13. Systematic Effects on Duration Measurements of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Koshut, Thomas M.; Paciesas, William S.; Kouveliotou, Chryssa; vanParadijs, Jan; Pendleton, Geoffrey N.; Fishman, Gerald J.; Meegan, Charles A.

    1996-01-01

    The parameters T(sub 90) and T(sub 50) have recently been introduced as a measurement of the duration of gamma-ray bursts. We present here a description of the method of measuring T(sub 90) and T(sub 50) and its application to gamma-ray bursts observed with the Burst and Transient Source Experiment (BATSE) onboard the Compton Gamma-Ray Observatory (CGRO). We use simulated as well as observed time profiles to address some of the possible systematic effects affecting individual T(sub 90) (T(sub 50)) measurements. We show that these systematic effects do not mimic those effects that would result from time dilation if the burst sources are at distances of several Gpc. We discuss the impact of these systematic effects on the T(sub 90) (T(sub 50)) distributions for the gamma-ray bursts observed with BATSE. We distinguish between various types of T(sub 90) (T(sub 50)) distributions, and discuss the ways in which distributions observed with different experiments can vary, even though the measurements for commonly observed bursts may be the same. We then discuss the distributions observed with BATSE and compare them to those observed with other experiments.

  14. Measurement of background gamma radiation in the northern Marshall Islands.

    PubMed

    Bordner, Autumn S; Crosswell, Danielle A; Katz, Ainsley O; Shah, Jill T; Zhang, Catherine R; Nikolic-Hughes, Ivana; Hughes, Emlyn W; Ruderman, Malvin A

    2016-06-21

    We report measurements of background gamma radiation levels on six islands in the northern Marshall Islands (Enewetak, Medren, and Runit onEnewetak Atoll; Bikini and Nam on Bikini Atoll; and Rongelap on Rongelap Atoll). Measurable excess radiation could be expected from the decay of (137)Cs produced by the US nuclear testing program there from 1946 to 1958. These recordings are of relevance to safety of human habitation and resettlement. We find low levels of gamma radiation for the settled island of Enewetak [mean = 7.6 millirem/year (mrem/y) = 0.076 millisievert/year (mSv/y)], larger levels of gamma radiation for the island of Rongelap (mean = 19.8 mrem/y = 0.198 mSv/y), and relatively high gamma radiation on the island of Bikini (mean = 184 mrem/y = 1.84 mSv/y). Distributions of gamma radiation levels are provided, and hot spots are discussed. We provide interpolated maps for four islands (Enewetak, Medren, Bikini, and Rongelap), and make comparisons to control measurements performed on the island of Majuro in the southern Marshall Islands, measurements made in Central Park in New York City, and the standard agreed upon by the United States and the Republic of the Marshall Islands (RMI) governments (100 mrem/y = 1 mSv/y). External gamma radiation levels on Bikini Island significantly exceed this standard (P = <0.01), and external gamma radiation levels on the other islands are below the standard. To determine conclusively whether these islands are safe for habitation, radiation exposure through additional pathways such as food ingestion must be considered.

  15. Measurement of background gamma radiation in the northern Marshall Islands

    PubMed Central

    Bordner, Autumn S.; Crosswell, Danielle A.; Katz, Ainsley O.; Shah, Jill T.; Zhang, Catherine R.; Nikolic-Hughes, Ivana; Hughes, Emlyn W.; Ruderman, Malvin A.

    2016-01-01

    We report measurements of background gamma radiation levels on six islands in the northern Marshall Islands (Enewetak, Medren, and Runit onEnewetak Atoll; Bikini and Nam on Bikini Atoll; and Rongelap on Rongelap Atoll). Measurable excess radiation could be expected from the decay of 137Cs produced by the US nuclear testing program there from 1946 to 1958. These recordings are of relevance to safety of human habitation and resettlement. We find low levels of gamma radiation for the settled island of Enewetak [mean = 7.6 millirem/year (mrem/y) = 0.076 millisievert/year (mSv/y)], larger levels of gamma radiation for the island of Rongelap (mean = 19.8 mrem/y = 0.198 mSv/y), and relatively high gamma radiation on the island of Bikini (mean = 184 mrem/y = 1.84 mSv/y). Distributions of gamma radiation levels are provided, and hot spots are discussed. We provide interpolated maps for four islands (Enewetak, Medren, Bikini, and Rongelap), and make comparisons to control measurements performed on the island of Majuro in the southern Marshall Islands, measurements made in Central Park in New York City, and the standard agreed upon by the United States and the Republic of the Marshall Islands (RMI) governments (100 mrem/y = 1 mSv/y). External gamma radiation levels on Bikini Island significantly exceed this standard (P = <<0.01), and external gamma radiation levels on the other islands are below the standard. To determine conclusively whether these islands are safe for habitation, radiation exposure through additional pathways such as food ingestion must be considered. PMID:27274073

  16. Systematic influences of gamma-ray spectrometry data near the decision threshold for radioactivity measurements in the environment.

    PubMed

    Zorko, Benjamin; Korun, Matjaž; Mora Canadas, Juan Carlos; Nicoulaud-Gouin, Valerie; Chyly, Pavol; Blixt Buhr, Anna Maria; Lager, Charlotte; Aquilonius, Karin; Krajewski, Pawel

    2016-07-01

    Several methods for reporting outcomes of gamma-ray spectrometric measurements of environmental samples for dose calculations are presented and discussed. The measurement outcomes can be reported as primary measurement results, primary measurement results modified according to the quantification limit, best estimates obtained by the Bayesian posterior (ISO 11929), best estimates obtained by the probability density distribution resembling shifting, and the procedure recommended by the European Commission (EC). The annual dose is calculated from the arithmetic average using any of these five procedures. It was shown that the primary measurement results modified according to the quantification limit could lead to an underestimation of the annual dose. On the other hand the best estimates lead to an overestimation of the annual dose. The annual doses calculated from the measurement outcomes obtained according to the EC's recommended procedure, which does not cope with the uncertainties, fluctuate between an under- and overestimation, depending on the frequency of the measurement results that are larger than the limit of detection. In the extreme case, when no measurement results above the detection limit occur, the average over primary measurement results modified according to the quantification limit underestimates the average over primary measurement results for about 80%. The average over best estimates calculated according the procedure resembling shifting overestimates the average over primary measurement results for 35%, the average obtained by the Bayesian posterior for 85% and the treatment according to the EC recommendation for 89%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Cooperation on Improved Isotopic Identification and Analysis Software for Portable, Electrically Cooled High-Resolution Gamma Spectrometry Systems Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreyer, Jonathan G.; Wang, Tzu-Fang; Vo, Duc T.

    Under a 2006 agreement between the Department of Energy (DOE) of the United States of America and the Institut de Radioprotection et de Sûreté Nucléaire (IRSN) of France, the National Nuclear Security Administration (NNSA) within DOE and IRSN initiated a collaboration to improve isotopic identification and analysis of nuclear material [i.e., plutonium (Pu) and uranium (U)]. The specific aim of the collaborative project was to develop new versions of two types of isotopic identification and analysis software: (1) the fixed-energy response-function analysis for multiple energies (FRAM) codes and (2) multi-group analysis (MGA) codes. The project is entitled Action Sheet 4more » – Cooperation on Improved Isotopic Identification and Analysis Software for Portable, Electrically Cooled, High-Resolution Gamma Spectrometry Systems (Action Sheet 4). FRAM and MGA/U235HI are software codes used to analyze isotopic ratios of U and Pu. FRAM is an application that uses parameter sets for the analysis of U or Pu. MGA and U235HI are two separate applications that analyze Pu or U, respectively. They have traditionally been used by safeguards practitioners to analyze gamma spectra acquired with high-resolution gamma spectrometry (HRGS) systems that are cooled by liquid nitrogen. However, it was discovered that these analysis programs were not as accurate when used on spectra acquired with a newer generation of more portable, electrically cooled HRGS (ECHRGS) systems. In response to this need, DOE/NNSA and IRSN collaborated to update the FRAM and U235HI codes to improve their performance with newer ECHRGS systems. Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL) performed this work for DOE/NNSA.« less

  18. Consistent Small-Sample Variances for Six Gamma-Family Measures of Ordinal Association

    ERIC Educational Resources Information Center

    Woods, Carol M.

    2009-01-01

    Gamma-family measures are bivariate ordinal correlation measures that form a family because they all reduce to Goodman and Kruskal's gamma in the absence of ties (1954). For several gamma-family indices, more than one variance estimator has been introduced. In previous research, the "consistent" variance estimator described by Cliff and…

  19. Quantifying K, U, and Th contents of marine sediments using shipboard natural gamma radiation spectra measured on DV JOIDES Resolution

    NASA Astrophysics Data System (ADS)

    De Vleeschouwer, David; Dunlea, Ann G.; Auer, Gerald; Anderson, Chloe H.; Brumsack, Hans; de Loach, Aaron; Gurnis, Michael; Huh, Youngsook; Ishiwa, Takeshige; Jang, Kwangchul; Kominz, Michelle A.; März, Christian; Schnetger, Bernhard; Murray, Richard W.; Pälike, Heiko

    2017-03-01

    During International Ocean Discovery Program (IODP) expeditions, shipboard-generated data provide the first insights into the cored sequences. The natural gamma radiation (NGR) of the recovered material, for example, is routinely measured on the ocean drilling research vessel DV JOIDES Resolution. At present, only total NGR counts are readily available as shipboard data, although full NGR spectra (counts as a function of gamma-ray energy level) are produced and archived. These spectra contain unexploited information, as one can estimate the sedimentary contents of potassium (K), thorium (Th), and uranium (U) from the characteristic gamma-ray energies of isotopes in the 40K, 232Th, and 238U radioactive decay series. Dunlea et al. (2013) quantified K, Th, and U contents in sediment from the South Pacific Gyre by integrating counts over specific energy levels of the NGR spectrum. However, the algorithm used in their study is unavailable to the wider scientific community due to commercial proprietary reasons. Here, we present a new MATLAB algorithm for the quantification of NGR spectra that is transparent and accessible to future NGR users. We demonstrate the algorithm's performance by comparing its results to shore-based inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-emission spectrometry (ICP-ES), and quantitative wavelength-dispersive X-ray fluorescence (XRF) analyses. Samples for these comparisons come from eleven sites (U1341, U1343, U1366-U1369, U1414, U1428-U1430, and U1463) cored in two oceans during five expeditions. In short, our algorithm rapidly produces detailed high-quality information on sediment properties during IODP expeditions at no extra cost.

  20. Measurements of the $$\\mathrm{ pp \\to W \\gamma\\gamma }$$ and $$\\mathrm{ pp \\to Z \\gamma\\gamma }$$ cross sections and limits on anomalous quartic gauge couplings at $$\\sqrt{s} =$$ 8 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.

    Here, measurements are presented ofmore » $$ \\mathrm{ W \\gamma\\gamma } $$ and $$ \\mathrm{ Z \\gamma\\gamma } $$ production in proton-proton collisions. Fiducial cross sections are reported based on a data sample corresponding to an integrated luminosity of 19.4 fb$$^{-1}$$ collected with the CMS detector at a center-of-mass energy of 8 TeV. Signal is identified through the $$\\mathrm{ W } \\to \\ell\

  1. Measurements of the $$\\mathrm{ pp \\to W \\gamma\\gamma }$$ and $$\\mathrm{ pp \\to Z \\gamma\\gamma }$$ cross sections and limits on anomalous quartic gauge couplings at $$\\sqrt{s} =$$ 8 TeV

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2017-10-11

    Here, measurements are presented ofmore » $$ \\mathrm{ W \\gamma\\gamma } $$ and $$ \\mathrm{ Z \\gamma\\gamma } $$ production in proton-proton collisions. Fiducial cross sections are reported based on a data sample corresponding to an integrated luminosity of 19.4 fb$$^{-1}$$ collected with the CMS detector at a center-of-mass energy of 8 TeV. Signal is identified through the $$\\mathrm{ W } \\to \\ell\

  2. Determination of photon emission probabilities for the main gamma-rays of ²²³Ra in equilibrium with its progeny.

    PubMed

    Pibida, L; Zimmerman, B; Fitzgerald, R; King, L; Cessna, J T; Bergeron, D E

    2015-07-01

    The currently published (223)Ra gamma-ray emission probabilities display a wide variation in the values depending on the source of the data. The National Institute of Standards and Technology performed activity measurements on a (223)Ra solution that was used to prepare several sources that were used to determine the photon emission probabilities for the main gamma-rays of (223)Ra in equilibrium with its progeny. Several high purity germanium (HPGe) detectors were used to perform the gamma-ray spectrometry measurements. Published by Elsevier Ltd.

  3. Determination of 137Cs activity in soil from Qatar using high-resolution gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Al-Sulaiti, Huda; Nasir, Tabassum; Al Mugren, K. S.; Alkhomashi, N.; Al-Dahan, N.; Al-Dosari, M.; Bradley, D. A.; Bukhari, S.; Matthews, M.; Regan, P. H.; Santawamaitre, T.; Malain, D.; Habib, A.; Al-Dosari, Hanan; Al Sadig, Ibrahim; Daar, Eman

    2016-10-01

    With interest in establishing baseline concentrations of 137Cs in soil from the Qatarian peninsula, we focus on determination of the activity concentrations in 129 soil samples collected across the State of Qatar prior to the 2011 Fukushima Dai-ichi nuclear power plant accident. As such, the data provides the basis of a reference map for the detection of releases of this fission product. The activity concentrations were measured via high-resolution gamma-ray spectrometry using a hyper-pure germanium detector enclosed in a copper-lined passive lead shield that was situated in a low-background environment. The activity concentrations ranged from 0.21 to 15.41 Bq/kg, with a median value of 1 Bq/kg, the greatest activity concentration being observed in a sample obtained from northern Qatar. Although it cannot be confirmed, it is expected that this contamination is mainly due to releases from the Chernobyl accident of 26 April 1986, there being a lack of data from Qatar before the accident. The values are typically within but are sometimes lower than the range indicated by data from other countries in the region. The lower values than those of others is suggested to be due to variation in soil characteristics as well as metrological factors at the time of deposition.

  4. Determination of low-level Radium isotope activities in fresh waters by gamma spectrometry.

    PubMed

    Molina Porras, Arnold; Condomines, Michel; Seidel, Jean Luc

    2017-02-01

    A new portable sampling system was developed to extract Radium isotopes from large volumes (up to 300L) of fresh surface- and ground-waters of low Ra-activities (<5mBq/L). Ra is quantitatively adsorbed on a small amount (6.5g) of MnO 2 -coated acrylic fibers, which are then dried and burned at 600°C in the laboratory. The resulting Mn-oxide powder (about 2cm 3 when compacted) is then analyzed through gamma-ray spectrometry which allows measurement of the whole Ra quartet ( 226 Ra, 228 Ra, 224 Ra and 223 Ra) in a single counting of a few days. The usual relative standard combined uncertainties (1σ) are 2-3% for 226 Ra, 228 Ra and 224 Ra; and less than 10% for 223 Ra. This method was applied to the analysis of Ra in karstic waters of the Lez aquifer, and surface- and ground-waters of the upper and middle Vidourle watershed (South of France). The analyzed waters have relatively low 226 Ra activities (1-4mBq/L) in both cases, regardless of the contrasted geology (Mesozoic limestone vs crystalline Variscan basement), but clearly distinct ( 228 Ra/ 226 Ra) ratios in agreement with the differences in Th/U ratios of the two drained areas. Short-lived Ra isotopes ( 224 Ra and 223 Ra) appear to be mainly influenced by near-surface desorption/recoil processes for most of the sampling sites. Copyright © 2016. Published by Elsevier Ltd.

  5. Measurement of natural radioactivity in building materials of Namakkal, Tamil Nadu, India using gamma-ray spectrometry.

    PubMed

    Ravisankar, R; Vanasundari, K; Chandrasekaran, A; Rajalakshmi, A; Suganya, M; Vijayagopal, P; Meenakshisundaram, V

    2012-04-01

    The natural level of radioactivity in building materials is one of the major causes of external exposure to γ-rays. The primordial radionuclides in building materials are one of the sources of radiation hazard in dwellings made of these materials. By the determination of the radioactivity level in building materials, the indoor radiological hazard to human health can be assessed. This is an important precautionary measure whenever the dose rate is found to be above the recommended limits. The aim of this work was to measure the specific activity concentration of (226)Ra, (232)Th and (40)K in commonly used building materials from Namakkal, Tamil Nadu, India, using gamma-ray spectrometer. The radiation hazard due to the total natural radioactivity in the studied building materials was estimated by different approaches. The concentrations of the natural radionuclides and the radium equivalent activity in studied samples were compared with the corresponding results of different countries. From the analysis, it is found that these materials may be safely used as construction materials and do not pose significant radiation hazards. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Determination of (241)Pu by the method of disturbed radioactive equilibrium using 2πα-counting and precision gamma-spectrometry.

    PubMed

    Alekseev, I; Kuzmina, T

    2016-04-01

    A simple technique is proposed for the determination of the content of (241)Pu, which is based on disturbance of radioactive equilibrium in the genetically related (237)U←(241)Pu→(241)Am decay chain of radionuclides, with the subsequent use of 2πα-counting and precision gamma-spectroscopy for monitoring the process of restoration of that equilibrium. It has been shown that the data on dynamics of accumulation of the daughter (241)Am, which were obtained from the results of measurements of α- and γ-spectra of the samples, correspond to the estimates calculated for the chain of two genetically related radionuclides, the differences in the estimates of (241)Pu radioactivity not exceeding 2%. Combining the different methods of registration (2πα-counting, semiconductor alpha- and gamma-spectrometry) enables the proposed method to be efficiently applied both for calibration of (241)Pu-sources (from several hundreds of kBq and higher) and for radioisotopic analysis of plutonium mixtures. In doing so, there is a deep purification of (241)Pu from its daughter decay products required due to unavailability of commercial detectors that could make it possible, based only on analysis of alpha-spectra, to conduct quantitative analysis of the content of (238)Pu and (241)Am. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Inverse Analysis of Irradiated NuclearMaterial Gamma Spectra via Nonlinear Optimization

    NASA Astrophysics Data System (ADS)

    Dean, Garrett James

    Nuclear forensics is the collection of technical methods used to identify the provenance of nuclear material interdicted outside of regulatory control. Techniques employed in nuclear forensics include optical microscopy, gas chromatography, mass spectrometry, and alpha, beta, and gamma spectrometry. This dissertation focuses on the application of inverse analysis to gamma spectroscopy to estimate the history of pulse irradiated nuclear material. Previous work in this area has (1) utilized destructive analysis techniques to supplement the nondestructive gamma measurements, and (2) been applied to samples composed of spent nuclear fuel with long irradiation and cooling times. Previous analyses have employed local nonlinear solvers, simple empirical models of gamma spectral features, and simple detector models of gamma spectral features. The algorithm described in this dissertation uses a forward model of the irradiation and measurement process within a global nonlinear optimizer to estimate the unknown irradiation history of pulse irradiated nuclear material. The forward model includes a detector response function for photopeaks only. The algorithm uses a novel hybrid global and local search algorithm to quickly estimate the irradiation parameters, including neutron fluence, cooling time and original composition. Sequential, time correlated series of measurements are used to reduce the uncertainty in the estimated irradiation parameters. This algorithm allows for in situ measurements of interdicted irradiated material. The increase in analysis speed comes with a decrease in information that can be determined, but the sample fluence, cooling time, and composition can be determined within minutes of a measurement. Furthermore, pulse irradiated nuclear material has a characteristic feature that irradiation time and flux cannot be independently estimated. The algorithm has been tested against pulse irradiated samples of pure special nuclear material with cooling times of

  8. Natural radioactivity measurements in building materials used in Samsun, Turkey.

    PubMed

    Tufan, M Çagatay; Disci, Tugba

    2013-01-01

    In this study, radioactivity levels of 35 different samples of 11 commonly used building materials in Samsun were measured by using a gamma spectrometry system. The analysis carried out with the high purity Germanium gamma spectrometry system. Radioactivity concentrations of (226)Ra, (232)Th and (40)K range from 6 to 54 Bq kg(-1), 5 to 88 Bq kg(-1) and 6 to 1070 Bq kg(-1), respectively. From these results, radium equivalent activities, gamma indexes, absorbed dose rates and annual effective doses were calculated for all samples. Obtained results were compared with the available data, and it was concluded that all the investigated materials did not have radiological risk.

  9. New shield for gamma-ray spectrometry

    NASA Technical Reports Server (NTRS)

    Brar, S. S.; Gustafson, P. F.; Nelson, D. M.

    1969-01-01

    Gamma-ray shield that can be evacuated, refilled with a clean gas, and pressurized for exclusion of airborne radioactive contaminants effectively lowers background noise. Under working conditions, repeated evacuation and filling procedures have not adversely affected the sensitivity and resolution of the crystal detector.

  10. Moisture effect in prompt gamma measurements from soil samples.

    PubMed

    Naqvi, A A; Khiari, F Z; Liadi, F A; Khateeb-Ur-Rehman; Raashid, M A; Isab, A H

    2016-09-01

    The variation in intensity of 1.78MeV silicon, 6.13MeV oxygen, and 2.22MeV hydrogen prompt gamma rays from soil samples due to the addition of 5.1, 7.4, 9.7, 11.9 and 14.0wt% water was studied for 14MeV incident neutron beams utilizing a LaBr3:Ce gamma ray detector. The intensities of 1.78MeV and 6.13MeV gamma rays from silicon and oxygen, respectively, decreased with increasing sample moisture. The intensity of 2.22MeV hydrogen gamma rays increases with moisture. The decrease in intensity of silicon and oxygen gamma rays with moisture concentration indicates a loss of 14MeV neutron flux, while the increase in intensity of 2.22MeV gamma rays with moisture indicates an increase in thermal neutron flux due to increasing concentration of moisture. The experimental intensities of silicon, oxygen and hydrogen prompt gamma rays, measured as a function of moisture concentration in the soil samples, are in good agreement with the theoretical results obtained through Monte Carlo calculations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Factors influencing in situ gamma-ray measurements

    NASA Astrophysics Data System (ADS)

    Loonstra, E. H.; van Egmond, F. M.

    2009-04-01

    Introduction In situ passive gamma-ray sensors are very well suitable for mapping physical soil properties. In order to make a qualitative sound soil map, high quality input parameters for calibration are required. This paper will focus on the factors that affect the output of in situ passive gamma-ray sensors, the primary source, soil, not taken into account. Factors The gamma-ray spectrum contains information of naturally occurring nuclides 40K, 238U and 232Th and man-made nuclides like 137Cs, as well as the total count rate. Factors that influence the concentration of these nuclides and the count rate can be classified in 3 categories. These are sensor design, environmental conditions and operational circumstances. Sensor design The main elements of an in situ gamma-ray sensor that influence the outcome and quality of the output are the crystal and the spectrum analysis method. Material and size of the crystal determine the energy resolution. Though widely used, NaI crystals are not the most efficient capturer of gamma radiation. Alternatives are BGO and CsI. BGO has a low peak resolution, which prohibits use in cases where man-made nuclides are subject of interest. The material is expensive and prone to temperature instability. CsI is robust compared to NaI and BGO. The density of CsI is higher than NaI, yielding better efficiency, especially for smaller crystal sizes. More volume results in higher energy efficiency. The reduction of the measured spectral information into concentration of radionuclides is mostly done using the Windows analysis method. In Windows, the activities of the nuclides are found by summing the intensities of the spectrum found in a certain interval surrounding a peak. A major flaw of the Windows method is the limited amount of spectral information that is incorporated into the analysis. Another weakness is the inherent use of ‘stripping factors' to account for contributions of radiation from nuclide A into the peak of nuclide B. This

  12. Neutron and gamma dose and spectra measurements on the Little Boy replica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoots, S.; Wadsworth, D.

    1984-06-01

    The radiation-measurement team of the Weapons Engineering Division at Lawrence Livermore National Laboratory (LLNL) measured neutron and gamma dose and spectra on the Little Boy replica at Los Alamos National Laboratory (LANL) in April 1983. This assembly is a replica of the gun-type atomic bomb exploded over Hiroshima in 1945. These measurements support the National Academy of Sciences Program to reassess the radiation doses due to atomic bomb explosions in Japan. Specifically, the following types of information were important: neutron spectra as a function of geometry, gamma to neutron dose ratios out to 1.5 km, and neutron attenuation in themore » atmosphere. We measured neutron and gamma dose/fission from close-in to a kilometer out, and neutron and gamma spectra at 90 and 30/sup 0/ close-in. This paper describes these measurements and the results. 12 references, 13 figures, 5 tables.« less

  13. Automation system for measurement of gamma-ray spectra of induced activity for multi-element high volume neutron activation analysis at the reactor IBR-2 of Frank Laboratory of Neutron Physics at the joint institute for nuclear research

    NASA Astrophysics Data System (ADS)

    Pavlov, S. S.; Dmitriev, A. Yu.; Chepurchenko, I. A.; Frontasyeva, M. V.

    2014-11-01

    The automation system for measurement of induced activity of gamma-ray spectra for multi-element high volume neutron activation analysis (NAA) was designed, developed and implemented at the reactor IBR-2 at the Frank Laboratory of Neutron Physics. The system consists of three devices of automatic sample changers for three Canberra HPGe detector-based gamma spectrometry systems. Each sample changer consists of two-axis of linear positioning module M202A by DriveSet company and disk with 45 slots for containers with samples. Control of automatic sample changer is performed by the Xemo S360U controller by Systec company. Positioning accuracy can reach 0.1 mm. Special software performs automatic changing of samples and measurement of gamma spectra at constant interaction with the NAA database.

  14. Determination of U, Th and K in bricks by gamma-ray spectrometry, X-ray fluorescence analysis and neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Bártová, H.; Kučera, J.; Musílek, L.; Trojek, T.; Gregorová, E.

    2017-11-01

    Knowledge of the content of natural radionuclides in bricks can be important in some cases in dosimetry and application of ionizing radiation. Dosimetry of naturally occurring radionuclides in matter (NORM) in general is one of them, the other one, related to radiation protection, is radon exposure evaluation, and finally, it is needed for the thermoluminescence (TL) dating method. The internal dose rate inside bricks is caused mostly by contributions of the natural radionuclides 238U, 232Th, radionuclides of their decay chains, and 40K. The decay chain of 235U is usually much less important. The concentrations of 238U, 232Th and 40K were measured by various methods, namely by gamma-ray spectrometry, X-ray fluorescence analysis (XRF), and neutron activation analysis (NAA) which was used as a reference method. These methods were compared from the point of view of accuracy, limit of detection (LOD), amount of sample needed and sample handling, time demands, and instrument availability.

  15. Modeled Martian subsurface elemental composition measurements with the Probing In situ with Neutron and Gamma ray instrument: Gamma and Neutron Measurements on Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.

    Here, the Probing In situ with Neutrons and Gamma rays (PING) instrument is an innovative application of active neutron-induced gamma-ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. As part 2 of a two-part submission, this manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. Part 1 of our submission models the associated regolith types. The modeled sensitivities show that in PING's active mode, where both a Pulsed Neutron Generator (PNG) and amore » Gamma-Ray Spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma-ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 minute that are sensitive to H and Cl.« less

  16. Modeled Martian subsurface elemental composition measurements with the Probing In situ with Neutron and Gamma ray instrument: Gamma and Neutron Measurements on Mars

    DOE PAGES

    Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.; ...

    2017-02-01

    Here, the Probing In situ with Neutrons and Gamma rays (PING) instrument is an innovative application of active neutron-induced gamma-ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. As part 2 of a two-part submission, this manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. Part 1 of our submission models the associated regolith types. The modeled sensitivities show that in PING's active mode, where both a Pulsed Neutron Generator (PNG) and amore » Gamma-Ray Spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma-ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 minute that are sensitive to H and Cl.« less

  17. Alpha particle spectrometry using superconducting microcalorimeters

    NASA Astrophysics Data System (ADS)

    Horansky, Robert; Ullom, Joel; Beall, James; Hilton, Gene; Stiehl, Gregory; Irwin, Kent; Plionis, Alexander; Lamont, Stephen; Rudy, Clifford; Rabin, Michael

    2009-03-01

    Alpha spectrometry is the preferred technique for analyzing trace samples of radioactive material because the alpha particle flux can be significantly higher than the gamma-ray flux from nuclear materials of interest. Traditionally, alpha spectrometry is performed with Si detectors whose resolution is at best 8 keV FWHM. Here, we describe the design and operation of a microcalorimeter alpha detector with an energy resolution of 1.06 keV FWHM at 5 MeV. We demonstrate the ability of the microcalorimeter to clearly resolve the alpha particles from Pu-239 and Pu-240, whose ratio differentiates reactor-grade Pu from weapons-grade. We also show the first direct observation of the decay of Po-209 to the ground state of Pb-205 which has traditionally been obscured by a much stronger alpha line 2 keV away. Finally, the 1.06 keV resolution observed for alpha particles is far worse than the 0.12 keV resolution predicted from thermal fluctuations and measurement of gamma-rays. The cause of the resolution degradation may be ion damage in the tin. Hence, alpha particle microcalorimeters may provide a novel tool for studying ion damage and lattice displacement energies in bulk materials.

  18. Measurements of the Martian Gamma/Neutron Spectra with MSL/RAD

    NASA Astrophysics Data System (ADS)

    Kohler, J.; Zeitlin, C. J.; Ehresmann, B.; Wimmer-Schweingruber, R. F.; Hassler, D.; Reitz, G.; Brinza, D.; Weigle, E.; Boettcher, S.; Burmeister, S.; Guo, J.; Martin-Garcia, C.; Boehm, E.; Posner, A.; Rafkin, S. C.; Kortmann, O.

    2013-12-01

    The Radiation Assessment Detector (RAD) onboard Mars Science Laboratory's rover curiosity measures the energetic charged and neutral particle spectra and the radiation dose rate on the Martian surface. An important factor for determining the biological impact of the Martian surface radiation is the specific contribution of neutrons, which possess a high biological effectiveness. In contrast to charged particles, neutrons and gamma rays are generally only measured indirectly. Their measurement is the result of a complex convolution of the incident particle spectrum with the measurement process. We apply an inversion method to calculate the gamma/neutron spectra from the RAD neutral particle measurements. Here we show first measurements of the Martian gamma/neutron spectra and compare them to theoretical predictions. We find that the shape of the gamma spectrum is very similar to the predicted one, but with a ~50% higher intensity. The measured neutron spectrum agrees well with prediction up to ~100 MeV, but shows a considerably increased intensity for higher energies. The measured neutron spectrum translates into a radiation dose rate of 25 μGy/day and a dose equivalent rate of 106 μSv/day. This corresponds to 10% of the total surface dose rate, and 15% of the biological relevant surface dose equivalent rate on Mars. Measuring the Martian neutron spectra is an essential step for determining the mutagenic influences to past or present life at or beneath the Martian surface as well as the radiation hazard for future human exploration, including the shielding design of a potential habitat. The contribution of neutrons to the dose equivalent increases considerably with shielding thickness, so our measurements provide an important figure to mitigate cancer risk.

  19. Activation of QA devices and phantom materials under clinical scanning proton beams—a gamma spectrometry study

    NASA Astrophysics Data System (ADS)

    Hanušová, Tereza; Johnová, Kamila; Navrátil, Matěj; Valenta, Jiří; Müller, Lutz

    2018-06-01

    Activation of detectors and phantoms used for commissioning and quality assurance of clinical proton beams may lead to radiation protection issues. Good understanding of the activation nuclide vectors involved is necessary to assess radiation risk for the personnel working with these devices on a daily basis or to fulfill legal requirements regarding transport of radioactive material and its release to the public. 11 devices and material samples were irradiated with a 220 MeV proton pencil beam (PBS, Proton Therapy Center, Prague). This study focuses on devices manufactured by IBA Dosimetry GmbH: MatriXX PT, PPC05, Stingray, Zebra, Lynx, a Blue Phantom rail and samples of RW3, PMMA, titanium, copper and carbon fibre plastic. Monitor units (MU) were monitored during delivery. Gamma spectrometry was then performed for each item using a HPGe detector, with a focus on longer lived gamma emitting radionuclides. Activities were quantified for all found isotopes and compared to relevant legal limits for exemption and clearance of radioactive objects. Activation was found to be significant after long irradiation sessions, as done during commissioning of a proton therapy room. Some of the investigated devices may also cumulate activity in time, depending on the scenario of periodic irradiation in routine clinical practice. However, the levels of activity and resulting beta/gamma doses are more comparable to internationally recommended concentration limits for exemption than to dose limits for radiation workers. Results of this study will help to determine nuclide inventories required by some legal authorities for radiation protection purposes.

  20. Activation of QA devices and phantom materials under clinical scanning proton beams-a gamma spectrometry study.

    PubMed

    Hanušová, Tereza; Johnová, Kamila; Navrátil, Matěj; Valenta, Jiří; Müller, Lutz

    2018-06-07

    Activation of detectors and phantoms used for commissioning and quality assurance of clinical proton beams may lead to radiation protection issues. Good understanding of the activation nuclide vectors involved is necessary to assess radiation risk for the personnel working with these devices on a daily basis or to fulfill legal requirements regarding transport of radioactive material and its release to the public. 11 devices and material samples were irradiated with a 220 MeV proton pencil beam (PBS, Proton Therapy Center, Prague). This study focuses on devices manufactured by IBA Dosimetry GmbH: MatriXX PT, PPC05, Stingray, Zebra, Lynx, a Blue Phantom rail and samples of RW3, PMMA, titanium, copper and carbon fibre plastic. Monitor units (MU) were monitored during delivery. Gamma spectrometry was then performed for each item using a HPGe detector, with a focus on longer lived gamma emitting radionuclides. Activities were quantified for all found isotopes and compared to relevant legal limits for exemption and clearance of radioactive objects. Activation was found to be significant after long irradiation sessions, as done during commissioning of a proton therapy room. Some of the investigated devices may also cumulate activity in time, depending on the scenario of periodic irradiation in routine clinical practice. However, the levels of activity and resulting beta/gamma doses are more comparable to internationally recommended concentration limits for exemption than to dose limits for radiation workers. Results of this study will help to determine nuclide inventories required by some legal authorities for radiation protection purposes.

  1. Gamma-ray spectroscopy measurements and simulations for uranium mining

    NASA Astrophysics Data System (ADS)

    Marchais, T.; Pérot, B.; Carasco, C.; Allinei, P.-G.; Chaussonnet, P.; Ma, J.-L.; Toubon, H.

    2018-01-01

    AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration evaluation by means of gamma measurements. This paper reports gamma-ray spectra, recorded with a high-purity coaxial germanium detector, on standard cement blocks with increasing uranium content, and the corresponding MCNP simulations. The detailed MCNP model of the detector and experimental setup has been validated by calculation vs. experiment comparisons. An optimization of the detector MCNP model is presented in this paper, as well as a comparison of different nuclear data libraries to explain missing or exceeding peaks in the simulation. Energy shifts observed between the fluorescence X-rays produced by MCNP and atomic data are also investigated. The qualified numerical model will be used in further studies to develop new gamma spectroscopy approaches aiming at reducing acquisition times, especially for ore samples with low uranium content.

  2. Field gamma-ray spectrometer GS256: measurements stability

    NASA Astrophysics Data System (ADS)

    Mojzeš, Andrej

    2009-01-01

    The stability of in situ readings of the portable gamma-ray spectrometer GS256 during the field season of 2006 was studied. The instrument is an impulse detector of gamma rays based on NaI(Tl) 3" × 3" scintillation unit and 256-channel spectral analyzer which allows simultaneous assessment of up to 8 radioisotopes in rocks. It is commonly used in surface geophysical survey for the measurement of natural 40K, 238U and 232Th but also artificial 137Cs quantities. The statistical evaluation is given of both repeated measurements - in the laboratory and at several field control points in different survey areas. The variability of values shows both the instrument stability and also the relative influence of some meteorological factors, mainly rainfalls. The analysis shows an acceptable level of instrument measurements stability, the necessity to avoid measurement under unfavourable meteorological conditions and to keep detailed field book information about time, position and work conditions.

  3. Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.

    The diffuse galactic {gamma}-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess {gamma}-ray emission {ge}1 GeV relative to diffuse galactic {gamma}-ray emission models consistent with directly measured CR spectra (the so-called 'EGRET GeV excess'). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse {gamma}-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10{sup o}more » {le} |b| {le} 20{sup o}. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic {gamma}-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.« less

  4. Fermi large area telescope measurements of the diffuse gamma-ray emission at intermediate galactic latitudes.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Anderson, B; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Dereli, H; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Di Bernardo, G; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gaggero, D; Gargano, F; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sellerholm, A; Sgrò, C; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stecker, F W; Striani, E; Strickman, M S; Strong, A W; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-12-18

    The diffuse galactic gamma-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess gamma-ray emission greater, > or approximately equal to 1 GeV relative to diffuse galactic gamma-ray emission models consistent with directly measured CR spectra (the so-called "EGRET GeV excess"). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse gamma-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10 degrees < or = |b| < or = 20 degrees. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic gamma-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.

  5. In situ gamma-spectrometry several years after deposition of radiocesium. II. Peak-to-valley method.

    PubMed

    Gering, F; Hillmann, U; Jacob, P; Fehrenbacher, G

    1998-12-01

    A new method is introduced for deriving radiocesium soil contaminations and kerma rates in air from in situ gamma-ray spectrometric measurements. The approach makes use of additional information about gamma-ray attenuation given by the peak-to-valley ratio, which is the ratio of the count rates for primary and forward scattered photons. In situ measurements are evaluated by comparing the experimental data with the results of Monte Carlo simulations of photon transport and detector response. The influence of photons emitted by natural radionuclides on the calculation of the peak-to-valley ratio is carefully analysed. The new method has been applied to several post-Chernobyl measurements and the results agreed well with those of soil sampling.

  6. PWR and BWR spent fuel assembly gamma spectra measurements

    NASA Astrophysics Data System (ADS)

    Vaccaro, S.; Tobin, S. J.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Hu, J.; Schwalbach, P.; Sjöland, A.; Trellue, H.; Vo, D.

    2016-10-01

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative-Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. To compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.

  7. PWR and BWR spent fuel assembly gamma spectra measurements

    DOE PAGES

    Vaccaro, S.; Tobin, Stephen J.; Favalli, Andrea; ...

    2016-07-17

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative–Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detectmore » the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. As a result, to compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.« less

  8. PWR and BWR spent fuel assembly gamma spectra measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaccaro, S.; Tobin, Stephen J.; Favalli, Andrea

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative–Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detectmore » the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. As a result, to compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.« less

  9. Calibration system for radon EEC measurements.

    PubMed

    Mostafa, Y A M; Vasyanovich, M; Zhukovsky, M; Zaitceva, N

    2015-06-01

    The measurement of radon equivalent equilibrium concentration (EECRn) is very simple and quick technique for the estimation of radon progeny level in dwellings or working places. The most typical methods of EECRn measurements are alpha radiometry or alpha spectrometry. In such technique, the influence of alpha particle absorption in filters and filter effectiveness should be taken into account. In the authors' work, it is demonstrated that more precise and less complicated calibration of EECRn-measuring equipment can be conducted by the use of the gamma spectrometer as a reference measuring device. It was demonstrated that for this calibration technique systematic error does not exceed 3 %. The random error of (214)Bi activity measurements is in the range 3-6 %. In general, both these errors can be decreased. The measurements of EECRn by gamma spectrometry and improved alpha radiometry are in good agreement, but the systematic shift between average values can be observed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Using gamma-ray emission to measure areal density of inertial confinement fusion capsulesa)

    NASA Astrophysics Data System (ADS)

    Hoffman, N. M.; Wilson, D. C.; Herrmann, H. W.; Young, C. S.

    2010-10-01

    Fusion neutrons streaming from a burning inertial confinement fusion capsule generate gamma rays via inelastic nuclear scattering in the ablator of the capsule. The intensity of gamma-ray emission is proportional to the product of the ablator areal density (ρR) and the yield of fusion neutrons, so by detecting the gamma rays we can infer the ablator areal density, provided we also have a measurement of the capsule's total neutron yield. In plastic-shell capsules, for example, C12 nuclei emit gamma rays at 4.44 MeV after excitation by 14.1 MeV neutrons from D+T fusion. These gamma rays can be measured by a new gamma-ray detector under development. Analysis of predicted signals is in progress, with results to date indicating that the method promises to be useful for diagnosing imploded capsules.

  11. Comparison of SensL and Hamamatsu 4×4 channel SiPM arrays in gamma spectrometry with scintillators

    NASA Astrophysics Data System (ADS)

    Grodzicka-Kobylka, M.; Szczesniak, T.; Moszyński, M.

    2017-06-01

    The market of Silicon Photomultipliers (SiPMs) consists of many manufacturers that produce their detectors in different technology. Hamamatsu (Japan) and SensL (Ireland) seems to be the most popular companies that produce large SiPM arrays. The aim of this work is characterization and comparison of 4×4 channel SiPM arrays produced by these two producers. Both of the tested SiPMs are made in through-silicon via (TSV) technology, consist of 16, 3×3 mm avalanche photodiode (APD) cells and have fill factor slightly above 60%. The largest difference is a single APD cell size and hence total number of APD cells (55,424 for Hamamatsu, 76,640 for SensL). In the case of SensL SiPM, its spectral response characteristics is shifted slightly toward shorter wavelengths with maximum at 420 nm (450 nm for Hamamatsu). The presented measurements cover selection of the SiPM optimum operating voltage (in respect to energy resolution), verification of the excess noise factor and check of the linearity characteristics. Moreover, the gamma spectrometry with LSO, BGO and CsI:Tl scintillators together with pulse characteristics for these crystals (rise time and fall time) is reported, as well as temperature dependence. The presented measurements show better performance of the SensL array comparing to the Hamamatsu detector.

  12. Determining the solar-flare photospheric scale height from SMM gamma-ray measurements

    NASA Technical Reports Server (NTRS)

    Lingenfelter, Richard E.

    1991-01-01

    A connected series of Monte Carlo programs was developed to make systematic calculations of the energy, temporal and angular dependences of the gamma-ray line and neutron emission resulting from such accelerated ion interactions. Comparing the results of these calculations with the Solar Maximum Mission/Gamma Ray Spectrometer (SMM/GRS) measurements of gamma-ray line and neutron fluxes, the total number and energy spectrum of the flare-accelerated ions trapped on magnetic loops at the Sun were determined and the angular distribution, pitch angle scattering, and mirroring of the ions on loop fields were constrained. Comparing the calculations with measurements of the time dependence of the neutron capture line emission, a determination of the He-3/H ratio in the photosphere was also made. The diagnostic capabilities of the SMM/GRS measurements were extended by developing a new technique to directly determine the effective photospheric scale height in solar flares from the neutron capture gamma-ray line measurements, and critically test current atmospheric models in the flare region.

  13. A reanalysis of radioisotope measurements of the $^9$Be$$(\\gamma,n)^8$$Be cross-section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Alan E.

    Themore » $^9$Be$$(\\gamma,n)^8$$Be reaction is enhanced by a near threshold $1/2^+$ state. Contradictions between existing measurements of this reaction cross-section affect calculations of astrophysical r-process yields, dark matter detector calibrations, and the theory of the nuclear structure of $^9$Be. Select well-documented radioisotope $^9$Be$$(\\gamma,n)$$ source yield measurements have been reanalyzed, providing a set of high-accuracy independently measured cross sections. A Breit-Wigner fit of these corrected measurements yields $$E_R=1738.8\\pm1.9$$ keV, $$\\Gamma_\\gamma=0.771\\pm0.021$$ eV, and $$\\Gamma_n=268\\pm15$$ keV for the $1/2^+$ state. A virtual $1/2^+$ state is excluded with 99.3\\% confidence.« less

  14. A reanalysis of radioisotope measurements of the $^9$Be$$(\\gamma,n)^8$$Be cross-section

    DOE PAGES

    Robinson, Alan E.

    2016-02-18

    Themore » $^9$Be$$(\\gamma,n)^8$$Be reaction is enhanced by a near threshold $1/2^+$ state. Contradictions between existing measurements of this reaction cross-section affect calculations of astrophysical r-process yields, dark matter detector calibrations, and the theory of the nuclear structure of $^9$Be. Select well-documented radioisotope $^9$Be$$(\\gamma,n)$$ source yield measurements have been reanalyzed, providing a set of high-accuracy independently measured cross sections. A Breit-Wigner fit of these corrected measurements yields $$E_R=1738.8\\pm1.9$$ keV, $$\\Gamma_\\gamma=0.771\\pm0.021$$ eV, and $$\\Gamma_n=268\\pm15$$ keV for the $1/2^+$ state. A virtual $1/2^+$ state is excluded with 99.3\\% confidence.« less

  15. About cosmic gamma ray lines

    NASA Astrophysics Data System (ADS)

    Diehl, Roland

    2017-06-01

    Gamma ray lines from cosmic sources convey the action of nuclear reactions in cosmic sites and their impacts on astrophysical objects. Gamma rays at characteristic energies result from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. The gamma-ray line from the annihilation of positrons at 511 keV falls into the same energy window, although of different origin. We present here the concepts of cosmic gamma ray spectrometry and the corresponding instruments and missions, followed by a discussion of recent results and the challenges and open issues for the future. Among the lessons learned are the diffuse radioactive afterglow of massive-star nucleosynthesis in 26Al and 60Fe gamma rays, which is now being exploited towards the cycle of matter driven by massive stars and their supernovae; large interstellar cavities and superbubbles have been recognised to be of key importance here. Also, constraints on the complex processes making stars explode as either thermonuclear or core-collapse supernovae are being illuminated by gamma-ray lines, in this case from shortlived radioactivities from 56Ni and 44Ti decays. In particular, the three-dimensionality and asphericities that have recently been recognised as important are enlightened in different ways through such gamma-ray line spectroscopy. Finally, the distribution of positron annihilation gamma ray emission with its puzzling bulge-dominated intensity disctribution is measured through spatially-resolved spectra, which indicate that annihilation conditions may differ in different parts of our Galaxy. But it is now understood that a variety of sources may feed positrons into the interstellar medium, and their characteristics largely get lost during slowing down and propagation of positrons before annihilation; a recent microquasar flare was caught as an opportunity to see positrons annihilate at a source.

  16. Spectral information enhancement using wavelet-based iterative filtering for in vivo gamma spectrometry.

    PubMed

    Paul, Sabyasachi; Sarkar, P K

    2013-04-01

    Use of wavelet transformation in stationary signal processing has been demonstrated for denoising the measured spectra and characterisation of radionuclides in the in vivo monitoring analysis, where difficulties arise due to very low activity level to be estimated in biological systems. The large statistical fluctuations often make the identification of characteristic gammas from radionuclides highly uncertain, particularly when interferences from progenies are also present. A new wavelet-based noise filtering methodology has been developed for better detection of gamma peaks in noisy data. This sequential, iterative filtering method uses the wavelet multi-resolution approach for noise rejection and an inverse transform after soft 'thresholding' over the generated coefficients. Analyses of in vivo monitoring data of (235)U and (238)U were carried out using this method without disturbing the peak position and amplitude while achieving a 3-fold improvement in the signal-to-noise ratio, compared with the original measured spectrum. When compared with other data-filtering techniques, the wavelet-based method shows the best results.

  17. 134Cs emission probabilities determination by gamma spectrometry

    NASA Astrophysics Data System (ADS)

    de Almeida, M. C. M.; Poledna, R.; Delgado, J. U.; Silva, R. L.; Araujo, M. T. F.; da Silva, C. J.

    2018-03-01

    The National Laboratory for Ionizing Radiation Metrology (LNMRI/IRD/CNEN) of Rio de Janeiro performed primary and secondary standardization of different radionuclides reaching satisfactory uncertainties. A solution of 134Cs radionuclide was purchased from commercial supplier to emission probabilities determination of some of its energies. 134Cs is a beta gamma emitter with 754 days of half-life. This radionuclide is used as standard in environmental, water and food control. It is also important to germanium detector calibration. The gamma emission probabilities (Pγ) were determined mainly for some energies of the 134Cs by efficiency curve method and the Pγ absolute uncertainties obtained were below 1% (k=1).

  18. Accelerator mass spectrometry for measurement of long-lived radioisotopes.

    PubMed

    Elmore, D; Phillips, F M

    1987-05-01

    Particle accelerators, such as those built for research in nuclear physics, can also be used together with magnetic and electrostatic mass analyzers to measure rare isotopes at very low abundance ratios. All molecular ions can be eliminated when accelerated to energies of millions of electron volts. Some atomic isobars can be eliminated with the use of negative ions; others can be separated at high energies by measuring their rate of energy loss in a detector. The long-lived radioisotopes (10)Be, (14)C,(26)A1, 36Cl, and (129)1 can now be measured in small natural samples having isotopic abundances in the range 10(-12) to 10(- 5) and as few as 10(5) atoms. In the past few years, research applications of accelerator mass spectrometry have been concentrated in the earth sciences (climatology, cosmochemistry, environmental chemistry, geochronology, glaciology, hydrology, igneous petrogenesis, minerals exploration, sedimentology, and volcanology), in anthropology and archeology (radiocarbon dating), and in physics (searches for exotic particles and measurement of halflives). In addition, accelerator mass spectrometry may become an important tool for the materials and biological sciences.

  19. Accelerator Mass Spectrometry for Measurement of Long-Lived Radioisotopes

    NASA Astrophysics Data System (ADS)

    Elmore, David; Phillips, Fred M.

    1987-05-01

    Particle accelerators, such as those built for research in nuclear physics, can also be used together with magnetic and electrostatic mass analyzers to measure rare isotopes at very low abundance ratios. All molecular ions can be eliminated when accelerated to energies of millions of electron volts. Some atomic isobars can be eliminated with the use of negative ions; others can be separated at high energies by measuring their rate of energy loss in a detector. The long-lived radioisotopes 10Be, 14C, 26Al, 36Cl, and 129I can now be measured in small natural samples having isotopic abundances in the range 10-12 to 10-15 and as few as 105 atoms. In the past few years, research applications of accelerator mass spectrometry have been concentrated in the earth sciences (climatology, cosmochemistry, environmental chemistry, geochronology, glaciology, hydrology, igneous petrogenesis, minerals exploration, sedimentology, and volcanology), in anthropology and archeology (radiocarbon dating), and in physics (searches for exotic particles and measurement of half-lives). In addition, accelerator mass spectrometry may become an important tool for the materials and biological sciences.

  20. Integrating ion mobility spectrometry into mass spectrometry-based exposome measurements: what can it add and how far can it go?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metz, Thomas O.; Baker, Erin S.; Schymanski, Emma L.

    Here, measuring the exposome remains a challenge due to the range and number of anthropogenic molecules that are encountered in our daily lives, as well as the complex systemic responses to these exposures. One option for improving the coverage, dynamic range and throughput of measurements is to incorporate ion mobility spectrometry (IMS) into current mass spectrometry (MS)-based analytical methods. In this perspective, we briefly review the state-of-the-art in measuring the exposome, and discuss the potential use for IMS-MS and the physico-chemical property of collisional cross section in both exposure assessment and molecular identification.

  1. Integrating ion mobility spectrometry into mass spectrometry-based exposome measurements: what can it add and how far can it go?

    DOE PAGES

    Metz, Thomas O.; Baker, Erin S.; Schymanski, Emma L.; ...

    2016-12-06

    Here, measuring the exposome remains a challenge due to the range and number of anthropogenic molecules that are encountered in our daily lives, as well as the complex systemic responses to these exposures. One option for improving the coverage, dynamic range and throughput of measurements is to incorporate ion mobility spectrometry (IMS) into current mass spectrometry (MS)-based analytical methods. In this perspective, we briefly review the state-of-the-art in measuring the exposome, and discuss the potential use for IMS-MS and the physico-chemical property of collisional cross section in both exposure assessment and molecular identification.

  2. Optimizing a three-stage Compton camera for measuring prompt gamma rays emitted during proton radiotherapy

    PubMed Central

    Peterson, S W; Robertson, D; Polf, J

    2011-01-01

    In this work, we investigate the use of a three-stage Compton camera to measure secondary prompt gamma rays emitted from patients treated with proton beam radiotherapy. The purpose of this study was (1) to develop an optimal three-stage Compton camera specifically designed to measure prompt gamma rays emitted from tissue and (2) to determine the feasibility of using this optimized Compton camera design to measure and image prompt gamma rays emitted during proton beam irradiation. The three-stage Compton camera was modeled in Geant4 as three high-purity germanium detector stages arranged in parallel-plane geometry. Initially, an isotropic gamma source ranging from 0 to 15 MeV was used to determine lateral width and thickness of the detector stages that provided the optimal detection efficiency. Then, the gamma source was replaced by a proton beam irradiating a tissue phantom to calculate the overall efficiency of the optimized camera for detecting emitted prompt gammas. The overall calculated efficiencies varied from ~10−6 to 10−3 prompt gammas detected per proton incident on the tissue phantom for several variations of the optimal camera design studied. Based on the overall efficiency results, we believe it feasible that a three-stage Compton camera could detect a sufficient number of prompt gammas to allow measurement and imaging of prompt gamma emission during proton radiotherapy. PMID:21048295

  3. Determination of 210Pb concentration in NORM waste - An application of the transmission method for self-attenuation corrections for gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Bonczyk, Michal

    2018-07-01

    This article deals with the problem of the self-attenuation of low-energy gamma-rays from the isotope of lead 210Pb (46.5 keV) in industrial waste. The 167 samples of industrial waste, belonging to nine categories, were tested by means of gamma spectrometry in order to determine 210Pb activity concentration. The experimental method for self-attenuation corrections for gamma rays emitted by lead isotope was applied. Mass attenuation coefficients were determined for energy of 46.5 keV. Correction factors were calculated based on mass attenuation coefficients, sample density and thickness. A mathematical formula for correction calculation was evaluated. The 210Pb activity concentration obtained varied in the range from several Bq·kg-1 up to 19,810 Bq kg-1. The mass attenuation coefficients varied across the range of 0.19-4.42 cm2·g-1. However, the variation of mass attenuation coefficient within some categories of waste was relatively small. The calculated corrections for self-attenuation were 0.98 - 6.97. The high value of correction factors must not be neglect in radiation risk assessment.

  4. Resonance Ionization Mass Spectrometry System for Measurement of Environmental Samples

    NASA Astrophysics Data System (ADS)

    Pibida, L.; McMahon, C. A.; Nörtershäuser, W.; Bushaw, B. A.

    2002-10-01

    A resonance ionization mass spectrometry (RIMS) system has been developed at the National Institute of Standards and Technology (NIST) for sensitive and selective determination of radio-cesium in the environment. The overall efficiency was determined to be 4×10-7 with a combined (laser and mass spectrometer) selectivity of 108 for both 135Cs and 137Cs with respect to 133Cs. RIMS isotopic ratio measurements of 135Cs/ 137Cs were performed on a nuclear fuel burn-up sample and compared to measurements on a similar system at Pacific Northwest National Laboratory (PNNL) and to conventional thermal ionization mass spectrometry (TIMS). Results of preliminary RIMS investigations on a freshwater lake sediment sample are also discussed.

  5. Quantifying K, U and Th contents of marine sediments using shipboard natural gamma radiation spectra measured on DV JOIDES Resolution

    NASA Astrophysics Data System (ADS)

    De Vleeschouwer, David; Dunlea, Ann G.; Auer, Gerald; Anderson, Chloe H.; Brumsack, Hans; de Loach, Aaron; Gurnis, Michael C.; Huh, Youngsook; Ishiwa, Takeshige; Jang, Kwangchul; Kominz, Michelle A.; März, Christian; Schnetger, Bernhard; Murray, Richard W.; Pälike, Heiko; Expedition 356 shipboard scientists, IODP

    2017-04-01

    During International Ocean Discovery Program (IODP) expeditions, shipboard-generated data provide the first insights into the cored sequences. The natural gamma radiation (NGR) of the recovered material, for example, is routinely measured on the ocean drilling research vessel DV JOIDES Resolution. At present, only total NGR counts are readily available as shipboard data, although full NGR spectra (counts as a function of gamma-ray energy level) are produced and archived. These spectra contain unexploited information, as one can estimate the sedimentary contents of potassium (K), thorium (Th), and uranium (U) from the characteristic gamma-ray energies of isotopes in the 40K, 232Th, and 238U radioactive decay series. Dunlea et al. [2013] quantified K, Th and U contents in sediment from the South Pacific Gyre by integrating counts over specific energy levels of the NGR spectrum. However, the algorithm used in their study is unavailable to the wider scientific community due to commercial proprietary reasons. Here, we present a new MATLAB algorithm for the quantification of NGR spectra that is transparent and accessible to future NGR users. We demonstrate the algorithm's performance by comparing its results to shore-based inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-emission spectrometry (ICP-ES), and quantitative wavelength-dispersive X-ray fluorescence (XRF) analyses. Samples for these comparisons come from eleven sites (U1341, U1343, U1366-U1369, U1414, U1428-U1430, U1463) cored in two oceans during five expeditions. In short, our algorithm rapidly produces detailed high-quality information on sediment properties during IODP expeditions at no extra cost. Dunlea, A. G., R. W. Murray, R. N. Harris, M. A. Vasiliev, H. Evans, A. J. Spivack, and S. D'Hondt (2013), Assessment and use of NGR instrumentation on the JOIDES Resolution to quantify U, Th, and K concentrations in marine sediment, Scientific Drilling, 15, 57-63.

  6. A limit on the diffuse gamma-rays measured with KASCADE-Grande

    NASA Astrophysics Data System (ADS)

    Kang, D.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Feng, Z.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K. H.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.

    2015-08-01

    Using data measured by the KASCADE-Grande air shower array, an upper limit to the flux of ultra-high energy gamma-rays in the primary cosmic-ray flux is determined. KASCADE-Grande measures the electromagnetic and muonic components for individual air showers in the energy range from 10 PeV up to 1 EeV. The analysis is performed by selecting air showers with low muon contents. A preliminary result on the 90% C.L. upper limit to the relative intensity of gamma-ray with respect to cosmic ray primaries is presented and compared with limits reported by other measurements.

  7. Variations of radon concentration in the atmosphere. Gamma dose rate

    NASA Astrophysics Data System (ADS)

    Tchorz-Trzeciakiewicz, D. E.; Solecki, A. T.

    2018-02-01

    The purposes of research were following: observation and interpretation of variations of radon concentration in the atmosphere - vertical, seasonal, spatial and analysis of relation between average annual radon concentration and ground natural radiation and gamma dose rate. Moreover we wanted to check the occurrence of radon density currents and the possibility of radon accumulation at the foot of the spoil tip. The surveys were carried out in Okrzeszyn (SW Poland) in the area of the spoil tip formed during uranium mining that took place in 60's of 20th century. The measurements were carried out in 20 measurements points at three heights: 0.2 m, 1 m and 2 m a.g.l. using SSNTD LR-115. The survey lasted one year and detectors were exchanged at the beginning of every season. Uranium eU (ppm), thorium eTh (ppm) and potassium K (%) contents were measured using gamma ray spectrometer Exploranium RS-230, ambient gamma dose rate using radiometer RK-100. The average radon concentration on this area was 52.8 Bq m-3. The highest radon concentrations were noted during autumn and the lowest during winter. We observed vertical variations of radon concentration. Radon concentrations decreased with increase of height above ground level. The decrease of radon with increase of height a.g.l. had logarithmic character. Spatial variations of radon concentrations did not indicate the occurrence of radon density currents and accumulation of radon at the foot of the spoil tip. The analysis of relation between average radon concentrations and ground natural radiation (uranium and thorium content) or gamma dose rate revealed positive relation between those parameters. On the base of results mentioned above we suggested that gamma spectrometry measurements or even cheaper and simpler ambient gamma dose rate measurements can be a useful tool in determining radon prone areas. This should be confirmed by additional research.

  8. Beta- and gamma-dose measurements of the Godiva IV critical assembly.

    PubMed

    Hankins, D E

    1984-03-01

    To aid in the re-evaluation of an exposure that occurred in 1963, information was required on the response of film badges to the beta- and gamma-ray doses from a critical assembly. Of particular interest was the beta spectra from the assembly. The techniques used and the results obtained in this study are of interest to health physicists at facilities where exposures to betas occur. The dose rates from the Los Alamos National Laboratory Godiva IV Critical Assembly were measured at numerous distances from the assembly four and 12 days following a burst. Information was obtained on the beta-particle spectra using absorption curve studies. The beta/gamma dose-rate ratio as a function of distance from the assembly was determined. Shielding provided by various metals, gloves and clothing was measured. The beta- and gamma-ray doses measured were compared with a film packet used in the past at the Nevada Test Site with two types of current TLD personnel badges. Measurements made with a commercial thin-window ion chamber instrument are compared with the dose rates obtained using other dosimeters.

  9. High resolution gamma-ray spectrometry of culverts containing transuranic waste at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofstetter, K.J.; Sigg, R.

    1990-12-31

    A number of concrete culverts used to retrievably store drummed, dry, radioactive waste at the Savannah River Site (SRS), were suspected of containing ambiguous quantities of transuranic (TRU) nuclides. These culverts were assayed in place for Pu-239 content using thermal and fast neutron counting techniques. High resolution gamma-ray spectroscopy on 17 culverts, having neutron emission rates several times higher than expected, showed characteristic gamma-ray signatures of neutron emitters other than Pu-239 (e.g., Pu-238, Pu/Be, or Am/Be neutron sources). This study confirmed the Pu-239 content of the culverts with anomalous neutron rates and established limits on the Pu-239 mass in eachmore » of the 17 suspect culverts by in-field, non-intrusive gamma-ray measurements.« less

  10. High resolution gamma-ray spectrometry of culverts containing transuranic waste at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofstetter, K.J.; Sigg, R.

    1990-01-01

    A number of concrete culverts used to retrievably store drummed, dry, radioactive waste at the Savannah River Site (SRS), were suspected of containing ambiguous quantities of transuranic (TRU) nuclides. These culverts were assayed in place for Pu-239 content using thermal and fast neutron counting techniques. High resolution gamma-ray spectroscopy on 17 culverts, having neutron emission rates several times higher than expected, showed characteristic gamma-ray signatures of neutron emitters other than Pu-239 (e.g., Pu-238, Pu/Be, or Am/Be neutron sources). This study confirmed the Pu-239 content of the culverts with anomalous neutron rates and established limits on the Pu-239 mass in eachmore » of the 17 suspect culverts by in-field, non-intrusive gamma-ray measurements.« less

  11. Radiation measurement above the lunar surface by Kaguya gamma-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Hasebe, Nobuyuki; Nagaoka, Hiroshi; Kusano, Hiroki; Hareyama, Matoko; Ideguchi, Yusuke; Shimizu, Sota; Shibamura, Eido

    The lunar surface is filled with various ionizing radiations such as high energy galactic particles, albedo particles and secondary radiations of neutrons, gamma rays and other elementary particles. A high-resolution Kaguya Gamma-Ray Spectrometer (KGRS) was carried on the Japan’s lunar explorer SELENE (Kaguya), the largest lunar orbiter since the Apollo missions. The KGRS instrument employed, for the first time in lunar exploration, a high-purity Ge crystal to increase the identification capability of elemental gamma-ray lines. The Ge detector is surrounded by BGO and plastic counters as for anticoincidence shields. The KGRS measured gamma rays in the energy range from 200 keV to 13 MeV with high precision to determine the chemical composition of the lunar surface. It provided data on the abundance of major elements over the entire lunar surface. In addition to the gamma-ray observation by the KGRS, it successfully measured the global distribution of fast neutrons. In the energy spectra of gamma-rays observed by the KGRS, several saw-tooth- peaks of Ge are included, which are formed by the collision interaction of lunar fast neutrons with Ge atoms in the Ge crystal. With these saw-tooth-peaks analysis, global distribution of neutrons emitted from the lunara surface was successfully created, which was compared with the previous results obtained by Lunar Prospector neutron maps. Another anticoincidence counter, the plastic counter with 5 mm thickness, was used to veto radiation events mostly generated by charged particles. A single photomultiplier serves to count scintillation light from the plastic scintillation counter. The global map of counting rates observed by the plastic counter was also created, implying that the radiation counting rate implies the geological distribution, in spite that the plastic counter mostly measures high energy charged particles and energetic neutrons. These results are presented and discussed.

  12. Measurement of the Branching Fraction of the Exclusive Decay B0 --> K*0gamma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrera, Barbara

    The b {yields} s{gamma} transition proceeds by a loop penguin diagram. It may be used to measure precisely the couplings of the top quark and to search for the effects of any new particles appearing in the loop. We present a preliminary measurement of the branching fraction of the exclusive decay, B{sup 0} {yields} K*{sup 0}{gamma}. They use 8.6 x 10{sup 6} B{bar B} decays to measure B(B{sup 0} {yields} K*{sup 0}{gamma}) = (5.4 {+-} 0.8 {+-} 0.5) x 10{sup -5}.

  13. The possibility of gamma-ray astronomy measurements on the Russian segment of the International Space Station.

    NASA Astrophysics Data System (ADS)

    Fradkin, M. I.; Gorchakov, E. V.; Kaplin, V. A.; Kaplin, D. V.; Kurnosova, L. V.; Labenskij, A. G.; Runtso, M. F.; Topchiev, N. P.

    The conditions required for gamma-ray astronomy measurements at energies of 10 - 1000 GeV by a gamma-ray telescope on the International Space Station are discussed. It is shown that the properties of the detected gamma rays can be determined accurately at 30 - 1000 GeV, even if the space station solar arrays fall in the aperture of the gamma-ray telescope. Measurements of the secondary gamma-ray spectrum using a ground-based model of the gamma-ray telescope have been carried out, and the resulting spectrum at energies of 1 - 100 GeV is presented.

  14. Quantification of vitamin E and gamma-oryzanol components in rice germ and bran.

    PubMed

    Yu, Shanggong; Nehus, Zachary T; Badger, Thomas M; Fang, Nianbai

    2007-09-05

    Rice bran is a rich natural source of vitamin E and gamma-oryzanol, which have been extensively studied and reported to possess important health-promoting properties. However, commercial rice bran is a mixture of rice bran and germ, and profiles of vitamin E and gamma-oryzanol components in these two different materials are less well-studied. In the current study, vitamin E and gamma-oryzanol components in rice bran and germ were analyzed by liquid chromatography/mass spectrometry/mass spectrometry. The components were identified by electrospray ionization mass spectrometry (ESI-MS) with both positive- and negative-ion modes. Both deprotonated molecular ion [M - H](-) and protonated molecular ion [M + H](+) found as the base peaks in spectra of vitamin E components made ESI-MS a valuable analytic method in detecting vitamin E compounds, especially when they were at very low levels in samples. Ultraviolet absorption was used for quantification of vitamin E and gamma-oryzanol components. While the level of vitamin E in rice germ was 5 times greater than in rice bran, the level of gamma-oryzanol in rice germ was 5 times lower than in rice bran. Also, the major vitamin E component was alpha-tocopherol in rice germ and gamma-tocotrienol in rice bran. These data suggest that rice bran and germ have significantly different profiles of vitamin E and gamma-oryzanol components. The method enables rapid and direct on-line identification and quantification of the vitamin E and gamma-oryzanol components in rice bran and germ.

  15. Portable gamma spectrometry: measuring soil erosion in-situ at four Critical Zone Observatories in P. R. China

    NASA Astrophysics Data System (ADS)

    Sanderson, N. K.; Green, S. M.; Chen, Z.; Wang, J.; Wang, Y.; Wang, R.; Yu, K.; Tu, C.; Jia, X.; Li, G.; Peng, X.; Quine, T. A.

    2017-12-01

    Detecting patterns of soil erosion, redistribution, and/soil nutrient loss is important for long-term soil conservation and agricultural sustainability. Caesium-137 (137Cs) and other fallout radionuclide inventories have been used over the the last 50 years to track soil erosion, transport and deposition on a catchment scale, and have been shown to be useful for informing models of temporal/spatial soil redistribution. Traditional sampling methods usually involves coring, grinding, sieving, sub-sampling and laboratory analysis using HPGe detectors, all of which can be costly and time consuming. In-situ measurements can provide a mechanism for assessment of 137Cs over larger areas that integrate the spatial variability, and expand turnover of analyses. Here, we assess the applicability of an in-situ approach based on radionuclide principles, and provide a comparison of the two approaches: laboratory vs. in-situ. The UK-China Critical Zone Observatory (CZO) programme provides an ideal research platform to assess the in-situ approach to measuring soil erosion: using a portable gamma spectrometer to determine 137Cs inventories. Four extensive field slope surveys were conducted in the CZO's, which covers four ecosystem types in China: karst, red soil, peri-urban, and loess plateau. In each CZO, 3-6 plots were measured along 2 slope transects, with 3 replicated 1 hour counts of 137Cs in each plot. In addition, 137Cs soil depth and bulk density profiles were also sampled for each plot, and lab-derived inventories calculated using traditional methods for comparison. Accurately and rapidly measuring 137Cs inventories using a portable field detector allows for a greater coverage of sampling locations and the potential for small-scale spatial integration, as well as the ability to re-visit sites over time and continually adapt and improve soil erosion/redistribution models, thus more effectively targeting areas of interest with reduced cost and time constraints.

  16. Collimated prompt gamma TOF measurements with multi-slit multi-detector configurations

    NASA Astrophysics Data System (ADS)

    Krimmer, J.; Chevallier, M.; Constanzo, J.; Dauvergne, D.; De Rydt, M.; Dedes, G.; Freud, N.; Henriquet, P.; La Tessa, C.; Létang, J. M.; Pleskač, R.; Pinto, M.; Ray, C.; Reithinger, V.; Richard, M. H.; Rinaldi, I.; Roellinghoff, F.; Schuy, C.; Testa, E.; Testa, M.

    2015-01-01

    Longitudinal prompt-gamma ray profiles have been measured with a multi-slit multi-detector configuration at a 75 MeV/u 13C beam and with a PMMA target. Selections in time-of-flight and energy have been applied in order to discriminate prompt-gamma rays produced in the target from background events. The ion ranges which have been extracted from each individual detector module agree amongst each other and are consistent with theoretical expectations. In a separate dedicated experiment with 200 MeV/u 12C ions the fraction of inter-detector scattering has been determined to be on the 10%-level via a combination of experimental results and simulations. At the same experiment different collimator configurations have been tested and the shielding properties of tungsten and lead for prompt-gamma rays have been measured.

  17. Gamma-ray irradiation enhanced boron-10 compound accumulation in murine tumors.

    PubMed

    Liu, Yong; Nagata, Kenji; Masunaga, Shin-ichiro; Suzuki, Minoru; Kashino, Genro; Kinashi, Yuko; Tanaka, Hiroki; Sakurai, Yoshinori; Maruhashi, Akira; Ono, Koji

    2009-11-01

    Previous studies have demonstrated that X-ray irradiation affects angiogenesis in tumors. Here, we studied the effects of gamma-ray irradiation on boron-10 compound accumulation in a murine tumor model. The mouse squamous cell carcinoma was irradiated with gamma-ray before BSH ((10)B-enriched borocaptate sodium) administration. Then, the boron-10 concentrations in tumor and normal muscle tissues were measured by prompt gamma-ray spectrometry (PGA). A tumor blood flow assay was performed, and cell killing effects of neutron irradiation with various combinations of BSH and gamma-rays were also examined. BSH concentrations of tumor tissues were 16.1 +/- 0.6 microg/g, 16.7 +/- 0.5 microg/g and 17.8 +/- 0.5 microg/g at 72 hours after gamma-ray irradiation at doses of 5, 10, and 20 Gy, compared with 13.1 +/- 0.5 microg/g in unirradiated tumor tissues. The enhancing inhibition of colony formation by neutron irradiation with BSH was also found after gamma-ray irradiation. In addition, increasing Hoechst 33342 perfusion was also observed. In this study, we demonstrated that gamma-ray irradiation enhances BSH accumulation in tumors. The present results suggest that the enhancement of (10)B concentration that occurs after gamma-ray irradiation may be due to the changes in the extracellular microenvironment, including in tumor vessels, induced by gamma-ray irradiation.

  18. Measurement of gastric emptying by intragastric gamma scintigraphy.

    PubMed

    Malbert, C H; Mathis, C; Bobillier, E; Laplace, J P; Horowitz, M

    1997-09-01

    Gastric emptying is usually measured in animals and humans by dilution/sampling or external scintigraphy. These methods are either time consuming or require expensive equipment. The capacity of a miniature gamma counter positioned in the stomach to measure emptying of liquid and solid meals was evaluated. In eight conscious pigs fitted with gastric and duodenal cannulae, gastric emptying of saline (500 mL), dextrose (20%, 500 mL), porridge (300 g) and scrambled eggs (300 g), all labelled with 3.5 MBq 99mTC, was evaluated. When positioned in the antrum the probe was unable to quantify gastric emptying. In contrast, measurements of the fractional emptying of saline over 4-min periods by the probe positioned in the corpus and quantification of radioactivity in the duodenal effluent correlated closely (r = 0.88, P < 0.05). Gastric emptying (50% emptying time) of saline and both solid meals measured by the probe was not significantly different from quantification of the duodenal effluent volume. No difference was observed also for the dextrose meal but only while gastric acid secretion was suppressed by omeprazole. We conclude that an intragastric gamma counter permits measurement of gastric emptying of homogeneous meals provided meal stimulation of gastric secretion was not extensive. This was possible probably by monitoring emptying from the proximal stomach.

  19. Clinical review: improving the measurement of serum thyroglobulin with mass spectrometry.

    PubMed

    Hoofnagle, Andrew N; Roth, Mara Y

    2013-04-01

    Serum thyroglobulin (Tg) measurements are central to the management of patients treated for differentiated thyroid carcinoma. For decades, Tg measurements have relied on methods that are subject to interference by commonly found substances in human serum and plasma, such as Tg autoantibodies. As a result, many patients need additional imaging studies to rule out cancer persistence or recurrence that could be avoided with more sensitive and specific testing methods. The aims of this review are to: 1) briefly review the interferences common to Tg immunoassays; 2) introduce readers to liquid chromatography-tandem mass spectrometry as a method for quantifying proteins in human serum/plasma; and 3) discuss the potential benefits and limitations of the method in the quantification of serum Tg. Mass spectrometric methods have traditionally lacked the sensitivity, robustness, and throughput to be useful clinical assays. These methods failed to meet the necessary clinical benchmarks due to the nature of the mass spectrometry workflow and instrumentation. Over the past few years, there have been major advances in reagents, automation, and instrumentation for the quantification of proteins using mass spectrometry. More recently, methods using mass spectrometry to detect and quantify Tg have been developed and are of sufficient quality to be used in the management of patients. Novel serum Tg assays that use mass spectrometry may avoid the issue of autoantibody interference and other problems with currently available immunoassays for Tg. Prospective studies are needed to fully understand the potential benefits of novel Tg assays to patients and care providers.

  20. Measurement of the branching ratio of a rare decay {eta}{yields}{pi}{sup 0}{gamma}{gamma} with WASA-at-COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalwani, Kavita

    2011-10-24

    In this paper we present the preliminary results on the measurement of the branching ratio of a rare decay {eta}{yields}{pi}{sup 0}{gamma}{gamma} with the WASA Detector at COSY. We have used a sample of 10{sup 7}{eta} mesons produced at the COSY ring using the pd{yields}{sup 3}He{eta} reaction close to threshold. We detail the intricate extraction of the signal, which has about 360{+-}70(stat){eta}{yields}{pi}{sup 0}{gamma}{gamma} events, from the overwhelming background channels for example {eta}{yields}3{pi}{sup 0}, pd{yields}{sup 3}He 3{pi}{sup 0} and pd{yields}{sup 3}He 2{pi}{sup 0}.

  1. Gamma-ray dosimetry measurements of the Little Boy replica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plassmann, E.A.; Pederson, R.A.

    1984-01-01

    We present the current status of our gamma-ray dosimetry results for the Little Boy replica. Both Geiger-Mueller and thermoluminescent detectors were used in the measurements. Future work is needed to test assumptions made in data analysis.

  2. Gamma-spectrometric measurement of radioactivity in agricultural soils of the Lombardia region, northern Italy.

    PubMed

    Guidotti, Laura; Carini, Franca; Rossi, Riccardo; Gatti, Marina; Cenci, Roberto M; Beone, Gian Maria

    2015-04-01

    This work is part of a wider monitoring project of the agricultural soils in Lombardia, which aims to build a database of topsoil properties and the potentially toxic elements, organic pollutants and gamma emitting radionuclides that the topsoils contain. A total of 156 agricultural soils were sampled according to the LUCAS (Land Use/Cover Area frame statistical Survey) standard procedure. The aim was to provide a baseline to document the conditions present at the time of sampling. The results of the project concerning soil radioactivity are presented here. The aim was to assess the content of (238)U, (232)Th, (137)Cs and (40)K by measuring soil samples by gamma spectrometry. (238)U, (232)Th and (40)K activities range 24-231, 20-70, and 242-1434 Bq kg(-1) respectively. The geographic distribution of (238)U reflects the geophysical framework of the Lombardia region: the soils with high content of uranium are distributed for the most part in the South Alpine belt, where the presence of magmatic rocks is widespread. These soils show an higher activity of (238)U than of (232)Th. The (238)U activities become lower than (232)Th when soils are located in the plain, originating from basic sedimentary rocks. (137)Cs activity ranges 0.4-86.8 kBq m(-2). The lowest activity of (137)Cs is in the plain, whereas the highest is in the North on soils kept as lawn or pasture. The (137)Cs activity of some samples suggests the presence of accumulation processes that lead to (137)Cs enriched soils. This is the first survey of gamma emitting radionuclides in Lombardia that is based on the LUCAS standard sampling. The results from this monitoring campaign are important for the human radiation exposure and provide the zero point, which will be useful for assessing future effects due to external factors such as human activities. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Impurity measurements in semiconductor materials using trace element accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    McDaniel, F. D.; Datar, S. A.; Nigam, M.; Ravi Prasad, G. V.

    2002-05-01

    Accelerator mass spectrometry (AMS) is commonly used to determine the abundance ratios of long-lived isotopes such as 10B, 14C, 36Cl, 129I, etc. to their stable counterparts at levels as low as 10 -16. Secondary ion mass spectrometry (SIMS) is routinely used to determine impurity levels in materials by depth profiling techniques. Trace-element accelerator mass spectrometry (TEAMS) is a combination of AMS and SIMS, presently being used at the University of North Texas, for high-sensitivity (ppb) impurity analyses of stable isotopes in semiconductor materials. The molecular break-up characteristics of AMS are used with TEAMS to remove the molecular interferences present in SIMS. Measurements made with different substrate/impurity combinations demonstrate that TEAMS has higher sensitivity for many elements than other techniques such as SIMS and can assist with materials characterization issues. For example, measurements of implanted As in the presence of Ge in Ge xSi 1- x/Si is difficult with SIMS because of molecular interferences from 74GeH, 29Si 30Si 16O, etc. With TEAMS, the molecular interferences are removed and higher sensitivities are obtained. Measured substrates include Si, SiGe, CoSi 2, GaAs and GaN. Measured impurities include B, N, F, Mg, P, Cl, Cr, Fe, Ni, Co, Cu, Zn, Ge, As, Se, Mo, Sn and Sb. A number of measurements will be presented to illustrate the range and power of TEAMS.

  4. Measurement and Analysis of Specific Activities of Natural Radionuclides (40K, 226Ra and 232Th) in Beach Sand Samples from Talo Kapo Beach of Yaring District in Pattani Province using Gamma Ray Spectrometry

    NASA Astrophysics Data System (ADS)

    Daoh, M.; Masae, R. N.; Po-oh, S.; Boonkrongcheep; Kessaratikoon, P.

    2017-09-01

    The Specific Activities of 40K, 226Ra and 232Th were studied and determinate for 30 beach sand samples collected from Talo Kapo beach of Yaring district in Pattani province. Experimental results were obtained by using a high-purity germanium (HPGe) detector and gamma spectrometry analysis system. The IAEA-SOIL-6 reference materials obtained from the International Atomic Energy Agency were also used to analyze and compute the 40K, 226Ra and 232Th specific activity in all 30 beach sand samples. The measuring time of each sample is 10,000 seconds. It was found that specific activity range from 1805.37 - 3323.05, 40.96 - 2137.36 38.63 - 4329.28 Bq/kg for with mean values of 2242.79 ± 117.40, 250.18 ± 8.21 and 458.42 ± 7.68 Bq/kg for 40K, 226Ra and 232Th, respectively. Moreover, the results were also compared with research data in the south of Thailand, the Office of Atoms for Peace (OAP) annual report data and the recommended values which were proposed by United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR,)

  5. Isotopic composition analysis and age dating of uranium samples by high resolution gamma ray spectrometry

    NASA Astrophysics Data System (ADS)

    Apostol, A. I.; Pantelica, A.; Sima, O.; Fugaru, V.

    2016-09-01

    Non-destructive methods were applied to determine the isotopic composition and the time elapsed since last chemical purification of nine uranium samples. The applied methods are based on measuring gamma and X radiations of uranium samples by high resolution low energy gamma spectrometric system with planar high purity germanium detector and low background gamma spectrometric system with coaxial high purity germanium detector. The ;Multigroup γ-ray Analysis Method for Uranium; (MGAU) code was used for the precise determination of samples' isotopic composition. The age of the samples was determined from the isotopic ratio 214Bi/234U. This ratio was calculated from the analyzed spectra of each uranium sample, using relative detection efficiency. Special attention is paid to the coincidence summing corrections that have to be taken into account when performing this type of analysis. In addition, an alternative approach for the age determination using full energy peak efficiencies obtained by Monte Carlo simulations with the GESPECOR code is described.

  6. Ultra-High Rate Measurements of Spent Fuel Gamma-Ray Emissions

    NASA Astrophysics Data System (ADS)

    Rodriguez, Douglas; Vandevender, Brent; Wood, Lynn; Glasgow, Brian; Taubman, Matthew; Wright, Michael; Dion, Michael; Pitts, Karl; Runkle, Robert; Campbell, Luke; Fast, James

    2014-03-01

    Presently there are over 200,000 irradiated spent nuclear fuel (SNF) assemblies in the world, each containing a concerning amount of weapons-usable material. Both facility operators and safeguards inspectors want to improve composition determination. Current measurements are expensive and difficult so new methods are developed through models. Passive measurements are limited since a few specific decay products and the associated down-scatter overwhelm the gamma rays of interest. Active interrogation methods produce gamma rays beyond 3 MeV, minimizing the impact of the passive emissions that drop off sharply above this energy. New devices like the Ultra-High Rate Germanium (UHRGe) detector are being developed to advance these novel measurement methods. Designed for reasonable resolution at 106 s-1 output rates (compared to ~ 1 - 10 e 3 s-1 standards), SNF samples were directly measured using UHRGe and compared to models. Model verification further enables using Los Alamos National Laboratory SNF assembly models, developed under the Next Generation Safeguards Initiative, to determine emission and signal expectations. Measurement results and future application requirements for UHRGe will be discussed.

  7. Measurements of neutron distribution in neutrons-gamma-rays mixed field using imaging plate for neutron capture therapy.

    PubMed

    Tanaka, Kenichi; Endo, Satoru; Hoshi, Masaharu

    2010-01-01

    The imaging plate (IP) technique is tried to be used as a handy method to measure the spatial neutron distribution via the (157)Gd(n,gamma)(158)Gd reaction for neutron capture therapy (NCT). For this purpose, IP is set in a water phantom and irradiated in a mixed field of neutrons and gamma-rays. The Hiroshima University Radiobiological Research Accelerator is utilized for this experiment. The neutrons are moderated with 20-cm-thick D(2)O to obtain suitable neutron field for NCT. The signal for IP doped with Gd as a neutron-response enhancer is subtracted with its contribution by gamma-rays, which was estimated using IP without Gd. The gamma-ray response of Gd-doped IP to non-Gd IP is set at 1.34, the value measured for (60)Co gamma-rays, in estimating the gamma-ray contribution to Gd-doped IP signal. Then measured distribution of the (157)Gd(n,gamma)(158)Gd reaction rate agrees within 10% with the calculated value based on the method that has already been validated for its reproducibility of Au activation. However, the evaluated distribution of the (157)Gd(n,gamma)(158)Gd reaction rate is so sensitive to gamma-ray energy, e.g. the discrepancy of the (157)Gd(n,gamma)(158)Gd reaction rate between measurement and calculation becomes 30% for the photon energy change from 33keV to 1.253MeV.

  8. Statistical measurement of the gamma-ray source-count distribution as a function of energy

    NASA Astrophysics Data System (ADS)

    Zechlin, H.-S.; Cuoco, A.; Donato, F.; Fornengo, N.; Regis, M.

    2017-01-01

    Photon counts statistics have recently been proven to provide a sensitive observable for characterizing gamma-ray source populations and for measuring the composition of the gamma-ray sky. In this work, we generalize the use of the standard 1-point probability distribution function (1pPDF) to decompose the high-latitude gamma-ray emission observed with Fermi-LAT into: (i) point-source contributions, (ii) the Galactic foreground contribution, and (iii) a diffuse isotropic background contribution. We analyze gamma-ray data in five adjacent energy bands between 1 and 171 GeV. We measure the source-count distribution dN/dS as a function of energy, and demonstrate that our results extend current measurements from source catalogs to the regime of so far undetected sources. Our method improves the sensitivity for resolving point-source populations by about one order of magnitude in flux. The dN/dS distribution as a function of flux is found to be compatible with a broken power law. We derive upper limits on further possible breaks as well as the angular power of unresolved sources. We discuss the composition of the gamma-ray sky and capabilities of the 1pPDF method.

  9. Isolation and Puification of Uranium Isotopes for Measurement by Mass-Spectrometry (233, 234, 235, 236, 238U) and Alpha Spectrometry (232U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinelli, R; Hamilton, T; Brown, T

    2006-05-30

    This report describes a standardized methodology used by researchers from the Center for Accelerator Mass Spectrometry (CAMS) (Energy and Environment Directorate) and the Environmental Radiochemistry Group (Chemistry and Materials Science Directorate) at the Lawrence Livermore National Laboratory (LLNL) for the full isotopic analysis of uranium from solution. The methodology has largely been developed for use in characterizing the uranium composition of selected nuclear materials but may also be applicable to environmental studies and assessments of public, military or occupational exposures to uranium using in-vitro bioassay monitoring techniques. Uranium isotope concentrations and isotopic ratios are measured using a combination of Multimore » Collector Inductively Coupled Plasma Mass Spectrometry (MC ICP-MS), Accelerator Mass Spectrometry (AMS) and Alpha Spectrometry.« less

  10. (p,$gamma$) ANGULAR DISTRIBUTION MEASUREMENTS ON F$sup 19$(p,$alpha$$gamma$)O$sup 16$ AT 340, 598, AND 669 kev (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Retz-Schmidt, Th.

    1958-10-01

    Experimental envestigations of the behavior of the 6.14-Mev radiation in the F/sup 19/(p, alpha gamma )O/sup 16/ reaction gave the following angular distributions: I gamma (669) ~ isotrop, I gamma (598) ~ 1 + 0.17 cos/sup 2/ THETA , and I gamma (340) ~ 1-0.035 cos/sup 2/ THETA . The result in the last case which deviates from earlier measurements is in better agreement with the basic assumption that in addition to the s-protons approximately 1% d-protons participate in the reaction at E/sub p/ = 340 kev. (tr-auth)

  11. Gamma-Ray Dose Measurement with Radio-Photoluminescence Glass Dosimeter in Mixed Radiation Field for BNCT

    NASA Astrophysics Data System (ADS)

    Hiramatsu, K.; Yoshihashi, S.; Kusaka, S.; Sato, F.; Hoashi, E.; Murata, I.

    2017-09-01

    Accelerator based neutron sources (ABNS) are being developed as the next generation neutron irradiation system for BNCT. From the ABNS, unnecessary gamma-rays will be generated by neutron capture reactions, as well as fast neutrons. To control the whole-body radiation dose to the patient, measurement of gamma-ray dose in the irradiation room is necessary. In this study, the objective is to establish a method to measure gamma-ray dose separately in a neutron/gamma mixed field by using RPL glass dosimeter. For this purpose, we proposed a lead filter method which uses a pair of RPL glasses with and without a lead filter outside. In order to realize this method, the basic characteristics of glass dosimeter was verified in the gamma-ray field, before adapting it in the mixture field. From the result of the experiment using the lead filter, the simulation result especially for the case with a lead filter overestimated the absorbed does obtained from measurement. We concluded that the reason of the discrepancy is caused by existence of gradient of the dose distribution in the glass, and the difference of sensitivity to low-energy photon between measurement and theory.

  12. Cosmic-ray effects on diffuse gamma-ray measurements.

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1972-01-01

    Evaluation of calculations and experimental evidence from 600-MeV proton irradiation indicating that cosmic-ray-induced radioactivity in detectors used to measure the diffuse gamma-ray background produces a significant counting rate in the energy region around 1 MeV. It is concluded that these counts may be responsible for the observed flattening of the diffuse photon spectrum at this energy.

  13. Liquid chromatography-mass spectrometry (LC-MS): a powerful combination for selenium speciation in garlic (Allium sativum).

    PubMed

    Dumont, Emmie; Ogra, Yasumitsu; Vanhaecke, Frank; Suzuki, Kazuo T; Cornelis, Rita

    2006-03-01

    Liquid chromatography (LC) hyphenated with both elemental and molecular mass spectrometry has been used for Se speciation in Se-enriched garlic. Different species were separated by ion-pair liquid chromatography-inductively coupled plasma mass spectrometry (LC-ICP-MS) after hot-water extraction. They were identified by on-line reversed-phase liquid chromatography-electrospray ionization tandem mass spectrometry (RPLC-ESI-MS-MS). Se-methionine and Se-methylselenocysteine were determined by monitoring their product ions. Another compound, gamma-glutamyl-Se-methylselenocysteine, shown to be the most abundant form of Se in the garlic, was determined without any additional sample pre-treatment after extraction and without the need for a synthesized standard. Product ions for this dipeptide were detected by LC-ESI-MS-MS for three isotopes of Se-78 Se, 80Se: and 82Se. The method was extended to the species extracted during in-vitro gastrointestinal digestion. Because both Se-methylselenocysteine and gamma-glutamyl-Se-methylselenocysteine have anticarcinogenic properties, their extractability and stability during human digestion are very important. Garlic was also treated with saliva, to enable detection and analysis of species extracted during mastication. Detailed information on the extractability of selenium species by both simulated gastric and intestinal fluid are given, and variation of the distribution of Se among the different species with time is discussed. Although the main species in garlic is the dipeptide gamma-glutamyl-Se-methylselenocysteine, Se-methylselenocysteine is the main compound present in the extracts after treatment with gastrointestinal fluids. Two more, so far unknown compounds were observed in the chromatogram. The extracted species and their transformations were analysed by combining LC-ICP-MS and LC-ESI-MS-MS. In both the simulated gastric and intestinal digests, Se-methionine, Se-methylselenocysteine, and gamma

  14. GRABGAM Analysis of Ultra-Low-Level HPGe Gamma Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winn, W.G.

    The GRABGAM code has been used successfully for ultra-low level HPGe gamma spectrometry analysis since its development in 1985 at Savannah River Technology Center (SRTC). Although numerous gamma analysis codes existed at that time, reviews of institutional and commercial codes indicated that none addressed all features that were desired by SRTC. Furthermore, it was recognized that development of an in-house code would better facilitate future evolution of the code to address SRTC needs based on experience with low-level spectra. GRABGAM derives its name from Gamma Ray Analysis BASIC Generated At MCA/PC.

  15. Gamma-ray imaging system for real-time measurements in nuclear waste characterisation

    NASA Astrophysics Data System (ADS)

    Caballero, L.; Albiol Colomer, F.; Corbi Bellot, A.; Domingo-Pardo, C.; Leganés Nieto, J. L.; Agramunt Ros, J.; Contreras, P.; Monserrate, M.; Olleros Rodríguez, P.; Pérez Magán, D. L.

    2018-03-01

    A compact, portable and large field-of-view gamma camera that is able to identify, locate and quantify gamma-ray emitting radioisotopes in real-time has been developed. The device delivers spectroscopic and imaging capabilities that enable its use it in a variety of nuclear waste characterisation scenarios, such as radioactivity monitoring in nuclear power plants and more specifically for the decommissioning of nuclear facilities. The technical development of this apparatus and some examples of its application in field measurements are reported in this article. The performance of the presented gamma-camera is also benchmarked against other conventional techniques.

  16. Low-background gamma-ray spectrometry for the international monitoring system

    DOE PAGES

    Greenwood, L. R.; Cantaloub, M. G.; Burnett, J. L.; ...

    2016-12-28

    PNNL has developed two low-background gamma-ray spectrometers in a new shallow underground laboratory, thereby significantly improving its ability to detect low levels of gamma-ray emitting fission or activation products in airborne particulate in samples from the IMS (International Monitoring System). Furthermore, the combination of cosmic veto panels, dry nitrogen gas to reduce radon and low background shielding results in a reduction of the background count rate by about a factor of 100 compared to detectors operating above ground at our laboratory.

  17. Aerosol and gamma background measurements at Basic Environmental Observatory Moussala

    NASA Astrophysics Data System (ADS)

    Angelov, Christo; Arsov, Todor; Penev, Ilia; Nikolova, Nina; Kalapov, Ivo; Georgiev, Stefan

    2016-03-01

    Trans boundary and local pollution, global climate changes and cosmic rays are the main areas of research performed at the regional Global Atmospheric Watch (GAW) station Moussala BEO (2925 m a.s.l., 42°10'45'' N, 23°35'07'' E). Real time measurements and observations are performed in the field of atmospheric chemistry and physics. Complex information about the aerosol is obtained by using a threewavelength integrating Nephelometer for measuring the scattering and backscattering coefficients, a continuous light absorption photometer and a scanning mobile particle sizer. The system for measuring radioactivity and heavy metals in aerosols allows us to monitor a large scale radioactive aerosol transport. The measurements of the gamma background and the gamma-rays spectrum in the air near Moussala peak are carried out in real time. The HYSPLIT back trajectory model is used to determine the origin of the data registered. DREAM code calculations [2] are used to forecast the air mass trajectory. The information obtained combined with a full set of corresponding meteorological parameters is transmitted via a high frequency radio telecommunication system to the Internet.

  18. Measurement of U-235 Fission Neutron Spectra Using a Multiple Gamma Coincidence Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji Chuncheng; Kegel, G.H.R.; Egan, J.J.

    2005-05-24

    The Los Alamos Model of Madland and Nix predicts the shape of the fission neutron energy spectrum for incident primary neutrons of different energies. Verifications of the model normally are limited to measurements of the fission neutron spectra for energies higher than that of the primary neutrons because the low-energy spectrum is distorted by the admixture of elastically and inelastically scattered neutrons. This situation can be remedied by using a measuring technique that separates fission from scattering events. One solution consists of using a fissile sample so thin that fission fragments can be observed indicating the occurrence of a fissionmore » event. A different approach is considered in this paper. It has been established that a fission event is accompanied by the emission of between seven and eight gamma rays, while in a scattering interaction, between zero and two gammas are emitted, so that a gamma multiplicity detector should supply a datum to distinguish a fission event from a scattering event. We proceed as follows: A subnanosecond pulsed and bunched proton beam from the UML Van de Graaff generates nearly mono-energetic neutrons by irradiating a thin metallic lithium target. The neutrons irradiate a 235U sample. Emerging neutron energies are measured with a time-of-flight spectrometer. A set of four BaF2 detectors is located close to the 235U sample. These detectors together with their electronic components identify five different events for each neutron detected, i.e., whether four, three, two, one, or none of the BaF2 detectors received one (or more) gamma rays. We present work, preliminary to the final measurements, involving feasibility considerations based on gamma-ray coincidence measurements with four BaF2 detectors, and the design of a Fission-Scattering Discriminator under construction.« less

  19. The Z {yields} cc-bar {yields} {gamma}{gamma}*, Z {yields} bb-bar {yields} {gamma}{gamma}* triangle diagrams and the Z {yields} {gamma}{psi}, Z {yields} {gamma}Y decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achasov, N. N., E-mail: achasov@math.nsc.ru

    2011-03-15

    The approach to the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decay study is presented in detail, based on the sum rules for the Z {yields} cc-bar {yields} {gamma}{gamma}* and Z {yields} bb-bar {yields} {gamma}{gamma}* amplitudes and their derivatives. The branching ratios of the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are calculated for different hypotheses on saturation of the sum rules. The lower bounds of {Sigma}{sub {psi}} BR(Z {yields} {gamma}{psi}) = 1.95 Multiplication-Sign 10{sup -7} and {Sigma}{sub {upsilon}} BR(Z {yields} {gamma}Y) = 7.23 Multiplication-Sign 10{sup -7} are found. Deviations from the lower bounds are discussed, including the possibilitymore » of BR(Z {yields} {gamma}J/{psi}(1S)) {approx} BR(Z {yields} {gamma}Y(1S)) {approx} 10{sup -6}, that could be probably measured in LHC. The angular distributions in the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are also calculated.« less

  20. Prospects for Dark Matter Measurements with the Advanced Gamma Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Buckley, James

    2009-05-01

    AGIS, a concept for a future gamma-ray observatory consisting of an array of 50 atmospheric Cherenkov telescopes, would provide a powerful new tool for determining the nature of dark matter and its role in structure formation in the universe. The advent of more sensitive direct detection experiments, the launch of Fermi and the startup of the LHC make the near future an exciting time for dark matter searches. Indirect measurements of cosmic-ray electrons may already provide a hint of dark matter in our local halo. However, gamma-ray measurements will provide the only means for mapping the dark matter in the halo of our galaxy and other galaxies. In addition, the spectrum of gamma-rays (either direct annihilation to lines or continuum emission from other annihilation channels) will be imprinted with the mass of the dark matter particle, and the particular annihilation channels providing key measurements needed to identify the dark matter particle. While current gamma-ray instruments fall short of the generic sensitivity required to measure the dark matter signal from any sources other than the (confused) region around the Galactic center, we show that the planned AGIS array will have the angular resolution, energy resolution, low threshold energy and large effective area required to detect emission from dark matter annihilation in Galactic substructure or nearby Dwarf spheroidal galaxies.

  1. Airborne gamma radiation soil moisture measurements over short flight lines

    NASA Technical Reports Server (NTRS)

    Peck, Eugene L.; Carrol, Thomas R.; Lipinski, Daniel M.

    1990-01-01

    Results are presented on airborne gamma radiation measurements of soil moisture condition, carried out along short flight lines as part of the First International Satellite Land Surface Climatology Project Field Experiment (FIFE). Data were collected over an area in Kansas during the summers of 1987 and 1989. The airborne surveys, together with ground measurements, provide the most comprehensive set of airborne and ground truth data available in the U.S. for calibrating and evaluating airborne gamma flight lines. Analysis showed that, using standard National Weather Service weights for the K, Tl, and Gc radiation windows, the airborne soil moisture estimates for the FIFE lines had a root mean square error of no greater than 3.0 percent soil moisture. The soil moisture estimates for sections having acquisition time of at least 15 sec were found to be reliable.

  2. [Reliability study on the infrared spectrometry for measuring the delta over baseline for breath 13C].

    PubMed

    Wang, Min; Wang, Zhiling; Gou, Lingyan; Zhang, Yuhui; Yang, Xiaoguang; Sha, Lei; Li, Min

    2013-03-01

    To assess the validity and reliability of the infrared spectrometry for measuring the delta over baseline for breath 13C. Twenty-four healthy adults were selected, including twelve males and twelve females. 13C-Leucine was used as tracer in stable isotope metabolic experiments. One baseline breath was collected before the tracer protocol began. Other breath samples were collected at 60, 120, 180, 195, 210, 225, 240, 255, 270 and 300 min post-tracer challenge. The delta over baseline for breath 13C was measured by the infrared spectrometry and Heliview 13C breath analyzer. No significant differences were found between the infrared spectrometry and Heliview 13C breath analyzer in measuring the delta over baseline for breath 13C. The F value and p value of two-way ANOVA were 0.29 and 0.5874 respectively. The t and p value of consistency test were 0.48 and 0.6346 respectively. The 13C infrared spectrometry can reliably measure the delta over baseline for breath 13C.

  3. Relationships between ground and airborne gamma-ray spectrometric survey data, North Ras Millan, Southern Sinai Peninsula, Egypt.

    PubMed

    Youssef, Mohamed A S

    2016-02-01

    In the last decades of years, there was considerable growth in the use of airborne gamma-ray spectrometry. With this growth, there was an increasing need to standardize airborne measurements, so that they can be independent of survey parameters. Acceptable procedures were developed for converting airborne to ground gamma-ray spectrometric measurements of total-count intensity as well as, potassium, equivalent uranium and equivalent thorium concentrations, due to natural sources of radiation. The present study aims mainly to establish relationships between ground and airborne gamma-ray spectrometric data, North Ras Millan, Southern Sinai Peninsula, Egypt. The relationships between airborne and ground gamma-ray spectrometric data were deduced for the original and separated rock units in the study area. Various rocks in the study area, represented by Quaternary Wadi sediments, Cambro-Ordovician sandstones, basic dykes and granites, are shown on the detailed geologic map. The structures are displayed, which located on the detailed geologic map, are compiled from the integration of previous geophysical and surface geological studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Anisotropies in the Diffuse Gamma-Ray Background Measured by the Fermi LAT

    NASA Technical Reports Server (NTRS)

    Ferrara, E. C.; McEnery, J. E.; Troja, E.

    2012-01-01

    The contribution of unresolved sources to the diffuse gamma-ray background could induce anisotropies in this emission on small angular scales. We analyze the angular power spectrum of the diffuse emission measured by the Fermi LAT at Galactic latitudes absolute value of b > 30 deg in four energy bins spanning 1 to 50 GeV. At multipoles l >= 155, corresponding to angular scales approx < 2 deg, angular power above the photon noise level is detected at > 99.99% CL in the 1-2 GeV, 2- 5 GeV, and 5- 10 GeV energy bins, and at > 99% CL at 10-50 GeV. Within each energy bin the measured angular power takes approximately the same value at all multipoles l >= 155, suggesting that it originates from the contribution of one or more unclustered source populations. The amplitude of the angular power normalized to the mean intensity in each energy bin is consistent with a constant value at all energies, C(sub p) / (I)(exp 2) = 9.05 +/- 0.84 x 10(exp -6) sr, while the energy dependence of C(sub p) is consistent with the anisotropy arising from one or more source populations with power-law photon spectra with spectral index Gamma (sub s) = 2.40 +/- 0.07. We discuss the implications of the measured angular power for gamma-ray source populations that may provide a contribution to the diffuse gamma-ray background.

  5. Si Lattice, Avogadro Constant, and X- and Gamma-Ray Measurements: Contributions by R.D. Deslattes

    NASA Astrophysics Data System (ADS)

    Kessler, Jr.

    2002-04-01

    The achievement of x-ray interferometry in 1965 opened the possibility of more accurately measuring the lattice spacing of a diffraction crystal on a scale directly tied to the SI system of units. The road from the possible to reality required moving objects and measuring translations with sub-atomic accuracy. The improved crystal lattice spacing determinations had a significant impact on two fundamental measurement areas: 1) the amount of substance (the mole and the associated Avogadro Constant), and 2) short wavelengths (the x- and gamma-ray regions). Progress in both areas required additional metrological advances: density and isotopic abundance measurements are needed for the Avogadro constant and small angle measurements are required for the determination of short wavelengths. The x- and gamma-ray measurements have led to more accurate wavelength standards and neutron binding energy measurements that connect gamma-ray measurements to precision atomic mass measurements, particularly the neutron mass. Richard D. Deslattes devoted much of his scientific career to this measurement program. His outstanding contributions and insights will be reviewed.

  6. Measurement of the {sup 12}C({alpha},{gamma}){sup 16}O reaction at TRIAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makii, H.; Miyatake, H.; Wakabayashi, Y.

    2012-11-12

    We have measured the {gamma}-ray angular distribution of the {sup 12}C({alpha},{gamma}){sup 16}O reaction at TRIAC (Tokai Radioactive Ion Accelerator Complex) to accurately determine the E1 and E2 cross sections. In this experiment, we used high efficiency anti-Compton NaI(T1) spectrometers to detect a {gamma}-ray from the reaction with large S/N ratio, intense pulsed {alpha}-beams to discriminate true event from background events due to neutrons from {sup 13}C({alpha},n){sup 16}O reaction with a time-of-flight (TOF) method. We succeeded in removing a background events due to neutrons and clearly detected {gamma}-ray from the {sup 12}C({alpha}{gamma}){sup 16}O reaction with high statistics.

  7. Measured neutron and gamma spectra from californium-252 in a tissue-equivalent medium.

    PubMed

    Elson, H R; Stupar, T A; Shapiro, A; Kereiakes, J G

    1979-01-01

    A method of experimentally obtaining both neutron and gamma-ray spectra in a scattering medium is described. The method utilizes a liquid-organic scintillator (NE-213) coupled with a pulse-shape discrimination circuit. This allows the separation of the neutron-induced pulse-height data from the gamma-ray pulse-height data. Using mathematical unfolding techniques, the two sets of pulse-height data were transformed to obtain the neutron and gamma-ray energy spectra. A small spherical detector was designed and constructed to reduce the errors incurred by attempting spectral measurements in a scattering medium. Demonstration of the utility of the system to obtain the neutron and gamma-ray spectra in a scattering medium was performed by characterizing the neutron and gamma-ray spectra at various sites about a 3.7-microgram (1.5 cm active length) californium-252 source in a tissue-equivalent medium.

  8. Gamma-ray spectrometry method used for radioactive waste drums characterization for final disposal at National Repository for Low and Intermediate Radioactive Waste--Baita, Romania.

    PubMed

    Done, L; Tugulan, L C; Dragolici, F; Alexandru, C

    2014-05-01

    The Radioactive Waste Management Department from IFIN-HH, Bucharest, performs the conditioning of the institutional radioactive waste in concrete matrix, in 200 l drums with concrete shield, for final disposal at DNDR - Baita, Bihor county, in an old exhausted uranium mine. This paper presents a gamma-ray spectrometry method for the characterization of the radioactive waste drums' radionuclides content, for final disposal. In order to study the accuracy of the method, a similar concrete matrix with Portland cement in a 200 l drum was used. © 2013 The Authors. Published by Elsevier Ltd All rights reserved.

  9. Analysis of gamma-irradiated melon, pumpkin, and sunflower seeds by electron paramagnetic resonance spectroscopy and gas chromatography-mass spectrometry.

    PubMed

    Sin, Della W M; Wong, Yiu Chung; Yao, Wai Yin

    2006-09-20

    Seeds of melon (Citrullus lanatus var. sp.), pumpkin (Cucurbita moschata), and sunflower (Heliantus annus) were gamma-irradiated at 1, 3, 5, and 10 kGy and analyzed by electron paramagnetic resonance (EPR) and gas chromatography-mass spectrometry (GC-MS) according to EN1787:2000 and EN1785:2003, respectively. Distinguishable triplet signals due to the presence of induced cellulose radicals were found at 2.0010-2.0047 g in the EPR spectra. The gamma-irradiated radiolytic markers of 2-dodecylcyclobutanone (2-DCB) and 2-tetradecylcyclobutanone (2-TCB) were identified in all irradiated seed samples. Both the free radicals and the alkylcyclobutanones were found to increase with irradiation dose. In general, linear relationships between the amount of radicals and irradiation dosage could be established. Studies at an ambient temperature (20-25 degrees C) in a humidity-controlled environment showed a complete disappearance of the cellulosic peaks for irradiated samples upon 60 days of storage. Such instability behavior was considered to render the usefulness of using EPR alone in the determination of irradiated seed samples. On the other hand, 2-DCB and 2-TCB were also found to decompose rapidly (>85% loss after 120 days of storage), but the radiolytic markers remained quantifiable after 120 days of postirradiation storage. These results suggest that GC-MS is a versatile and complimentary technique for the confirmation of irradiation treatment to seeds.

  10. Gamma ray evaluation of fast neutron irradiated on topaz from Sri Lanka by HPGe gamma ray spectrometry

    NASA Astrophysics Data System (ADS)

    Boonsook, K.; Kaewwiset, W.; Limsuwan, P.; Naemchanthara, K.

    2017-09-01

    The purpose of this study was to evaluate the radionuclide concentrations of London blue topaz after fast neutron irradiation. The London blue topaz was obtained from Sri Lanka which classified into dark and light colors in the shape of an oval and rectangle with small, medium and large size. The optical property and radionuclide concentrations of London blue topaz have been examine by UV-Visible spectroscopy and HPGe gamma ray spectrometry, respectively. The UV-absorption spectra of topaz was taken in the range of 300 to 800 nm at room temperature. The results showed that the absorption peak of topaz was observed with only broad peaks in the range of 550 to 700 nm and 630 nm that correlated to the O - center in hydroxyl sites which substitutes for fluorine in topaz structure. The radioactivity of dark and light colors in the shape of an oval and rectangle London blue topaz was in the range of 1.437 ± 0.014 to 21.551 ± 0.037 nCi/g (oval dark), 2.958 ± 0.031 to 6.748 ± 0.054 nCi/g (oval light) and 2.350 ± 0.014 to 43.952 ± 0.088 nCi/g (rectangle dark), 1.442 ± 0.023 to 6.748 ± 0.054 nCi/g (rectangle light), respectively. The decay rates of 46Sc, 182Ta and 54Mn isotopes created by irradiation showed that the decay time of the radioactive element depended on the size of the topaz so increased with decreasing the size of topaz. Moreover, the size of topaz also affect the absorption coefficient. This study is applied to predict time of residue dose of topaz for enhancement colorless topaz by neutron radiation treatment.

  11. The Probing In-Situ With Neutron and Gamma Rays (PING) Instrument for Planetary Composition Measurements

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.; Starr, R.

    2012-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument (formerly named PNG-GRAND) [I] experiment is an innovative application of the active neutron-gamma ray technology successfully used in oil field well logging and mineral exploration on Earth over many decades. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring PING to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asteroids, comets and the satellites of the outer planets and measure their bulk surface and subsurface elemental composition without the need to drill into the surface. Gamma-Ray Spectrometers (GRS) have been incorporated into numerous orbital planetary science missions. While orbital measurements can map a planet, they have low spatial and elemental sensitivity due to the low surface gamma ray emission rates reSUlting from using cosmic rays as an excitation source, PING overcomes this limitation in situ by incorporating a powerful neutron excitation source that permits significantly higher elemental sensitivity elemental composition measurements. PING combines a 14 MeV deuterium-tritium Pulsed Neutron Generator (PNG) with a gamma ray spectrometer and two neutron detectors to produce a landed instrument that can determine the elemental composition of a planet down to 30 - 50 cm below the planet's surface, The penetrating nature of .5 - 10 MeV gamma rays and 14 MeV neutrons allows such sub-surface composition measurements to be made without the need to drill into or otherwise disturb the planetary surface, thus greatly simplifying the lander design, We are cun'ently testing a PING prototype at a unique outdoor neutron instrumentation test facility at NASA/GSFC that provides two large (1.8 m x 1.8 m x ,9 m) granite and basalt test formations placed outdoors in an empty field, Since an independent trace elemental analysis has been performed on both these

  12. Fission Fragment Studies by Gamma-Ray Spectrometry with the Mass Separator Lohengrin

    NASA Astrophysics Data System (ADS)

    Materna, T.; Amouroux, C.; Bail, A.; Bideau, A.; Chabod, S.; Faust, H.; Capellan, N.; Kessedjian, G.; Köster, U.; Letourneau, A.; Litaize, O.; Martin, F.; Mathieu, L.; Méplan, O.; Panebianco, S.; Régis, J.-M.; Rudigier, M.; Sage, C.; Serot, O.; Urban, W.

    2014-09-01

    A gamma spectrometric technique was implemented at the exit of the fission fragment separator of the ILL. It allows a precise measurement of isotopic yields of most important actinides in the heavy fragment region by an unambiguous identification of the nuclear charge of the fragments selected by the mass spectrometer. The status of the project and last results are reviewed. A spin-off of this activity is the identification of unknown nanosecond isomers in exotic nuclei through the observation of a disturbed ionic charge distribution. This technique has been improved to provide an estimation of the lifetime of the isomeric state.

  13. Technical Note: PRESAGE three-dimensional dosimetry accurately measures Gamma Knife output factors

    PubMed Central

    Klawikowski, Slade J.; Yang, James N.; Adamovics, John; Ibbott, Geoffrey S.

    2014-01-01

    Small-field output factor measurements are traditionally very difficult because of steep dose gradients, loss of lateral electronic equilibrium, and dose volume averaging in finitely sized detectors. Three-dimensional (3D) dosimetry is ideal for measuring small output factors and avoids many of these potential challenges of point and two-dimensional detectors. PRESAGE 3D polymer dosimeters were used to measure the output factors for the 4 mm and 8 mm collimators of the Leksell Perfexion Gamma Knife radiosurgery treatment system. Discrepancies between the planned and measured distance between shot centers were also investigated. A Gamma Knife head frame was mounted onto an anthropomorphic head phantom. Special inserts were machined to hold 60 mm diameter, 70 mm tall cylindrical PRESAGE dosimeters. The phantom was irradiated with one 16 mm shot and either one 4 mm or one 8 mm shot, to a prescribed dose of either 3 Gy or 4 Gy to the 50% isodose line. The two shots were spaced between 30 mm and 60 mm apart and aligned along the central axis of the cylinder. The Presage dosimeters were measured using the DMOS-RPC optical CT scanning system. Five independent 4 mm output factor measurements fell within 2% of the manufacturer’s Monte Carlo simulation-derived nominal value, as did two independent 8 mm output factor measurements. The measured distances between shot centers varied by ± 0.8 mm with respect to the planned shot displacements. On the basis of these results, we conclude that PRESAGE dosimetry is excellently suited to quantify the difficult-to-measure Gamma Knife output factors. PMID:25368961

  14. Detection of pulsed bremsstrahlung-induced prompt neutron capture gamma rays with a HPGe detector

    NASA Astrophysics Data System (ADS)

    Jones, James L.

    1997-02-01

    The Idaho National Engineering Laboratory (INEL) is developing a novel photoneutron-based nondestructive evaluation technique which uses a pulsed, high-energy electron accelerator and gamma-ray spectrometry. Highly penetrating pulses of bremsstrahlung photons are produced by each pulse of electrons. Interrogating neutrons are generated by the bremsstrahlung photons interacting within a photoneutron source material. The interactions of the neutrons within a target result in the emission of elemental characteristic gamma-rays. Spectrometry is performed by analyzing the photoneutron-induced, prompt gama-rays acquired between accelerator pulses with a unique, high- purity germanium gamma-ray detection system using a modified transistor reset preamplifier. The detection system, the experimental configuration, and the accelerator operation used to characterize the detection systems performance are described. Using a 6.5-MeV electron accelerator and a beryllium metal photoneutron source, gamma-ray spectra were successfully acquired for Al, Cu, polyethylene, NaCl, and depleted uranium targets as soon as 30 microsecond(s) after each bremsstrahlung flash.

  15. High-resolution gamma ray attenuation density measurements on mining exploration drill cores, including cut cores

    NASA Astrophysics Data System (ADS)

    Ross, P.-S.; Bourke, A.

    2017-01-01

    Physical property measurements are increasingly important in mining exploration. For density determinations on rocks, one method applicable on exploration drill cores relies on gamma ray attenuation. This non-destructive method is ideal because each measurement takes only 10 s, making it suitable for high-resolution logging. However calibration has been problematic. In this paper we present new empirical, site-specific correction equations for whole NQ and BQ cores. The corrections force back the gamma densities to the "true" values established by the immersion method. For the NQ core caliber, the density range extends to high values (massive pyrite, 5 g/cm3) and the correction is thought to be very robust. We also present additional empirical correction factors for cut cores which take into account the missing material. These "cut core correction factors", which are not site-specific, were established by making gamma density measurements on truncated aluminum cylinders of various residual thicknesses. Finally we show two examples of application for the Abitibi Greenstone Belt in Canada. The gamma ray attenuation measurement system is part of a multi-sensor core logger which also determines magnetic susceptibility, geochemistry and mineralogy on rock cores, and performs line-scan imaging.

  16. Environmental radionuclides as contaminants of HPGe gamma-ray spectrometers: Monte Carlo simulations for Modane underground laboratory.

    PubMed

    Breier, R; Brudanin, V B; Loaiza, P; Piquemal, F; Povinec, P P; Rukhadze, E; Rukhadze, N; Štekl, I

    2018-05-21

    The main limitation in the high-sensitive HPGe gamma-ray spectrometry has been the detector background, even for detectors placed deep underground. Environmental radionuclides such as 40 K and decay products in the 238 U and 232 Th chains have been identified as the most important radioactive contaminants of construction parts of HPGe gamma-ray spectrometers. Monte Carlo simulations have shown that the massive inner and outer lead shields have been the main contributors to the HPGe-detector background, followed by aluminum cryostat, copper cold finger, detector holder and the lead ring with FET. The Monte Carlo simulated cosmic-ray background gamma-ray spectrum has been by about three orders of magnitude lower than the experimental spectrum measured in the Modane underground laboratory (4800 m w.e.), underlying the importance of using radiopure materials for the construction of ultra-low-level HPGe gamma-ray spectrometers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Assessment of Gamma-Ray-Spectra Analysis Method Utilizing the Fireworks Algorithm for Various Error Measures

    DOE PAGES

    Alamaniotis, Miltiadis; Tsoukalas, Lefteri H.

    2018-01-01

    The analysis of measured data plays a significant role in enhancing nuclear nonproliferation mainly by inferring the presence of patterns associated with special nuclear materials. Among various types of measurements, gamma-ray spectra is the widest utilized type of data in nonproliferation applications. In this paper, a method that employs the fireworks algorithm (FWA) for analyzing gamma-ray spectra aiming at detecting gamma signatures is presented. In particular, FWA is utilized to fit a set of known signatures to a measured spectrum by optimizing an objective function, where non-zero coefficients express the detected signatures. FWA is tested on a set of experimentallymore » obtained measurements optimizing various objective functions—MSE, RMSE, Theil-2, MAE, MAPE, MAP—with results exhibiting its potential in providing highly accurate and precise signature detection. Finally and furthermore, FWA is benchmarked against genetic algorithms and multiple linear regression, showing its superiority over those algorithms regarding precision with respect to MAE, MAPE, and MAP measures.« less

  18. Thermodynamic Activity Measurements with Knudsen Cell Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Copland, Evan H.; Jacobson, Nathan S.

    2001-01-01

    Coupling the Knudsen effusion method with mass spectrometry has proven to be one of the most useful experimental techniques for studying the equilibrium between condensed phases and complex vapors. The Knudsen effusion method involves placing a condensed sample in a Knudsen cell, a small "enclosure", that is uniformly heated and held until equilibrium is attained between the condensed and vapor phases. The vapor is continuously sampled by effusion through a small orifice in the cell. A molecular beam is formed from the effusing vapor and directed into a mass spectrometer for identification and pressure measurement of the species in the vapor phase. Knudsen cell mass spectrometry (KCMS) has been used for nearly fifty years now and continues to be a leading technique for obtaining thermodynamic data. Indeed, much of the well-established vapor specie data in the JANAF tables has been obtained from this technique. This is due to the extreme versatility of the technique. All classes of materials can be studied and all constituents of the vapor phase can be measured over a wide range of pressures (approximately 10(exp -4) to 10(exp -11) bar) and temperatures (500-2800 K). The ability to selectively measure different vapor species makes KCMS a very powerful tool for the measurement of component activities in metallic and ceramic solutions. Today several groups are applying KCMS to measure thermodynamic functions in multicomponent metallic and ceramic systems. Thermodynamic functions, especially component activities, are extremely important in the development of CALPHAD (Calculation of Phase Diagrams) type thermodynamic descriptions. These descriptions, in turn, are useful for modeling materials processing and predicting reactions such as oxide formation and fiber/matrix interactions. The leading experimental methods for measuring activities are the Galvanic cell or electro-motive force (EMF) technique and the KCMS technique. Each has specific advantages, depending on

  19. Measurements of Soil Carbon by Neutron-Gamma Analysis in Static and Scanning Modes.

    PubMed

    Yakubova, Galina; Kavetskiy, Aleksandr; Prior, Stephen A; Torbert, H Allen

    2017-08-24

    The herein described application of the inelastic neutron scattering (INS) method for soil carbon analysis is based on the registration and analysis of gamma rays created when neutrons interact with soil elements. The main parts of the INS system are a pulsed neutron generator, NaI(Tl) gamma detectors, split electronics to separate gamma spectra due to INS and thermo-neutron capture (TNC) processes, and software for gamma spectra acquisition and data processing. This method has several advantages over other methods in that it is a non-destructive in situ method that measures the average carbon content in large soil volumes, is negligibly impacted by local sharp changes in soil carbon, and can be used in stationary or scanning modes. The result of the INS method is the carbon content from a site with a footprint of ~2.5 - 3 m 2 in the stationary regime, or the average carbon content of the traversed area in the scanning regime. The measurement range of the current INS system is >1.5 carbon weight % (standard deviation ± 0.3 w%) in the upper 10 cm soil layer for a 1 hmeasurement.

  20. Development and application of marine gamma-ray measurements: a review.

    PubMed

    Jones, D G

    2001-01-01

    The development of instruments to measure gamma radiation in the marine environment, particularly on the sea floor, and the range of uses to which they have been put is reviewed. Since the first steps in the late 1950s, systems have been developed in at least 10 countries with the main thrust occurring in the 1970s. Development has continued up to the present, primarily in Europe and the USA. Marine gamma-ray spectrometers have been used for a range of applications including the mapping of rocks and unconsolidated sediments, mineral exploration (mainly for heavy minerals and phosphorites), sediment transport studies and investigations in relation to discharged and dumped nuclear wastes and at nuclear weapon test sites.

  1. PING Gamma Ray and Neutron Measurements of a Meter-Sized Carbonaceous Asteroid Analog

    NASA Technical Reports Server (NTRS)

    Bodnarik, J.; Burger, D.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Parsons, A.; Schweitzer, J.; hide

    2011-01-01

    Determining the elemental composition of carbonaceous (spectral type C) asteroids is still one of the basic problems when studying these objects. The only main source of elemental composition information for asteroids is from their optical, NIR and IR properties, which include their spectral reflectance characteristics, albedo, polarization, and the comparison of optical spectroscopy with meteorite groups corresponding to asteroids of every spectral type. Unfortunately, these sources reflect observations from widely contrasting spatial scales that presently yield a void in the continuum of microscopic and macroscopic evidence, a lack of in situ measurement confirmation, and require deeper sensing techniques to discern the nature of these asteroids. The Probing In situ with Neutrons and Gamma rays (PING) instrument is ideally suited to address this problem because it can be used to determine the bulk elemental composition, H and C content, the average atomic weight and density of the surface and subsurface layers of C-type asteroids, and can provide measurements used to determine the difference between and distinguish between different types of asteroids. We are currently developing the PING instrument that combines gamma ray and neutron detectors with a 14 Me V pulsed neutron generator to determine the in-situ bulk elemental abundances and geochemistry of C-type asteroids with a spatial resolution of 1 m down to depths of tens of cm to 1 m. One aspect of the current work includes experimentally testing and optimizing PING on a known meter-sized Columbia River basalt C-type asteroid analog sample that has a similar composition and the same neutron response as that of a C-type asteroid. An important part of this effort focuses on utilizing timing measurements to isolate gamma rays produced by neutron inelastic scattering, neutron capture and delayed activation processes. Separating the gamma ray spectra by nuclear processes results in higher precision and sensitivity

  2. Venus Measurements by the MESSENGER Gamma-Ray and X-Ray Spectrometers

    NASA Astrophysics Data System (ADS)

    Rhodes, E. A.; Starr, R. D.; Goldsten, J. O.; Schlemm, C. E.; Boynton, W. V.

    2007-12-01

    The Gamma-Ray Spectrometer (GRS), which is a part of the Gamma-Ray and Neutron Spectrometer Instrument, and the X-Ray Spectrometer (XRS) on the MESSENGER spacecraft made calibration measurements during the Venus flyby on June 5, 2007. The purpose of these instruments is to determine elemental abundances on the surface of Mercury. The GRS measures gamma-rays emitted from element interactions with cosmic rays impinging on the surface, while the XRS measures X-ray emissions induced on the surface by the incident solar flux. The GRS sensor is a high-resolution high-purity Ge detector cooled by a Stirling cryocooler, surrounded by a borated-plastic anticoincidence shield. The GRS is sensitive to gamma-rays up to ~10 MeV and can identify most major elements, sampling down to depths of about ten centimeters. Only the shield was powered on for this flyby in order to conserve cooler lifetime. Gamma-rays were observed coming from Venus as well as from the spacecraft. Although the Venus gamma-rays originate from its thick atmosphere rather than its surface, the GRS data from this encounter will provide useful calibration data from a source of known composition. In particular, the data will be useful for determining GRS sensitivity and pointing options for the Mercury flybys, the first of which will be in January 2008. The X-ray spectrum of a planetary surface is dominated by a combination of the fluorescence and scattered solar X-rays. The most prominent fluorescent lines are the Kα lines from the major elements Mg, Al, Si, S, Ca, Ti, and Fe (1-10 keV). The sampling depth is less than 100 u m. The XRS is similar in design to experiments flown on Apollo 15 and 16 and the NEAR-Shoemaker mission. Three large-area gas-proportional counters view the planet, and a small Si-PIN detector mounted on the spacecraft sunshade monitors the Sun. The energy resolution of the gas proportional counters (~850 eV at 5.9 keV) is sufficient to resolve the X-ray lines above 2 keV, but Al and Mg

  3. Gamma-based Measurement of ``Dark Mix'' in ICF Capsules

    NASA Astrophysics Data System (ADS)

    Meaney, Kevin; Herrmann, H.; Kim, Yh; Zylstra, Ab; Geppert-Kleinrath, H.; Hoffman, Nm; Yi, As

    2017-10-01

    Mix of capsule ablator material into the fusion fuel is a source of yield degradation in inertial confinement fusion. Jetting or chunk mix, such as the elusive ``meteors'' that have been observed at NIF, can be difficult to diagnose because the chunks may not get hot enough to excite dopant x-rays, nor atomized enough for separated-reactants to fuse. Using the gamma reaction history (GRH-6m) diagnostic, (n,n') gammas from strategically placed carbon layer within a beryllium capsule gives a measure of the time-resolved areal density of this carbon during the burn and hence an indication of the compression and spatial distribution of this layer. As the carbon moves further from the fuel, the areal density nominally decreases as 1/r2 for unablated material. However, mix of this carbon into the cold dense fuel layer or hot spot will have a significant effect on the carbon gamma signal. Different types of mix (e.g., jetting, Rayleigh-Taylor fingers, diffusive, ...) as well as features that can seed this mix (eg., tents, fill,...) will be discussed along with their expected effect on the carbon signal. The design for upcoming OMEGA shots, which will demonstrate this technique, and the potential for use on the NIF will be presented.

  4. Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-12-16

    We report that the diffuse galactic γ-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess γ-ray emission ≳1 GeV relative to diffuse galactic γ-ray emission models consistent with directly measured CR spectra (the so-called “EGRET GeV excess”). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse γ -ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV andmore » galactic latitudes 10° ≤ | b | ≤ 20°. Finally, the LAT spectrum for this region of the sky is well reproduced by a diffuse galactic γ-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.« less

  5. Effects of gamma oryzanol supplementation on anthropometric measurements & muscular strength in healthy males following chronic resistance training.

    PubMed

    Eslami, Saghar; Esa, Norhaizan Mohd; Marandi, Seyed Mohammad; Ghasemi, Gholamali; Eslami, Sepehr

    2014-06-01

    Enhanced muscle strength is seen when resistance exercise is combined with the consumption of nutritional supplements. Although there is a limited number of studies available about the efficacy of gamma oryzanol supplementation with resistance exercise in humans, but its usage as a nutritional supplement for strength is common in athletes. The aim of this study was to determine the effects of gamma oryzanol supplementation during 9-week resistance training on muscular strength and anthropometric measurements of young healthy males. In this double-blind clinical trial, changes of anthropometric measurements and muscular strength were studied after chronic resistance exercise and gamma oryzanol supplementation in 30 healthy volunteers (16 in supplement and 14 in placebo). Each day, gamma oryzanol supplement (600 mg) and placebo (the same amount of lactose) were consumed after training. The participants exercised with 80 per cent 1-Repetition Maximum (1-RM), for one hour and four days/week. Anthropometric measurements and subjects' 1-RM for muscular strength were determined at the commencement and end of the 9-week study. There was no significant difference between the baseline characteristics and target variables at baseline between the two groups. After gamma oryzanol supplementation, there was no significant difference in the means of anthropometric and skin fold measurements between the supplement and placebo groups. However, there were significant differences between the supplement and placebo groups for 1-RM of bench press and leg curl, which showed that gamma oryzanol improved muscle strength following resistance training. Our findings indicated that 600 mg/day gamma oryzanol supplementation during the 9-week resistance training did not change anthropometric and body measurements, but it increased muscular strength in young healthy males. Further, studies need to be done in trained athletes, women, and in patients who suffer from muscular fatigue.

  6. Effects of gamma oryzanol supplementation on anthropometric measurements & muscular strength in healthy males following chronic resistance training

    PubMed Central

    Eslami, Saghar; Esa, Norhaizan Mohd; Marandi, Seyed Mohammad; Ghasemi, Gholamali; Eslami, Sepehr

    2014-01-01

    Background & objectives: Enhanced muscle strength is seen when resistance exercise is combined with the consumption of nutritional supplements. Although there is a limited number of studies available about the efficacy of gamma oryzanol supplementation with resistance exercise in humans, but its usage as a nutritional supplement for strength is common in athletes. The aim of this study was to determine the effects of gamma oryzanol supplementation during 9-week resistance training on muscular strength and anthropometric measurements of young healthy males. Methods: In this double-blind clinical trial, changes of anthropometric measurements and muscular strength were studied after chronic resistance exercise and gamma oryzanol supplementation in 30 healthy volunteers (16 in supplement and 14 in placebo). Each day, gamma oryzanol supplement (600 mg) and placebo (the same amount of lactose) were consumed after training. The participants exercised with 80 per cent 1-Repetition Maximum (1-RM), for one hour and four days/week. Anthropometric measurements and subjects’ 1-RM for muscular strength were determined at the commencement and end of the 9-week study. Results: There was no significant difference between the baseline characteristics and target variables at baseline between the two groups. After gamma oryzanol supplementation, there was no significant difference in the means of anthropometric and skin fold measurements between the supplement and placebo groups. However, there were significant differences between the supplement and placebo groups for 1-RM of bench press and leg curl, which showed that gamma oryzanol improved muscle strength following resistance training. Interpretation & conclusions: Our findings indicated that 600 mg/day gamma oryzanol supplementation during the 9-week resistance training did not change anthropometric and body measurements, but it increased muscular strength in young healthy males. Further, studies need to be done in trained

  7. Gamma-Ray Attenuation Measurements as a Laboratory Experiment: Some Remarks

    ERIC Educational Resources Information Center

    Adamides, E.; Koutroubas, S. K.; Moshonas, N.; Yiasemides, K.

    2011-01-01

    In this article we make some significant remarks on the experimental study of the absorption of gamma radiation passing through matter. These remarks have to do with the seemingly unexpected trend of the measured intensity of radiation versus the thickness of the absorber, which puzzles students and its explanation eludes many laboratory…

  8. Characterization of uranium bearing material using x-ray fluorescence and direct gamma-rays measurement techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mujaini, M., E-mail: madihah@uniten.edu.my; Chankow, N.; Yusoff, M. Z.

    2016-01-22

    Uranium ore can be easily detected due to various gamma-ray energies emitted from uranium daughters particularly from {sup 238}U daughters such as {sup 214}Bi, {sup 214}Pb and {sup 226}Ra. After uranium is extracted from uranium ore, only low energy gamma-rays emitted from {sup 235}U may be detected if the detector is placed in close contact to the specimen. In this research, identification and characterization of uranium bearing materials is experimentally investigated using direct measurement of gamma-rays from {sup 235}U in combination with the x-ray fluorescence (XRF) technique. Measurement of gamma-rays can be conducted by using high purity germanium (HPGe) detectormore » or cadmium telluride (CdTe) detector while a {sup 57}Coradioisotope-excited XRF spectrometer using CdTe detector is used for elemental analysis. The proposed technique was tested with various uranium bearing specimens containing natural, depleted and enriched uranium in both metallic and powder forms.« less

  9. 236U measurement with accelerator mass spectrometry at CIAE

    NASA Astrophysics Data System (ADS)

    Wang, Xianggao; Jiang, Shan; He, Ming; Dong, Kejun; Wang, Wei; Li, Chaoli; He, Guozhu; Li, Shizhuo; Gong, Jie; Lu, Liyuan; Wu, Shaoyong

    2010-07-01

    236U is a long-lived radioactive isotope which is produced principally by thermal neutron capture on 235U. 236U may be potentially applied in geological research and nuclear safeguards. Accelerator mass spectrometry is presently the most sensitive technique for the measurement of 236U and a measurement method for long-lived heavy ion 236U has been developed. The set-up uses a dedicated injector and the newly proposed 208Pb 16O2- molecular ions for the simulation of 236U ion transport. A sensitivity of lower than 10 -10 has been achieved for the isotopic ratio 236U/ 238U in present work.

  10. MEASUREMENTS OF GAMMA-RAY DOSES OF DIFFERENT RADIOISOTOPES BY THE TEST-FILM METHOD (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domanus, J.; Halski, L.

    The test-film method seems to be most suitable for systematic, periodical measurements of individual doses of ionizing radiation. Persons handling radioisotopes are irradiated with gamma rays of different energies. The energy of gamma radiation lies within much broader limits than is the case with x rays. Therefore it was necessary to check whether the test-film method is suitable for measuring doses of gamma-rays of such different energies and to choose the proper combination of film and screen to reach the necessary measuring range. Polish films, Foton Rentgen and Foton Rentgen Super and films from the German Democratic Republic, Agfa Texomore » R and Agfa Texo S were tested. Expositions were made without intensifying screens as well as with lead and fluorescent screens. The investigations showed that for dosimetric purposes the Foton Rentgen Super films are most suitable. However, not one of the film-screen combinations gave satisfactory results for radioisotopes with radiation of different energies. In such a case the test-film method gives only approximate results. If, on the contrary, gamma energies do not differ greatly, the test- film method proves to be quite good. (auth)« less

  11. Gamma irradiation improves the antioxidant activity of Aloe vera (Aloe barbadensis miller) extracts

    NASA Astrophysics Data System (ADS)

    Mi Lee, Eun; Bai, Hyoung-Woo; Sik Lee, Seung; Hyun Hong, Sung; Cho, Jae-Young; Yeoup Chung, Byung

    2012-08-01

    Aloe has been widely used in food products, pharmaceuticals, and cosmetics because of its aromatic and therapeutic properties. In the present study, the ethanolic extracts of aloe gel were gamma-irradiated from 10 to 100 kGy. After gamma irradiation, the color of the ethanolic extracts of aloe gel changed to red; this color persisted up to 40 kGy but disappeared above 50 kGy. Liquid chromatography/mass spectrometry analysis demonstrated the production of a new, unknown compound (m/z=132) after gamma irradiation of the ethanolic extracts of aloe gel. The amount of this unknown compound increased with increasing irradiation up to 80 kGy, and it was degraded at 100 kGy. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by the 1,1-diphenyl-2-picrylhydrazyl-radical scavenging capacity. The antioxidant activity of aloe extract was dramatically increased from 53.9% in the non-irradiated sample to 92.8% in the sample irradiated at 40 kGy. This strong antioxidant activity was retained even at 100 kGy. These results indicate that gamma irradiation of aloe extract can enhance its antioxidant activity through the formation of a new compound. Based on these results, increased antioxidant activity of aloe extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  12. Measurements of plutonium, 237Np, and 137Cs in the BCR 482 lichen reference material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavelle, Kevin B.; Miller, Jeffrey L.; Hanson, Susan K.

    Select anthropogenic radionuclides were measured in lichen reference material, BCR 482. This material was originally collected in Axalp, Switzerland in 1991 and is composed of the epiphytic lichen Pseudevernia furfuracea. Samples from three separate bottles of BCR 482 were analyzed for uranium, neptunium, and plutonium isotopes by inductively coupled plasma mass spectrometry (ICP-MS) and analyzed for cesium-137 by gamma-ray spectrometry. The isotopic composition of the radionuclides measured in BCR 482 suggests contributions from both global fallout resulting from historical nuclear weapons testing and more volatile materials released following the Chernobyl accident.

  13. Measurements of plutonium, 237Np, and 137Cs in the BCR 482 lichen reference material

    DOE PAGES

    Lavelle, Kevin B.; Miller, Jeffrey L.; Hanson, Susan K.; ...

    2015-10-01

    Select anthropogenic radionuclides were measured in lichen reference material, BCR 482. This material was originally collected in Axalp, Switzerland in 1991 and is composed of the epiphytic lichen Pseudevernia furfuracea. Samples from three separate bottles of BCR 482 were analyzed for uranium, neptunium, and plutonium isotopes by inductively coupled plasma mass spectrometry (ICP-MS) and analyzed for cesium-137 by gamma-ray spectrometry. The isotopic composition of the radionuclides measured in BCR 482 suggests contributions from both global fallout resulting from historical nuclear weapons testing and more volatile materials released following the Chernobyl accident.

  14. Tests and foreseen developments of fibered-OSLD gamma heating measurements in low-power reactors

    NASA Astrophysics Data System (ADS)

    Gruel, A.; Guillou, M. Le; Blaise, P.; Destouches, C.; Magne, S.

    2018-01-01

    In this paper are presented test measurements of a fibered-OSLD system performed during a dedicated experimental phase in EOLE zero-power reactor. The measurement setup consists of an OSLD crystal connected onto the extremity of an optical fiber and a laser stimulation system, manufactured by the CEA/LIST in Saclay. The OSL sensor is remotely stimulated via an optical fiber using a diode-pumped solid-state laser. The OSL light is collected and guided back along the same fiber to a photomultiplier tube. Results obtained using this system are compared to usual gamma heating measurement protocol using OSLD pellets. The presence of induced radio-luminescence in the OSLD during the irradiation was also observed and could be used to monitor the gamma flux. The feasibility of remote measurements is achieved, whereas further developments could be conducted to improve this technique since the readout procedure still requires to withdraw the OSLD off the gamma flux (hence from the core) on account of the dose rate (around a few Gy.h-1), and the readout time remains quite long for on-line applications. Several improvements are foreseen, and will be tested in the forthcoming years.

  15. A system for the measurement of delayed neutrons and gammas from special nuclear materials

    DOE PAGES

    Andrews, M. T.; Corcoran, E. C.; Goorley, J. T.; ...

    2014-11-27

    The delayed neutron counting (DNC) system at the Royal Military College of Canada has been upgraded to accommodate concurrent delayed neutron and gamma measurements. This delayed neutron and gamma counting (DNGC) system uses a SLOWPOKE-2 reactor to irradiate fissile materials before their transfer to a counting arrangement consisting of six ³He and one HPGe detector. The application of this system is demonstrated in an example where delayed neutron and gamma emissions are used in complement to examine ²³³U content and determine fissile mass with an average relative error and accuracy of -2.2 and 1.5 %, respectively.

  16. Neutron and gamma-ray dose measurements at various distances from the Little Boy replica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huntzinger, C.J.; Hankins, D.E.

    We measured neutron and gamma-ray dose rates at various distances from the Little Boy-Comet Critical Assembly at Los Alamos National Laboratory (LANL) in April of 1983. The Little Boy-Comet Assembly is a replica of the atomic weapon detonated over Hiroshima, designed to be operated at various steady-state power levels. The selected distances for measurement ranged from 107 m to 567 m. Gamma-ray measurements were made with a Reuter-Stokes environmental ionization chamber which has a sensitivity of 1.0 ..mu..R/hour. Neutron measurements were made with a pulsed-source remmeter which has a sensitivity of 0.1 ..mu..rem/hour, designed and built at Lawrence Livermore Nationalmore » Laboratory (LLNL). 12 references, 7 figures, 6 tables.« less

  17. Continuous high-frequency dissolved O2/Ar measurements by equilibrator inlet mass spectrometry.

    PubMed

    Cassar, Nicolas; Barnett, Bruce A; Bender, Michael L; Kaiser, Jan; Hamme, Roberta C; Tilbrook, Bronte

    2009-03-01

    The oxygen (O(2)) concentration in the surface ocean is influenced by biological and physical processes. With concurrent measurements of argon (Ar), which has similar solubility properties as oxygen, we can remove the physical contribution to O(2) supersaturation and determine the biological oxygen supersaturation. Biological O(2) supersaturation in the surface ocean reflects the net metabolic balance between photosynthesis and respiration, i.e., the net community productivity (NCP). We present a new method for continuous shipboard measurements of O(2)/Ar by equilibrator inlet mass spectrometry (EIMS). From these measurements and an appropriate gas exchange parametrization, NCP can be estimated at high spatial and temporal resolution. In the EIMS configuration, seawater from the ship's continuous intake flows through a cartridge enclosing a gas-permeable microporous membrane contactor. Gases in the headspace of the cartridge equilibrate with dissolved gases in the flowing seawater. A fused-silica capillary continuously samples headspace gases, and the O(2)/Ar ratio is measured by mass spectrometry. The ion current measurements on the mass spectrometer reflect the partial pressures of dissolved gases in the water flowing through the equilibrator. Calibration of the O(2)/Ar ion current ratio (32/40) is performed automatically every 2 h by sampling ambient air through a second capillary. A conceptual model demonstrates that the ratio of gases reaching the mass spectrometer is dependent on several parameters, such as the differences in molecular diffusivities and solubilities of the gases. Laboratory experiments and field observations performed by EIMS are discussed. We also present preliminary evidence that other gas measurements, such as N(2)/Ar and pCO(2) measurements, may potentially be performed with EIMS. Finally, we compare the characteristics of the EIMS with the previously described membrane inlet mass spectrometry (MIMS) approach.

  18. Constraints on cosmological dark matter annihilation from the Fermi-LAT isotropic diffuse gamma-ray measurement

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-04-01

    The first published Fermi large area telescope (Fermi-LAT) measurement of the isotropic diffuse gamma-ray emission is in good agreement with a single power law, and is not showing any signature of a dominant contribution from dark matter sources in the energy range from 20 to 100 GeV. Here, we use the absolute size and spectral shape of this measured flux to derive cross section limits on three types of generic dark matter candidates: annihilating into quarks, charged leptons and monochromatic photons. Predicted gamma-ray fluxes from annihilating dark matter are strongly affected by the underlying distribution of dark matter, and bymore » using different available results of matter structure formation we assess these uncertainties. We also quantify how the dark matter constraints depend on the assumed conventional backgrounds and on the Universe's transparency to high-energy gamma-rays. In reasonable background and dark matter structure scenarios (but not in all scenarios we consider) it is possible to exclude models proposed to explain the excess of electrons and positrons measured by the Fermi-LAT and PAMELA experiments. Derived limits also start to probe cross sections expected from thermally produced relics (e.g. in minimal supersymmetry models) annihilating predominantly into quarks. Finally, for the monochromatic gamma-ray signature, the current measurement constrains only dark matter scenarios with very strong signals.« less

  19. Unfolding the fission prompt gamma-ray energy and multiplicity distribution measured by DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chyzh, A; Wu, C Y; Bredeweg, T

    2010-10-16

    The nearly energy independence of the {gamma}-ray efficiency and multiplicity response for the DANCE array, the unusual characteristic elucidated in our early technical report (LLNL-TR-452298), gives one a unique opportunity to derive the true prompt {gamma}-ray energy and multiplicity distribution in fission from the measurement. This unfolding procedure for the experimental data will be described in details and examples will be given to demonstrate the feasibility of reconstruction of the true distribution.

  20. Analysis and recent advances in gamma heating measurements in MINERVE facility by using TLD and OSLD techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amharrak, H.; Di Salvo, J.; Lyoussi, A.

    2011-07-01

    The objective of this study is to develop nuclear heating measurement methods in Zero Power experimental reactors. This paper presents the analysis of Thermo-Luminescent Detector (TLD) and Optically Stimulated Luminescent Detectors (OSLD) experiments in the UO{sub 2} core of the MINERVE research reactor at the CEA Cadarache. The experimental sources of uncertainties on the gamma dose have been reduced by improving the conditions, as well as the repeatability, of the calibration step for each individual TLD. The interpretation of these measurements needs to take into account calculation of cavity correction factors, related to calibration and irradiation configurations, as well asmore » neutron corrections calculations. These calculations are based on Monte Carlo simulations of neutron-gamma and gamma-electron transport coupled particles. TLD and OSLD are positioned inside aluminum pillboxes. The comparison between calculated and measured integral gamma-ray absorbed doses using TLD, shows that calculation slightly overestimates the measurement with a C/E value equal to 1.05 {+-} 5.3 % (k = 2). By using OSLD, the calculation slightly underestimates the measurement with a C/E value equal to 0.96 {+-} 7.0% (k = 2. (authors)« less

  1. Determination of the activity concentration levels of the artificial radionuclide137Cs in soil samples collected from Qatar using high-resolution gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Al-Sulaiti, Huda; Nasir, Tabassum; Al Mugren, K. S.; Alkhomashi, N.; Al-Dahan, N.; Al-Dosari, M.; Bradley, D. A.; Bukhari, S.; Regan, P. H.; Santawamaitre, T.; Malain, D.; Habib, A.; Al-Dosari, Hanan; Daar, Eman

    2016-09-01

    The goal of this study was to establish the first baseline measurements for radioactivity concentration of the artificial radionuclide 137Cs in soil samples collected from the Qatarian peninsula. The work focused on the determination of the activity concentrations levels of man-made radiation in 129 soil samples collected across the landscape of the State of Qatar. All the samples were collected before the most recent accident in Japan, “the 2011 Fukushima Dai-ichi nuclear power plant accident”. The activity concentrations have been measured via high-resolution gamma-ray spectrometry using a hyper-pure germanium detector situated in a low-background environment with a copper inner-plated passive lead shield. A radiological map showing the activity concentrations of 137Cs is presented in this work. The concentration wasfound to range from 0.21 to 15.41 Bq/kg. The highest activity concentration of 137Cs was observed in sample no. 26 in North of Qatar. The mean value was found to be around 2.15 ± 0.27 Bq/kg. These values lie within the expected range relative to the countries in the region. It is expected that this contamination is mainly due to the Chernobyl accident on 26 April 1986, but this conclusion cannot be confirmed because of the lack of data before this accident.

  2. Assessment of Gamma-Ray Spectra Analysis Method Utilizing the Fireworks Algorithm for various Error Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alamaniotis, Miltiadis; Tsoukalas, Lefteri H.

    2018-01-01

    Significant role in enhancing nuclear nonproliferation plays the analysis of obtained data and the inference of the presence or not of special nuclear materials in them. Among various types of measurements, gamma-ray spectra is the widest used type of data utilized for analysis in nonproliferation. In this chapter, a method that employs the fireworks algorithm (FWA) for analyzing gamma-ray spectra aiming at detecting gamma signatures is presented. In particular FWA is utilized to fit a set of known signatures to a measured spectrum by optimizing an objective function, with non-zero coefficients expressing the detected signatures. FWA is tested on amore » set of experimentally obtained measurements and various objective functions -MSE, RMSE, Theil-2, MAE, MAPE, MAP- with results exhibiting its potential in providing high accuracy and high precision of detected signatures. Furthermore, FWA is benchmarked against genetic algorithms, and multiple linear regression with results exhibiting its superiority over the rest tested algorithms with respect to precision for MAE, MAPE and MAP measures.« less

  3. Measurement of 0.511-MeV gamma rays with a balloon-borne Ge/Li/ spectrometer

    NASA Technical Reports Server (NTRS)

    Ling, J. C.; Mahoney, W. A.; Willett, J. B.; Jacobson, A. S.

    1977-01-01

    A collimated high-resolution gamma ray spectrometer was flown on a balloon over Palestine, Texas, on June 10, 1974, to obtain measurements of the terrestrial and extraterrestrial 0.511-MeV gamma rays. The spectrometer consists of four 40-cu-cm Ge(Li) crystals operating in the energy range 0.06-10 MeV; this cluster of detectors is surrounded by a CsI(Na) anticoincidence shield. This system is used primarily to allow measurements of the two escape peaks associated with high-energy gamma ray lines. It also allows a measurement of the background component of the 0.511-MeV flux produced by beta(+) decays in materials inside the CsI(Na) shield. It is shown that the measurements of the atmospheric fluxes are consistent with earlier results after allowance is made for an additional component of the background due to beta(+) decays produced by neutron- and proton-initiated interactions with materials in and near the detector. Results of the extraterrestrial flux require an extensive detailed analysis of the time-varying background because of activation buildup and balloon spatial drifts.

  4. Measuring Thermodynamic Properties of Metals and Alloys With Knudsen Effusion Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Copland, Evan H.; Jacobson, Nathan S.

    2010-01-01

    This report reviews Knudsen effusion mass spectrometry (KEMS) as it relates to thermodynamic measurements of metals and alloys. First, general aspects are reviewed, with emphasis on the Knudsen-cell vapor source and molecular beam formation, and mass spectrometry issues germane to this type of instrument are discussed briefly. The relationship between the vapor pressure inside the effusion cell and the measured ion intensity is the key to KEMS and is derived in detail. Then common methods used to determine thermodynamic quantities with KEMS are discussed. Enthalpies of vaporization, the fundamental measurement, are determined from the variation of relative partial pressure with temperature using the second-law method or by calculating a free energy of formation and subtracting the entropy contribution using the third-law method. For single-cell KEMS instruments, measurements can be used to determine the partial Gibbs free energy if the sensitivity factor remains constant over multiple experiments. The ion-current ratio method and dimer-monomer method are also viable in some systems. For a multiple-cell KEMS instrument, activities are obtained by direct comparison with a suitable component reference state or a secondary standard. Internal checks for correct instrument operation and general procedural guidelines also are discussed. Finally, general comments are made about future directions in measuring alloy thermodynamics with KEMS.

  5. Measurement and analysis of gamma-rays emitted from spent nuclear fuel above 3 MeV.

    PubMed

    Rodriguez, Douglas C; Anderson, Elaina; Anderson, Kevin K; Campbell, Luke W; Fast, James E; Jarman, Kenneth; Kulisek, Jonathan; Orton, Christopher R; Runkle, Robert C; Stave, Sean

    2013-12-01

    The gamma-ray spectrum of spent nuclear fuel in the 3-6 MeV energy range is important for active interrogation since gamma rays emitted from nuclear decay are not expected to interfere with measurements in this energy region. There is, unfortunately, a dearth of empirical measurements from spent nuclear fuel in this region. This work is an initial attempt to partially fill this gap by presenting an analysis of gamma-ray spectra collected from a set of spent nuclear fuel sources using a high-purity germanium detector array. This multi-crystal array possesses a large collection volume, providing high energy resolution up to 16 MeV. The results of these measurements establish the continuum count-rate in the energy region between 3 and 6 MeV. Also assessed is the potential for peaks from passive emissions to interfere with peak measurements resulting from active interrogation delayed emissions. As one of the first documented empirical measurements of passive emissions from spent fuel for energies above 3 MeV, this work provides a foundation for active interrogation model validation and detector development. © 2013 Elsevier Ltd. All rights reserved.

  6. Twin Knudsen Cell Configuration for Activity Measurements by Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.

    1996-01-01

    A twin Knudsen cell apparatus for alloy activity measurements by mass spectrometry is described. Two Knudsen cells - one containing an alloy and one containing a pure component - are mounted on a single flange and translated into the sampling region via a motorized x-y table. Mixing of the molecular beams from the cells is minimized by a novel system of shutters. Activity measurements were taken on two well-characterized alloys to verify the operation of the system. Silver activity measurements are reported for Ag-Cu alloys and aluminum activity measurements are reported for Fe-Al alloys. The temperature dependence of activity for a 0.474 mol fraction Al-Fe alloy gives a partial molar heat of aluminum. Measurements taken with the twin cell show good agreement with literature values for these alloys.

  7. Optical gamma thermometer

    DOEpatents

    Koster, Glen Peter; Xia, Hua; Lee, Boon Kwee

    2013-08-06

    An optical gamma thermometer includes a metal mass having a temperature proportional to a gamma flux within a core of a nuclear reactor, and an optical fiber cable for measuring the temperature of the heated metal mass. The temperature of the heated mass may be measured by using one or more fiber grating structures and/or by using scattering techniques, such as Raman, Brillouin, and the like. The optical gamma thermometer may be used in conjunction with a conventional reactor heat balance to calibrate the local power range monitors over their useful in-service life. The optical gamma thermometer occupies much less space within the in-core instrument tube and costs much less than the conventional gamma thermometer.

  8. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A.M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A.I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; hide

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approx. 0.01 deg (E(sub gamma) > 100 GeV), the energy resolution approx. 1% (E(sub gamma) > 10 GeV), and the proton rejection factor approx 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  9. Application of gamma spectrometry in the Kola peninsula (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovin, I.V.; Kolesnik, N.I.; Antipov, V.S.

    1973-01-01

    The methodology used and results obtained in gamma spectrometric studies of pre-Cambrian formations of some nickel-bearing regions of the Kola Penlnsula are described. The radioactive element contents of typical metamorphic and magmatic complexes and sulfide ores are presented. (au-trans)

  10. Comparison of electrical capacitance tomography & gamma densitometer measurement in viscous oil-gas flows

    NASA Astrophysics Data System (ADS)

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi

    2014-04-01

    Multiphase flow is a common occurrence in industries such as nuclear, process, oil & gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil & gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 & 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 & 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

  11. High-Resolution Fast-Neutron Spectrometry for Arms Control and Treaty Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David L. Chichester; James T. Johnson; Edward H. Seabury

    2012-07-01

    Many nondestructive nuclear analysis techniques have been developed to support the measurement needs of arms control and treaty verification, including gross photon and neutron counting, low- and high-resolution gamma spectrometry, time-correlated neutron measurements, and photon and neutron imaging. One notable measurement technique that has not been extensively studied to date for these applications is high-resolution fast-neutron spectrometry (HRFNS). Applied for arms control and treaty verification, HRFNS has the potential to serve as a complimentary measurement approach to these other techniques by providing a means to either qualitatively or quantitatively determine the composition and thickness of non-nuclear materials surrounding neutron-emitting materials.more » The technique uses the normally-occurring neutrons present in arms control and treaty verification objects of interest as an internal source of neutrons for performing active-interrogation transmission measurements. Most low-Z nuclei of interest for arms control and treaty verification, including 9Be, 12C, 14N, and 16O, possess fast-neutron resonance features in their absorption cross sections in the 0.5- to 5-MeV energy range. Measuring the selective removal of source neutrons over this energy range, assuming for example a fission-spectrum starting distribution, may be used to estimate the stoichiometric composition of intervening materials between the neutron source and detector. At a simpler level, determination of the emitted fast-neutron spectrum may be used for fingerprinting 'known' assemblies for later use in template-matching tests. As with photon spectrometry, automated analysis of fast-neutron spectra may be performed to support decision making and reporting systems protected behind information barriers. This paper will report recent work at Idaho National Laboratory to explore the feasibility of using HRFNS for arms control and treaty verification applications, including simulations

  12. The natural radioactivity measurements in coastal sediment samples along the East Coast of Tamilnadu using gamma spectrometry technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandramohan, J.; Tholkappian, M.; Harikrishnan, N.

    2015-08-28

    The natural radioactivity concentration in beach sediment samples collected from Pattipulam to Devanampattinam of East Coast of Tamilnadu have been determined by NaI (TI) gamma ray spectrometer. The specific activity concentrations range from ≤ 2.21 (BDL) to 37.02 Bq kg{sup −1} with a mean of 3.79 Bqkg{sup −1} for {sup 238}U, ≤ 2.11 (BDL) to 643.77 Bqkg{sup −1} with a mean of 49.60 Bqkg{sup −1} for {sup 232}Th and 300.34 Bqkg{sup −1} to 449.08 Bqkg{sup −1} with a mean of 360.23 Bqkg{sup −1} for {sup 40}K. The potential radiological hazards due to natural radionuclides content such as Radium Equivalent activitymore » (Ra{sub eq}), Representative level index (RLI), External hazard index (H{sub ex}), absorbed gamma does rate (D{sub R}), and Annual effective dose rate (AEDR) are estimated to assess the radiation hazard associated with the sediments. The obtained data are compared with the recommended safety limits and international approved values. All the values are well below the recommended safety limits indicating that radiation levels do not poses any significant health hazard to the public in the area as a result of the natural radioactivity of beach sediments. This study may help the baseline data for more extensive works in the same subjects of future studies.« less

  13. TRANSISTORIZED RADIATION MEASURING APPARATUS FOR $gamma$-RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beug, L.; Rudack, G.

    1961-06-24

    It is often necessary to measure the content of containers which for various reasons cannot be opened or inspected visually, but the gamma rays emitted by certain radioisotopes can be used for these measuring purposes because they can penetrate iron walls of from 2 to 100 mm thickness. A level gage is described which consists of a measuring table, a radiation source, a radiation detector, a transformer which converts the incident rays in electric current, a discriminator, a recording device, and an adequate current supply. In principle, there are 2 different measuring methods: one uses 2 counting tubes and determinesmore » the level by the difference method, while the other uses only one tube which has been calibrated with a standard source. Several circuit diagrams used in the construction of the devices are discussed. The use of transistors instead of electron tubes is advantageous because they are more compact, sturdier, less dependent on temperature, have a longer life time, and are more economical. A table shows the characteristic properties of one radiation measuring device: 100 pulses/sec, 200 mu amp, -20 deg -+50 deg C, 500-5000 OMEGA , 12w, counting duration 10/sup 10/ pulses. (OID)« less

  14. Test results of a new detector system for gamma ray isotopic measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcom, J.E.; Bonner, C.A.; Hurd, J.R.

    1993-08-01

    A new type of gamma-ray detector system for isotopic measurements has been developed. This new system, a ``Duo detector`` array, consists of two intrinsic germanium detectors, a planar followed by a coaxial mounted on the same axis within a single cryostat assembly. This configuration allows the isotopic analysis system to take advantage of spectral data results that are collected simultaneously from different gamma-ray energy regimes. Princeton Gamma Tech (PGT) produced several prototypes of this Duo detector array which were then tested by Rocky Flats personnel until the design was optimized. An application for this detector design is in automated, roboticizedmore » NDA systems such as those being developed at the Los Alamos TA-55 Plutonium Facility. The Duo detector design reduces the space necessary for the isotopic instrument by a factor of two (only one liquid nitrogen dewar is needed), and also reduces the complexity of the mechanical systems and controlling software. Data will be presented on measurements of nuclear material with a Duo detector for a wide variety of matrices. Results indicate that the maximum count rate can be increased up to 100,000 counts per second yet maintaining excellent resolution and energy rate product.« less

  15. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.; hide

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  16. On the Quality of ENSDF {gamma}-Ray Intensity Data for {gamma}-Ray Spectrometric Determination of Th and U and Their Decay Series Disequilibria, in the Assessment of the Radiation Dose Rate in Luminescence Dating of Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corte, Frans de; Vandenberghe, Dimitri; Wispelaere, Antoine de

    In luminescence dating of sediments, one of the most interesting tools for the determination of the annual radiation dose is Ge {gamma}-ray spectrometry. Indeed, it yields information on both the content of the radioelements K, Th, and U, and on the occurrence - in geological times - of disequilibria in the Th and U decay series. In the present work, two methodological variants of the {gamma}-spectrometric analysis were tested, which largely depend on the quality of the nuclear decay data involved: (1) a parametric calibration of the sediment measurements, and (2) the correction for the heavy spectral interference of themore » 226Ra 186.2 keV peak by 235U at 185.7 keV. The performance of these methods was examined via the analysis of three Certified Reference Materials, with the introduction of {gamma}-ray intensity data originating from ENSDF. Relevant conclusions were drawn as to the accuracy of the data and their uncertainties quoted.« less

  17. Design and performance of the GAMMA-400 gamma-ray telescope for dark matter searches

    NASA Astrophysics Data System (ADS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Moiseev, A. A.; Mocchiutti, E.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Picozza, P.; Rodin, V. G.; Runtso, M. F.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Topchiev, N. P.; Vacchi, A.; Vannuccini, E.; Yurkin, Yu. T.; Zampa, N.; Zverev, V. G.; Zirakashvili, V. N.

    2013-02-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is ~0.01° (Eγ > 100 GeV), the energy resolution ~1% (Eγ > 10 GeV), and the proton rejection factor ~106. GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  18. Staying Alive: Measuring Intact Viable Microbes with Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Forsberg, Erica; Fang, Mingliang; Siuzdak, Gary

    2017-01-01

    Mass spectrometry has traditionally been the technology of choice for small molecule analysis, making significant inroads into metabolism, clinical diagnostics, and pharmacodynamics since the 1960s. In the mid-1980s, with the discovery of electrospray ionization (ESI) for biomolecule analysis, a new door opened for applications beyond small molecules. Initially, proteins were widely examined, followed by oligonucleotides and other nonvolatile molecules. Then in 1991, three intriguing studies reported using mass spectrometry to examine noncovalent protein complexes, results that have been expanded on for the last 25 years. Those experiments also raised the questions: How soft is ESI, and can it be used to examine even more complex interactions? Our lab addressed these questions with the analyses of viruses, which were initially tested for viability following electrospray ionization and their passage through a quadrupole mass analyzer by placing them on an active medium that would allow them to propagate. This observation has been replicated on multiple different systems, including experiments on an even bigger microbe, a spore. The question of analysis was also addressed in the early 2000s with charge detection mass spectrometry. This unique technology could simultaneously measure mass-to-charge and charge, allowing for the direct determination of the mass of a virus. More recent experiments on spores and enveloped viruses have given us insight into the range of mass spectrometry's capabilities (reaching 100 trillion Da), beginning to answer fundamental questions regarding the complexity of these organisms beyond proteins and genes, and how small molecules are integral to these supramolecular living structures.

  19. Natural Radiation from Soil using Gamma-Ray Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silveira, M. A. G.; Moreira, R. H.; Paula, A. L. C. de

    2009-06-03

    We have studied the distribution of natural radioactivity in the soil of Interlagos, in Sao Paulo city and Billings Reservoir, in Sao Bernardo do Campo, Sao Paulo, Brazil. The main contribution of the effective radiation dose is due to the elements of the {sup 238}Th decay series, with smaller contributions from {sup 40}K and the elements of the series of {sup 238}U. The results indicate the dose in all of the studied areas is around the average international dose due to external exposure to gamma rays (0.48 mSv/yr) proceeding from natural terrestrial elements.

  20. An industrial radiography exposure device based on measurement of transmitted gamma-ray intensity

    NASA Astrophysics Data System (ADS)

    Polee, C.; Chankow, N.; Srisatit, S.; Thong-Aram, D.

    2015-05-01

    In film radiography, underexposure and overexposure may happen particularly when lacking information of specimen material and hollowness. This paper describes a method and a device for determining exposure in industrial gamma-ray radiography based on quick measurement of transmitted gamma-ray intensity with a small detector. Application software was developed for Android mobile phone to remotely control the device and to display counting data via Bluetooth communication. Prior to film exposure, the device is placed behind a specimen to measure transmitted intensity which is inversely proportional to the exposure. Unlike in using the conventional exposure curve, correction factors for source decay, source-to- film distance, specimen thickness and kind of material are not needed. The developed technique and device make radiographic process economic, convenient and more reliable.

  1. A pilot study: subclinical hypothyroidism and free thyroid hormone measurement by immunoassay and mass spectrometry.

    PubMed

    Gounden, Verena; Jonklaas, Jacqueline; Soldin, Steven J

    2014-03-20

    The diagnosis of subclinical hypothyroidism is defined as the presence of an elevated thyroid stimulating hormone (TSH) with a normal free thyroxine (FT4) level. The commonly used direct analogue immunoassays for the measurement of FT4 have been shown to have poor performance at the upper and lower limits of the FT4 reference interval. The purpose of this pilot study was to investigate the percentage of individuals classified as having subclinical hypothyroidism with a standard immunoassay, that actually have low free thyroid hormone levels by mass spectrometry measurements. Outpatient samples with elevated TSH values and normal FT4 concentrations as per standard immunoassay methods were collected. FT4 and free triiodothyronine (FT3) analyses were performed on these samples using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Sixty five percent (n=26) of patients (n=40) had (LC-MS/MS) FT4 or FT3 or both FT4 and FT3 values below mass spectrometry reference limits. Our findings indicate that the direct analogue immunoassay method for FT4 measurement results in a significant proportion of patients being misclassified as having subclinical hypothyroidism. Published by Elsevier B.V.

  2. Increase in neutrophil Fc gamma receptor I expression following interferon gamma treatment in rheumatoid arthritis.

    PubMed Central

    Goulding, N J; Knight, S M; Godolphin, J L; Guyre, P M

    1992-01-01

    The therapeutic potential of interferon gamma (IFN gamma) in a number of disease states is still being explored, but progress is hampered by the lack of a suitable measure of in vivo biological activity. To assess the in vivo biological effects of recombinant human IFN gamma (rhIFN gamma), 14 patients were studied in a randomised, prospective, double blind, placebo controlled trial of this cytokine for the treatment of rheumatoid arthritis. The levels of Fc gamma receptors on peripheral blood neutrophils were measured at baseline and after 21 days of once daily, subcutaneous injections of rhIFN gamma or placebo. An induction of neutrophil Fc gamma receptor type I (Fc gamma RI) was seen in the group of patients receiving recombinant human rhIFN gamma but not in those receiving placebo. No change in the expression of Fc gamma RII or Fc gamma RIII was detected. The amount of induction of Fc gamma RI detected on the neutrophils of patients receiving rhIFN gamma did not correlate with clinical measures of response at either 21 days or at the end of the study (24 weeks). No significant clinical responses were observed in the rhIFN gamma group at these times. These data confirm that the reported in vitro effect of IFN gamma on human neutrophil Fc receptor expression can be reproduced in vivo. PMID:1534001

  3. Increase in neutrophil Fc gamma receptor I expression following interferon gamma treatment in rheumatoid arthritis.

    PubMed

    Goulding, N J; Knight, S M; Godolphin, J L; Guyre, P M

    1992-04-01

    The therapeutic potential of interferon gamma (IFN gamma) in a number of disease states is still being explored, but progress is hampered by the lack of a suitable measure of in vivo biological activity. To assess the in vivo biological effects of recombinant human IFN gamma (rhIFN gamma), 14 patients were studied in a randomised, prospective, double blind, placebo controlled trial of this cytokine for the treatment of rheumatoid arthritis. The levels of Fc gamma receptors on peripheral blood neutrophils were measured at baseline and after 21 days of once daily, subcutaneous injections of rhIFN gamma or placebo. An induction of neutrophil Fc gamma receptor type I (Fc gamma RI) was seen in the group of patients receiving recombinant human rhIFN gamma but not in those receiving placebo. No change in the expression of Fc gamma RII or Fc gamma RIII was detected. The amount of induction of Fc gamma RI detected on the neutrophils of patients receiving rhIFN gamma did not correlate with clinical measures of response at either 21 days or at the end of the study (24 weeks). No significant clinical responses were observed in the rhIFN gamma group at these times. These data confirm that the reported in vitro effect of IFN gamma on human neutrophil Fc receptor expression can be reproduced in vivo.

  4. Measurements of the gamma-quanta angular distributions emitted from neutron inelastic scattering on 28Si

    NASA Astrophysics Data System (ADS)

    Fedorov, N. A.; Grozdanov, D. N.; Bystritskiy, V. M.; Kopach, Yu. N.; Ruskov, I. N.; Skoy, V. R.; Tretyakova, T. Yu.; Zamyatin, N. I.; Wang, D.; Aliev, F. A.; Hramco, C.; Gandhi, A.; Kumar, A.; Dabylova, S.; Bogolubov, E. P.; Barmakov, Yu. N.

    2018-04-01

    The characteristic gamma radiation from the interaction of 14.1 MeV neutrons with a natural silicon sample is investigated with Tagged Neutron Method (TNM). The anisotropy of gamma-ray emission of 1.779 MeV was measured at 11 azimuth angles with a step of ∠15°. The present results are in good agreement with some recent experimental data.

  5. MULTI-POLLUTANT CONCENTRATION MEASUREMENTS AROUND A CONCENTRATED SWINE PRODUCTION FACILITY USING OPEN-PATH FTIR SPECTROMETRY

    EPA Science Inventory

    Open-path Fourier transform infrared (OP/FTIR) spectrometry was used to measure the concentrations of ammonia, methane, and other atmospheric gasses around an integrated industrial swine production facility in eastern North Carolina. Several single-path measurements were made ove...

  6. Minimum Detectable Activity for Tomographic Gamma Scanning System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkataraman, Ram; Smith, Susan; Kirkpatrick, J. M.

    2015-01-01

    For any radiation measurement system, it is useful to explore and establish the detection limits and a minimum detectable activity (MDA) for the radionuclides of interest, even if the system is to be used at far higher values. The MDA serves as an important figure of merit, and often a system is optimized and configured so that it can meet the MDA requirements of a measurement campaign. The non-destructive assay (NDA) systems based on gamma ray analysis are no exception and well established conventions, such the Currie method, exist for estimating the detection limits and the MDA. However, the Tomographicmore » Gamma Scanning (TGS) technique poses some challenges for the estimation of detection limits and MDAs. The TGS combines high resolution gamma ray spectrometry (HRGS) with low spatial resolution image reconstruction techniques. In non-imaging gamma ray based NDA techniques measured counts in a full energy peak can be used to estimate the activity of a radionuclide, independently of other counting trials. However, in the case of the TGS each “view” is a full spectral grab (each a counting trial), and each scan consists of 150 spectral grabs in the transmission and emission scans per vertical layer of the item. The set of views in a complete scan are then used to solve for the radionuclide activities on a voxel by voxel basis, over 16 layers of a 10x10 voxel grid. Thus, the raw count data are not independent trials any more, but rather constitute input to a matrix solution for the emission image values at the various locations inside the item volume used in the reconstruction. So, the validity of the methods used to estimate MDA for an imaging technique such as TGS warrant a close scrutiny, because the pair-counting concept of Currie is not directly applicable. One can also raise questions as to whether the TGS, along with other image reconstruction techniques which heavily intertwine data, is a suitable method if one expects to measure samples whose

  7. Integral measurements of neutron and gamma-ray leakage fluxes from the Little Boy replica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muckenthaler, F.J.

    This report presents integral measurements of neutron and gamma-ray leakage fluxes from a critical mockup of the Hiroshima bomb Little Boy at Los Alamos National Laobratory with detector systems developed by Oak Ridge National Laboratory. Bonner ball detectors were used to map the neutron fluxes in the horizontal midplane at various distances from the mockup and for selected polar angles, keeping the source-detector separation constant. Gamma-ray energy deposition measurements were made with thermoluminescent detectors at several locations on the iron shell of the source mockup. The measurements were performed as part of a larger progam to provide benchmark data formore » testing the methods used to calculate the radiation released from the Little Boy bomb over Hiroshima. 3 references, 10 figures.« less

  8. Anisotropies in the diffuse gamma-ray background measured by the Fermi LAT

    DOE PAGES

    Ackermann, M.; Ajello, M.; Albert, A.; ...

    2012-04-23

    The contribution of unresolved sources to the diffuse gamma-ray background could induce anisotropies in this emission on small angular scales. Here, we analyze the angular power spectrum of the diffuse emission measured by the Fermi Large Area Telescope at Galactic latitudes | b | > 30 ° in four energy bins spanning 1–50 GeV. At multipoles ℓ ≥ 155 , corresponding to angular scales ≲ 2 ° , angular power above the photon noise level is detected at > 99.99 % confidence level in the 1–2 GeV, 2–5 GeV, and 5–10 GeV energy bins, and at > 99 % confidencemore » level at 10–50 GeV. Within each energy bin the measured angular power takes approximately the same value at all multipoles ℓ ≥ 155 , suggesting that it originates from the contribution of one or more unclustered source populations. Furthermore, the amplitude of the angular power normalized to the mean intensity in each energy bin is consistent with a constant value at all energies, C P / < I > 2 = 9.05 ± 0.84 × 10 - 6 sr , while the energy dependence of C P is consistent with the anisotropy arising from one or more source populations with power-law photon spectra with spectral index Γ s = 2.40 ± 0.07 . We also discuss the implications of the measured angular power for gamma-ray source populations that may provide a contribution to the diffuse gamma-ray background.« less

  9. Predicting diffusion paths and interface motion in gamma/gamma + beta, Ni-Cr-Al diffusion couples

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1987-01-01

    A simplified model has been developed to predict Beta recession and diffusion paths in ternary gamma/gamma + beta diffusion couples (gamma:fcc, beta: NiAl structure). The model was tested by predicting beta recession and diffusion paths for four gamma/gamma + beta, Ni-Cr-Al couples annealed for 100 hours at 1200 C. The model predicted beta recession within 20 percent of that measured for each of the couples. The model also predicted shifts in the concentration of the gamma phase at the gamma/gamma + beta interface within 2 at. pct Al and 6 at. pct Cr of that measured in each of the couples. A qualitative explanation based on simple kinetic and mass balance arguments has been given which demonstrates the necessity for diffusion in the two-phase region of certain gamma/gamma + beta, Ni-Cr-Al couples.

  10. Air radon equilibrium factor measurement in a Waste Water Pre-Treatment Plant

    NASA Astrophysics Data System (ADS)

    Martinez, J. E.; Juste, B.; Ortiz, J.; Martorell, S.; Verdu, G.

    2017-11-01

    We analyze in this paper a Waste Water Pre-Treatment Plant (WWTP) located at the Mediterranean coast with air radon concentration above Spanish action level (600 Bq per cubic meter). This paper presents a method for radon equilibrium determination by gamma spectrometry measuring of the radon progeny concentrations in the air, in order to estimate WWTP workers effective dose more exactly. The method is based on simultaneous sampling of air through a filter paper and alpha spectrometry measurement of radon activity concentration in the air. According to the measured radon activity concentration in the air of 368±45 Bq/m3 the equilibrium factor between radon and progenies is estimated to be F=0.27, which is in good agreement with expected values.

  11. Measurements of 59Ni in meteorites by accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Paul, M.; Fifield, L. K.; Fink, D.; Albrecht, A.; Allan, G. L.; Herzog, G.; Tuniz, C.

    1993-10-01

    Isotopic abundances of the radionuclide 59Ni (T1/2 = 76000 yr) were measured by accelerator mass spectrometry with the 14UD Pelletron tandem accelerator at the Australian National University and a detection system solely based on a multianode ionization chamber. The sensitivity limit in the measurement of 59Ni isotopic abundances is 5 × 10-13, as determined by residual interferences from isobaric 59Co and isotopic 58Ni ions. Cosmogenic 59Ni abundances 59Ni/Ni = (8-20) × 10-12 were measured in four samples prepared from the metal phase of two meteorites (mesosiderites). The ratio of the 59Ni abundances to those measured for 41Ca in the silicate phase of the same samples, is in fair agreement with the ratio of the production rates via thermal-neutron capture on 58Ni and 40Ca.

  12. PhD Dissertation Proposal - Introduction to Dark Mix Concept: Gamma Measurements of Capsule Mixture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meaney, Kevin Daniel

    Presentation slides: Intro to Inertial Confinement Fusion; Types of Mixture in ICF capsules; Previous mixture experiments; Dark Mix Concept; Measuring Dark Mix with Gamma Cherenkov Detector; Dissertation Outline.

  13. Levels of naturally occurring gamma radiation measured in British homes and their prediction in particular residences.

    PubMed

    Kendall, G M; Wakeford, R; Athanson, M; Vincent, T J; Carter, E J; McColl, N P; Little, M P

    2016-03-01

    Gamma radiation from natural sources (including directly ionising cosmic rays) is an important component of background radiation. In the present paper, indoor measurements of naturally occurring gamma rays that were undertaken as part of the UK Childhood Cancer Study are summarised, and it is shown that these are broadly compatible with an earlier UK National Survey. The distribution of indoor gamma-ray dose rates in Great Britain is approximately normal with mean 96 nGy/h and standard deviation 23 nGy/h. Directly ionising cosmic rays contribute about one-third of the total. The expanded dataset allows a more detailed description than previously of indoor gamma-ray exposures and in particular their geographical variation. Various strategies for predicting indoor natural background gamma-ray dose rates were explored. In the first of these, a geostatistical model was fitted, which assumes an underlying geologically determined spatial variation, superimposed on which is a Gaussian stochastic process with Matérn correlation structure that models the observed tendency of dose rates in neighbouring houses to correlate. In the second approach, a number of dose-rate interpolation measures were first derived, based on averages over geologically or administratively defined areas or using distance-weighted averages of measurements at nearest-neighbour points. Linear regression was then used to derive an optimal linear combination of these interpolation measures. The predictive performances of the two models were compared via cross-validation, using a randomly selected 70 % of the data to fit the models and the remaining 30 % to test them. The mean square error (MSE) of the linear-regression model was lower than that of the Gaussian-Matérn model (MSE 378 and 411, respectively). The predictive performance of the two candidate models was also evaluated via simulation; the OLS model performs significantly better than the Gaussian-Matérn model.

  14. Terrestrial gamma radiation baseline mapping using ultra low density sampling methods.

    PubMed

    Kleinschmidt, R; Watson, D

    2016-01-01

    Baseline terrestrial gamma radiation maps are indispensable for providing basic reference information that may be used in assessing the impact of a radiation related incident, performing epidemiological studies, remediating land contaminated with radioactive materials, assessment of land use applications and resource prospectivity. For a large land mass, such as Queensland, Australia (over 1.7 million km(2)), it is prohibitively expensive and practically difficult to undertake detailed in-situ radiometric surveys of this scale. It is proposed that an existing, ultra-low density sampling program already undertaken for the purpose of a nationwide soil survey project be utilised to develop a baseline terrestrial gamma radiation map. Geoelement data derived from the National Geochemistry Survey of Australia (NGSA) was used to construct a baseline terrestrial gamma air kerma rate map, delineated by major drainage catchments, for Queensland. Three drainage catchments (sampled at the catchment outlet) spanning low, medium and high radioelement concentrations were selected for validation of the methodology using radiometric techniques including in-situ measurements and soil sampling for high resolution gamma spectrometry, and comparative non-radiometric analysis. A Queensland mean terrestrial air kerma rate, as calculated from the NGSA outlet sediment uranium, thorium and potassium concentrations, of 49 ± 69 nGy h(-1) (n = 311, 3σ 99% confidence level) is proposed as being suitable for use as a generic terrestrial air kerma rate background range. Validation results indicate that catchment outlet measurements are representative of the range of results obtained across the catchment and that the NGSA geoelement data is suitable for calculation and mapping of terrestrial air kerma rate. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  15. Monte-Carlo Simulation and Measurements of Electrons, Positrons, And Gamma-Rays Generated by Laser-Solid Interactions

    NASA Astrophysics Data System (ADS)

    Henderson, Alexander Hastings

    Lasers have grown more powerful in recent years, opening up new frontiers in physics. From early intensities of less than 1010 W/cm 2, lasers can now achieve intensities over 1021 W/cm 2. Ultraintense laser can become powerful new tools to produce relativistic electrons, positron-electron pairs, and gamma-rays. The pair production efficiency is equal to or greater than that of linear accelerators, the most common method of antimatter generation in the past. The gamma-rays and electrons produced can be highly collimated, making these interactions of interest for beam generation. Monte-Carlo particle transport simulation has long been used in physics for simulating various particle and radiation processes, and is well-suited to simulating both electromagnetic cascades resulting from laser-solid interactions and the response of electron/positron spectrometers and gamma-ray detectors. We have used GEANT4 Monte-Carlo particle transport simulation to design and calibrate charged-particle spectrometers using permanent magnets as well as a Forward Compton Electron Spectrometer to measure gamma-rays of higher energies than have previously been achieved. We have had some success simulating and measuring high positron and gamma-rays yields from laser-solid interactions using gold target at the Texas Petawatt Laser (TPW). While similar spectrometers have been developed in the past, we are to our knowledge the first to successfully use permanent magnet spectrometers to detect positrons originating from laser-solid interactions in this energy range. We believe we are also the first to successfully detect multi-MeV gamma rays using a permanent magnet Forward Compton Electron Spectrometer. Monte-Carlo particle transport simulation has been used by other groups to model positron production from laser-solid ineraction, but at the time that we began we were, as far as we know, the first to have a significant amount of empirical data to work with. We were thus at liberty to estimate

  16. Measurements of environmental terrestrial gamma radiation dose rate in three mountainous locations in the western region of Saudi Arabia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ghorabie, Fayez H.H.

    2005-06-01

    This paper describes measurements of external gamma radiation dose rate from terrestrial gamma-rays 1 m above the ground in three different mountainous locations in the western region of the Kingdom of Saudi Arabia. These locations are At-Taif city, Al-Hada village, and Ash-Shafa village. CaSO{sub 4}:Dy (TLD-900) thermoluminescent dosimeters were used for the detection of terrestrial gamma radiation at 40 different places in the three locations. The values of terrestrial gamma radiation dose rate measured ranged between 14 and 279 nGy h{sup -1} for the time interval from June 2001 to June 2002. The measured dose rate varied with the seasonmore » of the year. The average gamma radiation dose rates were 468, 541, and 781 {mu}Gy y{sup -1} for At-Taif city, Al-Hada village, and Ash-Shafa village, respectively. The corresponding average absorbed doses to the population of the three locations were 328, 379, and 547 {mu}Sv y{sup -1}, respectively. The quality factor of 0.7 Sv Gy{sup -1} was applied in the calculations of the absorbed dose to humans.« less

  17. Measurement of the Effective Weak Mixing Angle in $$p\\bar{p}\\rightarrow Z/\\gamma^* \\rightarrow \\ell^+\\ell^-$$ Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abazov, Victor Mukhamedovich; et al.

    2017-10-11

    We present a measurement of the effective weak mixing angle parametermore » $$\\sin^2\\theta_\\text{eff}^{\\ell}$$, in $$p\\bar{p}\\rightarrow Z/\\gamma^* \\rightarrow \\mu^+\\mu^-$$ events at a center of mass energy of 1.96 TeV, collected by the D0 detector at the Fermilab Tevatron Collider and corresponding to 8.6 fb$$^{-1}$$ of integrated luminosity. The measured value of $$\\sin^2\\theta_\\text{eff}^{\\ell}[\\mu\\mu]=0.23016 \\pm 0.00064$$ is further combined with the result from the D0 measurement in $$p\\bar{p}\\rightarrow Z/\\gamma^{*}\\rightarrow e^{+} e^{-}$$ events, resulting in $$\\sin^2\\theta_\\text{eff}^{\\ell} [\\text{comb.}]=0.23095 \\pm 0.00040$$. This combined result is the most precise measurement from a single experiment at a hadron collider and is the most precise determination using the coupling of the $$Z/\\gamma^*$$ to light quarks.« less

  18. Modeled Martian subsurface elemental composition measurements with the Probing In situ with Neutron and Gamma ray instrument

    NASA Astrophysics Data System (ADS)

    Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.; Schweitzer, Jeffrey S.; Karunatillake, Suniti; McClanahan, Timothy P.; Moersch, Jeffrey E.; Parsons, Ann M.; Tate, Christopher G.

    2017-02-01

    The Probing In situ with Neutron and Gamma ray (PING) instrument is an innovative application of active neutron-induced gamma ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. This manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. The modeled sensitivities show that in PING's active mode, where both a pulsed neutron generator (PNG) and a gamma ray spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe, and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 min that are sensitive to H and Cl.

  19. A novel fibrinogen variant--Praha I: hypofibrinogenemia associated with gamma Gly351Ser substitution.

    PubMed

    Kotlín, Roman; Chytilová, Martina; Suttnar, Jirí; Salaj, Peter; Riedel, Tomás; Santrůcek, Jirí; Klener, Pavel; Dyr, Jan Evangelista

    2007-05-01

    A 25-yr-old man from Prague had abnormal bleeding after several surgical operations with low fibrinogen level and hypofibrinogenemia was suspected. The patient, 25 yr-old male had a low fibrinogen concentration as determined by the thrombin time and immunoturbidimetrical method. His 48-yr-old mother presented with normal coagulation tests, normal fibrinogen level and reported no history of bleeding. To identify the genetic mutation responsible for this hypofibrinogen, genomic DNA extracted from the blood was analyzed. Fibrin polymerization measurement, kinetics of fibrinopeptide release, fibrinogen clottability measurement, mass spectroscopy, and scanning electron microscopy were performed. DNA sequencing showed heterogeneous fibrinogen gammaG351S mutation in the propositus. The mutant chain was found not to be expressed to the circulation by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Scanning electron micrographs of the patient's fibrin clot as well as kinetics of fibrinopeptide release and fibrin polymerization were found to be normal. A case of hypofibrinogenemia gammaG351S was found by routine coagulation testing and was genetically identified.

  20. Airborne gamma-ray spectra processing: Extracting photopeaks.

    PubMed

    Druker, Eugene

    2018-07-01

    The acquisition of information from the airborne gamma-ray spectra is based on the ability to evaluate photopeak areas in regular spectra from natural and other sources. In airborne gamma-ray spectrometry, extraction of photopeaks of radionuclides from regular one-second spectra is a complex problem. In the region of higher energies, difficulties are associated with low signal level, i.e. low count rates, whereas at lower energies difficulties are associated with high noises due to a high signal level. In this article, a new procedure is proposed for processing the measured spectra up to and including the extraction of evident photopeaks. The procedure consists of reducing the noise in the energy channels along the flight lines, transforming the spectra into the spectra of equal resolution, removing the background from each spectrum, sharpening the details, and transforming the spectra back to the original energy scale. The resulting spectra are better suited for examining and using the photopeaks. No assumptions are required regarding the number, locations, and magnitudes of photopeaks. The procedure does not generate negative photopeaks. The resolution of the spectrometer is used for the purpose. The proposed methodology, apparently, will contribute also to study environmental problems, soil characterization, and other near-surface geophysical methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Comparison of electrical capacitance tomography and gamma densitometer measurement in viscous oil-gas flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi

    2014-04-11

    Multiphase flow is a common occurrence in industries such as nuclear, process, oil and gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil and gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oilmore » (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 and 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 and 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.« less

  2. Mapping the spatial distribution and activity of (226)Ra at legacy sites through Machine Learning interpretation of gamma-ray spectrometry data.

    PubMed

    Varley, Adam; Tyler, Andrew; Smith, Leslie; Dale, Paul; Davies, Mike

    2016-03-01

    Radium ((226)Ra) contamination derived from military, industrial, and pharmaceutical products can be found at a number of historical sites across the world posing a risk to human health. The analysis of spectral data derived using gamma-ray spectrometry can offer a powerful tool to rapidly estimate and map the activity, depth, and lateral distribution of (226)Ra contamination covering an extensive area. Subsequently, reliable risk assessments can be developed for individual sites in a fraction of the timeframe compared to traditional labour-intensive sampling techniques: for example soil coring. However, local heterogeneity of the natural background, statistical counting uncertainty, and non-linear source response are confounding problems associated with gamma-ray spectral analysis. This is particularly challenging, when attempting to deal with enhanced concentrations of a naturally occurring radionuclide such as (226)Ra. As a result, conventional surveys tend to attribute the highest activities to the largest total signal received by a detector (Gross counts): an assumption that tends to neglect higher activities at depth. To overcome these limitations, a methodology was developed making use of Monte Carlo simulations, Principal Component Analysis and Machine Learning based algorithms to derive depth and activity estimates for (226)Ra contamination. The approach was applied on spectra taken using two gamma-ray detectors (Lanthanum Bromide and Sodium Iodide), with the aim of identifying an optimised combination of detector and spectral processing routine. It was confirmed that, through a combination of Neural Networks and Lanthanum Bromide, the most accurate depth and activity estimates could be found. The advantage of the method was demonstrated by mapping depth and activity estimates at a case study site in Scotland. There the method identified significantly higher activity (<3 Bq g(-1)) occurring at depth (>0.4m), that conventional gross counting algorithms

  3. A study of interdiffusion in beta + gamma/gamma + gamma prime Ni-Cr-Al. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Carol, L. A.

    1985-01-01

    Ternary diffusion in the NiCrAl system at 1200 C was studied with beta + gamma/gamma + gamma prime infinite diffusion couples. Interdiffusion resulted in the formation of complex, multiphase diffusion zones. Concentration/distance profiles for Cr and Al in the phases present in the diffusion zone were measured after 200 hr. The Ni-rich portion of the NiCrAl phase diagram (1200 C) was also determined. From these data, bulk Cr and Al profiles were calculated and translated to diffusion paths on the ternary isotherm. Growth layer kinetics of the layers present in the diffusion zone were also measured.

  4. Accuracy of delta 18O isotope ratio measurements on the same sample by continuous-flow isotope-ratio mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    The doubly labeled water method is considered the reference method to measure energy expenditure. Conventional mass spectrometry requires a separate aliquot of the same sample to be prepared and analyzed separately. With continuous-flow isotope-ratio mass spectrometry, the same sample could be analy...

  5. Measurement of angularly dependent spectra of betatron gamma-rays from a laser plasma accelerator with quadrant-sectored range filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, Jong Ho, E-mail: jhjeon07@ibs.re.kr; Nakajima, Kazuhisa, E-mail: naka115@dia-net.ne.jp; Rhee, Yong Joo

    Measurement of angularly dependent spectra of betatron gamma-rays radiated by GeV electron beams from laser wakefield accelerators (LWFAs) are presented. The angle-resolved spectrum of betatron radiation was deconvolved from the position dependent data measured for a single laser shot with a broadband gamma-ray spectrometer comprising four-quadrant sectored range filters and an unfolding algorithm, based on the Monte Carlo code GEANT4. The unfolded gamma-ray spectra in the photon energy range of 0.1–10 MeV revealed an approximately isotropic angular dependence of the peak photon energy and photon energy-integrated fluence. As expected by the analysis of betatron radiation from LWFAs, the results indicate thatmore » unpolarized gamma-rays are emitted by electrons undergoing betatron motion in isotropically distributed orbit planes.« less

  6. Measuring B to S Gamma, B to D Gamma and |V(Td)/V(Ts)| at BaBar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bard, Deborah; /SLAC

    2012-06-01

    Using a sample of 471 million B{bar B} events collected with the BaBar detector, we study the sum of seven exclusive final states b {yields} X{sub s(d)}{gamma}, where X{sub s(d)} is a strange (non-strange) hadronic system with a mass of up to 2.0 Gev/c{sup 2}. After correcting for unobserved decay modes, we obtain a branching fraction for b {yields} d{gamma} of (9.2 {+-} 2.0(stat.) {+-} 2.3(syst.)) x 10{sup -6} in this mass range, and a branching fraction for b {yields} s{gamma} of (23.0 {+-} 0.8(stat.) {+-} 3.0(syst.)) x 10{sup -5} in the same mass range. We find BF(b {yields} d{gamma})/BF(bmore » {yields} s{gamma}) = 0.040 {+-} 0.009(stat.) {+-} 0.010(syst.), from which we determine |V{sub td}/V{sub ts}| = 0.199 {+-} 0.022(stat.) {+-} 0.024(syst.) {+-} 0.002(th.).« less

  7. Levels of 2-dodecylcyclobutanone in ground beef patties irradiated by low-energy X-ray and gamma rays.

    PubMed

    Hijaz, Faraj M; Smith, J Scott

    2010-01-01

    Food irradiation improves food safety and maintains food quality by controlling microorganisms and extending shelf life. However, acceptance and commercial adoption of food irradiation is still low. Consumer groups such as Public Citizen and the Food and Water Watch have opposed irradiation because of the formation of 2-alkylcyclobutanones (2-ACBs) in irradiated, lipid-containing foods. The objectives of this study were to measure and to compare the level of 2-dodecylcyclobutanone (2-DCB) in ground beef irradiated by low-energy X-rays and gamma rays. Beef patties were irradiated by low-energy X-rays and gamma rays (Cs-137) at 3 targeted absorbed doses of 1.5, 3.0, and 5.0 kGy. The samples were extracted with n-hexane using a Soxhlet apparatus, and the 2-DCB concentration was determined with gas chromatography-mass spectrometry. The 2-DCB concentration increased linearly (P < 0.05) with irradiation dose for gamma-ray and low-energy X-ray irradiated patties. There was no significant difference in 2-DCB concentration between gamma-ray and low-energy X-ray irradiated patties (P > 0.05) at all targeted doses. © 2010 Institute of Food Technologists®

  8. Measurement of gluconeogenesis using glucose fragments and mass spectrometry after ingestion of deuterium oxide.

    USDA-ARS?s Scientific Manuscript database

    We report a new method to measure the fraction of glucose derived from gluconeogenesis using gas chromatography-mass spectrometry and positive chemical ionization. After ingestion of deuterium oxide by subjects, glucose derived from gluconeogenesis is labeled with deuterium. Our calculations of gluc...

  9. Calculation of the detection limits for radionuclides identified in gamma-ray spectra based on post-processing peak analysis results.

    PubMed

    Korun, M; Vodenik, B; Zorko, B

    2018-03-01

    A new method for calculating the detection limits of gamma-ray spectrometry measurements is presented. The method is applicable for gamma-ray emitters, irrespective of the influences of the peaked background, the origin of the background and the overlap with other peaks. It offers the opportunity for multi-gamma-ray emitters to calculate the common detection limit, corresponding to more peaks. The detection limit is calculated by approximating the dependence of the uncertainty in the indication on its value with a second-order polynomial. In this approach the relation between the input quantities and the detection limit are described by an explicit expression and can be easy investigated. The detection limit is calculated from the data usually provided by the reports of peak-analyzing programs: the peak areas and their uncertainties. As a result, the need to use individual channel contents for calculating the detection limit is bypassed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Nanowire dopant measurement using secondary ion mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chia, A. C. E.; Boulanger, J. P.; Wood, B. A.

    2015-09-21

    A method is presented to improve the quantitative determination of dopant concentration in semiconductor nanowire (NW) arrays using secondary ion mass spectrometry (SIMS). SIMS measurements were used to determine Be dopant concentrations in a Be-doped GaAs thin film and NW arrays of various pitches that were dry-etched from the same film. A comparison of these measurements revealed a factor of 3 to 12 difference, depending on the NW array pitch, between the secondary Be ion yields of the film and the NW arrays, despite being identically doped. This was due to matrix effects and ion beam mixing of Be frommore » the NWs into the surrounding benzocyclobutene that was used to fill the space between the NWs. This indicates the need for etched NWs to be used as doping standards instead of 2D films when evaluating NWs of unknown doping by SIMS. Using the etched NWs as doping standards, NW arrays of various pitches grown by the vapour-liquid-solid mechanism were characterized by SIMS to yield valuable insights into doping mechanisms.« less

  11. A method to describe inelastic gamma field distribution in neutron gamma density logging.

    PubMed

    Zhang, Feng; Zhang, Quanying; Liu, Juntao; Wang, Xinguang; Wu, He; Jia, Wenbao; Ti, Yongzhou; Qiu, Fei; Zhang, Xiaoyang

    2017-11-01

    Pulsed neutron gamma density logging (NGD) is of great significance for radioprotection and density measurement in LWD, however, the current methods have difficulty in quantitative calculation and single factor analysis for the inelastic gamma field distribution. In order to clarify the NGD mechanism, a new method is developed to describe the inelastic gamma field distribution. Based on the fast-neutron scattering and gamma attenuation, the inelastic gamma field distribution is characterized by the inelastic scattering cross section, fast-neutron scattering free path, formation density and other parameters. And the contribution of formation parameters on the field distribution is quantitatively analyzed. The results shows the contribution of density attenuation is opposite to that of inelastic scattering cross section and fast-neutron scattering free path. And as the detector-spacing increases, the density attenuation gradually plays a dominant role in the gamma field distribution, which means large detector-spacing is more favorable for the density measurement. Besides, the relationship of density sensitivity and detector spacing was studied according to this gamma field distribution, therefore, the spacing of near and far gamma ray detector is determined. The research provides theoretical guidance for the tool parameter design and density determination of pulsed neutron gamma density logging technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. ^235U(n,xnγ) Excitation Function Measurements Using Gamma-Ray Spectroscopy at GEANIE

    NASA Astrophysics Data System (ADS)

    Younes, W.; Becker, J. A.; Bernstein, L. A.; Archer, D. E.; Stoyer, M. A.; Hauschild, K.; Drake, D. M.; Johns, G. D.; Nelson, R. O.; Wilburn, S. W.

    1998-04-01

    The ^235U(n,xn) cross sections (where x<=2) have previously been measured at several incident neutron energies. In particular, the ^235U(n,2n) cross section has been measured(J. Frehaut et al.), Nucl. Sci. Eng. 74,29 (1980). reliably up to peak near E_n≈ 11 MeV, but not along the tail which is predicted by some(M.B. Chadwick, private communication.) codes to yield significant (e.g. >= 10% of peak) cross section out to E_n≈ 30 MeV. We have measured gamma-ray spectra resulting from ^235U(n,xn) as a function of neutron energy in the range 1 MeV <~ En <~ 200 MeV using the GEANIE spectrometer at the LANSCE/WNR ``white'' neutron source. We will present excitation functions for the de-excitation gamma rays in ^234,235U compared to predictions from the Hauser-Feshbach-preequilibrium code GNASH(M.B. Chadwick and P.G. Young, Los Alamos Report No. LA-UR-93-104, 1993.).

  13. Statistical Measurement of the Gamma-Ray Source-count Distribution as a Function of Energy

    NASA Astrophysics Data System (ADS)

    Zechlin, Hannes-S.; Cuoco, Alessandro; Donato, Fiorenza; Fornengo, Nicolao; Regis, Marco

    2016-08-01

    Statistical properties of photon count maps have recently been proven as a new tool to study the composition of the gamma-ray sky with high precision. We employ the 1-point probability distribution function of six years of Fermi-LAT data to measure the source-count distribution dN/dS and the diffuse components of the high-latitude gamma-ray sky as a function of energy. To that aim, we analyze the gamma-ray emission in five adjacent energy bands between 1 and 171 GeV. It is demonstrated that the source-count distribution as a function of flux is compatible with a broken power law up to energies of ˜50 GeV. The index below the break is between 1.95 and 2.0. For higher energies, a simple power-law fits the data, with an index of {2.2}-0.3+0.7 in the energy band between 50 and 171 GeV. Upper limits on further possible breaks as well as the angular power of unresolved sources are derived. We find that point-source populations probed by this method can explain {83}-13+7% ({81}-19+52%) of the extragalactic gamma-ray background between 1.04 and 1.99 GeV (50 and 171 GeV). The method has excellent capabilities for constraining the gamma-ray luminosity function and the spectra of unresolved blazars.

  14. Investigating the anisotropic scintillation response in anthracene through neutron, gamma-ray, and muon measurements

    DOE PAGES

    Schuster, Patricia; Brubaker, Erik

    2016-05-05

    Our paper reports a series of measurements that characterize the directional dependence of the scintillation response of crystalline anthracene to incident DT neutrons, DD neutrons, 137Cs gamma rays, and, for the first time, cosmic ray muons. Moreover, the neutron measurements give the amplitude and pulse shape dependence on the proton recoil direction over one hemisphere of the crystal, confirming and extending previous results in the literature. In similar measurements using incident gamma rays, no directional effect is evident, and any anisotropy with respect to the electron recoil direction is constrained to have a magnitude of less than a tenth ofmore » that present in the proton recoil events. Cosmic muons are measured at two directions, and no anisotropy is observed. Our set of observations indicates that high dE/dx is necessary for an anisotropy to be present for a given type of scintillation event, which in turn could be used to discriminate among different hypotheses for the underlying causes of the anisotropy, which are not well understood.« less

  15. High-gamma band fronto-temporal coherence as a measure of functional connectivity in speech motor control.

    PubMed

    Kingyon, J; Behroozmand, R; Kelley, R; Oya, H; Kawasaki, H; Narayanan, N S; Greenlee, J D W

    2015-10-01

    The neural basis of human speech is unclear. Intracranial electrophysiological recordings have revealed that high-gamma band oscillations (70-150Hz) are observed in the frontal lobe during speech production and in the temporal lobe during speech perception. Here, we tested the hypothesis that the frontal and temporal brain regions had high-gamma coherence during speech. We recorded electrocorticography (ECoG) from the frontal and temporal cortices of five humans who underwent surgery for medically intractable epilepsy, and studied coherence between the frontal and temporal cortex during vocalization and playback of vocalization. We report two novel results. First, we observed high-gamma band as well as theta (4-8Hz) coherence between frontal and temporal lobes. Second, both high-gamma and theta coherence were stronger when subjects were actively vocalizing as compared to playback of the same vocalizations. These findings provide evidence that coupling between sensory-motor networks measured by high-gamma coherence plays a key role in feedback-based monitoring and control of vocal output for human vocalization. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Lifetime Effective Dose Assessment Based on Background Outdoor Gamma Exposure in Chihuahua City, Mexico

    PubMed Central

    Luevano-Gurrola, Sergio; Perez-Tapia, Angelica; Pinedo-Alvarez, Carmelo; Carrillo-Flores, Jorge; Montero-Cabrera, Maria Elena; Renteria-Villalobos, Marusia

    2015-01-01

    Determining ionizing radiation in a geographic area serves to assess its effects on a population’s health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h−1. At the same sites, 48 soil samples were taken to obtain the activity concentrations of 226Ra, 232Th and 40K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h−1. Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg−1, for 226Ra, 232Th and 40K, respectively. From the analysis, the spatial distribution of 232Th, 226Ra and 40K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize. PMID:26437425

  17. Lifetime Effective Dose Assessment Based on Background Outdoor Gamma Exposure in Chihuahua City, Mexico.

    PubMed

    Luevano-Gurrola, Sergio; Perez-Tapia, Angelica; Pinedo-Alvarez, Carmelo; Carrillo-Flores, Jorge; Montero-Cabrera, Maria Elena; Renteria-Villalobos, Marusia

    2015-09-30

    Determining ionizing radiation in a geographic area serves to assess its effects on a population's health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h(-1). At the same sites, 48 soil samples were taken to obtain the activity concentrations of (226)Ra, (232)Th and (40)K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h(-1). Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg(-1), for (226)Ra, (232)Th and (40)K, respectively. From the analysis, the spatial distribution of (232)Th, (226)Ra and (40)K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize.

  18. Analyzing Space-Based Interferometric Measurements of Stars and Network Measurements of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Taff, L. G.

    1998-01-01

    Since the announcement of the discovery of sources of bursts of gamma-ray radiation in 1973, hundreds more reports of such bursts have now been published. Numerous artificial satellites have been equipped with gamma-ray detectors including the very successful Compton Gamma Ray Observatory BATSE instrument. Unfortunately, we have made no progress in identifying the source(s) of this high energy radiation. We suspected that this was a consequence of the method used to define gamma-ray burst source "error boxes." An alternative procedure to compute gamma-ray burst source positions, with a purely physical underpinning, was proposed in 1988 by Taff. Since then we have also made significant progress in understanding the analytical nature of the triangulation problem and in computing actual gamma-ray burst positions and their corresponding error boxes. For the former, we can now mathematically illustrate the crucial role of the area occupied by the detectors, while for the latter, the Atteia et al. (1987) catalog has been completely re-reduced. There are very few discrepancies in locations between our results and those of the customary "time difference of arrival" procedure. Thus, we have numerically demonstrated that the end result, for the positions, of these two very different-looking procedures is the same. Finally, for the first time, we provide a sample of realistic "error boxes" whose non-simple shapes vividly portray the difficulty of burst source localization.

  19. A method to measure neutron polarization using P-even asymmetry of {gamma}-quantum emission in the neutron-nuclear interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gledenov, Yu. M.; Nesvizhevsky, V. V.; Sedyshev, P. V.

    2012-07-15

    A new method to measure polarization of cold/thermal neutrons using P-even asymmetry in nuclear reactions induced by polarized neutrons is proposed. A scheme profiting from a large correlation of the neutron spin and the circular {gamma}-quantum polarization in the reaction (n, {gamma}) of polarized neutrons with nuclei is analyzed. This method could be used, for instance, to measure the neutron-beam polarization in experiments with frequently varying configuration. We show that high accuracy and reliability of measurements could be expected.

  20. Sample preparation for the determination of 241Am in sediments utilizing gamma-spectroscopy.

    PubMed

    Ristic, M; Degetto, S; Ast, T; Cantallupi, C

    2002-01-01

    This paper describes a procedure developed to separate americium-241 from the bulk of a sample by coprecipitation followed by high sensitivity gamma-counting of the concentrate in a well-type detector. It enables the measurement of 241Am at low concentrations, e.g. fallout levels in soils and sediments, or where large sample sizes are not available. The method is much faster and more reliable than those involving separation from other alpha-emitters, electroplating and alpha-spectrometry. A number of tracer experiments was performed in order to optimize the conditions for coprecipitation of 241Am from sediment leachates. The general outline of the determination of americium is also given.

  1. 137 Ba Double Gamma Decay Measurement with GAMMASPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchán, E.; Moran, K.; Lister, C. J.

    2015-05-28

    The study of the electromagnetic moments (EM), and decay probability, provides detailed information about nuclear wave functions. The well-know properties of EM interactions are good for extracting information about the motion of nucleons. Higher order EM processes always occur, but are usually too weak to be measured. In the case of a 0 + → 0 + transitions, where a single gamma transition is forbidden, the simultaneous emission of two γ-rays has been studied. An interesting opportunity to further investigate 2-photon emission phenomena is by using a standard 137Cs source populating, via β-decay, the J π = 11/2 - isomericmore » state at 662 keV in 137Ba. In this case, two photon process can have contributions from quadrupole-quadrupole or dipole-octupole multipolarities in direct competition with the high multipolarity M4 decay. Since the yield of the double gamma decay is around six orders of magnitude less than the first order transition, very good statistics are needed in order to observe the phenomena and great care must be taken to suppress the first-order decay. The Gammasphere array is ideal since its configuration allows a good coverage of the angular distribution and the Compton events can be suppressed. Nevertheless the process to understand and eliminate the Compton background is a challenge. Geant4 simulations were carried out to help understand and correct for those factors.« less

  2. Concentration of Uranium Radioisotopes in Albanian Drinking Waters Measured by Alpha Spectrometry

    NASA Astrophysics Data System (ADS)

    Bylyku, Elida; Cfarku, Florinda; Deda, Antoneta; Bode, Kozeta; Fishka, Kujtim

    2010-01-01

    Uranium is a radioactive material that is frequently found in rocks and soil. When uranium decays, it changes into different elements that are also radioactive, including radon, a gas that is known to cause a lung cancer. The main concern with uranium in drinking water is harm to the kidneys. Public water systems are required to keep uranium levels at or below 500 mBq per liter to protect against kidney damage. Such an interest is needed due to safety, regulatory compliance and disposal issue for uranium in the environment since uranium is included as an obligatory controlled radionuclide in the European Legislation (Directive 98/83 CE of Council of 03.11.1998). The aim of this work is to measure the levels of uranium in drinking and drilled well waters in Albania. At first each sample was measured for total Alpha and total Beta activity. The samples with the highest levels of total alpha activity were chosen for the determination of uranium radioisotopes by alpha spectrometry. A radiochemical procedure using extraction with TBP (Tri-Butyl-Phosphate) is used in the presence of U232 as a yield tracer. Thin sources for alpha spectrometry are prepared by electrodepositing on to stainless steel discs. The results of the U238 activity measured in the different samples, depending from their geological origin range between 0.55-13.87 mBq/l. All samples measured results under the European Directive limits for U238 (5-500 mBq/1), Dose Coefficients according to Directive 96/29 EURATOM.

  3. Prompt gamma-ray imaging for small animals

    NASA Astrophysics Data System (ADS)

    Xu, Libai

    Small animal imaging is recognized as a powerful discovery tool for small animal modeling of human diseases, which is providing an important clue to complete understanding of disease mechanisms and is helping researchers develop and test new treatments. The current small animal imaging techniques include positron emission tomography (PET), single photon emission tomography (SPECT), computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US). A new imaging modality called prompt gamma-ray imaging (PGI) has been identified and investigated primarily by Monte Carlo simulation. Currently it is suggested for use on small animals. This new technique could greatly enhance and extend the present capabilities of PET and SPECT imaging from ingested radioisotopes to the imaging of selected non-radioactive elements, such as Gd, Cd, Hg, and B, and has the great potential to be used in Neutron Cancer Therapy to monitor neutron distribution and neutron-capture agent distribution. This approach consists of irradiating small animals in the thermal neutron beam of a nuclear reactor to produce prompt gamma rays from the elements in the sample by the radiative capture (n, gamma) reaction. These prompt gamma rays are emitted in energies that are characteristic of each element and they are also produced in characteristic coincident chains. After measuring these prompt gamma rays by surrounding spectrometry array, the distribution of each element of interest in the sample is reconstructed from the mapping of each detected signature gamma ray by either electronic collimations or mechanical collimations. In addition, the transmitted neutrons from the beam can be simultaneously used for very sensitive anatomical imaging, which provides the registration for the elemental distributions obtained from PGI. The primary approach is to use Monte Carlo simulation methods either with the specific purpose code CEARCPG, developed at NC State University or with the general purpose

  4. Statistical measurement of the gamma-ray source-count distribution as a function of energy

    DOE PAGES

    Zechlin, Hannes-S.; Cuoco, Alessandro; Donato, Fiorenza; ...

    2016-07-29

    Statistical properties of photon count maps have recently been proven as a new tool to study the composition of the gamma-ray sky with high precision. Here, we employ the 1-point probability distribution function of six years of Fermi-LAT data to measure the source-count distribution dN/dS and the diffuse components of the high-latitude gamma-ray sky as a function of energy. To that aim, we analyze the gamma-ray emission in five adjacent energy bands between 1 and 171 GeV. It is demonstrated that the source-count distribution as a function of flux is compatible with a broken power law up to energies of ~50 GeV. Furthermore, the index below the break is between 1.95 and 2.0. For higher energies, a simple power-law fits the data, with an index ofmore » $${2.2}_{-0.3}^{+0.7}$$ in the energy band between 50 and 171 GeV. Upper limits on further possible breaks as well as the angular power of unresolved sources are derived. We find that point-source populations probed by this method can explain $${83}_{-13}^{+7}$$% ($${81}_{-19}^{+52}$$%) of the extragalactic gamma-ray background between 1.04 and 1.99 GeV (50 and 171 GeV). Our method has excellent capabilities for constraining the gamma-ray luminosity function and the spectra of unresolved blazars.« less

  5. Statistical measurement of the gamma-ray source-count distribution as a function of energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zechlin, Hannes-S.; Cuoco, Alessandro; Donato, Fiorenza

    Statistical properties of photon count maps have recently been proven as a new tool to study the composition of the gamma-ray sky with high precision. Here, we employ the 1-point probability distribution function of six years of Fermi-LAT data to measure the source-count distribution dN/dS and the diffuse components of the high-latitude gamma-ray sky as a function of energy. To that aim, we analyze the gamma-ray emission in five adjacent energy bands between 1 and 171 GeV. It is demonstrated that the source-count distribution as a function of flux is compatible with a broken power law up to energies of ~50 GeV. Furthermore, the index below the break is between 1.95 and 2.0. For higher energies, a simple power-law fits the data, with an index ofmore » $${2.2}_{-0.3}^{+0.7}$$ in the energy band between 50 and 171 GeV. Upper limits on further possible breaks as well as the angular power of unresolved sources are derived. We find that point-source populations probed by this method can explain $${83}_{-13}^{+7}$$% ($${81}_{-19}^{+52}$$%) of the extragalactic gamma-ray background between 1.04 and 1.99 GeV (50 and 171 GeV). Our method has excellent capabilities for constraining the gamma-ray luminosity function and the spectra of unresolved blazars.« less

  6. Method of incident low-energy gamma-ray direction reconstruction in the GAMMA-400 gamma-ray space telescope

    NASA Astrophysics Data System (ADS)

    Kheymits, M. D.; Leonov, A. A.; Zverev, V. G.; Galper, A. M.; Arkhangelskaya, I. V.; Arkhangelskiy, A. I.; Suchkov, S. I.; Topchiev, N. P.; Yurkin, Yu T.; Bakaldin, A. V.; Dalkarov, O. D.

    2016-02-01

    The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work.

  7. Neutron monitoring systems including gamma thermometers and methods of calibrating nuclear instruments using gamma thermometers

    DOEpatents

    Moen, Stephan Craig; Meyers, Craig Glenn; Petzen, John Alexander; Foard, Adam Muhling

    2012-08-07

    A method of calibrating a nuclear instrument using a gamma thermometer may include: measuring, in the instrument, local neutron flux; generating, from the instrument, a first signal proportional to the neutron flux; measuring, in the gamma thermometer, local gamma flux; generating, from the gamma thermometer, a second signal proportional to the gamma flux; compensating the second signal; and calibrating a gain of the instrument based on the compensated second signal. Compensating the second signal may include: calculating selected yield fractions for specific groups of delayed gamma sources; calculating time constants for the specific groups; calculating a third signal that corresponds to delayed local gamma flux based on the selected yield fractions and time constants; and calculating the compensated second signal by subtracting the third signal from the second signal. The specific groups may have decay time constants greater than 5.times.10.sup.-1 seconds and less than 5.times.10.sup.5 seconds.

  8. A method for the complete analysis of NORM building materials by γ-ray spectrometry using HPGe detectors.

    PubMed

    Quintana, B; Pedrosa, M C; Vázquez-Canelas, L; Santamaría, R; Sanjuán, M A; Puertas, F

    2018-04-01

    A methodology including software tools for analysing NORM building materials and residues by low-level gamma-ray spectrometry has been developed. It comprises deconvolution of gamma-ray spectra using the software GALEA with focus on the natural radionuclides and Monte Carlo simulations for efficiency and true coincidence summing corrections. The methodology has been tested on a range of building materials and validated against reference materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Measuring the activity of a {sup 51}Cr neutrino source based on the gamma-radiation spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorbachev, V. V., E-mail: vvgor-gfb1@mail.ru; Gavrin, V. N.; Ibragimova, T. V.

    A technique for the measurement of activities of intense β sources by measuring the continuous gamma-radiation (internal bremsstrahlung) spectra is developed. A method for reconstructing the spectrum recorded by a germanium semiconductor detector is described. A method for the absolute measurement of the internal bremsstrahlung spectrum of {sup 51}Cr is presented.

  10. Measurement of the total activity concentrations of Libyan oil scale

    NASA Astrophysics Data System (ADS)

    Da Silva, F. C. A.; Bradley, D. A.; Regan, P. H.; Rozaila, Z. Siti

    2017-08-01

    Twenty-three oil scale samples obtained from the Libyan oil and gas industry production facilities onshore have been measured using high-resolution gamma-ray spectrometry with a shielded HPGe detector, the work being carried out within the Environmental Radioactivity Laboratory at the University of Surrey. The main objectives of this work were to determine the extent to which the predominant radionuclides associated with the uranium and thorium natural decay chains were in secular equilibrium with their decay progeny, also to compare differences between the total activity concentrations (TAC) in secular equilibrium and disequilibrium and to evaluate the measured activities for the predominant gamma-ray emitting decay radionuclides within the 232Th and 238U chains. The oil scale NORM samples did not exhibit radioactive equilibrium between the decay progeny and longer-lived parent radionuclides of the 238U and 232Th series.

  11. Improving mass measurement accuracy in mass spectrometry based proteomics by combining open source tools for chromatographic alignment and internal calibration.

    PubMed

    Palmblad, Magnus; van der Burgt, Yuri E M; Dalebout, Hans; Derks, Rico J E; Schoenmaker, Bart; Deelder, André M

    2009-05-02

    Accurate mass determination enhances peptide identification in mass spectrometry based proteomics. We here describe the combination of two previously published open source software tools to improve mass measurement accuracy in Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). The first program, msalign, aligns one MS/MS dataset with one FTICRMS dataset. The second software, recal2, uses peptides identified from the MS/MS data for automated internal calibration of the FTICR spectra, resulting in sub-ppm mass measurement errors.

  12. Effective gamma-ray doses due to natural radiation from soils of southeastern Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silveira, M. A. G.; Moreira, R. H.; Bellini, B. S.

    2010-08-04

    We have used gamma-ray spectrometry to study the distribution of natural radiation from soils of southeastern Brazil: Billings reservoir, Sao Bernardo do Campo Parks, Diadema Parks, Interlagos region, Sao Paulo, and soil from Sao Paulo and Rio de Janeiro beaches. In most of the regions studied we have found that the dose due the external exposure to gamma-rays, proceeding from natural terrestrial elements, are between the values 0.3 and 0.6 mSv/year, established by the United Nations Scientific Committee on the Effects of Atomic Radiation.

  13. Fusion gamma diagnostics

    NASA Astrophysics Data System (ADS)

    Medley, S. S.; Cecil, F. E.; Cole, D.; Conway, M. A.; Wilkinson, F. J., III

    1985-05-01

    Nuclear reactions of interest in fusion research often possess a branch yielding prompt emission of gamma radiation in excess of 15 MeV which can be exploited to provide a new fusion reaction diagnostic having applications similar to conventional neutron emission measurements. Conceptual aspects of fusion gamma diagnostics are discussed with emphasis on application to the Tokamak Fusion Test Reactor (TFTR) during deuterium neutral beam heating of D-T and D-3He plasmas. Recent measurements of the D (T, γ)5He, D(3He, γ)5Li, and D(D, γ)4He branching ratios at low center-of-mass energy (30-100 keV) and of the response of a large volume Ne226 detector for gamma detection in high neutron backgrounds are presented. Using a well-shielded Ne226 detector during 20 MW-120 kV deuterium beam heating of a tritium plasma in TFTR, the D(T, γ)5He gamma signal level is estimated to be 3.5×105 cps.

  14. NOTE: Total body-calcium measurements: comparison of two delayed-gamma neutron activation facilities

    NASA Astrophysics Data System (ADS)

    Ma, R.; Ellis, K. J.; Yasumura, S.; Shypailo, R. J.; Pierson, R. N., Jr.

    1999-06-01

    This study compares two independently calibrated delayed-gamma neutron activation (DGNA) facilities, one at the Brookhaven National Laboratory (BNL), Upton, New York, and the other at the Children's Nutrition Research Center (CNRC), Houston, Texas that measure total body calcium (TBCa). A set of BNL phantoms was sent to CNRC for neutron activation analysis, and a set of CNRC phantoms was measured at BNL. Both facilities showed high precision (<2%), and the results were in good agreement, within 5%.

  15. Gamma-ray Output Spectra from 239 Pu Fission

    DOE PAGES

    Ullmann, John

    2015-05-25

    The gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. We found that a dependence of the gamma-raymore » spectrum on the gamma-ray multplicity was also observed. Finally, global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.« less

  16. A deviation display method for visualising data in mobile gamma-ray spectrometry.

    PubMed

    Kock, Peder; Finck, Robert R; Nilsson, Jonas M C; Ostlund, Karl; Samuelsson, Christer

    2010-09-01

    A real time visualisation method, to be used in mobile gamma-spectrometric search operations using standard detector systems is presented. The new method, called deviation display, uses a modified waterfall display to present relative changes in spectral data over energy and time. Using unshielded (137)Cs and (241)Am point sources and different natural background environments, the behaviour of the deviation displays is demonstrated and analysed for two standard detector types (NaI(Tl) and HPGe). The deviation display enhances positive significant changes while suppressing the natural background fluctuations. After an initialization time of about 10min this technique leads to a homogeneous display dominated by the background colour, where even small changes in spectral data are easy to discover. As this paper shows, the deviation display method works well for all tested gamma energies and natural background radiation levels and with both tested detector systems.

  17. Measurement of sigma chi c2 B(chi c2-->J/psi gamma)/sigma chi c1 B(chi c1 -->J/psi gamma) in pp collisions at square root s=1.96 TeV.

    PubMed

    Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Budroni, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Cyr, D; DaRonco, S; Datta, M; D'Auria, S; Davies, T; D'Onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; DiTuro, P; Dörr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A C; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Nagano, A; Naganoma, J; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ranjan, N; Rappoccio, S; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Saltzberg, D; Sánchez, C; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Sjolin, J; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waschke, S; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-06-08

    We measure the ratio of cross section times branching fraction, Rp=sigma chi c2 B(chi c2-->J/psi gamma)/sigma chi c1 B(chi c1-->J/psi gamma), in 1.1 fb(-1) of pp collisions at square root s=1.96 TeV. This measurement covers the kinematic range pT(J/psi)>4.0 GeV/c, |eta(J/psi)<1.0, and pT(gamma)>1.0 GeV/c. For events due to prompt processes, we find Rp=0.395+/-0.016(stat)+/-0.015(syst). This result represents a significant improvement in precision over previous measurements of prompt chi c1,2 hadro production.

  18. Measurement of Fission Neutron Spectrum and Multiplicity using a Gamma Tag Double Time-of-flight Setup

    NASA Astrophysics Data System (ADS)

    Blain, E.; Daskalakis, A.; Danon, Y.

    2014-05-01

    Recent efforts have been made to improve the prompt fission neutron spectrum and nu-bar measurements for Uranium and Plutonium isotopes particularly in the keV region. A system has been designed at Rensselaer Polytechnic Institute (RPI) utilizing an array of EJ-301 liquid scintillators as well as lithium glass and plastic scintillators to experimentally determine these values. An array of BaF2 detectors was recently obtained from Oak Ridge National Laboratory to be used in conjunction with the neutron detectors. The system uses a novel gamma tagging method for fission which can offer an improvement over conventional fission chambers due to increased sample mass. A coincidence requirement on the gamma detectors from prompt fission gammas is used as the fission tag for the system as opposed to fission fragments in a conventional fission chamber. The system utilizes pulse digitization using Acqiris 8 bit digitizer boards which allow for gamma/neutron pulse height discrimination on the liquid scintillators during post processing. Additionally, a 252Cf fission chamber was designed and constructed at RPI which allowed for optimization and testing of the system without the need for an external neutron source. The characteristics of the gamma tagging method such as false detection rate and detection efficiency were determined using this fission chamber and verified using MCNP Polimi modeling. Prompt fission neutron spectrum data has been taken using the fission chamber focusing on the minimum detectable neutron energy for each of the various detectors. Plastic scintillators were found to offer a significant improvement over traditional liquid scintillators allowing energy measurements down to 50 keV. Background was also characterized for all detectors and will be discussed.

  19. Hard gamma radiation background from coding collimator of gamma telescope under space experiment conditions

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A. P.; Berezovoy, A. N.; Galper, A. M.; Grachev, V. M.; Dmitrenko, V. V.; Kirillov-Ugryumov, V. G.; Lebedev, V. V.; Lyakhov, V. A.; Moiseyev, A. A.; Ulin, S. Y.

    1985-09-01

    Coding collimators are used to improve the angular resolution of gamma-ray telescopes at energies above 50 MeV. However, the interaction of cosmic rays with the collimation material can lead to the appearance of a gamma-ray background flux which can have a deleterious effect on measurement efficiency. An experiment was performed on the Salyut-6-Soyuz spacecraft system with the Elena-F small-scale gamma-ray telescope in order to measure the magnitude of this background. It is shown that, even at a zenith angle of approximately zero degrees (the angle at which the gamma-ray observations are made), the coding collimator has only an insignificant effect on the background conditions.

  20. Diode laser differential absorption spectrometry for measurements of some parameters of condensed media.

    PubMed

    Liger, V V; Bolshov, M A; Kuritsyn, Yu A; Krivtsun, V M; Zybin, A V; Niemax, K

    2007-04-01

    A method of diode laser differential absorption spectrometry (DLDAS) is proposed. The method is based on the detection of absorption spectra variations caused by the changes of a parameter of a condensed media (temperature, composition of the components of a mixture, pH, etc.). Some simple theoretical background of the proposed technique is presented. The potentialities of the method are demonstrated in the experiments on remote contactless measurement of the temperature of aqueous solutions and measurement of the deviations of the composition of a mixture of dyes from the equilibrium state.

  1. Arcsec source location measurements in gamma-ray astronomy from a lunar observatory

    NASA Astrophysics Data System (ADS)

    Koch, D. G.; Hughes, B. E.

    1990-03-01

    The physical processes typically used in the detection of high energy gamma-rays do not permit good angular resolution, which makes difficult the unambiguous association of discrete gamma-ray sources with objects emitting at other wavelengths. This problem can be overcome by placing gamma-ray detectors on the moon and using the horizon as an occulting edge to achieve arcsec resolution. For the purpose of discussion, this concept is examined for gamma rays above about 20 MeV for which pair production dominates the detection process and locally-generated nuclear gamma rays do not contribute to the background.

  2. Potential of IRMS technology for tracing gamma-butyrolactone (GBL).

    PubMed

    Marclay, François; Pazos, Diego; Delémont, Olivier; Esseiva, Pierre; Saudan, Christophe

    2010-05-20

    Popularity of gamma-hydroxybutyric acid (GHB) is fairly stable among drug users, while the consumption of its chemical precursor, gamma-butyrolactone (GBL), is a growing phenomenon. Although conventional analytical methods allow to detect this substance in various matrices, linking a trace and a source is still a difficult challenge. However, as several synthesis pathways and chemical precursors exist for the production of GBL, its carbon isotopic signature may vary extensively. For that purpose, a method has been developed to determine the carbon isotopes content of GBL by means of gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). The delta(13)C-values of 19 bulk samples purchased worldwide were in the range from -23.1 to -45.8 per thousand (SD<0.3 per thousand). Furthermore, testing on the purification of GBL by distillation has not been found to be consistent with such a large range of delta(13)C-values, which are likely to result from the isotopic composition of the organic precursors used to produce GBL together with the kinetic isotope effect associated with the synthesis routes. Finally, inter- and intra-variability measurements of the delta(13)C-values demonstrated the high potential of IRMS for discriminating between seizures of GBL and for source determination.

  3. Measurement of the branching fraction of Gamma(4S) --> B0B0.

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges-Pous, E; Palano, A; Pappagallo, M; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Chevalier, N; Cottingham, W N; Kelly, M P; Cuhadar-Donszelmann, T; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Thiessen, D; Khan, A; Kyberd, P; Teodorescu, L; Blinov, A E; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bondioli, M; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Weinstein, A J R; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, Sh; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P; Chen, S; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Ruddick, W O; Smith, J G; Ulmer, K A; Zhang, J; Chen, A; Eckhart, E A; Harton, J L; Soffer, A; Toki, W H; Wilson, R J; Zeng, Q; Spaan, B; Altenburg, D; Brandt, T; Brose, J; Dickopp, M; Feltresi, E; Hauke, A; Lacker, H M; Maly, E; Nogowski, R; Otto, S; Petzold, A; Schott, G; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Bernard, D; Bonneaud, G R; Grenier, P; Schrenk, S; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Xie, Y; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Marks, J; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Nikolich, M B; Taylor, G P; Charles, M J; Grenier, G J; Mallik, U; Cochran, J; Crawley, H B; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Yi, J; Arnaud, N; Davier, M; Giroux, X; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Petersen, T C; Pierini, M; Plaszczynski, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Chavez, C A; Coleman, J P; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Parry, R J; Payne, D J; Touramanis, C; Cormack, C M; Di Lodovico, F; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; Green, M G; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hodgkinson, M C; Lafferty, G D; Naisbit, M T; Williams, J C; Chen, C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Taylor, F; Yamamoto, R K; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Nicholson, H; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Wilden, L; Jessop, C P; Losecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Brau, J; Frey, R; Igonkina, O; Lu, M; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; John, M J J; Leruste, Ph; Malclès, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Biasini, M; Covarelli, R; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Simi, G; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Tehrani, F Safai; Voena, C; Christ, S; Schröder, H; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Gopal, G P; Olaiya, E O; Wilson, F F; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Graziani, G; de Monchenault, G Hamel; Kozanecki, W; Legendre, M; London, G W; Mayer, B; Vasseur, G; Yèche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Wilson, J R; Yumiceva, F X; Abe, T; Allen, M; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Claus, R; Convery, M R; Cristinziani, M; Dingfelder, J C; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Fan, S; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Mohapatra, A K; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Soha, A; Stelzer, J; Strube, J; Su, D; Sullivan, M K; Thompson, J; Va'vra, J; Wagner, S R; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Ahmed, M; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Ricca, G Della; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Martinez-Vidal, F; Panvini, R S; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Jackson, P D; Kowalewski, R; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Flood, K T; Graham, M; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mellado, B; Mihalyi, A; Pan, Y; Prepost, R; Tan, P; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Greene, M G; Neal, H

    2005-07-22

    We report the first measurement of the branching fraction f(00) for Gamma(4S) --> B(0)B(0). The data sample consists of 81.7 fb(-1) collected at the Gamma(4S) resonance with the BABAR detector at the SLAC PEP-II asymmetric-energy e(+)e(-) storage ring. Using partial reconstruction of the decay B(0) --> D(*+) l(-)nu(l) in which only the charged lepton and the soft pion from the decay D(*+) --> D(0)pi(+) are reconstructed, we obtain f(00) = 0.487 +/- 0.010(stat) +/- 0.008(syst). Our result does not depend on the branching fractions of B(0) --> D(*+)l(-)nu(l) and D(*+) --> D(0)pi(+) decays, on the ratio of the charged and neutral B meson lifetimes, nor on the assumption of isospin symmetry.

  4. Gamma-ray and neutron dosimetry by EPR and AMS, using tooth enamel from atomic-bomb survivors: a mini review.

    PubMed

    Nakamura, Nori; Hirai, Yuko; Kodama, Yoshiaki

    2012-03-01

    The electron paramagnetic resonance (EPR, or electron spin resonance) method was used to measure CO₂⁻· radicals recorded in tooth enamel by exposure to atomic-bomb gamma rays. The EPR-estimated doses (i.e. ⁶⁰Co gamma-ray equivalent dose) were generally in good correlation with cytogenetic data of the same survivors, whereas plots of EPR-estimated dose or cytogenetically estimated dose against DS02 doses turned out to scatter more widely. Because those survivors whose EPR doses were higher (or lower) than DS02 doses tended to show also higher (or lower) responses for cytogenetic responses, the apparent variation appears primarily due to problems in individual DS02 doses rather than the measurement errors associated with the EPR or cytogenetic technique. A part of the enamel samples were also used for evaluation of neutron doses by measuring ⁴¹Ca/⁴⁰Ca ratios using the accelerator mass spectrometry technique. The results for the measured ratios were on average ~85 % of the calculated ratios by DS02 (but within the 95 % confidence bounds of the simulated results), which lends support to DS02-derived neutron doses to the survivors.

  5. Gamma-400 Science Objectives Built on the Current HE Gamma-Ray and CR Results

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander; Mitchell, John; Thompson, David

    2012-01-01

    The main scientific interest of the Russian Gamma-400 team: Observe gamma-rays above approximately 50 GeV with excellent energy and angular resolution with the goals of: (1) Studying the fine spectral structure of the isotropic high-energy gamma-radiation, (2) Attempting to identify the many still-unidentified Fermi-LAT gamma-ray sources. Gamma-400 will likely be the only space-based gamma-ray observatory operating at the end of the decade. In our proposed Gamma-400-LE version, it will substantially improve upon the capabilities of Fermi LAT and AGILE in both LE and HE energy range. Measuring gamma-rays from approx 20 MeV to approx 1 TeV for at least 7 years, Gamma-400-LE will address the topics of dark matter, cosmic ray origin and propagation, neutron stars, flaring pulsars, black holes, AGNs, GRBs, and actively participate in multiwavelength campaigns.

  6. Simultaneous measurement of unfrozen water content and ice content in frozen soil using gamma ray attenuation and TDR

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaohai; Zhou, Jian; Kinzelbach, Wolfgang; Stauffer, Fritz

    2014-12-01

    The freezing temperature of water in soil is not constant but varies over a range determined by soil texture. Consequently, the amounts of unfrozen water and ice change with temperature in frozen soil, which in turn affects hydraulic, thermal, and mechanical properties of frozen soil. In this paper, an Am-241 gamma ray source and time-domain reflectometry (TDR) were combined to measure unfrozen water content and ice content in frozen soil simultaneously. The gamma ray attenuation was used to determine total water content. The TDR was used to determine the dielectric constant of the frozen soil. Based on a four-phase mixing model, the amount of unfrozen water content in the frozen soil could be determined. The ice content was inferred by the difference between total water content and unfrozen water content. The gamma ray attenuation and the TDR were both calibrated by a gravimetric method. Water contents measured by gamma ray attenuation and TDR in an unfrozen silt column under infiltration were compared and showed that the two methods have the same accuracy and response to changes of water content. Unidirectional column freezing experiments were performed to apply the combined method of gamma ray attenuation and TDR for measuring unfrozen water content and ice content. The measurement error of the gamma ray attenuation and TDR was around 0.02 and 0.01 m3/m3, respectively. The overestimation of unfrozen water in frozen soil by TDR alone was quantified and found to depend on the amount of ice content. The higher the ice content, the larger the overestimation. The study confirmed that the combined method could accurately determine unfrozen water content and ice content in frozen soil. The results of soil column freezing experiments indicate that total water content distribution is affected by available pore space and the freezing front advance rate. It was found that there is similarity between the soil water characteristic and the soil freezing characteristic of

  7. Observation of psi(3770) --> pi pi J/psi and measurement of Gamma ee[psi(2S)].

    PubMed

    Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Crede, V; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gittelman, B; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Phillips, E A; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Shepherd, M R; Stroiney, S; Sun, W M; Urner, D; Wilksen, T; Weaver, K M; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; White, E J; Williams, J; Wiss, J; Asner, D M; Edwards, K W; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Li, S Z; Poling, R; Scott, A W; Smith, A; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Severini, H; Dytman, S A; Love, W; Mehrabyan, S; Mueller, J A; Savinov, V; Li, Z; Lopez, A; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Muramatsu, H; Park, C S; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dorjkhaidav, O; Li, J; Menaa, N; Mountain, R; Nandakumar, R; Randrianarivony, K; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Briere, R A; Chen, G P; Chen, J; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L

    2006-03-03

    We observe signals for the decays psi(3770) --> XJ/psi from data acquired with the CLEO detector operating at the CESR e+ e- collider with square root of s = 3773 MeV. We measure the following branching fractions Beta(psi(3770) --> XJ/psi and significances: (189 +/- 20 +/- 20) x 10(-5) (11.6sigma) for X = pi+ pi-, (80 +/- 25 +/- 16) x 10(-5) (3.4sigma) for X = pi0 pi0, and (87 +/- 33 +/- 22) x 10(-5) (3.5sigma) for X = eta, where the errors are statistical and systematic, respectively. The radiative return process e+ e- --> gamma psi(2S) populates the same event sample and is used to measure Gamma ee[psi(2S)] = (2.54 +/- 0.03 +/- 0.11) keV.

  8. Absolute prompt-gamma yield measurements for ion beam therapy monitoring

    NASA Astrophysics Data System (ADS)

    Pinto, M.; Bajard, M.; Brons, S.; Chevallier, M.; Dauvergne, D.; Dedes, G.; De Rydt, M.; Freud, N.; Krimmer, J.; La Tessa, C.; Létang, J. M.; Parodi, K.; Pleskač, R.; Prieels, D.; Ray, C.; Rinaldi, I.; Roellinghoff, F.; Schardt, D.; Testa, E.; Testa, M.

    2015-01-01

    Prompt-gamma emission detection is a promising technique for hadrontherapy monitoring purposes. In this regard, obtaining prompt-gamma yields that can be used to develop monitoring systems based on this principle is of utmost importance since any camera design must cope with the available signal. Herein, a comprehensive study of the data from ten single-slit experiments is presented, five consisting in the irradiation of either PMMA or water targets with lower and higher energy carbon ions, and another five experiments using PMMA targets and proton beams. Analysis techniques such as background subtraction methods, geometrical normalization, and systematic uncertainty estimation were applied to the data in order to obtain absolute prompt-gamma yields in units of prompt-gamma counts per incident ion, unit of field of view, and unit of solid angle. At the entrance of a PMMA target, where the contribution of secondary nuclear reactions is negligible, prompt-gamma counts per incident ion, per millimetre and per steradian equal to (124 ± 0.7stat ± 30sys) × 10-6 for 95 MeV u-1 carbon ions, (79 ± 2stat ± 23sys) × 10-6 for 310 MeV u-1 carbon ions, and (16 ± 0.07stat ± 1sys) × 10-6 for 160 MeV protons were found for prompt gammas with energies higher than 1 MeV. This shows a factor 5 between the yields of two different ions species with the same range in water (160 MeV protons and 310 MeV u-1 carbon ions). The target composition was also found to influence the prompt-gamma yield since, for 300/310 MeV u-1 carbon ions, a 42% greater yield ((112 ± 1stat ± 22sys) × 10-6 counts ion-1 mm-1 sr-1) was obtained with a water target compared to a PMMA one.

  9. Radionuclide measurements by accelerator mass spectrometry at Arizona

    NASA Technical Reports Server (NTRS)

    Jull, A. J. T.; Donahue, D. J.; Zabel, T. H.

    1986-01-01

    Over the past years, Tandem Accelerator Mass Spectrometry (TAMS) has become established as an important method for radionuclide analysis. In the Arizona system the accelerator is operated at a thermal voltage of 1.8MV for C-14 analysis, and 1.6 to 2MV for Be-10. Samples are inserted into a cesium sputter ion source in solid form. Negative ions sputtered from the target are accelerated to about 25kV, and the injection magnet selects ions of a particular mass. Ions of the 3+ charge state, having an energy of about 9MeV are selected by an electrostatic deflector, surviving ions pass through two magnets, where only ions of the desired mass-energy product are selected. The final detector is a combination ionization chamber to measure energy loss (and hence, Z), and a silicon surface-barrier detector which measures residual energy. After counting the trace iosotope for a fixed time, the injected ions are switched to the major isotope used for normalization. These ions are deflected into a Faraday cup after the first high-energy magnet. Repeated measurements of the isotope ratio of both sample and standards results in a measurement of the concentration of the radionuclide. Recent improvements in sample preparation for C-14 make preparation of high-beam current graphite targets directly from CO2 feasible. Except for some measurements of standards and backgrounds for Be-10 measurements to date have been on C-14. Although most results have been in archaeology and quaternary geology, studies have been expanded to include cosmogenic C-14 in meteorites. The data obtained so far tend to confirm the antiquity of Antarctic meteorites from the Allan Hills site. Data on three samples of Yamato meteorites gave terrestrial ages of between about 3 and 22 thousand years.

  10. Neutron Spectrum Measurements from Irradiations at NCERC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackman, Kevin Richard; Mosby, Michelle A.; Bredeweg, Todd Allen

    2015-04-15

    Several irradiations have been conducted on assemblies (COMET/ZEUS and Flattop) at the National Criticality Experiments Research Center (NCERC) located at the Nevada National Security Site (NNSS). Configurations of the assemblies and irradiated materials changed between experiments. Different metallic foils were analyzed using the radioactivation method by gamma-ray spectrometry to understand/characterize the neutron spectra. Results of MCNP calculations are shown. It was concluded that MCNP simulated spectra agree with experimental measurements, with the caveats that some data are limited by statistics at low-energies and some activation foils have low activities.

  11. Low gamma counting for measuring NORM/TENORM with a radon reducing system

    NASA Astrophysics Data System (ADS)

    Paschoa, Anselmo S.

    2001-06-01

    A detection system for counting low levels of gamma radiation was built by upgrading an existing rectangular chamber made of 18 metric tonne of steel fabricated before World War II. The internal walls, the ceiling, and the floor of the chamber are covered with copper sheets. The new detection system consists of a stainless steel hollow cylinder with variable circular apertures in the cylindrical wall and in the base, to allow introduction of a NaI (Tl) crystal, or alternatively, a HPGe detector in its interior. This counting system is mounted inside the larger chamber, which in turn is located in a subsurface air-conditioned room. The access to the subsurface room is made from a larger entrance room through a tunnel plus a glass anteroom to decrease the air-exchange rate. Both sample and detector are housed inside the stainless steel cylinder. This cylinder is filled with hyper pure nitrogen gas, before counting a sample, to prevent radon coming into contact with the detector surface. As a consequence, the contribution of the 214Bi photopeaks to the background gamma spectra is minimized. The reduction of the gamma radiation background near the detector facilitates measurement of naturally occurring radioactive materials (NORM), and/or technologically enhanced NORM (TENORM), which are usually at concentration levels only slightly higher than those typically found in the natural radioactive background.

  12. Component Activity Measurements in the Ti-Al-O System by Knudsen Cell Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Copland, Evan; Jacobson, Nathan S.

    2003-01-01

    Titanium-aluminides (containing (alpha)2-Ti3Al and gamma-TiAl intermetallic phases) have received continued research focus due to their potential as low-density materials for structural applications at intermediate temperatures. However their application above about 850C is hindered by poor oxidation resistance, characterized by the formation of a non-protective TiO2+Al2O3 scale and an oxygen-enriched subsurface zone. Consistent with this are measured titanium and aluminum activities in "oxygen-free" titanium-aluminides, which indicate Al2O3 is only stable for aluminum concentrations greater then 54 atom percent at 1373 K. However, the inability to form a protective Al2O3 scale is in apparent conflict with phase diagram studies, as experimental isothermal sections of the Ti-Al-O system show gamma-TiAl + alpha2-Ti3Al structures are in equilibrium only with Al2O3. The apparent resolution to this conflict lies in the inclusion of oxygen effects in the thermodynamic measurements

  13. Comparative Analysis of Mass Spectral Similarity Measures on Peak Alignment for Comprehensive Two-Dimensional Gas Chromatography Mass Spectrometry

    PubMed Central

    2013-01-01

    Peak alignment is a critical procedure in mass spectrometry-based biomarker discovery in metabolomics. One of peak alignment approaches to comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-MS) data is peak matching-based alignment. A key to the peak matching-based alignment is the calculation of mass spectral similarity scores. Various mass spectral similarity measures have been developed mainly for compound identification, but the effect of these spectral similarity measures on the performance of peak matching-based alignment still remains unknown. Therefore, we selected five mass spectral similarity measures, cosine correlation, Pearson's correlation, Spearman's correlation, partial correlation, and part correlation, and examined their effects on peak alignment using two sets of experimental GC×GC-MS data. The results show that the spectral similarity measure does not affect the alignment accuracy significantly in analysis of data from less complex samples, while the partial correlation performs much better than other spectral similarity measures when analyzing experimental data acquired from complex biological samples. PMID:24151524

  14. Ambient Ionization Mass Spectrometry Measurement of Aminotransferase Activity

    NASA Astrophysics Data System (ADS)

    Yan, Xin; Li, Xin; Zhang, Chengsen; Xu, Yang; Cooks, R. Graham

    2017-06-01

    A change in enzyme activity has been used as a clinical biomarker for diagnosis and is useful in evaluating patient prognosis. Current laboratory measurements of enzyme activity involve multi-step derivatization of the reaction products followed by quantitative analysis of these derivatives. This study simplified the reaction systems by using only the target enzymatic reaction and directly detecting its product. A protocol using paper spray mass spectrometry for identifying and quantifying the reaction product has been developed. Evaluation of the activity of aspartate aminotransferase (AST) was chosen as a proof-of-principle. The volume of sample needed is greatly reduced compared with the traditional method. Paper spray has a desalting effect that avoids sprayer clogging problems seen when examining serum samples by nanoESI. This very simple method does not require sample pretreatment and additional derivatization reactions, yet it gives high quality kinetic data, excellent limits of detection (60 ppb from serum), and coefficients of variation <10% in quantitation. [Figure not available: see fulltext.

  15. Accurate mass measurement by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. II. Measurement of negative radical ions using porphyrin and fullerene standard reference materials.

    PubMed

    Shao, Zhecheng; Wyatt, Mark F; Stein, Bridget K; Brenton, A Gareth

    2010-10-30

    A method for the accurate mass measurement of negative radical ions by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) is described. This is an extension to our previously described method for the accurate mass measurement of positive radical ions (Griffiths NW, Wyatt MF, Kean SD, Graham AE, Stein BK, Brenton AG. Rapid Commun. Mass Spectrom. 2010; 24: 1629). The porphyrin standard reference materials (SRMs) developed for positive mode measurements cannot be observed in negative ion mode, so fullerene and fluorinated porphyrin compounds were identified as effective SRMs. The method is of immediate practical use for the accurate mass measurement of functionalised fullerenes, for which negative ion MALDI-TOFMS is the principal mass spectrometry characterisation technique. This was demonstrated by the accurate mass measurement of six functionalised C(60) compounds. Copyright © 2010 John Wiley & Sons, Ltd.

  16. Some gamma-ray shielding measurements made at altitudes greater than 115000 feet using large Ge(Li) detectors

    NASA Technical Reports Server (NTRS)

    Chapman, G. T.; Cumby, R. P.; Gibbons, J. H.; Macklin, R. L.; Parker, H. W.

    1972-01-01

    A series of balloon-flight experiments at altitudes greater than 115,000 feet were conducted to gain information relative to the use of composite shields (passive and/or active) for shielding large-volume, lithium-drifted, germanium (Ge(Li)) detectors used in gamma-ray spectrometers. Data showing the pulse-height spectra of the environmental gamma radiation as measured at 5.3 and 3.8 gms sq cm residual atmosphere with an unshielded diode detector are also presented.

  17. Comparison of modeled and measured performance of a GSO crystal as gamma detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parno, Diana Syemour; Friend, Megan Lynn; Mamyan, Vahe

    2013-11-01

    We have modeled, tested, and installed a large, cerium-activated Gd{sub 2}SiO{sub 5} crystal scintillator for use as a detector of gamma rays. We present the measured detector response to two types of incident photons: nearly monochromatic photons up to 40 MeV, and photons from a continuous Compton backscattering spectrum up to 200 MeV. Our GEANT4 simulations, developed to determine the analyzing power of the Compton polarimeter in Hall A of Jefferson Lab, reproduce the measured spectra well.

  18. Analytical Validation of Accelerator Mass Spectrometry for Pharmaceutical Development: the Measurement of Carbon-14 Isotope Ratio.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keck, B D; Ognibene, T; Vogel, J S

    2010-02-05

    Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of {sup 14}C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of anymore » separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of {sup 14}C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the {sup 14}C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with {sup 14}C corresponds to 30

  19. Impact of Image Noise on Gamma Index Calculation

    NASA Astrophysics Data System (ADS)

    Chen, M.; Mo, X.; Parnell, D.; Olivera, G.; Galmarini, D.; Lu, W.

    2014-03-01

    Purpose: The Gamma Index defines an asymmetric metric between the evaluated image and the reference image. It provides a quantitative comparison that can be used to indicate sample-wised pass/fail on the agreement of the two images. The Gamma passing/failing rate has become an important clinical evaluation tool. However, the presence of noise in the evaluated and/or reference images may change the Gamma Index, hence the passing/failing rate, and further, clinical decisions. In this work, we systematically studied the impact of the image noise on the Gamma Index calculation. Methods: We used both analytic formulation and numerical calculations in our study. The numerical calculations included simulations and clinical images. Three different noise scenarios were studied in simulations: noise in reference images only, in evaluated images only, and in both. Both white and spatially correlated noises of various magnitudes were simulated. For clinical images of various noise levels, the Gamma Index of measurement against calculation, calculation against measurement, and measurement against measurement, were evaluated. Results: Numerical calculations for both the simulation and clinical data agreed with the analytic formulations, and the clinical data agreed with the simulations. For the Gamma Index of measurement against calculation, its distribution has an increased mean and an increased standard deviation as the noise increases. On the contrary, for the Gamma index of calculation against measurement, its distribution has a decreased mean and stabilized standard deviation as the noise increases. White noise has greater impact on the Gamma Index than spatially correlated noise. Conclusions: The noise has significant impact on the Gamma Index calculation and the impact is asymmetric. The Gamma Index should be reported along with the noise levels in both reference and evaluated images. Reporting of the Gamma Index with switched roles of the images as reference and

  20. Comparison of Radionuclide Ratios in Atmospheric Nuclear Explosions and Nuclear Releases from Chernobyl and Fukushima seen in Gamma Ray Spectormetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friese, Judah I.; Kephart, Rosara F.; Lucas, Dawn D.

    2013-05-01

    The Comprehensive Nuclear Test Ban Treaty (CTBT) has remote radionuclide monitoring followed by an On Site Inspection (OSI) to clarify the nature of a suspect event. An important aspect of radionuclide measurements on site is the discrimination of other potential sources of similar radionuclides such as reactor accidents or medical isotope production. The Chernobyl and Fukushima nuclear reactor disasters offer two different reactor source term environmental inputs that can be compared against historical measurements of nuclear explosions. The comparison of whole-sample gamma spectrometry measurements from these three events and the analysis of similarities and differences are presented. This analysis ismore » a step toward confirming what is needed for measurements during an OSI under the auspices of the Comprehensive Test Ban Treaty.« less

  1. Hafnia-based resistive switching devices for non-volatile memory applications and effects of gamma irradiation on device performance

    NASA Astrophysics Data System (ADS)

    Arun, N.; Kumar, K. Vinod; Pathak, A. P.; Avasthi, D. K.; Nageswara Rao, S. V. S.

    2018-04-01

    Non-volatile memory (NVM) devices were fabricated as a Metal- Insulator-Metal (MIM) structures by sandwiching Hafnium dioxide (HfO2) thin film in between two metal electrodes. The top and bottom metal electrodes were deposited by using the thermal evaporation, and the oxide layer was deposited by using the RF magnetron sputtering technique. The Resistive Random Access Memory (RRAM) device structures such as Ag/HfO2/Au/Si were fabricated and I-V characteristics for the pristine and gamma-irradiated devices with a dose 24 kGy were measured. Further we have studied the thermal annealing effects, in the range of 100°-400°C in a tubular furnace for the HfO2/Au/Si samples. The X-ray diffraction (XRD), Rutherford Backscattering Spectrometry (RBS), field emission-scanning electron microscopy (FESEM) analysis measurements were performed to determine the thickness, crystallinity and stoichiometry of these films. The electrical characteristics such as resistive switching, endurance, retention time and switching speed were measured by a semiconductor device analyser. The effects of gamma irradiation on the switching properties of these RRAM devices have been studied.

  2. Enrichment Meter Dataset from High-Resolution Gamma Spectroscopy Measurements of U3O8 Enrichment Standards and UF6 Cylinder Wall Equivalents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholson, Andrew D.; Croft, Stephen; Shephard, Adam M.

    2015-12-01

    The Enrichment Meter Principle (EMP) is the basis for a commonly used standard test method for the non-destructive assay of 235U enrichment in bulk compounds [1]. The technique involves determining the net count rate in the direct 186 keV peak using medium or high energy gamma-ray spectrometry in a fixed geometry. With suitable correction for wall attenuation, compound type, rate loss (live time), and peaked background (if significant), the atom fraction of 235U may be obtained from the counting rate from a linear relationship through the origin. The widespread use of this method for field verification of enrichment [2,3] togethermore » with the fact that the response function rests on fundamental physics considerations (i.e., is not represented by a convenient but arbitrary form) makes it an interesting example of uncertainty quantification, one in which one can expect a valid measurement model can be applied. When applied using NaI(Tl) and region of interest analysis, the technique is susceptible to both interference error and bias [2-4]. When implemented using high-resolution gamma-ray spectroscopy, the spectrum interpretation is considerable simplified and more robust [5]. However, a practical challenge to studying the uncertainty budget of the EMP method (for example, to test linearity, extract wall corrections and so forth using modern methods) is the availability of quality experimental data that can be referenced and shared. To fill this gap, the research team undertook an experimental campaign [6]. A measurement campaign was conducted to produce high-resolution gamma spectroscopy enrichment meter data comparable to UF 6 cylinder measurements. The purpose of this report is to provide both an introduction to and quality assurance (QA) of the raw data produced. This report is intended for the analyst or researcher who uses the raw data. Unfortunately, the raw data (i.e., the spectra files) are too voluminous to include in this report but can be requested

  3. Z{gamma}{gamma}{gamma} {yields} 0 Processes in SANC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardin, D. Yu., E-mail: bardin@nu.jinr.ru; Kalinovskaya, L. V., E-mail: kalinov@nu.jinr.ru; Uglov, E. D., E-mail: corner@nu.jinr.ru

    2013-11-15

    We describe the analytic and numerical evaluation of the {gamma}{gamma} {yields} {gamma}Z process cross section and the Z {yields} {gamma}{gamma}{gamma} decay rate within the SANC system multi-channel approach at the one-loop accuracy level with all masses taken into account. The corresponding package for numeric calculations is presented. For checking of the results' correctness we make a comparison with the other independent calculations.

  4. Measurement of the terrestrial and anthropogenic radionuclide concentrations in Bafra Kizilirmak delta (bird sanctuary) in Turkey.

    PubMed

    Mutuk, Halil; Gümüs, Hasan; Turhan, Seref

    2014-01-01

    In this study, the activity concentrations of terrestrial and anthropogenic radionuclides in the soil samples collected from Bafra Kızılırmak Delta were measured by using gamma spectrometry with an NaI(Tl) detector. The average values of activity concentrations of (238)U, (232)Th and (40)K were found to be 37.2±2.8, 33.7±3.1 and 413.0±59.8 Bq kg(-1), respectively. (137)Cs was also measured in some samples. It has a mean value of 13.8±1.0 Bq kg(-1). From the activity concentrations, the absorbed gamma dose rates in outdoor and the corresponding annual effective dose rates and external hazard index (Hex) were estimated.

  5. Sneaky Gamma-Rays: Using Gravitational Lensing to Avoid Gamma-Gamma-Absorption

    NASA Astrophysics Data System (ADS)

    Boettcher, Markus; Barnacka, Anna

    2014-08-01

    It has recently been suggested that gravitational lensing studies of gamma-ray blazars might be a promising avenue to probe the location of the gamma-ray emitting region in blazars. Motivated by these prospects, we have investigated potential gamma-gamma absorption signatures of intervening lenses in the very-high-energy gamma-ray emission from lensedblazars. We considered intervening galaxies and individual stars within these galaxies. We find that the collective radiation field of galaxies acting as sources of macrolensing are not expected to lead to significant gamma-gamma absorption. Individual stars within intervening galaxies could, in principle, cause a significant opacity to gamma-gamma absorption for VHE gamma-rays if the impact parameter (the distance of closest approach of the gamma-ray to the center of the star) is small enough. However, we find that the curvature of the photon path due to gravitational lensing will cause gamma-ray photons to maintain a sufficiently large distance from such stars to avoid significant gamma-gamma absorption. This re-inforces the prospect of gravitational-lensing studies of gamma-ray blazars without interference due to gamma-gamma absorption due to the lensing objects.

  6. Measurement of 222Rn and 220Rn exhalation rate from soil samples of Kumaun Hills, India

    NASA Astrophysics Data System (ADS)

    Semwal, Poonam; Singh, Kuldeep; Agarwal, T. K.; Joshi, Manish; Pant, Preeti; Kandari, Tushar; Ramola, R. C.

    2018-03-01

    The source terms, i.e., exhalation and emanation from soil and building materials are the primary contributors to the radon (222Rn)/thoron (220Rn) concentration levels in the dwellings, while the ecological constraints like ventilation rate, temperature, pressure, humidity, etc., are the influencing factors. The present study is focused on Almora District of Kumaun, located in Himalayan belt of Uttarakhand, India. For the measurement of 222Rn and 220Rn exhalation rates, 24 soil samples were collected from different locations. Gamma radiation level was measured at each of these locations. Chamber technique associated with Smart Rn Duo portable monitor was employed for the estimation of 222Rn and 220Rn exhalation rates. Radionuclides (226Ra, 232Th and 40K) concentrations were also measured in soil samples using NaI(Tl) scintillation based gamma ray spectrometry. The mass exhalation rate for 222Rn was varying between 16 and 54 mBq/kg/h, while the 220Rn surface exhalation rate was in the range of 0.65-6.43 Bq/m2/s. Measured gamma dose rate for the same region varied from 0.10 to 0.31 µSv/h. Inter-correlation of exhalation rates and intra-correlation with background gamma levels were studied.

  7. 102Pd(n, {gamma}) Cross Section Measurement Using DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatarik, R.; Alpizar-Vicente, A. M.; Los Alamos National Laboratory, Los Alamos, NM 87545

    2006-03-13

    The neutron capture cross section of the proton rich nucleus 102Pd was measured with the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center. The target was a 2 mg Pd foil with 78% enriched 102Pd. It was held by a 0.9 {mu}m thick Mylar bag which was selected after comparing different thicknesses of Kapton and Mylar for their scattering background. To identify the contribution of the other Pd isotopes the data of a natural Pd sample was compared to the data of the 102Pd enriched sample. A 12C sample was used to determine themore » scattering background. The 102Pd(n, {gamma}) rate is of importance for the p-process nucleosynthesis.« less

  8. Comparison of gamma densitometry and electrical capacitance measurements applied to hold-up prediction of oil–water flow patterns in horizontal and slightly inclined pipes

    NASA Astrophysics Data System (ADS)

    Perera, Kshanthi; Kumara, W. A. S.; Hansen, Fredrik; Mylvaganam, Saba; Time, Rune W.

    2018-06-01

    Measurement techniques are vital for the control and operation of multiphase oil–water flow in pipes. The development of such techniques depends on laboratory experiments involving flow visualization, liquid fraction (‘hold-up’), phase slip and pressure drop measurements. They provide valuable information by revealing the physics, spatial and temporal structures of complex multiphase flow phenomena. This paper presents the hold-up measurement of oil–water flow in pipelines using gamma densitometry and electrical capacitance tomography (ECT) sensors. The experiments were carried out with different pipe inclinations from  ‑5° to  +6° for selected mixture velocities (0.2–1.5 m s‑1), and at selected watercuts (0.05–0.95). Mineral oil (Exxsol D60) and water were used as test fluids. Nine flow patterns were identified including a new pattern called stratified wavy and mixed interface flow. As a third direct method, visual observations and high-speed videos were used for the flow regime and interface identification. ECT and gamma densitometry hold-up measurements show similar trends for changes in pipeline inclinations. Changing the pipe inclination affected the flow mostly at lower mixture velocities and caused a change of flow patterns, allowing the highest change of hold-up. ECT hold-up measurements overpredict the gamma densitometry measurements at higher input water cuts and underpredict at intermediate water cuts. Gamma hold-up results showed good agreement with the literature results, having a maximum deviation of 6%, while it was as high as 22% for ECT in comparison to gamma densitometry. Uncertainty analysis of the measurement techniques was carried out with single-phase oil flow. This shows that the measurement error associated with gamma densitometry is approximately 3.2%, which includes 1.3% statistical error and 2.9% error identified as electromagnetically induced noise in electronics. Thus, gamma densitometry can predict hold

  9. A Gamma Polarimeter for Neutron Polarization Measurement in a Liquid Deuterium Target for Parity Violation in Polarized Neutron Capture on Deuterium.

    PubMed

    Komives, A; Sint, A K; Bowers, M; Snow, M

    2005-01-01

    A measurement of the parity-violating gamma asymmetry in n-D capture would yield information on N-N parity violation independent of the n-p system. Since cold neutrons will depolarize in a liquid deuterium target in which the scattering cross section is much larger than the absorption cross section, it will be necessary to quantify the loss of polarization before capture. One way to do this is to use the large circular polarization of the gamma from n-D capture and analyze the circular polarization of the gamma in a gamma polarimeter. We describe the design of this polarimeter.

  10. Structure determination of 3-O-caffeoyl-epi-gamma-quinide, an orphan bitter lactone in roasted coffee.

    PubMed

    Frank, Oliver; Blumberg, Simone; Krümpel, Gudrun; Hofmann, Thomas

    2008-10-22

    Recent investigations on the bitterness of coffee as well as 5- O-caffeoyl quinic acid roasting mixtures indicated the existence of another, yet unknown, bitter lactone besides the previously identified bitter compounds 5- O-caffeoyl- muco-gamma-quinide, 3- O-caffeoyl-gamma-quinide, 4- O-caffeoyl- muco-gamma-quinide, 5- O-caffeoyl- epi-delta-quinide, and 4- O-caffeoyl-gamma-quinide. In the present study, this orphan bitter lactone was isolated from the reaction products generated by dry heating of 5- O-caffeoylquinic acid model, and its structure was determined as the previously unreported 3- O-caffeoyl- epi-gamma-quinide by means of liquid chromatography-mass spectrometry (LC-MS) and one-/two-dimensional NMR experiments. The occurrence of this bitter lactone, exhibiting a low bitter recognition threshold of 58 micromol/L, in coffee beverages could be confirmed by LC-MS/MS (negative electrospray ionization) operating in the multiple reaction monitoring mode.

  11. Use of carborne measured gamma-ray K/Th ratio for estimation of texture at different field sites across Europe

    NASA Astrophysics Data System (ADS)

    Dierke, C.; Werban, U.; Dietrich, P.

    2011-12-01

    In the past gamma-ray measurements were used for geological survey from aircraft and in borehole logging for deposit exploration and geological survey. For these applications the relationships between the physical measured parameter - the concentration of natural gamma emitter 40K, 238U and 232Th - and geological origin or sedimentary developments are described well. Based on these applications and knowledge in combination with adjusted sensor systems, gamma-ray measurements seem to be also a useful and fast tool for soil characterization. The measured isotope concentration in soils depends on different soil parameters, which are the result of composition and properties of parent rock and processes during soil geneses under different climatic conditions. Grain size distribution, type of clay minerals and organic matter are soil parameters which influence the gamma-ray concentration directly. Many applications of gamma-ray measurements for soil characterisation and digital soil mapping (DSM) are known from e.g. Australia and during the last years there are attempts to use that method in Europe as well. One main influencing factor for nuclide concentration in soils is the grain size. Megumi (1977) found with decreasing particle size an increase in nuclide concentration, which can be explained by higher specific surface and resulting higher surface adsorption for smaller particles. We did systematic measurements at different field sites across Central Europe to investigate the relationship between concentration of gamma emitter and the grain size distribution of top soil. For the measurements we choose field sites with different pedogenesis and range in clay content. For survey we used a 4l NaI(Tl) detector, which is mounted on a sledge an can be towed by a four-wheel-vehicle across the agricultural used field sites. The measured nuclide concentrations were compared with grain size distribution data of fine soil (< 2 mm). For interpretation we used single nuclide

  12. Deposition of gamma emitters from Chernobyl accident and their transfer in lichen-soil columns.

    PubMed

    Lehto, Jukka; Paatero, Jussi; Pehrman, Reijo; Kulmala, Seija; Suksi, Juhani; Koivula, Teija; Jaakkola, Timo

    2008-10-01

    Lichen-soil column samples were taken from several locations in the Southern Finland between 1986 and 2006. Columns were divided into three parts, upper lichen, lower lichen and underlying soil, and their gamma emitting radionuclides, 134Cs, 137Cs, 103Ru, 95Zr, 106Ru, 110mAg, 125Sb and 144Ce, were measured with gamma spectrometry. Deposition values were calculated as Bq/m2 for each sampling site. Distribution of various radionuclides in the three compartments as a function of time was determined. Both effective and ecological half-lives of all radionuclides were calculated for upper lichen, whole lichen and whole lichen-soil column. A linear relation was derived between the physical half-lives and effective half-lives for whole lichen and for whole lichen-soil column. Reindeer meat activity concentrations of various radionuclides and ensuing radiation doses to reindeer-herding people were also estimated for a hypothetical case where a similar high radioactive pollution, as was taken place in the Southern Finland, would have occurred in the reindeer-herding areas in the Finnish Lapland.

  13. System of Programmed Modules for Measuring Photographs with a Gamma-Telescope

    NASA Technical Reports Server (NTRS)

    Averin, S. A.; Veselova, G. V.; Navasardyan, G. V.

    1978-01-01

    Physical experiments using tracking cameras resulted in hundreds of thousands of stereo photographs of events being received. To process such a large volume of information, automatic and semiautomatic measuring systems are required. At the Institute of Space Research of the Academy of Science of the USSR, a system for processing film information from the spark gamma-telescope was developed. The system is based on a BPS-75 projector in line with the minicomputer Elektronika 1001. The report describes this system. The various computer programs available to the operators are discussed.

  14. TL detectors for gamma ray dose measurements in criticality accidents.

    PubMed

    Miljanić, Saveta; Zorko, Benjamin; Gregori, Beatriz; Knezević, Zeljka

    2007-01-01

    Determination of gamma ray dose in mixed neutron+gamma ray fields is still a demanding task. Dosemeters used for gamma ray dosimetry are usually in some extent sensitive to neutrons and their response variations depend on neutron energy i.e., on neutron spectra. Besides, it is necessary to take into account the energy dependence of dosemeter responses to gamma rays. In this work, several types of thermoluminescent detectors (TLD) placed in different holders used for gamma ray dose determination in the mixed fields were examined. Dosemeters were from three different institutions: Ruder Bosković Institute (RBI), Croatia, JoZef Stefan Institute (JSI), Slovenia and Autoridad Regulatoria Nuclear (ARN), Argentina. All dosemeters were irradiated during the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002. Three accidental scenarios were reproduced and in each irradiation the dosemeters were exposed placed on the front of phantom and 'free in air'. Following types of TLDs were used: 7LiF (TLD-700), CaF2:Mn and Al2O3:Mg,Y-all from RBI; CaF2:Mn from JSI and 7LiF (TLD-700) from ARN. Reported doses were compared with the reference values as well as with the values obtained from the results of all participants. The results show satisfactory agreement with other dosimetry systems used in the Intercomparison. The influence of different types of holders and applied corrections of dosemeters' readings are discussed.

  15. Observation of gamma ray bursts and flares by the EGRET telescope on the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Schneid, E. J.; Bertsch, D. L.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Kwok, P. W.; Mattox, J. R.; Sreekumar, P.; Thompson, D. J.; Kanbach, G.

    1992-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory has observed energetic gamma ray bursts and flares. On May 3, 1991, EGRET detected a gamma ray burst both in the energy measuring NaI (Tl) scintillator and independently in the spark chamber imaging assembly. The NaI spectra were accumulated by a special BURST mode of EGRET. The spectra were measured over a range from 1 to 200 MeV, in three sequential spectra of 1,2, and 4 seconds. During the peak of the burst, six individual gamma rays were detected in the spark chamber, allowing a determination of the burst arrival direction. The intense flares of June were also detected. A solar flare on June 4 was observed to last for several minutes and for a brief time, less than a minute, had significant emission of gamma rays exceeding 150 MeV.

  16. First results of electron temperature measurements by the use of multi-pass Thomson scattering system in GAMMA 10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshikawa, M., E-mail: yosikawa@prc.tsukuba.ac.jp; Nagasu, K.; Shimamura, Y.

    2014-11-15

    A multi-pass Thomson scattering (TS) has the advantage of enhancing scattered signals. We constructed a multi-pass TS system for a polarisation-based system and an image relaying system modelled on the GAMMA 10 TS system. We undertook Raman scattering experiments both for the multi-pass setting and for checking the optical components. Moreover, we applied the system to the electron temperature measurements in the GAMMA 10 plasma for the first time. The integrated scattering signal was magnified by approximately three times by using the multi-pass TS system with four passes. The electron temperature measurement accuracy is improved by using this multi-pass system.

  17. First results of electron temperature measurements by the use of multi-pass Thomson scattering system in GAMMA 10.

    PubMed

    Yoshikawa, M; Yasuhara, R; Nagasu, K; Shimamura, Y; Shima, Y; Kohagura, J; Sakamoto, M; Nakashima, Y; Imai, T; Ichimura, M; Yamada, I; Funaba, H; Kawahata, K; Minami, T

    2014-11-01

    A multi-pass Thomson scattering (TS) has the advantage of enhancing scattered signals. We constructed a multi-pass TS system for a polarisation-based system and an image relaying system modelled on the GAMMA 10 TS system. We undertook Raman scattering experiments both for the multi-pass setting and for checking the optical components. Moreover, we applied the system to the electron temperature measurements in the GAMMA 10 plasma for the first time. The integrated scattering signal was magnified by approximately three times by using the multi-pass TS system with four passes. The electron temperature measurement accuracy is improved by using this multi-pass system.

  18. Kosmos 856 and Kosmos 914 measurements of high-energy diffuse gamma rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinkin, L.F.; Nagornykh, Y.I.

    1982-09-01

    The measurements by the Kosmos 856 and Kosmos 914 satellites of diffuse cosmic ..gamma.. rays with photon energies above 100 MeV are discussed. Integrated energy spectra for the 100--4000 MeV energy range are given for galactic lattitudes Vertical BarbVertical Bar< or =30/sup 0/ and Vertical BarbVertical Bar>30/sup 0/. The form of the spectra suggests that at high lattitudes there may still be some contribution from the galactic component.

  19. Monte Carlo simulation of gamma-ray interactions in an over-square high-purity germanium detector for in-vivo measurements

    NASA Astrophysics Data System (ADS)

    Saizu, Mirela Angela

    2016-09-01

    The developments of high-purity germanium detectors match very well the requirements of the in-vivo human body measurements regarding the gamma energy ranges of the radionuclides intended to be measured, the shape of the extended radioactive sources, and the measurement geometries. The Whole Body Counter (WBC) from IFIN-HH is based on an “over-square” high-purity germanium detector (HPGe) to perform accurate measurements of the incorporated radionuclides emitting X and gamma rays in the energy range of 10 keV-1500 keV, under conditions of good shielding, suitable collimation, and calibration. As an alternative to the experimental efficiency calibration method consisting of using reference calibration sources with gamma energy lines that cover all the considered energy range, it is proposed to use the Monte Carlo method for the efficiency calibration of the WBC using the radiation transport code MCNP5. The HPGe detector was modelled and the gamma energy lines of 241Am, 57Co, 133Ba, 137Cs, 60Co, and 152Eu were simulated in order to obtain the virtual efficiency calibration curve of the WBC. The Monte Carlo method was validated by comparing the simulated results with the experimental measurements using point-like sources. For their optimum matching, the impact of the variation of the front dead layer thickness and of the detector photon absorbing layers materials on the HPGe detector efficiency was studied, and the detector’s model was refined. In order to perform the WBC efficiency calibration for realistic people monitoring, more numerical calculations were generated simulating extended sources of specific shape according to the standard man characteristics.

  20. Effects of Correlated and Uncorrelated Gamma Rays on Neutron Multiplicity Counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowles, Christian C.; Behling, Richard S.; Imel, George R.

    Neutron multiplicity counting relies on time correlation between neutron events to assay the fissile mass, (α,n) to spontaneous fission neutron ratio, and neutron self-multiplication of samples. Gamma-ray sensitive neutron multiplicity counters may misidentify gamma rays as neutrons and therefore miscalculate sample characteristics. Time correlated and uncorrelated gamma-ray-like signals were added into gamma-ray free neutron multiplicity counter data to examine the effects of gamma ray signals being misidentified as neutron signals on assaying sample characteristics. Multiplicity counter measurements with and without gamma-ray-like signals were compared to determine the assay error associated with gamma-ray-like signals at various gamma-ray and neutron rates. Correlatedmore » and uncorrelated gamma-ray signals each produced consistent but different measurement errors. Correlated gamma-ray signals most strongly led to fissile mass overestimates, whereas uncorrelated gamma-ray signals most strongly lead to (α,n) neutron overestimates. Gamma-ray sensitive neutron multiplicity counters may be able to account for the effects of gamma-rays on measurements to mitigate measurement uncertainties.« less

  1. Differential sensitivity of Chironomus and human hemoglobin to gamma radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaikwad, Pallavi S.; Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085; Panicker, Lata

    Chironomus ramosus is known to tolerate high doses of gamma radiation exposure. Larvae of this insect possess more than 95% of hemoglobin (Hb) in its circulatory hemolymph. This is a comparative study to see effect of gamma radiation on Hb of Chironomus and humans, two evolutionarily diverse organisms one having extracellular and the other intracellular Hb respectively. Stability and integrity of Chironomus and human Hb to gamma radiation was compared using biophysical techniques like Dynamic Light Scattering (DLS), UV-visible spectroscopy, fluorescence spectrometry and CD spectroscopy after exposure of whole larvae, larval hemolymph, human peripheral blood, purified Chironomus and human Hb.more » Sequence- and structure-based bioinformatics methods were used to analyze the sequence and structural similarities or differences in the heme pockets of respective Hbs. Resistivity of Chironomus Hb to gamma radiation is remarkably higher than human Hb. Human Hb exhibited loss of heme iron at a relatively low dose of gamma radiation exposure as compared to Chironomus Hb. Unlike human Hb, the heme pocket of Chironomus Hb is rich in aromatic amino acids. Higher hydophobicity around heme pocket confers stability of Chironomus Hb compared to human Hb. Previously reported gamma radiation tolerance of Chironomus can be largely attributed to its evolutionarily ancient form of extracellular Hb as evident from the present study. -- Highlights: •Comparison of radiation tolerant Chironomus Hb and radiation sensitive Human Hb. •Amino acid composition of midge and human heme confer differential hydrophobicity. •Heme pocket of evolutionarily ancient midge Hb provide gamma radiation resistivity.« less

  2. Mass spectrometry of long-lived radionuclides

    NASA Astrophysics Data System (ADS)

    Becker, Johanna Sabine

    2003-10-01

    The capability of determining element concentrations at the trace and ultratrace level and isotope ratios is a main feature of inorganic mass spectrometry. The precise and accurate determination of isotope ratios of long-lived natural and artificial radionuclides is required, e.g. for their environmental monitoring and health control, for studying radionuclide migration, for age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, for quality assurance and determination of the burn-up of fuel material in a nuclear power plant, for reprocessing plants, nuclear material accounting and radioactive waste control. Inorganic mass spectrometry, especially inductively coupled plasma mass spectrometry (ICP-MS) as the most important inorganic mass spectrometric technique today, possesses excellent sensitivity, precision and good accuracy for isotope ratio measurements and practically no restriction with respect to the ionization potential of the element investigated—therefore, thermal ionization mass spectrometry (TIMS), which has been used as the dominant analytical technique for precise isotope ratio measurements of long-lived radionuclides for many decades, is being replaced increasingly by ICP-MS. In the last few years instrumental progress in improving figures of merit for the determination of isotope ratio measurements of long-lived radionuclides in ICP-MS has been achieved by the application of a multiple ion collector device (MC-ICP-MS) and the introduction of the collision cell interface in order to dissociate disturbing argon-based molecular ions, to reduce the kinetic energy of ions and neutralize the disturbing noble gas ions (e.g. of 129Xe + for the determination of 129I). The review describes the state of the art and the progress of different inorganic mass spectrometric techniques such as ICP-MS, laser ablation ICP-MS vs. TIMS, glow discharge mass spectrometry, secondary ion mass spectrometry, resonance ionization mass

  3. LAFARA: a new underground laboratory in the French Pyrénées for ultra low-level gamma-ray spectrometry.

    PubMed

    van Beek, P; Souhaut, M; Lansard, B; Bourquin, M; Reyss, J-L; von Ballmoos, P; Jean, P

    2013-02-01

    We describe a new underground laboratory, namely LAFARA (for "LAboratoire de mesure des FAibles RAdioactivités"), that was recently created in the French Pyrénées. This laboratory is primarily designed to analyze environmental samples that display low radioactivity levels using gamma-ray spectrometry. Two high-purity germanium detectors were placed under 85 m of rock (ca. 215 m water equivalent) in the tunnel of Ferrières (Ariège, France). The background is thus reduced by a factor of ∼20 in comparison to above-ground laboratories. Both detectors are fully equipped so that the samples can be analyzed in an automatic mode without requiring permanent presence of a technician in the laboratory. Auto-samplers (twenty positions) and systems to fill liquid nitrogen automatically provide one month of autonomy to the spectrometers. The LAFARA facility allows us to develop new applications in the field of environmental sciences based on the use of natural radionuclides present at low levels in the environment. As an illustration, we present two of these applications: i) dating of marine sediments using the decay of (226)Ra in sedimentary barite (BaSO(4)), ii) determination of (227)Ac ((231)Pa) activities in marine sediment cores. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Measurements of {Gamma}(Z{sup O} {yields} b{bar b})/{Gamma}(Z{sup O} {yields} hadrons) using the SLD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, H.A. Jr. II

    1995-07-01

    The quantity R{sub b} = {Gamma}(Z{sup o} {yields}b{bar b})/{Gamma}(Z{sup o} {yields} hadrons) is a sensitive measure of corrections to the Zbb vertex. The precision necessary to observe the top quark mass dependent corrections is close to being achieved. LEP is already observing a 1.8{sigma} deviation from the Standard Model prediction. Knowledge of the top quark mass combined with the observation of deviations from the Standard Model prediction would indicate new physics. Models which include charged Higgs or light SUSY particles yield predictions for R{sub b} appreciably different from the Standard Model. In this thesis two independent methods are used tomore » measure R{sub b}. One uses a general event tag which determines R{sub b} from the rate at which events are tagged as Z{sup o} {yields} b{bar b} in data and the estimated rates at which various flavors of events are tagged from the Monte Carlo. The second method reduces the reliance on the Monte Carlo by separately tagging each hemisphere as containing a b-decay. The rates of single hemisphere tagged events and both hemisphere tagged events are used to determine the tagging efficiency for b-quarks directly from the data thus eliminating the main sources of systematic error present in the event tag. Both measurements take advantage of the unique environment provided by the SLAC Linear Collider (SLC) and the SLAC Large Detector (SLD). From the event tag a result of R{sub b} = 0.230{plus_minus}0.004{sub statistical}{plus_minus}0.013{sub systematic} is obtained. The higher precision hemisphere tag result obtained is R{sub b} = 0.218{plus_minus}0.004{sub statistical}{plus_minus}0.004{sub systematic}{plus_minus}0.003{sub Rc}.« less

  5. Reconstructing the deposition environment and long-term fate of Chernobyl 137Cs at the floodplain scale through mobile gamma spectrometry.

    PubMed

    Varley, Adam; Tyler, Andrew; Bondar, Yuri; Hosseini, Ali; Zabrotski, Viachaslau; Dowdall, Mark

    2018-09-01

    Cs-137 is considered to be the most significant anthropogenic contributor to human dose and presents a particularly difficult remediation challenge after a dispersal following nuclear incident. The Chernobyl Nuclear Power Plant meltdown in April 1986 represents the largest nuclear accident in history and released over 80 PBq of 137 Cs into the environment. As a result, much of the land in close proximity to Chernobyl, which includes the Polessie State Radioecology Reserve in Belarus, remains highly contaminated with 137 Cs to such an extent they remain uninhabitable. Whilst there is a broad scale understanding of the depositional patterns within and beyond the exclusion zone, detailed mapping of the distribution is often limited. New developments in mobile gamma spectrometry provide the opportunity to map the fallout of 137 Cs and begin to reconstruct the depositional environment and the long-term behaviour of 137 Cs in the environment. Here, full gamma spectrum analysis using algorithms based on the peak-valley ratio derived from Monte Carlo simulations are used to estimate the total 137 Cs deposition and its depth distribution in the soil. The results revealed a pattern of 137 Cs distribution consistent with the deposition occurring at a time of flooding, which is validated by review of satellite imagery acquired at similar times of the year. The results were also consistent with systematic burial of the fallout 137 Cs by annual flooding events. These results were validated by sediment cores collected along a transect across the flood plain. The true merit of the approach was confirmed by exposing new insights into the spatial distribution and long term fate of 137 Cs across the floodplain. Such systematic patterns of behaviour are likely to be fundamental to the understanding of the radioecological behaviour of 137 Cs whilst also providing a tracer for quantifying the ecological controls on sediment movement and deposition at a landscape scale. Copyright © 2018

  6. Study of fission fragment de-excitation by gamma-ray spectrometry with the EXILL experiment

    NASA Astrophysics Data System (ADS)

    Materna, Thomas; a, Michal Rapał; Letourneau, Alain; Marchix, Anthony; Litaize, Olivier; Sérot, Olivier; Urban, Waldemar; Blanc, Aurélien; Jentschel, Michael; Köster, Ulli; Mutti, Paolo; Soldner, Torsten; Simpson, Gary; Ur, Călin A.; France, Gilles de

    2017-09-01

    A large array of Ge detectors installed at ILL, around a 235U target irradiated with cold neutrons, (EXILL) allowed measurement of prompt gamma-ray cascades occurring in fission fragments with an unambiguous determination of fragments. Here we present preliminary results of a systematic comparison between experimental γ-ray intensities and those obtained from the Monte-Carlo simulation code FIFRELIN, which is dedicated to the de-excitation of fission fragments. Major γ-ray intensities in the 142Ba and 92Kr fission products, extracted from EXILL data, were compared to FIFRELIN, as well as to reported values (when available) obtained with EUROGAM2 in the spontaneous fission of 248Cm. The evolution of γ-ray intensities in 92Kr versus the complementary partner in fission (i.e. versus the total number of evaporated neutrons by the fission pair) was then extracted and compared to FIFRELIN.

  7. Synthetic Pulse Dilation - PMT Model for high bandwidth gamma measurements

    NASA Astrophysics Data System (ADS)

    Geppert-Kleinrath, H.; Herrmann, H. W.; Kim, Y. H.; Zylstra, A. B.; Meaney, K. D.; Lopez, F. E.; Khater, H.; Horsfield, C. J.; Gales, S.; Leatherland, A.; Hilsabeck, T.; Kilkenny, J. D.; Hares, J. D.; Dymoke-Bradshaw, T.; Milnes, J.

    2017-10-01

    The Cherenkov mechanism used in Gas Cherenkov Detectors (GCD) is exceptionally fast. However, the temporal resolution of GCDs, such as the Gamma Reaction History diagnostic (GRH), is limited by the current state-of-the-art photomultiplier tube (PMT) to 100 ps. The new pulse dilation - PMT (PD-PMT) for NIF allows for a temporal resolution comparable to that of the gas cell, or of 10ps. Enhanced resolution will contribute to the quest for ignition in a crucial way through precision measurement of reaction history and areal density (ρ R) history, leading to better constrained models. Features such as onset of alpha heating, shock reverberations and burn truncation due to dynamically evolving failure modes will become visible for the first time. PD-PMT will be deployed on GCD-3 at NIF in 2018. Our synthetic PD-PMT model evaluates the capabilities of these future measurements, as well as minimum yield requirements for measurements performed in a well at 3.9 m from target chamber center (TCC), and within a diagnostic inserter at 0.2m from TCC.

  8. Is bone mineral density measurement using dual-energy X-ray absorptiometry affected by gamma rays?

    PubMed

    Xie, Liang-Jun; Li, Jian-Fang; Zeng, Feng-Wei; Jiang, Hang; Cheng, Mu-Hua; Chen, Yi

    2013-01-01

    The objective of this study was to determine whether the gamma rays emitted from the radionuclide effect bone mineral density (BMD) measurement. Nine subjects (mean age: 56 ± 17.96 yr) scheduled for bone scanning underwent BMD measurement using dual-energy X-ray absorptiometry (DXA) (Hologic/Discovery A) before and 1, 2, and 4 h after injection of technetium-99m-methylene diphosphonate (99mTc-MDP). Ten subjects (mean age: 41 ± 15.47 yr) scheduled for therapy of differentiated thyroid carcinoma with iodine-131 underwent BMD measurement before and 2 h after therapeutic radionuclide administration. All patients were given whole body BMD measurement, including head, arm, ribs, lumbar spine, pelvis, and leg sites. Besides, patients who referred to radioiodine therapy were given total hip and femoral neck BMD measurement as well. No statistically significant changes in BMD values were detected after 99mTc-MDP and iodine-131 administration for all measurement sites (p > 0.05), and individual difference of BMD before and after radionuclide imaging or therapy was less than the least significant change in lumbar spine, total hip, and femoral neck. In conclusion, BMD measurements are not influenced by the gamma rays emitted from technetium-99m and iodine-131. DXA bone densitometry may be performed simultaneously with bone scanning and radioiodine therapy. Copyright © 2013 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  9. Experimental Determination of the HPGe Spectrometer Efficiency Calibration Curves for Various Sample Geometry for Gamma Energy from 50 keV to 2000 keV

    NASA Astrophysics Data System (ADS)

    Saat, Ahmad; Hamzah, Zaini; Yusop, Mohammad Fariz; Zainal, Muhd Amiruddin

    2010-07-01

    Detection efficiency of a gamma-ray spectrometry system is dependent upon among others, energy, sample and detector geometry, volume and density of the samples. In the present study the efficiency calibration curves of newly acquired (August 2008) HPGe gamma-ray spectrometry system was carried out for four sample container geometries, namely Marinelli beaker, disc, cylindrical beaker and vial, normally used for activity determination of gamma-ray from environmental samples. Calibration standards were prepared by using known amount of analytical grade uranium trioxide ore, homogenized in plain flour into the respective containers. The ore produces gamma-rays of energy ranging from 53 keV to 1001 keV. Analytical grade potassium chloride were prepared to determine detection efficiency of 1460 keV gamma-ray emitted by potassium isotope K-40. Plots of detection efficiency against gamma-ray energy for the four sample geometries were found to fit smoothly to a general form of ɛ = AΕa+BΕb, where ɛ is efficiency, Ε is energy in keV, A, B, a and b are constants that are dependent on the sample geometries. All calibration curves showed the presence of a "knee" at about 180 keV. Comparison between the four geometries showed that the efficiency of Marinelli beaker is higher than cylindrical beaker and vial, while cylindrical disk showed the lowest.

  10. Direct measurement of 235U in spent fuel rods with Gamma-ray mirrors

    NASA Astrophysics Data System (ADS)

    Ruz, J.; Brejnholt, N. F.; Alameda, J. B.; Decker, T. A.; Descalle, M. A.; Fernandez-Perea, M.; Hill, R. M.; Kisner, R. A.; Melin, A. M.; Patton, B. W.; Soufli, R.; Ziock, K.; Pivovaroff, M. J.

    2015-03-01

    Direct measurement of plutonium and uranium X-rays and gamma-rays is a highly desirable non-destructive analysis method for the use in reprocessing fuel environments. The high background and intense radiation from spent fuel make direct measurements difficult to implement since the relatively low activity of uranium and plutonium is masked by the high activity from fission products. To overcome this problem, we make use of a grazing incidence optic to selectively reflect Kα and Kβ fluorescence of Special Nuclear Materials (SNM) into a high-purity position-sensitive germanium detector and obtain their relative ratios.

  11. Improvement of sensitivity in PIGE analysis of steels by neutron-gamma coincidences measurement

    NASA Astrophysics Data System (ADS)

    Ene, Antoaneta

    2004-07-01

    In this work the sensitivities of minor elements in a standard steel sample EURONORM-CRM No. 085-1 irradiated with beams of 5.5 MeV protons and 5 MeV deuterons have been determined both by regular proton- (p-PIGE) and deuteron-induced prompt gamma-ray emission (d-PIGE) methods and with the selection of the (p, n) and (d, n) reaction channels, measuring the neutron-gamma coincidences. A check on the elemental composition of the steel standard has also been carried out using combined INAA and PIXE and quantitative determinations have been done for some elements whose concentrations were not specified by the manufacturer, such as Al, As, Cr, Mo, Na, Ni, W. This complex study has resulted in a significant improvement of the sensitivities for some minor elements in steel by reducing the background and increasing the peak-to-background ratio in the coincident prompt gamma-rays spectra as a result of the elimination of the competing nuclear reactions originating from isotopes of the adjacent elements in the periodic table, present in the steel target. This extension of the PIGE method could be adapted by any analyst with the necessary equipment for the analysis of a wide variety of matrices that are refractory enough to withstand the heating effect of the bombarding beam, taking into account that this type of experiment requires longer irradiation times.

  12. Measurement of the 238U neutron-capture cross section and gamma-emission spectra from 10 eV to 100 keV using the DANCE detector at LANSCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullmann, John L; Couture, A J; Keksis, A L

    2010-01-01

    A careful new measurement of the {sup 238}U(n,{gamma}) cross section from 10 eV to 100 keV has been made using the DANCE detector at LANSCE. DANCE is a 4{pi} calorimetric scintillator array consisting of 160 BaF{sub 2} crystals. Measurements were made on a 48 mg/cm{sup 2} depleted uranium target. The cross sections are in general good agreement with previous measurements. The gamma-ray emission spectra, as a function of gamma multiplicity, were also measured and compared to model calculations.

  13. Measurement of the High-Energy Gamma-Ray Emission from the Moon with the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; hide

    2016-01-01

    We have measured the gamma-ray emission spectrum of the Moon using the data collected by the Large Area Telescope onboard the Fermi satellite during its first seven years of operation, in the energy range from 30 MeV up to a few GeV. We have also studied the time evolution of the flux, finding a correlation with the solar activity. We have developed a full Monte Carlo simulation describing the interactions of cosmic rays with the lunar surface. The results of the present analysis can be explained in the framework of this model, where the production of gamma rays is due to the interactions of cosmic-ray proton and helium nuclei with the surface of the Moon. Finally, we have used our simulation to derive the cosmic-ray proton and helium spectra near Earth from the Moon gamma-ray data.

  14. Continuous and unattended measurements of the site preference of nitrous oxide emitted from an agricultural soil using quantum cascade laser spectrometry with intercomparison with isotope ratio mass spectrometry.

    PubMed

    Yamamoto, Akinori; Uchida, Yoshitaka; Akiyama, Hiroko; Nakajima, Yasuhiro

    2014-07-15

    The difference between the (15)N natural abundance of (14)N-(15)N-O and (15)N-(14)N-O (site preference; SP) is used to understand the mechanisms underlying N2O emissions from soils. We investigated the use of quantum cascade laser (QCL) absorption spectrometry for continuous and precise analysis of the SP of N2O emitted from a field soil at atmospheric mixing ratios. A QCL-based spectrometer was used to determine the SP of soil-emitted N2O accumulated in a closed chamber system without preconcentration. N2O standards (<2500 ppbv) were used to evaluate the precision of the QCL spectrometry (QCLS) system. CO2 and H2O were removed from the gas samples. Intercomparison measurements of QCLS and isotope ratio mass spectrometry (IRMS) were performed on N2O calibration gases at different mixing ratios. The observed dependency of the QCLS result on the N2O mixing ratio was corrected. Measurement of SP of N2O emitted from the field suggested that the SP of N2O varied from 0 to 40‰ over a period of 1 month. The precisions of the SP measurements (300-2500 ppbv) were <1.9‰ for δ(15)N(α) values, <2.6‰ for δ(15)N(β) values, <2.1‰ for δ(15)N(bulk) values, and <2.1‰ for the SP (1 min averaging time) obtained on a once-an-hour calibrated QCLS system, with a cell temperature control precision of ±0.01 K. Continuous and unattended measurements of the SP of N2O emitted from soils were achieved at low N2O mixing ratios. The accuracy of the QCLS measurements for the SP of N2O was significantly improved by precisely controlling the temperature of the system and by correcting for the concentration dependency of the raw data through an intercomparison with IRMS measurements. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Nuclear Forensics: Measurements of Uranium Oxides Using Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS)

    DTIC Science & Technology

    2010-03-01

    Isotope Ratio Analysis of Actinides , Fission Products, and Geolocators by High- efficiency Multi-collector Thermal Ionization Mass Spectrometry...Information, 1999. Hou, Xiaolin, and Per Roos. “ Critical Comparison of radiometric and Mass Spectrometric Methods for the Determination of...NUCLEAR FORENSICS: MEASUREMENTS OF URANIUM OXIDES USING TIME-OF-FLIGHT SECONDARY ION MASS

  16. Measurement of radon/thoron exhalation rates and gamma-ray dose rate in granite areas in Japan.

    PubMed

    Prasad, G; Ishikawa, T; Hosoda, M; Sahoo, S K; Kavasi, N; Sorimachi, A; Tokonami, S; Uchida, S

    2012-11-01

    Radon and thoron exhalation rates and gamma-ray dose rate in different places in Hiroshima Prefecture were measured. Exhalation rates were measured using an accumulation chamber method. The radon exhalation rate was found to vary from 3 to 37 mBq m(-2) s(-1), while the thoron exhalation rate ranged from 40 to 3330 mBq m(-2) s(-1). The highest radon exhalation rate (37 mBq m(-2) s(-1)) and gamma-ray dose rate (92 nGy h(-1)) were found in the same city (Kure City). In Kure City, indoor radon and thoron concentrations were previously measured at nine selected houses using a radon-thoron discriminative detector (Raduet). The indoor radon concentrations varied from 16 to 78 Bq m(-3), which was higher than the average value in Japan (15.5 Bq m(-3)). The indoor thoron concentration ranged from ND (not detected: below a detection limit of approximately 10 Bq m(-3)) to 314 Bq m(-3). The results suggest that radon exhalation rate from the ground is an influential factor for indoor radon concentration.

  17. Status of the GAMMA-400 Project

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Gusakov, Yu. V.; Farber, M. O.; hide

    2013-01-01

    The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV-3 TeV is presented. The angular resolution of the instrument, 1-2 deg at E(gamma) approximately 100 MeV and approximately 0.01 at E(gamma) greater than 100 GeV, its energy resolution is approximately 1% at E(gamma) greater than 100 GeV, and the proton rejection factor is approximately 10(exp 6) are optimized to address a broad range of science topics, such as search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts, as well as high-precision measurements of spectra of cosmic-ray electrons, positrons, and nuclei.

  18. Simultaneous measurement of (n,{gamma}) and (n,fission) cross sections with the DANCE 4{pi} BaF2 array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.

    2006-03-13

    Neutron capture cross section measurements on many of the actinides are complicated by low-energy neutron-induced fission, which competes with neutron capture to varying degrees depending on the nuclide of interest. Measurements of neutron capture on 235U using the Detector for Advanced Neutron Capture Experiments (DANCE) have shown that we can partially resolve capture from fission events based on total photon calorimetry (i.e. total {gamma}-ray energy and {gamma}-ray multiplicity per event). The addition of a fission-tagging detector to the DANCE array will greatly improve our ability to separate these two competing processes so that improved neutron capture and (n,{gamma})/(n,fission) cross sectionmore » ratio measurements can be obtained. The addition of a fission-tagging detector to the DANCE array will also provide a means to study several important issues associated with neutron-induced fission, including (n,fission) cross sections as a function of incident neutron energy, and total energy and multiplicity of prompt fission photons. We have focused on two detector designs with complementary capabilities, a parallel-plate avalanche counter and an array of solar cells.« less

  19. Measurement of the 21Na(p,{gamma})22Mg Reaction with the Dragon Facility at TRIUMF-ISAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, A.A.; Bishop, S.; D'Auria, J.M.

    2003-08-26

    The DRAGON recoil separator facility, designed to measure the rates of radiative proton and alpha capture reactions important for nuclear astrophysics, is now operational at the TRIUMF-ISAC radioactive beam facility in Vancouver, Canada. We report on first measurements of the 21Na(p,{gamma})22Mg reaction rate with radioactive beams of 21Na.

  20. Analytical aspects of hydrogen exchange mass spectrometry

    PubMed Central

    Engen, John R.; Wales, Thomas E.

    2016-01-01

    The analytical aspects of measuring hydrogen exchange by mass spectrometry are reviewed. The nature of analytical selectivity in hydrogen exchange is described followed by review of the analytical tools required to accomplish fragmentation, separation, and the mass spectrometry measurements under restrictive exchange quench conditions. In contrast to analytical quantitation that relies on measurements of peak intensity or area, quantitation in hydrogen exchange mass spectrometry depends on measuring a mass change with respect to an undeuterated or deuterated control, resulting in a value between zero and the maximum amount of deuterium that could be incorporated. Reliable quantitation is a function of experimental fidelity and to achieve high measurement reproducibility, a large number of experimental variables must be controlled during sample preparation and analysis. The method also reports on important qualitative aspects of the sample, including conformational heterogeneity and population dynamics. PMID:26048552

  1. The solar gamma ray and neutron capabilities of COMPTEL on the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Ryan, James M.; Lockwood, John A.

    1989-01-01

    The imaging Compton telescope COMPTEL on the Gamma Ray Observatory (GRO) has unusual spectroscopic capabilities for measuring solar gamma-ray and neutron emission. The launch of the GRO is scheduled for June 1990 near the peak of the sunspot cycle. With a 30 to 40 percent probability for the Sun being in the COMPTEL field-of-view during the sunlit part of an orbit, a large number of flares will be observed above the 800 keV gamma-ray threshold of the telescope. The telescope energy range extends to 30 MeV with high time resolution burst spectra available from 0.1 to 10 MeV. Strong Compton tail suppression of instrumental gamma-ray interactions will facilitate improved spectral analysis of solar flare emissions. In addition, the high signal to noise ratio for neutron detection and measurement will provide new neutron spectroscopic capabilities. Specifically, a flare similar to that of 3 June 1982 will provide spectroscopic data on greater than 1500 individual neutrons, enough to construct an unambiguous spectrum in the energy range of 20 to 200 MeV. Details of the instrument and its response to solar gamma-rays and neutrons will be presented.

  2. Evidence for Direct CP Violation in the Measurement of the Cabibbo-Kobayashi-Maskawa Angle gamma with B-+ to D(*) K(*)-+ Decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    del Amo Sanchez, P.; Lees, J.P.; Poireau, V.

    2011-08-19

    We report the measurement of the Cabibbo-Kobayashi-Maskawa CP-violating angle {gamma} through a Dalitz plot analysis of neutral D meson decays to K{sub S}{sup 0}{pi}{sup +}{pi}{sup -} and K{sub S}{sup 0} K{sup +}K{sup -} produced in the processes B{sup {-+}} {yields} DK{sup {-+}}, B{sup {-+}} {yields} D* K{sup {-+}} with D* {yields} D{pi}{sup 0}, D{gamma}, and B{sup {-+}} {yields} DK*{sup {-+}} with K*{sup {-+}} {yields} K{sub S}{sup 0}{pi}{sup {-+}}, using 468 million B{bar B} pairs collected by the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider at SLAC. We measure {gamma} = (68 {+-} 14 {+-} 4 {+-} 3){supmore » o} (modulo 180{sup o}), where the first error is statistical, the second is the experimental systematic uncertainty and the third reflects the uncertainty in the description of the neutral D decay amplitudes. This result is inconsistent with {gamma} = 0 (no direct CP violation) with a significance of 3.5 standard deviations.« less

  3. Quantitative determination of total cesium in highly active liquid waste by using liquid electrode plasma optical emission spectrometry.

    PubMed

    Do, Van-Khoai; Yamamoto, Masahiko; Taguchi, Shigeo; Takamura, Yuzuru; Surugaya, Naoki; Kuno, Takehiko

    2018-06-01

    A sensitive analytical method for determination of total cesium (Cs) in highly active liquid waste (HALW) by using modified liquid electrode plasma optical emission spectrometry (LEP-OES) is developed in this study. The instrument is modified to measure radioactive samples in a glove box. The effects of important factors, including pulsed voltage sequence and nitric acid concentration, on the emission of Cs are investigated. The limit of detection (LOD) and limit of quantification (LOQ) are 0.005 mg/L and 0.02 mg/L, respectively. The achieved LOD is one order lower than that of recently developed spectroscopic methods using liquid discharge plasma. The developed method is validated by subjecting a simulated HALW sample to inductively coupled plasma mass spectrometry (ICP-MS). The recoveries obtained from a spike-and-recovery test are 96-102%, implying good accuracy. The method is successfully applied to the quantification of Cs in a real HALW sample at the Tokai reprocessing plant in Japan. Apart from dilution and filtration of the HALW sample, no other pre-treatment process is required. The results agree well with the values obtained using gamma spectrometry. The developed method offers a reliable technique for rapid analysis of total Cs in HALW samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Technical Note: Relationships between gamma criteria and action levels: Results of a multicenter audit of gamma agreement index results.

    PubMed

    Crowe, Scott B; Sutherland, Bess; Wilks, Rachael; Seshadri, Venkatakrishnan; Sylvander, Steven; Trapp, Jamie V; Kairn, Tanya

    2016-03-01

    The aim of this work was to use a multicenter audit of modulated radiotherapy quality assurance (QA) data to provide a practical examination of gamma evaluation criteria and action level selection. The use of the gamma evaluation method for patient-specific pretreatment QA is widespread, with most commercial solutions implementing the method. Gamma agreement indices were calculated using the criteria 1%/1 mm, 2%/2 mm, 2%/3 mm, 3%/2 mm, 3%/3 mm, and 5%/3 mm for 1265 pretreatment QA measurements, planned at seven treatment centers, using four different treatment planning systems, delivered using three different delivery systems (intensity-modulated radiation therapy, volumetric-modulated arc therapy, and helical tomotherapy) and measured using three different dose measurement systems. The sensitivity of each pair of gamma criteria was evaluated relative to the gamma agreement indices calculated using 3%/3 mm. A linear relationship was observed for 2%/2 mm, 2%/3 mm, and 3%/2 mm. This result implies that most beams failing at 3%/3 mm would also fail for those criteria, if the action level was adjusted appropriately. Some borderline plans might be passed or failed depending on the relative priority (tighter tolerance) used for dose difference or distance to agreement evaluation. Dosimeter resolution and treatment modality were found to have a smaller effect on the results of QA measurements than the number of dimensions (2D or 3D) over which the gamma evaluation was calculated. This work provides a method (and a large sample of results) for calculating equivalent action levels for different gamma evaluation criteria. This work constitutes a valuable guide for clinical decision making and a means to compare published gamma evaluation results from studies using different evaluation criteria. More generally, the data provided by this work support the recommendation that gamma criteria that specifically prioritize the property of greatest clinical importance for each

  5. Recent Improvement of Measurement Instrumentation to Supervise Nuclear Operations and to Contribute Input Data to 3D Simulation Code - 13289

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahe, Charly; Chabal, Caroline

    2013-07-01

    The CEA has developed many compact characterization tools to follow sensitive operations in a nuclear environment. Usually, these devices are made to carry out radiological inventories, to prepare nuclear interventions or to supervise some special operations. These in situ measurement techniques mainly take place at different stages of clean-up operations and decommissioning projects, but they are also in use to supervise sensitive operations when the nuclear plant is still operating. In addition to this, such tools are often associated with robots to access very highly radioactive areas, and thus can be used in accident situations. Last but not least, themore » radiological data collected can be entered in 3D calculation codes used to simulate the doses absorbed by workers in real time during operations in a nuclear environment. Faced with these ever-greater needs, nuclear measurement instrumentation always has to involve on-going improvement processes. Firstly, this paper will describe the latest developments and results obtained in both gamma and alpha imaging techniques. The gamma camera has been used by the CEA since the 1990's and several changes have made this device more sensitive, more compact and more competitive for nuclear plant operations. It is used to quickly identify hot spots, locating irradiating sources from 50 keV to 1500 keV. Several examples from a wide field of applications will be presented, together with the very latest developments. The alpha camera is a new camera used to see invisible alpha contamination on several kinds of surfaces. The latest results obtained allow real time supervision of a glove box cleaning operation (for {sup 241}Am contamination). The detection principle as well as the main trials and results obtained will be presented. Secondly, this paper will focus on in situ gamma spectrometry methods developed by the CEA with compact gamma spectrometry probes (CdZnTe, LaBr{sub 3}, NaI, etc.). The radiological data collected

  6. Measurement of total-body cobalt-57 vitamin B12 absorption with a gamma camera.

    PubMed

    Cardarelli, J A; Slingerland, D W; Burrows, B A; Miller, A

    1985-08-01

    Previously described techniques for the measurement of the absorption of [57Co]vitamin B12 by total-body counting have required an iron room equipped with scanning or multiple detectors. The present study uses simplifying modifications which make the technique more available and include the use of static geometry, the measurement of body thickness to correct for attenuation, a simple formula to convert the capsule-in-air count to a 100% absorption count, and finally the use of an adequately shielded gamma camera obviating the need of an iron room.

  7. Measurement and simulation of the cross sections for nuclide production in {sup nat}W and {sup 181}Ta targets irradiated with 0.04- to 2.6-GeV protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titarenko, Yu. E., E-mail: Yury.Titarenko@itep.ru; Batyaev, V. F.; Titarenko, A. Yu.

    The cross sections for nuclide production in thin {sup nat}Wand {sup 181}Ta targets irradiated by 0.04-2.6-GeV protons have been measured by direct {gamma} spectrometry using two {gamma} spectrometers with the resolutions of 1.8 and 1.7 keV in the {sup 60}Co 1332-keV {gamma} line. As a result, 1895 yields of radioactive residual product nuclei have been obtained. The {sup 27}Al(p, x){sup 22}Na reaction has been used as a monitor reaction. The experimental data have been compared with the MCNPX (BERTINI, ISABEL), CEM03.02, INCL4.2, INCL4.5, PHITS, and CASCADE07 calculations.

  8. Measurement and simulation of the cross sections for nuclide production in {sup 56}Fe and {sup nat}Cr targets irradiated with 0.04- to 2.6-GeV protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titarenko, Yu. E., E-mail: Yury.Titarenko@itep.ru; Batyaev, V. F.; Titarenko, A. Yu.

    The cross sections for nuclide production in thin {sup 56}Fe and {sup nat}Cr targets irradiated by 0.04-2.6-GeV protons are measured by direct {gamma} spectrometry using two {gamma} spectrometers with the resolutions of 1.8 and 1.7 keV for the {sup 60}Co 1332-keV {gamma} line. As a result, 649 yields of radioactive residual product nuclei have been obtained. The {sup 27}Al(p, x){sup 22}Na reaction has been used as a monitor reaction. The experimental data are compared with the MCNPX (BERTINI, ISABEL), CEM03.02, INCL4.2, INCL4.5, PHITS, and CASCADE07 calculations.

  9. Measurement of the high-energy gamma-ray emission from the Moon with the Fermi Large Area Telescope

    DOE PAGES

    Ackermann, M.; Ajello, M.; Albert, A.; ...

    2016-04-08

    We have measured the gamma-ray emission spectrum of the Moon using the data collected by the Large Area Telescope onboard the Fermi satellite during its first seven years of operation, in the energy range from 30 MeV up to a few GeV. We have also studied the time evolution of the flux, finding a correlation with the solar activity. We have developed a full Monte Carlo simulation describing the interactions of cosmic rays with the lunar surface. The results of the present analysis can be explained in the framework of this model, where the production of gamma rays is duemore » to the interactions of cosmic-ray proton and helium nuclei with the surface of the Moon. Lastly, we have used our simulation to derive the cosmic-ray proton and helium spectra near Earth from the Moon gamma-ray data.« less

  10. A burst of energetic gamma rays. [measured by balloon-borne instruments

    NASA Technical Reports Server (NTRS)

    Koga, R.; Simnett, G.; White, R. S.

    1974-01-01

    A burst of gamma rays with energies greater than 1 MeV occurring on May 14, 1972, at 201247 UT (151247 local time) was detected during a balloon flight from Palestine, Texas, at a float altitude of 4g/sq cm residual atmosphere. The detector was a tank of liquid scintillator 1m x 0.5 m x 15 cm surrounded by a 0.6 cm plastic scintillator in anticoincidence. The signal was 60 standard deviations above a steady background of 600 counts/sec. The flux was 0.12 (+0.07 or -0.04) gamma/sq cm, and the time integrated flux 20(+11 or -7) gamma/sq cm. Only one such event was seen during the 8 hours of observation in the daytime on May 14 and 15. Two sub-flares in H alpha occurred during the burst, but not coincident with the start time. A detector on the Solrad satellite observed X-rays on all channels 2 minutes after the gamma ray start time. This event is similar to three earlier reported events.

  11. The role of ion mobility spectrometry-mass spectrometry in the analysis of protein reference standards.

    PubMed

    Pritchard, Caroline; O'Connor, Gavin; Ashcroft, Alison E

    2013-08-06

    To achieve comparability of measurement results of protein amount of substance content between clinical laboratories, suitable reference materials are required. The impact on measurement comparability of potential differences in the tertiary and quaternary structure of protein reference standards is as yet not well understood. With the use of human growth hormone as a model protein, the potential of ion mobility spectrometry-mass spectrometry as a tool to assess differences in the structure of protein reference materials and their interactions with antibodies has been investigated here.

  12. Measurement of the Shape of the Optical-IR Spectrum of Prompt Emission from Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Grossan, Bruce; Kistaubayev, M.; Smoot, G.; Scherr, L.

    2017-06-01

    While the afterglow phase of gamma-ray bursts (GRBs) has been extensively measured, detections of prompt emission (i.e. during bright X-gamma emission) are more limited. Some prompt optical measurements are regularly made, but these are typically in a single wide band, with limited time resolution, and no measurement of spectral shape. Some models predict a synchrotron self-absorption spectral break somewhere in the IR-optical region. Measurement of the absorption frequency would give extensive information on each burst, including the electron Lorentz factor, the radius of emission, and more (Shen & Zhang 2008). Thus far the best prompt observations have been explained invoking a variety of models, but often with a non-unique interpretation. To understand this apparently heterogeneous behavior, and to reduce the number of possible models, it is critical to add data on the optical - IR spectral shape.Long GRB prompt X-gamma emission typically lasts ~40-80 s. The Swift BAT instrument rapidly measures GRB positions to within a few arc minutes and communicates them via the internet within a few seconds. We have measured the time for a fast-moving D=700 mm telescope to point and settle to be less than 9 s anywhere on the observable sky. Therefore, the majority of prompt optical-IR emission can be measured responding to BAT positions with this telescope. In this presentation, we describe our observing and science programs, and give our design for the Burst Simultaneous Three-channel Instrument (BSTI), which uses dichroics to send eparate bands to 3 cameras. Two EMCCD cameras, give high-time resolution in B and V; a third camera with a HgCdTe sensor covers H band, allowing us to study extinguished bursts. For a total exposure time of 10 s, we find a 5 sigma sensitivity of 21.3 and 20.3 mag in B and R for 1" seeing and Kitt Peak sky brightness, much fainter than typical previous prompt detections. We estimate 5 sigma H-band sensitivity for an IR optimized telescope to be

  13. A novel method for the activity measurement of large-area beta reference sources.

    PubMed

    Stanga, D; De Felice, P; Keightley, J; Capogni, M; Ioan, M R

    2016-03-01

    A novel method has been developed for the activity measurement of large-area beta reference sources. It makes use of two emission rate measurements and is based on the weak dependence between the source activity and the activity distribution for a given value of transmission coefficient. The method was checked experimentally by measuring the activity of two ((60)Co and (137)Cs) large-area reference sources constructed from anodized aluminum foils. Measurement results were compared with the activity values measured by gamma spectrometry. For each source, they agree within one standard uncertainty and also agree within the same limits with the certified values of the source activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Development of Helium-Mass-Spectrometry-Permeameter for the Measurement of Permeability of Near-Impermeable Rock

    NASA Astrophysics Data System (ADS)

    Lee, Moo Y.; Bauer, Stephen J.

    2016-12-01

    A helium leakage detection system was modified to measure gas permeability on extracted cores of nearly impermeable rock. The Helium-Mass-Spectrometry-Permeameter (HMSP) is duplicating the classic Darcy's experiment with a constant pressure differential and steady-state flow through a sample using helium gas. Under triaxial stress condition, the newly developed HMSP can measure hydraulic permeability of rocks and geomaterials down to the nanoDarcy scale (10-21 m2). The extension of measuring the lower end of the permeability scale may help answer important questions regarding the permeability of rock at great depth where fractures may close completely under high lithostatic stress.

  15. Comparison of different mass spectrometry techniques in the measurement of L-[ring-13C6]phenylalanine incorporation into mixed muscle proteins

    PubMed Central

    Zabielski, Piotr; Ford, G. Charles; Persson, X. Mai; Jaleel, Abdul; Dewey, Jerry D.; Nair, K Sreekumaran

    2013-01-01

    Precise measurement of low enrichment of stable isotope labeled amino-acid tracers in tissue samples is a prerequisite in measuring tissue protein synthesis rates. The challenge of this analysis is augmented when small sample size is a critical factor. Muscle samples from human participants following an 8 hour intravenous infusion of L-[ring-13C6]phenylalanine and a bolus dose of L-[ring-13C6]phenylalanine in a mouse were utilized. Liquid Chromatography tandem mass spectrometry (LC/MS/MS), Gas Chromatography tandem mass spectrometry (GC/MS/MS) and Gas Chromatography/Mass spectrometry (GC/MS) were compared to the Gas Chromatography-Combustion-Isotope Ratio mass spectrometry (GC/C/IRMS), to measure mixed muscle protein enrichment of [ring13C6]phenylalanine enrichment. The sample isotope enrichment ranged from 0.0091 to 0.1312 Molar Percent excess (MPE). As compared with GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS showed coefficients of determination of R2 = 0.9962 and R2 = 0.9942, and 0.9217 respectively. However, the precision of measurements (coefficients of variation) for intra-assay are 13.0%, 1.7%, 6.3% and 13.5% and for inter-assay are 9.2%, 3.2%, 10.2% and 25% for GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS respectively. The muscle sample sizes required to obtain these results were 8μg, 0.8μg, 3μg and 3μg for GC/C/IRMS, LC/MS/MS, GC/MS/MS, and GC/MS respectively. We conclude that LC/MS/MS is optimally suited for precise measurements of L-[ring-13C6]phenylalanine tracer enrichment in low abundance and in small quantity samples. PMID:23378099

  16. Wetting characteristics and blood clotting on surfaces of copoly(gamma-Benzyl-L-glutamate, gamma-hydroxyethyl-L-glutamine).

    PubMed

    Yano, E; Komai, T; Kawasaki, T; Kaifu, K; Atsuta, T; Kubo, Y; Fujiwara, Y

    1985-09-01

    The film surface of poly(gamma-benzyl-L-glutamate) (PBLG) was modified with 2-aminoethanol to enhance its hydrophilicity. Controlling the reaction conditions of PBLG and 2-aminoethanol, various types of copoly(gamma-benzyl-L-glutamate, gamma-hydroxyethyl-L-glutamine) film surfaces were obtained. Surface free energy (gamma sv), the dispersive component of gamma sv (gamma dsv), the nondispersive component of gamma sv (gamma psv), and the interfacial free energy of polymer surface with water (gamma sw), which were obtained by using the contact angle measurement and calculation method proposed by Andrade et al., were changed remarkably by the aminolysis. The gamma sv value increased after 2 h of aminolysis from 48.2 (PBLG) to 65.3 dyn/cm and gradually increased to around 70 dyn/cm after 12 h reaction. (gamma dsv) and (gamma psv) changed from 31.0 and 17.2 dyn/cm (PBLG) to 26.5 and 44.3 dyn/cm, respectively. These parameters of the material surfaces, modified over 12 h reaction, were found to be similar to those of the surfaces of canine aorta, vein, and human fibrin membrane. Blood clotting times on these polymer surfaces were comparatively longer than on siliconized glass surfaces.

  17. An interlaboratory comparison of bone lead measurements via K-shell X-ray fluorescence spectrometry: validation against inductively coupled plasma mass spectrometry

    PubMed Central

    Bellis, David J.; Todd, Andrew C.

    2012-01-01

    109Cd-based K-shell X-ray fluorescence spectrometry (hereafter, for brevity, XRF) is used, often in epidemiological studies, to perform non-invasive, in vivo measurements of lead in bone. We conducted the first interlaboratory study of XRF via the circulation of nine goat tibiæ in which the mean lead value ranged from 4.0 µg g−1 to 55.3 µg g−1 bone mineral. The test tibiæ were subsequently analyzed via nitric acid digestion followed by lead determination by inductively coupled plasma mass spectrometry (ICP-MS) – along with certified reference materials for bone lead – thus providing measurement traceability to SI units. Analysis of dried bone for lead via nitric acid digestion and ICP-MS yields mass fraction data in units of µg g−1 dry weight. The mean bone lead value based on ICP-MS analysis ranged from 1.8 µg g−1 to 35.8 µg g−1 dry weight. For comparison purposes, XRF-measured Pb values (µg g−1 bone mineral) were converted into the ICP-MS-measured units (µg g−1dry weight bone) by multiplying the former by the average ash fraction from the nine tibiæ. Eight of the XRF systems did not yield a significant bias for any of the nine tibiæ; one system was biased for one of the tibiæ; two systems were biased for two tibiæ; one system was biased for four tibiæ; two systems (813-1 and 804-2) were biased for five tibiæ and one system (801-1) was biased for six of the nine tibiæ. Average bias for the systems (under those particular operating conditions) that were biased for the majority of samples ranged from −2.6 µg g−1 (−15.7%) to 5.1 µg g−1 (30.7%) dry weight bone. All participants now have the ICP-MS data, allowing any corrective actions deemed necessary to be implemented. The ICP-MS data, however, indicated that the lead mass fraction varied considerably with the sampling location within the tibiæ, to the extent of exceeding XRF variability for the higher lead values. Material heterogeneity is an unavoidable reality of

  18. OPERATIONAL CHARACTERISTICS OF THE ARMOUR FISSION GAS GAMMA FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrell, C.W.; McElroy, W.N.

    1958-10-31

    As the reactor power level is changed frequently, the radiation levels in the gamma facility fluctuate. Data are presented to show the power dependency of the gamma dose rate and the manner of growth and decay. Additional data show the dependercy of the equilibrium gamma activity on the foel temperature and total system pressure. The final phase of the work is directed toward determining an average gamma energy by attenuation measurements with various thicknesses of several materials. The neutrou flux associated with the gas phase activity is determined by foil measurement. From the measurements of dose rate and average gammamore » energy, calculations to determine the number of curies of gas phase decay gamma activity per watt of reactor power are presented. (auth)« less

  19. SeHCAT retention values as measured with a collimated and an uncollimated gamma camera: a method comparison study.

    PubMed

    Wright, James W; Lovell, Lesley A; Gemmell, Howard G; McKiddie, Fergus; Staff, Roger T

    2013-07-01

    TauroH-23-(Se) selena-25-homocholic acid retention values are used in the diagnosis of bile acid malabsorption. The standard method for measuring values is with an uncollimated gamma camera, which can create some logistic difficulties, with other background sources of activity, which are irrelevant when a collimator is used, becoming significant. In this study we compare the retention values obtained with a collimated and an uncollimated gamma camera in phantoms and in 23 patients. Bland-Altman plots were created using the data, which showed a mean bias in retention of 0.10% in the phantom study and 0.55% in the patient study between methods. A Wilcoxon signed-rank test with the null hypothesis of zero median difference between uncollimated and collimated methods was not statistically significant to P values less than 0.05 in the patient and phantom studies. In the patient study, on using a fixed boundary of retention (10%) between positive and negative status, the status of one patient was changed from negative (12%) to positive (9%). We conclude that measurement of retention with a collimated gamma camera is similar but not identical to that of uncollimated values. The clinical significance of this shift is unclear, as the threshold of significance and the method of integrating this measure with other clinical factors into management remain unclear.

  20. Measurements of radiological data of some amino acids in the energy range 0.122-1.330MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lokhande, Rajkumar M., E-mail: rajml358@gmail.com; More, Chaitali V.; Surung, Bharat S.

    Radiological parameters such as μ{sub m}, σ{sub t}, σ{sub e}, Z{sub eff} and N{sub eff} of amino acids, namely Lysine (C{sub 6}H{sub 15}N{sub 2}O{sub 2}), Histidine (C{sub 6}H{sub 9}N{sub 3}O{sub 2}) and Arginine (C{sub 6}H{sub 15}N{sub 4}O{sub 2}), were measured using NaI (Tl)-based gamma spectrometry. Radioactive sources used in the study are {sup 57}Co, {sup 133}Ba, {sup 137}Cs, {sup 54}Mn, {sup 60}Co and {sup 22}Na. Gamma ray transmission method in a narrow beam good geometry set up was used in the study. The measured data were compared against XCOM-based data. The agreement is within 2%.

  1. Formation of biologically relevant carboxylic acids during the gamma irradiation of acetic acid

    NASA Technical Reports Server (NTRS)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1976-01-01

    Irradiation of aqueous solutions of acetic acid with gamma rays produced several carboxylic acids in small yield. Their identification was based on the technique of gas chromatography combined with mass spectrometry. Some of these acids are Krebs Cycle intermediates. Their simultaneous formation in experiments simulating the primitive conditions on the earth suggests that metabolic pathways may have had their origin in prebiotic chemical processes.

  2. Self-absorption theory applied to rocket measurements of the nitric oxide (1, 0) gamma band in the daytime thermosphere

    NASA Technical Reports Server (NTRS)

    Eparvier, F. G.; Barth, C. A.

    1992-01-01

    Observations of the UV fluorescent emissions of the NO (1, 0) and (0, 1) gamma bands in the lower-thermospheric dayglow, made with a sounding rocket launched on March 7, 1989 from Poker Flat, Alaska, were analyzed. The resonant (1, 0) gamma band was found to be attenuated below an altitude of about 120 km. A self-absorption model based on Holstein transmission functions was developed for the resonant (1, 0) gamma band under varying conditions of slant column density and temperature and was applied for the conditions of the rocket flight. The results of the model agreed with the measured attenuation of the band, indicating the necessity of including self-absorption theory in the analysis of satellite and rocket limb data of NO.

  3. Integrating ion mobility spectrometry into mass spectrometry-based exposome measurements: what can it add and how far can it go?

    PubMed

    Metz, Thomas O; Baker, Erin S; Schymanski, Emma L; Renslow, Ryan S; Thomas, Dennis G; Causon, Tim J; Webb, Ian K; Hann, Stephan; Smith, Richard D; Teeguarden, Justin G

    2017-01-01

    Measuring the exposome remains a challenge due to the range and number of anthropogenic molecules that are encountered in our daily lives, as well as the complex systemic responses to these exposures. One option for improving the coverage, dynamic range and throughput of measurements is to incorporate ion mobility spectrometry (IMS) into current MS-based analytical methods. The implementation of IMS in exposomics studies will lead to more frequent observations of previously undetected chemicals and metabolites. LC-IMS-MS will provide increased overall measurement dynamic range, resulting in detections of lower abundance molecules. Alternatively, the throughput of IMS-MS alone will provide the opportunity to analyze many thousands of longitudinal samples over lifetimes of exposure, capturing evidence of transitory accumulations of chemicals or metabolites. The volume of data corresponding to these new chemical observations will almost certainly outpace the generation of reference data to enable their confident identification. In this perspective, we briefly review the state-of-the-art in measuring the exposome, and discuss the potential use for IMS-MS and the physico-chemical property of collisional cross section in both exposure assessment and molecular identification.

  4. Integrating ion mobility spectrometry into mass spectrometry-based exposome measurements: what can it add and how far can it go?

    PubMed Central

    Metz, Thomas O; Baker, Erin S; Schymanski, Emma L; Renslow, Ryan S; Thomas, Dennis G; Causon, Tim J; Webb, Ian K; Hann, Stephan; Smith, Richard D; Teeguarden, Justin G

    2017-01-01

    Measuring the exposome remains a challenge due to the range and number of anthropogenic molecules that are encountered in our daily lives, as well as the complex systemic responses to these exposures. One option for improving the coverage, dynamic range and throughput of measurements is to incorporate ion mobility spectrometry (IMS) into current MS-based analytical methods. The implementation of IMS in exposomics studies will lead to more frequent observations of previously undetected chemicals and metabolites. LC-IMS-MS will provide increased overall measurement dynamic range, resulting in detections of lower abundance molecules. Alternatively, the throughput of IMS-MS alone will provide the opportunity to analyze many thousands of longitudinal samples over lifetimes of exposure, capturing evidence of transitory accumulations of chemicals or metabolites. The volume of data corresponding to these new chemical observations will almost certainly outpace the generation of reference data to enable their confident identification. In this perspective, we briefly review the state-of-the-art in measuring the exposome, and discuss the potential use for IMS-MS and the physico-chemical property of collisional cross section in both exposure assessment and molecular identification. PMID:27921453

  5. Gamma-emitting radionuclides in the shallow marine sediments off the Sindh coast, Arabian Sea.

    PubMed

    Akram, M; Qureshi, Riffat M; Ahmad, Nasir; Solaija, Tariq Jamal

    2006-01-01

    Determination of gamma emitting radionuclides in shallow marine sediments off the Sindh coast has been carried out using a gamma spectrometry technique. The activity concentration measured in various sediment samples off the Sindh coast has been found to vary from 15.93 +/- 5.22 to 30.53 +/- 4.70 Bq kg(-1) for 226Ra, from 11.72 +/- 1.22 to 33.94 +/- 1.86 Bq kg(-1) for 228Ra and from 295.22 +/- 32.83 to 748.47 +/- 28.75 Bq kg(-1) for 40K. The calculated mean values of radium equivalent activity, absorbed dose rate and effective dose are 98 Bq kg(-1), 49 nGy h(-1) and 0.06 mSv y(-1), respectively. No artificial radionuclide was detected in the samples measured from the study area. As no data on radioactivity of the coastal environment of Pakistan are available, the data presented here will serve as baseline information on radionuclide concentration in shallow sea sediments off the Sindh coast. The data will also be useful for tracking pollution inventories from unusual radiological events (if any) in the territorial waters of the study area. Further, the information presented will contribute to modelling of a regional radioactivity database from the perspectives of the International Atomic Energy Agency's Asia-Pacific Marine Radioactivity Database and Global Marine Radioactivity Database.

  6. Gamma-irradiation of malic acid in aqueous solutions. [prebiotic significance

    NASA Technical Reports Server (NTRS)

    Negron-Mendoza, A.; Graff, R. L.; Ponnamperuma, C.

    1980-01-01

    The gamma-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the nonvolatile products. Thin layer chromatography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the gamma-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.

  7. Degradation of trimethoprim by gamma irradiation in the presence of persulfate

    NASA Astrophysics Data System (ADS)

    Zhang, Zhonglei; Yang, Qi; Wang, Jianlong

    2016-10-01

    The degradation and mineralization of trimethoprim (TMP) by gamma irradiation was investigated in the presence of persulfate (PS). The TMP was degraded at initial concentration of 20 mg/L in aqueous solution with addition of 0, 0.5, 1, 1.5, 2 mM persulfate respectively. The effect of pH values (6.5, 7.5 and 8.5) on TMP degradation was also determined. The experimental results showed that the degradation and mineralization of TMP could be significantly enhanced by persulfate at acidic condition (pH=6.5). Several intermediate products generated during gamma irradiation process through hydroxylation, demethylation and cleavage were identified using liquid chromatography with tandem mass spectrometry (HPLC-MS). The degradation pathway of TMP was tentatively proposed based on the identification of intermediate products.

  8. SU-E-I-79: Source Geometry Dependence of Gamma Well-Counter Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Belanger, A; Kijewski, M

    Purpose: To determine the effect of liquid sample volume and geometry on counting efficiency in a gamma well-counter, and to assess the relative contributions of sample geometry and self-attenuation. Gamma wellcounters are standard equipment in clinical and preclinical studies, for measuring patient blood radioactivity and quantifying animal tissue uptake for tracer development and other purposes. Accurate measurements are crucial. Methods: Count rates were measured for aqueous solutions of 99m- Tc at four liquid volume values in a 1-cm-diam tube and at six volume values in a 2.2-cm-diam vial. Total activity was constant for all volumes, and data were corrected formore » decay. Count rates from a point source in air, supported by a filter paper, were measured at seven heights between 1.3 and 5.7 cm from the bottom of a tube. Results: Sample volume effects were larger for the tube than for the vial. For the tube, count efficiency relative to a 1-cc volume ranged from 1.05 at 0.05 cc to 0.84 at 3 cc. For the vial, relative count efficiency ranged from 1.02 at 0.05 cc to 0.87 at 15 cc. For the point source, count efficiency relative to 1.3 cm from the tube bottom ranged from 0.98 at 1.8 cm to 0.34 at 5.7 cm. The relative efficiency of a 3-cc liquid sample in a tube compared to a 1-cc sample is 0.84; the average relative efficiency for the solid sample in air between heights in the tube corresponding to the surfaces of those volumes (1.3 and 4.8 cm) is 0.81, implying that the major contribution to efficiency loss is geometry, rather than attenuation. Conclusion: Volume-dependent correction factors should be used for accurate quantitation radioactive of liquid samples. Solid samples should be positioned at the bottom of the tube for maximum count efficiency.« less

  9. RAPID DETERMINATION OF ACTINIDES IN URINE BY INDUCTIVELY-COUPLED PLASMA MASS SPECTROMETRY AND ALPHA SPECTROMETRY: A HYBRID APPROACH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, S.; Jones, V.

    2009-05-27

    A new rapid separation method that allows separation and preconcentration of actinides in urine samples was developed for the measurement of longer lived actinides by inductively coupled plasma mass spectrometry (ICP-MS) and short-lived actinides by alpha spectrometry; a hybrid approach. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration, if required, is performed using a streamlined calcium phosphate precipitation. Similar technology has been applied to separate actinides prior to measurement by alpha spectrometry, but this new method has been developed with elution reagents now compatible with ICP-MS as well. Purified solutions are splitmore » between ICP-MS and alpha spectrometry so that long- and short-lived actinide isotopes can be measured successfully. The method allows for simultaneous extraction of 24 samples (including QC samples) in less than 3 h. Simultaneous sample preparation can offer significant time savings over sequential sample preparation. For example, sequential sample preparation of 24 samples taking just 15 min each requires 6 h to complete. The simplicity and speed of this new method makes it attractive for radiological emergency response. If preconcentration is applied, the method is applicable to larger sample aliquots for occupational exposures as well. The chemical recoveries are typically greater than 90%, in contrast to other reported methods using flow injection separation techniques for urine samples where plutonium yields were 70-80%. This method allows measurement of both long-lived and short-lived actinide isotopes. 239Pu, 242Pu, 237Np, 243Am, 234U, 235U and 238U were measured by ICP-MS, while 236Pu, 238Pu, 239Pu, 241Am, 243Am and 244Cm were measured by alpha spectrometry. The method can also be adapted so that the separation of uranium isotopes for assay is not required, if uranium assay by direct dilution of the urine sample is preferred

  10. Gamma-ray burster recurrence timescales

    NASA Technical Reports Server (NTRS)

    Schaefer, B. E.; Cline, T. L.

    1984-01-01

    Three optical transients have been found which are associated with gamma-ray bursters (GRBs). The deduced recurrence timescale for these optical transients (tau sub opt) will depend on the minimum brightness for which a flash would be detected. A detailed analysis using all available data of tau sub opt as a function of E(gamma)/E(opt) is given. For flashes similar to those found in the Harvard archives, the best estimate of tau sub opt is 0.74 years, with a 99% confidence interval from 0.23 years to 4.7 years. It is currently unclear whether the optical transients from GRBs also give rise to gamma-ray events. One way to test this association is to measure the recurrence timescale of gamma-ray events tau sub gamma. A total of 210 gamma-ray error boxes were examined and it was found that the number of observed overlaps is not significantly different from the number expected from chance coincidence. This observation can be used to place limits on tau sub gamma for an assumed luminosity function. It was found that tau sub gamma is approx. 10 yr if bursts are monoenergetic. However, if GRBs have a power law luminosity function with a wide dynamic range, then the limit is tau sub gamma 0.5 yr. Hence, the gamma-ray data do not require tau sub gamma and tau sub opt to be different.

  11. Gamma-gamma coincidence performance of LaBr 3:Ce scintillation detectors vs HPGe detectors in high count-rate scenarios

    DOE PAGES

    Drescher, A.; Yoho, M.; Landsberger, S.; ...

    2017-01-15

    In this study, a radiation detection system consisting of two cerium doped lanthanum bromide (LaBr 3:Ce) scintillation detectors in a gamma-gamma coincidence configuration has been used to demonstrate the advantages that coincident detection provides relative to a single detector, and the advantages that LaBr 3:Ce detectors provide relative to high purity germanium (HPGe) detectors. Signal to noise ratios of select photopeak pairs for these detectors have been compared to high-purity germanium (HPGe) detectors in both single and coincident detector configurations in order to quantify the performance of each detector configuration. The efficiency and energy resolution of LaBr 3:Ce detectors havemore » been determined and compared to HPGe detectors. Coincident gamma-ray pairs from the radionuclides 152Eu and 133Ba have been identified in a sample that is dominated by 137Cs. Gamma-gamma coincidence successfully reduced the Compton continuum from the large 137Cs peak, revealed several coincident gamma energies characteristic of these nuclides, and improved the signal-to-noise ratio relative to single detector measurements. LaBr 3:Ce detectors performed at count rates multiple times higher than can be achieved with HPGe detectors. The standard background spectrum consisting of peaks associated with transitions within the LaBr 3:Ce crystal has also been significantly reduced. Finally, it is shown that LaBr 3:Ce detectors have the unique capability to perform gamma-gamma coincidence measurements in very high count rate scenarios, which can potentially benefit nuclear safeguards in situ measurements of spent nuclear fuel.« less

  12. Gamma-gamma coincidence performance of LaBr 3:Ce scintillation detectors vs HPGe detectors in high count-rate scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drescher, A.; Yoho, M.; Landsberger, S.

    In this study, a radiation detection system consisting of two cerium doped lanthanum bromide (LaBr 3:Ce) scintillation detectors in a gamma-gamma coincidence configuration has been used to demonstrate the advantages that coincident detection provides relative to a single detector, and the advantages that LaBr 3:Ce detectors provide relative to high purity germanium (HPGe) detectors. Signal to noise ratios of select photopeak pairs for these detectors have been compared to high-purity germanium (HPGe) detectors in both single and coincident detector configurations in order to quantify the performance of each detector configuration. The efficiency and energy resolution of LaBr 3:Ce detectors havemore » been determined and compared to HPGe detectors. Coincident gamma-ray pairs from the radionuclides 152Eu and 133Ba have been identified in a sample that is dominated by 137Cs. Gamma-gamma coincidence successfully reduced the Compton continuum from the large 137Cs peak, revealed several coincident gamma energies characteristic of these nuclides, and improved the signal-to-noise ratio relative to single detector measurements. LaBr 3:Ce detectors performed at count rates multiple times higher than can be achieved with HPGe detectors. The standard background spectrum consisting of peaks associated with transitions within the LaBr 3:Ce crystal has also been significantly reduced. Finally, it is shown that LaBr 3:Ce detectors have the unique capability to perform gamma-gamma coincidence measurements in very high count rate scenarios, which can potentially benefit nuclear safeguards in situ measurements of spent nuclear fuel.« less

  13. Performance measurement of HARPO: A time projection chamber as a gamma-ray telescope and polarimeter

    NASA Astrophysics Data System (ADS)

    Gros, P.; Amano, S.; Attié, D.; Baron, P.; Baudin, D.; Bernard, D.; Bruel, P.; Calvet, D.; Colas, P.; Daté, S.; Delbart, A.; Frotin, M.; Geerebaert, Y.; Giebels, B.; Götz, D.; Hashimoto, S.; Horan, D.; Kotaka, T.; Louzir, M.; Magniette, F.; Minamiyama, Y.; Miyamoto, S.; Ohkuma, H.; Poilleux, P.; Semeniouk, I.; Sizun, P.; Takemoto, A.; Yamaguchi, M.; Yonamine, R.; Wang, S.

    2018-01-01

    We analyse the performance of a gas time projection chamber (TPC) as a high-performance gamma-ray telescope and polarimeter in the e+e- pair-creation regime. We use data collected at a gamma-ray beam of known polarisation. The TPC provides two orthogonal projections (x, z) and (y, z) of the tracks induced by each conversion in the gas volume. We use a simple vertex finder in which vertices and pseudo-tracks exiting from them are identified. We study the various contributions to the single-photon angular resolution using Monte Carlo simulations, compare them with the experimental data and find that they are in excellent agreement. The distribution of the azimuthal angle of pair conversions shows a bias due to the non-cylindrical-symmetric structure of the detector. This bias would average out for a long duration exposure on a space mission, but for this pencil-beam characterisation we have ensured its accurate simulation by a double systematics-control scheme, data taking with the detector rotated at several angles with respect to the beam polarisation direction and systematics control with a non-polarised beam. We measure, for the first time, the polarisation asymmetry of a linearly polarised gamma-ray beam in the low energy pair-creation regime. This sub-GeV energy range is critical for cosmic sources as their spectra are power laws which fall quickly as a function of increasing energy. This work could pave the way to extending polarised gamma-ray astronomy beyond the MeV energy regime.

  14. Measurement of the ambient gamma dose equivalent and kerma from the small 252Cf source at 1 meter and the small 60Co source at 2 meters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carl, W. F.

    NASA Langley Research Center requested a measurement and determination of the ambient gamma dose equivalent rate and kerma at 100 cm from the 252Cf source and determination of the ambient gamma dose equivalent rate and kerma at 200 cm from the 60Co source for the Radiation Budget Instrument Experiment (Rad-X). An Exradin A6 ion chamber with Shonka air-equivalent plastic walls in combination with a Supermax electrometer were used to measure the exposure rate and free-in-air kerma rate of the two sources at the requested distances. The measured gamma exposure, kerma, and dose equivalent rates are tabulated.

  15. IR observations in gamma-ray blazars

    NASA Technical Reports Server (NTRS)

    Mahoney, W. A.; Gautier, T. N.; Ressler, M. E.; Wallyn, P.; Durouchoux, P.; Higdon, J. C.

    1997-01-01

    The infrared photometric and spectral observation of five gamma ray blazars in coordination with the energetic gamma ray experiment telescope (EGRET) onboard the Compton Gamma Ray Observatory is reported. The infrared measurements were made with a Cassegrain infrared camera and the mid-infrared large well imager at the Mt. Palomar 5 m telescope. The emphasis is on the three blazars observed simultaneously by EGRET and the ground-based telescope during viewing period 519. In addition to the acquisition of broadband spectral measurements for direct correlation with the 100 MeV EGRET observations, near infrared images were obtained, enabling a search for intra-day variability to be carried out.

  16. [Combustion temperature measurement of pyrotechnic composition using remote sensing Fourier transform infrared spectrometry].

    PubMed

    Zhou, Xin-li; Li, Yan; Liu, Zu-liang; Zhu, Chang-jiang; Wang, Jun-de; Lu, Chun-xu

    2002-10-01

    In this paper, combustion characterization of pyrotechnic composition is investigated using a remote sensing Fourier transform infrared spectrometry. The emission spectra have been recorded between 4,700 and 740 cm-1 with a spectral resolution of 4 cm-1. The combustion temperature can be determined remotely from spectral line intensity distribution of the fine structure of the emission fundamental band of gaseous products such as HF. The relationship between combustion temperature and combustion time has been given. Results show that there is a violent mutative temperature field with bigger temperature gradient near combustion surface. It reveals that the method of temperature measurement using remote sensing FTIR for flame temperature of unstable, violent and short time combustion on real time is a rapid, accurate and sensitive technique without interference the flame temperature field. Potential prospects of temperature measurement, gas product concentration measurement and combustion mechanism are also revealed.

  17. Gamma astrometric measurement experiment -science and implementation

    NASA Astrophysics Data System (ADS)

    Gai, Mario; Vecchiato, Alberto; Lattanzi, Mario G.; Ligori, Sebastiano; Loreggia, Davide; Fineschi, Silvano

    GAME (Gamma Astrometric Measurement Experiment) is a mission concept taking advantage of astronomical techniques for high precision measurements of interest to Fundamental Physics, and in particular the γ parameter of the Parameterized Post-Newtonian formulation of gravi-tation theories modifying the General Relativity. A space based telescope, looking close to the Solar limb thanks to coronagraphic techniques, may implement astrometric measurements sim-ilar to those performed in the solar eclipse of 1919, when Dyson, Eddington and collaborators measured for the first time the gravitational bending of light. Simulations show that the final accuracy of GAME can reach the 10-7 level. GAME will be a decisive experiment for the understanding of gravity physics, cosmology and the Universe evolution. The observations leading to Dark Matter (e.g. galaxy rotation curves) and Dark Energy (accelerated expansion of the Universe) might be explained with a modified version of General Relativity, e.g. in which the curvature invariant R is no longer constant as in Einstein's equations, i.e. the f (R) gravity theories. A 10-7 level determination of γ will provide stringent constraints on acceptable theories. Also, high precision astrometry makes accessible other appealing measurements, e.g. the light deflection induced by the quadrupole moment of giant planets, like Jupiter or Saturn, and, by high precision determination of the orbits of Mercury and high elongation asteroids, the PPN parameter β. GAME may also carry out measurements on selected astrophysical targets, e.g. nearby, bright stars known to host companions with minimum masses in the planetary/brown dwarf regime, and orbital radii in the 3-7 AU range, which are observed by no other present or planned campaigns. GAME, also thanks to high-cadence, high-precision photometry on transit-ing exoplanet systems, will thus improve on our understanding of the actual mass distribution and multiplicity of sub-stellar companions

  18. Neutron and gamma-ray measurements on the LANL Little Boy Comet Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hankins, D.E.

    1983-09-01

    We measured the neutron and gamma-ray dose rates at various distances from the Little Boy Comet Assembly at Los Alamos National Laboratory (LANL), Los Alamos, New Mexico on April 28 and 29, 1983. The distances selected varied from 350 ft to 1860 ft from the assembly, with the latter point being located at the edge of the mesa overlooking Pajarito Canyon. We varied the power levels for the various runs but we have normalized all of them to a single power-level. We also made corrections for the variations in the power-level indicators of the assembly using data provided by LANL.

  19. Development of low level 226Ra analysis for live fish using gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Chandani, Z.; Prestwich, W. V.; Byun, S. H.

    2017-06-01

    A low level 226Ra analysis method for live fish was developed using a 4π NaI(Tl) gamma-ray spectrometer. In order to find out the best algorithm for accomplishing the lowest detection limit, the gamma-ray spectrum from a 226Ra point was collected and nine different methods were attempted for spectral analysis. The lowest detection limit of 0.99 Bq for an hour counting occurred when the spectrum was integrated in the energy region of 50-2520 keV. To extend 226Ra analysis to live fish, a Monte Carlo simulation model with a cylindrical fish in a water container was built using the MCNP code. From simulation results, the spatial distribution of the efficiency and the efficiency correction factor for the live fish model were determined. The MCNP model will be able to be conveniently modified when a different fish or container geometry is employed as fish grow up in real experiments.

  20. Anticonvulsant properties of alpha, gamma, and alpha, gamma-substituted gamma-butyrolactones.

    PubMed

    Klunk, W E; Covey, D F; Ferrendelli, J A

    1982-09-01

    Derivatives of gamma-butyrolactone (GBL) substituted on the alpha- and/or gamma-positions were synthesized and tested for their effects on behavior in mice, on the electroencephalographs and blood pressure of paralyzed-ventilated guinea pigs, and on electrical activity of incubated hippocampal slices. Several compounds, including alpha-ethyl-alpha-methyl GBL (alpha-EMGBL), alpha, alpha-dimethyl GBL, alpha, gamma-diethyl-alpha, gamma-dimethyl GBL, and gamma-ethyl-gamma-methyl GBL, prevented seizures induced by pentylenetetrazol, beta-ethyl-beta-methyl-gamma-butyrolactone (beta-EMGBL), picrotoxin, or all three compounds in mice and guinea pigs but had no effect on seizures induced by maximal electroshock or bicuculline. Neither gamma-hydroxybutyrate (GHB) nor alpha-isopropylidine GBL had any anticonvulsant activity. The anticonvulsant alpha-substituted compounds had a potent hypotensive effect and antagonized the hypertensive effect of beta-EMGBL, alpha-EMGBL was tested in incubated hippocampal slices and was found to depress basal activity and antagonize excitation induced by beta-EMGBL. These results demonstrate that alpha-alkyl-substituted GBL and, to a lesser extent, gamma-substituted derivatives are anticonvulsant agents and that their effects are strikingly different from those of GHB or beta-alkyl-substituted GBLs, which are epileptogenic. Possibly beta- and alpha-substituted GBLs act at the same site as agonists and antagonists, respectively.

  1. Angular power spectrum of the diffuse gamma-ray emission as measured by the Fermi Large Area Telescope and constraints on its dark matter interpretation

    DOE PAGES

    Fornasa, Mattia; Cuoco, Alessandro; Zavala, Jesús; ...

    2016-12-09

    The isotropic gamma-ray background arises from the contribution of unresolved sources, including members of confirmed source classes and proposed gamma-ray emitters such as the radiation induced by dark matter annihilation and decay. Clues about the properties of the contributing sources are imprinted in the anisotropy characteristics of the gamma-ray background. We use 81 months of Pass 7 Reprocessed data from the Fermi Large Area Telescope to perform a measurement of the anisotropy angular power spectrum of the gamma-ray background. Here, we analyze energies between 0.5 and 500 GeV, extending the range considered in the previous measurement based on 22 monthsmore » of data. We also compute, for the first time, the cross-correlation angular power spectrum between different energy bins. The derived angular spectra are compatible with being Poissonian, i.e. constant in multipole. Furthermore, the energy dependence of the anisotropy suggests that the signal is due to two populations of sources, contributing, respectively, below and above ~ 2 GeV . Finally, using data from state-of-the-art numerical simulations to model the dark matter distribution, we constrain the contribution from dark matter annihilation and decay in Galactic and extra-Galactic structures to the measured anisotropy. These constraints are competitive with those that can be derived from the average intensity of the isotropic gamma-ray background.« less

  2. Unfolding the prompt gamma ray spectra measured in a Lanthanum Bromide detector using GRAVEL method

    NASA Astrophysics Data System (ADS)

    De, S.; Thomas, R. G.; Rout, P. C.; Suryanarayana, S. V.; Nayak, B. K.; Saxena, A.

    2018-02-01

    Prompt fission Upsilon -ray energy spectra in spontaneous fission of 252Cf has been measured using a 6'' LaBr3(Ce) detector. Unfolding of the measured Upsilon -ray energy spectra has been carried out using GRAVEL method. The response matrix of the detector has been simulated using GEANT4 and the unfolding of Upsilon -ray energy spectra for 60Co and 137Cs sources have been validated. This unfolding technique has then been applied to the prompt gamma spectra obtained from the spontaneous fission of 252Cf.

  3. Simulation and Measurement of Absorbed Dose from 137 Cs Gammas Using a Si Timepix Detector

    NASA Technical Reports Server (NTRS)

    Stoffle, Nicholas; Pinsky, Lawrence; Empl, Anton; Semones, Edward

    2011-01-01

    The TimePix readout chip is a hybrid pixel detector with over 65k independent pixel elements. Each pixel contains its own circuitry for charge collection, counting logic, and readout. When coupled with a Silicon detector layer, the Timepix chip is capable of measuring the charge, and thus energy, deposited in the Silicon. Measurements using a NIST traceable 137Cs gamma source have been made at Johnson Space Center using such a Si Timepix detector, and this data is compared to simulations of energy deposition in the Si layer carried out using FLUKA.

  4. Measurement and simulation of the cross sections for nuclide production in {sup 93}Nb and {sup nat}Ni targets irradiated with 0.04- to 2.6-GeV protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titarenko, Yu. E., E-mail: Yury.Titarenko@itep.ru; Batyaev, V. F.; Titarenko, A. Yu.

    The cross sections for nuclide production in thin {sup 93}Nb and {sup nat}Ni targets irradiated by 0.04- to 2.6-GeV protons have been measured by direct {gamma} spectrometry using two {gamma} spectrometers with the resolutions of 1.8 and 1.7 keV in the {sup 60}Co 1332-keV {gamma} line. As a result, 1112 yields of radioactive residual nuclei have been obtained. The {sup 27}Al(p, x){sup 22}Na reaction has been used as a monitor reaction. The experimental data have been compared with the MCNPX (BERTINI, ISABEL), CEM03.02, INCL4.2, INCL4.5, PHITS, and CASCADE07 calculations.

  5. Quantification of the 2-deoxyribonolactone and nucleoside 5'-aldehyde products of 2-deoxyribose oxidation in DNA and cells by isotope-dilution gas chromatography mass spectrometry: differential effects of gamma-radiation and Fe2+-EDTA.

    PubMed

    Chan, Wan; Chen, Bingzi; Wang, Lianrong; Taghizadeh, Koli; Demott, Michael S; Dedon, Peter C

    2010-05-05

    The oxidation of 2-deoxyribose in DNA has emerged as a critical determinant of the cellular toxicity of oxidative damage to DNA, with oxidation of each carbon producing a unique spectrum of electrophilic products. We have developed and validated an isotope-dilution gas chromatography-coupled mass spectrometry (GC-MS) method for the rigorous quantification of two major 2-deoxyribose oxidation products: the 2-deoxyribonolactone abasic site of 1'-oxidation and the nucleoside 5'-aldehyde of 5'-oxidation chemistry. The method entails elimination of these products as 5-methylene-2(5H)-furanone (5MF) and furfural, respectively, followed by derivatization with pentafluorophenylhydrazine (PFPH), addition of isotopically labeled PFPH derivatives as internal standards, extraction of the derivatives, and quantification by GC-MS analysis. The precision and accuracy of the method were validated with oligodeoxynucleotides containing the 2-deoxyribonolactone and nucleoside 5'-aldehyde lesions. Further, the well-defined 2-deoxyribose oxidation chemistry of the enediyne antibiotics, neocarzinostatin and calicheamicin gamma(1)(I), was exploited in control studies, with neocarzinostatin producing 10 2-deoxyribonolactone and 300 nucleoside 5'-aldehyde per 10(6) nt per microM in accord with its established minor 1'- and major 5'-oxidation chemistry. Calicheamicin unexpectedly caused 1'-oxidation at a low level of 10 2-deoxyribonolactone per 10(6) nt per microM in addition to the expected predominance of 5'-oxidation at 560 nucleoside 5'-aldehyde per 10(6) nt per microM. The two hydroxyl radical-mediated DNA oxidants, gamma-radiation and Fe(2+)-EDTA, produced nucleoside 5'-aldehyde at a frequency of 57 per 10(6) nt per Gy (G-value 74 nmol/J) and 3.5 per 10(6) nt per microM, respectively, which amounted to 40% and 35%, respectively, of total 2-deoxyribose oxidation as measured by a plasmid nicking assay. However, gamma-radiation and Fe(2+)-EDTA produced different proportions of 2

  6. Assessment of the associated particle prompt gamma neutron activation technique for total body nitrogen measurement in vivo

    USDA-ARS?s Scientific Manuscript database

    Total Body Nitrogen (TBN) can be used to estimate Total Body Protein (TBP), an important body composition component at the molecular level. A system using the associated particle technique in conjunction with prompt gamma neutron activation analysis has been developed for the measurement of TBN in ...

  7. Measurement of gamma' precipitates in a nickel-based superalloy using energy-filtered transmission electron microscopy coupled with automated segmenting techniques.

    PubMed

    Tiley, J S; Viswanathan, G B; Shiveley, A; Tschopp, M; Srinivasan, R; Banerjee, R; Fraser, H L

    2010-08-01

    Precipitates of the ordered L1(2) gamma' phase (dispersed in the face-centered cubic or FCC gamma matrix) were imaged in Rene 88 DT, a commercial multicomponent Ni-based superalloy, using energy-filtered transmission electron microscopy (EFTEM). Imaging was performed using the Cr, Co, Ni, Ti and Al elemental L-absorption edges in the energy loss spectrum. Manual and automated segmentation procedures were utilized for identification of precipitate boundaries and measurement of precipitate sizes. The automated region growing technique for precipitate identification in images was determined to measure accurately precipitate diameters. In addition, the region growing technique provided a repeatable method for optimizing segmentation techniques for varying EFTEM conditions. (c) 2010 Elsevier Ltd. All rights reserved.

  8. Comparative Study of Three Methods for Affinity Measurements: Capillary Electrophoresis Coupled with UV Detection and Mass Spectrometry, and Direct Infusion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Mironov, Gleb G.; Logie, Jennifer; Okhonin, Victor; Renaud, Justin B.; Mayer, Paul M.; Berezovski, Maxim V.

    2012-07-01

    We present affinity capillary electrophoresis and mass spectrometry (ACE-MS) as a comprehensive separation technique for label-free solution-based affinity analysis. The application of ACE-MS for measuring affinity constants between eight small molecule drugs [ibuprofen, s-flurbiprofen, diclofenac, phenylbutazone, naproxen, folic acid, resveratrol, and 4,4'-(propane-1,3-diyl) dibenzoic acid] and β-cyclodextrin is described. We couple on-line ACE with MS to combine the separation and kinetic capability of ACE together with the molecular weight and structural elucidation of MS in one system. To understand the full potential of ACE-MS, we compare it with two other methods: Direct infusion mass spectrometry (DIMS) and ACE with UV detection (ACE-UV). After the evaluation, DIMS provides less reliable equilibrium dissociation constants than separation-based ACE-UV and ACE-MS, and cannot be used solely for the study of noncovalent interactions. ACE-MS determines apparent dissociation constants for all reacting small molecules in a mixture, even in cases when drugs overlap with each other during separation. The ability of ACE-MS to interact, separate, and rapidly scan through m/z can facilitate the simultaneous affinity analysis of multiple interacting pairs, potentially leading to the high-throughput screening of drug candidates.

  9. Mass spectrometry of atmospheric aerosols--recent developments and applications. Part II: On-line mass spectrometry techniques.

    PubMed

    Pratt, Kerri A; Prather, Kimberly A

    2012-01-01

    Many of the significant advances in our understanding of atmospheric particles can be attributed to the application of mass spectrometry. Mass spectrometry provides high sensitivity with fast response time to probe chemically complex particles. This review focuses on recent developments and applications in the field of mass spectrometry of atmospheric aerosols. In Part II of this two-part review, we concentrate on real-time mass spectrometry techniques, which provide high time resolution for insight into brief events and diurnal changes while eliminating the potential artifacts acquired during long-term filter sampling. In particular, real-time mass spectrometry has been shown recently to provide the ability to probe the chemical composition of ambient individual particles <30 nm in diameter to further our understanding of how particles are formed through nucleation in the atmosphere. Further, transportable real-time mass spectrometry techniques are now used frequently on ground-, ship-, and aircraft-based studies around the globe to further our understanding of the spatial distribution of atmospheric aerosols. In addition, coupling aerosol mass spectrometry techniques with other measurements in series has allowed the in situ determination of chemically resolved particle effective density, refractive index, volatility, and cloud activation properties. Copyright © 2011 Wiley Periodicals, Inc.

  10. MEASUREMENT OF HIGH-MOLECULAR-WEIGHT POLYCYCLIC AROMATIC HYDROCARBONS IN SOILS BY PARTICLE BEAM HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) comprise a class of potentially hazardous compounds of concern to the U.S.EPA. The application of particle-beam (PB) liquid chromatography-mass spectrometry (LC-MS) to the measurement of high-molecular-weight PAHs was investigated. Instrume...

  11. Activity measurement and effective dose modelling of natural radionuclides in building material.

    PubMed

    Maringer, F J; Baumgartner, A; Rechberger, F; Seidel, C; Stietka, M

    2013-11-01

    In this paper the assessment of natural radionuclides' activity concentration in building materials, calibration requirements and related indoor exposure dose models is presented. Particular attention is turned to specific improvements in low-level gamma-ray spectrometry to determine the activity concentration of necessary natural radionuclides in building materials with adequate measurement uncertainties. Different approaches for the modelling of the effective dose indoor due to external radiation resulted from natural radionuclides in building material and results of actual building material assessments are shown. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Application of gamma ray spectrometric measurements and VLF-EM data for tracing vein type uranium mineralization

    NASA Astrophysics Data System (ADS)

    Gaafar, Ibrahim

    2015-12-01

    This study is an attempt to use the gamma ray spectrometric measurements and VLF-EM data to identify the subsurface structure and map uranium mineralization along El Sela shear zone, South Eastern Desert of Egypt. Many injections more or less mineralized with uranium and associated with alteration processes were recorded in El Sela shear zone. As results from previous works, the emplacement of these injections is structurally controlled and well defined by large shear zones striking in an ENE-WSW direction and crosscut by NW-SE to NNW-SSE fault sets. VLF method has been applied to map the structure and the presence of radioactive minerals that have been delineated by the detection of high uranium mineralization. The electromagnetic survey was carried out to detect the presence of shallow and deep conductive zones that cross the granites along ENE-WSW fracturing directions and to map its spatial distribution. The survey comprised seventy N-S spectrometry and VLF-EM profiles with 20 m separation. The resulted data were displayed as composite maps for K, eU and eTh as well as VLF-Fraser map. Twelve profiles with 100 m separation were selected for detailed description. The VLF-EM data were interpreted qualitatively as well as quantitatively using the Fraser and the Karous-Hjelt filters. Fraser filtered data and relative current density pseudo-sections indicate the presence of shallow and deep conductive zones that cross the granites along ENE-WSW shearing directions. High uranium concentrations found just above the higher apparent current-density zones that coincide with El-Sela shear zone indicate a positive relation between conductivity and uranium minerals occurrence. This enables to infer that the anomalies detected by VLF-EM data are due to the highly conductive shear zone enriched with uranium mineralization extending for more than 80 m.

  13. Preliminary Results from Outcrop-Based Spectral Gamma-Ray Measurements on the Lower Silurian Longmaxi Shale, in Chongqing and Its Adjacent Areas

    NASA Astrophysics Data System (ADS)

    Zou, C.; Nie, X.; Qiao, L.; Pan, L.; Hou, S.

    2013-12-01

    The Longmaxi Shale in the Lower Silurian has been recognized as a favorable target of shale gas exploration in Sichuan basin, China. One important feature of shale gas reservoirs is of high total organic carbon (TOC). Many studies have shown that the spectral gamma-ray measurements are positively correlated to the TOC contents. In this study, the spectral gamma ray responses of five shale outcrop profiles are measured in Chongqing and its adjacent areas, Sichuan basin. Three of the five profiles are located in Qijiang, Qianjiang and Changning in Chongqing, and the other two are located in Qilong and Houtan in Guizhou. The main lithologies of the profiles include mainly black shale, gray shale and silty shale. The spectral gamma-ray measurements provide the contents of potassium (K), uranium (U), and thorium (Th). The result of the five profiles shows that the K and Th contents of gray shale are close to the ones of black shale, while the U contents in the black shale are significantly higher than that in the other rocks. The TOC contents are estimated by using the outcrop-based measurements with an empirical formula. The result shows that the TOC contents are the highest in black shale of Changning profile. It indicates that there is a most promising exploration potential for shale gas in this area. In the future, the outcrop data will be used to construct detailed lithofacies profiles and establish relationships between lithofacies both in outcrop and the subsurface gamma-ray logs. Acknowledgment: We acknowledge the financial support of the National Natural Science Foundation of China (41274185) and the Fundamental Research Funds for the Central Universities.

  14. Gamma dosimetric parameters in some skeletal muscle relaxants

    NASA Astrophysics Data System (ADS)

    Manjunatha, H. C.

    2017-09-01

    We have studied the attenuation of gamma radiation of energy ranging from 84 keV to 1330 keV (^{170}Tm, ^{22}Na,^{137}Cs, and ^{60}Co) in some commonly used skeletal muscle relaxants such as tubocurarine chloride, gallamine triethiodide, pancuronium bromide, suxamethonium bromide and mephenesin. The mass attenuation coefficient is measured from the attenuation experiment. In the present work, we have also proposed the direct relation between mass attenuation coefficient (μ /ρ ) and mass energy absorption coefficient (μ _{en}/ρ ) based on the nonlinear fitting procedure. The gamma dosimetric parameters such as mass energy absorption coefficient (μ _{en}/ρ ), effective atomic number (Z_{eff}), effective electron density (N_{el}), specific γ-ray constant, air kerma strength and dose rate are evaluated from the measured mass attentuation coefficient. These measured gamma dosimetric parameters are compared with the theoretical values. The measured values agree with the theoretical values. The studied gamma dosimetric values for the relaxants are useful in medical physics and radiation medicine.

  15. Evaluating lipid mediator structural complexity using ion mobility spectrometry combined with mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyle, Jennifer E.; Aly, Noor; Zheng, Xueyun

    Lipid mediators (LMs) are broadly defined as a class of bioactive lipophilic molecules that regulate cell-to-cell communication events with many having a strong correlation with various human diseases and conditions. LMs are usually analyzed with liquid chromatography and mass spectrometry (LC-MS), but their numerous isomers greatly complicate the measurements with essentially identical fragmentation spectra and LC separations not always sufficient for distinguishing the features. In this work, we characterized LMs having specific categories using ion mobility spectrometry coupled with mass spectrometry (IMS-MS). The IMS collision cross sections and MS m/z values displayed distinct trends for each LM category studied. LC-IMS-MSmore » analyses on flu infected mouse tissue samples also illustrated the presence of additional LM species not in our databases.« less

  16. A gamma beam profile imager for ELI-NP Gamma Beam System

    NASA Astrophysics Data System (ADS)

    Cardarelli, P.; Paternò, G.; Di Domenico, G.; Consoli, E.; Marziani, M.; Andreotti, M.; Evangelisti, F.; Squerzanti, S.; Gambaccini, M.; Albergo, S.; Cappello, G.; Tricomi, A.; Veltri, M.; Adriani, O.; Borgheresi, R.; Graziani, G.; Passaleva, G.; Serban, A.; Starodubtsev, O.; Variola, A.; Palumbo, L.

    2018-06-01

    The Gamma Beam System of ELI-Nuclear Physics is a high brilliance monochromatic gamma source based on the inverse Compton interaction between an intense high power laser and a bright electron beam with tunable energy. The source, currently being assembled in Magurele (Romania), is designed to provide a beam with tunable average energy ranging from 0.2 to 19.5 MeV, rms energy bandwidth down to 0.5% and flux of about 108 photons/s. The system includes a set of detectors for the diagnostic and complete characterization of the gamma beam. To evaluate the spatial distribution of the beam a gamma beam profile imager is required. For this purpose, a detector based on a scintillator target coupled to a CCD camera was designed and a prototype was tested at INFN-Ferrara laboratories. A set of analytical calculations and Monte Carlo simulations were carried out to optimize the imager design and evaluate the performance expected with ELI-NP gamma beam. In this work the design of the imager is described in detail, as well as the simulation tools used and the results obtained. The simulation parameters were tuned and cross-checked with the experimental measurements carried out on the assembled prototype using the beam from an x-ray tube.

  17. Evidence for Direct CP Violation in the Measurement of the Cabbibo-Kobayashi-Maskawa Angle {gamma} with B{sup {+-}}{yields}D(*)K{sup (*){+-}} Decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amo Sanchez, P. del; Lees, J. P.; Poireau, V.

    2010-09-17

    We report the measurement of the Cabibbo-Kobayashi-Maskawa CP-violating angle {gamma} through a Dalitz plot analysis of neutral D-meson decays to K{sub S}{sup 0}{pi}{sup +}{pi}{sup -} and K{sub S}{sup 0}K{sup +}K{sup -} produced in the processes B{sup {+-}}{yields}DK{sup {+-}}, B{sup {+-}}{yields}D*K{sup {+-}} with D*{yields}D{pi}{sup 0}, D{gamma}, and B{sup {+-}}{yields}DK*{sup {+-}} with K*{sup {+-}}{yields}K{sub S}{sup 0}{pi}{+-}, using 468 million BB pairs collected by the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider at SLAC. We measure {gamma}=(68{+-}14{+-}4{+-}3) deg. (modulo 180 deg.), where the first error is statistical, the second is the experimental systematic uncertainty, and the third reflects the uncertaintymore » in the description of the neutral D decay amplitudes. This result is inconsistent with {gamma}=0 (no direct CP violation) with a significance of 3.5 standard deviations.« less

  18. Field measurements of methylglyoxal using Proton Transfer Reaction-Time of flight-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Dusanter, S.; Michoud, V.; Sauvage, S.; Leonardis, T.; Locoge, N.

    2017-12-01

    Methylglyoxal (MGLY) is an atmospheric α-dicarbonyl species whose photolysis is an important source of peroxy radicals. MGLY can therefore significantly impact the oxidizing capacity of the atmosphere and, as such, the formation rate of organic aerosols and ozone. However, despite its importance, only a few techniques exhibit time resolutions and detection limits that are suitable for atmospheric measurements. This presentation will report the first field measurements of MGLY by Proton Transfer Reaction-Time of Flight Mass Spectrometry (PTR-ToFMS) performed during ChArMEx SOP2. This field campaign took place during summer 2013 at a Mediterranean site characterized by intense biogenic emissions and low levels of anthropogenic trace gases. Concomitant measurements of MGLY were performed using the 2,4-dinitrophenylhydrazine (DNPH) derivatization technique and High Performance Liquide Chromatography (HPLC) with UV detection. PTR-ToFMS and DNPH-HPLC measurements ranging from 28-365 pptv are compared to assess the reliability of the two techniques, discussing potential calibration issues, spectrometric interferences, water-dependant artefacts, and memory effects. The MGLY budget at this remote site will also be briefly discussed.

  19. The Cosmic-Ray and Gas Content of the Cygnus Region as Measured in Gamma Rays by the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Berenji, B.; hide

    2011-01-01

    Context. The Cygnus region hosts a giant molecular-cloud complex which actively forms massive stars. Interactions of cosmic rays with interstellar gas and radiation fields make it shine at y-ray energies. Several gamma-ray pulsars and other energetic sources are seen in this direction. Aims. In this paper we analyse the gamma-ray emission measured by the Fermi Large Area Telescope in the energy range from 100 Me V to 100 Ge V in order to probe the gas and cosmic-ray content over the scale of the whole Cygnus complex. The gamma-ray emission on the scale of the central massive stellar clusters and from individual sources is addressed elsewhere. Methods. The signal from bright pulsars is largely reduced by selecting photons in their off-pulse phase intervals. We compare the diffuse gamma-ray emission with interstellar gas maps derived from radio/mm-wave lines and visual extinction data. and a global model of the region, including other pulsars and gamma-ray sources, is sought. Results. The integral H I emissivity above 100 MeV averaged over the whole Cygnus complex amounts to 12.06 +/- 0.11 (stat.) (+0.15 -0.84) (syst.J] x 10(exp -26) photons /s / sr / H-atom, where the systematic error is dominated by the uncertainty on the H I opacity to calculate its column densities. The integral emissivity and its spectral energy distribution are both consistent within the systematics with LAT measurements in the interstellar space near the solar system. The average X(sub co) N(H2)/W(sub co) ratio is found to be [1.68 +/- 0.05 (stat.) (H I opacity)] x 1020 molecules cm-2 (K km/s /r, consistent with other LAT measurements in the Local Arm. We detect significant gamma-ray emission from dark neutral gas for a mass corresponding to approx 40% of that traced by CO. The total interstellar mass in the Cygnus complex inferred from its gamma-ray emission amounts to 8(+5 -1) x 10(exp 6) Solar M at a distance of 1.4 kpc. Conclusions. Despite the conspicuous star formation activity and large

  20. Updated level scheme of 172Yb from 171Yb(nth, γ) reaction studied via gamma-gamma coincidence spectrometer

    NASA Astrophysics Data System (ADS)

    Nguyen, Ngoc Anh; Nguyen, Xuan Hai; Pham, Dinh Khang; Nguyen, Quang Hung; Ho, Huu Thang

    2017-08-01

    This paper provides the updated information on the level scheme of 172Yb nucleus studied via 171Yb(nth, γ) reaction using the gamma-gamma coincidence spectrometer at Dalat Nuclear Research Institute (Viet Nam). The latter is used because of its advantages in achieving the low Compton background as well as in identifying the correlated gamma transitions. We have detected in total the energies and intensities of 128 two-step gamma cascades corresponding to 79 primary transitions. By comparing the measured data with those extracted from the ENSDF library, 61 primary gamma transitions and corresponding energy levels together with 20 secondary gamma transitions are found to be the same as the ENSDF data. Beside that, 18 additional primary gamma transitions and corresponding energy levels plus 108 secondary ones are not found to currently exist in this library and they are therefore considered as the new data.

  1. Determination of uranium isotopes in food and environmental samples by different techniques: a comparison.

    PubMed

    Forte, M; Rusconi, R; Margini, C; Abbate, G; Maltese, S; Badalamenti, P; Bellinzona, S

    2001-01-01

    The uranium concentration in 59 samples of bottled and tap water, mainly from northern Italy, was measured by different techniques. Results obtained by inductively coupled plasma mass spectrometry (ICP-MS), semiconductor alpha spectrometry and low level liquid scintillation counting with alpha/beta discrimination (LSC) have been compared. High resolution gamma spectrometry and semiconductor alpha spectrometry have been used to analyse uranium in a variety of organic and inorganic samples. Isotopic secular equilibrium in the 238U series may be lacking or hidden by auto-absorption phenomena, so caution should be used in evaluating gamma spectrometry data. Alpha spectrometry has also been used to ascertain the possible pollution from depleted uranium in the environment.

  2. Hydrogen analysis for granite using proton-proton elastic recoil coincidence spectrometry.

    PubMed

    Komatsubara, T; Sasa, K; Ohshima, H; Kimura, H; Tajima, Y; Takahashi, T; Ishii, S; Yamato, Y; Kurosawa, M

    2008-07-01

    In an effort to develop DS02, a new radiation dosimetry system for the atomic bomb survivors of Hiroshima and Nagasaki, measurements of neutron-induced activities have provided valuable information to reconstruct the radiation situation at the time of the bombings. In Hiroshima, the depth profile of (152)Eu activity measured in a granite pillar of the Motoyasu Bridge (128 m from the hypocenter) was compared with that calculated using the DS02 methodology. For calculation of the (152)Eu production due to the thermal-neutron activation reaction, (151)Eu(n,gamma)(152)Eu, information on the hydrogen content in granite is important because the transport and slowing-down process of neutrons penetrating into the pillar is strongly affected by collisions with the protons of hydrogen. In this study, proton-proton elastic recoil coincidence spectrometry has been used to deduce the proton density in the Motoyasu pillar granite. Slices of granite samples were irradiated by a 20 MeV proton beam, and the energies of scattered and recoil protons were measured with a coincidence method. The water concentration in the pillar granite was evaluated to be 0.30 +/- 0.07%wt. This result is consistent with earlier data on adsorptive water (II) and bound water obtained by the Karl Fisher method.

  3. Increased visual gamma power in schizoaffective bipolar disorder.

    PubMed

    Brealy, J A; Shaw, A; Richardson, H; Singh, K D; Muthukumaraswamy, S D; Keedwell, P A

    2015-03-01

    Electroencephalography and magnetoencephalography (MEG) studies have identified alterations in gamma-band (30-80 Hz) cortical activity in schizophrenia and mood disorders, consistent with neural models of disturbed glutamate (and GABA) neuron influence over cortical pyramidal cells. Genetic evidence suggests specific deficits in GABA-A receptor function in schizoaffective bipolar disorder (SABP), a clinical syndrome with features of both bipolar disorder and schizophrenia. This study investigated gamma oscillations in this under-researched disorder. MEG was used to measure induced gamma and evoked responses to a visual grating stimulus, known to be a potent inducer of primary visual gamma oscillations, in 15 individuals with remitted SABP, defined using Research Diagnostic Criteria, and 22 age- and sex-matched healthy controls. Individuals with SABP demonstrated increased sustained visual cortical power in the gamma band (t 35 = -2.56, p = 0.015) compared to controls. There were no group differences in baseline gamma power, transient or sustained gamma frequency, alpha band responses or pattern onset visual-evoked responses. Gamma power is increased in remitted SABP, which reflects an abnormality in the cortical inhibitory-excitatory balance. Although an interaction between gamma power and medication can not be ruled out, there were no group differences in evoked responses or baseline measures. Further work is needed in other clinical populations and at-risk relatives. Pharmaco-magnetoencephalography studies will help to elucidate the specific GABA and glutamate pathways affected.

  4. Measurement of gamma quantum interaction point in plastic scintillator with WLS strips

    NASA Astrophysics Data System (ADS)

    Smyrski, J.; Alfs, D.; Bednarski, T.; Białas, P.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gupta-Sharma, N.; Gorgol, M.; Jasińska, B.; Kajetanowicz, M.; Kamińska, D.; Korcyl, G.; Kowalski, P.; Krzemień, W.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz.; Pawlik-Niedźwiecka, M.; Raczyński, L.; Rudy, Z.; Salabura, P.; Silarski, M.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.; Wojnarska, J.; Zgardzińska, B.; Zieliński, M.; Moskal, P.

    2017-04-01

    The feasibility of measuring the aśxial coordinate of a gamma quantum interaction point in a plastic scintillator bar via the detection of scintillation photons escaping from the scintillator with an array of wavelength-shifting (WLS) strips is demonstrated. Using a test set-up comprising a BC-420 scintillator bar and an array of sixteen BC-482A WLS strips we achieved a spatial resolution of 5 mm (σ) for annihilation photons from a 22Na isotope. The studied method can be used to improve the spatial resolution of a plastic-scintillator-based PET scanner which is being developed by the J-PET collaboration.

  5. Natural radioactivity measurements of building materials in Baotou, China.

    PubMed

    Zhao, Caifeng; Lu, Xinwei; Li, Nan; Yang, Guang

    2012-12-01

    Natural radioactivity due to (226)Ra, (232)Th and (40)K in the common building materials collected from Baotou city of Inner Mongolia, China was measured using gamma-ray spectrometry. The radiation hazard of the studied building materials was estimated by the radium equivalent activity (Ra(eq)), internal hazard index (H(in)) and annual effective dose (AED). The concentrations of the natural radionuclides and Ra(eq) in the studied samples were compared with the corresponding results of other countries. The Ra(eq) values of the building materials are below the internationally accepted values (370 Bq kg(-1)). The values of H(in) in all studied building materials are less than unity. The AEDs of all measured building materials are at an acceptable level.

  6. Feasibility study of a low-energy gamma ray system for measuring quantity and flow rate of slush hydrogen

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Shen, Chih-Ping; Sprinkle, Danny R.

    1992-01-01

    As part of a study to demonstrate the suitability of an X-ray or gamma ray probe for monitoring the quality and flow rate of slush hydrogen, mass attenuation coefficients for Cd-109 X- and gamma radiation in five chemical compounds were measured. The Ag-109 K rays were used for water and acetic acid, whereas E3 transition from the first excited state at 87.7 keV in Ag-109 provided the probe radiation for bromobenzene, alpha (exp 2) chloroisodurene, and cetyl bromide. Measurements were made for a single phase (gas, liquid, solid) as well as mixed phases (liquid plus solid) in all cases. It was shown that the mass attenuation coefficient for the selected radiations is independent of the phase of the test fluids or phase ratios in the case of mixed phase fluids. Described here are the procedure and the results for the five fluid systems investigated.

  7. Development of a Portable Gamma-ray Survey System for the Measurement of Air Dose Rates

    NASA Astrophysics Data System (ADS)

    Goto, Jun; Shobugawa, Yugo; Kawano, Yoh; Amaya, Yoshihiro; Izumikawa, Takuji; Katsuragi, Yoshinori; Shiiya, Tomohiro; Suzuki, Tsubasa; Takahashi, Takeshi; Takahashi, Toshihiro; Yoshida, Hidenori; Naito, Makoto

    BIo-Safety Hybrid Automatic MOnitor-Niigata (BISHAMON), a portable gamma-ray survey system, was developed to support victims of the Fukushima Daiichi nuclear disaster. BISHAMON is capable of constructing a map of the distribution of ambient dose equivalent rates using vehicle-mounted or on-foot survey methods. In this study, we give an overview of BISHAMON and its measurement results including a comparison with those of other systems such as KURAMA.

  8. Dissecting the Gamma-Ray Background in Search of Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cholis, Ilias; Hooper, Dan; McDermott, Samuel D.

    2014-02-01

    Several classes of astrophysical sources contribute to the approximately isotropic gamma-ray background measured by the Fermi Gamma-Ray Space Telescope. In this paper, we use Fermi's catalog of gamma-ray sources (along with corresponding source catalogs at infrared and radio wavelengths) to build and constrain a model for the contributions to the extragalactic gamma-ray background from astrophysical sources, including radio galaxies, star-forming galaxies, and blazars. We then combine our model with Fermi's measurement of the gamma-ray background to derive constraints on the dark matter annihilation cross section, including contributions from both extragalactic and galactic halos and subhalos. The resulting constraints are competitivemore » with the strongest current constraints from the Galactic Center and dwarf spheroidal galaxies. As Fermi continues to measure the gamma-ray emission from a greater number of astrophysical sources, it will become possible to more tightly constrain the astrophysical contributions to the extragalactic gamma-ray background. We project that with 10 years of data, Fermi's measurement of this background combined with the improved constraints on the astrophysical source contributions will yield a sensitivity to dark matter annihilations that exceeds the strongest current constraints by a factor of ~ 5 - 10.« less

  9. Influence of growth temperature on the amounts of tocopherols, tocotrienols, and gamma-oryzanol in brown rice.

    PubMed

    Britz, Steven J; Prasad, P V V; Moreau, Robert A; Allen, L Hartwell; Kremer, Diane F; Boote, Kenneth J

    2007-09-05

    Brown rice is a valuable source of lipid-soluble antioxidants including ferulated phytosterols (i.e., gamma-oryzanol), tocopherols, and tocotrienols. To evaluate the impact of temperature on the accumulation of these compounds, seeds from six different rice lines grown to maturity in replicate greenhouses in Gainesville, FL, were analyzed. The lines represented Oryza sativa indica, O. sativa japonica, and Oryza glaberrima of different origins. Temperatures were maintained near ambient at one end of each greenhouse and at approximately 4.5 degrees C above ambient at the other end. gamma-Oryzanols, tocopherols, and tocotrienols were extracted from whole seed (i.e., brown rice) and analyzed by HPLC. Tocotrienols and tocopherols varied widely between lines but changed only slightly with respect to temperature. In general, the proportions of alpha-tocotrienol and/or alpha-tocopherol increased at elevated temperature, whereas gamma-tocopherol and gamma-tocotrienol decreased. Six gamma-oryzanol peaks, identified on the basis of absorbance maxima at 330 nm and HPLC-mass spectrometry, were quantified. The most abundant component was 24-methylenecycloartanyl ferulate, present at 40-62% of total. Its levels increased 35-57% at elevated temperature in five of six lines, accounting for most of the change in total gamma-oryzanol. The results suggest that the physiological action of individual ferulated phytosterols should be investigated because their relative proportions in gamma-oryzanol can change.

  10. Measurement of Trace Constituents by Electron-Excited X-Ray Microanalysis with Energy-Dispersive Spectrometry.

    PubMed

    Newbury, Dale E; Ritchie, Nicholas W M

    2016-06-01

    Electron-excited X-ray microanalysis performed with scanning electron microscopy and energy-dispersive spectrometry (EDS) has been used to measure trace elemental constituents of complex multielement materials, where "trace" refers to constituents present at concentrations below 0.01 (mass fraction). High count spectra measured with silicon drift detector EDS were quantified using the standards/matrix correction protocol embedded in the NIST DTSA-II software engine. Robust quantitative analytical results for trace constituents were obtained from concentrations as low as 0.000500 (mass fraction), even in the presence of significant peak interferences from minor (concentration 0.01≤C≤0.1) and major (C>0.1) constituents. Limits of detection as low as 0.000200 were achieved in the absence of peak interference.

  11. Modern aerial gamma-ray spectrometry and regional potassium map of the conterminous United States

    USGS Publications Warehouse

    Duval, Joseph S.

    1990-01-01

    The aerial gamma-ray data were obtained as part of the National Uranium Resource Evaluation (NURE) Program sponsored by the U.S. Department of Energy during the period 1975-1983. References for the Open-File Reports that describe the surveys and data collection can be found in Bendix Field Engineering Corp. (1983). The aerial surveys were flown by contractors using fixed-wing and helicopter systems with 33-50 L (liters) of thallium-activated sodium iodide (NaI (TI)) crystals. The nominal survey altitude used is 122 m. The survey lines were generally east-west with line spacings of 1.6-10 km. Tie lines were flown perpendicular to the flight lines at intervals of 16- 30 km. The data were corrected for background from aircraft contamination and cosmic rays, altitude variations, airborne 214Bi, and Compton scattering. The gamma-ray systems were calibrated using the calibrations pads at Grand Junction, Colorado (Ward, 1978 ) and the dynamic test strip at Lake Mead, Arizona (Geodata International, Inc., 1977).  

  12. Amino acids of the Murchison meteorite. II - Five carbon acyclic primary beta-, gamma-, and delta-amino alkanoic acids

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.; Pizzarello, S.; Yuen, G. U.

    1985-01-01

    The five-carbon acyclic primary beta, gamma, and delta amino alkanoic acids of the Murchison meteorite are studied using gas chromatography-mass spectrometry and ion exchange chromatography. The chromatograms reveal that alpha is the most abundant monoamino alkanoic acid followed by gamma and beta, and an exponential increase in the amount of amino acid is observed as the carbon number increases in the homologous series. The influence of frictional heating, spontaneous thermal decomposition, and radiation of the synthesis of amino acids is examined. The data obtained support an amino acid synthesis process involving random combination of single-carbon precursors.

  13. Measurement of the $$\\mathrm{Z}\\gamma^{*} \\to \\tau\\tau$$ cross section in pp collisions at $$\\sqrt{s} = $$ 13 TeV and validation of $$\\tau$$ lepton analysis techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    A measurement is presented of themore » $$\\mathrm{Z}/\\gamma^{*} \\to \\tau\\tau$$ cross section in pp collisions at $$\\sqrt{s} = $$ 13 TeV, using data recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 2.3 fb$$^{-1}$$. The product of the inclusive cross section and branching fraction is measured to be $$\\sigma(\\mathrm{pp} \\to \\mathrm{Z}/\\gamma^{*}\\text{+X}) \\, \\mathcal{B}(\\mathrm{Z}/\\gamma^{*} \\to \\tau\\tau) = $$ 1848 $$\\pm$$ 12 (stat) $$\\pm$$ 67 (syst+lumi) pb, in agreement with the standard model expectation, computed at next-to-next-to-leading order accuracy in perturbative quantum chromodynamics. The measurement is used to validate new analysis techniques relevant for future measurements of $$\\tau$$ lepton production. The measurement also provides the reconstruction efficiency and energy scale for $$\\tau$$ decays to hadrons+$$\

  14. Fourier transform mass spectrometry.

    PubMed

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-07-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook.

  15. Measuring cosmological parameters with Gamma-Ray Bursts: status and perspectives

    NASA Astrophysics Data System (ADS)

    Amati, L.

    2017-10-01

    Given their huge isotropic-equivalent radiated energies, up to more than 10^{54} erg released in a few tens of seconds, and their redshift distribution extending up to more than z = 9, Gamma-Ray Bursts (GRB) are in principle a powerful tool for measuring the geometry and expansion rate of the Universe. In the recent years, several attempts have been made to exploit the correlation between the photon energy at which the nuFnu spectrum peaks ('peak energy') and the radiated energy (or luminosity) for 'standardizing' GRBs and use them as tools (complementary to other probes like SN Ia, BAO and the CMB) for the estimate of cosmological parameters. These studies show that already with the present data set GRBs can provide a signicant and independent confirmation of Ω_{M} ˜ 0.3 for a flat ΛCDM universe and that the measurements expected from present and next GRB experiments (e.g. Swift, Fermi/GBM, SVOM, CALET/GBM, UFFO) will allow us to substantially improve the constraints on Ω_{M} and Ω_{Λ}, and, in particular, to get unique clues on dark energy properties and evolution.

  16. Future Facilities for Gamma-Ray Pulsar Studies

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    2003-01-01

    Pulsars seen at gamma-ray energies offer insight into particle acceleration to very high energies, along with information about the geometry and interaction processes in the magnetospheres of these rotating neutron stars. During the next decade, a number of new gamma-ray facilities will become available for pulsar studies. This brief review describes the motivation for gamma-ray pulsar studies, the opportunities for such studies, and some specific discussion of the capabilities of the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) for pulsar measurements.

  17. Using RADFET for the real-time measurement of gamma radiation dose rate

    NASA Astrophysics Data System (ADS)

    Andjelković, Marko S.; Ristić, Goran S.; Jakšić, Aleksandar B.

    2015-02-01

    RADFETs (RADiation sensitive Field Effect Transistors) are integrating ionizing radiation dosimeters operating on the principle of conversion of radiation-induced threshold voltage shift into absorbed dose. However, one of the major drawbacks of RADFETs is the inability to provide the information on the dose rate in real-time using the conventional absorbed dose measurement technique. The real-time monitoring of dose rate and absorbed dose can be achieved with the current mode dosimeters such as PN and PIN diodes/photodiodes, but these dosimeters have some limitations as absorbed dose meters and hence they are often not a suitable replacement for RADFETs. In that sense, this paper investigates the possibility of using the RADFET as a real-time dose rate meter so that it could be applied for simultaneous online measurement of the dose rate and absorbed dose. A RADFET sample, manufactured by Tyndall National Institute, Cork, Ireland, was tested as a dose rate meter under gamma irradiation from a Co-60 source. The RADFET was configured as a PN junction, such that the drain, gate and source terminals were grounded, while the radiation-induced current was measured at the bulk terminal, whereby the bulk was successively biased with 0 , 10 , 20  and 30 V. In zero-bias mode the radiation-induced current was unstable, but in the biased mode the current response was stable for the investigated dose rates from 0.65  to 32.1 Gy h-1 and up to the total absorbed dose of 25 Gy. The current increased with the dose rate in accordance with the power law, whereas the sensitivity of the current read-out was linear with respect to the applied bias voltage. Comparison with previously analyzed PIN photodiodes has shown that the investigated RADFET is competitive with PIN photodiodes as a gamma radiation dose rate meter and therefore has the potential to be employed for the real-time monitoring of the dose rate and absorbed dose.

  18. The 3H(d,gamma) Reaction and the 3 H(d,gamma)/ 3H(d, n) Branching Ratio for Ec.m. 300 keV

    NASA Astrophysics Data System (ADS)

    Parker, Cody E.

    The 3H(d, gamma)5He reaction and the 3H(d, gamma)/3H(d, n) branching ratio have been measured using a 500-keV pulsed deuteron beam incident on a titanium tritide target of stopping thickness at the Edwards Accelerator Laboratory. The time-of-flight technique has been used to distinguish the gamma-rays from neutrons in the bismuth germinate (BGO) gamma-ray detector. A stilbene scintillator and an NE-213 scintillator have been used to detect the neutrons from the 3H(d, n)alpha reaction using both the pulse-shape discrimination and time-of-flight techniques. A target holder with an ion-implanted silicon detector at a fixed angle of 135° to the beam axis to simultaneously measure alpha-particles as a normalization for the number of neutrons was incorporated to reduce the uncertainty in the neutron yield over the preliminary measurement. The gamma-rays have been measured at laboratory angles of 0°, 4°, 9°, and 15°. Information about the gamma-ray energy distribution for the unbound ground state and first excited state of 5He have been obtained experimentally by comparing the BGO data to Monte Carlo simulations. The reported branching ratios for each angle contain only contributions from the ground-state gamma-ray branch.

  19. Label-free measurement of histone lysine methyltransferases activity by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Guitot, Karine; Scarabelli, Silvia; Drujon, Thierry; Bolbach, Gérard; Amoura, Mehdi; Burlina, Fabienne; Jeltsch, Albert; Sagan, Sandrine; Guianvarc'h, Dominique

    2014-07-01

    Histone lysine methyltransferases (HKMTs) are enzymes that play an essential role in epigenetic regulation. Thus, identification of inhibitors specifically targeting these enzymes represents a challenge for the development of new antitumor therapeutics. Several methods for measuring HKMT activity are already available. Most of them use indirect measurement of the enzymatic reaction through radioactive labeling or antibody-recognized products or coupled enzymatic assays. Mass spectrometry (MS) represents an interesting alternative approach because it allows direct detection and quantification of enzymatic reactions and can be used to determine kinetics and to screen small molecules as potential inhibitors. Application of mass spectrometry to the study of HKMTs has not been fully explored yet. We describe here the development of a simple reliable label-free MALDI-TOF MS-based assay for the detection and quantification of peptide methylation, using SET7/9 as a model enzyme. Importantly, the use of expensive internal standard often required in mass spectrometry quantitative analysis is not necessary in this assay. This MS assay allowed us to determine enzyme kinetic parameters as well as IC50 for a known inhibitor of this enzyme. Furthermore, a comparative study with an antibody-based immunosorbent assay showed that the MS assay is more reliable and suitable for the screening of inhibitors. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Measurements of sulfur compounds in CO 2 by diode laser atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Franzke, J.; Stancu, D. G.; Niemax, K.

    2003-07-01

    Two simple methods for the analysis of the total concentration of sulfur in CO 2 by diode laser atomic absorption spectrometry of excited, metastable sulfur atoms in a direct current discharge are presented. In the first method, the CO 2 sample gas is mixed with the plasma gas (Ar or He) while the second is based on reproducible measurements of the sulfur released from the walls in a helium discharge after being deposited as a result of operating the discharge in pure CO 2 sample gas. The detection limits obtained satisfy the requirements for the control of sulfur compounds in CO 2 used in the food and beverage industry.

  1. Optimising in situ gamma measurements to identify the presence of radioactive particles in land areas.

    PubMed

    Rostron, Peter D; Heathcote, John A; Ramsey, Michael H

    2014-12-01

    High-coverage in situ surveys with gamma detectors are the best means of identifying small hotspots of activity, such as radioactive particles, in land areas. Scanning surveys can produce rapid results, but the probabilities of obtaining false positive or false negative errors are often unknown, and they may not satisfy other criteria such as estimation of mass activity concentrations. An alternative is to use portable gamma-detectors that are set up at a series of locations in a systematic sampling pattern, where any positive measurements are subsequently followed up in order to determine the exact location, extent and nature of the target source. The preliminary survey is typically designed using settings of detector height, measurement spacing and counting time that are based on convenience, rather than using settings that have been calculated to meet requirements. This paper introduces the basis of a repeatable method of setting these parameters at the outset of a survey, for pre-defined probabilities of false positive and false negative errors in locating spatially small radioactive particles in land areas. It is shown that an un-collimated detector is more effective than a collimated detector that might typically be used in the field. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Gamma ray imager on the DIII-D tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pace, D. C., E-mail: pacedc@fusion.gat.com; Taussig, D.; Eidietis, N. W.

    2016-04-15

    A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electronsmore » in the energy range of 1–60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. First measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons.« less

  3. Gamma ray imager on the DIII-D tokamak

    DOE PAGES

    Pace, D. C.; Cooper, C. M.; Taussig, D.; ...

    2016-04-13

    A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electronsmore » in the energy range of 1- 60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. In conclusion, first measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons.« less

  4. Measurement of the half-life of 79Se with accelerator mass spectrometry

    DOE PAGES

    Dou, Liang; Jiang, Shan; Wang, Xiao-Bo; ...

    2014-10-01

    The accelerator mass spectrometry (AMS) is an effective method for the determination of the half-life of long-lived radionuclides. In this paper, we report a method for measurement of the half-life of 79Se. The number of 79Se atoms was determined from measured 79Se/Se absolute ratios with the AMS system at the China Institute of Atomic Energy and the decay rate of 79Se was determined by counting the emitted β-rays with a liquid scintillation spectrometer. The major improvements of our measurements include using the high abundance of an 79Se sample which was cooled for many years to exclude the interference of short-livedmore » nuclides, the extraction of SeO 2 - molecular ions, that results in a suppression of the 79 Br background by as much as about five orders of magnitude. Also, an AMS measurement of the absolute ratio of 79 Se/Se was developed to avoid systematic errors. The results show that 79 Se/Se is (2.35±0.12)×10 -7 in the reference sample and the radioactivity of 79Se is (1.24±0.05) Bq/g, so the half-life of 79Se is (2.78±0.18)×10 5 a.« less

  5. Measurement of Cerenkov radiation induced by the gamma-rays of Co-60 therapy units using wavelength shifting fiber.

    PubMed

    Jang, Kyoung Won; Shin, Sang Hun; Kim, Seon Geun; Kim, Jae Seok; Yoo, Wook Jae; Ji, Young Hoon; Lee, Bongsoo

    2014-04-21

    In this study, a wavelength shifting fiber that shifts ultra-violet and blue light to green light was employed as a sensor probe of a fiber-optic Cerenkov radiation sensor. In order to characterize Cerenkov radiation generated in the developed wavelength shifting fiber and a plastic optical fiber, spectra and intensities of Cerenkov radiation were measured with a spectrometer. The spectral peaks of light outputs from the wavelength shifting fiber and the plastic optical fiber were measured at wavelengths of 500 and 510 nm, respectively, and the intensity of transmitted light output of the wavelength shifting fiber was 22.2 times higher than that of the plastic optical fiber. Also, electron fluxes and total energy depositions of gamma-ray beams generated from a Co-60 therapy unit were calculated according to water depths using the Monte Carlo N-particle transport code. The relationship between the fluxes of electrons over the Cerenkov threshold energy and the energy depositions of gamma-ray beams from the Co-60 unit is a near-identity function. Finally, percentage depth doses for the gamma-ray beams were obtained using the fiber-optic Cerenkov radiation sensor, and the results were compared with those obtained by an ionization chamber. The average dose difference between the results of the fiber-optic Cerenkov radiation sensor and those of the ionization chamber was about 2.09%.

  6. Mass spectrometry for water vapor measurements in the UT/LS

    NASA Astrophysics Data System (ADS)

    Kaufmann, S.; Voigt, C.; Schäuble, D.; Schäfler, A.; Schlager, H.; Thornberry, T. D.; Fahey, D. W.

    2012-12-01

    Water vapor in the lower stratosphere plays a crucial role for the atmospheric radiation budget (Solomon et al., 2011). However, large uncertainties remain in measuring atmospheric water vapor mixing ratios below 10 ppmv typical for the lower stratosphere. To this end, we have developed the Atmospheric Ionization Mass Spectrometer (AIMS) for the accurate and fast detection of water vapor in the UT/LS from aircraft. In the AIMS instrument atmospheric air is directly ionized in a discharge ion source and the resulting water vapor clusters H3O+(H2O)n (n = 0..3) are detected with a linear quadrupole mass spectrometer as a direct measure of the atmospheric water vapor mixing ratio. AIMS is calibrated in-flight with a H2O calibration source using the catalytic reaction of H2 and O2 on a heated platinum surface to form gaseous H2O. This calibration setup combined with the water vapor mass spectrometry offers a powerful technical development in atmospheric hygrometry, enriching existing H2O measurement techniques by a new independent method. Here, we present AIMS water vapor measurements performed during the CONCERT2011 campaign (Contrail and Cirrus Experiment) with the DLR research aircraft Falcon. In September 2011 a deep stratospheric intrusion was probed over northern Europe with a dynamical tropopause lowered down to 6 km. We found sharp humidity gradients between tropospheric and stratospheric air at the edge of the tropopause fold, which we crossed 4 times at altitudes between 6 and 11 km. In the center of the tropopause fold, we measured water vapor mixing ratios down to 4 ppmv. The observed water vapor distribution is compared to water vapor analysis fields of the ECMWF's Integrated Forecast System (IFS) to evaluate the representation water vapor in this specific meteorological situation.

  7. First Measurement of the Ratio sigma_(t-tbar) / sigma_(Z/\\gamma*->ll) and Precise Extraction of the t-tbar Cross Section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaltonen, T.; /Helsinki Inst. of Phys.; Adelman, J.

    2010-04-01

    We report a measurement of the ratio of the t{bar t} to Z/{gamma}* production cross sections in {radical}s = 1.96 TeV p{bar p} collisions using data corresponding to an integrated luminosity of up to 4.6 fb{sup -1}, collected by the CDF II detector. The t{bar t} cross section ratio is measured using two complementary methods, a b-jet tagging measurement and a topological approach. By multiplying the ratios by the well-known theoretical Z/{gamma}* {yields} ll cross section predicted by the standard model, the extracted t{bar t} cross sections are effectively insensitive to the uncertainty on luminosity. A best linear unbiased estimatemore » is used to combine both measurements with the result {sigma}{sub t{bar t}} = 7.70 {+-} 0.52 pb, for a top-quark mass of 172.5 GeV/c{sup 2}.« less

  8. Recent results on celestial gamma radiation from SMM

    NASA Technical Reports Server (NTRS)

    Share, Gerald H.

    1991-01-01

    Observations made by the Gamma Ray Spectrometer on board the SMM are described. Recent results reported include observations and analyses of gamma-ray lines from Co-56 produced in supernovae, observations of the temporal variation of the 511 keV line observed during Galactic center transits, and measurements of the diffuse Galactic spectrum from 0.3 to 8.5 MeV. The work in progress includes measurements of the distribution of Galactic Al-26, observations to place limits on Galactic Ti-44 and Fe-60 and on Be-7 produced in novae, and searches for a characteristic gamma-ray emission from pair plasmas, a 2.223 MeV line emission, limits on deexcitation lines from interstellar C and O, and gamma-ray bursts.

  9. Mass spectrometry and immunoassay: how to measure steroid hormones today and tomorrow.

    PubMed

    Taylor, Angela E; Keevil, Brian; Huhtaniemi, Ilpo T

    2015-08-01

    The recent onslaught of mass spectrometry (MS) to measurements of steroid hormones, including demands that they should be the only acceptable method, has confused clinicians and scientists who have relied for more than 40 years on a variety of immunoassay (IA) methods in steroid hormone measurements. There is little doubt that MS methods with their superior specificity will be the future method of choice in many clinical and research applications of steroid hormone measurement. However, the majority of steroid measurements are currently, and will continue to be, carried out using various types of IAs for several reasons, including their technical ease, cost and availability of commercial reagents. Speedy replacement of all IAs with MS is an unrealistic and unnecessary goal, because the availability of MS measurements is limited by cost, need of expensive equipment, technical demands and lack of commercial applications. Furthermore, IAs have multiple well-known advantages that vindicate their continuing use. The purpose of this article is to elucidate the advantages and limitations of the MS and IA techniques from two angles, i.e. promotion of MS and defence of IA. The purpose of the text is to give the reader an unbiased view about the current state and future trends of steroid analysis and to help him/her choose the correct assay method to serve his/her diagnostic and research needs. © 2015 European Society of Endocrinology.

  10. Limits on dark matter annihilation signals from the Fermi LAT 4-year measurement of the isotropic gamma-ray background

    DOE PAGES

    Ackermann, M.

    2015-09-02

    We search for evidence of dark matter (DM) annihilation in the isotropic gamma-ray background (IGRB) measured with 50 months of Fermi Large Area Telescope (LAT) observations. An improved theoretical description of the cosmological DM annihilation signal, based on two complementary techniques and assuming generic weakly interacting massive particle (WIMP) properties, renders more precise predictions compared to previous work. More specifically, we estimate the cosmologically-induced gamma-ray intensity to have an uncertainty of a factor ~ 20 in canonical setups. We consistently include both the Galactic and extragalactic signals under the same theoretical framework, and study the impact of the former onmore » the IGRB spectrum derivation. We find no evidence for a DM signal and we set limits on the DM-induced isotropic gamma-ray signal. Our limits are competitive for DM particle masses up to tens of TeV and, indeed, are the strongest limits derived from Fermi LAT data at TeV energies. This is possible thanks to the new Fermi LAT IGRB measurement, which now extends up to an energy of 820 GeV. As a result, we quantify uncertainties in detail and show the potential this type of search offers for testing the WIMP paradigm with a complementary and truly cosmological probe of DM particle signals.« less

  11. Limits on dark matter annihilation signals from the Fermi LAT 4-year measurement of the isotropic gamma-ray background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collaboration: Fermi LAT Collaboration

    2015-09-01

    We search for evidence of dark matter (DM) annihilation in the isotropic gamma-ray background (IGRB) measured with 50 months of Fermi Large Area Telescope (LAT) observations. An improved theoretical description of the cosmological DM annihilation signal, based on two complementary techniques and assuming generic weakly interacting massive particle (WIMP) properties, renders more precise predictions compared to previous work. More specifically, we estimate the cosmologically-induced gamma-ray intensity to have an uncertainty of a factor ∼ 20 in canonical setups. We consistently include both the Galactic and extragalactic signals under the same theoretical framework, and study the impact of the former on themore » IGRB spectrum derivation. We find no evidence for a DM signal and we set limits on the DM-induced isotropic gamma-ray signal. Our limits are competitive for DM particle masses up to tens of TeV and, indeed, are the strongest limits derived from Fermi LAT data at TeV energies. This is possible thanks to the new Fermi LAT IGRB measurement, which now extends up to an energy of 820 GeV. We quantify uncertainties in detail and show the potential this type of search offers for testing the WIMP paradigm with a complementary and truly cosmological probe of DM particle signals.« less

  12. Potential of needle trap microextraction-portable gas chromatography-mass spectrometry for measurement of atmospheric volatile compounds

    NASA Astrophysics Data System (ADS)

    Feijó Barreira, Luís Miguel; Xue, Yu; Duporté, Geoffroy; Parshintsev, Jevgeni; Hartonen, Kari; Jussila, Matti; Kulmala, Markku; Riekkola, Marja-Liisa

    2016-08-01

    Volatile organic compounds (VOCs) play a key role in atmospheric chemistry and physics. They participate in photochemical reactions in the atmosphere, which have direct implications on climate through, e.g. aerosol particle formation. Forests are important sources of VOCs, and the limited resources and infrastructures often found in many remote environments call for the development of portable devices. In this research, the potential of needle trap microextraction and portable gas chromatography-mass spectrometry for the study of VOCs at forest site was evaluated. Measurements were performed in summer and autumn 2014 at the Station for Measuring Ecosystem-Atmosphere Relations (SMEAR II) in Hyytiälä, Finland. During the first part of the campaign (summer) the applicability of the developed method was tested for the determination of monoterpenes, pinonaldehyde, aldehydes, amines and anthropogenic compounds. The temporal variation of aerosol precursors was determined, and evaluated against temperature and aerosol number concentration data. The most abundant monoterpenes, pinonaldehyde and aldehydes were successfully measured, their relative amounts being lower during days when particle number concentration was higher. Ethylbenzene, p- and m-xylene were also found when wind direction was from cities with substantial anthropogenic activity. An accumulation of VOCs in the snow cover was observed in the autumn campaign. Results demonstrated the successful applicability of needle trap microextraction and portable gas chromatography-mass spectrometry for the rapid in situ determination of organic gaseous compounds in the atmosphere.

  13. Mass spectrometry.

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Johanson, G. A.

    1972-01-01

    Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.

  14. Measurement of air kerma rates for 6- to 7-MeV high-energy gamma-ray field by ionisation chamber and build-up plate.

    PubMed

    Kowatari, Munehiko; Tanimura, Yoshihiko; Tsutsumi, Masahiro

    2014-12-01

    The 6- to 7-MeV high-energy gamma-ray calibration field by the (19)F(p, αγ)(16)O reaction is to be served at the Japan Atomic Energy Agency. For the determination of air kerma rates using an ionisation chamber in the 6- to 7-MeV high-energy gamma-ray field, the establishment of the charged particle equilibrium must be achieved during measurement. In addition to measurement of air kerma rates by the ionisation chamber with a thick build-up cap, measurement using the ionisation chamber and a build-up plate (BUP) was attempted, in order to directly determine air kerma rates under the condition of regular calibration for ordinary survey meters and personal dosemeters. Before measurements, Monte Carlo calculations were made to find the optimum arrangement of BUP in front of the ionisation chamber so that the charged particle equilibrium could be well established. Measured results imply that air kerma rates for the 6- to 7-MeV high-energy gamma-ray field could be directly determined under the appropriate condition using an ionisation chamber coupled with build-up materials. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. The structure, logic of operation and distinctive features of the system of triggers and counting signals formation for gamma-telescope GAMMA-400

    NASA Astrophysics Data System (ADS)

    Topchiev, N. P.; Galper, A. M.; Arkhangelskiy, A. I.; Arkhangelskaja, I. V.; Kheymits, M. D.; Suchkov, S. I.; Yurkin, Y. T.

    2017-01-01

    Scientific project GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) relates to the new generation of space observatories intended to perform an indirect search for signatures of dark matter in the cosmic-ray fluxes, measurements of characteristics of diffuse gamma-ray emission and gamma-rays from the Sun during periods of solar activity, gamma-ray bursts, extended and point gamma-ray sources, electron/positron and cosmic-ray nuclei fluxes up to TeV energy region by means of the GAMMA-400 gamma-ray telescope represents the core of the scientific complex. The system of triggers and counting signals formation of the GAMMA-400 gamma-ray telescope constitutes the pipelined processor structure which collects data from the gamma-ray telescope subsystems and produces summary information used in forming the trigger decision for each event. The system design is based on the use of state-of-the-art reconfigurable logic devices and fast data links. The basic structure, logic of operation and distinctive features of the system are presented.

  16. A comparison of lead-isotope measurements on exploration-type samples using inductively coupled plasma and thermal ionization mass spectrometry

    USGS Publications Warehouse

    Gulson, B.L.; Meier, A.L.; Church, S.E.; Mizon, K.J.

    1989-01-01

    Thermal ionization mass spectrometry (TI-MS) has long been the method of choice for Pb-isotope determinations. More recently, however, inductively coupled plasma mass spectrometry (ICP-MS) has been used to determine Pb-isotope ratios for mineral exploration. The ICP-MS technique, although not as precise as TI-MS, may promote a wider application of Ph-isotope ratio methods because it allows individual isotopes to be determined more rapidly, generally without need for chemical separation (e.g., Smith et al., 1984; Hinners et al., 1987). To demonstrate the utility of the ICP-MS method, we have conducted a series of Pb-isotope measurements on several suites of samples using both TI-MS and ICP-MS. ?? 1989.

  17. Fourier Transform Mass Spectrometry

    PubMed Central

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-01-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook. PMID:21742802

  18. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    ERIC Educational Resources Information Center

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  19. Measurements of soil carbon by neutron-gamma analysis in static and scanning modes

    USDA-ARS?s Scientific Manuscript database

    The herein described application of the inelastic neutron scattering (INS) method for soil carbon analysis is based on the registration and analysis of gamma rays created when neutrons interact with soil elements. The main parts of the INS system are a pulsed neutron generator, NaI(Tl) gamma detecto...

  20. DEVELOPMENT OF ULTRATRACE LASER SPECTROMETRY TECHNIQUES FOR MEASUREMENTS OF ARSENIC

    EPA Science Inventory


    Development of Arsenic Speciation Techniques Based on High Performance Liquid Chromatography and Atomic Fluorescence Spectrometry

    J.B. Simeonsson, H.D. Beach and D.J. Thomas
    US EPA, Office of Research and Development, National Health and Environmental Effects Resear...

  1. Measurement and calculation of fast neutron and gamma spectra in well defined cores in LR-0 reactor.

    PubMed

    Košťál, Michal; Matěj, Zdeněk; Cvachovec, František; Rypar, Vojtěch; Losa, Evžen; Rejchrt, Jiří; Mravec, Filip; Veškrna, Martin

    2017-02-01

    A well-defined neutron spectrum is essential for many types of experimental topics and is also important for both calibration and testing of spectrometric and dosimetric detectors. Provided it is well described, such a spectrum can also be employed as a reference neutron field that is suitable for validating selected cross sections. The present paper aims to compare calculations and measurements of such a well-defined spectra in geometrically similar cores of the LR-0 reactor with fuel containing slightly different enrichments (2%, 3.3% and 3.6%). The common feature to all cores is a centrally located dry channel which can be used for the insertion of studied materials. The calculation of neutron and gamma spectra was realized with the MCNP6 code using ENDF/B-VII.0, JEFF-3.1, JENDL-3.3, ROSFOND-2010 and CENDL-3.1 nuclear data libraries. Only minor differences in neutron and gamma spectra were found in the comparison of the presented reactor cores with different fuel enrichments. One exception is the gamma spectrum in the higher energy region (above 8MeV), where more pronounced variations could be observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. POCKET $beta$ AND $gamma$ RADIOMETER (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markelov, V.V.; Lushikhin, A.M.; Nikoforov, V.I.

    A pocket BETA and gamma rate meter was designed by the Academy of Medical Sciences of U.S.S.R. for detecting gamma radiation of 0.25 to 2 Mev and for BETA particles of 0 to 50 and 0 to 500 particles/cm/sup 2/sec, with energies of 0.5 to 2 Mev. Measurements of BETA particles are made through the hack wall opening in the appuratus. The opening is closed durtng the recording of gamma radiation, which permits differentiation between the BETA and gamma radiation. The accuracy of the counter is within plus or minus 15%. (R.V.J.)

  3. Improvement of Quantitative Measurements in Multiplex Proteomics Using High-Field Asymmetric Waveform Spectrometry.

    PubMed

    Pfammatter, Sibylle; Bonneil, Eric; Thibault, Pierre

    2016-12-02

    Quantitative proteomics using isobaric reagent tandem mass tags (TMT) or isobaric tags for relative and absolute quantitation (iTRAQ) provides a convenient approach to compare changes in protein abundance across multiple samples. However, the analysis of complex protein digests by isobaric labeling can be undermined by the relative large proportion of co-selected peptide ions that lead to distorted reporter ion ratios and affect the accuracy and precision of quantitative measurements. Here, we investigated the use of high-field asymmetric waveform ion mobility spectrometry (FAIMS) in proteomic experiments to reduce sample complexity and improve protein quantification using TMT isobaric labeling. LC-FAIMS-MS/MS analyses of human and yeast protein digests led to significant reductions in interfering ions, which increased the number of quantifiable peptides by up to 68% while significantly improving the accuracy of abundance measurements compared to that with conventional LC-MS/MS. The improvement in quantitative measurements using FAIMS is further demonstrated for the temporal profiling of protein abundance of HEK293 cells following heat shock treatment.

  4. Neutron Capture Cross Sections and Gamma Emission Spectra from Neutron Capture on 234,236,238U Measured with DANCE

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Mosby, S.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Jandel, M.; Kawano, T.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Wu, C.-Y.; Becker, J. A.; Chyzh, A.; Baramsai, B.; Mitchell, G. E.; Krticka, M.

    2014-05-01

    A new measurement of the 238U(n, γ) cross section using a thin 48 mg/cm2 target was made using the DANCE detector at LANSCE over the energy range from 10 eV to 500 keV. The results confirm earlier measurements. Measurements of the gamma-ray emission spectra were also made for 238U(n, γ) as well as 234,236U(n, γ). These measurements help to constrain the radiative strength function used in the cross-section calculations.

  5. Effect of Long Term Low-Level Gamma Radiation on Thermal Sensitivity of RDX/HMX Mixtures

    DTIC Science & Technology

    1976-11-01

    1.1x10 R. It was concluded that the slight exothermic reaction before the 3^6 HMX polymorphic transition could be caused by a radiation-induced...Radiation on Thermal Sensitivity of RDX / HMX Mixtures 5. TYPE OF REPORT 4 PERIOD COVERED Final Report 6. PERFORMING ORG. REPORT NUMBER 7...and Identity by block number) Gamma radiation Weight loss HMX Impact sensitivity test RDX Vacuum stability test DTA Infrared spectrometry TGA

  6. Radiation-induced degradation of cyclohexanebutyric acid in aqueous solutions by gamma ray irradiation

    NASA Astrophysics Data System (ADS)

    Jia, Wenbao; He, Yanquan; Ling, Yongsheng; Hei, Daqian; Shan, Qing; Zhang, Yan; Li, Jiatong

    2015-04-01

    The radiation-induced degradation of cyclohexanebutyric acid under gamma ray irradiation was investigated. Degradation experiments were performed with 100 mL sealed Pyrex glass vessels loaded with 80 mL of cyclohexanebutyric acid solutions at various initial concentrations of 10, 20, and 40 mg L-1. The absorbed doses were controlled at 0, 0.65, 1.95, 3.25, 6.5, 9.75, and 13 kGy. The results showed that gamma ray irradiation could effectively degrade cyclohexanebutyric acid in aqueous solutions. The removal rate of cyclohexanebutyric acid increased significantly with the increase of absorbed dose and the decrease of its initial concentration. At the same time, the removal of chemical oxygen demand (COD) was as effective as that of cyclohexanebutyric acid. The kinetic studies showed that the degradation of cyclohexanebutyric acid followed pseudo first-order reaction. Above all, the proposed mechanism obtained when NaNO2, NaNO3 and tert-butanol were added showed that the •OH radical played a major role in the gamma degradation process of cyclohexanebutyric acid, while •H and eaq- played a minor role in the gamma degradation process. The degradation products were identified by Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass spectrometry (GC/MS) during cyclohexanebutyric acid degradation.

  7. X-ray and gamma ray astronomy detectors

    NASA Technical Reports Server (NTRS)

    Decher, Rudolf; Ramsey, Brian D.; Austin, Robert

    1994-01-01

    X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.

  8. Measuring Hordein (Gluten) in Beer – A Comparison of ELISA and Mass Spectrometry

    PubMed Central

    Blundell, Malcolm J.; Goswami, Hareshwar P.; Howitt, Crispin A.

    2013-01-01

    Background Subjects suffering from coeliac disease, gluten allergy/intolerance must adopt a lifelong avoidance of gluten. Beer contains trace levels of hordeins (gluten) which are too high to be safely consumed by most coeliacs. Accurate measurement of trace hordeins by ELISA is problematic. Methods We have compared hordein levels in sixty beers, by sandwich ELISA, with the level determined using multiple reaction monitoring mass spectrometry (MRM-MS). Results Hordein levels measured by ELISA varied by four orders of magnitude, from zero (for known gluten-free beers) to 47,000 µg/mL (ppm; for a wheat-based beer). Half the commercial gluten-free beers were free of hordein by MS and ELISA. Two gluten-free and two low-gluten beers had zero ELISA readings, but contained significant hordein levels (p<0.05), or near average (60–140%) hordein levels, by MS, respectively. Six beers gave false negatives, with zero ELISA readings but near average hordein content by MS. Approximately 20% of commercial beers had ELISA readings less than 1 ppm, but a near average hordein content by MS. Several barley beers also contained undeclared wheat proteins. Conclusions ELISA results did not correlate with the relative content of hordein peptides determined by MS, with all barley based beers containing hordein. We suggest that mass spectrometry is more reliable than ELISA, as ELISA enumerates only the concentration of particular amino-acid epitopes; this may vary between different hordeins and may not be related to the absolute hordein concentration. MS quantification is undertaken using peptides that are specific and unique, enabling the quantification of individual hordein isoforms. This outlines the problem of relying solely on ELISA determination of gluten in beverages such as beer and highlights the need for the development of new sensitive and selective quantitative assay such as MS. PMID:23509606

  9. Gamma-Terpinene Modulates Acute Inflammatory Response in Mice.

    PubMed

    Ramalho, Theresa Raquel de Oliveira; Oliveira, Maria Talita Pacheco de; Lima, Ana Luisa de Araujo; Bezerra-Santos, Claudio Roberto; Piuvezam, Marcia Regina

    2015-09-01

    The monoterpene gamma-terpinene is a natural compound present in essential oils of a wide variety of plants, including the Eucalyptus genus, which has been reported to possess anti-inflammatory activity. The goal of this study was to evaluate the effect of gamma-terpinene on several in vivo experimental models of acute inflammation. Swiss mice were pretreated with gamma-terpinene and subjected to protocols of paw edema with different phlogistic agents such as carrageenan, prostaglandin-E2, histamine, or bradykinin. The microvascular permeability was measured by intraperitoneal injection of acetic acid and measuring the amount of protein extravasation. Carrageenan-induced peritonitis was used to analyze the effect of gamma-terpinene on inflammatory cell migration and cytokine production. We also developed an acute lung injury protocol to define the anti-inflammatory effect of gamma-terpinene. Mice pretreated with gamma-terpinene displayed reduced paw edema induced by carrageenan from 1-24 h after challenge. A similar reduction was observed when gamma-terpinene was administered after stimulation with PGE2, bradykinin, and histamine. Treatment with gamma-terpinene also inhibited fluid extravasation in the acetic acid model of microvascular permeability. In a carrageenan-induced peritonitis model, gamma-terpinene treatment reduced neutrophil migration as well as the production of interleukin-1β and tumor necrosis factor-α when compared to nontreated animals, and in the acute lung injury protocol, gamma-terpinene diminished the neutrophil migration into lung tissue independently of the total protein extravasation in the lung. These data demonstrate that, in different models of inflammation, treatment with gamma-terpinene alleviated inflammatory parameters such as edema and pro-inflammatory cytokine production, as well as cell migration into the inflamed site, and that this monoterpene has anti-inflammatory properties. Georg Thieme Verlag KG Stuttgart · New York.

  10. Measurement of CP observables in B{sup {+-}{yields}D}{sub CP}K{sup {+-}}decays and constraints on the CKM angle {gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amo Sanchez, P. del; Lees, J. P.; Poireau, V.

    Using the entire sample of 467x10{sup 6} {Upsilon}(4S){yields}BB decays collected with the BABAR detector at the PEP-II asymmetric-energy B factory at the SLAC National Accelerator Laboratory, we perform an analysis of B{sup {+-}}{yields}DK{sup {+-}}decays, using decay modes in which the neutral D meson decays to either CP-eigenstates or non-CP-eigenstates. We measure the partial decay rate charge asymmetries for CP-even and CP-odd D final states to be A{sub CP+}=0.25{+-}0.06{+-}0.02 and A{sub CP-}=-0.09{+-}0.07{+-}0.02, respectively, where the first error is the statistical and the second is the systematic uncertainty. The parameter A{sub CP+} is different from zero with a significance of 3.6 standardmore » deviations, constituting evidence for direct CP violation. We also measure the ratios of the charged-averaged B partial decay rates in CP and non-CP decays, R{sub CP+}=1.18{+-}0.09{+-}0.05 and R{sub CP-}=1.07{+-}0.08{+-}0.04. We infer frequentist confidence intervals for the angle {gamma} of the unitarity triangle, for the strong phase difference {delta}{sub B}, and for the amplitude ratio r{sub B}, which are related to the B{sup -}{yields}DK{sup -} decay amplitude by r{sub B}e{sup i({delta}{sub B}-{gamma})}=A(B{sup -}{yields}D{sup 0}K{sup -})/A(B{sup -}{yields}D{sup 0}K{sup -}). Including statistical and systematic uncertainties, we obtain 0.24gamma}<22.7 deg. or 80.8 deg. <{gamma}<99.2 deg. or 157.3 deg. <{gamma}<168.7 deg. (7.0 deg. <{gamma}<173.0 deg.) at the 68% (95%) confidence level.« less

  11. gamma-Hexachlorocyclohexane (gamma-HCH)

    Integrated Risk Information System (IRIS)

    gamma - Hexachlorocyclohexane ( gamma - HCH ) ; CASRN 58 - 89 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Asse

  12. Measurement of inclusive jet cross sections in Z/gamma*(-->e+e-) + jets production in pp[over ] collisions at square root s = 1.96 TeV.

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopolou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyria, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2008-03-14

    Inclusive jet cross sections in Z/gamma* events, with Z/gamma* decaying into an electron-positron pair, are measured as a function of jet transverse momentum and jet multiplicity in pp[over ] collisions at square root s = 1.96 TeV with the upgraded Collider Detector at Fermilab in run II, based on an integrated luminosity of 1.7 fb(-1). The measurements cover the rapidity region |y(jet)|<2.1 and the transverse momentum range p(T)(jet)>30 GeV/c. Next-to-leading order perturbative QCD predictions are in good agreement with the measured cross sections.

  13. Measurement of time-dependent CP asymmetries in B0-->D(*)+/-pi-/+ decays and constraints on sin(2beta+gamma).

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Gaillard, J-M; Hicheur, A; Karyotakis, Y; Lees, J P; Robbe, P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; LeClerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Romosan, A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Ford, K; Harrison, T J; Hawkes, C M; Knowles, D J; Morgan, S E; Penny, R C; Watson, A T; Watson, N K; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schmuecker, H; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Mackay, C; Wilson, F F; Abe, K; Cuhadar-Donszelmann, T; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Kyberd, P; McKemey, A K; Teodorescu, L; Blinov, V E; Bukin, A D; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Gary, J W; Layter, J; Shen, B C; Wang, K; del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, Sh; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Kuznetsova, N; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Beringer, J; Eisner, A M; Heusch, C A; Lockman, W S; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Erwin, R J; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Clark, P J; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Roy, J; Smith, J G; van Hoek, W C; Zhang, L; Harton, J L; Hu, T; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Dubitzky, R S; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Schubert, J; Schubert, K R; Schwierz, R; Spaan, B; Wilden, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Grenier, P; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Khan, A; Lavin, D; Muheim, F; Playfer, S; Swain, J E; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Biasini, M; Calcaterra, A; de Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Pioppi, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Morii, M; Won, E; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Gaillard, J R; Morton, G W; Nash, J A; Sanders, P; Taylor, G P; Grenier, G J; Lee, S-J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Brigljević, V; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Coleman, J P; Fry, J R; Gabathuler, E; Gamet, R; Kay, M; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Shorthouse, H W; Vidal, P B; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; George, S; Green, M G; Kurup, A; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hart, P A; Hodgkinson, M C; Jackson, F; Lafferty, G D; Lyon, A J; Weatherall, J H; Williams, J C; Farbin, A; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Cote-Ahern, D; Taras, P; Nicholson, H; Cartaro, C; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; LoSecco, J M; Gabriel, T A; Brau, B; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Wong, Q K; Brau, J; Frey, R; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de la Vaissière, Ch; Del Buono, L; Hamon, O; John, M J J; Leruste, Ph; Ocariz, J; Pivk, M; Roos, L; Stark, J; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Del Gamba, V; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lu, C; Miftakov, V; Olsen, J; Smith, A J S; Tanaka, H A; Varnes, E W; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Tehrani, F Safai; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Geddes, N I; Gopal, G P; Olaiya, E O; Xella, S M; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yeche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Convery, M R; Coupal, D P; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Grauges-Pous, E; Hadig, T; Halyo, V; Hryn'ova, T; Innes, W R; Jessop, C P; Kelsey, M H; Kim, P; Kocian, M L; Langenegger, U; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Va'vra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wright, D H; Young, C C; Burchat, P R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, M; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Johnson, J R; Kutter, P E; Li, H; Liu, R; Di Lodovico, F; Mihalyi, A; Mohapatra, A K; Pan, Y; Prepost, R; Sekula, S J; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Neal, H

    2004-06-25

    We present a measurement of CP-violating asymmetries in fully reconstructed B0-->D(*)+/-pi-/+ decays in approximately 88 x 10(6) upsilon(4S)-->BBmacr; decays collected with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC. From a time-dependent maximum-likelihood fit we obtain the following for the CP-violating parameters: a=-0.022+/-0.038 (stat)+/-0.020 (syst), a*=-0.068+/-0.038 (stat)+/-0.020 (syst), c(lep)=+0.025+/-0.068 (stat)+/-0.033 (syst), and c*(lep)=+0.031+/-0.070 (stat)+/-0.033 (syst). Using other measurements and theoretical assumptions we interpret the results in terms of the angles of the Cabibbo-Kobayashi-Maskawa unitarity triangle, and find |sin((2beta+gamma)|>0.69 at 68% confidence level. We exclude the hypothesis of no CP violation [sin(2beta+gamma)=0] at 83% confidence level.

  14. A mass spectrometry primer for mass spectrometry imaging

    PubMed Central

    Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2011-01-01

    Mass spectrometry imaging (MSI), a rapidly growing subfield of chemical imaging, employs mass spectrometry (MS) technologies to create single- and multi-dimensional localization maps for a variety of atoms and molecules. Complimentary to other imaging approaches, MSI provides high chemical specificity and broad analyte coverage. This powerful analytical toolset is capable of measuring the distribution of many classes of inorganics, metabolites, proteins and pharmaceuticals in chemically and structurally complex biological specimens in vivo, in vitro, and in situ. The MSI approaches highlighted in this Methods in Molecular Biology volume provide flexibility of detection, characterization, and identification of multiple known and unknown analytes. The goal of this chapter is to introduce investigators who may be unfamiliar with MS to the basic principles of the mass spectrometric approaches as used in MSI. In addition to guidelines for choosing the most suitable MSI method for specific investigations, cross-references are provided to the chapters in this volume that describe the appropriate experimental protocols. PMID:20680583

  15. Gamma Ray Bursts-Afterglows and Counterparts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J

    1998-01-01

    Several breakthrough discoveries were made last year of x-ray, optical and radio afterglows and counterparts to gamma-ray bursts, and a redshift has been associated with at least one of these. These discoveries were made possible by the fast, accurate gamma-ray burst locations of the BeppoSAX satellite. It is now generally believed that the burst sources are at cosmological distances and that they represent the most powerful explosions in the Universe. These observations also open new possibilities for the study of early star formation, the physics of extreme conditions and perhaps even cosmology. This session will concentrate on recent x-ray, optical and radio afterglow observations of gamma-ray bursts, associated redshift measurements, and counterpart observations. Several review and theory talks will also be presented, along with a summary of the astrophysical implications of the observations. There will be additional poster contributions on observations of gamma-ray burst source locations at wavelengths other than gamma rays. Posters are also solicited that describe new observational capabilities for rapid follow-up observations of gamma-ray bursts.

  16. A TPC as high performance gamma-ray telescope and polarimeter: polarisation measurement in a beam between 1.7 and 74MeV with HARPO

    NASA Astrophysics Data System (ADS)

    Gros, P.; Amano, S.; Attié, D.; Baron, P.; Baudin, D.; Bernard, D.; Bruel, P.; Calvet, D.; Colas, P.; Daté, S.; Delbart, A.; Frotin, M.; Geerebaert, Y.; Giebels, B.; Götz, D.; Hashimoto, S.; Horan, D.; Kotaka, T.; Louzir, M.; Magniette, F.; Minamiyama, Y.; Miyamoto, S.; Ohkuma, H.; Poilleux, P.; Semeniouk, I.; Sizun, P.; Takemoto, A.; Yamaguchi, M.; Yonamine, R.; Wang, S.

    2018-05-01

    We presented in 2014 the very first data from a polarised gamma-ray beam between 1.7 and 74MeV. We now show the results of their analysis, and in particular the polarimetry measurements. With these results, we are establishing a new, high-performance way to do gamma-ray astronomy and, for the first time, polarimetry, in the e+e- pair regime.

  17. Energetics and dynamics through time-resolved measurements in mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lifshitz, Chava

    Results of recent work on time-resolved photoionization and electron ionization mass spectrometry carried out in Jerusalem are reviewed. Time-resolved photoionization mass spectrometry in the vacuum ultraviolet is applied to polycyclic aromatic hydrocarbons, for example naphthalene, pyrene and fluoranthene as well as to some bromo derivatives (bromonaphthalene and bromoanthracene). Time-resolved photoionization efficiency curves are modelled by Rice-Ramsperger-Kassel-Marcus QET rate-energy k ( E ) dependences of the unimolecular dissociative processes and by the rate process infrared radiative relaxation k . Experimental results are augmented by time-resolved photorad dissociation data for the same species, whenever available. Kinetic shifts, conventional and intrinsic (due to competition between dissociative and radiative decay), are evaluated. Activation parameters (activation energies and entropies) are deduced. Thermochemical information is obtained including bond energies and ionic heats of formation. Fullerenes, notably C , are studied by time-resolved electron ionization and a large intrinsic shift, due to competition with black-bodylike radiative decay in the visible is discussed.

  18. Gamma Radiation Effects on Peanut Skin Antioxidants

    PubMed Central

    de Camargo, Adriano Costa; de Souza Vieira, Thais Maria Ferreira; Regitano-D’Arce, Marisa Aparecida Bismara; Calori-Domingues, Maria Antonia; Canniatti-Brazaca, Solange Guidolin

    2012-01-01

    Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached-deodorized (RBD) soybean oil. The oxidative stability of the oil samples was determined using the Oil Stability Index method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. All extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Oil Stability Index method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT. The present study confirmed that gamma radiation did not affect the peanut skin extracts’ antioxidative properties when added to soybean oil. PMID:22489142

  19. Boron concentration measurements by alpha spectrometry and quantitative neutron autoradiography in cells and tissues treated with different boronated formulations and administration protocols.

    PubMed

    Bortolussi, Silva; Ciani, Laura; Postuma, Ian; Protti, Nicoletta; Luca Reversi; Bruschi, Piero; Ferrari, Cinzia; Cansolino, Laura; Panza, Luigi; Ristori, Sandra; Altieri, Saverio

    2014-06-01

    The possibility to measure boron concentration with high precision in tissues that will be irradiated represents a fundamental step for a safe and effective BNCT treatment. In Pavia, two techniques have been used for this purpose, a quantitative method based on charged particles spectrometry and a boron biodistribution imaging based on neutron autoradiography. A quantitative method to determine boron concentration by neutron autoradiography has been recently set-up and calibrated for the measurement of biological samples, both solid and liquid, in the frame of the feasibility study of BNCT. This technique was calibrated and the obtained results were cross checked with those of α spectrometry, in order to validate them. The comparisons were performed using tissues taken form animals treated with different boron administration protocols. Subsequently the quantitative neutron autoradiography was employed to measure osteosarcoma cell samples treated with BPA and with new boronated formulations. © 2013 Published by Elsevier Ltd.

  20. Unveiling the Nature of Soft Gamma Repeaters and Magnetars: Scientists Measure the Most Powerful Magnet Known

    NASA Technical Reports Server (NTRS)

    Swank, Jean (Technical Monitor); Parke, William

    2002-01-01

    This newsletter from NASA Goddard Space Flight Center (GSFC) announces measurements of the magnetic field of a magnetar. The magnetic field was approx. 10(exp 15) gauss, up to 10 times more powerful than previous estimates. The newsletter also describes how the star's magnetic field slows its rotation, and how starquakes emit protons, which are trapped in this neutron star's magnetic field, and make it a soft gamma repeater (SGR).

  1. Investigation of gamma rays from the galactic center

    NASA Technical Reports Server (NTRS)

    Helmken, H. F.

    1973-01-01

    Data from Argentine balloon flights made to investigate gamma ray emission from the galactic center are summarized. Data are also summarized from a Palestine, Texas balloon flight to measure gamma rays from NP 0532 and Crab Nebulae.

  2. Image processing techniques revealing the relationship between the field-measured ambient gamma dose equivalent rate and geological conditions at a granitic area, Velence Mountains, Hungary

    NASA Astrophysics Data System (ADS)

    Beltran Torres, Silvana; Petrik, Attila; Zsuzsanna Szabó, Katalin; Jordan, Gyozo; Szabó, Csaba

    2017-04-01

    In order to estimate the annual dose that the public receive from natural radioactivity, the identification of the potential risk areas is required which, in turn, necessitates understanding the relationship between the spatial distribution of natural radioactivity and the geogenic risk factors (e.g., rock types, dykes, faults, soil conditions, etc.). A detailed spatial analysis of ambient gamma dose equivalent rate was performed in the western side of Velence Mountains, the largest outcropped granitic area in Hungary. In order to assess the role of local geology in the spatial distribution of ambient gamma dose rates, field measurements were carried out at ground level at 300 sites along a 250 m x 250 m regular grid in a total surface of 14.7 km2. Digital image processing methods were applied to identify anomalies, heterogeneities and spatial patterns in the measured gamma dose rates, including local maxima and minima determination, digital cross sections, gradient magnitude and gradient direction, second derivative profile curvature, local variability, lineament density, 2D autocorrelation and directional variogram analyses. Statistical inference showed that different gamma dose rate levels are associated with the rock types (i.e., Carboniferous granite, Pleistocene colluvial, proluvial, deluvial sediments and talus, and Pannonian sand and pebble), with the highest level on the Carboniferous granite including outlying values. Moreover, digital image processing revealed that linear gamma dose rate spatial features are parallel to the SW-NE dyke system and possibly to the NW-SE main fractures. The results of this study underline the importance of understanding the role of geogenic risk factors influencing the ambient gamma dose rate received by public. The study also demonstrates the power of the image processing techniques for the identification of spatial pattern in field-measured geogenic radiation.

  3. Spontaneous Gamma Activity in Schizophrenia.

    PubMed

    Hirano, Yoji; Oribe, Naoya; Kanba, Shigenobu; Onitsuka, Toshiaki; Nestor, Paul G; Spencer, Kevin M

    2015-08-01

    A major goal of translational neuroscience is to identify neural circuit abnormalities in neuropsychiatric disorders that can be studied in animal models to facilitate the development of new treatments. Oscillations in the gamma band (30-100 Hz) of the electroencephalogram have received considerable interest as the basic mechanisms underlying these oscillations are understood, and gamma abnormalities have been found in schizophrenia (SZ). Animal models of SZ based on hypofunction of the N-methyl-d-aspartate receptor (NMDAR) demonstrate increased spontaneous broadband gamma power, but this phenomenon has not been identified clearly in patients with SZ. To examine spontaneous gamma power and its relationship to evoked gamma oscillations in the auditory cortex of patients with SZ. We performed a cross-sectional study including 24 patients with chronic SZ and 24 matched healthy control participants at the Veterans Affairs Boston Healthcare System from January 1, 2009, through December 31, 2012. Electroencephalograms were obtained during auditory steady-state stimulation at multiple frequencies (20, 30, and 40 Hz) and during a resting state in 18 participants in each group. Electroencephalographic activity in the auditory cortex was estimated using dipole source localization. Auditory steady-state response (ASSR) measures included the phase-locking factor and evoked power. Spontaneous gamma power was measured as induced (non-phase-locked) gamma power in the ASSR data and as total gamma power in the resting-state data. The ASSR phase-locking factor was reduced significantly in patients with SZ compared with controls for the 40-Hz stimulation (mean [SD], 0.075 [0.028] vs 0.113 [0.065]; F1,46 = 6.79 [P = .012]) but not the 20- or the 30-Hz stimulation (0.042 [0.038] vs 0.043 [0.034]; F1,46 = 0.006 [P = .938] and 0.084 [0.040] vs 0.098 [0.050]; F1,46 = 1.605 [P = .212], respectively), repeating previous findings. The mean [SD] broadband-induced (30

  4. Unidentified Gamma-Ray Sources: Hunting Gamma-Ray Blazars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; D'Abrusco, R.; Tosti, G.

    2012-04-02

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of the unidentified {gamma}-ray sources (UGSs). Despite the large improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one third of the Fermi-detected objects are still not associated to low energy counterparts. Recently, using the Wide-field Infrared Survey Explorer (WISE) survey, we discovered that blazars, the rarest class of Active Galactic Nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Basedmore » on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated to the UGS sample of the second Fermi {gamma}-ray catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated to {gamma}-ray sources in the 2FGL catalog.« less

  5. UNIDENTIFIED {gamma}-RAY SOURCES: HUNTING {gamma}-RAY BLAZARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; Ajello, M.; D'Abrusco, R.

    2012-06-10

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of unidentified {gamma}-ray sources (UGSs). Despite the major improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one-third of the Fermi-detected objects are still not associated with low-energy counterparts. Recently, using the Wide-field Infrared Survey Explorer survey, we discovered that blazars, the rarest class of active galactic nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, wemore » designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated with the UGS sample of the second Fermi {gamma}-ray LAT catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart to each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated with {gamma}-ray sources in the 2FGL catalog.« less

  6. Interferon-gamma (INF-gamma) release test can detect cutaneous adverse effects to statins.

    PubMed

    Goldberg, Ilan; Isman, Gila; Shirazi, Idit; Brenner, Sarah

    2009-12-01

    An increasing number of cutaneous adverse effects are being reported as use of statins becomes more widespread. A study was undertaken to establish the relationship between statin and a cutaneous reaction by the in vitro interferon-gamma (INF-gamma) release test. The lymphocytes of 20 patients with suspected drug-induced skin reaction were incubated with and without the drug. The level of INF-gamma from the supernatant was measured by enzyme-linked immunosorbent assay (ELISA), and the increase calculated. Response was positive in 27 (21.43%) of the 126 drugs. Statin was the only drug with a positive response in 80% of those cases. Nine of 20 patients (45.0%) had complete resolution after discontinuation of the drug; 6 (30.0%) who replaced one drug by another statin had partial or no resolution; and 5 (20.0%) had no resolution despite cessation of statins of all kinds. A positive INF-gamma release test was found in patients who developed skin reactions while taking statins; the test's reliability was strengthened by prompt improvement following elimination of the suspected drug in the majority of patients.

  7. Development of marijuana and tobacco detectors using potassium-40 gamma-ray emissions

    NASA Astrophysics Data System (ADS)

    Kirby, John A.; Lindquist, Roy P.

    1994-10-01

    Measurements were made at the Otay Mesa, CA, border crossing between November 30 and December 4, 1992, to demonstrate proof of concept and the practicality of using potassium 40 (K40) gamma emissions to detect the presence of marijuana in vehicles. Lawrence Livermore National Laboratory personnel, with the assistance of the EPA, set up three large volume gamma ray detectors with lead brick shielding and collimation under a stationary trailer and pickup truck. Measurements were performed for various positions and quantities of marijuana. Also, small quantities of marijuana, cigarettes, and other materials were subjected to gamma counting measurements under controlled geometry conditions to determine their K40 concentration. Larger quantities of heroin and cocaine were subjected to undefined geometry gamma counts for significant K40 gamma emissions.

  8. The self-absorption effect of gamma rays in /sup 239/Pu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Hsiao-Hua

    1989-01-01

    Nuclear materials assay with gamma-ray spectrum measurement is a well-established method for safeguards. However, for a thick source, the self-absorption of characteristic low-energy gamma rays has been a handicap to accurate assay. I have carried out Monte Carlo simulations to study this effect using the /sup 239/Pu ..cap alpha..-decay gamma-ray spectrum as an example. The thickness of a plutonium metal source can be considered a function of gamma-ray intensity ratios. In a practical application, gamma-ray intensity ratios can be obtained from a measured spectrum. With the help of calculated curves, scientists can find the source thickness and make corrections tomore » gamma-ray intensities, which then lead to an accurate quantitative determination of radioactive isotopes in the material. 2 refs., 9 figs.« less

  9. Prospects for future very high-energy gamma-ray sky survey: Impact of secondary gamma rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Yoshiyuki; Kalashev, Oleg E.; Kusenko, Alexander

    2014-02-01

    Very high-energy gamma-ray measurements of distant blazars can be well explained by secondary gamma rays emitted by cascades induced by ultra-high-energy cosmic rays. The secondary gamma rays will enable one to detect a large number of blazars with future ground based gamma-ray telescopes such as Cherenkov Telescope Array (CTA). We show that the secondary emission process will allow CTA to detect 100, 130, 150, 87, and 8 blazars above 30 GeV, 100 GeV, 300 GeV, 1 TeV, and 10 TeV, respectively, up to z~8 assuming the intergalactic magnetic field (IGMF) strength B=10-17 G and an unbiased all sky survey withmore » 0.5 h exposure at each field of view, where total observing time is ~540 h. These numbers will be 79, 96, 110, 63, and 6 up to z~5 in the case of B=10-15 G. This large statistics of sources will be a clear evidence of the secondary gamma-ray scenarios and a new key to studying the IGMF statistically. We also find that a wider and shallower survey is favored to detect more and higher redshift sources even if we take into account secondary gamma rays.« less

  10. METHOD FOR SIMULTANEOUS 90SR AND 137CS IN-VIVO MEASUREMENTS OF SMALL ANIMALS AND OTHER ENVIRONMENTAL MEDIA DEVELOPED FOR THE CONDITIONS OF THE CHERNOBYL EXCLUSION ZONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farfan, E.; Jannik, T.

    To perform in vivo simultaneous measurements of the {sup 90}Sr and {sup 137}Cs content in the bodies of animals living in the Chernobyl Exclusion Zone (ChEZ), an appropriate method and equipment were developed and installed in a mobile gamma beta spectrometry laboratory. This technique was designed for animals of relatively small sizes (up to 50 g). The {sup 90}Sr content is measured by a beta spectrometer with a 0.1 mm thick scintillation plastic detector. The spectrum processing takes into account the fact that the measured object is 'thick-layered' and contains a comparable quantity of {sup 137}Cs, which is a characteristicmore » condition of the ChEZ. The {sup 137}Cs content is measured by a NaI scintillation detector that is part of the combined gamma beta spectrometry system. For environmental research performed in the ChEZ, the advantages of this method and equipment (rapid measurements, capability to measure live animals directly in their habitat, and the capability of simultaneous {sup 90}Sr and {sup 137}Cs measurements) far outweigh the existing limitations (considerations must be made for background radiation and the animal size, skeletal shape and body mass). The accuracy of these in vivo measurements is shown to be consistent with standard spectrometric and radiochemical methods. Apart from the in vivo measurements, the proposed methodology, after a very simple upgrade that is also described in the article, works even more accurately with samples of other media, such as soil and plants.« less

  11. Fermi gamma-ray imaging of a radio galaxy.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Colafrancesco, S; Cominsky, L R; Conrad, J; Costamante, L; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Finke, J; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Georganopoulos, M; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sambruna, R; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stawarz, Ł; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M; Hardcastle, M J; Kazanas, D

    2010-05-07

    The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton-scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.

  12. Development and Attestation of Gamma-Ray Measurement Methodologies for use by Rostekhnadzor Inspectors in the Russian Federation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Sanders

    2006-09-01

    Development and attestation of gamma-ray non-destructive assay measurement methodologies for use by inspectors of the Russian Federal Service for Environmental, Technological, and Nuclear Oversight (Rostekhnadzor, formerly Gosatomnadzor or GAN), as well as for use by Russian nuclear facilities, has been completed. Specifically, a methodology utilizing the gamma-ray multi group analysis (MGA) method for determining plutonium isotopic composition has been developed, while existing methodologies to determining uranium enrichment and isotopic composition have been revised to make them more appropriate to the material types and conditions present in nuclear facilities in the Russian Federation. This paper will discuss the development and revisionmore » of these methodologies, the metrological characteristics of the final methodologies, as well as the limitations and concerns specific to the utilization of these analysis methods in the Russian Federation.« less

  13. Application of gamma-ray radiography and gravimetric measurements after accelerated corrosion tests of steel embedded in mortar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffó, Gustavo, E-mail: duffo@cnea.gov.ar; Consejo Nacional de Investigaciones Científicas y Técnicas; Universidad Nacional de San Martín, Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires

    2015-08-15

    The accelerated corrosion by the impressed current technique is widely used in studies of concrete durability since it has the advantage that tests can be carried out within reasonable periods of time. In the present work the relationship between the applied current density and the resulting damage on the reinforcing steel, by applying optical microscopy, scanning electron microscopy, gamma-ray radiography and gravimetric measurements, was studied by means of the implementation of accelerated corrosion tests on reinforced mortar. The results show that the efficiency of the applied current is between 1 and 77%, regardless of the applied current density, the water/cementmore » ratio and the mortar cover depth of the specimens. The results show the applicability of the gamma-ray radiography technique to detect localized corrosion of steel rebars in laboratory specimens.« less

  14. Hard gamma-ray background from the coding collimator of a gamma-ray telescope during in conditions of a space experiment

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A. P.; Berezovoj, A. N.; Gal'Per, A. M.; Grachev, V. M.; Dmitrenko, V. V.; Kirillov-Ugryumov, V. G.; Lebedev, V. V.; Lyakhov, V. A.; Moiseev, A. A.; Ulin, S. E.; Shchvets, N. I.

    1984-11-01

    Coding collimators are used to improve the angular resolution of gamma-ray telescopes at energies above 50 MeV. However, the interaction of cosmic rays with the collimator material can lead to the appearance of a gramma-ray background flux which can have a deleterious effect on measurement efficiency. An experiment was performed on the Salyut-6-Soyuz spacecraft system with the Elena-F small-scale gamma-ray telescope in order to measure the magnitude of this background. It is shown that, even at a zenith angle of approximately zero degrees (the angle at which the gamma-ray observations are made), the coding collimator has only an insignificant effect on the background conditions.

  15. Growth kinetics of gamma-prime precipitates in a directionally solidified eutectic, gamma/gamma-prime-delta

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1976-01-01

    A directionally solidified eutectic alloy (DSEA), of those viewed as potential candidates for the next generation of aircraft gas turbine blade materials, is studied for the gamma-prime growth kinetics, in the system Ni-Nb-Cr-Al, specifically: Ni-20 w/o Nb-6 w/o Cr-2.5 w/o Al gamma/gamma-prime-delta DSEA. Heat treatment, polishing and etching, and preparation for electron micrography are described, and the size distribution of gamma-prime phase following various anneals is plotted, along with gamma-prime growth kinetics in this specific DSEA, and the cube of gamma-prime particle size vs anneal time. Activation energies and coarsening kinetics are studied.

  16. Correction of measured Gamma-Knife output factors for angular dependence of diode detectors and PinPoint ionization chamber.

    PubMed

    Hršak, Hrvoje; Majer, Marija; Grego, Timor; Bibić, Juraj; Heinrich, Zdravko

    2014-12-01

    Dosimetry for Gamma-Knife requires detectors with high spatial resolution and minimal angular dependence of response. Angular dependence and end effect time for p-type silicon detectors (PTW Diode P and Diode E) and PTW PinPoint ionization chamber were measured with Gamma-Knife beams. Weighted angular dependence correction factors were calculated for each detector. The Gamma-Knife output factors were corrected for angular dependence and end effect time. For Gamma-Knife beams angle range of 84°-54°. Diode P shows considerable angular dependence of 9% and 8% for the 18 mm and 14, 8, 4 mm collimator, respectively. For Diode E this dependence is about 4% for all collimators. PinPoint ionization chamber shows angular dependence of less than 3% for 18, 14 and 8 mm helmet and 10% for 4 mm collimator due to volumetric averaging effect in a small photon beam. Corrected output factors for 14 mm helmet are in very good agreement (within ±0.3%) with published data and values recommended by vendor (Elekta AB, Stockholm, Sweden). For the 8 mm collimator diodes are still in good agreement with recommended values (within ±0.6%), while PinPoint gives 3% less value. For the 4 mm helmet Diodes P and E show over-response of 2.8% and 1.8%, respectively. For PinPoint chamber output factor of 4 mm collimator is 25% lower than Elekta value which is generally not consequence of angular dependence, but of volumetric averaging effect and lack of lateral electronic equilibrium. Diodes P and E represent good choice for Gamma-Knife dosimetry. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. Gamma radiation field intensity meter

    DOEpatents

    Thacker, Louis H.

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  18. Gamma radiation field intensity meter

    DOEpatents

    Thacker, Louis H.

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  19. Spectral measurements of cosmic gamma-ray bursts with the Konus-Wind and Konus-A instruments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golenetskii, S. V.; Aptekar, R. L.; Frederiks, D. D.

    1998-05-16

    The Konus gamma-ray burst instrumentation on board the US GGS-Wind spacecraft and the near-Earth Russian satellite Kosmos-2326 makes it possible to make spectral measurements and comparisons between 12 keV to 10 MeV. Since November 1994, over 370 bursts have been observed in the triggered mode, for which detailed spectral measurements are available. Incident photon spectra are derived from the count rate spectra of a number of bright bursts for which the celestial source position or the angle relative to the sensor axis is known. The spectral evolution of these bursts and the possible existence of spectral features in both themore » soft and hard energy bands are discussed.« less

  20. The neutron-gamma Feynman variance to mean approach: Gamma detection and total neutron-gamma detection (theory and practice)

    NASA Astrophysics Data System (ADS)

    Chernikova, Dina; Axell, Kåre; Avdic, Senada; Pázsit, Imre; Nordlund, Anders; Allard, Stefan

    2015-05-01

    Two versions of the neutron-gamma variance to mean (Feynman-alpha method or Feynman-Y function) formula for either gamma detection only or total neutron-gamma detection, respectively, are derived and compared in this paper. The new formulas have particular importance for detectors of either gamma photons or detectors sensitive to both neutron and gamma radiation. If applied to a plastic or liquid scintillation detector, the total neutron-gamma detection Feynman-Y expression corresponds to a situation where no discrimination is made between neutrons and gamma particles. The gamma variance to mean formulas are useful when a detector of only gamma radiation is used or when working with a combined neutron-gamma detector at high count rates. The theoretical derivation is based on the Chapman-Kolmogorov equation with the inclusion of general reactions and corresponding intensities for neutrons and gammas, but with the inclusion of prompt reactions only. A one energy group approximation is considered. The comparison of the two different theories is made by using reaction intensities obtained in MCNPX simulations with a simplified geometry for two scintillation detectors and a 252Cf-source. In addition, the variance to mean ratios, neutron, gamma and total neutron-gamma are evaluated experimentally for a weak 252Cf neutron-gamma source, a 137Cs random gamma source and a 22Na correlated gamma source. Due to the focus being on the possibility of using neutron-gamma variance to mean theories for both reactor and safeguards applications, we limited the present study to the general analytical expressions for Feynman-alpha formulas.